xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision a2fb4d78)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 				    struct extent_buffer *leaf,
87 				    struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 				      struct btrfs_root *root,
90 				      u64 parent, u64 root_objectid,
91 				      u64 flags, u64 owner, u64 offset,
92 				      struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 				     struct btrfs_root *root,
95 				     u64 parent, u64 root_objectid,
96 				     u64 flags, struct btrfs_disk_key *key,
97 				     int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 			  struct btrfs_root *extent_root, u64 flags,
100 			  int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 			 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 			    int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 				       u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 			       u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 		     u64 bytenr, u64 num_bytes, int reserved);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 				       cache->key.objectid, bytenr,
272 				       0, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(root, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (cache->cached != BTRFS_CACHE_STARTED) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	/* We're loading it the fast way, so we don't have a caching_ctl. */
321 	if (!cache->caching_ctl) {
322 		spin_unlock(&cache->lock);
323 		return NULL;
324 	}
325 
326 	ctl = cache->caching_ctl;
327 	atomic_inc(&ctl->count);
328 	spin_unlock(&cache->lock);
329 	return ctl;
330 }
331 
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 	if (atomic_dec_and_test(&ctl->count))
335 		kfree(ctl);
336 }
337 
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 			      struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 	u64 extent_start, extent_end, size, total_added = 0;
347 	int ret;
348 
349 	while (start < end) {
350 		ret = find_first_extent_bit(info->pinned_extents, start,
351 					    &extent_start, &extent_end,
352 					    EXTENT_DIRTY | EXTENT_UPTODATE,
353 					    NULL);
354 		if (ret)
355 			break;
356 
357 		if (extent_start <= start) {
358 			start = extent_end + 1;
359 		} else if (extent_start > start && extent_start < end) {
360 			size = extent_start - start;
361 			total_added += size;
362 			ret = btrfs_add_free_space(block_group, start,
363 						   size);
364 			BUG_ON(ret); /* -ENOMEM or logic error */
365 			start = extent_end + 1;
366 		} else {
367 			break;
368 		}
369 	}
370 
371 	if (start < end) {
372 		size = end - start;
373 		total_added += size;
374 		ret = btrfs_add_free_space(block_group, start, size);
375 		BUG_ON(ret); /* -ENOMEM or logic error */
376 	}
377 
378 	return total_added;
379 }
380 
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 	struct btrfs_block_group_cache *block_group;
384 	struct btrfs_fs_info *fs_info;
385 	struct btrfs_caching_control *caching_ctl;
386 	struct btrfs_root *extent_root;
387 	struct btrfs_path *path;
388 	struct extent_buffer *leaf;
389 	struct btrfs_key key;
390 	u64 total_found = 0;
391 	u64 last = 0;
392 	u32 nritems;
393 	int ret = -ENOMEM;
394 
395 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 	block_group = caching_ctl->block_group;
397 	fs_info = block_group->fs_info;
398 	extent_root = fs_info->extent_root;
399 
400 	path = btrfs_alloc_path();
401 	if (!path)
402 		goto out;
403 
404 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 
406 	/*
407 	 * We don't want to deadlock with somebody trying to allocate a new
408 	 * extent for the extent root while also trying to search the extent
409 	 * root to add free space.  So we skip locking and search the commit
410 	 * root, since its read-only
411 	 */
412 	path->skip_locking = 1;
413 	path->search_commit_root = 1;
414 	path->reada = 1;
415 
416 	key.objectid = last;
417 	key.offset = 0;
418 	key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 	mutex_lock(&caching_ctl->mutex);
421 	/* need to make sure the commit_root doesn't disappear */
422 	down_read(&fs_info->extent_commit_sem);
423 
424 next:
425 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 	if (ret < 0)
427 		goto err;
428 
429 	leaf = path->nodes[0];
430 	nritems = btrfs_header_nritems(leaf);
431 
432 	while (1) {
433 		if (btrfs_fs_closing(fs_info) > 1) {
434 			last = (u64)-1;
435 			break;
436 		}
437 
438 		if (path->slots[0] < nritems) {
439 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 		} else {
441 			ret = find_next_key(path, 0, &key);
442 			if (ret)
443 				break;
444 
445 			if (need_resched() ||
446 			    rwsem_is_contended(&fs_info->extent_commit_sem)) {
447 				caching_ctl->progress = last;
448 				btrfs_release_path(path);
449 				up_read(&fs_info->extent_commit_sem);
450 				mutex_unlock(&caching_ctl->mutex);
451 				cond_resched();
452 				goto again;
453 			}
454 
455 			ret = btrfs_next_leaf(extent_root, path);
456 			if (ret < 0)
457 				goto err;
458 			if (ret)
459 				break;
460 			leaf = path->nodes[0];
461 			nritems = btrfs_header_nritems(leaf);
462 			continue;
463 		}
464 
465 		if (key.objectid < last) {
466 			key.objectid = last;
467 			key.offset = 0;
468 			key.type = BTRFS_EXTENT_ITEM_KEY;
469 
470 			caching_ctl->progress = last;
471 			btrfs_release_path(path);
472 			goto next;
473 		}
474 
475 		if (key.objectid < block_group->key.objectid) {
476 			path->slots[0]++;
477 			continue;
478 		}
479 
480 		if (key.objectid >= block_group->key.objectid +
481 		    block_group->key.offset)
482 			break;
483 
484 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 		    key.type == BTRFS_METADATA_ITEM_KEY) {
486 			total_found += add_new_free_space(block_group,
487 							  fs_info, last,
488 							  key.objectid);
489 			if (key.type == BTRFS_METADATA_ITEM_KEY)
490 				last = key.objectid +
491 					fs_info->tree_root->leafsize;
492 			else
493 				last = key.objectid + key.offset;
494 
495 			if (total_found > (1024 * 1024 * 2)) {
496 				total_found = 0;
497 				wake_up(&caching_ctl->wait);
498 			}
499 		}
500 		path->slots[0]++;
501 	}
502 	ret = 0;
503 
504 	total_found += add_new_free_space(block_group, fs_info, last,
505 					  block_group->key.objectid +
506 					  block_group->key.offset);
507 	caching_ctl->progress = (u64)-1;
508 
509 	spin_lock(&block_group->lock);
510 	block_group->caching_ctl = NULL;
511 	block_group->cached = BTRFS_CACHE_FINISHED;
512 	spin_unlock(&block_group->lock);
513 
514 err:
515 	btrfs_free_path(path);
516 	up_read(&fs_info->extent_commit_sem);
517 
518 	free_excluded_extents(extent_root, block_group);
519 
520 	mutex_unlock(&caching_ctl->mutex);
521 out:
522 	if (ret) {
523 		spin_lock(&block_group->lock);
524 		block_group->caching_ctl = NULL;
525 		block_group->cached = BTRFS_CACHE_ERROR;
526 		spin_unlock(&block_group->lock);
527 	}
528 	wake_up(&caching_ctl->wait);
529 
530 	put_caching_control(caching_ctl);
531 	btrfs_put_block_group(block_group);
532 }
533 
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 			     int load_cache_only)
536 {
537 	DEFINE_WAIT(wait);
538 	struct btrfs_fs_info *fs_info = cache->fs_info;
539 	struct btrfs_caching_control *caching_ctl;
540 	int ret = 0;
541 
542 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 	if (!caching_ctl)
544 		return -ENOMEM;
545 
546 	INIT_LIST_HEAD(&caching_ctl->list);
547 	mutex_init(&caching_ctl->mutex);
548 	init_waitqueue_head(&caching_ctl->wait);
549 	caching_ctl->block_group = cache;
550 	caching_ctl->progress = cache->key.objectid;
551 	atomic_set(&caching_ctl->count, 1);
552 	caching_ctl->work.func = caching_thread;
553 
554 	spin_lock(&cache->lock);
555 	/*
556 	 * This should be a rare occasion, but this could happen I think in the
557 	 * case where one thread starts to load the space cache info, and then
558 	 * some other thread starts a transaction commit which tries to do an
559 	 * allocation while the other thread is still loading the space cache
560 	 * info.  The previous loop should have kept us from choosing this block
561 	 * group, but if we've moved to the state where we will wait on caching
562 	 * block groups we need to first check if we're doing a fast load here,
563 	 * so we can wait for it to finish, otherwise we could end up allocating
564 	 * from a block group who's cache gets evicted for one reason or
565 	 * another.
566 	 */
567 	while (cache->cached == BTRFS_CACHE_FAST) {
568 		struct btrfs_caching_control *ctl;
569 
570 		ctl = cache->caching_ctl;
571 		atomic_inc(&ctl->count);
572 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 		spin_unlock(&cache->lock);
574 
575 		schedule();
576 
577 		finish_wait(&ctl->wait, &wait);
578 		put_caching_control(ctl);
579 		spin_lock(&cache->lock);
580 	}
581 
582 	if (cache->cached != BTRFS_CACHE_NO) {
583 		spin_unlock(&cache->lock);
584 		kfree(caching_ctl);
585 		return 0;
586 	}
587 	WARN_ON(cache->caching_ctl);
588 	cache->caching_ctl = caching_ctl;
589 	cache->cached = BTRFS_CACHE_FAST;
590 	spin_unlock(&cache->lock);
591 
592 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 			}
607 		}
608 		spin_unlock(&cache->lock);
609 		wake_up(&caching_ctl->wait);
610 		if (ret == 1) {
611 			put_caching_control(caching_ctl);
612 			free_excluded_extents(fs_info->extent_root, cache);
613 			return 0;
614 		}
615 	} else {
616 		/*
617 		 * We are not going to do the fast caching, set cached to the
618 		 * appropriate value and wakeup any waiters.
619 		 */
620 		spin_lock(&cache->lock);
621 		if (load_cache_only) {
622 			cache->caching_ctl = NULL;
623 			cache->cached = BTRFS_CACHE_NO;
624 		} else {
625 			cache->cached = BTRFS_CACHE_STARTED;
626 		}
627 		spin_unlock(&cache->lock);
628 		wake_up(&caching_ctl->wait);
629 	}
630 
631 	if (load_cache_only) {
632 		put_caching_control(caching_ctl);
633 		return 0;
634 	}
635 
636 	down_write(&fs_info->extent_commit_sem);
637 	atomic_inc(&caching_ctl->count);
638 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 	up_write(&fs_info->extent_commit_sem);
640 
641 	btrfs_get_block_group(cache);
642 
643 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
644 
645 	return ret;
646 }
647 
648 /*
649  * return the block group that starts at or after bytenr
650  */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 	struct btrfs_block_group_cache *cache;
655 
656 	cache = block_group_cache_tree_search(info, bytenr, 0);
657 
658 	return cache;
659 }
660 
661 /*
662  * return the block group that contains the given bytenr
663  */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 						 struct btrfs_fs_info *info,
666 						 u64 bytenr)
667 {
668 	struct btrfs_block_group_cache *cache;
669 
670 	cache = block_group_cache_tree_search(info, bytenr, 1);
671 
672 	return cache;
673 }
674 
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 						  u64 flags)
677 {
678 	struct list_head *head = &info->space_info;
679 	struct btrfs_space_info *found;
680 
681 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682 
683 	rcu_read_lock();
684 	list_for_each_entry_rcu(found, head, list) {
685 		if (found->flags & flags) {
686 			rcu_read_unlock();
687 			return found;
688 		}
689 	}
690 	rcu_read_unlock();
691 	return NULL;
692 }
693 
694 /*
695  * after adding space to the filesystem, we need to clear the full flags
696  * on all the space infos.
697  */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 	struct list_head *head = &info->space_info;
701 	struct btrfs_space_info *found;
702 
703 	rcu_read_lock();
704 	list_for_each_entry_rcu(found, head, list)
705 		found->full = 0;
706 	rcu_read_unlock();
707 }
708 
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 	int ret;
713 	struct btrfs_key key;
714 	struct btrfs_path *path;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	key.objectid = start;
721 	key.offset = len;
722 	key.type = BTRFS_EXTENT_ITEM_KEY;
723 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 				0, 0);
725 	if (ret > 0) {
726 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 		if (key.objectid == start &&
728 		    key.type == BTRFS_METADATA_ITEM_KEY)
729 			ret = 0;
730 	}
731 	btrfs_free_path(path);
732 	return ret;
733 }
734 
735 /*
736  * helper function to lookup reference count and flags of a tree block.
737  *
738  * the head node for delayed ref is used to store the sum of all the
739  * reference count modifications queued up in the rbtree. the head
740  * node may also store the extent flags to set. This way you can check
741  * to see what the reference count and extent flags would be if all of
742  * the delayed refs are not processed.
743  */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 			     struct btrfs_root *root, u64 bytenr,
746 			     u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 	struct btrfs_delayed_ref_head *head;
749 	struct btrfs_delayed_ref_root *delayed_refs;
750 	struct btrfs_path *path;
751 	struct btrfs_extent_item *ei;
752 	struct extent_buffer *leaf;
753 	struct btrfs_key key;
754 	u32 item_size;
755 	u64 num_refs;
756 	u64 extent_flags;
757 	int ret;
758 
759 	/*
760 	 * If we don't have skinny metadata, don't bother doing anything
761 	 * different
762 	 */
763 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 		offset = root->leafsize;
765 		metadata = 0;
766 	}
767 
768 	path = btrfs_alloc_path();
769 	if (!path)
770 		return -ENOMEM;
771 
772 	if (!trans) {
773 		path->skip_locking = 1;
774 		path->search_commit_root = 1;
775 	}
776 
777 search_again:
778 	key.objectid = bytenr;
779 	key.offset = offset;
780 	if (metadata)
781 		key.type = BTRFS_METADATA_ITEM_KEY;
782 	else
783 		key.type = BTRFS_EXTENT_ITEM_KEY;
784 
785 again:
786 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 				&key, path, 0, 0);
788 	if (ret < 0)
789 		goto out_free;
790 
791 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 		if (path->slots[0]) {
793 			path->slots[0]--;
794 			btrfs_item_key_to_cpu(path->nodes[0], &key,
795 					      path->slots[0]);
796 			if (key.objectid == bytenr &&
797 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
798 			    key.offset == root->leafsize)
799 				ret = 0;
800 		}
801 		if (ret) {
802 			key.objectid = bytenr;
803 			key.type = BTRFS_EXTENT_ITEM_KEY;
804 			key.offset = root->leafsize;
805 			btrfs_release_path(path);
806 			goto again;
807 		}
808 	}
809 
810 	if (ret == 0) {
811 		leaf = path->nodes[0];
812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 		if (item_size >= sizeof(*ei)) {
814 			ei = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_extent_item);
816 			num_refs = btrfs_extent_refs(leaf, ei);
817 			extent_flags = btrfs_extent_flags(leaf, ei);
818 		} else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 			struct btrfs_extent_item_v0 *ei0;
821 			BUG_ON(item_size != sizeof(*ei0));
822 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 					     struct btrfs_extent_item_v0);
824 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 			/* FIXME: this isn't correct for data */
826 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 			BUG();
829 #endif
830 		}
831 		BUG_ON(num_refs == 0);
832 	} else {
833 		num_refs = 0;
834 		extent_flags = 0;
835 		ret = 0;
836 	}
837 
838 	if (!trans)
839 		goto out;
840 
841 	delayed_refs = &trans->transaction->delayed_refs;
842 	spin_lock(&delayed_refs->lock);
843 	head = btrfs_find_delayed_ref_head(trans, bytenr);
844 	if (head) {
845 		if (!mutex_trylock(&head->mutex)) {
846 			atomic_inc(&head->node.refs);
847 			spin_unlock(&delayed_refs->lock);
848 
849 			btrfs_release_path(path);
850 
851 			/*
852 			 * Mutex was contended, block until it's released and try
853 			 * again
854 			 */
855 			mutex_lock(&head->mutex);
856 			mutex_unlock(&head->mutex);
857 			btrfs_put_delayed_ref(&head->node);
858 			goto search_again;
859 		}
860 		spin_lock(&head->lock);
861 		if (head->extent_op && head->extent_op->update_flags)
862 			extent_flags |= head->extent_op->flags_to_set;
863 		else
864 			BUG_ON(num_refs == 0);
865 
866 		num_refs += head->node.ref_mod;
867 		spin_unlock(&head->lock);
868 		mutex_unlock(&head->mutex);
869 	}
870 	spin_unlock(&delayed_refs->lock);
871 out:
872 	WARN_ON(num_refs == 0);
873 	if (refs)
874 		*refs = num_refs;
875 	if (flags)
876 		*flags = extent_flags;
877 out_free:
878 	btrfs_free_path(path);
879 	return ret;
880 }
881 
882 /*
883  * Back reference rules.  Back refs have three main goals:
884  *
885  * 1) differentiate between all holders of references to an extent so that
886  *    when a reference is dropped we can make sure it was a valid reference
887  *    before freeing the extent.
888  *
889  * 2) Provide enough information to quickly find the holders of an extent
890  *    if we notice a given block is corrupted or bad.
891  *
892  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893  *    maintenance.  This is actually the same as #2, but with a slightly
894  *    different use case.
895  *
896  * There are two kinds of back refs. The implicit back refs is optimized
897  * for pointers in non-shared tree blocks. For a given pointer in a block,
898  * back refs of this kind provide information about the block's owner tree
899  * and the pointer's key. These information allow us to find the block by
900  * b-tree searching. The full back refs is for pointers in tree blocks not
901  * referenced by their owner trees. The location of tree block is recorded
902  * in the back refs. Actually the full back refs is generic, and can be
903  * used in all cases the implicit back refs is used. The major shortcoming
904  * of the full back refs is its overhead. Every time a tree block gets
905  * COWed, we have to update back refs entry for all pointers in it.
906  *
907  * For a newly allocated tree block, we use implicit back refs for
908  * pointers in it. This means most tree related operations only involve
909  * implicit back refs. For a tree block created in old transaction, the
910  * only way to drop a reference to it is COW it. So we can detect the
911  * event that tree block loses its owner tree's reference and do the
912  * back refs conversion.
913  *
914  * When a tree block is COW'd through a tree, there are four cases:
915  *
916  * The reference count of the block is one and the tree is the block's
917  * owner tree. Nothing to do in this case.
918  *
919  * The reference count of the block is one and the tree is not the
920  * block's owner tree. In this case, full back refs is used for pointers
921  * in the block. Remove these full back refs, add implicit back refs for
922  * every pointers in the new block.
923  *
924  * The reference count of the block is greater than one and the tree is
925  * the block's owner tree. In this case, implicit back refs is used for
926  * pointers in the block. Add full back refs for every pointers in the
927  * block, increase lower level extents' reference counts. The original
928  * implicit back refs are entailed to the new block.
929  *
930  * The reference count of the block is greater than one and the tree is
931  * not the block's owner tree. Add implicit back refs for every pointer in
932  * the new block, increase lower level extents' reference count.
933  *
934  * Back Reference Key composing:
935  *
936  * The key objectid corresponds to the first byte in the extent,
937  * The key type is used to differentiate between types of back refs.
938  * There are different meanings of the key offset for different types
939  * of back refs.
940  *
941  * File extents can be referenced by:
942  *
943  * - multiple snapshots, subvolumes, or different generations in one subvol
944  * - different files inside a single subvolume
945  * - different offsets inside a file (bookend extents in file.c)
946  *
947  * The extent ref structure for the implicit back refs has fields for:
948  *
949  * - Objectid of the subvolume root
950  * - objectid of the file holding the reference
951  * - original offset in the file
952  * - how many bookend extents
953  *
954  * The key offset for the implicit back refs is hash of the first
955  * three fields.
956  *
957  * The extent ref structure for the full back refs has field for:
958  *
959  * - number of pointers in the tree leaf
960  *
961  * The key offset for the implicit back refs is the first byte of
962  * the tree leaf
963  *
964  * When a file extent is allocated, The implicit back refs is used.
965  * the fields are filled in:
966  *
967  *     (root_key.objectid, inode objectid, offset in file, 1)
968  *
969  * When a file extent is removed file truncation, we find the
970  * corresponding implicit back refs and check the following fields:
971  *
972  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
973  *
974  * Btree extents can be referenced by:
975  *
976  * - Different subvolumes
977  *
978  * Both the implicit back refs and the full back refs for tree blocks
979  * only consist of key. The key offset for the implicit back refs is
980  * objectid of block's owner tree. The key offset for the full back refs
981  * is the first byte of parent block.
982  *
983  * When implicit back refs is used, information about the lowest key and
984  * level of the tree block are required. These information are stored in
985  * tree block info structure.
986  */
987 
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 				  struct btrfs_root *root,
991 				  struct btrfs_path *path,
992 				  u64 owner, u32 extra_size)
993 {
994 	struct btrfs_extent_item *item;
995 	struct btrfs_extent_item_v0 *ei0;
996 	struct btrfs_extent_ref_v0 *ref0;
997 	struct btrfs_tree_block_info *bi;
998 	struct extent_buffer *leaf;
999 	struct btrfs_key key;
1000 	struct btrfs_key found_key;
1001 	u32 new_size = sizeof(*item);
1002 	u64 refs;
1003 	int ret;
1004 
1005 	leaf = path->nodes[0];
1006 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007 
1008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 			     struct btrfs_extent_item_v0);
1011 	refs = btrfs_extent_refs_v0(leaf, ei0);
1012 
1013 	if (owner == (u64)-1) {
1014 		while (1) {
1015 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 				ret = btrfs_next_leaf(root, path);
1017 				if (ret < 0)
1018 					return ret;
1019 				BUG_ON(ret > 0); /* Corruption */
1020 				leaf = path->nodes[0];
1021 			}
1022 			btrfs_item_key_to_cpu(leaf, &found_key,
1023 					      path->slots[0]);
1024 			BUG_ON(key.objectid != found_key.objectid);
1025 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 				path->slots[0]++;
1027 				continue;
1028 			}
1029 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 					      struct btrfs_extent_ref_v0);
1031 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 			break;
1033 		}
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 		new_size += sizeof(*bi);
1039 
1040 	new_size -= sizeof(*ei0);
1041 	ret = btrfs_search_slot(trans, root, &key, path,
1042 				new_size + extra_size, 1);
1043 	if (ret < 0)
1044 		return ret;
1045 	BUG_ON(ret); /* Corruption */
1046 
1047 	btrfs_extend_item(root, path, new_size);
1048 
1049 	leaf = path->nodes[0];
1050 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 	btrfs_set_extent_refs(leaf, item, refs);
1052 	/* FIXME: get real generation */
1053 	btrfs_set_extent_generation(leaf, item, 0);
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		btrfs_set_extent_flags(leaf, item,
1056 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 		bi = (struct btrfs_tree_block_info *)(item + 1);
1059 		/* FIXME: get first key of the block */
1060 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 	} else {
1063 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 	return 0;
1067 }
1068 #endif
1069 
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071 {
1072 	u32 high_crc = ~(u32)0;
1073 	u32 low_crc = ~(u32)0;
1074 	__le64 lenum;
1075 
1076 	lenum = cpu_to_le64(root_objectid);
1077 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 	lenum = cpu_to_le64(owner);
1079 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 	lenum = cpu_to_le64(offset);
1081 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082 
1083 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 }
1085 
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 				     struct btrfs_extent_data_ref *ref)
1088 {
1089 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 				    btrfs_extent_data_ref_objectid(leaf, ref),
1091 				    btrfs_extent_data_ref_offset(leaf, ref));
1092 }
1093 
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 				 struct btrfs_extent_data_ref *ref,
1096 				 u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 					   struct btrfs_root *root,
1107 					   struct btrfs_path *path,
1108 					   u64 bytenr, u64 parent,
1109 					   u64 root_objectid,
1110 					   u64 owner, u64 offset)
1111 {
1112 	struct btrfs_key key;
1113 	struct btrfs_extent_data_ref *ref;
1114 	struct extent_buffer *leaf;
1115 	u32 nritems;
1116 	int ret;
1117 	int recow;
1118 	int err = -ENOENT;
1119 
1120 	key.objectid = bytenr;
1121 	if (parent) {
1122 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 		key.offset = parent;
1124 	} else {
1125 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 		key.offset = hash_extent_data_ref(root_objectid,
1127 						  owner, offset);
1128 	}
1129 again:
1130 	recow = 0;
1131 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 	if (ret < 0) {
1133 		err = ret;
1134 		goto fail;
1135 	}
1136 
1137 	if (parent) {
1138 		if (!ret)
1139 			return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 		btrfs_release_path(path);
1143 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 		if (ret < 0) {
1145 			err = ret;
1146 			goto fail;
1147 		}
1148 		if (!ret)
1149 			return 0;
1150 #endif
1151 		goto fail;
1152 	}
1153 
1154 	leaf = path->nodes[0];
1155 	nritems = btrfs_header_nritems(leaf);
1156 	while (1) {
1157 		if (path->slots[0] >= nritems) {
1158 			ret = btrfs_next_leaf(root, path);
1159 			if (ret < 0)
1160 				err = ret;
1161 			if (ret)
1162 				goto fail;
1163 
1164 			leaf = path->nodes[0];
1165 			nritems = btrfs_header_nritems(leaf);
1166 			recow = 1;
1167 		}
1168 
1169 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 		if (key.objectid != bytenr ||
1171 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 			goto fail;
1173 
1174 		ref = btrfs_item_ptr(leaf, path->slots[0],
1175 				     struct btrfs_extent_data_ref);
1176 
1177 		if (match_extent_data_ref(leaf, ref, root_objectid,
1178 					  owner, offset)) {
1179 			if (recow) {
1180 				btrfs_release_path(path);
1181 				goto again;
1182 			}
1183 			err = 0;
1184 			break;
1185 		}
1186 		path->slots[0]++;
1187 	}
1188 fail:
1189 	return err;
1190 }
1191 
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 					   struct btrfs_root *root,
1194 					   struct btrfs_path *path,
1195 					   u64 bytenr, u64 parent,
1196 					   u64 root_objectid, u64 owner,
1197 					   u64 offset, int refs_to_add)
1198 {
1199 	struct btrfs_key key;
1200 	struct extent_buffer *leaf;
1201 	u32 size;
1202 	u32 num_refs;
1203 	int ret;
1204 
1205 	key.objectid = bytenr;
1206 	if (parent) {
1207 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 		key.offset = parent;
1209 		size = sizeof(struct btrfs_shared_data_ref);
1210 	} else {
1211 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 		key.offset = hash_extent_data_ref(root_objectid,
1213 						  owner, offset);
1214 		size = sizeof(struct btrfs_extent_data_ref);
1215 	}
1216 
1217 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 	if (ret && ret != -EEXIST)
1219 		goto fail;
1220 
1221 	leaf = path->nodes[0];
1222 	if (parent) {
1223 		struct btrfs_shared_data_ref *ref;
1224 		ref = btrfs_item_ptr(leaf, path->slots[0],
1225 				     struct btrfs_shared_data_ref);
1226 		if (ret == 0) {
1227 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 		} else {
1229 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 			num_refs += refs_to_add;
1231 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 		}
1233 	} else {
1234 		struct btrfs_extent_data_ref *ref;
1235 		while (ret == -EEXIST) {
1236 			ref = btrfs_item_ptr(leaf, path->slots[0],
1237 					     struct btrfs_extent_data_ref);
1238 			if (match_extent_data_ref(leaf, ref, root_objectid,
1239 						  owner, offset))
1240 				break;
1241 			btrfs_release_path(path);
1242 			key.offset++;
1243 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 						      size);
1245 			if (ret && ret != -EEXIST)
1246 				goto fail;
1247 
1248 			leaf = path->nodes[0];
1249 		}
1250 		ref = btrfs_item_ptr(leaf, path->slots[0],
1251 				     struct btrfs_extent_data_ref);
1252 		if (ret == 0) {
1253 			btrfs_set_extent_data_ref_root(leaf, ref,
1254 						       root_objectid);
1255 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 		} else {
1259 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 			num_refs += refs_to_add;
1261 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 		}
1263 	}
1264 	btrfs_mark_buffer_dirty(leaf);
1265 	ret = 0;
1266 fail:
1267 	btrfs_release_path(path);
1268 	return ret;
1269 }
1270 
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 					   struct btrfs_root *root,
1273 					   struct btrfs_path *path,
1274 					   int refs_to_drop)
1275 {
1276 	struct btrfs_key key;
1277 	struct btrfs_extent_data_ref *ref1 = NULL;
1278 	struct btrfs_shared_data_ref *ref2 = NULL;
1279 	struct extent_buffer *leaf;
1280 	u32 num_refs = 0;
1281 	int ret = 0;
1282 
1283 	leaf = path->nodes[0];
1284 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285 
1286 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_data_ref);
1289 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 				      struct btrfs_shared_data_ref);
1293 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 		struct btrfs_extent_ref_v0 *ref0;
1297 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 				      struct btrfs_extent_ref_v0);
1299 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 	} else {
1302 		BUG();
1303 	}
1304 
1305 	BUG_ON(num_refs < refs_to_drop);
1306 	num_refs -= refs_to_drop;
1307 
1308 	if (num_refs == 0) {
1309 		ret = btrfs_del_item(trans, root, path);
1310 	} else {
1311 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 		else {
1317 			struct btrfs_extent_ref_v0 *ref0;
1318 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 					struct btrfs_extent_ref_v0);
1320 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 		}
1322 #endif
1323 		btrfs_mark_buffer_dirty(leaf);
1324 	}
1325 	return ret;
1326 }
1327 
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 					  struct btrfs_path *path,
1330 					  struct btrfs_extent_inline_ref *iref)
1331 {
1332 	struct btrfs_key key;
1333 	struct extent_buffer *leaf;
1334 	struct btrfs_extent_data_ref *ref1;
1335 	struct btrfs_shared_data_ref *ref2;
1336 	u32 num_refs = 0;
1337 
1338 	leaf = path->nodes[0];
1339 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 	if (iref) {
1341 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 		    BTRFS_EXTENT_DATA_REF_KEY) {
1343 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 		} else {
1346 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 		}
1349 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_data_ref);
1352 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_shared_data_ref);
1356 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 		struct btrfs_extent_ref_v0 *ref0;
1360 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_extent_ref_v0);
1362 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 	} else {
1365 		WARN_ON(1);
1366 	}
1367 	return num_refs;
1368 }
1369 
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 					  struct btrfs_root *root,
1372 					  struct btrfs_path *path,
1373 					  u64 bytenr, u64 parent,
1374 					  u64 root_objectid)
1375 {
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	if (parent) {
1381 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 		key.offset = parent;
1383 	} else {
1384 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 		key.offset = root_objectid;
1386 	}
1387 
1388 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 	if (ret > 0)
1390 		ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 	if (ret == -ENOENT && parent) {
1393 		btrfs_release_path(path);
1394 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 		if (ret > 0)
1397 			ret = -ENOENT;
1398 	}
1399 #endif
1400 	return ret;
1401 }
1402 
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 					  struct btrfs_root *root,
1405 					  struct btrfs_path *path,
1406 					  u64 bytenr, u64 parent,
1407 					  u64 root_objectid)
1408 {
1409 	struct btrfs_key key;
1410 	int ret;
1411 
1412 	key.objectid = bytenr;
1413 	if (parent) {
1414 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 		key.offset = parent;
1416 	} else {
1417 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 		key.offset = root_objectid;
1419 	}
1420 
1421 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 	btrfs_release_path(path);
1423 	return ret;
1424 }
1425 
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1427 {
1428 	int type;
1429 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 		if (parent > 0)
1431 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 		else
1433 			type = BTRFS_TREE_BLOCK_REF_KEY;
1434 	} else {
1435 		if (parent > 0)
1436 			type = BTRFS_SHARED_DATA_REF_KEY;
1437 		else
1438 			type = BTRFS_EXTENT_DATA_REF_KEY;
1439 	}
1440 	return type;
1441 }
1442 
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 			 struct btrfs_key *key)
1445 
1446 {
1447 	for (; level < BTRFS_MAX_LEVEL; level++) {
1448 		if (!path->nodes[level])
1449 			break;
1450 		if (path->slots[level] + 1 >=
1451 		    btrfs_header_nritems(path->nodes[level]))
1452 			continue;
1453 		if (level == 0)
1454 			btrfs_item_key_to_cpu(path->nodes[level], key,
1455 					      path->slots[level] + 1);
1456 		else
1457 			btrfs_node_key_to_cpu(path->nodes[level], key,
1458 					      path->slots[level] + 1);
1459 		return 0;
1460 	}
1461 	return 1;
1462 }
1463 
1464 /*
1465  * look for inline back ref. if back ref is found, *ref_ret is set
1466  * to the address of inline back ref, and 0 is returned.
1467  *
1468  * if back ref isn't found, *ref_ret is set to the address where it
1469  * should be inserted, and -ENOENT is returned.
1470  *
1471  * if insert is true and there are too many inline back refs, the path
1472  * points to the extent item, and -EAGAIN is returned.
1473  *
1474  * NOTE: inline back refs are ordered in the same way that back ref
1475  *	 items in the tree are ordered.
1476  */
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 				 struct btrfs_root *root,
1480 				 struct btrfs_path *path,
1481 				 struct btrfs_extent_inline_ref **ref_ret,
1482 				 u64 bytenr, u64 num_bytes,
1483 				 u64 parent, u64 root_objectid,
1484 				 u64 owner, u64 offset, int insert)
1485 {
1486 	struct btrfs_key key;
1487 	struct extent_buffer *leaf;
1488 	struct btrfs_extent_item *ei;
1489 	struct btrfs_extent_inline_ref *iref;
1490 	u64 flags;
1491 	u64 item_size;
1492 	unsigned long ptr;
1493 	unsigned long end;
1494 	int extra_size;
1495 	int type;
1496 	int want;
1497 	int ret;
1498 	int err = 0;
1499 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 						 SKINNY_METADATA);
1501 
1502 	key.objectid = bytenr;
1503 	key.type = BTRFS_EXTENT_ITEM_KEY;
1504 	key.offset = num_bytes;
1505 
1506 	want = extent_ref_type(parent, owner);
1507 	if (insert) {
1508 		extra_size = btrfs_extent_inline_ref_size(want);
1509 		path->keep_locks = 1;
1510 	} else
1511 		extra_size = -1;
1512 
1513 	/*
1514 	 * Owner is our parent level, so we can just add one to get the level
1515 	 * for the block we are interested in.
1516 	 */
1517 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 		key.type = BTRFS_METADATA_ITEM_KEY;
1519 		key.offset = owner;
1520 	}
1521 
1522 again:
1523 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 	if (ret < 0) {
1525 		err = ret;
1526 		goto out;
1527 	}
1528 
1529 	/*
1530 	 * We may be a newly converted file system which still has the old fat
1531 	 * extent entries for metadata, so try and see if we have one of those.
1532 	 */
1533 	if (ret > 0 && skinny_metadata) {
1534 		skinny_metadata = false;
1535 		if (path->slots[0]) {
1536 			path->slots[0]--;
1537 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 					      path->slots[0]);
1539 			if (key.objectid == bytenr &&
1540 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 			    key.offset == num_bytes)
1542 				ret = 0;
1543 		}
1544 		if (ret) {
1545 			key.type = BTRFS_EXTENT_ITEM_KEY;
1546 			key.offset = num_bytes;
1547 			btrfs_release_path(path);
1548 			goto again;
1549 		}
1550 	}
1551 
1552 	if (ret && !insert) {
1553 		err = -ENOENT;
1554 		goto out;
1555 	} else if (WARN_ON(ret)) {
1556 		err = -EIO;
1557 		goto out;
1558 	}
1559 
1560 	leaf = path->nodes[0];
1561 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 	if (item_size < sizeof(*ei)) {
1564 		if (!insert) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		ret = convert_extent_item_v0(trans, root, path, owner,
1569 					     extra_size);
1570 		if (ret < 0) {
1571 			err = ret;
1572 			goto out;
1573 		}
1574 		leaf = path->nodes[0];
1575 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 	}
1577 #endif
1578 	BUG_ON(item_size < sizeof(*ei));
1579 
1580 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 	flags = btrfs_extent_flags(leaf, ei);
1582 
1583 	ptr = (unsigned long)(ei + 1);
1584 	end = (unsigned long)ei + item_size;
1585 
1586 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 		ptr += sizeof(struct btrfs_tree_block_info);
1588 		BUG_ON(ptr > end);
1589 	}
1590 
1591 	err = -ENOENT;
1592 	while (1) {
1593 		if (ptr >= end) {
1594 			WARN_ON(ptr > end);
1595 			break;
1596 		}
1597 		iref = (struct btrfs_extent_inline_ref *)ptr;
1598 		type = btrfs_extent_inline_ref_type(leaf, iref);
1599 		if (want < type)
1600 			break;
1601 		if (want > type) {
1602 			ptr += btrfs_extent_inline_ref_size(type);
1603 			continue;
1604 		}
1605 
1606 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 			struct btrfs_extent_data_ref *dref;
1608 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 			if (match_extent_data_ref(leaf, dref, root_objectid,
1610 						  owner, offset)) {
1611 				err = 0;
1612 				break;
1613 			}
1614 			if (hash_extent_data_ref_item(leaf, dref) <
1615 			    hash_extent_data_ref(root_objectid, owner, offset))
1616 				break;
1617 		} else {
1618 			u64 ref_offset;
1619 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 			if (parent > 0) {
1621 				if (parent == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < parent)
1626 					break;
1627 			} else {
1628 				if (root_objectid == ref_offset) {
1629 					err = 0;
1630 					break;
1631 				}
1632 				if (ref_offset < root_objectid)
1633 					break;
1634 			}
1635 		}
1636 		ptr += btrfs_extent_inline_ref_size(type);
1637 	}
1638 	if (err == -ENOENT && insert) {
1639 		if (item_size + extra_size >=
1640 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 			err = -EAGAIN;
1642 			goto out;
1643 		}
1644 		/*
1645 		 * To add new inline back ref, we have to make sure
1646 		 * there is no corresponding back ref item.
1647 		 * For simplicity, we just do not add new inline back
1648 		 * ref if there is any kind of item for this block
1649 		 */
1650 		if (find_next_key(path, 0, &key) == 0 &&
1651 		    key.objectid == bytenr &&
1652 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 			err = -EAGAIN;
1654 			goto out;
1655 		}
1656 	}
1657 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 	if (insert) {
1660 		path->keep_locks = 0;
1661 		btrfs_unlock_up_safe(path, 1);
1662 	}
1663 	return err;
1664 }
1665 
1666 /*
1667  * helper to add new inline back ref
1668  */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 				 struct btrfs_path *path,
1672 				 struct btrfs_extent_inline_ref *iref,
1673 				 u64 parent, u64 root_objectid,
1674 				 u64 owner, u64 offset, int refs_to_add,
1675 				 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_extent_item *ei;
1679 	unsigned long ptr;
1680 	unsigned long end;
1681 	unsigned long item_offset;
1682 	u64 refs;
1683 	int size;
1684 	int type;
1685 
1686 	leaf = path->nodes[0];
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	item_offset = (unsigned long)iref - (unsigned long)ei;
1689 
1690 	type = extent_ref_type(parent, owner);
1691 	size = btrfs_extent_inline_ref_size(type);
1692 
1693 	btrfs_extend_item(root, path, size);
1694 
1695 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 	refs = btrfs_extent_refs(leaf, ei);
1697 	refs += refs_to_add;
1698 	btrfs_set_extent_refs(leaf, ei, refs);
1699 	if (extent_op)
1700 		__run_delayed_extent_op(extent_op, leaf, ei);
1701 
1702 	ptr = (unsigned long)ei + item_offset;
1703 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 	if (ptr < end - size)
1705 		memmove_extent_buffer(leaf, ptr + size, ptr,
1706 				      end - size - ptr);
1707 
1708 	iref = (struct btrfs_extent_inline_ref *)ptr;
1709 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 		struct btrfs_extent_data_ref *dref;
1712 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 		struct btrfs_shared_data_ref *sref;
1719 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 	} else {
1725 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 	}
1727 	btrfs_mark_buffer_dirty(leaf);
1728 }
1729 
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 				 struct btrfs_root *root,
1732 				 struct btrfs_path *path,
1733 				 struct btrfs_extent_inline_ref **ref_ret,
1734 				 u64 bytenr, u64 num_bytes, u64 parent,
1735 				 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 	int ret;
1738 
1739 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 					   bytenr, num_bytes, parent,
1741 					   root_objectid, owner, offset, 0);
1742 	if (ret != -ENOENT)
1743 		return ret;
1744 
1745 	btrfs_release_path(path);
1746 	*ref_ret = NULL;
1747 
1748 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 					    root_objectid);
1751 	} else {
1752 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 					     root_objectid, owner, offset);
1754 	}
1755 	return ret;
1756 }
1757 
1758 /*
1759  * helper to update/remove inline back ref
1760  */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 				  struct btrfs_path *path,
1764 				  struct btrfs_extent_inline_ref *iref,
1765 				  int refs_to_mod,
1766 				  struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 	struct extent_buffer *leaf;
1769 	struct btrfs_extent_item *ei;
1770 	struct btrfs_extent_data_ref *dref = NULL;
1771 	struct btrfs_shared_data_ref *sref = NULL;
1772 	unsigned long ptr;
1773 	unsigned long end;
1774 	u32 item_size;
1775 	int size;
1776 	int type;
1777 	u64 refs;
1778 
1779 	leaf = path->nodes[0];
1780 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 	refs = btrfs_extent_refs(leaf, ei);
1782 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 	refs += refs_to_mod;
1784 	btrfs_set_extent_refs(leaf, ei, refs);
1785 	if (extent_op)
1786 		__run_delayed_extent_op(extent_op, leaf, ei);
1787 
1788 	type = btrfs_extent_inline_ref_type(leaf, iref);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		size =  btrfs_extent_inline_ref_size(type);
1811 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 		ptr = (unsigned long)iref;
1813 		end = (unsigned long)ei + item_size;
1814 		if (ptr + size < end)
1815 			memmove_extent_buffer(leaf, ptr, ptr + size,
1816 					      end - ptr - size);
1817 		item_size -= size;
1818 		btrfs_truncate_item(root, path, item_size, 1);
1819 	}
1820 	btrfs_mark_buffer_dirty(leaf);
1821 }
1822 
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 				 struct btrfs_root *root,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 					   bytenr, num_bytes, parent,
1837 					   root_objectid, owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(root, path, iref,
1841 					     refs_to_add, extent_op);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(root, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_root *root,
1853 				 struct btrfs_path *path,
1854 				 u64 bytenr, u64 parent, u64 root_objectid,
1855 				 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 	int ret;
1858 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 		BUG_ON(refs_to_add != 1);
1860 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 					    parent, root_objectid);
1862 	} else {
1863 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 					     parent, root_objectid,
1865 					     owner, offset, refs_to_add);
1866 	}
1867 	return ret;
1868 }
1869 
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 				 struct btrfs_root *root,
1872 				 struct btrfs_path *path,
1873 				 struct btrfs_extent_inline_ref *iref,
1874 				 int refs_to_drop, int is_data)
1875 {
1876 	int ret = 0;
1877 
1878 	BUG_ON(!is_data && refs_to_drop != 1);
1879 	if (iref) {
1880 		update_inline_extent_backref(root, path, iref,
1881 					     -refs_to_drop, NULL);
1882 	} else if (is_data) {
1883 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 	} else {
1885 		ret = btrfs_del_item(trans, root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 				u64 start, u64 len)
1892 {
1893 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895 
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 				u64 num_bytes, u64 *actual_bytes)
1898 {
1899 	int ret;
1900 	u64 discarded_bytes = 0;
1901 	struct btrfs_bio *bbio = NULL;
1902 
1903 
1904 	/* Tell the block device(s) that the sectors can be discarded */
1905 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 			      bytenr, &num_bytes, &bbio, 0);
1907 	/* Error condition is -ENOMEM */
1908 	if (!ret) {
1909 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 		int i;
1911 
1912 
1913 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 			if (!stripe->dev->can_discard)
1915 				continue;
1916 
1917 			ret = btrfs_issue_discard(stripe->dev->bdev,
1918 						  stripe->physical,
1919 						  stripe->length);
1920 			if (!ret)
1921 				discarded_bytes += stripe->length;
1922 			else if (ret != -EOPNOTSUPP)
1923 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924 
1925 			/*
1926 			 * Just in case we get back EOPNOTSUPP for some reason,
1927 			 * just ignore the return value so we don't screw up
1928 			 * people calling discard_extent.
1929 			 */
1930 			ret = 0;
1931 		}
1932 		kfree(bbio);
1933 	}
1934 
1935 	if (actual_bytes)
1936 		*actual_bytes = discarded_bytes;
1937 
1938 
1939 	if (ret == -EOPNOTSUPP)
1940 		ret = 0;
1941 	return ret;
1942 }
1943 
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 			 struct btrfs_root *root,
1947 			 u64 bytenr, u64 num_bytes, u64 parent,
1948 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 	int ret;
1951 	struct btrfs_fs_info *fs_info = root->fs_info;
1952 
1953 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955 
1956 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 					num_bytes,
1959 					parent, root_objectid, (int)owner,
1960 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 	} else {
1962 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 					num_bytes,
1964 					parent, root_objectid, owner, offset,
1965 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 				  struct btrfs_root *root,
1972 				  u64 bytenr, u64 num_bytes,
1973 				  u64 parent, u64 root_objectid,
1974 				  u64 owner, u64 offset, int refs_to_add,
1975 				  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	u64 refs;
1981 	int ret;
1982 
1983 	path = btrfs_alloc_path();
1984 	if (!path)
1985 		return -ENOMEM;
1986 
1987 	path->reada = 1;
1988 	path->leave_spinning = 1;
1989 	/* this will setup the path even if it fails to insert the back ref */
1990 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1991 					   path, bytenr, num_bytes, parent,
1992 					   root_objectid, owner, offset,
1993 					   refs_to_add, extent_op);
1994 	if (ret != -EAGAIN)
1995 		goto out;
1996 
1997 	leaf = path->nodes[0];
1998 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 	refs = btrfs_extent_refs(leaf, item);
2000 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 	if (extent_op)
2002 		__run_delayed_extent_op(extent_op, leaf, item);
2003 
2004 	btrfs_mark_buffer_dirty(leaf);
2005 	btrfs_release_path(path);
2006 
2007 	path->reada = 1;
2008 	path->leave_spinning = 1;
2009 
2010 	/* now insert the actual backref */
2011 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 				    path, bytenr, parent, root_objectid,
2013 				    owner, offset, refs_to_add);
2014 	if (ret)
2015 		btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 	btrfs_free_path(path);
2018 	return ret;
2019 }
2020 
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 				struct btrfs_root *root,
2023 				struct btrfs_delayed_ref_node *node,
2024 				struct btrfs_delayed_extent_op *extent_op,
2025 				int insert_reserved)
2026 {
2027 	int ret = 0;
2028 	struct btrfs_delayed_data_ref *ref;
2029 	struct btrfs_key ins;
2030 	u64 parent = 0;
2031 	u64 ref_root = 0;
2032 	u64 flags = 0;
2033 
2034 	ins.objectid = node->bytenr;
2035 	ins.offset = node->num_bytes;
2036 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2037 
2038 	ref = btrfs_delayed_node_to_data_ref(node);
2039 	trace_run_delayed_data_ref(node, ref, node->action);
2040 
2041 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2042 		parent = ref->parent;
2043 	else
2044 		ref_root = ref->root;
2045 
2046 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2047 		if (extent_op)
2048 			flags |= extent_op->flags_to_set;
2049 		ret = alloc_reserved_file_extent(trans, root,
2050 						 parent, ref_root, flags,
2051 						 ref->objectid, ref->offset,
2052 						 &ins, node->ref_mod);
2053 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2054 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2055 					     node->num_bytes, parent,
2056 					     ref_root, ref->objectid,
2057 					     ref->offset, node->ref_mod,
2058 					     extent_op);
2059 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2060 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2061 					  node->num_bytes, parent,
2062 					  ref_root, ref->objectid,
2063 					  ref->offset, node->ref_mod,
2064 					  extent_op);
2065 	} else {
2066 		BUG();
2067 	}
2068 	return ret;
2069 }
2070 
2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2072 				    struct extent_buffer *leaf,
2073 				    struct btrfs_extent_item *ei)
2074 {
2075 	u64 flags = btrfs_extent_flags(leaf, ei);
2076 	if (extent_op->update_flags) {
2077 		flags |= extent_op->flags_to_set;
2078 		btrfs_set_extent_flags(leaf, ei, flags);
2079 	}
2080 
2081 	if (extent_op->update_key) {
2082 		struct btrfs_tree_block_info *bi;
2083 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2084 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2085 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2086 	}
2087 }
2088 
2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2090 				 struct btrfs_root *root,
2091 				 struct btrfs_delayed_ref_node *node,
2092 				 struct btrfs_delayed_extent_op *extent_op)
2093 {
2094 	struct btrfs_key key;
2095 	struct btrfs_path *path;
2096 	struct btrfs_extent_item *ei;
2097 	struct extent_buffer *leaf;
2098 	u32 item_size;
2099 	int ret;
2100 	int err = 0;
2101 	int metadata = !extent_op->is_data;
2102 
2103 	if (trans->aborted)
2104 		return 0;
2105 
2106 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2107 		metadata = 0;
2108 
2109 	path = btrfs_alloc_path();
2110 	if (!path)
2111 		return -ENOMEM;
2112 
2113 	key.objectid = node->bytenr;
2114 
2115 	if (metadata) {
2116 		key.type = BTRFS_METADATA_ITEM_KEY;
2117 		key.offset = extent_op->level;
2118 	} else {
2119 		key.type = BTRFS_EXTENT_ITEM_KEY;
2120 		key.offset = node->num_bytes;
2121 	}
2122 
2123 again:
2124 	path->reada = 1;
2125 	path->leave_spinning = 1;
2126 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2127 				path, 0, 1);
2128 	if (ret < 0) {
2129 		err = ret;
2130 		goto out;
2131 	}
2132 	if (ret > 0) {
2133 		if (metadata) {
2134 			if (path->slots[0] > 0) {
2135 				path->slots[0]--;
2136 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2137 						      path->slots[0]);
2138 				if (key.objectid == node->bytenr &&
2139 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2140 				    key.offset == node->num_bytes)
2141 					ret = 0;
2142 			}
2143 			if (ret > 0) {
2144 				btrfs_release_path(path);
2145 				metadata = 0;
2146 
2147 				key.objectid = node->bytenr;
2148 				key.offset = node->num_bytes;
2149 				key.type = BTRFS_EXTENT_ITEM_KEY;
2150 				goto again;
2151 			}
2152 		} else {
2153 			err = -EIO;
2154 			goto out;
2155 		}
2156 	}
2157 
2158 	leaf = path->nodes[0];
2159 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2161 	if (item_size < sizeof(*ei)) {
2162 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2163 					     path, (u64)-1, 0);
2164 		if (ret < 0) {
2165 			err = ret;
2166 			goto out;
2167 		}
2168 		leaf = path->nodes[0];
2169 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2170 	}
2171 #endif
2172 	BUG_ON(item_size < sizeof(*ei));
2173 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2174 	__run_delayed_extent_op(extent_op, leaf, ei);
2175 
2176 	btrfs_mark_buffer_dirty(leaf);
2177 out:
2178 	btrfs_free_path(path);
2179 	return err;
2180 }
2181 
2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2183 				struct btrfs_root *root,
2184 				struct btrfs_delayed_ref_node *node,
2185 				struct btrfs_delayed_extent_op *extent_op,
2186 				int insert_reserved)
2187 {
2188 	int ret = 0;
2189 	struct btrfs_delayed_tree_ref *ref;
2190 	struct btrfs_key ins;
2191 	u64 parent = 0;
2192 	u64 ref_root = 0;
2193 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2194 						 SKINNY_METADATA);
2195 
2196 	ref = btrfs_delayed_node_to_tree_ref(node);
2197 	trace_run_delayed_tree_ref(node, ref, node->action);
2198 
2199 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2200 		parent = ref->parent;
2201 	else
2202 		ref_root = ref->root;
2203 
2204 	ins.objectid = node->bytenr;
2205 	if (skinny_metadata) {
2206 		ins.offset = ref->level;
2207 		ins.type = BTRFS_METADATA_ITEM_KEY;
2208 	} else {
2209 		ins.offset = node->num_bytes;
2210 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 	}
2212 
2213 	BUG_ON(node->ref_mod != 1);
2214 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 		BUG_ON(!extent_op || !extent_op->update_flags);
2216 		ret = alloc_reserved_tree_block(trans, root,
2217 						parent, ref_root,
2218 						extent_op->flags_to_set,
2219 						&extent_op->key,
2220 						ref->level, &ins);
2221 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2222 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2223 					     node->num_bytes, parent, ref_root,
2224 					     ref->level, 0, 1, extent_op);
2225 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2227 					  node->num_bytes, parent, ref_root,
2228 					  ref->level, 0, 1, extent_op);
2229 	} else {
2230 		BUG();
2231 	}
2232 	return ret;
2233 }
2234 
2235 /* helper function to actually process a single delayed ref entry */
2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2237 			       struct btrfs_root *root,
2238 			       struct btrfs_delayed_ref_node *node,
2239 			       struct btrfs_delayed_extent_op *extent_op,
2240 			       int insert_reserved)
2241 {
2242 	int ret = 0;
2243 
2244 	if (trans->aborted) {
2245 		if (insert_reserved)
2246 			btrfs_pin_extent(root, node->bytenr,
2247 					 node->num_bytes, 1);
2248 		return 0;
2249 	}
2250 
2251 	if (btrfs_delayed_ref_is_head(node)) {
2252 		struct btrfs_delayed_ref_head *head;
2253 		/*
2254 		 * we've hit the end of the chain and we were supposed
2255 		 * to insert this extent into the tree.  But, it got
2256 		 * deleted before we ever needed to insert it, so all
2257 		 * we have to do is clean up the accounting
2258 		 */
2259 		BUG_ON(extent_op);
2260 		head = btrfs_delayed_node_to_head(node);
2261 		trace_run_delayed_ref_head(node, head, node->action);
2262 
2263 		if (insert_reserved) {
2264 			btrfs_pin_extent(root, node->bytenr,
2265 					 node->num_bytes, 1);
2266 			if (head->is_data) {
2267 				ret = btrfs_del_csums(trans, root,
2268 						      node->bytenr,
2269 						      node->num_bytes);
2270 			}
2271 		}
2272 		return ret;
2273 	}
2274 
2275 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2276 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2277 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2278 					   insert_reserved);
2279 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2280 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2281 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2282 					   insert_reserved);
2283 	else
2284 		BUG();
2285 	return ret;
2286 }
2287 
2288 static noinline struct btrfs_delayed_ref_node *
2289 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2290 {
2291 	struct rb_node *node;
2292 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2293 
2294 	/*
2295 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 	 * this prevents ref count from going down to zero when
2297 	 * there still are pending delayed ref.
2298 	 */
2299 	node = rb_first(&head->ref_root);
2300 	while (node) {
2301 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 				rb_node);
2303 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2304 			return ref;
2305 		else if (last == NULL)
2306 			last = ref;
2307 		node = rb_next(node);
2308 	}
2309 	return last;
2310 }
2311 
2312 /*
2313  * Returns 0 on success or if called with an already aborted transaction.
2314  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2315  */
2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2317 					     struct btrfs_root *root,
2318 					     unsigned long nr)
2319 {
2320 	struct btrfs_delayed_ref_root *delayed_refs;
2321 	struct btrfs_delayed_ref_node *ref;
2322 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2323 	struct btrfs_delayed_extent_op *extent_op;
2324 	struct btrfs_fs_info *fs_info = root->fs_info;
2325 	ktime_t start = ktime_get();
2326 	int ret;
2327 	unsigned long count = 0;
2328 	unsigned long actual_count = 0;
2329 	int must_insert_reserved = 0;
2330 
2331 	delayed_refs = &trans->transaction->delayed_refs;
2332 	while (1) {
2333 		if (!locked_ref) {
2334 			if (count >= nr)
2335 				break;
2336 
2337 			spin_lock(&delayed_refs->lock);
2338 			locked_ref = btrfs_select_ref_head(trans);
2339 			if (!locked_ref) {
2340 				spin_unlock(&delayed_refs->lock);
2341 				break;
2342 			}
2343 
2344 			/* grab the lock that says we are going to process
2345 			 * all the refs for this head */
2346 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 			spin_unlock(&delayed_refs->lock);
2348 			/*
2349 			 * we may have dropped the spin lock to get the head
2350 			 * mutex lock, and that might have given someone else
2351 			 * time to free the head.  If that's true, it has been
2352 			 * removed from our list and we can move on.
2353 			 */
2354 			if (ret == -EAGAIN) {
2355 				locked_ref = NULL;
2356 				count++;
2357 				continue;
2358 			}
2359 		}
2360 
2361 		/*
2362 		 * We need to try and merge add/drops of the same ref since we
2363 		 * can run into issues with relocate dropping the implicit ref
2364 		 * and then it being added back again before the drop can
2365 		 * finish.  If we merged anything we need to re-loop so we can
2366 		 * get a good ref.
2367 		 */
2368 		spin_lock(&locked_ref->lock);
2369 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 					 locked_ref);
2371 
2372 		/*
2373 		 * locked_ref is the head node, so we have to go one
2374 		 * node back for any delayed ref updates
2375 		 */
2376 		ref = select_delayed_ref(locked_ref);
2377 
2378 		if (ref && ref->seq &&
2379 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 			spin_unlock(&locked_ref->lock);
2381 			btrfs_delayed_ref_unlock(locked_ref);
2382 			spin_lock(&delayed_refs->lock);
2383 			locked_ref->processing = 0;
2384 			delayed_refs->num_heads_ready++;
2385 			spin_unlock(&delayed_refs->lock);
2386 			locked_ref = NULL;
2387 			cond_resched();
2388 			count++;
2389 			continue;
2390 		}
2391 
2392 		/*
2393 		 * record the must insert reserved flag before we
2394 		 * drop the spin lock.
2395 		 */
2396 		must_insert_reserved = locked_ref->must_insert_reserved;
2397 		locked_ref->must_insert_reserved = 0;
2398 
2399 		extent_op = locked_ref->extent_op;
2400 		locked_ref->extent_op = NULL;
2401 
2402 		if (!ref) {
2403 
2404 
2405 			/* All delayed refs have been processed, Go ahead
2406 			 * and send the head node to run_one_delayed_ref,
2407 			 * so that any accounting fixes can happen
2408 			 */
2409 			ref = &locked_ref->node;
2410 
2411 			if (extent_op && must_insert_reserved) {
2412 				btrfs_free_delayed_extent_op(extent_op);
2413 				extent_op = NULL;
2414 			}
2415 
2416 			if (extent_op) {
2417 				spin_unlock(&locked_ref->lock);
2418 				ret = run_delayed_extent_op(trans, root,
2419 							    ref, extent_op);
2420 				btrfs_free_delayed_extent_op(extent_op);
2421 
2422 				if (ret) {
2423 					/*
2424 					 * Need to reset must_insert_reserved if
2425 					 * there was an error so the abort stuff
2426 					 * can cleanup the reserved space
2427 					 * properly.
2428 					 */
2429 					if (must_insert_reserved)
2430 						locked_ref->must_insert_reserved = 1;
2431 					locked_ref->processing = 0;
2432 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2433 					btrfs_delayed_ref_unlock(locked_ref);
2434 					return ret;
2435 				}
2436 				continue;
2437 			}
2438 
2439 			/*
2440 			 * Need to drop our head ref lock and re-aqcuire the
2441 			 * delayed ref lock and then re-check to make sure
2442 			 * nobody got added.
2443 			 */
2444 			spin_unlock(&locked_ref->lock);
2445 			spin_lock(&delayed_refs->lock);
2446 			spin_lock(&locked_ref->lock);
2447 			if (rb_first(&locked_ref->ref_root)) {
2448 				spin_unlock(&locked_ref->lock);
2449 				spin_unlock(&delayed_refs->lock);
2450 				continue;
2451 			}
2452 			ref->in_tree = 0;
2453 			delayed_refs->num_heads--;
2454 			rb_erase(&locked_ref->href_node,
2455 				 &delayed_refs->href_root);
2456 			spin_unlock(&delayed_refs->lock);
2457 		} else {
2458 			actual_count++;
2459 			ref->in_tree = 0;
2460 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2461 		}
2462 		atomic_dec(&delayed_refs->num_entries);
2463 
2464 		if (!btrfs_delayed_ref_is_head(ref)) {
2465 			/*
2466 			 * when we play the delayed ref, also correct the
2467 			 * ref_mod on head
2468 			 */
2469 			switch (ref->action) {
2470 			case BTRFS_ADD_DELAYED_REF:
2471 			case BTRFS_ADD_DELAYED_EXTENT:
2472 				locked_ref->node.ref_mod -= ref->ref_mod;
2473 				break;
2474 			case BTRFS_DROP_DELAYED_REF:
2475 				locked_ref->node.ref_mod += ref->ref_mod;
2476 				break;
2477 			default:
2478 				WARN_ON(1);
2479 			}
2480 		}
2481 		spin_unlock(&locked_ref->lock);
2482 
2483 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2484 					  must_insert_reserved);
2485 
2486 		btrfs_free_delayed_extent_op(extent_op);
2487 		if (ret) {
2488 			locked_ref->processing = 0;
2489 			btrfs_delayed_ref_unlock(locked_ref);
2490 			btrfs_put_delayed_ref(ref);
2491 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2492 			return ret;
2493 		}
2494 
2495 		/*
2496 		 * If this node is a head, that means all the refs in this head
2497 		 * have been dealt with, and we will pick the next head to deal
2498 		 * with, so we must unlock the head and drop it from the cluster
2499 		 * list before we release it.
2500 		 */
2501 		if (btrfs_delayed_ref_is_head(ref)) {
2502 			btrfs_delayed_ref_unlock(locked_ref);
2503 			locked_ref = NULL;
2504 		}
2505 		btrfs_put_delayed_ref(ref);
2506 		count++;
2507 		cond_resched();
2508 	}
2509 
2510 	/*
2511 	 * We don't want to include ref heads since we can have empty ref heads
2512 	 * and those will drastically skew our runtime down since we just do
2513 	 * accounting, no actual extent tree updates.
2514 	 */
2515 	if (actual_count > 0) {
2516 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2517 		u64 avg;
2518 
2519 		/*
2520 		 * We weigh the current average higher than our current runtime
2521 		 * to avoid large swings in the average.
2522 		 */
2523 		spin_lock(&delayed_refs->lock);
2524 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2525 		avg = div64_u64(avg, 4);
2526 		fs_info->avg_delayed_ref_runtime = avg;
2527 		spin_unlock(&delayed_refs->lock);
2528 	}
2529 	return 0;
2530 }
2531 
2532 #ifdef SCRAMBLE_DELAYED_REFS
2533 /*
2534  * Normally delayed refs get processed in ascending bytenr order. This
2535  * correlates in most cases to the order added. To expose dependencies on this
2536  * order, we start to process the tree in the middle instead of the beginning
2537  */
2538 static u64 find_middle(struct rb_root *root)
2539 {
2540 	struct rb_node *n = root->rb_node;
2541 	struct btrfs_delayed_ref_node *entry;
2542 	int alt = 1;
2543 	u64 middle;
2544 	u64 first = 0, last = 0;
2545 
2546 	n = rb_first(root);
2547 	if (n) {
2548 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2549 		first = entry->bytenr;
2550 	}
2551 	n = rb_last(root);
2552 	if (n) {
2553 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2554 		last = entry->bytenr;
2555 	}
2556 	n = root->rb_node;
2557 
2558 	while (n) {
2559 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2560 		WARN_ON(!entry->in_tree);
2561 
2562 		middle = entry->bytenr;
2563 
2564 		if (alt)
2565 			n = n->rb_left;
2566 		else
2567 			n = n->rb_right;
2568 
2569 		alt = 1 - alt;
2570 	}
2571 	return middle;
2572 }
2573 #endif
2574 
2575 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2576 					 struct btrfs_fs_info *fs_info)
2577 {
2578 	struct qgroup_update *qgroup_update;
2579 	int ret = 0;
2580 
2581 	if (list_empty(&trans->qgroup_ref_list) !=
2582 	    !trans->delayed_ref_elem.seq) {
2583 		/* list without seq or seq without list */
2584 		btrfs_err(fs_info,
2585 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2586 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2587 			(u32)(trans->delayed_ref_elem.seq >> 32),
2588 			(u32)trans->delayed_ref_elem.seq);
2589 		BUG();
2590 	}
2591 
2592 	if (!trans->delayed_ref_elem.seq)
2593 		return 0;
2594 
2595 	while (!list_empty(&trans->qgroup_ref_list)) {
2596 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2597 						 struct qgroup_update, list);
2598 		list_del(&qgroup_update->list);
2599 		if (!ret)
2600 			ret = btrfs_qgroup_account_ref(
2601 					trans, fs_info, qgroup_update->node,
2602 					qgroup_update->extent_op);
2603 		kfree(qgroup_update);
2604 	}
2605 
2606 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2607 
2608 	return ret;
2609 }
2610 
2611 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2612 {
2613 	u64 num_bytes;
2614 
2615 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2616 			     sizeof(struct btrfs_extent_inline_ref));
2617 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2618 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2619 
2620 	/*
2621 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2622 	 * closer to what we're really going to want to ouse.
2623 	 */
2624 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2625 }
2626 
2627 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2628 				       struct btrfs_root *root)
2629 {
2630 	struct btrfs_block_rsv *global_rsv;
2631 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2632 	u64 num_bytes;
2633 	int ret = 0;
2634 
2635 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2636 	num_heads = heads_to_leaves(root, num_heads);
2637 	if (num_heads > 1)
2638 		num_bytes += (num_heads - 1) * root->leafsize;
2639 	num_bytes <<= 1;
2640 	global_rsv = &root->fs_info->global_block_rsv;
2641 
2642 	/*
2643 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2644 	 * wiggle room since running delayed refs can create more delayed refs.
2645 	 */
2646 	if (global_rsv->space_info->full)
2647 		num_bytes <<= 1;
2648 
2649 	spin_lock(&global_rsv->lock);
2650 	if (global_rsv->reserved <= num_bytes)
2651 		ret = 1;
2652 	spin_unlock(&global_rsv->lock);
2653 	return ret;
2654 }
2655 
2656 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2657 				       struct btrfs_root *root)
2658 {
2659 	struct btrfs_fs_info *fs_info = root->fs_info;
2660 	u64 num_entries =
2661 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2662 	u64 avg_runtime;
2663 
2664 	smp_mb();
2665 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2666 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2667 		return 1;
2668 
2669 	return btrfs_check_space_for_delayed_refs(trans, root);
2670 }
2671 
2672 /*
2673  * this starts processing the delayed reference count updates and
2674  * extent insertions we have queued up so far.  count can be
2675  * 0, which means to process everything in the tree at the start
2676  * of the run (but not newly added entries), or it can be some target
2677  * number you'd like to process.
2678  *
2679  * Returns 0 on success or if called with an aborted transaction
2680  * Returns <0 on error and aborts the transaction
2681  */
2682 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2683 			   struct btrfs_root *root, unsigned long count)
2684 {
2685 	struct rb_node *node;
2686 	struct btrfs_delayed_ref_root *delayed_refs;
2687 	struct btrfs_delayed_ref_head *head;
2688 	int ret;
2689 	int run_all = count == (unsigned long)-1;
2690 	int run_most = 0;
2691 
2692 	/* We'll clean this up in btrfs_cleanup_transaction */
2693 	if (trans->aborted)
2694 		return 0;
2695 
2696 	if (root == root->fs_info->extent_root)
2697 		root = root->fs_info->tree_root;
2698 
2699 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2700 
2701 	delayed_refs = &trans->transaction->delayed_refs;
2702 	if (count == 0) {
2703 		count = atomic_read(&delayed_refs->num_entries) * 2;
2704 		run_most = 1;
2705 	}
2706 
2707 again:
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2710 #endif
2711 	ret = __btrfs_run_delayed_refs(trans, root, count);
2712 	if (ret < 0) {
2713 		btrfs_abort_transaction(trans, root, ret);
2714 		return ret;
2715 	}
2716 
2717 	if (run_all) {
2718 		if (!list_empty(&trans->new_bgs))
2719 			btrfs_create_pending_block_groups(trans, root);
2720 
2721 		spin_lock(&delayed_refs->lock);
2722 		node = rb_first(&delayed_refs->href_root);
2723 		if (!node) {
2724 			spin_unlock(&delayed_refs->lock);
2725 			goto out;
2726 		}
2727 		count = (unsigned long)-1;
2728 
2729 		while (node) {
2730 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2731 					href_node);
2732 			if (btrfs_delayed_ref_is_head(&head->node)) {
2733 				struct btrfs_delayed_ref_node *ref;
2734 
2735 				ref = &head->node;
2736 				atomic_inc(&ref->refs);
2737 
2738 				spin_unlock(&delayed_refs->lock);
2739 				/*
2740 				 * Mutex was contended, block until it's
2741 				 * released and try again
2742 				 */
2743 				mutex_lock(&head->mutex);
2744 				mutex_unlock(&head->mutex);
2745 
2746 				btrfs_put_delayed_ref(ref);
2747 				cond_resched();
2748 				goto again;
2749 			} else {
2750 				WARN_ON(1);
2751 			}
2752 			node = rb_next(node);
2753 		}
2754 		spin_unlock(&delayed_refs->lock);
2755 		cond_resched();
2756 		goto again;
2757 	}
2758 out:
2759 	assert_qgroups_uptodate(trans);
2760 	return 0;
2761 }
2762 
2763 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2764 				struct btrfs_root *root,
2765 				u64 bytenr, u64 num_bytes, u64 flags,
2766 				int level, int is_data)
2767 {
2768 	struct btrfs_delayed_extent_op *extent_op;
2769 	int ret;
2770 
2771 	extent_op = btrfs_alloc_delayed_extent_op();
2772 	if (!extent_op)
2773 		return -ENOMEM;
2774 
2775 	extent_op->flags_to_set = flags;
2776 	extent_op->update_flags = 1;
2777 	extent_op->update_key = 0;
2778 	extent_op->is_data = is_data ? 1 : 0;
2779 	extent_op->level = level;
2780 
2781 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2782 					  num_bytes, extent_op);
2783 	if (ret)
2784 		btrfs_free_delayed_extent_op(extent_op);
2785 	return ret;
2786 }
2787 
2788 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2789 				      struct btrfs_root *root,
2790 				      struct btrfs_path *path,
2791 				      u64 objectid, u64 offset, u64 bytenr)
2792 {
2793 	struct btrfs_delayed_ref_head *head;
2794 	struct btrfs_delayed_ref_node *ref;
2795 	struct btrfs_delayed_data_ref *data_ref;
2796 	struct btrfs_delayed_ref_root *delayed_refs;
2797 	struct rb_node *node;
2798 	int ret = 0;
2799 
2800 	delayed_refs = &trans->transaction->delayed_refs;
2801 	spin_lock(&delayed_refs->lock);
2802 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2803 	if (!head) {
2804 		spin_unlock(&delayed_refs->lock);
2805 		return 0;
2806 	}
2807 
2808 	if (!mutex_trylock(&head->mutex)) {
2809 		atomic_inc(&head->node.refs);
2810 		spin_unlock(&delayed_refs->lock);
2811 
2812 		btrfs_release_path(path);
2813 
2814 		/*
2815 		 * Mutex was contended, block until it's released and let
2816 		 * caller try again
2817 		 */
2818 		mutex_lock(&head->mutex);
2819 		mutex_unlock(&head->mutex);
2820 		btrfs_put_delayed_ref(&head->node);
2821 		return -EAGAIN;
2822 	}
2823 	spin_unlock(&delayed_refs->lock);
2824 
2825 	spin_lock(&head->lock);
2826 	node = rb_first(&head->ref_root);
2827 	while (node) {
2828 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2829 		node = rb_next(node);
2830 
2831 		/* If it's a shared ref we know a cross reference exists */
2832 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2833 			ret = 1;
2834 			break;
2835 		}
2836 
2837 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2838 
2839 		/*
2840 		 * If our ref doesn't match the one we're currently looking at
2841 		 * then we have a cross reference.
2842 		 */
2843 		if (data_ref->root != root->root_key.objectid ||
2844 		    data_ref->objectid != objectid ||
2845 		    data_ref->offset != offset) {
2846 			ret = 1;
2847 			break;
2848 		}
2849 	}
2850 	spin_unlock(&head->lock);
2851 	mutex_unlock(&head->mutex);
2852 	return ret;
2853 }
2854 
2855 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2856 					struct btrfs_root *root,
2857 					struct btrfs_path *path,
2858 					u64 objectid, u64 offset, u64 bytenr)
2859 {
2860 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2861 	struct extent_buffer *leaf;
2862 	struct btrfs_extent_data_ref *ref;
2863 	struct btrfs_extent_inline_ref *iref;
2864 	struct btrfs_extent_item *ei;
2865 	struct btrfs_key key;
2866 	u32 item_size;
2867 	int ret;
2868 
2869 	key.objectid = bytenr;
2870 	key.offset = (u64)-1;
2871 	key.type = BTRFS_EXTENT_ITEM_KEY;
2872 
2873 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2874 	if (ret < 0)
2875 		goto out;
2876 	BUG_ON(ret == 0); /* Corruption */
2877 
2878 	ret = -ENOENT;
2879 	if (path->slots[0] == 0)
2880 		goto out;
2881 
2882 	path->slots[0]--;
2883 	leaf = path->nodes[0];
2884 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2885 
2886 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2887 		goto out;
2888 
2889 	ret = 1;
2890 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2892 	if (item_size < sizeof(*ei)) {
2893 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2894 		goto out;
2895 	}
2896 #endif
2897 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2898 
2899 	if (item_size != sizeof(*ei) +
2900 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2901 		goto out;
2902 
2903 	if (btrfs_extent_generation(leaf, ei) <=
2904 	    btrfs_root_last_snapshot(&root->root_item))
2905 		goto out;
2906 
2907 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2908 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2909 	    BTRFS_EXTENT_DATA_REF_KEY)
2910 		goto out;
2911 
2912 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2913 	if (btrfs_extent_refs(leaf, ei) !=
2914 	    btrfs_extent_data_ref_count(leaf, ref) ||
2915 	    btrfs_extent_data_ref_root(leaf, ref) !=
2916 	    root->root_key.objectid ||
2917 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2918 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2919 		goto out;
2920 
2921 	ret = 0;
2922 out:
2923 	return ret;
2924 }
2925 
2926 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2927 			  struct btrfs_root *root,
2928 			  u64 objectid, u64 offset, u64 bytenr)
2929 {
2930 	struct btrfs_path *path;
2931 	int ret;
2932 	int ret2;
2933 
2934 	path = btrfs_alloc_path();
2935 	if (!path)
2936 		return -ENOENT;
2937 
2938 	do {
2939 		ret = check_committed_ref(trans, root, path, objectid,
2940 					  offset, bytenr);
2941 		if (ret && ret != -ENOENT)
2942 			goto out;
2943 
2944 		ret2 = check_delayed_ref(trans, root, path, objectid,
2945 					 offset, bytenr);
2946 	} while (ret2 == -EAGAIN);
2947 
2948 	if (ret2 && ret2 != -ENOENT) {
2949 		ret = ret2;
2950 		goto out;
2951 	}
2952 
2953 	if (ret != -ENOENT || ret2 != -ENOENT)
2954 		ret = 0;
2955 out:
2956 	btrfs_free_path(path);
2957 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2958 		WARN_ON(ret > 0);
2959 	return ret;
2960 }
2961 
2962 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2963 			   struct btrfs_root *root,
2964 			   struct extent_buffer *buf,
2965 			   int full_backref, int inc, int for_cow)
2966 {
2967 	u64 bytenr;
2968 	u64 num_bytes;
2969 	u64 parent;
2970 	u64 ref_root;
2971 	u32 nritems;
2972 	struct btrfs_key key;
2973 	struct btrfs_file_extent_item *fi;
2974 	int i;
2975 	int level;
2976 	int ret = 0;
2977 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2978 			    u64, u64, u64, u64, u64, u64, int);
2979 
2980 	ref_root = btrfs_header_owner(buf);
2981 	nritems = btrfs_header_nritems(buf);
2982 	level = btrfs_header_level(buf);
2983 
2984 	if (!root->ref_cows && level == 0)
2985 		return 0;
2986 
2987 	if (inc)
2988 		process_func = btrfs_inc_extent_ref;
2989 	else
2990 		process_func = btrfs_free_extent;
2991 
2992 	if (full_backref)
2993 		parent = buf->start;
2994 	else
2995 		parent = 0;
2996 
2997 	for (i = 0; i < nritems; i++) {
2998 		if (level == 0) {
2999 			btrfs_item_key_to_cpu(buf, &key, i);
3000 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3001 				continue;
3002 			fi = btrfs_item_ptr(buf, i,
3003 					    struct btrfs_file_extent_item);
3004 			if (btrfs_file_extent_type(buf, fi) ==
3005 			    BTRFS_FILE_EXTENT_INLINE)
3006 				continue;
3007 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3008 			if (bytenr == 0)
3009 				continue;
3010 
3011 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3012 			key.offset -= btrfs_file_extent_offset(buf, fi);
3013 			ret = process_func(trans, root, bytenr, num_bytes,
3014 					   parent, ref_root, key.objectid,
3015 					   key.offset, for_cow);
3016 			if (ret)
3017 				goto fail;
3018 		} else {
3019 			bytenr = btrfs_node_blockptr(buf, i);
3020 			num_bytes = btrfs_level_size(root, level - 1);
3021 			ret = process_func(trans, root, bytenr, num_bytes,
3022 					   parent, ref_root, level - 1, 0,
3023 					   for_cow);
3024 			if (ret)
3025 				goto fail;
3026 		}
3027 	}
3028 	return 0;
3029 fail:
3030 	return ret;
3031 }
3032 
3033 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3034 		  struct extent_buffer *buf, int full_backref, int for_cow)
3035 {
3036 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3037 }
3038 
3039 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3040 		  struct extent_buffer *buf, int full_backref, int for_cow)
3041 {
3042 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3043 }
3044 
3045 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3046 				 struct btrfs_root *root,
3047 				 struct btrfs_path *path,
3048 				 struct btrfs_block_group_cache *cache)
3049 {
3050 	int ret;
3051 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3052 	unsigned long bi;
3053 	struct extent_buffer *leaf;
3054 
3055 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3056 	if (ret < 0)
3057 		goto fail;
3058 	BUG_ON(ret); /* Corruption */
3059 
3060 	leaf = path->nodes[0];
3061 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3062 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3063 	btrfs_mark_buffer_dirty(leaf);
3064 	btrfs_release_path(path);
3065 fail:
3066 	if (ret) {
3067 		btrfs_abort_transaction(trans, root, ret);
3068 		return ret;
3069 	}
3070 	return 0;
3071 
3072 }
3073 
3074 static struct btrfs_block_group_cache *
3075 next_block_group(struct btrfs_root *root,
3076 		 struct btrfs_block_group_cache *cache)
3077 {
3078 	struct rb_node *node;
3079 	spin_lock(&root->fs_info->block_group_cache_lock);
3080 	node = rb_next(&cache->cache_node);
3081 	btrfs_put_block_group(cache);
3082 	if (node) {
3083 		cache = rb_entry(node, struct btrfs_block_group_cache,
3084 				 cache_node);
3085 		btrfs_get_block_group(cache);
3086 	} else
3087 		cache = NULL;
3088 	spin_unlock(&root->fs_info->block_group_cache_lock);
3089 	return cache;
3090 }
3091 
3092 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3093 			    struct btrfs_trans_handle *trans,
3094 			    struct btrfs_path *path)
3095 {
3096 	struct btrfs_root *root = block_group->fs_info->tree_root;
3097 	struct inode *inode = NULL;
3098 	u64 alloc_hint = 0;
3099 	int dcs = BTRFS_DC_ERROR;
3100 	int num_pages = 0;
3101 	int retries = 0;
3102 	int ret = 0;
3103 
3104 	/*
3105 	 * If this block group is smaller than 100 megs don't bother caching the
3106 	 * block group.
3107 	 */
3108 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3109 		spin_lock(&block_group->lock);
3110 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3111 		spin_unlock(&block_group->lock);
3112 		return 0;
3113 	}
3114 
3115 again:
3116 	inode = lookup_free_space_inode(root, block_group, path);
3117 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3118 		ret = PTR_ERR(inode);
3119 		btrfs_release_path(path);
3120 		goto out;
3121 	}
3122 
3123 	if (IS_ERR(inode)) {
3124 		BUG_ON(retries);
3125 		retries++;
3126 
3127 		if (block_group->ro)
3128 			goto out_free;
3129 
3130 		ret = create_free_space_inode(root, trans, block_group, path);
3131 		if (ret)
3132 			goto out_free;
3133 		goto again;
3134 	}
3135 
3136 	/* We've already setup this transaction, go ahead and exit */
3137 	if (block_group->cache_generation == trans->transid &&
3138 	    i_size_read(inode)) {
3139 		dcs = BTRFS_DC_SETUP;
3140 		goto out_put;
3141 	}
3142 
3143 	/*
3144 	 * We want to set the generation to 0, that way if anything goes wrong
3145 	 * from here on out we know not to trust this cache when we load up next
3146 	 * time.
3147 	 */
3148 	BTRFS_I(inode)->generation = 0;
3149 	ret = btrfs_update_inode(trans, root, inode);
3150 	WARN_ON(ret);
3151 
3152 	if (i_size_read(inode) > 0) {
3153 		ret = btrfs_check_trunc_cache_free_space(root,
3154 					&root->fs_info->global_block_rsv);
3155 		if (ret)
3156 			goto out_put;
3157 
3158 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3159 		if (ret)
3160 			goto out_put;
3161 	}
3162 
3163 	spin_lock(&block_group->lock);
3164 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3165 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3166 		/*
3167 		 * don't bother trying to write stuff out _if_
3168 		 * a) we're not cached,
3169 		 * b) we're with nospace_cache mount option.
3170 		 */
3171 		dcs = BTRFS_DC_WRITTEN;
3172 		spin_unlock(&block_group->lock);
3173 		goto out_put;
3174 	}
3175 	spin_unlock(&block_group->lock);
3176 
3177 	/*
3178 	 * Try to preallocate enough space based on how big the block group is.
3179 	 * Keep in mind this has to include any pinned space which could end up
3180 	 * taking up quite a bit since it's not folded into the other space
3181 	 * cache.
3182 	 */
3183 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3184 	if (!num_pages)
3185 		num_pages = 1;
3186 
3187 	num_pages *= 16;
3188 	num_pages *= PAGE_CACHE_SIZE;
3189 
3190 	ret = btrfs_check_data_free_space(inode, num_pages);
3191 	if (ret)
3192 		goto out_put;
3193 
3194 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3195 					      num_pages, num_pages,
3196 					      &alloc_hint);
3197 	if (!ret)
3198 		dcs = BTRFS_DC_SETUP;
3199 	btrfs_free_reserved_data_space(inode, num_pages);
3200 
3201 out_put:
3202 	iput(inode);
3203 out_free:
3204 	btrfs_release_path(path);
3205 out:
3206 	spin_lock(&block_group->lock);
3207 	if (!ret && dcs == BTRFS_DC_SETUP)
3208 		block_group->cache_generation = trans->transid;
3209 	block_group->disk_cache_state = dcs;
3210 	spin_unlock(&block_group->lock);
3211 
3212 	return ret;
3213 }
3214 
3215 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3216 				   struct btrfs_root *root)
3217 {
3218 	struct btrfs_block_group_cache *cache;
3219 	int err = 0;
3220 	struct btrfs_path *path;
3221 	u64 last = 0;
3222 
3223 	path = btrfs_alloc_path();
3224 	if (!path)
3225 		return -ENOMEM;
3226 
3227 again:
3228 	while (1) {
3229 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3230 		while (cache) {
3231 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3232 				break;
3233 			cache = next_block_group(root, cache);
3234 		}
3235 		if (!cache) {
3236 			if (last == 0)
3237 				break;
3238 			last = 0;
3239 			continue;
3240 		}
3241 		err = cache_save_setup(cache, trans, path);
3242 		last = cache->key.objectid + cache->key.offset;
3243 		btrfs_put_block_group(cache);
3244 	}
3245 
3246 	while (1) {
3247 		if (last == 0) {
3248 			err = btrfs_run_delayed_refs(trans, root,
3249 						     (unsigned long)-1);
3250 			if (err) /* File system offline */
3251 				goto out;
3252 		}
3253 
3254 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3255 		while (cache) {
3256 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3257 				btrfs_put_block_group(cache);
3258 				goto again;
3259 			}
3260 
3261 			if (cache->dirty)
3262 				break;
3263 			cache = next_block_group(root, cache);
3264 		}
3265 		if (!cache) {
3266 			if (last == 0)
3267 				break;
3268 			last = 0;
3269 			continue;
3270 		}
3271 
3272 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3273 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3274 		cache->dirty = 0;
3275 		last = cache->key.objectid + cache->key.offset;
3276 
3277 		err = write_one_cache_group(trans, root, path, cache);
3278 		btrfs_put_block_group(cache);
3279 		if (err) /* File system offline */
3280 			goto out;
3281 	}
3282 
3283 	while (1) {
3284 		/*
3285 		 * I don't think this is needed since we're just marking our
3286 		 * preallocated extent as written, but just in case it can't
3287 		 * hurt.
3288 		 */
3289 		if (last == 0) {
3290 			err = btrfs_run_delayed_refs(trans, root,
3291 						     (unsigned long)-1);
3292 			if (err) /* File system offline */
3293 				goto out;
3294 		}
3295 
3296 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3297 		while (cache) {
3298 			/*
3299 			 * Really this shouldn't happen, but it could if we
3300 			 * couldn't write the entire preallocated extent and
3301 			 * splitting the extent resulted in a new block.
3302 			 */
3303 			if (cache->dirty) {
3304 				btrfs_put_block_group(cache);
3305 				goto again;
3306 			}
3307 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3308 				break;
3309 			cache = next_block_group(root, cache);
3310 		}
3311 		if (!cache) {
3312 			if (last == 0)
3313 				break;
3314 			last = 0;
3315 			continue;
3316 		}
3317 
3318 		err = btrfs_write_out_cache(root, trans, cache, path);
3319 
3320 		/*
3321 		 * If we didn't have an error then the cache state is still
3322 		 * NEED_WRITE, so we can set it to WRITTEN.
3323 		 */
3324 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3325 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3326 		last = cache->key.objectid + cache->key.offset;
3327 		btrfs_put_block_group(cache);
3328 	}
3329 out:
3330 
3331 	btrfs_free_path(path);
3332 	return err;
3333 }
3334 
3335 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3336 {
3337 	struct btrfs_block_group_cache *block_group;
3338 	int readonly = 0;
3339 
3340 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3341 	if (!block_group || block_group->ro)
3342 		readonly = 1;
3343 	if (block_group)
3344 		btrfs_put_block_group(block_group);
3345 	return readonly;
3346 }
3347 
3348 static const char *alloc_name(u64 flags)
3349 {
3350 	switch (flags) {
3351 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3352 		return "mixed";
3353 	case BTRFS_BLOCK_GROUP_METADATA:
3354 		return "metadata";
3355 	case BTRFS_BLOCK_GROUP_DATA:
3356 		return "data";
3357 	case BTRFS_BLOCK_GROUP_SYSTEM:
3358 		return "system";
3359 	default:
3360 		WARN_ON(1);
3361 		return "invalid-combination";
3362 	};
3363 }
3364 
3365 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3366 			     u64 total_bytes, u64 bytes_used,
3367 			     struct btrfs_space_info **space_info)
3368 {
3369 	struct btrfs_space_info *found;
3370 	int i;
3371 	int factor;
3372 	int ret;
3373 
3374 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3375 		     BTRFS_BLOCK_GROUP_RAID10))
3376 		factor = 2;
3377 	else
3378 		factor = 1;
3379 
3380 	found = __find_space_info(info, flags);
3381 	if (found) {
3382 		spin_lock(&found->lock);
3383 		found->total_bytes += total_bytes;
3384 		found->disk_total += total_bytes * factor;
3385 		found->bytes_used += bytes_used;
3386 		found->disk_used += bytes_used * factor;
3387 		found->full = 0;
3388 		spin_unlock(&found->lock);
3389 		*space_info = found;
3390 		return 0;
3391 	}
3392 	found = kzalloc(sizeof(*found), GFP_NOFS);
3393 	if (!found)
3394 		return -ENOMEM;
3395 
3396 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3397 	if (ret) {
3398 		kfree(found);
3399 		return ret;
3400 	}
3401 
3402 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3403 		INIT_LIST_HEAD(&found->block_groups[i]);
3404 		kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3405 	}
3406 	init_rwsem(&found->groups_sem);
3407 	spin_lock_init(&found->lock);
3408 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3409 	found->total_bytes = total_bytes;
3410 	found->disk_total = total_bytes * factor;
3411 	found->bytes_used = bytes_used;
3412 	found->disk_used = bytes_used * factor;
3413 	found->bytes_pinned = 0;
3414 	found->bytes_reserved = 0;
3415 	found->bytes_readonly = 0;
3416 	found->bytes_may_use = 0;
3417 	found->full = 0;
3418 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3419 	found->chunk_alloc = 0;
3420 	found->flush = 0;
3421 	init_waitqueue_head(&found->wait);
3422 
3423 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3424 				    info->space_info_kobj, "%s",
3425 				    alloc_name(found->flags));
3426 	if (ret) {
3427 		kfree(found);
3428 		return ret;
3429 	}
3430 
3431 	*space_info = found;
3432 	list_add_rcu(&found->list, &info->space_info);
3433 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3434 		info->data_sinfo = found;
3435 
3436 	return ret;
3437 }
3438 
3439 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3440 {
3441 	u64 extra_flags = chunk_to_extended(flags) &
3442 				BTRFS_EXTENDED_PROFILE_MASK;
3443 
3444 	write_seqlock(&fs_info->profiles_lock);
3445 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3446 		fs_info->avail_data_alloc_bits |= extra_flags;
3447 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3448 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3449 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3450 		fs_info->avail_system_alloc_bits |= extra_flags;
3451 	write_sequnlock(&fs_info->profiles_lock);
3452 }
3453 
3454 /*
3455  * returns target flags in extended format or 0 if restripe for this
3456  * chunk_type is not in progress
3457  *
3458  * should be called with either volume_mutex or balance_lock held
3459  */
3460 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3461 {
3462 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3463 	u64 target = 0;
3464 
3465 	if (!bctl)
3466 		return 0;
3467 
3468 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3469 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3470 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3471 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3472 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3473 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3474 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3475 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3476 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3477 	}
3478 
3479 	return target;
3480 }
3481 
3482 /*
3483  * @flags: available profiles in extended format (see ctree.h)
3484  *
3485  * Returns reduced profile in chunk format.  If profile changing is in
3486  * progress (either running or paused) picks the target profile (if it's
3487  * already available), otherwise falls back to plain reducing.
3488  */
3489 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3490 {
3491 	/*
3492 	 * we add in the count of missing devices because we want
3493 	 * to make sure that any RAID levels on a degraded FS
3494 	 * continue to be honored.
3495 	 */
3496 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3497 		root->fs_info->fs_devices->missing_devices;
3498 	u64 target;
3499 	u64 tmp;
3500 
3501 	/*
3502 	 * see if restripe for this chunk_type is in progress, if so
3503 	 * try to reduce to the target profile
3504 	 */
3505 	spin_lock(&root->fs_info->balance_lock);
3506 	target = get_restripe_target(root->fs_info, flags);
3507 	if (target) {
3508 		/* pick target profile only if it's already available */
3509 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3510 			spin_unlock(&root->fs_info->balance_lock);
3511 			return extended_to_chunk(target);
3512 		}
3513 	}
3514 	spin_unlock(&root->fs_info->balance_lock);
3515 
3516 	/* First, mask out the RAID levels which aren't possible */
3517 	if (num_devices == 1)
3518 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3519 			   BTRFS_BLOCK_GROUP_RAID5);
3520 	if (num_devices < 3)
3521 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3522 	if (num_devices < 4)
3523 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3524 
3525 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3526 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3527 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3528 	flags &= ~tmp;
3529 
3530 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3531 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3532 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3533 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3534 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3535 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3536 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3537 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3538 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3539 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3540 
3541 	return extended_to_chunk(flags | tmp);
3542 }
3543 
3544 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3545 {
3546 	unsigned seq;
3547 
3548 	do {
3549 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3550 
3551 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3552 			flags |= root->fs_info->avail_data_alloc_bits;
3553 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3554 			flags |= root->fs_info->avail_system_alloc_bits;
3555 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3556 			flags |= root->fs_info->avail_metadata_alloc_bits;
3557 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3558 
3559 	return btrfs_reduce_alloc_profile(root, flags);
3560 }
3561 
3562 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3563 {
3564 	u64 flags;
3565 	u64 ret;
3566 
3567 	if (data)
3568 		flags = BTRFS_BLOCK_GROUP_DATA;
3569 	else if (root == root->fs_info->chunk_root)
3570 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3571 	else
3572 		flags = BTRFS_BLOCK_GROUP_METADATA;
3573 
3574 	ret = get_alloc_profile(root, flags);
3575 	return ret;
3576 }
3577 
3578 /*
3579  * This will check the space that the inode allocates from to make sure we have
3580  * enough space for bytes.
3581  */
3582 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3583 {
3584 	struct btrfs_space_info *data_sinfo;
3585 	struct btrfs_root *root = BTRFS_I(inode)->root;
3586 	struct btrfs_fs_info *fs_info = root->fs_info;
3587 	u64 used;
3588 	int ret = 0, committed = 0, alloc_chunk = 1;
3589 
3590 	/* make sure bytes are sectorsize aligned */
3591 	bytes = ALIGN(bytes, root->sectorsize);
3592 
3593 	if (btrfs_is_free_space_inode(inode)) {
3594 		committed = 1;
3595 		ASSERT(current->journal_info);
3596 	}
3597 
3598 	data_sinfo = fs_info->data_sinfo;
3599 	if (!data_sinfo)
3600 		goto alloc;
3601 
3602 again:
3603 	/* make sure we have enough space to handle the data first */
3604 	spin_lock(&data_sinfo->lock);
3605 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3606 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3607 		data_sinfo->bytes_may_use;
3608 
3609 	if (used + bytes > data_sinfo->total_bytes) {
3610 		struct btrfs_trans_handle *trans;
3611 
3612 		/*
3613 		 * if we don't have enough free bytes in this space then we need
3614 		 * to alloc a new chunk.
3615 		 */
3616 		if (!data_sinfo->full && alloc_chunk) {
3617 			u64 alloc_target;
3618 
3619 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3620 			spin_unlock(&data_sinfo->lock);
3621 alloc:
3622 			alloc_target = btrfs_get_alloc_profile(root, 1);
3623 			/*
3624 			 * It is ugly that we don't call nolock join
3625 			 * transaction for the free space inode case here.
3626 			 * But it is safe because we only do the data space
3627 			 * reservation for the free space cache in the
3628 			 * transaction context, the common join transaction
3629 			 * just increase the counter of the current transaction
3630 			 * handler, doesn't try to acquire the trans_lock of
3631 			 * the fs.
3632 			 */
3633 			trans = btrfs_join_transaction(root);
3634 			if (IS_ERR(trans))
3635 				return PTR_ERR(trans);
3636 
3637 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3638 					     alloc_target,
3639 					     CHUNK_ALLOC_NO_FORCE);
3640 			btrfs_end_transaction(trans, root);
3641 			if (ret < 0) {
3642 				if (ret != -ENOSPC)
3643 					return ret;
3644 				else
3645 					goto commit_trans;
3646 			}
3647 
3648 			if (!data_sinfo)
3649 				data_sinfo = fs_info->data_sinfo;
3650 
3651 			goto again;
3652 		}
3653 
3654 		/*
3655 		 * If we don't have enough pinned space to deal with this
3656 		 * allocation don't bother committing the transaction.
3657 		 */
3658 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3659 					   bytes) < 0)
3660 			committed = 1;
3661 		spin_unlock(&data_sinfo->lock);
3662 
3663 		/* commit the current transaction and try again */
3664 commit_trans:
3665 		if (!committed &&
3666 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3667 			committed = 1;
3668 
3669 			trans = btrfs_join_transaction(root);
3670 			if (IS_ERR(trans))
3671 				return PTR_ERR(trans);
3672 			ret = btrfs_commit_transaction(trans, root);
3673 			if (ret)
3674 				return ret;
3675 			goto again;
3676 		}
3677 
3678 		trace_btrfs_space_reservation(root->fs_info,
3679 					      "space_info:enospc",
3680 					      data_sinfo->flags, bytes, 1);
3681 		return -ENOSPC;
3682 	}
3683 	data_sinfo->bytes_may_use += bytes;
3684 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3685 				      data_sinfo->flags, bytes, 1);
3686 	spin_unlock(&data_sinfo->lock);
3687 
3688 	return 0;
3689 }
3690 
3691 /*
3692  * Called if we need to clear a data reservation for this inode.
3693  */
3694 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3695 {
3696 	struct btrfs_root *root = BTRFS_I(inode)->root;
3697 	struct btrfs_space_info *data_sinfo;
3698 
3699 	/* make sure bytes are sectorsize aligned */
3700 	bytes = ALIGN(bytes, root->sectorsize);
3701 
3702 	data_sinfo = root->fs_info->data_sinfo;
3703 	spin_lock(&data_sinfo->lock);
3704 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3705 	data_sinfo->bytes_may_use -= bytes;
3706 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3707 				      data_sinfo->flags, bytes, 0);
3708 	spin_unlock(&data_sinfo->lock);
3709 }
3710 
3711 static void force_metadata_allocation(struct btrfs_fs_info *info)
3712 {
3713 	struct list_head *head = &info->space_info;
3714 	struct btrfs_space_info *found;
3715 
3716 	rcu_read_lock();
3717 	list_for_each_entry_rcu(found, head, list) {
3718 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3719 			found->force_alloc = CHUNK_ALLOC_FORCE;
3720 	}
3721 	rcu_read_unlock();
3722 }
3723 
3724 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3725 {
3726 	return (global->size << 1);
3727 }
3728 
3729 static int should_alloc_chunk(struct btrfs_root *root,
3730 			      struct btrfs_space_info *sinfo, int force)
3731 {
3732 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3733 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3734 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3735 	u64 thresh;
3736 
3737 	if (force == CHUNK_ALLOC_FORCE)
3738 		return 1;
3739 
3740 	/*
3741 	 * We need to take into account the global rsv because for all intents
3742 	 * and purposes it's used space.  Don't worry about locking the
3743 	 * global_rsv, it doesn't change except when the transaction commits.
3744 	 */
3745 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3746 		num_allocated += calc_global_rsv_need_space(global_rsv);
3747 
3748 	/*
3749 	 * in limited mode, we want to have some free space up to
3750 	 * about 1% of the FS size.
3751 	 */
3752 	if (force == CHUNK_ALLOC_LIMITED) {
3753 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3754 		thresh = max_t(u64, 64 * 1024 * 1024,
3755 			       div_factor_fine(thresh, 1));
3756 
3757 		if (num_bytes - num_allocated < thresh)
3758 			return 1;
3759 	}
3760 
3761 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3762 		return 0;
3763 	return 1;
3764 }
3765 
3766 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3767 {
3768 	u64 num_dev;
3769 
3770 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3771 		    BTRFS_BLOCK_GROUP_RAID0 |
3772 		    BTRFS_BLOCK_GROUP_RAID5 |
3773 		    BTRFS_BLOCK_GROUP_RAID6))
3774 		num_dev = root->fs_info->fs_devices->rw_devices;
3775 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3776 		num_dev = 2;
3777 	else
3778 		num_dev = 1;	/* DUP or single */
3779 
3780 	/* metadata for updaing devices and chunk tree */
3781 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3782 }
3783 
3784 static void check_system_chunk(struct btrfs_trans_handle *trans,
3785 			       struct btrfs_root *root, u64 type)
3786 {
3787 	struct btrfs_space_info *info;
3788 	u64 left;
3789 	u64 thresh;
3790 
3791 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3792 	spin_lock(&info->lock);
3793 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3794 		info->bytes_reserved - info->bytes_readonly;
3795 	spin_unlock(&info->lock);
3796 
3797 	thresh = get_system_chunk_thresh(root, type);
3798 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3799 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3800 			left, thresh, type);
3801 		dump_space_info(info, 0, 0);
3802 	}
3803 
3804 	if (left < thresh) {
3805 		u64 flags;
3806 
3807 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3808 		btrfs_alloc_chunk(trans, root, flags);
3809 	}
3810 }
3811 
3812 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3813 			  struct btrfs_root *extent_root, u64 flags, int force)
3814 {
3815 	struct btrfs_space_info *space_info;
3816 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3817 	int wait_for_alloc = 0;
3818 	int ret = 0;
3819 
3820 	/* Don't re-enter if we're already allocating a chunk */
3821 	if (trans->allocating_chunk)
3822 		return -ENOSPC;
3823 
3824 	space_info = __find_space_info(extent_root->fs_info, flags);
3825 	if (!space_info) {
3826 		ret = update_space_info(extent_root->fs_info, flags,
3827 					0, 0, &space_info);
3828 		BUG_ON(ret); /* -ENOMEM */
3829 	}
3830 	BUG_ON(!space_info); /* Logic error */
3831 
3832 again:
3833 	spin_lock(&space_info->lock);
3834 	if (force < space_info->force_alloc)
3835 		force = space_info->force_alloc;
3836 	if (space_info->full) {
3837 		if (should_alloc_chunk(extent_root, space_info, force))
3838 			ret = -ENOSPC;
3839 		else
3840 			ret = 0;
3841 		spin_unlock(&space_info->lock);
3842 		return ret;
3843 	}
3844 
3845 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3846 		spin_unlock(&space_info->lock);
3847 		return 0;
3848 	} else if (space_info->chunk_alloc) {
3849 		wait_for_alloc = 1;
3850 	} else {
3851 		space_info->chunk_alloc = 1;
3852 	}
3853 
3854 	spin_unlock(&space_info->lock);
3855 
3856 	mutex_lock(&fs_info->chunk_mutex);
3857 
3858 	/*
3859 	 * The chunk_mutex is held throughout the entirety of a chunk
3860 	 * allocation, so once we've acquired the chunk_mutex we know that the
3861 	 * other guy is done and we need to recheck and see if we should
3862 	 * allocate.
3863 	 */
3864 	if (wait_for_alloc) {
3865 		mutex_unlock(&fs_info->chunk_mutex);
3866 		wait_for_alloc = 0;
3867 		goto again;
3868 	}
3869 
3870 	trans->allocating_chunk = true;
3871 
3872 	/*
3873 	 * If we have mixed data/metadata chunks we want to make sure we keep
3874 	 * allocating mixed chunks instead of individual chunks.
3875 	 */
3876 	if (btrfs_mixed_space_info(space_info))
3877 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3878 
3879 	/*
3880 	 * if we're doing a data chunk, go ahead and make sure that
3881 	 * we keep a reasonable number of metadata chunks allocated in the
3882 	 * FS as well.
3883 	 */
3884 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3885 		fs_info->data_chunk_allocations++;
3886 		if (!(fs_info->data_chunk_allocations %
3887 		      fs_info->metadata_ratio))
3888 			force_metadata_allocation(fs_info);
3889 	}
3890 
3891 	/*
3892 	 * Check if we have enough space in SYSTEM chunk because we may need
3893 	 * to update devices.
3894 	 */
3895 	check_system_chunk(trans, extent_root, flags);
3896 
3897 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3898 	trans->allocating_chunk = false;
3899 
3900 	spin_lock(&space_info->lock);
3901 	if (ret < 0 && ret != -ENOSPC)
3902 		goto out;
3903 	if (ret)
3904 		space_info->full = 1;
3905 	else
3906 		ret = 1;
3907 
3908 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3909 out:
3910 	space_info->chunk_alloc = 0;
3911 	spin_unlock(&space_info->lock);
3912 	mutex_unlock(&fs_info->chunk_mutex);
3913 	return ret;
3914 }
3915 
3916 static int can_overcommit(struct btrfs_root *root,
3917 			  struct btrfs_space_info *space_info, u64 bytes,
3918 			  enum btrfs_reserve_flush_enum flush)
3919 {
3920 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3921 	u64 profile = btrfs_get_alloc_profile(root, 0);
3922 	u64 space_size;
3923 	u64 avail;
3924 	u64 used;
3925 
3926 	used = space_info->bytes_used + space_info->bytes_reserved +
3927 		space_info->bytes_pinned + space_info->bytes_readonly;
3928 
3929 	/*
3930 	 * We only want to allow over committing if we have lots of actual space
3931 	 * free, but if we don't have enough space to handle the global reserve
3932 	 * space then we could end up having a real enospc problem when trying
3933 	 * to allocate a chunk or some other such important allocation.
3934 	 */
3935 	spin_lock(&global_rsv->lock);
3936 	space_size = calc_global_rsv_need_space(global_rsv);
3937 	spin_unlock(&global_rsv->lock);
3938 	if (used + space_size >= space_info->total_bytes)
3939 		return 0;
3940 
3941 	used += space_info->bytes_may_use;
3942 
3943 	spin_lock(&root->fs_info->free_chunk_lock);
3944 	avail = root->fs_info->free_chunk_space;
3945 	spin_unlock(&root->fs_info->free_chunk_lock);
3946 
3947 	/*
3948 	 * If we have dup, raid1 or raid10 then only half of the free
3949 	 * space is actually useable.  For raid56, the space info used
3950 	 * doesn't include the parity drive, so we don't have to
3951 	 * change the math
3952 	 */
3953 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3954 		       BTRFS_BLOCK_GROUP_RAID1 |
3955 		       BTRFS_BLOCK_GROUP_RAID10))
3956 		avail >>= 1;
3957 
3958 	/*
3959 	 * If we aren't flushing all things, let us overcommit up to
3960 	 * 1/2th of the space. If we can flush, don't let us overcommit
3961 	 * too much, let it overcommit up to 1/8 of the space.
3962 	 */
3963 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3964 		avail >>= 3;
3965 	else
3966 		avail >>= 1;
3967 
3968 	if (used + bytes < space_info->total_bytes + avail)
3969 		return 1;
3970 	return 0;
3971 }
3972 
3973 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3974 					 unsigned long nr_pages)
3975 {
3976 	struct super_block *sb = root->fs_info->sb;
3977 
3978 	if (down_read_trylock(&sb->s_umount)) {
3979 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3980 		up_read(&sb->s_umount);
3981 	} else {
3982 		/*
3983 		 * We needn't worry the filesystem going from r/w to r/o though
3984 		 * we don't acquire ->s_umount mutex, because the filesystem
3985 		 * should guarantee the delalloc inodes list be empty after
3986 		 * the filesystem is readonly(all dirty pages are written to
3987 		 * the disk).
3988 		 */
3989 		btrfs_start_delalloc_roots(root->fs_info, 0);
3990 		if (!current->journal_info)
3991 			btrfs_wait_ordered_roots(root->fs_info, -1);
3992 	}
3993 }
3994 
3995 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
3996 {
3997 	u64 bytes;
3998 	int nr;
3999 
4000 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4001 	nr = (int)div64_u64(to_reclaim, bytes);
4002 	if (!nr)
4003 		nr = 1;
4004 	return nr;
4005 }
4006 
4007 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4008 
4009 /*
4010  * shrink metadata reservation for delalloc
4011  */
4012 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4013 			    bool wait_ordered)
4014 {
4015 	struct btrfs_block_rsv *block_rsv;
4016 	struct btrfs_space_info *space_info;
4017 	struct btrfs_trans_handle *trans;
4018 	u64 delalloc_bytes;
4019 	u64 max_reclaim;
4020 	long time_left;
4021 	unsigned long nr_pages;
4022 	int loops;
4023 	int items;
4024 	enum btrfs_reserve_flush_enum flush;
4025 
4026 	/* Calc the number of the pages we need flush for space reservation */
4027 	items = calc_reclaim_items_nr(root, to_reclaim);
4028 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4029 
4030 	trans = (struct btrfs_trans_handle *)current->journal_info;
4031 	block_rsv = &root->fs_info->delalloc_block_rsv;
4032 	space_info = block_rsv->space_info;
4033 
4034 	delalloc_bytes = percpu_counter_sum_positive(
4035 						&root->fs_info->delalloc_bytes);
4036 	if (delalloc_bytes == 0) {
4037 		if (trans)
4038 			return;
4039 		if (wait_ordered)
4040 			btrfs_wait_ordered_roots(root->fs_info, items);
4041 		return;
4042 	}
4043 
4044 	loops = 0;
4045 	while (delalloc_bytes && loops < 3) {
4046 		max_reclaim = min(delalloc_bytes, to_reclaim);
4047 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4048 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4049 		/*
4050 		 * We need to wait for the async pages to actually start before
4051 		 * we do anything.
4052 		 */
4053 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4054 		if (!max_reclaim)
4055 			goto skip_async;
4056 
4057 		if (max_reclaim <= nr_pages)
4058 			max_reclaim = 0;
4059 		else
4060 			max_reclaim -= nr_pages;
4061 
4062 		wait_event(root->fs_info->async_submit_wait,
4063 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4064 			   (int)max_reclaim);
4065 skip_async:
4066 		if (!trans)
4067 			flush = BTRFS_RESERVE_FLUSH_ALL;
4068 		else
4069 			flush = BTRFS_RESERVE_NO_FLUSH;
4070 		spin_lock(&space_info->lock);
4071 		if (can_overcommit(root, space_info, orig, flush)) {
4072 			spin_unlock(&space_info->lock);
4073 			break;
4074 		}
4075 		spin_unlock(&space_info->lock);
4076 
4077 		loops++;
4078 		if (wait_ordered && !trans) {
4079 			btrfs_wait_ordered_roots(root->fs_info, items);
4080 		} else {
4081 			time_left = schedule_timeout_killable(1);
4082 			if (time_left)
4083 				break;
4084 		}
4085 		delalloc_bytes = percpu_counter_sum_positive(
4086 						&root->fs_info->delalloc_bytes);
4087 	}
4088 }
4089 
4090 /**
4091  * maybe_commit_transaction - possibly commit the transaction if its ok to
4092  * @root - the root we're allocating for
4093  * @bytes - the number of bytes we want to reserve
4094  * @force - force the commit
4095  *
4096  * This will check to make sure that committing the transaction will actually
4097  * get us somewhere and then commit the transaction if it does.  Otherwise it
4098  * will return -ENOSPC.
4099  */
4100 static int may_commit_transaction(struct btrfs_root *root,
4101 				  struct btrfs_space_info *space_info,
4102 				  u64 bytes, int force)
4103 {
4104 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4105 	struct btrfs_trans_handle *trans;
4106 
4107 	trans = (struct btrfs_trans_handle *)current->journal_info;
4108 	if (trans)
4109 		return -EAGAIN;
4110 
4111 	if (force)
4112 		goto commit;
4113 
4114 	/* See if there is enough pinned space to make this reservation */
4115 	spin_lock(&space_info->lock);
4116 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4117 				   bytes) >= 0) {
4118 		spin_unlock(&space_info->lock);
4119 		goto commit;
4120 	}
4121 	spin_unlock(&space_info->lock);
4122 
4123 	/*
4124 	 * See if there is some space in the delayed insertion reservation for
4125 	 * this reservation.
4126 	 */
4127 	if (space_info != delayed_rsv->space_info)
4128 		return -ENOSPC;
4129 
4130 	spin_lock(&space_info->lock);
4131 	spin_lock(&delayed_rsv->lock);
4132 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4133 				   bytes - delayed_rsv->size) >= 0) {
4134 		spin_unlock(&delayed_rsv->lock);
4135 		spin_unlock(&space_info->lock);
4136 		return -ENOSPC;
4137 	}
4138 	spin_unlock(&delayed_rsv->lock);
4139 	spin_unlock(&space_info->lock);
4140 
4141 commit:
4142 	trans = btrfs_join_transaction(root);
4143 	if (IS_ERR(trans))
4144 		return -ENOSPC;
4145 
4146 	return btrfs_commit_transaction(trans, root);
4147 }
4148 
4149 enum flush_state {
4150 	FLUSH_DELAYED_ITEMS_NR	=	1,
4151 	FLUSH_DELAYED_ITEMS	=	2,
4152 	FLUSH_DELALLOC		=	3,
4153 	FLUSH_DELALLOC_WAIT	=	4,
4154 	ALLOC_CHUNK		=	5,
4155 	COMMIT_TRANS		=	6,
4156 };
4157 
4158 static int flush_space(struct btrfs_root *root,
4159 		       struct btrfs_space_info *space_info, u64 num_bytes,
4160 		       u64 orig_bytes, int state)
4161 {
4162 	struct btrfs_trans_handle *trans;
4163 	int nr;
4164 	int ret = 0;
4165 
4166 	switch (state) {
4167 	case FLUSH_DELAYED_ITEMS_NR:
4168 	case FLUSH_DELAYED_ITEMS:
4169 		if (state == FLUSH_DELAYED_ITEMS_NR)
4170 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4171 		else
4172 			nr = -1;
4173 
4174 		trans = btrfs_join_transaction(root);
4175 		if (IS_ERR(trans)) {
4176 			ret = PTR_ERR(trans);
4177 			break;
4178 		}
4179 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4180 		btrfs_end_transaction(trans, root);
4181 		break;
4182 	case FLUSH_DELALLOC:
4183 	case FLUSH_DELALLOC_WAIT:
4184 		shrink_delalloc(root, num_bytes, orig_bytes,
4185 				state == FLUSH_DELALLOC_WAIT);
4186 		break;
4187 	case ALLOC_CHUNK:
4188 		trans = btrfs_join_transaction(root);
4189 		if (IS_ERR(trans)) {
4190 			ret = PTR_ERR(trans);
4191 			break;
4192 		}
4193 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4194 				     btrfs_get_alloc_profile(root, 0),
4195 				     CHUNK_ALLOC_NO_FORCE);
4196 		btrfs_end_transaction(trans, root);
4197 		if (ret == -ENOSPC)
4198 			ret = 0;
4199 		break;
4200 	case COMMIT_TRANS:
4201 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4202 		break;
4203 	default:
4204 		ret = -ENOSPC;
4205 		break;
4206 	}
4207 
4208 	return ret;
4209 }
4210 /**
4211  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4212  * @root - the root we're allocating for
4213  * @block_rsv - the block_rsv we're allocating for
4214  * @orig_bytes - the number of bytes we want
4215  * @flush - whether or not we can flush to make our reservation
4216  *
4217  * This will reserve orgi_bytes number of bytes from the space info associated
4218  * with the block_rsv.  If there is not enough space it will make an attempt to
4219  * flush out space to make room.  It will do this by flushing delalloc if
4220  * possible or committing the transaction.  If flush is 0 then no attempts to
4221  * regain reservations will be made and this will fail if there is not enough
4222  * space already.
4223  */
4224 static int reserve_metadata_bytes(struct btrfs_root *root,
4225 				  struct btrfs_block_rsv *block_rsv,
4226 				  u64 orig_bytes,
4227 				  enum btrfs_reserve_flush_enum flush)
4228 {
4229 	struct btrfs_space_info *space_info = block_rsv->space_info;
4230 	u64 used;
4231 	u64 num_bytes = orig_bytes;
4232 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4233 	int ret = 0;
4234 	bool flushing = false;
4235 
4236 again:
4237 	ret = 0;
4238 	spin_lock(&space_info->lock);
4239 	/*
4240 	 * We only want to wait if somebody other than us is flushing and we
4241 	 * are actually allowed to flush all things.
4242 	 */
4243 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4244 	       space_info->flush) {
4245 		spin_unlock(&space_info->lock);
4246 		/*
4247 		 * If we have a trans handle we can't wait because the flusher
4248 		 * may have to commit the transaction, which would mean we would
4249 		 * deadlock since we are waiting for the flusher to finish, but
4250 		 * hold the current transaction open.
4251 		 */
4252 		if (current->journal_info)
4253 			return -EAGAIN;
4254 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4255 		/* Must have been killed, return */
4256 		if (ret)
4257 			return -EINTR;
4258 
4259 		spin_lock(&space_info->lock);
4260 	}
4261 
4262 	ret = -ENOSPC;
4263 	used = space_info->bytes_used + space_info->bytes_reserved +
4264 		space_info->bytes_pinned + space_info->bytes_readonly +
4265 		space_info->bytes_may_use;
4266 
4267 	/*
4268 	 * The idea here is that we've not already over-reserved the block group
4269 	 * then we can go ahead and save our reservation first and then start
4270 	 * flushing if we need to.  Otherwise if we've already overcommitted
4271 	 * lets start flushing stuff first and then come back and try to make
4272 	 * our reservation.
4273 	 */
4274 	if (used <= space_info->total_bytes) {
4275 		if (used + orig_bytes <= space_info->total_bytes) {
4276 			space_info->bytes_may_use += orig_bytes;
4277 			trace_btrfs_space_reservation(root->fs_info,
4278 				"space_info", space_info->flags, orig_bytes, 1);
4279 			ret = 0;
4280 		} else {
4281 			/*
4282 			 * Ok set num_bytes to orig_bytes since we aren't
4283 			 * overocmmitted, this way we only try and reclaim what
4284 			 * we need.
4285 			 */
4286 			num_bytes = orig_bytes;
4287 		}
4288 	} else {
4289 		/*
4290 		 * Ok we're over committed, set num_bytes to the overcommitted
4291 		 * amount plus the amount of bytes that we need for this
4292 		 * reservation.
4293 		 */
4294 		num_bytes = used - space_info->total_bytes +
4295 			(orig_bytes * 2);
4296 	}
4297 
4298 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4299 		space_info->bytes_may_use += orig_bytes;
4300 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4301 					      space_info->flags, orig_bytes,
4302 					      1);
4303 		ret = 0;
4304 	}
4305 
4306 	/*
4307 	 * Couldn't make our reservation, save our place so while we're trying
4308 	 * to reclaim space we can actually use it instead of somebody else
4309 	 * stealing it from us.
4310 	 *
4311 	 * We make the other tasks wait for the flush only when we can flush
4312 	 * all things.
4313 	 */
4314 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4315 		flushing = true;
4316 		space_info->flush = 1;
4317 	}
4318 
4319 	spin_unlock(&space_info->lock);
4320 
4321 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4322 		goto out;
4323 
4324 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4325 			  flush_state);
4326 	flush_state++;
4327 
4328 	/*
4329 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4330 	 * would happen. So skip delalloc flush.
4331 	 */
4332 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4333 	    (flush_state == FLUSH_DELALLOC ||
4334 	     flush_state == FLUSH_DELALLOC_WAIT))
4335 		flush_state = ALLOC_CHUNK;
4336 
4337 	if (!ret)
4338 		goto again;
4339 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4340 		 flush_state < COMMIT_TRANS)
4341 		goto again;
4342 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4343 		 flush_state <= COMMIT_TRANS)
4344 		goto again;
4345 
4346 out:
4347 	if (ret == -ENOSPC &&
4348 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4349 		struct btrfs_block_rsv *global_rsv =
4350 			&root->fs_info->global_block_rsv;
4351 
4352 		if (block_rsv != global_rsv &&
4353 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4354 			ret = 0;
4355 	}
4356 	if (ret == -ENOSPC)
4357 		trace_btrfs_space_reservation(root->fs_info,
4358 					      "space_info:enospc",
4359 					      space_info->flags, orig_bytes, 1);
4360 	if (flushing) {
4361 		spin_lock(&space_info->lock);
4362 		space_info->flush = 0;
4363 		wake_up_all(&space_info->wait);
4364 		spin_unlock(&space_info->lock);
4365 	}
4366 	return ret;
4367 }
4368 
4369 static struct btrfs_block_rsv *get_block_rsv(
4370 					const struct btrfs_trans_handle *trans,
4371 					const struct btrfs_root *root)
4372 {
4373 	struct btrfs_block_rsv *block_rsv = NULL;
4374 
4375 	if (root->ref_cows)
4376 		block_rsv = trans->block_rsv;
4377 
4378 	if (root == root->fs_info->csum_root && trans->adding_csums)
4379 		block_rsv = trans->block_rsv;
4380 
4381 	if (root == root->fs_info->uuid_root)
4382 		block_rsv = trans->block_rsv;
4383 
4384 	if (!block_rsv)
4385 		block_rsv = root->block_rsv;
4386 
4387 	if (!block_rsv)
4388 		block_rsv = &root->fs_info->empty_block_rsv;
4389 
4390 	return block_rsv;
4391 }
4392 
4393 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4394 			       u64 num_bytes)
4395 {
4396 	int ret = -ENOSPC;
4397 	spin_lock(&block_rsv->lock);
4398 	if (block_rsv->reserved >= num_bytes) {
4399 		block_rsv->reserved -= num_bytes;
4400 		if (block_rsv->reserved < block_rsv->size)
4401 			block_rsv->full = 0;
4402 		ret = 0;
4403 	}
4404 	spin_unlock(&block_rsv->lock);
4405 	return ret;
4406 }
4407 
4408 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4409 				u64 num_bytes, int update_size)
4410 {
4411 	spin_lock(&block_rsv->lock);
4412 	block_rsv->reserved += num_bytes;
4413 	if (update_size)
4414 		block_rsv->size += num_bytes;
4415 	else if (block_rsv->reserved >= block_rsv->size)
4416 		block_rsv->full = 1;
4417 	spin_unlock(&block_rsv->lock);
4418 }
4419 
4420 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4421 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4422 			     int min_factor)
4423 {
4424 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4425 	u64 min_bytes;
4426 
4427 	if (global_rsv->space_info != dest->space_info)
4428 		return -ENOSPC;
4429 
4430 	spin_lock(&global_rsv->lock);
4431 	min_bytes = div_factor(global_rsv->size, min_factor);
4432 	if (global_rsv->reserved < min_bytes + num_bytes) {
4433 		spin_unlock(&global_rsv->lock);
4434 		return -ENOSPC;
4435 	}
4436 	global_rsv->reserved -= num_bytes;
4437 	if (global_rsv->reserved < global_rsv->size)
4438 		global_rsv->full = 0;
4439 	spin_unlock(&global_rsv->lock);
4440 
4441 	block_rsv_add_bytes(dest, num_bytes, 1);
4442 	return 0;
4443 }
4444 
4445 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4446 				    struct btrfs_block_rsv *block_rsv,
4447 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4448 {
4449 	struct btrfs_space_info *space_info = block_rsv->space_info;
4450 
4451 	spin_lock(&block_rsv->lock);
4452 	if (num_bytes == (u64)-1)
4453 		num_bytes = block_rsv->size;
4454 	block_rsv->size -= num_bytes;
4455 	if (block_rsv->reserved >= block_rsv->size) {
4456 		num_bytes = block_rsv->reserved - block_rsv->size;
4457 		block_rsv->reserved = block_rsv->size;
4458 		block_rsv->full = 1;
4459 	} else {
4460 		num_bytes = 0;
4461 	}
4462 	spin_unlock(&block_rsv->lock);
4463 
4464 	if (num_bytes > 0) {
4465 		if (dest) {
4466 			spin_lock(&dest->lock);
4467 			if (!dest->full) {
4468 				u64 bytes_to_add;
4469 
4470 				bytes_to_add = dest->size - dest->reserved;
4471 				bytes_to_add = min(num_bytes, bytes_to_add);
4472 				dest->reserved += bytes_to_add;
4473 				if (dest->reserved >= dest->size)
4474 					dest->full = 1;
4475 				num_bytes -= bytes_to_add;
4476 			}
4477 			spin_unlock(&dest->lock);
4478 		}
4479 		if (num_bytes) {
4480 			spin_lock(&space_info->lock);
4481 			space_info->bytes_may_use -= num_bytes;
4482 			trace_btrfs_space_reservation(fs_info, "space_info",
4483 					space_info->flags, num_bytes, 0);
4484 			spin_unlock(&space_info->lock);
4485 		}
4486 	}
4487 }
4488 
4489 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4490 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4491 {
4492 	int ret;
4493 
4494 	ret = block_rsv_use_bytes(src, num_bytes);
4495 	if (ret)
4496 		return ret;
4497 
4498 	block_rsv_add_bytes(dst, num_bytes, 1);
4499 	return 0;
4500 }
4501 
4502 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4503 {
4504 	memset(rsv, 0, sizeof(*rsv));
4505 	spin_lock_init(&rsv->lock);
4506 	rsv->type = type;
4507 }
4508 
4509 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4510 					      unsigned short type)
4511 {
4512 	struct btrfs_block_rsv *block_rsv;
4513 	struct btrfs_fs_info *fs_info = root->fs_info;
4514 
4515 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4516 	if (!block_rsv)
4517 		return NULL;
4518 
4519 	btrfs_init_block_rsv(block_rsv, type);
4520 	block_rsv->space_info = __find_space_info(fs_info,
4521 						  BTRFS_BLOCK_GROUP_METADATA);
4522 	return block_rsv;
4523 }
4524 
4525 void btrfs_free_block_rsv(struct btrfs_root *root,
4526 			  struct btrfs_block_rsv *rsv)
4527 {
4528 	if (!rsv)
4529 		return;
4530 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4531 	kfree(rsv);
4532 }
4533 
4534 int btrfs_block_rsv_add(struct btrfs_root *root,
4535 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4536 			enum btrfs_reserve_flush_enum flush)
4537 {
4538 	int ret;
4539 
4540 	if (num_bytes == 0)
4541 		return 0;
4542 
4543 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4544 	if (!ret) {
4545 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4546 		return 0;
4547 	}
4548 
4549 	return ret;
4550 }
4551 
4552 int btrfs_block_rsv_check(struct btrfs_root *root,
4553 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4554 {
4555 	u64 num_bytes = 0;
4556 	int ret = -ENOSPC;
4557 
4558 	if (!block_rsv)
4559 		return 0;
4560 
4561 	spin_lock(&block_rsv->lock);
4562 	num_bytes = div_factor(block_rsv->size, min_factor);
4563 	if (block_rsv->reserved >= num_bytes)
4564 		ret = 0;
4565 	spin_unlock(&block_rsv->lock);
4566 
4567 	return ret;
4568 }
4569 
4570 int btrfs_block_rsv_refill(struct btrfs_root *root,
4571 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4572 			   enum btrfs_reserve_flush_enum flush)
4573 {
4574 	u64 num_bytes = 0;
4575 	int ret = -ENOSPC;
4576 
4577 	if (!block_rsv)
4578 		return 0;
4579 
4580 	spin_lock(&block_rsv->lock);
4581 	num_bytes = min_reserved;
4582 	if (block_rsv->reserved >= num_bytes)
4583 		ret = 0;
4584 	else
4585 		num_bytes -= block_rsv->reserved;
4586 	spin_unlock(&block_rsv->lock);
4587 
4588 	if (!ret)
4589 		return 0;
4590 
4591 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4592 	if (!ret) {
4593 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4594 		return 0;
4595 	}
4596 
4597 	return ret;
4598 }
4599 
4600 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4601 			    struct btrfs_block_rsv *dst_rsv,
4602 			    u64 num_bytes)
4603 {
4604 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4605 }
4606 
4607 void btrfs_block_rsv_release(struct btrfs_root *root,
4608 			     struct btrfs_block_rsv *block_rsv,
4609 			     u64 num_bytes)
4610 {
4611 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4612 	if (global_rsv == block_rsv ||
4613 	    block_rsv->space_info != global_rsv->space_info)
4614 		global_rsv = NULL;
4615 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4616 				num_bytes);
4617 }
4618 
4619 /*
4620  * helper to calculate size of global block reservation.
4621  * the desired value is sum of space used by extent tree,
4622  * checksum tree and root tree
4623  */
4624 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4625 {
4626 	struct btrfs_space_info *sinfo;
4627 	u64 num_bytes;
4628 	u64 meta_used;
4629 	u64 data_used;
4630 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4631 
4632 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4633 	spin_lock(&sinfo->lock);
4634 	data_used = sinfo->bytes_used;
4635 	spin_unlock(&sinfo->lock);
4636 
4637 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4638 	spin_lock(&sinfo->lock);
4639 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4640 		data_used = 0;
4641 	meta_used = sinfo->bytes_used;
4642 	spin_unlock(&sinfo->lock);
4643 
4644 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4645 		    csum_size * 2;
4646 	num_bytes += div64_u64(data_used + meta_used, 50);
4647 
4648 	if (num_bytes * 3 > meta_used)
4649 		num_bytes = div64_u64(meta_used, 3);
4650 
4651 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4652 }
4653 
4654 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4655 {
4656 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4657 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4658 	u64 num_bytes;
4659 
4660 	num_bytes = calc_global_metadata_size(fs_info);
4661 
4662 	spin_lock(&sinfo->lock);
4663 	spin_lock(&block_rsv->lock);
4664 
4665 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4666 
4667 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4668 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4669 		    sinfo->bytes_may_use;
4670 
4671 	if (sinfo->total_bytes > num_bytes) {
4672 		num_bytes = sinfo->total_bytes - num_bytes;
4673 		block_rsv->reserved += num_bytes;
4674 		sinfo->bytes_may_use += num_bytes;
4675 		trace_btrfs_space_reservation(fs_info, "space_info",
4676 				      sinfo->flags, num_bytes, 1);
4677 	}
4678 
4679 	if (block_rsv->reserved >= block_rsv->size) {
4680 		num_bytes = block_rsv->reserved - block_rsv->size;
4681 		sinfo->bytes_may_use -= num_bytes;
4682 		trace_btrfs_space_reservation(fs_info, "space_info",
4683 				      sinfo->flags, num_bytes, 0);
4684 		block_rsv->reserved = block_rsv->size;
4685 		block_rsv->full = 1;
4686 	}
4687 
4688 	spin_unlock(&block_rsv->lock);
4689 	spin_unlock(&sinfo->lock);
4690 }
4691 
4692 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4693 {
4694 	struct btrfs_space_info *space_info;
4695 
4696 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4697 	fs_info->chunk_block_rsv.space_info = space_info;
4698 
4699 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4700 	fs_info->global_block_rsv.space_info = space_info;
4701 	fs_info->delalloc_block_rsv.space_info = space_info;
4702 	fs_info->trans_block_rsv.space_info = space_info;
4703 	fs_info->empty_block_rsv.space_info = space_info;
4704 	fs_info->delayed_block_rsv.space_info = space_info;
4705 
4706 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4707 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4708 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4709 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4710 	if (fs_info->quota_root)
4711 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4712 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4713 
4714 	update_global_block_rsv(fs_info);
4715 }
4716 
4717 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4718 {
4719 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4720 				(u64)-1);
4721 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4722 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4723 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4724 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4725 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4726 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4727 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4728 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4729 }
4730 
4731 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4732 				  struct btrfs_root *root)
4733 {
4734 	if (!trans->block_rsv)
4735 		return;
4736 
4737 	if (!trans->bytes_reserved)
4738 		return;
4739 
4740 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4741 				      trans->transid, trans->bytes_reserved, 0);
4742 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4743 	trans->bytes_reserved = 0;
4744 }
4745 
4746 /* Can only return 0 or -ENOSPC */
4747 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4748 				  struct inode *inode)
4749 {
4750 	struct btrfs_root *root = BTRFS_I(inode)->root;
4751 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4752 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4753 
4754 	/*
4755 	 * We need to hold space in order to delete our orphan item once we've
4756 	 * added it, so this takes the reservation so we can release it later
4757 	 * when we are truly done with the orphan item.
4758 	 */
4759 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4760 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4761 				      btrfs_ino(inode), num_bytes, 1);
4762 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4763 }
4764 
4765 void btrfs_orphan_release_metadata(struct inode *inode)
4766 {
4767 	struct btrfs_root *root = BTRFS_I(inode)->root;
4768 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4769 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4770 				      btrfs_ino(inode), num_bytes, 0);
4771 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4772 }
4773 
4774 /*
4775  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4776  * root: the root of the parent directory
4777  * rsv: block reservation
4778  * items: the number of items that we need do reservation
4779  * qgroup_reserved: used to return the reserved size in qgroup
4780  *
4781  * This function is used to reserve the space for snapshot/subvolume
4782  * creation and deletion. Those operations are different with the
4783  * common file/directory operations, they change two fs/file trees
4784  * and root tree, the number of items that the qgroup reserves is
4785  * different with the free space reservation. So we can not use
4786  * the space reseravtion mechanism in start_transaction().
4787  */
4788 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4789 				     struct btrfs_block_rsv *rsv,
4790 				     int items,
4791 				     u64 *qgroup_reserved,
4792 				     bool use_global_rsv)
4793 {
4794 	u64 num_bytes;
4795 	int ret;
4796 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4797 
4798 	if (root->fs_info->quota_enabled) {
4799 		/* One for parent inode, two for dir entries */
4800 		num_bytes = 3 * root->leafsize;
4801 		ret = btrfs_qgroup_reserve(root, num_bytes);
4802 		if (ret)
4803 			return ret;
4804 	} else {
4805 		num_bytes = 0;
4806 	}
4807 
4808 	*qgroup_reserved = num_bytes;
4809 
4810 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4811 	rsv->space_info = __find_space_info(root->fs_info,
4812 					    BTRFS_BLOCK_GROUP_METADATA);
4813 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4814 				  BTRFS_RESERVE_FLUSH_ALL);
4815 
4816 	if (ret == -ENOSPC && use_global_rsv)
4817 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4818 
4819 	if (ret) {
4820 		if (*qgroup_reserved)
4821 			btrfs_qgroup_free(root, *qgroup_reserved);
4822 	}
4823 
4824 	return ret;
4825 }
4826 
4827 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4828 				      struct btrfs_block_rsv *rsv,
4829 				      u64 qgroup_reserved)
4830 {
4831 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4832 	if (qgroup_reserved)
4833 		btrfs_qgroup_free(root, qgroup_reserved);
4834 }
4835 
4836 /**
4837  * drop_outstanding_extent - drop an outstanding extent
4838  * @inode: the inode we're dropping the extent for
4839  *
4840  * This is called when we are freeing up an outstanding extent, either called
4841  * after an error or after an extent is written.  This will return the number of
4842  * reserved extents that need to be freed.  This must be called with
4843  * BTRFS_I(inode)->lock held.
4844  */
4845 static unsigned drop_outstanding_extent(struct inode *inode)
4846 {
4847 	unsigned drop_inode_space = 0;
4848 	unsigned dropped_extents = 0;
4849 
4850 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4851 	BTRFS_I(inode)->outstanding_extents--;
4852 
4853 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4854 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4855 			       &BTRFS_I(inode)->runtime_flags))
4856 		drop_inode_space = 1;
4857 
4858 	/*
4859 	 * If we have more or the same amount of outsanding extents than we have
4860 	 * reserved then we need to leave the reserved extents count alone.
4861 	 */
4862 	if (BTRFS_I(inode)->outstanding_extents >=
4863 	    BTRFS_I(inode)->reserved_extents)
4864 		return drop_inode_space;
4865 
4866 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4867 		BTRFS_I(inode)->outstanding_extents;
4868 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4869 	return dropped_extents + drop_inode_space;
4870 }
4871 
4872 /**
4873  * calc_csum_metadata_size - return the amount of metada space that must be
4874  *	reserved/free'd for the given bytes.
4875  * @inode: the inode we're manipulating
4876  * @num_bytes: the number of bytes in question
4877  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4878  *
4879  * This adjusts the number of csum_bytes in the inode and then returns the
4880  * correct amount of metadata that must either be reserved or freed.  We
4881  * calculate how many checksums we can fit into one leaf and then divide the
4882  * number of bytes that will need to be checksumed by this value to figure out
4883  * how many checksums will be required.  If we are adding bytes then the number
4884  * may go up and we will return the number of additional bytes that must be
4885  * reserved.  If it is going down we will return the number of bytes that must
4886  * be freed.
4887  *
4888  * This must be called with BTRFS_I(inode)->lock held.
4889  */
4890 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4891 				   int reserve)
4892 {
4893 	struct btrfs_root *root = BTRFS_I(inode)->root;
4894 	u64 csum_size;
4895 	int num_csums_per_leaf;
4896 	int num_csums;
4897 	int old_csums;
4898 
4899 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4900 	    BTRFS_I(inode)->csum_bytes == 0)
4901 		return 0;
4902 
4903 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4904 	if (reserve)
4905 		BTRFS_I(inode)->csum_bytes += num_bytes;
4906 	else
4907 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4908 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4909 	num_csums_per_leaf = (int)div64_u64(csum_size,
4910 					    sizeof(struct btrfs_csum_item) +
4911 					    sizeof(struct btrfs_disk_key));
4912 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4913 	num_csums = num_csums + num_csums_per_leaf - 1;
4914 	num_csums = num_csums / num_csums_per_leaf;
4915 
4916 	old_csums = old_csums + num_csums_per_leaf - 1;
4917 	old_csums = old_csums / num_csums_per_leaf;
4918 
4919 	/* No change, no need to reserve more */
4920 	if (old_csums == num_csums)
4921 		return 0;
4922 
4923 	if (reserve)
4924 		return btrfs_calc_trans_metadata_size(root,
4925 						      num_csums - old_csums);
4926 
4927 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4928 }
4929 
4930 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4931 {
4932 	struct btrfs_root *root = BTRFS_I(inode)->root;
4933 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4934 	u64 to_reserve = 0;
4935 	u64 csum_bytes;
4936 	unsigned nr_extents = 0;
4937 	int extra_reserve = 0;
4938 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4939 	int ret = 0;
4940 	bool delalloc_lock = true;
4941 	u64 to_free = 0;
4942 	unsigned dropped;
4943 
4944 	/* If we are a free space inode we need to not flush since we will be in
4945 	 * the middle of a transaction commit.  We also don't need the delalloc
4946 	 * mutex since we won't race with anybody.  We need this mostly to make
4947 	 * lockdep shut its filthy mouth.
4948 	 */
4949 	if (btrfs_is_free_space_inode(inode)) {
4950 		flush = BTRFS_RESERVE_NO_FLUSH;
4951 		delalloc_lock = false;
4952 	}
4953 
4954 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4955 	    btrfs_transaction_in_commit(root->fs_info))
4956 		schedule_timeout(1);
4957 
4958 	if (delalloc_lock)
4959 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4960 
4961 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4962 
4963 	spin_lock(&BTRFS_I(inode)->lock);
4964 	BTRFS_I(inode)->outstanding_extents++;
4965 
4966 	if (BTRFS_I(inode)->outstanding_extents >
4967 	    BTRFS_I(inode)->reserved_extents)
4968 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4969 			BTRFS_I(inode)->reserved_extents;
4970 
4971 	/*
4972 	 * Add an item to reserve for updating the inode when we complete the
4973 	 * delalloc io.
4974 	 */
4975 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4976 		      &BTRFS_I(inode)->runtime_flags)) {
4977 		nr_extents++;
4978 		extra_reserve = 1;
4979 	}
4980 
4981 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4982 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4983 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4984 	spin_unlock(&BTRFS_I(inode)->lock);
4985 
4986 	if (root->fs_info->quota_enabled) {
4987 		ret = btrfs_qgroup_reserve(root, num_bytes +
4988 					   nr_extents * root->leafsize);
4989 		if (ret)
4990 			goto out_fail;
4991 	}
4992 
4993 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4994 	if (unlikely(ret)) {
4995 		if (root->fs_info->quota_enabled)
4996 			btrfs_qgroup_free(root, num_bytes +
4997 						nr_extents * root->leafsize);
4998 		goto out_fail;
4999 	}
5000 
5001 	spin_lock(&BTRFS_I(inode)->lock);
5002 	if (extra_reserve) {
5003 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5004 			&BTRFS_I(inode)->runtime_flags);
5005 		nr_extents--;
5006 	}
5007 	BTRFS_I(inode)->reserved_extents += nr_extents;
5008 	spin_unlock(&BTRFS_I(inode)->lock);
5009 
5010 	if (delalloc_lock)
5011 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5012 
5013 	if (to_reserve)
5014 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5015 					      btrfs_ino(inode), to_reserve, 1);
5016 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5017 
5018 	return 0;
5019 
5020 out_fail:
5021 	spin_lock(&BTRFS_I(inode)->lock);
5022 	dropped = drop_outstanding_extent(inode);
5023 	/*
5024 	 * If the inodes csum_bytes is the same as the original
5025 	 * csum_bytes then we know we haven't raced with any free()ers
5026 	 * so we can just reduce our inodes csum bytes and carry on.
5027 	 */
5028 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5029 		calc_csum_metadata_size(inode, num_bytes, 0);
5030 	} else {
5031 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5032 		u64 bytes;
5033 
5034 		/*
5035 		 * This is tricky, but first we need to figure out how much we
5036 		 * free'd from any free-ers that occured during this
5037 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5038 		 * before we dropped our lock, and then call the free for the
5039 		 * number of bytes that were freed while we were trying our
5040 		 * reservation.
5041 		 */
5042 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5043 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5044 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5045 
5046 
5047 		/*
5048 		 * Now we need to see how much we would have freed had we not
5049 		 * been making this reservation and our ->csum_bytes were not
5050 		 * artificially inflated.
5051 		 */
5052 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5053 		bytes = csum_bytes - orig_csum_bytes;
5054 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5055 
5056 		/*
5057 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5058 		 * more than to_free then we would have free'd more space had we
5059 		 * not had an artificially high ->csum_bytes, so we need to free
5060 		 * the remainder.  If bytes is the same or less then we don't
5061 		 * need to do anything, the other free-ers did the correct
5062 		 * thing.
5063 		 */
5064 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5065 		if (bytes > to_free)
5066 			to_free = bytes - to_free;
5067 		else
5068 			to_free = 0;
5069 	}
5070 	spin_unlock(&BTRFS_I(inode)->lock);
5071 	if (dropped)
5072 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5073 
5074 	if (to_free) {
5075 		btrfs_block_rsv_release(root, block_rsv, to_free);
5076 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5077 					      btrfs_ino(inode), to_free, 0);
5078 	}
5079 	if (delalloc_lock)
5080 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5081 	return ret;
5082 }
5083 
5084 /**
5085  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5086  * @inode: the inode to release the reservation for
5087  * @num_bytes: the number of bytes we're releasing
5088  *
5089  * This will release the metadata reservation for an inode.  This can be called
5090  * once we complete IO for a given set of bytes to release their metadata
5091  * reservations.
5092  */
5093 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5094 {
5095 	struct btrfs_root *root = BTRFS_I(inode)->root;
5096 	u64 to_free = 0;
5097 	unsigned dropped;
5098 
5099 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5100 	spin_lock(&BTRFS_I(inode)->lock);
5101 	dropped = drop_outstanding_extent(inode);
5102 
5103 	if (num_bytes)
5104 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5105 	spin_unlock(&BTRFS_I(inode)->lock);
5106 	if (dropped > 0)
5107 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5108 
5109 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5110 				      btrfs_ino(inode), to_free, 0);
5111 	if (root->fs_info->quota_enabled) {
5112 		btrfs_qgroup_free(root, num_bytes +
5113 					dropped * root->leafsize);
5114 	}
5115 
5116 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5117 				to_free);
5118 }
5119 
5120 /**
5121  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5122  * @inode: inode we're writing to
5123  * @num_bytes: the number of bytes we want to allocate
5124  *
5125  * This will do the following things
5126  *
5127  * o reserve space in the data space info for num_bytes
5128  * o reserve space in the metadata space info based on number of outstanding
5129  *   extents and how much csums will be needed
5130  * o add to the inodes ->delalloc_bytes
5131  * o add it to the fs_info's delalloc inodes list.
5132  *
5133  * This will return 0 for success and -ENOSPC if there is no space left.
5134  */
5135 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5136 {
5137 	int ret;
5138 
5139 	ret = btrfs_check_data_free_space(inode, num_bytes);
5140 	if (ret)
5141 		return ret;
5142 
5143 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5144 	if (ret) {
5145 		btrfs_free_reserved_data_space(inode, num_bytes);
5146 		return ret;
5147 	}
5148 
5149 	return 0;
5150 }
5151 
5152 /**
5153  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5154  * @inode: inode we're releasing space for
5155  * @num_bytes: the number of bytes we want to free up
5156  *
5157  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5158  * called in the case that we don't need the metadata AND data reservations
5159  * anymore.  So if there is an error or we insert an inline extent.
5160  *
5161  * This function will release the metadata space that was not used and will
5162  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5163  * list if there are no delalloc bytes left.
5164  */
5165 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5166 {
5167 	btrfs_delalloc_release_metadata(inode, num_bytes);
5168 	btrfs_free_reserved_data_space(inode, num_bytes);
5169 }
5170 
5171 static int update_block_group(struct btrfs_root *root,
5172 			      u64 bytenr, u64 num_bytes, int alloc)
5173 {
5174 	struct btrfs_block_group_cache *cache = NULL;
5175 	struct btrfs_fs_info *info = root->fs_info;
5176 	u64 total = num_bytes;
5177 	u64 old_val;
5178 	u64 byte_in_group;
5179 	int factor;
5180 
5181 	/* block accounting for super block */
5182 	spin_lock(&info->delalloc_root_lock);
5183 	old_val = btrfs_super_bytes_used(info->super_copy);
5184 	if (alloc)
5185 		old_val += num_bytes;
5186 	else
5187 		old_val -= num_bytes;
5188 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5189 	spin_unlock(&info->delalloc_root_lock);
5190 
5191 	while (total) {
5192 		cache = btrfs_lookup_block_group(info, bytenr);
5193 		if (!cache)
5194 			return -ENOENT;
5195 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5196 				    BTRFS_BLOCK_GROUP_RAID1 |
5197 				    BTRFS_BLOCK_GROUP_RAID10))
5198 			factor = 2;
5199 		else
5200 			factor = 1;
5201 		/*
5202 		 * If this block group has free space cache written out, we
5203 		 * need to make sure to load it if we are removing space.  This
5204 		 * is because we need the unpinning stage to actually add the
5205 		 * space back to the block group, otherwise we will leak space.
5206 		 */
5207 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5208 			cache_block_group(cache, 1);
5209 
5210 		byte_in_group = bytenr - cache->key.objectid;
5211 		WARN_ON(byte_in_group > cache->key.offset);
5212 
5213 		spin_lock(&cache->space_info->lock);
5214 		spin_lock(&cache->lock);
5215 
5216 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5217 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5218 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5219 
5220 		cache->dirty = 1;
5221 		old_val = btrfs_block_group_used(&cache->item);
5222 		num_bytes = min(total, cache->key.offset - byte_in_group);
5223 		if (alloc) {
5224 			old_val += num_bytes;
5225 			btrfs_set_block_group_used(&cache->item, old_val);
5226 			cache->reserved -= num_bytes;
5227 			cache->space_info->bytes_reserved -= num_bytes;
5228 			cache->space_info->bytes_used += num_bytes;
5229 			cache->space_info->disk_used += num_bytes * factor;
5230 			spin_unlock(&cache->lock);
5231 			spin_unlock(&cache->space_info->lock);
5232 		} else {
5233 			old_val -= num_bytes;
5234 			btrfs_set_block_group_used(&cache->item, old_val);
5235 			cache->pinned += num_bytes;
5236 			cache->space_info->bytes_pinned += num_bytes;
5237 			cache->space_info->bytes_used -= num_bytes;
5238 			cache->space_info->disk_used -= num_bytes * factor;
5239 			spin_unlock(&cache->lock);
5240 			spin_unlock(&cache->space_info->lock);
5241 
5242 			set_extent_dirty(info->pinned_extents,
5243 					 bytenr, bytenr + num_bytes - 1,
5244 					 GFP_NOFS | __GFP_NOFAIL);
5245 		}
5246 		btrfs_put_block_group(cache);
5247 		total -= num_bytes;
5248 		bytenr += num_bytes;
5249 	}
5250 	return 0;
5251 }
5252 
5253 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5254 {
5255 	struct btrfs_block_group_cache *cache;
5256 	u64 bytenr;
5257 
5258 	spin_lock(&root->fs_info->block_group_cache_lock);
5259 	bytenr = root->fs_info->first_logical_byte;
5260 	spin_unlock(&root->fs_info->block_group_cache_lock);
5261 
5262 	if (bytenr < (u64)-1)
5263 		return bytenr;
5264 
5265 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5266 	if (!cache)
5267 		return 0;
5268 
5269 	bytenr = cache->key.objectid;
5270 	btrfs_put_block_group(cache);
5271 
5272 	return bytenr;
5273 }
5274 
5275 static int pin_down_extent(struct btrfs_root *root,
5276 			   struct btrfs_block_group_cache *cache,
5277 			   u64 bytenr, u64 num_bytes, int reserved)
5278 {
5279 	spin_lock(&cache->space_info->lock);
5280 	spin_lock(&cache->lock);
5281 	cache->pinned += num_bytes;
5282 	cache->space_info->bytes_pinned += num_bytes;
5283 	if (reserved) {
5284 		cache->reserved -= num_bytes;
5285 		cache->space_info->bytes_reserved -= num_bytes;
5286 	}
5287 	spin_unlock(&cache->lock);
5288 	spin_unlock(&cache->space_info->lock);
5289 
5290 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5291 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5292 	if (reserved)
5293 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5294 	return 0;
5295 }
5296 
5297 /*
5298  * this function must be called within transaction
5299  */
5300 int btrfs_pin_extent(struct btrfs_root *root,
5301 		     u64 bytenr, u64 num_bytes, int reserved)
5302 {
5303 	struct btrfs_block_group_cache *cache;
5304 
5305 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5306 	BUG_ON(!cache); /* Logic error */
5307 
5308 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5309 
5310 	btrfs_put_block_group(cache);
5311 	return 0;
5312 }
5313 
5314 /*
5315  * this function must be called within transaction
5316  */
5317 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5318 				    u64 bytenr, u64 num_bytes)
5319 {
5320 	struct btrfs_block_group_cache *cache;
5321 	int ret;
5322 
5323 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5324 	if (!cache)
5325 		return -EINVAL;
5326 
5327 	/*
5328 	 * pull in the free space cache (if any) so that our pin
5329 	 * removes the free space from the cache.  We have load_only set
5330 	 * to one because the slow code to read in the free extents does check
5331 	 * the pinned extents.
5332 	 */
5333 	cache_block_group(cache, 1);
5334 
5335 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5336 
5337 	/* remove us from the free space cache (if we're there at all) */
5338 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5339 	btrfs_put_block_group(cache);
5340 	return ret;
5341 }
5342 
5343 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5344 {
5345 	int ret;
5346 	struct btrfs_block_group_cache *block_group;
5347 	struct btrfs_caching_control *caching_ctl;
5348 
5349 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5350 	if (!block_group)
5351 		return -EINVAL;
5352 
5353 	cache_block_group(block_group, 0);
5354 	caching_ctl = get_caching_control(block_group);
5355 
5356 	if (!caching_ctl) {
5357 		/* Logic error */
5358 		BUG_ON(!block_group_cache_done(block_group));
5359 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5360 	} else {
5361 		mutex_lock(&caching_ctl->mutex);
5362 
5363 		if (start >= caching_ctl->progress) {
5364 			ret = add_excluded_extent(root, start, num_bytes);
5365 		} else if (start + num_bytes <= caching_ctl->progress) {
5366 			ret = btrfs_remove_free_space(block_group,
5367 						      start, num_bytes);
5368 		} else {
5369 			num_bytes = caching_ctl->progress - start;
5370 			ret = btrfs_remove_free_space(block_group,
5371 						      start, num_bytes);
5372 			if (ret)
5373 				goto out_lock;
5374 
5375 			num_bytes = (start + num_bytes) -
5376 				caching_ctl->progress;
5377 			start = caching_ctl->progress;
5378 			ret = add_excluded_extent(root, start, num_bytes);
5379 		}
5380 out_lock:
5381 		mutex_unlock(&caching_ctl->mutex);
5382 		put_caching_control(caching_ctl);
5383 	}
5384 	btrfs_put_block_group(block_group);
5385 	return ret;
5386 }
5387 
5388 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5389 				 struct extent_buffer *eb)
5390 {
5391 	struct btrfs_file_extent_item *item;
5392 	struct btrfs_key key;
5393 	int found_type;
5394 	int i;
5395 
5396 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5397 		return 0;
5398 
5399 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5400 		btrfs_item_key_to_cpu(eb, &key, i);
5401 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5402 			continue;
5403 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5404 		found_type = btrfs_file_extent_type(eb, item);
5405 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5406 			continue;
5407 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5408 			continue;
5409 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5410 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5411 		__exclude_logged_extent(log, key.objectid, key.offset);
5412 	}
5413 
5414 	return 0;
5415 }
5416 
5417 /**
5418  * btrfs_update_reserved_bytes - update the block_group and space info counters
5419  * @cache:	The cache we are manipulating
5420  * @num_bytes:	The number of bytes in question
5421  * @reserve:	One of the reservation enums
5422  *
5423  * This is called by the allocator when it reserves space, or by somebody who is
5424  * freeing space that was never actually used on disk.  For example if you
5425  * reserve some space for a new leaf in transaction A and before transaction A
5426  * commits you free that leaf, you call this with reserve set to 0 in order to
5427  * clear the reservation.
5428  *
5429  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5430  * ENOSPC accounting.  For data we handle the reservation through clearing the
5431  * delalloc bits in the io_tree.  We have to do this since we could end up
5432  * allocating less disk space for the amount of data we have reserved in the
5433  * case of compression.
5434  *
5435  * If this is a reservation and the block group has become read only we cannot
5436  * make the reservation and return -EAGAIN, otherwise this function always
5437  * succeeds.
5438  */
5439 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5440 				       u64 num_bytes, int reserve)
5441 {
5442 	struct btrfs_space_info *space_info = cache->space_info;
5443 	int ret = 0;
5444 
5445 	spin_lock(&space_info->lock);
5446 	spin_lock(&cache->lock);
5447 	if (reserve != RESERVE_FREE) {
5448 		if (cache->ro) {
5449 			ret = -EAGAIN;
5450 		} else {
5451 			cache->reserved += num_bytes;
5452 			space_info->bytes_reserved += num_bytes;
5453 			if (reserve == RESERVE_ALLOC) {
5454 				trace_btrfs_space_reservation(cache->fs_info,
5455 						"space_info", space_info->flags,
5456 						num_bytes, 0);
5457 				space_info->bytes_may_use -= num_bytes;
5458 			}
5459 		}
5460 	} else {
5461 		if (cache->ro)
5462 			space_info->bytes_readonly += num_bytes;
5463 		cache->reserved -= num_bytes;
5464 		space_info->bytes_reserved -= num_bytes;
5465 	}
5466 	spin_unlock(&cache->lock);
5467 	spin_unlock(&space_info->lock);
5468 	return ret;
5469 }
5470 
5471 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5472 				struct btrfs_root *root)
5473 {
5474 	struct btrfs_fs_info *fs_info = root->fs_info;
5475 	struct btrfs_caching_control *next;
5476 	struct btrfs_caching_control *caching_ctl;
5477 	struct btrfs_block_group_cache *cache;
5478 	struct btrfs_space_info *space_info;
5479 
5480 	down_write(&fs_info->extent_commit_sem);
5481 
5482 	list_for_each_entry_safe(caching_ctl, next,
5483 				 &fs_info->caching_block_groups, list) {
5484 		cache = caching_ctl->block_group;
5485 		if (block_group_cache_done(cache)) {
5486 			cache->last_byte_to_unpin = (u64)-1;
5487 			list_del_init(&caching_ctl->list);
5488 			put_caching_control(caching_ctl);
5489 		} else {
5490 			cache->last_byte_to_unpin = caching_ctl->progress;
5491 		}
5492 	}
5493 
5494 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5495 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5496 	else
5497 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5498 
5499 	up_write(&fs_info->extent_commit_sem);
5500 
5501 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5502 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5503 
5504 	update_global_block_rsv(fs_info);
5505 }
5506 
5507 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5508 {
5509 	struct btrfs_fs_info *fs_info = root->fs_info;
5510 	struct btrfs_block_group_cache *cache = NULL;
5511 	struct btrfs_space_info *space_info;
5512 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5513 	u64 len;
5514 	bool readonly;
5515 
5516 	while (start <= end) {
5517 		readonly = false;
5518 		if (!cache ||
5519 		    start >= cache->key.objectid + cache->key.offset) {
5520 			if (cache)
5521 				btrfs_put_block_group(cache);
5522 			cache = btrfs_lookup_block_group(fs_info, start);
5523 			BUG_ON(!cache); /* Logic error */
5524 		}
5525 
5526 		len = cache->key.objectid + cache->key.offset - start;
5527 		len = min(len, end + 1 - start);
5528 
5529 		if (start < cache->last_byte_to_unpin) {
5530 			len = min(len, cache->last_byte_to_unpin - start);
5531 			btrfs_add_free_space(cache, start, len);
5532 		}
5533 
5534 		start += len;
5535 		space_info = cache->space_info;
5536 
5537 		spin_lock(&space_info->lock);
5538 		spin_lock(&cache->lock);
5539 		cache->pinned -= len;
5540 		space_info->bytes_pinned -= len;
5541 		if (cache->ro) {
5542 			space_info->bytes_readonly += len;
5543 			readonly = true;
5544 		}
5545 		spin_unlock(&cache->lock);
5546 		if (!readonly && global_rsv->space_info == space_info) {
5547 			spin_lock(&global_rsv->lock);
5548 			if (!global_rsv->full) {
5549 				len = min(len, global_rsv->size -
5550 					  global_rsv->reserved);
5551 				global_rsv->reserved += len;
5552 				space_info->bytes_may_use += len;
5553 				if (global_rsv->reserved >= global_rsv->size)
5554 					global_rsv->full = 1;
5555 			}
5556 			spin_unlock(&global_rsv->lock);
5557 		}
5558 		spin_unlock(&space_info->lock);
5559 	}
5560 
5561 	if (cache)
5562 		btrfs_put_block_group(cache);
5563 	return 0;
5564 }
5565 
5566 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5567 			       struct btrfs_root *root)
5568 {
5569 	struct btrfs_fs_info *fs_info = root->fs_info;
5570 	struct extent_io_tree *unpin;
5571 	u64 start;
5572 	u64 end;
5573 	int ret;
5574 
5575 	if (trans->aborted)
5576 		return 0;
5577 
5578 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5579 		unpin = &fs_info->freed_extents[1];
5580 	else
5581 		unpin = &fs_info->freed_extents[0];
5582 
5583 	while (1) {
5584 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5585 					    EXTENT_DIRTY, NULL);
5586 		if (ret)
5587 			break;
5588 
5589 		if (btrfs_test_opt(root, DISCARD))
5590 			ret = btrfs_discard_extent(root, start,
5591 						   end + 1 - start, NULL);
5592 
5593 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5594 		unpin_extent_range(root, start, end);
5595 		cond_resched();
5596 	}
5597 
5598 	return 0;
5599 }
5600 
5601 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5602 			     u64 owner, u64 root_objectid)
5603 {
5604 	struct btrfs_space_info *space_info;
5605 	u64 flags;
5606 
5607 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5608 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5609 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5610 		else
5611 			flags = BTRFS_BLOCK_GROUP_METADATA;
5612 	} else {
5613 		flags = BTRFS_BLOCK_GROUP_DATA;
5614 	}
5615 
5616 	space_info = __find_space_info(fs_info, flags);
5617 	BUG_ON(!space_info); /* Logic bug */
5618 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5619 }
5620 
5621 
5622 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5623 				struct btrfs_root *root,
5624 				u64 bytenr, u64 num_bytes, u64 parent,
5625 				u64 root_objectid, u64 owner_objectid,
5626 				u64 owner_offset, int refs_to_drop,
5627 				struct btrfs_delayed_extent_op *extent_op)
5628 {
5629 	struct btrfs_key key;
5630 	struct btrfs_path *path;
5631 	struct btrfs_fs_info *info = root->fs_info;
5632 	struct btrfs_root *extent_root = info->extent_root;
5633 	struct extent_buffer *leaf;
5634 	struct btrfs_extent_item *ei;
5635 	struct btrfs_extent_inline_ref *iref;
5636 	int ret;
5637 	int is_data;
5638 	int extent_slot = 0;
5639 	int found_extent = 0;
5640 	int num_to_del = 1;
5641 	u32 item_size;
5642 	u64 refs;
5643 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5644 						 SKINNY_METADATA);
5645 
5646 	path = btrfs_alloc_path();
5647 	if (!path)
5648 		return -ENOMEM;
5649 
5650 	path->reada = 1;
5651 	path->leave_spinning = 1;
5652 
5653 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5654 	BUG_ON(!is_data && refs_to_drop != 1);
5655 
5656 	if (is_data)
5657 		skinny_metadata = 0;
5658 
5659 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5660 				    bytenr, num_bytes, parent,
5661 				    root_objectid, owner_objectid,
5662 				    owner_offset);
5663 	if (ret == 0) {
5664 		extent_slot = path->slots[0];
5665 		while (extent_slot >= 0) {
5666 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5667 					      extent_slot);
5668 			if (key.objectid != bytenr)
5669 				break;
5670 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5671 			    key.offset == num_bytes) {
5672 				found_extent = 1;
5673 				break;
5674 			}
5675 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5676 			    key.offset == owner_objectid) {
5677 				found_extent = 1;
5678 				break;
5679 			}
5680 			if (path->slots[0] - extent_slot > 5)
5681 				break;
5682 			extent_slot--;
5683 		}
5684 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5685 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5686 		if (found_extent && item_size < sizeof(*ei))
5687 			found_extent = 0;
5688 #endif
5689 		if (!found_extent) {
5690 			BUG_ON(iref);
5691 			ret = remove_extent_backref(trans, extent_root, path,
5692 						    NULL, refs_to_drop,
5693 						    is_data);
5694 			if (ret) {
5695 				btrfs_abort_transaction(trans, extent_root, ret);
5696 				goto out;
5697 			}
5698 			btrfs_release_path(path);
5699 			path->leave_spinning = 1;
5700 
5701 			key.objectid = bytenr;
5702 			key.type = BTRFS_EXTENT_ITEM_KEY;
5703 			key.offset = num_bytes;
5704 
5705 			if (!is_data && skinny_metadata) {
5706 				key.type = BTRFS_METADATA_ITEM_KEY;
5707 				key.offset = owner_objectid;
5708 			}
5709 
5710 			ret = btrfs_search_slot(trans, extent_root,
5711 						&key, path, -1, 1);
5712 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5713 				/*
5714 				 * Couldn't find our skinny metadata item,
5715 				 * see if we have ye olde extent item.
5716 				 */
5717 				path->slots[0]--;
5718 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5719 						      path->slots[0]);
5720 				if (key.objectid == bytenr &&
5721 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5722 				    key.offset == num_bytes)
5723 					ret = 0;
5724 			}
5725 
5726 			if (ret > 0 && skinny_metadata) {
5727 				skinny_metadata = false;
5728 				key.type = BTRFS_EXTENT_ITEM_KEY;
5729 				key.offset = num_bytes;
5730 				btrfs_release_path(path);
5731 				ret = btrfs_search_slot(trans, extent_root,
5732 							&key, path, -1, 1);
5733 			}
5734 
5735 			if (ret) {
5736 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5737 					ret, bytenr);
5738 				if (ret > 0)
5739 					btrfs_print_leaf(extent_root,
5740 							 path->nodes[0]);
5741 			}
5742 			if (ret < 0) {
5743 				btrfs_abort_transaction(trans, extent_root, ret);
5744 				goto out;
5745 			}
5746 			extent_slot = path->slots[0];
5747 		}
5748 	} else if (WARN_ON(ret == -ENOENT)) {
5749 		btrfs_print_leaf(extent_root, path->nodes[0]);
5750 		btrfs_err(info,
5751 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5752 			bytenr, parent, root_objectid, owner_objectid,
5753 			owner_offset);
5754 	} else {
5755 		btrfs_abort_transaction(trans, extent_root, ret);
5756 		goto out;
5757 	}
5758 
5759 	leaf = path->nodes[0];
5760 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5761 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5762 	if (item_size < sizeof(*ei)) {
5763 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5764 		ret = convert_extent_item_v0(trans, extent_root, path,
5765 					     owner_objectid, 0);
5766 		if (ret < 0) {
5767 			btrfs_abort_transaction(trans, extent_root, ret);
5768 			goto out;
5769 		}
5770 
5771 		btrfs_release_path(path);
5772 		path->leave_spinning = 1;
5773 
5774 		key.objectid = bytenr;
5775 		key.type = BTRFS_EXTENT_ITEM_KEY;
5776 		key.offset = num_bytes;
5777 
5778 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5779 					-1, 1);
5780 		if (ret) {
5781 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5782 				ret, bytenr);
5783 			btrfs_print_leaf(extent_root, path->nodes[0]);
5784 		}
5785 		if (ret < 0) {
5786 			btrfs_abort_transaction(trans, extent_root, ret);
5787 			goto out;
5788 		}
5789 
5790 		extent_slot = path->slots[0];
5791 		leaf = path->nodes[0];
5792 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5793 	}
5794 #endif
5795 	BUG_ON(item_size < sizeof(*ei));
5796 	ei = btrfs_item_ptr(leaf, extent_slot,
5797 			    struct btrfs_extent_item);
5798 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5799 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5800 		struct btrfs_tree_block_info *bi;
5801 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5802 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5803 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5804 	}
5805 
5806 	refs = btrfs_extent_refs(leaf, ei);
5807 	if (refs < refs_to_drop) {
5808 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5809 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5810 		ret = -EINVAL;
5811 		btrfs_abort_transaction(trans, extent_root, ret);
5812 		goto out;
5813 	}
5814 	refs -= refs_to_drop;
5815 
5816 	if (refs > 0) {
5817 		if (extent_op)
5818 			__run_delayed_extent_op(extent_op, leaf, ei);
5819 		/*
5820 		 * In the case of inline back ref, reference count will
5821 		 * be updated by remove_extent_backref
5822 		 */
5823 		if (iref) {
5824 			BUG_ON(!found_extent);
5825 		} else {
5826 			btrfs_set_extent_refs(leaf, ei, refs);
5827 			btrfs_mark_buffer_dirty(leaf);
5828 		}
5829 		if (found_extent) {
5830 			ret = remove_extent_backref(trans, extent_root, path,
5831 						    iref, refs_to_drop,
5832 						    is_data);
5833 			if (ret) {
5834 				btrfs_abort_transaction(trans, extent_root, ret);
5835 				goto out;
5836 			}
5837 		}
5838 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5839 				 root_objectid);
5840 	} else {
5841 		if (found_extent) {
5842 			BUG_ON(is_data && refs_to_drop !=
5843 			       extent_data_ref_count(root, path, iref));
5844 			if (iref) {
5845 				BUG_ON(path->slots[0] != extent_slot);
5846 			} else {
5847 				BUG_ON(path->slots[0] != extent_slot + 1);
5848 				path->slots[0] = extent_slot;
5849 				num_to_del = 2;
5850 			}
5851 		}
5852 
5853 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5854 				      num_to_del);
5855 		if (ret) {
5856 			btrfs_abort_transaction(trans, extent_root, ret);
5857 			goto out;
5858 		}
5859 		btrfs_release_path(path);
5860 
5861 		if (is_data) {
5862 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5863 			if (ret) {
5864 				btrfs_abort_transaction(trans, extent_root, ret);
5865 				goto out;
5866 			}
5867 		}
5868 
5869 		ret = update_block_group(root, bytenr, num_bytes, 0);
5870 		if (ret) {
5871 			btrfs_abort_transaction(trans, extent_root, ret);
5872 			goto out;
5873 		}
5874 	}
5875 out:
5876 	btrfs_free_path(path);
5877 	return ret;
5878 }
5879 
5880 /*
5881  * when we free an block, it is possible (and likely) that we free the last
5882  * delayed ref for that extent as well.  This searches the delayed ref tree for
5883  * a given extent, and if there are no other delayed refs to be processed, it
5884  * removes it from the tree.
5885  */
5886 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5887 				      struct btrfs_root *root, u64 bytenr)
5888 {
5889 	struct btrfs_delayed_ref_head *head;
5890 	struct btrfs_delayed_ref_root *delayed_refs;
5891 	int ret = 0;
5892 
5893 	delayed_refs = &trans->transaction->delayed_refs;
5894 	spin_lock(&delayed_refs->lock);
5895 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5896 	if (!head)
5897 		goto out_delayed_unlock;
5898 
5899 	spin_lock(&head->lock);
5900 	if (rb_first(&head->ref_root))
5901 		goto out;
5902 
5903 	if (head->extent_op) {
5904 		if (!head->must_insert_reserved)
5905 			goto out;
5906 		btrfs_free_delayed_extent_op(head->extent_op);
5907 		head->extent_op = NULL;
5908 	}
5909 
5910 	/*
5911 	 * waiting for the lock here would deadlock.  If someone else has it
5912 	 * locked they are already in the process of dropping it anyway
5913 	 */
5914 	if (!mutex_trylock(&head->mutex))
5915 		goto out;
5916 
5917 	/*
5918 	 * at this point we have a head with no other entries.  Go
5919 	 * ahead and process it.
5920 	 */
5921 	head->node.in_tree = 0;
5922 	rb_erase(&head->href_node, &delayed_refs->href_root);
5923 
5924 	atomic_dec(&delayed_refs->num_entries);
5925 
5926 	/*
5927 	 * we don't take a ref on the node because we're removing it from the
5928 	 * tree, so we just steal the ref the tree was holding.
5929 	 */
5930 	delayed_refs->num_heads--;
5931 	if (head->processing == 0)
5932 		delayed_refs->num_heads_ready--;
5933 	head->processing = 0;
5934 	spin_unlock(&head->lock);
5935 	spin_unlock(&delayed_refs->lock);
5936 
5937 	BUG_ON(head->extent_op);
5938 	if (head->must_insert_reserved)
5939 		ret = 1;
5940 
5941 	mutex_unlock(&head->mutex);
5942 	btrfs_put_delayed_ref(&head->node);
5943 	return ret;
5944 out:
5945 	spin_unlock(&head->lock);
5946 
5947 out_delayed_unlock:
5948 	spin_unlock(&delayed_refs->lock);
5949 	return 0;
5950 }
5951 
5952 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5953 			   struct btrfs_root *root,
5954 			   struct extent_buffer *buf,
5955 			   u64 parent, int last_ref)
5956 {
5957 	struct btrfs_block_group_cache *cache = NULL;
5958 	int pin = 1;
5959 	int ret;
5960 
5961 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5962 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5963 					buf->start, buf->len,
5964 					parent, root->root_key.objectid,
5965 					btrfs_header_level(buf),
5966 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5967 		BUG_ON(ret); /* -ENOMEM */
5968 	}
5969 
5970 	if (!last_ref)
5971 		return;
5972 
5973 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5974 
5975 	if (btrfs_header_generation(buf) == trans->transid) {
5976 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5977 			ret = check_ref_cleanup(trans, root, buf->start);
5978 			if (!ret)
5979 				goto out;
5980 		}
5981 
5982 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5983 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5984 			goto out;
5985 		}
5986 
5987 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5988 
5989 		btrfs_add_free_space(cache, buf->start, buf->len);
5990 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5991 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5992 		pin = 0;
5993 	}
5994 out:
5995 	if (pin)
5996 		add_pinned_bytes(root->fs_info, buf->len,
5997 				 btrfs_header_level(buf),
5998 				 root->root_key.objectid);
5999 
6000 	/*
6001 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6002 	 * anymore.
6003 	 */
6004 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6005 	btrfs_put_block_group(cache);
6006 }
6007 
6008 /* Can return -ENOMEM */
6009 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6010 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6011 		      u64 owner, u64 offset, int for_cow)
6012 {
6013 	int ret;
6014 	struct btrfs_fs_info *fs_info = root->fs_info;
6015 
6016 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6017 
6018 	/*
6019 	 * tree log blocks never actually go into the extent allocation
6020 	 * tree, just update pinning info and exit early.
6021 	 */
6022 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6023 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6024 		/* unlocks the pinned mutex */
6025 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6026 		ret = 0;
6027 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6028 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6029 					num_bytes,
6030 					parent, root_objectid, (int)owner,
6031 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6032 	} else {
6033 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6034 						num_bytes,
6035 						parent, root_objectid, owner,
6036 						offset, BTRFS_DROP_DELAYED_REF,
6037 						NULL, for_cow);
6038 	}
6039 	return ret;
6040 }
6041 
6042 static u64 stripe_align(struct btrfs_root *root,
6043 			struct btrfs_block_group_cache *cache,
6044 			u64 val, u64 num_bytes)
6045 {
6046 	u64 ret = ALIGN(val, root->stripesize);
6047 	return ret;
6048 }
6049 
6050 /*
6051  * when we wait for progress in the block group caching, its because
6052  * our allocation attempt failed at least once.  So, we must sleep
6053  * and let some progress happen before we try again.
6054  *
6055  * This function will sleep at least once waiting for new free space to
6056  * show up, and then it will check the block group free space numbers
6057  * for our min num_bytes.  Another option is to have it go ahead
6058  * and look in the rbtree for a free extent of a given size, but this
6059  * is a good start.
6060  *
6061  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6062  * any of the information in this block group.
6063  */
6064 static noinline void
6065 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6066 				u64 num_bytes)
6067 {
6068 	struct btrfs_caching_control *caching_ctl;
6069 
6070 	caching_ctl = get_caching_control(cache);
6071 	if (!caching_ctl)
6072 		return;
6073 
6074 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6075 		   (cache->free_space_ctl->free_space >= num_bytes));
6076 
6077 	put_caching_control(caching_ctl);
6078 }
6079 
6080 static noinline int
6081 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6082 {
6083 	struct btrfs_caching_control *caching_ctl;
6084 	int ret = 0;
6085 
6086 	caching_ctl = get_caching_control(cache);
6087 	if (!caching_ctl)
6088 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6089 
6090 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6091 	if (cache->cached == BTRFS_CACHE_ERROR)
6092 		ret = -EIO;
6093 	put_caching_control(caching_ctl);
6094 	return ret;
6095 }
6096 
6097 int __get_raid_index(u64 flags)
6098 {
6099 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6100 		return BTRFS_RAID_RAID10;
6101 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6102 		return BTRFS_RAID_RAID1;
6103 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6104 		return BTRFS_RAID_DUP;
6105 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6106 		return BTRFS_RAID_RAID0;
6107 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6108 		return BTRFS_RAID_RAID5;
6109 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6110 		return BTRFS_RAID_RAID6;
6111 
6112 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6113 }
6114 
6115 int get_block_group_index(struct btrfs_block_group_cache *cache)
6116 {
6117 	return __get_raid_index(cache->flags);
6118 }
6119 
6120 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6121 	[BTRFS_RAID_RAID10]	= "raid10",
6122 	[BTRFS_RAID_RAID1]	= "raid1",
6123 	[BTRFS_RAID_DUP]	= "dup",
6124 	[BTRFS_RAID_RAID0]	= "raid0",
6125 	[BTRFS_RAID_SINGLE]	= "single",
6126 	[BTRFS_RAID_RAID5]	= "raid5",
6127 	[BTRFS_RAID_RAID6]	= "raid6",
6128 };
6129 
6130 static const char *get_raid_name(enum btrfs_raid_types type)
6131 {
6132 	if (type >= BTRFS_NR_RAID_TYPES)
6133 		return NULL;
6134 
6135 	return btrfs_raid_type_names[type];
6136 }
6137 
6138 enum btrfs_loop_type {
6139 	LOOP_CACHING_NOWAIT = 0,
6140 	LOOP_CACHING_WAIT = 1,
6141 	LOOP_ALLOC_CHUNK = 2,
6142 	LOOP_NO_EMPTY_SIZE = 3,
6143 };
6144 
6145 /*
6146  * walks the btree of allocated extents and find a hole of a given size.
6147  * The key ins is changed to record the hole:
6148  * ins->objectid == start position
6149  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6150  * ins->offset == the size of the hole.
6151  * Any available blocks before search_start are skipped.
6152  *
6153  * If there is no suitable free space, we will record the max size of
6154  * the free space extent currently.
6155  */
6156 static noinline int find_free_extent(struct btrfs_root *orig_root,
6157 				     u64 num_bytes, u64 empty_size,
6158 				     u64 hint_byte, struct btrfs_key *ins,
6159 				     u64 flags)
6160 {
6161 	int ret = 0;
6162 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6163 	struct btrfs_free_cluster *last_ptr = NULL;
6164 	struct btrfs_block_group_cache *block_group = NULL;
6165 	u64 search_start = 0;
6166 	u64 max_extent_size = 0;
6167 	int empty_cluster = 2 * 1024 * 1024;
6168 	struct btrfs_space_info *space_info;
6169 	int loop = 0;
6170 	int index = __get_raid_index(flags);
6171 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6172 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6173 	bool failed_cluster_refill = false;
6174 	bool failed_alloc = false;
6175 	bool use_cluster = true;
6176 	bool have_caching_bg = false;
6177 
6178 	WARN_ON(num_bytes < root->sectorsize);
6179 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6180 	ins->objectid = 0;
6181 	ins->offset = 0;
6182 
6183 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6184 
6185 	space_info = __find_space_info(root->fs_info, flags);
6186 	if (!space_info) {
6187 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6188 		return -ENOSPC;
6189 	}
6190 
6191 	/*
6192 	 * If the space info is for both data and metadata it means we have a
6193 	 * small filesystem and we can't use the clustering stuff.
6194 	 */
6195 	if (btrfs_mixed_space_info(space_info))
6196 		use_cluster = false;
6197 
6198 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6199 		last_ptr = &root->fs_info->meta_alloc_cluster;
6200 		if (!btrfs_test_opt(root, SSD))
6201 			empty_cluster = 64 * 1024;
6202 	}
6203 
6204 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6205 	    btrfs_test_opt(root, SSD)) {
6206 		last_ptr = &root->fs_info->data_alloc_cluster;
6207 	}
6208 
6209 	if (last_ptr) {
6210 		spin_lock(&last_ptr->lock);
6211 		if (last_ptr->block_group)
6212 			hint_byte = last_ptr->window_start;
6213 		spin_unlock(&last_ptr->lock);
6214 	}
6215 
6216 	search_start = max(search_start, first_logical_byte(root, 0));
6217 	search_start = max(search_start, hint_byte);
6218 
6219 	if (!last_ptr)
6220 		empty_cluster = 0;
6221 
6222 	if (search_start == hint_byte) {
6223 		block_group = btrfs_lookup_block_group(root->fs_info,
6224 						       search_start);
6225 		/*
6226 		 * we don't want to use the block group if it doesn't match our
6227 		 * allocation bits, or if its not cached.
6228 		 *
6229 		 * However if we are re-searching with an ideal block group
6230 		 * picked out then we don't care that the block group is cached.
6231 		 */
6232 		if (block_group && block_group_bits(block_group, flags) &&
6233 		    block_group->cached != BTRFS_CACHE_NO) {
6234 			down_read(&space_info->groups_sem);
6235 			if (list_empty(&block_group->list) ||
6236 			    block_group->ro) {
6237 				/*
6238 				 * someone is removing this block group,
6239 				 * we can't jump into the have_block_group
6240 				 * target because our list pointers are not
6241 				 * valid
6242 				 */
6243 				btrfs_put_block_group(block_group);
6244 				up_read(&space_info->groups_sem);
6245 			} else {
6246 				index = get_block_group_index(block_group);
6247 				goto have_block_group;
6248 			}
6249 		} else if (block_group) {
6250 			btrfs_put_block_group(block_group);
6251 		}
6252 	}
6253 search:
6254 	have_caching_bg = false;
6255 	down_read(&space_info->groups_sem);
6256 	list_for_each_entry(block_group, &space_info->block_groups[index],
6257 			    list) {
6258 		u64 offset;
6259 		int cached;
6260 
6261 		btrfs_get_block_group(block_group);
6262 		search_start = block_group->key.objectid;
6263 
6264 		/*
6265 		 * this can happen if we end up cycling through all the
6266 		 * raid types, but we want to make sure we only allocate
6267 		 * for the proper type.
6268 		 */
6269 		if (!block_group_bits(block_group, flags)) {
6270 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6271 				BTRFS_BLOCK_GROUP_RAID1 |
6272 				BTRFS_BLOCK_GROUP_RAID5 |
6273 				BTRFS_BLOCK_GROUP_RAID6 |
6274 				BTRFS_BLOCK_GROUP_RAID10;
6275 
6276 			/*
6277 			 * if they asked for extra copies and this block group
6278 			 * doesn't provide them, bail.  This does allow us to
6279 			 * fill raid0 from raid1.
6280 			 */
6281 			if ((flags & extra) && !(block_group->flags & extra))
6282 				goto loop;
6283 		}
6284 
6285 have_block_group:
6286 		cached = block_group_cache_done(block_group);
6287 		if (unlikely(!cached)) {
6288 			ret = cache_block_group(block_group, 0);
6289 			BUG_ON(ret < 0);
6290 			ret = 0;
6291 		}
6292 
6293 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 			goto loop;
6295 		if (unlikely(block_group->ro))
6296 			goto loop;
6297 
6298 		/*
6299 		 * Ok we want to try and use the cluster allocator, so
6300 		 * lets look there
6301 		 */
6302 		if (last_ptr) {
6303 			struct btrfs_block_group_cache *used_block_group;
6304 			unsigned long aligned_cluster;
6305 			/*
6306 			 * the refill lock keeps out other
6307 			 * people trying to start a new cluster
6308 			 */
6309 			spin_lock(&last_ptr->refill_lock);
6310 			used_block_group = last_ptr->block_group;
6311 			if (used_block_group != block_group &&
6312 			    (!used_block_group ||
6313 			     used_block_group->ro ||
6314 			     !block_group_bits(used_block_group, flags)))
6315 				goto refill_cluster;
6316 
6317 			if (used_block_group != block_group)
6318 				btrfs_get_block_group(used_block_group);
6319 
6320 			offset = btrfs_alloc_from_cluster(used_block_group,
6321 						last_ptr,
6322 						num_bytes,
6323 						used_block_group->key.objectid,
6324 						&max_extent_size);
6325 			if (offset) {
6326 				/* we have a block, we're done */
6327 				spin_unlock(&last_ptr->refill_lock);
6328 				trace_btrfs_reserve_extent_cluster(root,
6329 						used_block_group,
6330 						search_start, num_bytes);
6331 				if (used_block_group != block_group) {
6332 					btrfs_put_block_group(block_group);
6333 					block_group = used_block_group;
6334 				}
6335 				goto checks;
6336 			}
6337 
6338 			WARN_ON(last_ptr->block_group != used_block_group);
6339 			if (used_block_group != block_group)
6340 				btrfs_put_block_group(used_block_group);
6341 refill_cluster:
6342 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6343 			 * set up a new clusters, so lets just skip it
6344 			 * and let the allocator find whatever block
6345 			 * it can find.  If we reach this point, we
6346 			 * will have tried the cluster allocator
6347 			 * plenty of times and not have found
6348 			 * anything, so we are likely way too
6349 			 * fragmented for the clustering stuff to find
6350 			 * anything.
6351 			 *
6352 			 * However, if the cluster is taken from the
6353 			 * current block group, release the cluster
6354 			 * first, so that we stand a better chance of
6355 			 * succeeding in the unclustered
6356 			 * allocation.  */
6357 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6358 			    last_ptr->block_group != block_group) {
6359 				spin_unlock(&last_ptr->refill_lock);
6360 				goto unclustered_alloc;
6361 			}
6362 
6363 			/*
6364 			 * this cluster didn't work out, free it and
6365 			 * start over
6366 			 */
6367 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6368 
6369 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6370 				spin_unlock(&last_ptr->refill_lock);
6371 				goto unclustered_alloc;
6372 			}
6373 
6374 			aligned_cluster = max_t(unsigned long,
6375 						empty_cluster + empty_size,
6376 					      block_group->full_stripe_len);
6377 
6378 			/* allocate a cluster in this block group */
6379 			ret = btrfs_find_space_cluster(root, block_group,
6380 						       last_ptr, search_start,
6381 						       num_bytes,
6382 						       aligned_cluster);
6383 			if (ret == 0) {
6384 				/*
6385 				 * now pull our allocation out of this
6386 				 * cluster
6387 				 */
6388 				offset = btrfs_alloc_from_cluster(block_group,
6389 							last_ptr,
6390 							num_bytes,
6391 							search_start,
6392 							&max_extent_size);
6393 				if (offset) {
6394 					/* we found one, proceed */
6395 					spin_unlock(&last_ptr->refill_lock);
6396 					trace_btrfs_reserve_extent_cluster(root,
6397 						block_group, search_start,
6398 						num_bytes);
6399 					goto checks;
6400 				}
6401 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6402 				   && !failed_cluster_refill) {
6403 				spin_unlock(&last_ptr->refill_lock);
6404 
6405 				failed_cluster_refill = true;
6406 				wait_block_group_cache_progress(block_group,
6407 				       num_bytes + empty_cluster + empty_size);
6408 				goto have_block_group;
6409 			}
6410 
6411 			/*
6412 			 * at this point we either didn't find a cluster
6413 			 * or we weren't able to allocate a block from our
6414 			 * cluster.  Free the cluster we've been trying
6415 			 * to use, and go to the next block group
6416 			 */
6417 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6418 			spin_unlock(&last_ptr->refill_lock);
6419 			goto loop;
6420 		}
6421 
6422 unclustered_alloc:
6423 		spin_lock(&block_group->free_space_ctl->tree_lock);
6424 		if (cached &&
6425 		    block_group->free_space_ctl->free_space <
6426 		    num_bytes + empty_cluster + empty_size) {
6427 			if (block_group->free_space_ctl->free_space >
6428 			    max_extent_size)
6429 				max_extent_size =
6430 					block_group->free_space_ctl->free_space;
6431 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6432 			goto loop;
6433 		}
6434 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6435 
6436 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6437 						    num_bytes, empty_size,
6438 						    &max_extent_size);
6439 		/*
6440 		 * If we didn't find a chunk, and we haven't failed on this
6441 		 * block group before, and this block group is in the middle of
6442 		 * caching and we are ok with waiting, then go ahead and wait
6443 		 * for progress to be made, and set failed_alloc to true.
6444 		 *
6445 		 * If failed_alloc is true then we've already waited on this
6446 		 * block group once and should move on to the next block group.
6447 		 */
6448 		if (!offset && !failed_alloc && !cached &&
6449 		    loop > LOOP_CACHING_NOWAIT) {
6450 			wait_block_group_cache_progress(block_group,
6451 						num_bytes + empty_size);
6452 			failed_alloc = true;
6453 			goto have_block_group;
6454 		} else if (!offset) {
6455 			if (!cached)
6456 				have_caching_bg = true;
6457 			goto loop;
6458 		}
6459 checks:
6460 		search_start = stripe_align(root, block_group,
6461 					    offset, num_bytes);
6462 
6463 		/* move on to the next group */
6464 		if (search_start + num_bytes >
6465 		    block_group->key.objectid + block_group->key.offset) {
6466 			btrfs_add_free_space(block_group, offset, num_bytes);
6467 			goto loop;
6468 		}
6469 
6470 		if (offset < search_start)
6471 			btrfs_add_free_space(block_group, offset,
6472 					     search_start - offset);
6473 		BUG_ON(offset > search_start);
6474 
6475 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6476 						  alloc_type);
6477 		if (ret == -EAGAIN) {
6478 			btrfs_add_free_space(block_group, offset, num_bytes);
6479 			goto loop;
6480 		}
6481 
6482 		/* we are all good, lets return */
6483 		ins->objectid = search_start;
6484 		ins->offset = num_bytes;
6485 
6486 		trace_btrfs_reserve_extent(orig_root, block_group,
6487 					   search_start, num_bytes);
6488 		btrfs_put_block_group(block_group);
6489 		break;
6490 loop:
6491 		failed_cluster_refill = false;
6492 		failed_alloc = false;
6493 		BUG_ON(index != get_block_group_index(block_group));
6494 		btrfs_put_block_group(block_group);
6495 	}
6496 	up_read(&space_info->groups_sem);
6497 
6498 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6499 		goto search;
6500 
6501 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6502 		goto search;
6503 
6504 	/*
6505 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6506 	 *			caching kthreads as we move along
6507 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6508 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6509 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6510 	 *			again
6511 	 */
6512 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6513 		index = 0;
6514 		loop++;
6515 		if (loop == LOOP_ALLOC_CHUNK) {
6516 			struct btrfs_trans_handle *trans;
6517 
6518 			trans = btrfs_join_transaction(root);
6519 			if (IS_ERR(trans)) {
6520 				ret = PTR_ERR(trans);
6521 				goto out;
6522 			}
6523 
6524 			ret = do_chunk_alloc(trans, root, flags,
6525 					     CHUNK_ALLOC_FORCE);
6526 			/*
6527 			 * Do not bail out on ENOSPC since we
6528 			 * can do more things.
6529 			 */
6530 			if (ret < 0 && ret != -ENOSPC)
6531 				btrfs_abort_transaction(trans,
6532 							root, ret);
6533 			else
6534 				ret = 0;
6535 			btrfs_end_transaction(trans, root);
6536 			if (ret)
6537 				goto out;
6538 		}
6539 
6540 		if (loop == LOOP_NO_EMPTY_SIZE) {
6541 			empty_size = 0;
6542 			empty_cluster = 0;
6543 		}
6544 
6545 		goto search;
6546 	} else if (!ins->objectid) {
6547 		ret = -ENOSPC;
6548 	} else if (ins->objectid) {
6549 		ret = 0;
6550 	}
6551 out:
6552 	if (ret == -ENOSPC)
6553 		ins->offset = max_extent_size;
6554 	return ret;
6555 }
6556 
6557 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6558 			    int dump_block_groups)
6559 {
6560 	struct btrfs_block_group_cache *cache;
6561 	int index = 0;
6562 
6563 	spin_lock(&info->lock);
6564 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6565 	       info->flags,
6566 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6567 	       info->bytes_reserved - info->bytes_readonly,
6568 	       (info->full) ? "" : "not ");
6569 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6570 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6571 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6572 	       info->bytes_reserved, info->bytes_may_use,
6573 	       info->bytes_readonly);
6574 	spin_unlock(&info->lock);
6575 
6576 	if (!dump_block_groups)
6577 		return;
6578 
6579 	down_read(&info->groups_sem);
6580 again:
6581 	list_for_each_entry(cache, &info->block_groups[index], list) {
6582 		spin_lock(&cache->lock);
6583 		printk(KERN_INFO "BTRFS: "
6584 			   "block group %llu has %llu bytes, "
6585 			   "%llu used %llu pinned %llu reserved %s\n",
6586 		       cache->key.objectid, cache->key.offset,
6587 		       btrfs_block_group_used(&cache->item), cache->pinned,
6588 		       cache->reserved, cache->ro ? "[readonly]" : "");
6589 		btrfs_dump_free_space(cache, bytes);
6590 		spin_unlock(&cache->lock);
6591 	}
6592 	if (++index < BTRFS_NR_RAID_TYPES)
6593 		goto again;
6594 	up_read(&info->groups_sem);
6595 }
6596 
6597 int btrfs_reserve_extent(struct btrfs_root *root,
6598 			 u64 num_bytes, u64 min_alloc_size,
6599 			 u64 empty_size, u64 hint_byte,
6600 			 struct btrfs_key *ins, int is_data)
6601 {
6602 	bool final_tried = false;
6603 	u64 flags;
6604 	int ret;
6605 
6606 	flags = btrfs_get_alloc_profile(root, is_data);
6607 again:
6608 	WARN_ON(num_bytes < root->sectorsize);
6609 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6610 			       flags);
6611 
6612 	if (ret == -ENOSPC) {
6613 		if (!final_tried && ins->offset) {
6614 			num_bytes = min(num_bytes >> 1, ins->offset);
6615 			num_bytes = round_down(num_bytes, root->sectorsize);
6616 			num_bytes = max(num_bytes, min_alloc_size);
6617 			if (num_bytes == min_alloc_size)
6618 				final_tried = true;
6619 			goto again;
6620 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6621 			struct btrfs_space_info *sinfo;
6622 
6623 			sinfo = __find_space_info(root->fs_info, flags);
6624 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6625 				flags, num_bytes);
6626 			if (sinfo)
6627 				dump_space_info(sinfo, num_bytes, 1);
6628 		}
6629 	}
6630 
6631 	return ret;
6632 }
6633 
6634 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6635 					u64 start, u64 len, int pin)
6636 {
6637 	struct btrfs_block_group_cache *cache;
6638 	int ret = 0;
6639 
6640 	cache = btrfs_lookup_block_group(root->fs_info, start);
6641 	if (!cache) {
6642 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6643 			start);
6644 		return -ENOSPC;
6645 	}
6646 
6647 	if (btrfs_test_opt(root, DISCARD))
6648 		ret = btrfs_discard_extent(root, start, len, NULL);
6649 
6650 	if (pin)
6651 		pin_down_extent(root, cache, start, len, 1);
6652 	else {
6653 		btrfs_add_free_space(cache, start, len);
6654 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6655 	}
6656 	btrfs_put_block_group(cache);
6657 
6658 	trace_btrfs_reserved_extent_free(root, start, len);
6659 
6660 	return ret;
6661 }
6662 
6663 int btrfs_free_reserved_extent(struct btrfs_root *root,
6664 					u64 start, u64 len)
6665 {
6666 	return __btrfs_free_reserved_extent(root, start, len, 0);
6667 }
6668 
6669 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6670 				       u64 start, u64 len)
6671 {
6672 	return __btrfs_free_reserved_extent(root, start, len, 1);
6673 }
6674 
6675 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6676 				      struct btrfs_root *root,
6677 				      u64 parent, u64 root_objectid,
6678 				      u64 flags, u64 owner, u64 offset,
6679 				      struct btrfs_key *ins, int ref_mod)
6680 {
6681 	int ret;
6682 	struct btrfs_fs_info *fs_info = root->fs_info;
6683 	struct btrfs_extent_item *extent_item;
6684 	struct btrfs_extent_inline_ref *iref;
6685 	struct btrfs_path *path;
6686 	struct extent_buffer *leaf;
6687 	int type;
6688 	u32 size;
6689 
6690 	if (parent > 0)
6691 		type = BTRFS_SHARED_DATA_REF_KEY;
6692 	else
6693 		type = BTRFS_EXTENT_DATA_REF_KEY;
6694 
6695 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6696 
6697 	path = btrfs_alloc_path();
6698 	if (!path)
6699 		return -ENOMEM;
6700 
6701 	path->leave_spinning = 1;
6702 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6703 				      ins, size);
6704 	if (ret) {
6705 		btrfs_free_path(path);
6706 		return ret;
6707 	}
6708 
6709 	leaf = path->nodes[0];
6710 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6711 				     struct btrfs_extent_item);
6712 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6713 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6714 	btrfs_set_extent_flags(leaf, extent_item,
6715 			       flags | BTRFS_EXTENT_FLAG_DATA);
6716 
6717 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6718 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6719 	if (parent > 0) {
6720 		struct btrfs_shared_data_ref *ref;
6721 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6722 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6723 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6724 	} else {
6725 		struct btrfs_extent_data_ref *ref;
6726 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6727 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6728 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6729 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6730 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6731 	}
6732 
6733 	btrfs_mark_buffer_dirty(path->nodes[0]);
6734 	btrfs_free_path(path);
6735 
6736 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6737 	if (ret) { /* -ENOENT, logic error */
6738 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6739 			ins->objectid, ins->offset);
6740 		BUG();
6741 	}
6742 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6743 	return ret;
6744 }
6745 
6746 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6747 				     struct btrfs_root *root,
6748 				     u64 parent, u64 root_objectid,
6749 				     u64 flags, struct btrfs_disk_key *key,
6750 				     int level, struct btrfs_key *ins)
6751 {
6752 	int ret;
6753 	struct btrfs_fs_info *fs_info = root->fs_info;
6754 	struct btrfs_extent_item *extent_item;
6755 	struct btrfs_tree_block_info *block_info;
6756 	struct btrfs_extent_inline_ref *iref;
6757 	struct btrfs_path *path;
6758 	struct extent_buffer *leaf;
6759 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6760 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6761 						 SKINNY_METADATA);
6762 
6763 	if (!skinny_metadata)
6764 		size += sizeof(*block_info);
6765 
6766 	path = btrfs_alloc_path();
6767 	if (!path) {
6768 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6769 						   root->leafsize);
6770 		return -ENOMEM;
6771 	}
6772 
6773 	path->leave_spinning = 1;
6774 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6775 				      ins, size);
6776 	if (ret) {
6777 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6778 						   root->leafsize);
6779 		btrfs_free_path(path);
6780 		return ret;
6781 	}
6782 
6783 	leaf = path->nodes[0];
6784 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6785 				     struct btrfs_extent_item);
6786 	btrfs_set_extent_refs(leaf, extent_item, 1);
6787 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6788 	btrfs_set_extent_flags(leaf, extent_item,
6789 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6790 
6791 	if (skinny_metadata) {
6792 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6793 	} else {
6794 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6795 		btrfs_set_tree_block_key(leaf, block_info, key);
6796 		btrfs_set_tree_block_level(leaf, block_info, level);
6797 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6798 	}
6799 
6800 	if (parent > 0) {
6801 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6802 		btrfs_set_extent_inline_ref_type(leaf, iref,
6803 						 BTRFS_SHARED_BLOCK_REF_KEY);
6804 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6805 	} else {
6806 		btrfs_set_extent_inline_ref_type(leaf, iref,
6807 						 BTRFS_TREE_BLOCK_REF_KEY);
6808 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6809 	}
6810 
6811 	btrfs_mark_buffer_dirty(leaf);
6812 	btrfs_free_path(path);
6813 
6814 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6815 	if (ret) { /* -ENOENT, logic error */
6816 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6817 			ins->objectid, ins->offset);
6818 		BUG();
6819 	}
6820 
6821 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6822 	return ret;
6823 }
6824 
6825 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6826 				     struct btrfs_root *root,
6827 				     u64 root_objectid, u64 owner,
6828 				     u64 offset, struct btrfs_key *ins)
6829 {
6830 	int ret;
6831 
6832 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6833 
6834 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6835 					 ins->offset, 0,
6836 					 root_objectid, owner, offset,
6837 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6838 	return ret;
6839 }
6840 
6841 /*
6842  * this is used by the tree logging recovery code.  It records that
6843  * an extent has been allocated and makes sure to clear the free
6844  * space cache bits as well
6845  */
6846 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6847 				   struct btrfs_root *root,
6848 				   u64 root_objectid, u64 owner, u64 offset,
6849 				   struct btrfs_key *ins)
6850 {
6851 	int ret;
6852 	struct btrfs_block_group_cache *block_group;
6853 
6854 	/*
6855 	 * Mixed block groups will exclude before processing the log so we only
6856 	 * need to do the exlude dance if this fs isn't mixed.
6857 	 */
6858 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6859 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6860 		if (ret)
6861 			return ret;
6862 	}
6863 
6864 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6865 	if (!block_group)
6866 		return -EINVAL;
6867 
6868 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6869 					  RESERVE_ALLOC_NO_ACCOUNT);
6870 	BUG_ON(ret); /* logic error */
6871 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6872 					 0, owner, offset, ins, 1);
6873 	btrfs_put_block_group(block_group);
6874 	return ret;
6875 }
6876 
6877 static struct extent_buffer *
6878 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6879 		      u64 bytenr, u32 blocksize, int level)
6880 {
6881 	struct extent_buffer *buf;
6882 
6883 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6884 	if (!buf)
6885 		return ERR_PTR(-ENOMEM);
6886 	btrfs_set_header_generation(buf, trans->transid);
6887 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6888 	btrfs_tree_lock(buf);
6889 	clean_tree_block(trans, root, buf);
6890 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6891 
6892 	btrfs_set_lock_blocking(buf);
6893 	btrfs_set_buffer_uptodate(buf);
6894 
6895 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6896 		/*
6897 		 * we allow two log transactions at a time, use different
6898 		 * EXENT bit to differentiate dirty pages.
6899 		 */
6900 		if (root->log_transid % 2 == 0)
6901 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6902 					buf->start + buf->len - 1, GFP_NOFS);
6903 		else
6904 			set_extent_new(&root->dirty_log_pages, buf->start,
6905 					buf->start + buf->len - 1, GFP_NOFS);
6906 	} else {
6907 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6908 			 buf->start + buf->len - 1, GFP_NOFS);
6909 	}
6910 	trans->blocks_used++;
6911 	/* this returns a buffer locked for blocking */
6912 	return buf;
6913 }
6914 
6915 static struct btrfs_block_rsv *
6916 use_block_rsv(struct btrfs_trans_handle *trans,
6917 	      struct btrfs_root *root, u32 blocksize)
6918 {
6919 	struct btrfs_block_rsv *block_rsv;
6920 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6921 	int ret;
6922 	bool global_updated = false;
6923 
6924 	block_rsv = get_block_rsv(trans, root);
6925 
6926 	if (unlikely(block_rsv->size == 0))
6927 		goto try_reserve;
6928 again:
6929 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6930 	if (!ret)
6931 		return block_rsv;
6932 
6933 	if (block_rsv->failfast)
6934 		return ERR_PTR(ret);
6935 
6936 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6937 		global_updated = true;
6938 		update_global_block_rsv(root->fs_info);
6939 		goto again;
6940 	}
6941 
6942 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 		static DEFINE_RATELIMIT_STATE(_rs,
6944 				DEFAULT_RATELIMIT_INTERVAL * 10,
6945 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6946 		if (__ratelimit(&_rs))
6947 			WARN(1, KERN_DEBUG
6948 				"BTRFS: block rsv returned %d\n", ret);
6949 	}
6950 try_reserve:
6951 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6952 				     BTRFS_RESERVE_NO_FLUSH);
6953 	if (!ret)
6954 		return block_rsv;
6955 	/*
6956 	 * If we couldn't reserve metadata bytes try and use some from
6957 	 * the global reserve if its space type is the same as the global
6958 	 * reservation.
6959 	 */
6960 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6961 	    block_rsv->space_info == global_rsv->space_info) {
6962 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6963 		if (!ret)
6964 			return global_rsv;
6965 	}
6966 	return ERR_PTR(ret);
6967 }
6968 
6969 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6970 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6971 {
6972 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6973 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6974 }
6975 
6976 /*
6977  * finds a free extent and does all the dirty work required for allocation
6978  * returns the key for the extent through ins, and a tree buffer for
6979  * the first block of the extent through buf.
6980  *
6981  * returns the tree buffer or NULL.
6982  */
6983 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6984 					struct btrfs_root *root, u32 blocksize,
6985 					u64 parent, u64 root_objectid,
6986 					struct btrfs_disk_key *key, int level,
6987 					u64 hint, u64 empty_size)
6988 {
6989 	struct btrfs_key ins;
6990 	struct btrfs_block_rsv *block_rsv;
6991 	struct extent_buffer *buf;
6992 	u64 flags = 0;
6993 	int ret;
6994 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6995 						 SKINNY_METADATA);
6996 
6997 	block_rsv = use_block_rsv(trans, root, blocksize);
6998 	if (IS_ERR(block_rsv))
6999 		return ERR_CAST(block_rsv);
7000 
7001 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7002 				   empty_size, hint, &ins, 0);
7003 	if (ret) {
7004 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7005 		return ERR_PTR(ret);
7006 	}
7007 
7008 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7009 				    blocksize, level);
7010 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7011 
7012 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7013 		if (parent == 0)
7014 			parent = ins.objectid;
7015 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7016 	} else
7017 		BUG_ON(parent > 0);
7018 
7019 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7020 		struct btrfs_delayed_extent_op *extent_op;
7021 		extent_op = btrfs_alloc_delayed_extent_op();
7022 		BUG_ON(!extent_op); /* -ENOMEM */
7023 		if (key)
7024 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7025 		else
7026 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7027 		extent_op->flags_to_set = flags;
7028 		if (skinny_metadata)
7029 			extent_op->update_key = 0;
7030 		else
7031 			extent_op->update_key = 1;
7032 		extent_op->update_flags = 1;
7033 		extent_op->is_data = 0;
7034 		extent_op->level = level;
7035 
7036 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7037 					ins.objectid,
7038 					ins.offset, parent, root_objectid,
7039 					level, BTRFS_ADD_DELAYED_EXTENT,
7040 					extent_op, 0);
7041 		BUG_ON(ret); /* -ENOMEM */
7042 	}
7043 	return buf;
7044 }
7045 
7046 struct walk_control {
7047 	u64 refs[BTRFS_MAX_LEVEL];
7048 	u64 flags[BTRFS_MAX_LEVEL];
7049 	struct btrfs_key update_progress;
7050 	int stage;
7051 	int level;
7052 	int shared_level;
7053 	int update_ref;
7054 	int keep_locks;
7055 	int reada_slot;
7056 	int reada_count;
7057 	int for_reloc;
7058 };
7059 
7060 #define DROP_REFERENCE	1
7061 #define UPDATE_BACKREF	2
7062 
7063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7064 				     struct btrfs_root *root,
7065 				     struct walk_control *wc,
7066 				     struct btrfs_path *path)
7067 {
7068 	u64 bytenr;
7069 	u64 generation;
7070 	u64 refs;
7071 	u64 flags;
7072 	u32 nritems;
7073 	u32 blocksize;
7074 	struct btrfs_key key;
7075 	struct extent_buffer *eb;
7076 	int ret;
7077 	int slot;
7078 	int nread = 0;
7079 
7080 	if (path->slots[wc->level] < wc->reada_slot) {
7081 		wc->reada_count = wc->reada_count * 2 / 3;
7082 		wc->reada_count = max(wc->reada_count, 2);
7083 	} else {
7084 		wc->reada_count = wc->reada_count * 3 / 2;
7085 		wc->reada_count = min_t(int, wc->reada_count,
7086 					BTRFS_NODEPTRS_PER_BLOCK(root));
7087 	}
7088 
7089 	eb = path->nodes[wc->level];
7090 	nritems = btrfs_header_nritems(eb);
7091 	blocksize = btrfs_level_size(root, wc->level - 1);
7092 
7093 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7094 		if (nread >= wc->reada_count)
7095 			break;
7096 
7097 		cond_resched();
7098 		bytenr = btrfs_node_blockptr(eb, slot);
7099 		generation = btrfs_node_ptr_generation(eb, slot);
7100 
7101 		if (slot == path->slots[wc->level])
7102 			goto reada;
7103 
7104 		if (wc->stage == UPDATE_BACKREF &&
7105 		    generation <= root->root_key.offset)
7106 			continue;
7107 
7108 		/* We don't lock the tree block, it's OK to be racy here */
7109 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7110 					       wc->level - 1, 1, &refs,
7111 					       &flags);
7112 		/* We don't care about errors in readahead. */
7113 		if (ret < 0)
7114 			continue;
7115 		BUG_ON(refs == 0);
7116 
7117 		if (wc->stage == DROP_REFERENCE) {
7118 			if (refs == 1)
7119 				goto reada;
7120 
7121 			if (wc->level == 1 &&
7122 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7123 				continue;
7124 			if (!wc->update_ref ||
7125 			    generation <= root->root_key.offset)
7126 				continue;
7127 			btrfs_node_key_to_cpu(eb, &key, slot);
7128 			ret = btrfs_comp_cpu_keys(&key,
7129 						  &wc->update_progress);
7130 			if (ret < 0)
7131 				continue;
7132 		} else {
7133 			if (wc->level == 1 &&
7134 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7135 				continue;
7136 		}
7137 reada:
7138 		ret = readahead_tree_block(root, bytenr, blocksize,
7139 					   generation);
7140 		if (ret)
7141 			break;
7142 		nread++;
7143 	}
7144 	wc->reada_slot = slot;
7145 }
7146 
7147 /*
7148  * helper to process tree block while walking down the tree.
7149  *
7150  * when wc->stage == UPDATE_BACKREF, this function updates
7151  * back refs for pointers in the block.
7152  *
7153  * NOTE: return value 1 means we should stop walking down.
7154  */
7155 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7156 				   struct btrfs_root *root,
7157 				   struct btrfs_path *path,
7158 				   struct walk_control *wc, int lookup_info)
7159 {
7160 	int level = wc->level;
7161 	struct extent_buffer *eb = path->nodes[level];
7162 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7163 	int ret;
7164 
7165 	if (wc->stage == UPDATE_BACKREF &&
7166 	    btrfs_header_owner(eb) != root->root_key.objectid)
7167 		return 1;
7168 
7169 	/*
7170 	 * when reference count of tree block is 1, it won't increase
7171 	 * again. once full backref flag is set, we never clear it.
7172 	 */
7173 	if (lookup_info &&
7174 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7175 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7176 		BUG_ON(!path->locks[level]);
7177 		ret = btrfs_lookup_extent_info(trans, root,
7178 					       eb->start, level, 1,
7179 					       &wc->refs[level],
7180 					       &wc->flags[level]);
7181 		BUG_ON(ret == -ENOMEM);
7182 		if (ret)
7183 			return ret;
7184 		BUG_ON(wc->refs[level] == 0);
7185 	}
7186 
7187 	if (wc->stage == DROP_REFERENCE) {
7188 		if (wc->refs[level] > 1)
7189 			return 1;
7190 
7191 		if (path->locks[level] && !wc->keep_locks) {
7192 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7193 			path->locks[level] = 0;
7194 		}
7195 		return 0;
7196 	}
7197 
7198 	/* wc->stage == UPDATE_BACKREF */
7199 	if (!(wc->flags[level] & flag)) {
7200 		BUG_ON(!path->locks[level]);
7201 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7202 		BUG_ON(ret); /* -ENOMEM */
7203 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7204 		BUG_ON(ret); /* -ENOMEM */
7205 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7206 						  eb->len, flag,
7207 						  btrfs_header_level(eb), 0);
7208 		BUG_ON(ret); /* -ENOMEM */
7209 		wc->flags[level] |= flag;
7210 	}
7211 
7212 	/*
7213 	 * the block is shared by multiple trees, so it's not good to
7214 	 * keep the tree lock
7215 	 */
7216 	if (path->locks[level] && level > 0) {
7217 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7218 		path->locks[level] = 0;
7219 	}
7220 	return 0;
7221 }
7222 
7223 /*
7224  * helper to process tree block pointer.
7225  *
7226  * when wc->stage == DROP_REFERENCE, this function checks
7227  * reference count of the block pointed to. if the block
7228  * is shared and we need update back refs for the subtree
7229  * rooted at the block, this function changes wc->stage to
7230  * UPDATE_BACKREF. if the block is shared and there is no
7231  * need to update back, this function drops the reference
7232  * to the block.
7233  *
7234  * NOTE: return value 1 means we should stop walking down.
7235  */
7236 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7237 				 struct btrfs_root *root,
7238 				 struct btrfs_path *path,
7239 				 struct walk_control *wc, int *lookup_info)
7240 {
7241 	u64 bytenr;
7242 	u64 generation;
7243 	u64 parent;
7244 	u32 blocksize;
7245 	struct btrfs_key key;
7246 	struct extent_buffer *next;
7247 	int level = wc->level;
7248 	int reada = 0;
7249 	int ret = 0;
7250 
7251 	generation = btrfs_node_ptr_generation(path->nodes[level],
7252 					       path->slots[level]);
7253 	/*
7254 	 * if the lower level block was created before the snapshot
7255 	 * was created, we know there is no need to update back refs
7256 	 * for the subtree
7257 	 */
7258 	if (wc->stage == UPDATE_BACKREF &&
7259 	    generation <= root->root_key.offset) {
7260 		*lookup_info = 1;
7261 		return 1;
7262 	}
7263 
7264 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7265 	blocksize = btrfs_level_size(root, level - 1);
7266 
7267 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7268 	if (!next) {
7269 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7270 		if (!next)
7271 			return -ENOMEM;
7272 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7273 					       level - 1);
7274 		reada = 1;
7275 	}
7276 	btrfs_tree_lock(next);
7277 	btrfs_set_lock_blocking(next);
7278 
7279 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7280 				       &wc->refs[level - 1],
7281 				       &wc->flags[level - 1]);
7282 	if (ret < 0) {
7283 		btrfs_tree_unlock(next);
7284 		return ret;
7285 	}
7286 
7287 	if (unlikely(wc->refs[level - 1] == 0)) {
7288 		btrfs_err(root->fs_info, "Missing references.");
7289 		BUG();
7290 	}
7291 	*lookup_info = 0;
7292 
7293 	if (wc->stage == DROP_REFERENCE) {
7294 		if (wc->refs[level - 1] > 1) {
7295 			if (level == 1 &&
7296 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7297 				goto skip;
7298 
7299 			if (!wc->update_ref ||
7300 			    generation <= root->root_key.offset)
7301 				goto skip;
7302 
7303 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7304 					      path->slots[level]);
7305 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7306 			if (ret < 0)
7307 				goto skip;
7308 
7309 			wc->stage = UPDATE_BACKREF;
7310 			wc->shared_level = level - 1;
7311 		}
7312 	} else {
7313 		if (level == 1 &&
7314 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7315 			goto skip;
7316 	}
7317 
7318 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7319 		btrfs_tree_unlock(next);
7320 		free_extent_buffer(next);
7321 		next = NULL;
7322 		*lookup_info = 1;
7323 	}
7324 
7325 	if (!next) {
7326 		if (reada && level == 1)
7327 			reada_walk_down(trans, root, wc, path);
7328 		next = read_tree_block(root, bytenr, blocksize, generation);
7329 		if (!next || !extent_buffer_uptodate(next)) {
7330 			free_extent_buffer(next);
7331 			return -EIO;
7332 		}
7333 		btrfs_tree_lock(next);
7334 		btrfs_set_lock_blocking(next);
7335 	}
7336 
7337 	level--;
7338 	BUG_ON(level != btrfs_header_level(next));
7339 	path->nodes[level] = next;
7340 	path->slots[level] = 0;
7341 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7342 	wc->level = level;
7343 	if (wc->level == 1)
7344 		wc->reada_slot = 0;
7345 	return 0;
7346 skip:
7347 	wc->refs[level - 1] = 0;
7348 	wc->flags[level - 1] = 0;
7349 	if (wc->stage == DROP_REFERENCE) {
7350 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7351 			parent = path->nodes[level]->start;
7352 		} else {
7353 			BUG_ON(root->root_key.objectid !=
7354 			       btrfs_header_owner(path->nodes[level]));
7355 			parent = 0;
7356 		}
7357 
7358 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7359 				root->root_key.objectid, level - 1, 0, 0);
7360 		BUG_ON(ret); /* -ENOMEM */
7361 	}
7362 	btrfs_tree_unlock(next);
7363 	free_extent_buffer(next);
7364 	*lookup_info = 1;
7365 	return 1;
7366 }
7367 
7368 /*
7369  * helper to process tree block while walking up the tree.
7370  *
7371  * when wc->stage == DROP_REFERENCE, this function drops
7372  * reference count on the block.
7373  *
7374  * when wc->stage == UPDATE_BACKREF, this function changes
7375  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7376  * to UPDATE_BACKREF previously while processing the block.
7377  *
7378  * NOTE: return value 1 means we should stop walking up.
7379  */
7380 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7381 				 struct btrfs_root *root,
7382 				 struct btrfs_path *path,
7383 				 struct walk_control *wc)
7384 {
7385 	int ret;
7386 	int level = wc->level;
7387 	struct extent_buffer *eb = path->nodes[level];
7388 	u64 parent = 0;
7389 
7390 	if (wc->stage == UPDATE_BACKREF) {
7391 		BUG_ON(wc->shared_level < level);
7392 		if (level < wc->shared_level)
7393 			goto out;
7394 
7395 		ret = find_next_key(path, level + 1, &wc->update_progress);
7396 		if (ret > 0)
7397 			wc->update_ref = 0;
7398 
7399 		wc->stage = DROP_REFERENCE;
7400 		wc->shared_level = -1;
7401 		path->slots[level] = 0;
7402 
7403 		/*
7404 		 * check reference count again if the block isn't locked.
7405 		 * we should start walking down the tree again if reference
7406 		 * count is one.
7407 		 */
7408 		if (!path->locks[level]) {
7409 			BUG_ON(level == 0);
7410 			btrfs_tree_lock(eb);
7411 			btrfs_set_lock_blocking(eb);
7412 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7413 
7414 			ret = btrfs_lookup_extent_info(trans, root,
7415 						       eb->start, level, 1,
7416 						       &wc->refs[level],
7417 						       &wc->flags[level]);
7418 			if (ret < 0) {
7419 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7420 				path->locks[level] = 0;
7421 				return ret;
7422 			}
7423 			BUG_ON(wc->refs[level] == 0);
7424 			if (wc->refs[level] == 1) {
7425 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7426 				path->locks[level] = 0;
7427 				return 1;
7428 			}
7429 		}
7430 	}
7431 
7432 	/* wc->stage == DROP_REFERENCE */
7433 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7434 
7435 	if (wc->refs[level] == 1) {
7436 		if (level == 0) {
7437 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7438 				ret = btrfs_dec_ref(trans, root, eb, 1,
7439 						    wc->for_reloc);
7440 			else
7441 				ret = btrfs_dec_ref(trans, root, eb, 0,
7442 						    wc->for_reloc);
7443 			BUG_ON(ret); /* -ENOMEM */
7444 		}
7445 		/* make block locked assertion in clean_tree_block happy */
7446 		if (!path->locks[level] &&
7447 		    btrfs_header_generation(eb) == trans->transid) {
7448 			btrfs_tree_lock(eb);
7449 			btrfs_set_lock_blocking(eb);
7450 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7451 		}
7452 		clean_tree_block(trans, root, eb);
7453 	}
7454 
7455 	if (eb == root->node) {
7456 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7457 			parent = eb->start;
7458 		else
7459 			BUG_ON(root->root_key.objectid !=
7460 			       btrfs_header_owner(eb));
7461 	} else {
7462 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7463 			parent = path->nodes[level + 1]->start;
7464 		else
7465 			BUG_ON(root->root_key.objectid !=
7466 			       btrfs_header_owner(path->nodes[level + 1]));
7467 	}
7468 
7469 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7470 out:
7471 	wc->refs[level] = 0;
7472 	wc->flags[level] = 0;
7473 	return 0;
7474 }
7475 
7476 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7477 				   struct btrfs_root *root,
7478 				   struct btrfs_path *path,
7479 				   struct walk_control *wc)
7480 {
7481 	int level = wc->level;
7482 	int lookup_info = 1;
7483 	int ret;
7484 
7485 	while (level >= 0) {
7486 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7487 		if (ret > 0)
7488 			break;
7489 
7490 		if (level == 0)
7491 			break;
7492 
7493 		if (path->slots[level] >=
7494 		    btrfs_header_nritems(path->nodes[level]))
7495 			break;
7496 
7497 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7498 		if (ret > 0) {
7499 			path->slots[level]++;
7500 			continue;
7501 		} else if (ret < 0)
7502 			return ret;
7503 		level = wc->level;
7504 	}
7505 	return 0;
7506 }
7507 
7508 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7509 				 struct btrfs_root *root,
7510 				 struct btrfs_path *path,
7511 				 struct walk_control *wc, int max_level)
7512 {
7513 	int level = wc->level;
7514 	int ret;
7515 
7516 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7517 	while (level < max_level && path->nodes[level]) {
7518 		wc->level = level;
7519 		if (path->slots[level] + 1 <
7520 		    btrfs_header_nritems(path->nodes[level])) {
7521 			path->slots[level]++;
7522 			return 0;
7523 		} else {
7524 			ret = walk_up_proc(trans, root, path, wc);
7525 			if (ret > 0)
7526 				return 0;
7527 
7528 			if (path->locks[level]) {
7529 				btrfs_tree_unlock_rw(path->nodes[level],
7530 						     path->locks[level]);
7531 				path->locks[level] = 0;
7532 			}
7533 			free_extent_buffer(path->nodes[level]);
7534 			path->nodes[level] = NULL;
7535 			level++;
7536 		}
7537 	}
7538 	return 1;
7539 }
7540 
7541 /*
7542  * drop a subvolume tree.
7543  *
7544  * this function traverses the tree freeing any blocks that only
7545  * referenced by the tree.
7546  *
7547  * when a shared tree block is found. this function decreases its
7548  * reference count by one. if update_ref is true, this function
7549  * also make sure backrefs for the shared block and all lower level
7550  * blocks are properly updated.
7551  *
7552  * If called with for_reloc == 0, may exit early with -EAGAIN
7553  */
7554 int btrfs_drop_snapshot(struct btrfs_root *root,
7555 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7556 			 int for_reloc)
7557 {
7558 	struct btrfs_path *path;
7559 	struct btrfs_trans_handle *trans;
7560 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7561 	struct btrfs_root_item *root_item = &root->root_item;
7562 	struct walk_control *wc;
7563 	struct btrfs_key key;
7564 	int err = 0;
7565 	int ret;
7566 	int level;
7567 	bool root_dropped = false;
7568 
7569 	path = btrfs_alloc_path();
7570 	if (!path) {
7571 		err = -ENOMEM;
7572 		goto out;
7573 	}
7574 
7575 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7576 	if (!wc) {
7577 		btrfs_free_path(path);
7578 		err = -ENOMEM;
7579 		goto out;
7580 	}
7581 
7582 	trans = btrfs_start_transaction(tree_root, 0);
7583 	if (IS_ERR(trans)) {
7584 		err = PTR_ERR(trans);
7585 		goto out_free;
7586 	}
7587 
7588 	if (block_rsv)
7589 		trans->block_rsv = block_rsv;
7590 
7591 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7592 		level = btrfs_header_level(root->node);
7593 		path->nodes[level] = btrfs_lock_root_node(root);
7594 		btrfs_set_lock_blocking(path->nodes[level]);
7595 		path->slots[level] = 0;
7596 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7597 		memset(&wc->update_progress, 0,
7598 		       sizeof(wc->update_progress));
7599 	} else {
7600 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7601 		memcpy(&wc->update_progress, &key,
7602 		       sizeof(wc->update_progress));
7603 
7604 		level = root_item->drop_level;
7605 		BUG_ON(level == 0);
7606 		path->lowest_level = level;
7607 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7608 		path->lowest_level = 0;
7609 		if (ret < 0) {
7610 			err = ret;
7611 			goto out_end_trans;
7612 		}
7613 		WARN_ON(ret > 0);
7614 
7615 		/*
7616 		 * unlock our path, this is safe because only this
7617 		 * function is allowed to delete this snapshot
7618 		 */
7619 		btrfs_unlock_up_safe(path, 0);
7620 
7621 		level = btrfs_header_level(root->node);
7622 		while (1) {
7623 			btrfs_tree_lock(path->nodes[level]);
7624 			btrfs_set_lock_blocking(path->nodes[level]);
7625 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7626 
7627 			ret = btrfs_lookup_extent_info(trans, root,
7628 						path->nodes[level]->start,
7629 						level, 1, &wc->refs[level],
7630 						&wc->flags[level]);
7631 			if (ret < 0) {
7632 				err = ret;
7633 				goto out_end_trans;
7634 			}
7635 			BUG_ON(wc->refs[level] == 0);
7636 
7637 			if (level == root_item->drop_level)
7638 				break;
7639 
7640 			btrfs_tree_unlock(path->nodes[level]);
7641 			path->locks[level] = 0;
7642 			WARN_ON(wc->refs[level] != 1);
7643 			level--;
7644 		}
7645 	}
7646 
7647 	wc->level = level;
7648 	wc->shared_level = -1;
7649 	wc->stage = DROP_REFERENCE;
7650 	wc->update_ref = update_ref;
7651 	wc->keep_locks = 0;
7652 	wc->for_reloc = for_reloc;
7653 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7654 
7655 	while (1) {
7656 
7657 		ret = walk_down_tree(trans, root, path, wc);
7658 		if (ret < 0) {
7659 			err = ret;
7660 			break;
7661 		}
7662 
7663 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7664 		if (ret < 0) {
7665 			err = ret;
7666 			break;
7667 		}
7668 
7669 		if (ret > 0) {
7670 			BUG_ON(wc->stage != DROP_REFERENCE);
7671 			break;
7672 		}
7673 
7674 		if (wc->stage == DROP_REFERENCE) {
7675 			level = wc->level;
7676 			btrfs_node_key(path->nodes[level],
7677 				       &root_item->drop_progress,
7678 				       path->slots[level]);
7679 			root_item->drop_level = level;
7680 		}
7681 
7682 		BUG_ON(wc->level == 0);
7683 		if (btrfs_should_end_transaction(trans, tree_root) ||
7684 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7685 			ret = btrfs_update_root(trans, tree_root,
7686 						&root->root_key,
7687 						root_item);
7688 			if (ret) {
7689 				btrfs_abort_transaction(trans, tree_root, ret);
7690 				err = ret;
7691 				goto out_end_trans;
7692 			}
7693 
7694 			btrfs_end_transaction_throttle(trans, tree_root);
7695 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7696 				pr_debug("BTRFS: drop snapshot early exit\n");
7697 				err = -EAGAIN;
7698 				goto out_free;
7699 			}
7700 
7701 			trans = btrfs_start_transaction(tree_root, 0);
7702 			if (IS_ERR(trans)) {
7703 				err = PTR_ERR(trans);
7704 				goto out_free;
7705 			}
7706 			if (block_rsv)
7707 				trans->block_rsv = block_rsv;
7708 		}
7709 	}
7710 	btrfs_release_path(path);
7711 	if (err)
7712 		goto out_end_trans;
7713 
7714 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7715 	if (ret) {
7716 		btrfs_abort_transaction(trans, tree_root, ret);
7717 		goto out_end_trans;
7718 	}
7719 
7720 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7721 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7722 				      NULL, NULL);
7723 		if (ret < 0) {
7724 			btrfs_abort_transaction(trans, tree_root, ret);
7725 			err = ret;
7726 			goto out_end_trans;
7727 		} else if (ret > 0) {
7728 			/* if we fail to delete the orphan item this time
7729 			 * around, it'll get picked up the next time.
7730 			 *
7731 			 * The most common failure here is just -ENOENT.
7732 			 */
7733 			btrfs_del_orphan_item(trans, tree_root,
7734 					      root->root_key.objectid);
7735 		}
7736 	}
7737 
7738 	if (root->in_radix) {
7739 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7740 	} else {
7741 		free_extent_buffer(root->node);
7742 		free_extent_buffer(root->commit_root);
7743 		btrfs_put_fs_root(root);
7744 	}
7745 	root_dropped = true;
7746 out_end_trans:
7747 	btrfs_end_transaction_throttle(trans, tree_root);
7748 out_free:
7749 	kfree(wc);
7750 	btrfs_free_path(path);
7751 out:
7752 	/*
7753 	 * So if we need to stop dropping the snapshot for whatever reason we
7754 	 * need to make sure to add it back to the dead root list so that we
7755 	 * keep trying to do the work later.  This also cleans up roots if we
7756 	 * don't have it in the radix (like when we recover after a power fail
7757 	 * or unmount) so we don't leak memory.
7758 	 */
7759 	if (!for_reloc && root_dropped == false)
7760 		btrfs_add_dead_root(root);
7761 	if (err && err != -EAGAIN)
7762 		btrfs_std_error(root->fs_info, err);
7763 	return err;
7764 }
7765 
7766 /*
7767  * drop subtree rooted at tree block 'node'.
7768  *
7769  * NOTE: this function will unlock and release tree block 'node'
7770  * only used by relocation code
7771  */
7772 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7773 			struct btrfs_root *root,
7774 			struct extent_buffer *node,
7775 			struct extent_buffer *parent)
7776 {
7777 	struct btrfs_path *path;
7778 	struct walk_control *wc;
7779 	int level;
7780 	int parent_level;
7781 	int ret = 0;
7782 	int wret;
7783 
7784 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7785 
7786 	path = btrfs_alloc_path();
7787 	if (!path)
7788 		return -ENOMEM;
7789 
7790 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7791 	if (!wc) {
7792 		btrfs_free_path(path);
7793 		return -ENOMEM;
7794 	}
7795 
7796 	btrfs_assert_tree_locked(parent);
7797 	parent_level = btrfs_header_level(parent);
7798 	extent_buffer_get(parent);
7799 	path->nodes[parent_level] = parent;
7800 	path->slots[parent_level] = btrfs_header_nritems(parent);
7801 
7802 	btrfs_assert_tree_locked(node);
7803 	level = btrfs_header_level(node);
7804 	path->nodes[level] = node;
7805 	path->slots[level] = 0;
7806 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7807 
7808 	wc->refs[parent_level] = 1;
7809 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7810 	wc->level = level;
7811 	wc->shared_level = -1;
7812 	wc->stage = DROP_REFERENCE;
7813 	wc->update_ref = 0;
7814 	wc->keep_locks = 1;
7815 	wc->for_reloc = 1;
7816 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7817 
7818 	while (1) {
7819 		wret = walk_down_tree(trans, root, path, wc);
7820 		if (wret < 0) {
7821 			ret = wret;
7822 			break;
7823 		}
7824 
7825 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7826 		if (wret < 0)
7827 			ret = wret;
7828 		if (wret != 0)
7829 			break;
7830 	}
7831 
7832 	kfree(wc);
7833 	btrfs_free_path(path);
7834 	return ret;
7835 }
7836 
7837 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7838 {
7839 	u64 num_devices;
7840 	u64 stripped;
7841 
7842 	/*
7843 	 * if restripe for this chunk_type is on pick target profile and
7844 	 * return, otherwise do the usual balance
7845 	 */
7846 	stripped = get_restripe_target(root->fs_info, flags);
7847 	if (stripped)
7848 		return extended_to_chunk(stripped);
7849 
7850 	/*
7851 	 * we add in the count of missing devices because we want
7852 	 * to make sure that any RAID levels on a degraded FS
7853 	 * continue to be honored.
7854 	 */
7855 	num_devices = root->fs_info->fs_devices->rw_devices +
7856 		root->fs_info->fs_devices->missing_devices;
7857 
7858 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7859 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7860 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7861 
7862 	if (num_devices == 1) {
7863 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7864 		stripped = flags & ~stripped;
7865 
7866 		/* turn raid0 into single device chunks */
7867 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7868 			return stripped;
7869 
7870 		/* turn mirroring into duplication */
7871 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7872 			     BTRFS_BLOCK_GROUP_RAID10))
7873 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7874 	} else {
7875 		/* they already had raid on here, just return */
7876 		if (flags & stripped)
7877 			return flags;
7878 
7879 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7880 		stripped = flags & ~stripped;
7881 
7882 		/* switch duplicated blocks with raid1 */
7883 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7884 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7885 
7886 		/* this is drive concat, leave it alone */
7887 	}
7888 
7889 	return flags;
7890 }
7891 
7892 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7893 {
7894 	struct btrfs_space_info *sinfo = cache->space_info;
7895 	u64 num_bytes;
7896 	u64 min_allocable_bytes;
7897 	int ret = -ENOSPC;
7898 
7899 
7900 	/*
7901 	 * We need some metadata space and system metadata space for
7902 	 * allocating chunks in some corner cases until we force to set
7903 	 * it to be readonly.
7904 	 */
7905 	if ((sinfo->flags &
7906 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7907 	    !force)
7908 		min_allocable_bytes = 1 * 1024 * 1024;
7909 	else
7910 		min_allocable_bytes = 0;
7911 
7912 	spin_lock(&sinfo->lock);
7913 	spin_lock(&cache->lock);
7914 
7915 	if (cache->ro) {
7916 		ret = 0;
7917 		goto out;
7918 	}
7919 
7920 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7921 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7922 
7923 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7924 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7925 	    min_allocable_bytes <= sinfo->total_bytes) {
7926 		sinfo->bytes_readonly += num_bytes;
7927 		cache->ro = 1;
7928 		ret = 0;
7929 	}
7930 out:
7931 	spin_unlock(&cache->lock);
7932 	spin_unlock(&sinfo->lock);
7933 	return ret;
7934 }
7935 
7936 int btrfs_set_block_group_ro(struct btrfs_root *root,
7937 			     struct btrfs_block_group_cache *cache)
7938 
7939 {
7940 	struct btrfs_trans_handle *trans;
7941 	u64 alloc_flags;
7942 	int ret;
7943 
7944 	BUG_ON(cache->ro);
7945 
7946 	trans = btrfs_join_transaction(root);
7947 	if (IS_ERR(trans))
7948 		return PTR_ERR(trans);
7949 
7950 	alloc_flags = update_block_group_flags(root, cache->flags);
7951 	if (alloc_flags != cache->flags) {
7952 		ret = do_chunk_alloc(trans, root, alloc_flags,
7953 				     CHUNK_ALLOC_FORCE);
7954 		if (ret < 0)
7955 			goto out;
7956 	}
7957 
7958 	ret = set_block_group_ro(cache, 0);
7959 	if (!ret)
7960 		goto out;
7961 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7962 	ret = do_chunk_alloc(trans, root, alloc_flags,
7963 			     CHUNK_ALLOC_FORCE);
7964 	if (ret < 0)
7965 		goto out;
7966 	ret = set_block_group_ro(cache, 0);
7967 out:
7968 	btrfs_end_transaction(trans, root);
7969 	return ret;
7970 }
7971 
7972 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7973 			    struct btrfs_root *root, u64 type)
7974 {
7975 	u64 alloc_flags = get_alloc_profile(root, type);
7976 	return do_chunk_alloc(trans, root, alloc_flags,
7977 			      CHUNK_ALLOC_FORCE);
7978 }
7979 
7980 /*
7981  * helper to account the unused space of all the readonly block group in the
7982  * list. takes mirrors into account.
7983  */
7984 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7985 {
7986 	struct btrfs_block_group_cache *block_group;
7987 	u64 free_bytes = 0;
7988 	int factor;
7989 
7990 	list_for_each_entry(block_group, groups_list, list) {
7991 		spin_lock(&block_group->lock);
7992 
7993 		if (!block_group->ro) {
7994 			spin_unlock(&block_group->lock);
7995 			continue;
7996 		}
7997 
7998 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 					  BTRFS_BLOCK_GROUP_RAID10 |
8000 					  BTRFS_BLOCK_GROUP_DUP))
8001 			factor = 2;
8002 		else
8003 			factor = 1;
8004 
8005 		free_bytes += (block_group->key.offset -
8006 			       btrfs_block_group_used(&block_group->item)) *
8007 			       factor;
8008 
8009 		spin_unlock(&block_group->lock);
8010 	}
8011 
8012 	return free_bytes;
8013 }
8014 
8015 /*
8016  * helper to account the unused space of all the readonly block group in the
8017  * space_info. takes mirrors into account.
8018  */
8019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8020 {
8021 	int i;
8022 	u64 free_bytes = 0;
8023 
8024 	spin_lock(&sinfo->lock);
8025 
8026 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8027 		if (!list_empty(&sinfo->block_groups[i]))
8028 			free_bytes += __btrfs_get_ro_block_group_free_space(
8029 						&sinfo->block_groups[i]);
8030 
8031 	spin_unlock(&sinfo->lock);
8032 
8033 	return free_bytes;
8034 }
8035 
8036 void btrfs_set_block_group_rw(struct btrfs_root *root,
8037 			      struct btrfs_block_group_cache *cache)
8038 {
8039 	struct btrfs_space_info *sinfo = cache->space_info;
8040 	u64 num_bytes;
8041 
8042 	BUG_ON(!cache->ro);
8043 
8044 	spin_lock(&sinfo->lock);
8045 	spin_lock(&cache->lock);
8046 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8047 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8048 	sinfo->bytes_readonly -= num_bytes;
8049 	cache->ro = 0;
8050 	spin_unlock(&cache->lock);
8051 	spin_unlock(&sinfo->lock);
8052 }
8053 
8054 /*
8055  * checks to see if its even possible to relocate this block group.
8056  *
8057  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8058  * ok to go ahead and try.
8059  */
8060 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8061 {
8062 	struct btrfs_block_group_cache *block_group;
8063 	struct btrfs_space_info *space_info;
8064 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8065 	struct btrfs_device *device;
8066 	struct btrfs_trans_handle *trans;
8067 	u64 min_free;
8068 	u64 dev_min = 1;
8069 	u64 dev_nr = 0;
8070 	u64 target;
8071 	int index;
8072 	int full = 0;
8073 	int ret = 0;
8074 
8075 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8076 
8077 	/* odd, couldn't find the block group, leave it alone */
8078 	if (!block_group)
8079 		return -1;
8080 
8081 	min_free = btrfs_block_group_used(&block_group->item);
8082 
8083 	/* no bytes used, we're good */
8084 	if (!min_free)
8085 		goto out;
8086 
8087 	space_info = block_group->space_info;
8088 	spin_lock(&space_info->lock);
8089 
8090 	full = space_info->full;
8091 
8092 	/*
8093 	 * if this is the last block group we have in this space, we can't
8094 	 * relocate it unless we're able to allocate a new chunk below.
8095 	 *
8096 	 * Otherwise, we need to make sure we have room in the space to handle
8097 	 * all of the extents from this block group.  If we can, we're good
8098 	 */
8099 	if ((space_info->total_bytes != block_group->key.offset) &&
8100 	    (space_info->bytes_used + space_info->bytes_reserved +
8101 	     space_info->bytes_pinned + space_info->bytes_readonly +
8102 	     min_free < space_info->total_bytes)) {
8103 		spin_unlock(&space_info->lock);
8104 		goto out;
8105 	}
8106 	spin_unlock(&space_info->lock);
8107 
8108 	/*
8109 	 * ok we don't have enough space, but maybe we have free space on our
8110 	 * devices to allocate new chunks for relocation, so loop through our
8111 	 * alloc devices and guess if we have enough space.  if this block
8112 	 * group is going to be restriped, run checks against the target
8113 	 * profile instead of the current one.
8114 	 */
8115 	ret = -1;
8116 
8117 	/*
8118 	 * index:
8119 	 *      0: raid10
8120 	 *      1: raid1
8121 	 *      2: dup
8122 	 *      3: raid0
8123 	 *      4: single
8124 	 */
8125 	target = get_restripe_target(root->fs_info, block_group->flags);
8126 	if (target) {
8127 		index = __get_raid_index(extended_to_chunk(target));
8128 	} else {
8129 		/*
8130 		 * this is just a balance, so if we were marked as full
8131 		 * we know there is no space for a new chunk
8132 		 */
8133 		if (full)
8134 			goto out;
8135 
8136 		index = get_block_group_index(block_group);
8137 	}
8138 
8139 	if (index == BTRFS_RAID_RAID10) {
8140 		dev_min = 4;
8141 		/* Divide by 2 */
8142 		min_free >>= 1;
8143 	} else if (index == BTRFS_RAID_RAID1) {
8144 		dev_min = 2;
8145 	} else if (index == BTRFS_RAID_DUP) {
8146 		/* Multiply by 2 */
8147 		min_free <<= 1;
8148 	} else if (index == BTRFS_RAID_RAID0) {
8149 		dev_min = fs_devices->rw_devices;
8150 		do_div(min_free, dev_min);
8151 	}
8152 
8153 	/* We need to do this so that we can look at pending chunks */
8154 	trans = btrfs_join_transaction(root);
8155 	if (IS_ERR(trans)) {
8156 		ret = PTR_ERR(trans);
8157 		goto out;
8158 	}
8159 
8160 	mutex_lock(&root->fs_info->chunk_mutex);
8161 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8162 		u64 dev_offset;
8163 
8164 		/*
8165 		 * check to make sure we can actually find a chunk with enough
8166 		 * space to fit our block group in.
8167 		 */
8168 		if (device->total_bytes > device->bytes_used + min_free &&
8169 		    !device->is_tgtdev_for_dev_replace) {
8170 			ret = find_free_dev_extent(trans, device, min_free,
8171 						   &dev_offset, NULL);
8172 			if (!ret)
8173 				dev_nr++;
8174 
8175 			if (dev_nr >= dev_min)
8176 				break;
8177 
8178 			ret = -1;
8179 		}
8180 	}
8181 	mutex_unlock(&root->fs_info->chunk_mutex);
8182 	btrfs_end_transaction(trans, root);
8183 out:
8184 	btrfs_put_block_group(block_group);
8185 	return ret;
8186 }
8187 
8188 static int find_first_block_group(struct btrfs_root *root,
8189 		struct btrfs_path *path, struct btrfs_key *key)
8190 {
8191 	int ret = 0;
8192 	struct btrfs_key found_key;
8193 	struct extent_buffer *leaf;
8194 	int slot;
8195 
8196 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8197 	if (ret < 0)
8198 		goto out;
8199 
8200 	while (1) {
8201 		slot = path->slots[0];
8202 		leaf = path->nodes[0];
8203 		if (slot >= btrfs_header_nritems(leaf)) {
8204 			ret = btrfs_next_leaf(root, path);
8205 			if (ret == 0)
8206 				continue;
8207 			if (ret < 0)
8208 				goto out;
8209 			break;
8210 		}
8211 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8212 
8213 		if (found_key.objectid >= key->objectid &&
8214 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8215 			ret = 0;
8216 			goto out;
8217 		}
8218 		path->slots[0]++;
8219 	}
8220 out:
8221 	return ret;
8222 }
8223 
8224 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8225 {
8226 	struct btrfs_block_group_cache *block_group;
8227 	u64 last = 0;
8228 
8229 	while (1) {
8230 		struct inode *inode;
8231 
8232 		block_group = btrfs_lookup_first_block_group(info, last);
8233 		while (block_group) {
8234 			spin_lock(&block_group->lock);
8235 			if (block_group->iref)
8236 				break;
8237 			spin_unlock(&block_group->lock);
8238 			block_group = next_block_group(info->tree_root,
8239 						       block_group);
8240 		}
8241 		if (!block_group) {
8242 			if (last == 0)
8243 				break;
8244 			last = 0;
8245 			continue;
8246 		}
8247 
8248 		inode = block_group->inode;
8249 		block_group->iref = 0;
8250 		block_group->inode = NULL;
8251 		spin_unlock(&block_group->lock);
8252 		iput(inode);
8253 		last = block_group->key.objectid + block_group->key.offset;
8254 		btrfs_put_block_group(block_group);
8255 	}
8256 }
8257 
8258 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8259 {
8260 	struct btrfs_block_group_cache *block_group;
8261 	struct btrfs_space_info *space_info;
8262 	struct btrfs_caching_control *caching_ctl;
8263 	struct rb_node *n;
8264 
8265 	down_write(&info->extent_commit_sem);
8266 	while (!list_empty(&info->caching_block_groups)) {
8267 		caching_ctl = list_entry(info->caching_block_groups.next,
8268 					 struct btrfs_caching_control, list);
8269 		list_del(&caching_ctl->list);
8270 		put_caching_control(caching_ctl);
8271 	}
8272 	up_write(&info->extent_commit_sem);
8273 
8274 	spin_lock(&info->block_group_cache_lock);
8275 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8276 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8277 				       cache_node);
8278 		rb_erase(&block_group->cache_node,
8279 			 &info->block_group_cache_tree);
8280 		spin_unlock(&info->block_group_cache_lock);
8281 
8282 		down_write(&block_group->space_info->groups_sem);
8283 		list_del(&block_group->list);
8284 		up_write(&block_group->space_info->groups_sem);
8285 
8286 		if (block_group->cached == BTRFS_CACHE_STARTED)
8287 			wait_block_group_cache_done(block_group);
8288 
8289 		/*
8290 		 * We haven't cached this block group, which means we could
8291 		 * possibly have excluded extents on this block group.
8292 		 */
8293 		if (block_group->cached == BTRFS_CACHE_NO ||
8294 		    block_group->cached == BTRFS_CACHE_ERROR)
8295 			free_excluded_extents(info->extent_root, block_group);
8296 
8297 		btrfs_remove_free_space_cache(block_group);
8298 		btrfs_put_block_group(block_group);
8299 
8300 		spin_lock(&info->block_group_cache_lock);
8301 	}
8302 	spin_unlock(&info->block_group_cache_lock);
8303 
8304 	/* now that all the block groups are freed, go through and
8305 	 * free all the space_info structs.  This is only called during
8306 	 * the final stages of unmount, and so we know nobody is
8307 	 * using them.  We call synchronize_rcu() once before we start,
8308 	 * just to be on the safe side.
8309 	 */
8310 	synchronize_rcu();
8311 
8312 	release_global_block_rsv(info);
8313 
8314 	while (!list_empty(&info->space_info)) {
8315 		int i;
8316 
8317 		space_info = list_entry(info->space_info.next,
8318 					struct btrfs_space_info,
8319 					list);
8320 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8321 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8322 			    space_info->bytes_reserved > 0 ||
8323 			    space_info->bytes_may_use > 0)) {
8324 				dump_space_info(space_info, 0, 0);
8325 			}
8326 		}
8327 		list_del(&space_info->list);
8328 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8329 			struct kobject *kobj;
8330 			kobj = &space_info->block_group_kobjs[i];
8331 			if (kobj->parent) {
8332 				kobject_del(kobj);
8333 				kobject_put(kobj);
8334 			}
8335 		}
8336 		kobject_del(&space_info->kobj);
8337 		kobject_put(&space_info->kobj);
8338 	}
8339 	return 0;
8340 }
8341 
8342 static void __link_block_group(struct btrfs_space_info *space_info,
8343 			       struct btrfs_block_group_cache *cache)
8344 {
8345 	int index = get_block_group_index(cache);
8346 
8347 	down_write(&space_info->groups_sem);
8348 	if (list_empty(&space_info->block_groups[index])) {
8349 		struct kobject *kobj = &space_info->block_group_kobjs[index];
8350 		int ret;
8351 
8352 		kobject_get(&space_info->kobj); /* put in release */
8353 		ret = kobject_add(kobj, &space_info->kobj, "%s",
8354 				  get_raid_name(index));
8355 		if (ret) {
8356 			pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8357 			kobject_put(&space_info->kobj);
8358 		}
8359 	}
8360 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8361 	up_write(&space_info->groups_sem);
8362 }
8363 
8364 static struct btrfs_block_group_cache *
8365 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8366 {
8367 	struct btrfs_block_group_cache *cache;
8368 
8369 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8370 	if (!cache)
8371 		return NULL;
8372 
8373 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8374 					GFP_NOFS);
8375 	if (!cache->free_space_ctl) {
8376 		kfree(cache);
8377 		return NULL;
8378 	}
8379 
8380 	cache->key.objectid = start;
8381 	cache->key.offset = size;
8382 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8383 
8384 	cache->sectorsize = root->sectorsize;
8385 	cache->fs_info = root->fs_info;
8386 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8387 					       &root->fs_info->mapping_tree,
8388 					       start);
8389 	atomic_set(&cache->count, 1);
8390 	spin_lock_init(&cache->lock);
8391 	INIT_LIST_HEAD(&cache->list);
8392 	INIT_LIST_HEAD(&cache->cluster_list);
8393 	INIT_LIST_HEAD(&cache->new_bg_list);
8394 	btrfs_init_free_space_ctl(cache);
8395 
8396 	return cache;
8397 }
8398 
8399 int btrfs_read_block_groups(struct btrfs_root *root)
8400 {
8401 	struct btrfs_path *path;
8402 	int ret;
8403 	struct btrfs_block_group_cache *cache;
8404 	struct btrfs_fs_info *info = root->fs_info;
8405 	struct btrfs_space_info *space_info;
8406 	struct btrfs_key key;
8407 	struct btrfs_key found_key;
8408 	struct extent_buffer *leaf;
8409 	int need_clear = 0;
8410 	u64 cache_gen;
8411 
8412 	root = info->extent_root;
8413 	key.objectid = 0;
8414 	key.offset = 0;
8415 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8416 	path = btrfs_alloc_path();
8417 	if (!path)
8418 		return -ENOMEM;
8419 	path->reada = 1;
8420 
8421 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8422 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8423 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8424 		need_clear = 1;
8425 	if (btrfs_test_opt(root, CLEAR_CACHE))
8426 		need_clear = 1;
8427 
8428 	while (1) {
8429 		ret = find_first_block_group(root, path, &key);
8430 		if (ret > 0)
8431 			break;
8432 		if (ret != 0)
8433 			goto error;
8434 
8435 		leaf = path->nodes[0];
8436 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8437 
8438 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8439 						       found_key.offset);
8440 		if (!cache) {
8441 			ret = -ENOMEM;
8442 			goto error;
8443 		}
8444 
8445 		if (need_clear) {
8446 			/*
8447 			 * When we mount with old space cache, we need to
8448 			 * set BTRFS_DC_CLEAR and set dirty flag.
8449 			 *
8450 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8451 			 *    truncate the old free space cache inode and
8452 			 *    setup a new one.
8453 			 * b) Setting 'dirty flag' makes sure that we flush
8454 			 *    the new space cache info onto disk.
8455 			 */
8456 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8457 			if (btrfs_test_opt(root, SPACE_CACHE))
8458 				cache->dirty = 1;
8459 		}
8460 
8461 		read_extent_buffer(leaf, &cache->item,
8462 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8463 				   sizeof(cache->item));
8464 		cache->flags = btrfs_block_group_flags(&cache->item);
8465 
8466 		key.objectid = found_key.objectid + found_key.offset;
8467 		btrfs_release_path(path);
8468 
8469 		/*
8470 		 * We need to exclude the super stripes now so that the space
8471 		 * info has super bytes accounted for, otherwise we'll think
8472 		 * we have more space than we actually do.
8473 		 */
8474 		ret = exclude_super_stripes(root, cache);
8475 		if (ret) {
8476 			/*
8477 			 * We may have excluded something, so call this just in
8478 			 * case.
8479 			 */
8480 			free_excluded_extents(root, cache);
8481 			btrfs_put_block_group(cache);
8482 			goto error;
8483 		}
8484 
8485 		/*
8486 		 * check for two cases, either we are full, and therefore
8487 		 * don't need to bother with the caching work since we won't
8488 		 * find any space, or we are empty, and we can just add all
8489 		 * the space in and be done with it.  This saves us _alot_ of
8490 		 * time, particularly in the full case.
8491 		 */
8492 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8493 			cache->last_byte_to_unpin = (u64)-1;
8494 			cache->cached = BTRFS_CACHE_FINISHED;
8495 			free_excluded_extents(root, cache);
8496 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8497 			cache->last_byte_to_unpin = (u64)-1;
8498 			cache->cached = BTRFS_CACHE_FINISHED;
8499 			add_new_free_space(cache, root->fs_info,
8500 					   found_key.objectid,
8501 					   found_key.objectid +
8502 					   found_key.offset);
8503 			free_excluded_extents(root, cache);
8504 		}
8505 
8506 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8507 		if (ret) {
8508 			btrfs_remove_free_space_cache(cache);
8509 			btrfs_put_block_group(cache);
8510 			goto error;
8511 		}
8512 
8513 		ret = update_space_info(info, cache->flags, found_key.offset,
8514 					btrfs_block_group_used(&cache->item),
8515 					&space_info);
8516 		if (ret) {
8517 			btrfs_remove_free_space_cache(cache);
8518 			spin_lock(&info->block_group_cache_lock);
8519 			rb_erase(&cache->cache_node,
8520 				 &info->block_group_cache_tree);
8521 			spin_unlock(&info->block_group_cache_lock);
8522 			btrfs_put_block_group(cache);
8523 			goto error;
8524 		}
8525 
8526 		cache->space_info = space_info;
8527 		spin_lock(&cache->space_info->lock);
8528 		cache->space_info->bytes_readonly += cache->bytes_super;
8529 		spin_unlock(&cache->space_info->lock);
8530 
8531 		__link_block_group(space_info, cache);
8532 
8533 		set_avail_alloc_bits(root->fs_info, cache->flags);
8534 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8535 			set_block_group_ro(cache, 1);
8536 	}
8537 
8538 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8539 		if (!(get_alloc_profile(root, space_info->flags) &
8540 		      (BTRFS_BLOCK_GROUP_RAID10 |
8541 		       BTRFS_BLOCK_GROUP_RAID1 |
8542 		       BTRFS_BLOCK_GROUP_RAID5 |
8543 		       BTRFS_BLOCK_GROUP_RAID6 |
8544 		       BTRFS_BLOCK_GROUP_DUP)))
8545 			continue;
8546 		/*
8547 		 * avoid allocating from un-mirrored block group if there are
8548 		 * mirrored block groups.
8549 		 */
8550 		list_for_each_entry(cache,
8551 				&space_info->block_groups[BTRFS_RAID_RAID0],
8552 				list)
8553 			set_block_group_ro(cache, 1);
8554 		list_for_each_entry(cache,
8555 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8556 				list)
8557 			set_block_group_ro(cache, 1);
8558 	}
8559 
8560 	init_global_block_rsv(info);
8561 	ret = 0;
8562 error:
8563 	btrfs_free_path(path);
8564 	return ret;
8565 }
8566 
8567 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8568 				       struct btrfs_root *root)
8569 {
8570 	struct btrfs_block_group_cache *block_group, *tmp;
8571 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8572 	struct btrfs_block_group_item item;
8573 	struct btrfs_key key;
8574 	int ret = 0;
8575 
8576 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8577 				 new_bg_list) {
8578 		list_del_init(&block_group->new_bg_list);
8579 
8580 		if (ret)
8581 			continue;
8582 
8583 		spin_lock(&block_group->lock);
8584 		memcpy(&item, &block_group->item, sizeof(item));
8585 		memcpy(&key, &block_group->key, sizeof(key));
8586 		spin_unlock(&block_group->lock);
8587 
8588 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8589 					sizeof(item));
8590 		if (ret)
8591 			btrfs_abort_transaction(trans, extent_root, ret);
8592 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8593 					       key.objectid, key.offset);
8594 		if (ret)
8595 			btrfs_abort_transaction(trans, extent_root, ret);
8596 	}
8597 }
8598 
8599 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8600 			   struct btrfs_root *root, u64 bytes_used,
8601 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8602 			   u64 size)
8603 {
8604 	int ret;
8605 	struct btrfs_root *extent_root;
8606 	struct btrfs_block_group_cache *cache;
8607 
8608 	extent_root = root->fs_info->extent_root;
8609 
8610 	root->fs_info->last_trans_log_full_commit = trans->transid;
8611 
8612 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8613 	if (!cache)
8614 		return -ENOMEM;
8615 
8616 	btrfs_set_block_group_used(&cache->item, bytes_used);
8617 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8618 	btrfs_set_block_group_flags(&cache->item, type);
8619 
8620 	cache->flags = type;
8621 	cache->last_byte_to_unpin = (u64)-1;
8622 	cache->cached = BTRFS_CACHE_FINISHED;
8623 	ret = exclude_super_stripes(root, cache);
8624 	if (ret) {
8625 		/*
8626 		 * We may have excluded something, so call this just in
8627 		 * case.
8628 		 */
8629 		free_excluded_extents(root, cache);
8630 		btrfs_put_block_group(cache);
8631 		return ret;
8632 	}
8633 
8634 	add_new_free_space(cache, root->fs_info, chunk_offset,
8635 			   chunk_offset + size);
8636 
8637 	free_excluded_extents(root, cache);
8638 
8639 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8640 	if (ret) {
8641 		btrfs_remove_free_space_cache(cache);
8642 		btrfs_put_block_group(cache);
8643 		return ret;
8644 	}
8645 
8646 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8647 				&cache->space_info);
8648 	if (ret) {
8649 		btrfs_remove_free_space_cache(cache);
8650 		spin_lock(&root->fs_info->block_group_cache_lock);
8651 		rb_erase(&cache->cache_node,
8652 			 &root->fs_info->block_group_cache_tree);
8653 		spin_unlock(&root->fs_info->block_group_cache_lock);
8654 		btrfs_put_block_group(cache);
8655 		return ret;
8656 	}
8657 	update_global_block_rsv(root->fs_info);
8658 
8659 	spin_lock(&cache->space_info->lock);
8660 	cache->space_info->bytes_readonly += cache->bytes_super;
8661 	spin_unlock(&cache->space_info->lock);
8662 
8663 	__link_block_group(cache->space_info, cache);
8664 
8665 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8666 
8667 	set_avail_alloc_bits(extent_root->fs_info, type);
8668 
8669 	return 0;
8670 }
8671 
8672 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8673 {
8674 	u64 extra_flags = chunk_to_extended(flags) &
8675 				BTRFS_EXTENDED_PROFILE_MASK;
8676 
8677 	write_seqlock(&fs_info->profiles_lock);
8678 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8679 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8680 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8681 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8682 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8683 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8684 	write_sequnlock(&fs_info->profiles_lock);
8685 }
8686 
8687 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8688 			     struct btrfs_root *root, u64 group_start)
8689 {
8690 	struct btrfs_path *path;
8691 	struct btrfs_block_group_cache *block_group;
8692 	struct btrfs_free_cluster *cluster;
8693 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8694 	struct btrfs_key key;
8695 	struct inode *inode;
8696 	int ret;
8697 	int index;
8698 	int factor;
8699 
8700 	root = root->fs_info->extent_root;
8701 
8702 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8703 	BUG_ON(!block_group);
8704 	BUG_ON(!block_group->ro);
8705 
8706 	/*
8707 	 * Free the reserved super bytes from this block group before
8708 	 * remove it.
8709 	 */
8710 	free_excluded_extents(root, block_group);
8711 
8712 	memcpy(&key, &block_group->key, sizeof(key));
8713 	index = get_block_group_index(block_group);
8714 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8715 				  BTRFS_BLOCK_GROUP_RAID1 |
8716 				  BTRFS_BLOCK_GROUP_RAID10))
8717 		factor = 2;
8718 	else
8719 		factor = 1;
8720 
8721 	/* make sure this block group isn't part of an allocation cluster */
8722 	cluster = &root->fs_info->data_alloc_cluster;
8723 	spin_lock(&cluster->refill_lock);
8724 	btrfs_return_cluster_to_free_space(block_group, cluster);
8725 	spin_unlock(&cluster->refill_lock);
8726 
8727 	/*
8728 	 * make sure this block group isn't part of a metadata
8729 	 * allocation cluster
8730 	 */
8731 	cluster = &root->fs_info->meta_alloc_cluster;
8732 	spin_lock(&cluster->refill_lock);
8733 	btrfs_return_cluster_to_free_space(block_group, cluster);
8734 	spin_unlock(&cluster->refill_lock);
8735 
8736 	path = btrfs_alloc_path();
8737 	if (!path) {
8738 		ret = -ENOMEM;
8739 		goto out;
8740 	}
8741 
8742 	inode = lookup_free_space_inode(tree_root, block_group, path);
8743 	if (!IS_ERR(inode)) {
8744 		ret = btrfs_orphan_add(trans, inode);
8745 		if (ret) {
8746 			btrfs_add_delayed_iput(inode);
8747 			goto out;
8748 		}
8749 		clear_nlink(inode);
8750 		/* One for the block groups ref */
8751 		spin_lock(&block_group->lock);
8752 		if (block_group->iref) {
8753 			block_group->iref = 0;
8754 			block_group->inode = NULL;
8755 			spin_unlock(&block_group->lock);
8756 			iput(inode);
8757 		} else {
8758 			spin_unlock(&block_group->lock);
8759 		}
8760 		/* One for our lookup ref */
8761 		btrfs_add_delayed_iput(inode);
8762 	}
8763 
8764 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8765 	key.offset = block_group->key.objectid;
8766 	key.type = 0;
8767 
8768 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8769 	if (ret < 0)
8770 		goto out;
8771 	if (ret > 0)
8772 		btrfs_release_path(path);
8773 	if (ret == 0) {
8774 		ret = btrfs_del_item(trans, tree_root, path);
8775 		if (ret)
8776 			goto out;
8777 		btrfs_release_path(path);
8778 	}
8779 
8780 	spin_lock(&root->fs_info->block_group_cache_lock);
8781 	rb_erase(&block_group->cache_node,
8782 		 &root->fs_info->block_group_cache_tree);
8783 
8784 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8785 		root->fs_info->first_logical_byte = (u64)-1;
8786 	spin_unlock(&root->fs_info->block_group_cache_lock);
8787 
8788 	down_write(&block_group->space_info->groups_sem);
8789 	/*
8790 	 * we must use list_del_init so people can check to see if they
8791 	 * are still on the list after taking the semaphore
8792 	 */
8793 	list_del_init(&block_group->list);
8794 	if (list_empty(&block_group->space_info->block_groups[index])) {
8795 		kobject_del(&block_group->space_info->block_group_kobjs[index]);
8796 		kobject_put(&block_group->space_info->block_group_kobjs[index]);
8797 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8798 	}
8799 	up_write(&block_group->space_info->groups_sem);
8800 
8801 	if (block_group->cached == BTRFS_CACHE_STARTED)
8802 		wait_block_group_cache_done(block_group);
8803 
8804 	btrfs_remove_free_space_cache(block_group);
8805 
8806 	spin_lock(&block_group->space_info->lock);
8807 	block_group->space_info->total_bytes -= block_group->key.offset;
8808 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8809 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8810 	spin_unlock(&block_group->space_info->lock);
8811 
8812 	memcpy(&key, &block_group->key, sizeof(key));
8813 
8814 	btrfs_clear_space_info_full(root->fs_info);
8815 
8816 	btrfs_put_block_group(block_group);
8817 	btrfs_put_block_group(block_group);
8818 
8819 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8820 	if (ret > 0)
8821 		ret = -EIO;
8822 	if (ret < 0)
8823 		goto out;
8824 
8825 	ret = btrfs_del_item(trans, root, path);
8826 out:
8827 	btrfs_free_path(path);
8828 	return ret;
8829 }
8830 
8831 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8832 {
8833 	struct btrfs_space_info *space_info;
8834 	struct btrfs_super_block *disk_super;
8835 	u64 features;
8836 	u64 flags;
8837 	int mixed = 0;
8838 	int ret;
8839 
8840 	disk_super = fs_info->super_copy;
8841 	if (!btrfs_super_root(disk_super))
8842 		return 1;
8843 
8844 	features = btrfs_super_incompat_flags(disk_super);
8845 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8846 		mixed = 1;
8847 
8848 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8849 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8850 	if (ret)
8851 		goto out;
8852 
8853 	if (mixed) {
8854 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8855 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8856 	} else {
8857 		flags = BTRFS_BLOCK_GROUP_METADATA;
8858 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8859 		if (ret)
8860 			goto out;
8861 
8862 		flags = BTRFS_BLOCK_GROUP_DATA;
8863 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8864 	}
8865 out:
8866 	return ret;
8867 }
8868 
8869 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8870 {
8871 	return unpin_extent_range(root, start, end);
8872 }
8873 
8874 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8875 			       u64 num_bytes, u64 *actual_bytes)
8876 {
8877 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8878 }
8879 
8880 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8881 {
8882 	struct btrfs_fs_info *fs_info = root->fs_info;
8883 	struct btrfs_block_group_cache *cache = NULL;
8884 	u64 group_trimmed;
8885 	u64 start;
8886 	u64 end;
8887 	u64 trimmed = 0;
8888 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8889 	int ret = 0;
8890 
8891 	/*
8892 	 * try to trim all FS space, our block group may start from non-zero.
8893 	 */
8894 	if (range->len == total_bytes)
8895 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8896 	else
8897 		cache = btrfs_lookup_block_group(fs_info, range->start);
8898 
8899 	while (cache) {
8900 		if (cache->key.objectid >= (range->start + range->len)) {
8901 			btrfs_put_block_group(cache);
8902 			break;
8903 		}
8904 
8905 		start = max(range->start, cache->key.objectid);
8906 		end = min(range->start + range->len,
8907 				cache->key.objectid + cache->key.offset);
8908 
8909 		if (end - start >= range->minlen) {
8910 			if (!block_group_cache_done(cache)) {
8911 				ret = cache_block_group(cache, 0);
8912 				if (ret) {
8913 					btrfs_put_block_group(cache);
8914 					break;
8915 				}
8916 				ret = wait_block_group_cache_done(cache);
8917 				if (ret) {
8918 					btrfs_put_block_group(cache);
8919 					break;
8920 				}
8921 			}
8922 			ret = btrfs_trim_block_group(cache,
8923 						     &group_trimmed,
8924 						     start,
8925 						     end,
8926 						     range->minlen);
8927 
8928 			trimmed += group_trimmed;
8929 			if (ret) {
8930 				btrfs_put_block_group(cache);
8931 				break;
8932 			}
8933 		}
8934 
8935 		cache = next_block_group(fs_info->tree_root, cache);
8936 	}
8937 
8938 	range->len = trimmed;
8939 	return ret;
8940 }
8941