1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "math.h" 38 #include "sysfs.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->extent_commit_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched() || 446 rwsem_is_contended(&fs_info->extent_commit_sem)) { 447 caching_ctl->progress = last; 448 btrfs_release_path(path); 449 up_read(&fs_info->extent_commit_sem); 450 mutex_unlock(&caching_ctl->mutex); 451 cond_resched(); 452 goto again; 453 } 454 455 ret = btrfs_next_leaf(extent_root, path); 456 if (ret < 0) 457 goto err; 458 if (ret) 459 break; 460 leaf = path->nodes[0]; 461 nritems = btrfs_header_nritems(leaf); 462 continue; 463 } 464 465 if (key.objectid < last) { 466 key.objectid = last; 467 key.offset = 0; 468 key.type = BTRFS_EXTENT_ITEM_KEY; 469 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 goto next; 473 } 474 475 if (key.objectid < block_group->key.objectid) { 476 path->slots[0]++; 477 continue; 478 } 479 480 if (key.objectid >= block_group->key.objectid + 481 block_group->key.offset) 482 break; 483 484 if (key.type == BTRFS_EXTENT_ITEM_KEY || 485 key.type == BTRFS_METADATA_ITEM_KEY) { 486 total_found += add_new_free_space(block_group, 487 fs_info, last, 488 key.objectid); 489 if (key.type == BTRFS_METADATA_ITEM_KEY) 490 last = key.objectid + 491 fs_info->tree_root->leafsize; 492 else 493 last = key.objectid + key.offset; 494 495 if (total_found > (1024 * 1024 * 2)) { 496 total_found = 0; 497 wake_up(&caching_ctl->wait); 498 } 499 } 500 path->slots[0]++; 501 } 502 ret = 0; 503 504 total_found += add_new_free_space(block_group, fs_info, last, 505 block_group->key.objectid + 506 block_group->key.offset); 507 caching_ctl->progress = (u64)-1; 508 509 spin_lock(&block_group->lock); 510 block_group->caching_ctl = NULL; 511 block_group->cached = BTRFS_CACHE_FINISHED; 512 spin_unlock(&block_group->lock); 513 514 err: 515 btrfs_free_path(path); 516 up_read(&fs_info->extent_commit_sem); 517 518 free_excluded_extents(extent_root, block_group); 519 520 mutex_unlock(&caching_ctl->mutex); 521 out: 522 if (ret) { 523 spin_lock(&block_group->lock); 524 block_group->caching_ctl = NULL; 525 block_group->cached = BTRFS_CACHE_ERROR; 526 spin_unlock(&block_group->lock); 527 } 528 wake_up(&caching_ctl->wait); 529 530 put_caching_control(caching_ctl); 531 btrfs_put_block_group(block_group); 532 } 533 534 static int cache_block_group(struct btrfs_block_group_cache *cache, 535 int load_cache_only) 536 { 537 DEFINE_WAIT(wait); 538 struct btrfs_fs_info *fs_info = cache->fs_info; 539 struct btrfs_caching_control *caching_ctl; 540 int ret = 0; 541 542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 543 if (!caching_ctl) 544 return -ENOMEM; 545 546 INIT_LIST_HEAD(&caching_ctl->list); 547 mutex_init(&caching_ctl->mutex); 548 init_waitqueue_head(&caching_ctl->wait); 549 caching_ctl->block_group = cache; 550 caching_ctl->progress = cache->key.objectid; 551 atomic_set(&caching_ctl->count, 1); 552 caching_ctl->work.func = caching_thread; 553 554 spin_lock(&cache->lock); 555 /* 556 * This should be a rare occasion, but this could happen I think in the 557 * case where one thread starts to load the space cache info, and then 558 * some other thread starts a transaction commit which tries to do an 559 * allocation while the other thread is still loading the space cache 560 * info. The previous loop should have kept us from choosing this block 561 * group, but if we've moved to the state where we will wait on caching 562 * block groups we need to first check if we're doing a fast load here, 563 * so we can wait for it to finish, otherwise we could end up allocating 564 * from a block group who's cache gets evicted for one reason or 565 * another. 566 */ 567 while (cache->cached == BTRFS_CACHE_FAST) { 568 struct btrfs_caching_control *ctl; 569 570 ctl = cache->caching_ctl; 571 atomic_inc(&ctl->count); 572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 573 spin_unlock(&cache->lock); 574 575 schedule(); 576 577 finish_wait(&ctl->wait, &wait); 578 put_caching_control(ctl); 579 spin_lock(&cache->lock); 580 } 581 582 if (cache->cached != BTRFS_CACHE_NO) { 583 spin_unlock(&cache->lock); 584 kfree(caching_ctl); 585 return 0; 586 } 587 WARN_ON(cache->caching_ctl); 588 cache->caching_ctl = caching_ctl; 589 cache->cached = BTRFS_CACHE_FAST; 590 spin_unlock(&cache->lock); 591 592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 } 607 } 608 spin_unlock(&cache->lock); 609 wake_up(&caching_ctl->wait); 610 if (ret == 1) { 611 put_caching_control(caching_ctl); 612 free_excluded_extents(fs_info->extent_root, cache); 613 return 0; 614 } 615 } else { 616 /* 617 * We are not going to do the fast caching, set cached to the 618 * appropriate value and wakeup any waiters. 619 */ 620 spin_lock(&cache->lock); 621 if (load_cache_only) { 622 cache->caching_ctl = NULL; 623 cache->cached = BTRFS_CACHE_NO; 624 } else { 625 cache->cached = BTRFS_CACHE_STARTED; 626 } 627 spin_unlock(&cache->lock); 628 wake_up(&caching_ctl->wait); 629 } 630 631 if (load_cache_only) { 632 put_caching_control(caching_ctl); 633 return 0; 634 } 635 636 down_write(&fs_info->extent_commit_sem); 637 atomic_inc(&caching_ctl->count); 638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 639 up_write(&fs_info->extent_commit_sem); 640 641 btrfs_get_block_group(cache); 642 643 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 644 645 return ret; 646 } 647 648 /* 649 * return the block group that starts at or after bytenr 650 */ 651 static struct btrfs_block_group_cache * 652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 653 { 654 struct btrfs_block_group_cache *cache; 655 656 cache = block_group_cache_tree_search(info, bytenr, 0); 657 658 return cache; 659 } 660 661 /* 662 * return the block group that contains the given bytenr 663 */ 664 struct btrfs_block_group_cache *btrfs_lookup_block_group( 665 struct btrfs_fs_info *info, 666 u64 bytenr) 667 { 668 struct btrfs_block_group_cache *cache; 669 670 cache = block_group_cache_tree_search(info, bytenr, 1); 671 672 return cache; 673 } 674 675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 676 u64 flags) 677 { 678 struct list_head *head = &info->space_info; 679 struct btrfs_space_info *found; 680 681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 682 683 rcu_read_lock(); 684 list_for_each_entry_rcu(found, head, list) { 685 if (found->flags & flags) { 686 rcu_read_unlock(); 687 return found; 688 } 689 } 690 rcu_read_unlock(); 691 return NULL; 692 } 693 694 /* 695 * after adding space to the filesystem, we need to clear the full flags 696 * on all the space infos. 697 */ 698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 699 { 700 struct list_head *head = &info->space_info; 701 struct btrfs_space_info *found; 702 703 rcu_read_lock(); 704 list_for_each_entry_rcu(found, head, list) 705 found->full = 0; 706 rcu_read_unlock(); 707 } 708 709 /* simple helper to search for an existing extent at a given offset */ 710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 711 { 712 int ret; 713 struct btrfs_key key; 714 struct btrfs_path *path; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 key.objectid = start; 721 key.offset = len; 722 key.type = BTRFS_EXTENT_ITEM_KEY; 723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 724 0, 0); 725 if (ret > 0) { 726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 727 if (key.objectid == start && 728 key.type == BTRFS_METADATA_ITEM_KEY) 729 ret = 0; 730 } 731 btrfs_free_path(path); 732 return ret; 733 } 734 735 /* 736 * helper function to lookup reference count and flags of a tree block. 737 * 738 * the head node for delayed ref is used to store the sum of all the 739 * reference count modifications queued up in the rbtree. the head 740 * node may also store the extent flags to set. This way you can check 741 * to see what the reference count and extent flags would be if all of 742 * the delayed refs are not processed. 743 */ 744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 745 struct btrfs_root *root, u64 bytenr, 746 u64 offset, int metadata, u64 *refs, u64 *flags) 747 { 748 struct btrfs_delayed_ref_head *head; 749 struct btrfs_delayed_ref_root *delayed_refs; 750 struct btrfs_path *path; 751 struct btrfs_extent_item *ei; 752 struct extent_buffer *leaf; 753 struct btrfs_key key; 754 u32 item_size; 755 u64 num_refs; 756 u64 extent_flags; 757 int ret; 758 759 /* 760 * If we don't have skinny metadata, don't bother doing anything 761 * different 762 */ 763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 764 offset = root->leafsize; 765 metadata = 0; 766 } 767 768 path = btrfs_alloc_path(); 769 if (!path) 770 return -ENOMEM; 771 772 if (!trans) { 773 path->skip_locking = 1; 774 path->search_commit_root = 1; 775 } 776 777 search_again: 778 key.objectid = bytenr; 779 key.offset = offset; 780 if (metadata) 781 key.type = BTRFS_METADATA_ITEM_KEY; 782 else 783 key.type = BTRFS_EXTENT_ITEM_KEY; 784 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 if (path->slots[0]) { 793 path->slots[0]--; 794 btrfs_item_key_to_cpu(path->nodes[0], &key, 795 path->slots[0]); 796 if (key.objectid == bytenr && 797 key.type == BTRFS_EXTENT_ITEM_KEY && 798 key.offset == root->leafsize) 799 ret = 0; 800 } 801 if (ret) { 802 key.objectid = bytenr; 803 key.type = BTRFS_EXTENT_ITEM_KEY; 804 key.offset = root->leafsize; 805 btrfs_release_path(path); 806 goto again; 807 } 808 } 809 810 if (ret == 0) { 811 leaf = path->nodes[0]; 812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 813 if (item_size >= sizeof(*ei)) { 814 ei = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_extent_item); 816 num_refs = btrfs_extent_refs(leaf, ei); 817 extent_flags = btrfs_extent_flags(leaf, ei); 818 } else { 819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 820 struct btrfs_extent_item_v0 *ei0; 821 BUG_ON(item_size != sizeof(*ei0)); 822 ei0 = btrfs_item_ptr(leaf, path->slots[0], 823 struct btrfs_extent_item_v0); 824 num_refs = btrfs_extent_refs_v0(leaf, ei0); 825 /* FIXME: this isn't correct for data */ 826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 827 #else 828 BUG(); 829 #endif 830 } 831 BUG_ON(num_refs == 0); 832 } else { 833 num_refs = 0; 834 extent_flags = 0; 835 ret = 0; 836 } 837 838 if (!trans) 839 goto out; 840 841 delayed_refs = &trans->transaction->delayed_refs; 842 spin_lock(&delayed_refs->lock); 843 head = btrfs_find_delayed_ref_head(trans, bytenr); 844 if (head) { 845 if (!mutex_trylock(&head->mutex)) { 846 atomic_inc(&head->node.refs); 847 spin_unlock(&delayed_refs->lock); 848 849 btrfs_release_path(path); 850 851 /* 852 * Mutex was contended, block until it's released and try 853 * again 854 */ 855 mutex_lock(&head->mutex); 856 mutex_unlock(&head->mutex); 857 btrfs_put_delayed_ref(&head->node); 858 goto search_again; 859 } 860 spin_lock(&head->lock); 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 spin_unlock(&head->lock); 868 mutex_unlock(&head->mutex); 869 } 870 spin_unlock(&delayed_refs->lock); 871 out: 872 WARN_ON(num_refs == 0); 873 if (refs) 874 *refs = num_refs; 875 if (flags) 876 *flags = extent_flags; 877 out_free: 878 btrfs_free_path(path); 879 return ret; 880 } 881 882 /* 883 * Back reference rules. Back refs have three main goals: 884 * 885 * 1) differentiate between all holders of references to an extent so that 886 * when a reference is dropped we can make sure it was a valid reference 887 * before freeing the extent. 888 * 889 * 2) Provide enough information to quickly find the holders of an extent 890 * if we notice a given block is corrupted or bad. 891 * 892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 893 * maintenance. This is actually the same as #2, but with a slightly 894 * different use case. 895 * 896 * There are two kinds of back refs. The implicit back refs is optimized 897 * for pointers in non-shared tree blocks. For a given pointer in a block, 898 * back refs of this kind provide information about the block's owner tree 899 * and the pointer's key. These information allow us to find the block by 900 * b-tree searching. The full back refs is for pointers in tree blocks not 901 * referenced by their owner trees. The location of tree block is recorded 902 * in the back refs. Actually the full back refs is generic, and can be 903 * used in all cases the implicit back refs is used. The major shortcoming 904 * of the full back refs is its overhead. Every time a tree block gets 905 * COWed, we have to update back refs entry for all pointers in it. 906 * 907 * For a newly allocated tree block, we use implicit back refs for 908 * pointers in it. This means most tree related operations only involve 909 * implicit back refs. For a tree block created in old transaction, the 910 * only way to drop a reference to it is COW it. So we can detect the 911 * event that tree block loses its owner tree's reference and do the 912 * back refs conversion. 913 * 914 * When a tree block is COW'd through a tree, there are four cases: 915 * 916 * The reference count of the block is one and the tree is the block's 917 * owner tree. Nothing to do in this case. 918 * 919 * The reference count of the block is one and the tree is not the 920 * block's owner tree. In this case, full back refs is used for pointers 921 * in the block. Remove these full back refs, add implicit back refs for 922 * every pointers in the new block. 923 * 924 * The reference count of the block is greater than one and the tree is 925 * the block's owner tree. In this case, implicit back refs is used for 926 * pointers in the block. Add full back refs for every pointers in the 927 * block, increase lower level extents' reference counts. The original 928 * implicit back refs are entailed to the new block. 929 * 930 * The reference count of the block is greater than one and the tree is 931 * not the block's owner tree. Add implicit back refs for every pointer in 932 * the new block, increase lower level extents' reference count. 933 * 934 * Back Reference Key composing: 935 * 936 * The key objectid corresponds to the first byte in the extent, 937 * The key type is used to differentiate between types of back refs. 938 * There are different meanings of the key offset for different types 939 * of back refs. 940 * 941 * File extents can be referenced by: 942 * 943 * - multiple snapshots, subvolumes, or different generations in one subvol 944 * - different files inside a single subvolume 945 * - different offsets inside a file (bookend extents in file.c) 946 * 947 * The extent ref structure for the implicit back refs has fields for: 948 * 949 * - Objectid of the subvolume root 950 * - objectid of the file holding the reference 951 * - original offset in the file 952 * - how many bookend extents 953 * 954 * The key offset for the implicit back refs is hash of the first 955 * three fields. 956 * 957 * The extent ref structure for the full back refs has field for: 958 * 959 * - number of pointers in the tree leaf 960 * 961 * The key offset for the implicit back refs is the first byte of 962 * the tree leaf 963 * 964 * When a file extent is allocated, The implicit back refs is used. 965 * the fields are filled in: 966 * 967 * (root_key.objectid, inode objectid, offset in file, 1) 968 * 969 * When a file extent is removed file truncation, we find the 970 * corresponding implicit back refs and check the following fields: 971 * 972 * (btrfs_header_owner(leaf), inode objectid, offset in file) 973 * 974 * Btree extents can be referenced by: 975 * 976 * - Different subvolumes 977 * 978 * Both the implicit back refs and the full back refs for tree blocks 979 * only consist of key. The key offset for the implicit back refs is 980 * objectid of block's owner tree. The key offset for the full back refs 981 * is the first byte of parent block. 982 * 983 * When implicit back refs is used, information about the lowest key and 984 * level of the tree block are required. These information are stored in 985 * tree block info structure. 986 */ 987 988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 990 struct btrfs_root *root, 991 struct btrfs_path *path, 992 u64 owner, u32 extra_size) 993 { 994 struct btrfs_extent_item *item; 995 struct btrfs_extent_item_v0 *ei0; 996 struct btrfs_extent_ref_v0 *ref0; 997 struct btrfs_tree_block_info *bi; 998 struct extent_buffer *leaf; 999 struct btrfs_key key; 1000 struct btrfs_key found_key; 1001 u32 new_size = sizeof(*item); 1002 u64 refs; 1003 int ret; 1004 1005 leaf = path->nodes[0]; 1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1007 1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1009 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1010 struct btrfs_extent_item_v0); 1011 refs = btrfs_extent_refs_v0(leaf, ei0); 1012 1013 if (owner == (u64)-1) { 1014 while (1) { 1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1016 ret = btrfs_next_leaf(root, path); 1017 if (ret < 0) 1018 return ret; 1019 BUG_ON(ret > 0); /* Corruption */ 1020 leaf = path->nodes[0]; 1021 } 1022 btrfs_item_key_to_cpu(leaf, &found_key, 1023 path->slots[0]); 1024 BUG_ON(key.objectid != found_key.objectid); 1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1026 path->slots[0]++; 1027 continue; 1028 } 1029 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_extent_ref_v0); 1031 owner = btrfs_ref_objectid_v0(leaf, ref0); 1032 break; 1033 } 1034 } 1035 btrfs_release_path(path); 1036 1037 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1038 new_size += sizeof(*bi); 1039 1040 new_size -= sizeof(*ei0); 1041 ret = btrfs_search_slot(trans, root, &key, path, 1042 new_size + extra_size, 1); 1043 if (ret < 0) 1044 return ret; 1045 BUG_ON(ret); /* Corruption */ 1046 1047 btrfs_extend_item(root, path, new_size); 1048 1049 leaf = path->nodes[0]; 1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1051 btrfs_set_extent_refs(leaf, item, refs); 1052 /* FIXME: get real generation */ 1053 btrfs_set_extent_generation(leaf, item, 0); 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 btrfs_set_extent_flags(leaf, item, 1056 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1057 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1058 bi = (struct btrfs_tree_block_info *)(item + 1); 1059 /* FIXME: get first key of the block */ 1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1061 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1062 } else { 1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 return 0; 1067 } 1068 #endif 1069 1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1071 { 1072 u32 high_crc = ~(u32)0; 1073 u32 low_crc = ~(u32)0; 1074 __le64 lenum; 1075 1076 lenum = cpu_to_le64(root_objectid); 1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1078 lenum = cpu_to_le64(owner); 1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1080 lenum = cpu_to_le64(offset); 1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1082 1083 return ((u64)high_crc << 31) ^ (u64)low_crc; 1084 } 1085 1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1087 struct btrfs_extent_data_ref *ref) 1088 { 1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1090 btrfs_extent_data_ref_objectid(leaf, ref), 1091 btrfs_extent_data_ref_offset(leaf, ref)); 1092 } 1093 1094 static int match_extent_data_ref(struct extent_buffer *leaf, 1095 struct btrfs_extent_data_ref *ref, 1096 u64 root_objectid, u64 owner, u64 offset) 1097 { 1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1100 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1101 return 0; 1102 return 1; 1103 } 1104 1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root, 1107 struct btrfs_path *path, 1108 u64 bytenr, u64 parent, 1109 u64 root_objectid, 1110 u64 owner, u64 offset) 1111 { 1112 struct btrfs_key key; 1113 struct btrfs_extent_data_ref *ref; 1114 struct extent_buffer *leaf; 1115 u32 nritems; 1116 int ret; 1117 int recow; 1118 int err = -ENOENT; 1119 1120 key.objectid = bytenr; 1121 if (parent) { 1122 key.type = BTRFS_SHARED_DATA_REF_KEY; 1123 key.offset = parent; 1124 } else { 1125 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1126 key.offset = hash_extent_data_ref(root_objectid, 1127 owner, offset); 1128 } 1129 again: 1130 recow = 0; 1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1132 if (ret < 0) { 1133 err = ret; 1134 goto fail; 1135 } 1136 1137 if (parent) { 1138 if (!ret) 1139 return 0; 1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1141 key.type = BTRFS_EXTENT_REF_V0_KEY; 1142 btrfs_release_path(path); 1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1144 if (ret < 0) { 1145 err = ret; 1146 goto fail; 1147 } 1148 if (!ret) 1149 return 0; 1150 #endif 1151 goto fail; 1152 } 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 while (1) { 1157 if (path->slots[0] >= nritems) { 1158 ret = btrfs_next_leaf(root, path); 1159 if (ret < 0) 1160 err = ret; 1161 if (ret) 1162 goto fail; 1163 1164 leaf = path->nodes[0]; 1165 nritems = btrfs_header_nritems(leaf); 1166 recow = 1; 1167 } 1168 1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1170 if (key.objectid != bytenr || 1171 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1172 goto fail; 1173 1174 ref = btrfs_item_ptr(leaf, path->slots[0], 1175 struct btrfs_extent_data_ref); 1176 1177 if (match_extent_data_ref(leaf, ref, root_objectid, 1178 owner, offset)) { 1179 if (recow) { 1180 btrfs_release_path(path); 1181 goto again; 1182 } 1183 err = 0; 1184 break; 1185 } 1186 path->slots[0]++; 1187 } 1188 fail: 1189 return err; 1190 } 1191 1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1193 struct btrfs_root *root, 1194 struct btrfs_path *path, 1195 u64 bytenr, u64 parent, 1196 u64 root_objectid, u64 owner, 1197 u64 offset, int refs_to_add) 1198 { 1199 struct btrfs_key key; 1200 struct extent_buffer *leaf; 1201 u32 size; 1202 u32 num_refs; 1203 int ret; 1204 1205 key.objectid = bytenr; 1206 if (parent) { 1207 key.type = BTRFS_SHARED_DATA_REF_KEY; 1208 key.offset = parent; 1209 size = sizeof(struct btrfs_shared_data_ref); 1210 } else { 1211 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1212 key.offset = hash_extent_data_ref(root_objectid, 1213 owner, offset); 1214 size = sizeof(struct btrfs_extent_data_ref); 1215 } 1216 1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1218 if (ret && ret != -EEXIST) 1219 goto fail; 1220 1221 leaf = path->nodes[0]; 1222 if (parent) { 1223 struct btrfs_shared_data_ref *ref; 1224 ref = btrfs_item_ptr(leaf, path->slots[0], 1225 struct btrfs_shared_data_ref); 1226 if (ret == 0) { 1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1228 } else { 1229 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1230 num_refs += refs_to_add; 1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1232 } 1233 } else { 1234 struct btrfs_extent_data_ref *ref; 1235 while (ret == -EEXIST) { 1236 ref = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_extent_data_ref); 1238 if (match_extent_data_ref(leaf, ref, root_objectid, 1239 owner, offset)) 1240 break; 1241 btrfs_release_path(path); 1242 key.offset++; 1243 ret = btrfs_insert_empty_item(trans, root, path, &key, 1244 size); 1245 if (ret && ret != -EEXIST) 1246 goto fail; 1247 1248 leaf = path->nodes[0]; 1249 } 1250 ref = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_extent_data_ref); 1252 if (ret == 0) { 1253 btrfs_set_extent_data_ref_root(leaf, ref, 1254 root_objectid); 1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1258 } else { 1259 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1260 num_refs += refs_to_add; 1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1262 } 1263 } 1264 btrfs_mark_buffer_dirty(leaf); 1265 ret = 0; 1266 fail: 1267 btrfs_release_path(path); 1268 return ret; 1269 } 1270 1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1272 struct btrfs_root *root, 1273 struct btrfs_path *path, 1274 int refs_to_drop) 1275 { 1276 struct btrfs_key key; 1277 struct btrfs_extent_data_ref *ref1 = NULL; 1278 struct btrfs_shared_data_ref *ref2 = NULL; 1279 struct extent_buffer *leaf; 1280 u32 num_refs = 0; 1281 int ret = 0; 1282 1283 leaf = path->nodes[0]; 1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1285 1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1287 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_data_ref); 1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1291 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1292 struct btrfs_shared_data_ref); 1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1296 struct btrfs_extent_ref_v0 *ref0; 1297 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1298 struct btrfs_extent_ref_v0); 1299 num_refs = btrfs_ref_count_v0(leaf, ref0); 1300 #endif 1301 } else { 1302 BUG(); 1303 } 1304 1305 BUG_ON(num_refs < refs_to_drop); 1306 num_refs -= refs_to_drop; 1307 1308 if (num_refs == 0) { 1309 ret = btrfs_del_item(trans, root, path); 1310 } else { 1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1316 else { 1317 struct btrfs_extent_ref_v0 *ref0; 1318 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_extent_ref_v0); 1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1321 } 1322 #endif 1323 btrfs_mark_buffer_dirty(leaf); 1324 } 1325 return ret; 1326 } 1327 1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1329 struct btrfs_path *path, 1330 struct btrfs_extent_inline_ref *iref) 1331 { 1332 struct btrfs_key key; 1333 struct extent_buffer *leaf; 1334 struct btrfs_extent_data_ref *ref1; 1335 struct btrfs_shared_data_ref *ref2; 1336 u32 num_refs = 0; 1337 1338 leaf = path->nodes[0]; 1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1340 if (iref) { 1341 if (btrfs_extent_inline_ref_type(leaf, iref) == 1342 BTRFS_EXTENT_DATA_REF_KEY) { 1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else { 1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 } 1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1350 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_data_ref); 1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1354 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_shared_data_ref); 1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1359 struct btrfs_extent_ref_v0 *ref0; 1360 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_extent_ref_v0); 1362 num_refs = btrfs_ref_count_v0(leaf, ref0); 1363 #endif 1364 } else { 1365 WARN_ON(1); 1366 } 1367 return num_refs; 1368 } 1369 1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1389 if (ret > 0) 1390 ret = -ENOENT; 1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1392 if (ret == -ENOENT && parent) { 1393 btrfs_release_path(path); 1394 key.type = BTRFS_EXTENT_REF_V0_KEY; 1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1396 if (ret > 0) 1397 ret = -ENOENT; 1398 } 1399 #endif 1400 return ret; 1401 } 1402 1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1404 struct btrfs_root *root, 1405 struct btrfs_path *path, 1406 u64 bytenr, u64 parent, 1407 u64 root_objectid) 1408 { 1409 struct btrfs_key key; 1410 int ret; 1411 1412 key.objectid = bytenr; 1413 if (parent) { 1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1415 key.offset = parent; 1416 } else { 1417 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1418 key.offset = root_objectid; 1419 } 1420 1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1422 btrfs_release_path(path); 1423 return ret; 1424 } 1425 1426 static inline int extent_ref_type(u64 parent, u64 owner) 1427 { 1428 int type; 1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1430 if (parent > 0) 1431 type = BTRFS_SHARED_BLOCK_REF_KEY; 1432 else 1433 type = BTRFS_TREE_BLOCK_REF_KEY; 1434 } else { 1435 if (parent > 0) 1436 type = BTRFS_SHARED_DATA_REF_KEY; 1437 else 1438 type = BTRFS_EXTENT_DATA_REF_KEY; 1439 } 1440 return type; 1441 } 1442 1443 static int find_next_key(struct btrfs_path *path, int level, 1444 struct btrfs_key *key) 1445 1446 { 1447 for (; level < BTRFS_MAX_LEVEL; level++) { 1448 if (!path->nodes[level]) 1449 break; 1450 if (path->slots[level] + 1 >= 1451 btrfs_header_nritems(path->nodes[level])) 1452 continue; 1453 if (level == 0) 1454 btrfs_item_key_to_cpu(path->nodes[level], key, 1455 path->slots[level] + 1); 1456 else 1457 btrfs_node_key_to_cpu(path->nodes[level], key, 1458 path->slots[level] + 1); 1459 return 0; 1460 } 1461 return 1; 1462 } 1463 1464 /* 1465 * look for inline back ref. if back ref is found, *ref_ret is set 1466 * to the address of inline back ref, and 0 is returned. 1467 * 1468 * if back ref isn't found, *ref_ret is set to the address where it 1469 * should be inserted, and -ENOENT is returned. 1470 * 1471 * if insert is true and there are too many inline back refs, the path 1472 * points to the extent item, and -EAGAIN is returned. 1473 * 1474 * NOTE: inline back refs are ordered in the same way that back ref 1475 * items in the tree are ordered. 1476 */ 1477 static noinline_for_stack 1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root, 1480 struct btrfs_path *path, 1481 struct btrfs_extent_inline_ref **ref_ret, 1482 u64 bytenr, u64 num_bytes, 1483 u64 parent, u64 root_objectid, 1484 u64 owner, u64 offset, int insert) 1485 { 1486 struct btrfs_key key; 1487 struct extent_buffer *leaf; 1488 struct btrfs_extent_item *ei; 1489 struct btrfs_extent_inline_ref *iref; 1490 u64 flags; 1491 u64 item_size; 1492 unsigned long ptr; 1493 unsigned long end; 1494 int extra_size; 1495 int type; 1496 int want; 1497 int ret; 1498 int err = 0; 1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1500 SKINNY_METADATA); 1501 1502 key.objectid = bytenr; 1503 key.type = BTRFS_EXTENT_ITEM_KEY; 1504 key.offset = num_bytes; 1505 1506 want = extent_ref_type(parent, owner); 1507 if (insert) { 1508 extra_size = btrfs_extent_inline_ref_size(want); 1509 path->keep_locks = 1; 1510 } else 1511 extra_size = -1; 1512 1513 /* 1514 * Owner is our parent level, so we can just add one to get the level 1515 * for the block we are interested in. 1516 */ 1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1518 key.type = BTRFS_METADATA_ITEM_KEY; 1519 key.offset = owner; 1520 } 1521 1522 again: 1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1524 if (ret < 0) { 1525 err = ret; 1526 goto out; 1527 } 1528 1529 /* 1530 * We may be a newly converted file system which still has the old fat 1531 * extent entries for metadata, so try and see if we have one of those. 1532 */ 1533 if (ret > 0 && skinny_metadata) { 1534 skinny_metadata = false; 1535 if (path->slots[0]) { 1536 path->slots[0]--; 1537 btrfs_item_key_to_cpu(path->nodes[0], &key, 1538 path->slots[0]); 1539 if (key.objectid == bytenr && 1540 key.type == BTRFS_EXTENT_ITEM_KEY && 1541 key.offset == num_bytes) 1542 ret = 0; 1543 } 1544 if (ret) { 1545 key.type = BTRFS_EXTENT_ITEM_KEY; 1546 key.offset = num_bytes; 1547 btrfs_release_path(path); 1548 goto again; 1549 } 1550 } 1551 1552 if (ret && !insert) { 1553 err = -ENOENT; 1554 goto out; 1555 } else if (WARN_ON(ret)) { 1556 err = -EIO; 1557 goto out; 1558 } 1559 1560 leaf = path->nodes[0]; 1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1563 if (item_size < sizeof(*ei)) { 1564 if (!insert) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 ret = convert_extent_item_v0(trans, root, path, owner, 1569 extra_size); 1570 if (ret < 0) { 1571 err = ret; 1572 goto out; 1573 } 1574 leaf = path->nodes[0]; 1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1576 } 1577 #endif 1578 BUG_ON(item_size < sizeof(*ei)); 1579 1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1581 flags = btrfs_extent_flags(leaf, ei); 1582 1583 ptr = (unsigned long)(ei + 1); 1584 end = (unsigned long)ei + item_size; 1585 1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1587 ptr += sizeof(struct btrfs_tree_block_info); 1588 BUG_ON(ptr > end); 1589 } 1590 1591 err = -ENOENT; 1592 while (1) { 1593 if (ptr >= end) { 1594 WARN_ON(ptr > end); 1595 break; 1596 } 1597 iref = (struct btrfs_extent_inline_ref *)ptr; 1598 type = btrfs_extent_inline_ref_type(leaf, iref); 1599 if (want < type) 1600 break; 1601 if (want > type) { 1602 ptr += btrfs_extent_inline_ref_size(type); 1603 continue; 1604 } 1605 1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1607 struct btrfs_extent_data_ref *dref; 1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1609 if (match_extent_data_ref(leaf, dref, root_objectid, 1610 owner, offset)) { 1611 err = 0; 1612 break; 1613 } 1614 if (hash_extent_data_ref_item(leaf, dref) < 1615 hash_extent_data_ref(root_objectid, owner, offset)) 1616 break; 1617 } else { 1618 u64 ref_offset; 1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1620 if (parent > 0) { 1621 if (parent == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < parent) 1626 break; 1627 } else { 1628 if (root_objectid == ref_offset) { 1629 err = 0; 1630 break; 1631 } 1632 if (ref_offset < root_objectid) 1633 break; 1634 } 1635 } 1636 ptr += btrfs_extent_inline_ref_size(type); 1637 } 1638 if (err == -ENOENT && insert) { 1639 if (item_size + extra_size >= 1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1641 err = -EAGAIN; 1642 goto out; 1643 } 1644 /* 1645 * To add new inline back ref, we have to make sure 1646 * there is no corresponding back ref item. 1647 * For simplicity, we just do not add new inline back 1648 * ref if there is any kind of item for this block 1649 */ 1650 if (find_next_key(path, 0, &key) == 0 && 1651 key.objectid == bytenr && 1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1653 err = -EAGAIN; 1654 goto out; 1655 } 1656 } 1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1658 out: 1659 if (insert) { 1660 path->keep_locks = 0; 1661 btrfs_unlock_up_safe(path, 1); 1662 } 1663 return err; 1664 } 1665 1666 /* 1667 * helper to add new inline back ref 1668 */ 1669 static noinline_for_stack 1670 void setup_inline_extent_backref(struct btrfs_root *root, 1671 struct btrfs_path *path, 1672 struct btrfs_extent_inline_ref *iref, 1673 u64 parent, u64 root_objectid, 1674 u64 owner, u64 offset, int refs_to_add, 1675 struct btrfs_delayed_extent_op *extent_op) 1676 { 1677 struct extent_buffer *leaf; 1678 struct btrfs_extent_item *ei; 1679 unsigned long ptr; 1680 unsigned long end; 1681 unsigned long item_offset; 1682 u64 refs; 1683 int size; 1684 int type; 1685 1686 leaf = path->nodes[0]; 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 item_offset = (unsigned long)iref - (unsigned long)ei; 1689 1690 type = extent_ref_type(parent, owner); 1691 size = btrfs_extent_inline_ref_size(type); 1692 1693 btrfs_extend_item(root, path, size); 1694 1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1696 refs = btrfs_extent_refs(leaf, ei); 1697 refs += refs_to_add; 1698 btrfs_set_extent_refs(leaf, ei, refs); 1699 if (extent_op) 1700 __run_delayed_extent_op(extent_op, leaf, ei); 1701 1702 ptr = (unsigned long)ei + item_offset; 1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1704 if (ptr < end - size) 1705 memmove_extent_buffer(leaf, ptr + size, ptr, 1706 end - size - ptr); 1707 1708 iref = (struct btrfs_extent_inline_ref *)ptr; 1709 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1711 struct btrfs_extent_data_ref *dref; 1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1718 struct btrfs_shared_data_ref *sref; 1719 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1724 } else { 1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1726 } 1727 btrfs_mark_buffer_dirty(leaf); 1728 } 1729 1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1731 struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref **ref_ret, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1740 bytenr, num_bytes, parent, 1741 root_objectid, owner, offset, 0); 1742 if (ret != -ENOENT) 1743 return ret; 1744 1745 btrfs_release_path(path); 1746 *ref_ret = NULL; 1747 1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1750 root_objectid); 1751 } else { 1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1753 root_objectid, owner, offset); 1754 } 1755 return ret; 1756 } 1757 1758 /* 1759 * helper to update/remove inline back ref 1760 */ 1761 static noinline_for_stack 1762 void update_inline_extent_backref(struct btrfs_root *root, 1763 struct btrfs_path *path, 1764 struct btrfs_extent_inline_ref *iref, 1765 int refs_to_mod, 1766 struct btrfs_delayed_extent_op *extent_op) 1767 { 1768 struct extent_buffer *leaf; 1769 struct btrfs_extent_item *ei; 1770 struct btrfs_extent_data_ref *dref = NULL; 1771 struct btrfs_shared_data_ref *sref = NULL; 1772 unsigned long ptr; 1773 unsigned long end; 1774 u32 item_size; 1775 int size; 1776 int type; 1777 u64 refs; 1778 1779 leaf = path->nodes[0]; 1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1781 refs = btrfs_extent_refs(leaf, ei); 1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1783 refs += refs_to_mod; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 type = btrfs_extent_inline_ref_type(leaf, iref); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 size = btrfs_extent_inline_ref_size(type); 1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1812 ptr = (unsigned long)iref; 1813 end = (unsigned long)ei + item_size; 1814 if (ptr + size < end) 1815 memmove_extent_buffer(leaf, ptr, ptr + size, 1816 end - ptr - size); 1817 item_size -= size; 1818 btrfs_truncate_item(root, path, item_size, 1); 1819 } 1820 btrfs_mark_buffer_dirty(leaf); 1821 } 1822 1823 static noinline_for_stack 1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1825 struct btrfs_root *root, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1836 bytenr, num_bytes, parent, 1837 root_objectid, owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(root, path, iref, 1841 refs_to_add, extent_op); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(root, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_root *root, 1853 struct btrfs_path *path, 1854 u64 bytenr, u64 parent, u64 root_objectid, 1855 u64 owner, u64 offset, int refs_to_add) 1856 { 1857 int ret; 1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1859 BUG_ON(refs_to_add != 1); 1860 ret = insert_tree_block_ref(trans, root, path, bytenr, 1861 parent, root_objectid); 1862 } else { 1863 ret = insert_extent_data_ref(trans, root, path, bytenr, 1864 parent, root_objectid, 1865 owner, offset, refs_to_add); 1866 } 1867 return ret; 1868 } 1869 1870 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1871 struct btrfs_root *root, 1872 struct btrfs_path *path, 1873 struct btrfs_extent_inline_ref *iref, 1874 int refs_to_drop, int is_data) 1875 { 1876 int ret = 0; 1877 1878 BUG_ON(!is_data && refs_to_drop != 1); 1879 if (iref) { 1880 update_inline_extent_backref(root, path, iref, 1881 -refs_to_drop, NULL); 1882 } else if (is_data) { 1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1884 } else { 1885 ret = btrfs_del_item(trans, root, path); 1886 } 1887 return ret; 1888 } 1889 1890 static int btrfs_issue_discard(struct block_device *bdev, 1891 u64 start, u64 len) 1892 { 1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1894 } 1895 1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1897 u64 num_bytes, u64 *actual_bytes) 1898 { 1899 int ret; 1900 u64 discarded_bytes = 0; 1901 struct btrfs_bio *bbio = NULL; 1902 1903 1904 /* Tell the block device(s) that the sectors can be discarded */ 1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1906 bytenr, &num_bytes, &bbio, 0); 1907 /* Error condition is -ENOMEM */ 1908 if (!ret) { 1909 struct btrfs_bio_stripe *stripe = bbio->stripes; 1910 int i; 1911 1912 1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1914 if (!stripe->dev->can_discard) 1915 continue; 1916 1917 ret = btrfs_issue_discard(stripe->dev->bdev, 1918 stripe->physical, 1919 stripe->length); 1920 if (!ret) 1921 discarded_bytes += stripe->length; 1922 else if (ret != -EOPNOTSUPP) 1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1924 1925 /* 1926 * Just in case we get back EOPNOTSUPP for some reason, 1927 * just ignore the return value so we don't screw up 1928 * people calling discard_extent. 1929 */ 1930 ret = 0; 1931 } 1932 kfree(bbio); 1933 } 1934 1935 if (actual_bytes) 1936 *actual_bytes = discarded_bytes; 1937 1938 1939 if (ret == -EOPNOTSUPP) 1940 ret = 0; 1941 return ret; 1942 } 1943 1944 /* Can return -ENOMEM */ 1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1946 struct btrfs_root *root, 1947 u64 bytenr, u64 num_bytes, u64 parent, 1948 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1949 { 1950 int ret; 1951 struct btrfs_fs_info *fs_info = root->fs_info; 1952 1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1954 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1955 1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1958 num_bytes, 1959 parent, root_objectid, (int)owner, 1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1961 } else { 1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1963 num_bytes, 1964 parent, root_objectid, owner, offset, 1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1966 } 1967 return ret; 1968 } 1969 1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1971 struct btrfs_root *root, 1972 u64 bytenr, u64 num_bytes, 1973 u64 parent, u64 root_objectid, 1974 u64 owner, u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 u64 refs; 1981 int ret; 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) 1985 return -ENOMEM; 1986 1987 path->reada = 1; 1988 path->leave_spinning = 1; 1989 /* this will setup the path even if it fails to insert the back ref */ 1990 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1991 path, bytenr, num_bytes, parent, 1992 root_objectid, owner, offset, 1993 refs_to_add, extent_op); 1994 if (ret != -EAGAIN) 1995 goto out; 1996 1997 leaf = path->nodes[0]; 1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1999 refs = btrfs_extent_refs(leaf, item); 2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2001 if (extent_op) 2002 __run_delayed_extent_op(extent_op, leaf, item); 2003 2004 btrfs_mark_buffer_dirty(leaf); 2005 btrfs_release_path(path); 2006 2007 path->reada = 1; 2008 path->leave_spinning = 1; 2009 2010 /* now insert the actual backref */ 2011 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2012 path, bytenr, parent, root_objectid, 2013 owner, offset, refs_to_add); 2014 if (ret) 2015 btrfs_abort_transaction(trans, root, ret); 2016 out: 2017 btrfs_free_path(path); 2018 return ret; 2019 } 2020 2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2022 struct btrfs_root *root, 2023 struct btrfs_delayed_ref_node *node, 2024 struct btrfs_delayed_extent_op *extent_op, 2025 int insert_reserved) 2026 { 2027 int ret = 0; 2028 struct btrfs_delayed_data_ref *ref; 2029 struct btrfs_key ins; 2030 u64 parent = 0; 2031 u64 ref_root = 0; 2032 u64 flags = 0; 2033 2034 ins.objectid = node->bytenr; 2035 ins.offset = node->num_bytes; 2036 ins.type = BTRFS_EXTENT_ITEM_KEY; 2037 2038 ref = btrfs_delayed_node_to_data_ref(node); 2039 trace_run_delayed_data_ref(node, ref, node->action); 2040 2041 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2042 parent = ref->parent; 2043 else 2044 ref_root = ref->root; 2045 2046 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2047 if (extent_op) 2048 flags |= extent_op->flags_to_set; 2049 ret = alloc_reserved_file_extent(trans, root, 2050 parent, ref_root, flags, 2051 ref->objectid, ref->offset, 2052 &ins, node->ref_mod); 2053 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2054 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2055 node->num_bytes, parent, 2056 ref_root, ref->objectid, 2057 ref->offset, node->ref_mod, 2058 extent_op); 2059 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2060 ret = __btrfs_free_extent(trans, root, node->bytenr, 2061 node->num_bytes, parent, 2062 ref_root, ref->objectid, 2063 ref->offset, node->ref_mod, 2064 extent_op); 2065 } else { 2066 BUG(); 2067 } 2068 return ret; 2069 } 2070 2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2072 struct extent_buffer *leaf, 2073 struct btrfs_extent_item *ei) 2074 { 2075 u64 flags = btrfs_extent_flags(leaf, ei); 2076 if (extent_op->update_flags) { 2077 flags |= extent_op->flags_to_set; 2078 btrfs_set_extent_flags(leaf, ei, flags); 2079 } 2080 2081 if (extent_op->update_key) { 2082 struct btrfs_tree_block_info *bi; 2083 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2084 bi = (struct btrfs_tree_block_info *)(ei + 1); 2085 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2086 } 2087 } 2088 2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2090 struct btrfs_root *root, 2091 struct btrfs_delayed_ref_node *node, 2092 struct btrfs_delayed_extent_op *extent_op) 2093 { 2094 struct btrfs_key key; 2095 struct btrfs_path *path; 2096 struct btrfs_extent_item *ei; 2097 struct extent_buffer *leaf; 2098 u32 item_size; 2099 int ret; 2100 int err = 0; 2101 int metadata = !extent_op->is_data; 2102 2103 if (trans->aborted) 2104 return 0; 2105 2106 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2107 metadata = 0; 2108 2109 path = btrfs_alloc_path(); 2110 if (!path) 2111 return -ENOMEM; 2112 2113 key.objectid = node->bytenr; 2114 2115 if (metadata) { 2116 key.type = BTRFS_METADATA_ITEM_KEY; 2117 key.offset = extent_op->level; 2118 } else { 2119 key.type = BTRFS_EXTENT_ITEM_KEY; 2120 key.offset = node->num_bytes; 2121 } 2122 2123 again: 2124 path->reada = 1; 2125 path->leave_spinning = 1; 2126 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2127 path, 0, 1); 2128 if (ret < 0) { 2129 err = ret; 2130 goto out; 2131 } 2132 if (ret > 0) { 2133 if (metadata) { 2134 if (path->slots[0] > 0) { 2135 path->slots[0]--; 2136 btrfs_item_key_to_cpu(path->nodes[0], &key, 2137 path->slots[0]); 2138 if (key.objectid == node->bytenr && 2139 key.type == BTRFS_EXTENT_ITEM_KEY && 2140 key.offset == node->num_bytes) 2141 ret = 0; 2142 } 2143 if (ret > 0) { 2144 btrfs_release_path(path); 2145 metadata = 0; 2146 2147 key.objectid = node->bytenr; 2148 key.offset = node->num_bytes; 2149 key.type = BTRFS_EXTENT_ITEM_KEY; 2150 goto again; 2151 } 2152 } else { 2153 err = -EIO; 2154 goto out; 2155 } 2156 } 2157 2158 leaf = path->nodes[0]; 2159 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2161 if (item_size < sizeof(*ei)) { 2162 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2163 path, (u64)-1, 0); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 leaf = path->nodes[0]; 2169 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2170 } 2171 #endif 2172 BUG_ON(item_size < sizeof(*ei)); 2173 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2174 __run_delayed_extent_op(extent_op, leaf, ei); 2175 2176 btrfs_mark_buffer_dirty(leaf); 2177 out: 2178 btrfs_free_path(path); 2179 return err; 2180 } 2181 2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2183 struct btrfs_root *root, 2184 struct btrfs_delayed_ref_node *node, 2185 struct btrfs_delayed_extent_op *extent_op, 2186 int insert_reserved) 2187 { 2188 int ret = 0; 2189 struct btrfs_delayed_tree_ref *ref; 2190 struct btrfs_key ins; 2191 u64 parent = 0; 2192 u64 ref_root = 0; 2193 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2194 SKINNY_METADATA); 2195 2196 ref = btrfs_delayed_node_to_tree_ref(node); 2197 trace_run_delayed_tree_ref(node, ref, node->action); 2198 2199 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2200 parent = ref->parent; 2201 else 2202 ref_root = ref->root; 2203 2204 ins.objectid = node->bytenr; 2205 if (skinny_metadata) { 2206 ins.offset = ref->level; 2207 ins.type = BTRFS_METADATA_ITEM_KEY; 2208 } else { 2209 ins.offset = node->num_bytes; 2210 ins.type = BTRFS_EXTENT_ITEM_KEY; 2211 } 2212 2213 BUG_ON(node->ref_mod != 1); 2214 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2215 BUG_ON(!extent_op || !extent_op->update_flags); 2216 ret = alloc_reserved_tree_block(trans, root, 2217 parent, ref_root, 2218 extent_op->flags_to_set, 2219 &extent_op->key, 2220 ref->level, &ins); 2221 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2222 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2223 node->num_bytes, parent, ref_root, 2224 ref->level, 0, 1, extent_op); 2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2226 ret = __btrfs_free_extent(trans, root, node->bytenr, 2227 node->num_bytes, parent, ref_root, 2228 ref->level, 0, 1, extent_op); 2229 } else { 2230 BUG(); 2231 } 2232 return ret; 2233 } 2234 2235 /* helper function to actually process a single delayed ref entry */ 2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2237 struct btrfs_root *root, 2238 struct btrfs_delayed_ref_node *node, 2239 struct btrfs_delayed_extent_op *extent_op, 2240 int insert_reserved) 2241 { 2242 int ret = 0; 2243 2244 if (trans->aborted) { 2245 if (insert_reserved) 2246 btrfs_pin_extent(root, node->bytenr, 2247 node->num_bytes, 1); 2248 return 0; 2249 } 2250 2251 if (btrfs_delayed_ref_is_head(node)) { 2252 struct btrfs_delayed_ref_head *head; 2253 /* 2254 * we've hit the end of the chain and we were supposed 2255 * to insert this extent into the tree. But, it got 2256 * deleted before we ever needed to insert it, so all 2257 * we have to do is clean up the accounting 2258 */ 2259 BUG_ON(extent_op); 2260 head = btrfs_delayed_node_to_head(node); 2261 trace_run_delayed_ref_head(node, head, node->action); 2262 2263 if (insert_reserved) { 2264 btrfs_pin_extent(root, node->bytenr, 2265 node->num_bytes, 1); 2266 if (head->is_data) { 2267 ret = btrfs_del_csums(trans, root, 2268 node->bytenr, 2269 node->num_bytes); 2270 } 2271 } 2272 return ret; 2273 } 2274 2275 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2276 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2277 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2278 insert_reserved); 2279 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2280 node->type == BTRFS_SHARED_DATA_REF_KEY) 2281 ret = run_delayed_data_ref(trans, root, node, extent_op, 2282 insert_reserved); 2283 else 2284 BUG(); 2285 return ret; 2286 } 2287 2288 static noinline struct btrfs_delayed_ref_node * 2289 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2290 { 2291 struct rb_node *node; 2292 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2293 2294 /* 2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2296 * this prevents ref count from going down to zero when 2297 * there still are pending delayed ref. 2298 */ 2299 node = rb_first(&head->ref_root); 2300 while (node) { 2301 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2302 rb_node); 2303 if (ref->action == BTRFS_ADD_DELAYED_REF) 2304 return ref; 2305 else if (last == NULL) 2306 last = ref; 2307 node = rb_next(node); 2308 } 2309 return last; 2310 } 2311 2312 /* 2313 * Returns 0 on success or if called with an already aborted transaction. 2314 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2315 */ 2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2317 struct btrfs_root *root, 2318 unsigned long nr) 2319 { 2320 struct btrfs_delayed_ref_root *delayed_refs; 2321 struct btrfs_delayed_ref_node *ref; 2322 struct btrfs_delayed_ref_head *locked_ref = NULL; 2323 struct btrfs_delayed_extent_op *extent_op; 2324 struct btrfs_fs_info *fs_info = root->fs_info; 2325 ktime_t start = ktime_get(); 2326 int ret; 2327 unsigned long count = 0; 2328 unsigned long actual_count = 0; 2329 int must_insert_reserved = 0; 2330 2331 delayed_refs = &trans->transaction->delayed_refs; 2332 while (1) { 2333 if (!locked_ref) { 2334 if (count >= nr) 2335 break; 2336 2337 spin_lock(&delayed_refs->lock); 2338 locked_ref = btrfs_select_ref_head(trans); 2339 if (!locked_ref) { 2340 spin_unlock(&delayed_refs->lock); 2341 break; 2342 } 2343 2344 /* grab the lock that says we are going to process 2345 * all the refs for this head */ 2346 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2347 spin_unlock(&delayed_refs->lock); 2348 /* 2349 * we may have dropped the spin lock to get the head 2350 * mutex lock, and that might have given someone else 2351 * time to free the head. If that's true, it has been 2352 * removed from our list and we can move on. 2353 */ 2354 if (ret == -EAGAIN) { 2355 locked_ref = NULL; 2356 count++; 2357 continue; 2358 } 2359 } 2360 2361 /* 2362 * We need to try and merge add/drops of the same ref since we 2363 * can run into issues with relocate dropping the implicit ref 2364 * and then it being added back again before the drop can 2365 * finish. If we merged anything we need to re-loop so we can 2366 * get a good ref. 2367 */ 2368 spin_lock(&locked_ref->lock); 2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2370 locked_ref); 2371 2372 /* 2373 * locked_ref is the head node, so we have to go one 2374 * node back for any delayed ref updates 2375 */ 2376 ref = select_delayed_ref(locked_ref); 2377 2378 if (ref && ref->seq && 2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2380 spin_unlock(&locked_ref->lock); 2381 btrfs_delayed_ref_unlock(locked_ref); 2382 spin_lock(&delayed_refs->lock); 2383 locked_ref->processing = 0; 2384 delayed_refs->num_heads_ready++; 2385 spin_unlock(&delayed_refs->lock); 2386 locked_ref = NULL; 2387 cond_resched(); 2388 count++; 2389 continue; 2390 } 2391 2392 /* 2393 * record the must insert reserved flag before we 2394 * drop the spin lock. 2395 */ 2396 must_insert_reserved = locked_ref->must_insert_reserved; 2397 locked_ref->must_insert_reserved = 0; 2398 2399 extent_op = locked_ref->extent_op; 2400 locked_ref->extent_op = NULL; 2401 2402 if (!ref) { 2403 2404 2405 /* All delayed refs have been processed, Go ahead 2406 * and send the head node to run_one_delayed_ref, 2407 * so that any accounting fixes can happen 2408 */ 2409 ref = &locked_ref->node; 2410 2411 if (extent_op && must_insert_reserved) { 2412 btrfs_free_delayed_extent_op(extent_op); 2413 extent_op = NULL; 2414 } 2415 2416 if (extent_op) { 2417 spin_unlock(&locked_ref->lock); 2418 ret = run_delayed_extent_op(trans, root, 2419 ref, extent_op); 2420 btrfs_free_delayed_extent_op(extent_op); 2421 2422 if (ret) { 2423 /* 2424 * Need to reset must_insert_reserved if 2425 * there was an error so the abort stuff 2426 * can cleanup the reserved space 2427 * properly. 2428 */ 2429 if (must_insert_reserved) 2430 locked_ref->must_insert_reserved = 1; 2431 locked_ref->processing = 0; 2432 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2433 btrfs_delayed_ref_unlock(locked_ref); 2434 return ret; 2435 } 2436 continue; 2437 } 2438 2439 /* 2440 * Need to drop our head ref lock and re-aqcuire the 2441 * delayed ref lock and then re-check to make sure 2442 * nobody got added. 2443 */ 2444 spin_unlock(&locked_ref->lock); 2445 spin_lock(&delayed_refs->lock); 2446 spin_lock(&locked_ref->lock); 2447 if (rb_first(&locked_ref->ref_root)) { 2448 spin_unlock(&locked_ref->lock); 2449 spin_unlock(&delayed_refs->lock); 2450 continue; 2451 } 2452 ref->in_tree = 0; 2453 delayed_refs->num_heads--; 2454 rb_erase(&locked_ref->href_node, 2455 &delayed_refs->href_root); 2456 spin_unlock(&delayed_refs->lock); 2457 } else { 2458 actual_count++; 2459 ref->in_tree = 0; 2460 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2461 } 2462 atomic_dec(&delayed_refs->num_entries); 2463 2464 if (!btrfs_delayed_ref_is_head(ref)) { 2465 /* 2466 * when we play the delayed ref, also correct the 2467 * ref_mod on head 2468 */ 2469 switch (ref->action) { 2470 case BTRFS_ADD_DELAYED_REF: 2471 case BTRFS_ADD_DELAYED_EXTENT: 2472 locked_ref->node.ref_mod -= ref->ref_mod; 2473 break; 2474 case BTRFS_DROP_DELAYED_REF: 2475 locked_ref->node.ref_mod += ref->ref_mod; 2476 break; 2477 default: 2478 WARN_ON(1); 2479 } 2480 } 2481 spin_unlock(&locked_ref->lock); 2482 2483 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2484 must_insert_reserved); 2485 2486 btrfs_free_delayed_extent_op(extent_op); 2487 if (ret) { 2488 locked_ref->processing = 0; 2489 btrfs_delayed_ref_unlock(locked_ref); 2490 btrfs_put_delayed_ref(ref); 2491 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2492 return ret; 2493 } 2494 2495 /* 2496 * If this node is a head, that means all the refs in this head 2497 * have been dealt with, and we will pick the next head to deal 2498 * with, so we must unlock the head and drop it from the cluster 2499 * list before we release it. 2500 */ 2501 if (btrfs_delayed_ref_is_head(ref)) { 2502 btrfs_delayed_ref_unlock(locked_ref); 2503 locked_ref = NULL; 2504 } 2505 btrfs_put_delayed_ref(ref); 2506 count++; 2507 cond_resched(); 2508 } 2509 2510 /* 2511 * We don't want to include ref heads since we can have empty ref heads 2512 * and those will drastically skew our runtime down since we just do 2513 * accounting, no actual extent tree updates. 2514 */ 2515 if (actual_count > 0) { 2516 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2517 u64 avg; 2518 2519 /* 2520 * We weigh the current average higher than our current runtime 2521 * to avoid large swings in the average. 2522 */ 2523 spin_lock(&delayed_refs->lock); 2524 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2525 avg = div64_u64(avg, 4); 2526 fs_info->avg_delayed_ref_runtime = avg; 2527 spin_unlock(&delayed_refs->lock); 2528 } 2529 return 0; 2530 } 2531 2532 #ifdef SCRAMBLE_DELAYED_REFS 2533 /* 2534 * Normally delayed refs get processed in ascending bytenr order. This 2535 * correlates in most cases to the order added. To expose dependencies on this 2536 * order, we start to process the tree in the middle instead of the beginning 2537 */ 2538 static u64 find_middle(struct rb_root *root) 2539 { 2540 struct rb_node *n = root->rb_node; 2541 struct btrfs_delayed_ref_node *entry; 2542 int alt = 1; 2543 u64 middle; 2544 u64 first = 0, last = 0; 2545 2546 n = rb_first(root); 2547 if (n) { 2548 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2549 first = entry->bytenr; 2550 } 2551 n = rb_last(root); 2552 if (n) { 2553 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2554 last = entry->bytenr; 2555 } 2556 n = root->rb_node; 2557 2558 while (n) { 2559 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2560 WARN_ON(!entry->in_tree); 2561 2562 middle = entry->bytenr; 2563 2564 if (alt) 2565 n = n->rb_left; 2566 else 2567 n = n->rb_right; 2568 2569 alt = 1 - alt; 2570 } 2571 return middle; 2572 } 2573 #endif 2574 2575 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2576 struct btrfs_fs_info *fs_info) 2577 { 2578 struct qgroup_update *qgroup_update; 2579 int ret = 0; 2580 2581 if (list_empty(&trans->qgroup_ref_list) != 2582 !trans->delayed_ref_elem.seq) { 2583 /* list without seq or seq without list */ 2584 btrfs_err(fs_info, 2585 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2586 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2587 (u32)(trans->delayed_ref_elem.seq >> 32), 2588 (u32)trans->delayed_ref_elem.seq); 2589 BUG(); 2590 } 2591 2592 if (!trans->delayed_ref_elem.seq) 2593 return 0; 2594 2595 while (!list_empty(&trans->qgroup_ref_list)) { 2596 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2597 struct qgroup_update, list); 2598 list_del(&qgroup_update->list); 2599 if (!ret) 2600 ret = btrfs_qgroup_account_ref( 2601 trans, fs_info, qgroup_update->node, 2602 qgroup_update->extent_op); 2603 kfree(qgroup_update); 2604 } 2605 2606 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2607 2608 return ret; 2609 } 2610 2611 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2612 { 2613 u64 num_bytes; 2614 2615 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2616 sizeof(struct btrfs_extent_inline_ref)); 2617 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2618 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2619 2620 /* 2621 * We don't ever fill up leaves all the way so multiply by 2 just to be 2622 * closer to what we're really going to want to ouse. 2623 */ 2624 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2625 } 2626 2627 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2628 struct btrfs_root *root) 2629 { 2630 struct btrfs_block_rsv *global_rsv; 2631 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2632 u64 num_bytes; 2633 int ret = 0; 2634 2635 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2636 num_heads = heads_to_leaves(root, num_heads); 2637 if (num_heads > 1) 2638 num_bytes += (num_heads - 1) * root->leafsize; 2639 num_bytes <<= 1; 2640 global_rsv = &root->fs_info->global_block_rsv; 2641 2642 /* 2643 * If we can't allocate any more chunks lets make sure we have _lots_ of 2644 * wiggle room since running delayed refs can create more delayed refs. 2645 */ 2646 if (global_rsv->space_info->full) 2647 num_bytes <<= 1; 2648 2649 spin_lock(&global_rsv->lock); 2650 if (global_rsv->reserved <= num_bytes) 2651 ret = 1; 2652 spin_unlock(&global_rsv->lock); 2653 return ret; 2654 } 2655 2656 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2657 struct btrfs_root *root) 2658 { 2659 struct btrfs_fs_info *fs_info = root->fs_info; 2660 u64 num_entries = 2661 atomic_read(&trans->transaction->delayed_refs.num_entries); 2662 u64 avg_runtime; 2663 2664 smp_mb(); 2665 avg_runtime = fs_info->avg_delayed_ref_runtime; 2666 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2667 return 1; 2668 2669 return btrfs_check_space_for_delayed_refs(trans, root); 2670 } 2671 2672 /* 2673 * this starts processing the delayed reference count updates and 2674 * extent insertions we have queued up so far. count can be 2675 * 0, which means to process everything in the tree at the start 2676 * of the run (but not newly added entries), or it can be some target 2677 * number you'd like to process. 2678 * 2679 * Returns 0 on success or if called with an aborted transaction 2680 * Returns <0 on error and aborts the transaction 2681 */ 2682 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2683 struct btrfs_root *root, unsigned long count) 2684 { 2685 struct rb_node *node; 2686 struct btrfs_delayed_ref_root *delayed_refs; 2687 struct btrfs_delayed_ref_head *head; 2688 int ret; 2689 int run_all = count == (unsigned long)-1; 2690 int run_most = 0; 2691 2692 /* We'll clean this up in btrfs_cleanup_transaction */ 2693 if (trans->aborted) 2694 return 0; 2695 2696 if (root == root->fs_info->extent_root) 2697 root = root->fs_info->tree_root; 2698 2699 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2700 2701 delayed_refs = &trans->transaction->delayed_refs; 2702 if (count == 0) { 2703 count = atomic_read(&delayed_refs->num_entries) * 2; 2704 run_most = 1; 2705 } 2706 2707 again: 2708 #ifdef SCRAMBLE_DELAYED_REFS 2709 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2710 #endif 2711 ret = __btrfs_run_delayed_refs(trans, root, count); 2712 if (ret < 0) { 2713 btrfs_abort_transaction(trans, root, ret); 2714 return ret; 2715 } 2716 2717 if (run_all) { 2718 if (!list_empty(&trans->new_bgs)) 2719 btrfs_create_pending_block_groups(trans, root); 2720 2721 spin_lock(&delayed_refs->lock); 2722 node = rb_first(&delayed_refs->href_root); 2723 if (!node) { 2724 spin_unlock(&delayed_refs->lock); 2725 goto out; 2726 } 2727 count = (unsigned long)-1; 2728 2729 while (node) { 2730 head = rb_entry(node, struct btrfs_delayed_ref_head, 2731 href_node); 2732 if (btrfs_delayed_ref_is_head(&head->node)) { 2733 struct btrfs_delayed_ref_node *ref; 2734 2735 ref = &head->node; 2736 atomic_inc(&ref->refs); 2737 2738 spin_unlock(&delayed_refs->lock); 2739 /* 2740 * Mutex was contended, block until it's 2741 * released and try again 2742 */ 2743 mutex_lock(&head->mutex); 2744 mutex_unlock(&head->mutex); 2745 2746 btrfs_put_delayed_ref(ref); 2747 cond_resched(); 2748 goto again; 2749 } else { 2750 WARN_ON(1); 2751 } 2752 node = rb_next(node); 2753 } 2754 spin_unlock(&delayed_refs->lock); 2755 cond_resched(); 2756 goto again; 2757 } 2758 out: 2759 assert_qgroups_uptodate(trans); 2760 return 0; 2761 } 2762 2763 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 u64 bytenr, u64 num_bytes, u64 flags, 2766 int level, int is_data) 2767 { 2768 struct btrfs_delayed_extent_op *extent_op; 2769 int ret; 2770 2771 extent_op = btrfs_alloc_delayed_extent_op(); 2772 if (!extent_op) 2773 return -ENOMEM; 2774 2775 extent_op->flags_to_set = flags; 2776 extent_op->update_flags = 1; 2777 extent_op->update_key = 0; 2778 extent_op->is_data = is_data ? 1 : 0; 2779 extent_op->level = level; 2780 2781 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2782 num_bytes, extent_op); 2783 if (ret) 2784 btrfs_free_delayed_extent_op(extent_op); 2785 return ret; 2786 } 2787 2788 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 struct btrfs_path *path, 2791 u64 objectid, u64 offset, u64 bytenr) 2792 { 2793 struct btrfs_delayed_ref_head *head; 2794 struct btrfs_delayed_ref_node *ref; 2795 struct btrfs_delayed_data_ref *data_ref; 2796 struct btrfs_delayed_ref_root *delayed_refs; 2797 struct rb_node *node; 2798 int ret = 0; 2799 2800 delayed_refs = &trans->transaction->delayed_refs; 2801 spin_lock(&delayed_refs->lock); 2802 head = btrfs_find_delayed_ref_head(trans, bytenr); 2803 if (!head) { 2804 spin_unlock(&delayed_refs->lock); 2805 return 0; 2806 } 2807 2808 if (!mutex_trylock(&head->mutex)) { 2809 atomic_inc(&head->node.refs); 2810 spin_unlock(&delayed_refs->lock); 2811 2812 btrfs_release_path(path); 2813 2814 /* 2815 * Mutex was contended, block until it's released and let 2816 * caller try again 2817 */ 2818 mutex_lock(&head->mutex); 2819 mutex_unlock(&head->mutex); 2820 btrfs_put_delayed_ref(&head->node); 2821 return -EAGAIN; 2822 } 2823 spin_unlock(&delayed_refs->lock); 2824 2825 spin_lock(&head->lock); 2826 node = rb_first(&head->ref_root); 2827 while (node) { 2828 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2829 node = rb_next(node); 2830 2831 /* If it's a shared ref we know a cross reference exists */ 2832 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2833 ret = 1; 2834 break; 2835 } 2836 2837 data_ref = btrfs_delayed_node_to_data_ref(ref); 2838 2839 /* 2840 * If our ref doesn't match the one we're currently looking at 2841 * then we have a cross reference. 2842 */ 2843 if (data_ref->root != root->root_key.objectid || 2844 data_ref->objectid != objectid || 2845 data_ref->offset != offset) { 2846 ret = 1; 2847 break; 2848 } 2849 } 2850 spin_unlock(&head->lock); 2851 mutex_unlock(&head->mutex); 2852 return ret; 2853 } 2854 2855 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *root, 2857 struct btrfs_path *path, 2858 u64 objectid, u64 offset, u64 bytenr) 2859 { 2860 struct btrfs_root *extent_root = root->fs_info->extent_root; 2861 struct extent_buffer *leaf; 2862 struct btrfs_extent_data_ref *ref; 2863 struct btrfs_extent_inline_ref *iref; 2864 struct btrfs_extent_item *ei; 2865 struct btrfs_key key; 2866 u32 item_size; 2867 int ret; 2868 2869 key.objectid = bytenr; 2870 key.offset = (u64)-1; 2871 key.type = BTRFS_EXTENT_ITEM_KEY; 2872 2873 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2874 if (ret < 0) 2875 goto out; 2876 BUG_ON(ret == 0); /* Corruption */ 2877 2878 ret = -ENOENT; 2879 if (path->slots[0] == 0) 2880 goto out; 2881 2882 path->slots[0]--; 2883 leaf = path->nodes[0]; 2884 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2885 2886 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2887 goto out; 2888 2889 ret = 1; 2890 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2892 if (item_size < sizeof(*ei)) { 2893 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2894 goto out; 2895 } 2896 #endif 2897 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2898 2899 if (item_size != sizeof(*ei) + 2900 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2901 goto out; 2902 2903 if (btrfs_extent_generation(leaf, ei) <= 2904 btrfs_root_last_snapshot(&root->root_item)) 2905 goto out; 2906 2907 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2908 if (btrfs_extent_inline_ref_type(leaf, iref) != 2909 BTRFS_EXTENT_DATA_REF_KEY) 2910 goto out; 2911 2912 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2913 if (btrfs_extent_refs(leaf, ei) != 2914 btrfs_extent_data_ref_count(leaf, ref) || 2915 btrfs_extent_data_ref_root(leaf, ref) != 2916 root->root_key.objectid || 2917 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2918 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2919 goto out; 2920 2921 ret = 0; 2922 out: 2923 return ret; 2924 } 2925 2926 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2927 struct btrfs_root *root, 2928 u64 objectid, u64 offset, u64 bytenr) 2929 { 2930 struct btrfs_path *path; 2931 int ret; 2932 int ret2; 2933 2934 path = btrfs_alloc_path(); 2935 if (!path) 2936 return -ENOENT; 2937 2938 do { 2939 ret = check_committed_ref(trans, root, path, objectid, 2940 offset, bytenr); 2941 if (ret && ret != -ENOENT) 2942 goto out; 2943 2944 ret2 = check_delayed_ref(trans, root, path, objectid, 2945 offset, bytenr); 2946 } while (ret2 == -EAGAIN); 2947 2948 if (ret2 && ret2 != -ENOENT) { 2949 ret = ret2; 2950 goto out; 2951 } 2952 2953 if (ret != -ENOENT || ret2 != -ENOENT) 2954 ret = 0; 2955 out: 2956 btrfs_free_path(path); 2957 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2958 WARN_ON(ret > 0); 2959 return ret; 2960 } 2961 2962 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2963 struct btrfs_root *root, 2964 struct extent_buffer *buf, 2965 int full_backref, int inc, int for_cow) 2966 { 2967 u64 bytenr; 2968 u64 num_bytes; 2969 u64 parent; 2970 u64 ref_root; 2971 u32 nritems; 2972 struct btrfs_key key; 2973 struct btrfs_file_extent_item *fi; 2974 int i; 2975 int level; 2976 int ret = 0; 2977 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2978 u64, u64, u64, u64, u64, u64, int); 2979 2980 ref_root = btrfs_header_owner(buf); 2981 nritems = btrfs_header_nritems(buf); 2982 level = btrfs_header_level(buf); 2983 2984 if (!root->ref_cows && level == 0) 2985 return 0; 2986 2987 if (inc) 2988 process_func = btrfs_inc_extent_ref; 2989 else 2990 process_func = btrfs_free_extent; 2991 2992 if (full_backref) 2993 parent = buf->start; 2994 else 2995 parent = 0; 2996 2997 for (i = 0; i < nritems; i++) { 2998 if (level == 0) { 2999 btrfs_item_key_to_cpu(buf, &key, i); 3000 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3001 continue; 3002 fi = btrfs_item_ptr(buf, i, 3003 struct btrfs_file_extent_item); 3004 if (btrfs_file_extent_type(buf, fi) == 3005 BTRFS_FILE_EXTENT_INLINE) 3006 continue; 3007 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3008 if (bytenr == 0) 3009 continue; 3010 3011 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3012 key.offset -= btrfs_file_extent_offset(buf, fi); 3013 ret = process_func(trans, root, bytenr, num_bytes, 3014 parent, ref_root, key.objectid, 3015 key.offset, for_cow); 3016 if (ret) 3017 goto fail; 3018 } else { 3019 bytenr = btrfs_node_blockptr(buf, i); 3020 num_bytes = btrfs_level_size(root, level - 1); 3021 ret = process_func(trans, root, bytenr, num_bytes, 3022 parent, ref_root, level - 1, 0, 3023 for_cow); 3024 if (ret) 3025 goto fail; 3026 } 3027 } 3028 return 0; 3029 fail: 3030 return ret; 3031 } 3032 3033 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3034 struct extent_buffer *buf, int full_backref, int for_cow) 3035 { 3036 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3037 } 3038 3039 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3040 struct extent_buffer *buf, int full_backref, int for_cow) 3041 { 3042 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3043 } 3044 3045 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3046 struct btrfs_root *root, 3047 struct btrfs_path *path, 3048 struct btrfs_block_group_cache *cache) 3049 { 3050 int ret; 3051 struct btrfs_root *extent_root = root->fs_info->extent_root; 3052 unsigned long bi; 3053 struct extent_buffer *leaf; 3054 3055 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3056 if (ret < 0) 3057 goto fail; 3058 BUG_ON(ret); /* Corruption */ 3059 3060 leaf = path->nodes[0]; 3061 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3062 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3063 btrfs_mark_buffer_dirty(leaf); 3064 btrfs_release_path(path); 3065 fail: 3066 if (ret) { 3067 btrfs_abort_transaction(trans, root, ret); 3068 return ret; 3069 } 3070 return 0; 3071 3072 } 3073 3074 static struct btrfs_block_group_cache * 3075 next_block_group(struct btrfs_root *root, 3076 struct btrfs_block_group_cache *cache) 3077 { 3078 struct rb_node *node; 3079 spin_lock(&root->fs_info->block_group_cache_lock); 3080 node = rb_next(&cache->cache_node); 3081 btrfs_put_block_group(cache); 3082 if (node) { 3083 cache = rb_entry(node, struct btrfs_block_group_cache, 3084 cache_node); 3085 btrfs_get_block_group(cache); 3086 } else 3087 cache = NULL; 3088 spin_unlock(&root->fs_info->block_group_cache_lock); 3089 return cache; 3090 } 3091 3092 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3093 struct btrfs_trans_handle *trans, 3094 struct btrfs_path *path) 3095 { 3096 struct btrfs_root *root = block_group->fs_info->tree_root; 3097 struct inode *inode = NULL; 3098 u64 alloc_hint = 0; 3099 int dcs = BTRFS_DC_ERROR; 3100 int num_pages = 0; 3101 int retries = 0; 3102 int ret = 0; 3103 3104 /* 3105 * If this block group is smaller than 100 megs don't bother caching the 3106 * block group. 3107 */ 3108 if (block_group->key.offset < (100 * 1024 * 1024)) { 3109 spin_lock(&block_group->lock); 3110 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3111 spin_unlock(&block_group->lock); 3112 return 0; 3113 } 3114 3115 again: 3116 inode = lookup_free_space_inode(root, block_group, path); 3117 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3118 ret = PTR_ERR(inode); 3119 btrfs_release_path(path); 3120 goto out; 3121 } 3122 3123 if (IS_ERR(inode)) { 3124 BUG_ON(retries); 3125 retries++; 3126 3127 if (block_group->ro) 3128 goto out_free; 3129 3130 ret = create_free_space_inode(root, trans, block_group, path); 3131 if (ret) 3132 goto out_free; 3133 goto again; 3134 } 3135 3136 /* We've already setup this transaction, go ahead and exit */ 3137 if (block_group->cache_generation == trans->transid && 3138 i_size_read(inode)) { 3139 dcs = BTRFS_DC_SETUP; 3140 goto out_put; 3141 } 3142 3143 /* 3144 * We want to set the generation to 0, that way if anything goes wrong 3145 * from here on out we know not to trust this cache when we load up next 3146 * time. 3147 */ 3148 BTRFS_I(inode)->generation = 0; 3149 ret = btrfs_update_inode(trans, root, inode); 3150 WARN_ON(ret); 3151 3152 if (i_size_read(inode) > 0) { 3153 ret = btrfs_check_trunc_cache_free_space(root, 3154 &root->fs_info->global_block_rsv); 3155 if (ret) 3156 goto out_put; 3157 3158 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3159 if (ret) 3160 goto out_put; 3161 } 3162 3163 spin_lock(&block_group->lock); 3164 if (block_group->cached != BTRFS_CACHE_FINISHED || 3165 !btrfs_test_opt(root, SPACE_CACHE)) { 3166 /* 3167 * don't bother trying to write stuff out _if_ 3168 * a) we're not cached, 3169 * b) we're with nospace_cache mount option. 3170 */ 3171 dcs = BTRFS_DC_WRITTEN; 3172 spin_unlock(&block_group->lock); 3173 goto out_put; 3174 } 3175 spin_unlock(&block_group->lock); 3176 3177 /* 3178 * Try to preallocate enough space based on how big the block group is. 3179 * Keep in mind this has to include any pinned space which could end up 3180 * taking up quite a bit since it's not folded into the other space 3181 * cache. 3182 */ 3183 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3184 if (!num_pages) 3185 num_pages = 1; 3186 3187 num_pages *= 16; 3188 num_pages *= PAGE_CACHE_SIZE; 3189 3190 ret = btrfs_check_data_free_space(inode, num_pages); 3191 if (ret) 3192 goto out_put; 3193 3194 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3195 num_pages, num_pages, 3196 &alloc_hint); 3197 if (!ret) 3198 dcs = BTRFS_DC_SETUP; 3199 btrfs_free_reserved_data_space(inode, num_pages); 3200 3201 out_put: 3202 iput(inode); 3203 out_free: 3204 btrfs_release_path(path); 3205 out: 3206 spin_lock(&block_group->lock); 3207 if (!ret && dcs == BTRFS_DC_SETUP) 3208 block_group->cache_generation = trans->transid; 3209 block_group->disk_cache_state = dcs; 3210 spin_unlock(&block_group->lock); 3211 3212 return ret; 3213 } 3214 3215 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3216 struct btrfs_root *root) 3217 { 3218 struct btrfs_block_group_cache *cache; 3219 int err = 0; 3220 struct btrfs_path *path; 3221 u64 last = 0; 3222 3223 path = btrfs_alloc_path(); 3224 if (!path) 3225 return -ENOMEM; 3226 3227 again: 3228 while (1) { 3229 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3230 while (cache) { 3231 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3232 break; 3233 cache = next_block_group(root, cache); 3234 } 3235 if (!cache) { 3236 if (last == 0) 3237 break; 3238 last = 0; 3239 continue; 3240 } 3241 err = cache_save_setup(cache, trans, path); 3242 last = cache->key.objectid + cache->key.offset; 3243 btrfs_put_block_group(cache); 3244 } 3245 3246 while (1) { 3247 if (last == 0) { 3248 err = btrfs_run_delayed_refs(trans, root, 3249 (unsigned long)-1); 3250 if (err) /* File system offline */ 3251 goto out; 3252 } 3253 3254 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3255 while (cache) { 3256 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3257 btrfs_put_block_group(cache); 3258 goto again; 3259 } 3260 3261 if (cache->dirty) 3262 break; 3263 cache = next_block_group(root, cache); 3264 } 3265 if (!cache) { 3266 if (last == 0) 3267 break; 3268 last = 0; 3269 continue; 3270 } 3271 3272 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3273 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3274 cache->dirty = 0; 3275 last = cache->key.objectid + cache->key.offset; 3276 3277 err = write_one_cache_group(trans, root, path, cache); 3278 btrfs_put_block_group(cache); 3279 if (err) /* File system offline */ 3280 goto out; 3281 } 3282 3283 while (1) { 3284 /* 3285 * I don't think this is needed since we're just marking our 3286 * preallocated extent as written, but just in case it can't 3287 * hurt. 3288 */ 3289 if (last == 0) { 3290 err = btrfs_run_delayed_refs(trans, root, 3291 (unsigned long)-1); 3292 if (err) /* File system offline */ 3293 goto out; 3294 } 3295 3296 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3297 while (cache) { 3298 /* 3299 * Really this shouldn't happen, but it could if we 3300 * couldn't write the entire preallocated extent and 3301 * splitting the extent resulted in a new block. 3302 */ 3303 if (cache->dirty) { 3304 btrfs_put_block_group(cache); 3305 goto again; 3306 } 3307 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3308 break; 3309 cache = next_block_group(root, cache); 3310 } 3311 if (!cache) { 3312 if (last == 0) 3313 break; 3314 last = 0; 3315 continue; 3316 } 3317 3318 err = btrfs_write_out_cache(root, trans, cache, path); 3319 3320 /* 3321 * If we didn't have an error then the cache state is still 3322 * NEED_WRITE, so we can set it to WRITTEN. 3323 */ 3324 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3325 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3326 last = cache->key.objectid + cache->key.offset; 3327 btrfs_put_block_group(cache); 3328 } 3329 out: 3330 3331 btrfs_free_path(path); 3332 return err; 3333 } 3334 3335 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3336 { 3337 struct btrfs_block_group_cache *block_group; 3338 int readonly = 0; 3339 3340 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3341 if (!block_group || block_group->ro) 3342 readonly = 1; 3343 if (block_group) 3344 btrfs_put_block_group(block_group); 3345 return readonly; 3346 } 3347 3348 static const char *alloc_name(u64 flags) 3349 { 3350 switch (flags) { 3351 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3352 return "mixed"; 3353 case BTRFS_BLOCK_GROUP_METADATA: 3354 return "metadata"; 3355 case BTRFS_BLOCK_GROUP_DATA: 3356 return "data"; 3357 case BTRFS_BLOCK_GROUP_SYSTEM: 3358 return "system"; 3359 default: 3360 WARN_ON(1); 3361 return "invalid-combination"; 3362 }; 3363 } 3364 3365 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3366 u64 total_bytes, u64 bytes_used, 3367 struct btrfs_space_info **space_info) 3368 { 3369 struct btrfs_space_info *found; 3370 int i; 3371 int factor; 3372 int ret; 3373 3374 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3375 BTRFS_BLOCK_GROUP_RAID10)) 3376 factor = 2; 3377 else 3378 factor = 1; 3379 3380 found = __find_space_info(info, flags); 3381 if (found) { 3382 spin_lock(&found->lock); 3383 found->total_bytes += total_bytes; 3384 found->disk_total += total_bytes * factor; 3385 found->bytes_used += bytes_used; 3386 found->disk_used += bytes_used * factor; 3387 found->full = 0; 3388 spin_unlock(&found->lock); 3389 *space_info = found; 3390 return 0; 3391 } 3392 found = kzalloc(sizeof(*found), GFP_NOFS); 3393 if (!found) 3394 return -ENOMEM; 3395 3396 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3397 if (ret) { 3398 kfree(found); 3399 return ret; 3400 } 3401 3402 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 3403 INIT_LIST_HEAD(&found->block_groups[i]); 3404 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype); 3405 } 3406 init_rwsem(&found->groups_sem); 3407 spin_lock_init(&found->lock); 3408 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3409 found->total_bytes = total_bytes; 3410 found->disk_total = total_bytes * factor; 3411 found->bytes_used = bytes_used; 3412 found->disk_used = bytes_used * factor; 3413 found->bytes_pinned = 0; 3414 found->bytes_reserved = 0; 3415 found->bytes_readonly = 0; 3416 found->bytes_may_use = 0; 3417 found->full = 0; 3418 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3419 found->chunk_alloc = 0; 3420 found->flush = 0; 3421 init_waitqueue_head(&found->wait); 3422 3423 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3424 info->space_info_kobj, "%s", 3425 alloc_name(found->flags)); 3426 if (ret) { 3427 kfree(found); 3428 return ret; 3429 } 3430 3431 *space_info = found; 3432 list_add_rcu(&found->list, &info->space_info); 3433 if (flags & BTRFS_BLOCK_GROUP_DATA) 3434 info->data_sinfo = found; 3435 3436 return ret; 3437 } 3438 3439 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3440 { 3441 u64 extra_flags = chunk_to_extended(flags) & 3442 BTRFS_EXTENDED_PROFILE_MASK; 3443 3444 write_seqlock(&fs_info->profiles_lock); 3445 if (flags & BTRFS_BLOCK_GROUP_DATA) 3446 fs_info->avail_data_alloc_bits |= extra_flags; 3447 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3448 fs_info->avail_metadata_alloc_bits |= extra_flags; 3449 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3450 fs_info->avail_system_alloc_bits |= extra_flags; 3451 write_sequnlock(&fs_info->profiles_lock); 3452 } 3453 3454 /* 3455 * returns target flags in extended format or 0 if restripe for this 3456 * chunk_type is not in progress 3457 * 3458 * should be called with either volume_mutex or balance_lock held 3459 */ 3460 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3461 { 3462 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3463 u64 target = 0; 3464 3465 if (!bctl) 3466 return 0; 3467 3468 if (flags & BTRFS_BLOCK_GROUP_DATA && 3469 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3470 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3471 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3472 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3473 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3474 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3475 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3476 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3477 } 3478 3479 return target; 3480 } 3481 3482 /* 3483 * @flags: available profiles in extended format (see ctree.h) 3484 * 3485 * Returns reduced profile in chunk format. If profile changing is in 3486 * progress (either running or paused) picks the target profile (if it's 3487 * already available), otherwise falls back to plain reducing. 3488 */ 3489 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3490 { 3491 /* 3492 * we add in the count of missing devices because we want 3493 * to make sure that any RAID levels on a degraded FS 3494 * continue to be honored. 3495 */ 3496 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3497 root->fs_info->fs_devices->missing_devices; 3498 u64 target; 3499 u64 tmp; 3500 3501 /* 3502 * see if restripe for this chunk_type is in progress, if so 3503 * try to reduce to the target profile 3504 */ 3505 spin_lock(&root->fs_info->balance_lock); 3506 target = get_restripe_target(root->fs_info, flags); 3507 if (target) { 3508 /* pick target profile only if it's already available */ 3509 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3510 spin_unlock(&root->fs_info->balance_lock); 3511 return extended_to_chunk(target); 3512 } 3513 } 3514 spin_unlock(&root->fs_info->balance_lock); 3515 3516 /* First, mask out the RAID levels which aren't possible */ 3517 if (num_devices == 1) 3518 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3519 BTRFS_BLOCK_GROUP_RAID5); 3520 if (num_devices < 3) 3521 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3522 if (num_devices < 4) 3523 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3524 3525 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3526 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3527 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3528 flags &= ~tmp; 3529 3530 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3531 tmp = BTRFS_BLOCK_GROUP_RAID6; 3532 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3533 tmp = BTRFS_BLOCK_GROUP_RAID5; 3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3535 tmp = BTRFS_BLOCK_GROUP_RAID10; 3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3537 tmp = BTRFS_BLOCK_GROUP_RAID1; 3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3539 tmp = BTRFS_BLOCK_GROUP_RAID0; 3540 3541 return extended_to_chunk(flags | tmp); 3542 } 3543 3544 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3545 { 3546 unsigned seq; 3547 3548 do { 3549 seq = read_seqbegin(&root->fs_info->profiles_lock); 3550 3551 if (flags & BTRFS_BLOCK_GROUP_DATA) 3552 flags |= root->fs_info->avail_data_alloc_bits; 3553 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3554 flags |= root->fs_info->avail_system_alloc_bits; 3555 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3556 flags |= root->fs_info->avail_metadata_alloc_bits; 3557 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3558 3559 return btrfs_reduce_alloc_profile(root, flags); 3560 } 3561 3562 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3563 { 3564 u64 flags; 3565 u64 ret; 3566 3567 if (data) 3568 flags = BTRFS_BLOCK_GROUP_DATA; 3569 else if (root == root->fs_info->chunk_root) 3570 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3571 else 3572 flags = BTRFS_BLOCK_GROUP_METADATA; 3573 3574 ret = get_alloc_profile(root, flags); 3575 return ret; 3576 } 3577 3578 /* 3579 * This will check the space that the inode allocates from to make sure we have 3580 * enough space for bytes. 3581 */ 3582 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3583 { 3584 struct btrfs_space_info *data_sinfo; 3585 struct btrfs_root *root = BTRFS_I(inode)->root; 3586 struct btrfs_fs_info *fs_info = root->fs_info; 3587 u64 used; 3588 int ret = 0, committed = 0, alloc_chunk = 1; 3589 3590 /* make sure bytes are sectorsize aligned */ 3591 bytes = ALIGN(bytes, root->sectorsize); 3592 3593 if (btrfs_is_free_space_inode(inode)) { 3594 committed = 1; 3595 ASSERT(current->journal_info); 3596 } 3597 3598 data_sinfo = fs_info->data_sinfo; 3599 if (!data_sinfo) 3600 goto alloc; 3601 3602 again: 3603 /* make sure we have enough space to handle the data first */ 3604 spin_lock(&data_sinfo->lock); 3605 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3606 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3607 data_sinfo->bytes_may_use; 3608 3609 if (used + bytes > data_sinfo->total_bytes) { 3610 struct btrfs_trans_handle *trans; 3611 3612 /* 3613 * if we don't have enough free bytes in this space then we need 3614 * to alloc a new chunk. 3615 */ 3616 if (!data_sinfo->full && alloc_chunk) { 3617 u64 alloc_target; 3618 3619 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3620 spin_unlock(&data_sinfo->lock); 3621 alloc: 3622 alloc_target = btrfs_get_alloc_profile(root, 1); 3623 /* 3624 * It is ugly that we don't call nolock join 3625 * transaction for the free space inode case here. 3626 * But it is safe because we only do the data space 3627 * reservation for the free space cache in the 3628 * transaction context, the common join transaction 3629 * just increase the counter of the current transaction 3630 * handler, doesn't try to acquire the trans_lock of 3631 * the fs. 3632 */ 3633 trans = btrfs_join_transaction(root); 3634 if (IS_ERR(trans)) 3635 return PTR_ERR(trans); 3636 3637 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3638 alloc_target, 3639 CHUNK_ALLOC_NO_FORCE); 3640 btrfs_end_transaction(trans, root); 3641 if (ret < 0) { 3642 if (ret != -ENOSPC) 3643 return ret; 3644 else 3645 goto commit_trans; 3646 } 3647 3648 if (!data_sinfo) 3649 data_sinfo = fs_info->data_sinfo; 3650 3651 goto again; 3652 } 3653 3654 /* 3655 * If we don't have enough pinned space to deal with this 3656 * allocation don't bother committing the transaction. 3657 */ 3658 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3659 bytes) < 0) 3660 committed = 1; 3661 spin_unlock(&data_sinfo->lock); 3662 3663 /* commit the current transaction and try again */ 3664 commit_trans: 3665 if (!committed && 3666 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3667 committed = 1; 3668 3669 trans = btrfs_join_transaction(root); 3670 if (IS_ERR(trans)) 3671 return PTR_ERR(trans); 3672 ret = btrfs_commit_transaction(trans, root); 3673 if (ret) 3674 return ret; 3675 goto again; 3676 } 3677 3678 trace_btrfs_space_reservation(root->fs_info, 3679 "space_info:enospc", 3680 data_sinfo->flags, bytes, 1); 3681 return -ENOSPC; 3682 } 3683 data_sinfo->bytes_may_use += bytes; 3684 trace_btrfs_space_reservation(root->fs_info, "space_info", 3685 data_sinfo->flags, bytes, 1); 3686 spin_unlock(&data_sinfo->lock); 3687 3688 return 0; 3689 } 3690 3691 /* 3692 * Called if we need to clear a data reservation for this inode. 3693 */ 3694 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3695 { 3696 struct btrfs_root *root = BTRFS_I(inode)->root; 3697 struct btrfs_space_info *data_sinfo; 3698 3699 /* make sure bytes are sectorsize aligned */ 3700 bytes = ALIGN(bytes, root->sectorsize); 3701 3702 data_sinfo = root->fs_info->data_sinfo; 3703 spin_lock(&data_sinfo->lock); 3704 WARN_ON(data_sinfo->bytes_may_use < bytes); 3705 data_sinfo->bytes_may_use -= bytes; 3706 trace_btrfs_space_reservation(root->fs_info, "space_info", 3707 data_sinfo->flags, bytes, 0); 3708 spin_unlock(&data_sinfo->lock); 3709 } 3710 3711 static void force_metadata_allocation(struct btrfs_fs_info *info) 3712 { 3713 struct list_head *head = &info->space_info; 3714 struct btrfs_space_info *found; 3715 3716 rcu_read_lock(); 3717 list_for_each_entry_rcu(found, head, list) { 3718 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3719 found->force_alloc = CHUNK_ALLOC_FORCE; 3720 } 3721 rcu_read_unlock(); 3722 } 3723 3724 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3725 { 3726 return (global->size << 1); 3727 } 3728 3729 static int should_alloc_chunk(struct btrfs_root *root, 3730 struct btrfs_space_info *sinfo, int force) 3731 { 3732 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3733 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3734 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3735 u64 thresh; 3736 3737 if (force == CHUNK_ALLOC_FORCE) 3738 return 1; 3739 3740 /* 3741 * We need to take into account the global rsv because for all intents 3742 * and purposes it's used space. Don't worry about locking the 3743 * global_rsv, it doesn't change except when the transaction commits. 3744 */ 3745 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3746 num_allocated += calc_global_rsv_need_space(global_rsv); 3747 3748 /* 3749 * in limited mode, we want to have some free space up to 3750 * about 1% of the FS size. 3751 */ 3752 if (force == CHUNK_ALLOC_LIMITED) { 3753 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3754 thresh = max_t(u64, 64 * 1024 * 1024, 3755 div_factor_fine(thresh, 1)); 3756 3757 if (num_bytes - num_allocated < thresh) 3758 return 1; 3759 } 3760 3761 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3762 return 0; 3763 return 1; 3764 } 3765 3766 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3767 { 3768 u64 num_dev; 3769 3770 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3771 BTRFS_BLOCK_GROUP_RAID0 | 3772 BTRFS_BLOCK_GROUP_RAID5 | 3773 BTRFS_BLOCK_GROUP_RAID6)) 3774 num_dev = root->fs_info->fs_devices->rw_devices; 3775 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3776 num_dev = 2; 3777 else 3778 num_dev = 1; /* DUP or single */ 3779 3780 /* metadata for updaing devices and chunk tree */ 3781 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3782 } 3783 3784 static void check_system_chunk(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *root, u64 type) 3786 { 3787 struct btrfs_space_info *info; 3788 u64 left; 3789 u64 thresh; 3790 3791 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3792 spin_lock(&info->lock); 3793 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3794 info->bytes_reserved - info->bytes_readonly; 3795 spin_unlock(&info->lock); 3796 3797 thresh = get_system_chunk_thresh(root, type); 3798 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3799 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3800 left, thresh, type); 3801 dump_space_info(info, 0, 0); 3802 } 3803 3804 if (left < thresh) { 3805 u64 flags; 3806 3807 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3808 btrfs_alloc_chunk(trans, root, flags); 3809 } 3810 } 3811 3812 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3813 struct btrfs_root *extent_root, u64 flags, int force) 3814 { 3815 struct btrfs_space_info *space_info; 3816 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3817 int wait_for_alloc = 0; 3818 int ret = 0; 3819 3820 /* Don't re-enter if we're already allocating a chunk */ 3821 if (trans->allocating_chunk) 3822 return -ENOSPC; 3823 3824 space_info = __find_space_info(extent_root->fs_info, flags); 3825 if (!space_info) { 3826 ret = update_space_info(extent_root->fs_info, flags, 3827 0, 0, &space_info); 3828 BUG_ON(ret); /* -ENOMEM */ 3829 } 3830 BUG_ON(!space_info); /* Logic error */ 3831 3832 again: 3833 spin_lock(&space_info->lock); 3834 if (force < space_info->force_alloc) 3835 force = space_info->force_alloc; 3836 if (space_info->full) { 3837 if (should_alloc_chunk(extent_root, space_info, force)) 3838 ret = -ENOSPC; 3839 else 3840 ret = 0; 3841 spin_unlock(&space_info->lock); 3842 return ret; 3843 } 3844 3845 if (!should_alloc_chunk(extent_root, space_info, force)) { 3846 spin_unlock(&space_info->lock); 3847 return 0; 3848 } else if (space_info->chunk_alloc) { 3849 wait_for_alloc = 1; 3850 } else { 3851 space_info->chunk_alloc = 1; 3852 } 3853 3854 spin_unlock(&space_info->lock); 3855 3856 mutex_lock(&fs_info->chunk_mutex); 3857 3858 /* 3859 * The chunk_mutex is held throughout the entirety of a chunk 3860 * allocation, so once we've acquired the chunk_mutex we know that the 3861 * other guy is done and we need to recheck and see if we should 3862 * allocate. 3863 */ 3864 if (wait_for_alloc) { 3865 mutex_unlock(&fs_info->chunk_mutex); 3866 wait_for_alloc = 0; 3867 goto again; 3868 } 3869 3870 trans->allocating_chunk = true; 3871 3872 /* 3873 * If we have mixed data/metadata chunks we want to make sure we keep 3874 * allocating mixed chunks instead of individual chunks. 3875 */ 3876 if (btrfs_mixed_space_info(space_info)) 3877 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3878 3879 /* 3880 * if we're doing a data chunk, go ahead and make sure that 3881 * we keep a reasonable number of metadata chunks allocated in the 3882 * FS as well. 3883 */ 3884 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3885 fs_info->data_chunk_allocations++; 3886 if (!(fs_info->data_chunk_allocations % 3887 fs_info->metadata_ratio)) 3888 force_metadata_allocation(fs_info); 3889 } 3890 3891 /* 3892 * Check if we have enough space in SYSTEM chunk because we may need 3893 * to update devices. 3894 */ 3895 check_system_chunk(trans, extent_root, flags); 3896 3897 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3898 trans->allocating_chunk = false; 3899 3900 spin_lock(&space_info->lock); 3901 if (ret < 0 && ret != -ENOSPC) 3902 goto out; 3903 if (ret) 3904 space_info->full = 1; 3905 else 3906 ret = 1; 3907 3908 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3909 out: 3910 space_info->chunk_alloc = 0; 3911 spin_unlock(&space_info->lock); 3912 mutex_unlock(&fs_info->chunk_mutex); 3913 return ret; 3914 } 3915 3916 static int can_overcommit(struct btrfs_root *root, 3917 struct btrfs_space_info *space_info, u64 bytes, 3918 enum btrfs_reserve_flush_enum flush) 3919 { 3920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3921 u64 profile = btrfs_get_alloc_profile(root, 0); 3922 u64 space_size; 3923 u64 avail; 3924 u64 used; 3925 3926 used = space_info->bytes_used + space_info->bytes_reserved + 3927 space_info->bytes_pinned + space_info->bytes_readonly; 3928 3929 /* 3930 * We only want to allow over committing if we have lots of actual space 3931 * free, but if we don't have enough space to handle the global reserve 3932 * space then we could end up having a real enospc problem when trying 3933 * to allocate a chunk or some other such important allocation. 3934 */ 3935 spin_lock(&global_rsv->lock); 3936 space_size = calc_global_rsv_need_space(global_rsv); 3937 spin_unlock(&global_rsv->lock); 3938 if (used + space_size >= space_info->total_bytes) 3939 return 0; 3940 3941 used += space_info->bytes_may_use; 3942 3943 spin_lock(&root->fs_info->free_chunk_lock); 3944 avail = root->fs_info->free_chunk_space; 3945 spin_unlock(&root->fs_info->free_chunk_lock); 3946 3947 /* 3948 * If we have dup, raid1 or raid10 then only half of the free 3949 * space is actually useable. For raid56, the space info used 3950 * doesn't include the parity drive, so we don't have to 3951 * change the math 3952 */ 3953 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3954 BTRFS_BLOCK_GROUP_RAID1 | 3955 BTRFS_BLOCK_GROUP_RAID10)) 3956 avail >>= 1; 3957 3958 /* 3959 * If we aren't flushing all things, let us overcommit up to 3960 * 1/2th of the space. If we can flush, don't let us overcommit 3961 * too much, let it overcommit up to 1/8 of the space. 3962 */ 3963 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3964 avail >>= 3; 3965 else 3966 avail >>= 1; 3967 3968 if (used + bytes < space_info->total_bytes + avail) 3969 return 1; 3970 return 0; 3971 } 3972 3973 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3974 unsigned long nr_pages) 3975 { 3976 struct super_block *sb = root->fs_info->sb; 3977 3978 if (down_read_trylock(&sb->s_umount)) { 3979 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3980 up_read(&sb->s_umount); 3981 } else { 3982 /* 3983 * We needn't worry the filesystem going from r/w to r/o though 3984 * we don't acquire ->s_umount mutex, because the filesystem 3985 * should guarantee the delalloc inodes list be empty after 3986 * the filesystem is readonly(all dirty pages are written to 3987 * the disk). 3988 */ 3989 btrfs_start_delalloc_roots(root->fs_info, 0); 3990 if (!current->journal_info) 3991 btrfs_wait_ordered_roots(root->fs_info, -1); 3992 } 3993 } 3994 3995 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 3996 { 3997 u64 bytes; 3998 int nr; 3999 4000 bytes = btrfs_calc_trans_metadata_size(root, 1); 4001 nr = (int)div64_u64(to_reclaim, bytes); 4002 if (!nr) 4003 nr = 1; 4004 return nr; 4005 } 4006 4007 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4008 4009 /* 4010 * shrink metadata reservation for delalloc 4011 */ 4012 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4013 bool wait_ordered) 4014 { 4015 struct btrfs_block_rsv *block_rsv; 4016 struct btrfs_space_info *space_info; 4017 struct btrfs_trans_handle *trans; 4018 u64 delalloc_bytes; 4019 u64 max_reclaim; 4020 long time_left; 4021 unsigned long nr_pages; 4022 int loops; 4023 int items; 4024 enum btrfs_reserve_flush_enum flush; 4025 4026 /* Calc the number of the pages we need flush for space reservation */ 4027 items = calc_reclaim_items_nr(root, to_reclaim); 4028 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4029 4030 trans = (struct btrfs_trans_handle *)current->journal_info; 4031 block_rsv = &root->fs_info->delalloc_block_rsv; 4032 space_info = block_rsv->space_info; 4033 4034 delalloc_bytes = percpu_counter_sum_positive( 4035 &root->fs_info->delalloc_bytes); 4036 if (delalloc_bytes == 0) { 4037 if (trans) 4038 return; 4039 if (wait_ordered) 4040 btrfs_wait_ordered_roots(root->fs_info, items); 4041 return; 4042 } 4043 4044 loops = 0; 4045 while (delalloc_bytes && loops < 3) { 4046 max_reclaim = min(delalloc_bytes, to_reclaim); 4047 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4048 btrfs_writeback_inodes_sb_nr(root, nr_pages); 4049 /* 4050 * We need to wait for the async pages to actually start before 4051 * we do anything. 4052 */ 4053 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4054 if (!max_reclaim) 4055 goto skip_async; 4056 4057 if (max_reclaim <= nr_pages) 4058 max_reclaim = 0; 4059 else 4060 max_reclaim -= nr_pages; 4061 4062 wait_event(root->fs_info->async_submit_wait, 4063 atomic_read(&root->fs_info->async_delalloc_pages) <= 4064 (int)max_reclaim); 4065 skip_async: 4066 if (!trans) 4067 flush = BTRFS_RESERVE_FLUSH_ALL; 4068 else 4069 flush = BTRFS_RESERVE_NO_FLUSH; 4070 spin_lock(&space_info->lock); 4071 if (can_overcommit(root, space_info, orig, flush)) { 4072 spin_unlock(&space_info->lock); 4073 break; 4074 } 4075 spin_unlock(&space_info->lock); 4076 4077 loops++; 4078 if (wait_ordered && !trans) { 4079 btrfs_wait_ordered_roots(root->fs_info, items); 4080 } else { 4081 time_left = schedule_timeout_killable(1); 4082 if (time_left) 4083 break; 4084 } 4085 delalloc_bytes = percpu_counter_sum_positive( 4086 &root->fs_info->delalloc_bytes); 4087 } 4088 } 4089 4090 /** 4091 * maybe_commit_transaction - possibly commit the transaction if its ok to 4092 * @root - the root we're allocating for 4093 * @bytes - the number of bytes we want to reserve 4094 * @force - force the commit 4095 * 4096 * This will check to make sure that committing the transaction will actually 4097 * get us somewhere and then commit the transaction if it does. Otherwise it 4098 * will return -ENOSPC. 4099 */ 4100 static int may_commit_transaction(struct btrfs_root *root, 4101 struct btrfs_space_info *space_info, 4102 u64 bytes, int force) 4103 { 4104 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4105 struct btrfs_trans_handle *trans; 4106 4107 trans = (struct btrfs_trans_handle *)current->journal_info; 4108 if (trans) 4109 return -EAGAIN; 4110 4111 if (force) 4112 goto commit; 4113 4114 /* See if there is enough pinned space to make this reservation */ 4115 spin_lock(&space_info->lock); 4116 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4117 bytes) >= 0) { 4118 spin_unlock(&space_info->lock); 4119 goto commit; 4120 } 4121 spin_unlock(&space_info->lock); 4122 4123 /* 4124 * See if there is some space in the delayed insertion reservation for 4125 * this reservation. 4126 */ 4127 if (space_info != delayed_rsv->space_info) 4128 return -ENOSPC; 4129 4130 spin_lock(&space_info->lock); 4131 spin_lock(&delayed_rsv->lock); 4132 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4133 bytes - delayed_rsv->size) >= 0) { 4134 spin_unlock(&delayed_rsv->lock); 4135 spin_unlock(&space_info->lock); 4136 return -ENOSPC; 4137 } 4138 spin_unlock(&delayed_rsv->lock); 4139 spin_unlock(&space_info->lock); 4140 4141 commit: 4142 trans = btrfs_join_transaction(root); 4143 if (IS_ERR(trans)) 4144 return -ENOSPC; 4145 4146 return btrfs_commit_transaction(trans, root); 4147 } 4148 4149 enum flush_state { 4150 FLUSH_DELAYED_ITEMS_NR = 1, 4151 FLUSH_DELAYED_ITEMS = 2, 4152 FLUSH_DELALLOC = 3, 4153 FLUSH_DELALLOC_WAIT = 4, 4154 ALLOC_CHUNK = 5, 4155 COMMIT_TRANS = 6, 4156 }; 4157 4158 static int flush_space(struct btrfs_root *root, 4159 struct btrfs_space_info *space_info, u64 num_bytes, 4160 u64 orig_bytes, int state) 4161 { 4162 struct btrfs_trans_handle *trans; 4163 int nr; 4164 int ret = 0; 4165 4166 switch (state) { 4167 case FLUSH_DELAYED_ITEMS_NR: 4168 case FLUSH_DELAYED_ITEMS: 4169 if (state == FLUSH_DELAYED_ITEMS_NR) 4170 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4171 else 4172 nr = -1; 4173 4174 trans = btrfs_join_transaction(root); 4175 if (IS_ERR(trans)) { 4176 ret = PTR_ERR(trans); 4177 break; 4178 } 4179 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4180 btrfs_end_transaction(trans, root); 4181 break; 4182 case FLUSH_DELALLOC: 4183 case FLUSH_DELALLOC_WAIT: 4184 shrink_delalloc(root, num_bytes, orig_bytes, 4185 state == FLUSH_DELALLOC_WAIT); 4186 break; 4187 case ALLOC_CHUNK: 4188 trans = btrfs_join_transaction(root); 4189 if (IS_ERR(trans)) { 4190 ret = PTR_ERR(trans); 4191 break; 4192 } 4193 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4194 btrfs_get_alloc_profile(root, 0), 4195 CHUNK_ALLOC_NO_FORCE); 4196 btrfs_end_transaction(trans, root); 4197 if (ret == -ENOSPC) 4198 ret = 0; 4199 break; 4200 case COMMIT_TRANS: 4201 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4202 break; 4203 default: 4204 ret = -ENOSPC; 4205 break; 4206 } 4207 4208 return ret; 4209 } 4210 /** 4211 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4212 * @root - the root we're allocating for 4213 * @block_rsv - the block_rsv we're allocating for 4214 * @orig_bytes - the number of bytes we want 4215 * @flush - whether or not we can flush to make our reservation 4216 * 4217 * This will reserve orgi_bytes number of bytes from the space info associated 4218 * with the block_rsv. If there is not enough space it will make an attempt to 4219 * flush out space to make room. It will do this by flushing delalloc if 4220 * possible or committing the transaction. If flush is 0 then no attempts to 4221 * regain reservations will be made and this will fail if there is not enough 4222 * space already. 4223 */ 4224 static int reserve_metadata_bytes(struct btrfs_root *root, 4225 struct btrfs_block_rsv *block_rsv, 4226 u64 orig_bytes, 4227 enum btrfs_reserve_flush_enum flush) 4228 { 4229 struct btrfs_space_info *space_info = block_rsv->space_info; 4230 u64 used; 4231 u64 num_bytes = orig_bytes; 4232 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4233 int ret = 0; 4234 bool flushing = false; 4235 4236 again: 4237 ret = 0; 4238 spin_lock(&space_info->lock); 4239 /* 4240 * We only want to wait if somebody other than us is flushing and we 4241 * are actually allowed to flush all things. 4242 */ 4243 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4244 space_info->flush) { 4245 spin_unlock(&space_info->lock); 4246 /* 4247 * If we have a trans handle we can't wait because the flusher 4248 * may have to commit the transaction, which would mean we would 4249 * deadlock since we are waiting for the flusher to finish, but 4250 * hold the current transaction open. 4251 */ 4252 if (current->journal_info) 4253 return -EAGAIN; 4254 ret = wait_event_killable(space_info->wait, !space_info->flush); 4255 /* Must have been killed, return */ 4256 if (ret) 4257 return -EINTR; 4258 4259 spin_lock(&space_info->lock); 4260 } 4261 4262 ret = -ENOSPC; 4263 used = space_info->bytes_used + space_info->bytes_reserved + 4264 space_info->bytes_pinned + space_info->bytes_readonly + 4265 space_info->bytes_may_use; 4266 4267 /* 4268 * The idea here is that we've not already over-reserved the block group 4269 * then we can go ahead and save our reservation first and then start 4270 * flushing if we need to. Otherwise if we've already overcommitted 4271 * lets start flushing stuff first and then come back and try to make 4272 * our reservation. 4273 */ 4274 if (used <= space_info->total_bytes) { 4275 if (used + orig_bytes <= space_info->total_bytes) { 4276 space_info->bytes_may_use += orig_bytes; 4277 trace_btrfs_space_reservation(root->fs_info, 4278 "space_info", space_info->flags, orig_bytes, 1); 4279 ret = 0; 4280 } else { 4281 /* 4282 * Ok set num_bytes to orig_bytes since we aren't 4283 * overocmmitted, this way we only try and reclaim what 4284 * we need. 4285 */ 4286 num_bytes = orig_bytes; 4287 } 4288 } else { 4289 /* 4290 * Ok we're over committed, set num_bytes to the overcommitted 4291 * amount plus the amount of bytes that we need for this 4292 * reservation. 4293 */ 4294 num_bytes = used - space_info->total_bytes + 4295 (orig_bytes * 2); 4296 } 4297 4298 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4299 space_info->bytes_may_use += orig_bytes; 4300 trace_btrfs_space_reservation(root->fs_info, "space_info", 4301 space_info->flags, orig_bytes, 4302 1); 4303 ret = 0; 4304 } 4305 4306 /* 4307 * Couldn't make our reservation, save our place so while we're trying 4308 * to reclaim space we can actually use it instead of somebody else 4309 * stealing it from us. 4310 * 4311 * We make the other tasks wait for the flush only when we can flush 4312 * all things. 4313 */ 4314 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4315 flushing = true; 4316 space_info->flush = 1; 4317 } 4318 4319 spin_unlock(&space_info->lock); 4320 4321 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4322 goto out; 4323 4324 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4325 flush_state); 4326 flush_state++; 4327 4328 /* 4329 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4330 * would happen. So skip delalloc flush. 4331 */ 4332 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4333 (flush_state == FLUSH_DELALLOC || 4334 flush_state == FLUSH_DELALLOC_WAIT)) 4335 flush_state = ALLOC_CHUNK; 4336 4337 if (!ret) 4338 goto again; 4339 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4340 flush_state < COMMIT_TRANS) 4341 goto again; 4342 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4343 flush_state <= COMMIT_TRANS) 4344 goto again; 4345 4346 out: 4347 if (ret == -ENOSPC && 4348 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4349 struct btrfs_block_rsv *global_rsv = 4350 &root->fs_info->global_block_rsv; 4351 4352 if (block_rsv != global_rsv && 4353 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4354 ret = 0; 4355 } 4356 if (ret == -ENOSPC) 4357 trace_btrfs_space_reservation(root->fs_info, 4358 "space_info:enospc", 4359 space_info->flags, orig_bytes, 1); 4360 if (flushing) { 4361 spin_lock(&space_info->lock); 4362 space_info->flush = 0; 4363 wake_up_all(&space_info->wait); 4364 spin_unlock(&space_info->lock); 4365 } 4366 return ret; 4367 } 4368 4369 static struct btrfs_block_rsv *get_block_rsv( 4370 const struct btrfs_trans_handle *trans, 4371 const struct btrfs_root *root) 4372 { 4373 struct btrfs_block_rsv *block_rsv = NULL; 4374 4375 if (root->ref_cows) 4376 block_rsv = trans->block_rsv; 4377 4378 if (root == root->fs_info->csum_root && trans->adding_csums) 4379 block_rsv = trans->block_rsv; 4380 4381 if (root == root->fs_info->uuid_root) 4382 block_rsv = trans->block_rsv; 4383 4384 if (!block_rsv) 4385 block_rsv = root->block_rsv; 4386 4387 if (!block_rsv) 4388 block_rsv = &root->fs_info->empty_block_rsv; 4389 4390 return block_rsv; 4391 } 4392 4393 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4394 u64 num_bytes) 4395 { 4396 int ret = -ENOSPC; 4397 spin_lock(&block_rsv->lock); 4398 if (block_rsv->reserved >= num_bytes) { 4399 block_rsv->reserved -= num_bytes; 4400 if (block_rsv->reserved < block_rsv->size) 4401 block_rsv->full = 0; 4402 ret = 0; 4403 } 4404 spin_unlock(&block_rsv->lock); 4405 return ret; 4406 } 4407 4408 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4409 u64 num_bytes, int update_size) 4410 { 4411 spin_lock(&block_rsv->lock); 4412 block_rsv->reserved += num_bytes; 4413 if (update_size) 4414 block_rsv->size += num_bytes; 4415 else if (block_rsv->reserved >= block_rsv->size) 4416 block_rsv->full = 1; 4417 spin_unlock(&block_rsv->lock); 4418 } 4419 4420 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4421 struct btrfs_block_rsv *dest, u64 num_bytes, 4422 int min_factor) 4423 { 4424 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4425 u64 min_bytes; 4426 4427 if (global_rsv->space_info != dest->space_info) 4428 return -ENOSPC; 4429 4430 spin_lock(&global_rsv->lock); 4431 min_bytes = div_factor(global_rsv->size, min_factor); 4432 if (global_rsv->reserved < min_bytes + num_bytes) { 4433 spin_unlock(&global_rsv->lock); 4434 return -ENOSPC; 4435 } 4436 global_rsv->reserved -= num_bytes; 4437 if (global_rsv->reserved < global_rsv->size) 4438 global_rsv->full = 0; 4439 spin_unlock(&global_rsv->lock); 4440 4441 block_rsv_add_bytes(dest, num_bytes, 1); 4442 return 0; 4443 } 4444 4445 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4446 struct btrfs_block_rsv *block_rsv, 4447 struct btrfs_block_rsv *dest, u64 num_bytes) 4448 { 4449 struct btrfs_space_info *space_info = block_rsv->space_info; 4450 4451 spin_lock(&block_rsv->lock); 4452 if (num_bytes == (u64)-1) 4453 num_bytes = block_rsv->size; 4454 block_rsv->size -= num_bytes; 4455 if (block_rsv->reserved >= block_rsv->size) { 4456 num_bytes = block_rsv->reserved - block_rsv->size; 4457 block_rsv->reserved = block_rsv->size; 4458 block_rsv->full = 1; 4459 } else { 4460 num_bytes = 0; 4461 } 4462 spin_unlock(&block_rsv->lock); 4463 4464 if (num_bytes > 0) { 4465 if (dest) { 4466 spin_lock(&dest->lock); 4467 if (!dest->full) { 4468 u64 bytes_to_add; 4469 4470 bytes_to_add = dest->size - dest->reserved; 4471 bytes_to_add = min(num_bytes, bytes_to_add); 4472 dest->reserved += bytes_to_add; 4473 if (dest->reserved >= dest->size) 4474 dest->full = 1; 4475 num_bytes -= bytes_to_add; 4476 } 4477 spin_unlock(&dest->lock); 4478 } 4479 if (num_bytes) { 4480 spin_lock(&space_info->lock); 4481 space_info->bytes_may_use -= num_bytes; 4482 trace_btrfs_space_reservation(fs_info, "space_info", 4483 space_info->flags, num_bytes, 0); 4484 spin_unlock(&space_info->lock); 4485 } 4486 } 4487 } 4488 4489 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4490 struct btrfs_block_rsv *dst, u64 num_bytes) 4491 { 4492 int ret; 4493 4494 ret = block_rsv_use_bytes(src, num_bytes); 4495 if (ret) 4496 return ret; 4497 4498 block_rsv_add_bytes(dst, num_bytes, 1); 4499 return 0; 4500 } 4501 4502 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4503 { 4504 memset(rsv, 0, sizeof(*rsv)); 4505 spin_lock_init(&rsv->lock); 4506 rsv->type = type; 4507 } 4508 4509 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4510 unsigned short type) 4511 { 4512 struct btrfs_block_rsv *block_rsv; 4513 struct btrfs_fs_info *fs_info = root->fs_info; 4514 4515 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4516 if (!block_rsv) 4517 return NULL; 4518 4519 btrfs_init_block_rsv(block_rsv, type); 4520 block_rsv->space_info = __find_space_info(fs_info, 4521 BTRFS_BLOCK_GROUP_METADATA); 4522 return block_rsv; 4523 } 4524 4525 void btrfs_free_block_rsv(struct btrfs_root *root, 4526 struct btrfs_block_rsv *rsv) 4527 { 4528 if (!rsv) 4529 return; 4530 btrfs_block_rsv_release(root, rsv, (u64)-1); 4531 kfree(rsv); 4532 } 4533 4534 int btrfs_block_rsv_add(struct btrfs_root *root, 4535 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4536 enum btrfs_reserve_flush_enum flush) 4537 { 4538 int ret; 4539 4540 if (num_bytes == 0) 4541 return 0; 4542 4543 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4544 if (!ret) { 4545 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4546 return 0; 4547 } 4548 4549 return ret; 4550 } 4551 4552 int btrfs_block_rsv_check(struct btrfs_root *root, 4553 struct btrfs_block_rsv *block_rsv, int min_factor) 4554 { 4555 u64 num_bytes = 0; 4556 int ret = -ENOSPC; 4557 4558 if (!block_rsv) 4559 return 0; 4560 4561 spin_lock(&block_rsv->lock); 4562 num_bytes = div_factor(block_rsv->size, min_factor); 4563 if (block_rsv->reserved >= num_bytes) 4564 ret = 0; 4565 spin_unlock(&block_rsv->lock); 4566 4567 return ret; 4568 } 4569 4570 int btrfs_block_rsv_refill(struct btrfs_root *root, 4571 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4572 enum btrfs_reserve_flush_enum flush) 4573 { 4574 u64 num_bytes = 0; 4575 int ret = -ENOSPC; 4576 4577 if (!block_rsv) 4578 return 0; 4579 4580 spin_lock(&block_rsv->lock); 4581 num_bytes = min_reserved; 4582 if (block_rsv->reserved >= num_bytes) 4583 ret = 0; 4584 else 4585 num_bytes -= block_rsv->reserved; 4586 spin_unlock(&block_rsv->lock); 4587 4588 if (!ret) 4589 return 0; 4590 4591 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4592 if (!ret) { 4593 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4594 return 0; 4595 } 4596 4597 return ret; 4598 } 4599 4600 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4601 struct btrfs_block_rsv *dst_rsv, 4602 u64 num_bytes) 4603 { 4604 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4605 } 4606 4607 void btrfs_block_rsv_release(struct btrfs_root *root, 4608 struct btrfs_block_rsv *block_rsv, 4609 u64 num_bytes) 4610 { 4611 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4612 if (global_rsv == block_rsv || 4613 block_rsv->space_info != global_rsv->space_info) 4614 global_rsv = NULL; 4615 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4616 num_bytes); 4617 } 4618 4619 /* 4620 * helper to calculate size of global block reservation. 4621 * the desired value is sum of space used by extent tree, 4622 * checksum tree and root tree 4623 */ 4624 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4625 { 4626 struct btrfs_space_info *sinfo; 4627 u64 num_bytes; 4628 u64 meta_used; 4629 u64 data_used; 4630 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4631 4632 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4633 spin_lock(&sinfo->lock); 4634 data_used = sinfo->bytes_used; 4635 spin_unlock(&sinfo->lock); 4636 4637 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4638 spin_lock(&sinfo->lock); 4639 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4640 data_used = 0; 4641 meta_used = sinfo->bytes_used; 4642 spin_unlock(&sinfo->lock); 4643 4644 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4645 csum_size * 2; 4646 num_bytes += div64_u64(data_used + meta_used, 50); 4647 4648 if (num_bytes * 3 > meta_used) 4649 num_bytes = div64_u64(meta_used, 3); 4650 4651 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4652 } 4653 4654 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4655 { 4656 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4657 struct btrfs_space_info *sinfo = block_rsv->space_info; 4658 u64 num_bytes; 4659 4660 num_bytes = calc_global_metadata_size(fs_info); 4661 4662 spin_lock(&sinfo->lock); 4663 spin_lock(&block_rsv->lock); 4664 4665 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4666 4667 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4668 sinfo->bytes_reserved + sinfo->bytes_readonly + 4669 sinfo->bytes_may_use; 4670 4671 if (sinfo->total_bytes > num_bytes) { 4672 num_bytes = sinfo->total_bytes - num_bytes; 4673 block_rsv->reserved += num_bytes; 4674 sinfo->bytes_may_use += num_bytes; 4675 trace_btrfs_space_reservation(fs_info, "space_info", 4676 sinfo->flags, num_bytes, 1); 4677 } 4678 4679 if (block_rsv->reserved >= block_rsv->size) { 4680 num_bytes = block_rsv->reserved - block_rsv->size; 4681 sinfo->bytes_may_use -= num_bytes; 4682 trace_btrfs_space_reservation(fs_info, "space_info", 4683 sinfo->flags, num_bytes, 0); 4684 block_rsv->reserved = block_rsv->size; 4685 block_rsv->full = 1; 4686 } 4687 4688 spin_unlock(&block_rsv->lock); 4689 spin_unlock(&sinfo->lock); 4690 } 4691 4692 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4693 { 4694 struct btrfs_space_info *space_info; 4695 4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4697 fs_info->chunk_block_rsv.space_info = space_info; 4698 4699 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4700 fs_info->global_block_rsv.space_info = space_info; 4701 fs_info->delalloc_block_rsv.space_info = space_info; 4702 fs_info->trans_block_rsv.space_info = space_info; 4703 fs_info->empty_block_rsv.space_info = space_info; 4704 fs_info->delayed_block_rsv.space_info = space_info; 4705 4706 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4707 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4708 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4709 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4710 if (fs_info->quota_root) 4711 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4712 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4713 4714 update_global_block_rsv(fs_info); 4715 } 4716 4717 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4718 { 4719 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4720 (u64)-1); 4721 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4722 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4723 WARN_ON(fs_info->trans_block_rsv.size > 0); 4724 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4725 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4726 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4727 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4728 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4729 } 4730 4731 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4732 struct btrfs_root *root) 4733 { 4734 if (!trans->block_rsv) 4735 return; 4736 4737 if (!trans->bytes_reserved) 4738 return; 4739 4740 trace_btrfs_space_reservation(root->fs_info, "transaction", 4741 trans->transid, trans->bytes_reserved, 0); 4742 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4743 trans->bytes_reserved = 0; 4744 } 4745 4746 /* Can only return 0 or -ENOSPC */ 4747 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4748 struct inode *inode) 4749 { 4750 struct btrfs_root *root = BTRFS_I(inode)->root; 4751 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4752 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4753 4754 /* 4755 * We need to hold space in order to delete our orphan item once we've 4756 * added it, so this takes the reservation so we can release it later 4757 * when we are truly done with the orphan item. 4758 */ 4759 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4760 trace_btrfs_space_reservation(root->fs_info, "orphan", 4761 btrfs_ino(inode), num_bytes, 1); 4762 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4763 } 4764 4765 void btrfs_orphan_release_metadata(struct inode *inode) 4766 { 4767 struct btrfs_root *root = BTRFS_I(inode)->root; 4768 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4769 trace_btrfs_space_reservation(root->fs_info, "orphan", 4770 btrfs_ino(inode), num_bytes, 0); 4771 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4772 } 4773 4774 /* 4775 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4776 * root: the root of the parent directory 4777 * rsv: block reservation 4778 * items: the number of items that we need do reservation 4779 * qgroup_reserved: used to return the reserved size in qgroup 4780 * 4781 * This function is used to reserve the space for snapshot/subvolume 4782 * creation and deletion. Those operations are different with the 4783 * common file/directory operations, they change two fs/file trees 4784 * and root tree, the number of items that the qgroup reserves is 4785 * different with the free space reservation. So we can not use 4786 * the space reseravtion mechanism in start_transaction(). 4787 */ 4788 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4789 struct btrfs_block_rsv *rsv, 4790 int items, 4791 u64 *qgroup_reserved, 4792 bool use_global_rsv) 4793 { 4794 u64 num_bytes; 4795 int ret; 4796 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4797 4798 if (root->fs_info->quota_enabled) { 4799 /* One for parent inode, two for dir entries */ 4800 num_bytes = 3 * root->leafsize; 4801 ret = btrfs_qgroup_reserve(root, num_bytes); 4802 if (ret) 4803 return ret; 4804 } else { 4805 num_bytes = 0; 4806 } 4807 4808 *qgroup_reserved = num_bytes; 4809 4810 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4811 rsv->space_info = __find_space_info(root->fs_info, 4812 BTRFS_BLOCK_GROUP_METADATA); 4813 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4814 BTRFS_RESERVE_FLUSH_ALL); 4815 4816 if (ret == -ENOSPC && use_global_rsv) 4817 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4818 4819 if (ret) { 4820 if (*qgroup_reserved) 4821 btrfs_qgroup_free(root, *qgroup_reserved); 4822 } 4823 4824 return ret; 4825 } 4826 4827 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4828 struct btrfs_block_rsv *rsv, 4829 u64 qgroup_reserved) 4830 { 4831 btrfs_block_rsv_release(root, rsv, (u64)-1); 4832 if (qgroup_reserved) 4833 btrfs_qgroup_free(root, qgroup_reserved); 4834 } 4835 4836 /** 4837 * drop_outstanding_extent - drop an outstanding extent 4838 * @inode: the inode we're dropping the extent for 4839 * 4840 * This is called when we are freeing up an outstanding extent, either called 4841 * after an error or after an extent is written. This will return the number of 4842 * reserved extents that need to be freed. This must be called with 4843 * BTRFS_I(inode)->lock held. 4844 */ 4845 static unsigned drop_outstanding_extent(struct inode *inode) 4846 { 4847 unsigned drop_inode_space = 0; 4848 unsigned dropped_extents = 0; 4849 4850 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4851 BTRFS_I(inode)->outstanding_extents--; 4852 4853 if (BTRFS_I(inode)->outstanding_extents == 0 && 4854 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4855 &BTRFS_I(inode)->runtime_flags)) 4856 drop_inode_space = 1; 4857 4858 /* 4859 * If we have more or the same amount of outsanding extents than we have 4860 * reserved then we need to leave the reserved extents count alone. 4861 */ 4862 if (BTRFS_I(inode)->outstanding_extents >= 4863 BTRFS_I(inode)->reserved_extents) 4864 return drop_inode_space; 4865 4866 dropped_extents = BTRFS_I(inode)->reserved_extents - 4867 BTRFS_I(inode)->outstanding_extents; 4868 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4869 return dropped_extents + drop_inode_space; 4870 } 4871 4872 /** 4873 * calc_csum_metadata_size - return the amount of metada space that must be 4874 * reserved/free'd for the given bytes. 4875 * @inode: the inode we're manipulating 4876 * @num_bytes: the number of bytes in question 4877 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4878 * 4879 * This adjusts the number of csum_bytes in the inode and then returns the 4880 * correct amount of metadata that must either be reserved or freed. We 4881 * calculate how many checksums we can fit into one leaf and then divide the 4882 * number of bytes that will need to be checksumed by this value to figure out 4883 * how many checksums will be required. If we are adding bytes then the number 4884 * may go up and we will return the number of additional bytes that must be 4885 * reserved. If it is going down we will return the number of bytes that must 4886 * be freed. 4887 * 4888 * This must be called with BTRFS_I(inode)->lock held. 4889 */ 4890 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4891 int reserve) 4892 { 4893 struct btrfs_root *root = BTRFS_I(inode)->root; 4894 u64 csum_size; 4895 int num_csums_per_leaf; 4896 int num_csums; 4897 int old_csums; 4898 4899 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4900 BTRFS_I(inode)->csum_bytes == 0) 4901 return 0; 4902 4903 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4904 if (reserve) 4905 BTRFS_I(inode)->csum_bytes += num_bytes; 4906 else 4907 BTRFS_I(inode)->csum_bytes -= num_bytes; 4908 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4909 num_csums_per_leaf = (int)div64_u64(csum_size, 4910 sizeof(struct btrfs_csum_item) + 4911 sizeof(struct btrfs_disk_key)); 4912 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4913 num_csums = num_csums + num_csums_per_leaf - 1; 4914 num_csums = num_csums / num_csums_per_leaf; 4915 4916 old_csums = old_csums + num_csums_per_leaf - 1; 4917 old_csums = old_csums / num_csums_per_leaf; 4918 4919 /* No change, no need to reserve more */ 4920 if (old_csums == num_csums) 4921 return 0; 4922 4923 if (reserve) 4924 return btrfs_calc_trans_metadata_size(root, 4925 num_csums - old_csums); 4926 4927 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4928 } 4929 4930 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4931 { 4932 struct btrfs_root *root = BTRFS_I(inode)->root; 4933 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4934 u64 to_reserve = 0; 4935 u64 csum_bytes; 4936 unsigned nr_extents = 0; 4937 int extra_reserve = 0; 4938 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4939 int ret = 0; 4940 bool delalloc_lock = true; 4941 u64 to_free = 0; 4942 unsigned dropped; 4943 4944 /* If we are a free space inode we need to not flush since we will be in 4945 * the middle of a transaction commit. We also don't need the delalloc 4946 * mutex since we won't race with anybody. We need this mostly to make 4947 * lockdep shut its filthy mouth. 4948 */ 4949 if (btrfs_is_free_space_inode(inode)) { 4950 flush = BTRFS_RESERVE_NO_FLUSH; 4951 delalloc_lock = false; 4952 } 4953 4954 if (flush != BTRFS_RESERVE_NO_FLUSH && 4955 btrfs_transaction_in_commit(root->fs_info)) 4956 schedule_timeout(1); 4957 4958 if (delalloc_lock) 4959 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4960 4961 num_bytes = ALIGN(num_bytes, root->sectorsize); 4962 4963 spin_lock(&BTRFS_I(inode)->lock); 4964 BTRFS_I(inode)->outstanding_extents++; 4965 4966 if (BTRFS_I(inode)->outstanding_extents > 4967 BTRFS_I(inode)->reserved_extents) 4968 nr_extents = BTRFS_I(inode)->outstanding_extents - 4969 BTRFS_I(inode)->reserved_extents; 4970 4971 /* 4972 * Add an item to reserve for updating the inode when we complete the 4973 * delalloc io. 4974 */ 4975 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4976 &BTRFS_I(inode)->runtime_flags)) { 4977 nr_extents++; 4978 extra_reserve = 1; 4979 } 4980 4981 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4982 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4983 csum_bytes = BTRFS_I(inode)->csum_bytes; 4984 spin_unlock(&BTRFS_I(inode)->lock); 4985 4986 if (root->fs_info->quota_enabled) { 4987 ret = btrfs_qgroup_reserve(root, num_bytes + 4988 nr_extents * root->leafsize); 4989 if (ret) 4990 goto out_fail; 4991 } 4992 4993 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4994 if (unlikely(ret)) { 4995 if (root->fs_info->quota_enabled) 4996 btrfs_qgroup_free(root, num_bytes + 4997 nr_extents * root->leafsize); 4998 goto out_fail; 4999 } 5000 5001 spin_lock(&BTRFS_I(inode)->lock); 5002 if (extra_reserve) { 5003 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5004 &BTRFS_I(inode)->runtime_flags); 5005 nr_extents--; 5006 } 5007 BTRFS_I(inode)->reserved_extents += nr_extents; 5008 spin_unlock(&BTRFS_I(inode)->lock); 5009 5010 if (delalloc_lock) 5011 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5012 5013 if (to_reserve) 5014 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5015 btrfs_ino(inode), to_reserve, 1); 5016 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5017 5018 return 0; 5019 5020 out_fail: 5021 spin_lock(&BTRFS_I(inode)->lock); 5022 dropped = drop_outstanding_extent(inode); 5023 /* 5024 * If the inodes csum_bytes is the same as the original 5025 * csum_bytes then we know we haven't raced with any free()ers 5026 * so we can just reduce our inodes csum bytes and carry on. 5027 */ 5028 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5029 calc_csum_metadata_size(inode, num_bytes, 0); 5030 } else { 5031 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5032 u64 bytes; 5033 5034 /* 5035 * This is tricky, but first we need to figure out how much we 5036 * free'd from any free-ers that occured during this 5037 * reservation, so we reset ->csum_bytes to the csum_bytes 5038 * before we dropped our lock, and then call the free for the 5039 * number of bytes that were freed while we were trying our 5040 * reservation. 5041 */ 5042 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5043 BTRFS_I(inode)->csum_bytes = csum_bytes; 5044 to_free = calc_csum_metadata_size(inode, bytes, 0); 5045 5046 5047 /* 5048 * Now we need to see how much we would have freed had we not 5049 * been making this reservation and our ->csum_bytes were not 5050 * artificially inflated. 5051 */ 5052 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5053 bytes = csum_bytes - orig_csum_bytes; 5054 bytes = calc_csum_metadata_size(inode, bytes, 0); 5055 5056 /* 5057 * Now reset ->csum_bytes to what it should be. If bytes is 5058 * more than to_free then we would have free'd more space had we 5059 * not had an artificially high ->csum_bytes, so we need to free 5060 * the remainder. If bytes is the same or less then we don't 5061 * need to do anything, the other free-ers did the correct 5062 * thing. 5063 */ 5064 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5065 if (bytes > to_free) 5066 to_free = bytes - to_free; 5067 else 5068 to_free = 0; 5069 } 5070 spin_unlock(&BTRFS_I(inode)->lock); 5071 if (dropped) 5072 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5073 5074 if (to_free) { 5075 btrfs_block_rsv_release(root, block_rsv, to_free); 5076 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5077 btrfs_ino(inode), to_free, 0); 5078 } 5079 if (delalloc_lock) 5080 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5081 return ret; 5082 } 5083 5084 /** 5085 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5086 * @inode: the inode to release the reservation for 5087 * @num_bytes: the number of bytes we're releasing 5088 * 5089 * This will release the metadata reservation for an inode. This can be called 5090 * once we complete IO for a given set of bytes to release their metadata 5091 * reservations. 5092 */ 5093 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5094 { 5095 struct btrfs_root *root = BTRFS_I(inode)->root; 5096 u64 to_free = 0; 5097 unsigned dropped; 5098 5099 num_bytes = ALIGN(num_bytes, root->sectorsize); 5100 spin_lock(&BTRFS_I(inode)->lock); 5101 dropped = drop_outstanding_extent(inode); 5102 5103 if (num_bytes) 5104 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5105 spin_unlock(&BTRFS_I(inode)->lock); 5106 if (dropped > 0) 5107 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5108 5109 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5110 btrfs_ino(inode), to_free, 0); 5111 if (root->fs_info->quota_enabled) { 5112 btrfs_qgroup_free(root, num_bytes + 5113 dropped * root->leafsize); 5114 } 5115 5116 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5117 to_free); 5118 } 5119 5120 /** 5121 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5122 * @inode: inode we're writing to 5123 * @num_bytes: the number of bytes we want to allocate 5124 * 5125 * This will do the following things 5126 * 5127 * o reserve space in the data space info for num_bytes 5128 * o reserve space in the metadata space info based on number of outstanding 5129 * extents and how much csums will be needed 5130 * o add to the inodes ->delalloc_bytes 5131 * o add it to the fs_info's delalloc inodes list. 5132 * 5133 * This will return 0 for success and -ENOSPC if there is no space left. 5134 */ 5135 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5136 { 5137 int ret; 5138 5139 ret = btrfs_check_data_free_space(inode, num_bytes); 5140 if (ret) 5141 return ret; 5142 5143 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5144 if (ret) { 5145 btrfs_free_reserved_data_space(inode, num_bytes); 5146 return ret; 5147 } 5148 5149 return 0; 5150 } 5151 5152 /** 5153 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5154 * @inode: inode we're releasing space for 5155 * @num_bytes: the number of bytes we want to free up 5156 * 5157 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5158 * called in the case that we don't need the metadata AND data reservations 5159 * anymore. So if there is an error or we insert an inline extent. 5160 * 5161 * This function will release the metadata space that was not used and will 5162 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5163 * list if there are no delalloc bytes left. 5164 */ 5165 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5166 { 5167 btrfs_delalloc_release_metadata(inode, num_bytes); 5168 btrfs_free_reserved_data_space(inode, num_bytes); 5169 } 5170 5171 static int update_block_group(struct btrfs_root *root, 5172 u64 bytenr, u64 num_bytes, int alloc) 5173 { 5174 struct btrfs_block_group_cache *cache = NULL; 5175 struct btrfs_fs_info *info = root->fs_info; 5176 u64 total = num_bytes; 5177 u64 old_val; 5178 u64 byte_in_group; 5179 int factor; 5180 5181 /* block accounting for super block */ 5182 spin_lock(&info->delalloc_root_lock); 5183 old_val = btrfs_super_bytes_used(info->super_copy); 5184 if (alloc) 5185 old_val += num_bytes; 5186 else 5187 old_val -= num_bytes; 5188 btrfs_set_super_bytes_used(info->super_copy, old_val); 5189 spin_unlock(&info->delalloc_root_lock); 5190 5191 while (total) { 5192 cache = btrfs_lookup_block_group(info, bytenr); 5193 if (!cache) 5194 return -ENOENT; 5195 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5196 BTRFS_BLOCK_GROUP_RAID1 | 5197 BTRFS_BLOCK_GROUP_RAID10)) 5198 factor = 2; 5199 else 5200 factor = 1; 5201 /* 5202 * If this block group has free space cache written out, we 5203 * need to make sure to load it if we are removing space. This 5204 * is because we need the unpinning stage to actually add the 5205 * space back to the block group, otherwise we will leak space. 5206 */ 5207 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5208 cache_block_group(cache, 1); 5209 5210 byte_in_group = bytenr - cache->key.objectid; 5211 WARN_ON(byte_in_group > cache->key.offset); 5212 5213 spin_lock(&cache->space_info->lock); 5214 spin_lock(&cache->lock); 5215 5216 if (btrfs_test_opt(root, SPACE_CACHE) && 5217 cache->disk_cache_state < BTRFS_DC_CLEAR) 5218 cache->disk_cache_state = BTRFS_DC_CLEAR; 5219 5220 cache->dirty = 1; 5221 old_val = btrfs_block_group_used(&cache->item); 5222 num_bytes = min(total, cache->key.offset - byte_in_group); 5223 if (alloc) { 5224 old_val += num_bytes; 5225 btrfs_set_block_group_used(&cache->item, old_val); 5226 cache->reserved -= num_bytes; 5227 cache->space_info->bytes_reserved -= num_bytes; 5228 cache->space_info->bytes_used += num_bytes; 5229 cache->space_info->disk_used += num_bytes * factor; 5230 spin_unlock(&cache->lock); 5231 spin_unlock(&cache->space_info->lock); 5232 } else { 5233 old_val -= num_bytes; 5234 btrfs_set_block_group_used(&cache->item, old_val); 5235 cache->pinned += num_bytes; 5236 cache->space_info->bytes_pinned += num_bytes; 5237 cache->space_info->bytes_used -= num_bytes; 5238 cache->space_info->disk_used -= num_bytes * factor; 5239 spin_unlock(&cache->lock); 5240 spin_unlock(&cache->space_info->lock); 5241 5242 set_extent_dirty(info->pinned_extents, 5243 bytenr, bytenr + num_bytes - 1, 5244 GFP_NOFS | __GFP_NOFAIL); 5245 } 5246 btrfs_put_block_group(cache); 5247 total -= num_bytes; 5248 bytenr += num_bytes; 5249 } 5250 return 0; 5251 } 5252 5253 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5254 { 5255 struct btrfs_block_group_cache *cache; 5256 u64 bytenr; 5257 5258 spin_lock(&root->fs_info->block_group_cache_lock); 5259 bytenr = root->fs_info->first_logical_byte; 5260 spin_unlock(&root->fs_info->block_group_cache_lock); 5261 5262 if (bytenr < (u64)-1) 5263 return bytenr; 5264 5265 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5266 if (!cache) 5267 return 0; 5268 5269 bytenr = cache->key.objectid; 5270 btrfs_put_block_group(cache); 5271 5272 return bytenr; 5273 } 5274 5275 static int pin_down_extent(struct btrfs_root *root, 5276 struct btrfs_block_group_cache *cache, 5277 u64 bytenr, u64 num_bytes, int reserved) 5278 { 5279 spin_lock(&cache->space_info->lock); 5280 spin_lock(&cache->lock); 5281 cache->pinned += num_bytes; 5282 cache->space_info->bytes_pinned += num_bytes; 5283 if (reserved) { 5284 cache->reserved -= num_bytes; 5285 cache->space_info->bytes_reserved -= num_bytes; 5286 } 5287 spin_unlock(&cache->lock); 5288 spin_unlock(&cache->space_info->lock); 5289 5290 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5291 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5292 if (reserved) 5293 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5294 return 0; 5295 } 5296 5297 /* 5298 * this function must be called within transaction 5299 */ 5300 int btrfs_pin_extent(struct btrfs_root *root, 5301 u64 bytenr, u64 num_bytes, int reserved) 5302 { 5303 struct btrfs_block_group_cache *cache; 5304 5305 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5306 BUG_ON(!cache); /* Logic error */ 5307 5308 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5309 5310 btrfs_put_block_group(cache); 5311 return 0; 5312 } 5313 5314 /* 5315 * this function must be called within transaction 5316 */ 5317 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5318 u64 bytenr, u64 num_bytes) 5319 { 5320 struct btrfs_block_group_cache *cache; 5321 int ret; 5322 5323 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5324 if (!cache) 5325 return -EINVAL; 5326 5327 /* 5328 * pull in the free space cache (if any) so that our pin 5329 * removes the free space from the cache. We have load_only set 5330 * to one because the slow code to read in the free extents does check 5331 * the pinned extents. 5332 */ 5333 cache_block_group(cache, 1); 5334 5335 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5336 5337 /* remove us from the free space cache (if we're there at all) */ 5338 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5339 btrfs_put_block_group(cache); 5340 return ret; 5341 } 5342 5343 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5344 { 5345 int ret; 5346 struct btrfs_block_group_cache *block_group; 5347 struct btrfs_caching_control *caching_ctl; 5348 5349 block_group = btrfs_lookup_block_group(root->fs_info, start); 5350 if (!block_group) 5351 return -EINVAL; 5352 5353 cache_block_group(block_group, 0); 5354 caching_ctl = get_caching_control(block_group); 5355 5356 if (!caching_ctl) { 5357 /* Logic error */ 5358 BUG_ON(!block_group_cache_done(block_group)); 5359 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5360 } else { 5361 mutex_lock(&caching_ctl->mutex); 5362 5363 if (start >= caching_ctl->progress) { 5364 ret = add_excluded_extent(root, start, num_bytes); 5365 } else if (start + num_bytes <= caching_ctl->progress) { 5366 ret = btrfs_remove_free_space(block_group, 5367 start, num_bytes); 5368 } else { 5369 num_bytes = caching_ctl->progress - start; 5370 ret = btrfs_remove_free_space(block_group, 5371 start, num_bytes); 5372 if (ret) 5373 goto out_lock; 5374 5375 num_bytes = (start + num_bytes) - 5376 caching_ctl->progress; 5377 start = caching_ctl->progress; 5378 ret = add_excluded_extent(root, start, num_bytes); 5379 } 5380 out_lock: 5381 mutex_unlock(&caching_ctl->mutex); 5382 put_caching_control(caching_ctl); 5383 } 5384 btrfs_put_block_group(block_group); 5385 return ret; 5386 } 5387 5388 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5389 struct extent_buffer *eb) 5390 { 5391 struct btrfs_file_extent_item *item; 5392 struct btrfs_key key; 5393 int found_type; 5394 int i; 5395 5396 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5397 return 0; 5398 5399 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5400 btrfs_item_key_to_cpu(eb, &key, i); 5401 if (key.type != BTRFS_EXTENT_DATA_KEY) 5402 continue; 5403 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5404 found_type = btrfs_file_extent_type(eb, item); 5405 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5406 continue; 5407 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5408 continue; 5409 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5410 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5411 __exclude_logged_extent(log, key.objectid, key.offset); 5412 } 5413 5414 return 0; 5415 } 5416 5417 /** 5418 * btrfs_update_reserved_bytes - update the block_group and space info counters 5419 * @cache: The cache we are manipulating 5420 * @num_bytes: The number of bytes in question 5421 * @reserve: One of the reservation enums 5422 * 5423 * This is called by the allocator when it reserves space, or by somebody who is 5424 * freeing space that was never actually used on disk. For example if you 5425 * reserve some space for a new leaf in transaction A and before transaction A 5426 * commits you free that leaf, you call this with reserve set to 0 in order to 5427 * clear the reservation. 5428 * 5429 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5430 * ENOSPC accounting. For data we handle the reservation through clearing the 5431 * delalloc bits in the io_tree. We have to do this since we could end up 5432 * allocating less disk space for the amount of data we have reserved in the 5433 * case of compression. 5434 * 5435 * If this is a reservation and the block group has become read only we cannot 5436 * make the reservation and return -EAGAIN, otherwise this function always 5437 * succeeds. 5438 */ 5439 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5440 u64 num_bytes, int reserve) 5441 { 5442 struct btrfs_space_info *space_info = cache->space_info; 5443 int ret = 0; 5444 5445 spin_lock(&space_info->lock); 5446 spin_lock(&cache->lock); 5447 if (reserve != RESERVE_FREE) { 5448 if (cache->ro) { 5449 ret = -EAGAIN; 5450 } else { 5451 cache->reserved += num_bytes; 5452 space_info->bytes_reserved += num_bytes; 5453 if (reserve == RESERVE_ALLOC) { 5454 trace_btrfs_space_reservation(cache->fs_info, 5455 "space_info", space_info->flags, 5456 num_bytes, 0); 5457 space_info->bytes_may_use -= num_bytes; 5458 } 5459 } 5460 } else { 5461 if (cache->ro) 5462 space_info->bytes_readonly += num_bytes; 5463 cache->reserved -= num_bytes; 5464 space_info->bytes_reserved -= num_bytes; 5465 } 5466 spin_unlock(&cache->lock); 5467 spin_unlock(&space_info->lock); 5468 return ret; 5469 } 5470 5471 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5472 struct btrfs_root *root) 5473 { 5474 struct btrfs_fs_info *fs_info = root->fs_info; 5475 struct btrfs_caching_control *next; 5476 struct btrfs_caching_control *caching_ctl; 5477 struct btrfs_block_group_cache *cache; 5478 struct btrfs_space_info *space_info; 5479 5480 down_write(&fs_info->extent_commit_sem); 5481 5482 list_for_each_entry_safe(caching_ctl, next, 5483 &fs_info->caching_block_groups, list) { 5484 cache = caching_ctl->block_group; 5485 if (block_group_cache_done(cache)) { 5486 cache->last_byte_to_unpin = (u64)-1; 5487 list_del_init(&caching_ctl->list); 5488 put_caching_control(caching_ctl); 5489 } else { 5490 cache->last_byte_to_unpin = caching_ctl->progress; 5491 } 5492 } 5493 5494 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5495 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5496 else 5497 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5498 5499 up_write(&fs_info->extent_commit_sem); 5500 5501 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5502 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5503 5504 update_global_block_rsv(fs_info); 5505 } 5506 5507 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5508 { 5509 struct btrfs_fs_info *fs_info = root->fs_info; 5510 struct btrfs_block_group_cache *cache = NULL; 5511 struct btrfs_space_info *space_info; 5512 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5513 u64 len; 5514 bool readonly; 5515 5516 while (start <= end) { 5517 readonly = false; 5518 if (!cache || 5519 start >= cache->key.objectid + cache->key.offset) { 5520 if (cache) 5521 btrfs_put_block_group(cache); 5522 cache = btrfs_lookup_block_group(fs_info, start); 5523 BUG_ON(!cache); /* Logic error */ 5524 } 5525 5526 len = cache->key.objectid + cache->key.offset - start; 5527 len = min(len, end + 1 - start); 5528 5529 if (start < cache->last_byte_to_unpin) { 5530 len = min(len, cache->last_byte_to_unpin - start); 5531 btrfs_add_free_space(cache, start, len); 5532 } 5533 5534 start += len; 5535 space_info = cache->space_info; 5536 5537 spin_lock(&space_info->lock); 5538 spin_lock(&cache->lock); 5539 cache->pinned -= len; 5540 space_info->bytes_pinned -= len; 5541 if (cache->ro) { 5542 space_info->bytes_readonly += len; 5543 readonly = true; 5544 } 5545 spin_unlock(&cache->lock); 5546 if (!readonly && global_rsv->space_info == space_info) { 5547 spin_lock(&global_rsv->lock); 5548 if (!global_rsv->full) { 5549 len = min(len, global_rsv->size - 5550 global_rsv->reserved); 5551 global_rsv->reserved += len; 5552 space_info->bytes_may_use += len; 5553 if (global_rsv->reserved >= global_rsv->size) 5554 global_rsv->full = 1; 5555 } 5556 spin_unlock(&global_rsv->lock); 5557 } 5558 spin_unlock(&space_info->lock); 5559 } 5560 5561 if (cache) 5562 btrfs_put_block_group(cache); 5563 return 0; 5564 } 5565 5566 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5567 struct btrfs_root *root) 5568 { 5569 struct btrfs_fs_info *fs_info = root->fs_info; 5570 struct extent_io_tree *unpin; 5571 u64 start; 5572 u64 end; 5573 int ret; 5574 5575 if (trans->aborted) 5576 return 0; 5577 5578 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5579 unpin = &fs_info->freed_extents[1]; 5580 else 5581 unpin = &fs_info->freed_extents[0]; 5582 5583 while (1) { 5584 ret = find_first_extent_bit(unpin, 0, &start, &end, 5585 EXTENT_DIRTY, NULL); 5586 if (ret) 5587 break; 5588 5589 if (btrfs_test_opt(root, DISCARD)) 5590 ret = btrfs_discard_extent(root, start, 5591 end + 1 - start, NULL); 5592 5593 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5594 unpin_extent_range(root, start, end); 5595 cond_resched(); 5596 } 5597 5598 return 0; 5599 } 5600 5601 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5602 u64 owner, u64 root_objectid) 5603 { 5604 struct btrfs_space_info *space_info; 5605 u64 flags; 5606 5607 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5608 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5609 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5610 else 5611 flags = BTRFS_BLOCK_GROUP_METADATA; 5612 } else { 5613 flags = BTRFS_BLOCK_GROUP_DATA; 5614 } 5615 5616 space_info = __find_space_info(fs_info, flags); 5617 BUG_ON(!space_info); /* Logic bug */ 5618 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5619 } 5620 5621 5622 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5623 struct btrfs_root *root, 5624 u64 bytenr, u64 num_bytes, u64 parent, 5625 u64 root_objectid, u64 owner_objectid, 5626 u64 owner_offset, int refs_to_drop, 5627 struct btrfs_delayed_extent_op *extent_op) 5628 { 5629 struct btrfs_key key; 5630 struct btrfs_path *path; 5631 struct btrfs_fs_info *info = root->fs_info; 5632 struct btrfs_root *extent_root = info->extent_root; 5633 struct extent_buffer *leaf; 5634 struct btrfs_extent_item *ei; 5635 struct btrfs_extent_inline_ref *iref; 5636 int ret; 5637 int is_data; 5638 int extent_slot = 0; 5639 int found_extent = 0; 5640 int num_to_del = 1; 5641 u32 item_size; 5642 u64 refs; 5643 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5644 SKINNY_METADATA); 5645 5646 path = btrfs_alloc_path(); 5647 if (!path) 5648 return -ENOMEM; 5649 5650 path->reada = 1; 5651 path->leave_spinning = 1; 5652 5653 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5654 BUG_ON(!is_data && refs_to_drop != 1); 5655 5656 if (is_data) 5657 skinny_metadata = 0; 5658 5659 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5660 bytenr, num_bytes, parent, 5661 root_objectid, owner_objectid, 5662 owner_offset); 5663 if (ret == 0) { 5664 extent_slot = path->slots[0]; 5665 while (extent_slot >= 0) { 5666 btrfs_item_key_to_cpu(path->nodes[0], &key, 5667 extent_slot); 5668 if (key.objectid != bytenr) 5669 break; 5670 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5671 key.offset == num_bytes) { 5672 found_extent = 1; 5673 break; 5674 } 5675 if (key.type == BTRFS_METADATA_ITEM_KEY && 5676 key.offset == owner_objectid) { 5677 found_extent = 1; 5678 break; 5679 } 5680 if (path->slots[0] - extent_slot > 5) 5681 break; 5682 extent_slot--; 5683 } 5684 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5685 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5686 if (found_extent && item_size < sizeof(*ei)) 5687 found_extent = 0; 5688 #endif 5689 if (!found_extent) { 5690 BUG_ON(iref); 5691 ret = remove_extent_backref(trans, extent_root, path, 5692 NULL, refs_to_drop, 5693 is_data); 5694 if (ret) { 5695 btrfs_abort_transaction(trans, extent_root, ret); 5696 goto out; 5697 } 5698 btrfs_release_path(path); 5699 path->leave_spinning = 1; 5700 5701 key.objectid = bytenr; 5702 key.type = BTRFS_EXTENT_ITEM_KEY; 5703 key.offset = num_bytes; 5704 5705 if (!is_data && skinny_metadata) { 5706 key.type = BTRFS_METADATA_ITEM_KEY; 5707 key.offset = owner_objectid; 5708 } 5709 5710 ret = btrfs_search_slot(trans, extent_root, 5711 &key, path, -1, 1); 5712 if (ret > 0 && skinny_metadata && path->slots[0]) { 5713 /* 5714 * Couldn't find our skinny metadata item, 5715 * see if we have ye olde extent item. 5716 */ 5717 path->slots[0]--; 5718 btrfs_item_key_to_cpu(path->nodes[0], &key, 5719 path->slots[0]); 5720 if (key.objectid == bytenr && 5721 key.type == BTRFS_EXTENT_ITEM_KEY && 5722 key.offset == num_bytes) 5723 ret = 0; 5724 } 5725 5726 if (ret > 0 && skinny_metadata) { 5727 skinny_metadata = false; 5728 key.type = BTRFS_EXTENT_ITEM_KEY; 5729 key.offset = num_bytes; 5730 btrfs_release_path(path); 5731 ret = btrfs_search_slot(trans, extent_root, 5732 &key, path, -1, 1); 5733 } 5734 5735 if (ret) { 5736 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5737 ret, bytenr); 5738 if (ret > 0) 5739 btrfs_print_leaf(extent_root, 5740 path->nodes[0]); 5741 } 5742 if (ret < 0) { 5743 btrfs_abort_transaction(trans, extent_root, ret); 5744 goto out; 5745 } 5746 extent_slot = path->slots[0]; 5747 } 5748 } else if (WARN_ON(ret == -ENOENT)) { 5749 btrfs_print_leaf(extent_root, path->nodes[0]); 5750 btrfs_err(info, 5751 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5752 bytenr, parent, root_objectid, owner_objectid, 5753 owner_offset); 5754 } else { 5755 btrfs_abort_transaction(trans, extent_root, ret); 5756 goto out; 5757 } 5758 5759 leaf = path->nodes[0]; 5760 item_size = btrfs_item_size_nr(leaf, extent_slot); 5761 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5762 if (item_size < sizeof(*ei)) { 5763 BUG_ON(found_extent || extent_slot != path->slots[0]); 5764 ret = convert_extent_item_v0(trans, extent_root, path, 5765 owner_objectid, 0); 5766 if (ret < 0) { 5767 btrfs_abort_transaction(trans, extent_root, ret); 5768 goto out; 5769 } 5770 5771 btrfs_release_path(path); 5772 path->leave_spinning = 1; 5773 5774 key.objectid = bytenr; 5775 key.type = BTRFS_EXTENT_ITEM_KEY; 5776 key.offset = num_bytes; 5777 5778 ret = btrfs_search_slot(trans, extent_root, &key, path, 5779 -1, 1); 5780 if (ret) { 5781 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5782 ret, bytenr); 5783 btrfs_print_leaf(extent_root, path->nodes[0]); 5784 } 5785 if (ret < 0) { 5786 btrfs_abort_transaction(trans, extent_root, ret); 5787 goto out; 5788 } 5789 5790 extent_slot = path->slots[0]; 5791 leaf = path->nodes[0]; 5792 item_size = btrfs_item_size_nr(leaf, extent_slot); 5793 } 5794 #endif 5795 BUG_ON(item_size < sizeof(*ei)); 5796 ei = btrfs_item_ptr(leaf, extent_slot, 5797 struct btrfs_extent_item); 5798 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5799 key.type == BTRFS_EXTENT_ITEM_KEY) { 5800 struct btrfs_tree_block_info *bi; 5801 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5802 bi = (struct btrfs_tree_block_info *)(ei + 1); 5803 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5804 } 5805 5806 refs = btrfs_extent_refs(leaf, ei); 5807 if (refs < refs_to_drop) { 5808 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5809 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5810 ret = -EINVAL; 5811 btrfs_abort_transaction(trans, extent_root, ret); 5812 goto out; 5813 } 5814 refs -= refs_to_drop; 5815 5816 if (refs > 0) { 5817 if (extent_op) 5818 __run_delayed_extent_op(extent_op, leaf, ei); 5819 /* 5820 * In the case of inline back ref, reference count will 5821 * be updated by remove_extent_backref 5822 */ 5823 if (iref) { 5824 BUG_ON(!found_extent); 5825 } else { 5826 btrfs_set_extent_refs(leaf, ei, refs); 5827 btrfs_mark_buffer_dirty(leaf); 5828 } 5829 if (found_extent) { 5830 ret = remove_extent_backref(trans, extent_root, path, 5831 iref, refs_to_drop, 5832 is_data); 5833 if (ret) { 5834 btrfs_abort_transaction(trans, extent_root, ret); 5835 goto out; 5836 } 5837 } 5838 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5839 root_objectid); 5840 } else { 5841 if (found_extent) { 5842 BUG_ON(is_data && refs_to_drop != 5843 extent_data_ref_count(root, path, iref)); 5844 if (iref) { 5845 BUG_ON(path->slots[0] != extent_slot); 5846 } else { 5847 BUG_ON(path->slots[0] != extent_slot + 1); 5848 path->slots[0] = extent_slot; 5849 num_to_del = 2; 5850 } 5851 } 5852 5853 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5854 num_to_del); 5855 if (ret) { 5856 btrfs_abort_transaction(trans, extent_root, ret); 5857 goto out; 5858 } 5859 btrfs_release_path(path); 5860 5861 if (is_data) { 5862 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5863 if (ret) { 5864 btrfs_abort_transaction(trans, extent_root, ret); 5865 goto out; 5866 } 5867 } 5868 5869 ret = update_block_group(root, bytenr, num_bytes, 0); 5870 if (ret) { 5871 btrfs_abort_transaction(trans, extent_root, ret); 5872 goto out; 5873 } 5874 } 5875 out: 5876 btrfs_free_path(path); 5877 return ret; 5878 } 5879 5880 /* 5881 * when we free an block, it is possible (and likely) that we free the last 5882 * delayed ref for that extent as well. This searches the delayed ref tree for 5883 * a given extent, and if there are no other delayed refs to be processed, it 5884 * removes it from the tree. 5885 */ 5886 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5887 struct btrfs_root *root, u64 bytenr) 5888 { 5889 struct btrfs_delayed_ref_head *head; 5890 struct btrfs_delayed_ref_root *delayed_refs; 5891 int ret = 0; 5892 5893 delayed_refs = &trans->transaction->delayed_refs; 5894 spin_lock(&delayed_refs->lock); 5895 head = btrfs_find_delayed_ref_head(trans, bytenr); 5896 if (!head) 5897 goto out_delayed_unlock; 5898 5899 spin_lock(&head->lock); 5900 if (rb_first(&head->ref_root)) 5901 goto out; 5902 5903 if (head->extent_op) { 5904 if (!head->must_insert_reserved) 5905 goto out; 5906 btrfs_free_delayed_extent_op(head->extent_op); 5907 head->extent_op = NULL; 5908 } 5909 5910 /* 5911 * waiting for the lock here would deadlock. If someone else has it 5912 * locked they are already in the process of dropping it anyway 5913 */ 5914 if (!mutex_trylock(&head->mutex)) 5915 goto out; 5916 5917 /* 5918 * at this point we have a head with no other entries. Go 5919 * ahead and process it. 5920 */ 5921 head->node.in_tree = 0; 5922 rb_erase(&head->href_node, &delayed_refs->href_root); 5923 5924 atomic_dec(&delayed_refs->num_entries); 5925 5926 /* 5927 * we don't take a ref on the node because we're removing it from the 5928 * tree, so we just steal the ref the tree was holding. 5929 */ 5930 delayed_refs->num_heads--; 5931 if (head->processing == 0) 5932 delayed_refs->num_heads_ready--; 5933 head->processing = 0; 5934 spin_unlock(&head->lock); 5935 spin_unlock(&delayed_refs->lock); 5936 5937 BUG_ON(head->extent_op); 5938 if (head->must_insert_reserved) 5939 ret = 1; 5940 5941 mutex_unlock(&head->mutex); 5942 btrfs_put_delayed_ref(&head->node); 5943 return ret; 5944 out: 5945 spin_unlock(&head->lock); 5946 5947 out_delayed_unlock: 5948 spin_unlock(&delayed_refs->lock); 5949 return 0; 5950 } 5951 5952 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5953 struct btrfs_root *root, 5954 struct extent_buffer *buf, 5955 u64 parent, int last_ref) 5956 { 5957 struct btrfs_block_group_cache *cache = NULL; 5958 int pin = 1; 5959 int ret; 5960 5961 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5962 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5963 buf->start, buf->len, 5964 parent, root->root_key.objectid, 5965 btrfs_header_level(buf), 5966 BTRFS_DROP_DELAYED_REF, NULL, 0); 5967 BUG_ON(ret); /* -ENOMEM */ 5968 } 5969 5970 if (!last_ref) 5971 return; 5972 5973 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5974 5975 if (btrfs_header_generation(buf) == trans->transid) { 5976 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5977 ret = check_ref_cleanup(trans, root, buf->start); 5978 if (!ret) 5979 goto out; 5980 } 5981 5982 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5983 pin_down_extent(root, cache, buf->start, buf->len, 1); 5984 goto out; 5985 } 5986 5987 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5988 5989 btrfs_add_free_space(cache, buf->start, buf->len); 5990 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5991 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 5992 pin = 0; 5993 } 5994 out: 5995 if (pin) 5996 add_pinned_bytes(root->fs_info, buf->len, 5997 btrfs_header_level(buf), 5998 root->root_key.objectid); 5999 6000 /* 6001 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6002 * anymore. 6003 */ 6004 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6005 btrfs_put_block_group(cache); 6006 } 6007 6008 /* Can return -ENOMEM */ 6009 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6010 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6011 u64 owner, u64 offset, int for_cow) 6012 { 6013 int ret; 6014 struct btrfs_fs_info *fs_info = root->fs_info; 6015 6016 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6017 6018 /* 6019 * tree log blocks never actually go into the extent allocation 6020 * tree, just update pinning info and exit early. 6021 */ 6022 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6023 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6024 /* unlocks the pinned mutex */ 6025 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6026 ret = 0; 6027 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6028 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6029 num_bytes, 6030 parent, root_objectid, (int)owner, 6031 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6032 } else { 6033 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6034 num_bytes, 6035 parent, root_objectid, owner, 6036 offset, BTRFS_DROP_DELAYED_REF, 6037 NULL, for_cow); 6038 } 6039 return ret; 6040 } 6041 6042 static u64 stripe_align(struct btrfs_root *root, 6043 struct btrfs_block_group_cache *cache, 6044 u64 val, u64 num_bytes) 6045 { 6046 u64 ret = ALIGN(val, root->stripesize); 6047 return ret; 6048 } 6049 6050 /* 6051 * when we wait for progress in the block group caching, its because 6052 * our allocation attempt failed at least once. So, we must sleep 6053 * and let some progress happen before we try again. 6054 * 6055 * This function will sleep at least once waiting for new free space to 6056 * show up, and then it will check the block group free space numbers 6057 * for our min num_bytes. Another option is to have it go ahead 6058 * and look in the rbtree for a free extent of a given size, but this 6059 * is a good start. 6060 * 6061 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6062 * any of the information in this block group. 6063 */ 6064 static noinline void 6065 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6066 u64 num_bytes) 6067 { 6068 struct btrfs_caching_control *caching_ctl; 6069 6070 caching_ctl = get_caching_control(cache); 6071 if (!caching_ctl) 6072 return; 6073 6074 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6075 (cache->free_space_ctl->free_space >= num_bytes)); 6076 6077 put_caching_control(caching_ctl); 6078 } 6079 6080 static noinline int 6081 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6082 { 6083 struct btrfs_caching_control *caching_ctl; 6084 int ret = 0; 6085 6086 caching_ctl = get_caching_control(cache); 6087 if (!caching_ctl) 6088 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6089 6090 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6091 if (cache->cached == BTRFS_CACHE_ERROR) 6092 ret = -EIO; 6093 put_caching_control(caching_ctl); 6094 return ret; 6095 } 6096 6097 int __get_raid_index(u64 flags) 6098 { 6099 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6100 return BTRFS_RAID_RAID10; 6101 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6102 return BTRFS_RAID_RAID1; 6103 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6104 return BTRFS_RAID_DUP; 6105 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6106 return BTRFS_RAID_RAID0; 6107 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6108 return BTRFS_RAID_RAID5; 6109 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6110 return BTRFS_RAID_RAID6; 6111 6112 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6113 } 6114 6115 int get_block_group_index(struct btrfs_block_group_cache *cache) 6116 { 6117 return __get_raid_index(cache->flags); 6118 } 6119 6120 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6121 [BTRFS_RAID_RAID10] = "raid10", 6122 [BTRFS_RAID_RAID1] = "raid1", 6123 [BTRFS_RAID_DUP] = "dup", 6124 [BTRFS_RAID_RAID0] = "raid0", 6125 [BTRFS_RAID_SINGLE] = "single", 6126 [BTRFS_RAID_RAID5] = "raid5", 6127 [BTRFS_RAID_RAID6] = "raid6", 6128 }; 6129 6130 static const char *get_raid_name(enum btrfs_raid_types type) 6131 { 6132 if (type >= BTRFS_NR_RAID_TYPES) 6133 return NULL; 6134 6135 return btrfs_raid_type_names[type]; 6136 } 6137 6138 enum btrfs_loop_type { 6139 LOOP_CACHING_NOWAIT = 0, 6140 LOOP_CACHING_WAIT = 1, 6141 LOOP_ALLOC_CHUNK = 2, 6142 LOOP_NO_EMPTY_SIZE = 3, 6143 }; 6144 6145 /* 6146 * walks the btree of allocated extents and find a hole of a given size. 6147 * The key ins is changed to record the hole: 6148 * ins->objectid == start position 6149 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6150 * ins->offset == the size of the hole. 6151 * Any available blocks before search_start are skipped. 6152 * 6153 * If there is no suitable free space, we will record the max size of 6154 * the free space extent currently. 6155 */ 6156 static noinline int find_free_extent(struct btrfs_root *orig_root, 6157 u64 num_bytes, u64 empty_size, 6158 u64 hint_byte, struct btrfs_key *ins, 6159 u64 flags) 6160 { 6161 int ret = 0; 6162 struct btrfs_root *root = orig_root->fs_info->extent_root; 6163 struct btrfs_free_cluster *last_ptr = NULL; 6164 struct btrfs_block_group_cache *block_group = NULL; 6165 u64 search_start = 0; 6166 u64 max_extent_size = 0; 6167 int empty_cluster = 2 * 1024 * 1024; 6168 struct btrfs_space_info *space_info; 6169 int loop = 0; 6170 int index = __get_raid_index(flags); 6171 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6172 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6173 bool failed_cluster_refill = false; 6174 bool failed_alloc = false; 6175 bool use_cluster = true; 6176 bool have_caching_bg = false; 6177 6178 WARN_ON(num_bytes < root->sectorsize); 6179 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6180 ins->objectid = 0; 6181 ins->offset = 0; 6182 6183 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6184 6185 space_info = __find_space_info(root->fs_info, flags); 6186 if (!space_info) { 6187 btrfs_err(root->fs_info, "No space info for %llu", flags); 6188 return -ENOSPC; 6189 } 6190 6191 /* 6192 * If the space info is for both data and metadata it means we have a 6193 * small filesystem and we can't use the clustering stuff. 6194 */ 6195 if (btrfs_mixed_space_info(space_info)) 6196 use_cluster = false; 6197 6198 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6199 last_ptr = &root->fs_info->meta_alloc_cluster; 6200 if (!btrfs_test_opt(root, SSD)) 6201 empty_cluster = 64 * 1024; 6202 } 6203 6204 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6205 btrfs_test_opt(root, SSD)) { 6206 last_ptr = &root->fs_info->data_alloc_cluster; 6207 } 6208 6209 if (last_ptr) { 6210 spin_lock(&last_ptr->lock); 6211 if (last_ptr->block_group) 6212 hint_byte = last_ptr->window_start; 6213 spin_unlock(&last_ptr->lock); 6214 } 6215 6216 search_start = max(search_start, first_logical_byte(root, 0)); 6217 search_start = max(search_start, hint_byte); 6218 6219 if (!last_ptr) 6220 empty_cluster = 0; 6221 6222 if (search_start == hint_byte) { 6223 block_group = btrfs_lookup_block_group(root->fs_info, 6224 search_start); 6225 /* 6226 * we don't want to use the block group if it doesn't match our 6227 * allocation bits, or if its not cached. 6228 * 6229 * However if we are re-searching with an ideal block group 6230 * picked out then we don't care that the block group is cached. 6231 */ 6232 if (block_group && block_group_bits(block_group, flags) && 6233 block_group->cached != BTRFS_CACHE_NO) { 6234 down_read(&space_info->groups_sem); 6235 if (list_empty(&block_group->list) || 6236 block_group->ro) { 6237 /* 6238 * someone is removing this block group, 6239 * we can't jump into the have_block_group 6240 * target because our list pointers are not 6241 * valid 6242 */ 6243 btrfs_put_block_group(block_group); 6244 up_read(&space_info->groups_sem); 6245 } else { 6246 index = get_block_group_index(block_group); 6247 goto have_block_group; 6248 } 6249 } else if (block_group) { 6250 btrfs_put_block_group(block_group); 6251 } 6252 } 6253 search: 6254 have_caching_bg = false; 6255 down_read(&space_info->groups_sem); 6256 list_for_each_entry(block_group, &space_info->block_groups[index], 6257 list) { 6258 u64 offset; 6259 int cached; 6260 6261 btrfs_get_block_group(block_group); 6262 search_start = block_group->key.objectid; 6263 6264 /* 6265 * this can happen if we end up cycling through all the 6266 * raid types, but we want to make sure we only allocate 6267 * for the proper type. 6268 */ 6269 if (!block_group_bits(block_group, flags)) { 6270 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6271 BTRFS_BLOCK_GROUP_RAID1 | 6272 BTRFS_BLOCK_GROUP_RAID5 | 6273 BTRFS_BLOCK_GROUP_RAID6 | 6274 BTRFS_BLOCK_GROUP_RAID10; 6275 6276 /* 6277 * if they asked for extra copies and this block group 6278 * doesn't provide them, bail. This does allow us to 6279 * fill raid0 from raid1. 6280 */ 6281 if ((flags & extra) && !(block_group->flags & extra)) 6282 goto loop; 6283 } 6284 6285 have_block_group: 6286 cached = block_group_cache_done(block_group); 6287 if (unlikely(!cached)) { 6288 ret = cache_block_group(block_group, 0); 6289 BUG_ON(ret < 0); 6290 ret = 0; 6291 } 6292 6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6294 goto loop; 6295 if (unlikely(block_group->ro)) 6296 goto loop; 6297 6298 /* 6299 * Ok we want to try and use the cluster allocator, so 6300 * lets look there 6301 */ 6302 if (last_ptr) { 6303 struct btrfs_block_group_cache *used_block_group; 6304 unsigned long aligned_cluster; 6305 /* 6306 * the refill lock keeps out other 6307 * people trying to start a new cluster 6308 */ 6309 spin_lock(&last_ptr->refill_lock); 6310 used_block_group = last_ptr->block_group; 6311 if (used_block_group != block_group && 6312 (!used_block_group || 6313 used_block_group->ro || 6314 !block_group_bits(used_block_group, flags))) 6315 goto refill_cluster; 6316 6317 if (used_block_group != block_group) 6318 btrfs_get_block_group(used_block_group); 6319 6320 offset = btrfs_alloc_from_cluster(used_block_group, 6321 last_ptr, 6322 num_bytes, 6323 used_block_group->key.objectid, 6324 &max_extent_size); 6325 if (offset) { 6326 /* we have a block, we're done */ 6327 spin_unlock(&last_ptr->refill_lock); 6328 trace_btrfs_reserve_extent_cluster(root, 6329 used_block_group, 6330 search_start, num_bytes); 6331 if (used_block_group != block_group) { 6332 btrfs_put_block_group(block_group); 6333 block_group = used_block_group; 6334 } 6335 goto checks; 6336 } 6337 6338 WARN_ON(last_ptr->block_group != used_block_group); 6339 if (used_block_group != block_group) 6340 btrfs_put_block_group(used_block_group); 6341 refill_cluster: 6342 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6343 * set up a new clusters, so lets just skip it 6344 * and let the allocator find whatever block 6345 * it can find. If we reach this point, we 6346 * will have tried the cluster allocator 6347 * plenty of times and not have found 6348 * anything, so we are likely way too 6349 * fragmented for the clustering stuff to find 6350 * anything. 6351 * 6352 * However, if the cluster is taken from the 6353 * current block group, release the cluster 6354 * first, so that we stand a better chance of 6355 * succeeding in the unclustered 6356 * allocation. */ 6357 if (loop >= LOOP_NO_EMPTY_SIZE && 6358 last_ptr->block_group != block_group) { 6359 spin_unlock(&last_ptr->refill_lock); 6360 goto unclustered_alloc; 6361 } 6362 6363 /* 6364 * this cluster didn't work out, free it and 6365 * start over 6366 */ 6367 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6368 6369 if (loop >= LOOP_NO_EMPTY_SIZE) { 6370 spin_unlock(&last_ptr->refill_lock); 6371 goto unclustered_alloc; 6372 } 6373 6374 aligned_cluster = max_t(unsigned long, 6375 empty_cluster + empty_size, 6376 block_group->full_stripe_len); 6377 6378 /* allocate a cluster in this block group */ 6379 ret = btrfs_find_space_cluster(root, block_group, 6380 last_ptr, search_start, 6381 num_bytes, 6382 aligned_cluster); 6383 if (ret == 0) { 6384 /* 6385 * now pull our allocation out of this 6386 * cluster 6387 */ 6388 offset = btrfs_alloc_from_cluster(block_group, 6389 last_ptr, 6390 num_bytes, 6391 search_start, 6392 &max_extent_size); 6393 if (offset) { 6394 /* we found one, proceed */ 6395 spin_unlock(&last_ptr->refill_lock); 6396 trace_btrfs_reserve_extent_cluster(root, 6397 block_group, search_start, 6398 num_bytes); 6399 goto checks; 6400 } 6401 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6402 && !failed_cluster_refill) { 6403 spin_unlock(&last_ptr->refill_lock); 6404 6405 failed_cluster_refill = true; 6406 wait_block_group_cache_progress(block_group, 6407 num_bytes + empty_cluster + empty_size); 6408 goto have_block_group; 6409 } 6410 6411 /* 6412 * at this point we either didn't find a cluster 6413 * or we weren't able to allocate a block from our 6414 * cluster. Free the cluster we've been trying 6415 * to use, and go to the next block group 6416 */ 6417 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6418 spin_unlock(&last_ptr->refill_lock); 6419 goto loop; 6420 } 6421 6422 unclustered_alloc: 6423 spin_lock(&block_group->free_space_ctl->tree_lock); 6424 if (cached && 6425 block_group->free_space_ctl->free_space < 6426 num_bytes + empty_cluster + empty_size) { 6427 if (block_group->free_space_ctl->free_space > 6428 max_extent_size) 6429 max_extent_size = 6430 block_group->free_space_ctl->free_space; 6431 spin_unlock(&block_group->free_space_ctl->tree_lock); 6432 goto loop; 6433 } 6434 spin_unlock(&block_group->free_space_ctl->tree_lock); 6435 6436 offset = btrfs_find_space_for_alloc(block_group, search_start, 6437 num_bytes, empty_size, 6438 &max_extent_size); 6439 /* 6440 * If we didn't find a chunk, and we haven't failed on this 6441 * block group before, and this block group is in the middle of 6442 * caching and we are ok with waiting, then go ahead and wait 6443 * for progress to be made, and set failed_alloc to true. 6444 * 6445 * If failed_alloc is true then we've already waited on this 6446 * block group once and should move on to the next block group. 6447 */ 6448 if (!offset && !failed_alloc && !cached && 6449 loop > LOOP_CACHING_NOWAIT) { 6450 wait_block_group_cache_progress(block_group, 6451 num_bytes + empty_size); 6452 failed_alloc = true; 6453 goto have_block_group; 6454 } else if (!offset) { 6455 if (!cached) 6456 have_caching_bg = true; 6457 goto loop; 6458 } 6459 checks: 6460 search_start = stripe_align(root, block_group, 6461 offset, num_bytes); 6462 6463 /* move on to the next group */ 6464 if (search_start + num_bytes > 6465 block_group->key.objectid + block_group->key.offset) { 6466 btrfs_add_free_space(block_group, offset, num_bytes); 6467 goto loop; 6468 } 6469 6470 if (offset < search_start) 6471 btrfs_add_free_space(block_group, offset, 6472 search_start - offset); 6473 BUG_ON(offset > search_start); 6474 6475 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 6476 alloc_type); 6477 if (ret == -EAGAIN) { 6478 btrfs_add_free_space(block_group, offset, num_bytes); 6479 goto loop; 6480 } 6481 6482 /* we are all good, lets return */ 6483 ins->objectid = search_start; 6484 ins->offset = num_bytes; 6485 6486 trace_btrfs_reserve_extent(orig_root, block_group, 6487 search_start, num_bytes); 6488 btrfs_put_block_group(block_group); 6489 break; 6490 loop: 6491 failed_cluster_refill = false; 6492 failed_alloc = false; 6493 BUG_ON(index != get_block_group_index(block_group)); 6494 btrfs_put_block_group(block_group); 6495 } 6496 up_read(&space_info->groups_sem); 6497 6498 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6499 goto search; 6500 6501 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6502 goto search; 6503 6504 /* 6505 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6506 * caching kthreads as we move along 6507 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6508 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6509 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6510 * again 6511 */ 6512 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6513 index = 0; 6514 loop++; 6515 if (loop == LOOP_ALLOC_CHUNK) { 6516 struct btrfs_trans_handle *trans; 6517 6518 trans = btrfs_join_transaction(root); 6519 if (IS_ERR(trans)) { 6520 ret = PTR_ERR(trans); 6521 goto out; 6522 } 6523 6524 ret = do_chunk_alloc(trans, root, flags, 6525 CHUNK_ALLOC_FORCE); 6526 /* 6527 * Do not bail out on ENOSPC since we 6528 * can do more things. 6529 */ 6530 if (ret < 0 && ret != -ENOSPC) 6531 btrfs_abort_transaction(trans, 6532 root, ret); 6533 else 6534 ret = 0; 6535 btrfs_end_transaction(trans, root); 6536 if (ret) 6537 goto out; 6538 } 6539 6540 if (loop == LOOP_NO_EMPTY_SIZE) { 6541 empty_size = 0; 6542 empty_cluster = 0; 6543 } 6544 6545 goto search; 6546 } else if (!ins->objectid) { 6547 ret = -ENOSPC; 6548 } else if (ins->objectid) { 6549 ret = 0; 6550 } 6551 out: 6552 if (ret == -ENOSPC) 6553 ins->offset = max_extent_size; 6554 return ret; 6555 } 6556 6557 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6558 int dump_block_groups) 6559 { 6560 struct btrfs_block_group_cache *cache; 6561 int index = 0; 6562 6563 spin_lock(&info->lock); 6564 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 6565 info->flags, 6566 info->total_bytes - info->bytes_used - info->bytes_pinned - 6567 info->bytes_reserved - info->bytes_readonly, 6568 (info->full) ? "" : "not "); 6569 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 6570 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6571 info->total_bytes, info->bytes_used, info->bytes_pinned, 6572 info->bytes_reserved, info->bytes_may_use, 6573 info->bytes_readonly); 6574 spin_unlock(&info->lock); 6575 6576 if (!dump_block_groups) 6577 return; 6578 6579 down_read(&info->groups_sem); 6580 again: 6581 list_for_each_entry(cache, &info->block_groups[index], list) { 6582 spin_lock(&cache->lock); 6583 printk(KERN_INFO "BTRFS: " 6584 "block group %llu has %llu bytes, " 6585 "%llu used %llu pinned %llu reserved %s\n", 6586 cache->key.objectid, cache->key.offset, 6587 btrfs_block_group_used(&cache->item), cache->pinned, 6588 cache->reserved, cache->ro ? "[readonly]" : ""); 6589 btrfs_dump_free_space(cache, bytes); 6590 spin_unlock(&cache->lock); 6591 } 6592 if (++index < BTRFS_NR_RAID_TYPES) 6593 goto again; 6594 up_read(&info->groups_sem); 6595 } 6596 6597 int btrfs_reserve_extent(struct btrfs_root *root, 6598 u64 num_bytes, u64 min_alloc_size, 6599 u64 empty_size, u64 hint_byte, 6600 struct btrfs_key *ins, int is_data) 6601 { 6602 bool final_tried = false; 6603 u64 flags; 6604 int ret; 6605 6606 flags = btrfs_get_alloc_profile(root, is_data); 6607 again: 6608 WARN_ON(num_bytes < root->sectorsize); 6609 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6610 flags); 6611 6612 if (ret == -ENOSPC) { 6613 if (!final_tried && ins->offset) { 6614 num_bytes = min(num_bytes >> 1, ins->offset); 6615 num_bytes = round_down(num_bytes, root->sectorsize); 6616 num_bytes = max(num_bytes, min_alloc_size); 6617 if (num_bytes == min_alloc_size) 6618 final_tried = true; 6619 goto again; 6620 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6621 struct btrfs_space_info *sinfo; 6622 6623 sinfo = __find_space_info(root->fs_info, flags); 6624 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6625 flags, num_bytes); 6626 if (sinfo) 6627 dump_space_info(sinfo, num_bytes, 1); 6628 } 6629 } 6630 6631 return ret; 6632 } 6633 6634 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6635 u64 start, u64 len, int pin) 6636 { 6637 struct btrfs_block_group_cache *cache; 6638 int ret = 0; 6639 6640 cache = btrfs_lookup_block_group(root->fs_info, start); 6641 if (!cache) { 6642 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6643 start); 6644 return -ENOSPC; 6645 } 6646 6647 if (btrfs_test_opt(root, DISCARD)) 6648 ret = btrfs_discard_extent(root, start, len, NULL); 6649 6650 if (pin) 6651 pin_down_extent(root, cache, start, len, 1); 6652 else { 6653 btrfs_add_free_space(cache, start, len); 6654 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6655 } 6656 btrfs_put_block_group(cache); 6657 6658 trace_btrfs_reserved_extent_free(root, start, len); 6659 6660 return ret; 6661 } 6662 6663 int btrfs_free_reserved_extent(struct btrfs_root *root, 6664 u64 start, u64 len) 6665 { 6666 return __btrfs_free_reserved_extent(root, start, len, 0); 6667 } 6668 6669 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6670 u64 start, u64 len) 6671 { 6672 return __btrfs_free_reserved_extent(root, start, len, 1); 6673 } 6674 6675 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6676 struct btrfs_root *root, 6677 u64 parent, u64 root_objectid, 6678 u64 flags, u64 owner, u64 offset, 6679 struct btrfs_key *ins, int ref_mod) 6680 { 6681 int ret; 6682 struct btrfs_fs_info *fs_info = root->fs_info; 6683 struct btrfs_extent_item *extent_item; 6684 struct btrfs_extent_inline_ref *iref; 6685 struct btrfs_path *path; 6686 struct extent_buffer *leaf; 6687 int type; 6688 u32 size; 6689 6690 if (parent > 0) 6691 type = BTRFS_SHARED_DATA_REF_KEY; 6692 else 6693 type = BTRFS_EXTENT_DATA_REF_KEY; 6694 6695 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6696 6697 path = btrfs_alloc_path(); 6698 if (!path) 6699 return -ENOMEM; 6700 6701 path->leave_spinning = 1; 6702 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6703 ins, size); 6704 if (ret) { 6705 btrfs_free_path(path); 6706 return ret; 6707 } 6708 6709 leaf = path->nodes[0]; 6710 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6711 struct btrfs_extent_item); 6712 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6713 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6714 btrfs_set_extent_flags(leaf, extent_item, 6715 flags | BTRFS_EXTENT_FLAG_DATA); 6716 6717 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6718 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6719 if (parent > 0) { 6720 struct btrfs_shared_data_ref *ref; 6721 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6723 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6724 } else { 6725 struct btrfs_extent_data_ref *ref; 6726 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6727 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6728 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6729 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6730 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6731 } 6732 6733 btrfs_mark_buffer_dirty(path->nodes[0]); 6734 btrfs_free_path(path); 6735 6736 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6737 if (ret) { /* -ENOENT, logic error */ 6738 btrfs_err(fs_info, "update block group failed for %llu %llu", 6739 ins->objectid, ins->offset); 6740 BUG(); 6741 } 6742 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6743 return ret; 6744 } 6745 6746 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6747 struct btrfs_root *root, 6748 u64 parent, u64 root_objectid, 6749 u64 flags, struct btrfs_disk_key *key, 6750 int level, struct btrfs_key *ins) 6751 { 6752 int ret; 6753 struct btrfs_fs_info *fs_info = root->fs_info; 6754 struct btrfs_extent_item *extent_item; 6755 struct btrfs_tree_block_info *block_info; 6756 struct btrfs_extent_inline_ref *iref; 6757 struct btrfs_path *path; 6758 struct extent_buffer *leaf; 6759 u32 size = sizeof(*extent_item) + sizeof(*iref); 6760 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6761 SKINNY_METADATA); 6762 6763 if (!skinny_metadata) 6764 size += sizeof(*block_info); 6765 6766 path = btrfs_alloc_path(); 6767 if (!path) { 6768 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6769 root->leafsize); 6770 return -ENOMEM; 6771 } 6772 6773 path->leave_spinning = 1; 6774 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6775 ins, size); 6776 if (ret) { 6777 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6778 root->leafsize); 6779 btrfs_free_path(path); 6780 return ret; 6781 } 6782 6783 leaf = path->nodes[0]; 6784 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6785 struct btrfs_extent_item); 6786 btrfs_set_extent_refs(leaf, extent_item, 1); 6787 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6788 btrfs_set_extent_flags(leaf, extent_item, 6789 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6790 6791 if (skinny_metadata) { 6792 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6793 } else { 6794 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6795 btrfs_set_tree_block_key(leaf, block_info, key); 6796 btrfs_set_tree_block_level(leaf, block_info, level); 6797 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6798 } 6799 6800 if (parent > 0) { 6801 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6802 btrfs_set_extent_inline_ref_type(leaf, iref, 6803 BTRFS_SHARED_BLOCK_REF_KEY); 6804 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6805 } else { 6806 btrfs_set_extent_inline_ref_type(leaf, iref, 6807 BTRFS_TREE_BLOCK_REF_KEY); 6808 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6809 } 6810 6811 btrfs_mark_buffer_dirty(leaf); 6812 btrfs_free_path(path); 6813 6814 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6815 if (ret) { /* -ENOENT, logic error */ 6816 btrfs_err(fs_info, "update block group failed for %llu %llu", 6817 ins->objectid, ins->offset); 6818 BUG(); 6819 } 6820 6821 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize); 6822 return ret; 6823 } 6824 6825 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6826 struct btrfs_root *root, 6827 u64 root_objectid, u64 owner, 6828 u64 offset, struct btrfs_key *ins) 6829 { 6830 int ret; 6831 6832 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6833 6834 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6835 ins->offset, 0, 6836 root_objectid, owner, offset, 6837 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6838 return ret; 6839 } 6840 6841 /* 6842 * this is used by the tree logging recovery code. It records that 6843 * an extent has been allocated and makes sure to clear the free 6844 * space cache bits as well 6845 */ 6846 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6847 struct btrfs_root *root, 6848 u64 root_objectid, u64 owner, u64 offset, 6849 struct btrfs_key *ins) 6850 { 6851 int ret; 6852 struct btrfs_block_group_cache *block_group; 6853 6854 /* 6855 * Mixed block groups will exclude before processing the log so we only 6856 * need to do the exlude dance if this fs isn't mixed. 6857 */ 6858 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6859 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6860 if (ret) 6861 return ret; 6862 } 6863 6864 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6865 if (!block_group) 6866 return -EINVAL; 6867 6868 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6869 RESERVE_ALLOC_NO_ACCOUNT); 6870 BUG_ON(ret); /* logic error */ 6871 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6872 0, owner, offset, ins, 1); 6873 btrfs_put_block_group(block_group); 6874 return ret; 6875 } 6876 6877 static struct extent_buffer * 6878 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6879 u64 bytenr, u32 blocksize, int level) 6880 { 6881 struct extent_buffer *buf; 6882 6883 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6884 if (!buf) 6885 return ERR_PTR(-ENOMEM); 6886 btrfs_set_header_generation(buf, trans->transid); 6887 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6888 btrfs_tree_lock(buf); 6889 clean_tree_block(trans, root, buf); 6890 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6891 6892 btrfs_set_lock_blocking(buf); 6893 btrfs_set_buffer_uptodate(buf); 6894 6895 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6896 /* 6897 * we allow two log transactions at a time, use different 6898 * EXENT bit to differentiate dirty pages. 6899 */ 6900 if (root->log_transid % 2 == 0) 6901 set_extent_dirty(&root->dirty_log_pages, buf->start, 6902 buf->start + buf->len - 1, GFP_NOFS); 6903 else 6904 set_extent_new(&root->dirty_log_pages, buf->start, 6905 buf->start + buf->len - 1, GFP_NOFS); 6906 } else { 6907 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6908 buf->start + buf->len - 1, GFP_NOFS); 6909 } 6910 trans->blocks_used++; 6911 /* this returns a buffer locked for blocking */ 6912 return buf; 6913 } 6914 6915 static struct btrfs_block_rsv * 6916 use_block_rsv(struct btrfs_trans_handle *trans, 6917 struct btrfs_root *root, u32 blocksize) 6918 { 6919 struct btrfs_block_rsv *block_rsv; 6920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6921 int ret; 6922 bool global_updated = false; 6923 6924 block_rsv = get_block_rsv(trans, root); 6925 6926 if (unlikely(block_rsv->size == 0)) 6927 goto try_reserve; 6928 again: 6929 ret = block_rsv_use_bytes(block_rsv, blocksize); 6930 if (!ret) 6931 return block_rsv; 6932 6933 if (block_rsv->failfast) 6934 return ERR_PTR(ret); 6935 6936 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6937 global_updated = true; 6938 update_global_block_rsv(root->fs_info); 6939 goto again; 6940 } 6941 6942 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6943 static DEFINE_RATELIMIT_STATE(_rs, 6944 DEFAULT_RATELIMIT_INTERVAL * 10, 6945 /*DEFAULT_RATELIMIT_BURST*/ 1); 6946 if (__ratelimit(&_rs)) 6947 WARN(1, KERN_DEBUG 6948 "BTRFS: block rsv returned %d\n", ret); 6949 } 6950 try_reserve: 6951 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6952 BTRFS_RESERVE_NO_FLUSH); 6953 if (!ret) 6954 return block_rsv; 6955 /* 6956 * If we couldn't reserve metadata bytes try and use some from 6957 * the global reserve if its space type is the same as the global 6958 * reservation. 6959 */ 6960 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6961 block_rsv->space_info == global_rsv->space_info) { 6962 ret = block_rsv_use_bytes(global_rsv, blocksize); 6963 if (!ret) 6964 return global_rsv; 6965 } 6966 return ERR_PTR(ret); 6967 } 6968 6969 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6970 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6971 { 6972 block_rsv_add_bytes(block_rsv, blocksize, 0); 6973 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6974 } 6975 6976 /* 6977 * finds a free extent and does all the dirty work required for allocation 6978 * returns the key for the extent through ins, and a tree buffer for 6979 * the first block of the extent through buf. 6980 * 6981 * returns the tree buffer or NULL. 6982 */ 6983 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6984 struct btrfs_root *root, u32 blocksize, 6985 u64 parent, u64 root_objectid, 6986 struct btrfs_disk_key *key, int level, 6987 u64 hint, u64 empty_size) 6988 { 6989 struct btrfs_key ins; 6990 struct btrfs_block_rsv *block_rsv; 6991 struct extent_buffer *buf; 6992 u64 flags = 0; 6993 int ret; 6994 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6995 SKINNY_METADATA); 6996 6997 block_rsv = use_block_rsv(trans, root, blocksize); 6998 if (IS_ERR(block_rsv)) 6999 return ERR_CAST(block_rsv); 7000 7001 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7002 empty_size, hint, &ins, 0); 7003 if (ret) { 7004 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7005 return ERR_PTR(ret); 7006 } 7007 7008 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7009 blocksize, level); 7010 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7011 7012 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7013 if (parent == 0) 7014 parent = ins.objectid; 7015 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7016 } else 7017 BUG_ON(parent > 0); 7018 7019 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7020 struct btrfs_delayed_extent_op *extent_op; 7021 extent_op = btrfs_alloc_delayed_extent_op(); 7022 BUG_ON(!extent_op); /* -ENOMEM */ 7023 if (key) 7024 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7025 else 7026 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7027 extent_op->flags_to_set = flags; 7028 if (skinny_metadata) 7029 extent_op->update_key = 0; 7030 else 7031 extent_op->update_key = 1; 7032 extent_op->update_flags = 1; 7033 extent_op->is_data = 0; 7034 extent_op->level = level; 7035 7036 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7037 ins.objectid, 7038 ins.offset, parent, root_objectid, 7039 level, BTRFS_ADD_DELAYED_EXTENT, 7040 extent_op, 0); 7041 BUG_ON(ret); /* -ENOMEM */ 7042 } 7043 return buf; 7044 } 7045 7046 struct walk_control { 7047 u64 refs[BTRFS_MAX_LEVEL]; 7048 u64 flags[BTRFS_MAX_LEVEL]; 7049 struct btrfs_key update_progress; 7050 int stage; 7051 int level; 7052 int shared_level; 7053 int update_ref; 7054 int keep_locks; 7055 int reada_slot; 7056 int reada_count; 7057 int for_reloc; 7058 }; 7059 7060 #define DROP_REFERENCE 1 7061 #define UPDATE_BACKREF 2 7062 7063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7064 struct btrfs_root *root, 7065 struct walk_control *wc, 7066 struct btrfs_path *path) 7067 { 7068 u64 bytenr; 7069 u64 generation; 7070 u64 refs; 7071 u64 flags; 7072 u32 nritems; 7073 u32 blocksize; 7074 struct btrfs_key key; 7075 struct extent_buffer *eb; 7076 int ret; 7077 int slot; 7078 int nread = 0; 7079 7080 if (path->slots[wc->level] < wc->reada_slot) { 7081 wc->reada_count = wc->reada_count * 2 / 3; 7082 wc->reada_count = max(wc->reada_count, 2); 7083 } else { 7084 wc->reada_count = wc->reada_count * 3 / 2; 7085 wc->reada_count = min_t(int, wc->reada_count, 7086 BTRFS_NODEPTRS_PER_BLOCK(root)); 7087 } 7088 7089 eb = path->nodes[wc->level]; 7090 nritems = btrfs_header_nritems(eb); 7091 blocksize = btrfs_level_size(root, wc->level - 1); 7092 7093 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7094 if (nread >= wc->reada_count) 7095 break; 7096 7097 cond_resched(); 7098 bytenr = btrfs_node_blockptr(eb, slot); 7099 generation = btrfs_node_ptr_generation(eb, slot); 7100 7101 if (slot == path->slots[wc->level]) 7102 goto reada; 7103 7104 if (wc->stage == UPDATE_BACKREF && 7105 generation <= root->root_key.offset) 7106 continue; 7107 7108 /* We don't lock the tree block, it's OK to be racy here */ 7109 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7110 wc->level - 1, 1, &refs, 7111 &flags); 7112 /* We don't care about errors in readahead. */ 7113 if (ret < 0) 7114 continue; 7115 BUG_ON(refs == 0); 7116 7117 if (wc->stage == DROP_REFERENCE) { 7118 if (refs == 1) 7119 goto reada; 7120 7121 if (wc->level == 1 && 7122 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7123 continue; 7124 if (!wc->update_ref || 7125 generation <= root->root_key.offset) 7126 continue; 7127 btrfs_node_key_to_cpu(eb, &key, slot); 7128 ret = btrfs_comp_cpu_keys(&key, 7129 &wc->update_progress); 7130 if (ret < 0) 7131 continue; 7132 } else { 7133 if (wc->level == 1 && 7134 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7135 continue; 7136 } 7137 reada: 7138 ret = readahead_tree_block(root, bytenr, blocksize, 7139 generation); 7140 if (ret) 7141 break; 7142 nread++; 7143 } 7144 wc->reada_slot = slot; 7145 } 7146 7147 /* 7148 * helper to process tree block while walking down the tree. 7149 * 7150 * when wc->stage == UPDATE_BACKREF, this function updates 7151 * back refs for pointers in the block. 7152 * 7153 * NOTE: return value 1 means we should stop walking down. 7154 */ 7155 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7156 struct btrfs_root *root, 7157 struct btrfs_path *path, 7158 struct walk_control *wc, int lookup_info) 7159 { 7160 int level = wc->level; 7161 struct extent_buffer *eb = path->nodes[level]; 7162 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7163 int ret; 7164 7165 if (wc->stage == UPDATE_BACKREF && 7166 btrfs_header_owner(eb) != root->root_key.objectid) 7167 return 1; 7168 7169 /* 7170 * when reference count of tree block is 1, it won't increase 7171 * again. once full backref flag is set, we never clear it. 7172 */ 7173 if (lookup_info && 7174 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7175 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7176 BUG_ON(!path->locks[level]); 7177 ret = btrfs_lookup_extent_info(trans, root, 7178 eb->start, level, 1, 7179 &wc->refs[level], 7180 &wc->flags[level]); 7181 BUG_ON(ret == -ENOMEM); 7182 if (ret) 7183 return ret; 7184 BUG_ON(wc->refs[level] == 0); 7185 } 7186 7187 if (wc->stage == DROP_REFERENCE) { 7188 if (wc->refs[level] > 1) 7189 return 1; 7190 7191 if (path->locks[level] && !wc->keep_locks) { 7192 btrfs_tree_unlock_rw(eb, path->locks[level]); 7193 path->locks[level] = 0; 7194 } 7195 return 0; 7196 } 7197 7198 /* wc->stage == UPDATE_BACKREF */ 7199 if (!(wc->flags[level] & flag)) { 7200 BUG_ON(!path->locks[level]); 7201 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7202 BUG_ON(ret); /* -ENOMEM */ 7203 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7204 BUG_ON(ret); /* -ENOMEM */ 7205 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7206 eb->len, flag, 7207 btrfs_header_level(eb), 0); 7208 BUG_ON(ret); /* -ENOMEM */ 7209 wc->flags[level] |= flag; 7210 } 7211 7212 /* 7213 * the block is shared by multiple trees, so it's not good to 7214 * keep the tree lock 7215 */ 7216 if (path->locks[level] && level > 0) { 7217 btrfs_tree_unlock_rw(eb, path->locks[level]); 7218 path->locks[level] = 0; 7219 } 7220 return 0; 7221 } 7222 7223 /* 7224 * helper to process tree block pointer. 7225 * 7226 * when wc->stage == DROP_REFERENCE, this function checks 7227 * reference count of the block pointed to. if the block 7228 * is shared and we need update back refs for the subtree 7229 * rooted at the block, this function changes wc->stage to 7230 * UPDATE_BACKREF. if the block is shared and there is no 7231 * need to update back, this function drops the reference 7232 * to the block. 7233 * 7234 * NOTE: return value 1 means we should stop walking down. 7235 */ 7236 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7237 struct btrfs_root *root, 7238 struct btrfs_path *path, 7239 struct walk_control *wc, int *lookup_info) 7240 { 7241 u64 bytenr; 7242 u64 generation; 7243 u64 parent; 7244 u32 blocksize; 7245 struct btrfs_key key; 7246 struct extent_buffer *next; 7247 int level = wc->level; 7248 int reada = 0; 7249 int ret = 0; 7250 7251 generation = btrfs_node_ptr_generation(path->nodes[level], 7252 path->slots[level]); 7253 /* 7254 * if the lower level block was created before the snapshot 7255 * was created, we know there is no need to update back refs 7256 * for the subtree 7257 */ 7258 if (wc->stage == UPDATE_BACKREF && 7259 generation <= root->root_key.offset) { 7260 *lookup_info = 1; 7261 return 1; 7262 } 7263 7264 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7265 blocksize = btrfs_level_size(root, level - 1); 7266 7267 next = btrfs_find_tree_block(root, bytenr, blocksize); 7268 if (!next) { 7269 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7270 if (!next) 7271 return -ENOMEM; 7272 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7273 level - 1); 7274 reada = 1; 7275 } 7276 btrfs_tree_lock(next); 7277 btrfs_set_lock_blocking(next); 7278 7279 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7280 &wc->refs[level - 1], 7281 &wc->flags[level - 1]); 7282 if (ret < 0) { 7283 btrfs_tree_unlock(next); 7284 return ret; 7285 } 7286 7287 if (unlikely(wc->refs[level - 1] == 0)) { 7288 btrfs_err(root->fs_info, "Missing references."); 7289 BUG(); 7290 } 7291 *lookup_info = 0; 7292 7293 if (wc->stage == DROP_REFERENCE) { 7294 if (wc->refs[level - 1] > 1) { 7295 if (level == 1 && 7296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7297 goto skip; 7298 7299 if (!wc->update_ref || 7300 generation <= root->root_key.offset) 7301 goto skip; 7302 7303 btrfs_node_key_to_cpu(path->nodes[level], &key, 7304 path->slots[level]); 7305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7306 if (ret < 0) 7307 goto skip; 7308 7309 wc->stage = UPDATE_BACKREF; 7310 wc->shared_level = level - 1; 7311 } 7312 } else { 7313 if (level == 1 && 7314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7315 goto skip; 7316 } 7317 7318 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7319 btrfs_tree_unlock(next); 7320 free_extent_buffer(next); 7321 next = NULL; 7322 *lookup_info = 1; 7323 } 7324 7325 if (!next) { 7326 if (reada && level == 1) 7327 reada_walk_down(trans, root, wc, path); 7328 next = read_tree_block(root, bytenr, blocksize, generation); 7329 if (!next || !extent_buffer_uptodate(next)) { 7330 free_extent_buffer(next); 7331 return -EIO; 7332 } 7333 btrfs_tree_lock(next); 7334 btrfs_set_lock_blocking(next); 7335 } 7336 7337 level--; 7338 BUG_ON(level != btrfs_header_level(next)); 7339 path->nodes[level] = next; 7340 path->slots[level] = 0; 7341 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7342 wc->level = level; 7343 if (wc->level == 1) 7344 wc->reada_slot = 0; 7345 return 0; 7346 skip: 7347 wc->refs[level - 1] = 0; 7348 wc->flags[level - 1] = 0; 7349 if (wc->stage == DROP_REFERENCE) { 7350 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7351 parent = path->nodes[level]->start; 7352 } else { 7353 BUG_ON(root->root_key.objectid != 7354 btrfs_header_owner(path->nodes[level])); 7355 parent = 0; 7356 } 7357 7358 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7359 root->root_key.objectid, level - 1, 0, 0); 7360 BUG_ON(ret); /* -ENOMEM */ 7361 } 7362 btrfs_tree_unlock(next); 7363 free_extent_buffer(next); 7364 *lookup_info = 1; 7365 return 1; 7366 } 7367 7368 /* 7369 * helper to process tree block while walking up the tree. 7370 * 7371 * when wc->stage == DROP_REFERENCE, this function drops 7372 * reference count on the block. 7373 * 7374 * when wc->stage == UPDATE_BACKREF, this function changes 7375 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7376 * to UPDATE_BACKREF previously while processing the block. 7377 * 7378 * NOTE: return value 1 means we should stop walking up. 7379 */ 7380 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7381 struct btrfs_root *root, 7382 struct btrfs_path *path, 7383 struct walk_control *wc) 7384 { 7385 int ret; 7386 int level = wc->level; 7387 struct extent_buffer *eb = path->nodes[level]; 7388 u64 parent = 0; 7389 7390 if (wc->stage == UPDATE_BACKREF) { 7391 BUG_ON(wc->shared_level < level); 7392 if (level < wc->shared_level) 7393 goto out; 7394 7395 ret = find_next_key(path, level + 1, &wc->update_progress); 7396 if (ret > 0) 7397 wc->update_ref = 0; 7398 7399 wc->stage = DROP_REFERENCE; 7400 wc->shared_level = -1; 7401 path->slots[level] = 0; 7402 7403 /* 7404 * check reference count again if the block isn't locked. 7405 * we should start walking down the tree again if reference 7406 * count is one. 7407 */ 7408 if (!path->locks[level]) { 7409 BUG_ON(level == 0); 7410 btrfs_tree_lock(eb); 7411 btrfs_set_lock_blocking(eb); 7412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7413 7414 ret = btrfs_lookup_extent_info(trans, root, 7415 eb->start, level, 1, 7416 &wc->refs[level], 7417 &wc->flags[level]); 7418 if (ret < 0) { 7419 btrfs_tree_unlock_rw(eb, path->locks[level]); 7420 path->locks[level] = 0; 7421 return ret; 7422 } 7423 BUG_ON(wc->refs[level] == 0); 7424 if (wc->refs[level] == 1) { 7425 btrfs_tree_unlock_rw(eb, path->locks[level]); 7426 path->locks[level] = 0; 7427 return 1; 7428 } 7429 } 7430 } 7431 7432 /* wc->stage == DROP_REFERENCE */ 7433 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7434 7435 if (wc->refs[level] == 1) { 7436 if (level == 0) { 7437 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7438 ret = btrfs_dec_ref(trans, root, eb, 1, 7439 wc->for_reloc); 7440 else 7441 ret = btrfs_dec_ref(trans, root, eb, 0, 7442 wc->for_reloc); 7443 BUG_ON(ret); /* -ENOMEM */ 7444 } 7445 /* make block locked assertion in clean_tree_block happy */ 7446 if (!path->locks[level] && 7447 btrfs_header_generation(eb) == trans->transid) { 7448 btrfs_tree_lock(eb); 7449 btrfs_set_lock_blocking(eb); 7450 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7451 } 7452 clean_tree_block(trans, root, eb); 7453 } 7454 7455 if (eb == root->node) { 7456 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7457 parent = eb->start; 7458 else 7459 BUG_ON(root->root_key.objectid != 7460 btrfs_header_owner(eb)); 7461 } else { 7462 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7463 parent = path->nodes[level + 1]->start; 7464 else 7465 BUG_ON(root->root_key.objectid != 7466 btrfs_header_owner(path->nodes[level + 1])); 7467 } 7468 7469 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7470 out: 7471 wc->refs[level] = 0; 7472 wc->flags[level] = 0; 7473 return 0; 7474 } 7475 7476 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7477 struct btrfs_root *root, 7478 struct btrfs_path *path, 7479 struct walk_control *wc) 7480 { 7481 int level = wc->level; 7482 int lookup_info = 1; 7483 int ret; 7484 7485 while (level >= 0) { 7486 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7487 if (ret > 0) 7488 break; 7489 7490 if (level == 0) 7491 break; 7492 7493 if (path->slots[level] >= 7494 btrfs_header_nritems(path->nodes[level])) 7495 break; 7496 7497 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7498 if (ret > 0) { 7499 path->slots[level]++; 7500 continue; 7501 } else if (ret < 0) 7502 return ret; 7503 level = wc->level; 7504 } 7505 return 0; 7506 } 7507 7508 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7509 struct btrfs_root *root, 7510 struct btrfs_path *path, 7511 struct walk_control *wc, int max_level) 7512 { 7513 int level = wc->level; 7514 int ret; 7515 7516 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7517 while (level < max_level && path->nodes[level]) { 7518 wc->level = level; 7519 if (path->slots[level] + 1 < 7520 btrfs_header_nritems(path->nodes[level])) { 7521 path->slots[level]++; 7522 return 0; 7523 } else { 7524 ret = walk_up_proc(trans, root, path, wc); 7525 if (ret > 0) 7526 return 0; 7527 7528 if (path->locks[level]) { 7529 btrfs_tree_unlock_rw(path->nodes[level], 7530 path->locks[level]); 7531 path->locks[level] = 0; 7532 } 7533 free_extent_buffer(path->nodes[level]); 7534 path->nodes[level] = NULL; 7535 level++; 7536 } 7537 } 7538 return 1; 7539 } 7540 7541 /* 7542 * drop a subvolume tree. 7543 * 7544 * this function traverses the tree freeing any blocks that only 7545 * referenced by the tree. 7546 * 7547 * when a shared tree block is found. this function decreases its 7548 * reference count by one. if update_ref is true, this function 7549 * also make sure backrefs for the shared block and all lower level 7550 * blocks are properly updated. 7551 * 7552 * If called with for_reloc == 0, may exit early with -EAGAIN 7553 */ 7554 int btrfs_drop_snapshot(struct btrfs_root *root, 7555 struct btrfs_block_rsv *block_rsv, int update_ref, 7556 int for_reloc) 7557 { 7558 struct btrfs_path *path; 7559 struct btrfs_trans_handle *trans; 7560 struct btrfs_root *tree_root = root->fs_info->tree_root; 7561 struct btrfs_root_item *root_item = &root->root_item; 7562 struct walk_control *wc; 7563 struct btrfs_key key; 7564 int err = 0; 7565 int ret; 7566 int level; 7567 bool root_dropped = false; 7568 7569 path = btrfs_alloc_path(); 7570 if (!path) { 7571 err = -ENOMEM; 7572 goto out; 7573 } 7574 7575 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7576 if (!wc) { 7577 btrfs_free_path(path); 7578 err = -ENOMEM; 7579 goto out; 7580 } 7581 7582 trans = btrfs_start_transaction(tree_root, 0); 7583 if (IS_ERR(trans)) { 7584 err = PTR_ERR(trans); 7585 goto out_free; 7586 } 7587 7588 if (block_rsv) 7589 trans->block_rsv = block_rsv; 7590 7591 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7592 level = btrfs_header_level(root->node); 7593 path->nodes[level] = btrfs_lock_root_node(root); 7594 btrfs_set_lock_blocking(path->nodes[level]); 7595 path->slots[level] = 0; 7596 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7597 memset(&wc->update_progress, 0, 7598 sizeof(wc->update_progress)); 7599 } else { 7600 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7601 memcpy(&wc->update_progress, &key, 7602 sizeof(wc->update_progress)); 7603 7604 level = root_item->drop_level; 7605 BUG_ON(level == 0); 7606 path->lowest_level = level; 7607 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7608 path->lowest_level = 0; 7609 if (ret < 0) { 7610 err = ret; 7611 goto out_end_trans; 7612 } 7613 WARN_ON(ret > 0); 7614 7615 /* 7616 * unlock our path, this is safe because only this 7617 * function is allowed to delete this snapshot 7618 */ 7619 btrfs_unlock_up_safe(path, 0); 7620 7621 level = btrfs_header_level(root->node); 7622 while (1) { 7623 btrfs_tree_lock(path->nodes[level]); 7624 btrfs_set_lock_blocking(path->nodes[level]); 7625 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7626 7627 ret = btrfs_lookup_extent_info(trans, root, 7628 path->nodes[level]->start, 7629 level, 1, &wc->refs[level], 7630 &wc->flags[level]); 7631 if (ret < 0) { 7632 err = ret; 7633 goto out_end_trans; 7634 } 7635 BUG_ON(wc->refs[level] == 0); 7636 7637 if (level == root_item->drop_level) 7638 break; 7639 7640 btrfs_tree_unlock(path->nodes[level]); 7641 path->locks[level] = 0; 7642 WARN_ON(wc->refs[level] != 1); 7643 level--; 7644 } 7645 } 7646 7647 wc->level = level; 7648 wc->shared_level = -1; 7649 wc->stage = DROP_REFERENCE; 7650 wc->update_ref = update_ref; 7651 wc->keep_locks = 0; 7652 wc->for_reloc = for_reloc; 7653 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7654 7655 while (1) { 7656 7657 ret = walk_down_tree(trans, root, path, wc); 7658 if (ret < 0) { 7659 err = ret; 7660 break; 7661 } 7662 7663 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7664 if (ret < 0) { 7665 err = ret; 7666 break; 7667 } 7668 7669 if (ret > 0) { 7670 BUG_ON(wc->stage != DROP_REFERENCE); 7671 break; 7672 } 7673 7674 if (wc->stage == DROP_REFERENCE) { 7675 level = wc->level; 7676 btrfs_node_key(path->nodes[level], 7677 &root_item->drop_progress, 7678 path->slots[level]); 7679 root_item->drop_level = level; 7680 } 7681 7682 BUG_ON(wc->level == 0); 7683 if (btrfs_should_end_transaction(trans, tree_root) || 7684 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7685 ret = btrfs_update_root(trans, tree_root, 7686 &root->root_key, 7687 root_item); 7688 if (ret) { 7689 btrfs_abort_transaction(trans, tree_root, ret); 7690 err = ret; 7691 goto out_end_trans; 7692 } 7693 7694 btrfs_end_transaction_throttle(trans, tree_root); 7695 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7696 pr_debug("BTRFS: drop snapshot early exit\n"); 7697 err = -EAGAIN; 7698 goto out_free; 7699 } 7700 7701 trans = btrfs_start_transaction(tree_root, 0); 7702 if (IS_ERR(trans)) { 7703 err = PTR_ERR(trans); 7704 goto out_free; 7705 } 7706 if (block_rsv) 7707 trans->block_rsv = block_rsv; 7708 } 7709 } 7710 btrfs_release_path(path); 7711 if (err) 7712 goto out_end_trans; 7713 7714 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7715 if (ret) { 7716 btrfs_abort_transaction(trans, tree_root, ret); 7717 goto out_end_trans; 7718 } 7719 7720 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7721 ret = btrfs_find_root(tree_root, &root->root_key, path, 7722 NULL, NULL); 7723 if (ret < 0) { 7724 btrfs_abort_transaction(trans, tree_root, ret); 7725 err = ret; 7726 goto out_end_trans; 7727 } else if (ret > 0) { 7728 /* if we fail to delete the orphan item this time 7729 * around, it'll get picked up the next time. 7730 * 7731 * The most common failure here is just -ENOENT. 7732 */ 7733 btrfs_del_orphan_item(trans, tree_root, 7734 root->root_key.objectid); 7735 } 7736 } 7737 7738 if (root->in_radix) { 7739 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7740 } else { 7741 free_extent_buffer(root->node); 7742 free_extent_buffer(root->commit_root); 7743 btrfs_put_fs_root(root); 7744 } 7745 root_dropped = true; 7746 out_end_trans: 7747 btrfs_end_transaction_throttle(trans, tree_root); 7748 out_free: 7749 kfree(wc); 7750 btrfs_free_path(path); 7751 out: 7752 /* 7753 * So if we need to stop dropping the snapshot for whatever reason we 7754 * need to make sure to add it back to the dead root list so that we 7755 * keep trying to do the work later. This also cleans up roots if we 7756 * don't have it in the radix (like when we recover after a power fail 7757 * or unmount) so we don't leak memory. 7758 */ 7759 if (!for_reloc && root_dropped == false) 7760 btrfs_add_dead_root(root); 7761 if (err && err != -EAGAIN) 7762 btrfs_std_error(root->fs_info, err); 7763 return err; 7764 } 7765 7766 /* 7767 * drop subtree rooted at tree block 'node'. 7768 * 7769 * NOTE: this function will unlock and release tree block 'node' 7770 * only used by relocation code 7771 */ 7772 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7773 struct btrfs_root *root, 7774 struct extent_buffer *node, 7775 struct extent_buffer *parent) 7776 { 7777 struct btrfs_path *path; 7778 struct walk_control *wc; 7779 int level; 7780 int parent_level; 7781 int ret = 0; 7782 int wret; 7783 7784 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7785 7786 path = btrfs_alloc_path(); 7787 if (!path) 7788 return -ENOMEM; 7789 7790 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7791 if (!wc) { 7792 btrfs_free_path(path); 7793 return -ENOMEM; 7794 } 7795 7796 btrfs_assert_tree_locked(parent); 7797 parent_level = btrfs_header_level(parent); 7798 extent_buffer_get(parent); 7799 path->nodes[parent_level] = parent; 7800 path->slots[parent_level] = btrfs_header_nritems(parent); 7801 7802 btrfs_assert_tree_locked(node); 7803 level = btrfs_header_level(node); 7804 path->nodes[level] = node; 7805 path->slots[level] = 0; 7806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7807 7808 wc->refs[parent_level] = 1; 7809 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7810 wc->level = level; 7811 wc->shared_level = -1; 7812 wc->stage = DROP_REFERENCE; 7813 wc->update_ref = 0; 7814 wc->keep_locks = 1; 7815 wc->for_reloc = 1; 7816 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7817 7818 while (1) { 7819 wret = walk_down_tree(trans, root, path, wc); 7820 if (wret < 0) { 7821 ret = wret; 7822 break; 7823 } 7824 7825 wret = walk_up_tree(trans, root, path, wc, parent_level); 7826 if (wret < 0) 7827 ret = wret; 7828 if (wret != 0) 7829 break; 7830 } 7831 7832 kfree(wc); 7833 btrfs_free_path(path); 7834 return ret; 7835 } 7836 7837 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7838 { 7839 u64 num_devices; 7840 u64 stripped; 7841 7842 /* 7843 * if restripe for this chunk_type is on pick target profile and 7844 * return, otherwise do the usual balance 7845 */ 7846 stripped = get_restripe_target(root->fs_info, flags); 7847 if (stripped) 7848 return extended_to_chunk(stripped); 7849 7850 /* 7851 * we add in the count of missing devices because we want 7852 * to make sure that any RAID levels on a degraded FS 7853 * continue to be honored. 7854 */ 7855 num_devices = root->fs_info->fs_devices->rw_devices + 7856 root->fs_info->fs_devices->missing_devices; 7857 7858 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7859 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7860 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7861 7862 if (num_devices == 1) { 7863 stripped |= BTRFS_BLOCK_GROUP_DUP; 7864 stripped = flags & ~stripped; 7865 7866 /* turn raid0 into single device chunks */ 7867 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7868 return stripped; 7869 7870 /* turn mirroring into duplication */ 7871 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7872 BTRFS_BLOCK_GROUP_RAID10)) 7873 return stripped | BTRFS_BLOCK_GROUP_DUP; 7874 } else { 7875 /* they already had raid on here, just return */ 7876 if (flags & stripped) 7877 return flags; 7878 7879 stripped |= BTRFS_BLOCK_GROUP_DUP; 7880 stripped = flags & ~stripped; 7881 7882 /* switch duplicated blocks with raid1 */ 7883 if (flags & BTRFS_BLOCK_GROUP_DUP) 7884 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7885 7886 /* this is drive concat, leave it alone */ 7887 } 7888 7889 return flags; 7890 } 7891 7892 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7893 { 7894 struct btrfs_space_info *sinfo = cache->space_info; 7895 u64 num_bytes; 7896 u64 min_allocable_bytes; 7897 int ret = -ENOSPC; 7898 7899 7900 /* 7901 * We need some metadata space and system metadata space for 7902 * allocating chunks in some corner cases until we force to set 7903 * it to be readonly. 7904 */ 7905 if ((sinfo->flags & 7906 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7907 !force) 7908 min_allocable_bytes = 1 * 1024 * 1024; 7909 else 7910 min_allocable_bytes = 0; 7911 7912 spin_lock(&sinfo->lock); 7913 spin_lock(&cache->lock); 7914 7915 if (cache->ro) { 7916 ret = 0; 7917 goto out; 7918 } 7919 7920 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7921 cache->bytes_super - btrfs_block_group_used(&cache->item); 7922 7923 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7924 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7925 min_allocable_bytes <= sinfo->total_bytes) { 7926 sinfo->bytes_readonly += num_bytes; 7927 cache->ro = 1; 7928 ret = 0; 7929 } 7930 out: 7931 spin_unlock(&cache->lock); 7932 spin_unlock(&sinfo->lock); 7933 return ret; 7934 } 7935 7936 int btrfs_set_block_group_ro(struct btrfs_root *root, 7937 struct btrfs_block_group_cache *cache) 7938 7939 { 7940 struct btrfs_trans_handle *trans; 7941 u64 alloc_flags; 7942 int ret; 7943 7944 BUG_ON(cache->ro); 7945 7946 trans = btrfs_join_transaction(root); 7947 if (IS_ERR(trans)) 7948 return PTR_ERR(trans); 7949 7950 alloc_flags = update_block_group_flags(root, cache->flags); 7951 if (alloc_flags != cache->flags) { 7952 ret = do_chunk_alloc(trans, root, alloc_flags, 7953 CHUNK_ALLOC_FORCE); 7954 if (ret < 0) 7955 goto out; 7956 } 7957 7958 ret = set_block_group_ro(cache, 0); 7959 if (!ret) 7960 goto out; 7961 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7962 ret = do_chunk_alloc(trans, root, alloc_flags, 7963 CHUNK_ALLOC_FORCE); 7964 if (ret < 0) 7965 goto out; 7966 ret = set_block_group_ro(cache, 0); 7967 out: 7968 btrfs_end_transaction(trans, root); 7969 return ret; 7970 } 7971 7972 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7973 struct btrfs_root *root, u64 type) 7974 { 7975 u64 alloc_flags = get_alloc_profile(root, type); 7976 return do_chunk_alloc(trans, root, alloc_flags, 7977 CHUNK_ALLOC_FORCE); 7978 } 7979 7980 /* 7981 * helper to account the unused space of all the readonly block group in the 7982 * list. takes mirrors into account. 7983 */ 7984 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7985 { 7986 struct btrfs_block_group_cache *block_group; 7987 u64 free_bytes = 0; 7988 int factor; 7989 7990 list_for_each_entry(block_group, groups_list, list) { 7991 spin_lock(&block_group->lock); 7992 7993 if (!block_group->ro) { 7994 spin_unlock(&block_group->lock); 7995 continue; 7996 } 7997 7998 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7999 BTRFS_BLOCK_GROUP_RAID10 | 8000 BTRFS_BLOCK_GROUP_DUP)) 8001 factor = 2; 8002 else 8003 factor = 1; 8004 8005 free_bytes += (block_group->key.offset - 8006 btrfs_block_group_used(&block_group->item)) * 8007 factor; 8008 8009 spin_unlock(&block_group->lock); 8010 } 8011 8012 return free_bytes; 8013 } 8014 8015 /* 8016 * helper to account the unused space of all the readonly block group in the 8017 * space_info. takes mirrors into account. 8018 */ 8019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8020 { 8021 int i; 8022 u64 free_bytes = 0; 8023 8024 spin_lock(&sinfo->lock); 8025 8026 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8027 if (!list_empty(&sinfo->block_groups[i])) 8028 free_bytes += __btrfs_get_ro_block_group_free_space( 8029 &sinfo->block_groups[i]); 8030 8031 spin_unlock(&sinfo->lock); 8032 8033 return free_bytes; 8034 } 8035 8036 void btrfs_set_block_group_rw(struct btrfs_root *root, 8037 struct btrfs_block_group_cache *cache) 8038 { 8039 struct btrfs_space_info *sinfo = cache->space_info; 8040 u64 num_bytes; 8041 8042 BUG_ON(!cache->ro); 8043 8044 spin_lock(&sinfo->lock); 8045 spin_lock(&cache->lock); 8046 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8047 cache->bytes_super - btrfs_block_group_used(&cache->item); 8048 sinfo->bytes_readonly -= num_bytes; 8049 cache->ro = 0; 8050 spin_unlock(&cache->lock); 8051 spin_unlock(&sinfo->lock); 8052 } 8053 8054 /* 8055 * checks to see if its even possible to relocate this block group. 8056 * 8057 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8058 * ok to go ahead and try. 8059 */ 8060 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8061 { 8062 struct btrfs_block_group_cache *block_group; 8063 struct btrfs_space_info *space_info; 8064 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8065 struct btrfs_device *device; 8066 struct btrfs_trans_handle *trans; 8067 u64 min_free; 8068 u64 dev_min = 1; 8069 u64 dev_nr = 0; 8070 u64 target; 8071 int index; 8072 int full = 0; 8073 int ret = 0; 8074 8075 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8076 8077 /* odd, couldn't find the block group, leave it alone */ 8078 if (!block_group) 8079 return -1; 8080 8081 min_free = btrfs_block_group_used(&block_group->item); 8082 8083 /* no bytes used, we're good */ 8084 if (!min_free) 8085 goto out; 8086 8087 space_info = block_group->space_info; 8088 spin_lock(&space_info->lock); 8089 8090 full = space_info->full; 8091 8092 /* 8093 * if this is the last block group we have in this space, we can't 8094 * relocate it unless we're able to allocate a new chunk below. 8095 * 8096 * Otherwise, we need to make sure we have room in the space to handle 8097 * all of the extents from this block group. If we can, we're good 8098 */ 8099 if ((space_info->total_bytes != block_group->key.offset) && 8100 (space_info->bytes_used + space_info->bytes_reserved + 8101 space_info->bytes_pinned + space_info->bytes_readonly + 8102 min_free < space_info->total_bytes)) { 8103 spin_unlock(&space_info->lock); 8104 goto out; 8105 } 8106 spin_unlock(&space_info->lock); 8107 8108 /* 8109 * ok we don't have enough space, but maybe we have free space on our 8110 * devices to allocate new chunks for relocation, so loop through our 8111 * alloc devices and guess if we have enough space. if this block 8112 * group is going to be restriped, run checks against the target 8113 * profile instead of the current one. 8114 */ 8115 ret = -1; 8116 8117 /* 8118 * index: 8119 * 0: raid10 8120 * 1: raid1 8121 * 2: dup 8122 * 3: raid0 8123 * 4: single 8124 */ 8125 target = get_restripe_target(root->fs_info, block_group->flags); 8126 if (target) { 8127 index = __get_raid_index(extended_to_chunk(target)); 8128 } else { 8129 /* 8130 * this is just a balance, so if we were marked as full 8131 * we know there is no space for a new chunk 8132 */ 8133 if (full) 8134 goto out; 8135 8136 index = get_block_group_index(block_group); 8137 } 8138 8139 if (index == BTRFS_RAID_RAID10) { 8140 dev_min = 4; 8141 /* Divide by 2 */ 8142 min_free >>= 1; 8143 } else if (index == BTRFS_RAID_RAID1) { 8144 dev_min = 2; 8145 } else if (index == BTRFS_RAID_DUP) { 8146 /* Multiply by 2 */ 8147 min_free <<= 1; 8148 } else if (index == BTRFS_RAID_RAID0) { 8149 dev_min = fs_devices->rw_devices; 8150 do_div(min_free, dev_min); 8151 } 8152 8153 /* We need to do this so that we can look at pending chunks */ 8154 trans = btrfs_join_transaction(root); 8155 if (IS_ERR(trans)) { 8156 ret = PTR_ERR(trans); 8157 goto out; 8158 } 8159 8160 mutex_lock(&root->fs_info->chunk_mutex); 8161 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8162 u64 dev_offset; 8163 8164 /* 8165 * check to make sure we can actually find a chunk with enough 8166 * space to fit our block group in. 8167 */ 8168 if (device->total_bytes > device->bytes_used + min_free && 8169 !device->is_tgtdev_for_dev_replace) { 8170 ret = find_free_dev_extent(trans, device, min_free, 8171 &dev_offset, NULL); 8172 if (!ret) 8173 dev_nr++; 8174 8175 if (dev_nr >= dev_min) 8176 break; 8177 8178 ret = -1; 8179 } 8180 } 8181 mutex_unlock(&root->fs_info->chunk_mutex); 8182 btrfs_end_transaction(trans, root); 8183 out: 8184 btrfs_put_block_group(block_group); 8185 return ret; 8186 } 8187 8188 static int find_first_block_group(struct btrfs_root *root, 8189 struct btrfs_path *path, struct btrfs_key *key) 8190 { 8191 int ret = 0; 8192 struct btrfs_key found_key; 8193 struct extent_buffer *leaf; 8194 int slot; 8195 8196 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8197 if (ret < 0) 8198 goto out; 8199 8200 while (1) { 8201 slot = path->slots[0]; 8202 leaf = path->nodes[0]; 8203 if (slot >= btrfs_header_nritems(leaf)) { 8204 ret = btrfs_next_leaf(root, path); 8205 if (ret == 0) 8206 continue; 8207 if (ret < 0) 8208 goto out; 8209 break; 8210 } 8211 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8212 8213 if (found_key.objectid >= key->objectid && 8214 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8215 ret = 0; 8216 goto out; 8217 } 8218 path->slots[0]++; 8219 } 8220 out: 8221 return ret; 8222 } 8223 8224 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8225 { 8226 struct btrfs_block_group_cache *block_group; 8227 u64 last = 0; 8228 8229 while (1) { 8230 struct inode *inode; 8231 8232 block_group = btrfs_lookup_first_block_group(info, last); 8233 while (block_group) { 8234 spin_lock(&block_group->lock); 8235 if (block_group->iref) 8236 break; 8237 spin_unlock(&block_group->lock); 8238 block_group = next_block_group(info->tree_root, 8239 block_group); 8240 } 8241 if (!block_group) { 8242 if (last == 0) 8243 break; 8244 last = 0; 8245 continue; 8246 } 8247 8248 inode = block_group->inode; 8249 block_group->iref = 0; 8250 block_group->inode = NULL; 8251 spin_unlock(&block_group->lock); 8252 iput(inode); 8253 last = block_group->key.objectid + block_group->key.offset; 8254 btrfs_put_block_group(block_group); 8255 } 8256 } 8257 8258 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8259 { 8260 struct btrfs_block_group_cache *block_group; 8261 struct btrfs_space_info *space_info; 8262 struct btrfs_caching_control *caching_ctl; 8263 struct rb_node *n; 8264 8265 down_write(&info->extent_commit_sem); 8266 while (!list_empty(&info->caching_block_groups)) { 8267 caching_ctl = list_entry(info->caching_block_groups.next, 8268 struct btrfs_caching_control, list); 8269 list_del(&caching_ctl->list); 8270 put_caching_control(caching_ctl); 8271 } 8272 up_write(&info->extent_commit_sem); 8273 8274 spin_lock(&info->block_group_cache_lock); 8275 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8276 block_group = rb_entry(n, struct btrfs_block_group_cache, 8277 cache_node); 8278 rb_erase(&block_group->cache_node, 8279 &info->block_group_cache_tree); 8280 spin_unlock(&info->block_group_cache_lock); 8281 8282 down_write(&block_group->space_info->groups_sem); 8283 list_del(&block_group->list); 8284 up_write(&block_group->space_info->groups_sem); 8285 8286 if (block_group->cached == BTRFS_CACHE_STARTED) 8287 wait_block_group_cache_done(block_group); 8288 8289 /* 8290 * We haven't cached this block group, which means we could 8291 * possibly have excluded extents on this block group. 8292 */ 8293 if (block_group->cached == BTRFS_CACHE_NO || 8294 block_group->cached == BTRFS_CACHE_ERROR) 8295 free_excluded_extents(info->extent_root, block_group); 8296 8297 btrfs_remove_free_space_cache(block_group); 8298 btrfs_put_block_group(block_group); 8299 8300 spin_lock(&info->block_group_cache_lock); 8301 } 8302 spin_unlock(&info->block_group_cache_lock); 8303 8304 /* now that all the block groups are freed, go through and 8305 * free all the space_info structs. This is only called during 8306 * the final stages of unmount, and so we know nobody is 8307 * using them. We call synchronize_rcu() once before we start, 8308 * just to be on the safe side. 8309 */ 8310 synchronize_rcu(); 8311 8312 release_global_block_rsv(info); 8313 8314 while (!list_empty(&info->space_info)) { 8315 int i; 8316 8317 space_info = list_entry(info->space_info.next, 8318 struct btrfs_space_info, 8319 list); 8320 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8321 if (WARN_ON(space_info->bytes_pinned > 0 || 8322 space_info->bytes_reserved > 0 || 8323 space_info->bytes_may_use > 0)) { 8324 dump_space_info(space_info, 0, 0); 8325 } 8326 } 8327 list_del(&space_info->list); 8328 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 8329 struct kobject *kobj; 8330 kobj = &space_info->block_group_kobjs[i]; 8331 if (kobj->parent) { 8332 kobject_del(kobj); 8333 kobject_put(kobj); 8334 } 8335 } 8336 kobject_del(&space_info->kobj); 8337 kobject_put(&space_info->kobj); 8338 } 8339 return 0; 8340 } 8341 8342 static void __link_block_group(struct btrfs_space_info *space_info, 8343 struct btrfs_block_group_cache *cache) 8344 { 8345 int index = get_block_group_index(cache); 8346 8347 down_write(&space_info->groups_sem); 8348 if (list_empty(&space_info->block_groups[index])) { 8349 struct kobject *kobj = &space_info->block_group_kobjs[index]; 8350 int ret; 8351 8352 kobject_get(&space_info->kobj); /* put in release */ 8353 ret = kobject_add(kobj, &space_info->kobj, "%s", 8354 get_raid_name(index)); 8355 if (ret) { 8356 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 8357 kobject_put(&space_info->kobj); 8358 } 8359 } 8360 list_add_tail(&cache->list, &space_info->block_groups[index]); 8361 up_write(&space_info->groups_sem); 8362 } 8363 8364 static struct btrfs_block_group_cache * 8365 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 8366 { 8367 struct btrfs_block_group_cache *cache; 8368 8369 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8370 if (!cache) 8371 return NULL; 8372 8373 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8374 GFP_NOFS); 8375 if (!cache->free_space_ctl) { 8376 kfree(cache); 8377 return NULL; 8378 } 8379 8380 cache->key.objectid = start; 8381 cache->key.offset = size; 8382 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8383 8384 cache->sectorsize = root->sectorsize; 8385 cache->fs_info = root->fs_info; 8386 cache->full_stripe_len = btrfs_full_stripe_len(root, 8387 &root->fs_info->mapping_tree, 8388 start); 8389 atomic_set(&cache->count, 1); 8390 spin_lock_init(&cache->lock); 8391 INIT_LIST_HEAD(&cache->list); 8392 INIT_LIST_HEAD(&cache->cluster_list); 8393 INIT_LIST_HEAD(&cache->new_bg_list); 8394 btrfs_init_free_space_ctl(cache); 8395 8396 return cache; 8397 } 8398 8399 int btrfs_read_block_groups(struct btrfs_root *root) 8400 { 8401 struct btrfs_path *path; 8402 int ret; 8403 struct btrfs_block_group_cache *cache; 8404 struct btrfs_fs_info *info = root->fs_info; 8405 struct btrfs_space_info *space_info; 8406 struct btrfs_key key; 8407 struct btrfs_key found_key; 8408 struct extent_buffer *leaf; 8409 int need_clear = 0; 8410 u64 cache_gen; 8411 8412 root = info->extent_root; 8413 key.objectid = 0; 8414 key.offset = 0; 8415 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8416 path = btrfs_alloc_path(); 8417 if (!path) 8418 return -ENOMEM; 8419 path->reada = 1; 8420 8421 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8422 if (btrfs_test_opt(root, SPACE_CACHE) && 8423 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8424 need_clear = 1; 8425 if (btrfs_test_opt(root, CLEAR_CACHE)) 8426 need_clear = 1; 8427 8428 while (1) { 8429 ret = find_first_block_group(root, path, &key); 8430 if (ret > 0) 8431 break; 8432 if (ret != 0) 8433 goto error; 8434 8435 leaf = path->nodes[0]; 8436 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8437 8438 cache = btrfs_create_block_group_cache(root, found_key.objectid, 8439 found_key.offset); 8440 if (!cache) { 8441 ret = -ENOMEM; 8442 goto error; 8443 } 8444 8445 if (need_clear) { 8446 /* 8447 * When we mount with old space cache, we need to 8448 * set BTRFS_DC_CLEAR and set dirty flag. 8449 * 8450 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8451 * truncate the old free space cache inode and 8452 * setup a new one. 8453 * b) Setting 'dirty flag' makes sure that we flush 8454 * the new space cache info onto disk. 8455 */ 8456 cache->disk_cache_state = BTRFS_DC_CLEAR; 8457 if (btrfs_test_opt(root, SPACE_CACHE)) 8458 cache->dirty = 1; 8459 } 8460 8461 read_extent_buffer(leaf, &cache->item, 8462 btrfs_item_ptr_offset(leaf, path->slots[0]), 8463 sizeof(cache->item)); 8464 cache->flags = btrfs_block_group_flags(&cache->item); 8465 8466 key.objectid = found_key.objectid + found_key.offset; 8467 btrfs_release_path(path); 8468 8469 /* 8470 * We need to exclude the super stripes now so that the space 8471 * info has super bytes accounted for, otherwise we'll think 8472 * we have more space than we actually do. 8473 */ 8474 ret = exclude_super_stripes(root, cache); 8475 if (ret) { 8476 /* 8477 * We may have excluded something, so call this just in 8478 * case. 8479 */ 8480 free_excluded_extents(root, cache); 8481 btrfs_put_block_group(cache); 8482 goto error; 8483 } 8484 8485 /* 8486 * check for two cases, either we are full, and therefore 8487 * don't need to bother with the caching work since we won't 8488 * find any space, or we are empty, and we can just add all 8489 * the space in and be done with it. This saves us _alot_ of 8490 * time, particularly in the full case. 8491 */ 8492 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8493 cache->last_byte_to_unpin = (u64)-1; 8494 cache->cached = BTRFS_CACHE_FINISHED; 8495 free_excluded_extents(root, cache); 8496 } else if (btrfs_block_group_used(&cache->item) == 0) { 8497 cache->last_byte_to_unpin = (u64)-1; 8498 cache->cached = BTRFS_CACHE_FINISHED; 8499 add_new_free_space(cache, root->fs_info, 8500 found_key.objectid, 8501 found_key.objectid + 8502 found_key.offset); 8503 free_excluded_extents(root, cache); 8504 } 8505 8506 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8507 if (ret) { 8508 btrfs_remove_free_space_cache(cache); 8509 btrfs_put_block_group(cache); 8510 goto error; 8511 } 8512 8513 ret = update_space_info(info, cache->flags, found_key.offset, 8514 btrfs_block_group_used(&cache->item), 8515 &space_info); 8516 if (ret) { 8517 btrfs_remove_free_space_cache(cache); 8518 spin_lock(&info->block_group_cache_lock); 8519 rb_erase(&cache->cache_node, 8520 &info->block_group_cache_tree); 8521 spin_unlock(&info->block_group_cache_lock); 8522 btrfs_put_block_group(cache); 8523 goto error; 8524 } 8525 8526 cache->space_info = space_info; 8527 spin_lock(&cache->space_info->lock); 8528 cache->space_info->bytes_readonly += cache->bytes_super; 8529 spin_unlock(&cache->space_info->lock); 8530 8531 __link_block_group(space_info, cache); 8532 8533 set_avail_alloc_bits(root->fs_info, cache->flags); 8534 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8535 set_block_group_ro(cache, 1); 8536 } 8537 8538 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8539 if (!(get_alloc_profile(root, space_info->flags) & 8540 (BTRFS_BLOCK_GROUP_RAID10 | 8541 BTRFS_BLOCK_GROUP_RAID1 | 8542 BTRFS_BLOCK_GROUP_RAID5 | 8543 BTRFS_BLOCK_GROUP_RAID6 | 8544 BTRFS_BLOCK_GROUP_DUP))) 8545 continue; 8546 /* 8547 * avoid allocating from un-mirrored block group if there are 8548 * mirrored block groups. 8549 */ 8550 list_for_each_entry(cache, 8551 &space_info->block_groups[BTRFS_RAID_RAID0], 8552 list) 8553 set_block_group_ro(cache, 1); 8554 list_for_each_entry(cache, 8555 &space_info->block_groups[BTRFS_RAID_SINGLE], 8556 list) 8557 set_block_group_ro(cache, 1); 8558 } 8559 8560 init_global_block_rsv(info); 8561 ret = 0; 8562 error: 8563 btrfs_free_path(path); 8564 return ret; 8565 } 8566 8567 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8568 struct btrfs_root *root) 8569 { 8570 struct btrfs_block_group_cache *block_group, *tmp; 8571 struct btrfs_root *extent_root = root->fs_info->extent_root; 8572 struct btrfs_block_group_item item; 8573 struct btrfs_key key; 8574 int ret = 0; 8575 8576 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8577 new_bg_list) { 8578 list_del_init(&block_group->new_bg_list); 8579 8580 if (ret) 8581 continue; 8582 8583 spin_lock(&block_group->lock); 8584 memcpy(&item, &block_group->item, sizeof(item)); 8585 memcpy(&key, &block_group->key, sizeof(key)); 8586 spin_unlock(&block_group->lock); 8587 8588 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8589 sizeof(item)); 8590 if (ret) 8591 btrfs_abort_transaction(trans, extent_root, ret); 8592 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8593 key.objectid, key.offset); 8594 if (ret) 8595 btrfs_abort_transaction(trans, extent_root, ret); 8596 } 8597 } 8598 8599 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8600 struct btrfs_root *root, u64 bytes_used, 8601 u64 type, u64 chunk_objectid, u64 chunk_offset, 8602 u64 size) 8603 { 8604 int ret; 8605 struct btrfs_root *extent_root; 8606 struct btrfs_block_group_cache *cache; 8607 8608 extent_root = root->fs_info->extent_root; 8609 8610 root->fs_info->last_trans_log_full_commit = trans->transid; 8611 8612 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 8613 if (!cache) 8614 return -ENOMEM; 8615 8616 btrfs_set_block_group_used(&cache->item, bytes_used); 8617 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8618 btrfs_set_block_group_flags(&cache->item, type); 8619 8620 cache->flags = type; 8621 cache->last_byte_to_unpin = (u64)-1; 8622 cache->cached = BTRFS_CACHE_FINISHED; 8623 ret = exclude_super_stripes(root, cache); 8624 if (ret) { 8625 /* 8626 * We may have excluded something, so call this just in 8627 * case. 8628 */ 8629 free_excluded_extents(root, cache); 8630 btrfs_put_block_group(cache); 8631 return ret; 8632 } 8633 8634 add_new_free_space(cache, root->fs_info, chunk_offset, 8635 chunk_offset + size); 8636 8637 free_excluded_extents(root, cache); 8638 8639 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8640 if (ret) { 8641 btrfs_remove_free_space_cache(cache); 8642 btrfs_put_block_group(cache); 8643 return ret; 8644 } 8645 8646 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8647 &cache->space_info); 8648 if (ret) { 8649 btrfs_remove_free_space_cache(cache); 8650 spin_lock(&root->fs_info->block_group_cache_lock); 8651 rb_erase(&cache->cache_node, 8652 &root->fs_info->block_group_cache_tree); 8653 spin_unlock(&root->fs_info->block_group_cache_lock); 8654 btrfs_put_block_group(cache); 8655 return ret; 8656 } 8657 update_global_block_rsv(root->fs_info); 8658 8659 spin_lock(&cache->space_info->lock); 8660 cache->space_info->bytes_readonly += cache->bytes_super; 8661 spin_unlock(&cache->space_info->lock); 8662 8663 __link_block_group(cache->space_info, cache); 8664 8665 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8666 8667 set_avail_alloc_bits(extent_root->fs_info, type); 8668 8669 return 0; 8670 } 8671 8672 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8673 { 8674 u64 extra_flags = chunk_to_extended(flags) & 8675 BTRFS_EXTENDED_PROFILE_MASK; 8676 8677 write_seqlock(&fs_info->profiles_lock); 8678 if (flags & BTRFS_BLOCK_GROUP_DATA) 8679 fs_info->avail_data_alloc_bits &= ~extra_flags; 8680 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8681 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8682 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8683 fs_info->avail_system_alloc_bits &= ~extra_flags; 8684 write_sequnlock(&fs_info->profiles_lock); 8685 } 8686 8687 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8688 struct btrfs_root *root, u64 group_start) 8689 { 8690 struct btrfs_path *path; 8691 struct btrfs_block_group_cache *block_group; 8692 struct btrfs_free_cluster *cluster; 8693 struct btrfs_root *tree_root = root->fs_info->tree_root; 8694 struct btrfs_key key; 8695 struct inode *inode; 8696 int ret; 8697 int index; 8698 int factor; 8699 8700 root = root->fs_info->extent_root; 8701 8702 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8703 BUG_ON(!block_group); 8704 BUG_ON(!block_group->ro); 8705 8706 /* 8707 * Free the reserved super bytes from this block group before 8708 * remove it. 8709 */ 8710 free_excluded_extents(root, block_group); 8711 8712 memcpy(&key, &block_group->key, sizeof(key)); 8713 index = get_block_group_index(block_group); 8714 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8715 BTRFS_BLOCK_GROUP_RAID1 | 8716 BTRFS_BLOCK_GROUP_RAID10)) 8717 factor = 2; 8718 else 8719 factor = 1; 8720 8721 /* make sure this block group isn't part of an allocation cluster */ 8722 cluster = &root->fs_info->data_alloc_cluster; 8723 spin_lock(&cluster->refill_lock); 8724 btrfs_return_cluster_to_free_space(block_group, cluster); 8725 spin_unlock(&cluster->refill_lock); 8726 8727 /* 8728 * make sure this block group isn't part of a metadata 8729 * allocation cluster 8730 */ 8731 cluster = &root->fs_info->meta_alloc_cluster; 8732 spin_lock(&cluster->refill_lock); 8733 btrfs_return_cluster_to_free_space(block_group, cluster); 8734 spin_unlock(&cluster->refill_lock); 8735 8736 path = btrfs_alloc_path(); 8737 if (!path) { 8738 ret = -ENOMEM; 8739 goto out; 8740 } 8741 8742 inode = lookup_free_space_inode(tree_root, block_group, path); 8743 if (!IS_ERR(inode)) { 8744 ret = btrfs_orphan_add(trans, inode); 8745 if (ret) { 8746 btrfs_add_delayed_iput(inode); 8747 goto out; 8748 } 8749 clear_nlink(inode); 8750 /* One for the block groups ref */ 8751 spin_lock(&block_group->lock); 8752 if (block_group->iref) { 8753 block_group->iref = 0; 8754 block_group->inode = NULL; 8755 spin_unlock(&block_group->lock); 8756 iput(inode); 8757 } else { 8758 spin_unlock(&block_group->lock); 8759 } 8760 /* One for our lookup ref */ 8761 btrfs_add_delayed_iput(inode); 8762 } 8763 8764 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8765 key.offset = block_group->key.objectid; 8766 key.type = 0; 8767 8768 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8769 if (ret < 0) 8770 goto out; 8771 if (ret > 0) 8772 btrfs_release_path(path); 8773 if (ret == 0) { 8774 ret = btrfs_del_item(trans, tree_root, path); 8775 if (ret) 8776 goto out; 8777 btrfs_release_path(path); 8778 } 8779 8780 spin_lock(&root->fs_info->block_group_cache_lock); 8781 rb_erase(&block_group->cache_node, 8782 &root->fs_info->block_group_cache_tree); 8783 8784 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8785 root->fs_info->first_logical_byte = (u64)-1; 8786 spin_unlock(&root->fs_info->block_group_cache_lock); 8787 8788 down_write(&block_group->space_info->groups_sem); 8789 /* 8790 * we must use list_del_init so people can check to see if they 8791 * are still on the list after taking the semaphore 8792 */ 8793 list_del_init(&block_group->list); 8794 if (list_empty(&block_group->space_info->block_groups[index])) { 8795 kobject_del(&block_group->space_info->block_group_kobjs[index]); 8796 kobject_put(&block_group->space_info->block_group_kobjs[index]); 8797 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8798 } 8799 up_write(&block_group->space_info->groups_sem); 8800 8801 if (block_group->cached == BTRFS_CACHE_STARTED) 8802 wait_block_group_cache_done(block_group); 8803 8804 btrfs_remove_free_space_cache(block_group); 8805 8806 spin_lock(&block_group->space_info->lock); 8807 block_group->space_info->total_bytes -= block_group->key.offset; 8808 block_group->space_info->bytes_readonly -= block_group->key.offset; 8809 block_group->space_info->disk_total -= block_group->key.offset * factor; 8810 spin_unlock(&block_group->space_info->lock); 8811 8812 memcpy(&key, &block_group->key, sizeof(key)); 8813 8814 btrfs_clear_space_info_full(root->fs_info); 8815 8816 btrfs_put_block_group(block_group); 8817 btrfs_put_block_group(block_group); 8818 8819 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8820 if (ret > 0) 8821 ret = -EIO; 8822 if (ret < 0) 8823 goto out; 8824 8825 ret = btrfs_del_item(trans, root, path); 8826 out: 8827 btrfs_free_path(path); 8828 return ret; 8829 } 8830 8831 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8832 { 8833 struct btrfs_space_info *space_info; 8834 struct btrfs_super_block *disk_super; 8835 u64 features; 8836 u64 flags; 8837 int mixed = 0; 8838 int ret; 8839 8840 disk_super = fs_info->super_copy; 8841 if (!btrfs_super_root(disk_super)) 8842 return 1; 8843 8844 features = btrfs_super_incompat_flags(disk_super); 8845 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8846 mixed = 1; 8847 8848 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8849 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8850 if (ret) 8851 goto out; 8852 8853 if (mixed) { 8854 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8855 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8856 } else { 8857 flags = BTRFS_BLOCK_GROUP_METADATA; 8858 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8859 if (ret) 8860 goto out; 8861 8862 flags = BTRFS_BLOCK_GROUP_DATA; 8863 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8864 } 8865 out: 8866 return ret; 8867 } 8868 8869 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8870 { 8871 return unpin_extent_range(root, start, end); 8872 } 8873 8874 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8875 u64 num_bytes, u64 *actual_bytes) 8876 { 8877 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8878 } 8879 8880 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8881 { 8882 struct btrfs_fs_info *fs_info = root->fs_info; 8883 struct btrfs_block_group_cache *cache = NULL; 8884 u64 group_trimmed; 8885 u64 start; 8886 u64 end; 8887 u64 trimmed = 0; 8888 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8889 int ret = 0; 8890 8891 /* 8892 * try to trim all FS space, our block group may start from non-zero. 8893 */ 8894 if (range->len == total_bytes) 8895 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8896 else 8897 cache = btrfs_lookup_block_group(fs_info, range->start); 8898 8899 while (cache) { 8900 if (cache->key.objectid >= (range->start + range->len)) { 8901 btrfs_put_block_group(cache); 8902 break; 8903 } 8904 8905 start = max(range->start, cache->key.objectid); 8906 end = min(range->start + range->len, 8907 cache->key.objectid + cache->key.offset); 8908 8909 if (end - start >= range->minlen) { 8910 if (!block_group_cache_done(cache)) { 8911 ret = cache_block_group(cache, 0); 8912 if (ret) { 8913 btrfs_put_block_group(cache); 8914 break; 8915 } 8916 ret = wait_block_group_cache_done(cache); 8917 if (ret) { 8918 btrfs_put_block_group(cache); 8919 break; 8920 } 8921 } 8922 ret = btrfs_trim_block_group(cache, 8923 &group_trimmed, 8924 start, 8925 end, 8926 range->minlen); 8927 8928 trimmed += group_trimmed; 8929 if (ret) { 8930 btrfs_put_block_group(cache); 8931 break; 8932 } 8933 } 8934 8935 cache = next_block_group(fs_info->tree_root, cache); 8936 } 8937 8938 range->len = trimmed; 8939 return ret; 8940 } 8941