xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	int ret;
91 	struct btrfs_key key;
92 	struct btrfs_path *path;
93 
94 	path = btrfs_alloc_path();
95 	if (!path)
96 		return -ENOMEM;
97 
98 	key.objectid = start;
99 	key.offset = len;
100 	key.type = BTRFS_EXTENT_ITEM_KEY;
101 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
102 	btrfs_free_path(path);
103 	return ret;
104 }
105 
106 /*
107  * helper function to lookup reference count and flags of a tree block.
108  *
109  * the head node for delayed ref is used to store the sum of all the
110  * reference count modifications queued up in the rbtree. the head
111  * node may also store the extent flags to set. This way you can check
112  * to see what the reference count and extent flags would be if all of
113  * the delayed refs are not processed.
114  */
115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
116 			     struct btrfs_fs_info *fs_info, u64 bytenr,
117 			     u64 offset, int metadata, u64 *refs, u64 *flags)
118 {
119 	struct btrfs_delayed_ref_head *head;
120 	struct btrfs_delayed_ref_root *delayed_refs;
121 	struct btrfs_path *path;
122 	struct btrfs_extent_item *ei;
123 	struct extent_buffer *leaf;
124 	struct btrfs_key key;
125 	u32 item_size;
126 	u64 num_refs;
127 	u64 extent_flags;
128 	int ret;
129 
130 	/*
131 	 * If we don't have skinny metadata, don't bother doing anything
132 	 * different
133 	 */
134 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
135 		offset = fs_info->nodesize;
136 		metadata = 0;
137 	}
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	if (!trans) {
144 		path->skip_locking = 1;
145 		path->search_commit_root = 1;
146 	}
147 
148 search_again:
149 	key.objectid = bytenr;
150 	key.offset = offset;
151 	if (metadata)
152 		key.type = BTRFS_METADATA_ITEM_KEY;
153 	else
154 		key.type = BTRFS_EXTENT_ITEM_KEY;
155 
156 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
157 	if (ret < 0)
158 		goto out_free;
159 
160 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
161 		if (path->slots[0]) {
162 			path->slots[0]--;
163 			btrfs_item_key_to_cpu(path->nodes[0], &key,
164 					      path->slots[0]);
165 			if (key.objectid == bytenr &&
166 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
167 			    key.offset == fs_info->nodesize)
168 				ret = 0;
169 		}
170 	}
171 
172 	if (ret == 0) {
173 		leaf = path->nodes[0];
174 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
175 		if (item_size >= sizeof(*ei)) {
176 			ei = btrfs_item_ptr(leaf, path->slots[0],
177 					    struct btrfs_extent_item);
178 			num_refs = btrfs_extent_refs(leaf, ei);
179 			extent_flags = btrfs_extent_flags(leaf, ei);
180 		} else {
181 			ret = -EINVAL;
182 			btrfs_print_v0_err(fs_info);
183 			if (trans)
184 				btrfs_abort_transaction(trans, ret);
185 			else
186 				btrfs_handle_fs_error(fs_info, ret, NULL);
187 
188 			goto out_free;
189 		}
190 
191 		BUG_ON(num_refs == 0);
192 	} else {
193 		num_refs = 0;
194 		extent_flags = 0;
195 		ret = 0;
196 	}
197 
198 	if (!trans)
199 		goto out;
200 
201 	delayed_refs = &trans->transaction->delayed_refs;
202 	spin_lock(&delayed_refs->lock);
203 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
204 	if (head) {
205 		if (!mutex_trylock(&head->mutex)) {
206 			refcount_inc(&head->refs);
207 			spin_unlock(&delayed_refs->lock);
208 
209 			btrfs_release_path(path);
210 
211 			/*
212 			 * Mutex was contended, block until it's released and try
213 			 * again
214 			 */
215 			mutex_lock(&head->mutex);
216 			mutex_unlock(&head->mutex);
217 			btrfs_put_delayed_ref_head(head);
218 			goto search_again;
219 		}
220 		spin_lock(&head->lock);
221 		if (head->extent_op && head->extent_op->update_flags)
222 			extent_flags |= head->extent_op->flags_to_set;
223 		else
224 			BUG_ON(num_refs == 0);
225 
226 		num_refs += head->ref_mod;
227 		spin_unlock(&head->lock);
228 		mutex_unlock(&head->mutex);
229 	}
230 	spin_unlock(&delayed_refs->lock);
231 out:
232 	WARN_ON(num_refs == 0);
233 	if (refs)
234 		*refs = num_refs;
235 	if (flags)
236 		*flags = extent_flags;
237 out_free:
238 	btrfs_free_path(path);
239 	return ret;
240 }
241 
242 /*
243  * Back reference rules.  Back refs have three main goals:
244  *
245  * 1) differentiate between all holders of references to an extent so that
246  *    when a reference is dropped we can make sure it was a valid reference
247  *    before freeing the extent.
248  *
249  * 2) Provide enough information to quickly find the holders of an extent
250  *    if we notice a given block is corrupted or bad.
251  *
252  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
253  *    maintenance.  This is actually the same as #2, but with a slightly
254  *    different use case.
255  *
256  * There are two kinds of back refs. The implicit back refs is optimized
257  * for pointers in non-shared tree blocks. For a given pointer in a block,
258  * back refs of this kind provide information about the block's owner tree
259  * and the pointer's key. These information allow us to find the block by
260  * b-tree searching. The full back refs is for pointers in tree blocks not
261  * referenced by their owner trees. The location of tree block is recorded
262  * in the back refs. Actually the full back refs is generic, and can be
263  * used in all cases the implicit back refs is used. The major shortcoming
264  * of the full back refs is its overhead. Every time a tree block gets
265  * COWed, we have to update back refs entry for all pointers in it.
266  *
267  * For a newly allocated tree block, we use implicit back refs for
268  * pointers in it. This means most tree related operations only involve
269  * implicit back refs. For a tree block created in old transaction, the
270  * only way to drop a reference to it is COW it. So we can detect the
271  * event that tree block loses its owner tree's reference and do the
272  * back refs conversion.
273  *
274  * When a tree block is COWed through a tree, there are four cases:
275  *
276  * The reference count of the block is one and the tree is the block's
277  * owner tree. Nothing to do in this case.
278  *
279  * The reference count of the block is one and the tree is not the
280  * block's owner tree. In this case, full back refs is used for pointers
281  * in the block. Remove these full back refs, add implicit back refs for
282  * every pointers in the new block.
283  *
284  * The reference count of the block is greater than one and the tree is
285  * the block's owner tree. In this case, implicit back refs is used for
286  * pointers in the block. Add full back refs for every pointers in the
287  * block, increase lower level extents' reference counts. The original
288  * implicit back refs are entailed to the new block.
289  *
290  * The reference count of the block is greater than one and the tree is
291  * not the block's owner tree. Add implicit back refs for every pointer in
292  * the new block, increase lower level extents' reference count.
293  *
294  * Back Reference Key composing:
295  *
296  * The key objectid corresponds to the first byte in the extent,
297  * The key type is used to differentiate between types of back refs.
298  * There are different meanings of the key offset for different types
299  * of back refs.
300  *
301  * File extents can be referenced by:
302  *
303  * - multiple snapshots, subvolumes, or different generations in one subvol
304  * - different files inside a single subvolume
305  * - different offsets inside a file (bookend extents in file.c)
306  *
307  * The extent ref structure for the implicit back refs has fields for:
308  *
309  * - Objectid of the subvolume root
310  * - objectid of the file holding the reference
311  * - original offset in the file
312  * - how many bookend extents
313  *
314  * The key offset for the implicit back refs is hash of the first
315  * three fields.
316  *
317  * The extent ref structure for the full back refs has field for:
318  *
319  * - number of pointers in the tree leaf
320  *
321  * The key offset for the implicit back refs is the first byte of
322  * the tree leaf
323  *
324  * When a file extent is allocated, The implicit back refs is used.
325  * the fields are filled in:
326  *
327  *     (root_key.objectid, inode objectid, offset in file, 1)
328  *
329  * When a file extent is removed file truncation, we find the
330  * corresponding implicit back refs and check the following fields:
331  *
332  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
333  *
334  * Btree extents can be referenced by:
335  *
336  * - Different subvolumes
337  *
338  * Both the implicit back refs and the full back refs for tree blocks
339  * only consist of key. The key offset for the implicit back refs is
340  * objectid of block's owner tree. The key offset for the full back refs
341  * is the first byte of parent block.
342  *
343  * When implicit back refs is used, information about the lowest key and
344  * level of the tree block are required. These information are stored in
345  * tree block info structure.
346  */
347 
348 /*
349  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
350  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
351  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
352  */
353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
354 				     struct btrfs_extent_inline_ref *iref,
355 				     enum btrfs_inline_ref_type is_data)
356 {
357 	int type = btrfs_extent_inline_ref_type(eb, iref);
358 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
359 
360 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
361 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
362 	    type == BTRFS_SHARED_DATA_REF_KEY ||
363 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
364 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
365 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
366 				return type;
367 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
368 				ASSERT(eb->fs_info);
369 				/*
370 				 * Every shared one has parent tree block,
371 				 * which must be aligned to sector size.
372 				 */
373 				if (offset &&
374 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
375 					return type;
376 			}
377 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
378 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
379 				return type;
380 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
381 				ASSERT(eb->fs_info);
382 				/*
383 				 * Every shared one has parent tree block,
384 				 * which must be aligned to sector size.
385 				 */
386 				if (offset &&
387 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
388 					return type;
389 			}
390 		} else {
391 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
392 			return type;
393 		}
394 	}
395 
396 	btrfs_print_leaf((struct extent_buffer *)eb);
397 	btrfs_err(eb->fs_info,
398 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
399 		  eb->start, (unsigned long)iref, type);
400 	WARN_ON(1);
401 
402 	return BTRFS_REF_TYPE_INVALID;
403 }
404 
405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
406 {
407 	u32 high_crc = ~(u32)0;
408 	u32 low_crc = ~(u32)0;
409 	__le64 lenum;
410 
411 	lenum = cpu_to_le64(root_objectid);
412 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
413 	lenum = cpu_to_le64(owner);
414 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415 	lenum = cpu_to_le64(offset);
416 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
417 
418 	return ((u64)high_crc << 31) ^ (u64)low_crc;
419 }
420 
421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
422 				     struct btrfs_extent_data_ref *ref)
423 {
424 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
425 				    btrfs_extent_data_ref_objectid(leaf, ref),
426 				    btrfs_extent_data_ref_offset(leaf, ref));
427 }
428 
429 static int match_extent_data_ref(struct extent_buffer *leaf,
430 				 struct btrfs_extent_data_ref *ref,
431 				 u64 root_objectid, u64 owner, u64 offset)
432 {
433 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
434 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
435 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
436 		return 0;
437 	return 1;
438 }
439 
440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
441 					   struct btrfs_path *path,
442 					   u64 bytenr, u64 parent,
443 					   u64 root_objectid,
444 					   u64 owner, u64 offset)
445 {
446 	struct btrfs_root *root = trans->fs_info->extent_root;
447 	struct btrfs_key key;
448 	struct btrfs_extent_data_ref *ref;
449 	struct extent_buffer *leaf;
450 	u32 nritems;
451 	int ret;
452 	int recow;
453 	int err = -ENOENT;
454 
455 	key.objectid = bytenr;
456 	if (parent) {
457 		key.type = BTRFS_SHARED_DATA_REF_KEY;
458 		key.offset = parent;
459 	} else {
460 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
461 		key.offset = hash_extent_data_ref(root_objectid,
462 						  owner, offset);
463 	}
464 again:
465 	recow = 0;
466 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
467 	if (ret < 0) {
468 		err = ret;
469 		goto fail;
470 	}
471 
472 	if (parent) {
473 		if (!ret)
474 			return 0;
475 		goto fail;
476 	}
477 
478 	leaf = path->nodes[0];
479 	nritems = btrfs_header_nritems(leaf);
480 	while (1) {
481 		if (path->slots[0] >= nritems) {
482 			ret = btrfs_next_leaf(root, path);
483 			if (ret < 0)
484 				err = ret;
485 			if (ret)
486 				goto fail;
487 
488 			leaf = path->nodes[0];
489 			nritems = btrfs_header_nritems(leaf);
490 			recow = 1;
491 		}
492 
493 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
494 		if (key.objectid != bytenr ||
495 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
496 			goto fail;
497 
498 		ref = btrfs_item_ptr(leaf, path->slots[0],
499 				     struct btrfs_extent_data_ref);
500 
501 		if (match_extent_data_ref(leaf, ref, root_objectid,
502 					  owner, offset)) {
503 			if (recow) {
504 				btrfs_release_path(path);
505 				goto again;
506 			}
507 			err = 0;
508 			break;
509 		}
510 		path->slots[0]++;
511 	}
512 fail:
513 	return err;
514 }
515 
516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
517 					   struct btrfs_path *path,
518 					   u64 bytenr, u64 parent,
519 					   u64 root_objectid, u64 owner,
520 					   u64 offset, int refs_to_add)
521 {
522 	struct btrfs_root *root = trans->fs_info->extent_root;
523 	struct btrfs_key key;
524 	struct extent_buffer *leaf;
525 	u32 size;
526 	u32 num_refs;
527 	int ret;
528 
529 	key.objectid = bytenr;
530 	if (parent) {
531 		key.type = BTRFS_SHARED_DATA_REF_KEY;
532 		key.offset = parent;
533 		size = sizeof(struct btrfs_shared_data_ref);
534 	} else {
535 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
536 		key.offset = hash_extent_data_ref(root_objectid,
537 						  owner, offset);
538 		size = sizeof(struct btrfs_extent_data_ref);
539 	}
540 
541 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
542 	if (ret && ret != -EEXIST)
543 		goto fail;
544 
545 	leaf = path->nodes[0];
546 	if (parent) {
547 		struct btrfs_shared_data_ref *ref;
548 		ref = btrfs_item_ptr(leaf, path->slots[0],
549 				     struct btrfs_shared_data_ref);
550 		if (ret == 0) {
551 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
552 		} else {
553 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
554 			num_refs += refs_to_add;
555 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
556 		}
557 	} else {
558 		struct btrfs_extent_data_ref *ref;
559 		while (ret == -EEXIST) {
560 			ref = btrfs_item_ptr(leaf, path->slots[0],
561 					     struct btrfs_extent_data_ref);
562 			if (match_extent_data_ref(leaf, ref, root_objectid,
563 						  owner, offset))
564 				break;
565 			btrfs_release_path(path);
566 			key.offset++;
567 			ret = btrfs_insert_empty_item(trans, root, path, &key,
568 						      size);
569 			if (ret && ret != -EEXIST)
570 				goto fail;
571 
572 			leaf = path->nodes[0];
573 		}
574 		ref = btrfs_item_ptr(leaf, path->slots[0],
575 				     struct btrfs_extent_data_ref);
576 		if (ret == 0) {
577 			btrfs_set_extent_data_ref_root(leaf, ref,
578 						       root_objectid);
579 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
580 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
581 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
582 		} else {
583 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
584 			num_refs += refs_to_add;
585 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
586 		}
587 	}
588 	btrfs_mark_buffer_dirty(leaf);
589 	ret = 0;
590 fail:
591 	btrfs_release_path(path);
592 	return ret;
593 }
594 
595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
596 					   struct btrfs_path *path,
597 					   int refs_to_drop, int *last_ref)
598 {
599 	struct btrfs_key key;
600 	struct btrfs_extent_data_ref *ref1 = NULL;
601 	struct btrfs_shared_data_ref *ref2 = NULL;
602 	struct extent_buffer *leaf;
603 	u32 num_refs = 0;
604 	int ret = 0;
605 
606 	leaf = path->nodes[0];
607 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
608 
609 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
610 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
611 				      struct btrfs_extent_data_ref);
612 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
613 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
614 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_shared_data_ref);
616 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
617 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
618 		btrfs_print_v0_err(trans->fs_info);
619 		btrfs_abort_transaction(trans, -EINVAL);
620 		return -EINVAL;
621 	} else {
622 		BUG();
623 	}
624 
625 	BUG_ON(num_refs < refs_to_drop);
626 	num_refs -= refs_to_drop;
627 
628 	if (num_refs == 0) {
629 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
630 		*last_ref = 1;
631 	} else {
632 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
633 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
634 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
635 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
636 		btrfs_mark_buffer_dirty(leaf);
637 	}
638 	return ret;
639 }
640 
641 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
642 					  struct btrfs_extent_inline_ref *iref)
643 {
644 	struct btrfs_key key;
645 	struct extent_buffer *leaf;
646 	struct btrfs_extent_data_ref *ref1;
647 	struct btrfs_shared_data_ref *ref2;
648 	u32 num_refs = 0;
649 	int type;
650 
651 	leaf = path->nodes[0];
652 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
653 
654 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
655 	if (iref) {
656 		/*
657 		 * If type is invalid, we should have bailed out earlier than
658 		 * this call.
659 		 */
660 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
661 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
662 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
663 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
664 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
665 		} else {
666 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
667 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
668 		}
669 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
670 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
671 				      struct btrfs_extent_data_ref);
672 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
673 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
674 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
675 				      struct btrfs_shared_data_ref);
676 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 	} else {
678 		WARN_ON(1);
679 	}
680 	return num_refs;
681 }
682 
683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
684 					  struct btrfs_path *path,
685 					  u64 bytenr, u64 parent,
686 					  u64 root_objectid)
687 {
688 	struct btrfs_root *root = trans->fs_info->extent_root;
689 	struct btrfs_key key;
690 	int ret;
691 
692 	key.objectid = bytenr;
693 	if (parent) {
694 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
695 		key.offset = parent;
696 	} else {
697 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
698 		key.offset = root_objectid;
699 	}
700 
701 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
702 	if (ret > 0)
703 		ret = -ENOENT;
704 	return ret;
705 }
706 
707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
708 					  struct btrfs_path *path,
709 					  u64 bytenr, u64 parent,
710 					  u64 root_objectid)
711 {
712 	struct btrfs_key key;
713 	int ret;
714 
715 	key.objectid = bytenr;
716 	if (parent) {
717 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
718 		key.offset = parent;
719 	} else {
720 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
721 		key.offset = root_objectid;
722 	}
723 
724 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
725 				      path, &key, 0);
726 	btrfs_release_path(path);
727 	return ret;
728 }
729 
730 static inline int extent_ref_type(u64 parent, u64 owner)
731 {
732 	int type;
733 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
734 		if (parent > 0)
735 			type = BTRFS_SHARED_BLOCK_REF_KEY;
736 		else
737 			type = BTRFS_TREE_BLOCK_REF_KEY;
738 	} else {
739 		if (parent > 0)
740 			type = BTRFS_SHARED_DATA_REF_KEY;
741 		else
742 			type = BTRFS_EXTENT_DATA_REF_KEY;
743 	}
744 	return type;
745 }
746 
747 static int find_next_key(struct btrfs_path *path, int level,
748 			 struct btrfs_key *key)
749 
750 {
751 	for (; level < BTRFS_MAX_LEVEL; level++) {
752 		if (!path->nodes[level])
753 			break;
754 		if (path->slots[level] + 1 >=
755 		    btrfs_header_nritems(path->nodes[level]))
756 			continue;
757 		if (level == 0)
758 			btrfs_item_key_to_cpu(path->nodes[level], key,
759 					      path->slots[level] + 1);
760 		else
761 			btrfs_node_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		return 0;
764 	}
765 	return 1;
766 }
767 
768 /*
769  * look for inline back ref. if back ref is found, *ref_ret is set
770  * to the address of inline back ref, and 0 is returned.
771  *
772  * if back ref isn't found, *ref_ret is set to the address where it
773  * should be inserted, and -ENOENT is returned.
774  *
775  * if insert is true and there are too many inline back refs, the path
776  * points to the extent item, and -EAGAIN is returned.
777  *
778  * NOTE: inline back refs are ordered in the same way that back ref
779  *	 items in the tree are ordered.
780  */
781 static noinline_for_stack
782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
783 				 struct btrfs_path *path,
784 				 struct btrfs_extent_inline_ref **ref_ret,
785 				 u64 bytenr, u64 num_bytes,
786 				 u64 parent, u64 root_objectid,
787 				 u64 owner, u64 offset, int insert)
788 {
789 	struct btrfs_fs_info *fs_info = trans->fs_info;
790 	struct btrfs_root *root = fs_info->extent_root;
791 	struct btrfs_key key;
792 	struct extent_buffer *leaf;
793 	struct btrfs_extent_item *ei;
794 	struct btrfs_extent_inline_ref *iref;
795 	u64 flags;
796 	u64 item_size;
797 	unsigned long ptr;
798 	unsigned long end;
799 	int extra_size;
800 	int type;
801 	int want;
802 	int ret;
803 	int err = 0;
804 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
805 	int needed;
806 
807 	key.objectid = bytenr;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	key.offset = num_bytes;
810 
811 	want = extent_ref_type(parent, owner);
812 	if (insert) {
813 		extra_size = btrfs_extent_inline_ref_size(want);
814 		path->search_for_extension = 1;
815 		path->keep_locks = 1;
816 	} else
817 		extra_size = -1;
818 
819 	/*
820 	 * Owner is our level, so we can just add one to get the level for the
821 	 * block we are interested in.
822 	 */
823 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
824 		key.type = BTRFS_METADATA_ITEM_KEY;
825 		key.offset = owner;
826 	}
827 
828 again:
829 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
830 	if (ret < 0) {
831 		err = ret;
832 		goto out;
833 	}
834 
835 	/*
836 	 * We may be a newly converted file system which still has the old fat
837 	 * extent entries for metadata, so try and see if we have one of those.
838 	 */
839 	if (ret > 0 && skinny_metadata) {
840 		skinny_metadata = false;
841 		if (path->slots[0]) {
842 			path->slots[0]--;
843 			btrfs_item_key_to_cpu(path->nodes[0], &key,
844 					      path->slots[0]);
845 			if (key.objectid == bytenr &&
846 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
847 			    key.offset == num_bytes)
848 				ret = 0;
849 		}
850 		if (ret) {
851 			key.objectid = bytenr;
852 			key.type = BTRFS_EXTENT_ITEM_KEY;
853 			key.offset = num_bytes;
854 			btrfs_release_path(path);
855 			goto again;
856 		}
857 	}
858 
859 	if (ret && !insert) {
860 		err = -ENOENT;
861 		goto out;
862 	} else if (WARN_ON(ret)) {
863 		err = -EIO;
864 		goto out;
865 	}
866 
867 	leaf = path->nodes[0];
868 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 	if (unlikely(item_size < sizeof(*ei))) {
870 		err = -EINVAL;
871 		btrfs_print_v0_err(fs_info);
872 		btrfs_abort_transaction(trans, err);
873 		goto out;
874 	}
875 
876 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
877 	flags = btrfs_extent_flags(leaf, ei);
878 
879 	ptr = (unsigned long)(ei + 1);
880 	end = (unsigned long)ei + item_size;
881 
882 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
883 		ptr += sizeof(struct btrfs_tree_block_info);
884 		BUG_ON(ptr > end);
885 	}
886 
887 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
888 		needed = BTRFS_REF_TYPE_DATA;
889 	else
890 		needed = BTRFS_REF_TYPE_BLOCK;
891 
892 	err = -ENOENT;
893 	while (1) {
894 		if (ptr >= end) {
895 			WARN_ON(ptr > end);
896 			break;
897 		}
898 		iref = (struct btrfs_extent_inline_ref *)ptr;
899 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
900 		if (type == BTRFS_REF_TYPE_INVALID) {
901 			err = -EUCLEAN;
902 			goto out;
903 		}
904 
905 		if (want < type)
906 			break;
907 		if (want > type) {
908 			ptr += btrfs_extent_inline_ref_size(type);
909 			continue;
910 		}
911 
912 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
913 			struct btrfs_extent_data_ref *dref;
914 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
915 			if (match_extent_data_ref(leaf, dref, root_objectid,
916 						  owner, offset)) {
917 				err = 0;
918 				break;
919 			}
920 			if (hash_extent_data_ref_item(leaf, dref) <
921 			    hash_extent_data_ref(root_objectid, owner, offset))
922 				break;
923 		} else {
924 			u64 ref_offset;
925 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
926 			if (parent > 0) {
927 				if (parent == ref_offset) {
928 					err = 0;
929 					break;
930 				}
931 				if (ref_offset < parent)
932 					break;
933 			} else {
934 				if (root_objectid == ref_offset) {
935 					err = 0;
936 					break;
937 				}
938 				if (ref_offset < root_objectid)
939 					break;
940 			}
941 		}
942 		ptr += btrfs_extent_inline_ref_size(type);
943 	}
944 	if (err == -ENOENT && insert) {
945 		if (item_size + extra_size >=
946 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
947 			err = -EAGAIN;
948 			goto out;
949 		}
950 		/*
951 		 * To add new inline back ref, we have to make sure
952 		 * there is no corresponding back ref item.
953 		 * For simplicity, we just do not add new inline back
954 		 * ref if there is any kind of item for this block
955 		 */
956 		if (find_next_key(path, 0, &key) == 0 &&
957 		    key.objectid == bytenr &&
958 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
959 			err = -EAGAIN;
960 			goto out;
961 		}
962 	}
963 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
964 out:
965 	if (insert) {
966 		path->keep_locks = 0;
967 		path->search_for_extension = 0;
968 		btrfs_unlock_up_safe(path, 1);
969 	}
970 	return err;
971 }
972 
973 /*
974  * helper to add new inline back ref
975  */
976 static noinline_for_stack
977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
978 				 struct btrfs_path *path,
979 				 struct btrfs_extent_inline_ref *iref,
980 				 u64 parent, u64 root_objectid,
981 				 u64 owner, u64 offset, int refs_to_add,
982 				 struct btrfs_delayed_extent_op *extent_op)
983 {
984 	struct extent_buffer *leaf;
985 	struct btrfs_extent_item *ei;
986 	unsigned long ptr;
987 	unsigned long end;
988 	unsigned long item_offset;
989 	u64 refs;
990 	int size;
991 	int type;
992 
993 	leaf = path->nodes[0];
994 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
995 	item_offset = (unsigned long)iref - (unsigned long)ei;
996 
997 	type = extent_ref_type(parent, owner);
998 	size = btrfs_extent_inline_ref_size(type);
999 
1000 	btrfs_extend_item(path, size);
1001 
1002 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 	refs = btrfs_extent_refs(leaf, ei);
1004 	refs += refs_to_add;
1005 	btrfs_set_extent_refs(leaf, ei, refs);
1006 	if (extent_op)
1007 		__run_delayed_extent_op(extent_op, leaf, ei);
1008 
1009 	ptr = (unsigned long)ei + item_offset;
1010 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1011 	if (ptr < end - size)
1012 		memmove_extent_buffer(leaf, ptr + size, ptr,
1013 				      end - size - ptr);
1014 
1015 	iref = (struct btrfs_extent_inline_ref *)ptr;
1016 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1017 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1018 		struct btrfs_extent_data_ref *dref;
1019 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1021 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1022 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1023 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1024 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1025 		struct btrfs_shared_data_ref *sref;
1026 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1028 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1029 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1033 	}
1034 	btrfs_mark_buffer_dirty(leaf);
1035 }
1036 
1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1038 				 struct btrfs_path *path,
1039 				 struct btrfs_extent_inline_ref **ref_ret,
1040 				 u64 bytenr, u64 num_bytes, u64 parent,
1041 				 u64 root_objectid, u64 owner, u64 offset)
1042 {
1043 	int ret;
1044 
1045 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1046 					   num_bytes, parent, root_objectid,
1047 					   owner, offset, 0);
1048 	if (ret != -ENOENT)
1049 		return ret;
1050 
1051 	btrfs_release_path(path);
1052 	*ref_ret = NULL;
1053 
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1056 					    root_objectid);
1057 	} else {
1058 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1059 					     root_objectid, owner, offset);
1060 	}
1061 	return ret;
1062 }
1063 
1064 /*
1065  * helper to update/remove inline back ref
1066  */
1067 static noinline_for_stack
1068 void update_inline_extent_backref(struct btrfs_path *path,
1069 				  struct btrfs_extent_inline_ref *iref,
1070 				  int refs_to_mod,
1071 				  struct btrfs_delayed_extent_op *extent_op,
1072 				  int *last_ref)
1073 {
1074 	struct extent_buffer *leaf = path->nodes[0];
1075 	struct btrfs_extent_item *ei;
1076 	struct btrfs_extent_data_ref *dref = NULL;
1077 	struct btrfs_shared_data_ref *sref = NULL;
1078 	unsigned long ptr;
1079 	unsigned long end;
1080 	u32 item_size;
1081 	int size;
1082 	int type;
1083 	u64 refs;
1084 
1085 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1086 	refs = btrfs_extent_refs(leaf, ei);
1087 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1088 	refs += refs_to_mod;
1089 	btrfs_set_extent_refs(leaf, ei, refs);
1090 	if (extent_op)
1091 		__run_delayed_extent_op(extent_op, leaf, ei);
1092 
1093 	/*
1094 	 * If type is invalid, we should have bailed out after
1095 	 * lookup_inline_extent_backref().
1096 	 */
1097 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1098 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1099 
1100 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1101 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1102 		refs = btrfs_extent_data_ref_count(leaf, dref);
1103 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1104 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1105 		refs = btrfs_shared_data_ref_count(leaf, sref);
1106 	} else {
1107 		refs = 1;
1108 		BUG_ON(refs_to_mod != -1);
1109 	}
1110 
1111 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1112 	refs += refs_to_mod;
1113 
1114 	if (refs > 0) {
1115 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1116 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1117 		else
1118 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1119 	} else {
1120 		*last_ref = 1;
1121 		size =  btrfs_extent_inline_ref_size(type);
1122 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1123 		ptr = (unsigned long)iref;
1124 		end = (unsigned long)ei + item_size;
1125 		if (ptr + size < end)
1126 			memmove_extent_buffer(leaf, ptr, ptr + size,
1127 					      end - ptr - size);
1128 		item_size -= size;
1129 		btrfs_truncate_item(path, item_size, 1);
1130 	}
1131 	btrfs_mark_buffer_dirty(leaf);
1132 }
1133 
1134 static noinline_for_stack
1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1136 				 struct btrfs_path *path,
1137 				 u64 bytenr, u64 num_bytes, u64 parent,
1138 				 u64 root_objectid, u64 owner,
1139 				 u64 offset, int refs_to_add,
1140 				 struct btrfs_delayed_extent_op *extent_op)
1141 {
1142 	struct btrfs_extent_inline_ref *iref;
1143 	int ret;
1144 
1145 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1146 					   num_bytes, parent, root_objectid,
1147 					   owner, offset, 1);
1148 	if (ret == 0) {
1149 		/*
1150 		 * We're adding refs to a tree block we already own, this
1151 		 * should not happen at all.
1152 		 */
1153 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1154 			btrfs_crit(trans->fs_info,
1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1156 				   bytenr, num_bytes, root_objectid);
1157 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1158 				WARN_ON(1);
1159 				btrfs_crit(trans->fs_info,
1160 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1161 				btrfs_print_leaf(path->nodes[0]);
1162 			}
1163 			return -EUCLEAN;
1164 		}
1165 		update_inline_extent_backref(path, iref, refs_to_add,
1166 					     extent_op, NULL);
1167 	} else if (ret == -ENOENT) {
1168 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1169 					    root_objectid, owner, offset,
1170 					    refs_to_add, extent_op);
1171 		ret = 0;
1172 	}
1173 	return ret;
1174 }
1175 
1176 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1177 				 struct btrfs_path *path,
1178 				 struct btrfs_extent_inline_ref *iref,
1179 				 int refs_to_drop, int is_data, int *last_ref)
1180 {
1181 	int ret = 0;
1182 
1183 	BUG_ON(!is_data && refs_to_drop != 1);
1184 	if (iref) {
1185 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1186 					     last_ref);
1187 	} else if (is_data) {
1188 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1189 					     last_ref);
1190 	} else {
1191 		*last_ref = 1;
1192 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1193 	}
1194 	return ret;
1195 }
1196 
1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1198 			       u64 *discarded_bytes)
1199 {
1200 	int j, ret = 0;
1201 	u64 bytes_left, end;
1202 	u64 aligned_start = ALIGN(start, 1 << 9);
1203 
1204 	if (WARN_ON(start != aligned_start)) {
1205 		len -= aligned_start - start;
1206 		len = round_down(len, 1 << 9);
1207 		start = aligned_start;
1208 	}
1209 
1210 	*discarded_bytes = 0;
1211 
1212 	if (!len)
1213 		return 0;
1214 
1215 	end = start + len;
1216 	bytes_left = len;
1217 
1218 	/* Skip any superblocks on this device. */
1219 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1220 		u64 sb_start = btrfs_sb_offset(j);
1221 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1222 		u64 size = sb_start - start;
1223 
1224 		if (!in_range(sb_start, start, bytes_left) &&
1225 		    !in_range(sb_end, start, bytes_left) &&
1226 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1227 			continue;
1228 
1229 		/*
1230 		 * Superblock spans beginning of range.  Adjust start and
1231 		 * try again.
1232 		 */
1233 		if (sb_start <= start) {
1234 			start += sb_end - start;
1235 			if (start > end) {
1236 				bytes_left = 0;
1237 				break;
1238 			}
1239 			bytes_left = end - start;
1240 			continue;
1241 		}
1242 
1243 		if (size) {
1244 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1245 						   GFP_NOFS, 0);
1246 			if (!ret)
1247 				*discarded_bytes += size;
1248 			else if (ret != -EOPNOTSUPP)
1249 				return ret;
1250 		}
1251 
1252 		start = sb_end;
1253 		if (start > end) {
1254 			bytes_left = 0;
1255 			break;
1256 		}
1257 		bytes_left = end - start;
1258 	}
1259 
1260 	if (bytes_left) {
1261 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1262 					   GFP_NOFS, 0);
1263 		if (!ret)
1264 			*discarded_bytes += bytes_left;
1265 	}
1266 	return ret;
1267 }
1268 
1269 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes)
1270 {
1271 	struct btrfs_device *dev = stripe->dev;
1272 	struct btrfs_fs_info *fs_info = dev->fs_info;
1273 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1274 	u64 phys = stripe->physical;
1275 	u64 len = stripe->length;
1276 	u64 discarded = 0;
1277 	int ret = 0;
1278 
1279 	/* Zone reset on a zoned filesystem */
1280 	if (btrfs_can_zone_reset(dev, phys, len)) {
1281 		u64 src_disc;
1282 
1283 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1284 		if (ret)
1285 			goto out;
1286 
1287 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1288 		    dev != dev_replace->srcdev)
1289 			goto out;
1290 
1291 		src_disc = discarded;
1292 
1293 		/* Send to replace target as well */
1294 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1295 					      &discarded);
1296 		discarded += src_disc;
1297 	} else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) {
1298 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1299 	} else {
1300 		ret = 0;
1301 		*bytes = 0;
1302 	}
1303 
1304 out:
1305 	*bytes = discarded;
1306 	return ret;
1307 }
1308 
1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1310 			 u64 num_bytes, u64 *actual_bytes)
1311 {
1312 	int ret = 0;
1313 	u64 discarded_bytes = 0;
1314 	u64 end = bytenr + num_bytes;
1315 	u64 cur = bytenr;
1316 	struct btrfs_io_context *bioc = NULL;
1317 
1318 	/*
1319 	 * Avoid races with device replace and make sure our bioc has devices
1320 	 * associated to its stripes that don't go away while we are discarding.
1321 	 */
1322 	btrfs_bio_counter_inc_blocked(fs_info);
1323 	while (cur < end) {
1324 		struct btrfs_io_stripe *stripe;
1325 		int i;
1326 
1327 		num_bytes = end - cur;
1328 		/* Tell the block device(s) that the sectors can be discarded */
1329 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1330 				      &num_bytes, &bioc, 0);
1331 		/*
1332 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1333 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1334 		 * thus we can't continue anyway.
1335 		 */
1336 		if (ret < 0)
1337 			goto out;
1338 
1339 		stripe = bioc->stripes;
1340 		for (i = 0; i < bioc->num_stripes; i++, stripe++) {
1341 			u64 bytes;
1342 			struct btrfs_device *device = stripe->dev;
1343 
1344 			if (!device->bdev) {
1345 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1346 				continue;
1347 			}
1348 
1349 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1350 				continue;
1351 
1352 			ret = do_discard_extent(stripe, &bytes);
1353 			if (!ret) {
1354 				discarded_bytes += bytes;
1355 			} else if (ret != -EOPNOTSUPP) {
1356 				/*
1357 				 * Logic errors or -ENOMEM, or -EIO, but
1358 				 * unlikely to happen.
1359 				 *
1360 				 * And since there are two loops, explicitly
1361 				 * go to out to avoid confusion.
1362 				 */
1363 				btrfs_put_bioc(bioc);
1364 				goto out;
1365 			}
1366 
1367 			/*
1368 			 * Just in case we get back EOPNOTSUPP for some reason,
1369 			 * just ignore the return value so we don't screw up
1370 			 * people calling discard_extent.
1371 			 */
1372 			ret = 0;
1373 		}
1374 		btrfs_put_bioc(bioc);
1375 		cur += num_bytes;
1376 	}
1377 out:
1378 	btrfs_bio_counter_dec(fs_info);
1379 
1380 	if (actual_bytes)
1381 		*actual_bytes = discarded_bytes;
1382 
1383 
1384 	if (ret == -EOPNOTSUPP)
1385 		ret = 0;
1386 	return ret;
1387 }
1388 
1389 /* Can return -ENOMEM */
1390 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1391 			 struct btrfs_ref *generic_ref)
1392 {
1393 	struct btrfs_fs_info *fs_info = trans->fs_info;
1394 	int ret;
1395 
1396 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1397 	       generic_ref->action);
1398 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1399 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1400 
1401 	if (generic_ref->type == BTRFS_REF_METADATA)
1402 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1403 	else
1404 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1405 
1406 	btrfs_ref_tree_mod(fs_info, generic_ref);
1407 
1408 	return ret;
1409 }
1410 
1411 /*
1412  * __btrfs_inc_extent_ref - insert backreference for a given extent
1413  *
1414  * The counterpart is in __btrfs_free_extent(), with examples and more details
1415  * how it works.
1416  *
1417  * @trans:	    Handle of transaction
1418  *
1419  * @node:	    The delayed ref node used to get the bytenr/length for
1420  *		    extent whose references are incremented.
1421  *
1422  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1423  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1424  *		    bytenr of the parent block. Since new extents are always
1425  *		    created with indirect references, this will only be the case
1426  *		    when relocating a shared extent. In that case, root_objectid
1427  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1428  *		    be 0
1429  *
1430  * @root_objectid:  The id of the root where this modification has originated,
1431  *		    this can be either one of the well-known metadata trees or
1432  *		    the subvolume id which references this extent.
1433  *
1434  * @owner:	    For data extents it is the inode number of the owning file.
1435  *		    For metadata extents this parameter holds the level in the
1436  *		    tree of the extent.
1437  *
1438  * @offset:	    For metadata extents the offset is ignored and is currently
1439  *		    always passed as 0. For data extents it is the fileoffset
1440  *		    this extent belongs to.
1441  *
1442  * @refs_to_add     Number of references to add
1443  *
1444  * @extent_op       Pointer to a structure, holding information necessary when
1445  *                  updating a tree block's flags
1446  *
1447  */
1448 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1449 				  struct btrfs_delayed_ref_node *node,
1450 				  u64 parent, u64 root_objectid,
1451 				  u64 owner, u64 offset, int refs_to_add,
1452 				  struct btrfs_delayed_extent_op *extent_op)
1453 {
1454 	struct btrfs_path *path;
1455 	struct extent_buffer *leaf;
1456 	struct btrfs_extent_item *item;
1457 	struct btrfs_key key;
1458 	u64 bytenr = node->bytenr;
1459 	u64 num_bytes = node->num_bytes;
1460 	u64 refs;
1461 	int ret;
1462 
1463 	path = btrfs_alloc_path();
1464 	if (!path)
1465 		return -ENOMEM;
1466 
1467 	/* this will setup the path even if it fails to insert the back ref */
1468 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1469 					   parent, root_objectid, owner,
1470 					   offset, refs_to_add, extent_op);
1471 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1472 		goto out;
1473 
1474 	/*
1475 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1476 	 * inline extent ref, so just update the reference count and add a
1477 	 * normal backref.
1478 	 */
1479 	leaf = path->nodes[0];
1480 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1481 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1482 	refs = btrfs_extent_refs(leaf, item);
1483 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1484 	if (extent_op)
1485 		__run_delayed_extent_op(extent_op, leaf, item);
1486 
1487 	btrfs_mark_buffer_dirty(leaf);
1488 	btrfs_release_path(path);
1489 
1490 	/* now insert the actual backref */
1491 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1492 		BUG_ON(refs_to_add != 1);
1493 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1494 					    root_objectid);
1495 	} else {
1496 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1497 					     root_objectid, owner, offset,
1498 					     refs_to_add);
1499 	}
1500 	if (ret)
1501 		btrfs_abort_transaction(trans, ret);
1502 out:
1503 	btrfs_free_path(path);
1504 	return ret;
1505 }
1506 
1507 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1508 				struct btrfs_delayed_ref_node *node,
1509 				struct btrfs_delayed_extent_op *extent_op,
1510 				int insert_reserved)
1511 {
1512 	int ret = 0;
1513 	struct btrfs_delayed_data_ref *ref;
1514 	struct btrfs_key ins;
1515 	u64 parent = 0;
1516 	u64 ref_root = 0;
1517 	u64 flags = 0;
1518 
1519 	ins.objectid = node->bytenr;
1520 	ins.offset = node->num_bytes;
1521 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1522 
1523 	ref = btrfs_delayed_node_to_data_ref(node);
1524 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1525 
1526 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1527 		parent = ref->parent;
1528 	ref_root = ref->root;
1529 
1530 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1531 		if (extent_op)
1532 			flags |= extent_op->flags_to_set;
1533 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1534 						 flags, ref->objectid,
1535 						 ref->offset, &ins,
1536 						 node->ref_mod);
1537 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1538 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1539 					     ref->objectid, ref->offset,
1540 					     node->ref_mod, extent_op);
1541 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1542 		ret = __btrfs_free_extent(trans, node, parent,
1543 					  ref_root, ref->objectid,
1544 					  ref->offset, node->ref_mod,
1545 					  extent_op);
1546 	} else {
1547 		BUG();
1548 	}
1549 	return ret;
1550 }
1551 
1552 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1553 				    struct extent_buffer *leaf,
1554 				    struct btrfs_extent_item *ei)
1555 {
1556 	u64 flags = btrfs_extent_flags(leaf, ei);
1557 	if (extent_op->update_flags) {
1558 		flags |= extent_op->flags_to_set;
1559 		btrfs_set_extent_flags(leaf, ei, flags);
1560 	}
1561 
1562 	if (extent_op->update_key) {
1563 		struct btrfs_tree_block_info *bi;
1564 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1565 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1566 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1567 	}
1568 }
1569 
1570 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1571 				 struct btrfs_delayed_ref_head *head,
1572 				 struct btrfs_delayed_extent_op *extent_op)
1573 {
1574 	struct btrfs_fs_info *fs_info = trans->fs_info;
1575 	struct btrfs_key key;
1576 	struct btrfs_path *path;
1577 	struct btrfs_extent_item *ei;
1578 	struct extent_buffer *leaf;
1579 	u32 item_size;
1580 	int ret;
1581 	int err = 0;
1582 	int metadata = !extent_op->is_data;
1583 
1584 	if (TRANS_ABORTED(trans))
1585 		return 0;
1586 
1587 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1588 		metadata = 0;
1589 
1590 	path = btrfs_alloc_path();
1591 	if (!path)
1592 		return -ENOMEM;
1593 
1594 	key.objectid = head->bytenr;
1595 
1596 	if (metadata) {
1597 		key.type = BTRFS_METADATA_ITEM_KEY;
1598 		key.offset = extent_op->level;
1599 	} else {
1600 		key.type = BTRFS_EXTENT_ITEM_KEY;
1601 		key.offset = head->num_bytes;
1602 	}
1603 
1604 again:
1605 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1606 	if (ret < 0) {
1607 		err = ret;
1608 		goto out;
1609 	}
1610 	if (ret > 0) {
1611 		if (metadata) {
1612 			if (path->slots[0] > 0) {
1613 				path->slots[0]--;
1614 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1615 						      path->slots[0]);
1616 				if (key.objectid == head->bytenr &&
1617 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1618 				    key.offset == head->num_bytes)
1619 					ret = 0;
1620 			}
1621 			if (ret > 0) {
1622 				btrfs_release_path(path);
1623 				metadata = 0;
1624 
1625 				key.objectid = head->bytenr;
1626 				key.offset = head->num_bytes;
1627 				key.type = BTRFS_EXTENT_ITEM_KEY;
1628 				goto again;
1629 			}
1630 		} else {
1631 			err = -EIO;
1632 			goto out;
1633 		}
1634 	}
1635 
1636 	leaf = path->nodes[0];
1637 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1638 
1639 	if (unlikely(item_size < sizeof(*ei))) {
1640 		err = -EINVAL;
1641 		btrfs_print_v0_err(fs_info);
1642 		btrfs_abort_transaction(trans, err);
1643 		goto out;
1644 	}
1645 
1646 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 	__run_delayed_extent_op(extent_op, leaf, ei);
1648 
1649 	btrfs_mark_buffer_dirty(leaf);
1650 out:
1651 	btrfs_free_path(path);
1652 	return err;
1653 }
1654 
1655 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1656 				struct btrfs_delayed_ref_node *node,
1657 				struct btrfs_delayed_extent_op *extent_op,
1658 				int insert_reserved)
1659 {
1660 	int ret = 0;
1661 	struct btrfs_delayed_tree_ref *ref;
1662 	u64 parent = 0;
1663 	u64 ref_root = 0;
1664 
1665 	ref = btrfs_delayed_node_to_tree_ref(node);
1666 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1667 
1668 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1669 		parent = ref->parent;
1670 	ref_root = ref->root;
1671 
1672 	if (node->ref_mod != 1) {
1673 		btrfs_err(trans->fs_info,
1674 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1675 			  node->bytenr, node->ref_mod, node->action, ref_root,
1676 			  parent);
1677 		return -EIO;
1678 	}
1679 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1680 		BUG_ON(!extent_op || !extent_op->update_flags);
1681 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1682 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1683 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1684 					     ref->level, 0, 1, extent_op);
1685 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1686 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1687 					  ref->level, 0, 1, extent_op);
1688 	} else {
1689 		BUG();
1690 	}
1691 	return ret;
1692 }
1693 
1694 /* helper function to actually process a single delayed ref entry */
1695 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1696 			       struct btrfs_delayed_ref_node *node,
1697 			       struct btrfs_delayed_extent_op *extent_op,
1698 			       int insert_reserved)
1699 {
1700 	int ret = 0;
1701 
1702 	if (TRANS_ABORTED(trans)) {
1703 		if (insert_reserved)
1704 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1705 		return 0;
1706 	}
1707 
1708 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1709 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1710 		ret = run_delayed_tree_ref(trans, node, extent_op,
1711 					   insert_reserved);
1712 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1713 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1714 		ret = run_delayed_data_ref(trans, node, extent_op,
1715 					   insert_reserved);
1716 	else
1717 		BUG();
1718 	if (ret && insert_reserved)
1719 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1720 	return ret;
1721 }
1722 
1723 static inline struct btrfs_delayed_ref_node *
1724 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1725 {
1726 	struct btrfs_delayed_ref_node *ref;
1727 
1728 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1729 		return NULL;
1730 
1731 	/*
1732 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1733 	 * This is to prevent a ref count from going down to zero, which deletes
1734 	 * the extent item from the extent tree, when there still are references
1735 	 * to add, which would fail because they would not find the extent item.
1736 	 */
1737 	if (!list_empty(&head->ref_add_list))
1738 		return list_first_entry(&head->ref_add_list,
1739 				struct btrfs_delayed_ref_node, add_list);
1740 
1741 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1742 		       struct btrfs_delayed_ref_node, ref_node);
1743 	ASSERT(list_empty(&ref->add_list));
1744 	return ref;
1745 }
1746 
1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1748 				      struct btrfs_delayed_ref_head *head)
1749 {
1750 	spin_lock(&delayed_refs->lock);
1751 	head->processing = 0;
1752 	delayed_refs->num_heads_ready++;
1753 	spin_unlock(&delayed_refs->lock);
1754 	btrfs_delayed_ref_unlock(head);
1755 }
1756 
1757 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1758 				struct btrfs_delayed_ref_head *head)
1759 {
1760 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1761 
1762 	if (!extent_op)
1763 		return NULL;
1764 
1765 	if (head->must_insert_reserved) {
1766 		head->extent_op = NULL;
1767 		btrfs_free_delayed_extent_op(extent_op);
1768 		return NULL;
1769 	}
1770 	return extent_op;
1771 }
1772 
1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1774 				     struct btrfs_delayed_ref_head *head)
1775 {
1776 	struct btrfs_delayed_extent_op *extent_op;
1777 	int ret;
1778 
1779 	extent_op = cleanup_extent_op(head);
1780 	if (!extent_op)
1781 		return 0;
1782 	head->extent_op = NULL;
1783 	spin_unlock(&head->lock);
1784 	ret = run_delayed_extent_op(trans, head, extent_op);
1785 	btrfs_free_delayed_extent_op(extent_op);
1786 	return ret ? ret : 1;
1787 }
1788 
1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1790 				  struct btrfs_delayed_ref_root *delayed_refs,
1791 				  struct btrfs_delayed_ref_head *head)
1792 {
1793 	int nr_items = 1;	/* Dropping this ref head update. */
1794 
1795 	/*
1796 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1797 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1798 	 */
1799 	if (head->total_ref_mod < 0 && head->is_data) {
1800 		spin_lock(&delayed_refs->lock);
1801 		delayed_refs->pending_csums -= head->num_bytes;
1802 		spin_unlock(&delayed_refs->lock);
1803 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1804 	}
1805 
1806 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1807 }
1808 
1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1810 			    struct btrfs_delayed_ref_head *head)
1811 {
1812 
1813 	struct btrfs_fs_info *fs_info = trans->fs_info;
1814 	struct btrfs_delayed_ref_root *delayed_refs;
1815 	int ret;
1816 
1817 	delayed_refs = &trans->transaction->delayed_refs;
1818 
1819 	ret = run_and_cleanup_extent_op(trans, head);
1820 	if (ret < 0) {
1821 		unselect_delayed_ref_head(delayed_refs, head);
1822 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1823 		return ret;
1824 	} else if (ret) {
1825 		return ret;
1826 	}
1827 
1828 	/*
1829 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1830 	 * and then re-check to make sure nobody got added.
1831 	 */
1832 	spin_unlock(&head->lock);
1833 	spin_lock(&delayed_refs->lock);
1834 	spin_lock(&head->lock);
1835 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1836 		spin_unlock(&head->lock);
1837 		spin_unlock(&delayed_refs->lock);
1838 		return 1;
1839 	}
1840 	btrfs_delete_ref_head(delayed_refs, head);
1841 	spin_unlock(&head->lock);
1842 	spin_unlock(&delayed_refs->lock);
1843 
1844 	if (head->must_insert_reserved) {
1845 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1846 		if (head->is_data) {
1847 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1848 					      head->bytenr, head->num_bytes);
1849 		}
1850 	}
1851 
1852 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1853 
1854 	trace_run_delayed_ref_head(fs_info, head, 0);
1855 	btrfs_delayed_ref_unlock(head);
1856 	btrfs_put_delayed_ref_head(head);
1857 	return ret;
1858 }
1859 
1860 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1861 					struct btrfs_trans_handle *trans)
1862 {
1863 	struct btrfs_delayed_ref_root *delayed_refs =
1864 		&trans->transaction->delayed_refs;
1865 	struct btrfs_delayed_ref_head *head = NULL;
1866 	int ret;
1867 
1868 	spin_lock(&delayed_refs->lock);
1869 	head = btrfs_select_ref_head(delayed_refs);
1870 	if (!head) {
1871 		spin_unlock(&delayed_refs->lock);
1872 		return head;
1873 	}
1874 
1875 	/*
1876 	 * Grab the lock that says we are going to process all the refs for
1877 	 * this head
1878 	 */
1879 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1880 	spin_unlock(&delayed_refs->lock);
1881 
1882 	/*
1883 	 * We may have dropped the spin lock to get the head mutex lock, and
1884 	 * that might have given someone else time to free the head.  If that's
1885 	 * true, it has been removed from our list and we can move on.
1886 	 */
1887 	if (ret == -EAGAIN)
1888 		head = ERR_PTR(-EAGAIN);
1889 
1890 	return head;
1891 }
1892 
1893 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1894 				    struct btrfs_delayed_ref_head *locked_ref,
1895 				    unsigned long *run_refs)
1896 {
1897 	struct btrfs_fs_info *fs_info = trans->fs_info;
1898 	struct btrfs_delayed_ref_root *delayed_refs;
1899 	struct btrfs_delayed_extent_op *extent_op;
1900 	struct btrfs_delayed_ref_node *ref;
1901 	int must_insert_reserved = 0;
1902 	int ret;
1903 
1904 	delayed_refs = &trans->transaction->delayed_refs;
1905 
1906 	lockdep_assert_held(&locked_ref->mutex);
1907 	lockdep_assert_held(&locked_ref->lock);
1908 
1909 	while ((ref = select_delayed_ref(locked_ref))) {
1910 		if (ref->seq &&
1911 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1912 			spin_unlock(&locked_ref->lock);
1913 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1914 			return -EAGAIN;
1915 		}
1916 
1917 		(*run_refs)++;
1918 		ref->in_tree = 0;
1919 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1920 		RB_CLEAR_NODE(&ref->ref_node);
1921 		if (!list_empty(&ref->add_list))
1922 			list_del(&ref->add_list);
1923 		/*
1924 		 * When we play the delayed ref, also correct the ref_mod on
1925 		 * head
1926 		 */
1927 		switch (ref->action) {
1928 		case BTRFS_ADD_DELAYED_REF:
1929 		case BTRFS_ADD_DELAYED_EXTENT:
1930 			locked_ref->ref_mod -= ref->ref_mod;
1931 			break;
1932 		case BTRFS_DROP_DELAYED_REF:
1933 			locked_ref->ref_mod += ref->ref_mod;
1934 			break;
1935 		default:
1936 			WARN_ON(1);
1937 		}
1938 		atomic_dec(&delayed_refs->num_entries);
1939 
1940 		/*
1941 		 * Record the must_insert_reserved flag before we drop the
1942 		 * spin lock.
1943 		 */
1944 		must_insert_reserved = locked_ref->must_insert_reserved;
1945 		locked_ref->must_insert_reserved = 0;
1946 
1947 		extent_op = locked_ref->extent_op;
1948 		locked_ref->extent_op = NULL;
1949 		spin_unlock(&locked_ref->lock);
1950 
1951 		ret = run_one_delayed_ref(trans, ref, extent_op,
1952 					  must_insert_reserved);
1953 
1954 		btrfs_free_delayed_extent_op(extent_op);
1955 		if (ret) {
1956 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1957 			btrfs_put_delayed_ref(ref);
1958 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1959 				    ret);
1960 			return ret;
1961 		}
1962 
1963 		btrfs_put_delayed_ref(ref);
1964 		cond_resched();
1965 
1966 		spin_lock(&locked_ref->lock);
1967 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 /*
1974  * Returns 0 on success or if called with an already aborted transaction.
1975  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1976  */
1977 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1978 					     unsigned long nr)
1979 {
1980 	struct btrfs_fs_info *fs_info = trans->fs_info;
1981 	struct btrfs_delayed_ref_root *delayed_refs;
1982 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1983 	ktime_t start = ktime_get();
1984 	int ret;
1985 	unsigned long count = 0;
1986 	unsigned long actual_count = 0;
1987 
1988 	delayed_refs = &trans->transaction->delayed_refs;
1989 	do {
1990 		if (!locked_ref) {
1991 			locked_ref = btrfs_obtain_ref_head(trans);
1992 			if (IS_ERR_OR_NULL(locked_ref)) {
1993 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1994 					continue;
1995 				} else {
1996 					break;
1997 				}
1998 			}
1999 			count++;
2000 		}
2001 		/*
2002 		 * We need to try and merge add/drops of the same ref since we
2003 		 * can run into issues with relocate dropping the implicit ref
2004 		 * and then it being added back again before the drop can
2005 		 * finish.  If we merged anything we need to re-loop so we can
2006 		 * get a good ref.
2007 		 * Or we can get node references of the same type that weren't
2008 		 * merged when created due to bumps in the tree mod seq, and
2009 		 * we need to merge them to prevent adding an inline extent
2010 		 * backref before dropping it (triggering a BUG_ON at
2011 		 * insert_inline_extent_backref()).
2012 		 */
2013 		spin_lock(&locked_ref->lock);
2014 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2015 
2016 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2017 						      &actual_count);
2018 		if (ret < 0 && ret != -EAGAIN) {
2019 			/*
2020 			 * Error, btrfs_run_delayed_refs_for_head already
2021 			 * unlocked everything so just bail out
2022 			 */
2023 			return ret;
2024 		} else if (!ret) {
2025 			/*
2026 			 * Success, perform the usual cleanup of a processed
2027 			 * head
2028 			 */
2029 			ret = cleanup_ref_head(trans, locked_ref);
2030 			if (ret > 0 ) {
2031 				/* We dropped our lock, we need to loop. */
2032 				ret = 0;
2033 				continue;
2034 			} else if (ret) {
2035 				return ret;
2036 			}
2037 		}
2038 
2039 		/*
2040 		 * Either success case or btrfs_run_delayed_refs_for_head
2041 		 * returned -EAGAIN, meaning we need to select another head
2042 		 */
2043 
2044 		locked_ref = NULL;
2045 		cond_resched();
2046 	} while ((nr != -1 && count < nr) || locked_ref);
2047 
2048 	/*
2049 	 * We don't want to include ref heads since we can have empty ref heads
2050 	 * and those will drastically skew our runtime down since we just do
2051 	 * accounting, no actual extent tree updates.
2052 	 */
2053 	if (actual_count > 0) {
2054 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2055 		u64 avg;
2056 
2057 		/*
2058 		 * We weigh the current average higher than our current runtime
2059 		 * to avoid large swings in the average.
2060 		 */
2061 		spin_lock(&delayed_refs->lock);
2062 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2063 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2064 		spin_unlock(&delayed_refs->lock);
2065 	}
2066 	return 0;
2067 }
2068 
2069 #ifdef SCRAMBLE_DELAYED_REFS
2070 /*
2071  * Normally delayed refs get processed in ascending bytenr order. This
2072  * correlates in most cases to the order added. To expose dependencies on this
2073  * order, we start to process the tree in the middle instead of the beginning
2074  */
2075 static u64 find_middle(struct rb_root *root)
2076 {
2077 	struct rb_node *n = root->rb_node;
2078 	struct btrfs_delayed_ref_node *entry;
2079 	int alt = 1;
2080 	u64 middle;
2081 	u64 first = 0, last = 0;
2082 
2083 	n = rb_first(root);
2084 	if (n) {
2085 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2086 		first = entry->bytenr;
2087 	}
2088 	n = rb_last(root);
2089 	if (n) {
2090 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2091 		last = entry->bytenr;
2092 	}
2093 	n = root->rb_node;
2094 
2095 	while (n) {
2096 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2097 		WARN_ON(!entry->in_tree);
2098 
2099 		middle = entry->bytenr;
2100 
2101 		if (alt)
2102 			n = n->rb_left;
2103 		else
2104 			n = n->rb_right;
2105 
2106 		alt = 1 - alt;
2107 	}
2108 	return middle;
2109 }
2110 #endif
2111 
2112 /*
2113  * this starts processing the delayed reference count updates and
2114  * extent insertions we have queued up so far.  count can be
2115  * 0, which means to process everything in the tree at the start
2116  * of the run (but not newly added entries), or it can be some target
2117  * number you'd like to process.
2118  *
2119  * Returns 0 on success or if called with an aborted transaction
2120  * Returns <0 on error and aborts the transaction
2121  */
2122 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2123 			   unsigned long count)
2124 {
2125 	struct btrfs_fs_info *fs_info = trans->fs_info;
2126 	struct rb_node *node;
2127 	struct btrfs_delayed_ref_root *delayed_refs;
2128 	struct btrfs_delayed_ref_head *head;
2129 	int ret;
2130 	int run_all = count == (unsigned long)-1;
2131 
2132 	/* We'll clean this up in btrfs_cleanup_transaction */
2133 	if (TRANS_ABORTED(trans))
2134 		return 0;
2135 
2136 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2137 		return 0;
2138 
2139 	delayed_refs = &trans->transaction->delayed_refs;
2140 	if (count == 0)
2141 		count = delayed_refs->num_heads_ready;
2142 
2143 again:
2144 #ifdef SCRAMBLE_DELAYED_REFS
2145 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2146 #endif
2147 	ret = __btrfs_run_delayed_refs(trans, count);
2148 	if (ret < 0) {
2149 		btrfs_abort_transaction(trans, ret);
2150 		return ret;
2151 	}
2152 
2153 	if (run_all) {
2154 		btrfs_create_pending_block_groups(trans);
2155 
2156 		spin_lock(&delayed_refs->lock);
2157 		node = rb_first_cached(&delayed_refs->href_root);
2158 		if (!node) {
2159 			spin_unlock(&delayed_refs->lock);
2160 			goto out;
2161 		}
2162 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2163 				href_node);
2164 		refcount_inc(&head->refs);
2165 		spin_unlock(&delayed_refs->lock);
2166 
2167 		/* Mutex was contended, block until it's released and retry. */
2168 		mutex_lock(&head->mutex);
2169 		mutex_unlock(&head->mutex);
2170 
2171 		btrfs_put_delayed_ref_head(head);
2172 		cond_resched();
2173 		goto again;
2174 	}
2175 out:
2176 	return 0;
2177 }
2178 
2179 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2180 				struct extent_buffer *eb, u64 flags,
2181 				int level, int is_data)
2182 {
2183 	struct btrfs_delayed_extent_op *extent_op;
2184 	int ret;
2185 
2186 	extent_op = btrfs_alloc_delayed_extent_op();
2187 	if (!extent_op)
2188 		return -ENOMEM;
2189 
2190 	extent_op->flags_to_set = flags;
2191 	extent_op->update_flags = true;
2192 	extent_op->update_key = false;
2193 	extent_op->is_data = is_data ? true : false;
2194 	extent_op->level = level;
2195 
2196 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2197 	if (ret)
2198 		btrfs_free_delayed_extent_op(extent_op);
2199 	return ret;
2200 }
2201 
2202 static noinline int check_delayed_ref(struct btrfs_root *root,
2203 				      struct btrfs_path *path,
2204 				      u64 objectid, u64 offset, u64 bytenr)
2205 {
2206 	struct btrfs_delayed_ref_head *head;
2207 	struct btrfs_delayed_ref_node *ref;
2208 	struct btrfs_delayed_data_ref *data_ref;
2209 	struct btrfs_delayed_ref_root *delayed_refs;
2210 	struct btrfs_transaction *cur_trans;
2211 	struct rb_node *node;
2212 	int ret = 0;
2213 
2214 	spin_lock(&root->fs_info->trans_lock);
2215 	cur_trans = root->fs_info->running_transaction;
2216 	if (cur_trans)
2217 		refcount_inc(&cur_trans->use_count);
2218 	spin_unlock(&root->fs_info->trans_lock);
2219 	if (!cur_trans)
2220 		return 0;
2221 
2222 	delayed_refs = &cur_trans->delayed_refs;
2223 	spin_lock(&delayed_refs->lock);
2224 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2225 	if (!head) {
2226 		spin_unlock(&delayed_refs->lock);
2227 		btrfs_put_transaction(cur_trans);
2228 		return 0;
2229 	}
2230 
2231 	if (!mutex_trylock(&head->mutex)) {
2232 		refcount_inc(&head->refs);
2233 		spin_unlock(&delayed_refs->lock);
2234 
2235 		btrfs_release_path(path);
2236 
2237 		/*
2238 		 * Mutex was contended, block until it's released and let
2239 		 * caller try again
2240 		 */
2241 		mutex_lock(&head->mutex);
2242 		mutex_unlock(&head->mutex);
2243 		btrfs_put_delayed_ref_head(head);
2244 		btrfs_put_transaction(cur_trans);
2245 		return -EAGAIN;
2246 	}
2247 	spin_unlock(&delayed_refs->lock);
2248 
2249 	spin_lock(&head->lock);
2250 	/*
2251 	 * XXX: We should replace this with a proper search function in the
2252 	 * future.
2253 	 */
2254 	for (node = rb_first_cached(&head->ref_tree); node;
2255 	     node = rb_next(node)) {
2256 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2257 		/* If it's a shared ref we know a cross reference exists */
2258 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2259 			ret = 1;
2260 			break;
2261 		}
2262 
2263 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2264 
2265 		/*
2266 		 * If our ref doesn't match the one we're currently looking at
2267 		 * then we have a cross reference.
2268 		 */
2269 		if (data_ref->root != root->root_key.objectid ||
2270 		    data_ref->objectid != objectid ||
2271 		    data_ref->offset != offset) {
2272 			ret = 1;
2273 			break;
2274 		}
2275 	}
2276 	spin_unlock(&head->lock);
2277 	mutex_unlock(&head->mutex);
2278 	btrfs_put_transaction(cur_trans);
2279 	return ret;
2280 }
2281 
2282 static noinline int check_committed_ref(struct btrfs_root *root,
2283 					struct btrfs_path *path,
2284 					u64 objectid, u64 offset, u64 bytenr,
2285 					bool strict)
2286 {
2287 	struct btrfs_fs_info *fs_info = root->fs_info;
2288 	struct btrfs_root *extent_root = fs_info->extent_root;
2289 	struct extent_buffer *leaf;
2290 	struct btrfs_extent_data_ref *ref;
2291 	struct btrfs_extent_inline_ref *iref;
2292 	struct btrfs_extent_item *ei;
2293 	struct btrfs_key key;
2294 	u32 item_size;
2295 	int type;
2296 	int ret;
2297 
2298 	key.objectid = bytenr;
2299 	key.offset = (u64)-1;
2300 	key.type = BTRFS_EXTENT_ITEM_KEY;
2301 
2302 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2303 	if (ret < 0)
2304 		goto out;
2305 	BUG_ON(ret == 0); /* Corruption */
2306 
2307 	ret = -ENOENT;
2308 	if (path->slots[0] == 0)
2309 		goto out;
2310 
2311 	path->slots[0]--;
2312 	leaf = path->nodes[0];
2313 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2314 
2315 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2316 		goto out;
2317 
2318 	ret = 1;
2319 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2320 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2321 
2322 	/* If extent item has more than 1 inline ref then it's shared */
2323 	if (item_size != sizeof(*ei) +
2324 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2325 		goto out;
2326 
2327 	/*
2328 	 * If extent created before last snapshot => it's shared unless the
2329 	 * snapshot has been deleted. Use the heuristic if strict is false.
2330 	 */
2331 	if (!strict &&
2332 	    (btrfs_extent_generation(leaf, ei) <=
2333 	     btrfs_root_last_snapshot(&root->root_item)))
2334 		goto out;
2335 
2336 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2337 
2338 	/* If this extent has SHARED_DATA_REF then it's shared */
2339 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2340 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2341 		goto out;
2342 
2343 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2344 	if (btrfs_extent_refs(leaf, ei) !=
2345 	    btrfs_extent_data_ref_count(leaf, ref) ||
2346 	    btrfs_extent_data_ref_root(leaf, ref) !=
2347 	    root->root_key.objectid ||
2348 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2349 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2350 		goto out;
2351 
2352 	ret = 0;
2353 out:
2354 	return ret;
2355 }
2356 
2357 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2358 			  u64 bytenr, bool strict)
2359 {
2360 	struct btrfs_path *path;
2361 	int ret;
2362 
2363 	path = btrfs_alloc_path();
2364 	if (!path)
2365 		return -ENOMEM;
2366 
2367 	do {
2368 		ret = check_committed_ref(root, path, objectid,
2369 					  offset, bytenr, strict);
2370 		if (ret && ret != -ENOENT)
2371 			goto out;
2372 
2373 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2374 	} while (ret == -EAGAIN);
2375 
2376 out:
2377 	btrfs_free_path(path);
2378 	if (btrfs_is_data_reloc_root(root))
2379 		WARN_ON(ret > 0);
2380 	return ret;
2381 }
2382 
2383 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2384 			   struct btrfs_root *root,
2385 			   struct extent_buffer *buf,
2386 			   int full_backref, int inc)
2387 {
2388 	struct btrfs_fs_info *fs_info = root->fs_info;
2389 	u64 bytenr;
2390 	u64 num_bytes;
2391 	u64 parent;
2392 	u64 ref_root;
2393 	u32 nritems;
2394 	struct btrfs_key key;
2395 	struct btrfs_file_extent_item *fi;
2396 	struct btrfs_ref generic_ref = { 0 };
2397 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2398 	int i;
2399 	int action;
2400 	int level;
2401 	int ret = 0;
2402 
2403 	if (btrfs_is_testing(fs_info))
2404 		return 0;
2405 
2406 	ref_root = btrfs_header_owner(buf);
2407 	nritems = btrfs_header_nritems(buf);
2408 	level = btrfs_header_level(buf);
2409 
2410 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2411 		return 0;
2412 
2413 	if (full_backref)
2414 		parent = buf->start;
2415 	else
2416 		parent = 0;
2417 	if (inc)
2418 		action = BTRFS_ADD_DELAYED_REF;
2419 	else
2420 		action = BTRFS_DROP_DELAYED_REF;
2421 
2422 	for (i = 0; i < nritems; i++) {
2423 		if (level == 0) {
2424 			btrfs_item_key_to_cpu(buf, &key, i);
2425 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2426 				continue;
2427 			fi = btrfs_item_ptr(buf, i,
2428 					    struct btrfs_file_extent_item);
2429 			if (btrfs_file_extent_type(buf, fi) ==
2430 			    BTRFS_FILE_EXTENT_INLINE)
2431 				continue;
2432 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2433 			if (bytenr == 0)
2434 				continue;
2435 
2436 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2437 			key.offset -= btrfs_file_extent_offset(buf, fi);
2438 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2439 					       num_bytes, parent);
2440 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2441 					    key.offset, root->root_key.objectid,
2442 					    for_reloc);
2443 			if (inc)
2444 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2445 			else
2446 				ret = btrfs_free_extent(trans, &generic_ref);
2447 			if (ret)
2448 				goto fail;
2449 		} else {
2450 			bytenr = btrfs_node_blockptr(buf, i);
2451 			num_bytes = fs_info->nodesize;
2452 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2453 					       num_bytes, parent);
2454 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2455 					    root->root_key.objectid, for_reloc);
2456 			if (inc)
2457 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2458 			else
2459 				ret = btrfs_free_extent(trans, &generic_ref);
2460 			if (ret)
2461 				goto fail;
2462 		}
2463 	}
2464 	return 0;
2465 fail:
2466 	return ret;
2467 }
2468 
2469 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2470 		  struct extent_buffer *buf, int full_backref)
2471 {
2472 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2473 }
2474 
2475 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2476 		  struct extent_buffer *buf, int full_backref)
2477 {
2478 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2479 }
2480 
2481 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2482 {
2483 	struct btrfs_fs_info *fs_info = root->fs_info;
2484 	u64 flags;
2485 	u64 ret;
2486 
2487 	if (data)
2488 		flags = BTRFS_BLOCK_GROUP_DATA;
2489 	else if (root == fs_info->chunk_root)
2490 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2491 	else
2492 		flags = BTRFS_BLOCK_GROUP_METADATA;
2493 
2494 	ret = btrfs_get_alloc_profile(fs_info, flags);
2495 	return ret;
2496 }
2497 
2498 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2499 {
2500 	struct btrfs_block_group *cache;
2501 	u64 bytenr;
2502 
2503 	spin_lock(&fs_info->block_group_cache_lock);
2504 	bytenr = fs_info->first_logical_byte;
2505 	spin_unlock(&fs_info->block_group_cache_lock);
2506 
2507 	if (bytenr < (u64)-1)
2508 		return bytenr;
2509 
2510 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2511 	if (!cache)
2512 		return 0;
2513 
2514 	bytenr = cache->start;
2515 	btrfs_put_block_group(cache);
2516 
2517 	return bytenr;
2518 }
2519 
2520 static int pin_down_extent(struct btrfs_trans_handle *trans,
2521 			   struct btrfs_block_group *cache,
2522 			   u64 bytenr, u64 num_bytes, int reserved)
2523 {
2524 	struct btrfs_fs_info *fs_info = cache->fs_info;
2525 
2526 	spin_lock(&cache->space_info->lock);
2527 	spin_lock(&cache->lock);
2528 	cache->pinned += num_bytes;
2529 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2530 					     num_bytes);
2531 	if (reserved) {
2532 		cache->reserved -= num_bytes;
2533 		cache->space_info->bytes_reserved -= num_bytes;
2534 	}
2535 	spin_unlock(&cache->lock);
2536 	spin_unlock(&cache->space_info->lock);
2537 
2538 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2539 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2540 	return 0;
2541 }
2542 
2543 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2544 		     u64 bytenr, u64 num_bytes, int reserved)
2545 {
2546 	struct btrfs_block_group *cache;
2547 
2548 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2549 	BUG_ON(!cache); /* Logic error */
2550 
2551 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2552 
2553 	btrfs_put_block_group(cache);
2554 	return 0;
2555 }
2556 
2557 /*
2558  * this function must be called within transaction
2559  */
2560 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2561 				    u64 bytenr, u64 num_bytes)
2562 {
2563 	struct btrfs_block_group *cache;
2564 	int ret;
2565 
2566 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2567 	if (!cache)
2568 		return -EINVAL;
2569 
2570 	/*
2571 	 * pull in the free space cache (if any) so that our pin
2572 	 * removes the free space from the cache.  We have load_only set
2573 	 * to one because the slow code to read in the free extents does check
2574 	 * the pinned extents.
2575 	 */
2576 	btrfs_cache_block_group(cache, 1);
2577 	/*
2578 	 * Make sure we wait until the cache is completely built in case it is
2579 	 * missing or is invalid and therefore needs to be rebuilt.
2580 	 */
2581 	ret = btrfs_wait_block_group_cache_done(cache);
2582 	if (ret)
2583 		goto out;
2584 
2585 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2586 
2587 	/* remove us from the free space cache (if we're there at all) */
2588 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2589 out:
2590 	btrfs_put_block_group(cache);
2591 	return ret;
2592 }
2593 
2594 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2595 				   u64 start, u64 num_bytes)
2596 {
2597 	int ret;
2598 	struct btrfs_block_group *block_group;
2599 
2600 	block_group = btrfs_lookup_block_group(fs_info, start);
2601 	if (!block_group)
2602 		return -EINVAL;
2603 
2604 	btrfs_cache_block_group(block_group, 1);
2605 	/*
2606 	 * Make sure we wait until the cache is completely built in case it is
2607 	 * missing or is invalid and therefore needs to be rebuilt.
2608 	 */
2609 	ret = btrfs_wait_block_group_cache_done(block_group);
2610 	if (ret)
2611 		goto out;
2612 
2613 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2614 out:
2615 	btrfs_put_block_group(block_group);
2616 	return ret;
2617 }
2618 
2619 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2620 {
2621 	struct btrfs_fs_info *fs_info = eb->fs_info;
2622 	struct btrfs_file_extent_item *item;
2623 	struct btrfs_key key;
2624 	int found_type;
2625 	int i;
2626 	int ret = 0;
2627 
2628 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2629 		return 0;
2630 
2631 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2632 		btrfs_item_key_to_cpu(eb, &key, i);
2633 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2634 			continue;
2635 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2636 		found_type = btrfs_file_extent_type(eb, item);
2637 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2638 			continue;
2639 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2640 			continue;
2641 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2642 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2643 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2644 		if (ret)
2645 			break;
2646 	}
2647 
2648 	return ret;
2649 }
2650 
2651 static void
2652 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2653 {
2654 	atomic_inc(&bg->reservations);
2655 }
2656 
2657 /*
2658  * Returns the free cluster for the given space info and sets empty_cluster to
2659  * what it should be based on the mount options.
2660  */
2661 static struct btrfs_free_cluster *
2662 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2663 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2664 {
2665 	struct btrfs_free_cluster *ret = NULL;
2666 
2667 	*empty_cluster = 0;
2668 	if (btrfs_mixed_space_info(space_info))
2669 		return ret;
2670 
2671 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2672 		ret = &fs_info->meta_alloc_cluster;
2673 		if (btrfs_test_opt(fs_info, SSD))
2674 			*empty_cluster = SZ_2M;
2675 		else
2676 			*empty_cluster = SZ_64K;
2677 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2678 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2679 		*empty_cluster = SZ_2M;
2680 		ret = &fs_info->data_alloc_cluster;
2681 	}
2682 
2683 	return ret;
2684 }
2685 
2686 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2687 			      u64 start, u64 end,
2688 			      const bool return_free_space)
2689 {
2690 	struct btrfs_block_group *cache = NULL;
2691 	struct btrfs_space_info *space_info;
2692 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2693 	struct btrfs_free_cluster *cluster = NULL;
2694 	u64 len;
2695 	u64 total_unpinned = 0;
2696 	u64 empty_cluster = 0;
2697 	bool readonly;
2698 
2699 	while (start <= end) {
2700 		readonly = false;
2701 		if (!cache ||
2702 		    start >= cache->start + cache->length) {
2703 			if (cache)
2704 				btrfs_put_block_group(cache);
2705 			total_unpinned = 0;
2706 			cache = btrfs_lookup_block_group(fs_info, start);
2707 			BUG_ON(!cache); /* Logic error */
2708 
2709 			cluster = fetch_cluster_info(fs_info,
2710 						     cache->space_info,
2711 						     &empty_cluster);
2712 			empty_cluster <<= 1;
2713 		}
2714 
2715 		len = cache->start + cache->length - start;
2716 		len = min(len, end + 1 - start);
2717 
2718 		down_read(&fs_info->commit_root_sem);
2719 		if (start < cache->last_byte_to_unpin && return_free_space) {
2720 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2721 
2722 			btrfs_add_free_space(cache, start, add_len);
2723 		}
2724 		up_read(&fs_info->commit_root_sem);
2725 
2726 		start += len;
2727 		total_unpinned += len;
2728 		space_info = cache->space_info;
2729 
2730 		/*
2731 		 * If this space cluster has been marked as fragmented and we've
2732 		 * unpinned enough in this block group to potentially allow a
2733 		 * cluster to be created inside of it go ahead and clear the
2734 		 * fragmented check.
2735 		 */
2736 		if (cluster && cluster->fragmented &&
2737 		    total_unpinned > empty_cluster) {
2738 			spin_lock(&cluster->lock);
2739 			cluster->fragmented = 0;
2740 			spin_unlock(&cluster->lock);
2741 		}
2742 
2743 		spin_lock(&space_info->lock);
2744 		spin_lock(&cache->lock);
2745 		cache->pinned -= len;
2746 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2747 		space_info->max_extent_size = 0;
2748 		if (cache->ro) {
2749 			space_info->bytes_readonly += len;
2750 			readonly = true;
2751 		} else if (btrfs_is_zoned(fs_info)) {
2752 			/* Need reset before reusing in a zoned block group */
2753 			space_info->bytes_zone_unusable += len;
2754 			readonly = true;
2755 		}
2756 		spin_unlock(&cache->lock);
2757 		if (!readonly && return_free_space &&
2758 		    global_rsv->space_info == space_info) {
2759 			u64 to_add = len;
2760 
2761 			spin_lock(&global_rsv->lock);
2762 			if (!global_rsv->full) {
2763 				to_add = min(len, global_rsv->size -
2764 					     global_rsv->reserved);
2765 				global_rsv->reserved += to_add;
2766 				btrfs_space_info_update_bytes_may_use(fs_info,
2767 						space_info, to_add);
2768 				if (global_rsv->reserved >= global_rsv->size)
2769 					global_rsv->full = 1;
2770 				len -= to_add;
2771 			}
2772 			spin_unlock(&global_rsv->lock);
2773 		}
2774 		/* Add to any tickets we may have */
2775 		if (!readonly && return_free_space && len)
2776 			btrfs_try_granting_tickets(fs_info, space_info);
2777 		spin_unlock(&space_info->lock);
2778 	}
2779 
2780 	if (cache)
2781 		btrfs_put_block_group(cache);
2782 	return 0;
2783 }
2784 
2785 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2786 {
2787 	struct btrfs_fs_info *fs_info = trans->fs_info;
2788 	struct btrfs_block_group *block_group, *tmp;
2789 	struct list_head *deleted_bgs;
2790 	struct extent_io_tree *unpin;
2791 	u64 start;
2792 	u64 end;
2793 	int ret;
2794 
2795 	unpin = &trans->transaction->pinned_extents;
2796 
2797 	while (!TRANS_ABORTED(trans)) {
2798 		struct extent_state *cached_state = NULL;
2799 
2800 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2801 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2802 					    EXTENT_DIRTY, &cached_state);
2803 		if (ret) {
2804 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2805 			break;
2806 		}
2807 
2808 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2809 			ret = btrfs_discard_extent(fs_info, start,
2810 						   end + 1 - start, NULL);
2811 
2812 		clear_extent_dirty(unpin, start, end, &cached_state);
2813 		unpin_extent_range(fs_info, start, end, true);
2814 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2815 		free_extent_state(cached_state);
2816 		cond_resched();
2817 	}
2818 
2819 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2820 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2821 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2822 	}
2823 
2824 	/*
2825 	 * Transaction is finished.  We don't need the lock anymore.  We
2826 	 * do need to clean up the block groups in case of a transaction
2827 	 * abort.
2828 	 */
2829 	deleted_bgs = &trans->transaction->deleted_bgs;
2830 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2831 		u64 trimmed = 0;
2832 
2833 		ret = -EROFS;
2834 		if (!TRANS_ABORTED(trans))
2835 			ret = btrfs_discard_extent(fs_info,
2836 						   block_group->start,
2837 						   block_group->length,
2838 						   &trimmed);
2839 
2840 		list_del_init(&block_group->bg_list);
2841 		btrfs_unfreeze_block_group(block_group);
2842 		btrfs_put_block_group(block_group);
2843 
2844 		if (ret) {
2845 			const char *errstr = btrfs_decode_error(ret);
2846 			btrfs_warn(fs_info,
2847 			   "discard failed while removing blockgroup: errno=%d %s",
2848 				   ret, errstr);
2849 		}
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 /*
2856  * Drop one or more refs of @node.
2857  *
2858  * 1. Locate the extent refs.
2859  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2860  *    Locate it, then reduce the refs number or remove the ref line completely.
2861  *
2862  * 2. Update the refs count in EXTENT/METADATA_ITEM
2863  *
2864  * Inline backref case:
2865  *
2866  * in extent tree we have:
2867  *
2868  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2869  *		refs 2 gen 6 flags DATA
2870  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2871  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2872  *
2873  * This function gets called with:
2874  *
2875  *    node->bytenr = 13631488
2876  *    node->num_bytes = 1048576
2877  *    root_objectid = FS_TREE
2878  *    owner_objectid = 257
2879  *    owner_offset = 0
2880  *    refs_to_drop = 1
2881  *
2882  * Then we should get some like:
2883  *
2884  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2885  *		refs 1 gen 6 flags DATA
2886  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2887  *
2888  * Keyed backref case:
2889  *
2890  * in extent tree we have:
2891  *
2892  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2893  *		refs 754 gen 6 flags DATA
2894  *	[...]
2895  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2896  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2897  *
2898  * This function get called with:
2899  *
2900  *    node->bytenr = 13631488
2901  *    node->num_bytes = 1048576
2902  *    root_objectid = FS_TREE
2903  *    owner_objectid = 866
2904  *    owner_offset = 0
2905  *    refs_to_drop = 1
2906  *
2907  * Then we should get some like:
2908  *
2909  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2910  *		refs 753 gen 6 flags DATA
2911  *
2912  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2913  */
2914 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2915 			       struct btrfs_delayed_ref_node *node, u64 parent,
2916 			       u64 root_objectid, u64 owner_objectid,
2917 			       u64 owner_offset, int refs_to_drop,
2918 			       struct btrfs_delayed_extent_op *extent_op)
2919 {
2920 	struct btrfs_fs_info *info = trans->fs_info;
2921 	struct btrfs_key key;
2922 	struct btrfs_path *path;
2923 	struct btrfs_root *extent_root = info->extent_root;
2924 	struct extent_buffer *leaf;
2925 	struct btrfs_extent_item *ei;
2926 	struct btrfs_extent_inline_ref *iref;
2927 	int ret;
2928 	int is_data;
2929 	int extent_slot = 0;
2930 	int found_extent = 0;
2931 	int num_to_del = 1;
2932 	u32 item_size;
2933 	u64 refs;
2934 	u64 bytenr = node->bytenr;
2935 	u64 num_bytes = node->num_bytes;
2936 	int last_ref = 0;
2937 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2938 
2939 	path = btrfs_alloc_path();
2940 	if (!path)
2941 		return -ENOMEM;
2942 
2943 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2944 
2945 	if (!is_data && refs_to_drop != 1) {
2946 		btrfs_crit(info,
2947 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2948 			   node->bytenr, refs_to_drop);
2949 		ret = -EINVAL;
2950 		btrfs_abort_transaction(trans, ret);
2951 		goto out;
2952 	}
2953 
2954 	if (is_data)
2955 		skinny_metadata = false;
2956 
2957 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2958 				    parent, root_objectid, owner_objectid,
2959 				    owner_offset);
2960 	if (ret == 0) {
2961 		/*
2962 		 * Either the inline backref or the SHARED_DATA_REF/
2963 		 * SHARED_BLOCK_REF is found
2964 		 *
2965 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2966 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2967 		 */
2968 		extent_slot = path->slots[0];
2969 		while (extent_slot >= 0) {
2970 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2971 					      extent_slot);
2972 			if (key.objectid != bytenr)
2973 				break;
2974 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2975 			    key.offset == num_bytes) {
2976 				found_extent = 1;
2977 				break;
2978 			}
2979 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2980 			    key.offset == owner_objectid) {
2981 				found_extent = 1;
2982 				break;
2983 			}
2984 
2985 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2986 			if (path->slots[0] - extent_slot > 5)
2987 				break;
2988 			extent_slot--;
2989 		}
2990 
2991 		if (!found_extent) {
2992 			if (iref) {
2993 				btrfs_crit(info,
2994 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
2995 				btrfs_abort_transaction(trans, -EUCLEAN);
2996 				goto err_dump;
2997 			}
2998 			/* Must be SHARED_* item, remove the backref first */
2999 			ret = remove_extent_backref(trans, path, NULL,
3000 						    refs_to_drop,
3001 						    is_data, &last_ref);
3002 			if (ret) {
3003 				btrfs_abort_transaction(trans, ret);
3004 				goto out;
3005 			}
3006 			btrfs_release_path(path);
3007 
3008 			/* Slow path to locate EXTENT/METADATA_ITEM */
3009 			key.objectid = bytenr;
3010 			key.type = BTRFS_EXTENT_ITEM_KEY;
3011 			key.offset = num_bytes;
3012 
3013 			if (!is_data && skinny_metadata) {
3014 				key.type = BTRFS_METADATA_ITEM_KEY;
3015 				key.offset = owner_objectid;
3016 			}
3017 
3018 			ret = btrfs_search_slot(trans, extent_root,
3019 						&key, path, -1, 1);
3020 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3021 				/*
3022 				 * Couldn't find our skinny metadata item,
3023 				 * see if we have ye olde extent item.
3024 				 */
3025 				path->slots[0]--;
3026 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3027 						      path->slots[0]);
3028 				if (key.objectid == bytenr &&
3029 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3030 				    key.offset == num_bytes)
3031 					ret = 0;
3032 			}
3033 
3034 			if (ret > 0 && skinny_metadata) {
3035 				skinny_metadata = false;
3036 				key.objectid = bytenr;
3037 				key.type = BTRFS_EXTENT_ITEM_KEY;
3038 				key.offset = num_bytes;
3039 				btrfs_release_path(path);
3040 				ret = btrfs_search_slot(trans, extent_root,
3041 							&key, path, -1, 1);
3042 			}
3043 
3044 			if (ret) {
3045 				btrfs_err(info,
3046 					  "umm, got %d back from search, was looking for %llu",
3047 					  ret, bytenr);
3048 				if (ret > 0)
3049 					btrfs_print_leaf(path->nodes[0]);
3050 			}
3051 			if (ret < 0) {
3052 				btrfs_abort_transaction(trans, ret);
3053 				goto out;
3054 			}
3055 			extent_slot = path->slots[0];
3056 		}
3057 	} else if (WARN_ON(ret == -ENOENT)) {
3058 		btrfs_print_leaf(path->nodes[0]);
3059 		btrfs_err(info,
3060 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3061 			bytenr, parent, root_objectid, owner_objectid,
3062 			owner_offset);
3063 		btrfs_abort_transaction(trans, ret);
3064 		goto out;
3065 	} else {
3066 		btrfs_abort_transaction(trans, ret);
3067 		goto out;
3068 	}
3069 
3070 	leaf = path->nodes[0];
3071 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3072 	if (unlikely(item_size < sizeof(*ei))) {
3073 		ret = -EINVAL;
3074 		btrfs_print_v0_err(info);
3075 		btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	}
3078 	ei = btrfs_item_ptr(leaf, extent_slot,
3079 			    struct btrfs_extent_item);
3080 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3081 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3082 		struct btrfs_tree_block_info *bi;
3083 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3084 			btrfs_crit(info,
3085 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3086 				   key.objectid, key.type, key.offset,
3087 				   owner_objectid, item_size,
3088 				   sizeof(*ei) + sizeof(*bi));
3089 			btrfs_abort_transaction(trans, -EUCLEAN);
3090 			goto err_dump;
3091 		}
3092 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3093 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3094 	}
3095 
3096 	refs = btrfs_extent_refs(leaf, ei);
3097 	if (refs < refs_to_drop) {
3098 		btrfs_crit(info,
3099 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3100 			  refs_to_drop, refs, bytenr);
3101 		btrfs_abort_transaction(trans, -EUCLEAN);
3102 		goto err_dump;
3103 	}
3104 	refs -= refs_to_drop;
3105 
3106 	if (refs > 0) {
3107 		if (extent_op)
3108 			__run_delayed_extent_op(extent_op, leaf, ei);
3109 		/*
3110 		 * In the case of inline back ref, reference count will
3111 		 * be updated by remove_extent_backref
3112 		 */
3113 		if (iref) {
3114 			if (!found_extent) {
3115 				btrfs_crit(info,
3116 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3117 				btrfs_abort_transaction(trans, -EUCLEAN);
3118 				goto err_dump;
3119 			}
3120 		} else {
3121 			btrfs_set_extent_refs(leaf, ei, refs);
3122 			btrfs_mark_buffer_dirty(leaf);
3123 		}
3124 		if (found_extent) {
3125 			ret = remove_extent_backref(trans, path, iref,
3126 						    refs_to_drop, is_data,
3127 						    &last_ref);
3128 			if (ret) {
3129 				btrfs_abort_transaction(trans, ret);
3130 				goto out;
3131 			}
3132 		}
3133 	} else {
3134 		/* In this branch refs == 1 */
3135 		if (found_extent) {
3136 			if (is_data && refs_to_drop !=
3137 			    extent_data_ref_count(path, iref)) {
3138 				btrfs_crit(info,
3139 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3140 					   extent_data_ref_count(path, iref),
3141 					   refs_to_drop);
3142 				btrfs_abort_transaction(trans, -EUCLEAN);
3143 				goto err_dump;
3144 			}
3145 			if (iref) {
3146 				if (path->slots[0] != extent_slot) {
3147 					btrfs_crit(info,
3148 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3149 						   key.objectid, key.type,
3150 						   key.offset);
3151 					btrfs_abort_transaction(trans, -EUCLEAN);
3152 					goto err_dump;
3153 				}
3154 			} else {
3155 				/*
3156 				 * No inline ref, we must be at SHARED_* item,
3157 				 * And it's single ref, it must be:
3158 				 * |	extent_slot	  ||extent_slot + 1|
3159 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3160 				 */
3161 				if (path->slots[0] != extent_slot + 1) {
3162 					btrfs_crit(info,
3163 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3164 					btrfs_abort_transaction(trans, -EUCLEAN);
3165 					goto err_dump;
3166 				}
3167 				path->slots[0] = extent_slot;
3168 				num_to_del = 2;
3169 			}
3170 		}
3171 
3172 		last_ref = 1;
3173 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3174 				      num_to_del);
3175 		if (ret) {
3176 			btrfs_abort_transaction(trans, ret);
3177 			goto out;
3178 		}
3179 		btrfs_release_path(path);
3180 
3181 		if (is_data) {
3182 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3183 					      num_bytes);
3184 			if (ret) {
3185 				btrfs_abort_transaction(trans, ret);
3186 				goto out;
3187 			}
3188 		}
3189 
3190 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3191 		if (ret) {
3192 			btrfs_abort_transaction(trans, ret);
3193 			goto out;
3194 		}
3195 
3196 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3197 		if (ret) {
3198 			btrfs_abort_transaction(trans, ret);
3199 			goto out;
3200 		}
3201 	}
3202 	btrfs_release_path(path);
3203 
3204 out:
3205 	btrfs_free_path(path);
3206 	return ret;
3207 err_dump:
3208 	/*
3209 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3210 	 * dump for debug build.
3211 	 */
3212 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3213 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3214 			   path->slots[0], extent_slot);
3215 		btrfs_print_leaf(path->nodes[0]);
3216 	}
3217 
3218 	btrfs_free_path(path);
3219 	return -EUCLEAN;
3220 }
3221 
3222 /*
3223  * when we free an block, it is possible (and likely) that we free the last
3224  * delayed ref for that extent as well.  This searches the delayed ref tree for
3225  * a given extent, and if there are no other delayed refs to be processed, it
3226  * removes it from the tree.
3227  */
3228 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3229 				      u64 bytenr)
3230 {
3231 	struct btrfs_delayed_ref_head *head;
3232 	struct btrfs_delayed_ref_root *delayed_refs;
3233 	int ret = 0;
3234 
3235 	delayed_refs = &trans->transaction->delayed_refs;
3236 	spin_lock(&delayed_refs->lock);
3237 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3238 	if (!head)
3239 		goto out_delayed_unlock;
3240 
3241 	spin_lock(&head->lock);
3242 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3243 		goto out;
3244 
3245 	if (cleanup_extent_op(head) != NULL)
3246 		goto out;
3247 
3248 	/*
3249 	 * waiting for the lock here would deadlock.  If someone else has it
3250 	 * locked they are already in the process of dropping it anyway
3251 	 */
3252 	if (!mutex_trylock(&head->mutex))
3253 		goto out;
3254 
3255 	btrfs_delete_ref_head(delayed_refs, head);
3256 	head->processing = 0;
3257 
3258 	spin_unlock(&head->lock);
3259 	spin_unlock(&delayed_refs->lock);
3260 
3261 	BUG_ON(head->extent_op);
3262 	if (head->must_insert_reserved)
3263 		ret = 1;
3264 
3265 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3266 	mutex_unlock(&head->mutex);
3267 	btrfs_put_delayed_ref_head(head);
3268 	return ret;
3269 out:
3270 	spin_unlock(&head->lock);
3271 
3272 out_delayed_unlock:
3273 	spin_unlock(&delayed_refs->lock);
3274 	return 0;
3275 }
3276 
3277 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3278 			   u64 root_id,
3279 			   struct extent_buffer *buf,
3280 			   u64 parent, int last_ref)
3281 {
3282 	struct btrfs_fs_info *fs_info = trans->fs_info;
3283 	struct btrfs_ref generic_ref = { 0 };
3284 	int ret;
3285 
3286 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3287 			       buf->start, buf->len, parent);
3288 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3289 			    root_id, 0, false);
3290 
3291 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3292 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3293 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3294 		BUG_ON(ret); /* -ENOMEM */
3295 	}
3296 
3297 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3298 		struct btrfs_block_group *cache;
3299 		bool must_pin = false;
3300 
3301 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3302 			ret = check_ref_cleanup(trans, buf->start);
3303 			if (!ret) {
3304 				btrfs_redirty_list_add(trans->transaction, buf);
3305 				goto out;
3306 			}
3307 		}
3308 
3309 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3310 
3311 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3312 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3313 			btrfs_put_block_group(cache);
3314 			goto out;
3315 		}
3316 
3317 		/*
3318 		 * If this is a leaf and there are tree mod log users, we may
3319 		 * have recorded mod log operations that point to this leaf.
3320 		 * So we must make sure no one reuses this leaf's extent before
3321 		 * mod log operations are applied to a node, otherwise after
3322 		 * rewinding a node using the mod log operations we get an
3323 		 * inconsistent btree, as the leaf's extent may now be used as
3324 		 * a node or leaf for another different btree.
3325 		 * We are safe from races here because at this point no other
3326 		 * node or root points to this extent buffer, so if after this
3327 		 * check a new tree mod log user joins, it will not be able to
3328 		 * find a node pointing to this leaf and record operations that
3329 		 * point to this leaf.
3330 		 */
3331 		if (btrfs_header_level(buf) == 0 &&
3332 		    test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3333 			must_pin = true;
3334 
3335 		if (must_pin || btrfs_is_zoned(fs_info)) {
3336 			btrfs_redirty_list_add(trans->transaction, buf);
3337 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3338 			btrfs_put_block_group(cache);
3339 			goto out;
3340 		}
3341 
3342 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3343 
3344 		btrfs_add_free_space(cache, buf->start, buf->len);
3345 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3346 		btrfs_put_block_group(cache);
3347 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3348 	}
3349 out:
3350 	if (last_ref) {
3351 		/*
3352 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3353 		 * matter anymore.
3354 		 */
3355 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3356 	}
3357 }
3358 
3359 /* Can return -ENOMEM */
3360 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3361 {
3362 	struct btrfs_fs_info *fs_info = trans->fs_info;
3363 	int ret;
3364 
3365 	if (btrfs_is_testing(fs_info))
3366 		return 0;
3367 
3368 	/*
3369 	 * tree log blocks never actually go into the extent allocation
3370 	 * tree, just update pinning info and exit early.
3371 	 */
3372 	if ((ref->type == BTRFS_REF_METADATA &&
3373 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3374 	    (ref->type == BTRFS_REF_DATA &&
3375 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3376 		/* unlocks the pinned mutex */
3377 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3378 		ret = 0;
3379 	} else if (ref->type == BTRFS_REF_METADATA) {
3380 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3381 	} else {
3382 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3383 	}
3384 
3385 	if (!((ref->type == BTRFS_REF_METADATA &&
3386 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3387 	      (ref->type == BTRFS_REF_DATA &&
3388 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3389 		btrfs_ref_tree_mod(fs_info, ref);
3390 
3391 	return ret;
3392 }
3393 
3394 enum btrfs_loop_type {
3395 	LOOP_CACHING_NOWAIT,
3396 	LOOP_CACHING_WAIT,
3397 	LOOP_ALLOC_CHUNK,
3398 	LOOP_NO_EMPTY_SIZE,
3399 };
3400 
3401 static inline void
3402 btrfs_lock_block_group(struct btrfs_block_group *cache,
3403 		       int delalloc)
3404 {
3405 	if (delalloc)
3406 		down_read(&cache->data_rwsem);
3407 }
3408 
3409 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3410 		       int delalloc)
3411 {
3412 	btrfs_get_block_group(cache);
3413 	if (delalloc)
3414 		down_read(&cache->data_rwsem);
3415 }
3416 
3417 static struct btrfs_block_group *btrfs_lock_cluster(
3418 		   struct btrfs_block_group *block_group,
3419 		   struct btrfs_free_cluster *cluster,
3420 		   int delalloc)
3421 	__acquires(&cluster->refill_lock)
3422 {
3423 	struct btrfs_block_group *used_bg = NULL;
3424 
3425 	spin_lock(&cluster->refill_lock);
3426 	while (1) {
3427 		used_bg = cluster->block_group;
3428 		if (!used_bg)
3429 			return NULL;
3430 
3431 		if (used_bg == block_group)
3432 			return used_bg;
3433 
3434 		btrfs_get_block_group(used_bg);
3435 
3436 		if (!delalloc)
3437 			return used_bg;
3438 
3439 		if (down_read_trylock(&used_bg->data_rwsem))
3440 			return used_bg;
3441 
3442 		spin_unlock(&cluster->refill_lock);
3443 
3444 		/* We should only have one-level nested. */
3445 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3446 
3447 		spin_lock(&cluster->refill_lock);
3448 		if (used_bg == cluster->block_group)
3449 			return used_bg;
3450 
3451 		up_read(&used_bg->data_rwsem);
3452 		btrfs_put_block_group(used_bg);
3453 	}
3454 }
3455 
3456 static inline void
3457 btrfs_release_block_group(struct btrfs_block_group *cache,
3458 			 int delalloc)
3459 {
3460 	if (delalloc)
3461 		up_read(&cache->data_rwsem);
3462 	btrfs_put_block_group(cache);
3463 }
3464 
3465 enum btrfs_extent_allocation_policy {
3466 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3467 	BTRFS_EXTENT_ALLOC_ZONED,
3468 };
3469 
3470 /*
3471  * Structure used internally for find_free_extent() function.  Wraps needed
3472  * parameters.
3473  */
3474 struct find_free_extent_ctl {
3475 	/* Basic allocation info */
3476 	u64 ram_bytes;
3477 	u64 num_bytes;
3478 	u64 min_alloc_size;
3479 	u64 empty_size;
3480 	u64 flags;
3481 	int delalloc;
3482 
3483 	/* Where to start the search inside the bg */
3484 	u64 search_start;
3485 
3486 	/* For clustered allocation */
3487 	u64 empty_cluster;
3488 	struct btrfs_free_cluster *last_ptr;
3489 	bool use_cluster;
3490 
3491 	bool have_caching_bg;
3492 	bool orig_have_caching_bg;
3493 
3494 	/* Allocation is called for tree-log */
3495 	bool for_treelog;
3496 
3497 	/* Allocation is called for data relocation */
3498 	bool for_data_reloc;
3499 
3500 	/* RAID index, converted from flags */
3501 	int index;
3502 
3503 	/*
3504 	 * Current loop number, check find_free_extent_update_loop() for details
3505 	 */
3506 	int loop;
3507 
3508 	/*
3509 	 * Whether we're refilling a cluster, if true we need to re-search
3510 	 * current block group but don't try to refill the cluster again.
3511 	 */
3512 	bool retry_clustered;
3513 
3514 	/*
3515 	 * Whether we're updating free space cache, if true we need to re-search
3516 	 * current block group but don't try updating free space cache again.
3517 	 */
3518 	bool retry_unclustered;
3519 
3520 	/* If current block group is cached */
3521 	int cached;
3522 
3523 	/* Max contiguous hole found */
3524 	u64 max_extent_size;
3525 
3526 	/* Total free space from free space cache, not always contiguous */
3527 	u64 total_free_space;
3528 
3529 	/* Found result */
3530 	u64 found_offset;
3531 
3532 	/* Hint where to start looking for an empty space */
3533 	u64 hint_byte;
3534 
3535 	/* Allocation policy */
3536 	enum btrfs_extent_allocation_policy policy;
3537 };
3538 
3539 
3540 /*
3541  * Helper function for find_free_extent().
3542  *
3543  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3544  * Return -EAGAIN to inform caller that we need to re-search this block group
3545  * Return >0 to inform caller that we find nothing
3546  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3547  */
3548 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3549 				      struct find_free_extent_ctl *ffe_ctl,
3550 				      struct btrfs_block_group **cluster_bg_ret)
3551 {
3552 	struct btrfs_block_group *cluster_bg;
3553 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3554 	u64 aligned_cluster;
3555 	u64 offset;
3556 	int ret;
3557 
3558 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3559 	if (!cluster_bg)
3560 		goto refill_cluster;
3561 	if (cluster_bg != bg && (cluster_bg->ro ||
3562 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3563 		goto release_cluster;
3564 
3565 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3566 			ffe_ctl->num_bytes, cluster_bg->start,
3567 			&ffe_ctl->max_extent_size);
3568 	if (offset) {
3569 		/* We have a block, we're done */
3570 		spin_unlock(&last_ptr->refill_lock);
3571 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3572 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3573 		*cluster_bg_ret = cluster_bg;
3574 		ffe_ctl->found_offset = offset;
3575 		return 0;
3576 	}
3577 	WARN_ON(last_ptr->block_group != cluster_bg);
3578 
3579 release_cluster:
3580 	/*
3581 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3582 	 * lets just skip it and let the allocator find whatever block it can
3583 	 * find. If we reach this point, we will have tried the cluster
3584 	 * allocator plenty of times and not have found anything, so we are
3585 	 * likely way too fragmented for the clustering stuff to find anything.
3586 	 *
3587 	 * However, if the cluster is taken from the current block group,
3588 	 * release the cluster first, so that we stand a better chance of
3589 	 * succeeding in the unclustered allocation.
3590 	 */
3591 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3592 		spin_unlock(&last_ptr->refill_lock);
3593 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3594 		return -ENOENT;
3595 	}
3596 
3597 	/* This cluster didn't work out, free it and start over */
3598 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3599 
3600 	if (cluster_bg != bg)
3601 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3602 
3603 refill_cluster:
3604 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3605 		spin_unlock(&last_ptr->refill_lock);
3606 		return -ENOENT;
3607 	}
3608 
3609 	aligned_cluster = max_t(u64,
3610 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3611 			bg->full_stripe_len);
3612 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3613 			ffe_ctl->num_bytes, aligned_cluster);
3614 	if (ret == 0) {
3615 		/* Now pull our allocation out of this cluster */
3616 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3617 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3618 				&ffe_ctl->max_extent_size);
3619 		if (offset) {
3620 			/* We found one, proceed */
3621 			spin_unlock(&last_ptr->refill_lock);
3622 			trace_btrfs_reserve_extent_cluster(bg,
3623 					ffe_ctl->search_start,
3624 					ffe_ctl->num_bytes);
3625 			ffe_ctl->found_offset = offset;
3626 			return 0;
3627 		}
3628 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3629 		   !ffe_ctl->retry_clustered) {
3630 		spin_unlock(&last_ptr->refill_lock);
3631 
3632 		ffe_ctl->retry_clustered = true;
3633 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3634 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3635 		return -EAGAIN;
3636 	}
3637 	/*
3638 	 * At this point we either didn't find a cluster or we weren't able to
3639 	 * allocate a block from our cluster.  Free the cluster we've been
3640 	 * trying to use, and go to the next block group.
3641 	 */
3642 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3643 	spin_unlock(&last_ptr->refill_lock);
3644 	return 1;
3645 }
3646 
3647 /*
3648  * Return >0 to inform caller that we find nothing
3649  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3650  * Return -EAGAIN to inform caller that we need to re-search this block group
3651  */
3652 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3653 					struct find_free_extent_ctl *ffe_ctl)
3654 {
3655 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3656 	u64 offset;
3657 
3658 	/*
3659 	 * We are doing an unclustered allocation, set the fragmented flag so
3660 	 * we don't bother trying to setup a cluster again until we get more
3661 	 * space.
3662 	 */
3663 	if (unlikely(last_ptr)) {
3664 		spin_lock(&last_ptr->lock);
3665 		last_ptr->fragmented = 1;
3666 		spin_unlock(&last_ptr->lock);
3667 	}
3668 	if (ffe_ctl->cached) {
3669 		struct btrfs_free_space_ctl *free_space_ctl;
3670 
3671 		free_space_ctl = bg->free_space_ctl;
3672 		spin_lock(&free_space_ctl->tree_lock);
3673 		if (free_space_ctl->free_space <
3674 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3675 		    ffe_ctl->empty_size) {
3676 			ffe_ctl->total_free_space = max_t(u64,
3677 					ffe_ctl->total_free_space,
3678 					free_space_ctl->free_space);
3679 			spin_unlock(&free_space_ctl->tree_lock);
3680 			return 1;
3681 		}
3682 		spin_unlock(&free_space_ctl->tree_lock);
3683 	}
3684 
3685 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3686 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3687 			&ffe_ctl->max_extent_size);
3688 
3689 	/*
3690 	 * If we didn't find a chunk, and we haven't failed on this block group
3691 	 * before, and this block group is in the middle of caching and we are
3692 	 * ok with waiting, then go ahead and wait for progress to be made, and
3693 	 * set @retry_unclustered to true.
3694 	 *
3695 	 * If @retry_unclustered is true then we've already waited on this
3696 	 * block group once and should move on to the next block group.
3697 	 */
3698 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3699 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3700 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3701 						      ffe_ctl->empty_size);
3702 		ffe_ctl->retry_unclustered = true;
3703 		return -EAGAIN;
3704 	} else if (!offset) {
3705 		return 1;
3706 	}
3707 	ffe_ctl->found_offset = offset;
3708 	return 0;
3709 }
3710 
3711 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3712 				   struct find_free_extent_ctl *ffe_ctl,
3713 				   struct btrfs_block_group **bg_ret)
3714 {
3715 	int ret;
3716 
3717 	/* We want to try and use the cluster allocator, so lets look there */
3718 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3719 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3720 		if (ret >= 0 || ret == -EAGAIN)
3721 			return ret;
3722 		/* ret == -ENOENT case falls through */
3723 	}
3724 
3725 	return find_free_extent_unclustered(block_group, ffe_ctl);
3726 }
3727 
3728 /*
3729  * Tree-log block group locking
3730  * ============================
3731  *
3732  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3733  * indicates the starting address of a block group, which is reserved only
3734  * for tree-log metadata.
3735  *
3736  * Lock nesting
3737  * ============
3738  *
3739  * space_info::lock
3740  *   block_group::lock
3741  *     fs_info::treelog_bg_lock
3742  */
3743 
3744 /*
3745  * Simple allocator for sequential-only block group. It only allows sequential
3746  * allocation. No need to play with trees. This function also reserves the
3747  * bytes as in btrfs_add_reserved_bytes.
3748  */
3749 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3750 			       struct find_free_extent_ctl *ffe_ctl,
3751 			       struct btrfs_block_group **bg_ret)
3752 {
3753 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3754 	struct btrfs_space_info *space_info = block_group->space_info;
3755 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3756 	u64 start = block_group->start;
3757 	u64 num_bytes = ffe_ctl->num_bytes;
3758 	u64 avail;
3759 	u64 bytenr = block_group->start;
3760 	u64 log_bytenr;
3761 	u64 data_reloc_bytenr;
3762 	int ret = 0;
3763 	bool skip = false;
3764 
3765 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3766 
3767 	/*
3768 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3769 	 * group, and vice versa.
3770 	 */
3771 	spin_lock(&fs_info->treelog_bg_lock);
3772 	log_bytenr = fs_info->treelog_bg;
3773 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3774 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3775 		skip = true;
3776 	spin_unlock(&fs_info->treelog_bg_lock);
3777 	if (skip)
3778 		return 1;
3779 
3780 	/*
3781 	 * Do not allow non-relocation blocks in the dedicated relocation block
3782 	 * group, and vice versa.
3783 	 */
3784 	spin_lock(&fs_info->relocation_bg_lock);
3785 	data_reloc_bytenr = fs_info->data_reloc_bg;
3786 	if (data_reloc_bytenr &&
3787 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3788 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3789 		skip = true;
3790 	spin_unlock(&fs_info->relocation_bg_lock);
3791 	if (skip)
3792 		return 1;
3793 	/* Check RO and no space case before trying to activate it */
3794 	spin_lock(&block_group->lock);
3795 	if (block_group->ro ||
3796 	    block_group->alloc_offset == block_group->zone_capacity) {
3797 		spin_unlock(&block_group->lock);
3798 		return 1;
3799 	}
3800 	spin_unlock(&block_group->lock);
3801 
3802 	if (!btrfs_zone_activate(block_group))
3803 		return 1;
3804 
3805 	spin_lock(&space_info->lock);
3806 	spin_lock(&block_group->lock);
3807 	spin_lock(&fs_info->treelog_bg_lock);
3808 	spin_lock(&fs_info->relocation_bg_lock);
3809 
3810 	ASSERT(!ffe_ctl->for_treelog ||
3811 	       block_group->start == fs_info->treelog_bg ||
3812 	       fs_info->treelog_bg == 0);
3813 	ASSERT(!ffe_ctl->for_data_reloc ||
3814 	       block_group->start == fs_info->data_reloc_bg ||
3815 	       fs_info->data_reloc_bg == 0);
3816 
3817 	if (block_group->ro) {
3818 		ret = 1;
3819 		goto out;
3820 	}
3821 
3822 	/*
3823 	 * Do not allow currently using block group to be tree-log dedicated
3824 	 * block group.
3825 	 */
3826 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3827 	    (block_group->used || block_group->reserved)) {
3828 		ret = 1;
3829 		goto out;
3830 	}
3831 
3832 	/*
3833 	 * Do not allow currently used block group to be the data relocation
3834 	 * dedicated block group.
3835 	 */
3836 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3837 	    (block_group->used || block_group->reserved)) {
3838 		ret = 1;
3839 		goto out;
3840 	}
3841 
3842 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3843 	avail = block_group->zone_capacity - block_group->alloc_offset;
3844 	if (avail < num_bytes) {
3845 		if (ffe_ctl->max_extent_size < avail) {
3846 			/*
3847 			 * With sequential allocator, free space is always
3848 			 * contiguous
3849 			 */
3850 			ffe_ctl->max_extent_size = avail;
3851 			ffe_ctl->total_free_space = avail;
3852 		}
3853 		ret = 1;
3854 		goto out;
3855 	}
3856 
3857 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3858 		fs_info->treelog_bg = block_group->start;
3859 
3860 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3861 		fs_info->data_reloc_bg = block_group->start;
3862 
3863 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3864 	block_group->alloc_offset += num_bytes;
3865 	spin_lock(&ctl->tree_lock);
3866 	ctl->free_space -= num_bytes;
3867 	spin_unlock(&ctl->tree_lock);
3868 
3869 	/*
3870 	 * We do not check if found_offset is aligned to stripesize. The
3871 	 * address is anyway rewritten when using zone append writing.
3872 	 */
3873 
3874 	ffe_ctl->search_start = ffe_ctl->found_offset;
3875 
3876 out:
3877 	if (ret && ffe_ctl->for_treelog)
3878 		fs_info->treelog_bg = 0;
3879 	if (ret && ffe_ctl->for_data_reloc)
3880 		fs_info->data_reloc_bg = 0;
3881 	spin_unlock(&fs_info->relocation_bg_lock);
3882 	spin_unlock(&fs_info->treelog_bg_lock);
3883 	spin_unlock(&block_group->lock);
3884 	spin_unlock(&space_info->lock);
3885 	return ret;
3886 }
3887 
3888 static int do_allocation(struct btrfs_block_group *block_group,
3889 			 struct find_free_extent_ctl *ffe_ctl,
3890 			 struct btrfs_block_group **bg_ret)
3891 {
3892 	switch (ffe_ctl->policy) {
3893 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3894 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3895 	case BTRFS_EXTENT_ALLOC_ZONED:
3896 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3897 	default:
3898 		BUG();
3899 	}
3900 }
3901 
3902 static void release_block_group(struct btrfs_block_group *block_group,
3903 				struct find_free_extent_ctl *ffe_ctl,
3904 				int delalloc)
3905 {
3906 	switch (ffe_ctl->policy) {
3907 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3908 		ffe_ctl->retry_clustered = false;
3909 		ffe_ctl->retry_unclustered = false;
3910 		break;
3911 	case BTRFS_EXTENT_ALLOC_ZONED:
3912 		/* Nothing to do */
3913 		break;
3914 	default:
3915 		BUG();
3916 	}
3917 
3918 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3919 	       ffe_ctl->index);
3920 	btrfs_release_block_group(block_group, delalloc);
3921 }
3922 
3923 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3924 				   struct btrfs_key *ins)
3925 {
3926 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3927 
3928 	if (!ffe_ctl->use_cluster && last_ptr) {
3929 		spin_lock(&last_ptr->lock);
3930 		last_ptr->window_start = ins->objectid;
3931 		spin_unlock(&last_ptr->lock);
3932 	}
3933 }
3934 
3935 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3936 			 struct btrfs_key *ins)
3937 {
3938 	switch (ffe_ctl->policy) {
3939 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3940 		found_extent_clustered(ffe_ctl, ins);
3941 		break;
3942 	case BTRFS_EXTENT_ALLOC_ZONED:
3943 		/* Nothing to do */
3944 		break;
3945 	default:
3946 		BUG();
3947 	}
3948 }
3949 
3950 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3951 {
3952 	switch (ffe_ctl->policy) {
3953 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3954 		/*
3955 		 * If we can't allocate a new chunk we've already looped through
3956 		 * at least once, move on to the NO_EMPTY_SIZE case.
3957 		 */
3958 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3959 		return 0;
3960 	case BTRFS_EXTENT_ALLOC_ZONED:
3961 		/* Give up here */
3962 		return -ENOSPC;
3963 	default:
3964 		BUG();
3965 	}
3966 }
3967 
3968 /*
3969  * Return >0 means caller needs to re-search for free extent
3970  * Return 0 means we have the needed free extent.
3971  * Return <0 means we failed to locate any free extent.
3972  */
3973 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3974 					struct btrfs_key *ins,
3975 					struct find_free_extent_ctl *ffe_ctl,
3976 					bool full_search)
3977 {
3978 	struct btrfs_root *root = fs_info->extent_root;
3979 	int ret;
3980 
3981 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3982 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3983 		ffe_ctl->orig_have_caching_bg = true;
3984 
3985 	if (ins->objectid) {
3986 		found_extent(ffe_ctl, ins);
3987 		return 0;
3988 	}
3989 
3990 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size &&
3991 	    !btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->index)) {
3992 		/*
3993 		 * If we have enough free space left in an already active block
3994 		 * group and we can't activate any other zone now, retry the
3995 		 * active ones with a smaller allocation size.  Returning early
3996 		 * from here will tell btrfs_reserve_extent() to haven the
3997 		 * size.
3998 		 */
3999 		return -ENOSPC;
4000 	}
4001 
4002 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4003 		return 1;
4004 
4005 	ffe_ctl->index++;
4006 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4007 		return 1;
4008 
4009 	/*
4010 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4011 	 *			caching kthreads as we move along
4012 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4013 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4014 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4015 	 *		       again
4016 	 */
4017 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4018 		ffe_ctl->index = 0;
4019 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4020 			/*
4021 			 * We want to skip the LOOP_CACHING_WAIT step if we
4022 			 * don't have any uncached bgs and we've already done a
4023 			 * full search through.
4024 			 */
4025 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4026 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4027 			else
4028 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4029 		} else {
4030 			ffe_ctl->loop++;
4031 		}
4032 
4033 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4034 			struct btrfs_trans_handle *trans;
4035 			int exist = 0;
4036 
4037 			trans = current->journal_info;
4038 			if (trans)
4039 				exist = 1;
4040 			else
4041 				trans = btrfs_join_transaction(root);
4042 
4043 			if (IS_ERR(trans)) {
4044 				ret = PTR_ERR(trans);
4045 				return ret;
4046 			}
4047 
4048 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4049 						CHUNK_ALLOC_FORCE);
4050 
4051 			/* Do not bail out on ENOSPC since we can do more. */
4052 			if (ret == -ENOSPC)
4053 				ret = chunk_allocation_failed(ffe_ctl);
4054 			else if (ret < 0)
4055 				btrfs_abort_transaction(trans, ret);
4056 			else
4057 				ret = 0;
4058 			if (!exist)
4059 				btrfs_end_transaction(trans);
4060 			if (ret)
4061 				return ret;
4062 		}
4063 
4064 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4065 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4066 				return -ENOSPC;
4067 
4068 			/*
4069 			 * Don't loop again if we already have no empty_size and
4070 			 * no empty_cluster.
4071 			 */
4072 			if (ffe_ctl->empty_size == 0 &&
4073 			    ffe_ctl->empty_cluster == 0)
4074 				return -ENOSPC;
4075 			ffe_ctl->empty_size = 0;
4076 			ffe_ctl->empty_cluster = 0;
4077 		}
4078 		return 1;
4079 	}
4080 	return -ENOSPC;
4081 }
4082 
4083 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4084 					struct find_free_extent_ctl *ffe_ctl,
4085 					struct btrfs_space_info *space_info,
4086 					struct btrfs_key *ins)
4087 {
4088 	/*
4089 	 * If our free space is heavily fragmented we may not be able to make
4090 	 * big contiguous allocations, so instead of doing the expensive search
4091 	 * for free space, simply return ENOSPC with our max_extent_size so we
4092 	 * can go ahead and search for a more manageable chunk.
4093 	 *
4094 	 * If our max_extent_size is large enough for our allocation simply
4095 	 * disable clustering since we will likely not be able to find enough
4096 	 * space to create a cluster and induce latency trying.
4097 	 */
4098 	if (space_info->max_extent_size) {
4099 		spin_lock(&space_info->lock);
4100 		if (space_info->max_extent_size &&
4101 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4102 			ins->offset = space_info->max_extent_size;
4103 			spin_unlock(&space_info->lock);
4104 			return -ENOSPC;
4105 		} else if (space_info->max_extent_size) {
4106 			ffe_ctl->use_cluster = false;
4107 		}
4108 		spin_unlock(&space_info->lock);
4109 	}
4110 
4111 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4112 					       &ffe_ctl->empty_cluster);
4113 	if (ffe_ctl->last_ptr) {
4114 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4115 
4116 		spin_lock(&last_ptr->lock);
4117 		if (last_ptr->block_group)
4118 			ffe_ctl->hint_byte = last_ptr->window_start;
4119 		if (last_ptr->fragmented) {
4120 			/*
4121 			 * We still set window_start so we can keep track of the
4122 			 * last place we found an allocation to try and save
4123 			 * some time.
4124 			 */
4125 			ffe_ctl->hint_byte = last_ptr->window_start;
4126 			ffe_ctl->use_cluster = false;
4127 		}
4128 		spin_unlock(&last_ptr->lock);
4129 	}
4130 
4131 	return 0;
4132 }
4133 
4134 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4135 			      struct find_free_extent_ctl *ffe_ctl,
4136 			      struct btrfs_space_info *space_info,
4137 			      struct btrfs_key *ins)
4138 {
4139 	switch (ffe_ctl->policy) {
4140 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4141 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4142 						    space_info, ins);
4143 	case BTRFS_EXTENT_ALLOC_ZONED:
4144 		if (ffe_ctl->for_treelog) {
4145 			spin_lock(&fs_info->treelog_bg_lock);
4146 			if (fs_info->treelog_bg)
4147 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4148 			spin_unlock(&fs_info->treelog_bg_lock);
4149 		}
4150 		if (ffe_ctl->for_data_reloc) {
4151 			spin_lock(&fs_info->relocation_bg_lock);
4152 			if (fs_info->data_reloc_bg)
4153 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4154 			spin_unlock(&fs_info->relocation_bg_lock);
4155 		}
4156 		return 0;
4157 	default:
4158 		BUG();
4159 	}
4160 }
4161 
4162 /*
4163  * walks the btree of allocated extents and find a hole of a given size.
4164  * The key ins is changed to record the hole:
4165  * ins->objectid == start position
4166  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4167  * ins->offset == the size of the hole.
4168  * Any available blocks before search_start are skipped.
4169  *
4170  * If there is no suitable free space, we will record the max size of
4171  * the free space extent currently.
4172  *
4173  * The overall logic and call chain:
4174  *
4175  * find_free_extent()
4176  * |- Iterate through all block groups
4177  * |  |- Get a valid block group
4178  * |  |- Try to do clustered allocation in that block group
4179  * |  |- Try to do unclustered allocation in that block group
4180  * |  |- Check if the result is valid
4181  * |  |  |- If valid, then exit
4182  * |  |- Jump to next block group
4183  * |
4184  * |- Push harder to find free extents
4185  *    |- If not found, re-iterate all block groups
4186  */
4187 static noinline int find_free_extent(struct btrfs_root *root,
4188 				     struct btrfs_key *ins,
4189 				     struct find_free_extent_ctl *ffe_ctl)
4190 {
4191 	struct btrfs_fs_info *fs_info = root->fs_info;
4192 	int ret = 0;
4193 	int cache_block_group_error = 0;
4194 	struct btrfs_block_group *block_group = NULL;
4195 	struct btrfs_space_info *space_info;
4196 	bool full_search = false;
4197 
4198 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4199 
4200 	ffe_ctl->search_start = 0;
4201 	/* For clustered allocation */
4202 	ffe_ctl->empty_cluster = 0;
4203 	ffe_ctl->last_ptr = NULL;
4204 	ffe_ctl->use_cluster = true;
4205 	ffe_ctl->have_caching_bg = false;
4206 	ffe_ctl->orig_have_caching_bg = false;
4207 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4208 	ffe_ctl->loop = 0;
4209 	/* For clustered allocation */
4210 	ffe_ctl->retry_clustered = false;
4211 	ffe_ctl->retry_unclustered = false;
4212 	ffe_ctl->cached = 0;
4213 	ffe_ctl->max_extent_size = 0;
4214 	ffe_ctl->total_free_space = 0;
4215 	ffe_ctl->found_offset = 0;
4216 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4217 
4218 	if (btrfs_is_zoned(fs_info))
4219 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4220 
4221 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4222 	ins->objectid = 0;
4223 	ins->offset = 0;
4224 
4225 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4226 			       ffe_ctl->flags);
4227 
4228 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4229 	if (!space_info) {
4230 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4231 		return -ENOSPC;
4232 	}
4233 
4234 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4235 	if (ret < 0)
4236 		return ret;
4237 
4238 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4239 				    first_logical_byte(fs_info, 0));
4240 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4241 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4242 		block_group = btrfs_lookup_block_group(fs_info,
4243 						       ffe_ctl->search_start);
4244 		/*
4245 		 * we don't want to use the block group if it doesn't match our
4246 		 * allocation bits, or if its not cached.
4247 		 *
4248 		 * However if we are re-searching with an ideal block group
4249 		 * picked out then we don't care that the block group is cached.
4250 		 */
4251 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4252 		    block_group->cached != BTRFS_CACHE_NO) {
4253 			down_read(&space_info->groups_sem);
4254 			if (list_empty(&block_group->list) ||
4255 			    block_group->ro) {
4256 				/*
4257 				 * someone is removing this block group,
4258 				 * we can't jump into the have_block_group
4259 				 * target because our list pointers are not
4260 				 * valid
4261 				 */
4262 				btrfs_put_block_group(block_group);
4263 				up_read(&space_info->groups_sem);
4264 			} else {
4265 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4266 							block_group->flags);
4267 				btrfs_lock_block_group(block_group,
4268 						       ffe_ctl->delalloc);
4269 				goto have_block_group;
4270 			}
4271 		} else if (block_group) {
4272 			btrfs_put_block_group(block_group);
4273 		}
4274 	}
4275 search:
4276 	ffe_ctl->have_caching_bg = false;
4277 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4278 	    ffe_ctl->index == 0)
4279 		full_search = true;
4280 	down_read(&space_info->groups_sem);
4281 	list_for_each_entry(block_group,
4282 			    &space_info->block_groups[ffe_ctl->index], list) {
4283 		struct btrfs_block_group *bg_ret;
4284 
4285 		/* If the block group is read-only, we can skip it entirely. */
4286 		if (unlikely(block_group->ro)) {
4287 			if (ffe_ctl->for_treelog)
4288 				btrfs_clear_treelog_bg(block_group);
4289 			if (ffe_ctl->for_data_reloc)
4290 				btrfs_clear_data_reloc_bg(block_group);
4291 			continue;
4292 		}
4293 
4294 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4295 		ffe_ctl->search_start = block_group->start;
4296 
4297 		/*
4298 		 * this can happen if we end up cycling through all the
4299 		 * raid types, but we want to make sure we only allocate
4300 		 * for the proper type.
4301 		 */
4302 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4303 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4304 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4305 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4306 				BTRFS_BLOCK_GROUP_RAID10;
4307 
4308 			/*
4309 			 * if they asked for extra copies and this block group
4310 			 * doesn't provide them, bail.  This does allow us to
4311 			 * fill raid0 from raid1.
4312 			 */
4313 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4314 				goto loop;
4315 
4316 			/*
4317 			 * This block group has different flags than we want.
4318 			 * It's possible that we have MIXED_GROUP flag but no
4319 			 * block group is mixed.  Just skip such block group.
4320 			 */
4321 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4322 			continue;
4323 		}
4324 
4325 have_block_group:
4326 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4327 		if (unlikely(!ffe_ctl->cached)) {
4328 			ffe_ctl->have_caching_bg = true;
4329 			ret = btrfs_cache_block_group(block_group, 0);
4330 
4331 			/*
4332 			 * If we get ENOMEM here or something else we want to
4333 			 * try other block groups, because it may not be fatal.
4334 			 * However if we can't find anything else we need to
4335 			 * save our return here so that we return the actual
4336 			 * error that caused problems, not ENOSPC.
4337 			 */
4338 			if (ret < 0) {
4339 				if (!cache_block_group_error)
4340 					cache_block_group_error = ret;
4341 				ret = 0;
4342 				goto loop;
4343 			}
4344 			ret = 0;
4345 		}
4346 
4347 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4348 			goto loop;
4349 
4350 		bg_ret = NULL;
4351 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4352 		if (ret == 0) {
4353 			if (bg_ret && bg_ret != block_group) {
4354 				btrfs_release_block_group(block_group,
4355 							  ffe_ctl->delalloc);
4356 				block_group = bg_ret;
4357 			}
4358 		} else if (ret == -EAGAIN) {
4359 			goto have_block_group;
4360 		} else if (ret > 0) {
4361 			goto loop;
4362 		}
4363 
4364 		/* Checks */
4365 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4366 						 fs_info->stripesize);
4367 
4368 		/* move on to the next group */
4369 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4370 		    block_group->start + block_group->length) {
4371 			btrfs_add_free_space_unused(block_group,
4372 					    ffe_ctl->found_offset,
4373 					    ffe_ctl->num_bytes);
4374 			goto loop;
4375 		}
4376 
4377 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4378 			btrfs_add_free_space_unused(block_group,
4379 					ffe_ctl->found_offset,
4380 					ffe_ctl->search_start - ffe_ctl->found_offset);
4381 
4382 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4383 					       ffe_ctl->num_bytes,
4384 					       ffe_ctl->delalloc);
4385 		if (ret == -EAGAIN) {
4386 			btrfs_add_free_space_unused(block_group,
4387 					ffe_ctl->found_offset,
4388 					ffe_ctl->num_bytes);
4389 			goto loop;
4390 		}
4391 		btrfs_inc_block_group_reservations(block_group);
4392 
4393 		/* we are all good, lets return */
4394 		ins->objectid = ffe_ctl->search_start;
4395 		ins->offset = ffe_ctl->num_bytes;
4396 
4397 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4398 					   ffe_ctl->num_bytes);
4399 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4400 		break;
4401 loop:
4402 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4403 		cond_resched();
4404 	}
4405 	up_read(&space_info->groups_sem);
4406 
4407 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4408 	if (ret > 0)
4409 		goto search;
4410 
4411 	if (ret == -ENOSPC && !cache_block_group_error) {
4412 		/*
4413 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4414 		 * any contiguous hole.
4415 		 */
4416 		if (!ffe_ctl->max_extent_size)
4417 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4418 		spin_lock(&space_info->lock);
4419 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4420 		spin_unlock(&space_info->lock);
4421 		ins->offset = ffe_ctl->max_extent_size;
4422 	} else if (ret == -ENOSPC) {
4423 		ret = cache_block_group_error;
4424 	}
4425 	return ret;
4426 }
4427 
4428 /*
4429  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4430  *			  hole that is at least as big as @num_bytes.
4431  *
4432  * @root           -	The root that will contain this extent
4433  *
4434  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4435  *			is used for accounting purposes. This value differs
4436  *			from @num_bytes only in the case of compressed extents.
4437  *
4438  * @num_bytes      -	Number of bytes to allocate on-disk.
4439  *
4440  * @min_alloc_size -	Indicates the minimum amount of space that the
4441  *			allocator should try to satisfy. In some cases
4442  *			@num_bytes may be larger than what is required and if
4443  *			the filesystem is fragmented then allocation fails.
4444  *			However, the presence of @min_alloc_size gives a
4445  *			chance to try and satisfy the smaller allocation.
4446  *
4447  * @empty_size     -	A hint that you plan on doing more COW. This is the
4448  *			size in bytes the allocator should try to find free
4449  *			next to the block it returns.  This is just a hint and
4450  *			may be ignored by the allocator.
4451  *
4452  * @hint_byte      -	Hint to the allocator to start searching above the byte
4453  *			address passed. It might be ignored.
4454  *
4455  * @ins            -	This key is modified to record the found hole. It will
4456  *			have the following values:
4457  *			ins->objectid == start position
4458  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4459  *			ins->offset == the size of the hole.
4460  *
4461  * @is_data        -	Boolean flag indicating whether an extent is
4462  *			allocated for data (true) or metadata (false)
4463  *
4464  * @delalloc       -	Boolean flag indicating whether this allocation is for
4465  *			delalloc or not. If 'true' data_rwsem of block groups
4466  *			is going to be acquired.
4467  *
4468  *
4469  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4470  * case -ENOSPC is returned then @ins->offset will contain the size of the
4471  * largest available hole the allocator managed to find.
4472  */
4473 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4474 			 u64 num_bytes, u64 min_alloc_size,
4475 			 u64 empty_size, u64 hint_byte,
4476 			 struct btrfs_key *ins, int is_data, int delalloc)
4477 {
4478 	struct btrfs_fs_info *fs_info = root->fs_info;
4479 	struct find_free_extent_ctl ffe_ctl = {};
4480 	bool final_tried = num_bytes == min_alloc_size;
4481 	u64 flags;
4482 	int ret;
4483 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4484 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4485 
4486 	flags = get_alloc_profile_by_root(root, is_data);
4487 again:
4488 	WARN_ON(num_bytes < fs_info->sectorsize);
4489 
4490 	ffe_ctl.ram_bytes = ram_bytes;
4491 	ffe_ctl.num_bytes = num_bytes;
4492 	ffe_ctl.min_alloc_size = min_alloc_size;
4493 	ffe_ctl.empty_size = empty_size;
4494 	ffe_ctl.flags = flags;
4495 	ffe_ctl.delalloc = delalloc;
4496 	ffe_ctl.hint_byte = hint_byte;
4497 	ffe_ctl.for_treelog = for_treelog;
4498 	ffe_ctl.for_data_reloc = for_data_reloc;
4499 
4500 	ret = find_free_extent(root, ins, &ffe_ctl);
4501 	if (!ret && !is_data) {
4502 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4503 	} else if (ret == -ENOSPC) {
4504 		if (!final_tried && ins->offset) {
4505 			num_bytes = min(num_bytes >> 1, ins->offset);
4506 			num_bytes = round_down(num_bytes,
4507 					       fs_info->sectorsize);
4508 			num_bytes = max(num_bytes, min_alloc_size);
4509 			ram_bytes = num_bytes;
4510 			if (num_bytes == min_alloc_size)
4511 				final_tried = true;
4512 			goto again;
4513 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4514 			struct btrfs_space_info *sinfo;
4515 
4516 			sinfo = btrfs_find_space_info(fs_info, flags);
4517 			btrfs_err(fs_info,
4518 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4519 				  flags, num_bytes, for_treelog, for_data_reloc);
4520 			if (sinfo)
4521 				btrfs_dump_space_info(fs_info, sinfo,
4522 						      num_bytes, 1);
4523 		}
4524 	}
4525 
4526 	return ret;
4527 }
4528 
4529 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4530 			       u64 start, u64 len, int delalloc)
4531 {
4532 	struct btrfs_block_group *cache;
4533 
4534 	cache = btrfs_lookup_block_group(fs_info, start);
4535 	if (!cache) {
4536 		btrfs_err(fs_info, "Unable to find block group for %llu",
4537 			  start);
4538 		return -ENOSPC;
4539 	}
4540 
4541 	btrfs_add_free_space(cache, start, len);
4542 	btrfs_free_reserved_bytes(cache, len, delalloc);
4543 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4544 
4545 	btrfs_put_block_group(cache);
4546 	return 0;
4547 }
4548 
4549 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4550 			      u64 len)
4551 {
4552 	struct btrfs_block_group *cache;
4553 	int ret = 0;
4554 
4555 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4556 	if (!cache) {
4557 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4558 			  start);
4559 		return -ENOSPC;
4560 	}
4561 
4562 	ret = pin_down_extent(trans, cache, start, len, 1);
4563 	btrfs_put_block_group(cache);
4564 	return ret;
4565 }
4566 
4567 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4568 				      u64 parent, u64 root_objectid,
4569 				      u64 flags, u64 owner, u64 offset,
4570 				      struct btrfs_key *ins, int ref_mod)
4571 {
4572 	struct btrfs_fs_info *fs_info = trans->fs_info;
4573 	int ret;
4574 	struct btrfs_extent_item *extent_item;
4575 	struct btrfs_extent_inline_ref *iref;
4576 	struct btrfs_path *path;
4577 	struct extent_buffer *leaf;
4578 	int type;
4579 	u32 size;
4580 
4581 	if (parent > 0)
4582 		type = BTRFS_SHARED_DATA_REF_KEY;
4583 	else
4584 		type = BTRFS_EXTENT_DATA_REF_KEY;
4585 
4586 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4587 
4588 	path = btrfs_alloc_path();
4589 	if (!path)
4590 		return -ENOMEM;
4591 
4592 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4593 				      ins, size);
4594 	if (ret) {
4595 		btrfs_free_path(path);
4596 		return ret;
4597 	}
4598 
4599 	leaf = path->nodes[0];
4600 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4601 				     struct btrfs_extent_item);
4602 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4603 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4604 	btrfs_set_extent_flags(leaf, extent_item,
4605 			       flags | BTRFS_EXTENT_FLAG_DATA);
4606 
4607 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4608 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4609 	if (parent > 0) {
4610 		struct btrfs_shared_data_ref *ref;
4611 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4612 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4613 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4614 	} else {
4615 		struct btrfs_extent_data_ref *ref;
4616 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4617 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4618 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4619 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4620 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4621 	}
4622 
4623 	btrfs_mark_buffer_dirty(path->nodes[0]);
4624 	btrfs_free_path(path);
4625 
4626 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4627 	if (ret)
4628 		return ret;
4629 
4630 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, true);
4631 	if (ret) { /* -ENOENT, logic error */
4632 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4633 			ins->objectid, ins->offset);
4634 		BUG();
4635 	}
4636 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4637 	return ret;
4638 }
4639 
4640 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4641 				     struct btrfs_delayed_ref_node *node,
4642 				     struct btrfs_delayed_extent_op *extent_op)
4643 {
4644 	struct btrfs_fs_info *fs_info = trans->fs_info;
4645 	int ret;
4646 	struct btrfs_extent_item *extent_item;
4647 	struct btrfs_key extent_key;
4648 	struct btrfs_tree_block_info *block_info;
4649 	struct btrfs_extent_inline_ref *iref;
4650 	struct btrfs_path *path;
4651 	struct extent_buffer *leaf;
4652 	struct btrfs_delayed_tree_ref *ref;
4653 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4654 	u64 num_bytes;
4655 	u64 flags = extent_op->flags_to_set;
4656 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4657 
4658 	ref = btrfs_delayed_node_to_tree_ref(node);
4659 
4660 	extent_key.objectid = node->bytenr;
4661 	if (skinny_metadata) {
4662 		extent_key.offset = ref->level;
4663 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4664 		num_bytes = fs_info->nodesize;
4665 	} else {
4666 		extent_key.offset = node->num_bytes;
4667 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4668 		size += sizeof(*block_info);
4669 		num_bytes = node->num_bytes;
4670 	}
4671 
4672 	path = btrfs_alloc_path();
4673 	if (!path)
4674 		return -ENOMEM;
4675 
4676 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4677 				      &extent_key, size);
4678 	if (ret) {
4679 		btrfs_free_path(path);
4680 		return ret;
4681 	}
4682 
4683 	leaf = path->nodes[0];
4684 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4685 				     struct btrfs_extent_item);
4686 	btrfs_set_extent_refs(leaf, extent_item, 1);
4687 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4688 	btrfs_set_extent_flags(leaf, extent_item,
4689 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4690 
4691 	if (skinny_metadata) {
4692 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4693 	} else {
4694 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4695 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4696 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4697 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4698 	}
4699 
4700 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4701 		btrfs_set_extent_inline_ref_type(leaf, iref,
4702 						 BTRFS_SHARED_BLOCK_REF_KEY);
4703 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4704 	} else {
4705 		btrfs_set_extent_inline_ref_type(leaf, iref,
4706 						 BTRFS_TREE_BLOCK_REF_KEY);
4707 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4708 	}
4709 
4710 	btrfs_mark_buffer_dirty(leaf);
4711 	btrfs_free_path(path);
4712 
4713 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4714 					  num_bytes);
4715 	if (ret)
4716 		return ret;
4717 
4718 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4719 				       fs_info->nodesize, true);
4720 	if (ret) { /* -ENOENT, logic error */
4721 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4722 			extent_key.objectid, extent_key.offset);
4723 		BUG();
4724 	}
4725 
4726 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4727 					  fs_info->nodesize);
4728 	return ret;
4729 }
4730 
4731 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4732 				     struct btrfs_root *root, u64 owner,
4733 				     u64 offset, u64 ram_bytes,
4734 				     struct btrfs_key *ins)
4735 {
4736 	struct btrfs_ref generic_ref = { 0 };
4737 
4738 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4739 
4740 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4741 			       ins->objectid, ins->offset, 0);
4742 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4743 			    offset, 0, false);
4744 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4745 
4746 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4747 }
4748 
4749 /*
4750  * this is used by the tree logging recovery code.  It records that
4751  * an extent has been allocated and makes sure to clear the free
4752  * space cache bits as well
4753  */
4754 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4755 				   u64 root_objectid, u64 owner, u64 offset,
4756 				   struct btrfs_key *ins)
4757 {
4758 	struct btrfs_fs_info *fs_info = trans->fs_info;
4759 	int ret;
4760 	struct btrfs_block_group *block_group;
4761 	struct btrfs_space_info *space_info;
4762 
4763 	/*
4764 	 * Mixed block groups will exclude before processing the log so we only
4765 	 * need to do the exclude dance if this fs isn't mixed.
4766 	 */
4767 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4768 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4769 					      ins->offset);
4770 		if (ret)
4771 			return ret;
4772 	}
4773 
4774 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4775 	if (!block_group)
4776 		return -EINVAL;
4777 
4778 	space_info = block_group->space_info;
4779 	spin_lock(&space_info->lock);
4780 	spin_lock(&block_group->lock);
4781 	space_info->bytes_reserved += ins->offset;
4782 	block_group->reserved += ins->offset;
4783 	spin_unlock(&block_group->lock);
4784 	spin_unlock(&space_info->lock);
4785 
4786 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4787 					 offset, ins, 1);
4788 	if (ret)
4789 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4790 	btrfs_put_block_group(block_group);
4791 	return ret;
4792 }
4793 
4794 static struct extent_buffer *
4795 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4796 		      u64 bytenr, int level, u64 owner,
4797 		      enum btrfs_lock_nesting nest)
4798 {
4799 	struct btrfs_fs_info *fs_info = root->fs_info;
4800 	struct extent_buffer *buf;
4801 
4802 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4803 	if (IS_ERR(buf))
4804 		return buf;
4805 
4806 	/*
4807 	 * Extra safety check in case the extent tree is corrupted and extent
4808 	 * allocator chooses to use a tree block which is already used and
4809 	 * locked.
4810 	 */
4811 	if (buf->lock_owner == current->pid) {
4812 		btrfs_err_rl(fs_info,
4813 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4814 			buf->start, btrfs_header_owner(buf), current->pid);
4815 		free_extent_buffer(buf);
4816 		return ERR_PTR(-EUCLEAN);
4817 	}
4818 
4819 	/*
4820 	 * This needs to stay, because we could allocate a freed block from an
4821 	 * old tree into a new tree, so we need to make sure this new block is
4822 	 * set to the appropriate level and owner.
4823 	 */
4824 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4825 	__btrfs_tree_lock(buf, nest);
4826 	btrfs_clean_tree_block(buf);
4827 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4828 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4829 
4830 	set_extent_buffer_uptodate(buf);
4831 
4832 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4833 	btrfs_set_header_level(buf, level);
4834 	btrfs_set_header_bytenr(buf, buf->start);
4835 	btrfs_set_header_generation(buf, trans->transid);
4836 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4837 	btrfs_set_header_owner(buf, owner);
4838 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4839 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4840 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4841 		buf->log_index = root->log_transid % 2;
4842 		/*
4843 		 * we allow two log transactions at a time, use different
4844 		 * EXTENT bit to differentiate dirty pages.
4845 		 */
4846 		if (buf->log_index == 0)
4847 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4848 					buf->start + buf->len - 1, GFP_NOFS);
4849 		else
4850 			set_extent_new(&root->dirty_log_pages, buf->start,
4851 					buf->start + buf->len - 1);
4852 	} else {
4853 		buf->log_index = -1;
4854 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4855 			 buf->start + buf->len - 1, GFP_NOFS);
4856 	}
4857 	/* this returns a buffer locked for blocking */
4858 	return buf;
4859 }
4860 
4861 /*
4862  * finds a free extent and does all the dirty work required for allocation
4863  * returns the tree buffer or an ERR_PTR on error.
4864  */
4865 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4866 					     struct btrfs_root *root,
4867 					     u64 parent, u64 root_objectid,
4868 					     const struct btrfs_disk_key *key,
4869 					     int level, u64 hint,
4870 					     u64 empty_size,
4871 					     enum btrfs_lock_nesting nest)
4872 {
4873 	struct btrfs_fs_info *fs_info = root->fs_info;
4874 	struct btrfs_key ins;
4875 	struct btrfs_block_rsv *block_rsv;
4876 	struct extent_buffer *buf;
4877 	struct btrfs_delayed_extent_op *extent_op;
4878 	struct btrfs_ref generic_ref = { 0 };
4879 	u64 flags = 0;
4880 	int ret;
4881 	u32 blocksize = fs_info->nodesize;
4882 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4883 
4884 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4885 	if (btrfs_is_testing(fs_info)) {
4886 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4887 					    level, root_objectid, nest);
4888 		if (!IS_ERR(buf))
4889 			root->alloc_bytenr += blocksize;
4890 		return buf;
4891 	}
4892 #endif
4893 
4894 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4895 	if (IS_ERR(block_rsv))
4896 		return ERR_CAST(block_rsv);
4897 
4898 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4899 				   empty_size, hint, &ins, 0, 0);
4900 	if (ret)
4901 		goto out_unuse;
4902 
4903 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4904 				    root_objectid, nest);
4905 	if (IS_ERR(buf)) {
4906 		ret = PTR_ERR(buf);
4907 		goto out_free_reserved;
4908 	}
4909 
4910 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4911 		if (parent == 0)
4912 			parent = ins.objectid;
4913 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4914 	} else
4915 		BUG_ON(parent > 0);
4916 
4917 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4918 		extent_op = btrfs_alloc_delayed_extent_op();
4919 		if (!extent_op) {
4920 			ret = -ENOMEM;
4921 			goto out_free_buf;
4922 		}
4923 		if (key)
4924 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4925 		else
4926 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4927 		extent_op->flags_to_set = flags;
4928 		extent_op->update_key = skinny_metadata ? false : true;
4929 		extent_op->update_flags = true;
4930 		extent_op->is_data = false;
4931 		extent_op->level = level;
4932 
4933 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4934 				       ins.objectid, ins.offset, parent);
4935 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4936 				    root->root_key.objectid, false);
4937 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4938 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4939 		if (ret)
4940 			goto out_free_delayed;
4941 	}
4942 	return buf;
4943 
4944 out_free_delayed:
4945 	btrfs_free_delayed_extent_op(extent_op);
4946 out_free_buf:
4947 	btrfs_tree_unlock(buf);
4948 	free_extent_buffer(buf);
4949 out_free_reserved:
4950 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4951 out_unuse:
4952 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4953 	return ERR_PTR(ret);
4954 }
4955 
4956 struct walk_control {
4957 	u64 refs[BTRFS_MAX_LEVEL];
4958 	u64 flags[BTRFS_MAX_LEVEL];
4959 	struct btrfs_key update_progress;
4960 	struct btrfs_key drop_progress;
4961 	int drop_level;
4962 	int stage;
4963 	int level;
4964 	int shared_level;
4965 	int update_ref;
4966 	int keep_locks;
4967 	int reada_slot;
4968 	int reada_count;
4969 	int restarted;
4970 };
4971 
4972 #define DROP_REFERENCE	1
4973 #define UPDATE_BACKREF	2
4974 
4975 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4976 				     struct btrfs_root *root,
4977 				     struct walk_control *wc,
4978 				     struct btrfs_path *path)
4979 {
4980 	struct btrfs_fs_info *fs_info = root->fs_info;
4981 	u64 bytenr;
4982 	u64 generation;
4983 	u64 refs;
4984 	u64 flags;
4985 	u32 nritems;
4986 	struct btrfs_key key;
4987 	struct extent_buffer *eb;
4988 	int ret;
4989 	int slot;
4990 	int nread = 0;
4991 
4992 	if (path->slots[wc->level] < wc->reada_slot) {
4993 		wc->reada_count = wc->reada_count * 2 / 3;
4994 		wc->reada_count = max(wc->reada_count, 2);
4995 	} else {
4996 		wc->reada_count = wc->reada_count * 3 / 2;
4997 		wc->reada_count = min_t(int, wc->reada_count,
4998 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4999 	}
5000 
5001 	eb = path->nodes[wc->level];
5002 	nritems = btrfs_header_nritems(eb);
5003 
5004 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5005 		if (nread >= wc->reada_count)
5006 			break;
5007 
5008 		cond_resched();
5009 		bytenr = btrfs_node_blockptr(eb, slot);
5010 		generation = btrfs_node_ptr_generation(eb, slot);
5011 
5012 		if (slot == path->slots[wc->level])
5013 			goto reada;
5014 
5015 		if (wc->stage == UPDATE_BACKREF &&
5016 		    generation <= root->root_key.offset)
5017 			continue;
5018 
5019 		/* We don't lock the tree block, it's OK to be racy here */
5020 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5021 					       wc->level - 1, 1, &refs,
5022 					       &flags);
5023 		/* We don't care about errors in readahead. */
5024 		if (ret < 0)
5025 			continue;
5026 		BUG_ON(refs == 0);
5027 
5028 		if (wc->stage == DROP_REFERENCE) {
5029 			if (refs == 1)
5030 				goto reada;
5031 
5032 			if (wc->level == 1 &&
5033 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5034 				continue;
5035 			if (!wc->update_ref ||
5036 			    generation <= root->root_key.offset)
5037 				continue;
5038 			btrfs_node_key_to_cpu(eb, &key, slot);
5039 			ret = btrfs_comp_cpu_keys(&key,
5040 						  &wc->update_progress);
5041 			if (ret < 0)
5042 				continue;
5043 		} else {
5044 			if (wc->level == 1 &&
5045 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5046 				continue;
5047 		}
5048 reada:
5049 		btrfs_readahead_node_child(eb, slot);
5050 		nread++;
5051 	}
5052 	wc->reada_slot = slot;
5053 }
5054 
5055 /*
5056  * helper to process tree block while walking down the tree.
5057  *
5058  * when wc->stage == UPDATE_BACKREF, this function updates
5059  * back refs for pointers in the block.
5060  *
5061  * NOTE: return value 1 means we should stop walking down.
5062  */
5063 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5064 				   struct btrfs_root *root,
5065 				   struct btrfs_path *path,
5066 				   struct walk_control *wc, int lookup_info)
5067 {
5068 	struct btrfs_fs_info *fs_info = root->fs_info;
5069 	int level = wc->level;
5070 	struct extent_buffer *eb = path->nodes[level];
5071 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5072 	int ret;
5073 
5074 	if (wc->stage == UPDATE_BACKREF &&
5075 	    btrfs_header_owner(eb) != root->root_key.objectid)
5076 		return 1;
5077 
5078 	/*
5079 	 * when reference count of tree block is 1, it won't increase
5080 	 * again. once full backref flag is set, we never clear it.
5081 	 */
5082 	if (lookup_info &&
5083 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5084 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5085 		BUG_ON(!path->locks[level]);
5086 		ret = btrfs_lookup_extent_info(trans, fs_info,
5087 					       eb->start, level, 1,
5088 					       &wc->refs[level],
5089 					       &wc->flags[level]);
5090 		BUG_ON(ret == -ENOMEM);
5091 		if (ret)
5092 			return ret;
5093 		BUG_ON(wc->refs[level] == 0);
5094 	}
5095 
5096 	if (wc->stage == DROP_REFERENCE) {
5097 		if (wc->refs[level] > 1)
5098 			return 1;
5099 
5100 		if (path->locks[level] && !wc->keep_locks) {
5101 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5102 			path->locks[level] = 0;
5103 		}
5104 		return 0;
5105 	}
5106 
5107 	/* wc->stage == UPDATE_BACKREF */
5108 	if (!(wc->flags[level] & flag)) {
5109 		BUG_ON(!path->locks[level]);
5110 		ret = btrfs_inc_ref(trans, root, eb, 1);
5111 		BUG_ON(ret); /* -ENOMEM */
5112 		ret = btrfs_dec_ref(trans, root, eb, 0);
5113 		BUG_ON(ret); /* -ENOMEM */
5114 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5115 						  btrfs_header_level(eb), 0);
5116 		BUG_ON(ret); /* -ENOMEM */
5117 		wc->flags[level] |= flag;
5118 	}
5119 
5120 	/*
5121 	 * the block is shared by multiple trees, so it's not good to
5122 	 * keep the tree lock
5123 	 */
5124 	if (path->locks[level] && level > 0) {
5125 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5126 		path->locks[level] = 0;
5127 	}
5128 	return 0;
5129 }
5130 
5131 /*
5132  * This is used to verify a ref exists for this root to deal with a bug where we
5133  * would have a drop_progress key that hadn't been updated properly.
5134  */
5135 static int check_ref_exists(struct btrfs_trans_handle *trans,
5136 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5137 			    int level)
5138 {
5139 	struct btrfs_path *path;
5140 	struct btrfs_extent_inline_ref *iref;
5141 	int ret;
5142 
5143 	path = btrfs_alloc_path();
5144 	if (!path)
5145 		return -ENOMEM;
5146 
5147 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5148 				    root->fs_info->nodesize, parent,
5149 				    root->root_key.objectid, level, 0);
5150 	btrfs_free_path(path);
5151 	if (ret == -ENOENT)
5152 		return 0;
5153 	if (ret < 0)
5154 		return ret;
5155 	return 1;
5156 }
5157 
5158 /*
5159  * helper to process tree block pointer.
5160  *
5161  * when wc->stage == DROP_REFERENCE, this function checks
5162  * reference count of the block pointed to. if the block
5163  * is shared and we need update back refs for the subtree
5164  * rooted at the block, this function changes wc->stage to
5165  * UPDATE_BACKREF. if the block is shared and there is no
5166  * need to update back, this function drops the reference
5167  * to the block.
5168  *
5169  * NOTE: return value 1 means we should stop walking down.
5170  */
5171 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5172 				 struct btrfs_root *root,
5173 				 struct btrfs_path *path,
5174 				 struct walk_control *wc, int *lookup_info)
5175 {
5176 	struct btrfs_fs_info *fs_info = root->fs_info;
5177 	u64 bytenr;
5178 	u64 generation;
5179 	u64 parent;
5180 	struct btrfs_key key;
5181 	struct btrfs_key first_key;
5182 	struct btrfs_ref ref = { 0 };
5183 	struct extent_buffer *next;
5184 	int level = wc->level;
5185 	int reada = 0;
5186 	int ret = 0;
5187 	bool need_account = false;
5188 
5189 	generation = btrfs_node_ptr_generation(path->nodes[level],
5190 					       path->slots[level]);
5191 	/*
5192 	 * if the lower level block was created before the snapshot
5193 	 * was created, we know there is no need to update back refs
5194 	 * for the subtree
5195 	 */
5196 	if (wc->stage == UPDATE_BACKREF &&
5197 	    generation <= root->root_key.offset) {
5198 		*lookup_info = 1;
5199 		return 1;
5200 	}
5201 
5202 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5203 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5204 			      path->slots[level]);
5205 
5206 	next = find_extent_buffer(fs_info, bytenr);
5207 	if (!next) {
5208 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5209 				root->root_key.objectid, level - 1);
5210 		if (IS_ERR(next))
5211 			return PTR_ERR(next);
5212 		reada = 1;
5213 	}
5214 	btrfs_tree_lock(next);
5215 
5216 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5217 				       &wc->refs[level - 1],
5218 				       &wc->flags[level - 1]);
5219 	if (ret < 0)
5220 		goto out_unlock;
5221 
5222 	if (unlikely(wc->refs[level - 1] == 0)) {
5223 		btrfs_err(fs_info, "Missing references.");
5224 		ret = -EIO;
5225 		goto out_unlock;
5226 	}
5227 	*lookup_info = 0;
5228 
5229 	if (wc->stage == DROP_REFERENCE) {
5230 		if (wc->refs[level - 1] > 1) {
5231 			need_account = true;
5232 			if (level == 1 &&
5233 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5234 				goto skip;
5235 
5236 			if (!wc->update_ref ||
5237 			    generation <= root->root_key.offset)
5238 				goto skip;
5239 
5240 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5241 					      path->slots[level]);
5242 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5243 			if (ret < 0)
5244 				goto skip;
5245 
5246 			wc->stage = UPDATE_BACKREF;
5247 			wc->shared_level = level - 1;
5248 		}
5249 	} else {
5250 		if (level == 1 &&
5251 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5252 			goto skip;
5253 	}
5254 
5255 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5256 		btrfs_tree_unlock(next);
5257 		free_extent_buffer(next);
5258 		next = NULL;
5259 		*lookup_info = 1;
5260 	}
5261 
5262 	if (!next) {
5263 		if (reada && level == 1)
5264 			reada_walk_down(trans, root, wc, path);
5265 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5266 				       generation, level - 1, &first_key);
5267 		if (IS_ERR(next)) {
5268 			return PTR_ERR(next);
5269 		} else if (!extent_buffer_uptodate(next)) {
5270 			free_extent_buffer(next);
5271 			return -EIO;
5272 		}
5273 		btrfs_tree_lock(next);
5274 	}
5275 
5276 	level--;
5277 	ASSERT(level == btrfs_header_level(next));
5278 	if (level != btrfs_header_level(next)) {
5279 		btrfs_err(root->fs_info, "mismatched level");
5280 		ret = -EIO;
5281 		goto out_unlock;
5282 	}
5283 	path->nodes[level] = next;
5284 	path->slots[level] = 0;
5285 	path->locks[level] = BTRFS_WRITE_LOCK;
5286 	wc->level = level;
5287 	if (wc->level == 1)
5288 		wc->reada_slot = 0;
5289 	return 0;
5290 skip:
5291 	wc->refs[level - 1] = 0;
5292 	wc->flags[level - 1] = 0;
5293 	if (wc->stage == DROP_REFERENCE) {
5294 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5295 			parent = path->nodes[level]->start;
5296 		} else {
5297 			ASSERT(root->root_key.objectid ==
5298 			       btrfs_header_owner(path->nodes[level]));
5299 			if (root->root_key.objectid !=
5300 			    btrfs_header_owner(path->nodes[level])) {
5301 				btrfs_err(root->fs_info,
5302 						"mismatched block owner");
5303 				ret = -EIO;
5304 				goto out_unlock;
5305 			}
5306 			parent = 0;
5307 		}
5308 
5309 		/*
5310 		 * If we had a drop_progress we need to verify the refs are set
5311 		 * as expected.  If we find our ref then we know that from here
5312 		 * on out everything should be correct, and we can clear the
5313 		 * ->restarted flag.
5314 		 */
5315 		if (wc->restarted) {
5316 			ret = check_ref_exists(trans, root, bytenr, parent,
5317 					       level - 1);
5318 			if (ret < 0)
5319 				goto out_unlock;
5320 			if (ret == 0)
5321 				goto no_delete;
5322 			ret = 0;
5323 			wc->restarted = 0;
5324 		}
5325 
5326 		/*
5327 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5328 		 * already accounted them at merge time (replace_path),
5329 		 * thus we could skip expensive subtree trace here.
5330 		 */
5331 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5332 		    need_account) {
5333 			ret = btrfs_qgroup_trace_subtree(trans, next,
5334 							 generation, level - 1);
5335 			if (ret) {
5336 				btrfs_err_rl(fs_info,
5337 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5338 					     ret);
5339 			}
5340 		}
5341 
5342 		/*
5343 		 * We need to update the next key in our walk control so we can
5344 		 * update the drop_progress key accordingly.  We don't care if
5345 		 * find_next_key doesn't find a key because that means we're at
5346 		 * the end and are going to clean up now.
5347 		 */
5348 		wc->drop_level = level;
5349 		find_next_key(path, level, &wc->drop_progress);
5350 
5351 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5352 				       fs_info->nodesize, parent);
5353 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5354 				    0, false);
5355 		ret = btrfs_free_extent(trans, &ref);
5356 		if (ret)
5357 			goto out_unlock;
5358 	}
5359 no_delete:
5360 	*lookup_info = 1;
5361 	ret = 1;
5362 
5363 out_unlock:
5364 	btrfs_tree_unlock(next);
5365 	free_extent_buffer(next);
5366 
5367 	return ret;
5368 }
5369 
5370 /*
5371  * helper to process tree block while walking up the tree.
5372  *
5373  * when wc->stage == DROP_REFERENCE, this function drops
5374  * reference count on the block.
5375  *
5376  * when wc->stage == UPDATE_BACKREF, this function changes
5377  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5378  * to UPDATE_BACKREF previously while processing the block.
5379  *
5380  * NOTE: return value 1 means we should stop walking up.
5381  */
5382 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5383 				 struct btrfs_root *root,
5384 				 struct btrfs_path *path,
5385 				 struct walk_control *wc)
5386 {
5387 	struct btrfs_fs_info *fs_info = root->fs_info;
5388 	int ret;
5389 	int level = wc->level;
5390 	struct extent_buffer *eb = path->nodes[level];
5391 	u64 parent = 0;
5392 
5393 	if (wc->stage == UPDATE_BACKREF) {
5394 		BUG_ON(wc->shared_level < level);
5395 		if (level < wc->shared_level)
5396 			goto out;
5397 
5398 		ret = find_next_key(path, level + 1, &wc->update_progress);
5399 		if (ret > 0)
5400 			wc->update_ref = 0;
5401 
5402 		wc->stage = DROP_REFERENCE;
5403 		wc->shared_level = -1;
5404 		path->slots[level] = 0;
5405 
5406 		/*
5407 		 * check reference count again if the block isn't locked.
5408 		 * we should start walking down the tree again if reference
5409 		 * count is one.
5410 		 */
5411 		if (!path->locks[level]) {
5412 			BUG_ON(level == 0);
5413 			btrfs_tree_lock(eb);
5414 			path->locks[level] = BTRFS_WRITE_LOCK;
5415 
5416 			ret = btrfs_lookup_extent_info(trans, fs_info,
5417 						       eb->start, level, 1,
5418 						       &wc->refs[level],
5419 						       &wc->flags[level]);
5420 			if (ret < 0) {
5421 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5422 				path->locks[level] = 0;
5423 				return ret;
5424 			}
5425 			BUG_ON(wc->refs[level] == 0);
5426 			if (wc->refs[level] == 1) {
5427 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5428 				path->locks[level] = 0;
5429 				return 1;
5430 			}
5431 		}
5432 	}
5433 
5434 	/* wc->stage == DROP_REFERENCE */
5435 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5436 
5437 	if (wc->refs[level] == 1) {
5438 		if (level == 0) {
5439 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5440 				ret = btrfs_dec_ref(trans, root, eb, 1);
5441 			else
5442 				ret = btrfs_dec_ref(trans, root, eb, 0);
5443 			BUG_ON(ret); /* -ENOMEM */
5444 			if (is_fstree(root->root_key.objectid)) {
5445 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5446 				if (ret) {
5447 					btrfs_err_rl(fs_info,
5448 	"error %d accounting leaf items, quota is out of sync, rescan required",
5449 					     ret);
5450 				}
5451 			}
5452 		}
5453 		/* make block locked assertion in btrfs_clean_tree_block happy */
5454 		if (!path->locks[level] &&
5455 		    btrfs_header_generation(eb) == trans->transid) {
5456 			btrfs_tree_lock(eb);
5457 			path->locks[level] = BTRFS_WRITE_LOCK;
5458 		}
5459 		btrfs_clean_tree_block(eb);
5460 	}
5461 
5462 	if (eb == root->node) {
5463 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5464 			parent = eb->start;
5465 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5466 			goto owner_mismatch;
5467 	} else {
5468 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5469 			parent = path->nodes[level + 1]->start;
5470 		else if (root->root_key.objectid !=
5471 			 btrfs_header_owner(path->nodes[level + 1]))
5472 			goto owner_mismatch;
5473 	}
5474 
5475 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5476 			      wc->refs[level] == 1);
5477 out:
5478 	wc->refs[level] = 0;
5479 	wc->flags[level] = 0;
5480 	return 0;
5481 
5482 owner_mismatch:
5483 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5484 		     btrfs_header_owner(eb), root->root_key.objectid);
5485 	return -EUCLEAN;
5486 }
5487 
5488 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5489 				   struct btrfs_root *root,
5490 				   struct btrfs_path *path,
5491 				   struct walk_control *wc)
5492 {
5493 	int level = wc->level;
5494 	int lookup_info = 1;
5495 	int ret;
5496 
5497 	while (level >= 0) {
5498 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5499 		if (ret > 0)
5500 			break;
5501 
5502 		if (level == 0)
5503 			break;
5504 
5505 		if (path->slots[level] >=
5506 		    btrfs_header_nritems(path->nodes[level]))
5507 			break;
5508 
5509 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5510 		if (ret > 0) {
5511 			path->slots[level]++;
5512 			continue;
5513 		} else if (ret < 0)
5514 			return ret;
5515 		level = wc->level;
5516 	}
5517 	return 0;
5518 }
5519 
5520 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5521 				 struct btrfs_root *root,
5522 				 struct btrfs_path *path,
5523 				 struct walk_control *wc, int max_level)
5524 {
5525 	int level = wc->level;
5526 	int ret;
5527 
5528 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5529 	while (level < max_level && path->nodes[level]) {
5530 		wc->level = level;
5531 		if (path->slots[level] + 1 <
5532 		    btrfs_header_nritems(path->nodes[level])) {
5533 			path->slots[level]++;
5534 			return 0;
5535 		} else {
5536 			ret = walk_up_proc(trans, root, path, wc);
5537 			if (ret > 0)
5538 				return 0;
5539 			if (ret < 0)
5540 				return ret;
5541 
5542 			if (path->locks[level]) {
5543 				btrfs_tree_unlock_rw(path->nodes[level],
5544 						     path->locks[level]);
5545 				path->locks[level] = 0;
5546 			}
5547 			free_extent_buffer(path->nodes[level]);
5548 			path->nodes[level] = NULL;
5549 			level++;
5550 		}
5551 	}
5552 	return 1;
5553 }
5554 
5555 /*
5556  * drop a subvolume tree.
5557  *
5558  * this function traverses the tree freeing any blocks that only
5559  * referenced by the tree.
5560  *
5561  * when a shared tree block is found. this function decreases its
5562  * reference count by one. if update_ref is true, this function
5563  * also make sure backrefs for the shared block and all lower level
5564  * blocks are properly updated.
5565  *
5566  * If called with for_reloc == 0, may exit early with -EAGAIN
5567  */
5568 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5569 {
5570 	struct btrfs_fs_info *fs_info = root->fs_info;
5571 	struct btrfs_path *path;
5572 	struct btrfs_trans_handle *trans;
5573 	struct btrfs_root *tree_root = fs_info->tree_root;
5574 	struct btrfs_root_item *root_item = &root->root_item;
5575 	struct walk_control *wc;
5576 	struct btrfs_key key;
5577 	int err = 0;
5578 	int ret;
5579 	int level;
5580 	bool root_dropped = false;
5581 
5582 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5583 
5584 	path = btrfs_alloc_path();
5585 	if (!path) {
5586 		err = -ENOMEM;
5587 		goto out;
5588 	}
5589 
5590 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5591 	if (!wc) {
5592 		btrfs_free_path(path);
5593 		err = -ENOMEM;
5594 		goto out;
5595 	}
5596 
5597 	/*
5598 	 * Use join to avoid potential EINTR from transaction start. See
5599 	 * wait_reserve_ticket and the whole reservation callchain.
5600 	 */
5601 	if (for_reloc)
5602 		trans = btrfs_join_transaction(tree_root);
5603 	else
5604 		trans = btrfs_start_transaction(tree_root, 0);
5605 	if (IS_ERR(trans)) {
5606 		err = PTR_ERR(trans);
5607 		goto out_free;
5608 	}
5609 
5610 	err = btrfs_run_delayed_items(trans);
5611 	if (err)
5612 		goto out_end_trans;
5613 
5614 	/*
5615 	 * This will help us catch people modifying the fs tree while we're
5616 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5617 	 * dropped as we unlock the root node and parent nodes as we walk down
5618 	 * the tree, assuming nothing will change.  If something does change
5619 	 * then we'll have stale information and drop references to blocks we've
5620 	 * already dropped.
5621 	 */
5622 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5623 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5624 		level = btrfs_header_level(root->node);
5625 		path->nodes[level] = btrfs_lock_root_node(root);
5626 		path->slots[level] = 0;
5627 		path->locks[level] = BTRFS_WRITE_LOCK;
5628 		memset(&wc->update_progress, 0,
5629 		       sizeof(wc->update_progress));
5630 	} else {
5631 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5632 		memcpy(&wc->update_progress, &key,
5633 		       sizeof(wc->update_progress));
5634 
5635 		level = btrfs_root_drop_level(root_item);
5636 		BUG_ON(level == 0);
5637 		path->lowest_level = level;
5638 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5639 		path->lowest_level = 0;
5640 		if (ret < 0) {
5641 			err = ret;
5642 			goto out_end_trans;
5643 		}
5644 		WARN_ON(ret > 0);
5645 
5646 		/*
5647 		 * unlock our path, this is safe because only this
5648 		 * function is allowed to delete this snapshot
5649 		 */
5650 		btrfs_unlock_up_safe(path, 0);
5651 
5652 		level = btrfs_header_level(root->node);
5653 		while (1) {
5654 			btrfs_tree_lock(path->nodes[level]);
5655 			path->locks[level] = BTRFS_WRITE_LOCK;
5656 
5657 			ret = btrfs_lookup_extent_info(trans, fs_info,
5658 						path->nodes[level]->start,
5659 						level, 1, &wc->refs[level],
5660 						&wc->flags[level]);
5661 			if (ret < 0) {
5662 				err = ret;
5663 				goto out_end_trans;
5664 			}
5665 			BUG_ON(wc->refs[level] == 0);
5666 
5667 			if (level == btrfs_root_drop_level(root_item))
5668 				break;
5669 
5670 			btrfs_tree_unlock(path->nodes[level]);
5671 			path->locks[level] = 0;
5672 			WARN_ON(wc->refs[level] != 1);
5673 			level--;
5674 		}
5675 	}
5676 
5677 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5678 	wc->level = level;
5679 	wc->shared_level = -1;
5680 	wc->stage = DROP_REFERENCE;
5681 	wc->update_ref = update_ref;
5682 	wc->keep_locks = 0;
5683 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5684 
5685 	while (1) {
5686 
5687 		ret = walk_down_tree(trans, root, path, wc);
5688 		if (ret < 0) {
5689 			err = ret;
5690 			break;
5691 		}
5692 
5693 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5694 		if (ret < 0) {
5695 			err = ret;
5696 			break;
5697 		}
5698 
5699 		if (ret > 0) {
5700 			BUG_ON(wc->stage != DROP_REFERENCE);
5701 			break;
5702 		}
5703 
5704 		if (wc->stage == DROP_REFERENCE) {
5705 			wc->drop_level = wc->level;
5706 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5707 					      &wc->drop_progress,
5708 					      path->slots[wc->drop_level]);
5709 		}
5710 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5711 				      &wc->drop_progress);
5712 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5713 
5714 		BUG_ON(wc->level == 0);
5715 		if (btrfs_should_end_transaction(trans) ||
5716 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5717 			ret = btrfs_update_root(trans, tree_root,
5718 						&root->root_key,
5719 						root_item);
5720 			if (ret) {
5721 				btrfs_abort_transaction(trans, ret);
5722 				err = ret;
5723 				goto out_end_trans;
5724 			}
5725 
5726 			btrfs_end_transaction_throttle(trans);
5727 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5728 				btrfs_debug(fs_info,
5729 					    "drop snapshot early exit");
5730 				err = -EAGAIN;
5731 				goto out_free;
5732 			}
5733 
5734 		       /*
5735 			* Use join to avoid potential EINTR from transaction
5736 			* start. See wait_reserve_ticket and the whole
5737 			* reservation callchain.
5738 			*/
5739 			if (for_reloc)
5740 				trans = btrfs_join_transaction(tree_root);
5741 			else
5742 				trans = btrfs_start_transaction(tree_root, 0);
5743 			if (IS_ERR(trans)) {
5744 				err = PTR_ERR(trans);
5745 				goto out_free;
5746 			}
5747 		}
5748 	}
5749 	btrfs_release_path(path);
5750 	if (err)
5751 		goto out_end_trans;
5752 
5753 	ret = btrfs_del_root(trans, &root->root_key);
5754 	if (ret) {
5755 		btrfs_abort_transaction(trans, ret);
5756 		err = ret;
5757 		goto out_end_trans;
5758 	}
5759 
5760 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5761 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5762 				      NULL, NULL);
5763 		if (ret < 0) {
5764 			btrfs_abort_transaction(trans, ret);
5765 			err = ret;
5766 			goto out_end_trans;
5767 		} else if (ret > 0) {
5768 			/* if we fail to delete the orphan item this time
5769 			 * around, it'll get picked up the next time.
5770 			 *
5771 			 * The most common failure here is just -ENOENT.
5772 			 */
5773 			btrfs_del_orphan_item(trans, tree_root,
5774 					      root->root_key.objectid);
5775 		}
5776 	}
5777 
5778 	/*
5779 	 * This subvolume is going to be completely dropped, and won't be
5780 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5781 	 * commit transaction time.  So free it here manually.
5782 	 */
5783 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5784 	btrfs_qgroup_free_meta_all_pertrans(root);
5785 
5786 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5787 		btrfs_add_dropped_root(trans, root);
5788 	else
5789 		btrfs_put_root(root);
5790 	root_dropped = true;
5791 out_end_trans:
5792 	btrfs_end_transaction_throttle(trans);
5793 out_free:
5794 	kfree(wc);
5795 	btrfs_free_path(path);
5796 out:
5797 	/*
5798 	 * So if we need to stop dropping the snapshot for whatever reason we
5799 	 * need to make sure to add it back to the dead root list so that we
5800 	 * keep trying to do the work later.  This also cleans up roots if we
5801 	 * don't have it in the radix (like when we recover after a power fail
5802 	 * or unmount) so we don't leak memory.
5803 	 */
5804 	if (!for_reloc && !root_dropped)
5805 		btrfs_add_dead_root(root);
5806 	return err;
5807 }
5808 
5809 /*
5810  * drop subtree rooted at tree block 'node'.
5811  *
5812  * NOTE: this function will unlock and release tree block 'node'
5813  * only used by relocation code
5814  */
5815 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5816 			struct btrfs_root *root,
5817 			struct extent_buffer *node,
5818 			struct extent_buffer *parent)
5819 {
5820 	struct btrfs_fs_info *fs_info = root->fs_info;
5821 	struct btrfs_path *path;
5822 	struct walk_control *wc;
5823 	int level;
5824 	int parent_level;
5825 	int ret = 0;
5826 	int wret;
5827 
5828 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5829 
5830 	path = btrfs_alloc_path();
5831 	if (!path)
5832 		return -ENOMEM;
5833 
5834 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5835 	if (!wc) {
5836 		btrfs_free_path(path);
5837 		return -ENOMEM;
5838 	}
5839 
5840 	btrfs_assert_tree_write_locked(parent);
5841 	parent_level = btrfs_header_level(parent);
5842 	atomic_inc(&parent->refs);
5843 	path->nodes[parent_level] = parent;
5844 	path->slots[parent_level] = btrfs_header_nritems(parent);
5845 
5846 	btrfs_assert_tree_write_locked(node);
5847 	level = btrfs_header_level(node);
5848 	path->nodes[level] = node;
5849 	path->slots[level] = 0;
5850 	path->locks[level] = BTRFS_WRITE_LOCK;
5851 
5852 	wc->refs[parent_level] = 1;
5853 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5854 	wc->level = level;
5855 	wc->shared_level = -1;
5856 	wc->stage = DROP_REFERENCE;
5857 	wc->update_ref = 0;
5858 	wc->keep_locks = 1;
5859 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5860 
5861 	while (1) {
5862 		wret = walk_down_tree(trans, root, path, wc);
5863 		if (wret < 0) {
5864 			ret = wret;
5865 			break;
5866 		}
5867 
5868 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5869 		if (wret < 0)
5870 			ret = wret;
5871 		if (wret != 0)
5872 			break;
5873 	}
5874 
5875 	kfree(wc);
5876 	btrfs_free_path(path);
5877 	return ret;
5878 }
5879 
5880 /*
5881  * helper to account the unused space of all the readonly block group in the
5882  * space_info. takes mirrors into account.
5883  */
5884 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5885 {
5886 	struct btrfs_block_group *block_group;
5887 	u64 free_bytes = 0;
5888 	int factor;
5889 
5890 	/* It's df, we don't care if it's racy */
5891 	if (list_empty(&sinfo->ro_bgs))
5892 		return 0;
5893 
5894 	spin_lock(&sinfo->lock);
5895 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5896 		spin_lock(&block_group->lock);
5897 
5898 		if (!block_group->ro) {
5899 			spin_unlock(&block_group->lock);
5900 			continue;
5901 		}
5902 
5903 		factor = btrfs_bg_type_to_factor(block_group->flags);
5904 		free_bytes += (block_group->length -
5905 			       block_group->used) * factor;
5906 
5907 		spin_unlock(&block_group->lock);
5908 	}
5909 	spin_unlock(&sinfo->lock);
5910 
5911 	return free_bytes;
5912 }
5913 
5914 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5915 				   u64 start, u64 end)
5916 {
5917 	return unpin_extent_range(fs_info, start, end, false);
5918 }
5919 
5920 /*
5921  * It used to be that old block groups would be left around forever.
5922  * Iterating over them would be enough to trim unused space.  Since we
5923  * now automatically remove them, we also need to iterate over unallocated
5924  * space.
5925  *
5926  * We don't want a transaction for this since the discard may take a
5927  * substantial amount of time.  We don't require that a transaction be
5928  * running, but we do need to take a running transaction into account
5929  * to ensure that we're not discarding chunks that were released or
5930  * allocated in the current transaction.
5931  *
5932  * Holding the chunks lock will prevent other threads from allocating
5933  * or releasing chunks, but it won't prevent a running transaction
5934  * from committing and releasing the memory that the pending chunks
5935  * list head uses.  For that, we need to take a reference to the
5936  * transaction and hold the commit root sem.  We only need to hold
5937  * it while performing the free space search since we have already
5938  * held back allocations.
5939  */
5940 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5941 {
5942 	u64 start = SZ_1M, len = 0, end = 0;
5943 	int ret;
5944 
5945 	*trimmed = 0;
5946 
5947 	/* Discard not supported = nothing to do. */
5948 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5949 		return 0;
5950 
5951 	/* Not writable = nothing to do. */
5952 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5953 		return 0;
5954 
5955 	/* No free space = nothing to do. */
5956 	if (device->total_bytes <= device->bytes_used)
5957 		return 0;
5958 
5959 	ret = 0;
5960 
5961 	while (1) {
5962 		struct btrfs_fs_info *fs_info = device->fs_info;
5963 		u64 bytes;
5964 
5965 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5966 		if (ret)
5967 			break;
5968 
5969 		find_first_clear_extent_bit(&device->alloc_state, start,
5970 					    &start, &end,
5971 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5972 
5973 		/* Check if there are any CHUNK_* bits left */
5974 		if (start > device->total_bytes) {
5975 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5976 			btrfs_warn_in_rcu(fs_info,
5977 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5978 					  start, end - start + 1,
5979 					  rcu_str_deref(device->name),
5980 					  device->total_bytes);
5981 			mutex_unlock(&fs_info->chunk_mutex);
5982 			ret = 0;
5983 			break;
5984 		}
5985 
5986 		/* Ensure we skip the reserved area in the first 1M */
5987 		start = max_t(u64, start, SZ_1M);
5988 
5989 		/*
5990 		 * If find_first_clear_extent_bit find a range that spans the
5991 		 * end of the device it will set end to -1, in this case it's up
5992 		 * to the caller to trim the value to the size of the device.
5993 		 */
5994 		end = min(end, device->total_bytes - 1);
5995 
5996 		len = end - start + 1;
5997 
5998 		/* We didn't find any extents */
5999 		if (!len) {
6000 			mutex_unlock(&fs_info->chunk_mutex);
6001 			ret = 0;
6002 			break;
6003 		}
6004 
6005 		ret = btrfs_issue_discard(device->bdev, start, len,
6006 					  &bytes);
6007 		if (!ret)
6008 			set_extent_bits(&device->alloc_state, start,
6009 					start + bytes - 1,
6010 					CHUNK_TRIMMED);
6011 		mutex_unlock(&fs_info->chunk_mutex);
6012 
6013 		if (ret)
6014 			break;
6015 
6016 		start += len;
6017 		*trimmed += bytes;
6018 
6019 		if (fatal_signal_pending(current)) {
6020 			ret = -ERESTARTSYS;
6021 			break;
6022 		}
6023 
6024 		cond_resched();
6025 	}
6026 
6027 	return ret;
6028 }
6029 
6030 /*
6031  * Trim the whole filesystem by:
6032  * 1) trimming the free space in each block group
6033  * 2) trimming the unallocated space on each device
6034  *
6035  * This will also continue trimming even if a block group or device encounters
6036  * an error.  The return value will be the last error, or 0 if nothing bad
6037  * happens.
6038  */
6039 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6040 {
6041 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6042 	struct btrfs_block_group *cache = NULL;
6043 	struct btrfs_device *device;
6044 	u64 group_trimmed;
6045 	u64 range_end = U64_MAX;
6046 	u64 start;
6047 	u64 end;
6048 	u64 trimmed = 0;
6049 	u64 bg_failed = 0;
6050 	u64 dev_failed = 0;
6051 	int bg_ret = 0;
6052 	int dev_ret = 0;
6053 	int ret = 0;
6054 
6055 	if (range->start == U64_MAX)
6056 		return -EINVAL;
6057 
6058 	/*
6059 	 * Check range overflow if range->len is set.
6060 	 * The default range->len is U64_MAX.
6061 	 */
6062 	if (range->len != U64_MAX &&
6063 	    check_add_overflow(range->start, range->len, &range_end))
6064 		return -EINVAL;
6065 
6066 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6067 	for (; cache; cache = btrfs_next_block_group(cache)) {
6068 		if (cache->start >= range_end) {
6069 			btrfs_put_block_group(cache);
6070 			break;
6071 		}
6072 
6073 		start = max(range->start, cache->start);
6074 		end = min(range_end, cache->start + cache->length);
6075 
6076 		if (end - start >= range->minlen) {
6077 			if (!btrfs_block_group_done(cache)) {
6078 				ret = btrfs_cache_block_group(cache, 0);
6079 				if (ret) {
6080 					bg_failed++;
6081 					bg_ret = ret;
6082 					continue;
6083 				}
6084 				ret = btrfs_wait_block_group_cache_done(cache);
6085 				if (ret) {
6086 					bg_failed++;
6087 					bg_ret = ret;
6088 					continue;
6089 				}
6090 			}
6091 			ret = btrfs_trim_block_group(cache,
6092 						     &group_trimmed,
6093 						     start,
6094 						     end,
6095 						     range->minlen);
6096 
6097 			trimmed += group_trimmed;
6098 			if (ret) {
6099 				bg_failed++;
6100 				bg_ret = ret;
6101 				continue;
6102 			}
6103 		}
6104 	}
6105 
6106 	if (bg_failed)
6107 		btrfs_warn(fs_info,
6108 			"failed to trim %llu block group(s), last error %d",
6109 			bg_failed, bg_ret);
6110 
6111 	mutex_lock(&fs_devices->device_list_mutex);
6112 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6113 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6114 			continue;
6115 
6116 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6117 		if (ret) {
6118 			dev_failed++;
6119 			dev_ret = ret;
6120 			break;
6121 		}
6122 
6123 		trimmed += group_trimmed;
6124 	}
6125 	mutex_unlock(&fs_devices->device_list_mutex);
6126 
6127 	if (dev_failed)
6128 		btrfs_warn(fs_info,
6129 			"failed to trim %llu device(s), last error %d",
6130 			dev_failed, dev_ret);
6131 	range->len = trimmed;
6132 	if (bg_ret)
6133 		return bg_ret;
6134 	return dev_ret;
6135 }
6136