1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 int ret; 91 struct btrfs_key key; 92 struct btrfs_path *path; 93 94 path = btrfs_alloc_path(); 95 if (!path) 96 return -ENOMEM; 97 98 key.objectid = start; 99 key.offset = len; 100 key.type = BTRFS_EXTENT_ITEM_KEY; 101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 102 btrfs_free_path(path); 103 return ret; 104 } 105 106 /* 107 * helper function to lookup reference count and flags of a tree block. 108 * 109 * the head node for delayed ref is used to store the sum of all the 110 * reference count modifications queued up in the rbtree. the head 111 * node may also store the extent flags to set. This way you can check 112 * to see what the reference count and extent flags would be if all of 113 * the delayed refs are not processed. 114 */ 115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 116 struct btrfs_fs_info *fs_info, u64 bytenr, 117 u64 offset, int metadata, u64 *refs, u64 *flags) 118 { 119 struct btrfs_delayed_ref_head *head; 120 struct btrfs_delayed_ref_root *delayed_refs; 121 struct btrfs_path *path; 122 struct btrfs_extent_item *ei; 123 struct extent_buffer *leaf; 124 struct btrfs_key key; 125 u32 item_size; 126 u64 num_refs; 127 u64 extent_flags; 128 int ret; 129 130 /* 131 * If we don't have skinny metadata, don't bother doing anything 132 * different 133 */ 134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 135 offset = fs_info->nodesize; 136 metadata = 0; 137 } 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 if (!trans) { 144 path->skip_locking = 1; 145 path->search_commit_root = 1; 146 } 147 148 search_again: 149 key.objectid = bytenr; 150 key.offset = offset; 151 if (metadata) 152 key.type = BTRFS_METADATA_ITEM_KEY; 153 else 154 key.type = BTRFS_EXTENT_ITEM_KEY; 155 156 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 157 if (ret < 0) 158 goto out_free; 159 160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 161 if (path->slots[0]) { 162 path->slots[0]--; 163 btrfs_item_key_to_cpu(path->nodes[0], &key, 164 path->slots[0]); 165 if (key.objectid == bytenr && 166 key.type == BTRFS_EXTENT_ITEM_KEY && 167 key.offset == fs_info->nodesize) 168 ret = 0; 169 } 170 } 171 172 if (ret == 0) { 173 leaf = path->nodes[0]; 174 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 175 if (item_size >= sizeof(*ei)) { 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_extent_item); 178 num_refs = btrfs_extent_refs(leaf, ei); 179 extent_flags = btrfs_extent_flags(leaf, ei); 180 } else { 181 ret = -EINVAL; 182 btrfs_print_v0_err(fs_info); 183 if (trans) 184 btrfs_abort_transaction(trans, ret); 185 else 186 btrfs_handle_fs_error(fs_info, ret, NULL); 187 188 goto out_free; 189 } 190 191 BUG_ON(num_refs == 0); 192 } else { 193 num_refs = 0; 194 extent_flags = 0; 195 ret = 0; 196 } 197 198 if (!trans) 199 goto out; 200 201 delayed_refs = &trans->transaction->delayed_refs; 202 spin_lock(&delayed_refs->lock); 203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 204 if (head) { 205 if (!mutex_trylock(&head->mutex)) { 206 refcount_inc(&head->refs); 207 spin_unlock(&delayed_refs->lock); 208 209 btrfs_release_path(path); 210 211 /* 212 * Mutex was contended, block until it's released and try 213 * again 214 */ 215 mutex_lock(&head->mutex); 216 mutex_unlock(&head->mutex); 217 btrfs_put_delayed_ref_head(head); 218 goto search_again; 219 } 220 spin_lock(&head->lock); 221 if (head->extent_op && head->extent_op->update_flags) 222 extent_flags |= head->extent_op->flags_to_set; 223 else 224 BUG_ON(num_refs == 0); 225 226 num_refs += head->ref_mod; 227 spin_unlock(&head->lock); 228 mutex_unlock(&head->mutex); 229 } 230 spin_unlock(&delayed_refs->lock); 231 out: 232 WARN_ON(num_refs == 0); 233 if (refs) 234 *refs = num_refs; 235 if (flags) 236 *flags = extent_flags; 237 out_free: 238 btrfs_free_path(path); 239 return ret; 240 } 241 242 /* 243 * Back reference rules. Back refs have three main goals: 244 * 245 * 1) differentiate between all holders of references to an extent so that 246 * when a reference is dropped we can make sure it was a valid reference 247 * before freeing the extent. 248 * 249 * 2) Provide enough information to quickly find the holders of an extent 250 * if we notice a given block is corrupted or bad. 251 * 252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 253 * maintenance. This is actually the same as #2, but with a slightly 254 * different use case. 255 * 256 * There are two kinds of back refs. The implicit back refs is optimized 257 * for pointers in non-shared tree blocks. For a given pointer in a block, 258 * back refs of this kind provide information about the block's owner tree 259 * and the pointer's key. These information allow us to find the block by 260 * b-tree searching. The full back refs is for pointers in tree blocks not 261 * referenced by their owner trees. The location of tree block is recorded 262 * in the back refs. Actually the full back refs is generic, and can be 263 * used in all cases the implicit back refs is used. The major shortcoming 264 * of the full back refs is its overhead. Every time a tree block gets 265 * COWed, we have to update back refs entry for all pointers in it. 266 * 267 * For a newly allocated tree block, we use implicit back refs for 268 * pointers in it. This means most tree related operations only involve 269 * implicit back refs. For a tree block created in old transaction, the 270 * only way to drop a reference to it is COW it. So we can detect the 271 * event that tree block loses its owner tree's reference and do the 272 * back refs conversion. 273 * 274 * When a tree block is COWed through a tree, there are four cases: 275 * 276 * The reference count of the block is one and the tree is the block's 277 * owner tree. Nothing to do in this case. 278 * 279 * The reference count of the block is one and the tree is not the 280 * block's owner tree. In this case, full back refs is used for pointers 281 * in the block. Remove these full back refs, add implicit back refs for 282 * every pointers in the new block. 283 * 284 * The reference count of the block is greater than one and the tree is 285 * the block's owner tree. In this case, implicit back refs is used for 286 * pointers in the block. Add full back refs for every pointers in the 287 * block, increase lower level extents' reference counts. The original 288 * implicit back refs are entailed to the new block. 289 * 290 * The reference count of the block is greater than one and the tree is 291 * not the block's owner tree. Add implicit back refs for every pointer in 292 * the new block, increase lower level extents' reference count. 293 * 294 * Back Reference Key composing: 295 * 296 * The key objectid corresponds to the first byte in the extent, 297 * The key type is used to differentiate between types of back refs. 298 * There are different meanings of the key offset for different types 299 * of back refs. 300 * 301 * File extents can be referenced by: 302 * 303 * - multiple snapshots, subvolumes, or different generations in one subvol 304 * - different files inside a single subvolume 305 * - different offsets inside a file (bookend extents in file.c) 306 * 307 * The extent ref structure for the implicit back refs has fields for: 308 * 309 * - Objectid of the subvolume root 310 * - objectid of the file holding the reference 311 * - original offset in the file 312 * - how many bookend extents 313 * 314 * The key offset for the implicit back refs is hash of the first 315 * three fields. 316 * 317 * The extent ref structure for the full back refs has field for: 318 * 319 * - number of pointers in the tree leaf 320 * 321 * The key offset for the implicit back refs is the first byte of 322 * the tree leaf 323 * 324 * When a file extent is allocated, The implicit back refs is used. 325 * the fields are filled in: 326 * 327 * (root_key.objectid, inode objectid, offset in file, 1) 328 * 329 * When a file extent is removed file truncation, we find the 330 * corresponding implicit back refs and check the following fields: 331 * 332 * (btrfs_header_owner(leaf), inode objectid, offset in file) 333 * 334 * Btree extents can be referenced by: 335 * 336 * - Different subvolumes 337 * 338 * Both the implicit back refs and the full back refs for tree blocks 339 * only consist of key. The key offset for the implicit back refs is 340 * objectid of block's owner tree. The key offset for the full back refs 341 * is the first byte of parent block. 342 * 343 * When implicit back refs is used, information about the lowest key and 344 * level of the tree block are required. These information are stored in 345 * tree block info structure. 346 */ 347 348 /* 349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 352 */ 353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 354 struct btrfs_extent_inline_ref *iref, 355 enum btrfs_inline_ref_type is_data) 356 { 357 int type = btrfs_extent_inline_ref_type(eb, iref); 358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 359 360 if (type == BTRFS_TREE_BLOCK_REF_KEY || 361 type == BTRFS_SHARED_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_DATA_REF_KEY || 363 type == BTRFS_EXTENT_DATA_REF_KEY) { 364 if (is_data == BTRFS_REF_TYPE_BLOCK) { 365 if (type == BTRFS_TREE_BLOCK_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 368 ASSERT(eb->fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(eb->fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 btrfs_print_leaf((struct extent_buffer *)eb); 397 btrfs_err(eb->fs_info, 398 "eb %llu iref 0x%lx invalid extent inline ref type %d", 399 eb->start, (unsigned long)iref, type); 400 WARN_ON(1); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = trans->fs_info->extent_root; 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = trans->fs_info->extent_root; 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_path *path, 597 int refs_to_drop, int *last_ref) 598 { 599 struct btrfs_key key; 600 struct btrfs_extent_data_ref *ref1 = NULL; 601 struct btrfs_shared_data_ref *ref2 = NULL; 602 struct extent_buffer *leaf; 603 u32 num_refs = 0; 604 int ret = 0; 605 606 leaf = path->nodes[0]; 607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 608 609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 610 ref1 = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 614 ref2 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_shared_data_ref); 616 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 618 btrfs_print_v0_err(trans->fs_info); 619 btrfs_abort_transaction(trans, -EINVAL); 620 return -EINVAL; 621 } else { 622 BUG(); 623 } 624 625 BUG_ON(num_refs < refs_to_drop); 626 num_refs -= refs_to_drop; 627 628 if (num_refs == 0) { 629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 630 *last_ref = 1; 631 } else { 632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 636 btrfs_mark_buffer_dirty(leaf); 637 } 638 return ret; 639 } 640 641 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 642 struct btrfs_extent_inline_ref *iref) 643 { 644 struct btrfs_key key; 645 struct extent_buffer *leaf; 646 struct btrfs_extent_data_ref *ref1; 647 struct btrfs_shared_data_ref *ref2; 648 u32 num_refs = 0; 649 int type; 650 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 653 654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 655 if (iref) { 656 /* 657 * If type is invalid, we should have bailed out earlier than 658 * this call. 659 */ 660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 661 ASSERT(type != BTRFS_REF_TYPE_INVALID); 662 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 664 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 665 } else { 666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 667 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 668 } 669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 670 ref1 = btrfs_item_ptr(leaf, path->slots[0], 671 struct btrfs_extent_data_ref); 672 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 674 ref2 = btrfs_item_ptr(leaf, path->slots[0], 675 struct btrfs_shared_data_ref); 676 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 677 } else { 678 WARN_ON(1); 679 } 680 return num_refs; 681 } 682 683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 684 struct btrfs_path *path, 685 u64 bytenr, u64 parent, 686 u64 root_objectid) 687 { 688 struct btrfs_root *root = trans->fs_info->extent_root; 689 struct btrfs_key key; 690 int ret; 691 692 key.objectid = bytenr; 693 if (parent) { 694 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 695 key.offset = parent; 696 } else { 697 key.type = BTRFS_TREE_BLOCK_REF_KEY; 698 key.offset = root_objectid; 699 } 700 701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 702 if (ret > 0) 703 ret = -ENOENT; 704 return ret; 705 } 706 707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 708 struct btrfs_path *path, 709 u64 bytenr, u64 parent, 710 u64 root_objectid) 711 { 712 struct btrfs_key key; 713 int ret; 714 715 key.objectid = bytenr; 716 if (parent) { 717 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 718 key.offset = parent; 719 } else { 720 key.type = BTRFS_TREE_BLOCK_REF_KEY; 721 key.offset = root_objectid; 722 } 723 724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 725 path, &key, 0); 726 btrfs_release_path(path); 727 return ret; 728 } 729 730 static inline int extent_ref_type(u64 parent, u64 owner) 731 { 732 int type; 733 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 734 if (parent > 0) 735 type = BTRFS_SHARED_BLOCK_REF_KEY; 736 else 737 type = BTRFS_TREE_BLOCK_REF_KEY; 738 } else { 739 if (parent > 0) 740 type = BTRFS_SHARED_DATA_REF_KEY; 741 else 742 type = BTRFS_EXTENT_DATA_REF_KEY; 743 } 744 return type; 745 } 746 747 static int find_next_key(struct btrfs_path *path, int level, 748 struct btrfs_key *key) 749 750 { 751 for (; level < BTRFS_MAX_LEVEL; level++) { 752 if (!path->nodes[level]) 753 break; 754 if (path->slots[level] + 1 >= 755 btrfs_header_nritems(path->nodes[level])) 756 continue; 757 if (level == 0) 758 btrfs_item_key_to_cpu(path->nodes[level], key, 759 path->slots[level] + 1); 760 else 761 btrfs_node_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 return 0; 764 } 765 return 1; 766 } 767 768 /* 769 * look for inline back ref. if back ref is found, *ref_ret is set 770 * to the address of inline back ref, and 0 is returned. 771 * 772 * if back ref isn't found, *ref_ret is set to the address where it 773 * should be inserted, and -ENOENT is returned. 774 * 775 * if insert is true and there are too many inline back refs, the path 776 * points to the extent item, and -EAGAIN is returned. 777 * 778 * NOTE: inline back refs are ordered in the same way that back ref 779 * items in the tree are ordered. 780 */ 781 static noinline_for_stack 782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 783 struct btrfs_path *path, 784 struct btrfs_extent_inline_ref **ref_ret, 785 u64 bytenr, u64 num_bytes, 786 u64 parent, u64 root_objectid, 787 u64 owner, u64 offset, int insert) 788 { 789 struct btrfs_fs_info *fs_info = trans->fs_info; 790 struct btrfs_root *root = fs_info->extent_root; 791 struct btrfs_key key; 792 struct extent_buffer *leaf; 793 struct btrfs_extent_item *ei; 794 struct btrfs_extent_inline_ref *iref; 795 u64 flags; 796 u64 item_size; 797 unsigned long ptr; 798 unsigned long end; 799 int extra_size; 800 int type; 801 int want; 802 int ret; 803 int err = 0; 804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 805 int needed; 806 807 key.objectid = bytenr; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 key.offset = num_bytes; 810 811 want = extent_ref_type(parent, owner); 812 if (insert) { 813 extra_size = btrfs_extent_inline_ref_size(want); 814 path->search_for_extension = 1; 815 path->keep_locks = 1; 816 } else 817 extra_size = -1; 818 819 /* 820 * Owner is our level, so we can just add one to get the level for the 821 * block we are interested in. 822 */ 823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 824 key.type = BTRFS_METADATA_ITEM_KEY; 825 key.offset = owner; 826 } 827 828 again: 829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 830 if (ret < 0) { 831 err = ret; 832 goto out; 833 } 834 835 /* 836 * We may be a newly converted file system which still has the old fat 837 * extent entries for metadata, so try and see if we have one of those. 838 */ 839 if (ret > 0 && skinny_metadata) { 840 skinny_metadata = false; 841 if (path->slots[0]) { 842 path->slots[0]--; 843 btrfs_item_key_to_cpu(path->nodes[0], &key, 844 path->slots[0]); 845 if (key.objectid == bytenr && 846 key.type == BTRFS_EXTENT_ITEM_KEY && 847 key.offset == num_bytes) 848 ret = 0; 849 } 850 if (ret) { 851 key.objectid = bytenr; 852 key.type = BTRFS_EXTENT_ITEM_KEY; 853 key.offset = num_bytes; 854 btrfs_release_path(path); 855 goto again; 856 } 857 } 858 859 if (ret && !insert) { 860 err = -ENOENT; 861 goto out; 862 } else if (WARN_ON(ret)) { 863 err = -EIO; 864 goto out; 865 } 866 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (unlikely(item_size < sizeof(*ei))) { 870 err = -EINVAL; 871 btrfs_print_v0_err(fs_info); 872 btrfs_abort_transaction(trans, err); 873 goto out; 874 } 875 876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 877 flags = btrfs_extent_flags(leaf, ei); 878 879 ptr = (unsigned long)(ei + 1); 880 end = (unsigned long)ei + item_size; 881 882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 883 ptr += sizeof(struct btrfs_tree_block_info); 884 BUG_ON(ptr > end); 885 } 886 887 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 888 needed = BTRFS_REF_TYPE_DATA; 889 else 890 needed = BTRFS_REF_TYPE_BLOCK; 891 892 err = -ENOENT; 893 while (1) { 894 if (ptr >= end) { 895 WARN_ON(ptr > end); 896 break; 897 } 898 iref = (struct btrfs_extent_inline_ref *)ptr; 899 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 900 if (type == BTRFS_REF_TYPE_INVALID) { 901 err = -EUCLEAN; 902 goto out; 903 } 904 905 if (want < type) 906 break; 907 if (want > type) { 908 ptr += btrfs_extent_inline_ref_size(type); 909 continue; 910 } 911 912 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 913 struct btrfs_extent_data_ref *dref; 914 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 915 if (match_extent_data_ref(leaf, dref, root_objectid, 916 owner, offset)) { 917 err = 0; 918 break; 919 } 920 if (hash_extent_data_ref_item(leaf, dref) < 921 hash_extent_data_ref(root_objectid, owner, offset)) 922 break; 923 } else { 924 u64 ref_offset; 925 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 926 if (parent > 0) { 927 if (parent == ref_offset) { 928 err = 0; 929 break; 930 } 931 if (ref_offset < parent) 932 break; 933 } else { 934 if (root_objectid == ref_offset) { 935 err = 0; 936 break; 937 } 938 if (ref_offset < root_objectid) 939 break; 940 } 941 } 942 ptr += btrfs_extent_inline_ref_size(type); 943 } 944 if (err == -ENOENT && insert) { 945 if (item_size + extra_size >= 946 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 947 err = -EAGAIN; 948 goto out; 949 } 950 /* 951 * To add new inline back ref, we have to make sure 952 * there is no corresponding back ref item. 953 * For simplicity, we just do not add new inline back 954 * ref if there is any kind of item for this block 955 */ 956 if (find_next_key(path, 0, &key) == 0 && 957 key.objectid == bytenr && 958 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 959 err = -EAGAIN; 960 goto out; 961 } 962 } 963 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 964 out: 965 if (insert) { 966 path->keep_locks = 0; 967 path->search_for_extension = 0; 968 btrfs_unlock_up_safe(path, 1); 969 } 970 return err; 971 } 972 973 /* 974 * helper to add new inline back ref 975 */ 976 static noinline_for_stack 977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 978 struct btrfs_path *path, 979 struct btrfs_extent_inline_ref *iref, 980 u64 parent, u64 root_objectid, 981 u64 owner, u64 offset, int refs_to_add, 982 struct btrfs_delayed_extent_op *extent_op) 983 { 984 struct extent_buffer *leaf; 985 struct btrfs_extent_item *ei; 986 unsigned long ptr; 987 unsigned long end; 988 unsigned long item_offset; 989 u64 refs; 990 int size; 991 int type; 992 993 leaf = path->nodes[0]; 994 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 995 item_offset = (unsigned long)iref - (unsigned long)ei; 996 997 type = extent_ref_type(parent, owner); 998 size = btrfs_extent_inline_ref_size(type); 999 1000 btrfs_extend_item(path, size); 1001 1002 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1003 refs = btrfs_extent_refs(leaf, ei); 1004 refs += refs_to_add; 1005 btrfs_set_extent_refs(leaf, ei, refs); 1006 if (extent_op) 1007 __run_delayed_extent_op(extent_op, leaf, ei); 1008 1009 ptr = (unsigned long)ei + item_offset; 1010 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1011 if (ptr < end - size) 1012 memmove_extent_buffer(leaf, ptr + size, ptr, 1013 end - size - ptr); 1014 1015 iref = (struct btrfs_extent_inline_ref *)ptr; 1016 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1017 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1018 struct btrfs_extent_data_ref *dref; 1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1020 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1021 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1022 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1023 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1024 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1025 struct btrfs_shared_data_ref *sref; 1026 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1027 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1028 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1029 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1033 } 1034 btrfs_mark_buffer_dirty(leaf); 1035 } 1036 1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1038 struct btrfs_path *path, 1039 struct btrfs_extent_inline_ref **ref_ret, 1040 u64 bytenr, u64 num_bytes, u64 parent, 1041 u64 root_objectid, u64 owner, u64 offset) 1042 { 1043 int ret; 1044 1045 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1046 num_bytes, parent, root_objectid, 1047 owner, offset, 0); 1048 if (ret != -ENOENT) 1049 return ret; 1050 1051 btrfs_release_path(path); 1052 *ref_ret = NULL; 1053 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1056 root_objectid); 1057 } else { 1058 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1059 root_objectid, owner, offset); 1060 } 1061 return ret; 1062 } 1063 1064 /* 1065 * helper to update/remove inline back ref 1066 */ 1067 static noinline_for_stack 1068 void update_inline_extent_backref(struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op, 1072 int *last_ref) 1073 { 1074 struct extent_buffer *leaf = path->nodes[0]; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1088 refs += refs_to_mod; 1089 btrfs_set_extent_refs(leaf, ei, refs); 1090 if (extent_op) 1091 __run_delayed_extent_op(extent_op, leaf, ei); 1092 1093 /* 1094 * If type is invalid, we should have bailed out after 1095 * lookup_inline_extent_backref(). 1096 */ 1097 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1098 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1099 1100 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1101 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1102 refs = btrfs_extent_data_ref_count(leaf, dref); 1103 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1104 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1105 refs = btrfs_shared_data_ref_count(leaf, sref); 1106 } else { 1107 refs = 1; 1108 BUG_ON(refs_to_mod != -1); 1109 } 1110 1111 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1112 refs += refs_to_mod; 1113 1114 if (refs > 0) { 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1116 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1117 else 1118 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1119 } else { 1120 *last_ref = 1; 1121 size = btrfs_extent_inline_ref_size(type); 1122 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1123 ptr = (unsigned long)iref; 1124 end = (unsigned long)ei + item_size; 1125 if (ptr + size < end) 1126 memmove_extent_buffer(leaf, ptr, ptr + size, 1127 end - ptr - size); 1128 item_size -= size; 1129 btrfs_truncate_item(path, item_size, 1); 1130 } 1131 btrfs_mark_buffer_dirty(leaf); 1132 } 1133 1134 static noinline_for_stack 1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1136 struct btrfs_path *path, 1137 u64 bytenr, u64 num_bytes, u64 parent, 1138 u64 root_objectid, u64 owner, 1139 u64 offset, int refs_to_add, 1140 struct btrfs_delayed_extent_op *extent_op) 1141 { 1142 struct btrfs_extent_inline_ref *iref; 1143 int ret; 1144 1145 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1146 num_bytes, parent, root_objectid, 1147 owner, offset, 1); 1148 if (ret == 0) { 1149 /* 1150 * We're adding refs to a tree block we already own, this 1151 * should not happen at all. 1152 */ 1153 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1154 btrfs_crit(trans->fs_info, 1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1156 bytenr, num_bytes, root_objectid); 1157 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1158 WARN_ON(1); 1159 btrfs_crit(trans->fs_info, 1160 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1161 btrfs_print_leaf(path->nodes[0]); 1162 } 1163 return -EUCLEAN; 1164 } 1165 update_inline_extent_backref(path, iref, refs_to_add, 1166 extent_op, NULL); 1167 } else if (ret == -ENOENT) { 1168 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1169 root_objectid, owner, offset, 1170 refs_to_add, extent_op); 1171 ret = 0; 1172 } 1173 return ret; 1174 } 1175 1176 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1177 struct btrfs_path *path, 1178 struct btrfs_extent_inline_ref *iref, 1179 int refs_to_drop, int is_data, int *last_ref) 1180 { 1181 int ret = 0; 1182 1183 BUG_ON(!is_data && refs_to_drop != 1); 1184 if (iref) { 1185 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1186 last_ref); 1187 } else if (is_data) { 1188 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1189 last_ref); 1190 } else { 1191 *last_ref = 1; 1192 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1193 } 1194 return ret; 1195 } 1196 1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1198 u64 *discarded_bytes) 1199 { 1200 int j, ret = 0; 1201 u64 bytes_left, end; 1202 u64 aligned_start = ALIGN(start, 1 << 9); 1203 1204 if (WARN_ON(start != aligned_start)) { 1205 len -= aligned_start - start; 1206 len = round_down(len, 1 << 9); 1207 start = aligned_start; 1208 } 1209 1210 *discarded_bytes = 0; 1211 1212 if (!len) 1213 return 0; 1214 1215 end = start + len; 1216 bytes_left = len; 1217 1218 /* Skip any superblocks on this device. */ 1219 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1220 u64 sb_start = btrfs_sb_offset(j); 1221 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1222 u64 size = sb_start - start; 1223 1224 if (!in_range(sb_start, start, bytes_left) && 1225 !in_range(sb_end, start, bytes_left) && 1226 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1227 continue; 1228 1229 /* 1230 * Superblock spans beginning of range. Adjust start and 1231 * try again. 1232 */ 1233 if (sb_start <= start) { 1234 start += sb_end - start; 1235 if (start > end) { 1236 bytes_left = 0; 1237 break; 1238 } 1239 bytes_left = end - start; 1240 continue; 1241 } 1242 1243 if (size) { 1244 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1245 GFP_NOFS, 0); 1246 if (!ret) 1247 *discarded_bytes += size; 1248 else if (ret != -EOPNOTSUPP) 1249 return ret; 1250 } 1251 1252 start = sb_end; 1253 if (start > end) { 1254 bytes_left = 0; 1255 break; 1256 } 1257 bytes_left = end - start; 1258 } 1259 1260 if (bytes_left) { 1261 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1262 GFP_NOFS, 0); 1263 if (!ret) 1264 *discarded_bytes += bytes_left; 1265 } 1266 return ret; 1267 } 1268 1269 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes) 1270 { 1271 struct btrfs_device *dev = stripe->dev; 1272 struct btrfs_fs_info *fs_info = dev->fs_info; 1273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1274 u64 phys = stripe->physical; 1275 u64 len = stripe->length; 1276 u64 discarded = 0; 1277 int ret = 0; 1278 1279 /* Zone reset on a zoned filesystem */ 1280 if (btrfs_can_zone_reset(dev, phys, len)) { 1281 u64 src_disc; 1282 1283 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1284 if (ret) 1285 goto out; 1286 1287 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1288 dev != dev_replace->srcdev) 1289 goto out; 1290 1291 src_disc = discarded; 1292 1293 /* Send to replace target as well */ 1294 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1295 &discarded); 1296 discarded += src_disc; 1297 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) { 1298 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1299 } else { 1300 ret = 0; 1301 *bytes = 0; 1302 } 1303 1304 out: 1305 *bytes = discarded; 1306 return ret; 1307 } 1308 1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1310 u64 num_bytes, u64 *actual_bytes) 1311 { 1312 int ret = 0; 1313 u64 discarded_bytes = 0; 1314 u64 end = bytenr + num_bytes; 1315 u64 cur = bytenr; 1316 struct btrfs_io_context *bioc = NULL; 1317 1318 /* 1319 * Avoid races with device replace and make sure our bioc has devices 1320 * associated to its stripes that don't go away while we are discarding. 1321 */ 1322 btrfs_bio_counter_inc_blocked(fs_info); 1323 while (cur < end) { 1324 struct btrfs_io_stripe *stripe; 1325 int i; 1326 1327 num_bytes = end - cur; 1328 /* Tell the block device(s) that the sectors can be discarded */ 1329 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1330 &num_bytes, &bioc, 0); 1331 /* 1332 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1333 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1334 * thus we can't continue anyway. 1335 */ 1336 if (ret < 0) 1337 goto out; 1338 1339 stripe = bioc->stripes; 1340 for (i = 0; i < bioc->num_stripes; i++, stripe++) { 1341 u64 bytes; 1342 struct btrfs_device *device = stripe->dev; 1343 1344 if (!device->bdev) { 1345 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1346 continue; 1347 } 1348 1349 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 1350 continue; 1351 1352 ret = do_discard_extent(stripe, &bytes); 1353 if (!ret) { 1354 discarded_bytes += bytes; 1355 } else if (ret != -EOPNOTSUPP) { 1356 /* 1357 * Logic errors or -ENOMEM, or -EIO, but 1358 * unlikely to happen. 1359 * 1360 * And since there are two loops, explicitly 1361 * go to out to avoid confusion. 1362 */ 1363 btrfs_put_bioc(bioc); 1364 goto out; 1365 } 1366 1367 /* 1368 * Just in case we get back EOPNOTSUPP for some reason, 1369 * just ignore the return value so we don't screw up 1370 * people calling discard_extent. 1371 */ 1372 ret = 0; 1373 } 1374 btrfs_put_bioc(bioc); 1375 cur += num_bytes; 1376 } 1377 out: 1378 btrfs_bio_counter_dec(fs_info); 1379 1380 if (actual_bytes) 1381 *actual_bytes = discarded_bytes; 1382 1383 1384 if (ret == -EOPNOTSUPP) 1385 ret = 0; 1386 return ret; 1387 } 1388 1389 /* Can return -ENOMEM */ 1390 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1391 struct btrfs_ref *generic_ref) 1392 { 1393 struct btrfs_fs_info *fs_info = trans->fs_info; 1394 int ret; 1395 1396 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1397 generic_ref->action); 1398 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1399 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1400 1401 if (generic_ref->type == BTRFS_REF_METADATA) 1402 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1403 else 1404 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1405 1406 btrfs_ref_tree_mod(fs_info, generic_ref); 1407 1408 return ret; 1409 } 1410 1411 /* 1412 * __btrfs_inc_extent_ref - insert backreference for a given extent 1413 * 1414 * The counterpart is in __btrfs_free_extent(), with examples and more details 1415 * how it works. 1416 * 1417 * @trans: Handle of transaction 1418 * 1419 * @node: The delayed ref node used to get the bytenr/length for 1420 * extent whose references are incremented. 1421 * 1422 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1423 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1424 * bytenr of the parent block. Since new extents are always 1425 * created with indirect references, this will only be the case 1426 * when relocating a shared extent. In that case, root_objectid 1427 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1428 * be 0 1429 * 1430 * @root_objectid: The id of the root where this modification has originated, 1431 * this can be either one of the well-known metadata trees or 1432 * the subvolume id which references this extent. 1433 * 1434 * @owner: For data extents it is the inode number of the owning file. 1435 * For metadata extents this parameter holds the level in the 1436 * tree of the extent. 1437 * 1438 * @offset: For metadata extents the offset is ignored and is currently 1439 * always passed as 0. For data extents it is the fileoffset 1440 * this extent belongs to. 1441 * 1442 * @refs_to_add Number of references to add 1443 * 1444 * @extent_op Pointer to a structure, holding information necessary when 1445 * updating a tree block's flags 1446 * 1447 */ 1448 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1449 struct btrfs_delayed_ref_node *node, 1450 u64 parent, u64 root_objectid, 1451 u64 owner, u64 offset, int refs_to_add, 1452 struct btrfs_delayed_extent_op *extent_op) 1453 { 1454 struct btrfs_path *path; 1455 struct extent_buffer *leaf; 1456 struct btrfs_extent_item *item; 1457 struct btrfs_key key; 1458 u64 bytenr = node->bytenr; 1459 u64 num_bytes = node->num_bytes; 1460 u64 refs; 1461 int ret; 1462 1463 path = btrfs_alloc_path(); 1464 if (!path) 1465 return -ENOMEM; 1466 1467 /* this will setup the path even if it fails to insert the back ref */ 1468 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1469 parent, root_objectid, owner, 1470 offset, refs_to_add, extent_op); 1471 if ((ret < 0 && ret != -EAGAIN) || !ret) 1472 goto out; 1473 1474 /* 1475 * Ok we had -EAGAIN which means we didn't have space to insert and 1476 * inline extent ref, so just update the reference count and add a 1477 * normal backref. 1478 */ 1479 leaf = path->nodes[0]; 1480 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1482 refs = btrfs_extent_refs(leaf, item); 1483 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1484 if (extent_op) 1485 __run_delayed_extent_op(extent_op, leaf, item); 1486 1487 btrfs_mark_buffer_dirty(leaf); 1488 btrfs_release_path(path); 1489 1490 /* now insert the actual backref */ 1491 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1492 BUG_ON(refs_to_add != 1); 1493 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1494 root_objectid); 1495 } else { 1496 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1497 root_objectid, owner, offset, 1498 refs_to_add); 1499 } 1500 if (ret) 1501 btrfs_abort_transaction(trans, ret); 1502 out: 1503 btrfs_free_path(path); 1504 return ret; 1505 } 1506 1507 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1508 struct btrfs_delayed_ref_node *node, 1509 struct btrfs_delayed_extent_op *extent_op, 1510 int insert_reserved) 1511 { 1512 int ret = 0; 1513 struct btrfs_delayed_data_ref *ref; 1514 struct btrfs_key ins; 1515 u64 parent = 0; 1516 u64 ref_root = 0; 1517 u64 flags = 0; 1518 1519 ins.objectid = node->bytenr; 1520 ins.offset = node->num_bytes; 1521 ins.type = BTRFS_EXTENT_ITEM_KEY; 1522 1523 ref = btrfs_delayed_node_to_data_ref(node); 1524 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1525 1526 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1527 parent = ref->parent; 1528 ref_root = ref->root; 1529 1530 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1531 if (extent_op) 1532 flags |= extent_op->flags_to_set; 1533 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1534 flags, ref->objectid, 1535 ref->offset, &ins, 1536 node->ref_mod); 1537 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1538 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1539 ref->objectid, ref->offset, 1540 node->ref_mod, extent_op); 1541 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1542 ret = __btrfs_free_extent(trans, node, parent, 1543 ref_root, ref->objectid, 1544 ref->offset, node->ref_mod, 1545 extent_op); 1546 } else { 1547 BUG(); 1548 } 1549 return ret; 1550 } 1551 1552 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1553 struct extent_buffer *leaf, 1554 struct btrfs_extent_item *ei) 1555 { 1556 u64 flags = btrfs_extent_flags(leaf, ei); 1557 if (extent_op->update_flags) { 1558 flags |= extent_op->flags_to_set; 1559 btrfs_set_extent_flags(leaf, ei, flags); 1560 } 1561 1562 if (extent_op->update_key) { 1563 struct btrfs_tree_block_info *bi; 1564 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1565 bi = (struct btrfs_tree_block_info *)(ei + 1); 1566 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1567 } 1568 } 1569 1570 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1571 struct btrfs_delayed_ref_head *head, 1572 struct btrfs_delayed_extent_op *extent_op) 1573 { 1574 struct btrfs_fs_info *fs_info = trans->fs_info; 1575 struct btrfs_key key; 1576 struct btrfs_path *path; 1577 struct btrfs_extent_item *ei; 1578 struct extent_buffer *leaf; 1579 u32 item_size; 1580 int ret; 1581 int err = 0; 1582 int metadata = !extent_op->is_data; 1583 1584 if (TRANS_ABORTED(trans)) 1585 return 0; 1586 1587 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1588 metadata = 0; 1589 1590 path = btrfs_alloc_path(); 1591 if (!path) 1592 return -ENOMEM; 1593 1594 key.objectid = head->bytenr; 1595 1596 if (metadata) { 1597 key.type = BTRFS_METADATA_ITEM_KEY; 1598 key.offset = extent_op->level; 1599 } else { 1600 key.type = BTRFS_EXTENT_ITEM_KEY; 1601 key.offset = head->num_bytes; 1602 } 1603 1604 again: 1605 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1606 if (ret < 0) { 1607 err = ret; 1608 goto out; 1609 } 1610 if (ret > 0) { 1611 if (metadata) { 1612 if (path->slots[0] > 0) { 1613 path->slots[0]--; 1614 btrfs_item_key_to_cpu(path->nodes[0], &key, 1615 path->slots[0]); 1616 if (key.objectid == head->bytenr && 1617 key.type == BTRFS_EXTENT_ITEM_KEY && 1618 key.offset == head->num_bytes) 1619 ret = 0; 1620 } 1621 if (ret > 0) { 1622 btrfs_release_path(path); 1623 metadata = 0; 1624 1625 key.objectid = head->bytenr; 1626 key.offset = head->num_bytes; 1627 key.type = BTRFS_EXTENT_ITEM_KEY; 1628 goto again; 1629 } 1630 } else { 1631 err = -EIO; 1632 goto out; 1633 } 1634 } 1635 1636 leaf = path->nodes[0]; 1637 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1638 1639 if (unlikely(item_size < sizeof(*ei))) { 1640 err = -EINVAL; 1641 btrfs_print_v0_err(fs_info); 1642 btrfs_abort_transaction(trans, err); 1643 goto out; 1644 } 1645 1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1647 __run_delayed_extent_op(extent_op, leaf, ei); 1648 1649 btrfs_mark_buffer_dirty(leaf); 1650 out: 1651 btrfs_free_path(path); 1652 return err; 1653 } 1654 1655 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1656 struct btrfs_delayed_ref_node *node, 1657 struct btrfs_delayed_extent_op *extent_op, 1658 int insert_reserved) 1659 { 1660 int ret = 0; 1661 struct btrfs_delayed_tree_ref *ref; 1662 u64 parent = 0; 1663 u64 ref_root = 0; 1664 1665 ref = btrfs_delayed_node_to_tree_ref(node); 1666 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1667 1668 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1669 parent = ref->parent; 1670 ref_root = ref->root; 1671 1672 if (node->ref_mod != 1) { 1673 btrfs_err(trans->fs_info, 1674 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1675 node->bytenr, node->ref_mod, node->action, ref_root, 1676 parent); 1677 return -EIO; 1678 } 1679 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1680 BUG_ON(!extent_op || !extent_op->update_flags); 1681 ret = alloc_reserved_tree_block(trans, node, extent_op); 1682 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1683 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1684 ref->level, 0, 1, extent_op); 1685 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1686 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1687 ref->level, 0, 1, extent_op); 1688 } else { 1689 BUG(); 1690 } 1691 return ret; 1692 } 1693 1694 /* helper function to actually process a single delayed ref entry */ 1695 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1696 struct btrfs_delayed_ref_node *node, 1697 struct btrfs_delayed_extent_op *extent_op, 1698 int insert_reserved) 1699 { 1700 int ret = 0; 1701 1702 if (TRANS_ABORTED(trans)) { 1703 if (insert_reserved) 1704 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1705 return 0; 1706 } 1707 1708 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1709 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1710 ret = run_delayed_tree_ref(trans, node, extent_op, 1711 insert_reserved); 1712 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1713 node->type == BTRFS_SHARED_DATA_REF_KEY) 1714 ret = run_delayed_data_ref(trans, node, extent_op, 1715 insert_reserved); 1716 else 1717 BUG(); 1718 if (ret && insert_reserved) 1719 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1720 return ret; 1721 } 1722 1723 static inline struct btrfs_delayed_ref_node * 1724 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1725 { 1726 struct btrfs_delayed_ref_node *ref; 1727 1728 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1729 return NULL; 1730 1731 /* 1732 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1733 * This is to prevent a ref count from going down to zero, which deletes 1734 * the extent item from the extent tree, when there still are references 1735 * to add, which would fail because they would not find the extent item. 1736 */ 1737 if (!list_empty(&head->ref_add_list)) 1738 return list_first_entry(&head->ref_add_list, 1739 struct btrfs_delayed_ref_node, add_list); 1740 1741 ref = rb_entry(rb_first_cached(&head->ref_tree), 1742 struct btrfs_delayed_ref_node, ref_node); 1743 ASSERT(list_empty(&ref->add_list)); 1744 return ref; 1745 } 1746 1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1748 struct btrfs_delayed_ref_head *head) 1749 { 1750 spin_lock(&delayed_refs->lock); 1751 head->processing = 0; 1752 delayed_refs->num_heads_ready++; 1753 spin_unlock(&delayed_refs->lock); 1754 btrfs_delayed_ref_unlock(head); 1755 } 1756 1757 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1758 struct btrfs_delayed_ref_head *head) 1759 { 1760 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1761 1762 if (!extent_op) 1763 return NULL; 1764 1765 if (head->must_insert_reserved) { 1766 head->extent_op = NULL; 1767 btrfs_free_delayed_extent_op(extent_op); 1768 return NULL; 1769 } 1770 return extent_op; 1771 } 1772 1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1774 struct btrfs_delayed_ref_head *head) 1775 { 1776 struct btrfs_delayed_extent_op *extent_op; 1777 int ret; 1778 1779 extent_op = cleanup_extent_op(head); 1780 if (!extent_op) 1781 return 0; 1782 head->extent_op = NULL; 1783 spin_unlock(&head->lock); 1784 ret = run_delayed_extent_op(trans, head, extent_op); 1785 btrfs_free_delayed_extent_op(extent_op); 1786 return ret ? ret : 1; 1787 } 1788 1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1790 struct btrfs_delayed_ref_root *delayed_refs, 1791 struct btrfs_delayed_ref_head *head) 1792 { 1793 int nr_items = 1; /* Dropping this ref head update. */ 1794 1795 /* 1796 * We had csum deletions accounted for in our delayed refs rsv, we need 1797 * to drop the csum leaves for this update from our delayed_refs_rsv. 1798 */ 1799 if (head->total_ref_mod < 0 && head->is_data) { 1800 spin_lock(&delayed_refs->lock); 1801 delayed_refs->pending_csums -= head->num_bytes; 1802 spin_unlock(&delayed_refs->lock); 1803 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1804 } 1805 1806 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1807 } 1808 1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1810 struct btrfs_delayed_ref_head *head) 1811 { 1812 1813 struct btrfs_fs_info *fs_info = trans->fs_info; 1814 struct btrfs_delayed_ref_root *delayed_refs; 1815 int ret; 1816 1817 delayed_refs = &trans->transaction->delayed_refs; 1818 1819 ret = run_and_cleanup_extent_op(trans, head); 1820 if (ret < 0) { 1821 unselect_delayed_ref_head(delayed_refs, head); 1822 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1823 return ret; 1824 } else if (ret) { 1825 return ret; 1826 } 1827 1828 /* 1829 * Need to drop our head ref lock and re-acquire the delayed ref lock 1830 * and then re-check to make sure nobody got added. 1831 */ 1832 spin_unlock(&head->lock); 1833 spin_lock(&delayed_refs->lock); 1834 spin_lock(&head->lock); 1835 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1836 spin_unlock(&head->lock); 1837 spin_unlock(&delayed_refs->lock); 1838 return 1; 1839 } 1840 btrfs_delete_ref_head(delayed_refs, head); 1841 spin_unlock(&head->lock); 1842 spin_unlock(&delayed_refs->lock); 1843 1844 if (head->must_insert_reserved) { 1845 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1846 if (head->is_data) { 1847 ret = btrfs_del_csums(trans, fs_info->csum_root, 1848 head->bytenr, head->num_bytes); 1849 } 1850 } 1851 1852 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1853 1854 trace_run_delayed_ref_head(fs_info, head, 0); 1855 btrfs_delayed_ref_unlock(head); 1856 btrfs_put_delayed_ref_head(head); 1857 return ret; 1858 } 1859 1860 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1861 struct btrfs_trans_handle *trans) 1862 { 1863 struct btrfs_delayed_ref_root *delayed_refs = 1864 &trans->transaction->delayed_refs; 1865 struct btrfs_delayed_ref_head *head = NULL; 1866 int ret; 1867 1868 spin_lock(&delayed_refs->lock); 1869 head = btrfs_select_ref_head(delayed_refs); 1870 if (!head) { 1871 spin_unlock(&delayed_refs->lock); 1872 return head; 1873 } 1874 1875 /* 1876 * Grab the lock that says we are going to process all the refs for 1877 * this head 1878 */ 1879 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1880 spin_unlock(&delayed_refs->lock); 1881 1882 /* 1883 * We may have dropped the spin lock to get the head mutex lock, and 1884 * that might have given someone else time to free the head. If that's 1885 * true, it has been removed from our list and we can move on. 1886 */ 1887 if (ret == -EAGAIN) 1888 head = ERR_PTR(-EAGAIN); 1889 1890 return head; 1891 } 1892 1893 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1894 struct btrfs_delayed_ref_head *locked_ref, 1895 unsigned long *run_refs) 1896 { 1897 struct btrfs_fs_info *fs_info = trans->fs_info; 1898 struct btrfs_delayed_ref_root *delayed_refs; 1899 struct btrfs_delayed_extent_op *extent_op; 1900 struct btrfs_delayed_ref_node *ref; 1901 int must_insert_reserved = 0; 1902 int ret; 1903 1904 delayed_refs = &trans->transaction->delayed_refs; 1905 1906 lockdep_assert_held(&locked_ref->mutex); 1907 lockdep_assert_held(&locked_ref->lock); 1908 1909 while ((ref = select_delayed_ref(locked_ref))) { 1910 if (ref->seq && 1911 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1912 spin_unlock(&locked_ref->lock); 1913 unselect_delayed_ref_head(delayed_refs, locked_ref); 1914 return -EAGAIN; 1915 } 1916 1917 (*run_refs)++; 1918 ref->in_tree = 0; 1919 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1920 RB_CLEAR_NODE(&ref->ref_node); 1921 if (!list_empty(&ref->add_list)) 1922 list_del(&ref->add_list); 1923 /* 1924 * When we play the delayed ref, also correct the ref_mod on 1925 * head 1926 */ 1927 switch (ref->action) { 1928 case BTRFS_ADD_DELAYED_REF: 1929 case BTRFS_ADD_DELAYED_EXTENT: 1930 locked_ref->ref_mod -= ref->ref_mod; 1931 break; 1932 case BTRFS_DROP_DELAYED_REF: 1933 locked_ref->ref_mod += ref->ref_mod; 1934 break; 1935 default: 1936 WARN_ON(1); 1937 } 1938 atomic_dec(&delayed_refs->num_entries); 1939 1940 /* 1941 * Record the must_insert_reserved flag before we drop the 1942 * spin lock. 1943 */ 1944 must_insert_reserved = locked_ref->must_insert_reserved; 1945 locked_ref->must_insert_reserved = 0; 1946 1947 extent_op = locked_ref->extent_op; 1948 locked_ref->extent_op = NULL; 1949 spin_unlock(&locked_ref->lock); 1950 1951 ret = run_one_delayed_ref(trans, ref, extent_op, 1952 must_insert_reserved); 1953 1954 btrfs_free_delayed_extent_op(extent_op); 1955 if (ret) { 1956 unselect_delayed_ref_head(delayed_refs, locked_ref); 1957 btrfs_put_delayed_ref(ref); 1958 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1959 ret); 1960 return ret; 1961 } 1962 1963 btrfs_put_delayed_ref(ref); 1964 cond_resched(); 1965 1966 spin_lock(&locked_ref->lock); 1967 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1968 } 1969 1970 return 0; 1971 } 1972 1973 /* 1974 * Returns 0 on success or if called with an already aborted transaction. 1975 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1976 */ 1977 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1978 unsigned long nr) 1979 { 1980 struct btrfs_fs_info *fs_info = trans->fs_info; 1981 struct btrfs_delayed_ref_root *delayed_refs; 1982 struct btrfs_delayed_ref_head *locked_ref = NULL; 1983 ktime_t start = ktime_get(); 1984 int ret; 1985 unsigned long count = 0; 1986 unsigned long actual_count = 0; 1987 1988 delayed_refs = &trans->transaction->delayed_refs; 1989 do { 1990 if (!locked_ref) { 1991 locked_ref = btrfs_obtain_ref_head(trans); 1992 if (IS_ERR_OR_NULL(locked_ref)) { 1993 if (PTR_ERR(locked_ref) == -EAGAIN) { 1994 continue; 1995 } else { 1996 break; 1997 } 1998 } 1999 count++; 2000 } 2001 /* 2002 * We need to try and merge add/drops of the same ref since we 2003 * can run into issues with relocate dropping the implicit ref 2004 * and then it being added back again before the drop can 2005 * finish. If we merged anything we need to re-loop so we can 2006 * get a good ref. 2007 * Or we can get node references of the same type that weren't 2008 * merged when created due to bumps in the tree mod seq, and 2009 * we need to merge them to prevent adding an inline extent 2010 * backref before dropping it (triggering a BUG_ON at 2011 * insert_inline_extent_backref()). 2012 */ 2013 spin_lock(&locked_ref->lock); 2014 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2015 2016 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2017 &actual_count); 2018 if (ret < 0 && ret != -EAGAIN) { 2019 /* 2020 * Error, btrfs_run_delayed_refs_for_head already 2021 * unlocked everything so just bail out 2022 */ 2023 return ret; 2024 } else if (!ret) { 2025 /* 2026 * Success, perform the usual cleanup of a processed 2027 * head 2028 */ 2029 ret = cleanup_ref_head(trans, locked_ref); 2030 if (ret > 0 ) { 2031 /* We dropped our lock, we need to loop. */ 2032 ret = 0; 2033 continue; 2034 } else if (ret) { 2035 return ret; 2036 } 2037 } 2038 2039 /* 2040 * Either success case or btrfs_run_delayed_refs_for_head 2041 * returned -EAGAIN, meaning we need to select another head 2042 */ 2043 2044 locked_ref = NULL; 2045 cond_resched(); 2046 } while ((nr != -1 && count < nr) || locked_ref); 2047 2048 /* 2049 * We don't want to include ref heads since we can have empty ref heads 2050 * and those will drastically skew our runtime down since we just do 2051 * accounting, no actual extent tree updates. 2052 */ 2053 if (actual_count > 0) { 2054 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2055 u64 avg; 2056 2057 /* 2058 * We weigh the current average higher than our current runtime 2059 * to avoid large swings in the average. 2060 */ 2061 spin_lock(&delayed_refs->lock); 2062 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2063 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2064 spin_unlock(&delayed_refs->lock); 2065 } 2066 return 0; 2067 } 2068 2069 #ifdef SCRAMBLE_DELAYED_REFS 2070 /* 2071 * Normally delayed refs get processed in ascending bytenr order. This 2072 * correlates in most cases to the order added. To expose dependencies on this 2073 * order, we start to process the tree in the middle instead of the beginning 2074 */ 2075 static u64 find_middle(struct rb_root *root) 2076 { 2077 struct rb_node *n = root->rb_node; 2078 struct btrfs_delayed_ref_node *entry; 2079 int alt = 1; 2080 u64 middle; 2081 u64 first = 0, last = 0; 2082 2083 n = rb_first(root); 2084 if (n) { 2085 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2086 first = entry->bytenr; 2087 } 2088 n = rb_last(root); 2089 if (n) { 2090 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2091 last = entry->bytenr; 2092 } 2093 n = root->rb_node; 2094 2095 while (n) { 2096 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2097 WARN_ON(!entry->in_tree); 2098 2099 middle = entry->bytenr; 2100 2101 if (alt) 2102 n = n->rb_left; 2103 else 2104 n = n->rb_right; 2105 2106 alt = 1 - alt; 2107 } 2108 return middle; 2109 } 2110 #endif 2111 2112 /* 2113 * this starts processing the delayed reference count updates and 2114 * extent insertions we have queued up so far. count can be 2115 * 0, which means to process everything in the tree at the start 2116 * of the run (but not newly added entries), or it can be some target 2117 * number you'd like to process. 2118 * 2119 * Returns 0 on success or if called with an aborted transaction 2120 * Returns <0 on error and aborts the transaction 2121 */ 2122 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2123 unsigned long count) 2124 { 2125 struct btrfs_fs_info *fs_info = trans->fs_info; 2126 struct rb_node *node; 2127 struct btrfs_delayed_ref_root *delayed_refs; 2128 struct btrfs_delayed_ref_head *head; 2129 int ret; 2130 int run_all = count == (unsigned long)-1; 2131 2132 /* We'll clean this up in btrfs_cleanup_transaction */ 2133 if (TRANS_ABORTED(trans)) 2134 return 0; 2135 2136 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2137 return 0; 2138 2139 delayed_refs = &trans->transaction->delayed_refs; 2140 if (count == 0) 2141 count = delayed_refs->num_heads_ready; 2142 2143 again: 2144 #ifdef SCRAMBLE_DELAYED_REFS 2145 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2146 #endif 2147 ret = __btrfs_run_delayed_refs(trans, count); 2148 if (ret < 0) { 2149 btrfs_abort_transaction(trans, ret); 2150 return ret; 2151 } 2152 2153 if (run_all) { 2154 btrfs_create_pending_block_groups(trans); 2155 2156 spin_lock(&delayed_refs->lock); 2157 node = rb_first_cached(&delayed_refs->href_root); 2158 if (!node) { 2159 spin_unlock(&delayed_refs->lock); 2160 goto out; 2161 } 2162 head = rb_entry(node, struct btrfs_delayed_ref_head, 2163 href_node); 2164 refcount_inc(&head->refs); 2165 spin_unlock(&delayed_refs->lock); 2166 2167 /* Mutex was contended, block until it's released and retry. */ 2168 mutex_lock(&head->mutex); 2169 mutex_unlock(&head->mutex); 2170 2171 btrfs_put_delayed_ref_head(head); 2172 cond_resched(); 2173 goto again; 2174 } 2175 out: 2176 return 0; 2177 } 2178 2179 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2180 struct extent_buffer *eb, u64 flags, 2181 int level, int is_data) 2182 { 2183 struct btrfs_delayed_extent_op *extent_op; 2184 int ret; 2185 2186 extent_op = btrfs_alloc_delayed_extent_op(); 2187 if (!extent_op) 2188 return -ENOMEM; 2189 2190 extent_op->flags_to_set = flags; 2191 extent_op->update_flags = true; 2192 extent_op->update_key = false; 2193 extent_op->is_data = is_data ? true : false; 2194 extent_op->level = level; 2195 2196 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2197 if (ret) 2198 btrfs_free_delayed_extent_op(extent_op); 2199 return ret; 2200 } 2201 2202 static noinline int check_delayed_ref(struct btrfs_root *root, 2203 struct btrfs_path *path, 2204 u64 objectid, u64 offset, u64 bytenr) 2205 { 2206 struct btrfs_delayed_ref_head *head; 2207 struct btrfs_delayed_ref_node *ref; 2208 struct btrfs_delayed_data_ref *data_ref; 2209 struct btrfs_delayed_ref_root *delayed_refs; 2210 struct btrfs_transaction *cur_trans; 2211 struct rb_node *node; 2212 int ret = 0; 2213 2214 spin_lock(&root->fs_info->trans_lock); 2215 cur_trans = root->fs_info->running_transaction; 2216 if (cur_trans) 2217 refcount_inc(&cur_trans->use_count); 2218 spin_unlock(&root->fs_info->trans_lock); 2219 if (!cur_trans) 2220 return 0; 2221 2222 delayed_refs = &cur_trans->delayed_refs; 2223 spin_lock(&delayed_refs->lock); 2224 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2225 if (!head) { 2226 spin_unlock(&delayed_refs->lock); 2227 btrfs_put_transaction(cur_trans); 2228 return 0; 2229 } 2230 2231 if (!mutex_trylock(&head->mutex)) { 2232 refcount_inc(&head->refs); 2233 spin_unlock(&delayed_refs->lock); 2234 2235 btrfs_release_path(path); 2236 2237 /* 2238 * Mutex was contended, block until it's released and let 2239 * caller try again 2240 */ 2241 mutex_lock(&head->mutex); 2242 mutex_unlock(&head->mutex); 2243 btrfs_put_delayed_ref_head(head); 2244 btrfs_put_transaction(cur_trans); 2245 return -EAGAIN; 2246 } 2247 spin_unlock(&delayed_refs->lock); 2248 2249 spin_lock(&head->lock); 2250 /* 2251 * XXX: We should replace this with a proper search function in the 2252 * future. 2253 */ 2254 for (node = rb_first_cached(&head->ref_tree); node; 2255 node = rb_next(node)) { 2256 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2257 /* If it's a shared ref we know a cross reference exists */ 2258 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2259 ret = 1; 2260 break; 2261 } 2262 2263 data_ref = btrfs_delayed_node_to_data_ref(ref); 2264 2265 /* 2266 * If our ref doesn't match the one we're currently looking at 2267 * then we have a cross reference. 2268 */ 2269 if (data_ref->root != root->root_key.objectid || 2270 data_ref->objectid != objectid || 2271 data_ref->offset != offset) { 2272 ret = 1; 2273 break; 2274 } 2275 } 2276 spin_unlock(&head->lock); 2277 mutex_unlock(&head->mutex); 2278 btrfs_put_transaction(cur_trans); 2279 return ret; 2280 } 2281 2282 static noinline int check_committed_ref(struct btrfs_root *root, 2283 struct btrfs_path *path, 2284 u64 objectid, u64 offset, u64 bytenr, 2285 bool strict) 2286 { 2287 struct btrfs_fs_info *fs_info = root->fs_info; 2288 struct btrfs_root *extent_root = fs_info->extent_root; 2289 struct extent_buffer *leaf; 2290 struct btrfs_extent_data_ref *ref; 2291 struct btrfs_extent_inline_ref *iref; 2292 struct btrfs_extent_item *ei; 2293 struct btrfs_key key; 2294 u32 item_size; 2295 int type; 2296 int ret; 2297 2298 key.objectid = bytenr; 2299 key.offset = (u64)-1; 2300 key.type = BTRFS_EXTENT_ITEM_KEY; 2301 2302 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2303 if (ret < 0) 2304 goto out; 2305 BUG_ON(ret == 0); /* Corruption */ 2306 2307 ret = -ENOENT; 2308 if (path->slots[0] == 0) 2309 goto out; 2310 2311 path->slots[0]--; 2312 leaf = path->nodes[0]; 2313 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2314 2315 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2316 goto out; 2317 2318 ret = 1; 2319 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2320 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2321 2322 /* If extent item has more than 1 inline ref then it's shared */ 2323 if (item_size != sizeof(*ei) + 2324 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2325 goto out; 2326 2327 /* 2328 * If extent created before last snapshot => it's shared unless the 2329 * snapshot has been deleted. Use the heuristic if strict is false. 2330 */ 2331 if (!strict && 2332 (btrfs_extent_generation(leaf, ei) <= 2333 btrfs_root_last_snapshot(&root->root_item))) 2334 goto out; 2335 2336 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2337 2338 /* If this extent has SHARED_DATA_REF then it's shared */ 2339 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2340 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2341 goto out; 2342 2343 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2344 if (btrfs_extent_refs(leaf, ei) != 2345 btrfs_extent_data_ref_count(leaf, ref) || 2346 btrfs_extent_data_ref_root(leaf, ref) != 2347 root->root_key.objectid || 2348 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2349 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2350 goto out; 2351 2352 ret = 0; 2353 out: 2354 return ret; 2355 } 2356 2357 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2358 u64 bytenr, bool strict) 2359 { 2360 struct btrfs_path *path; 2361 int ret; 2362 2363 path = btrfs_alloc_path(); 2364 if (!path) 2365 return -ENOMEM; 2366 2367 do { 2368 ret = check_committed_ref(root, path, objectid, 2369 offset, bytenr, strict); 2370 if (ret && ret != -ENOENT) 2371 goto out; 2372 2373 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2374 } while (ret == -EAGAIN); 2375 2376 out: 2377 btrfs_free_path(path); 2378 if (btrfs_is_data_reloc_root(root)) 2379 WARN_ON(ret > 0); 2380 return ret; 2381 } 2382 2383 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2384 struct btrfs_root *root, 2385 struct extent_buffer *buf, 2386 int full_backref, int inc) 2387 { 2388 struct btrfs_fs_info *fs_info = root->fs_info; 2389 u64 bytenr; 2390 u64 num_bytes; 2391 u64 parent; 2392 u64 ref_root; 2393 u32 nritems; 2394 struct btrfs_key key; 2395 struct btrfs_file_extent_item *fi; 2396 struct btrfs_ref generic_ref = { 0 }; 2397 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2398 int i; 2399 int action; 2400 int level; 2401 int ret = 0; 2402 2403 if (btrfs_is_testing(fs_info)) 2404 return 0; 2405 2406 ref_root = btrfs_header_owner(buf); 2407 nritems = btrfs_header_nritems(buf); 2408 level = btrfs_header_level(buf); 2409 2410 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2411 return 0; 2412 2413 if (full_backref) 2414 parent = buf->start; 2415 else 2416 parent = 0; 2417 if (inc) 2418 action = BTRFS_ADD_DELAYED_REF; 2419 else 2420 action = BTRFS_DROP_DELAYED_REF; 2421 2422 for (i = 0; i < nritems; i++) { 2423 if (level == 0) { 2424 btrfs_item_key_to_cpu(buf, &key, i); 2425 if (key.type != BTRFS_EXTENT_DATA_KEY) 2426 continue; 2427 fi = btrfs_item_ptr(buf, i, 2428 struct btrfs_file_extent_item); 2429 if (btrfs_file_extent_type(buf, fi) == 2430 BTRFS_FILE_EXTENT_INLINE) 2431 continue; 2432 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2433 if (bytenr == 0) 2434 continue; 2435 2436 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2437 key.offset -= btrfs_file_extent_offset(buf, fi); 2438 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2439 num_bytes, parent); 2440 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2441 key.offset, root->root_key.objectid, 2442 for_reloc); 2443 if (inc) 2444 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2445 else 2446 ret = btrfs_free_extent(trans, &generic_ref); 2447 if (ret) 2448 goto fail; 2449 } else { 2450 bytenr = btrfs_node_blockptr(buf, i); 2451 num_bytes = fs_info->nodesize; 2452 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2453 num_bytes, parent); 2454 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2455 root->root_key.objectid, for_reloc); 2456 if (inc) 2457 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2458 else 2459 ret = btrfs_free_extent(trans, &generic_ref); 2460 if (ret) 2461 goto fail; 2462 } 2463 } 2464 return 0; 2465 fail: 2466 return ret; 2467 } 2468 2469 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2470 struct extent_buffer *buf, int full_backref) 2471 { 2472 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2473 } 2474 2475 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2476 struct extent_buffer *buf, int full_backref) 2477 { 2478 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2479 } 2480 2481 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2482 { 2483 struct btrfs_fs_info *fs_info = root->fs_info; 2484 u64 flags; 2485 u64 ret; 2486 2487 if (data) 2488 flags = BTRFS_BLOCK_GROUP_DATA; 2489 else if (root == fs_info->chunk_root) 2490 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2491 else 2492 flags = BTRFS_BLOCK_GROUP_METADATA; 2493 2494 ret = btrfs_get_alloc_profile(fs_info, flags); 2495 return ret; 2496 } 2497 2498 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2499 { 2500 struct btrfs_block_group *cache; 2501 u64 bytenr; 2502 2503 spin_lock(&fs_info->block_group_cache_lock); 2504 bytenr = fs_info->first_logical_byte; 2505 spin_unlock(&fs_info->block_group_cache_lock); 2506 2507 if (bytenr < (u64)-1) 2508 return bytenr; 2509 2510 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2511 if (!cache) 2512 return 0; 2513 2514 bytenr = cache->start; 2515 btrfs_put_block_group(cache); 2516 2517 return bytenr; 2518 } 2519 2520 static int pin_down_extent(struct btrfs_trans_handle *trans, 2521 struct btrfs_block_group *cache, 2522 u64 bytenr, u64 num_bytes, int reserved) 2523 { 2524 struct btrfs_fs_info *fs_info = cache->fs_info; 2525 2526 spin_lock(&cache->space_info->lock); 2527 spin_lock(&cache->lock); 2528 cache->pinned += num_bytes; 2529 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2530 num_bytes); 2531 if (reserved) { 2532 cache->reserved -= num_bytes; 2533 cache->space_info->bytes_reserved -= num_bytes; 2534 } 2535 spin_unlock(&cache->lock); 2536 spin_unlock(&cache->space_info->lock); 2537 2538 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2539 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2540 return 0; 2541 } 2542 2543 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2544 u64 bytenr, u64 num_bytes, int reserved) 2545 { 2546 struct btrfs_block_group *cache; 2547 2548 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2549 BUG_ON(!cache); /* Logic error */ 2550 2551 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2552 2553 btrfs_put_block_group(cache); 2554 return 0; 2555 } 2556 2557 /* 2558 * this function must be called within transaction 2559 */ 2560 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2561 u64 bytenr, u64 num_bytes) 2562 { 2563 struct btrfs_block_group *cache; 2564 int ret; 2565 2566 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2567 if (!cache) 2568 return -EINVAL; 2569 2570 /* 2571 * pull in the free space cache (if any) so that our pin 2572 * removes the free space from the cache. We have load_only set 2573 * to one because the slow code to read in the free extents does check 2574 * the pinned extents. 2575 */ 2576 btrfs_cache_block_group(cache, 1); 2577 /* 2578 * Make sure we wait until the cache is completely built in case it is 2579 * missing or is invalid and therefore needs to be rebuilt. 2580 */ 2581 ret = btrfs_wait_block_group_cache_done(cache); 2582 if (ret) 2583 goto out; 2584 2585 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2586 2587 /* remove us from the free space cache (if we're there at all) */ 2588 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2589 out: 2590 btrfs_put_block_group(cache); 2591 return ret; 2592 } 2593 2594 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2595 u64 start, u64 num_bytes) 2596 { 2597 int ret; 2598 struct btrfs_block_group *block_group; 2599 2600 block_group = btrfs_lookup_block_group(fs_info, start); 2601 if (!block_group) 2602 return -EINVAL; 2603 2604 btrfs_cache_block_group(block_group, 1); 2605 /* 2606 * Make sure we wait until the cache is completely built in case it is 2607 * missing or is invalid and therefore needs to be rebuilt. 2608 */ 2609 ret = btrfs_wait_block_group_cache_done(block_group); 2610 if (ret) 2611 goto out; 2612 2613 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2614 out: 2615 btrfs_put_block_group(block_group); 2616 return ret; 2617 } 2618 2619 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2620 { 2621 struct btrfs_fs_info *fs_info = eb->fs_info; 2622 struct btrfs_file_extent_item *item; 2623 struct btrfs_key key; 2624 int found_type; 2625 int i; 2626 int ret = 0; 2627 2628 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2629 return 0; 2630 2631 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2632 btrfs_item_key_to_cpu(eb, &key, i); 2633 if (key.type != BTRFS_EXTENT_DATA_KEY) 2634 continue; 2635 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2636 found_type = btrfs_file_extent_type(eb, item); 2637 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2638 continue; 2639 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2640 continue; 2641 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2642 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2643 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2644 if (ret) 2645 break; 2646 } 2647 2648 return ret; 2649 } 2650 2651 static void 2652 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2653 { 2654 atomic_inc(&bg->reservations); 2655 } 2656 2657 /* 2658 * Returns the free cluster for the given space info and sets empty_cluster to 2659 * what it should be based on the mount options. 2660 */ 2661 static struct btrfs_free_cluster * 2662 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2663 struct btrfs_space_info *space_info, u64 *empty_cluster) 2664 { 2665 struct btrfs_free_cluster *ret = NULL; 2666 2667 *empty_cluster = 0; 2668 if (btrfs_mixed_space_info(space_info)) 2669 return ret; 2670 2671 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2672 ret = &fs_info->meta_alloc_cluster; 2673 if (btrfs_test_opt(fs_info, SSD)) 2674 *empty_cluster = SZ_2M; 2675 else 2676 *empty_cluster = SZ_64K; 2677 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2678 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2679 *empty_cluster = SZ_2M; 2680 ret = &fs_info->data_alloc_cluster; 2681 } 2682 2683 return ret; 2684 } 2685 2686 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2687 u64 start, u64 end, 2688 const bool return_free_space) 2689 { 2690 struct btrfs_block_group *cache = NULL; 2691 struct btrfs_space_info *space_info; 2692 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2693 struct btrfs_free_cluster *cluster = NULL; 2694 u64 len; 2695 u64 total_unpinned = 0; 2696 u64 empty_cluster = 0; 2697 bool readonly; 2698 2699 while (start <= end) { 2700 readonly = false; 2701 if (!cache || 2702 start >= cache->start + cache->length) { 2703 if (cache) 2704 btrfs_put_block_group(cache); 2705 total_unpinned = 0; 2706 cache = btrfs_lookup_block_group(fs_info, start); 2707 BUG_ON(!cache); /* Logic error */ 2708 2709 cluster = fetch_cluster_info(fs_info, 2710 cache->space_info, 2711 &empty_cluster); 2712 empty_cluster <<= 1; 2713 } 2714 2715 len = cache->start + cache->length - start; 2716 len = min(len, end + 1 - start); 2717 2718 down_read(&fs_info->commit_root_sem); 2719 if (start < cache->last_byte_to_unpin && return_free_space) { 2720 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2721 2722 btrfs_add_free_space(cache, start, add_len); 2723 } 2724 up_read(&fs_info->commit_root_sem); 2725 2726 start += len; 2727 total_unpinned += len; 2728 space_info = cache->space_info; 2729 2730 /* 2731 * If this space cluster has been marked as fragmented and we've 2732 * unpinned enough in this block group to potentially allow a 2733 * cluster to be created inside of it go ahead and clear the 2734 * fragmented check. 2735 */ 2736 if (cluster && cluster->fragmented && 2737 total_unpinned > empty_cluster) { 2738 spin_lock(&cluster->lock); 2739 cluster->fragmented = 0; 2740 spin_unlock(&cluster->lock); 2741 } 2742 2743 spin_lock(&space_info->lock); 2744 spin_lock(&cache->lock); 2745 cache->pinned -= len; 2746 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2747 space_info->max_extent_size = 0; 2748 if (cache->ro) { 2749 space_info->bytes_readonly += len; 2750 readonly = true; 2751 } else if (btrfs_is_zoned(fs_info)) { 2752 /* Need reset before reusing in a zoned block group */ 2753 space_info->bytes_zone_unusable += len; 2754 readonly = true; 2755 } 2756 spin_unlock(&cache->lock); 2757 if (!readonly && return_free_space && 2758 global_rsv->space_info == space_info) { 2759 u64 to_add = len; 2760 2761 spin_lock(&global_rsv->lock); 2762 if (!global_rsv->full) { 2763 to_add = min(len, global_rsv->size - 2764 global_rsv->reserved); 2765 global_rsv->reserved += to_add; 2766 btrfs_space_info_update_bytes_may_use(fs_info, 2767 space_info, to_add); 2768 if (global_rsv->reserved >= global_rsv->size) 2769 global_rsv->full = 1; 2770 len -= to_add; 2771 } 2772 spin_unlock(&global_rsv->lock); 2773 } 2774 /* Add to any tickets we may have */ 2775 if (!readonly && return_free_space && len) 2776 btrfs_try_granting_tickets(fs_info, space_info); 2777 spin_unlock(&space_info->lock); 2778 } 2779 2780 if (cache) 2781 btrfs_put_block_group(cache); 2782 return 0; 2783 } 2784 2785 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2786 { 2787 struct btrfs_fs_info *fs_info = trans->fs_info; 2788 struct btrfs_block_group *block_group, *tmp; 2789 struct list_head *deleted_bgs; 2790 struct extent_io_tree *unpin; 2791 u64 start; 2792 u64 end; 2793 int ret; 2794 2795 unpin = &trans->transaction->pinned_extents; 2796 2797 while (!TRANS_ABORTED(trans)) { 2798 struct extent_state *cached_state = NULL; 2799 2800 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2801 ret = find_first_extent_bit(unpin, 0, &start, &end, 2802 EXTENT_DIRTY, &cached_state); 2803 if (ret) { 2804 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2805 break; 2806 } 2807 2808 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2809 ret = btrfs_discard_extent(fs_info, start, 2810 end + 1 - start, NULL); 2811 2812 clear_extent_dirty(unpin, start, end, &cached_state); 2813 unpin_extent_range(fs_info, start, end, true); 2814 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2815 free_extent_state(cached_state); 2816 cond_resched(); 2817 } 2818 2819 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2820 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2821 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2822 } 2823 2824 /* 2825 * Transaction is finished. We don't need the lock anymore. We 2826 * do need to clean up the block groups in case of a transaction 2827 * abort. 2828 */ 2829 deleted_bgs = &trans->transaction->deleted_bgs; 2830 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2831 u64 trimmed = 0; 2832 2833 ret = -EROFS; 2834 if (!TRANS_ABORTED(trans)) 2835 ret = btrfs_discard_extent(fs_info, 2836 block_group->start, 2837 block_group->length, 2838 &trimmed); 2839 2840 list_del_init(&block_group->bg_list); 2841 btrfs_unfreeze_block_group(block_group); 2842 btrfs_put_block_group(block_group); 2843 2844 if (ret) { 2845 const char *errstr = btrfs_decode_error(ret); 2846 btrfs_warn(fs_info, 2847 "discard failed while removing blockgroup: errno=%d %s", 2848 ret, errstr); 2849 } 2850 } 2851 2852 return 0; 2853 } 2854 2855 /* 2856 * Drop one or more refs of @node. 2857 * 2858 * 1. Locate the extent refs. 2859 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2860 * Locate it, then reduce the refs number or remove the ref line completely. 2861 * 2862 * 2. Update the refs count in EXTENT/METADATA_ITEM 2863 * 2864 * Inline backref case: 2865 * 2866 * in extent tree we have: 2867 * 2868 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2869 * refs 2 gen 6 flags DATA 2870 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2871 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2872 * 2873 * This function gets called with: 2874 * 2875 * node->bytenr = 13631488 2876 * node->num_bytes = 1048576 2877 * root_objectid = FS_TREE 2878 * owner_objectid = 257 2879 * owner_offset = 0 2880 * refs_to_drop = 1 2881 * 2882 * Then we should get some like: 2883 * 2884 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2885 * refs 1 gen 6 flags DATA 2886 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2887 * 2888 * Keyed backref case: 2889 * 2890 * in extent tree we have: 2891 * 2892 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2893 * refs 754 gen 6 flags DATA 2894 * [...] 2895 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2896 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2897 * 2898 * This function get called with: 2899 * 2900 * node->bytenr = 13631488 2901 * node->num_bytes = 1048576 2902 * root_objectid = FS_TREE 2903 * owner_objectid = 866 2904 * owner_offset = 0 2905 * refs_to_drop = 1 2906 * 2907 * Then we should get some like: 2908 * 2909 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2910 * refs 753 gen 6 flags DATA 2911 * 2912 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2913 */ 2914 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2915 struct btrfs_delayed_ref_node *node, u64 parent, 2916 u64 root_objectid, u64 owner_objectid, 2917 u64 owner_offset, int refs_to_drop, 2918 struct btrfs_delayed_extent_op *extent_op) 2919 { 2920 struct btrfs_fs_info *info = trans->fs_info; 2921 struct btrfs_key key; 2922 struct btrfs_path *path; 2923 struct btrfs_root *extent_root = info->extent_root; 2924 struct extent_buffer *leaf; 2925 struct btrfs_extent_item *ei; 2926 struct btrfs_extent_inline_ref *iref; 2927 int ret; 2928 int is_data; 2929 int extent_slot = 0; 2930 int found_extent = 0; 2931 int num_to_del = 1; 2932 u32 item_size; 2933 u64 refs; 2934 u64 bytenr = node->bytenr; 2935 u64 num_bytes = node->num_bytes; 2936 int last_ref = 0; 2937 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2938 2939 path = btrfs_alloc_path(); 2940 if (!path) 2941 return -ENOMEM; 2942 2943 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2944 2945 if (!is_data && refs_to_drop != 1) { 2946 btrfs_crit(info, 2947 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2948 node->bytenr, refs_to_drop); 2949 ret = -EINVAL; 2950 btrfs_abort_transaction(trans, ret); 2951 goto out; 2952 } 2953 2954 if (is_data) 2955 skinny_metadata = false; 2956 2957 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2958 parent, root_objectid, owner_objectid, 2959 owner_offset); 2960 if (ret == 0) { 2961 /* 2962 * Either the inline backref or the SHARED_DATA_REF/ 2963 * SHARED_BLOCK_REF is found 2964 * 2965 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2966 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2967 */ 2968 extent_slot = path->slots[0]; 2969 while (extent_slot >= 0) { 2970 btrfs_item_key_to_cpu(path->nodes[0], &key, 2971 extent_slot); 2972 if (key.objectid != bytenr) 2973 break; 2974 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2975 key.offset == num_bytes) { 2976 found_extent = 1; 2977 break; 2978 } 2979 if (key.type == BTRFS_METADATA_ITEM_KEY && 2980 key.offset == owner_objectid) { 2981 found_extent = 1; 2982 break; 2983 } 2984 2985 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2986 if (path->slots[0] - extent_slot > 5) 2987 break; 2988 extent_slot--; 2989 } 2990 2991 if (!found_extent) { 2992 if (iref) { 2993 btrfs_crit(info, 2994 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 2995 btrfs_abort_transaction(trans, -EUCLEAN); 2996 goto err_dump; 2997 } 2998 /* Must be SHARED_* item, remove the backref first */ 2999 ret = remove_extent_backref(trans, path, NULL, 3000 refs_to_drop, 3001 is_data, &last_ref); 3002 if (ret) { 3003 btrfs_abort_transaction(trans, ret); 3004 goto out; 3005 } 3006 btrfs_release_path(path); 3007 3008 /* Slow path to locate EXTENT/METADATA_ITEM */ 3009 key.objectid = bytenr; 3010 key.type = BTRFS_EXTENT_ITEM_KEY; 3011 key.offset = num_bytes; 3012 3013 if (!is_data && skinny_metadata) { 3014 key.type = BTRFS_METADATA_ITEM_KEY; 3015 key.offset = owner_objectid; 3016 } 3017 3018 ret = btrfs_search_slot(trans, extent_root, 3019 &key, path, -1, 1); 3020 if (ret > 0 && skinny_metadata && path->slots[0]) { 3021 /* 3022 * Couldn't find our skinny metadata item, 3023 * see if we have ye olde extent item. 3024 */ 3025 path->slots[0]--; 3026 btrfs_item_key_to_cpu(path->nodes[0], &key, 3027 path->slots[0]); 3028 if (key.objectid == bytenr && 3029 key.type == BTRFS_EXTENT_ITEM_KEY && 3030 key.offset == num_bytes) 3031 ret = 0; 3032 } 3033 3034 if (ret > 0 && skinny_metadata) { 3035 skinny_metadata = false; 3036 key.objectid = bytenr; 3037 key.type = BTRFS_EXTENT_ITEM_KEY; 3038 key.offset = num_bytes; 3039 btrfs_release_path(path); 3040 ret = btrfs_search_slot(trans, extent_root, 3041 &key, path, -1, 1); 3042 } 3043 3044 if (ret) { 3045 btrfs_err(info, 3046 "umm, got %d back from search, was looking for %llu", 3047 ret, bytenr); 3048 if (ret > 0) 3049 btrfs_print_leaf(path->nodes[0]); 3050 } 3051 if (ret < 0) { 3052 btrfs_abort_transaction(trans, ret); 3053 goto out; 3054 } 3055 extent_slot = path->slots[0]; 3056 } 3057 } else if (WARN_ON(ret == -ENOENT)) { 3058 btrfs_print_leaf(path->nodes[0]); 3059 btrfs_err(info, 3060 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3061 bytenr, parent, root_objectid, owner_objectid, 3062 owner_offset); 3063 btrfs_abort_transaction(trans, ret); 3064 goto out; 3065 } else { 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } 3069 3070 leaf = path->nodes[0]; 3071 item_size = btrfs_item_size_nr(leaf, extent_slot); 3072 if (unlikely(item_size < sizeof(*ei))) { 3073 ret = -EINVAL; 3074 btrfs_print_v0_err(info); 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } 3078 ei = btrfs_item_ptr(leaf, extent_slot, 3079 struct btrfs_extent_item); 3080 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3081 key.type == BTRFS_EXTENT_ITEM_KEY) { 3082 struct btrfs_tree_block_info *bi; 3083 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3084 btrfs_crit(info, 3085 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3086 key.objectid, key.type, key.offset, 3087 owner_objectid, item_size, 3088 sizeof(*ei) + sizeof(*bi)); 3089 btrfs_abort_transaction(trans, -EUCLEAN); 3090 goto err_dump; 3091 } 3092 bi = (struct btrfs_tree_block_info *)(ei + 1); 3093 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3094 } 3095 3096 refs = btrfs_extent_refs(leaf, ei); 3097 if (refs < refs_to_drop) { 3098 btrfs_crit(info, 3099 "trying to drop %d refs but we only have %llu for bytenr %llu", 3100 refs_to_drop, refs, bytenr); 3101 btrfs_abort_transaction(trans, -EUCLEAN); 3102 goto err_dump; 3103 } 3104 refs -= refs_to_drop; 3105 3106 if (refs > 0) { 3107 if (extent_op) 3108 __run_delayed_extent_op(extent_op, leaf, ei); 3109 /* 3110 * In the case of inline back ref, reference count will 3111 * be updated by remove_extent_backref 3112 */ 3113 if (iref) { 3114 if (!found_extent) { 3115 btrfs_crit(info, 3116 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3117 btrfs_abort_transaction(trans, -EUCLEAN); 3118 goto err_dump; 3119 } 3120 } else { 3121 btrfs_set_extent_refs(leaf, ei, refs); 3122 btrfs_mark_buffer_dirty(leaf); 3123 } 3124 if (found_extent) { 3125 ret = remove_extent_backref(trans, path, iref, 3126 refs_to_drop, is_data, 3127 &last_ref); 3128 if (ret) { 3129 btrfs_abort_transaction(trans, ret); 3130 goto out; 3131 } 3132 } 3133 } else { 3134 /* In this branch refs == 1 */ 3135 if (found_extent) { 3136 if (is_data && refs_to_drop != 3137 extent_data_ref_count(path, iref)) { 3138 btrfs_crit(info, 3139 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3140 extent_data_ref_count(path, iref), 3141 refs_to_drop); 3142 btrfs_abort_transaction(trans, -EUCLEAN); 3143 goto err_dump; 3144 } 3145 if (iref) { 3146 if (path->slots[0] != extent_slot) { 3147 btrfs_crit(info, 3148 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3149 key.objectid, key.type, 3150 key.offset); 3151 btrfs_abort_transaction(trans, -EUCLEAN); 3152 goto err_dump; 3153 } 3154 } else { 3155 /* 3156 * No inline ref, we must be at SHARED_* item, 3157 * And it's single ref, it must be: 3158 * | extent_slot ||extent_slot + 1| 3159 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3160 */ 3161 if (path->slots[0] != extent_slot + 1) { 3162 btrfs_crit(info, 3163 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3164 btrfs_abort_transaction(trans, -EUCLEAN); 3165 goto err_dump; 3166 } 3167 path->slots[0] = extent_slot; 3168 num_to_del = 2; 3169 } 3170 } 3171 3172 last_ref = 1; 3173 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3174 num_to_del); 3175 if (ret) { 3176 btrfs_abort_transaction(trans, ret); 3177 goto out; 3178 } 3179 btrfs_release_path(path); 3180 3181 if (is_data) { 3182 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3183 num_bytes); 3184 if (ret) { 3185 btrfs_abort_transaction(trans, ret); 3186 goto out; 3187 } 3188 } 3189 3190 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3191 if (ret) { 3192 btrfs_abort_transaction(trans, ret); 3193 goto out; 3194 } 3195 3196 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3197 if (ret) { 3198 btrfs_abort_transaction(trans, ret); 3199 goto out; 3200 } 3201 } 3202 btrfs_release_path(path); 3203 3204 out: 3205 btrfs_free_path(path); 3206 return ret; 3207 err_dump: 3208 /* 3209 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3210 * dump for debug build. 3211 */ 3212 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3213 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3214 path->slots[0], extent_slot); 3215 btrfs_print_leaf(path->nodes[0]); 3216 } 3217 3218 btrfs_free_path(path); 3219 return -EUCLEAN; 3220 } 3221 3222 /* 3223 * when we free an block, it is possible (and likely) that we free the last 3224 * delayed ref for that extent as well. This searches the delayed ref tree for 3225 * a given extent, and if there are no other delayed refs to be processed, it 3226 * removes it from the tree. 3227 */ 3228 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3229 u64 bytenr) 3230 { 3231 struct btrfs_delayed_ref_head *head; 3232 struct btrfs_delayed_ref_root *delayed_refs; 3233 int ret = 0; 3234 3235 delayed_refs = &trans->transaction->delayed_refs; 3236 spin_lock(&delayed_refs->lock); 3237 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3238 if (!head) 3239 goto out_delayed_unlock; 3240 3241 spin_lock(&head->lock); 3242 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3243 goto out; 3244 3245 if (cleanup_extent_op(head) != NULL) 3246 goto out; 3247 3248 /* 3249 * waiting for the lock here would deadlock. If someone else has it 3250 * locked they are already in the process of dropping it anyway 3251 */ 3252 if (!mutex_trylock(&head->mutex)) 3253 goto out; 3254 3255 btrfs_delete_ref_head(delayed_refs, head); 3256 head->processing = 0; 3257 3258 spin_unlock(&head->lock); 3259 spin_unlock(&delayed_refs->lock); 3260 3261 BUG_ON(head->extent_op); 3262 if (head->must_insert_reserved) 3263 ret = 1; 3264 3265 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3266 mutex_unlock(&head->mutex); 3267 btrfs_put_delayed_ref_head(head); 3268 return ret; 3269 out: 3270 spin_unlock(&head->lock); 3271 3272 out_delayed_unlock: 3273 spin_unlock(&delayed_refs->lock); 3274 return 0; 3275 } 3276 3277 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3278 u64 root_id, 3279 struct extent_buffer *buf, 3280 u64 parent, int last_ref) 3281 { 3282 struct btrfs_fs_info *fs_info = trans->fs_info; 3283 struct btrfs_ref generic_ref = { 0 }; 3284 int ret; 3285 3286 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3287 buf->start, buf->len, parent); 3288 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3289 root_id, 0, false); 3290 3291 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3292 btrfs_ref_tree_mod(fs_info, &generic_ref); 3293 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3294 BUG_ON(ret); /* -ENOMEM */ 3295 } 3296 3297 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3298 struct btrfs_block_group *cache; 3299 bool must_pin = false; 3300 3301 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3302 ret = check_ref_cleanup(trans, buf->start); 3303 if (!ret) { 3304 btrfs_redirty_list_add(trans->transaction, buf); 3305 goto out; 3306 } 3307 } 3308 3309 cache = btrfs_lookup_block_group(fs_info, buf->start); 3310 3311 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3312 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3313 btrfs_put_block_group(cache); 3314 goto out; 3315 } 3316 3317 /* 3318 * If this is a leaf and there are tree mod log users, we may 3319 * have recorded mod log operations that point to this leaf. 3320 * So we must make sure no one reuses this leaf's extent before 3321 * mod log operations are applied to a node, otherwise after 3322 * rewinding a node using the mod log operations we get an 3323 * inconsistent btree, as the leaf's extent may now be used as 3324 * a node or leaf for another different btree. 3325 * We are safe from races here because at this point no other 3326 * node or root points to this extent buffer, so if after this 3327 * check a new tree mod log user joins, it will not be able to 3328 * find a node pointing to this leaf and record operations that 3329 * point to this leaf. 3330 */ 3331 if (btrfs_header_level(buf) == 0 && 3332 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3333 must_pin = true; 3334 3335 if (must_pin || btrfs_is_zoned(fs_info)) { 3336 btrfs_redirty_list_add(trans->transaction, buf); 3337 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3338 btrfs_put_block_group(cache); 3339 goto out; 3340 } 3341 3342 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3343 3344 btrfs_add_free_space(cache, buf->start, buf->len); 3345 btrfs_free_reserved_bytes(cache, buf->len, 0); 3346 btrfs_put_block_group(cache); 3347 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3348 } 3349 out: 3350 if (last_ref) { 3351 /* 3352 * Deleting the buffer, clear the corrupt flag since it doesn't 3353 * matter anymore. 3354 */ 3355 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3356 } 3357 } 3358 3359 /* Can return -ENOMEM */ 3360 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3361 { 3362 struct btrfs_fs_info *fs_info = trans->fs_info; 3363 int ret; 3364 3365 if (btrfs_is_testing(fs_info)) 3366 return 0; 3367 3368 /* 3369 * tree log blocks never actually go into the extent allocation 3370 * tree, just update pinning info and exit early. 3371 */ 3372 if ((ref->type == BTRFS_REF_METADATA && 3373 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3374 (ref->type == BTRFS_REF_DATA && 3375 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3376 /* unlocks the pinned mutex */ 3377 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3378 ret = 0; 3379 } else if (ref->type == BTRFS_REF_METADATA) { 3380 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3381 } else { 3382 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3383 } 3384 3385 if (!((ref->type == BTRFS_REF_METADATA && 3386 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3387 (ref->type == BTRFS_REF_DATA && 3388 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3389 btrfs_ref_tree_mod(fs_info, ref); 3390 3391 return ret; 3392 } 3393 3394 enum btrfs_loop_type { 3395 LOOP_CACHING_NOWAIT, 3396 LOOP_CACHING_WAIT, 3397 LOOP_ALLOC_CHUNK, 3398 LOOP_NO_EMPTY_SIZE, 3399 }; 3400 3401 static inline void 3402 btrfs_lock_block_group(struct btrfs_block_group *cache, 3403 int delalloc) 3404 { 3405 if (delalloc) 3406 down_read(&cache->data_rwsem); 3407 } 3408 3409 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3410 int delalloc) 3411 { 3412 btrfs_get_block_group(cache); 3413 if (delalloc) 3414 down_read(&cache->data_rwsem); 3415 } 3416 3417 static struct btrfs_block_group *btrfs_lock_cluster( 3418 struct btrfs_block_group *block_group, 3419 struct btrfs_free_cluster *cluster, 3420 int delalloc) 3421 __acquires(&cluster->refill_lock) 3422 { 3423 struct btrfs_block_group *used_bg = NULL; 3424 3425 spin_lock(&cluster->refill_lock); 3426 while (1) { 3427 used_bg = cluster->block_group; 3428 if (!used_bg) 3429 return NULL; 3430 3431 if (used_bg == block_group) 3432 return used_bg; 3433 3434 btrfs_get_block_group(used_bg); 3435 3436 if (!delalloc) 3437 return used_bg; 3438 3439 if (down_read_trylock(&used_bg->data_rwsem)) 3440 return used_bg; 3441 3442 spin_unlock(&cluster->refill_lock); 3443 3444 /* We should only have one-level nested. */ 3445 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3446 3447 spin_lock(&cluster->refill_lock); 3448 if (used_bg == cluster->block_group) 3449 return used_bg; 3450 3451 up_read(&used_bg->data_rwsem); 3452 btrfs_put_block_group(used_bg); 3453 } 3454 } 3455 3456 static inline void 3457 btrfs_release_block_group(struct btrfs_block_group *cache, 3458 int delalloc) 3459 { 3460 if (delalloc) 3461 up_read(&cache->data_rwsem); 3462 btrfs_put_block_group(cache); 3463 } 3464 3465 enum btrfs_extent_allocation_policy { 3466 BTRFS_EXTENT_ALLOC_CLUSTERED, 3467 BTRFS_EXTENT_ALLOC_ZONED, 3468 }; 3469 3470 /* 3471 * Structure used internally for find_free_extent() function. Wraps needed 3472 * parameters. 3473 */ 3474 struct find_free_extent_ctl { 3475 /* Basic allocation info */ 3476 u64 ram_bytes; 3477 u64 num_bytes; 3478 u64 min_alloc_size; 3479 u64 empty_size; 3480 u64 flags; 3481 int delalloc; 3482 3483 /* Where to start the search inside the bg */ 3484 u64 search_start; 3485 3486 /* For clustered allocation */ 3487 u64 empty_cluster; 3488 struct btrfs_free_cluster *last_ptr; 3489 bool use_cluster; 3490 3491 bool have_caching_bg; 3492 bool orig_have_caching_bg; 3493 3494 /* Allocation is called for tree-log */ 3495 bool for_treelog; 3496 3497 /* Allocation is called for data relocation */ 3498 bool for_data_reloc; 3499 3500 /* RAID index, converted from flags */ 3501 int index; 3502 3503 /* 3504 * Current loop number, check find_free_extent_update_loop() for details 3505 */ 3506 int loop; 3507 3508 /* 3509 * Whether we're refilling a cluster, if true we need to re-search 3510 * current block group but don't try to refill the cluster again. 3511 */ 3512 bool retry_clustered; 3513 3514 /* 3515 * Whether we're updating free space cache, if true we need to re-search 3516 * current block group but don't try updating free space cache again. 3517 */ 3518 bool retry_unclustered; 3519 3520 /* If current block group is cached */ 3521 int cached; 3522 3523 /* Max contiguous hole found */ 3524 u64 max_extent_size; 3525 3526 /* Total free space from free space cache, not always contiguous */ 3527 u64 total_free_space; 3528 3529 /* Found result */ 3530 u64 found_offset; 3531 3532 /* Hint where to start looking for an empty space */ 3533 u64 hint_byte; 3534 3535 /* Allocation policy */ 3536 enum btrfs_extent_allocation_policy policy; 3537 }; 3538 3539 3540 /* 3541 * Helper function for find_free_extent(). 3542 * 3543 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3544 * Return -EAGAIN to inform caller that we need to re-search this block group 3545 * Return >0 to inform caller that we find nothing 3546 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3547 */ 3548 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3549 struct find_free_extent_ctl *ffe_ctl, 3550 struct btrfs_block_group **cluster_bg_ret) 3551 { 3552 struct btrfs_block_group *cluster_bg; 3553 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3554 u64 aligned_cluster; 3555 u64 offset; 3556 int ret; 3557 3558 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3559 if (!cluster_bg) 3560 goto refill_cluster; 3561 if (cluster_bg != bg && (cluster_bg->ro || 3562 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3563 goto release_cluster; 3564 3565 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3566 ffe_ctl->num_bytes, cluster_bg->start, 3567 &ffe_ctl->max_extent_size); 3568 if (offset) { 3569 /* We have a block, we're done */ 3570 spin_unlock(&last_ptr->refill_lock); 3571 trace_btrfs_reserve_extent_cluster(cluster_bg, 3572 ffe_ctl->search_start, ffe_ctl->num_bytes); 3573 *cluster_bg_ret = cluster_bg; 3574 ffe_ctl->found_offset = offset; 3575 return 0; 3576 } 3577 WARN_ON(last_ptr->block_group != cluster_bg); 3578 3579 release_cluster: 3580 /* 3581 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3582 * lets just skip it and let the allocator find whatever block it can 3583 * find. If we reach this point, we will have tried the cluster 3584 * allocator plenty of times and not have found anything, so we are 3585 * likely way too fragmented for the clustering stuff to find anything. 3586 * 3587 * However, if the cluster is taken from the current block group, 3588 * release the cluster first, so that we stand a better chance of 3589 * succeeding in the unclustered allocation. 3590 */ 3591 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3592 spin_unlock(&last_ptr->refill_lock); 3593 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3594 return -ENOENT; 3595 } 3596 3597 /* This cluster didn't work out, free it and start over */ 3598 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3599 3600 if (cluster_bg != bg) 3601 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3602 3603 refill_cluster: 3604 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3605 spin_unlock(&last_ptr->refill_lock); 3606 return -ENOENT; 3607 } 3608 3609 aligned_cluster = max_t(u64, 3610 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3611 bg->full_stripe_len); 3612 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3613 ffe_ctl->num_bytes, aligned_cluster); 3614 if (ret == 0) { 3615 /* Now pull our allocation out of this cluster */ 3616 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3617 ffe_ctl->num_bytes, ffe_ctl->search_start, 3618 &ffe_ctl->max_extent_size); 3619 if (offset) { 3620 /* We found one, proceed */ 3621 spin_unlock(&last_ptr->refill_lock); 3622 trace_btrfs_reserve_extent_cluster(bg, 3623 ffe_ctl->search_start, 3624 ffe_ctl->num_bytes); 3625 ffe_ctl->found_offset = offset; 3626 return 0; 3627 } 3628 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3629 !ffe_ctl->retry_clustered) { 3630 spin_unlock(&last_ptr->refill_lock); 3631 3632 ffe_ctl->retry_clustered = true; 3633 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3634 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3635 return -EAGAIN; 3636 } 3637 /* 3638 * At this point we either didn't find a cluster or we weren't able to 3639 * allocate a block from our cluster. Free the cluster we've been 3640 * trying to use, and go to the next block group. 3641 */ 3642 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3643 spin_unlock(&last_ptr->refill_lock); 3644 return 1; 3645 } 3646 3647 /* 3648 * Return >0 to inform caller that we find nothing 3649 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3650 * Return -EAGAIN to inform caller that we need to re-search this block group 3651 */ 3652 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3653 struct find_free_extent_ctl *ffe_ctl) 3654 { 3655 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3656 u64 offset; 3657 3658 /* 3659 * We are doing an unclustered allocation, set the fragmented flag so 3660 * we don't bother trying to setup a cluster again until we get more 3661 * space. 3662 */ 3663 if (unlikely(last_ptr)) { 3664 spin_lock(&last_ptr->lock); 3665 last_ptr->fragmented = 1; 3666 spin_unlock(&last_ptr->lock); 3667 } 3668 if (ffe_ctl->cached) { 3669 struct btrfs_free_space_ctl *free_space_ctl; 3670 3671 free_space_ctl = bg->free_space_ctl; 3672 spin_lock(&free_space_ctl->tree_lock); 3673 if (free_space_ctl->free_space < 3674 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3675 ffe_ctl->empty_size) { 3676 ffe_ctl->total_free_space = max_t(u64, 3677 ffe_ctl->total_free_space, 3678 free_space_ctl->free_space); 3679 spin_unlock(&free_space_ctl->tree_lock); 3680 return 1; 3681 } 3682 spin_unlock(&free_space_ctl->tree_lock); 3683 } 3684 3685 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3686 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3687 &ffe_ctl->max_extent_size); 3688 3689 /* 3690 * If we didn't find a chunk, and we haven't failed on this block group 3691 * before, and this block group is in the middle of caching and we are 3692 * ok with waiting, then go ahead and wait for progress to be made, and 3693 * set @retry_unclustered to true. 3694 * 3695 * If @retry_unclustered is true then we've already waited on this 3696 * block group once and should move on to the next block group. 3697 */ 3698 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3699 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3700 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3701 ffe_ctl->empty_size); 3702 ffe_ctl->retry_unclustered = true; 3703 return -EAGAIN; 3704 } else if (!offset) { 3705 return 1; 3706 } 3707 ffe_ctl->found_offset = offset; 3708 return 0; 3709 } 3710 3711 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3712 struct find_free_extent_ctl *ffe_ctl, 3713 struct btrfs_block_group **bg_ret) 3714 { 3715 int ret; 3716 3717 /* We want to try and use the cluster allocator, so lets look there */ 3718 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3719 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3720 if (ret >= 0 || ret == -EAGAIN) 3721 return ret; 3722 /* ret == -ENOENT case falls through */ 3723 } 3724 3725 return find_free_extent_unclustered(block_group, ffe_ctl); 3726 } 3727 3728 /* 3729 * Tree-log block group locking 3730 * ============================ 3731 * 3732 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3733 * indicates the starting address of a block group, which is reserved only 3734 * for tree-log metadata. 3735 * 3736 * Lock nesting 3737 * ============ 3738 * 3739 * space_info::lock 3740 * block_group::lock 3741 * fs_info::treelog_bg_lock 3742 */ 3743 3744 /* 3745 * Simple allocator for sequential-only block group. It only allows sequential 3746 * allocation. No need to play with trees. This function also reserves the 3747 * bytes as in btrfs_add_reserved_bytes. 3748 */ 3749 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3750 struct find_free_extent_ctl *ffe_ctl, 3751 struct btrfs_block_group **bg_ret) 3752 { 3753 struct btrfs_fs_info *fs_info = block_group->fs_info; 3754 struct btrfs_space_info *space_info = block_group->space_info; 3755 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3756 u64 start = block_group->start; 3757 u64 num_bytes = ffe_ctl->num_bytes; 3758 u64 avail; 3759 u64 bytenr = block_group->start; 3760 u64 log_bytenr; 3761 u64 data_reloc_bytenr; 3762 int ret = 0; 3763 bool skip = false; 3764 3765 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3766 3767 /* 3768 * Do not allow non-tree-log blocks in the dedicated tree-log block 3769 * group, and vice versa. 3770 */ 3771 spin_lock(&fs_info->treelog_bg_lock); 3772 log_bytenr = fs_info->treelog_bg; 3773 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3774 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3775 skip = true; 3776 spin_unlock(&fs_info->treelog_bg_lock); 3777 if (skip) 3778 return 1; 3779 3780 /* 3781 * Do not allow non-relocation blocks in the dedicated relocation block 3782 * group, and vice versa. 3783 */ 3784 spin_lock(&fs_info->relocation_bg_lock); 3785 data_reloc_bytenr = fs_info->data_reloc_bg; 3786 if (data_reloc_bytenr && 3787 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3788 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3789 skip = true; 3790 spin_unlock(&fs_info->relocation_bg_lock); 3791 if (skip) 3792 return 1; 3793 /* Check RO and no space case before trying to activate it */ 3794 spin_lock(&block_group->lock); 3795 if (block_group->ro || 3796 block_group->alloc_offset == block_group->zone_capacity) { 3797 spin_unlock(&block_group->lock); 3798 return 1; 3799 } 3800 spin_unlock(&block_group->lock); 3801 3802 if (!btrfs_zone_activate(block_group)) 3803 return 1; 3804 3805 spin_lock(&space_info->lock); 3806 spin_lock(&block_group->lock); 3807 spin_lock(&fs_info->treelog_bg_lock); 3808 spin_lock(&fs_info->relocation_bg_lock); 3809 3810 ASSERT(!ffe_ctl->for_treelog || 3811 block_group->start == fs_info->treelog_bg || 3812 fs_info->treelog_bg == 0); 3813 ASSERT(!ffe_ctl->for_data_reloc || 3814 block_group->start == fs_info->data_reloc_bg || 3815 fs_info->data_reloc_bg == 0); 3816 3817 if (block_group->ro) { 3818 ret = 1; 3819 goto out; 3820 } 3821 3822 /* 3823 * Do not allow currently using block group to be tree-log dedicated 3824 * block group. 3825 */ 3826 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3827 (block_group->used || block_group->reserved)) { 3828 ret = 1; 3829 goto out; 3830 } 3831 3832 /* 3833 * Do not allow currently used block group to be the data relocation 3834 * dedicated block group. 3835 */ 3836 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3837 (block_group->used || block_group->reserved)) { 3838 ret = 1; 3839 goto out; 3840 } 3841 3842 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3843 avail = block_group->zone_capacity - block_group->alloc_offset; 3844 if (avail < num_bytes) { 3845 if (ffe_ctl->max_extent_size < avail) { 3846 /* 3847 * With sequential allocator, free space is always 3848 * contiguous 3849 */ 3850 ffe_ctl->max_extent_size = avail; 3851 ffe_ctl->total_free_space = avail; 3852 } 3853 ret = 1; 3854 goto out; 3855 } 3856 3857 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3858 fs_info->treelog_bg = block_group->start; 3859 3860 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3861 fs_info->data_reloc_bg = block_group->start; 3862 3863 ffe_ctl->found_offset = start + block_group->alloc_offset; 3864 block_group->alloc_offset += num_bytes; 3865 spin_lock(&ctl->tree_lock); 3866 ctl->free_space -= num_bytes; 3867 spin_unlock(&ctl->tree_lock); 3868 3869 /* 3870 * We do not check if found_offset is aligned to stripesize. The 3871 * address is anyway rewritten when using zone append writing. 3872 */ 3873 3874 ffe_ctl->search_start = ffe_ctl->found_offset; 3875 3876 out: 3877 if (ret && ffe_ctl->for_treelog) 3878 fs_info->treelog_bg = 0; 3879 if (ret && ffe_ctl->for_data_reloc) 3880 fs_info->data_reloc_bg = 0; 3881 spin_unlock(&fs_info->relocation_bg_lock); 3882 spin_unlock(&fs_info->treelog_bg_lock); 3883 spin_unlock(&block_group->lock); 3884 spin_unlock(&space_info->lock); 3885 return ret; 3886 } 3887 3888 static int do_allocation(struct btrfs_block_group *block_group, 3889 struct find_free_extent_ctl *ffe_ctl, 3890 struct btrfs_block_group **bg_ret) 3891 { 3892 switch (ffe_ctl->policy) { 3893 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3894 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3895 case BTRFS_EXTENT_ALLOC_ZONED: 3896 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3897 default: 3898 BUG(); 3899 } 3900 } 3901 3902 static void release_block_group(struct btrfs_block_group *block_group, 3903 struct find_free_extent_ctl *ffe_ctl, 3904 int delalloc) 3905 { 3906 switch (ffe_ctl->policy) { 3907 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3908 ffe_ctl->retry_clustered = false; 3909 ffe_ctl->retry_unclustered = false; 3910 break; 3911 case BTRFS_EXTENT_ALLOC_ZONED: 3912 /* Nothing to do */ 3913 break; 3914 default: 3915 BUG(); 3916 } 3917 3918 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3919 ffe_ctl->index); 3920 btrfs_release_block_group(block_group, delalloc); 3921 } 3922 3923 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3924 struct btrfs_key *ins) 3925 { 3926 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3927 3928 if (!ffe_ctl->use_cluster && last_ptr) { 3929 spin_lock(&last_ptr->lock); 3930 last_ptr->window_start = ins->objectid; 3931 spin_unlock(&last_ptr->lock); 3932 } 3933 } 3934 3935 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3936 struct btrfs_key *ins) 3937 { 3938 switch (ffe_ctl->policy) { 3939 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3940 found_extent_clustered(ffe_ctl, ins); 3941 break; 3942 case BTRFS_EXTENT_ALLOC_ZONED: 3943 /* Nothing to do */ 3944 break; 3945 default: 3946 BUG(); 3947 } 3948 } 3949 3950 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3951 { 3952 switch (ffe_ctl->policy) { 3953 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3954 /* 3955 * If we can't allocate a new chunk we've already looped through 3956 * at least once, move on to the NO_EMPTY_SIZE case. 3957 */ 3958 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3959 return 0; 3960 case BTRFS_EXTENT_ALLOC_ZONED: 3961 /* Give up here */ 3962 return -ENOSPC; 3963 default: 3964 BUG(); 3965 } 3966 } 3967 3968 /* 3969 * Return >0 means caller needs to re-search for free extent 3970 * Return 0 means we have the needed free extent. 3971 * Return <0 means we failed to locate any free extent. 3972 */ 3973 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3974 struct btrfs_key *ins, 3975 struct find_free_extent_ctl *ffe_ctl, 3976 bool full_search) 3977 { 3978 struct btrfs_root *root = fs_info->extent_root; 3979 int ret; 3980 3981 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3982 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3983 ffe_ctl->orig_have_caching_bg = true; 3984 3985 if (ins->objectid) { 3986 found_extent(ffe_ctl, ins); 3987 return 0; 3988 } 3989 3990 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size && 3991 !btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->index)) { 3992 /* 3993 * If we have enough free space left in an already active block 3994 * group and we can't activate any other zone now, retry the 3995 * active ones with a smaller allocation size. Returning early 3996 * from here will tell btrfs_reserve_extent() to haven the 3997 * size. 3998 */ 3999 return -ENOSPC; 4000 } 4001 4002 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4003 return 1; 4004 4005 ffe_ctl->index++; 4006 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4007 return 1; 4008 4009 /* 4010 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4011 * caching kthreads as we move along 4012 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4013 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4014 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4015 * again 4016 */ 4017 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4018 ffe_ctl->index = 0; 4019 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4020 /* 4021 * We want to skip the LOOP_CACHING_WAIT step if we 4022 * don't have any uncached bgs and we've already done a 4023 * full search through. 4024 */ 4025 if (ffe_ctl->orig_have_caching_bg || !full_search) 4026 ffe_ctl->loop = LOOP_CACHING_WAIT; 4027 else 4028 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4029 } else { 4030 ffe_ctl->loop++; 4031 } 4032 4033 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4034 struct btrfs_trans_handle *trans; 4035 int exist = 0; 4036 4037 trans = current->journal_info; 4038 if (trans) 4039 exist = 1; 4040 else 4041 trans = btrfs_join_transaction(root); 4042 4043 if (IS_ERR(trans)) { 4044 ret = PTR_ERR(trans); 4045 return ret; 4046 } 4047 4048 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4049 CHUNK_ALLOC_FORCE); 4050 4051 /* Do not bail out on ENOSPC since we can do more. */ 4052 if (ret == -ENOSPC) 4053 ret = chunk_allocation_failed(ffe_ctl); 4054 else if (ret < 0) 4055 btrfs_abort_transaction(trans, ret); 4056 else 4057 ret = 0; 4058 if (!exist) 4059 btrfs_end_transaction(trans); 4060 if (ret) 4061 return ret; 4062 } 4063 4064 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4065 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4066 return -ENOSPC; 4067 4068 /* 4069 * Don't loop again if we already have no empty_size and 4070 * no empty_cluster. 4071 */ 4072 if (ffe_ctl->empty_size == 0 && 4073 ffe_ctl->empty_cluster == 0) 4074 return -ENOSPC; 4075 ffe_ctl->empty_size = 0; 4076 ffe_ctl->empty_cluster = 0; 4077 } 4078 return 1; 4079 } 4080 return -ENOSPC; 4081 } 4082 4083 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4084 struct find_free_extent_ctl *ffe_ctl, 4085 struct btrfs_space_info *space_info, 4086 struct btrfs_key *ins) 4087 { 4088 /* 4089 * If our free space is heavily fragmented we may not be able to make 4090 * big contiguous allocations, so instead of doing the expensive search 4091 * for free space, simply return ENOSPC with our max_extent_size so we 4092 * can go ahead and search for a more manageable chunk. 4093 * 4094 * If our max_extent_size is large enough for our allocation simply 4095 * disable clustering since we will likely not be able to find enough 4096 * space to create a cluster and induce latency trying. 4097 */ 4098 if (space_info->max_extent_size) { 4099 spin_lock(&space_info->lock); 4100 if (space_info->max_extent_size && 4101 ffe_ctl->num_bytes > space_info->max_extent_size) { 4102 ins->offset = space_info->max_extent_size; 4103 spin_unlock(&space_info->lock); 4104 return -ENOSPC; 4105 } else if (space_info->max_extent_size) { 4106 ffe_ctl->use_cluster = false; 4107 } 4108 spin_unlock(&space_info->lock); 4109 } 4110 4111 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4112 &ffe_ctl->empty_cluster); 4113 if (ffe_ctl->last_ptr) { 4114 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4115 4116 spin_lock(&last_ptr->lock); 4117 if (last_ptr->block_group) 4118 ffe_ctl->hint_byte = last_ptr->window_start; 4119 if (last_ptr->fragmented) { 4120 /* 4121 * We still set window_start so we can keep track of the 4122 * last place we found an allocation to try and save 4123 * some time. 4124 */ 4125 ffe_ctl->hint_byte = last_ptr->window_start; 4126 ffe_ctl->use_cluster = false; 4127 } 4128 spin_unlock(&last_ptr->lock); 4129 } 4130 4131 return 0; 4132 } 4133 4134 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4135 struct find_free_extent_ctl *ffe_ctl, 4136 struct btrfs_space_info *space_info, 4137 struct btrfs_key *ins) 4138 { 4139 switch (ffe_ctl->policy) { 4140 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4141 return prepare_allocation_clustered(fs_info, ffe_ctl, 4142 space_info, ins); 4143 case BTRFS_EXTENT_ALLOC_ZONED: 4144 if (ffe_ctl->for_treelog) { 4145 spin_lock(&fs_info->treelog_bg_lock); 4146 if (fs_info->treelog_bg) 4147 ffe_ctl->hint_byte = fs_info->treelog_bg; 4148 spin_unlock(&fs_info->treelog_bg_lock); 4149 } 4150 if (ffe_ctl->for_data_reloc) { 4151 spin_lock(&fs_info->relocation_bg_lock); 4152 if (fs_info->data_reloc_bg) 4153 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4154 spin_unlock(&fs_info->relocation_bg_lock); 4155 } 4156 return 0; 4157 default: 4158 BUG(); 4159 } 4160 } 4161 4162 /* 4163 * walks the btree of allocated extents and find a hole of a given size. 4164 * The key ins is changed to record the hole: 4165 * ins->objectid == start position 4166 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4167 * ins->offset == the size of the hole. 4168 * Any available blocks before search_start are skipped. 4169 * 4170 * If there is no suitable free space, we will record the max size of 4171 * the free space extent currently. 4172 * 4173 * The overall logic and call chain: 4174 * 4175 * find_free_extent() 4176 * |- Iterate through all block groups 4177 * | |- Get a valid block group 4178 * | |- Try to do clustered allocation in that block group 4179 * | |- Try to do unclustered allocation in that block group 4180 * | |- Check if the result is valid 4181 * | | |- If valid, then exit 4182 * | |- Jump to next block group 4183 * | 4184 * |- Push harder to find free extents 4185 * |- If not found, re-iterate all block groups 4186 */ 4187 static noinline int find_free_extent(struct btrfs_root *root, 4188 struct btrfs_key *ins, 4189 struct find_free_extent_ctl *ffe_ctl) 4190 { 4191 struct btrfs_fs_info *fs_info = root->fs_info; 4192 int ret = 0; 4193 int cache_block_group_error = 0; 4194 struct btrfs_block_group *block_group = NULL; 4195 struct btrfs_space_info *space_info; 4196 bool full_search = false; 4197 4198 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4199 4200 ffe_ctl->search_start = 0; 4201 /* For clustered allocation */ 4202 ffe_ctl->empty_cluster = 0; 4203 ffe_ctl->last_ptr = NULL; 4204 ffe_ctl->use_cluster = true; 4205 ffe_ctl->have_caching_bg = false; 4206 ffe_ctl->orig_have_caching_bg = false; 4207 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4208 ffe_ctl->loop = 0; 4209 /* For clustered allocation */ 4210 ffe_ctl->retry_clustered = false; 4211 ffe_ctl->retry_unclustered = false; 4212 ffe_ctl->cached = 0; 4213 ffe_ctl->max_extent_size = 0; 4214 ffe_ctl->total_free_space = 0; 4215 ffe_ctl->found_offset = 0; 4216 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4217 4218 if (btrfs_is_zoned(fs_info)) 4219 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4220 4221 ins->type = BTRFS_EXTENT_ITEM_KEY; 4222 ins->objectid = 0; 4223 ins->offset = 0; 4224 4225 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4226 ffe_ctl->flags); 4227 4228 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4229 if (!space_info) { 4230 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4231 return -ENOSPC; 4232 } 4233 4234 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4235 if (ret < 0) 4236 return ret; 4237 4238 ffe_ctl->search_start = max(ffe_ctl->search_start, 4239 first_logical_byte(fs_info, 0)); 4240 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4241 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4242 block_group = btrfs_lookup_block_group(fs_info, 4243 ffe_ctl->search_start); 4244 /* 4245 * we don't want to use the block group if it doesn't match our 4246 * allocation bits, or if its not cached. 4247 * 4248 * However if we are re-searching with an ideal block group 4249 * picked out then we don't care that the block group is cached. 4250 */ 4251 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4252 block_group->cached != BTRFS_CACHE_NO) { 4253 down_read(&space_info->groups_sem); 4254 if (list_empty(&block_group->list) || 4255 block_group->ro) { 4256 /* 4257 * someone is removing this block group, 4258 * we can't jump into the have_block_group 4259 * target because our list pointers are not 4260 * valid 4261 */ 4262 btrfs_put_block_group(block_group); 4263 up_read(&space_info->groups_sem); 4264 } else { 4265 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4266 block_group->flags); 4267 btrfs_lock_block_group(block_group, 4268 ffe_ctl->delalloc); 4269 goto have_block_group; 4270 } 4271 } else if (block_group) { 4272 btrfs_put_block_group(block_group); 4273 } 4274 } 4275 search: 4276 ffe_ctl->have_caching_bg = false; 4277 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4278 ffe_ctl->index == 0) 4279 full_search = true; 4280 down_read(&space_info->groups_sem); 4281 list_for_each_entry(block_group, 4282 &space_info->block_groups[ffe_ctl->index], list) { 4283 struct btrfs_block_group *bg_ret; 4284 4285 /* If the block group is read-only, we can skip it entirely. */ 4286 if (unlikely(block_group->ro)) { 4287 if (ffe_ctl->for_treelog) 4288 btrfs_clear_treelog_bg(block_group); 4289 if (ffe_ctl->for_data_reloc) 4290 btrfs_clear_data_reloc_bg(block_group); 4291 continue; 4292 } 4293 4294 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4295 ffe_ctl->search_start = block_group->start; 4296 4297 /* 4298 * this can happen if we end up cycling through all the 4299 * raid types, but we want to make sure we only allocate 4300 * for the proper type. 4301 */ 4302 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4303 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4304 BTRFS_BLOCK_GROUP_RAID1_MASK | 4305 BTRFS_BLOCK_GROUP_RAID56_MASK | 4306 BTRFS_BLOCK_GROUP_RAID10; 4307 4308 /* 4309 * if they asked for extra copies and this block group 4310 * doesn't provide them, bail. This does allow us to 4311 * fill raid0 from raid1. 4312 */ 4313 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4314 goto loop; 4315 4316 /* 4317 * This block group has different flags than we want. 4318 * It's possible that we have MIXED_GROUP flag but no 4319 * block group is mixed. Just skip such block group. 4320 */ 4321 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4322 continue; 4323 } 4324 4325 have_block_group: 4326 ffe_ctl->cached = btrfs_block_group_done(block_group); 4327 if (unlikely(!ffe_ctl->cached)) { 4328 ffe_ctl->have_caching_bg = true; 4329 ret = btrfs_cache_block_group(block_group, 0); 4330 4331 /* 4332 * If we get ENOMEM here or something else we want to 4333 * try other block groups, because it may not be fatal. 4334 * However if we can't find anything else we need to 4335 * save our return here so that we return the actual 4336 * error that caused problems, not ENOSPC. 4337 */ 4338 if (ret < 0) { 4339 if (!cache_block_group_error) 4340 cache_block_group_error = ret; 4341 ret = 0; 4342 goto loop; 4343 } 4344 ret = 0; 4345 } 4346 4347 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4348 goto loop; 4349 4350 bg_ret = NULL; 4351 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4352 if (ret == 0) { 4353 if (bg_ret && bg_ret != block_group) { 4354 btrfs_release_block_group(block_group, 4355 ffe_ctl->delalloc); 4356 block_group = bg_ret; 4357 } 4358 } else if (ret == -EAGAIN) { 4359 goto have_block_group; 4360 } else if (ret > 0) { 4361 goto loop; 4362 } 4363 4364 /* Checks */ 4365 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4366 fs_info->stripesize); 4367 4368 /* move on to the next group */ 4369 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4370 block_group->start + block_group->length) { 4371 btrfs_add_free_space_unused(block_group, 4372 ffe_ctl->found_offset, 4373 ffe_ctl->num_bytes); 4374 goto loop; 4375 } 4376 4377 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4378 btrfs_add_free_space_unused(block_group, 4379 ffe_ctl->found_offset, 4380 ffe_ctl->search_start - ffe_ctl->found_offset); 4381 4382 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4383 ffe_ctl->num_bytes, 4384 ffe_ctl->delalloc); 4385 if (ret == -EAGAIN) { 4386 btrfs_add_free_space_unused(block_group, 4387 ffe_ctl->found_offset, 4388 ffe_ctl->num_bytes); 4389 goto loop; 4390 } 4391 btrfs_inc_block_group_reservations(block_group); 4392 4393 /* we are all good, lets return */ 4394 ins->objectid = ffe_ctl->search_start; 4395 ins->offset = ffe_ctl->num_bytes; 4396 4397 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4398 ffe_ctl->num_bytes); 4399 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4400 break; 4401 loop: 4402 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4403 cond_resched(); 4404 } 4405 up_read(&space_info->groups_sem); 4406 4407 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4408 if (ret > 0) 4409 goto search; 4410 4411 if (ret == -ENOSPC && !cache_block_group_error) { 4412 /* 4413 * Use ffe_ctl->total_free_space as fallback if we can't find 4414 * any contiguous hole. 4415 */ 4416 if (!ffe_ctl->max_extent_size) 4417 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4418 spin_lock(&space_info->lock); 4419 space_info->max_extent_size = ffe_ctl->max_extent_size; 4420 spin_unlock(&space_info->lock); 4421 ins->offset = ffe_ctl->max_extent_size; 4422 } else if (ret == -ENOSPC) { 4423 ret = cache_block_group_error; 4424 } 4425 return ret; 4426 } 4427 4428 /* 4429 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4430 * hole that is at least as big as @num_bytes. 4431 * 4432 * @root - The root that will contain this extent 4433 * 4434 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4435 * is used for accounting purposes. This value differs 4436 * from @num_bytes only in the case of compressed extents. 4437 * 4438 * @num_bytes - Number of bytes to allocate on-disk. 4439 * 4440 * @min_alloc_size - Indicates the minimum amount of space that the 4441 * allocator should try to satisfy. In some cases 4442 * @num_bytes may be larger than what is required and if 4443 * the filesystem is fragmented then allocation fails. 4444 * However, the presence of @min_alloc_size gives a 4445 * chance to try and satisfy the smaller allocation. 4446 * 4447 * @empty_size - A hint that you plan on doing more COW. This is the 4448 * size in bytes the allocator should try to find free 4449 * next to the block it returns. This is just a hint and 4450 * may be ignored by the allocator. 4451 * 4452 * @hint_byte - Hint to the allocator to start searching above the byte 4453 * address passed. It might be ignored. 4454 * 4455 * @ins - This key is modified to record the found hole. It will 4456 * have the following values: 4457 * ins->objectid == start position 4458 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4459 * ins->offset == the size of the hole. 4460 * 4461 * @is_data - Boolean flag indicating whether an extent is 4462 * allocated for data (true) or metadata (false) 4463 * 4464 * @delalloc - Boolean flag indicating whether this allocation is for 4465 * delalloc or not. If 'true' data_rwsem of block groups 4466 * is going to be acquired. 4467 * 4468 * 4469 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4470 * case -ENOSPC is returned then @ins->offset will contain the size of the 4471 * largest available hole the allocator managed to find. 4472 */ 4473 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4474 u64 num_bytes, u64 min_alloc_size, 4475 u64 empty_size, u64 hint_byte, 4476 struct btrfs_key *ins, int is_data, int delalloc) 4477 { 4478 struct btrfs_fs_info *fs_info = root->fs_info; 4479 struct find_free_extent_ctl ffe_ctl = {}; 4480 bool final_tried = num_bytes == min_alloc_size; 4481 u64 flags; 4482 int ret; 4483 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4484 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4485 4486 flags = get_alloc_profile_by_root(root, is_data); 4487 again: 4488 WARN_ON(num_bytes < fs_info->sectorsize); 4489 4490 ffe_ctl.ram_bytes = ram_bytes; 4491 ffe_ctl.num_bytes = num_bytes; 4492 ffe_ctl.min_alloc_size = min_alloc_size; 4493 ffe_ctl.empty_size = empty_size; 4494 ffe_ctl.flags = flags; 4495 ffe_ctl.delalloc = delalloc; 4496 ffe_ctl.hint_byte = hint_byte; 4497 ffe_ctl.for_treelog = for_treelog; 4498 ffe_ctl.for_data_reloc = for_data_reloc; 4499 4500 ret = find_free_extent(root, ins, &ffe_ctl); 4501 if (!ret && !is_data) { 4502 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4503 } else if (ret == -ENOSPC) { 4504 if (!final_tried && ins->offset) { 4505 num_bytes = min(num_bytes >> 1, ins->offset); 4506 num_bytes = round_down(num_bytes, 4507 fs_info->sectorsize); 4508 num_bytes = max(num_bytes, min_alloc_size); 4509 ram_bytes = num_bytes; 4510 if (num_bytes == min_alloc_size) 4511 final_tried = true; 4512 goto again; 4513 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4514 struct btrfs_space_info *sinfo; 4515 4516 sinfo = btrfs_find_space_info(fs_info, flags); 4517 btrfs_err(fs_info, 4518 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4519 flags, num_bytes, for_treelog, for_data_reloc); 4520 if (sinfo) 4521 btrfs_dump_space_info(fs_info, sinfo, 4522 num_bytes, 1); 4523 } 4524 } 4525 4526 return ret; 4527 } 4528 4529 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4530 u64 start, u64 len, int delalloc) 4531 { 4532 struct btrfs_block_group *cache; 4533 4534 cache = btrfs_lookup_block_group(fs_info, start); 4535 if (!cache) { 4536 btrfs_err(fs_info, "Unable to find block group for %llu", 4537 start); 4538 return -ENOSPC; 4539 } 4540 4541 btrfs_add_free_space(cache, start, len); 4542 btrfs_free_reserved_bytes(cache, len, delalloc); 4543 trace_btrfs_reserved_extent_free(fs_info, start, len); 4544 4545 btrfs_put_block_group(cache); 4546 return 0; 4547 } 4548 4549 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4550 u64 len) 4551 { 4552 struct btrfs_block_group *cache; 4553 int ret = 0; 4554 4555 cache = btrfs_lookup_block_group(trans->fs_info, start); 4556 if (!cache) { 4557 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4558 start); 4559 return -ENOSPC; 4560 } 4561 4562 ret = pin_down_extent(trans, cache, start, len, 1); 4563 btrfs_put_block_group(cache); 4564 return ret; 4565 } 4566 4567 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4568 u64 parent, u64 root_objectid, 4569 u64 flags, u64 owner, u64 offset, 4570 struct btrfs_key *ins, int ref_mod) 4571 { 4572 struct btrfs_fs_info *fs_info = trans->fs_info; 4573 int ret; 4574 struct btrfs_extent_item *extent_item; 4575 struct btrfs_extent_inline_ref *iref; 4576 struct btrfs_path *path; 4577 struct extent_buffer *leaf; 4578 int type; 4579 u32 size; 4580 4581 if (parent > 0) 4582 type = BTRFS_SHARED_DATA_REF_KEY; 4583 else 4584 type = BTRFS_EXTENT_DATA_REF_KEY; 4585 4586 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4587 4588 path = btrfs_alloc_path(); 4589 if (!path) 4590 return -ENOMEM; 4591 4592 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4593 ins, size); 4594 if (ret) { 4595 btrfs_free_path(path); 4596 return ret; 4597 } 4598 4599 leaf = path->nodes[0]; 4600 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4601 struct btrfs_extent_item); 4602 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4603 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4604 btrfs_set_extent_flags(leaf, extent_item, 4605 flags | BTRFS_EXTENT_FLAG_DATA); 4606 4607 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4608 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4609 if (parent > 0) { 4610 struct btrfs_shared_data_ref *ref; 4611 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4612 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4613 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4614 } else { 4615 struct btrfs_extent_data_ref *ref; 4616 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4617 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4618 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4619 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4620 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4621 } 4622 4623 btrfs_mark_buffer_dirty(path->nodes[0]); 4624 btrfs_free_path(path); 4625 4626 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4627 if (ret) 4628 return ret; 4629 4630 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, true); 4631 if (ret) { /* -ENOENT, logic error */ 4632 btrfs_err(fs_info, "update block group failed for %llu %llu", 4633 ins->objectid, ins->offset); 4634 BUG(); 4635 } 4636 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4637 return ret; 4638 } 4639 4640 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4641 struct btrfs_delayed_ref_node *node, 4642 struct btrfs_delayed_extent_op *extent_op) 4643 { 4644 struct btrfs_fs_info *fs_info = trans->fs_info; 4645 int ret; 4646 struct btrfs_extent_item *extent_item; 4647 struct btrfs_key extent_key; 4648 struct btrfs_tree_block_info *block_info; 4649 struct btrfs_extent_inline_ref *iref; 4650 struct btrfs_path *path; 4651 struct extent_buffer *leaf; 4652 struct btrfs_delayed_tree_ref *ref; 4653 u32 size = sizeof(*extent_item) + sizeof(*iref); 4654 u64 num_bytes; 4655 u64 flags = extent_op->flags_to_set; 4656 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4657 4658 ref = btrfs_delayed_node_to_tree_ref(node); 4659 4660 extent_key.objectid = node->bytenr; 4661 if (skinny_metadata) { 4662 extent_key.offset = ref->level; 4663 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4664 num_bytes = fs_info->nodesize; 4665 } else { 4666 extent_key.offset = node->num_bytes; 4667 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4668 size += sizeof(*block_info); 4669 num_bytes = node->num_bytes; 4670 } 4671 4672 path = btrfs_alloc_path(); 4673 if (!path) 4674 return -ENOMEM; 4675 4676 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4677 &extent_key, size); 4678 if (ret) { 4679 btrfs_free_path(path); 4680 return ret; 4681 } 4682 4683 leaf = path->nodes[0]; 4684 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4685 struct btrfs_extent_item); 4686 btrfs_set_extent_refs(leaf, extent_item, 1); 4687 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4688 btrfs_set_extent_flags(leaf, extent_item, 4689 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4690 4691 if (skinny_metadata) { 4692 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4693 } else { 4694 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4695 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4696 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4697 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4698 } 4699 4700 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4701 btrfs_set_extent_inline_ref_type(leaf, iref, 4702 BTRFS_SHARED_BLOCK_REF_KEY); 4703 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4704 } else { 4705 btrfs_set_extent_inline_ref_type(leaf, iref, 4706 BTRFS_TREE_BLOCK_REF_KEY); 4707 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4708 } 4709 4710 btrfs_mark_buffer_dirty(leaf); 4711 btrfs_free_path(path); 4712 4713 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4714 num_bytes); 4715 if (ret) 4716 return ret; 4717 4718 ret = btrfs_update_block_group(trans, extent_key.objectid, 4719 fs_info->nodesize, true); 4720 if (ret) { /* -ENOENT, logic error */ 4721 btrfs_err(fs_info, "update block group failed for %llu %llu", 4722 extent_key.objectid, extent_key.offset); 4723 BUG(); 4724 } 4725 4726 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4727 fs_info->nodesize); 4728 return ret; 4729 } 4730 4731 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4732 struct btrfs_root *root, u64 owner, 4733 u64 offset, u64 ram_bytes, 4734 struct btrfs_key *ins) 4735 { 4736 struct btrfs_ref generic_ref = { 0 }; 4737 4738 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4739 4740 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4741 ins->objectid, ins->offset, 0); 4742 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4743 offset, 0, false); 4744 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4745 4746 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4747 } 4748 4749 /* 4750 * this is used by the tree logging recovery code. It records that 4751 * an extent has been allocated and makes sure to clear the free 4752 * space cache bits as well 4753 */ 4754 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4755 u64 root_objectid, u64 owner, u64 offset, 4756 struct btrfs_key *ins) 4757 { 4758 struct btrfs_fs_info *fs_info = trans->fs_info; 4759 int ret; 4760 struct btrfs_block_group *block_group; 4761 struct btrfs_space_info *space_info; 4762 4763 /* 4764 * Mixed block groups will exclude before processing the log so we only 4765 * need to do the exclude dance if this fs isn't mixed. 4766 */ 4767 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4768 ret = __exclude_logged_extent(fs_info, ins->objectid, 4769 ins->offset); 4770 if (ret) 4771 return ret; 4772 } 4773 4774 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4775 if (!block_group) 4776 return -EINVAL; 4777 4778 space_info = block_group->space_info; 4779 spin_lock(&space_info->lock); 4780 spin_lock(&block_group->lock); 4781 space_info->bytes_reserved += ins->offset; 4782 block_group->reserved += ins->offset; 4783 spin_unlock(&block_group->lock); 4784 spin_unlock(&space_info->lock); 4785 4786 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4787 offset, ins, 1); 4788 if (ret) 4789 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4790 btrfs_put_block_group(block_group); 4791 return ret; 4792 } 4793 4794 static struct extent_buffer * 4795 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4796 u64 bytenr, int level, u64 owner, 4797 enum btrfs_lock_nesting nest) 4798 { 4799 struct btrfs_fs_info *fs_info = root->fs_info; 4800 struct extent_buffer *buf; 4801 4802 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4803 if (IS_ERR(buf)) 4804 return buf; 4805 4806 /* 4807 * Extra safety check in case the extent tree is corrupted and extent 4808 * allocator chooses to use a tree block which is already used and 4809 * locked. 4810 */ 4811 if (buf->lock_owner == current->pid) { 4812 btrfs_err_rl(fs_info, 4813 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4814 buf->start, btrfs_header_owner(buf), current->pid); 4815 free_extent_buffer(buf); 4816 return ERR_PTR(-EUCLEAN); 4817 } 4818 4819 /* 4820 * This needs to stay, because we could allocate a freed block from an 4821 * old tree into a new tree, so we need to make sure this new block is 4822 * set to the appropriate level and owner. 4823 */ 4824 btrfs_set_buffer_lockdep_class(owner, buf, level); 4825 __btrfs_tree_lock(buf, nest); 4826 btrfs_clean_tree_block(buf); 4827 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4828 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4829 4830 set_extent_buffer_uptodate(buf); 4831 4832 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4833 btrfs_set_header_level(buf, level); 4834 btrfs_set_header_bytenr(buf, buf->start); 4835 btrfs_set_header_generation(buf, trans->transid); 4836 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4837 btrfs_set_header_owner(buf, owner); 4838 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4839 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4840 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4841 buf->log_index = root->log_transid % 2; 4842 /* 4843 * we allow two log transactions at a time, use different 4844 * EXTENT bit to differentiate dirty pages. 4845 */ 4846 if (buf->log_index == 0) 4847 set_extent_dirty(&root->dirty_log_pages, buf->start, 4848 buf->start + buf->len - 1, GFP_NOFS); 4849 else 4850 set_extent_new(&root->dirty_log_pages, buf->start, 4851 buf->start + buf->len - 1); 4852 } else { 4853 buf->log_index = -1; 4854 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4855 buf->start + buf->len - 1, GFP_NOFS); 4856 } 4857 /* this returns a buffer locked for blocking */ 4858 return buf; 4859 } 4860 4861 /* 4862 * finds a free extent and does all the dirty work required for allocation 4863 * returns the tree buffer or an ERR_PTR on error. 4864 */ 4865 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4866 struct btrfs_root *root, 4867 u64 parent, u64 root_objectid, 4868 const struct btrfs_disk_key *key, 4869 int level, u64 hint, 4870 u64 empty_size, 4871 enum btrfs_lock_nesting nest) 4872 { 4873 struct btrfs_fs_info *fs_info = root->fs_info; 4874 struct btrfs_key ins; 4875 struct btrfs_block_rsv *block_rsv; 4876 struct extent_buffer *buf; 4877 struct btrfs_delayed_extent_op *extent_op; 4878 struct btrfs_ref generic_ref = { 0 }; 4879 u64 flags = 0; 4880 int ret; 4881 u32 blocksize = fs_info->nodesize; 4882 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4883 4884 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4885 if (btrfs_is_testing(fs_info)) { 4886 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4887 level, root_objectid, nest); 4888 if (!IS_ERR(buf)) 4889 root->alloc_bytenr += blocksize; 4890 return buf; 4891 } 4892 #endif 4893 4894 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4895 if (IS_ERR(block_rsv)) 4896 return ERR_CAST(block_rsv); 4897 4898 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4899 empty_size, hint, &ins, 0, 0); 4900 if (ret) 4901 goto out_unuse; 4902 4903 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4904 root_objectid, nest); 4905 if (IS_ERR(buf)) { 4906 ret = PTR_ERR(buf); 4907 goto out_free_reserved; 4908 } 4909 4910 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4911 if (parent == 0) 4912 parent = ins.objectid; 4913 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4914 } else 4915 BUG_ON(parent > 0); 4916 4917 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4918 extent_op = btrfs_alloc_delayed_extent_op(); 4919 if (!extent_op) { 4920 ret = -ENOMEM; 4921 goto out_free_buf; 4922 } 4923 if (key) 4924 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4925 else 4926 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4927 extent_op->flags_to_set = flags; 4928 extent_op->update_key = skinny_metadata ? false : true; 4929 extent_op->update_flags = true; 4930 extent_op->is_data = false; 4931 extent_op->level = level; 4932 4933 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4934 ins.objectid, ins.offset, parent); 4935 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 4936 root->root_key.objectid, false); 4937 btrfs_ref_tree_mod(fs_info, &generic_ref); 4938 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4939 if (ret) 4940 goto out_free_delayed; 4941 } 4942 return buf; 4943 4944 out_free_delayed: 4945 btrfs_free_delayed_extent_op(extent_op); 4946 out_free_buf: 4947 btrfs_tree_unlock(buf); 4948 free_extent_buffer(buf); 4949 out_free_reserved: 4950 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4951 out_unuse: 4952 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4953 return ERR_PTR(ret); 4954 } 4955 4956 struct walk_control { 4957 u64 refs[BTRFS_MAX_LEVEL]; 4958 u64 flags[BTRFS_MAX_LEVEL]; 4959 struct btrfs_key update_progress; 4960 struct btrfs_key drop_progress; 4961 int drop_level; 4962 int stage; 4963 int level; 4964 int shared_level; 4965 int update_ref; 4966 int keep_locks; 4967 int reada_slot; 4968 int reada_count; 4969 int restarted; 4970 }; 4971 4972 #define DROP_REFERENCE 1 4973 #define UPDATE_BACKREF 2 4974 4975 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4976 struct btrfs_root *root, 4977 struct walk_control *wc, 4978 struct btrfs_path *path) 4979 { 4980 struct btrfs_fs_info *fs_info = root->fs_info; 4981 u64 bytenr; 4982 u64 generation; 4983 u64 refs; 4984 u64 flags; 4985 u32 nritems; 4986 struct btrfs_key key; 4987 struct extent_buffer *eb; 4988 int ret; 4989 int slot; 4990 int nread = 0; 4991 4992 if (path->slots[wc->level] < wc->reada_slot) { 4993 wc->reada_count = wc->reada_count * 2 / 3; 4994 wc->reada_count = max(wc->reada_count, 2); 4995 } else { 4996 wc->reada_count = wc->reada_count * 3 / 2; 4997 wc->reada_count = min_t(int, wc->reada_count, 4998 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4999 } 5000 5001 eb = path->nodes[wc->level]; 5002 nritems = btrfs_header_nritems(eb); 5003 5004 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5005 if (nread >= wc->reada_count) 5006 break; 5007 5008 cond_resched(); 5009 bytenr = btrfs_node_blockptr(eb, slot); 5010 generation = btrfs_node_ptr_generation(eb, slot); 5011 5012 if (slot == path->slots[wc->level]) 5013 goto reada; 5014 5015 if (wc->stage == UPDATE_BACKREF && 5016 generation <= root->root_key.offset) 5017 continue; 5018 5019 /* We don't lock the tree block, it's OK to be racy here */ 5020 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5021 wc->level - 1, 1, &refs, 5022 &flags); 5023 /* We don't care about errors in readahead. */ 5024 if (ret < 0) 5025 continue; 5026 BUG_ON(refs == 0); 5027 5028 if (wc->stage == DROP_REFERENCE) { 5029 if (refs == 1) 5030 goto reada; 5031 5032 if (wc->level == 1 && 5033 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5034 continue; 5035 if (!wc->update_ref || 5036 generation <= root->root_key.offset) 5037 continue; 5038 btrfs_node_key_to_cpu(eb, &key, slot); 5039 ret = btrfs_comp_cpu_keys(&key, 5040 &wc->update_progress); 5041 if (ret < 0) 5042 continue; 5043 } else { 5044 if (wc->level == 1 && 5045 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5046 continue; 5047 } 5048 reada: 5049 btrfs_readahead_node_child(eb, slot); 5050 nread++; 5051 } 5052 wc->reada_slot = slot; 5053 } 5054 5055 /* 5056 * helper to process tree block while walking down the tree. 5057 * 5058 * when wc->stage == UPDATE_BACKREF, this function updates 5059 * back refs for pointers in the block. 5060 * 5061 * NOTE: return value 1 means we should stop walking down. 5062 */ 5063 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5064 struct btrfs_root *root, 5065 struct btrfs_path *path, 5066 struct walk_control *wc, int lookup_info) 5067 { 5068 struct btrfs_fs_info *fs_info = root->fs_info; 5069 int level = wc->level; 5070 struct extent_buffer *eb = path->nodes[level]; 5071 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5072 int ret; 5073 5074 if (wc->stage == UPDATE_BACKREF && 5075 btrfs_header_owner(eb) != root->root_key.objectid) 5076 return 1; 5077 5078 /* 5079 * when reference count of tree block is 1, it won't increase 5080 * again. once full backref flag is set, we never clear it. 5081 */ 5082 if (lookup_info && 5083 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5084 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5085 BUG_ON(!path->locks[level]); 5086 ret = btrfs_lookup_extent_info(trans, fs_info, 5087 eb->start, level, 1, 5088 &wc->refs[level], 5089 &wc->flags[level]); 5090 BUG_ON(ret == -ENOMEM); 5091 if (ret) 5092 return ret; 5093 BUG_ON(wc->refs[level] == 0); 5094 } 5095 5096 if (wc->stage == DROP_REFERENCE) { 5097 if (wc->refs[level] > 1) 5098 return 1; 5099 5100 if (path->locks[level] && !wc->keep_locks) { 5101 btrfs_tree_unlock_rw(eb, path->locks[level]); 5102 path->locks[level] = 0; 5103 } 5104 return 0; 5105 } 5106 5107 /* wc->stage == UPDATE_BACKREF */ 5108 if (!(wc->flags[level] & flag)) { 5109 BUG_ON(!path->locks[level]); 5110 ret = btrfs_inc_ref(trans, root, eb, 1); 5111 BUG_ON(ret); /* -ENOMEM */ 5112 ret = btrfs_dec_ref(trans, root, eb, 0); 5113 BUG_ON(ret); /* -ENOMEM */ 5114 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5115 btrfs_header_level(eb), 0); 5116 BUG_ON(ret); /* -ENOMEM */ 5117 wc->flags[level] |= flag; 5118 } 5119 5120 /* 5121 * the block is shared by multiple trees, so it's not good to 5122 * keep the tree lock 5123 */ 5124 if (path->locks[level] && level > 0) { 5125 btrfs_tree_unlock_rw(eb, path->locks[level]); 5126 path->locks[level] = 0; 5127 } 5128 return 0; 5129 } 5130 5131 /* 5132 * This is used to verify a ref exists for this root to deal with a bug where we 5133 * would have a drop_progress key that hadn't been updated properly. 5134 */ 5135 static int check_ref_exists(struct btrfs_trans_handle *trans, 5136 struct btrfs_root *root, u64 bytenr, u64 parent, 5137 int level) 5138 { 5139 struct btrfs_path *path; 5140 struct btrfs_extent_inline_ref *iref; 5141 int ret; 5142 5143 path = btrfs_alloc_path(); 5144 if (!path) 5145 return -ENOMEM; 5146 5147 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5148 root->fs_info->nodesize, parent, 5149 root->root_key.objectid, level, 0); 5150 btrfs_free_path(path); 5151 if (ret == -ENOENT) 5152 return 0; 5153 if (ret < 0) 5154 return ret; 5155 return 1; 5156 } 5157 5158 /* 5159 * helper to process tree block pointer. 5160 * 5161 * when wc->stage == DROP_REFERENCE, this function checks 5162 * reference count of the block pointed to. if the block 5163 * is shared and we need update back refs for the subtree 5164 * rooted at the block, this function changes wc->stage to 5165 * UPDATE_BACKREF. if the block is shared and there is no 5166 * need to update back, this function drops the reference 5167 * to the block. 5168 * 5169 * NOTE: return value 1 means we should stop walking down. 5170 */ 5171 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5172 struct btrfs_root *root, 5173 struct btrfs_path *path, 5174 struct walk_control *wc, int *lookup_info) 5175 { 5176 struct btrfs_fs_info *fs_info = root->fs_info; 5177 u64 bytenr; 5178 u64 generation; 5179 u64 parent; 5180 struct btrfs_key key; 5181 struct btrfs_key first_key; 5182 struct btrfs_ref ref = { 0 }; 5183 struct extent_buffer *next; 5184 int level = wc->level; 5185 int reada = 0; 5186 int ret = 0; 5187 bool need_account = false; 5188 5189 generation = btrfs_node_ptr_generation(path->nodes[level], 5190 path->slots[level]); 5191 /* 5192 * if the lower level block was created before the snapshot 5193 * was created, we know there is no need to update back refs 5194 * for the subtree 5195 */ 5196 if (wc->stage == UPDATE_BACKREF && 5197 generation <= root->root_key.offset) { 5198 *lookup_info = 1; 5199 return 1; 5200 } 5201 5202 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5203 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5204 path->slots[level]); 5205 5206 next = find_extent_buffer(fs_info, bytenr); 5207 if (!next) { 5208 next = btrfs_find_create_tree_block(fs_info, bytenr, 5209 root->root_key.objectid, level - 1); 5210 if (IS_ERR(next)) 5211 return PTR_ERR(next); 5212 reada = 1; 5213 } 5214 btrfs_tree_lock(next); 5215 5216 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5217 &wc->refs[level - 1], 5218 &wc->flags[level - 1]); 5219 if (ret < 0) 5220 goto out_unlock; 5221 5222 if (unlikely(wc->refs[level - 1] == 0)) { 5223 btrfs_err(fs_info, "Missing references."); 5224 ret = -EIO; 5225 goto out_unlock; 5226 } 5227 *lookup_info = 0; 5228 5229 if (wc->stage == DROP_REFERENCE) { 5230 if (wc->refs[level - 1] > 1) { 5231 need_account = true; 5232 if (level == 1 && 5233 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5234 goto skip; 5235 5236 if (!wc->update_ref || 5237 generation <= root->root_key.offset) 5238 goto skip; 5239 5240 btrfs_node_key_to_cpu(path->nodes[level], &key, 5241 path->slots[level]); 5242 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5243 if (ret < 0) 5244 goto skip; 5245 5246 wc->stage = UPDATE_BACKREF; 5247 wc->shared_level = level - 1; 5248 } 5249 } else { 5250 if (level == 1 && 5251 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5252 goto skip; 5253 } 5254 5255 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5256 btrfs_tree_unlock(next); 5257 free_extent_buffer(next); 5258 next = NULL; 5259 *lookup_info = 1; 5260 } 5261 5262 if (!next) { 5263 if (reada && level == 1) 5264 reada_walk_down(trans, root, wc, path); 5265 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5266 generation, level - 1, &first_key); 5267 if (IS_ERR(next)) { 5268 return PTR_ERR(next); 5269 } else if (!extent_buffer_uptodate(next)) { 5270 free_extent_buffer(next); 5271 return -EIO; 5272 } 5273 btrfs_tree_lock(next); 5274 } 5275 5276 level--; 5277 ASSERT(level == btrfs_header_level(next)); 5278 if (level != btrfs_header_level(next)) { 5279 btrfs_err(root->fs_info, "mismatched level"); 5280 ret = -EIO; 5281 goto out_unlock; 5282 } 5283 path->nodes[level] = next; 5284 path->slots[level] = 0; 5285 path->locks[level] = BTRFS_WRITE_LOCK; 5286 wc->level = level; 5287 if (wc->level == 1) 5288 wc->reada_slot = 0; 5289 return 0; 5290 skip: 5291 wc->refs[level - 1] = 0; 5292 wc->flags[level - 1] = 0; 5293 if (wc->stage == DROP_REFERENCE) { 5294 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5295 parent = path->nodes[level]->start; 5296 } else { 5297 ASSERT(root->root_key.objectid == 5298 btrfs_header_owner(path->nodes[level])); 5299 if (root->root_key.objectid != 5300 btrfs_header_owner(path->nodes[level])) { 5301 btrfs_err(root->fs_info, 5302 "mismatched block owner"); 5303 ret = -EIO; 5304 goto out_unlock; 5305 } 5306 parent = 0; 5307 } 5308 5309 /* 5310 * If we had a drop_progress we need to verify the refs are set 5311 * as expected. If we find our ref then we know that from here 5312 * on out everything should be correct, and we can clear the 5313 * ->restarted flag. 5314 */ 5315 if (wc->restarted) { 5316 ret = check_ref_exists(trans, root, bytenr, parent, 5317 level - 1); 5318 if (ret < 0) 5319 goto out_unlock; 5320 if (ret == 0) 5321 goto no_delete; 5322 ret = 0; 5323 wc->restarted = 0; 5324 } 5325 5326 /* 5327 * Reloc tree doesn't contribute to qgroup numbers, and we have 5328 * already accounted them at merge time (replace_path), 5329 * thus we could skip expensive subtree trace here. 5330 */ 5331 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5332 need_account) { 5333 ret = btrfs_qgroup_trace_subtree(trans, next, 5334 generation, level - 1); 5335 if (ret) { 5336 btrfs_err_rl(fs_info, 5337 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5338 ret); 5339 } 5340 } 5341 5342 /* 5343 * We need to update the next key in our walk control so we can 5344 * update the drop_progress key accordingly. We don't care if 5345 * find_next_key doesn't find a key because that means we're at 5346 * the end and are going to clean up now. 5347 */ 5348 wc->drop_level = level; 5349 find_next_key(path, level, &wc->drop_progress); 5350 5351 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5352 fs_info->nodesize, parent); 5353 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5354 0, false); 5355 ret = btrfs_free_extent(trans, &ref); 5356 if (ret) 5357 goto out_unlock; 5358 } 5359 no_delete: 5360 *lookup_info = 1; 5361 ret = 1; 5362 5363 out_unlock: 5364 btrfs_tree_unlock(next); 5365 free_extent_buffer(next); 5366 5367 return ret; 5368 } 5369 5370 /* 5371 * helper to process tree block while walking up the tree. 5372 * 5373 * when wc->stage == DROP_REFERENCE, this function drops 5374 * reference count on the block. 5375 * 5376 * when wc->stage == UPDATE_BACKREF, this function changes 5377 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5378 * to UPDATE_BACKREF previously while processing the block. 5379 * 5380 * NOTE: return value 1 means we should stop walking up. 5381 */ 5382 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5383 struct btrfs_root *root, 5384 struct btrfs_path *path, 5385 struct walk_control *wc) 5386 { 5387 struct btrfs_fs_info *fs_info = root->fs_info; 5388 int ret; 5389 int level = wc->level; 5390 struct extent_buffer *eb = path->nodes[level]; 5391 u64 parent = 0; 5392 5393 if (wc->stage == UPDATE_BACKREF) { 5394 BUG_ON(wc->shared_level < level); 5395 if (level < wc->shared_level) 5396 goto out; 5397 5398 ret = find_next_key(path, level + 1, &wc->update_progress); 5399 if (ret > 0) 5400 wc->update_ref = 0; 5401 5402 wc->stage = DROP_REFERENCE; 5403 wc->shared_level = -1; 5404 path->slots[level] = 0; 5405 5406 /* 5407 * check reference count again if the block isn't locked. 5408 * we should start walking down the tree again if reference 5409 * count is one. 5410 */ 5411 if (!path->locks[level]) { 5412 BUG_ON(level == 0); 5413 btrfs_tree_lock(eb); 5414 path->locks[level] = BTRFS_WRITE_LOCK; 5415 5416 ret = btrfs_lookup_extent_info(trans, fs_info, 5417 eb->start, level, 1, 5418 &wc->refs[level], 5419 &wc->flags[level]); 5420 if (ret < 0) { 5421 btrfs_tree_unlock_rw(eb, path->locks[level]); 5422 path->locks[level] = 0; 5423 return ret; 5424 } 5425 BUG_ON(wc->refs[level] == 0); 5426 if (wc->refs[level] == 1) { 5427 btrfs_tree_unlock_rw(eb, path->locks[level]); 5428 path->locks[level] = 0; 5429 return 1; 5430 } 5431 } 5432 } 5433 5434 /* wc->stage == DROP_REFERENCE */ 5435 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5436 5437 if (wc->refs[level] == 1) { 5438 if (level == 0) { 5439 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5440 ret = btrfs_dec_ref(trans, root, eb, 1); 5441 else 5442 ret = btrfs_dec_ref(trans, root, eb, 0); 5443 BUG_ON(ret); /* -ENOMEM */ 5444 if (is_fstree(root->root_key.objectid)) { 5445 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5446 if (ret) { 5447 btrfs_err_rl(fs_info, 5448 "error %d accounting leaf items, quota is out of sync, rescan required", 5449 ret); 5450 } 5451 } 5452 } 5453 /* make block locked assertion in btrfs_clean_tree_block happy */ 5454 if (!path->locks[level] && 5455 btrfs_header_generation(eb) == trans->transid) { 5456 btrfs_tree_lock(eb); 5457 path->locks[level] = BTRFS_WRITE_LOCK; 5458 } 5459 btrfs_clean_tree_block(eb); 5460 } 5461 5462 if (eb == root->node) { 5463 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5464 parent = eb->start; 5465 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5466 goto owner_mismatch; 5467 } else { 5468 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5469 parent = path->nodes[level + 1]->start; 5470 else if (root->root_key.objectid != 5471 btrfs_header_owner(path->nodes[level + 1])) 5472 goto owner_mismatch; 5473 } 5474 5475 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5476 wc->refs[level] == 1); 5477 out: 5478 wc->refs[level] = 0; 5479 wc->flags[level] = 0; 5480 return 0; 5481 5482 owner_mismatch: 5483 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5484 btrfs_header_owner(eb), root->root_key.objectid); 5485 return -EUCLEAN; 5486 } 5487 5488 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5489 struct btrfs_root *root, 5490 struct btrfs_path *path, 5491 struct walk_control *wc) 5492 { 5493 int level = wc->level; 5494 int lookup_info = 1; 5495 int ret; 5496 5497 while (level >= 0) { 5498 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5499 if (ret > 0) 5500 break; 5501 5502 if (level == 0) 5503 break; 5504 5505 if (path->slots[level] >= 5506 btrfs_header_nritems(path->nodes[level])) 5507 break; 5508 5509 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5510 if (ret > 0) { 5511 path->slots[level]++; 5512 continue; 5513 } else if (ret < 0) 5514 return ret; 5515 level = wc->level; 5516 } 5517 return 0; 5518 } 5519 5520 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5521 struct btrfs_root *root, 5522 struct btrfs_path *path, 5523 struct walk_control *wc, int max_level) 5524 { 5525 int level = wc->level; 5526 int ret; 5527 5528 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5529 while (level < max_level && path->nodes[level]) { 5530 wc->level = level; 5531 if (path->slots[level] + 1 < 5532 btrfs_header_nritems(path->nodes[level])) { 5533 path->slots[level]++; 5534 return 0; 5535 } else { 5536 ret = walk_up_proc(trans, root, path, wc); 5537 if (ret > 0) 5538 return 0; 5539 if (ret < 0) 5540 return ret; 5541 5542 if (path->locks[level]) { 5543 btrfs_tree_unlock_rw(path->nodes[level], 5544 path->locks[level]); 5545 path->locks[level] = 0; 5546 } 5547 free_extent_buffer(path->nodes[level]); 5548 path->nodes[level] = NULL; 5549 level++; 5550 } 5551 } 5552 return 1; 5553 } 5554 5555 /* 5556 * drop a subvolume tree. 5557 * 5558 * this function traverses the tree freeing any blocks that only 5559 * referenced by the tree. 5560 * 5561 * when a shared tree block is found. this function decreases its 5562 * reference count by one. if update_ref is true, this function 5563 * also make sure backrefs for the shared block and all lower level 5564 * blocks are properly updated. 5565 * 5566 * If called with for_reloc == 0, may exit early with -EAGAIN 5567 */ 5568 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5569 { 5570 struct btrfs_fs_info *fs_info = root->fs_info; 5571 struct btrfs_path *path; 5572 struct btrfs_trans_handle *trans; 5573 struct btrfs_root *tree_root = fs_info->tree_root; 5574 struct btrfs_root_item *root_item = &root->root_item; 5575 struct walk_control *wc; 5576 struct btrfs_key key; 5577 int err = 0; 5578 int ret; 5579 int level; 5580 bool root_dropped = false; 5581 5582 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5583 5584 path = btrfs_alloc_path(); 5585 if (!path) { 5586 err = -ENOMEM; 5587 goto out; 5588 } 5589 5590 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5591 if (!wc) { 5592 btrfs_free_path(path); 5593 err = -ENOMEM; 5594 goto out; 5595 } 5596 5597 /* 5598 * Use join to avoid potential EINTR from transaction start. See 5599 * wait_reserve_ticket and the whole reservation callchain. 5600 */ 5601 if (for_reloc) 5602 trans = btrfs_join_transaction(tree_root); 5603 else 5604 trans = btrfs_start_transaction(tree_root, 0); 5605 if (IS_ERR(trans)) { 5606 err = PTR_ERR(trans); 5607 goto out_free; 5608 } 5609 5610 err = btrfs_run_delayed_items(trans); 5611 if (err) 5612 goto out_end_trans; 5613 5614 /* 5615 * This will help us catch people modifying the fs tree while we're 5616 * dropping it. It is unsafe to mess with the fs tree while it's being 5617 * dropped as we unlock the root node and parent nodes as we walk down 5618 * the tree, assuming nothing will change. If something does change 5619 * then we'll have stale information and drop references to blocks we've 5620 * already dropped. 5621 */ 5622 set_bit(BTRFS_ROOT_DELETING, &root->state); 5623 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5624 level = btrfs_header_level(root->node); 5625 path->nodes[level] = btrfs_lock_root_node(root); 5626 path->slots[level] = 0; 5627 path->locks[level] = BTRFS_WRITE_LOCK; 5628 memset(&wc->update_progress, 0, 5629 sizeof(wc->update_progress)); 5630 } else { 5631 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5632 memcpy(&wc->update_progress, &key, 5633 sizeof(wc->update_progress)); 5634 5635 level = btrfs_root_drop_level(root_item); 5636 BUG_ON(level == 0); 5637 path->lowest_level = level; 5638 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5639 path->lowest_level = 0; 5640 if (ret < 0) { 5641 err = ret; 5642 goto out_end_trans; 5643 } 5644 WARN_ON(ret > 0); 5645 5646 /* 5647 * unlock our path, this is safe because only this 5648 * function is allowed to delete this snapshot 5649 */ 5650 btrfs_unlock_up_safe(path, 0); 5651 5652 level = btrfs_header_level(root->node); 5653 while (1) { 5654 btrfs_tree_lock(path->nodes[level]); 5655 path->locks[level] = BTRFS_WRITE_LOCK; 5656 5657 ret = btrfs_lookup_extent_info(trans, fs_info, 5658 path->nodes[level]->start, 5659 level, 1, &wc->refs[level], 5660 &wc->flags[level]); 5661 if (ret < 0) { 5662 err = ret; 5663 goto out_end_trans; 5664 } 5665 BUG_ON(wc->refs[level] == 0); 5666 5667 if (level == btrfs_root_drop_level(root_item)) 5668 break; 5669 5670 btrfs_tree_unlock(path->nodes[level]); 5671 path->locks[level] = 0; 5672 WARN_ON(wc->refs[level] != 1); 5673 level--; 5674 } 5675 } 5676 5677 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5678 wc->level = level; 5679 wc->shared_level = -1; 5680 wc->stage = DROP_REFERENCE; 5681 wc->update_ref = update_ref; 5682 wc->keep_locks = 0; 5683 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5684 5685 while (1) { 5686 5687 ret = walk_down_tree(trans, root, path, wc); 5688 if (ret < 0) { 5689 err = ret; 5690 break; 5691 } 5692 5693 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5694 if (ret < 0) { 5695 err = ret; 5696 break; 5697 } 5698 5699 if (ret > 0) { 5700 BUG_ON(wc->stage != DROP_REFERENCE); 5701 break; 5702 } 5703 5704 if (wc->stage == DROP_REFERENCE) { 5705 wc->drop_level = wc->level; 5706 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5707 &wc->drop_progress, 5708 path->slots[wc->drop_level]); 5709 } 5710 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5711 &wc->drop_progress); 5712 btrfs_set_root_drop_level(root_item, wc->drop_level); 5713 5714 BUG_ON(wc->level == 0); 5715 if (btrfs_should_end_transaction(trans) || 5716 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5717 ret = btrfs_update_root(trans, tree_root, 5718 &root->root_key, 5719 root_item); 5720 if (ret) { 5721 btrfs_abort_transaction(trans, ret); 5722 err = ret; 5723 goto out_end_trans; 5724 } 5725 5726 btrfs_end_transaction_throttle(trans); 5727 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5728 btrfs_debug(fs_info, 5729 "drop snapshot early exit"); 5730 err = -EAGAIN; 5731 goto out_free; 5732 } 5733 5734 /* 5735 * Use join to avoid potential EINTR from transaction 5736 * start. See wait_reserve_ticket and the whole 5737 * reservation callchain. 5738 */ 5739 if (for_reloc) 5740 trans = btrfs_join_transaction(tree_root); 5741 else 5742 trans = btrfs_start_transaction(tree_root, 0); 5743 if (IS_ERR(trans)) { 5744 err = PTR_ERR(trans); 5745 goto out_free; 5746 } 5747 } 5748 } 5749 btrfs_release_path(path); 5750 if (err) 5751 goto out_end_trans; 5752 5753 ret = btrfs_del_root(trans, &root->root_key); 5754 if (ret) { 5755 btrfs_abort_transaction(trans, ret); 5756 err = ret; 5757 goto out_end_trans; 5758 } 5759 5760 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5761 ret = btrfs_find_root(tree_root, &root->root_key, path, 5762 NULL, NULL); 5763 if (ret < 0) { 5764 btrfs_abort_transaction(trans, ret); 5765 err = ret; 5766 goto out_end_trans; 5767 } else if (ret > 0) { 5768 /* if we fail to delete the orphan item this time 5769 * around, it'll get picked up the next time. 5770 * 5771 * The most common failure here is just -ENOENT. 5772 */ 5773 btrfs_del_orphan_item(trans, tree_root, 5774 root->root_key.objectid); 5775 } 5776 } 5777 5778 /* 5779 * This subvolume is going to be completely dropped, and won't be 5780 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5781 * commit transaction time. So free it here manually. 5782 */ 5783 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5784 btrfs_qgroup_free_meta_all_pertrans(root); 5785 5786 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5787 btrfs_add_dropped_root(trans, root); 5788 else 5789 btrfs_put_root(root); 5790 root_dropped = true; 5791 out_end_trans: 5792 btrfs_end_transaction_throttle(trans); 5793 out_free: 5794 kfree(wc); 5795 btrfs_free_path(path); 5796 out: 5797 /* 5798 * So if we need to stop dropping the snapshot for whatever reason we 5799 * need to make sure to add it back to the dead root list so that we 5800 * keep trying to do the work later. This also cleans up roots if we 5801 * don't have it in the radix (like when we recover after a power fail 5802 * or unmount) so we don't leak memory. 5803 */ 5804 if (!for_reloc && !root_dropped) 5805 btrfs_add_dead_root(root); 5806 return err; 5807 } 5808 5809 /* 5810 * drop subtree rooted at tree block 'node'. 5811 * 5812 * NOTE: this function will unlock and release tree block 'node' 5813 * only used by relocation code 5814 */ 5815 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5816 struct btrfs_root *root, 5817 struct extent_buffer *node, 5818 struct extent_buffer *parent) 5819 { 5820 struct btrfs_fs_info *fs_info = root->fs_info; 5821 struct btrfs_path *path; 5822 struct walk_control *wc; 5823 int level; 5824 int parent_level; 5825 int ret = 0; 5826 int wret; 5827 5828 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5829 5830 path = btrfs_alloc_path(); 5831 if (!path) 5832 return -ENOMEM; 5833 5834 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5835 if (!wc) { 5836 btrfs_free_path(path); 5837 return -ENOMEM; 5838 } 5839 5840 btrfs_assert_tree_write_locked(parent); 5841 parent_level = btrfs_header_level(parent); 5842 atomic_inc(&parent->refs); 5843 path->nodes[parent_level] = parent; 5844 path->slots[parent_level] = btrfs_header_nritems(parent); 5845 5846 btrfs_assert_tree_write_locked(node); 5847 level = btrfs_header_level(node); 5848 path->nodes[level] = node; 5849 path->slots[level] = 0; 5850 path->locks[level] = BTRFS_WRITE_LOCK; 5851 5852 wc->refs[parent_level] = 1; 5853 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5854 wc->level = level; 5855 wc->shared_level = -1; 5856 wc->stage = DROP_REFERENCE; 5857 wc->update_ref = 0; 5858 wc->keep_locks = 1; 5859 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5860 5861 while (1) { 5862 wret = walk_down_tree(trans, root, path, wc); 5863 if (wret < 0) { 5864 ret = wret; 5865 break; 5866 } 5867 5868 wret = walk_up_tree(trans, root, path, wc, parent_level); 5869 if (wret < 0) 5870 ret = wret; 5871 if (wret != 0) 5872 break; 5873 } 5874 5875 kfree(wc); 5876 btrfs_free_path(path); 5877 return ret; 5878 } 5879 5880 /* 5881 * helper to account the unused space of all the readonly block group in the 5882 * space_info. takes mirrors into account. 5883 */ 5884 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5885 { 5886 struct btrfs_block_group *block_group; 5887 u64 free_bytes = 0; 5888 int factor; 5889 5890 /* It's df, we don't care if it's racy */ 5891 if (list_empty(&sinfo->ro_bgs)) 5892 return 0; 5893 5894 spin_lock(&sinfo->lock); 5895 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5896 spin_lock(&block_group->lock); 5897 5898 if (!block_group->ro) { 5899 spin_unlock(&block_group->lock); 5900 continue; 5901 } 5902 5903 factor = btrfs_bg_type_to_factor(block_group->flags); 5904 free_bytes += (block_group->length - 5905 block_group->used) * factor; 5906 5907 spin_unlock(&block_group->lock); 5908 } 5909 spin_unlock(&sinfo->lock); 5910 5911 return free_bytes; 5912 } 5913 5914 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5915 u64 start, u64 end) 5916 { 5917 return unpin_extent_range(fs_info, start, end, false); 5918 } 5919 5920 /* 5921 * It used to be that old block groups would be left around forever. 5922 * Iterating over them would be enough to trim unused space. Since we 5923 * now automatically remove them, we also need to iterate over unallocated 5924 * space. 5925 * 5926 * We don't want a transaction for this since the discard may take a 5927 * substantial amount of time. We don't require that a transaction be 5928 * running, but we do need to take a running transaction into account 5929 * to ensure that we're not discarding chunks that were released or 5930 * allocated in the current transaction. 5931 * 5932 * Holding the chunks lock will prevent other threads from allocating 5933 * or releasing chunks, but it won't prevent a running transaction 5934 * from committing and releasing the memory that the pending chunks 5935 * list head uses. For that, we need to take a reference to the 5936 * transaction and hold the commit root sem. We only need to hold 5937 * it while performing the free space search since we have already 5938 * held back allocations. 5939 */ 5940 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5941 { 5942 u64 start = SZ_1M, len = 0, end = 0; 5943 int ret; 5944 5945 *trimmed = 0; 5946 5947 /* Discard not supported = nothing to do. */ 5948 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5949 return 0; 5950 5951 /* Not writable = nothing to do. */ 5952 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5953 return 0; 5954 5955 /* No free space = nothing to do. */ 5956 if (device->total_bytes <= device->bytes_used) 5957 return 0; 5958 5959 ret = 0; 5960 5961 while (1) { 5962 struct btrfs_fs_info *fs_info = device->fs_info; 5963 u64 bytes; 5964 5965 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5966 if (ret) 5967 break; 5968 5969 find_first_clear_extent_bit(&device->alloc_state, start, 5970 &start, &end, 5971 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5972 5973 /* Check if there are any CHUNK_* bits left */ 5974 if (start > device->total_bytes) { 5975 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5976 btrfs_warn_in_rcu(fs_info, 5977 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5978 start, end - start + 1, 5979 rcu_str_deref(device->name), 5980 device->total_bytes); 5981 mutex_unlock(&fs_info->chunk_mutex); 5982 ret = 0; 5983 break; 5984 } 5985 5986 /* Ensure we skip the reserved area in the first 1M */ 5987 start = max_t(u64, start, SZ_1M); 5988 5989 /* 5990 * If find_first_clear_extent_bit find a range that spans the 5991 * end of the device it will set end to -1, in this case it's up 5992 * to the caller to trim the value to the size of the device. 5993 */ 5994 end = min(end, device->total_bytes - 1); 5995 5996 len = end - start + 1; 5997 5998 /* We didn't find any extents */ 5999 if (!len) { 6000 mutex_unlock(&fs_info->chunk_mutex); 6001 ret = 0; 6002 break; 6003 } 6004 6005 ret = btrfs_issue_discard(device->bdev, start, len, 6006 &bytes); 6007 if (!ret) 6008 set_extent_bits(&device->alloc_state, start, 6009 start + bytes - 1, 6010 CHUNK_TRIMMED); 6011 mutex_unlock(&fs_info->chunk_mutex); 6012 6013 if (ret) 6014 break; 6015 6016 start += len; 6017 *trimmed += bytes; 6018 6019 if (fatal_signal_pending(current)) { 6020 ret = -ERESTARTSYS; 6021 break; 6022 } 6023 6024 cond_resched(); 6025 } 6026 6027 return ret; 6028 } 6029 6030 /* 6031 * Trim the whole filesystem by: 6032 * 1) trimming the free space in each block group 6033 * 2) trimming the unallocated space on each device 6034 * 6035 * This will also continue trimming even if a block group or device encounters 6036 * an error. The return value will be the last error, or 0 if nothing bad 6037 * happens. 6038 */ 6039 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6040 { 6041 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6042 struct btrfs_block_group *cache = NULL; 6043 struct btrfs_device *device; 6044 u64 group_trimmed; 6045 u64 range_end = U64_MAX; 6046 u64 start; 6047 u64 end; 6048 u64 trimmed = 0; 6049 u64 bg_failed = 0; 6050 u64 dev_failed = 0; 6051 int bg_ret = 0; 6052 int dev_ret = 0; 6053 int ret = 0; 6054 6055 if (range->start == U64_MAX) 6056 return -EINVAL; 6057 6058 /* 6059 * Check range overflow if range->len is set. 6060 * The default range->len is U64_MAX. 6061 */ 6062 if (range->len != U64_MAX && 6063 check_add_overflow(range->start, range->len, &range_end)) 6064 return -EINVAL; 6065 6066 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6067 for (; cache; cache = btrfs_next_block_group(cache)) { 6068 if (cache->start >= range_end) { 6069 btrfs_put_block_group(cache); 6070 break; 6071 } 6072 6073 start = max(range->start, cache->start); 6074 end = min(range_end, cache->start + cache->length); 6075 6076 if (end - start >= range->minlen) { 6077 if (!btrfs_block_group_done(cache)) { 6078 ret = btrfs_cache_block_group(cache, 0); 6079 if (ret) { 6080 bg_failed++; 6081 bg_ret = ret; 6082 continue; 6083 } 6084 ret = btrfs_wait_block_group_cache_done(cache); 6085 if (ret) { 6086 bg_failed++; 6087 bg_ret = ret; 6088 continue; 6089 } 6090 } 6091 ret = btrfs_trim_block_group(cache, 6092 &group_trimmed, 6093 start, 6094 end, 6095 range->minlen); 6096 6097 trimmed += group_trimmed; 6098 if (ret) { 6099 bg_failed++; 6100 bg_ret = ret; 6101 continue; 6102 } 6103 } 6104 } 6105 6106 if (bg_failed) 6107 btrfs_warn(fs_info, 6108 "failed to trim %llu block group(s), last error %d", 6109 bg_failed, bg_ret); 6110 6111 mutex_lock(&fs_devices->device_list_mutex); 6112 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6113 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6114 continue; 6115 6116 ret = btrfs_trim_free_extents(device, &group_trimmed); 6117 if (ret) { 6118 dev_failed++; 6119 dev_ret = ret; 6120 break; 6121 } 6122 6123 trimmed += group_trimmed; 6124 } 6125 mutex_unlock(&fs_devices->device_list_mutex); 6126 6127 if (dev_failed) 6128 btrfs_warn(fs_info, 6129 "failed to trim %llu device(s), last error %d", 6130 dev_failed, dev_ret); 6131 range->len = trimmed; 6132 if (bg_ret) 6133 return bg_ret; 6134 return dev_ret; 6135 } 6136