xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision a09d2831)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include "compat.h"
26 #include "hash.h"
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "print-tree.h"
30 #include "transaction.h"
31 #include "volumes.h"
32 #include "locking.h"
33 #include "free-space-cache.h"
34 
35 static int update_block_group(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      u64 bytenr, u64 num_bytes, int alloc,
38 			      int mark_free);
39 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
40 				   u64 num_bytes, int reserve);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 				struct btrfs_root *root,
43 				u64 bytenr, u64 num_bytes, u64 parent,
44 				u64 root_objectid, u64 owner_objectid,
45 				u64 owner_offset, int refs_to_drop,
46 				struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 				    struct extent_buffer *leaf,
49 				    struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 				      struct btrfs_root *root,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_root *root,
57 				     u64 parent, u64 root_objectid,
58 				     u64 flags, struct btrfs_disk_key *key,
59 				     int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 			  struct btrfs_root *extent_root, u64 alloc_bytes,
62 			  u64 flags, int force);
63 static int pin_down_bytes(struct btrfs_trans_handle *trans,
64 			  struct btrfs_root *root,
65 			  struct btrfs_path *path,
66 			  u64 bytenr, u64 num_bytes,
67 			  int is_data, int reserved,
68 			  struct extent_buffer **must_clean);
69 static int find_next_key(struct btrfs_path *path, int level,
70 			 struct btrfs_key *key);
71 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
72 			    int dump_block_groups);
73 
74 static noinline int
75 block_group_cache_done(struct btrfs_block_group_cache *cache)
76 {
77 	smp_mb();
78 	return cache->cached == BTRFS_CACHE_FINISHED;
79 }
80 
81 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
82 {
83 	return (cache->flags & bits) == bits;
84 }
85 
86 /*
87  * this adds the block group to the fs_info rb tree for the block group
88  * cache
89  */
90 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
91 				struct btrfs_block_group_cache *block_group)
92 {
93 	struct rb_node **p;
94 	struct rb_node *parent = NULL;
95 	struct btrfs_block_group_cache *cache;
96 
97 	spin_lock(&info->block_group_cache_lock);
98 	p = &info->block_group_cache_tree.rb_node;
99 
100 	while (*p) {
101 		parent = *p;
102 		cache = rb_entry(parent, struct btrfs_block_group_cache,
103 				 cache_node);
104 		if (block_group->key.objectid < cache->key.objectid) {
105 			p = &(*p)->rb_left;
106 		} else if (block_group->key.objectid > cache->key.objectid) {
107 			p = &(*p)->rb_right;
108 		} else {
109 			spin_unlock(&info->block_group_cache_lock);
110 			return -EEXIST;
111 		}
112 	}
113 
114 	rb_link_node(&block_group->cache_node, parent, p);
115 	rb_insert_color(&block_group->cache_node,
116 			&info->block_group_cache_tree);
117 	spin_unlock(&info->block_group_cache_lock);
118 
119 	return 0;
120 }
121 
122 /*
123  * This will return the block group at or after bytenr if contains is 0, else
124  * it will return the block group that contains the bytenr
125  */
126 static struct btrfs_block_group_cache *
127 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
128 			      int contains)
129 {
130 	struct btrfs_block_group_cache *cache, *ret = NULL;
131 	struct rb_node *n;
132 	u64 end, start;
133 
134 	spin_lock(&info->block_group_cache_lock);
135 	n = info->block_group_cache_tree.rb_node;
136 
137 	while (n) {
138 		cache = rb_entry(n, struct btrfs_block_group_cache,
139 				 cache_node);
140 		end = cache->key.objectid + cache->key.offset - 1;
141 		start = cache->key.objectid;
142 
143 		if (bytenr < start) {
144 			if (!contains && (!ret || start < ret->key.objectid))
145 				ret = cache;
146 			n = n->rb_left;
147 		} else if (bytenr > start) {
148 			if (contains && bytenr <= end) {
149 				ret = cache;
150 				break;
151 			}
152 			n = n->rb_right;
153 		} else {
154 			ret = cache;
155 			break;
156 		}
157 	}
158 	if (ret)
159 		atomic_inc(&ret->count);
160 	spin_unlock(&info->block_group_cache_lock);
161 
162 	return ret;
163 }
164 
165 static int add_excluded_extent(struct btrfs_root *root,
166 			       u64 start, u64 num_bytes)
167 {
168 	u64 end = start + num_bytes - 1;
169 	set_extent_bits(&root->fs_info->freed_extents[0],
170 			start, end, EXTENT_UPTODATE, GFP_NOFS);
171 	set_extent_bits(&root->fs_info->freed_extents[1],
172 			start, end, EXTENT_UPTODATE, GFP_NOFS);
173 	return 0;
174 }
175 
176 static void free_excluded_extents(struct btrfs_root *root,
177 				  struct btrfs_block_group_cache *cache)
178 {
179 	u64 start, end;
180 
181 	start = cache->key.objectid;
182 	end = start + cache->key.offset - 1;
183 
184 	clear_extent_bits(&root->fs_info->freed_extents[0],
185 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
186 	clear_extent_bits(&root->fs_info->freed_extents[1],
187 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
188 }
189 
190 static int exclude_super_stripes(struct btrfs_root *root,
191 				 struct btrfs_block_group_cache *cache)
192 {
193 	u64 bytenr;
194 	u64 *logical;
195 	int stripe_len;
196 	int i, nr, ret;
197 
198 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
199 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
200 		cache->bytes_super += stripe_len;
201 		ret = add_excluded_extent(root, cache->key.objectid,
202 					  stripe_len);
203 		BUG_ON(ret);
204 	}
205 
206 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
207 		bytenr = btrfs_sb_offset(i);
208 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
209 				       cache->key.objectid, bytenr,
210 				       0, &logical, &nr, &stripe_len);
211 		BUG_ON(ret);
212 
213 		while (nr--) {
214 			cache->bytes_super += stripe_len;
215 			ret = add_excluded_extent(root, logical[nr],
216 						  stripe_len);
217 			BUG_ON(ret);
218 		}
219 
220 		kfree(logical);
221 	}
222 	return 0;
223 }
224 
225 static struct btrfs_caching_control *
226 get_caching_control(struct btrfs_block_group_cache *cache)
227 {
228 	struct btrfs_caching_control *ctl;
229 
230 	spin_lock(&cache->lock);
231 	if (cache->cached != BTRFS_CACHE_STARTED) {
232 		spin_unlock(&cache->lock);
233 		return NULL;
234 	}
235 
236 	ctl = cache->caching_ctl;
237 	atomic_inc(&ctl->count);
238 	spin_unlock(&cache->lock);
239 	return ctl;
240 }
241 
242 static void put_caching_control(struct btrfs_caching_control *ctl)
243 {
244 	if (atomic_dec_and_test(&ctl->count))
245 		kfree(ctl);
246 }
247 
248 /*
249  * this is only called by cache_block_group, since we could have freed extents
250  * we need to check the pinned_extents for any extents that can't be used yet
251  * since their free space will be released as soon as the transaction commits.
252  */
253 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
254 			      struct btrfs_fs_info *info, u64 start, u64 end)
255 {
256 	u64 extent_start, extent_end, size, total_added = 0;
257 	int ret;
258 
259 	while (start < end) {
260 		ret = find_first_extent_bit(info->pinned_extents, start,
261 					    &extent_start, &extent_end,
262 					    EXTENT_DIRTY | EXTENT_UPTODATE);
263 		if (ret)
264 			break;
265 
266 		if (extent_start <= start) {
267 			start = extent_end + 1;
268 		} else if (extent_start > start && extent_start < end) {
269 			size = extent_start - start;
270 			total_added += size;
271 			ret = btrfs_add_free_space(block_group, start,
272 						   size);
273 			BUG_ON(ret);
274 			start = extent_end + 1;
275 		} else {
276 			break;
277 		}
278 	}
279 
280 	if (start < end) {
281 		size = end - start;
282 		total_added += size;
283 		ret = btrfs_add_free_space(block_group, start, size);
284 		BUG_ON(ret);
285 	}
286 
287 	return total_added;
288 }
289 
290 static int caching_kthread(void *data)
291 {
292 	struct btrfs_block_group_cache *block_group = data;
293 	struct btrfs_fs_info *fs_info = block_group->fs_info;
294 	struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
295 	struct btrfs_root *extent_root = fs_info->extent_root;
296 	struct btrfs_path *path;
297 	struct extent_buffer *leaf;
298 	struct btrfs_key key;
299 	u64 total_found = 0;
300 	u64 last = 0;
301 	u32 nritems;
302 	int ret = 0;
303 
304 	path = btrfs_alloc_path();
305 	if (!path)
306 		return -ENOMEM;
307 
308 	exclude_super_stripes(extent_root, block_group);
309 	spin_lock(&block_group->space_info->lock);
310 	block_group->space_info->bytes_super += block_group->bytes_super;
311 	spin_unlock(&block_group->space_info->lock);
312 
313 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
314 
315 	/*
316 	 * We don't want to deadlock with somebody trying to allocate a new
317 	 * extent for the extent root while also trying to search the extent
318 	 * root to add free space.  So we skip locking and search the commit
319 	 * root, since its read-only
320 	 */
321 	path->skip_locking = 1;
322 	path->search_commit_root = 1;
323 	path->reada = 2;
324 
325 	key.objectid = last;
326 	key.offset = 0;
327 	key.type = BTRFS_EXTENT_ITEM_KEY;
328 again:
329 	mutex_lock(&caching_ctl->mutex);
330 	/* need to make sure the commit_root doesn't disappear */
331 	down_read(&fs_info->extent_commit_sem);
332 
333 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
334 	if (ret < 0)
335 		goto err;
336 
337 	leaf = path->nodes[0];
338 	nritems = btrfs_header_nritems(leaf);
339 
340 	while (1) {
341 		smp_mb();
342 		if (fs_info->closing > 1) {
343 			last = (u64)-1;
344 			break;
345 		}
346 
347 		if (path->slots[0] < nritems) {
348 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
349 		} else {
350 			ret = find_next_key(path, 0, &key);
351 			if (ret)
352 				break;
353 
354 			caching_ctl->progress = last;
355 			btrfs_release_path(extent_root, path);
356 			up_read(&fs_info->extent_commit_sem);
357 			mutex_unlock(&caching_ctl->mutex);
358 			if (btrfs_transaction_in_commit(fs_info))
359 				schedule_timeout(1);
360 			else
361 				cond_resched();
362 			goto again;
363 		}
364 
365 		if (key.objectid < block_group->key.objectid) {
366 			path->slots[0]++;
367 			continue;
368 		}
369 
370 		if (key.objectid >= block_group->key.objectid +
371 		    block_group->key.offset)
372 			break;
373 
374 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
375 			total_found += add_new_free_space(block_group,
376 							  fs_info, last,
377 							  key.objectid);
378 			last = key.objectid + key.offset;
379 
380 			if (total_found > (1024 * 1024 * 2)) {
381 				total_found = 0;
382 				wake_up(&caching_ctl->wait);
383 			}
384 		}
385 		path->slots[0]++;
386 	}
387 	ret = 0;
388 
389 	total_found += add_new_free_space(block_group, fs_info, last,
390 					  block_group->key.objectid +
391 					  block_group->key.offset);
392 	caching_ctl->progress = (u64)-1;
393 
394 	spin_lock(&block_group->lock);
395 	block_group->caching_ctl = NULL;
396 	block_group->cached = BTRFS_CACHE_FINISHED;
397 	spin_unlock(&block_group->lock);
398 
399 err:
400 	btrfs_free_path(path);
401 	up_read(&fs_info->extent_commit_sem);
402 
403 	free_excluded_extents(extent_root, block_group);
404 
405 	mutex_unlock(&caching_ctl->mutex);
406 	wake_up(&caching_ctl->wait);
407 
408 	put_caching_control(caching_ctl);
409 	atomic_dec(&block_group->space_info->caching_threads);
410 	return 0;
411 }
412 
413 static int cache_block_group(struct btrfs_block_group_cache *cache)
414 {
415 	struct btrfs_fs_info *fs_info = cache->fs_info;
416 	struct btrfs_caching_control *caching_ctl;
417 	struct task_struct *tsk;
418 	int ret = 0;
419 
420 	smp_mb();
421 	if (cache->cached != BTRFS_CACHE_NO)
422 		return 0;
423 
424 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
425 	BUG_ON(!caching_ctl);
426 
427 	INIT_LIST_HEAD(&caching_ctl->list);
428 	mutex_init(&caching_ctl->mutex);
429 	init_waitqueue_head(&caching_ctl->wait);
430 	caching_ctl->block_group = cache;
431 	caching_ctl->progress = cache->key.objectid;
432 	/* one for caching kthread, one for caching block group list */
433 	atomic_set(&caching_ctl->count, 2);
434 
435 	spin_lock(&cache->lock);
436 	if (cache->cached != BTRFS_CACHE_NO) {
437 		spin_unlock(&cache->lock);
438 		kfree(caching_ctl);
439 		return 0;
440 	}
441 	cache->caching_ctl = caching_ctl;
442 	cache->cached = BTRFS_CACHE_STARTED;
443 	spin_unlock(&cache->lock);
444 
445 	down_write(&fs_info->extent_commit_sem);
446 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
447 	up_write(&fs_info->extent_commit_sem);
448 
449 	atomic_inc(&cache->space_info->caching_threads);
450 
451 	tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
452 			  cache->key.objectid);
453 	if (IS_ERR(tsk)) {
454 		ret = PTR_ERR(tsk);
455 		printk(KERN_ERR "error running thread %d\n", ret);
456 		BUG();
457 	}
458 
459 	return ret;
460 }
461 
462 /*
463  * return the block group that starts at or after bytenr
464  */
465 static struct btrfs_block_group_cache *
466 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
467 {
468 	struct btrfs_block_group_cache *cache;
469 
470 	cache = block_group_cache_tree_search(info, bytenr, 0);
471 
472 	return cache;
473 }
474 
475 /*
476  * return the block group that contains the given bytenr
477  */
478 struct btrfs_block_group_cache *btrfs_lookup_block_group(
479 						 struct btrfs_fs_info *info,
480 						 u64 bytenr)
481 {
482 	struct btrfs_block_group_cache *cache;
483 
484 	cache = block_group_cache_tree_search(info, bytenr, 1);
485 
486 	return cache;
487 }
488 
489 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
490 {
491 	if (atomic_dec_and_test(&cache->count))
492 		kfree(cache);
493 }
494 
495 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
496 						  u64 flags)
497 {
498 	struct list_head *head = &info->space_info;
499 	struct btrfs_space_info *found;
500 
501 	rcu_read_lock();
502 	list_for_each_entry_rcu(found, head, list) {
503 		if (found->flags == flags) {
504 			rcu_read_unlock();
505 			return found;
506 		}
507 	}
508 	rcu_read_unlock();
509 	return NULL;
510 }
511 
512 /*
513  * after adding space to the filesystem, we need to clear the full flags
514  * on all the space infos.
515  */
516 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
517 {
518 	struct list_head *head = &info->space_info;
519 	struct btrfs_space_info *found;
520 
521 	rcu_read_lock();
522 	list_for_each_entry_rcu(found, head, list)
523 		found->full = 0;
524 	rcu_read_unlock();
525 }
526 
527 static u64 div_factor(u64 num, int factor)
528 {
529 	if (factor == 10)
530 		return num;
531 	num *= factor;
532 	do_div(num, 10);
533 	return num;
534 }
535 
536 u64 btrfs_find_block_group(struct btrfs_root *root,
537 			   u64 search_start, u64 search_hint, int owner)
538 {
539 	struct btrfs_block_group_cache *cache;
540 	u64 used;
541 	u64 last = max(search_hint, search_start);
542 	u64 group_start = 0;
543 	int full_search = 0;
544 	int factor = 9;
545 	int wrapped = 0;
546 again:
547 	while (1) {
548 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
549 		if (!cache)
550 			break;
551 
552 		spin_lock(&cache->lock);
553 		last = cache->key.objectid + cache->key.offset;
554 		used = btrfs_block_group_used(&cache->item);
555 
556 		if ((full_search || !cache->ro) &&
557 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
558 			if (used + cache->pinned + cache->reserved <
559 			    div_factor(cache->key.offset, factor)) {
560 				group_start = cache->key.objectid;
561 				spin_unlock(&cache->lock);
562 				btrfs_put_block_group(cache);
563 				goto found;
564 			}
565 		}
566 		spin_unlock(&cache->lock);
567 		btrfs_put_block_group(cache);
568 		cond_resched();
569 	}
570 	if (!wrapped) {
571 		last = search_start;
572 		wrapped = 1;
573 		goto again;
574 	}
575 	if (!full_search && factor < 10) {
576 		last = search_start;
577 		full_search = 1;
578 		factor = 10;
579 		goto again;
580 	}
581 found:
582 	return group_start;
583 }
584 
585 /* simple helper to search for an existing extent at a given offset */
586 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
587 {
588 	int ret;
589 	struct btrfs_key key;
590 	struct btrfs_path *path;
591 
592 	path = btrfs_alloc_path();
593 	BUG_ON(!path);
594 	key.objectid = start;
595 	key.offset = len;
596 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
597 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
598 				0, 0);
599 	btrfs_free_path(path);
600 	return ret;
601 }
602 
603 /*
604  * Back reference rules.  Back refs have three main goals:
605  *
606  * 1) differentiate between all holders of references to an extent so that
607  *    when a reference is dropped we can make sure it was a valid reference
608  *    before freeing the extent.
609  *
610  * 2) Provide enough information to quickly find the holders of an extent
611  *    if we notice a given block is corrupted or bad.
612  *
613  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
614  *    maintenance.  This is actually the same as #2, but with a slightly
615  *    different use case.
616  *
617  * There are two kinds of back refs. The implicit back refs is optimized
618  * for pointers in non-shared tree blocks. For a given pointer in a block,
619  * back refs of this kind provide information about the block's owner tree
620  * and the pointer's key. These information allow us to find the block by
621  * b-tree searching. The full back refs is for pointers in tree blocks not
622  * referenced by their owner trees. The location of tree block is recorded
623  * in the back refs. Actually the full back refs is generic, and can be
624  * used in all cases the implicit back refs is used. The major shortcoming
625  * of the full back refs is its overhead. Every time a tree block gets
626  * COWed, we have to update back refs entry for all pointers in it.
627  *
628  * For a newly allocated tree block, we use implicit back refs for
629  * pointers in it. This means most tree related operations only involve
630  * implicit back refs. For a tree block created in old transaction, the
631  * only way to drop a reference to it is COW it. So we can detect the
632  * event that tree block loses its owner tree's reference and do the
633  * back refs conversion.
634  *
635  * When a tree block is COW'd through a tree, there are four cases:
636  *
637  * The reference count of the block is one and the tree is the block's
638  * owner tree. Nothing to do in this case.
639  *
640  * The reference count of the block is one and the tree is not the
641  * block's owner tree. In this case, full back refs is used for pointers
642  * in the block. Remove these full back refs, add implicit back refs for
643  * every pointers in the new block.
644  *
645  * The reference count of the block is greater than one and the tree is
646  * the block's owner tree. In this case, implicit back refs is used for
647  * pointers in the block. Add full back refs for every pointers in the
648  * block, increase lower level extents' reference counts. The original
649  * implicit back refs are entailed to the new block.
650  *
651  * The reference count of the block is greater than one and the tree is
652  * not the block's owner tree. Add implicit back refs for every pointer in
653  * the new block, increase lower level extents' reference count.
654  *
655  * Back Reference Key composing:
656  *
657  * The key objectid corresponds to the first byte in the extent,
658  * The key type is used to differentiate between types of back refs.
659  * There are different meanings of the key offset for different types
660  * of back refs.
661  *
662  * File extents can be referenced by:
663  *
664  * - multiple snapshots, subvolumes, or different generations in one subvol
665  * - different files inside a single subvolume
666  * - different offsets inside a file (bookend extents in file.c)
667  *
668  * The extent ref structure for the implicit back refs has fields for:
669  *
670  * - Objectid of the subvolume root
671  * - objectid of the file holding the reference
672  * - original offset in the file
673  * - how many bookend extents
674  *
675  * The key offset for the implicit back refs is hash of the first
676  * three fields.
677  *
678  * The extent ref structure for the full back refs has field for:
679  *
680  * - number of pointers in the tree leaf
681  *
682  * The key offset for the implicit back refs is the first byte of
683  * the tree leaf
684  *
685  * When a file extent is allocated, The implicit back refs is used.
686  * the fields are filled in:
687  *
688  *     (root_key.objectid, inode objectid, offset in file, 1)
689  *
690  * When a file extent is removed file truncation, we find the
691  * corresponding implicit back refs and check the following fields:
692  *
693  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
694  *
695  * Btree extents can be referenced by:
696  *
697  * - Different subvolumes
698  *
699  * Both the implicit back refs and the full back refs for tree blocks
700  * only consist of key. The key offset for the implicit back refs is
701  * objectid of block's owner tree. The key offset for the full back refs
702  * is the first byte of parent block.
703  *
704  * When implicit back refs is used, information about the lowest key and
705  * level of the tree block are required. These information are stored in
706  * tree block info structure.
707  */
708 
709 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
710 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
711 				  struct btrfs_root *root,
712 				  struct btrfs_path *path,
713 				  u64 owner, u32 extra_size)
714 {
715 	struct btrfs_extent_item *item;
716 	struct btrfs_extent_item_v0 *ei0;
717 	struct btrfs_extent_ref_v0 *ref0;
718 	struct btrfs_tree_block_info *bi;
719 	struct extent_buffer *leaf;
720 	struct btrfs_key key;
721 	struct btrfs_key found_key;
722 	u32 new_size = sizeof(*item);
723 	u64 refs;
724 	int ret;
725 
726 	leaf = path->nodes[0];
727 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
728 
729 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
730 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
731 			     struct btrfs_extent_item_v0);
732 	refs = btrfs_extent_refs_v0(leaf, ei0);
733 
734 	if (owner == (u64)-1) {
735 		while (1) {
736 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
737 				ret = btrfs_next_leaf(root, path);
738 				if (ret < 0)
739 					return ret;
740 				BUG_ON(ret > 0);
741 				leaf = path->nodes[0];
742 			}
743 			btrfs_item_key_to_cpu(leaf, &found_key,
744 					      path->slots[0]);
745 			BUG_ON(key.objectid != found_key.objectid);
746 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
747 				path->slots[0]++;
748 				continue;
749 			}
750 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
751 					      struct btrfs_extent_ref_v0);
752 			owner = btrfs_ref_objectid_v0(leaf, ref0);
753 			break;
754 		}
755 	}
756 	btrfs_release_path(root, path);
757 
758 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
759 		new_size += sizeof(*bi);
760 
761 	new_size -= sizeof(*ei0);
762 	ret = btrfs_search_slot(trans, root, &key, path,
763 				new_size + extra_size, 1);
764 	if (ret < 0)
765 		return ret;
766 	BUG_ON(ret);
767 
768 	ret = btrfs_extend_item(trans, root, path, new_size);
769 	BUG_ON(ret);
770 
771 	leaf = path->nodes[0];
772 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
773 	btrfs_set_extent_refs(leaf, item, refs);
774 	/* FIXME: get real generation */
775 	btrfs_set_extent_generation(leaf, item, 0);
776 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 		btrfs_set_extent_flags(leaf, item,
778 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
779 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
780 		bi = (struct btrfs_tree_block_info *)(item + 1);
781 		/* FIXME: get first key of the block */
782 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
783 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
784 	} else {
785 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
786 	}
787 	btrfs_mark_buffer_dirty(leaf);
788 	return 0;
789 }
790 #endif
791 
792 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
793 {
794 	u32 high_crc = ~(u32)0;
795 	u32 low_crc = ~(u32)0;
796 	__le64 lenum;
797 
798 	lenum = cpu_to_le64(root_objectid);
799 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
800 	lenum = cpu_to_le64(owner);
801 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
802 	lenum = cpu_to_le64(offset);
803 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
804 
805 	return ((u64)high_crc << 31) ^ (u64)low_crc;
806 }
807 
808 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
809 				     struct btrfs_extent_data_ref *ref)
810 {
811 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
812 				    btrfs_extent_data_ref_objectid(leaf, ref),
813 				    btrfs_extent_data_ref_offset(leaf, ref));
814 }
815 
816 static int match_extent_data_ref(struct extent_buffer *leaf,
817 				 struct btrfs_extent_data_ref *ref,
818 				 u64 root_objectid, u64 owner, u64 offset)
819 {
820 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
821 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
822 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
823 		return 0;
824 	return 1;
825 }
826 
827 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
828 					   struct btrfs_root *root,
829 					   struct btrfs_path *path,
830 					   u64 bytenr, u64 parent,
831 					   u64 root_objectid,
832 					   u64 owner, u64 offset)
833 {
834 	struct btrfs_key key;
835 	struct btrfs_extent_data_ref *ref;
836 	struct extent_buffer *leaf;
837 	u32 nritems;
838 	int ret;
839 	int recow;
840 	int err = -ENOENT;
841 
842 	key.objectid = bytenr;
843 	if (parent) {
844 		key.type = BTRFS_SHARED_DATA_REF_KEY;
845 		key.offset = parent;
846 	} else {
847 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
848 		key.offset = hash_extent_data_ref(root_objectid,
849 						  owner, offset);
850 	}
851 again:
852 	recow = 0;
853 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
854 	if (ret < 0) {
855 		err = ret;
856 		goto fail;
857 	}
858 
859 	if (parent) {
860 		if (!ret)
861 			return 0;
862 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
863 		key.type = BTRFS_EXTENT_REF_V0_KEY;
864 		btrfs_release_path(root, path);
865 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
866 		if (ret < 0) {
867 			err = ret;
868 			goto fail;
869 		}
870 		if (!ret)
871 			return 0;
872 #endif
873 		goto fail;
874 	}
875 
876 	leaf = path->nodes[0];
877 	nritems = btrfs_header_nritems(leaf);
878 	while (1) {
879 		if (path->slots[0] >= nritems) {
880 			ret = btrfs_next_leaf(root, path);
881 			if (ret < 0)
882 				err = ret;
883 			if (ret)
884 				goto fail;
885 
886 			leaf = path->nodes[0];
887 			nritems = btrfs_header_nritems(leaf);
888 			recow = 1;
889 		}
890 
891 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
892 		if (key.objectid != bytenr ||
893 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
894 			goto fail;
895 
896 		ref = btrfs_item_ptr(leaf, path->slots[0],
897 				     struct btrfs_extent_data_ref);
898 
899 		if (match_extent_data_ref(leaf, ref, root_objectid,
900 					  owner, offset)) {
901 			if (recow) {
902 				btrfs_release_path(root, path);
903 				goto again;
904 			}
905 			err = 0;
906 			break;
907 		}
908 		path->slots[0]++;
909 	}
910 fail:
911 	return err;
912 }
913 
914 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
915 					   struct btrfs_root *root,
916 					   struct btrfs_path *path,
917 					   u64 bytenr, u64 parent,
918 					   u64 root_objectid, u64 owner,
919 					   u64 offset, int refs_to_add)
920 {
921 	struct btrfs_key key;
922 	struct extent_buffer *leaf;
923 	u32 size;
924 	u32 num_refs;
925 	int ret;
926 
927 	key.objectid = bytenr;
928 	if (parent) {
929 		key.type = BTRFS_SHARED_DATA_REF_KEY;
930 		key.offset = parent;
931 		size = sizeof(struct btrfs_shared_data_ref);
932 	} else {
933 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
934 		key.offset = hash_extent_data_ref(root_objectid,
935 						  owner, offset);
936 		size = sizeof(struct btrfs_extent_data_ref);
937 	}
938 
939 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
940 	if (ret && ret != -EEXIST)
941 		goto fail;
942 
943 	leaf = path->nodes[0];
944 	if (parent) {
945 		struct btrfs_shared_data_ref *ref;
946 		ref = btrfs_item_ptr(leaf, path->slots[0],
947 				     struct btrfs_shared_data_ref);
948 		if (ret == 0) {
949 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
950 		} else {
951 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
952 			num_refs += refs_to_add;
953 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
954 		}
955 	} else {
956 		struct btrfs_extent_data_ref *ref;
957 		while (ret == -EEXIST) {
958 			ref = btrfs_item_ptr(leaf, path->slots[0],
959 					     struct btrfs_extent_data_ref);
960 			if (match_extent_data_ref(leaf, ref, root_objectid,
961 						  owner, offset))
962 				break;
963 			btrfs_release_path(root, path);
964 			key.offset++;
965 			ret = btrfs_insert_empty_item(trans, root, path, &key,
966 						      size);
967 			if (ret && ret != -EEXIST)
968 				goto fail;
969 
970 			leaf = path->nodes[0];
971 		}
972 		ref = btrfs_item_ptr(leaf, path->slots[0],
973 				     struct btrfs_extent_data_ref);
974 		if (ret == 0) {
975 			btrfs_set_extent_data_ref_root(leaf, ref,
976 						       root_objectid);
977 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
978 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
979 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
980 		} else {
981 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
982 			num_refs += refs_to_add;
983 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
984 		}
985 	}
986 	btrfs_mark_buffer_dirty(leaf);
987 	ret = 0;
988 fail:
989 	btrfs_release_path(root, path);
990 	return ret;
991 }
992 
993 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
994 					   struct btrfs_root *root,
995 					   struct btrfs_path *path,
996 					   int refs_to_drop)
997 {
998 	struct btrfs_key key;
999 	struct btrfs_extent_data_ref *ref1 = NULL;
1000 	struct btrfs_shared_data_ref *ref2 = NULL;
1001 	struct extent_buffer *leaf;
1002 	u32 num_refs = 0;
1003 	int ret = 0;
1004 
1005 	leaf = path->nodes[0];
1006 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1007 
1008 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1009 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1010 				      struct btrfs_extent_data_ref);
1011 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1012 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1013 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1014 				      struct btrfs_shared_data_ref);
1015 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1016 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1017 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1018 		struct btrfs_extent_ref_v0 *ref0;
1019 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 				      struct btrfs_extent_ref_v0);
1021 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1022 #endif
1023 	} else {
1024 		BUG();
1025 	}
1026 
1027 	BUG_ON(num_refs < refs_to_drop);
1028 	num_refs -= refs_to_drop;
1029 
1030 	if (num_refs == 0) {
1031 		ret = btrfs_del_item(trans, root, path);
1032 	} else {
1033 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1034 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1035 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1036 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1037 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1038 		else {
1039 			struct btrfs_extent_ref_v0 *ref0;
1040 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1041 					struct btrfs_extent_ref_v0);
1042 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1043 		}
1044 #endif
1045 		btrfs_mark_buffer_dirty(leaf);
1046 	}
1047 	return ret;
1048 }
1049 
1050 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1051 					  struct btrfs_path *path,
1052 					  struct btrfs_extent_inline_ref *iref)
1053 {
1054 	struct btrfs_key key;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_extent_data_ref *ref1;
1057 	struct btrfs_shared_data_ref *ref2;
1058 	u32 num_refs = 0;
1059 
1060 	leaf = path->nodes[0];
1061 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 	if (iref) {
1063 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1064 		    BTRFS_EXTENT_DATA_REF_KEY) {
1065 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1066 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1067 		} else {
1068 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1069 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1070 		}
1071 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1073 				      struct btrfs_extent_data_ref);
1074 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1075 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1076 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1077 				      struct btrfs_shared_data_ref);
1078 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1079 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1080 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1081 		struct btrfs_extent_ref_v0 *ref0;
1082 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 				      struct btrfs_extent_ref_v0);
1084 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1085 #endif
1086 	} else {
1087 		WARN_ON(1);
1088 	}
1089 	return num_refs;
1090 }
1091 
1092 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1093 					  struct btrfs_root *root,
1094 					  struct btrfs_path *path,
1095 					  u64 bytenr, u64 parent,
1096 					  u64 root_objectid)
1097 {
1098 	struct btrfs_key key;
1099 	int ret;
1100 
1101 	key.objectid = bytenr;
1102 	if (parent) {
1103 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1104 		key.offset = parent;
1105 	} else {
1106 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1107 		key.offset = root_objectid;
1108 	}
1109 
1110 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 	if (ret > 0)
1112 		ret = -ENOENT;
1113 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1114 	if (ret == -ENOENT && parent) {
1115 		btrfs_release_path(root, path);
1116 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1117 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1118 		if (ret > 0)
1119 			ret = -ENOENT;
1120 	}
1121 #endif
1122 	return ret;
1123 }
1124 
1125 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1126 					  struct btrfs_root *root,
1127 					  struct btrfs_path *path,
1128 					  u64 bytenr, u64 parent,
1129 					  u64 root_objectid)
1130 {
1131 	struct btrfs_key key;
1132 	int ret;
1133 
1134 	key.objectid = bytenr;
1135 	if (parent) {
1136 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1137 		key.offset = parent;
1138 	} else {
1139 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1140 		key.offset = root_objectid;
1141 	}
1142 
1143 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1144 	btrfs_release_path(root, path);
1145 	return ret;
1146 }
1147 
1148 static inline int extent_ref_type(u64 parent, u64 owner)
1149 {
1150 	int type;
1151 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1152 		if (parent > 0)
1153 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1154 		else
1155 			type = BTRFS_TREE_BLOCK_REF_KEY;
1156 	} else {
1157 		if (parent > 0)
1158 			type = BTRFS_SHARED_DATA_REF_KEY;
1159 		else
1160 			type = BTRFS_EXTENT_DATA_REF_KEY;
1161 	}
1162 	return type;
1163 }
1164 
1165 static int find_next_key(struct btrfs_path *path, int level,
1166 			 struct btrfs_key *key)
1167 
1168 {
1169 	for (; level < BTRFS_MAX_LEVEL; level++) {
1170 		if (!path->nodes[level])
1171 			break;
1172 		if (path->slots[level] + 1 >=
1173 		    btrfs_header_nritems(path->nodes[level]))
1174 			continue;
1175 		if (level == 0)
1176 			btrfs_item_key_to_cpu(path->nodes[level], key,
1177 					      path->slots[level] + 1);
1178 		else
1179 			btrfs_node_key_to_cpu(path->nodes[level], key,
1180 					      path->slots[level] + 1);
1181 		return 0;
1182 	}
1183 	return 1;
1184 }
1185 
1186 /*
1187  * look for inline back ref. if back ref is found, *ref_ret is set
1188  * to the address of inline back ref, and 0 is returned.
1189  *
1190  * if back ref isn't found, *ref_ret is set to the address where it
1191  * should be inserted, and -ENOENT is returned.
1192  *
1193  * if insert is true and there are too many inline back refs, the path
1194  * points to the extent item, and -EAGAIN is returned.
1195  *
1196  * NOTE: inline back refs are ordered in the same way that back ref
1197  *	 items in the tree are ordered.
1198  */
1199 static noinline_for_stack
1200 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1201 				 struct btrfs_root *root,
1202 				 struct btrfs_path *path,
1203 				 struct btrfs_extent_inline_ref **ref_ret,
1204 				 u64 bytenr, u64 num_bytes,
1205 				 u64 parent, u64 root_objectid,
1206 				 u64 owner, u64 offset, int insert)
1207 {
1208 	struct btrfs_key key;
1209 	struct extent_buffer *leaf;
1210 	struct btrfs_extent_item *ei;
1211 	struct btrfs_extent_inline_ref *iref;
1212 	u64 flags;
1213 	u64 item_size;
1214 	unsigned long ptr;
1215 	unsigned long end;
1216 	int extra_size;
1217 	int type;
1218 	int want;
1219 	int ret;
1220 	int err = 0;
1221 
1222 	key.objectid = bytenr;
1223 	key.type = BTRFS_EXTENT_ITEM_KEY;
1224 	key.offset = num_bytes;
1225 
1226 	want = extent_ref_type(parent, owner);
1227 	if (insert) {
1228 		extra_size = btrfs_extent_inline_ref_size(want);
1229 		path->keep_locks = 1;
1230 	} else
1231 		extra_size = -1;
1232 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1233 	if (ret < 0) {
1234 		err = ret;
1235 		goto out;
1236 	}
1237 	BUG_ON(ret);
1238 
1239 	leaf = path->nodes[0];
1240 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1241 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1242 	if (item_size < sizeof(*ei)) {
1243 		if (!insert) {
1244 			err = -ENOENT;
1245 			goto out;
1246 		}
1247 		ret = convert_extent_item_v0(trans, root, path, owner,
1248 					     extra_size);
1249 		if (ret < 0) {
1250 			err = ret;
1251 			goto out;
1252 		}
1253 		leaf = path->nodes[0];
1254 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1255 	}
1256 #endif
1257 	BUG_ON(item_size < sizeof(*ei));
1258 
1259 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1260 	flags = btrfs_extent_flags(leaf, ei);
1261 
1262 	ptr = (unsigned long)(ei + 1);
1263 	end = (unsigned long)ei + item_size;
1264 
1265 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1266 		ptr += sizeof(struct btrfs_tree_block_info);
1267 		BUG_ON(ptr > end);
1268 	} else {
1269 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1270 	}
1271 
1272 	err = -ENOENT;
1273 	while (1) {
1274 		if (ptr >= end) {
1275 			WARN_ON(ptr > end);
1276 			break;
1277 		}
1278 		iref = (struct btrfs_extent_inline_ref *)ptr;
1279 		type = btrfs_extent_inline_ref_type(leaf, iref);
1280 		if (want < type)
1281 			break;
1282 		if (want > type) {
1283 			ptr += btrfs_extent_inline_ref_size(type);
1284 			continue;
1285 		}
1286 
1287 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1288 			struct btrfs_extent_data_ref *dref;
1289 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1290 			if (match_extent_data_ref(leaf, dref, root_objectid,
1291 						  owner, offset)) {
1292 				err = 0;
1293 				break;
1294 			}
1295 			if (hash_extent_data_ref_item(leaf, dref) <
1296 			    hash_extent_data_ref(root_objectid, owner, offset))
1297 				break;
1298 		} else {
1299 			u64 ref_offset;
1300 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1301 			if (parent > 0) {
1302 				if (parent == ref_offset) {
1303 					err = 0;
1304 					break;
1305 				}
1306 				if (ref_offset < parent)
1307 					break;
1308 			} else {
1309 				if (root_objectid == ref_offset) {
1310 					err = 0;
1311 					break;
1312 				}
1313 				if (ref_offset < root_objectid)
1314 					break;
1315 			}
1316 		}
1317 		ptr += btrfs_extent_inline_ref_size(type);
1318 	}
1319 	if (err == -ENOENT && insert) {
1320 		if (item_size + extra_size >=
1321 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1322 			err = -EAGAIN;
1323 			goto out;
1324 		}
1325 		/*
1326 		 * To add new inline back ref, we have to make sure
1327 		 * there is no corresponding back ref item.
1328 		 * For simplicity, we just do not add new inline back
1329 		 * ref if there is any kind of item for this block
1330 		 */
1331 		if (find_next_key(path, 0, &key) == 0 &&
1332 		    key.objectid == bytenr &&
1333 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1334 			err = -EAGAIN;
1335 			goto out;
1336 		}
1337 	}
1338 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1339 out:
1340 	if (insert) {
1341 		path->keep_locks = 0;
1342 		btrfs_unlock_up_safe(path, 1);
1343 	}
1344 	return err;
1345 }
1346 
1347 /*
1348  * helper to add new inline back ref
1349  */
1350 static noinline_for_stack
1351 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1352 				struct btrfs_root *root,
1353 				struct btrfs_path *path,
1354 				struct btrfs_extent_inline_ref *iref,
1355 				u64 parent, u64 root_objectid,
1356 				u64 owner, u64 offset, int refs_to_add,
1357 				struct btrfs_delayed_extent_op *extent_op)
1358 {
1359 	struct extent_buffer *leaf;
1360 	struct btrfs_extent_item *ei;
1361 	unsigned long ptr;
1362 	unsigned long end;
1363 	unsigned long item_offset;
1364 	u64 refs;
1365 	int size;
1366 	int type;
1367 	int ret;
1368 
1369 	leaf = path->nodes[0];
1370 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1371 	item_offset = (unsigned long)iref - (unsigned long)ei;
1372 
1373 	type = extent_ref_type(parent, owner);
1374 	size = btrfs_extent_inline_ref_size(type);
1375 
1376 	ret = btrfs_extend_item(trans, root, path, size);
1377 	BUG_ON(ret);
1378 
1379 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1380 	refs = btrfs_extent_refs(leaf, ei);
1381 	refs += refs_to_add;
1382 	btrfs_set_extent_refs(leaf, ei, refs);
1383 	if (extent_op)
1384 		__run_delayed_extent_op(extent_op, leaf, ei);
1385 
1386 	ptr = (unsigned long)ei + item_offset;
1387 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1388 	if (ptr < end - size)
1389 		memmove_extent_buffer(leaf, ptr + size, ptr,
1390 				      end - size - ptr);
1391 
1392 	iref = (struct btrfs_extent_inline_ref *)ptr;
1393 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1394 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1395 		struct btrfs_extent_data_ref *dref;
1396 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1398 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1399 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1400 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1401 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1402 		struct btrfs_shared_data_ref *sref;
1403 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1404 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1405 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1406 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1407 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1408 	} else {
1409 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1410 	}
1411 	btrfs_mark_buffer_dirty(leaf);
1412 	return 0;
1413 }
1414 
1415 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1416 				 struct btrfs_root *root,
1417 				 struct btrfs_path *path,
1418 				 struct btrfs_extent_inline_ref **ref_ret,
1419 				 u64 bytenr, u64 num_bytes, u64 parent,
1420 				 u64 root_objectid, u64 owner, u64 offset)
1421 {
1422 	int ret;
1423 
1424 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1425 					   bytenr, num_bytes, parent,
1426 					   root_objectid, owner, offset, 0);
1427 	if (ret != -ENOENT)
1428 		return ret;
1429 
1430 	btrfs_release_path(root, path);
1431 	*ref_ret = NULL;
1432 
1433 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1434 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1435 					    root_objectid);
1436 	} else {
1437 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1438 					     root_objectid, owner, offset);
1439 	}
1440 	return ret;
1441 }
1442 
1443 /*
1444  * helper to update/remove inline back ref
1445  */
1446 static noinline_for_stack
1447 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1448 				 struct btrfs_root *root,
1449 				 struct btrfs_path *path,
1450 				 struct btrfs_extent_inline_ref *iref,
1451 				 int refs_to_mod,
1452 				 struct btrfs_delayed_extent_op *extent_op)
1453 {
1454 	struct extent_buffer *leaf;
1455 	struct btrfs_extent_item *ei;
1456 	struct btrfs_extent_data_ref *dref = NULL;
1457 	struct btrfs_shared_data_ref *sref = NULL;
1458 	unsigned long ptr;
1459 	unsigned long end;
1460 	u32 item_size;
1461 	int size;
1462 	int type;
1463 	int ret;
1464 	u64 refs;
1465 
1466 	leaf = path->nodes[0];
1467 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1468 	refs = btrfs_extent_refs(leaf, ei);
1469 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1470 	refs += refs_to_mod;
1471 	btrfs_set_extent_refs(leaf, ei, refs);
1472 	if (extent_op)
1473 		__run_delayed_extent_op(extent_op, leaf, ei);
1474 
1475 	type = btrfs_extent_inline_ref_type(leaf, iref);
1476 
1477 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1478 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1479 		refs = btrfs_extent_data_ref_count(leaf, dref);
1480 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1481 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1482 		refs = btrfs_shared_data_ref_count(leaf, sref);
1483 	} else {
1484 		refs = 1;
1485 		BUG_ON(refs_to_mod != -1);
1486 	}
1487 
1488 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1489 	refs += refs_to_mod;
1490 
1491 	if (refs > 0) {
1492 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1493 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1494 		else
1495 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1496 	} else {
1497 		size =  btrfs_extent_inline_ref_size(type);
1498 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1499 		ptr = (unsigned long)iref;
1500 		end = (unsigned long)ei + item_size;
1501 		if (ptr + size < end)
1502 			memmove_extent_buffer(leaf, ptr, ptr + size,
1503 					      end - ptr - size);
1504 		item_size -= size;
1505 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1506 		BUG_ON(ret);
1507 	}
1508 	btrfs_mark_buffer_dirty(leaf);
1509 	return 0;
1510 }
1511 
1512 static noinline_for_stack
1513 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1514 				 struct btrfs_root *root,
1515 				 struct btrfs_path *path,
1516 				 u64 bytenr, u64 num_bytes, u64 parent,
1517 				 u64 root_objectid, u64 owner,
1518 				 u64 offset, int refs_to_add,
1519 				 struct btrfs_delayed_extent_op *extent_op)
1520 {
1521 	struct btrfs_extent_inline_ref *iref;
1522 	int ret;
1523 
1524 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1525 					   bytenr, num_bytes, parent,
1526 					   root_objectid, owner, offset, 1);
1527 	if (ret == 0) {
1528 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1529 		ret = update_inline_extent_backref(trans, root, path, iref,
1530 						   refs_to_add, extent_op);
1531 	} else if (ret == -ENOENT) {
1532 		ret = setup_inline_extent_backref(trans, root, path, iref,
1533 						  parent, root_objectid,
1534 						  owner, offset, refs_to_add,
1535 						  extent_op);
1536 	}
1537 	return ret;
1538 }
1539 
1540 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1541 				 struct btrfs_root *root,
1542 				 struct btrfs_path *path,
1543 				 u64 bytenr, u64 parent, u64 root_objectid,
1544 				 u64 owner, u64 offset, int refs_to_add)
1545 {
1546 	int ret;
1547 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1548 		BUG_ON(refs_to_add != 1);
1549 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1550 					    parent, root_objectid);
1551 	} else {
1552 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1553 					     parent, root_objectid,
1554 					     owner, offset, refs_to_add);
1555 	}
1556 	return ret;
1557 }
1558 
1559 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1560 				 struct btrfs_root *root,
1561 				 struct btrfs_path *path,
1562 				 struct btrfs_extent_inline_ref *iref,
1563 				 int refs_to_drop, int is_data)
1564 {
1565 	int ret;
1566 
1567 	BUG_ON(!is_data && refs_to_drop != 1);
1568 	if (iref) {
1569 		ret = update_inline_extent_backref(trans, root, path, iref,
1570 						   -refs_to_drop, NULL);
1571 	} else if (is_data) {
1572 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1573 	} else {
1574 		ret = btrfs_del_item(trans, root, path);
1575 	}
1576 	return ret;
1577 }
1578 
1579 static void btrfs_issue_discard(struct block_device *bdev,
1580 				u64 start, u64 len)
1581 {
1582 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1583 			     DISCARD_FL_BARRIER);
1584 }
1585 
1586 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1587 				u64 num_bytes)
1588 {
1589 	int ret;
1590 	u64 map_length = num_bytes;
1591 	struct btrfs_multi_bio *multi = NULL;
1592 
1593 	if (!btrfs_test_opt(root, DISCARD))
1594 		return 0;
1595 
1596 	/* Tell the block device(s) that the sectors can be discarded */
1597 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1598 			      bytenr, &map_length, &multi, 0);
1599 	if (!ret) {
1600 		struct btrfs_bio_stripe *stripe = multi->stripes;
1601 		int i;
1602 
1603 		if (map_length > num_bytes)
1604 			map_length = num_bytes;
1605 
1606 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1607 			btrfs_issue_discard(stripe->dev->bdev,
1608 					    stripe->physical,
1609 					    map_length);
1610 		}
1611 		kfree(multi);
1612 	}
1613 
1614 	return ret;
1615 }
1616 
1617 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1618 			 struct btrfs_root *root,
1619 			 u64 bytenr, u64 num_bytes, u64 parent,
1620 			 u64 root_objectid, u64 owner, u64 offset)
1621 {
1622 	int ret;
1623 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1624 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1625 
1626 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1627 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1628 					parent, root_objectid, (int)owner,
1629 					BTRFS_ADD_DELAYED_REF, NULL);
1630 	} else {
1631 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1632 					parent, root_objectid, owner, offset,
1633 					BTRFS_ADD_DELAYED_REF, NULL);
1634 	}
1635 	return ret;
1636 }
1637 
1638 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1639 				  struct btrfs_root *root,
1640 				  u64 bytenr, u64 num_bytes,
1641 				  u64 parent, u64 root_objectid,
1642 				  u64 owner, u64 offset, int refs_to_add,
1643 				  struct btrfs_delayed_extent_op *extent_op)
1644 {
1645 	struct btrfs_path *path;
1646 	struct extent_buffer *leaf;
1647 	struct btrfs_extent_item *item;
1648 	u64 refs;
1649 	int ret;
1650 	int err = 0;
1651 
1652 	path = btrfs_alloc_path();
1653 	if (!path)
1654 		return -ENOMEM;
1655 
1656 	path->reada = 1;
1657 	path->leave_spinning = 1;
1658 	/* this will setup the path even if it fails to insert the back ref */
1659 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1660 					   path, bytenr, num_bytes, parent,
1661 					   root_objectid, owner, offset,
1662 					   refs_to_add, extent_op);
1663 	if (ret == 0)
1664 		goto out;
1665 
1666 	if (ret != -EAGAIN) {
1667 		err = ret;
1668 		goto out;
1669 	}
1670 
1671 	leaf = path->nodes[0];
1672 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1673 	refs = btrfs_extent_refs(leaf, item);
1674 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1675 	if (extent_op)
1676 		__run_delayed_extent_op(extent_op, leaf, item);
1677 
1678 	btrfs_mark_buffer_dirty(leaf);
1679 	btrfs_release_path(root->fs_info->extent_root, path);
1680 
1681 	path->reada = 1;
1682 	path->leave_spinning = 1;
1683 
1684 	/* now insert the actual backref */
1685 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1686 				    path, bytenr, parent, root_objectid,
1687 				    owner, offset, refs_to_add);
1688 	BUG_ON(ret);
1689 out:
1690 	btrfs_free_path(path);
1691 	return err;
1692 }
1693 
1694 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1695 				struct btrfs_root *root,
1696 				struct btrfs_delayed_ref_node *node,
1697 				struct btrfs_delayed_extent_op *extent_op,
1698 				int insert_reserved)
1699 {
1700 	int ret = 0;
1701 	struct btrfs_delayed_data_ref *ref;
1702 	struct btrfs_key ins;
1703 	u64 parent = 0;
1704 	u64 ref_root = 0;
1705 	u64 flags = 0;
1706 
1707 	ins.objectid = node->bytenr;
1708 	ins.offset = node->num_bytes;
1709 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1710 
1711 	ref = btrfs_delayed_node_to_data_ref(node);
1712 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1713 		parent = ref->parent;
1714 	else
1715 		ref_root = ref->root;
1716 
1717 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1718 		if (extent_op) {
1719 			BUG_ON(extent_op->update_key);
1720 			flags |= extent_op->flags_to_set;
1721 		}
1722 		ret = alloc_reserved_file_extent(trans, root,
1723 						 parent, ref_root, flags,
1724 						 ref->objectid, ref->offset,
1725 						 &ins, node->ref_mod);
1726 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1727 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1728 					     node->num_bytes, parent,
1729 					     ref_root, ref->objectid,
1730 					     ref->offset, node->ref_mod,
1731 					     extent_op);
1732 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1733 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1734 					  node->num_bytes, parent,
1735 					  ref_root, ref->objectid,
1736 					  ref->offset, node->ref_mod,
1737 					  extent_op);
1738 	} else {
1739 		BUG();
1740 	}
1741 	return ret;
1742 }
1743 
1744 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1745 				    struct extent_buffer *leaf,
1746 				    struct btrfs_extent_item *ei)
1747 {
1748 	u64 flags = btrfs_extent_flags(leaf, ei);
1749 	if (extent_op->update_flags) {
1750 		flags |= extent_op->flags_to_set;
1751 		btrfs_set_extent_flags(leaf, ei, flags);
1752 	}
1753 
1754 	if (extent_op->update_key) {
1755 		struct btrfs_tree_block_info *bi;
1756 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1757 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1758 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1759 	}
1760 }
1761 
1762 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1763 				 struct btrfs_root *root,
1764 				 struct btrfs_delayed_ref_node *node,
1765 				 struct btrfs_delayed_extent_op *extent_op)
1766 {
1767 	struct btrfs_key key;
1768 	struct btrfs_path *path;
1769 	struct btrfs_extent_item *ei;
1770 	struct extent_buffer *leaf;
1771 	u32 item_size;
1772 	int ret;
1773 	int err = 0;
1774 
1775 	path = btrfs_alloc_path();
1776 	if (!path)
1777 		return -ENOMEM;
1778 
1779 	key.objectid = node->bytenr;
1780 	key.type = BTRFS_EXTENT_ITEM_KEY;
1781 	key.offset = node->num_bytes;
1782 
1783 	path->reada = 1;
1784 	path->leave_spinning = 1;
1785 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1786 				path, 0, 1);
1787 	if (ret < 0) {
1788 		err = ret;
1789 		goto out;
1790 	}
1791 	if (ret > 0) {
1792 		err = -EIO;
1793 		goto out;
1794 	}
1795 
1796 	leaf = path->nodes[0];
1797 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1798 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1799 	if (item_size < sizeof(*ei)) {
1800 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1801 					     path, (u64)-1, 0);
1802 		if (ret < 0) {
1803 			err = ret;
1804 			goto out;
1805 		}
1806 		leaf = path->nodes[0];
1807 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1808 	}
1809 #endif
1810 	BUG_ON(item_size < sizeof(*ei));
1811 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1812 	__run_delayed_extent_op(extent_op, leaf, ei);
1813 
1814 	btrfs_mark_buffer_dirty(leaf);
1815 out:
1816 	btrfs_free_path(path);
1817 	return err;
1818 }
1819 
1820 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1821 				struct btrfs_root *root,
1822 				struct btrfs_delayed_ref_node *node,
1823 				struct btrfs_delayed_extent_op *extent_op,
1824 				int insert_reserved)
1825 {
1826 	int ret = 0;
1827 	struct btrfs_delayed_tree_ref *ref;
1828 	struct btrfs_key ins;
1829 	u64 parent = 0;
1830 	u64 ref_root = 0;
1831 
1832 	ins.objectid = node->bytenr;
1833 	ins.offset = node->num_bytes;
1834 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1835 
1836 	ref = btrfs_delayed_node_to_tree_ref(node);
1837 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1838 		parent = ref->parent;
1839 	else
1840 		ref_root = ref->root;
1841 
1842 	BUG_ON(node->ref_mod != 1);
1843 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1844 		BUG_ON(!extent_op || !extent_op->update_flags ||
1845 		       !extent_op->update_key);
1846 		ret = alloc_reserved_tree_block(trans, root,
1847 						parent, ref_root,
1848 						extent_op->flags_to_set,
1849 						&extent_op->key,
1850 						ref->level, &ins);
1851 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1852 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1853 					     node->num_bytes, parent, ref_root,
1854 					     ref->level, 0, 1, extent_op);
1855 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1856 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1857 					  node->num_bytes, parent, ref_root,
1858 					  ref->level, 0, 1, extent_op);
1859 	} else {
1860 		BUG();
1861 	}
1862 	return ret;
1863 }
1864 
1865 
1866 /* helper function to actually process a single delayed ref entry */
1867 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1868 			       struct btrfs_root *root,
1869 			       struct btrfs_delayed_ref_node *node,
1870 			       struct btrfs_delayed_extent_op *extent_op,
1871 			       int insert_reserved)
1872 {
1873 	int ret;
1874 	if (btrfs_delayed_ref_is_head(node)) {
1875 		struct btrfs_delayed_ref_head *head;
1876 		/*
1877 		 * we've hit the end of the chain and we were supposed
1878 		 * to insert this extent into the tree.  But, it got
1879 		 * deleted before we ever needed to insert it, so all
1880 		 * we have to do is clean up the accounting
1881 		 */
1882 		BUG_ON(extent_op);
1883 		head = btrfs_delayed_node_to_head(node);
1884 		if (insert_reserved) {
1885 			int mark_free = 0;
1886 			struct extent_buffer *must_clean = NULL;
1887 
1888 			ret = pin_down_bytes(trans, root, NULL,
1889 					     node->bytenr, node->num_bytes,
1890 					     head->is_data, 1, &must_clean);
1891 			if (ret > 0)
1892 				mark_free = 1;
1893 
1894 			if (must_clean) {
1895 				clean_tree_block(NULL, root, must_clean);
1896 				btrfs_tree_unlock(must_clean);
1897 				free_extent_buffer(must_clean);
1898 			}
1899 			if (head->is_data) {
1900 				ret = btrfs_del_csums(trans, root,
1901 						      node->bytenr,
1902 						      node->num_bytes);
1903 				BUG_ON(ret);
1904 			}
1905 			if (mark_free) {
1906 				ret = btrfs_free_reserved_extent(root,
1907 							node->bytenr,
1908 							node->num_bytes);
1909 				BUG_ON(ret);
1910 			}
1911 		}
1912 		mutex_unlock(&head->mutex);
1913 		return 0;
1914 	}
1915 
1916 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1917 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1918 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
1919 					   insert_reserved);
1920 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1921 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1922 		ret = run_delayed_data_ref(trans, root, node, extent_op,
1923 					   insert_reserved);
1924 	else
1925 		BUG();
1926 	return ret;
1927 }
1928 
1929 static noinline struct btrfs_delayed_ref_node *
1930 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1931 {
1932 	struct rb_node *node;
1933 	struct btrfs_delayed_ref_node *ref;
1934 	int action = BTRFS_ADD_DELAYED_REF;
1935 again:
1936 	/*
1937 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1938 	 * this prevents ref count from going down to zero when
1939 	 * there still are pending delayed ref.
1940 	 */
1941 	node = rb_prev(&head->node.rb_node);
1942 	while (1) {
1943 		if (!node)
1944 			break;
1945 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
1946 				rb_node);
1947 		if (ref->bytenr != head->node.bytenr)
1948 			break;
1949 		if (ref->action == action)
1950 			return ref;
1951 		node = rb_prev(node);
1952 	}
1953 	if (action == BTRFS_ADD_DELAYED_REF) {
1954 		action = BTRFS_DROP_DELAYED_REF;
1955 		goto again;
1956 	}
1957 	return NULL;
1958 }
1959 
1960 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
1961 				       struct btrfs_root *root,
1962 				       struct list_head *cluster)
1963 {
1964 	struct btrfs_delayed_ref_root *delayed_refs;
1965 	struct btrfs_delayed_ref_node *ref;
1966 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1967 	struct btrfs_delayed_extent_op *extent_op;
1968 	int ret;
1969 	int count = 0;
1970 	int must_insert_reserved = 0;
1971 
1972 	delayed_refs = &trans->transaction->delayed_refs;
1973 	while (1) {
1974 		if (!locked_ref) {
1975 			/* pick a new head ref from the cluster list */
1976 			if (list_empty(cluster))
1977 				break;
1978 
1979 			locked_ref = list_entry(cluster->next,
1980 				     struct btrfs_delayed_ref_head, cluster);
1981 
1982 			/* grab the lock that says we are going to process
1983 			 * all the refs for this head */
1984 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
1985 
1986 			/*
1987 			 * we may have dropped the spin lock to get the head
1988 			 * mutex lock, and that might have given someone else
1989 			 * time to free the head.  If that's true, it has been
1990 			 * removed from our list and we can move on.
1991 			 */
1992 			if (ret == -EAGAIN) {
1993 				locked_ref = NULL;
1994 				count++;
1995 				continue;
1996 			}
1997 		}
1998 
1999 		/*
2000 		 * record the must insert reserved flag before we
2001 		 * drop the spin lock.
2002 		 */
2003 		must_insert_reserved = locked_ref->must_insert_reserved;
2004 		locked_ref->must_insert_reserved = 0;
2005 
2006 		extent_op = locked_ref->extent_op;
2007 		locked_ref->extent_op = NULL;
2008 
2009 		/*
2010 		 * locked_ref is the head node, so we have to go one
2011 		 * node back for any delayed ref updates
2012 		 */
2013 		ref = select_delayed_ref(locked_ref);
2014 		if (!ref) {
2015 			/* All delayed refs have been processed, Go ahead
2016 			 * and send the head node to run_one_delayed_ref,
2017 			 * so that any accounting fixes can happen
2018 			 */
2019 			ref = &locked_ref->node;
2020 
2021 			if (extent_op && must_insert_reserved) {
2022 				kfree(extent_op);
2023 				extent_op = NULL;
2024 			}
2025 
2026 			if (extent_op) {
2027 				spin_unlock(&delayed_refs->lock);
2028 
2029 				ret = run_delayed_extent_op(trans, root,
2030 							    ref, extent_op);
2031 				BUG_ON(ret);
2032 				kfree(extent_op);
2033 
2034 				cond_resched();
2035 				spin_lock(&delayed_refs->lock);
2036 				continue;
2037 			}
2038 
2039 			list_del_init(&locked_ref->cluster);
2040 			locked_ref = NULL;
2041 		}
2042 
2043 		ref->in_tree = 0;
2044 		rb_erase(&ref->rb_node, &delayed_refs->root);
2045 		delayed_refs->num_entries--;
2046 
2047 		spin_unlock(&delayed_refs->lock);
2048 
2049 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2050 					  must_insert_reserved);
2051 		BUG_ON(ret);
2052 
2053 		btrfs_put_delayed_ref(ref);
2054 		kfree(extent_op);
2055 		count++;
2056 
2057 		cond_resched();
2058 		spin_lock(&delayed_refs->lock);
2059 	}
2060 	return count;
2061 }
2062 
2063 /*
2064  * this starts processing the delayed reference count updates and
2065  * extent insertions we have queued up so far.  count can be
2066  * 0, which means to process everything in the tree at the start
2067  * of the run (but not newly added entries), or it can be some target
2068  * number you'd like to process.
2069  */
2070 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2071 			   struct btrfs_root *root, unsigned long count)
2072 {
2073 	struct rb_node *node;
2074 	struct btrfs_delayed_ref_root *delayed_refs;
2075 	struct btrfs_delayed_ref_node *ref;
2076 	struct list_head cluster;
2077 	int ret;
2078 	int run_all = count == (unsigned long)-1;
2079 	int run_most = 0;
2080 
2081 	if (root == root->fs_info->extent_root)
2082 		root = root->fs_info->tree_root;
2083 
2084 	delayed_refs = &trans->transaction->delayed_refs;
2085 	INIT_LIST_HEAD(&cluster);
2086 again:
2087 	spin_lock(&delayed_refs->lock);
2088 	if (count == 0) {
2089 		count = delayed_refs->num_entries * 2;
2090 		run_most = 1;
2091 	}
2092 	while (1) {
2093 		if (!(run_all || run_most) &&
2094 		    delayed_refs->num_heads_ready < 64)
2095 			break;
2096 
2097 		/*
2098 		 * go find something we can process in the rbtree.  We start at
2099 		 * the beginning of the tree, and then build a cluster
2100 		 * of refs to process starting at the first one we are able to
2101 		 * lock
2102 		 */
2103 		ret = btrfs_find_ref_cluster(trans, &cluster,
2104 					     delayed_refs->run_delayed_start);
2105 		if (ret)
2106 			break;
2107 
2108 		ret = run_clustered_refs(trans, root, &cluster);
2109 		BUG_ON(ret < 0);
2110 
2111 		count -= min_t(unsigned long, ret, count);
2112 
2113 		if (count == 0)
2114 			break;
2115 	}
2116 
2117 	if (run_all) {
2118 		node = rb_first(&delayed_refs->root);
2119 		if (!node)
2120 			goto out;
2121 		count = (unsigned long)-1;
2122 
2123 		while (node) {
2124 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2125 				       rb_node);
2126 			if (btrfs_delayed_ref_is_head(ref)) {
2127 				struct btrfs_delayed_ref_head *head;
2128 
2129 				head = btrfs_delayed_node_to_head(ref);
2130 				atomic_inc(&ref->refs);
2131 
2132 				spin_unlock(&delayed_refs->lock);
2133 				mutex_lock(&head->mutex);
2134 				mutex_unlock(&head->mutex);
2135 
2136 				btrfs_put_delayed_ref(ref);
2137 				cond_resched();
2138 				goto again;
2139 			}
2140 			node = rb_next(node);
2141 		}
2142 		spin_unlock(&delayed_refs->lock);
2143 		schedule_timeout(1);
2144 		goto again;
2145 	}
2146 out:
2147 	spin_unlock(&delayed_refs->lock);
2148 	return 0;
2149 }
2150 
2151 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2152 				struct btrfs_root *root,
2153 				u64 bytenr, u64 num_bytes, u64 flags,
2154 				int is_data)
2155 {
2156 	struct btrfs_delayed_extent_op *extent_op;
2157 	int ret;
2158 
2159 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2160 	if (!extent_op)
2161 		return -ENOMEM;
2162 
2163 	extent_op->flags_to_set = flags;
2164 	extent_op->update_flags = 1;
2165 	extent_op->update_key = 0;
2166 	extent_op->is_data = is_data ? 1 : 0;
2167 
2168 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2169 	if (ret)
2170 		kfree(extent_op);
2171 	return ret;
2172 }
2173 
2174 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2175 				      struct btrfs_root *root,
2176 				      struct btrfs_path *path,
2177 				      u64 objectid, u64 offset, u64 bytenr)
2178 {
2179 	struct btrfs_delayed_ref_head *head;
2180 	struct btrfs_delayed_ref_node *ref;
2181 	struct btrfs_delayed_data_ref *data_ref;
2182 	struct btrfs_delayed_ref_root *delayed_refs;
2183 	struct rb_node *node;
2184 	int ret = 0;
2185 
2186 	ret = -ENOENT;
2187 	delayed_refs = &trans->transaction->delayed_refs;
2188 	spin_lock(&delayed_refs->lock);
2189 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2190 	if (!head)
2191 		goto out;
2192 
2193 	if (!mutex_trylock(&head->mutex)) {
2194 		atomic_inc(&head->node.refs);
2195 		spin_unlock(&delayed_refs->lock);
2196 
2197 		btrfs_release_path(root->fs_info->extent_root, path);
2198 
2199 		mutex_lock(&head->mutex);
2200 		mutex_unlock(&head->mutex);
2201 		btrfs_put_delayed_ref(&head->node);
2202 		return -EAGAIN;
2203 	}
2204 
2205 	node = rb_prev(&head->node.rb_node);
2206 	if (!node)
2207 		goto out_unlock;
2208 
2209 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2210 
2211 	if (ref->bytenr != bytenr)
2212 		goto out_unlock;
2213 
2214 	ret = 1;
2215 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2216 		goto out_unlock;
2217 
2218 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2219 
2220 	node = rb_prev(node);
2221 	if (node) {
2222 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2223 		if (ref->bytenr == bytenr)
2224 			goto out_unlock;
2225 	}
2226 
2227 	if (data_ref->root != root->root_key.objectid ||
2228 	    data_ref->objectid != objectid || data_ref->offset != offset)
2229 		goto out_unlock;
2230 
2231 	ret = 0;
2232 out_unlock:
2233 	mutex_unlock(&head->mutex);
2234 out:
2235 	spin_unlock(&delayed_refs->lock);
2236 	return ret;
2237 }
2238 
2239 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2240 					struct btrfs_root *root,
2241 					struct btrfs_path *path,
2242 					u64 objectid, u64 offset, u64 bytenr)
2243 {
2244 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2245 	struct extent_buffer *leaf;
2246 	struct btrfs_extent_data_ref *ref;
2247 	struct btrfs_extent_inline_ref *iref;
2248 	struct btrfs_extent_item *ei;
2249 	struct btrfs_key key;
2250 	u32 item_size;
2251 	int ret;
2252 
2253 	key.objectid = bytenr;
2254 	key.offset = (u64)-1;
2255 	key.type = BTRFS_EXTENT_ITEM_KEY;
2256 
2257 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2258 	if (ret < 0)
2259 		goto out;
2260 	BUG_ON(ret == 0);
2261 
2262 	ret = -ENOENT;
2263 	if (path->slots[0] == 0)
2264 		goto out;
2265 
2266 	path->slots[0]--;
2267 	leaf = path->nodes[0];
2268 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2269 
2270 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2271 		goto out;
2272 
2273 	ret = 1;
2274 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2275 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2276 	if (item_size < sizeof(*ei)) {
2277 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2278 		goto out;
2279 	}
2280 #endif
2281 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2282 
2283 	if (item_size != sizeof(*ei) +
2284 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2285 		goto out;
2286 
2287 	if (btrfs_extent_generation(leaf, ei) <=
2288 	    btrfs_root_last_snapshot(&root->root_item))
2289 		goto out;
2290 
2291 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2292 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2293 	    BTRFS_EXTENT_DATA_REF_KEY)
2294 		goto out;
2295 
2296 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2297 	if (btrfs_extent_refs(leaf, ei) !=
2298 	    btrfs_extent_data_ref_count(leaf, ref) ||
2299 	    btrfs_extent_data_ref_root(leaf, ref) !=
2300 	    root->root_key.objectid ||
2301 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2302 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2303 		goto out;
2304 
2305 	ret = 0;
2306 out:
2307 	return ret;
2308 }
2309 
2310 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2311 			  struct btrfs_root *root,
2312 			  u64 objectid, u64 offset, u64 bytenr)
2313 {
2314 	struct btrfs_path *path;
2315 	int ret;
2316 	int ret2;
2317 
2318 	path = btrfs_alloc_path();
2319 	if (!path)
2320 		return -ENOENT;
2321 
2322 	do {
2323 		ret = check_committed_ref(trans, root, path, objectid,
2324 					  offset, bytenr);
2325 		if (ret && ret != -ENOENT)
2326 			goto out;
2327 
2328 		ret2 = check_delayed_ref(trans, root, path, objectid,
2329 					 offset, bytenr);
2330 	} while (ret2 == -EAGAIN);
2331 
2332 	if (ret2 && ret2 != -ENOENT) {
2333 		ret = ret2;
2334 		goto out;
2335 	}
2336 
2337 	if (ret != -ENOENT || ret2 != -ENOENT)
2338 		ret = 0;
2339 out:
2340 	btrfs_free_path(path);
2341 	return ret;
2342 }
2343 
2344 #if 0
2345 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2346 		    struct extent_buffer *buf, u32 nr_extents)
2347 {
2348 	struct btrfs_key key;
2349 	struct btrfs_file_extent_item *fi;
2350 	u64 root_gen;
2351 	u32 nritems;
2352 	int i;
2353 	int level;
2354 	int ret = 0;
2355 	int shared = 0;
2356 
2357 	if (!root->ref_cows)
2358 		return 0;
2359 
2360 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2361 		shared = 0;
2362 		root_gen = root->root_key.offset;
2363 	} else {
2364 		shared = 1;
2365 		root_gen = trans->transid - 1;
2366 	}
2367 
2368 	level = btrfs_header_level(buf);
2369 	nritems = btrfs_header_nritems(buf);
2370 
2371 	if (level == 0) {
2372 		struct btrfs_leaf_ref *ref;
2373 		struct btrfs_extent_info *info;
2374 
2375 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
2376 		if (!ref) {
2377 			ret = -ENOMEM;
2378 			goto out;
2379 		}
2380 
2381 		ref->root_gen = root_gen;
2382 		ref->bytenr = buf->start;
2383 		ref->owner = btrfs_header_owner(buf);
2384 		ref->generation = btrfs_header_generation(buf);
2385 		ref->nritems = nr_extents;
2386 		info = ref->extents;
2387 
2388 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
2389 			u64 disk_bytenr;
2390 			btrfs_item_key_to_cpu(buf, &key, i);
2391 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2392 				continue;
2393 			fi = btrfs_item_ptr(buf, i,
2394 					    struct btrfs_file_extent_item);
2395 			if (btrfs_file_extent_type(buf, fi) ==
2396 			    BTRFS_FILE_EXTENT_INLINE)
2397 				continue;
2398 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2399 			if (disk_bytenr == 0)
2400 				continue;
2401 
2402 			info->bytenr = disk_bytenr;
2403 			info->num_bytes =
2404 				btrfs_file_extent_disk_num_bytes(buf, fi);
2405 			info->objectid = key.objectid;
2406 			info->offset = key.offset;
2407 			info++;
2408 		}
2409 
2410 		ret = btrfs_add_leaf_ref(root, ref, shared);
2411 		if (ret == -EEXIST && shared) {
2412 			struct btrfs_leaf_ref *old;
2413 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2414 			BUG_ON(!old);
2415 			btrfs_remove_leaf_ref(root, old);
2416 			btrfs_free_leaf_ref(root, old);
2417 			ret = btrfs_add_leaf_ref(root, ref, shared);
2418 		}
2419 		WARN_ON(ret);
2420 		btrfs_free_leaf_ref(root, ref);
2421 	}
2422 out:
2423 	return ret;
2424 }
2425 
2426 /* when a block goes through cow, we update the reference counts of
2427  * everything that block points to.  The internal pointers of the block
2428  * can be in just about any order, and it is likely to have clusters of
2429  * things that are close together and clusters of things that are not.
2430  *
2431  * To help reduce the seeks that come with updating all of these reference
2432  * counts, sort them by byte number before actual updates are done.
2433  *
2434  * struct refsort is used to match byte number to slot in the btree block.
2435  * we sort based on the byte number and then use the slot to actually
2436  * find the item.
2437  *
2438  * struct refsort is smaller than strcut btrfs_item and smaller than
2439  * struct btrfs_key_ptr.  Since we're currently limited to the page size
2440  * for a btree block, there's no way for a kmalloc of refsorts for a
2441  * single node to be bigger than a page.
2442  */
2443 struct refsort {
2444 	u64 bytenr;
2445 	u32 slot;
2446 };
2447 
2448 /*
2449  * for passing into sort()
2450  */
2451 static int refsort_cmp(const void *a_void, const void *b_void)
2452 {
2453 	const struct refsort *a = a_void;
2454 	const struct refsort *b = b_void;
2455 
2456 	if (a->bytenr < b->bytenr)
2457 		return -1;
2458 	if (a->bytenr > b->bytenr)
2459 		return 1;
2460 	return 0;
2461 }
2462 #endif
2463 
2464 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2465 			   struct btrfs_root *root,
2466 			   struct extent_buffer *buf,
2467 			   int full_backref, int inc)
2468 {
2469 	u64 bytenr;
2470 	u64 num_bytes;
2471 	u64 parent;
2472 	u64 ref_root;
2473 	u32 nritems;
2474 	struct btrfs_key key;
2475 	struct btrfs_file_extent_item *fi;
2476 	int i;
2477 	int level;
2478 	int ret = 0;
2479 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2480 			    u64, u64, u64, u64, u64, u64);
2481 
2482 	ref_root = btrfs_header_owner(buf);
2483 	nritems = btrfs_header_nritems(buf);
2484 	level = btrfs_header_level(buf);
2485 
2486 	if (!root->ref_cows && level == 0)
2487 		return 0;
2488 
2489 	if (inc)
2490 		process_func = btrfs_inc_extent_ref;
2491 	else
2492 		process_func = btrfs_free_extent;
2493 
2494 	if (full_backref)
2495 		parent = buf->start;
2496 	else
2497 		parent = 0;
2498 
2499 	for (i = 0; i < nritems; i++) {
2500 		if (level == 0) {
2501 			btrfs_item_key_to_cpu(buf, &key, i);
2502 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2503 				continue;
2504 			fi = btrfs_item_ptr(buf, i,
2505 					    struct btrfs_file_extent_item);
2506 			if (btrfs_file_extent_type(buf, fi) ==
2507 			    BTRFS_FILE_EXTENT_INLINE)
2508 				continue;
2509 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2510 			if (bytenr == 0)
2511 				continue;
2512 
2513 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2514 			key.offset -= btrfs_file_extent_offset(buf, fi);
2515 			ret = process_func(trans, root, bytenr, num_bytes,
2516 					   parent, ref_root, key.objectid,
2517 					   key.offset);
2518 			if (ret)
2519 				goto fail;
2520 		} else {
2521 			bytenr = btrfs_node_blockptr(buf, i);
2522 			num_bytes = btrfs_level_size(root, level - 1);
2523 			ret = process_func(trans, root, bytenr, num_bytes,
2524 					   parent, ref_root, level - 1, 0);
2525 			if (ret)
2526 				goto fail;
2527 		}
2528 	}
2529 	return 0;
2530 fail:
2531 	BUG();
2532 	return ret;
2533 }
2534 
2535 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2536 		  struct extent_buffer *buf, int full_backref)
2537 {
2538 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2539 }
2540 
2541 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2542 		  struct extent_buffer *buf, int full_backref)
2543 {
2544 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2545 }
2546 
2547 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2548 				 struct btrfs_root *root,
2549 				 struct btrfs_path *path,
2550 				 struct btrfs_block_group_cache *cache)
2551 {
2552 	int ret;
2553 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2554 	unsigned long bi;
2555 	struct extent_buffer *leaf;
2556 
2557 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2558 	if (ret < 0)
2559 		goto fail;
2560 	BUG_ON(ret);
2561 
2562 	leaf = path->nodes[0];
2563 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2564 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2565 	btrfs_mark_buffer_dirty(leaf);
2566 	btrfs_release_path(extent_root, path);
2567 fail:
2568 	if (ret)
2569 		return ret;
2570 	return 0;
2571 
2572 }
2573 
2574 static struct btrfs_block_group_cache *
2575 next_block_group(struct btrfs_root *root,
2576 		 struct btrfs_block_group_cache *cache)
2577 {
2578 	struct rb_node *node;
2579 	spin_lock(&root->fs_info->block_group_cache_lock);
2580 	node = rb_next(&cache->cache_node);
2581 	btrfs_put_block_group(cache);
2582 	if (node) {
2583 		cache = rb_entry(node, struct btrfs_block_group_cache,
2584 				 cache_node);
2585 		atomic_inc(&cache->count);
2586 	} else
2587 		cache = NULL;
2588 	spin_unlock(&root->fs_info->block_group_cache_lock);
2589 	return cache;
2590 }
2591 
2592 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2593 				   struct btrfs_root *root)
2594 {
2595 	struct btrfs_block_group_cache *cache;
2596 	int err = 0;
2597 	struct btrfs_path *path;
2598 	u64 last = 0;
2599 
2600 	path = btrfs_alloc_path();
2601 	if (!path)
2602 		return -ENOMEM;
2603 
2604 	while (1) {
2605 		if (last == 0) {
2606 			err = btrfs_run_delayed_refs(trans, root,
2607 						     (unsigned long)-1);
2608 			BUG_ON(err);
2609 		}
2610 
2611 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2612 		while (cache) {
2613 			if (cache->dirty)
2614 				break;
2615 			cache = next_block_group(root, cache);
2616 		}
2617 		if (!cache) {
2618 			if (last == 0)
2619 				break;
2620 			last = 0;
2621 			continue;
2622 		}
2623 
2624 		cache->dirty = 0;
2625 		last = cache->key.objectid + cache->key.offset;
2626 
2627 		err = write_one_cache_group(trans, root, path, cache);
2628 		BUG_ON(err);
2629 		btrfs_put_block_group(cache);
2630 	}
2631 
2632 	btrfs_free_path(path);
2633 	return 0;
2634 }
2635 
2636 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2637 {
2638 	struct btrfs_block_group_cache *block_group;
2639 	int readonly = 0;
2640 
2641 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2642 	if (!block_group || block_group->ro)
2643 		readonly = 1;
2644 	if (block_group)
2645 		btrfs_put_block_group(block_group);
2646 	return readonly;
2647 }
2648 
2649 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2650 			     u64 total_bytes, u64 bytes_used,
2651 			     struct btrfs_space_info **space_info)
2652 {
2653 	struct btrfs_space_info *found;
2654 
2655 	found = __find_space_info(info, flags);
2656 	if (found) {
2657 		spin_lock(&found->lock);
2658 		found->total_bytes += total_bytes;
2659 		found->bytes_used += bytes_used;
2660 		found->full = 0;
2661 		spin_unlock(&found->lock);
2662 		*space_info = found;
2663 		return 0;
2664 	}
2665 	found = kzalloc(sizeof(*found), GFP_NOFS);
2666 	if (!found)
2667 		return -ENOMEM;
2668 
2669 	INIT_LIST_HEAD(&found->block_groups);
2670 	init_rwsem(&found->groups_sem);
2671 	spin_lock_init(&found->lock);
2672 	found->flags = flags;
2673 	found->total_bytes = total_bytes;
2674 	found->bytes_used = bytes_used;
2675 	found->bytes_pinned = 0;
2676 	found->bytes_reserved = 0;
2677 	found->bytes_readonly = 0;
2678 	found->bytes_delalloc = 0;
2679 	found->full = 0;
2680 	found->force_alloc = 0;
2681 	*space_info = found;
2682 	list_add_rcu(&found->list, &info->space_info);
2683 	atomic_set(&found->caching_threads, 0);
2684 	return 0;
2685 }
2686 
2687 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2688 {
2689 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2690 				   BTRFS_BLOCK_GROUP_RAID1 |
2691 				   BTRFS_BLOCK_GROUP_RAID10 |
2692 				   BTRFS_BLOCK_GROUP_DUP);
2693 	if (extra_flags) {
2694 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2695 			fs_info->avail_data_alloc_bits |= extra_flags;
2696 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
2697 			fs_info->avail_metadata_alloc_bits |= extra_flags;
2698 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2699 			fs_info->avail_system_alloc_bits |= extra_flags;
2700 	}
2701 }
2702 
2703 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
2704 {
2705 	spin_lock(&cache->space_info->lock);
2706 	spin_lock(&cache->lock);
2707 	if (!cache->ro) {
2708 		cache->space_info->bytes_readonly += cache->key.offset -
2709 					btrfs_block_group_used(&cache->item);
2710 		cache->ro = 1;
2711 	}
2712 	spin_unlock(&cache->lock);
2713 	spin_unlock(&cache->space_info->lock);
2714 }
2715 
2716 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2717 {
2718 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
2719 
2720 	if (num_devices == 1)
2721 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2722 	if (num_devices < 4)
2723 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2724 
2725 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2726 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2727 		      BTRFS_BLOCK_GROUP_RAID10))) {
2728 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
2729 	}
2730 
2731 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2732 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2733 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2734 	}
2735 
2736 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2737 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2738 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
2739 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
2740 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2741 	return flags;
2742 }
2743 
2744 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
2745 {
2746 	struct btrfs_fs_info *info = root->fs_info;
2747 	u64 alloc_profile;
2748 
2749 	if (data) {
2750 		alloc_profile = info->avail_data_alloc_bits &
2751 			info->data_alloc_profile;
2752 		data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
2753 	} else if (root == root->fs_info->chunk_root) {
2754 		alloc_profile = info->avail_system_alloc_bits &
2755 			info->system_alloc_profile;
2756 		data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
2757 	} else {
2758 		alloc_profile = info->avail_metadata_alloc_bits &
2759 			info->metadata_alloc_profile;
2760 		data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
2761 	}
2762 
2763 	return btrfs_reduce_alloc_profile(root, data);
2764 }
2765 
2766 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2767 {
2768 	u64 alloc_target;
2769 
2770 	alloc_target = btrfs_get_alloc_profile(root, 1);
2771 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2772 						       alloc_target);
2773 }
2774 
2775 static u64 calculate_bytes_needed(struct btrfs_root *root, int num_items)
2776 {
2777 	u64 num_bytes;
2778 	int level;
2779 
2780 	level = BTRFS_MAX_LEVEL - 2;
2781 	/*
2782 	 * NOTE: these calculations are absolutely the worst possible case.
2783 	 * This assumes that _every_ item we insert will require a new leaf, and
2784 	 * that the tree has grown to its maximum level size.
2785 	 */
2786 
2787 	/*
2788 	 * for every item we insert we could insert both an extent item and a
2789 	 * extent ref item.  Then for ever item we insert, we will need to cow
2790 	 * both the original leaf, plus the leaf to the left and right of it.
2791 	 *
2792 	 * Unless we are talking about the extent root, then we just want the
2793 	 * number of items * 2, since we just need the extent item plus its ref.
2794 	 */
2795 	if (root == root->fs_info->extent_root)
2796 		num_bytes = num_items * 2;
2797 	else
2798 		num_bytes = (num_items + (2 * num_items)) * 3;
2799 
2800 	/*
2801 	 * num_bytes is total number of leaves we could need times the leaf
2802 	 * size, and then for every leaf we could end up cow'ing 2 nodes per
2803 	 * level, down to the leaf level.
2804 	 */
2805 	num_bytes = (num_bytes * root->leafsize) +
2806 		(num_bytes * (level * 2)) * root->nodesize;
2807 
2808 	return num_bytes;
2809 }
2810 
2811 /*
2812  * Unreserve metadata space for delalloc.  If we have less reserved credits than
2813  * we have extents, this function does nothing.
2814  */
2815 int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root *root,
2816 					  struct inode *inode, int num_items)
2817 {
2818 	struct btrfs_fs_info *info = root->fs_info;
2819 	struct btrfs_space_info *meta_sinfo;
2820 	u64 num_bytes;
2821 	u64 alloc_target;
2822 	bool bug = false;
2823 
2824 	/* get the space info for where the metadata will live */
2825 	alloc_target = btrfs_get_alloc_profile(root, 0);
2826 	meta_sinfo = __find_space_info(info, alloc_target);
2827 
2828 	num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
2829 					   num_items);
2830 
2831 	spin_lock(&meta_sinfo->lock);
2832 	spin_lock(&BTRFS_I(inode)->accounting_lock);
2833 	if (BTRFS_I(inode)->reserved_extents <=
2834 	    BTRFS_I(inode)->outstanding_extents) {
2835 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
2836 		spin_unlock(&meta_sinfo->lock);
2837 		return 0;
2838 	}
2839 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
2840 
2841 	BTRFS_I(inode)->reserved_extents--;
2842 	BUG_ON(BTRFS_I(inode)->reserved_extents < 0);
2843 
2844 	if (meta_sinfo->bytes_delalloc < num_bytes) {
2845 		bug = true;
2846 		meta_sinfo->bytes_delalloc = 0;
2847 	} else {
2848 		meta_sinfo->bytes_delalloc -= num_bytes;
2849 	}
2850 	spin_unlock(&meta_sinfo->lock);
2851 
2852 	BUG_ON(bug);
2853 
2854 	return 0;
2855 }
2856 
2857 static void check_force_delalloc(struct btrfs_space_info *meta_sinfo)
2858 {
2859 	u64 thresh;
2860 
2861 	thresh = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
2862 		meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
2863 		meta_sinfo->bytes_super + meta_sinfo->bytes_root +
2864 		meta_sinfo->bytes_may_use;
2865 
2866 	thresh = meta_sinfo->total_bytes - thresh;
2867 	thresh *= 80;
2868 	do_div(thresh, 100);
2869 	if (thresh <= meta_sinfo->bytes_delalloc)
2870 		meta_sinfo->force_delalloc = 1;
2871 	else
2872 		meta_sinfo->force_delalloc = 0;
2873 }
2874 
2875 struct async_flush {
2876 	struct btrfs_root *root;
2877 	struct btrfs_space_info *info;
2878 	struct btrfs_work work;
2879 };
2880 
2881 static noinline void flush_delalloc_async(struct btrfs_work *work)
2882 {
2883 	struct async_flush *async;
2884 	struct btrfs_root *root;
2885 	struct btrfs_space_info *info;
2886 
2887 	async = container_of(work, struct async_flush, work);
2888 	root = async->root;
2889 	info = async->info;
2890 
2891 	btrfs_start_delalloc_inodes(root, 0);
2892 	wake_up(&info->flush_wait);
2893 	btrfs_wait_ordered_extents(root, 0, 0);
2894 
2895 	spin_lock(&info->lock);
2896 	info->flushing = 0;
2897 	spin_unlock(&info->lock);
2898 	wake_up(&info->flush_wait);
2899 
2900 	kfree(async);
2901 }
2902 
2903 static void wait_on_flush(struct btrfs_space_info *info)
2904 {
2905 	DEFINE_WAIT(wait);
2906 	u64 used;
2907 
2908 	while (1) {
2909 		prepare_to_wait(&info->flush_wait, &wait,
2910 				TASK_UNINTERRUPTIBLE);
2911 		spin_lock(&info->lock);
2912 		if (!info->flushing) {
2913 			spin_unlock(&info->lock);
2914 			break;
2915 		}
2916 
2917 		used = info->bytes_used + info->bytes_reserved +
2918 			info->bytes_pinned + info->bytes_readonly +
2919 			info->bytes_super + info->bytes_root +
2920 			info->bytes_may_use + info->bytes_delalloc;
2921 		if (used < info->total_bytes) {
2922 			spin_unlock(&info->lock);
2923 			break;
2924 		}
2925 		spin_unlock(&info->lock);
2926 		schedule();
2927 	}
2928 	finish_wait(&info->flush_wait, &wait);
2929 }
2930 
2931 static void flush_delalloc(struct btrfs_root *root,
2932 				 struct btrfs_space_info *info)
2933 {
2934 	struct async_flush *async;
2935 	bool wait = false;
2936 
2937 	spin_lock(&info->lock);
2938 
2939 	if (!info->flushing) {
2940 		info->flushing = 1;
2941 		init_waitqueue_head(&info->flush_wait);
2942 	} else {
2943 		wait = true;
2944 	}
2945 
2946 	spin_unlock(&info->lock);
2947 
2948 	if (wait) {
2949 		wait_on_flush(info);
2950 		return;
2951 	}
2952 
2953 	async = kzalloc(sizeof(*async), GFP_NOFS);
2954 	if (!async)
2955 		goto flush;
2956 
2957 	async->root = root;
2958 	async->info = info;
2959 	async->work.func = flush_delalloc_async;
2960 
2961 	btrfs_queue_worker(&root->fs_info->enospc_workers,
2962 			   &async->work);
2963 	wait_on_flush(info);
2964 	return;
2965 
2966 flush:
2967 	btrfs_start_delalloc_inodes(root, 0);
2968 	btrfs_wait_ordered_extents(root, 0, 0);
2969 
2970 	spin_lock(&info->lock);
2971 	info->flushing = 0;
2972 	spin_unlock(&info->lock);
2973 	wake_up(&info->flush_wait);
2974 }
2975 
2976 static int maybe_allocate_chunk(struct btrfs_root *root,
2977 				 struct btrfs_space_info *info)
2978 {
2979 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
2980 	struct btrfs_trans_handle *trans;
2981 	bool wait = false;
2982 	int ret = 0;
2983 	u64 min_metadata;
2984 	u64 free_space;
2985 
2986 	free_space = btrfs_super_total_bytes(disk_super);
2987 	/*
2988 	 * we allow the metadata to grow to a max of either 10gb or 5% of the
2989 	 * space in the volume.
2990 	 */
2991 	min_metadata = min((u64)10 * 1024 * 1024 * 1024,
2992 			     div64_u64(free_space * 5, 100));
2993 	if (info->total_bytes >= min_metadata) {
2994 		spin_unlock(&info->lock);
2995 		return 0;
2996 	}
2997 
2998 	if (info->full) {
2999 		spin_unlock(&info->lock);
3000 		return 0;
3001 	}
3002 
3003 	if (!info->allocating_chunk) {
3004 		info->force_alloc = 1;
3005 		info->allocating_chunk = 1;
3006 		init_waitqueue_head(&info->allocate_wait);
3007 	} else {
3008 		wait = true;
3009 	}
3010 
3011 	spin_unlock(&info->lock);
3012 
3013 	if (wait) {
3014 		wait_event(info->allocate_wait,
3015 			   !info->allocating_chunk);
3016 		return 1;
3017 	}
3018 
3019 	trans = btrfs_start_transaction(root, 1);
3020 	if (!trans) {
3021 		ret = -ENOMEM;
3022 		goto out;
3023 	}
3024 
3025 	ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3026 			     4096 + 2 * 1024 * 1024,
3027 			     info->flags, 0);
3028 	btrfs_end_transaction(trans, root);
3029 	if (ret)
3030 		goto out;
3031 out:
3032 	spin_lock(&info->lock);
3033 	info->allocating_chunk = 0;
3034 	spin_unlock(&info->lock);
3035 	wake_up(&info->allocate_wait);
3036 
3037 	if (ret)
3038 		return 0;
3039 	return 1;
3040 }
3041 
3042 /*
3043  * Reserve metadata space for delalloc.
3044  */
3045 int btrfs_reserve_metadata_for_delalloc(struct btrfs_root *root,
3046 					struct inode *inode, int num_items)
3047 {
3048 	struct btrfs_fs_info *info = root->fs_info;
3049 	struct btrfs_space_info *meta_sinfo;
3050 	u64 num_bytes;
3051 	u64 used;
3052 	u64 alloc_target;
3053 	int flushed = 0;
3054 	int force_delalloc;
3055 
3056 	/* get the space info for where the metadata will live */
3057 	alloc_target = btrfs_get_alloc_profile(root, 0);
3058 	meta_sinfo = __find_space_info(info, alloc_target);
3059 
3060 	num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
3061 					   num_items);
3062 again:
3063 	spin_lock(&meta_sinfo->lock);
3064 
3065 	force_delalloc = meta_sinfo->force_delalloc;
3066 
3067 	if (unlikely(!meta_sinfo->bytes_root))
3068 		meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
3069 
3070 	if (!flushed)
3071 		meta_sinfo->bytes_delalloc += num_bytes;
3072 
3073 	used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
3074 		meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
3075 		meta_sinfo->bytes_super + meta_sinfo->bytes_root +
3076 		meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
3077 
3078 	if (used > meta_sinfo->total_bytes) {
3079 		flushed++;
3080 
3081 		if (flushed == 1) {
3082 			if (maybe_allocate_chunk(root, meta_sinfo))
3083 				goto again;
3084 			flushed++;
3085 		} else {
3086 			spin_unlock(&meta_sinfo->lock);
3087 		}
3088 
3089 		if (flushed == 2) {
3090 			filemap_flush(inode->i_mapping);
3091 			goto again;
3092 		} else if (flushed == 3) {
3093 			flush_delalloc(root, meta_sinfo);
3094 			goto again;
3095 		}
3096 		spin_lock(&meta_sinfo->lock);
3097 		meta_sinfo->bytes_delalloc -= num_bytes;
3098 		spin_unlock(&meta_sinfo->lock);
3099 		printk(KERN_ERR "enospc, has %d, reserved %d\n",
3100 		       BTRFS_I(inode)->outstanding_extents,
3101 		       BTRFS_I(inode)->reserved_extents);
3102 		dump_space_info(meta_sinfo, 0, 0);
3103 		return -ENOSPC;
3104 	}
3105 
3106 	BTRFS_I(inode)->reserved_extents++;
3107 	check_force_delalloc(meta_sinfo);
3108 	spin_unlock(&meta_sinfo->lock);
3109 
3110 	if (!flushed && force_delalloc)
3111 		filemap_flush(inode->i_mapping);
3112 
3113 	return 0;
3114 }
3115 
3116 /*
3117  * unreserve num_items number of items worth of metadata space.  This needs to
3118  * be paired with btrfs_reserve_metadata_space.
3119  *
3120  * NOTE: if you have the option, run this _AFTER_ you do a
3121  * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
3122  * oprations which will result in more used metadata, so we want to make sure we
3123  * can do that without issue.
3124  */
3125 int btrfs_unreserve_metadata_space(struct btrfs_root *root, int num_items)
3126 {
3127 	struct btrfs_fs_info *info = root->fs_info;
3128 	struct btrfs_space_info *meta_sinfo;
3129 	u64 num_bytes;
3130 	u64 alloc_target;
3131 	bool bug = false;
3132 
3133 	/* get the space info for where the metadata will live */
3134 	alloc_target = btrfs_get_alloc_profile(root, 0);
3135 	meta_sinfo = __find_space_info(info, alloc_target);
3136 
3137 	num_bytes = calculate_bytes_needed(root, num_items);
3138 
3139 	spin_lock(&meta_sinfo->lock);
3140 	if (meta_sinfo->bytes_may_use < num_bytes) {
3141 		bug = true;
3142 		meta_sinfo->bytes_may_use = 0;
3143 	} else {
3144 		meta_sinfo->bytes_may_use -= num_bytes;
3145 	}
3146 	spin_unlock(&meta_sinfo->lock);
3147 
3148 	BUG_ON(bug);
3149 
3150 	return 0;
3151 }
3152 
3153 /*
3154  * Reserve some metadata space for use.  We'll calculate the worste case number
3155  * of bytes that would be needed to modify num_items number of items.  If we
3156  * have space, fantastic, if not, you get -ENOSPC.  Please call
3157  * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
3158  * items you reserved, since whatever metadata you needed should have already
3159  * been allocated.
3160  *
3161  * This will commit the transaction to make more space if we don't have enough
3162  * metadata space.  THe only time we don't do this is if we're reserving space
3163  * inside of a transaction, then we will just return -ENOSPC and it is the
3164  * callers responsibility to handle it properly.
3165  */
3166 int btrfs_reserve_metadata_space(struct btrfs_root *root, int num_items)
3167 {
3168 	struct btrfs_fs_info *info = root->fs_info;
3169 	struct btrfs_space_info *meta_sinfo;
3170 	u64 num_bytes;
3171 	u64 used;
3172 	u64 alloc_target;
3173 	int retries = 0;
3174 
3175 	/* get the space info for where the metadata will live */
3176 	alloc_target = btrfs_get_alloc_profile(root, 0);
3177 	meta_sinfo = __find_space_info(info, alloc_target);
3178 
3179 	num_bytes = calculate_bytes_needed(root, num_items);
3180 again:
3181 	spin_lock(&meta_sinfo->lock);
3182 
3183 	if (unlikely(!meta_sinfo->bytes_root))
3184 		meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
3185 
3186 	if (!retries)
3187 		meta_sinfo->bytes_may_use += num_bytes;
3188 
3189 	used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
3190 		meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
3191 		meta_sinfo->bytes_super + meta_sinfo->bytes_root +
3192 		meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
3193 
3194 	if (used > meta_sinfo->total_bytes) {
3195 		retries++;
3196 		if (retries == 1) {
3197 			if (maybe_allocate_chunk(root, meta_sinfo))
3198 				goto again;
3199 			retries++;
3200 		} else {
3201 			spin_unlock(&meta_sinfo->lock);
3202 		}
3203 
3204 		if (retries == 2) {
3205 			flush_delalloc(root, meta_sinfo);
3206 			goto again;
3207 		}
3208 		spin_lock(&meta_sinfo->lock);
3209 		meta_sinfo->bytes_may_use -= num_bytes;
3210 		spin_unlock(&meta_sinfo->lock);
3211 
3212 		dump_space_info(meta_sinfo, 0, 0);
3213 		return -ENOSPC;
3214 	}
3215 
3216 	check_force_delalloc(meta_sinfo);
3217 	spin_unlock(&meta_sinfo->lock);
3218 
3219 	return 0;
3220 }
3221 
3222 /*
3223  * This will check the space that the inode allocates from to make sure we have
3224  * enough space for bytes.
3225  */
3226 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
3227 				u64 bytes)
3228 {
3229 	struct btrfs_space_info *data_sinfo;
3230 	int ret = 0, committed = 0;
3231 
3232 	/* make sure bytes are sectorsize aligned */
3233 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3234 
3235 	data_sinfo = BTRFS_I(inode)->space_info;
3236 	if (!data_sinfo)
3237 		goto alloc;
3238 
3239 again:
3240 	/* make sure we have enough space to handle the data first */
3241 	spin_lock(&data_sinfo->lock);
3242 	if (data_sinfo->total_bytes - data_sinfo->bytes_used -
3243 	    data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
3244 	    data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
3245 	    data_sinfo->bytes_may_use - data_sinfo->bytes_super < bytes) {
3246 		struct btrfs_trans_handle *trans;
3247 
3248 		/*
3249 		 * if we don't have enough free bytes in this space then we need
3250 		 * to alloc a new chunk.
3251 		 */
3252 		if (!data_sinfo->full) {
3253 			u64 alloc_target;
3254 
3255 			data_sinfo->force_alloc = 1;
3256 			spin_unlock(&data_sinfo->lock);
3257 alloc:
3258 			alloc_target = btrfs_get_alloc_profile(root, 1);
3259 			trans = btrfs_start_transaction(root, 1);
3260 			if (!trans)
3261 				return -ENOMEM;
3262 
3263 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3264 					     bytes + 2 * 1024 * 1024,
3265 					     alloc_target, 0);
3266 			btrfs_end_transaction(trans, root);
3267 			if (ret)
3268 				return ret;
3269 
3270 			if (!data_sinfo) {
3271 				btrfs_set_inode_space_info(root, inode);
3272 				data_sinfo = BTRFS_I(inode)->space_info;
3273 			}
3274 			goto again;
3275 		}
3276 		spin_unlock(&data_sinfo->lock);
3277 
3278 		/* commit the current transaction and try again */
3279 		if (!committed && !root->fs_info->open_ioctl_trans) {
3280 			committed = 1;
3281 			trans = btrfs_join_transaction(root, 1);
3282 			if (!trans)
3283 				return -ENOMEM;
3284 			ret = btrfs_commit_transaction(trans, root);
3285 			if (ret)
3286 				return ret;
3287 			goto again;
3288 		}
3289 
3290 		printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
3291 		       ", %llu bytes_used, %llu bytes_reserved, "
3292 		       "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
3293 		       "%llu total\n", (unsigned long long)bytes,
3294 		       (unsigned long long)data_sinfo->bytes_delalloc,
3295 		       (unsigned long long)data_sinfo->bytes_used,
3296 		       (unsigned long long)data_sinfo->bytes_reserved,
3297 		       (unsigned long long)data_sinfo->bytes_pinned,
3298 		       (unsigned long long)data_sinfo->bytes_readonly,
3299 		       (unsigned long long)data_sinfo->bytes_may_use,
3300 		       (unsigned long long)data_sinfo->total_bytes);
3301 		return -ENOSPC;
3302 	}
3303 	data_sinfo->bytes_may_use += bytes;
3304 	BTRFS_I(inode)->reserved_bytes += bytes;
3305 	spin_unlock(&data_sinfo->lock);
3306 
3307 	return 0;
3308 }
3309 
3310 /*
3311  * if there was an error for whatever reason after calling
3312  * btrfs_check_data_free_space, call this so we can cleanup the counters.
3313  */
3314 void btrfs_free_reserved_data_space(struct btrfs_root *root,
3315 				    struct inode *inode, u64 bytes)
3316 {
3317 	struct btrfs_space_info *data_sinfo;
3318 
3319 	/* make sure bytes are sectorsize aligned */
3320 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3321 
3322 	data_sinfo = BTRFS_I(inode)->space_info;
3323 	spin_lock(&data_sinfo->lock);
3324 	data_sinfo->bytes_may_use -= bytes;
3325 	BTRFS_I(inode)->reserved_bytes -= bytes;
3326 	spin_unlock(&data_sinfo->lock);
3327 }
3328 
3329 /* called when we are adding a delalloc extent to the inode's io_tree */
3330 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
3331 				  u64 bytes)
3332 {
3333 	struct btrfs_space_info *data_sinfo;
3334 
3335 	/* get the space info for where this inode will be storing its data */
3336 	data_sinfo = BTRFS_I(inode)->space_info;
3337 
3338 	/* make sure we have enough space to handle the data first */
3339 	spin_lock(&data_sinfo->lock);
3340 	data_sinfo->bytes_delalloc += bytes;
3341 
3342 	/*
3343 	 * we are adding a delalloc extent without calling
3344 	 * btrfs_check_data_free_space first.  This happens on a weird
3345 	 * writepage condition, but shouldn't hurt our accounting
3346 	 */
3347 	if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
3348 		data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
3349 		BTRFS_I(inode)->reserved_bytes = 0;
3350 	} else {
3351 		data_sinfo->bytes_may_use -= bytes;
3352 		BTRFS_I(inode)->reserved_bytes -= bytes;
3353 	}
3354 
3355 	spin_unlock(&data_sinfo->lock);
3356 }
3357 
3358 /* called when we are clearing an delalloc extent from the inode's io_tree */
3359 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
3360 			      u64 bytes)
3361 {
3362 	struct btrfs_space_info *info;
3363 
3364 	info = BTRFS_I(inode)->space_info;
3365 
3366 	spin_lock(&info->lock);
3367 	info->bytes_delalloc -= bytes;
3368 	spin_unlock(&info->lock);
3369 }
3370 
3371 static void force_metadata_allocation(struct btrfs_fs_info *info)
3372 {
3373 	struct list_head *head = &info->space_info;
3374 	struct btrfs_space_info *found;
3375 
3376 	rcu_read_lock();
3377 	list_for_each_entry_rcu(found, head, list) {
3378 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3379 			found->force_alloc = 1;
3380 	}
3381 	rcu_read_unlock();
3382 }
3383 
3384 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3385 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3386 			  u64 flags, int force)
3387 {
3388 	struct btrfs_space_info *space_info;
3389 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3390 	u64 thresh;
3391 	int ret = 0;
3392 
3393 	mutex_lock(&fs_info->chunk_mutex);
3394 
3395 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3396 
3397 	space_info = __find_space_info(extent_root->fs_info, flags);
3398 	if (!space_info) {
3399 		ret = update_space_info(extent_root->fs_info, flags,
3400 					0, 0, &space_info);
3401 		BUG_ON(ret);
3402 	}
3403 	BUG_ON(!space_info);
3404 
3405 	spin_lock(&space_info->lock);
3406 	if (space_info->force_alloc)
3407 		force = 1;
3408 	if (space_info->full) {
3409 		spin_unlock(&space_info->lock);
3410 		goto out;
3411 	}
3412 
3413 	thresh = space_info->total_bytes - space_info->bytes_readonly;
3414 	thresh = div_factor(thresh, 8);
3415 	if (!force &&
3416 	   (space_info->bytes_used + space_info->bytes_pinned +
3417 	    space_info->bytes_reserved + alloc_bytes) < thresh) {
3418 		spin_unlock(&space_info->lock);
3419 		goto out;
3420 	}
3421 	spin_unlock(&space_info->lock);
3422 
3423 	/*
3424 	 * if we're doing a data chunk, go ahead and make sure that
3425 	 * we keep a reasonable number of metadata chunks allocated in the
3426 	 * FS as well.
3427 	 */
3428 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3429 		fs_info->data_chunk_allocations++;
3430 		if (!(fs_info->data_chunk_allocations %
3431 		      fs_info->metadata_ratio))
3432 			force_metadata_allocation(fs_info);
3433 	}
3434 
3435 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3436 	spin_lock(&space_info->lock);
3437 	if (ret)
3438 		space_info->full = 1;
3439 	space_info->force_alloc = 0;
3440 	spin_unlock(&space_info->lock);
3441 out:
3442 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3443 	return ret;
3444 }
3445 
3446 static int update_block_group(struct btrfs_trans_handle *trans,
3447 			      struct btrfs_root *root,
3448 			      u64 bytenr, u64 num_bytes, int alloc,
3449 			      int mark_free)
3450 {
3451 	struct btrfs_block_group_cache *cache;
3452 	struct btrfs_fs_info *info = root->fs_info;
3453 	u64 total = num_bytes;
3454 	u64 old_val;
3455 	u64 byte_in_group;
3456 
3457 	/* block accounting for super block */
3458 	spin_lock(&info->delalloc_lock);
3459 	old_val = btrfs_super_bytes_used(&info->super_copy);
3460 	if (alloc)
3461 		old_val += num_bytes;
3462 	else
3463 		old_val -= num_bytes;
3464 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
3465 	spin_unlock(&info->delalloc_lock);
3466 
3467 	while (total) {
3468 		cache = btrfs_lookup_block_group(info, bytenr);
3469 		if (!cache)
3470 			return -1;
3471 		byte_in_group = bytenr - cache->key.objectid;
3472 		WARN_ON(byte_in_group > cache->key.offset);
3473 
3474 		spin_lock(&cache->space_info->lock);
3475 		spin_lock(&cache->lock);
3476 		cache->dirty = 1;
3477 		old_val = btrfs_block_group_used(&cache->item);
3478 		num_bytes = min(total, cache->key.offset - byte_in_group);
3479 		if (alloc) {
3480 			old_val += num_bytes;
3481 			btrfs_set_block_group_used(&cache->item, old_val);
3482 			cache->reserved -= num_bytes;
3483 			cache->space_info->bytes_used += num_bytes;
3484 			cache->space_info->bytes_reserved -= num_bytes;
3485 			if (cache->ro)
3486 				cache->space_info->bytes_readonly -= num_bytes;
3487 			spin_unlock(&cache->lock);
3488 			spin_unlock(&cache->space_info->lock);
3489 		} else {
3490 			old_val -= num_bytes;
3491 			cache->space_info->bytes_used -= num_bytes;
3492 			if (cache->ro)
3493 				cache->space_info->bytes_readonly += num_bytes;
3494 			btrfs_set_block_group_used(&cache->item, old_val);
3495 			spin_unlock(&cache->lock);
3496 			spin_unlock(&cache->space_info->lock);
3497 			if (mark_free) {
3498 				int ret;
3499 
3500 				ret = btrfs_discard_extent(root, bytenr,
3501 							   num_bytes);
3502 				WARN_ON(ret);
3503 
3504 				ret = btrfs_add_free_space(cache, bytenr,
3505 							   num_bytes);
3506 				WARN_ON(ret);
3507 			}
3508 		}
3509 		btrfs_put_block_group(cache);
3510 		total -= num_bytes;
3511 		bytenr += num_bytes;
3512 	}
3513 	return 0;
3514 }
3515 
3516 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3517 {
3518 	struct btrfs_block_group_cache *cache;
3519 	u64 bytenr;
3520 
3521 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3522 	if (!cache)
3523 		return 0;
3524 
3525 	bytenr = cache->key.objectid;
3526 	btrfs_put_block_group(cache);
3527 
3528 	return bytenr;
3529 }
3530 
3531 /*
3532  * this function must be called within transaction
3533  */
3534 int btrfs_pin_extent(struct btrfs_root *root,
3535 		     u64 bytenr, u64 num_bytes, int reserved)
3536 {
3537 	struct btrfs_fs_info *fs_info = root->fs_info;
3538 	struct btrfs_block_group_cache *cache;
3539 
3540 	cache = btrfs_lookup_block_group(fs_info, bytenr);
3541 	BUG_ON(!cache);
3542 
3543 	spin_lock(&cache->space_info->lock);
3544 	spin_lock(&cache->lock);
3545 	cache->pinned += num_bytes;
3546 	cache->space_info->bytes_pinned += num_bytes;
3547 	if (reserved) {
3548 		cache->reserved -= num_bytes;
3549 		cache->space_info->bytes_reserved -= num_bytes;
3550 	}
3551 	spin_unlock(&cache->lock);
3552 	spin_unlock(&cache->space_info->lock);
3553 
3554 	btrfs_put_block_group(cache);
3555 
3556 	set_extent_dirty(fs_info->pinned_extents,
3557 			 bytenr, bytenr + num_bytes - 1, GFP_NOFS);
3558 	return 0;
3559 }
3560 
3561 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
3562 				   u64 num_bytes, int reserve)
3563 {
3564 	spin_lock(&cache->space_info->lock);
3565 	spin_lock(&cache->lock);
3566 	if (reserve) {
3567 		cache->reserved += num_bytes;
3568 		cache->space_info->bytes_reserved += num_bytes;
3569 	} else {
3570 		cache->reserved -= num_bytes;
3571 		cache->space_info->bytes_reserved -= num_bytes;
3572 	}
3573 	spin_unlock(&cache->lock);
3574 	spin_unlock(&cache->space_info->lock);
3575 	return 0;
3576 }
3577 
3578 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3579 				struct btrfs_root *root)
3580 {
3581 	struct btrfs_fs_info *fs_info = root->fs_info;
3582 	struct btrfs_caching_control *next;
3583 	struct btrfs_caching_control *caching_ctl;
3584 	struct btrfs_block_group_cache *cache;
3585 
3586 	down_write(&fs_info->extent_commit_sem);
3587 
3588 	list_for_each_entry_safe(caching_ctl, next,
3589 				 &fs_info->caching_block_groups, list) {
3590 		cache = caching_ctl->block_group;
3591 		if (block_group_cache_done(cache)) {
3592 			cache->last_byte_to_unpin = (u64)-1;
3593 			list_del_init(&caching_ctl->list);
3594 			put_caching_control(caching_ctl);
3595 		} else {
3596 			cache->last_byte_to_unpin = caching_ctl->progress;
3597 		}
3598 	}
3599 
3600 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3601 		fs_info->pinned_extents = &fs_info->freed_extents[1];
3602 	else
3603 		fs_info->pinned_extents = &fs_info->freed_extents[0];
3604 
3605 	up_write(&fs_info->extent_commit_sem);
3606 	return 0;
3607 }
3608 
3609 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3610 {
3611 	struct btrfs_fs_info *fs_info = root->fs_info;
3612 	struct btrfs_block_group_cache *cache = NULL;
3613 	u64 len;
3614 
3615 	while (start <= end) {
3616 		if (!cache ||
3617 		    start >= cache->key.objectid + cache->key.offset) {
3618 			if (cache)
3619 				btrfs_put_block_group(cache);
3620 			cache = btrfs_lookup_block_group(fs_info, start);
3621 			BUG_ON(!cache);
3622 		}
3623 
3624 		len = cache->key.objectid + cache->key.offset - start;
3625 		len = min(len, end + 1 - start);
3626 
3627 		if (start < cache->last_byte_to_unpin) {
3628 			len = min(len, cache->last_byte_to_unpin - start);
3629 			btrfs_add_free_space(cache, start, len);
3630 		}
3631 
3632 		spin_lock(&cache->space_info->lock);
3633 		spin_lock(&cache->lock);
3634 		cache->pinned -= len;
3635 		cache->space_info->bytes_pinned -= len;
3636 		spin_unlock(&cache->lock);
3637 		spin_unlock(&cache->space_info->lock);
3638 
3639 		start += len;
3640 	}
3641 
3642 	if (cache)
3643 		btrfs_put_block_group(cache);
3644 	return 0;
3645 }
3646 
3647 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3648 			       struct btrfs_root *root)
3649 {
3650 	struct btrfs_fs_info *fs_info = root->fs_info;
3651 	struct extent_io_tree *unpin;
3652 	u64 start;
3653 	u64 end;
3654 	int ret;
3655 
3656 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3657 		unpin = &fs_info->freed_extents[1];
3658 	else
3659 		unpin = &fs_info->freed_extents[0];
3660 
3661 	while (1) {
3662 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3663 					    EXTENT_DIRTY);
3664 		if (ret)
3665 			break;
3666 
3667 		ret = btrfs_discard_extent(root, start, end + 1 - start);
3668 
3669 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3670 		unpin_extent_range(root, start, end);
3671 		cond_resched();
3672 	}
3673 
3674 	return ret;
3675 }
3676 
3677 static int pin_down_bytes(struct btrfs_trans_handle *trans,
3678 			  struct btrfs_root *root,
3679 			  struct btrfs_path *path,
3680 			  u64 bytenr, u64 num_bytes,
3681 			  int is_data, int reserved,
3682 			  struct extent_buffer **must_clean)
3683 {
3684 	int err = 0;
3685 	struct extent_buffer *buf;
3686 
3687 	if (is_data)
3688 		goto pinit;
3689 
3690 	/*
3691 	 * discard is sloooow, and so triggering discards on
3692 	 * individual btree blocks isn't a good plan.  Just
3693 	 * pin everything in discard mode.
3694 	 */
3695 	if (btrfs_test_opt(root, DISCARD))
3696 		goto pinit;
3697 
3698 	buf = btrfs_find_tree_block(root, bytenr, num_bytes);
3699 	if (!buf)
3700 		goto pinit;
3701 
3702 	/* we can reuse a block if it hasn't been written
3703 	 * and it is from this transaction.  We can't
3704 	 * reuse anything from the tree log root because
3705 	 * it has tiny sub-transactions.
3706 	 */
3707 	if (btrfs_buffer_uptodate(buf, 0) &&
3708 	    btrfs_try_tree_lock(buf)) {
3709 		u64 header_owner = btrfs_header_owner(buf);
3710 		u64 header_transid = btrfs_header_generation(buf);
3711 		if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
3712 		    header_transid == trans->transid &&
3713 		    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3714 			*must_clean = buf;
3715 			return 1;
3716 		}
3717 		btrfs_tree_unlock(buf);
3718 	}
3719 	free_extent_buffer(buf);
3720 pinit:
3721 	if (path)
3722 		btrfs_set_path_blocking(path);
3723 	/* unlocks the pinned mutex */
3724 	btrfs_pin_extent(root, bytenr, num_bytes, reserved);
3725 
3726 	BUG_ON(err < 0);
3727 	return 0;
3728 }
3729 
3730 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3731 				struct btrfs_root *root,
3732 				u64 bytenr, u64 num_bytes, u64 parent,
3733 				u64 root_objectid, u64 owner_objectid,
3734 				u64 owner_offset, int refs_to_drop,
3735 				struct btrfs_delayed_extent_op *extent_op)
3736 {
3737 	struct btrfs_key key;
3738 	struct btrfs_path *path;
3739 	struct btrfs_fs_info *info = root->fs_info;
3740 	struct btrfs_root *extent_root = info->extent_root;
3741 	struct extent_buffer *leaf;
3742 	struct btrfs_extent_item *ei;
3743 	struct btrfs_extent_inline_ref *iref;
3744 	int ret;
3745 	int is_data;
3746 	int extent_slot = 0;
3747 	int found_extent = 0;
3748 	int num_to_del = 1;
3749 	u32 item_size;
3750 	u64 refs;
3751 
3752 	path = btrfs_alloc_path();
3753 	if (!path)
3754 		return -ENOMEM;
3755 
3756 	path->reada = 1;
3757 	path->leave_spinning = 1;
3758 
3759 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3760 	BUG_ON(!is_data && refs_to_drop != 1);
3761 
3762 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
3763 				    bytenr, num_bytes, parent,
3764 				    root_objectid, owner_objectid,
3765 				    owner_offset);
3766 	if (ret == 0) {
3767 		extent_slot = path->slots[0];
3768 		while (extent_slot >= 0) {
3769 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3770 					      extent_slot);
3771 			if (key.objectid != bytenr)
3772 				break;
3773 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3774 			    key.offset == num_bytes) {
3775 				found_extent = 1;
3776 				break;
3777 			}
3778 			if (path->slots[0] - extent_slot > 5)
3779 				break;
3780 			extent_slot--;
3781 		}
3782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3783 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
3784 		if (found_extent && item_size < sizeof(*ei))
3785 			found_extent = 0;
3786 #endif
3787 		if (!found_extent) {
3788 			BUG_ON(iref);
3789 			ret = remove_extent_backref(trans, extent_root, path,
3790 						    NULL, refs_to_drop,
3791 						    is_data);
3792 			BUG_ON(ret);
3793 			btrfs_release_path(extent_root, path);
3794 			path->leave_spinning = 1;
3795 
3796 			key.objectid = bytenr;
3797 			key.type = BTRFS_EXTENT_ITEM_KEY;
3798 			key.offset = num_bytes;
3799 
3800 			ret = btrfs_search_slot(trans, extent_root,
3801 						&key, path, -1, 1);
3802 			if (ret) {
3803 				printk(KERN_ERR "umm, got %d back from search"
3804 				       ", was looking for %llu\n", ret,
3805 				       (unsigned long long)bytenr);
3806 				btrfs_print_leaf(extent_root, path->nodes[0]);
3807 			}
3808 			BUG_ON(ret);
3809 			extent_slot = path->slots[0];
3810 		}
3811 	} else {
3812 		btrfs_print_leaf(extent_root, path->nodes[0]);
3813 		WARN_ON(1);
3814 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
3815 		       "parent %llu root %llu  owner %llu offset %llu\n",
3816 		       (unsigned long long)bytenr,
3817 		       (unsigned long long)parent,
3818 		       (unsigned long long)root_objectid,
3819 		       (unsigned long long)owner_objectid,
3820 		       (unsigned long long)owner_offset);
3821 	}
3822 
3823 	leaf = path->nodes[0];
3824 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3826 	if (item_size < sizeof(*ei)) {
3827 		BUG_ON(found_extent || extent_slot != path->slots[0]);
3828 		ret = convert_extent_item_v0(trans, extent_root, path,
3829 					     owner_objectid, 0);
3830 		BUG_ON(ret < 0);
3831 
3832 		btrfs_release_path(extent_root, path);
3833 		path->leave_spinning = 1;
3834 
3835 		key.objectid = bytenr;
3836 		key.type = BTRFS_EXTENT_ITEM_KEY;
3837 		key.offset = num_bytes;
3838 
3839 		ret = btrfs_search_slot(trans, extent_root, &key, path,
3840 					-1, 1);
3841 		if (ret) {
3842 			printk(KERN_ERR "umm, got %d back from search"
3843 			       ", was looking for %llu\n", ret,
3844 			       (unsigned long long)bytenr);
3845 			btrfs_print_leaf(extent_root, path->nodes[0]);
3846 		}
3847 		BUG_ON(ret);
3848 		extent_slot = path->slots[0];
3849 		leaf = path->nodes[0];
3850 		item_size = btrfs_item_size_nr(leaf, extent_slot);
3851 	}
3852 #endif
3853 	BUG_ON(item_size < sizeof(*ei));
3854 	ei = btrfs_item_ptr(leaf, extent_slot,
3855 			    struct btrfs_extent_item);
3856 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
3857 		struct btrfs_tree_block_info *bi;
3858 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3859 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3860 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3861 	}
3862 
3863 	refs = btrfs_extent_refs(leaf, ei);
3864 	BUG_ON(refs < refs_to_drop);
3865 	refs -= refs_to_drop;
3866 
3867 	if (refs > 0) {
3868 		if (extent_op)
3869 			__run_delayed_extent_op(extent_op, leaf, ei);
3870 		/*
3871 		 * In the case of inline back ref, reference count will
3872 		 * be updated by remove_extent_backref
3873 		 */
3874 		if (iref) {
3875 			BUG_ON(!found_extent);
3876 		} else {
3877 			btrfs_set_extent_refs(leaf, ei, refs);
3878 			btrfs_mark_buffer_dirty(leaf);
3879 		}
3880 		if (found_extent) {
3881 			ret = remove_extent_backref(trans, extent_root, path,
3882 						    iref, refs_to_drop,
3883 						    is_data);
3884 			BUG_ON(ret);
3885 		}
3886 	} else {
3887 		int mark_free = 0;
3888 		struct extent_buffer *must_clean = NULL;
3889 
3890 		if (found_extent) {
3891 			BUG_ON(is_data && refs_to_drop !=
3892 			       extent_data_ref_count(root, path, iref));
3893 			if (iref) {
3894 				BUG_ON(path->slots[0] != extent_slot);
3895 			} else {
3896 				BUG_ON(path->slots[0] != extent_slot + 1);
3897 				path->slots[0] = extent_slot;
3898 				num_to_del = 2;
3899 			}
3900 		}
3901 
3902 		ret = pin_down_bytes(trans, root, path, bytenr,
3903 				     num_bytes, is_data, 0, &must_clean);
3904 		if (ret > 0)
3905 			mark_free = 1;
3906 		BUG_ON(ret < 0);
3907 		/*
3908 		 * it is going to be very rare for someone to be waiting
3909 		 * on the block we're freeing.  del_items might need to
3910 		 * schedule, so rather than get fancy, just force it
3911 		 * to blocking here
3912 		 */
3913 		if (must_clean)
3914 			btrfs_set_lock_blocking(must_clean);
3915 
3916 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3917 				      num_to_del);
3918 		BUG_ON(ret);
3919 		btrfs_release_path(extent_root, path);
3920 
3921 		if (must_clean) {
3922 			clean_tree_block(NULL, root, must_clean);
3923 			btrfs_tree_unlock(must_clean);
3924 			free_extent_buffer(must_clean);
3925 		}
3926 
3927 		if (is_data) {
3928 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
3929 			BUG_ON(ret);
3930 		} else {
3931 			invalidate_mapping_pages(info->btree_inode->i_mapping,
3932 			     bytenr >> PAGE_CACHE_SHIFT,
3933 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
3934 		}
3935 
3936 		ret = update_block_group(trans, root, bytenr, num_bytes, 0,
3937 					 mark_free);
3938 		BUG_ON(ret);
3939 	}
3940 	btrfs_free_path(path);
3941 	return ret;
3942 }
3943 
3944 /*
3945  * when we free an extent, it is possible (and likely) that we free the last
3946  * delayed ref for that extent as well.  This searches the delayed ref tree for
3947  * a given extent, and if there are no other delayed refs to be processed, it
3948  * removes it from the tree.
3949  */
3950 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3951 				      struct btrfs_root *root, u64 bytenr)
3952 {
3953 	struct btrfs_delayed_ref_head *head;
3954 	struct btrfs_delayed_ref_root *delayed_refs;
3955 	struct btrfs_delayed_ref_node *ref;
3956 	struct rb_node *node;
3957 	int ret;
3958 
3959 	delayed_refs = &trans->transaction->delayed_refs;
3960 	spin_lock(&delayed_refs->lock);
3961 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3962 	if (!head)
3963 		goto out;
3964 
3965 	node = rb_prev(&head->node.rb_node);
3966 	if (!node)
3967 		goto out;
3968 
3969 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3970 
3971 	/* there are still entries for this ref, we can't drop it */
3972 	if (ref->bytenr == bytenr)
3973 		goto out;
3974 
3975 	if (head->extent_op) {
3976 		if (!head->must_insert_reserved)
3977 			goto out;
3978 		kfree(head->extent_op);
3979 		head->extent_op = NULL;
3980 	}
3981 
3982 	/*
3983 	 * waiting for the lock here would deadlock.  If someone else has it
3984 	 * locked they are already in the process of dropping it anyway
3985 	 */
3986 	if (!mutex_trylock(&head->mutex))
3987 		goto out;
3988 
3989 	/*
3990 	 * at this point we have a head with no other entries.  Go
3991 	 * ahead and process it.
3992 	 */
3993 	head->node.in_tree = 0;
3994 	rb_erase(&head->node.rb_node, &delayed_refs->root);
3995 
3996 	delayed_refs->num_entries--;
3997 
3998 	/*
3999 	 * we don't take a ref on the node because we're removing it from the
4000 	 * tree, so we just steal the ref the tree was holding.
4001 	 */
4002 	delayed_refs->num_heads--;
4003 	if (list_empty(&head->cluster))
4004 		delayed_refs->num_heads_ready--;
4005 
4006 	list_del_init(&head->cluster);
4007 	spin_unlock(&delayed_refs->lock);
4008 
4009 	ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
4010 				  &head->node, head->extent_op,
4011 				  head->must_insert_reserved);
4012 	BUG_ON(ret);
4013 	btrfs_put_delayed_ref(&head->node);
4014 	return 0;
4015 out:
4016 	spin_unlock(&delayed_refs->lock);
4017 	return 0;
4018 }
4019 
4020 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4021 		      struct btrfs_root *root,
4022 		      u64 bytenr, u64 num_bytes, u64 parent,
4023 		      u64 root_objectid, u64 owner, u64 offset)
4024 {
4025 	int ret;
4026 
4027 	/*
4028 	 * tree log blocks never actually go into the extent allocation
4029 	 * tree, just update pinning info and exit early.
4030 	 */
4031 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4032 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4033 		/* unlocks the pinned mutex */
4034 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
4035 		ret = 0;
4036 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4037 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4038 					parent, root_objectid, (int)owner,
4039 					BTRFS_DROP_DELAYED_REF, NULL);
4040 		BUG_ON(ret);
4041 		ret = check_ref_cleanup(trans, root, bytenr);
4042 		BUG_ON(ret);
4043 	} else {
4044 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4045 					parent, root_objectid, owner,
4046 					offset, BTRFS_DROP_DELAYED_REF, NULL);
4047 		BUG_ON(ret);
4048 	}
4049 	return ret;
4050 }
4051 
4052 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4053 			  struct btrfs_root *root,
4054 			  u64 bytenr, u32 blocksize,
4055 			  u64 parent, u64 root_objectid, int level)
4056 {
4057 	u64 used;
4058 	spin_lock(&root->node_lock);
4059 	used = btrfs_root_used(&root->root_item) - blocksize;
4060 	btrfs_set_root_used(&root->root_item, used);
4061 	spin_unlock(&root->node_lock);
4062 
4063 	return btrfs_free_extent(trans, root, bytenr, blocksize,
4064 				 parent, root_objectid, level, 0);
4065 }
4066 
4067 static u64 stripe_align(struct btrfs_root *root, u64 val)
4068 {
4069 	u64 mask = ((u64)root->stripesize - 1);
4070 	u64 ret = (val + mask) & ~mask;
4071 	return ret;
4072 }
4073 
4074 /*
4075  * when we wait for progress in the block group caching, its because
4076  * our allocation attempt failed at least once.  So, we must sleep
4077  * and let some progress happen before we try again.
4078  *
4079  * This function will sleep at least once waiting for new free space to
4080  * show up, and then it will check the block group free space numbers
4081  * for our min num_bytes.  Another option is to have it go ahead
4082  * and look in the rbtree for a free extent of a given size, but this
4083  * is a good start.
4084  */
4085 static noinline int
4086 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4087 				u64 num_bytes)
4088 {
4089 	struct btrfs_caching_control *caching_ctl;
4090 	DEFINE_WAIT(wait);
4091 
4092 	caching_ctl = get_caching_control(cache);
4093 	if (!caching_ctl)
4094 		return 0;
4095 
4096 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4097 		   (cache->free_space >= num_bytes));
4098 
4099 	put_caching_control(caching_ctl);
4100 	return 0;
4101 }
4102 
4103 static noinline int
4104 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4105 {
4106 	struct btrfs_caching_control *caching_ctl;
4107 	DEFINE_WAIT(wait);
4108 
4109 	caching_ctl = get_caching_control(cache);
4110 	if (!caching_ctl)
4111 		return 0;
4112 
4113 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
4114 
4115 	put_caching_control(caching_ctl);
4116 	return 0;
4117 }
4118 
4119 enum btrfs_loop_type {
4120 	LOOP_FIND_IDEAL = 0,
4121 	LOOP_CACHING_NOWAIT = 1,
4122 	LOOP_CACHING_WAIT = 2,
4123 	LOOP_ALLOC_CHUNK = 3,
4124 	LOOP_NO_EMPTY_SIZE = 4,
4125 };
4126 
4127 /*
4128  * walks the btree of allocated extents and find a hole of a given size.
4129  * The key ins is changed to record the hole:
4130  * ins->objectid == block start
4131  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4132  * ins->offset == number of blocks
4133  * Any available blocks before search_start are skipped.
4134  */
4135 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4136 				     struct btrfs_root *orig_root,
4137 				     u64 num_bytes, u64 empty_size,
4138 				     u64 search_start, u64 search_end,
4139 				     u64 hint_byte, struct btrfs_key *ins,
4140 				     u64 exclude_start, u64 exclude_nr,
4141 				     int data)
4142 {
4143 	int ret = 0;
4144 	struct btrfs_root *root = orig_root->fs_info->extent_root;
4145 	struct btrfs_free_cluster *last_ptr = NULL;
4146 	struct btrfs_block_group_cache *block_group = NULL;
4147 	int empty_cluster = 2 * 1024 * 1024;
4148 	int allowed_chunk_alloc = 0;
4149 	int done_chunk_alloc = 0;
4150 	struct btrfs_space_info *space_info;
4151 	int last_ptr_loop = 0;
4152 	int loop = 0;
4153 	bool found_uncached_bg = false;
4154 	bool failed_cluster_refill = false;
4155 	bool failed_alloc = false;
4156 	u64 ideal_cache_percent = 0;
4157 	u64 ideal_cache_offset = 0;
4158 
4159 	WARN_ON(num_bytes < root->sectorsize);
4160 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4161 	ins->objectid = 0;
4162 	ins->offset = 0;
4163 
4164 	space_info = __find_space_info(root->fs_info, data);
4165 
4166 	if (orig_root->ref_cows || empty_size)
4167 		allowed_chunk_alloc = 1;
4168 
4169 	if (data & BTRFS_BLOCK_GROUP_METADATA) {
4170 		last_ptr = &root->fs_info->meta_alloc_cluster;
4171 		if (!btrfs_test_opt(root, SSD))
4172 			empty_cluster = 64 * 1024;
4173 	}
4174 
4175 	if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4176 		last_ptr = &root->fs_info->data_alloc_cluster;
4177 	}
4178 
4179 	if (last_ptr) {
4180 		spin_lock(&last_ptr->lock);
4181 		if (last_ptr->block_group)
4182 			hint_byte = last_ptr->window_start;
4183 		spin_unlock(&last_ptr->lock);
4184 	}
4185 
4186 	search_start = max(search_start, first_logical_byte(root, 0));
4187 	search_start = max(search_start, hint_byte);
4188 
4189 	if (!last_ptr)
4190 		empty_cluster = 0;
4191 
4192 	if (search_start == hint_byte) {
4193 ideal_cache:
4194 		block_group = btrfs_lookup_block_group(root->fs_info,
4195 						       search_start);
4196 		/*
4197 		 * we don't want to use the block group if it doesn't match our
4198 		 * allocation bits, or if its not cached.
4199 		 *
4200 		 * However if we are re-searching with an ideal block group
4201 		 * picked out then we don't care that the block group is cached.
4202 		 */
4203 		if (block_group && block_group_bits(block_group, data) &&
4204 		    (block_group->cached != BTRFS_CACHE_NO ||
4205 		     search_start == ideal_cache_offset)) {
4206 			down_read(&space_info->groups_sem);
4207 			if (list_empty(&block_group->list) ||
4208 			    block_group->ro) {
4209 				/*
4210 				 * someone is removing this block group,
4211 				 * we can't jump into the have_block_group
4212 				 * target because our list pointers are not
4213 				 * valid
4214 				 */
4215 				btrfs_put_block_group(block_group);
4216 				up_read(&space_info->groups_sem);
4217 			} else {
4218 				goto have_block_group;
4219 			}
4220 		} else if (block_group) {
4221 			btrfs_put_block_group(block_group);
4222 		}
4223 	}
4224 search:
4225 	down_read(&space_info->groups_sem);
4226 	list_for_each_entry(block_group, &space_info->block_groups, list) {
4227 		u64 offset;
4228 		int cached;
4229 
4230 		atomic_inc(&block_group->count);
4231 		search_start = block_group->key.objectid;
4232 
4233 have_block_group:
4234 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4235 			u64 free_percent;
4236 
4237 			free_percent = btrfs_block_group_used(&block_group->item);
4238 			free_percent *= 100;
4239 			free_percent = div64_u64(free_percent,
4240 						 block_group->key.offset);
4241 			free_percent = 100 - free_percent;
4242 			if (free_percent > ideal_cache_percent &&
4243 			    likely(!block_group->ro)) {
4244 				ideal_cache_offset = block_group->key.objectid;
4245 				ideal_cache_percent = free_percent;
4246 			}
4247 
4248 			/*
4249 			 * We only want to start kthread caching if we are at
4250 			 * the point where we will wait for caching to make
4251 			 * progress, or if our ideal search is over and we've
4252 			 * found somebody to start caching.
4253 			 */
4254 			if (loop > LOOP_CACHING_NOWAIT ||
4255 			    (loop > LOOP_FIND_IDEAL &&
4256 			     atomic_read(&space_info->caching_threads) < 2)) {
4257 				ret = cache_block_group(block_group);
4258 				BUG_ON(ret);
4259 			}
4260 			found_uncached_bg = true;
4261 
4262 			/*
4263 			 * If loop is set for cached only, try the next block
4264 			 * group.
4265 			 */
4266 			if (loop == LOOP_FIND_IDEAL)
4267 				goto loop;
4268 		}
4269 
4270 		cached = block_group_cache_done(block_group);
4271 		if (unlikely(!cached))
4272 			found_uncached_bg = true;
4273 
4274 		if (unlikely(block_group->ro))
4275 			goto loop;
4276 
4277 		/*
4278 		 * Ok we want to try and use the cluster allocator, so lets look
4279 		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4280 		 * have tried the cluster allocator plenty of times at this
4281 		 * point and not have found anything, so we are likely way too
4282 		 * fragmented for the clustering stuff to find anything, so lets
4283 		 * just skip it and let the allocator find whatever block it can
4284 		 * find
4285 		 */
4286 		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4287 			/*
4288 			 * the refill lock keeps out other
4289 			 * people trying to start a new cluster
4290 			 */
4291 			spin_lock(&last_ptr->refill_lock);
4292 			if (last_ptr->block_group &&
4293 			    (last_ptr->block_group->ro ||
4294 			    !block_group_bits(last_ptr->block_group, data))) {
4295 				offset = 0;
4296 				goto refill_cluster;
4297 			}
4298 
4299 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4300 						 num_bytes, search_start);
4301 			if (offset) {
4302 				/* we have a block, we're done */
4303 				spin_unlock(&last_ptr->refill_lock);
4304 				goto checks;
4305 			}
4306 
4307 			spin_lock(&last_ptr->lock);
4308 			/*
4309 			 * whoops, this cluster doesn't actually point to
4310 			 * this block group.  Get a ref on the block
4311 			 * group is does point to and try again
4312 			 */
4313 			if (!last_ptr_loop && last_ptr->block_group &&
4314 			    last_ptr->block_group != block_group) {
4315 
4316 				btrfs_put_block_group(block_group);
4317 				block_group = last_ptr->block_group;
4318 				atomic_inc(&block_group->count);
4319 				spin_unlock(&last_ptr->lock);
4320 				spin_unlock(&last_ptr->refill_lock);
4321 
4322 				last_ptr_loop = 1;
4323 				search_start = block_group->key.objectid;
4324 				/*
4325 				 * we know this block group is properly
4326 				 * in the list because
4327 				 * btrfs_remove_block_group, drops the
4328 				 * cluster before it removes the block
4329 				 * group from the list
4330 				 */
4331 				goto have_block_group;
4332 			}
4333 			spin_unlock(&last_ptr->lock);
4334 refill_cluster:
4335 			/*
4336 			 * this cluster didn't work out, free it and
4337 			 * start over
4338 			 */
4339 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
4340 
4341 			last_ptr_loop = 0;
4342 
4343 			/* allocate a cluster in this block group */
4344 			ret = btrfs_find_space_cluster(trans, root,
4345 					       block_group, last_ptr,
4346 					       offset, num_bytes,
4347 					       empty_cluster + empty_size);
4348 			if (ret == 0) {
4349 				/*
4350 				 * now pull our allocation out of this
4351 				 * cluster
4352 				 */
4353 				offset = btrfs_alloc_from_cluster(block_group,
4354 						  last_ptr, num_bytes,
4355 						  search_start);
4356 				if (offset) {
4357 					/* we found one, proceed */
4358 					spin_unlock(&last_ptr->refill_lock);
4359 					goto checks;
4360 				}
4361 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
4362 				   && !failed_cluster_refill) {
4363 				spin_unlock(&last_ptr->refill_lock);
4364 
4365 				failed_cluster_refill = true;
4366 				wait_block_group_cache_progress(block_group,
4367 				       num_bytes + empty_cluster + empty_size);
4368 				goto have_block_group;
4369 			}
4370 
4371 			/*
4372 			 * at this point we either didn't find a cluster
4373 			 * or we weren't able to allocate a block from our
4374 			 * cluster.  Free the cluster we've been trying
4375 			 * to use, and go to the next block group
4376 			 */
4377 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
4378 			spin_unlock(&last_ptr->refill_lock);
4379 			goto loop;
4380 		}
4381 
4382 		offset = btrfs_find_space_for_alloc(block_group, search_start,
4383 						    num_bytes, empty_size);
4384 		/*
4385 		 * If we didn't find a chunk, and we haven't failed on this
4386 		 * block group before, and this block group is in the middle of
4387 		 * caching and we are ok with waiting, then go ahead and wait
4388 		 * for progress to be made, and set failed_alloc to true.
4389 		 *
4390 		 * If failed_alloc is true then we've already waited on this
4391 		 * block group once and should move on to the next block group.
4392 		 */
4393 		if (!offset && !failed_alloc && !cached &&
4394 		    loop > LOOP_CACHING_NOWAIT) {
4395 			wait_block_group_cache_progress(block_group,
4396 						num_bytes + empty_size);
4397 			failed_alloc = true;
4398 			goto have_block_group;
4399 		} else if (!offset) {
4400 			goto loop;
4401 		}
4402 checks:
4403 		search_start = stripe_align(root, offset);
4404 		/* move on to the next group */
4405 		if (search_start + num_bytes >= search_end) {
4406 			btrfs_add_free_space(block_group, offset, num_bytes);
4407 			goto loop;
4408 		}
4409 
4410 		/* move on to the next group */
4411 		if (search_start + num_bytes >
4412 		    block_group->key.objectid + block_group->key.offset) {
4413 			btrfs_add_free_space(block_group, offset, num_bytes);
4414 			goto loop;
4415 		}
4416 
4417 		if (exclude_nr > 0 &&
4418 		    (search_start + num_bytes > exclude_start &&
4419 		     search_start < exclude_start + exclude_nr)) {
4420 			search_start = exclude_start + exclude_nr;
4421 
4422 			btrfs_add_free_space(block_group, offset, num_bytes);
4423 			/*
4424 			 * if search_start is still in this block group
4425 			 * then we just re-search this block group
4426 			 */
4427 			if (search_start >= block_group->key.objectid &&
4428 			    search_start < (block_group->key.objectid +
4429 					    block_group->key.offset))
4430 				goto have_block_group;
4431 			goto loop;
4432 		}
4433 
4434 		ins->objectid = search_start;
4435 		ins->offset = num_bytes;
4436 
4437 		if (offset < search_start)
4438 			btrfs_add_free_space(block_group, offset,
4439 					     search_start - offset);
4440 		BUG_ON(offset > search_start);
4441 
4442 		update_reserved_extents(block_group, num_bytes, 1);
4443 
4444 		/* we are all good, lets return */
4445 		break;
4446 loop:
4447 		failed_cluster_refill = false;
4448 		failed_alloc = false;
4449 		btrfs_put_block_group(block_group);
4450 	}
4451 	up_read(&space_info->groups_sem);
4452 
4453 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4454 	 *			for them to make caching progress.  Also
4455 	 *			determine the best possible bg to cache
4456 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4457 	 *			caching kthreads as we move along
4458 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4459 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4460 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4461 	 *			again
4462 	 */
4463 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4464 	    (found_uncached_bg || empty_size || empty_cluster ||
4465 	     allowed_chunk_alloc)) {
4466 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4467 			found_uncached_bg = false;
4468 			loop++;
4469 			if (!ideal_cache_percent &&
4470 			    atomic_read(&space_info->caching_threads))
4471 				goto search;
4472 
4473 			/*
4474 			 * 1 of the following 2 things have happened so far
4475 			 *
4476 			 * 1) We found an ideal block group for caching that
4477 			 * is mostly full and will cache quickly, so we might
4478 			 * as well wait for it.
4479 			 *
4480 			 * 2) We searched for cached only and we didn't find
4481 			 * anything, and we didn't start any caching kthreads
4482 			 * either, so chances are we will loop through and
4483 			 * start a couple caching kthreads, and then come back
4484 			 * around and just wait for them.  This will be slower
4485 			 * because we will have 2 caching kthreads reading at
4486 			 * the same time when we could have just started one
4487 			 * and waited for it to get far enough to give us an
4488 			 * allocation, so go ahead and go to the wait caching
4489 			 * loop.
4490 			 */
4491 			loop = LOOP_CACHING_WAIT;
4492 			search_start = ideal_cache_offset;
4493 			ideal_cache_percent = 0;
4494 			goto ideal_cache;
4495 		} else if (loop == LOOP_FIND_IDEAL) {
4496 			/*
4497 			 * Didn't find a uncached bg, wait on anything we find
4498 			 * next.
4499 			 */
4500 			loop = LOOP_CACHING_WAIT;
4501 			goto search;
4502 		}
4503 
4504 		if (loop < LOOP_CACHING_WAIT) {
4505 			loop++;
4506 			goto search;
4507 		}
4508 
4509 		if (loop == LOOP_ALLOC_CHUNK) {
4510 			empty_size = 0;
4511 			empty_cluster = 0;
4512 		}
4513 
4514 		if (allowed_chunk_alloc) {
4515 			ret = do_chunk_alloc(trans, root, num_bytes +
4516 					     2 * 1024 * 1024, data, 1);
4517 			allowed_chunk_alloc = 0;
4518 			done_chunk_alloc = 1;
4519 		} else if (!done_chunk_alloc) {
4520 			space_info->force_alloc = 1;
4521 		}
4522 
4523 		if (loop < LOOP_NO_EMPTY_SIZE) {
4524 			loop++;
4525 			goto search;
4526 		}
4527 		ret = -ENOSPC;
4528 	} else if (!ins->objectid) {
4529 		ret = -ENOSPC;
4530 	}
4531 
4532 	/* we found what we needed */
4533 	if (ins->objectid) {
4534 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
4535 			trans->block_group = block_group->key.objectid;
4536 
4537 		btrfs_put_block_group(block_group);
4538 		ret = 0;
4539 	}
4540 
4541 	return ret;
4542 }
4543 
4544 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4545 			    int dump_block_groups)
4546 {
4547 	struct btrfs_block_group_cache *cache;
4548 
4549 	spin_lock(&info->lock);
4550 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4551 	       (unsigned long long)(info->total_bytes - info->bytes_used -
4552 				    info->bytes_pinned - info->bytes_reserved -
4553 				    info->bytes_super),
4554 	       (info->full) ? "" : "not ");
4555 	printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
4556 	       " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
4557 	       "\n",
4558 	       (unsigned long long)info->total_bytes,
4559 	       (unsigned long long)info->bytes_pinned,
4560 	       (unsigned long long)info->bytes_delalloc,
4561 	       (unsigned long long)info->bytes_may_use,
4562 	       (unsigned long long)info->bytes_used,
4563 	       (unsigned long long)info->bytes_root,
4564 	       (unsigned long long)info->bytes_super,
4565 	       (unsigned long long)info->bytes_reserved);
4566 	spin_unlock(&info->lock);
4567 
4568 	if (!dump_block_groups)
4569 		return;
4570 
4571 	down_read(&info->groups_sem);
4572 	list_for_each_entry(cache, &info->block_groups, list) {
4573 		spin_lock(&cache->lock);
4574 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4575 		       "%llu pinned %llu reserved\n",
4576 		       (unsigned long long)cache->key.objectid,
4577 		       (unsigned long long)cache->key.offset,
4578 		       (unsigned long long)btrfs_block_group_used(&cache->item),
4579 		       (unsigned long long)cache->pinned,
4580 		       (unsigned long long)cache->reserved);
4581 		btrfs_dump_free_space(cache, bytes);
4582 		spin_unlock(&cache->lock);
4583 	}
4584 	up_read(&info->groups_sem);
4585 }
4586 
4587 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4588 			 struct btrfs_root *root,
4589 			 u64 num_bytes, u64 min_alloc_size,
4590 			 u64 empty_size, u64 hint_byte,
4591 			 u64 search_end, struct btrfs_key *ins,
4592 			 u64 data)
4593 {
4594 	int ret;
4595 	u64 search_start = 0;
4596 
4597 	data = btrfs_get_alloc_profile(root, data);
4598 again:
4599 	/*
4600 	 * the only place that sets empty_size is btrfs_realloc_node, which
4601 	 * is not called recursively on allocations
4602 	 */
4603 	if (empty_size || root->ref_cows)
4604 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4605 				     num_bytes + 2 * 1024 * 1024, data, 0);
4606 
4607 	WARN_ON(num_bytes < root->sectorsize);
4608 	ret = find_free_extent(trans, root, num_bytes, empty_size,
4609 			       search_start, search_end, hint_byte, ins,
4610 			       trans->alloc_exclude_start,
4611 			       trans->alloc_exclude_nr, data);
4612 
4613 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
4614 		num_bytes = num_bytes >> 1;
4615 		num_bytes = num_bytes & ~(root->sectorsize - 1);
4616 		num_bytes = max(num_bytes, min_alloc_size);
4617 		do_chunk_alloc(trans, root->fs_info->extent_root,
4618 			       num_bytes, data, 1);
4619 		goto again;
4620 	}
4621 	if (ret == -ENOSPC) {
4622 		struct btrfs_space_info *sinfo;
4623 
4624 		sinfo = __find_space_info(root->fs_info, data);
4625 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
4626 		       "wanted %llu\n", (unsigned long long)data,
4627 		       (unsigned long long)num_bytes);
4628 		dump_space_info(sinfo, num_bytes, 1);
4629 	}
4630 
4631 	return ret;
4632 }
4633 
4634 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
4635 {
4636 	struct btrfs_block_group_cache *cache;
4637 	int ret = 0;
4638 
4639 	cache = btrfs_lookup_block_group(root->fs_info, start);
4640 	if (!cache) {
4641 		printk(KERN_ERR "Unable to find block group for %llu\n",
4642 		       (unsigned long long)start);
4643 		return -ENOSPC;
4644 	}
4645 
4646 	ret = btrfs_discard_extent(root, start, len);
4647 
4648 	btrfs_add_free_space(cache, start, len);
4649 	update_reserved_extents(cache, len, 0);
4650 	btrfs_put_block_group(cache);
4651 
4652 	return ret;
4653 }
4654 
4655 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4656 				      struct btrfs_root *root,
4657 				      u64 parent, u64 root_objectid,
4658 				      u64 flags, u64 owner, u64 offset,
4659 				      struct btrfs_key *ins, int ref_mod)
4660 {
4661 	int ret;
4662 	struct btrfs_fs_info *fs_info = root->fs_info;
4663 	struct btrfs_extent_item *extent_item;
4664 	struct btrfs_extent_inline_ref *iref;
4665 	struct btrfs_path *path;
4666 	struct extent_buffer *leaf;
4667 	int type;
4668 	u32 size;
4669 
4670 	if (parent > 0)
4671 		type = BTRFS_SHARED_DATA_REF_KEY;
4672 	else
4673 		type = BTRFS_EXTENT_DATA_REF_KEY;
4674 
4675 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4676 
4677 	path = btrfs_alloc_path();
4678 	BUG_ON(!path);
4679 
4680 	path->leave_spinning = 1;
4681 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4682 				      ins, size);
4683 	BUG_ON(ret);
4684 
4685 	leaf = path->nodes[0];
4686 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4687 				     struct btrfs_extent_item);
4688 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4689 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4690 	btrfs_set_extent_flags(leaf, extent_item,
4691 			       flags | BTRFS_EXTENT_FLAG_DATA);
4692 
4693 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4694 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4695 	if (parent > 0) {
4696 		struct btrfs_shared_data_ref *ref;
4697 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4698 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4699 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4700 	} else {
4701 		struct btrfs_extent_data_ref *ref;
4702 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4703 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4704 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4705 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4706 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4707 	}
4708 
4709 	btrfs_mark_buffer_dirty(path->nodes[0]);
4710 	btrfs_free_path(path);
4711 
4712 	ret = update_block_group(trans, root, ins->objectid, ins->offset,
4713 				 1, 0);
4714 	if (ret) {
4715 		printk(KERN_ERR "btrfs update block group failed for %llu "
4716 		       "%llu\n", (unsigned long long)ins->objectid,
4717 		       (unsigned long long)ins->offset);
4718 		BUG();
4719 	}
4720 	return ret;
4721 }
4722 
4723 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4724 				     struct btrfs_root *root,
4725 				     u64 parent, u64 root_objectid,
4726 				     u64 flags, struct btrfs_disk_key *key,
4727 				     int level, struct btrfs_key *ins)
4728 {
4729 	int ret;
4730 	struct btrfs_fs_info *fs_info = root->fs_info;
4731 	struct btrfs_extent_item *extent_item;
4732 	struct btrfs_tree_block_info *block_info;
4733 	struct btrfs_extent_inline_ref *iref;
4734 	struct btrfs_path *path;
4735 	struct extent_buffer *leaf;
4736 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
4737 
4738 	path = btrfs_alloc_path();
4739 	BUG_ON(!path);
4740 
4741 	path->leave_spinning = 1;
4742 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4743 				      ins, size);
4744 	BUG_ON(ret);
4745 
4746 	leaf = path->nodes[0];
4747 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4748 				     struct btrfs_extent_item);
4749 	btrfs_set_extent_refs(leaf, extent_item, 1);
4750 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4751 	btrfs_set_extent_flags(leaf, extent_item,
4752 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4753 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4754 
4755 	btrfs_set_tree_block_key(leaf, block_info, key);
4756 	btrfs_set_tree_block_level(leaf, block_info, level);
4757 
4758 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4759 	if (parent > 0) {
4760 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4761 		btrfs_set_extent_inline_ref_type(leaf, iref,
4762 						 BTRFS_SHARED_BLOCK_REF_KEY);
4763 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4764 	} else {
4765 		btrfs_set_extent_inline_ref_type(leaf, iref,
4766 						 BTRFS_TREE_BLOCK_REF_KEY);
4767 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
4768 	}
4769 
4770 	btrfs_mark_buffer_dirty(leaf);
4771 	btrfs_free_path(path);
4772 
4773 	ret = update_block_group(trans, root, ins->objectid, ins->offset,
4774 				 1, 0);
4775 	if (ret) {
4776 		printk(KERN_ERR "btrfs update block group failed for %llu "
4777 		       "%llu\n", (unsigned long long)ins->objectid,
4778 		       (unsigned long long)ins->offset);
4779 		BUG();
4780 	}
4781 	return ret;
4782 }
4783 
4784 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4785 				     struct btrfs_root *root,
4786 				     u64 root_objectid, u64 owner,
4787 				     u64 offset, struct btrfs_key *ins)
4788 {
4789 	int ret;
4790 
4791 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4792 
4793 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
4794 					 0, root_objectid, owner, offset,
4795 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
4796 	return ret;
4797 }
4798 
4799 /*
4800  * this is used by the tree logging recovery code.  It records that
4801  * an extent has been allocated and makes sure to clear the free
4802  * space cache bits as well
4803  */
4804 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4805 				   struct btrfs_root *root,
4806 				   u64 root_objectid, u64 owner, u64 offset,
4807 				   struct btrfs_key *ins)
4808 {
4809 	int ret;
4810 	struct btrfs_block_group_cache *block_group;
4811 	struct btrfs_caching_control *caching_ctl;
4812 	u64 start = ins->objectid;
4813 	u64 num_bytes = ins->offset;
4814 
4815 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
4816 	cache_block_group(block_group);
4817 	caching_ctl = get_caching_control(block_group);
4818 
4819 	if (!caching_ctl) {
4820 		BUG_ON(!block_group_cache_done(block_group));
4821 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
4822 		BUG_ON(ret);
4823 	} else {
4824 		mutex_lock(&caching_ctl->mutex);
4825 
4826 		if (start >= caching_ctl->progress) {
4827 			ret = add_excluded_extent(root, start, num_bytes);
4828 			BUG_ON(ret);
4829 		} else if (start + num_bytes <= caching_ctl->progress) {
4830 			ret = btrfs_remove_free_space(block_group,
4831 						      start, num_bytes);
4832 			BUG_ON(ret);
4833 		} else {
4834 			num_bytes = caching_ctl->progress - start;
4835 			ret = btrfs_remove_free_space(block_group,
4836 						      start, num_bytes);
4837 			BUG_ON(ret);
4838 
4839 			start = caching_ctl->progress;
4840 			num_bytes = ins->objectid + ins->offset -
4841 				    caching_ctl->progress;
4842 			ret = add_excluded_extent(root, start, num_bytes);
4843 			BUG_ON(ret);
4844 		}
4845 
4846 		mutex_unlock(&caching_ctl->mutex);
4847 		put_caching_control(caching_ctl);
4848 	}
4849 
4850 	update_reserved_extents(block_group, ins->offset, 1);
4851 	btrfs_put_block_group(block_group);
4852 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
4853 					 0, owner, offset, ins, 1);
4854 	return ret;
4855 }
4856 
4857 /*
4858  * finds a free extent and does all the dirty work required for allocation
4859  * returns the key for the extent through ins, and a tree buffer for
4860  * the first block of the extent through buf.
4861  *
4862  * returns 0 if everything worked, non-zero otherwise.
4863  */
4864 static int alloc_tree_block(struct btrfs_trans_handle *trans,
4865 			    struct btrfs_root *root,
4866 			    u64 num_bytes, u64 parent, u64 root_objectid,
4867 			    struct btrfs_disk_key *key, int level,
4868 			    u64 empty_size, u64 hint_byte, u64 search_end,
4869 			    struct btrfs_key *ins)
4870 {
4871 	int ret;
4872 	u64 flags = 0;
4873 
4874 	ret = btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
4875 				   empty_size, hint_byte, search_end,
4876 				   ins, 0);
4877 	if (ret)
4878 		return ret;
4879 
4880 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4881 		if (parent == 0)
4882 			parent = ins->objectid;
4883 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4884 	} else
4885 		BUG_ON(parent > 0);
4886 
4887 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4888 		struct btrfs_delayed_extent_op *extent_op;
4889 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
4890 		BUG_ON(!extent_op);
4891 		if (key)
4892 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4893 		else
4894 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4895 		extent_op->flags_to_set = flags;
4896 		extent_op->update_key = 1;
4897 		extent_op->update_flags = 1;
4898 		extent_op->is_data = 0;
4899 
4900 		ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
4901 					ins->offset, parent, root_objectid,
4902 					level, BTRFS_ADD_DELAYED_EXTENT,
4903 					extent_op);
4904 		BUG_ON(ret);
4905 	}
4906 
4907 	if (root_objectid == root->root_key.objectid) {
4908 		u64 used;
4909 		spin_lock(&root->node_lock);
4910 		used = btrfs_root_used(&root->root_item) + num_bytes;
4911 		btrfs_set_root_used(&root->root_item, used);
4912 		spin_unlock(&root->node_lock);
4913 	}
4914 	return ret;
4915 }
4916 
4917 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
4918 					    struct btrfs_root *root,
4919 					    u64 bytenr, u32 blocksize,
4920 					    int level)
4921 {
4922 	struct extent_buffer *buf;
4923 
4924 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
4925 	if (!buf)
4926 		return ERR_PTR(-ENOMEM);
4927 	btrfs_set_header_generation(buf, trans->transid);
4928 	btrfs_set_buffer_lockdep_class(buf, level);
4929 	btrfs_tree_lock(buf);
4930 	clean_tree_block(trans, root, buf);
4931 
4932 	btrfs_set_lock_blocking(buf);
4933 	btrfs_set_buffer_uptodate(buf);
4934 
4935 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4936 		/*
4937 		 * we allow two log transactions at a time, use different
4938 		 * EXENT bit to differentiate dirty pages.
4939 		 */
4940 		if (root->log_transid % 2 == 0)
4941 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4942 					buf->start + buf->len - 1, GFP_NOFS);
4943 		else
4944 			set_extent_new(&root->dirty_log_pages, buf->start,
4945 					buf->start + buf->len - 1, GFP_NOFS);
4946 	} else {
4947 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4948 			 buf->start + buf->len - 1, GFP_NOFS);
4949 	}
4950 	trans->blocks_used++;
4951 	/* this returns a buffer locked for blocking */
4952 	return buf;
4953 }
4954 
4955 /*
4956  * helper function to allocate a block for a given tree
4957  * returns the tree buffer or NULL.
4958  */
4959 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
4960 					struct btrfs_root *root, u32 blocksize,
4961 					u64 parent, u64 root_objectid,
4962 					struct btrfs_disk_key *key, int level,
4963 					u64 hint, u64 empty_size)
4964 {
4965 	struct btrfs_key ins;
4966 	int ret;
4967 	struct extent_buffer *buf;
4968 
4969 	ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
4970 			       key, level, empty_size, hint, (u64)-1, &ins);
4971 	if (ret) {
4972 		BUG_ON(ret > 0);
4973 		return ERR_PTR(ret);
4974 	}
4975 
4976 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
4977 				    blocksize, level);
4978 	return buf;
4979 }
4980 
4981 struct walk_control {
4982 	u64 refs[BTRFS_MAX_LEVEL];
4983 	u64 flags[BTRFS_MAX_LEVEL];
4984 	struct btrfs_key update_progress;
4985 	int stage;
4986 	int level;
4987 	int shared_level;
4988 	int update_ref;
4989 	int keep_locks;
4990 	int reada_slot;
4991 	int reada_count;
4992 };
4993 
4994 #define DROP_REFERENCE	1
4995 #define UPDATE_BACKREF	2
4996 
4997 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4998 				     struct btrfs_root *root,
4999 				     struct walk_control *wc,
5000 				     struct btrfs_path *path)
5001 {
5002 	u64 bytenr;
5003 	u64 generation;
5004 	u64 refs;
5005 	u64 flags;
5006 	u64 last = 0;
5007 	u32 nritems;
5008 	u32 blocksize;
5009 	struct btrfs_key key;
5010 	struct extent_buffer *eb;
5011 	int ret;
5012 	int slot;
5013 	int nread = 0;
5014 
5015 	if (path->slots[wc->level] < wc->reada_slot) {
5016 		wc->reada_count = wc->reada_count * 2 / 3;
5017 		wc->reada_count = max(wc->reada_count, 2);
5018 	} else {
5019 		wc->reada_count = wc->reada_count * 3 / 2;
5020 		wc->reada_count = min_t(int, wc->reada_count,
5021 					BTRFS_NODEPTRS_PER_BLOCK(root));
5022 	}
5023 
5024 	eb = path->nodes[wc->level];
5025 	nritems = btrfs_header_nritems(eb);
5026 	blocksize = btrfs_level_size(root, wc->level - 1);
5027 
5028 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5029 		if (nread >= wc->reada_count)
5030 			break;
5031 
5032 		cond_resched();
5033 		bytenr = btrfs_node_blockptr(eb, slot);
5034 		generation = btrfs_node_ptr_generation(eb, slot);
5035 
5036 		if (slot == path->slots[wc->level])
5037 			goto reada;
5038 
5039 		if (wc->stage == UPDATE_BACKREF &&
5040 		    generation <= root->root_key.offset)
5041 			continue;
5042 
5043 		/* We don't lock the tree block, it's OK to be racy here */
5044 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5045 					       &refs, &flags);
5046 		BUG_ON(ret);
5047 		BUG_ON(refs == 0);
5048 
5049 		if (wc->stage == DROP_REFERENCE) {
5050 			if (refs == 1)
5051 				goto reada;
5052 
5053 			if (wc->level == 1 &&
5054 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5055 				continue;
5056 			if (!wc->update_ref ||
5057 			    generation <= root->root_key.offset)
5058 				continue;
5059 			btrfs_node_key_to_cpu(eb, &key, slot);
5060 			ret = btrfs_comp_cpu_keys(&key,
5061 						  &wc->update_progress);
5062 			if (ret < 0)
5063 				continue;
5064 		} else {
5065 			if (wc->level == 1 &&
5066 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5067 				continue;
5068 		}
5069 reada:
5070 		ret = readahead_tree_block(root, bytenr, blocksize,
5071 					   generation);
5072 		if (ret)
5073 			break;
5074 		last = bytenr + blocksize;
5075 		nread++;
5076 	}
5077 	wc->reada_slot = slot;
5078 }
5079 
5080 /*
5081  * hepler to process tree block while walking down the tree.
5082  *
5083  * when wc->stage == UPDATE_BACKREF, this function updates
5084  * back refs for pointers in the block.
5085  *
5086  * NOTE: return value 1 means we should stop walking down.
5087  */
5088 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5089 				   struct btrfs_root *root,
5090 				   struct btrfs_path *path,
5091 				   struct walk_control *wc, int lookup_info)
5092 {
5093 	int level = wc->level;
5094 	struct extent_buffer *eb = path->nodes[level];
5095 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5096 	int ret;
5097 
5098 	if (wc->stage == UPDATE_BACKREF &&
5099 	    btrfs_header_owner(eb) != root->root_key.objectid)
5100 		return 1;
5101 
5102 	/*
5103 	 * when reference count of tree block is 1, it won't increase
5104 	 * again. once full backref flag is set, we never clear it.
5105 	 */
5106 	if (lookup_info &&
5107 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5108 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5109 		BUG_ON(!path->locks[level]);
5110 		ret = btrfs_lookup_extent_info(trans, root,
5111 					       eb->start, eb->len,
5112 					       &wc->refs[level],
5113 					       &wc->flags[level]);
5114 		BUG_ON(ret);
5115 		BUG_ON(wc->refs[level] == 0);
5116 	}
5117 
5118 	if (wc->stage == DROP_REFERENCE) {
5119 		if (wc->refs[level] > 1)
5120 			return 1;
5121 
5122 		if (path->locks[level] && !wc->keep_locks) {
5123 			btrfs_tree_unlock(eb);
5124 			path->locks[level] = 0;
5125 		}
5126 		return 0;
5127 	}
5128 
5129 	/* wc->stage == UPDATE_BACKREF */
5130 	if (!(wc->flags[level] & flag)) {
5131 		BUG_ON(!path->locks[level]);
5132 		ret = btrfs_inc_ref(trans, root, eb, 1);
5133 		BUG_ON(ret);
5134 		ret = btrfs_dec_ref(trans, root, eb, 0);
5135 		BUG_ON(ret);
5136 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5137 						  eb->len, flag, 0);
5138 		BUG_ON(ret);
5139 		wc->flags[level] |= flag;
5140 	}
5141 
5142 	/*
5143 	 * the block is shared by multiple trees, so it's not good to
5144 	 * keep the tree lock
5145 	 */
5146 	if (path->locks[level] && level > 0) {
5147 		btrfs_tree_unlock(eb);
5148 		path->locks[level] = 0;
5149 	}
5150 	return 0;
5151 }
5152 
5153 /*
5154  * hepler to process tree block pointer.
5155  *
5156  * when wc->stage == DROP_REFERENCE, this function checks
5157  * reference count of the block pointed to. if the block
5158  * is shared and we need update back refs for the subtree
5159  * rooted at the block, this function changes wc->stage to
5160  * UPDATE_BACKREF. if the block is shared and there is no
5161  * need to update back, this function drops the reference
5162  * to the block.
5163  *
5164  * NOTE: return value 1 means we should stop walking down.
5165  */
5166 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5167 				 struct btrfs_root *root,
5168 				 struct btrfs_path *path,
5169 				 struct walk_control *wc, int *lookup_info)
5170 {
5171 	u64 bytenr;
5172 	u64 generation;
5173 	u64 parent;
5174 	u32 blocksize;
5175 	struct btrfs_key key;
5176 	struct extent_buffer *next;
5177 	int level = wc->level;
5178 	int reada = 0;
5179 	int ret = 0;
5180 
5181 	generation = btrfs_node_ptr_generation(path->nodes[level],
5182 					       path->slots[level]);
5183 	/*
5184 	 * if the lower level block was created before the snapshot
5185 	 * was created, we know there is no need to update back refs
5186 	 * for the subtree
5187 	 */
5188 	if (wc->stage == UPDATE_BACKREF &&
5189 	    generation <= root->root_key.offset) {
5190 		*lookup_info = 1;
5191 		return 1;
5192 	}
5193 
5194 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5195 	blocksize = btrfs_level_size(root, level - 1);
5196 
5197 	next = btrfs_find_tree_block(root, bytenr, blocksize);
5198 	if (!next) {
5199 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5200 		reada = 1;
5201 	}
5202 	btrfs_tree_lock(next);
5203 	btrfs_set_lock_blocking(next);
5204 
5205 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5206 				       &wc->refs[level - 1],
5207 				       &wc->flags[level - 1]);
5208 	BUG_ON(ret);
5209 	BUG_ON(wc->refs[level - 1] == 0);
5210 	*lookup_info = 0;
5211 
5212 	if (wc->stage == DROP_REFERENCE) {
5213 		if (wc->refs[level - 1] > 1) {
5214 			if (level == 1 &&
5215 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5216 				goto skip;
5217 
5218 			if (!wc->update_ref ||
5219 			    generation <= root->root_key.offset)
5220 				goto skip;
5221 
5222 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5223 					      path->slots[level]);
5224 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5225 			if (ret < 0)
5226 				goto skip;
5227 
5228 			wc->stage = UPDATE_BACKREF;
5229 			wc->shared_level = level - 1;
5230 		}
5231 	} else {
5232 		if (level == 1 &&
5233 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5234 			goto skip;
5235 	}
5236 
5237 	if (!btrfs_buffer_uptodate(next, generation)) {
5238 		btrfs_tree_unlock(next);
5239 		free_extent_buffer(next);
5240 		next = NULL;
5241 		*lookup_info = 1;
5242 	}
5243 
5244 	if (!next) {
5245 		if (reada && level == 1)
5246 			reada_walk_down(trans, root, wc, path);
5247 		next = read_tree_block(root, bytenr, blocksize, generation);
5248 		btrfs_tree_lock(next);
5249 		btrfs_set_lock_blocking(next);
5250 	}
5251 
5252 	level--;
5253 	BUG_ON(level != btrfs_header_level(next));
5254 	path->nodes[level] = next;
5255 	path->slots[level] = 0;
5256 	path->locks[level] = 1;
5257 	wc->level = level;
5258 	if (wc->level == 1)
5259 		wc->reada_slot = 0;
5260 	return 0;
5261 skip:
5262 	wc->refs[level - 1] = 0;
5263 	wc->flags[level - 1] = 0;
5264 	if (wc->stage == DROP_REFERENCE) {
5265 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5266 			parent = path->nodes[level]->start;
5267 		} else {
5268 			BUG_ON(root->root_key.objectid !=
5269 			       btrfs_header_owner(path->nodes[level]));
5270 			parent = 0;
5271 		}
5272 
5273 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5274 					root->root_key.objectid, level - 1, 0);
5275 		BUG_ON(ret);
5276 	}
5277 	btrfs_tree_unlock(next);
5278 	free_extent_buffer(next);
5279 	*lookup_info = 1;
5280 	return 1;
5281 }
5282 
5283 /*
5284  * hepler to process tree block while walking up the tree.
5285  *
5286  * when wc->stage == DROP_REFERENCE, this function drops
5287  * reference count on the block.
5288  *
5289  * when wc->stage == UPDATE_BACKREF, this function changes
5290  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5291  * to UPDATE_BACKREF previously while processing the block.
5292  *
5293  * NOTE: return value 1 means we should stop walking up.
5294  */
5295 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5296 				 struct btrfs_root *root,
5297 				 struct btrfs_path *path,
5298 				 struct walk_control *wc)
5299 {
5300 	int ret = 0;
5301 	int level = wc->level;
5302 	struct extent_buffer *eb = path->nodes[level];
5303 	u64 parent = 0;
5304 
5305 	if (wc->stage == UPDATE_BACKREF) {
5306 		BUG_ON(wc->shared_level < level);
5307 		if (level < wc->shared_level)
5308 			goto out;
5309 
5310 		ret = find_next_key(path, level + 1, &wc->update_progress);
5311 		if (ret > 0)
5312 			wc->update_ref = 0;
5313 
5314 		wc->stage = DROP_REFERENCE;
5315 		wc->shared_level = -1;
5316 		path->slots[level] = 0;
5317 
5318 		/*
5319 		 * check reference count again if the block isn't locked.
5320 		 * we should start walking down the tree again if reference
5321 		 * count is one.
5322 		 */
5323 		if (!path->locks[level]) {
5324 			BUG_ON(level == 0);
5325 			btrfs_tree_lock(eb);
5326 			btrfs_set_lock_blocking(eb);
5327 			path->locks[level] = 1;
5328 
5329 			ret = btrfs_lookup_extent_info(trans, root,
5330 						       eb->start, eb->len,
5331 						       &wc->refs[level],
5332 						       &wc->flags[level]);
5333 			BUG_ON(ret);
5334 			BUG_ON(wc->refs[level] == 0);
5335 			if (wc->refs[level] == 1) {
5336 				btrfs_tree_unlock(eb);
5337 				path->locks[level] = 0;
5338 				return 1;
5339 			}
5340 		}
5341 	}
5342 
5343 	/* wc->stage == DROP_REFERENCE */
5344 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5345 
5346 	if (wc->refs[level] == 1) {
5347 		if (level == 0) {
5348 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5349 				ret = btrfs_dec_ref(trans, root, eb, 1);
5350 			else
5351 				ret = btrfs_dec_ref(trans, root, eb, 0);
5352 			BUG_ON(ret);
5353 		}
5354 		/* make block locked assertion in clean_tree_block happy */
5355 		if (!path->locks[level] &&
5356 		    btrfs_header_generation(eb) == trans->transid) {
5357 			btrfs_tree_lock(eb);
5358 			btrfs_set_lock_blocking(eb);
5359 			path->locks[level] = 1;
5360 		}
5361 		clean_tree_block(trans, root, eb);
5362 	}
5363 
5364 	if (eb == root->node) {
5365 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5366 			parent = eb->start;
5367 		else
5368 			BUG_ON(root->root_key.objectid !=
5369 			       btrfs_header_owner(eb));
5370 	} else {
5371 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5372 			parent = path->nodes[level + 1]->start;
5373 		else
5374 			BUG_ON(root->root_key.objectid !=
5375 			       btrfs_header_owner(path->nodes[level + 1]));
5376 	}
5377 
5378 	ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
5379 				root->root_key.objectid, level, 0);
5380 	BUG_ON(ret);
5381 out:
5382 	wc->refs[level] = 0;
5383 	wc->flags[level] = 0;
5384 	return ret;
5385 }
5386 
5387 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5388 				   struct btrfs_root *root,
5389 				   struct btrfs_path *path,
5390 				   struct walk_control *wc)
5391 {
5392 	int level = wc->level;
5393 	int lookup_info = 1;
5394 	int ret;
5395 
5396 	while (level >= 0) {
5397 		if (path->slots[level] >=
5398 		    btrfs_header_nritems(path->nodes[level]))
5399 			break;
5400 
5401 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5402 		if (ret > 0)
5403 			break;
5404 
5405 		if (level == 0)
5406 			break;
5407 
5408 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5409 		if (ret > 0) {
5410 			path->slots[level]++;
5411 			continue;
5412 		}
5413 		level = wc->level;
5414 	}
5415 	return 0;
5416 }
5417 
5418 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5419 				 struct btrfs_root *root,
5420 				 struct btrfs_path *path,
5421 				 struct walk_control *wc, int max_level)
5422 {
5423 	int level = wc->level;
5424 	int ret;
5425 
5426 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5427 	while (level < max_level && path->nodes[level]) {
5428 		wc->level = level;
5429 		if (path->slots[level] + 1 <
5430 		    btrfs_header_nritems(path->nodes[level])) {
5431 			path->slots[level]++;
5432 			return 0;
5433 		} else {
5434 			ret = walk_up_proc(trans, root, path, wc);
5435 			if (ret > 0)
5436 				return 0;
5437 
5438 			if (path->locks[level]) {
5439 				btrfs_tree_unlock(path->nodes[level]);
5440 				path->locks[level] = 0;
5441 			}
5442 			free_extent_buffer(path->nodes[level]);
5443 			path->nodes[level] = NULL;
5444 			level++;
5445 		}
5446 	}
5447 	return 1;
5448 }
5449 
5450 /*
5451  * drop a subvolume tree.
5452  *
5453  * this function traverses the tree freeing any blocks that only
5454  * referenced by the tree.
5455  *
5456  * when a shared tree block is found. this function decreases its
5457  * reference count by one. if update_ref is true, this function
5458  * also make sure backrefs for the shared block and all lower level
5459  * blocks are properly updated.
5460  */
5461 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
5462 {
5463 	struct btrfs_path *path;
5464 	struct btrfs_trans_handle *trans;
5465 	struct btrfs_root *tree_root = root->fs_info->tree_root;
5466 	struct btrfs_root_item *root_item = &root->root_item;
5467 	struct walk_control *wc;
5468 	struct btrfs_key key;
5469 	int err = 0;
5470 	int ret;
5471 	int level;
5472 
5473 	path = btrfs_alloc_path();
5474 	BUG_ON(!path);
5475 
5476 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5477 	BUG_ON(!wc);
5478 
5479 	trans = btrfs_start_transaction(tree_root, 1);
5480 
5481 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5482 		level = btrfs_header_level(root->node);
5483 		path->nodes[level] = btrfs_lock_root_node(root);
5484 		btrfs_set_lock_blocking(path->nodes[level]);
5485 		path->slots[level] = 0;
5486 		path->locks[level] = 1;
5487 		memset(&wc->update_progress, 0,
5488 		       sizeof(wc->update_progress));
5489 	} else {
5490 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5491 		memcpy(&wc->update_progress, &key,
5492 		       sizeof(wc->update_progress));
5493 
5494 		level = root_item->drop_level;
5495 		BUG_ON(level == 0);
5496 		path->lowest_level = level;
5497 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5498 		path->lowest_level = 0;
5499 		if (ret < 0) {
5500 			err = ret;
5501 			goto out;
5502 		}
5503 		WARN_ON(ret > 0);
5504 
5505 		/*
5506 		 * unlock our path, this is safe because only this
5507 		 * function is allowed to delete this snapshot
5508 		 */
5509 		btrfs_unlock_up_safe(path, 0);
5510 
5511 		level = btrfs_header_level(root->node);
5512 		while (1) {
5513 			btrfs_tree_lock(path->nodes[level]);
5514 			btrfs_set_lock_blocking(path->nodes[level]);
5515 
5516 			ret = btrfs_lookup_extent_info(trans, root,
5517 						path->nodes[level]->start,
5518 						path->nodes[level]->len,
5519 						&wc->refs[level],
5520 						&wc->flags[level]);
5521 			BUG_ON(ret);
5522 			BUG_ON(wc->refs[level] == 0);
5523 
5524 			if (level == root_item->drop_level)
5525 				break;
5526 
5527 			btrfs_tree_unlock(path->nodes[level]);
5528 			WARN_ON(wc->refs[level] != 1);
5529 			level--;
5530 		}
5531 	}
5532 
5533 	wc->level = level;
5534 	wc->shared_level = -1;
5535 	wc->stage = DROP_REFERENCE;
5536 	wc->update_ref = update_ref;
5537 	wc->keep_locks = 0;
5538 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5539 
5540 	while (1) {
5541 		ret = walk_down_tree(trans, root, path, wc);
5542 		if (ret < 0) {
5543 			err = ret;
5544 			break;
5545 		}
5546 
5547 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5548 		if (ret < 0) {
5549 			err = ret;
5550 			break;
5551 		}
5552 
5553 		if (ret > 0) {
5554 			BUG_ON(wc->stage != DROP_REFERENCE);
5555 			break;
5556 		}
5557 
5558 		if (wc->stage == DROP_REFERENCE) {
5559 			level = wc->level;
5560 			btrfs_node_key(path->nodes[level],
5561 				       &root_item->drop_progress,
5562 				       path->slots[level]);
5563 			root_item->drop_level = level;
5564 		}
5565 
5566 		BUG_ON(wc->level == 0);
5567 		if (trans->transaction->in_commit ||
5568 		    trans->transaction->delayed_refs.flushing) {
5569 			ret = btrfs_update_root(trans, tree_root,
5570 						&root->root_key,
5571 						root_item);
5572 			BUG_ON(ret);
5573 
5574 			btrfs_end_transaction(trans, tree_root);
5575 			trans = btrfs_start_transaction(tree_root, 1);
5576 		} else {
5577 			unsigned long update;
5578 			update = trans->delayed_ref_updates;
5579 			trans->delayed_ref_updates = 0;
5580 			if (update)
5581 				btrfs_run_delayed_refs(trans, tree_root,
5582 						       update);
5583 		}
5584 	}
5585 	btrfs_release_path(root, path);
5586 	BUG_ON(err);
5587 
5588 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
5589 	BUG_ON(ret);
5590 
5591 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5592 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
5593 					   NULL, NULL);
5594 		BUG_ON(ret < 0);
5595 		if (ret > 0) {
5596 			ret = btrfs_del_orphan_item(trans, tree_root,
5597 						    root->root_key.objectid);
5598 			BUG_ON(ret);
5599 		}
5600 	}
5601 
5602 	if (root->in_radix) {
5603 		btrfs_free_fs_root(tree_root->fs_info, root);
5604 	} else {
5605 		free_extent_buffer(root->node);
5606 		free_extent_buffer(root->commit_root);
5607 		kfree(root);
5608 	}
5609 out:
5610 	btrfs_end_transaction(trans, tree_root);
5611 	kfree(wc);
5612 	btrfs_free_path(path);
5613 	return err;
5614 }
5615 
5616 /*
5617  * drop subtree rooted at tree block 'node'.
5618  *
5619  * NOTE: this function will unlock and release tree block 'node'
5620  */
5621 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5622 			struct btrfs_root *root,
5623 			struct extent_buffer *node,
5624 			struct extent_buffer *parent)
5625 {
5626 	struct btrfs_path *path;
5627 	struct walk_control *wc;
5628 	int level;
5629 	int parent_level;
5630 	int ret = 0;
5631 	int wret;
5632 
5633 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5634 
5635 	path = btrfs_alloc_path();
5636 	BUG_ON(!path);
5637 
5638 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5639 	BUG_ON(!wc);
5640 
5641 	btrfs_assert_tree_locked(parent);
5642 	parent_level = btrfs_header_level(parent);
5643 	extent_buffer_get(parent);
5644 	path->nodes[parent_level] = parent;
5645 	path->slots[parent_level] = btrfs_header_nritems(parent);
5646 
5647 	btrfs_assert_tree_locked(node);
5648 	level = btrfs_header_level(node);
5649 	path->nodes[level] = node;
5650 	path->slots[level] = 0;
5651 	path->locks[level] = 1;
5652 
5653 	wc->refs[parent_level] = 1;
5654 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5655 	wc->level = level;
5656 	wc->shared_level = -1;
5657 	wc->stage = DROP_REFERENCE;
5658 	wc->update_ref = 0;
5659 	wc->keep_locks = 1;
5660 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5661 
5662 	while (1) {
5663 		wret = walk_down_tree(trans, root, path, wc);
5664 		if (wret < 0) {
5665 			ret = wret;
5666 			break;
5667 		}
5668 
5669 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5670 		if (wret < 0)
5671 			ret = wret;
5672 		if (wret != 0)
5673 			break;
5674 	}
5675 
5676 	kfree(wc);
5677 	btrfs_free_path(path);
5678 	return ret;
5679 }
5680 
5681 #if 0
5682 static unsigned long calc_ra(unsigned long start, unsigned long last,
5683 			     unsigned long nr)
5684 {
5685 	return min(last, start + nr - 1);
5686 }
5687 
5688 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
5689 					 u64 len)
5690 {
5691 	u64 page_start;
5692 	u64 page_end;
5693 	unsigned long first_index;
5694 	unsigned long last_index;
5695 	unsigned long i;
5696 	struct page *page;
5697 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5698 	struct file_ra_state *ra;
5699 	struct btrfs_ordered_extent *ordered;
5700 	unsigned int total_read = 0;
5701 	unsigned int total_dirty = 0;
5702 	int ret = 0;
5703 
5704 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
5705 
5706 	mutex_lock(&inode->i_mutex);
5707 	first_index = start >> PAGE_CACHE_SHIFT;
5708 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
5709 
5710 	/* make sure the dirty trick played by the caller work */
5711 	ret = invalidate_inode_pages2_range(inode->i_mapping,
5712 					    first_index, last_index);
5713 	if (ret)
5714 		goto out_unlock;
5715 
5716 	file_ra_state_init(ra, inode->i_mapping);
5717 
5718 	for (i = first_index ; i <= last_index; i++) {
5719 		if (total_read % ra->ra_pages == 0) {
5720 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
5721 				       calc_ra(i, last_index, ra->ra_pages));
5722 		}
5723 		total_read++;
5724 again:
5725 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
5726 			BUG_ON(1);
5727 		page = grab_cache_page(inode->i_mapping, i);
5728 		if (!page) {
5729 			ret = -ENOMEM;
5730 			goto out_unlock;
5731 		}
5732 		if (!PageUptodate(page)) {
5733 			btrfs_readpage(NULL, page);
5734 			lock_page(page);
5735 			if (!PageUptodate(page)) {
5736 				unlock_page(page);
5737 				page_cache_release(page);
5738 				ret = -EIO;
5739 				goto out_unlock;
5740 			}
5741 		}
5742 		wait_on_page_writeback(page);
5743 
5744 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
5745 		page_end = page_start + PAGE_CACHE_SIZE - 1;
5746 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5747 
5748 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
5749 		if (ordered) {
5750 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5751 			unlock_page(page);
5752 			page_cache_release(page);
5753 			btrfs_start_ordered_extent(inode, ordered, 1);
5754 			btrfs_put_ordered_extent(ordered);
5755 			goto again;
5756 		}
5757 		set_page_extent_mapped(page);
5758 
5759 		if (i == first_index)
5760 			set_extent_bits(io_tree, page_start, page_end,
5761 					EXTENT_BOUNDARY, GFP_NOFS);
5762 		btrfs_set_extent_delalloc(inode, page_start, page_end);
5763 
5764 		set_page_dirty(page);
5765 		total_dirty++;
5766 
5767 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5768 		unlock_page(page);
5769 		page_cache_release(page);
5770 	}
5771 
5772 out_unlock:
5773 	kfree(ra);
5774 	mutex_unlock(&inode->i_mutex);
5775 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
5776 	return ret;
5777 }
5778 
5779 static noinline int relocate_data_extent(struct inode *reloc_inode,
5780 					 struct btrfs_key *extent_key,
5781 					 u64 offset)
5782 {
5783 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5784 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
5785 	struct extent_map *em;
5786 	u64 start = extent_key->objectid - offset;
5787 	u64 end = start + extent_key->offset - 1;
5788 
5789 	em = alloc_extent_map(GFP_NOFS);
5790 	BUG_ON(!em || IS_ERR(em));
5791 
5792 	em->start = start;
5793 	em->len = extent_key->offset;
5794 	em->block_len = extent_key->offset;
5795 	em->block_start = extent_key->objectid;
5796 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5797 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5798 
5799 	/* setup extent map to cheat btrfs_readpage */
5800 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5801 	while (1) {
5802 		int ret;
5803 		write_lock(&em_tree->lock);
5804 		ret = add_extent_mapping(em_tree, em);
5805 		write_unlock(&em_tree->lock);
5806 		if (ret != -EEXIST) {
5807 			free_extent_map(em);
5808 			break;
5809 		}
5810 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
5811 	}
5812 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5813 
5814 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
5815 }
5816 
5817 struct btrfs_ref_path {
5818 	u64 extent_start;
5819 	u64 nodes[BTRFS_MAX_LEVEL];
5820 	u64 root_objectid;
5821 	u64 root_generation;
5822 	u64 owner_objectid;
5823 	u32 num_refs;
5824 	int lowest_level;
5825 	int current_level;
5826 	int shared_level;
5827 
5828 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
5829 	u64 new_nodes[BTRFS_MAX_LEVEL];
5830 };
5831 
5832 struct disk_extent {
5833 	u64 ram_bytes;
5834 	u64 disk_bytenr;
5835 	u64 disk_num_bytes;
5836 	u64 offset;
5837 	u64 num_bytes;
5838 	u8 compression;
5839 	u8 encryption;
5840 	u16 other_encoding;
5841 };
5842 
5843 static int is_cowonly_root(u64 root_objectid)
5844 {
5845 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
5846 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
5847 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
5848 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
5849 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5850 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
5851 		return 1;
5852 	return 0;
5853 }
5854 
5855 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
5856 				    struct btrfs_root *extent_root,
5857 				    struct btrfs_ref_path *ref_path,
5858 				    int first_time)
5859 {
5860 	struct extent_buffer *leaf;
5861 	struct btrfs_path *path;
5862 	struct btrfs_extent_ref *ref;
5863 	struct btrfs_key key;
5864 	struct btrfs_key found_key;
5865 	u64 bytenr;
5866 	u32 nritems;
5867 	int level;
5868 	int ret = 1;
5869 
5870 	path = btrfs_alloc_path();
5871 	if (!path)
5872 		return -ENOMEM;
5873 
5874 	if (first_time) {
5875 		ref_path->lowest_level = -1;
5876 		ref_path->current_level = -1;
5877 		ref_path->shared_level = -1;
5878 		goto walk_up;
5879 	}
5880 walk_down:
5881 	level = ref_path->current_level - 1;
5882 	while (level >= -1) {
5883 		u64 parent;
5884 		if (level < ref_path->lowest_level)
5885 			break;
5886 
5887 		if (level >= 0)
5888 			bytenr = ref_path->nodes[level];
5889 		else
5890 			bytenr = ref_path->extent_start;
5891 		BUG_ON(bytenr == 0);
5892 
5893 		parent = ref_path->nodes[level + 1];
5894 		ref_path->nodes[level + 1] = 0;
5895 		ref_path->current_level = level;
5896 		BUG_ON(parent == 0);
5897 
5898 		key.objectid = bytenr;
5899 		key.offset = parent + 1;
5900 		key.type = BTRFS_EXTENT_REF_KEY;
5901 
5902 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5903 		if (ret < 0)
5904 			goto out;
5905 		BUG_ON(ret == 0);
5906 
5907 		leaf = path->nodes[0];
5908 		nritems = btrfs_header_nritems(leaf);
5909 		if (path->slots[0] >= nritems) {
5910 			ret = btrfs_next_leaf(extent_root, path);
5911 			if (ret < 0)
5912 				goto out;
5913 			if (ret > 0)
5914 				goto next;
5915 			leaf = path->nodes[0];
5916 		}
5917 
5918 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919 		if (found_key.objectid == bytenr &&
5920 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
5921 			if (level < ref_path->shared_level)
5922 				ref_path->shared_level = level;
5923 			goto found;
5924 		}
5925 next:
5926 		level--;
5927 		btrfs_release_path(extent_root, path);
5928 		cond_resched();
5929 	}
5930 	/* reached lowest level */
5931 	ret = 1;
5932 	goto out;
5933 walk_up:
5934 	level = ref_path->current_level;
5935 	while (level < BTRFS_MAX_LEVEL - 1) {
5936 		u64 ref_objectid;
5937 
5938 		if (level >= 0)
5939 			bytenr = ref_path->nodes[level];
5940 		else
5941 			bytenr = ref_path->extent_start;
5942 
5943 		BUG_ON(bytenr == 0);
5944 
5945 		key.objectid = bytenr;
5946 		key.offset = 0;
5947 		key.type = BTRFS_EXTENT_REF_KEY;
5948 
5949 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5950 		if (ret < 0)
5951 			goto out;
5952 
5953 		leaf = path->nodes[0];
5954 		nritems = btrfs_header_nritems(leaf);
5955 		if (path->slots[0] >= nritems) {
5956 			ret = btrfs_next_leaf(extent_root, path);
5957 			if (ret < 0)
5958 				goto out;
5959 			if (ret > 0) {
5960 				/* the extent was freed by someone */
5961 				if (ref_path->lowest_level == level)
5962 					goto out;
5963 				btrfs_release_path(extent_root, path);
5964 				goto walk_down;
5965 			}
5966 			leaf = path->nodes[0];
5967 		}
5968 
5969 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5970 		if (found_key.objectid != bytenr ||
5971 				found_key.type != BTRFS_EXTENT_REF_KEY) {
5972 			/* the extent was freed by someone */
5973 			if (ref_path->lowest_level == level) {
5974 				ret = 1;
5975 				goto out;
5976 			}
5977 			btrfs_release_path(extent_root, path);
5978 			goto walk_down;
5979 		}
5980 found:
5981 		ref = btrfs_item_ptr(leaf, path->slots[0],
5982 				struct btrfs_extent_ref);
5983 		ref_objectid = btrfs_ref_objectid(leaf, ref);
5984 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5985 			if (first_time) {
5986 				level = (int)ref_objectid;
5987 				BUG_ON(level >= BTRFS_MAX_LEVEL);
5988 				ref_path->lowest_level = level;
5989 				ref_path->current_level = level;
5990 				ref_path->nodes[level] = bytenr;
5991 			} else {
5992 				WARN_ON(ref_objectid != level);
5993 			}
5994 		} else {
5995 			WARN_ON(level != -1);
5996 		}
5997 		first_time = 0;
5998 
5999 		if (ref_path->lowest_level == level) {
6000 			ref_path->owner_objectid = ref_objectid;
6001 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6002 		}
6003 
6004 		/*
6005 		 * the block is tree root or the block isn't in reference
6006 		 * counted tree.
6007 		 */
6008 		if (found_key.objectid == found_key.offset ||
6009 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6010 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6011 			ref_path->root_generation =
6012 				btrfs_ref_generation(leaf, ref);
6013 			if (level < 0) {
6014 				/* special reference from the tree log */
6015 				ref_path->nodes[0] = found_key.offset;
6016 				ref_path->current_level = 0;
6017 			}
6018 			ret = 0;
6019 			goto out;
6020 		}
6021 
6022 		level++;
6023 		BUG_ON(ref_path->nodes[level] != 0);
6024 		ref_path->nodes[level] = found_key.offset;
6025 		ref_path->current_level = level;
6026 
6027 		/*
6028 		 * the reference was created in the running transaction,
6029 		 * no need to continue walking up.
6030 		 */
6031 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6032 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6033 			ref_path->root_generation =
6034 				btrfs_ref_generation(leaf, ref);
6035 			ret = 0;
6036 			goto out;
6037 		}
6038 
6039 		btrfs_release_path(extent_root, path);
6040 		cond_resched();
6041 	}
6042 	/* reached max tree level, but no tree root found. */
6043 	BUG();
6044 out:
6045 	btrfs_free_path(path);
6046 	return ret;
6047 }
6048 
6049 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6050 				struct btrfs_root *extent_root,
6051 				struct btrfs_ref_path *ref_path,
6052 				u64 extent_start)
6053 {
6054 	memset(ref_path, 0, sizeof(*ref_path));
6055 	ref_path->extent_start = extent_start;
6056 
6057 	return __next_ref_path(trans, extent_root, ref_path, 1);
6058 }
6059 
6060 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6061 			       struct btrfs_root *extent_root,
6062 			       struct btrfs_ref_path *ref_path)
6063 {
6064 	return __next_ref_path(trans, extent_root, ref_path, 0);
6065 }
6066 
6067 static noinline int get_new_locations(struct inode *reloc_inode,
6068 				      struct btrfs_key *extent_key,
6069 				      u64 offset, int no_fragment,
6070 				      struct disk_extent **extents,
6071 				      int *nr_extents)
6072 {
6073 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6074 	struct btrfs_path *path;
6075 	struct btrfs_file_extent_item *fi;
6076 	struct extent_buffer *leaf;
6077 	struct disk_extent *exts = *extents;
6078 	struct btrfs_key found_key;
6079 	u64 cur_pos;
6080 	u64 last_byte;
6081 	u32 nritems;
6082 	int nr = 0;
6083 	int max = *nr_extents;
6084 	int ret;
6085 
6086 	WARN_ON(!no_fragment && *extents);
6087 	if (!exts) {
6088 		max = 1;
6089 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6090 		if (!exts)
6091 			return -ENOMEM;
6092 	}
6093 
6094 	path = btrfs_alloc_path();
6095 	BUG_ON(!path);
6096 
6097 	cur_pos = extent_key->objectid - offset;
6098 	last_byte = extent_key->objectid + extent_key->offset;
6099 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6100 				       cur_pos, 0);
6101 	if (ret < 0)
6102 		goto out;
6103 	if (ret > 0) {
6104 		ret = -ENOENT;
6105 		goto out;
6106 	}
6107 
6108 	while (1) {
6109 		leaf = path->nodes[0];
6110 		nritems = btrfs_header_nritems(leaf);
6111 		if (path->slots[0] >= nritems) {
6112 			ret = btrfs_next_leaf(root, path);
6113 			if (ret < 0)
6114 				goto out;
6115 			if (ret > 0)
6116 				break;
6117 			leaf = path->nodes[0];
6118 		}
6119 
6120 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6121 		if (found_key.offset != cur_pos ||
6122 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
6123 		    found_key.objectid != reloc_inode->i_ino)
6124 			break;
6125 
6126 		fi = btrfs_item_ptr(leaf, path->slots[0],
6127 				    struct btrfs_file_extent_item);
6128 		if (btrfs_file_extent_type(leaf, fi) !=
6129 		    BTRFS_FILE_EXTENT_REG ||
6130 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6131 			break;
6132 
6133 		if (nr == max) {
6134 			struct disk_extent *old = exts;
6135 			max *= 2;
6136 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6137 			memcpy(exts, old, sizeof(*exts) * nr);
6138 			if (old != *extents)
6139 				kfree(old);
6140 		}
6141 
6142 		exts[nr].disk_bytenr =
6143 			btrfs_file_extent_disk_bytenr(leaf, fi);
6144 		exts[nr].disk_num_bytes =
6145 			btrfs_file_extent_disk_num_bytes(leaf, fi);
6146 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6147 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6148 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6149 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6150 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6151 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6152 									   fi);
6153 		BUG_ON(exts[nr].offset > 0);
6154 		BUG_ON(exts[nr].compression || exts[nr].encryption);
6155 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6156 
6157 		cur_pos += exts[nr].num_bytes;
6158 		nr++;
6159 
6160 		if (cur_pos + offset >= last_byte)
6161 			break;
6162 
6163 		if (no_fragment) {
6164 			ret = 1;
6165 			goto out;
6166 		}
6167 		path->slots[0]++;
6168 	}
6169 
6170 	BUG_ON(cur_pos + offset > last_byte);
6171 	if (cur_pos + offset < last_byte) {
6172 		ret = -ENOENT;
6173 		goto out;
6174 	}
6175 	ret = 0;
6176 out:
6177 	btrfs_free_path(path);
6178 	if (ret) {
6179 		if (exts != *extents)
6180 			kfree(exts);
6181 	} else {
6182 		*extents = exts;
6183 		*nr_extents = nr;
6184 	}
6185 	return ret;
6186 }
6187 
6188 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6189 					struct btrfs_root *root,
6190 					struct btrfs_path *path,
6191 					struct btrfs_key *extent_key,
6192 					struct btrfs_key *leaf_key,
6193 					struct btrfs_ref_path *ref_path,
6194 					struct disk_extent *new_extents,
6195 					int nr_extents)
6196 {
6197 	struct extent_buffer *leaf;
6198 	struct btrfs_file_extent_item *fi;
6199 	struct inode *inode = NULL;
6200 	struct btrfs_key key;
6201 	u64 lock_start = 0;
6202 	u64 lock_end = 0;
6203 	u64 num_bytes;
6204 	u64 ext_offset;
6205 	u64 search_end = (u64)-1;
6206 	u32 nritems;
6207 	int nr_scaned = 0;
6208 	int extent_locked = 0;
6209 	int extent_type;
6210 	int ret;
6211 
6212 	memcpy(&key, leaf_key, sizeof(key));
6213 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6214 		if (key.objectid < ref_path->owner_objectid ||
6215 		    (key.objectid == ref_path->owner_objectid &&
6216 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
6217 			key.objectid = ref_path->owner_objectid;
6218 			key.type = BTRFS_EXTENT_DATA_KEY;
6219 			key.offset = 0;
6220 		}
6221 	}
6222 
6223 	while (1) {
6224 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6225 		if (ret < 0)
6226 			goto out;
6227 
6228 		leaf = path->nodes[0];
6229 		nritems = btrfs_header_nritems(leaf);
6230 next:
6231 		if (extent_locked && ret > 0) {
6232 			/*
6233 			 * the file extent item was modified by someone
6234 			 * before the extent got locked.
6235 			 */
6236 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6237 				      lock_end, GFP_NOFS);
6238 			extent_locked = 0;
6239 		}
6240 
6241 		if (path->slots[0] >= nritems) {
6242 			if (++nr_scaned > 2)
6243 				break;
6244 
6245 			BUG_ON(extent_locked);
6246 			ret = btrfs_next_leaf(root, path);
6247 			if (ret < 0)
6248 				goto out;
6249 			if (ret > 0)
6250 				break;
6251 			leaf = path->nodes[0];
6252 			nritems = btrfs_header_nritems(leaf);
6253 		}
6254 
6255 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6256 
6257 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6258 			if ((key.objectid > ref_path->owner_objectid) ||
6259 			    (key.objectid == ref_path->owner_objectid &&
6260 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
6261 			    key.offset >= search_end)
6262 				break;
6263 		}
6264 
6265 		if (inode && key.objectid != inode->i_ino) {
6266 			BUG_ON(extent_locked);
6267 			btrfs_release_path(root, path);
6268 			mutex_unlock(&inode->i_mutex);
6269 			iput(inode);
6270 			inode = NULL;
6271 			continue;
6272 		}
6273 
6274 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
6275 			path->slots[0]++;
6276 			ret = 1;
6277 			goto next;
6278 		}
6279 		fi = btrfs_item_ptr(leaf, path->slots[0],
6280 				    struct btrfs_file_extent_item);
6281 		extent_type = btrfs_file_extent_type(leaf, fi);
6282 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6283 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6284 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6285 		     extent_key->objectid)) {
6286 			path->slots[0]++;
6287 			ret = 1;
6288 			goto next;
6289 		}
6290 
6291 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6292 		ext_offset = btrfs_file_extent_offset(leaf, fi);
6293 
6294 		if (search_end == (u64)-1) {
6295 			search_end = key.offset - ext_offset +
6296 				btrfs_file_extent_ram_bytes(leaf, fi);
6297 		}
6298 
6299 		if (!extent_locked) {
6300 			lock_start = key.offset;
6301 			lock_end = lock_start + num_bytes - 1;
6302 		} else {
6303 			if (lock_start > key.offset ||
6304 			    lock_end + 1 < key.offset + num_bytes) {
6305 				unlock_extent(&BTRFS_I(inode)->io_tree,
6306 					      lock_start, lock_end, GFP_NOFS);
6307 				extent_locked = 0;
6308 			}
6309 		}
6310 
6311 		if (!inode) {
6312 			btrfs_release_path(root, path);
6313 
6314 			inode = btrfs_iget_locked(root->fs_info->sb,
6315 						  key.objectid, root);
6316 			if (inode->i_state & I_NEW) {
6317 				BTRFS_I(inode)->root = root;
6318 				BTRFS_I(inode)->location.objectid =
6319 					key.objectid;
6320 				BTRFS_I(inode)->location.type =
6321 					BTRFS_INODE_ITEM_KEY;
6322 				BTRFS_I(inode)->location.offset = 0;
6323 				btrfs_read_locked_inode(inode);
6324 				unlock_new_inode(inode);
6325 			}
6326 			/*
6327 			 * some code call btrfs_commit_transaction while
6328 			 * holding the i_mutex, so we can't use mutex_lock
6329 			 * here.
6330 			 */
6331 			if (is_bad_inode(inode) ||
6332 			    !mutex_trylock(&inode->i_mutex)) {
6333 				iput(inode);
6334 				inode = NULL;
6335 				key.offset = (u64)-1;
6336 				goto skip;
6337 			}
6338 		}
6339 
6340 		if (!extent_locked) {
6341 			struct btrfs_ordered_extent *ordered;
6342 
6343 			btrfs_release_path(root, path);
6344 
6345 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6346 				    lock_end, GFP_NOFS);
6347 			ordered = btrfs_lookup_first_ordered_extent(inode,
6348 								    lock_end);
6349 			if (ordered &&
6350 			    ordered->file_offset <= lock_end &&
6351 			    ordered->file_offset + ordered->len > lock_start) {
6352 				unlock_extent(&BTRFS_I(inode)->io_tree,
6353 					      lock_start, lock_end, GFP_NOFS);
6354 				btrfs_start_ordered_extent(inode, ordered, 1);
6355 				btrfs_put_ordered_extent(ordered);
6356 				key.offset += num_bytes;
6357 				goto skip;
6358 			}
6359 			if (ordered)
6360 				btrfs_put_ordered_extent(ordered);
6361 
6362 			extent_locked = 1;
6363 			continue;
6364 		}
6365 
6366 		if (nr_extents == 1) {
6367 			/* update extent pointer in place */
6368 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
6369 						new_extents[0].disk_bytenr);
6370 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6371 						new_extents[0].disk_num_bytes);
6372 			btrfs_mark_buffer_dirty(leaf);
6373 
6374 			btrfs_drop_extent_cache(inode, key.offset,
6375 						key.offset + num_bytes - 1, 0);
6376 
6377 			ret = btrfs_inc_extent_ref(trans, root,
6378 						new_extents[0].disk_bytenr,
6379 						new_extents[0].disk_num_bytes,
6380 						leaf->start,
6381 						root->root_key.objectid,
6382 						trans->transid,
6383 						key.objectid);
6384 			BUG_ON(ret);
6385 
6386 			ret = btrfs_free_extent(trans, root,
6387 						extent_key->objectid,
6388 						extent_key->offset,
6389 						leaf->start,
6390 						btrfs_header_owner(leaf),
6391 						btrfs_header_generation(leaf),
6392 						key.objectid, 0);
6393 			BUG_ON(ret);
6394 
6395 			btrfs_release_path(root, path);
6396 			key.offset += num_bytes;
6397 		} else {
6398 			BUG_ON(1);
6399 #if 0
6400 			u64 alloc_hint;
6401 			u64 extent_len;
6402 			int i;
6403 			/*
6404 			 * drop old extent pointer at first, then insert the
6405 			 * new pointers one bye one
6406 			 */
6407 			btrfs_release_path(root, path);
6408 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
6409 						 key.offset + num_bytes,
6410 						 key.offset, &alloc_hint);
6411 			BUG_ON(ret);
6412 
6413 			for (i = 0; i < nr_extents; i++) {
6414 				if (ext_offset >= new_extents[i].num_bytes) {
6415 					ext_offset -= new_extents[i].num_bytes;
6416 					continue;
6417 				}
6418 				extent_len = min(new_extents[i].num_bytes -
6419 						 ext_offset, num_bytes);
6420 
6421 				ret = btrfs_insert_empty_item(trans, root,
6422 							      path, &key,
6423 							      sizeof(*fi));
6424 				BUG_ON(ret);
6425 
6426 				leaf = path->nodes[0];
6427 				fi = btrfs_item_ptr(leaf, path->slots[0],
6428 						struct btrfs_file_extent_item);
6429 				btrfs_set_file_extent_generation(leaf, fi,
6430 							trans->transid);
6431 				btrfs_set_file_extent_type(leaf, fi,
6432 							BTRFS_FILE_EXTENT_REG);
6433 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
6434 						new_extents[i].disk_bytenr);
6435 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6436 						new_extents[i].disk_num_bytes);
6437 				btrfs_set_file_extent_ram_bytes(leaf, fi,
6438 						new_extents[i].ram_bytes);
6439 
6440 				btrfs_set_file_extent_compression(leaf, fi,
6441 						new_extents[i].compression);
6442 				btrfs_set_file_extent_encryption(leaf, fi,
6443 						new_extents[i].encryption);
6444 				btrfs_set_file_extent_other_encoding(leaf, fi,
6445 						new_extents[i].other_encoding);
6446 
6447 				btrfs_set_file_extent_num_bytes(leaf, fi,
6448 							extent_len);
6449 				ext_offset += new_extents[i].offset;
6450 				btrfs_set_file_extent_offset(leaf, fi,
6451 							ext_offset);
6452 				btrfs_mark_buffer_dirty(leaf);
6453 
6454 				btrfs_drop_extent_cache(inode, key.offset,
6455 						key.offset + extent_len - 1, 0);
6456 
6457 				ret = btrfs_inc_extent_ref(trans, root,
6458 						new_extents[i].disk_bytenr,
6459 						new_extents[i].disk_num_bytes,
6460 						leaf->start,
6461 						root->root_key.objectid,
6462 						trans->transid, key.objectid);
6463 				BUG_ON(ret);
6464 				btrfs_release_path(root, path);
6465 
6466 				inode_add_bytes(inode, extent_len);
6467 
6468 				ext_offset = 0;
6469 				num_bytes -= extent_len;
6470 				key.offset += extent_len;
6471 
6472 				if (num_bytes == 0)
6473 					break;
6474 			}
6475 			BUG_ON(i >= nr_extents);
6476 #endif
6477 		}
6478 
6479 		if (extent_locked) {
6480 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6481 				      lock_end, GFP_NOFS);
6482 			extent_locked = 0;
6483 		}
6484 skip:
6485 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6486 		    key.offset >= search_end)
6487 			break;
6488 
6489 		cond_resched();
6490 	}
6491 	ret = 0;
6492 out:
6493 	btrfs_release_path(root, path);
6494 	if (inode) {
6495 		mutex_unlock(&inode->i_mutex);
6496 		if (extent_locked) {
6497 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6498 				      lock_end, GFP_NOFS);
6499 		}
6500 		iput(inode);
6501 	}
6502 	return ret;
6503 }
6504 
6505 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6506 			       struct btrfs_root *root,
6507 			       struct extent_buffer *buf, u64 orig_start)
6508 {
6509 	int level;
6510 	int ret;
6511 
6512 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
6513 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6514 
6515 	level = btrfs_header_level(buf);
6516 	if (level == 0) {
6517 		struct btrfs_leaf_ref *ref;
6518 		struct btrfs_leaf_ref *orig_ref;
6519 
6520 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6521 		if (!orig_ref)
6522 			return -ENOENT;
6523 
6524 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6525 		if (!ref) {
6526 			btrfs_free_leaf_ref(root, orig_ref);
6527 			return -ENOMEM;
6528 		}
6529 
6530 		ref->nritems = orig_ref->nritems;
6531 		memcpy(ref->extents, orig_ref->extents,
6532 			sizeof(ref->extents[0]) * ref->nritems);
6533 
6534 		btrfs_free_leaf_ref(root, orig_ref);
6535 
6536 		ref->root_gen = trans->transid;
6537 		ref->bytenr = buf->start;
6538 		ref->owner = btrfs_header_owner(buf);
6539 		ref->generation = btrfs_header_generation(buf);
6540 
6541 		ret = btrfs_add_leaf_ref(root, ref, 0);
6542 		WARN_ON(ret);
6543 		btrfs_free_leaf_ref(root, ref);
6544 	}
6545 	return 0;
6546 }
6547 
6548 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6549 					struct extent_buffer *leaf,
6550 					struct btrfs_block_group_cache *group,
6551 					struct btrfs_root *target_root)
6552 {
6553 	struct btrfs_key key;
6554 	struct inode *inode = NULL;
6555 	struct btrfs_file_extent_item *fi;
6556 	u64 num_bytes;
6557 	u64 skip_objectid = 0;
6558 	u32 nritems;
6559 	u32 i;
6560 
6561 	nritems = btrfs_header_nritems(leaf);
6562 	for (i = 0; i < nritems; i++) {
6563 		btrfs_item_key_to_cpu(leaf, &key, i);
6564 		if (key.objectid == skip_objectid ||
6565 		    key.type != BTRFS_EXTENT_DATA_KEY)
6566 			continue;
6567 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6568 		if (btrfs_file_extent_type(leaf, fi) ==
6569 		    BTRFS_FILE_EXTENT_INLINE)
6570 			continue;
6571 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6572 			continue;
6573 		if (!inode || inode->i_ino != key.objectid) {
6574 			iput(inode);
6575 			inode = btrfs_ilookup(target_root->fs_info->sb,
6576 					      key.objectid, target_root, 1);
6577 		}
6578 		if (!inode) {
6579 			skip_objectid = key.objectid;
6580 			continue;
6581 		}
6582 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6583 
6584 		lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6585 			    key.offset + num_bytes - 1, GFP_NOFS);
6586 		btrfs_drop_extent_cache(inode, key.offset,
6587 					key.offset + num_bytes - 1, 1);
6588 		unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6589 			      key.offset + num_bytes - 1, GFP_NOFS);
6590 		cond_resched();
6591 	}
6592 	iput(inode);
6593 	return 0;
6594 }
6595 
6596 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
6597 					struct btrfs_root *root,
6598 					struct extent_buffer *leaf,
6599 					struct btrfs_block_group_cache *group,
6600 					struct inode *reloc_inode)
6601 {
6602 	struct btrfs_key key;
6603 	struct btrfs_key extent_key;
6604 	struct btrfs_file_extent_item *fi;
6605 	struct btrfs_leaf_ref *ref;
6606 	struct disk_extent *new_extent;
6607 	u64 bytenr;
6608 	u64 num_bytes;
6609 	u32 nritems;
6610 	u32 i;
6611 	int ext_index;
6612 	int nr_extent;
6613 	int ret;
6614 
6615 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
6616 	BUG_ON(!new_extent);
6617 
6618 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
6619 	BUG_ON(!ref);
6620 
6621 	ext_index = -1;
6622 	nritems = btrfs_header_nritems(leaf);
6623 	for (i = 0; i < nritems; i++) {
6624 		btrfs_item_key_to_cpu(leaf, &key, i);
6625 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
6626 			continue;
6627 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6628 		if (btrfs_file_extent_type(leaf, fi) ==
6629 		    BTRFS_FILE_EXTENT_INLINE)
6630 			continue;
6631 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6632 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
6633 		if (bytenr == 0)
6634 			continue;
6635 
6636 		ext_index++;
6637 		if (bytenr >= group->key.objectid + group->key.offset ||
6638 		    bytenr + num_bytes <= group->key.objectid)
6639 			continue;
6640 
6641 		extent_key.objectid = bytenr;
6642 		extent_key.offset = num_bytes;
6643 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6644 		nr_extent = 1;
6645 		ret = get_new_locations(reloc_inode, &extent_key,
6646 					group->key.objectid, 1,
6647 					&new_extent, &nr_extent);
6648 		if (ret > 0)
6649 			continue;
6650 		BUG_ON(ret < 0);
6651 
6652 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
6653 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
6654 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
6655 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
6656 
6657 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
6658 						new_extent->disk_bytenr);
6659 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6660 						new_extent->disk_num_bytes);
6661 		btrfs_mark_buffer_dirty(leaf);
6662 
6663 		ret = btrfs_inc_extent_ref(trans, root,
6664 					new_extent->disk_bytenr,
6665 					new_extent->disk_num_bytes,
6666 					leaf->start,
6667 					root->root_key.objectid,
6668 					trans->transid, key.objectid);
6669 		BUG_ON(ret);
6670 
6671 		ret = btrfs_free_extent(trans, root,
6672 					bytenr, num_bytes, leaf->start,
6673 					btrfs_header_owner(leaf),
6674 					btrfs_header_generation(leaf),
6675 					key.objectid, 0);
6676 		BUG_ON(ret);
6677 		cond_resched();
6678 	}
6679 	kfree(new_extent);
6680 	BUG_ON(ext_index + 1 != ref->nritems);
6681 	btrfs_free_leaf_ref(root, ref);
6682 	return 0;
6683 }
6684 
6685 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
6686 			  struct btrfs_root *root)
6687 {
6688 	struct btrfs_root *reloc_root;
6689 	int ret;
6690 
6691 	if (root->reloc_root) {
6692 		reloc_root = root->reloc_root;
6693 		root->reloc_root = NULL;
6694 		list_add(&reloc_root->dead_list,
6695 			 &root->fs_info->dead_reloc_roots);
6696 
6697 		btrfs_set_root_bytenr(&reloc_root->root_item,
6698 				      reloc_root->node->start);
6699 		btrfs_set_root_level(&root->root_item,
6700 				     btrfs_header_level(reloc_root->node));
6701 		memset(&reloc_root->root_item.drop_progress, 0,
6702 			sizeof(struct btrfs_disk_key));
6703 		reloc_root->root_item.drop_level = 0;
6704 
6705 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
6706 					&reloc_root->root_key,
6707 					&reloc_root->root_item);
6708 		BUG_ON(ret);
6709 	}
6710 	return 0;
6711 }
6712 
6713 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
6714 {
6715 	struct btrfs_trans_handle *trans;
6716 	struct btrfs_root *reloc_root;
6717 	struct btrfs_root *prev_root = NULL;
6718 	struct list_head dead_roots;
6719 	int ret;
6720 	unsigned long nr;
6721 
6722 	INIT_LIST_HEAD(&dead_roots);
6723 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
6724 
6725 	while (!list_empty(&dead_roots)) {
6726 		reloc_root = list_entry(dead_roots.prev,
6727 					struct btrfs_root, dead_list);
6728 		list_del_init(&reloc_root->dead_list);
6729 
6730 		BUG_ON(reloc_root->commit_root != NULL);
6731 		while (1) {
6732 			trans = btrfs_join_transaction(root, 1);
6733 			BUG_ON(!trans);
6734 
6735 			mutex_lock(&root->fs_info->drop_mutex);
6736 			ret = btrfs_drop_snapshot(trans, reloc_root);
6737 			if (ret != -EAGAIN)
6738 				break;
6739 			mutex_unlock(&root->fs_info->drop_mutex);
6740 
6741 			nr = trans->blocks_used;
6742 			ret = btrfs_end_transaction(trans, root);
6743 			BUG_ON(ret);
6744 			btrfs_btree_balance_dirty(root, nr);
6745 		}
6746 
6747 		free_extent_buffer(reloc_root->node);
6748 
6749 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
6750 				     &reloc_root->root_key);
6751 		BUG_ON(ret);
6752 		mutex_unlock(&root->fs_info->drop_mutex);
6753 
6754 		nr = trans->blocks_used;
6755 		ret = btrfs_end_transaction(trans, root);
6756 		BUG_ON(ret);
6757 		btrfs_btree_balance_dirty(root, nr);
6758 
6759 		kfree(prev_root);
6760 		prev_root = reloc_root;
6761 	}
6762 	if (prev_root) {
6763 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
6764 		kfree(prev_root);
6765 	}
6766 	return 0;
6767 }
6768 
6769 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
6770 {
6771 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
6772 	return 0;
6773 }
6774 
6775 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
6776 {
6777 	struct btrfs_root *reloc_root;
6778 	struct btrfs_trans_handle *trans;
6779 	struct btrfs_key location;
6780 	int found;
6781 	int ret;
6782 
6783 	mutex_lock(&root->fs_info->tree_reloc_mutex);
6784 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
6785 	BUG_ON(ret);
6786 	found = !list_empty(&root->fs_info->dead_reloc_roots);
6787 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
6788 
6789 	if (found) {
6790 		trans = btrfs_start_transaction(root, 1);
6791 		BUG_ON(!trans);
6792 		ret = btrfs_commit_transaction(trans, root);
6793 		BUG_ON(ret);
6794 	}
6795 
6796 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
6797 	location.offset = (u64)-1;
6798 	location.type = BTRFS_ROOT_ITEM_KEY;
6799 
6800 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
6801 	BUG_ON(!reloc_root);
6802 	btrfs_orphan_cleanup(reloc_root);
6803 	return 0;
6804 }
6805 
6806 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
6807 				    struct btrfs_root *root)
6808 {
6809 	struct btrfs_root *reloc_root;
6810 	struct extent_buffer *eb;
6811 	struct btrfs_root_item *root_item;
6812 	struct btrfs_key root_key;
6813 	int ret;
6814 
6815 	BUG_ON(!root->ref_cows);
6816 	if (root->reloc_root)
6817 		return 0;
6818 
6819 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
6820 	BUG_ON(!root_item);
6821 
6822 	ret = btrfs_copy_root(trans, root, root->commit_root,
6823 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
6824 	BUG_ON(ret);
6825 
6826 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
6827 	root_key.offset = root->root_key.objectid;
6828 	root_key.type = BTRFS_ROOT_ITEM_KEY;
6829 
6830 	memcpy(root_item, &root->root_item, sizeof(root_item));
6831 	btrfs_set_root_refs(root_item, 0);
6832 	btrfs_set_root_bytenr(root_item, eb->start);
6833 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
6834 	btrfs_set_root_generation(root_item, trans->transid);
6835 
6836 	btrfs_tree_unlock(eb);
6837 	free_extent_buffer(eb);
6838 
6839 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
6840 				&root_key, root_item);
6841 	BUG_ON(ret);
6842 	kfree(root_item);
6843 
6844 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
6845 						 &root_key);
6846 	BUG_ON(!reloc_root);
6847 	reloc_root->last_trans = trans->transid;
6848 	reloc_root->commit_root = NULL;
6849 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
6850 
6851 	root->reloc_root = reloc_root;
6852 	return 0;
6853 }
6854 
6855 /*
6856  * Core function of space balance.
6857  *
6858  * The idea is using reloc trees to relocate tree blocks in reference
6859  * counted roots. There is one reloc tree for each subvol, and all
6860  * reloc trees share same root key objectid. Reloc trees are snapshots
6861  * of the latest committed roots of subvols (root->commit_root).
6862  *
6863  * To relocate a tree block referenced by a subvol, there are two steps.
6864  * COW the block through subvol's reloc tree, then update block pointer
6865  * in the subvol to point to the new block. Since all reloc trees share
6866  * same root key objectid, doing special handing for tree blocks owned
6867  * by them is easy. Once a tree block has been COWed in one reloc tree,
6868  * we can use the resulting new block directly when the same block is
6869  * required to COW again through other reloc trees. By this way, relocated
6870  * tree blocks are shared between reloc trees, so they are also shared
6871  * between subvols.
6872  */
6873 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
6874 				      struct btrfs_root *root,
6875 				      struct btrfs_path *path,
6876 				      struct btrfs_key *first_key,
6877 				      struct btrfs_ref_path *ref_path,
6878 				      struct btrfs_block_group_cache *group,
6879 				      struct inode *reloc_inode)
6880 {
6881 	struct btrfs_root *reloc_root;
6882 	struct extent_buffer *eb = NULL;
6883 	struct btrfs_key *keys;
6884 	u64 *nodes;
6885 	int level;
6886 	int shared_level;
6887 	int lowest_level = 0;
6888 	int ret;
6889 
6890 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
6891 		lowest_level = ref_path->owner_objectid;
6892 
6893 	if (!root->ref_cows) {
6894 		path->lowest_level = lowest_level;
6895 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
6896 		BUG_ON(ret < 0);
6897 		path->lowest_level = 0;
6898 		btrfs_release_path(root, path);
6899 		return 0;
6900 	}
6901 
6902 	mutex_lock(&root->fs_info->tree_reloc_mutex);
6903 	ret = init_reloc_tree(trans, root);
6904 	BUG_ON(ret);
6905 	reloc_root = root->reloc_root;
6906 
6907 	shared_level = ref_path->shared_level;
6908 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
6909 
6910 	keys = ref_path->node_keys;
6911 	nodes = ref_path->new_nodes;
6912 	memset(&keys[shared_level + 1], 0,
6913 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
6914 	memset(&nodes[shared_level + 1], 0,
6915 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
6916 
6917 	if (nodes[lowest_level] == 0) {
6918 		path->lowest_level = lowest_level;
6919 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6920 					0, 1);
6921 		BUG_ON(ret);
6922 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
6923 			eb = path->nodes[level];
6924 			if (!eb || eb == reloc_root->node)
6925 				break;
6926 			nodes[level] = eb->start;
6927 			if (level == 0)
6928 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
6929 			else
6930 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
6931 		}
6932 		if (nodes[0] &&
6933 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6934 			eb = path->nodes[0];
6935 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
6936 						      group, reloc_inode);
6937 			BUG_ON(ret);
6938 		}
6939 		btrfs_release_path(reloc_root, path);
6940 	} else {
6941 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
6942 				       lowest_level);
6943 		BUG_ON(ret);
6944 	}
6945 
6946 	/*
6947 	 * replace tree blocks in the fs tree with tree blocks in
6948 	 * the reloc tree.
6949 	 */
6950 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
6951 	BUG_ON(ret < 0);
6952 
6953 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6954 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6955 					0, 0);
6956 		BUG_ON(ret);
6957 		extent_buffer_get(path->nodes[0]);
6958 		eb = path->nodes[0];
6959 		btrfs_release_path(reloc_root, path);
6960 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
6961 		BUG_ON(ret);
6962 		free_extent_buffer(eb);
6963 	}
6964 
6965 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
6966 	path->lowest_level = 0;
6967 	return 0;
6968 }
6969 
6970 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
6971 					struct btrfs_root *root,
6972 					struct btrfs_path *path,
6973 					struct btrfs_key *first_key,
6974 					struct btrfs_ref_path *ref_path)
6975 {
6976 	int ret;
6977 
6978 	ret = relocate_one_path(trans, root, path, first_key,
6979 				ref_path, NULL, NULL);
6980 	BUG_ON(ret);
6981 
6982 	return 0;
6983 }
6984 
6985 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
6986 				    struct btrfs_root *extent_root,
6987 				    struct btrfs_path *path,
6988 				    struct btrfs_key *extent_key)
6989 {
6990 	int ret;
6991 
6992 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
6993 	if (ret)
6994 		goto out;
6995 	ret = btrfs_del_item(trans, extent_root, path);
6996 out:
6997 	btrfs_release_path(extent_root, path);
6998 	return ret;
6999 }
7000 
7001 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7002 						struct btrfs_ref_path *ref_path)
7003 {
7004 	struct btrfs_key root_key;
7005 
7006 	root_key.objectid = ref_path->root_objectid;
7007 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7008 	if (is_cowonly_root(ref_path->root_objectid))
7009 		root_key.offset = 0;
7010 	else
7011 		root_key.offset = (u64)-1;
7012 
7013 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
7014 }
7015 
7016 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7017 					struct btrfs_path *path,
7018 					struct btrfs_key *extent_key,
7019 					struct btrfs_block_group_cache *group,
7020 					struct inode *reloc_inode, int pass)
7021 {
7022 	struct btrfs_trans_handle *trans;
7023 	struct btrfs_root *found_root;
7024 	struct btrfs_ref_path *ref_path = NULL;
7025 	struct disk_extent *new_extents = NULL;
7026 	int nr_extents = 0;
7027 	int loops;
7028 	int ret;
7029 	int level;
7030 	struct btrfs_key first_key;
7031 	u64 prev_block = 0;
7032 
7033 
7034 	trans = btrfs_start_transaction(extent_root, 1);
7035 	BUG_ON(!trans);
7036 
7037 	if (extent_key->objectid == 0) {
7038 		ret = del_extent_zero(trans, extent_root, path, extent_key);
7039 		goto out;
7040 	}
7041 
7042 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7043 	if (!ref_path) {
7044 		ret = -ENOMEM;
7045 		goto out;
7046 	}
7047 
7048 	for (loops = 0; ; loops++) {
7049 		if (loops == 0) {
7050 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7051 						   extent_key->objectid);
7052 		} else {
7053 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7054 		}
7055 		if (ret < 0)
7056 			goto out;
7057 		if (ret > 0)
7058 			break;
7059 
7060 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7061 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7062 			continue;
7063 
7064 		found_root = read_ref_root(extent_root->fs_info, ref_path);
7065 		BUG_ON(!found_root);
7066 		/*
7067 		 * for reference counted tree, only process reference paths
7068 		 * rooted at the latest committed root.
7069 		 */
7070 		if (found_root->ref_cows &&
7071 		    ref_path->root_generation != found_root->root_key.offset)
7072 			continue;
7073 
7074 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7075 			if (pass == 0) {
7076 				/*
7077 				 * copy data extents to new locations
7078 				 */
7079 				u64 group_start = group->key.objectid;
7080 				ret = relocate_data_extent(reloc_inode,
7081 							   extent_key,
7082 							   group_start);
7083 				if (ret < 0)
7084 					goto out;
7085 				break;
7086 			}
7087 			level = 0;
7088 		} else {
7089 			level = ref_path->owner_objectid;
7090 		}
7091 
7092 		if (prev_block != ref_path->nodes[level]) {
7093 			struct extent_buffer *eb;
7094 			u64 block_start = ref_path->nodes[level];
7095 			u64 block_size = btrfs_level_size(found_root, level);
7096 
7097 			eb = read_tree_block(found_root, block_start,
7098 					     block_size, 0);
7099 			btrfs_tree_lock(eb);
7100 			BUG_ON(level != btrfs_header_level(eb));
7101 
7102 			if (level == 0)
7103 				btrfs_item_key_to_cpu(eb, &first_key, 0);
7104 			else
7105 				btrfs_node_key_to_cpu(eb, &first_key, 0);
7106 
7107 			btrfs_tree_unlock(eb);
7108 			free_extent_buffer(eb);
7109 			prev_block = block_start;
7110 		}
7111 
7112 		mutex_lock(&extent_root->fs_info->trans_mutex);
7113 		btrfs_record_root_in_trans(found_root);
7114 		mutex_unlock(&extent_root->fs_info->trans_mutex);
7115 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7116 			/*
7117 			 * try to update data extent references while
7118 			 * keeping metadata shared between snapshots.
7119 			 */
7120 			if (pass == 1) {
7121 				ret = relocate_one_path(trans, found_root,
7122 						path, &first_key, ref_path,
7123 						group, reloc_inode);
7124 				if (ret < 0)
7125 					goto out;
7126 				continue;
7127 			}
7128 			/*
7129 			 * use fallback method to process the remaining
7130 			 * references.
7131 			 */
7132 			if (!new_extents) {
7133 				u64 group_start = group->key.objectid;
7134 				new_extents = kmalloc(sizeof(*new_extents),
7135 						      GFP_NOFS);
7136 				nr_extents = 1;
7137 				ret = get_new_locations(reloc_inode,
7138 							extent_key,
7139 							group_start, 1,
7140 							&new_extents,
7141 							&nr_extents);
7142 				if (ret)
7143 					goto out;
7144 			}
7145 			ret = replace_one_extent(trans, found_root,
7146 						path, extent_key,
7147 						&first_key, ref_path,
7148 						new_extents, nr_extents);
7149 		} else {
7150 			ret = relocate_tree_block(trans, found_root, path,
7151 						  &first_key, ref_path);
7152 		}
7153 		if (ret < 0)
7154 			goto out;
7155 	}
7156 	ret = 0;
7157 out:
7158 	btrfs_end_transaction(trans, extent_root);
7159 	kfree(new_extents);
7160 	kfree(ref_path);
7161 	return ret;
7162 }
7163 #endif
7164 
7165 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7166 {
7167 	u64 num_devices;
7168 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7169 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7170 
7171 	num_devices = root->fs_info->fs_devices->rw_devices;
7172 	if (num_devices == 1) {
7173 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7174 		stripped = flags & ~stripped;
7175 
7176 		/* turn raid0 into single device chunks */
7177 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7178 			return stripped;
7179 
7180 		/* turn mirroring into duplication */
7181 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7182 			     BTRFS_BLOCK_GROUP_RAID10))
7183 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7184 		return flags;
7185 	} else {
7186 		/* they already had raid on here, just return */
7187 		if (flags & stripped)
7188 			return flags;
7189 
7190 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7191 		stripped = flags & ~stripped;
7192 
7193 		/* switch duplicated blocks with raid1 */
7194 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7195 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7196 
7197 		/* turn single device chunks into raid0 */
7198 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
7199 	}
7200 	return flags;
7201 }
7202 
7203 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
7204 		     struct btrfs_block_group_cache *shrink_block_group,
7205 		     int force)
7206 {
7207 	struct btrfs_trans_handle *trans;
7208 	u64 new_alloc_flags;
7209 	u64 calc;
7210 
7211 	spin_lock(&shrink_block_group->lock);
7212 	if (btrfs_block_group_used(&shrink_block_group->item) +
7213 	    shrink_block_group->reserved > 0) {
7214 		spin_unlock(&shrink_block_group->lock);
7215 
7216 		trans = btrfs_start_transaction(root, 1);
7217 		spin_lock(&shrink_block_group->lock);
7218 
7219 		new_alloc_flags = update_block_group_flags(root,
7220 						   shrink_block_group->flags);
7221 		if (new_alloc_flags != shrink_block_group->flags) {
7222 			calc =
7223 			     btrfs_block_group_used(&shrink_block_group->item);
7224 		} else {
7225 			calc = shrink_block_group->key.offset;
7226 		}
7227 		spin_unlock(&shrink_block_group->lock);
7228 
7229 		do_chunk_alloc(trans, root->fs_info->extent_root,
7230 			       calc + 2 * 1024 * 1024, new_alloc_flags, force);
7231 
7232 		btrfs_end_transaction(trans, root);
7233 	} else
7234 		spin_unlock(&shrink_block_group->lock);
7235 	return 0;
7236 }
7237 
7238 
7239 int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
7240 					 struct btrfs_block_group_cache *group)
7241 
7242 {
7243 	__alloc_chunk_for_shrink(root, group, 1);
7244 	set_block_group_readonly(group);
7245 	return 0;
7246 }
7247 
7248 /*
7249  * checks to see if its even possible to relocate this block group.
7250  *
7251  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7252  * ok to go ahead and try.
7253  */
7254 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7255 {
7256 	struct btrfs_block_group_cache *block_group;
7257 	struct btrfs_space_info *space_info;
7258 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7259 	struct btrfs_device *device;
7260 	int full = 0;
7261 	int ret = 0;
7262 
7263 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7264 
7265 	/* odd, couldn't find the block group, leave it alone */
7266 	if (!block_group)
7267 		return -1;
7268 
7269 	/* no bytes used, we're good */
7270 	if (!btrfs_block_group_used(&block_group->item))
7271 		goto out;
7272 
7273 	space_info = block_group->space_info;
7274 	spin_lock(&space_info->lock);
7275 
7276 	full = space_info->full;
7277 
7278 	/*
7279 	 * if this is the last block group we have in this space, we can't
7280 	 * relocate it unless we're able to allocate a new chunk below.
7281 	 *
7282 	 * Otherwise, we need to make sure we have room in the space to handle
7283 	 * all of the extents from this block group.  If we can, we're good
7284 	 */
7285 	if ((space_info->total_bytes != block_group->key.offset) &&
7286 	   (space_info->bytes_used + space_info->bytes_reserved +
7287 	    space_info->bytes_pinned + space_info->bytes_readonly +
7288 	    btrfs_block_group_used(&block_group->item) <
7289 	    space_info->total_bytes)) {
7290 		spin_unlock(&space_info->lock);
7291 		goto out;
7292 	}
7293 	spin_unlock(&space_info->lock);
7294 
7295 	/*
7296 	 * ok we don't have enough space, but maybe we have free space on our
7297 	 * devices to allocate new chunks for relocation, so loop through our
7298 	 * alloc devices and guess if we have enough space.  However, if we
7299 	 * were marked as full, then we know there aren't enough chunks, and we
7300 	 * can just return.
7301 	 */
7302 	ret = -1;
7303 	if (full)
7304 		goto out;
7305 
7306 	mutex_lock(&root->fs_info->chunk_mutex);
7307 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7308 		u64 min_free = btrfs_block_group_used(&block_group->item);
7309 		u64 dev_offset, max_avail;
7310 
7311 		/*
7312 		 * check to make sure we can actually find a chunk with enough
7313 		 * space to fit our block group in.
7314 		 */
7315 		if (device->total_bytes > device->bytes_used + min_free) {
7316 			ret = find_free_dev_extent(NULL, device, min_free,
7317 						   &dev_offset, &max_avail);
7318 			if (!ret)
7319 				break;
7320 			ret = -1;
7321 		}
7322 	}
7323 	mutex_unlock(&root->fs_info->chunk_mutex);
7324 out:
7325 	btrfs_put_block_group(block_group);
7326 	return ret;
7327 }
7328 
7329 static int find_first_block_group(struct btrfs_root *root,
7330 		struct btrfs_path *path, struct btrfs_key *key)
7331 {
7332 	int ret = 0;
7333 	struct btrfs_key found_key;
7334 	struct extent_buffer *leaf;
7335 	int slot;
7336 
7337 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7338 	if (ret < 0)
7339 		goto out;
7340 
7341 	while (1) {
7342 		slot = path->slots[0];
7343 		leaf = path->nodes[0];
7344 		if (slot >= btrfs_header_nritems(leaf)) {
7345 			ret = btrfs_next_leaf(root, path);
7346 			if (ret == 0)
7347 				continue;
7348 			if (ret < 0)
7349 				goto out;
7350 			break;
7351 		}
7352 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7353 
7354 		if (found_key.objectid >= key->objectid &&
7355 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7356 			ret = 0;
7357 			goto out;
7358 		}
7359 		path->slots[0]++;
7360 	}
7361 	ret = -ENOENT;
7362 out:
7363 	return ret;
7364 }
7365 
7366 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7367 {
7368 	struct btrfs_block_group_cache *block_group;
7369 	struct btrfs_space_info *space_info;
7370 	struct btrfs_caching_control *caching_ctl;
7371 	struct rb_node *n;
7372 
7373 	down_write(&info->extent_commit_sem);
7374 	while (!list_empty(&info->caching_block_groups)) {
7375 		caching_ctl = list_entry(info->caching_block_groups.next,
7376 					 struct btrfs_caching_control, list);
7377 		list_del(&caching_ctl->list);
7378 		put_caching_control(caching_ctl);
7379 	}
7380 	up_write(&info->extent_commit_sem);
7381 
7382 	spin_lock(&info->block_group_cache_lock);
7383 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7384 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7385 				       cache_node);
7386 		rb_erase(&block_group->cache_node,
7387 			 &info->block_group_cache_tree);
7388 		spin_unlock(&info->block_group_cache_lock);
7389 
7390 		down_write(&block_group->space_info->groups_sem);
7391 		list_del(&block_group->list);
7392 		up_write(&block_group->space_info->groups_sem);
7393 
7394 		if (block_group->cached == BTRFS_CACHE_STARTED)
7395 			wait_block_group_cache_done(block_group);
7396 
7397 		btrfs_remove_free_space_cache(block_group);
7398 
7399 		WARN_ON(atomic_read(&block_group->count) != 1);
7400 		kfree(block_group);
7401 
7402 		spin_lock(&info->block_group_cache_lock);
7403 	}
7404 	spin_unlock(&info->block_group_cache_lock);
7405 
7406 	/* now that all the block groups are freed, go through and
7407 	 * free all the space_info structs.  This is only called during
7408 	 * the final stages of unmount, and so we know nobody is
7409 	 * using them.  We call synchronize_rcu() once before we start,
7410 	 * just to be on the safe side.
7411 	 */
7412 	synchronize_rcu();
7413 
7414 	while(!list_empty(&info->space_info)) {
7415 		space_info = list_entry(info->space_info.next,
7416 					struct btrfs_space_info,
7417 					list);
7418 
7419 		list_del(&space_info->list);
7420 		kfree(space_info);
7421 	}
7422 	return 0;
7423 }
7424 
7425 int btrfs_read_block_groups(struct btrfs_root *root)
7426 {
7427 	struct btrfs_path *path;
7428 	int ret;
7429 	struct btrfs_block_group_cache *cache;
7430 	struct btrfs_fs_info *info = root->fs_info;
7431 	struct btrfs_space_info *space_info;
7432 	struct btrfs_key key;
7433 	struct btrfs_key found_key;
7434 	struct extent_buffer *leaf;
7435 
7436 	root = info->extent_root;
7437 	key.objectid = 0;
7438 	key.offset = 0;
7439 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7440 	path = btrfs_alloc_path();
7441 	if (!path)
7442 		return -ENOMEM;
7443 
7444 	while (1) {
7445 		ret = find_first_block_group(root, path, &key);
7446 		if (ret > 0) {
7447 			ret = 0;
7448 			goto error;
7449 		}
7450 		if (ret != 0)
7451 			goto error;
7452 
7453 		leaf = path->nodes[0];
7454 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7455 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7456 		if (!cache) {
7457 			ret = -ENOMEM;
7458 			break;
7459 		}
7460 
7461 		atomic_set(&cache->count, 1);
7462 		spin_lock_init(&cache->lock);
7463 		spin_lock_init(&cache->tree_lock);
7464 		cache->fs_info = info;
7465 		INIT_LIST_HEAD(&cache->list);
7466 		INIT_LIST_HEAD(&cache->cluster_list);
7467 
7468 		/*
7469 		 * we only want to have 32k of ram per block group for keeping
7470 		 * track of free space, and if we pass 1/2 of that we want to
7471 		 * start converting things over to using bitmaps
7472 		 */
7473 		cache->extents_thresh = ((1024 * 32) / 2) /
7474 			sizeof(struct btrfs_free_space);
7475 
7476 		read_extent_buffer(leaf, &cache->item,
7477 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7478 				   sizeof(cache->item));
7479 		memcpy(&cache->key, &found_key, sizeof(found_key));
7480 
7481 		key.objectid = found_key.objectid + found_key.offset;
7482 		btrfs_release_path(root, path);
7483 		cache->flags = btrfs_block_group_flags(&cache->item);
7484 		cache->sectorsize = root->sectorsize;
7485 
7486 		/*
7487 		 * check for two cases, either we are full, and therefore
7488 		 * don't need to bother with the caching work since we won't
7489 		 * find any space, or we are empty, and we can just add all
7490 		 * the space in and be done with it.  This saves us _alot_ of
7491 		 * time, particularly in the full case.
7492 		 */
7493 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7494 			exclude_super_stripes(root, cache);
7495 			cache->last_byte_to_unpin = (u64)-1;
7496 			cache->cached = BTRFS_CACHE_FINISHED;
7497 			free_excluded_extents(root, cache);
7498 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7499 			exclude_super_stripes(root, cache);
7500 			cache->last_byte_to_unpin = (u64)-1;
7501 			cache->cached = BTRFS_CACHE_FINISHED;
7502 			add_new_free_space(cache, root->fs_info,
7503 					   found_key.objectid,
7504 					   found_key.objectid +
7505 					   found_key.offset);
7506 			free_excluded_extents(root, cache);
7507 		}
7508 
7509 		ret = update_space_info(info, cache->flags, found_key.offset,
7510 					btrfs_block_group_used(&cache->item),
7511 					&space_info);
7512 		BUG_ON(ret);
7513 		cache->space_info = space_info;
7514 		spin_lock(&cache->space_info->lock);
7515 		cache->space_info->bytes_super += cache->bytes_super;
7516 		spin_unlock(&cache->space_info->lock);
7517 
7518 		down_write(&space_info->groups_sem);
7519 		list_add_tail(&cache->list, &space_info->block_groups);
7520 		up_write(&space_info->groups_sem);
7521 
7522 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7523 		BUG_ON(ret);
7524 
7525 		set_avail_alloc_bits(root->fs_info, cache->flags);
7526 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7527 			set_block_group_readonly(cache);
7528 	}
7529 	ret = 0;
7530 error:
7531 	btrfs_free_path(path);
7532 	return ret;
7533 }
7534 
7535 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7536 			   struct btrfs_root *root, u64 bytes_used,
7537 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7538 			   u64 size)
7539 {
7540 	int ret;
7541 	struct btrfs_root *extent_root;
7542 	struct btrfs_block_group_cache *cache;
7543 
7544 	extent_root = root->fs_info->extent_root;
7545 
7546 	root->fs_info->last_trans_log_full_commit = trans->transid;
7547 
7548 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7549 	if (!cache)
7550 		return -ENOMEM;
7551 
7552 	cache->key.objectid = chunk_offset;
7553 	cache->key.offset = size;
7554 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7555 	cache->sectorsize = root->sectorsize;
7556 
7557 	/*
7558 	 * we only want to have 32k of ram per block group for keeping track
7559 	 * of free space, and if we pass 1/2 of that we want to start
7560 	 * converting things over to using bitmaps
7561 	 */
7562 	cache->extents_thresh = ((1024 * 32) / 2) /
7563 		sizeof(struct btrfs_free_space);
7564 	atomic_set(&cache->count, 1);
7565 	spin_lock_init(&cache->lock);
7566 	spin_lock_init(&cache->tree_lock);
7567 	INIT_LIST_HEAD(&cache->list);
7568 	INIT_LIST_HEAD(&cache->cluster_list);
7569 
7570 	btrfs_set_block_group_used(&cache->item, bytes_used);
7571 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7572 	cache->flags = type;
7573 	btrfs_set_block_group_flags(&cache->item, type);
7574 
7575 	cache->last_byte_to_unpin = (u64)-1;
7576 	cache->cached = BTRFS_CACHE_FINISHED;
7577 	exclude_super_stripes(root, cache);
7578 
7579 	add_new_free_space(cache, root->fs_info, chunk_offset,
7580 			   chunk_offset + size);
7581 
7582 	free_excluded_extents(root, cache);
7583 
7584 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7585 				&cache->space_info);
7586 	BUG_ON(ret);
7587 
7588 	spin_lock(&cache->space_info->lock);
7589 	cache->space_info->bytes_super += cache->bytes_super;
7590 	spin_unlock(&cache->space_info->lock);
7591 
7592 	down_write(&cache->space_info->groups_sem);
7593 	list_add_tail(&cache->list, &cache->space_info->block_groups);
7594 	up_write(&cache->space_info->groups_sem);
7595 
7596 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7597 	BUG_ON(ret);
7598 
7599 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7600 				sizeof(cache->item));
7601 	BUG_ON(ret);
7602 
7603 	set_avail_alloc_bits(extent_root->fs_info, type);
7604 
7605 	return 0;
7606 }
7607 
7608 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7609 			     struct btrfs_root *root, u64 group_start)
7610 {
7611 	struct btrfs_path *path;
7612 	struct btrfs_block_group_cache *block_group;
7613 	struct btrfs_free_cluster *cluster;
7614 	struct btrfs_key key;
7615 	int ret;
7616 
7617 	root = root->fs_info->extent_root;
7618 
7619 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7620 	BUG_ON(!block_group);
7621 	BUG_ON(!block_group->ro);
7622 
7623 	memcpy(&key, &block_group->key, sizeof(key));
7624 
7625 	/* make sure this block group isn't part of an allocation cluster */
7626 	cluster = &root->fs_info->data_alloc_cluster;
7627 	spin_lock(&cluster->refill_lock);
7628 	btrfs_return_cluster_to_free_space(block_group, cluster);
7629 	spin_unlock(&cluster->refill_lock);
7630 
7631 	/*
7632 	 * make sure this block group isn't part of a metadata
7633 	 * allocation cluster
7634 	 */
7635 	cluster = &root->fs_info->meta_alloc_cluster;
7636 	spin_lock(&cluster->refill_lock);
7637 	btrfs_return_cluster_to_free_space(block_group, cluster);
7638 	spin_unlock(&cluster->refill_lock);
7639 
7640 	path = btrfs_alloc_path();
7641 	BUG_ON(!path);
7642 
7643 	spin_lock(&root->fs_info->block_group_cache_lock);
7644 	rb_erase(&block_group->cache_node,
7645 		 &root->fs_info->block_group_cache_tree);
7646 	spin_unlock(&root->fs_info->block_group_cache_lock);
7647 
7648 	down_write(&block_group->space_info->groups_sem);
7649 	/*
7650 	 * we must use list_del_init so people can check to see if they
7651 	 * are still on the list after taking the semaphore
7652 	 */
7653 	list_del_init(&block_group->list);
7654 	up_write(&block_group->space_info->groups_sem);
7655 
7656 	if (block_group->cached == BTRFS_CACHE_STARTED)
7657 		wait_block_group_cache_done(block_group);
7658 
7659 	btrfs_remove_free_space_cache(block_group);
7660 
7661 	spin_lock(&block_group->space_info->lock);
7662 	block_group->space_info->total_bytes -= block_group->key.offset;
7663 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7664 	spin_unlock(&block_group->space_info->lock);
7665 
7666 	btrfs_clear_space_info_full(root->fs_info);
7667 
7668 	btrfs_put_block_group(block_group);
7669 	btrfs_put_block_group(block_group);
7670 
7671 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7672 	if (ret > 0)
7673 		ret = -EIO;
7674 	if (ret < 0)
7675 		goto out;
7676 
7677 	ret = btrfs_del_item(trans, root, path);
7678 out:
7679 	btrfs_free_path(path);
7680 	return ret;
7681 }
7682