1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 /* 41 * control flags for do_chunk_alloc's force field 42 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 43 * if we really need one. 44 * 45 * CHUNK_ALLOC_LIMITED means to only try and allocate one 46 * if we have very few chunks already allocated. This is 47 * used as part of the clustering code to help make sure 48 * we have a good pool of storage to cluster in, without 49 * filling the FS with empty chunks 50 * 51 * CHUNK_ALLOC_FORCE means it must try to allocate one 52 * 53 */ 54 enum { 55 CHUNK_ALLOC_NO_FORCE = 0, 56 CHUNK_ALLOC_LIMITED = 1, 57 CHUNK_ALLOC_FORCE = 2, 58 }; 59 60 /* 61 * Control how reservations are dealt with. 62 * 63 * RESERVE_FREE - freeing a reservation. 64 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 65 * ENOSPC accounting 66 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 67 * bytes_may_use as the ENOSPC accounting is done elsewhere 68 */ 69 enum { 70 RESERVE_FREE = 0, 71 RESERVE_ALLOC = 1, 72 RESERVE_ALLOC_NO_ACCOUNT = 2, 73 }; 74 75 static int update_block_group(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 bytenr, u64 num_bytes, int alloc); 78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, 80 u64 bytenr, u64 num_bytes, u64 parent, 81 u64 root_objectid, u64 owner_objectid, 82 u64 owner_offset, int refs_to_drop, 83 struct btrfs_delayed_extent_op *extra_op); 84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 85 struct extent_buffer *leaf, 86 struct btrfs_extent_item *ei); 87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 88 struct btrfs_root *root, 89 u64 parent, u64 root_objectid, 90 u64 flags, u64 owner, u64 offset, 91 struct btrfs_key *ins, int ref_mod); 92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 93 struct btrfs_root *root, 94 u64 parent, u64 root_objectid, 95 u64 flags, struct btrfs_disk_key *key, 96 int level, struct btrfs_key *ins); 97 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 98 struct btrfs_root *extent_root, u64 flags, 99 int force); 100 static int find_next_key(struct btrfs_path *path, int level, 101 struct btrfs_key *key); 102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 103 int dump_block_groups); 104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 105 u64 num_bytes, int reserve); 106 107 static noinline int 108 block_group_cache_done(struct btrfs_block_group_cache *cache) 109 { 110 smp_mb(); 111 return cache->cached == BTRFS_CACHE_FINISHED; 112 } 113 114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 115 { 116 return (cache->flags & bits) == bits; 117 } 118 119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 120 { 121 atomic_inc(&cache->count); 122 } 123 124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 125 { 126 if (atomic_dec_and_test(&cache->count)) { 127 WARN_ON(cache->pinned > 0); 128 WARN_ON(cache->reserved > 0); 129 kfree(cache->free_space_ctl); 130 kfree(cache); 131 } 132 } 133 134 /* 135 * this adds the block group to the fs_info rb tree for the block group 136 * cache 137 */ 138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 139 struct btrfs_block_group_cache *block_group) 140 { 141 struct rb_node **p; 142 struct rb_node *parent = NULL; 143 struct btrfs_block_group_cache *cache; 144 145 spin_lock(&info->block_group_cache_lock); 146 p = &info->block_group_cache_tree.rb_node; 147 148 while (*p) { 149 parent = *p; 150 cache = rb_entry(parent, struct btrfs_block_group_cache, 151 cache_node); 152 if (block_group->key.objectid < cache->key.objectid) { 153 p = &(*p)->rb_left; 154 } else if (block_group->key.objectid > cache->key.objectid) { 155 p = &(*p)->rb_right; 156 } else { 157 spin_unlock(&info->block_group_cache_lock); 158 return -EEXIST; 159 } 160 } 161 162 rb_link_node(&block_group->cache_node, parent, p); 163 rb_insert_color(&block_group->cache_node, 164 &info->block_group_cache_tree); 165 spin_unlock(&info->block_group_cache_lock); 166 167 return 0; 168 } 169 170 /* 171 * This will return the block group at or after bytenr if contains is 0, else 172 * it will return the block group that contains the bytenr 173 */ 174 static struct btrfs_block_group_cache * 175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 176 int contains) 177 { 178 struct btrfs_block_group_cache *cache, *ret = NULL; 179 struct rb_node *n; 180 u64 end, start; 181 182 spin_lock(&info->block_group_cache_lock); 183 n = info->block_group_cache_tree.rb_node; 184 185 while (n) { 186 cache = rb_entry(n, struct btrfs_block_group_cache, 187 cache_node); 188 end = cache->key.objectid + cache->key.offset - 1; 189 start = cache->key.objectid; 190 191 if (bytenr < start) { 192 if (!contains && (!ret || start < ret->key.objectid)) 193 ret = cache; 194 n = n->rb_left; 195 } else if (bytenr > start) { 196 if (contains && bytenr <= end) { 197 ret = cache; 198 break; 199 } 200 n = n->rb_right; 201 } else { 202 ret = cache; 203 break; 204 } 205 } 206 if (ret) 207 btrfs_get_block_group(ret); 208 spin_unlock(&info->block_group_cache_lock); 209 210 return ret; 211 } 212 213 static int add_excluded_extent(struct btrfs_root *root, 214 u64 start, u64 num_bytes) 215 { 216 u64 end = start + num_bytes - 1; 217 set_extent_bits(&root->fs_info->freed_extents[0], 218 start, end, EXTENT_UPTODATE, GFP_NOFS); 219 set_extent_bits(&root->fs_info->freed_extents[1], 220 start, end, EXTENT_UPTODATE, GFP_NOFS); 221 return 0; 222 } 223 224 static void free_excluded_extents(struct btrfs_root *root, 225 struct btrfs_block_group_cache *cache) 226 { 227 u64 start, end; 228 229 start = cache->key.objectid; 230 end = start + cache->key.offset - 1; 231 232 clear_extent_bits(&root->fs_info->freed_extents[0], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 clear_extent_bits(&root->fs_info->freed_extents[1], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 } 237 238 static int exclude_super_stripes(struct btrfs_root *root, 239 struct btrfs_block_group_cache *cache) 240 { 241 u64 bytenr; 242 u64 *logical; 243 int stripe_len; 244 int i, nr, ret; 245 246 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 247 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 248 cache->bytes_super += stripe_len; 249 ret = add_excluded_extent(root, cache->key.objectid, 250 stripe_len); 251 BUG_ON(ret); /* -ENOMEM */ 252 } 253 254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 255 bytenr = btrfs_sb_offset(i); 256 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 257 cache->key.objectid, bytenr, 258 0, &logical, &nr, &stripe_len); 259 BUG_ON(ret); /* -ENOMEM */ 260 261 while (nr--) { 262 cache->bytes_super += stripe_len; 263 ret = add_excluded_extent(root, logical[nr], 264 stripe_len); 265 BUG_ON(ret); /* -ENOMEM */ 266 } 267 268 kfree(logical); 269 } 270 return 0; 271 } 272 273 static struct btrfs_caching_control * 274 get_caching_control(struct btrfs_block_group_cache *cache) 275 { 276 struct btrfs_caching_control *ctl; 277 278 spin_lock(&cache->lock); 279 if (cache->cached != BTRFS_CACHE_STARTED) { 280 spin_unlock(&cache->lock); 281 return NULL; 282 } 283 284 /* We're loading it the fast way, so we don't have a caching_ctl. */ 285 if (!cache->caching_ctl) { 286 spin_unlock(&cache->lock); 287 return NULL; 288 } 289 290 ctl = cache->caching_ctl; 291 atomic_inc(&ctl->count); 292 spin_unlock(&cache->lock); 293 return ctl; 294 } 295 296 static void put_caching_control(struct btrfs_caching_control *ctl) 297 { 298 if (atomic_dec_and_test(&ctl->count)) 299 kfree(ctl); 300 } 301 302 /* 303 * this is only called by cache_block_group, since we could have freed extents 304 * we need to check the pinned_extents for any extents that can't be used yet 305 * since their free space will be released as soon as the transaction commits. 306 */ 307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 308 struct btrfs_fs_info *info, u64 start, u64 end) 309 { 310 u64 extent_start, extent_end, size, total_added = 0; 311 int ret; 312 313 while (start < end) { 314 ret = find_first_extent_bit(info->pinned_extents, start, 315 &extent_start, &extent_end, 316 EXTENT_DIRTY | EXTENT_UPTODATE, 317 NULL); 318 if (ret) 319 break; 320 321 if (extent_start <= start) { 322 start = extent_end + 1; 323 } else if (extent_start > start && extent_start < end) { 324 size = extent_start - start; 325 total_added += size; 326 ret = btrfs_add_free_space(block_group, start, 327 size); 328 BUG_ON(ret); /* -ENOMEM or logic error */ 329 start = extent_end + 1; 330 } else { 331 break; 332 } 333 } 334 335 if (start < end) { 336 size = end - start; 337 total_added += size; 338 ret = btrfs_add_free_space(block_group, start, size); 339 BUG_ON(ret); /* -ENOMEM or logic error */ 340 } 341 342 return total_added; 343 } 344 345 static noinline void caching_thread(struct btrfs_work *work) 346 { 347 struct btrfs_block_group_cache *block_group; 348 struct btrfs_fs_info *fs_info; 349 struct btrfs_caching_control *caching_ctl; 350 struct btrfs_root *extent_root; 351 struct btrfs_path *path; 352 struct extent_buffer *leaf; 353 struct btrfs_key key; 354 u64 total_found = 0; 355 u64 last = 0; 356 u32 nritems; 357 int ret = 0; 358 359 caching_ctl = container_of(work, struct btrfs_caching_control, work); 360 block_group = caching_ctl->block_group; 361 fs_info = block_group->fs_info; 362 extent_root = fs_info->extent_root; 363 364 path = btrfs_alloc_path(); 365 if (!path) 366 goto out; 367 368 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 369 370 /* 371 * We don't want to deadlock with somebody trying to allocate a new 372 * extent for the extent root while also trying to search the extent 373 * root to add free space. So we skip locking and search the commit 374 * root, since its read-only 375 */ 376 path->skip_locking = 1; 377 path->search_commit_root = 1; 378 path->reada = 1; 379 380 key.objectid = last; 381 key.offset = 0; 382 key.type = BTRFS_EXTENT_ITEM_KEY; 383 again: 384 mutex_lock(&caching_ctl->mutex); 385 /* need to make sure the commit_root doesn't disappear */ 386 down_read(&fs_info->extent_commit_sem); 387 388 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 389 if (ret < 0) 390 goto err; 391 392 leaf = path->nodes[0]; 393 nritems = btrfs_header_nritems(leaf); 394 395 while (1) { 396 if (btrfs_fs_closing(fs_info) > 1) { 397 last = (u64)-1; 398 break; 399 } 400 401 if (path->slots[0] < nritems) { 402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 403 } else { 404 ret = find_next_key(path, 0, &key); 405 if (ret) 406 break; 407 408 if (need_resched() || 409 btrfs_next_leaf(extent_root, path)) { 410 caching_ctl->progress = last; 411 btrfs_release_path(path); 412 up_read(&fs_info->extent_commit_sem); 413 mutex_unlock(&caching_ctl->mutex); 414 cond_resched(); 415 goto again; 416 } 417 leaf = path->nodes[0]; 418 nritems = btrfs_header_nritems(leaf); 419 continue; 420 } 421 422 if (key.objectid < block_group->key.objectid) { 423 path->slots[0]++; 424 continue; 425 } 426 427 if (key.objectid >= block_group->key.objectid + 428 block_group->key.offset) 429 break; 430 431 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 432 total_found += add_new_free_space(block_group, 433 fs_info, last, 434 key.objectid); 435 last = key.objectid + key.offset; 436 437 if (total_found > (1024 * 1024 * 2)) { 438 total_found = 0; 439 wake_up(&caching_ctl->wait); 440 } 441 } 442 path->slots[0]++; 443 } 444 ret = 0; 445 446 total_found += add_new_free_space(block_group, fs_info, last, 447 block_group->key.objectid + 448 block_group->key.offset); 449 caching_ctl->progress = (u64)-1; 450 451 spin_lock(&block_group->lock); 452 block_group->caching_ctl = NULL; 453 block_group->cached = BTRFS_CACHE_FINISHED; 454 spin_unlock(&block_group->lock); 455 456 err: 457 btrfs_free_path(path); 458 up_read(&fs_info->extent_commit_sem); 459 460 free_excluded_extents(extent_root, block_group); 461 462 mutex_unlock(&caching_ctl->mutex); 463 out: 464 wake_up(&caching_ctl->wait); 465 466 put_caching_control(caching_ctl); 467 btrfs_put_block_group(block_group); 468 } 469 470 static int cache_block_group(struct btrfs_block_group_cache *cache, 471 struct btrfs_trans_handle *trans, 472 struct btrfs_root *root, 473 int load_cache_only) 474 { 475 DEFINE_WAIT(wait); 476 struct btrfs_fs_info *fs_info = cache->fs_info; 477 struct btrfs_caching_control *caching_ctl; 478 int ret = 0; 479 480 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 481 if (!caching_ctl) 482 return -ENOMEM; 483 484 INIT_LIST_HEAD(&caching_ctl->list); 485 mutex_init(&caching_ctl->mutex); 486 init_waitqueue_head(&caching_ctl->wait); 487 caching_ctl->block_group = cache; 488 caching_ctl->progress = cache->key.objectid; 489 atomic_set(&caching_ctl->count, 1); 490 caching_ctl->work.func = caching_thread; 491 492 spin_lock(&cache->lock); 493 /* 494 * This should be a rare occasion, but this could happen I think in the 495 * case where one thread starts to load the space cache info, and then 496 * some other thread starts a transaction commit which tries to do an 497 * allocation while the other thread is still loading the space cache 498 * info. The previous loop should have kept us from choosing this block 499 * group, but if we've moved to the state where we will wait on caching 500 * block groups we need to first check if we're doing a fast load here, 501 * so we can wait for it to finish, otherwise we could end up allocating 502 * from a block group who's cache gets evicted for one reason or 503 * another. 504 */ 505 while (cache->cached == BTRFS_CACHE_FAST) { 506 struct btrfs_caching_control *ctl; 507 508 ctl = cache->caching_ctl; 509 atomic_inc(&ctl->count); 510 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 511 spin_unlock(&cache->lock); 512 513 schedule(); 514 515 finish_wait(&ctl->wait, &wait); 516 put_caching_control(ctl); 517 spin_lock(&cache->lock); 518 } 519 520 if (cache->cached != BTRFS_CACHE_NO) { 521 spin_unlock(&cache->lock); 522 kfree(caching_ctl); 523 return 0; 524 } 525 WARN_ON(cache->caching_ctl); 526 cache->caching_ctl = caching_ctl; 527 cache->cached = BTRFS_CACHE_FAST; 528 spin_unlock(&cache->lock); 529 530 /* 531 * We can't do the read from on-disk cache during a commit since we need 532 * to have the normal tree locking. Also if we are currently trying to 533 * allocate blocks for the tree root we can't do the fast caching since 534 * we likely hold important locks. 535 */ 536 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 537 ret = load_free_space_cache(fs_info, cache); 538 539 spin_lock(&cache->lock); 540 if (ret == 1) { 541 cache->caching_ctl = NULL; 542 cache->cached = BTRFS_CACHE_FINISHED; 543 cache->last_byte_to_unpin = (u64)-1; 544 } else { 545 if (load_cache_only) { 546 cache->caching_ctl = NULL; 547 cache->cached = BTRFS_CACHE_NO; 548 } else { 549 cache->cached = BTRFS_CACHE_STARTED; 550 } 551 } 552 spin_unlock(&cache->lock); 553 wake_up(&caching_ctl->wait); 554 if (ret == 1) { 555 put_caching_control(caching_ctl); 556 free_excluded_extents(fs_info->extent_root, cache); 557 return 0; 558 } 559 } else { 560 /* 561 * We are not going to do the fast caching, set cached to the 562 * appropriate value and wakeup any waiters. 563 */ 564 spin_lock(&cache->lock); 565 if (load_cache_only) { 566 cache->caching_ctl = NULL; 567 cache->cached = BTRFS_CACHE_NO; 568 } else { 569 cache->cached = BTRFS_CACHE_STARTED; 570 } 571 spin_unlock(&cache->lock); 572 wake_up(&caching_ctl->wait); 573 } 574 575 if (load_cache_only) { 576 put_caching_control(caching_ctl); 577 return 0; 578 } 579 580 down_write(&fs_info->extent_commit_sem); 581 atomic_inc(&caching_ctl->count); 582 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 583 up_write(&fs_info->extent_commit_sem); 584 585 btrfs_get_block_group(cache); 586 587 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 588 589 return ret; 590 } 591 592 /* 593 * return the block group that starts at or after bytenr 594 */ 595 static struct btrfs_block_group_cache * 596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 597 { 598 struct btrfs_block_group_cache *cache; 599 600 cache = block_group_cache_tree_search(info, bytenr, 0); 601 602 return cache; 603 } 604 605 /* 606 * return the block group that contains the given bytenr 607 */ 608 struct btrfs_block_group_cache *btrfs_lookup_block_group( 609 struct btrfs_fs_info *info, 610 u64 bytenr) 611 { 612 struct btrfs_block_group_cache *cache; 613 614 cache = block_group_cache_tree_search(info, bytenr, 1); 615 616 return cache; 617 } 618 619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 620 u64 flags) 621 { 622 struct list_head *head = &info->space_info; 623 struct btrfs_space_info *found; 624 625 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 626 627 rcu_read_lock(); 628 list_for_each_entry_rcu(found, head, list) { 629 if (found->flags & flags) { 630 rcu_read_unlock(); 631 return found; 632 } 633 } 634 rcu_read_unlock(); 635 return NULL; 636 } 637 638 /* 639 * after adding space to the filesystem, we need to clear the full flags 640 * on all the space infos. 641 */ 642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 643 { 644 struct list_head *head = &info->space_info; 645 struct btrfs_space_info *found; 646 647 rcu_read_lock(); 648 list_for_each_entry_rcu(found, head, list) 649 found->full = 0; 650 rcu_read_unlock(); 651 } 652 653 u64 btrfs_find_block_group(struct btrfs_root *root, 654 u64 search_start, u64 search_hint, int owner) 655 { 656 struct btrfs_block_group_cache *cache; 657 u64 used; 658 u64 last = max(search_hint, search_start); 659 u64 group_start = 0; 660 int full_search = 0; 661 int factor = 9; 662 int wrapped = 0; 663 again: 664 while (1) { 665 cache = btrfs_lookup_first_block_group(root->fs_info, last); 666 if (!cache) 667 break; 668 669 spin_lock(&cache->lock); 670 last = cache->key.objectid + cache->key.offset; 671 used = btrfs_block_group_used(&cache->item); 672 673 if ((full_search || !cache->ro) && 674 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 675 if (used + cache->pinned + cache->reserved < 676 div_factor(cache->key.offset, factor)) { 677 group_start = cache->key.objectid; 678 spin_unlock(&cache->lock); 679 btrfs_put_block_group(cache); 680 goto found; 681 } 682 } 683 spin_unlock(&cache->lock); 684 btrfs_put_block_group(cache); 685 cond_resched(); 686 } 687 if (!wrapped) { 688 last = search_start; 689 wrapped = 1; 690 goto again; 691 } 692 if (!full_search && factor < 10) { 693 last = search_start; 694 full_search = 1; 695 factor = 10; 696 goto again; 697 } 698 found: 699 return group_start; 700 } 701 702 /* simple helper to search for an existing extent at a given offset */ 703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 704 { 705 int ret; 706 struct btrfs_key key; 707 struct btrfs_path *path; 708 709 path = btrfs_alloc_path(); 710 if (!path) 711 return -ENOMEM; 712 713 key.objectid = start; 714 key.offset = len; 715 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 716 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 717 0, 0); 718 btrfs_free_path(path); 719 return ret; 720 } 721 722 /* 723 * helper function to lookup reference count and flags of extent. 724 * 725 * the head node for delayed ref is used to store the sum of all the 726 * reference count modifications queued up in the rbtree. the head 727 * node may also store the extent flags to set. This way you can check 728 * to see what the reference count and extent flags would be if all of 729 * the delayed refs are not processed. 730 */ 731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 732 struct btrfs_root *root, u64 bytenr, 733 u64 num_bytes, u64 *refs, u64 *flags) 734 { 735 struct btrfs_delayed_ref_head *head; 736 struct btrfs_delayed_ref_root *delayed_refs; 737 struct btrfs_path *path; 738 struct btrfs_extent_item *ei; 739 struct extent_buffer *leaf; 740 struct btrfs_key key; 741 u32 item_size; 742 u64 num_refs; 743 u64 extent_flags; 744 int ret; 745 746 path = btrfs_alloc_path(); 747 if (!path) 748 return -ENOMEM; 749 750 key.objectid = bytenr; 751 key.type = BTRFS_EXTENT_ITEM_KEY; 752 key.offset = num_bytes; 753 if (!trans) { 754 path->skip_locking = 1; 755 path->search_commit_root = 1; 756 } 757 again: 758 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 759 &key, path, 0, 0); 760 if (ret < 0) 761 goto out_free; 762 763 if (ret == 0) { 764 leaf = path->nodes[0]; 765 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 766 if (item_size >= sizeof(*ei)) { 767 ei = btrfs_item_ptr(leaf, path->slots[0], 768 struct btrfs_extent_item); 769 num_refs = btrfs_extent_refs(leaf, ei); 770 extent_flags = btrfs_extent_flags(leaf, ei); 771 } else { 772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 773 struct btrfs_extent_item_v0 *ei0; 774 BUG_ON(item_size != sizeof(*ei0)); 775 ei0 = btrfs_item_ptr(leaf, path->slots[0], 776 struct btrfs_extent_item_v0); 777 num_refs = btrfs_extent_refs_v0(leaf, ei0); 778 /* FIXME: this isn't correct for data */ 779 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 780 #else 781 BUG(); 782 #endif 783 } 784 BUG_ON(num_refs == 0); 785 } else { 786 num_refs = 0; 787 extent_flags = 0; 788 ret = 0; 789 } 790 791 if (!trans) 792 goto out; 793 794 delayed_refs = &trans->transaction->delayed_refs; 795 spin_lock(&delayed_refs->lock); 796 head = btrfs_find_delayed_ref_head(trans, bytenr); 797 if (head) { 798 if (!mutex_trylock(&head->mutex)) { 799 atomic_inc(&head->node.refs); 800 spin_unlock(&delayed_refs->lock); 801 802 btrfs_release_path(path); 803 804 /* 805 * Mutex was contended, block until it's released and try 806 * again 807 */ 808 mutex_lock(&head->mutex); 809 mutex_unlock(&head->mutex); 810 btrfs_put_delayed_ref(&head->node); 811 goto again; 812 } 813 if (head->extent_op && head->extent_op->update_flags) 814 extent_flags |= head->extent_op->flags_to_set; 815 else 816 BUG_ON(num_refs == 0); 817 818 num_refs += head->node.ref_mod; 819 mutex_unlock(&head->mutex); 820 } 821 spin_unlock(&delayed_refs->lock); 822 out: 823 WARN_ON(num_refs == 0); 824 if (refs) 825 *refs = num_refs; 826 if (flags) 827 *flags = extent_flags; 828 out_free: 829 btrfs_free_path(path); 830 return ret; 831 } 832 833 /* 834 * Back reference rules. Back refs have three main goals: 835 * 836 * 1) differentiate between all holders of references to an extent so that 837 * when a reference is dropped we can make sure it was a valid reference 838 * before freeing the extent. 839 * 840 * 2) Provide enough information to quickly find the holders of an extent 841 * if we notice a given block is corrupted or bad. 842 * 843 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 844 * maintenance. This is actually the same as #2, but with a slightly 845 * different use case. 846 * 847 * There are two kinds of back refs. The implicit back refs is optimized 848 * for pointers in non-shared tree blocks. For a given pointer in a block, 849 * back refs of this kind provide information about the block's owner tree 850 * and the pointer's key. These information allow us to find the block by 851 * b-tree searching. The full back refs is for pointers in tree blocks not 852 * referenced by their owner trees. The location of tree block is recorded 853 * in the back refs. Actually the full back refs is generic, and can be 854 * used in all cases the implicit back refs is used. The major shortcoming 855 * of the full back refs is its overhead. Every time a tree block gets 856 * COWed, we have to update back refs entry for all pointers in it. 857 * 858 * For a newly allocated tree block, we use implicit back refs for 859 * pointers in it. This means most tree related operations only involve 860 * implicit back refs. For a tree block created in old transaction, the 861 * only way to drop a reference to it is COW it. So we can detect the 862 * event that tree block loses its owner tree's reference and do the 863 * back refs conversion. 864 * 865 * When a tree block is COW'd through a tree, there are four cases: 866 * 867 * The reference count of the block is one and the tree is the block's 868 * owner tree. Nothing to do in this case. 869 * 870 * The reference count of the block is one and the tree is not the 871 * block's owner tree. In this case, full back refs is used for pointers 872 * in the block. Remove these full back refs, add implicit back refs for 873 * every pointers in the new block. 874 * 875 * The reference count of the block is greater than one and the tree is 876 * the block's owner tree. In this case, implicit back refs is used for 877 * pointers in the block. Add full back refs for every pointers in the 878 * block, increase lower level extents' reference counts. The original 879 * implicit back refs are entailed to the new block. 880 * 881 * The reference count of the block is greater than one and the tree is 882 * not the block's owner tree. Add implicit back refs for every pointer in 883 * the new block, increase lower level extents' reference count. 884 * 885 * Back Reference Key composing: 886 * 887 * The key objectid corresponds to the first byte in the extent, 888 * The key type is used to differentiate between types of back refs. 889 * There are different meanings of the key offset for different types 890 * of back refs. 891 * 892 * File extents can be referenced by: 893 * 894 * - multiple snapshots, subvolumes, or different generations in one subvol 895 * - different files inside a single subvolume 896 * - different offsets inside a file (bookend extents in file.c) 897 * 898 * The extent ref structure for the implicit back refs has fields for: 899 * 900 * - Objectid of the subvolume root 901 * - objectid of the file holding the reference 902 * - original offset in the file 903 * - how many bookend extents 904 * 905 * The key offset for the implicit back refs is hash of the first 906 * three fields. 907 * 908 * The extent ref structure for the full back refs has field for: 909 * 910 * - number of pointers in the tree leaf 911 * 912 * The key offset for the implicit back refs is the first byte of 913 * the tree leaf 914 * 915 * When a file extent is allocated, The implicit back refs is used. 916 * the fields are filled in: 917 * 918 * (root_key.objectid, inode objectid, offset in file, 1) 919 * 920 * When a file extent is removed file truncation, we find the 921 * corresponding implicit back refs and check the following fields: 922 * 923 * (btrfs_header_owner(leaf), inode objectid, offset in file) 924 * 925 * Btree extents can be referenced by: 926 * 927 * - Different subvolumes 928 * 929 * Both the implicit back refs and the full back refs for tree blocks 930 * only consist of key. The key offset for the implicit back refs is 931 * objectid of block's owner tree. The key offset for the full back refs 932 * is the first byte of parent block. 933 * 934 * When implicit back refs is used, information about the lowest key and 935 * level of the tree block are required. These information are stored in 936 * tree block info structure. 937 */ 938 939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 941 struct btrfs_root *root, 942 struct btrfs_path *path, 943 u64 owner, u32 extra_size) 944 { 945 struct btrfs_extent_item *item; 946 struct btrfs_extent_item_v0 *ei0; 947 struct btrfs_extent_ref_v0 *ref0; 948 struct btrfs_tree_block_info *bi; 949 struct extent_buffer *leaf; 950 struct btrfs_key key; 951 struct btrfs_key found_key; 952 u32 new_size = sizeof(*item); 953 u64 refs; 954 int ret; 955 956 leaf = path->nodes[0]; 957 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 958 959 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 960 ei0 = btrfs_item_ptr(leaf, path->slots[0], 961 struct btrfs_extent_item_v0); 962 refs = btrfs_extent_refs_v0(leaf, ei0); 963 964 if (owner == (u64)-1) { 965 while (1) { 966 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 967 ret = btrfs_next_leaf(root, path); 968 if (ret < 0) 969 return ret; 970 BUG_ON(ret > 0); /* Corruption */ 971 leaf = path->nodes[0]; 972 } 973 btrfs_item_key_to_cpu(leaf, &found_key, 974 path->slots[0]); 975 BUG_ON(key.objectid != found_key.objectid); 976 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 977 path->slots[0]++; 978 continue; 979 } 980 ref0 = btrfs_item_ptr(leaf, path->slots[0], 981 struct btrfs_extent_ref_v0); 982 owner = btrfs_ref_objectid_v0(leaf, ref0); 983 break; 984 } 985 } 986 btrfs_release_path(path); 987 988 if (owner < BTRFS_FIRST_FREE_OBJECTID) 989 new_size += sizeof(*bi); 990 991 new_size -= sizeof(*ei0); 992 ret = btrfs_search_slot(trans, root, &key, path, 993 new_size + extra_size, 1); 994 if (ret < 0) 995 return ret; 996 BUG_ON(ret); /* Corruption */ 997 998 btrfs_extend_item(trans, root, path, new_size); 999 1000 leaf = path->nodes[0]; 1001 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1002 btrfs_set_extent_refs(leaf, item, refs); 1003 /* FIXME: get real generation */ 1004 btrfs_set_extent_generation(leaf, item, 0); 1005 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1006 btrfs_set_extent_flags(leaf, item, 1007 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1008 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1009 bi = (struct btrfs_tree_block_info *)(item + 1); 1010 /* FIXME: get first key of the block */ 1011 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1012 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1013 } else { 1014 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1015 } 1016 btrfs_mark_buffer_dirty(leaf); 1017 return 0; 1018 } 1019 #endif 1020 1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1022 { 1023 u32 high_crc = ~(u32)0; 1024 u32 low_crc = ~(u32)0; 1025 __le64 lenum; 1026 1027 lenum = cpu_to_le64(root_objectid); 1028 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1029 lenum = cpu_to_le64(owner); 1030 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1031 lenum = cpu_to_le64(offset); 1032 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1033 1034 return ((u64)high_crc << 31) ^ (u64)low_crc; 1035 } 1036 1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1038 struct btrfs_extent_data_ref *ref) 1039 { 1040 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1041 btrfs_extent_data_ref_objectid(leaf, ref), 1042 btrfs_extent_data_ref_offset(leaf, ref)); 1043 } 1044 1045 static int match_extent_data_ref(struct extent_buffer *leaf, 1046 struct btrfs_extent_data_ref *ref, 1047 u64 root_objectid, u64 owner, u64 offset) 1048 { 1049 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1050 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1051 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1052 return 0; 1053 return 1; 1054 } 1055 1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1057 struct btrfs_root *root, 1058 struct btrfs_path *path, 1059 u64 bytenr, u64 parent, 1060 u64 root_objectid, 1061 u64 owner, u64 offset) 1062 { 1063 struct btrfs_key key; 1064 struct btrfs_extent_data_ref *ref; 1065 struct extent_buffer *leaf; 1066 u32 nritems; 1067 int ret; 1068 int recow; 1069 int err = -ENOENT; 1070 1071 key.objectid = bytenr; 1072 if (parent) { 1073 key.type = BTRFS_SHARED_DATA_REF_KEY; 1074 key.offset = parent; 1075 } else { 1076 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1077 key.offset = hash_extent_data_ref(root_objectid, 1078 owner, offset); 1079 } 1080 again: 1081 recow = 0; 1082 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1083 if (ret < 0) { 1084 err = ret; 1085 goto fail; 1086 } 1087 1088 if (parent) { 1089 if (!ret) 1090 return 0; 1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1092 key.type = BTRFS_EXTENT_REF_V0_KEY; 1093 btrfs_release_path(path); 1094 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1095 if (ret < 0) { 1096 err = ret; 1097 goto fail; 1098 } 1099 if (!ret) 1100 return 0; 1101 #endif 1102 goto fail; 1103 } 1104 1105 leaf = path->nodes[0]; 1106 nritems = btrfs_header_nritems(leaf); 1107 while (1) { 1108 if (path->slots[0] >= nritems) { 1109 ret = btrfs_next_leaf(root, path); 1110 if (ret < 0) 1111 err = ret; 1112 if (ret) 1113 goto fail; 1114 1115 leaf = path->nodes[0]; 1116 nritems = btrfs_header_nritems(leaf); 1117 recow = 1; 1118 } 1119 1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1121 if (key.objectid != bytenr || 1122 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1123 goto fail; 1124 1125 ref = btrfs_item_ptr(leaf, path->slots[0], 1126 struct btrfs_extent_data_ref); 1127 1128 if (match_extent_data_ref(leaf, ref, root_objectid, 1129 owner, offset)) { 1130 if (recow) { 1131 btrfs_release_path(path); 1132 goto again; 1133 } 1134 err = 0; 1135 break; 1136 } 1137 path->slots[0]++; 1138 } 1139 fail: 1140 return err; 1141 } 1142 1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1144 struct btrfs_root *root, 1145 struct btrfs_path *path, 1146 u64 bytenr, u64 parent, 1147 u64 root_objectid, u64 owner, 1148 u64 offset, int refs_to_add) 1149 { 1150 struct btrfs_key key; 1151 struct extent_buffer *leaf; 1152 u32 size; 1153 u32 num_refs; 1154 int ret; 1155 1156 key.objectid = bytenr; 1157 if (parent) { 1158 key.type = BTRFS_SHARED_DATA_REF_KEY; 1159 key.offset = parent; 1160 size = sizeof(struct btrfs_shared_data_ref); 1161 } else { 1162 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1163 key.offset = hash_extent_data_ref(root_objectid, 1164 owner, offset); 1165 size = sizeof(struct btrfs_extent_data_ref); 1166 } 1167 1168 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1169 if (ret && ret != -EEXIST) 1170 goto fail; 1171 1172 leaf = path->nodes[0]; 1173 if (parent) { 1174 struct btrfs_shared_data_ref *ref; 1175 ref = btrfs_item_ptr(leaf, path->slots[0], 1176 struct btrfs_shared_data_ref); 1177 if (ret == 0) { 1178 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1179 } else { 1180 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1181 num_refs += refs_to_add; 1182 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1183 } 1184 } else { 1185 struct btrfs_extent_data_ref *ref; 1186 while (ret == -EEXIST) { 1187 ref = btrfs_item_ptr(leaf, path->slots[0], 1188 struct btrfs_extent_data_ref); 1189 if (match_extent_data_ref(leaf, ref, root_objectid, 1190 owner, offset)) 1191 break; 1192 btrfs_release_path(path); 1193 key.offset++; 1194 ret = btrfs_insert_empty_item(trans, root, path, &key, 1195 size); 1196 if (ret && ret != -EEXIST) 1197 goto fail; 1198 1199 leaf = path->nodes[0]; 1200 } 1201 ref = btrfs_item_ptr(leaf, path->slots[0], 1202 struct btrfs_extent_data_ref); 1203 if (ret == 0) { 1204 btrfs_set_extent_data_ref_root(leaf, ref, 1205 root_objectid); 1206 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1207 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1208 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1209 } else { 1210 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1211 num_refs += refs_to_add; 1212 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1213 } 1214 } 1215 btrfs_mark_buffer_dirty(leaf); 1216 ret = 0; 1217 fail: 1218 btrfs_release_path(path); 1219 return ret; 1220 } 1221 1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, 1225 int refs_to_drop) 1226 { 1227 struct btrfs_key key; 1228 struct btrfs_extent_data_ref *ref1 = NULL; 1229 struct btrfs_shared_data_ref *ref2 = NULL; 1230 struct extent_buffer *leaf; 1231 u32 num_refs = 0; 1232 int ret = 0; 1233 1234 leaf = path->nodes[0]; 1235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1236 1237 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1238 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1239 struct btrfs_extent_data_ref); 1240 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1241 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1242 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1243 struct btrfs_shared_data_ref); 1244 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1246 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1247 struct btrfs_extent_ref_v0 *ref0; 1248 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1249 struct btrfs_extent_ref_v0); 1250 num_refs = btrfs_ref_count_v0(leaf, ref0); 1251 #endif 1252 } else { 1253 BUG(); 1254 } 1255 1256 BUG_ON(num_refs < refs_to_drop); 1257 num_refs -= refs_to_drop; 1258 1259 if (num_refs == 0) { 1260 ret = btrfs_del_item(trans, root, path); 1261 } else { 1262 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1263 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1264 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1265 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1267 else { 1268 struct btrfs_extent_ref_v0 *ref0; 1269 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1270 struct btrfs_extent_ref_v0); 1271 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1272 } 1273 #endif 1274 btrfs_mark_buffer_dirty(leaf); 1275 } 1276 return ret; 1277 } 1278 1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1280 struct btrfs_path *path, 1281 struct btrfs_extent_inline_ref *iref) 1282 { 1283 struct btrfs_key key; 1284 struct extent_buffer *leaf; 1285 struct btrfs_extent_data_ref *ref1; 1286 struct btrfs_shared_data_ref *ref2; 1287 u32 num_refs = 0; 1288 1289 leaf = path->nodes[0]; 1290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1291 if (iref) { 1292 if (btrfs_extent_inline_ref_type(leaf, iref) == 1293 BTRFS_EXTENT_DATA_REF_KEY) { 1294 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1295 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1296 } else { 1297 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1298 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1299 } 1300 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1301 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_extent_data_ref); 1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1305 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_shared_data_ref); 1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1309 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1310 struct btrfs_extent_ref_v0 *ref0; 1311 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1312 struct btrfs_extent_ref_v0); 1313 num_refs = btrfs_ref_count_v0(leaf, ref0); 1314 #endif 1315 } else { 1316 WARN_ON(1); 1317 } 1318 return num_refs; 1319 } 1320 1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1322 struct btrfs_root *root, 1323 struct btrfs_path *path, 1324 u64 bytenr, u64 parent, 1325 u64 root_objectid) 1326 { 1327 struct btrfs_key key; 1328 int ret; 1329 1330 key.objectid = bytenr; 1331 if (parent) { 1332 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1333 key.offset = parent; 1334 } else { 1335 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1336 key.offset = root_objectid; 1337 } 1338 1339 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1340 if (ret > 0) 1341 ret = -ENOENT; 1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1343 if (ret == -ENOENT && parent) { 1344 btrfs_release_path(path); 1345 key.type = BTRFS_EXTENT_REF_V0_KEY; 1346 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1347 if (ret > 0) 1348 ret = -ENOENT; 1349 } 1350 #endif 1351 return ret; 1352 } 1353 1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1355 struct btrfs_root *root, 1356 struct btrfs_path *path, 1357 u64 bytenr, u64 parent, 1358 u64 root_objectid) 1359 { 1360 struct btrfs_key key; 1361 int ret; 1362 1363 key.objectid = bytenr; 1364 if (parent) { 1365 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1366 key.offset = parent; 1367 } else { 1368 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1369 key.offset = root_objectid; 1370 } 1371 1372 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1373 btrfs_release_path(path); 1374 return ret; 1375 } 1376 1377 static inline int extent_ref_type(u64 parent, u64 owner) 1378 { 1379 int type; 1380 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1381 if (parent > 0) 1382 type = BTRFS_SHARED_BLOCK_REF_KEY; 1383 else 1384 type = BTRFS_TREE_BLOCK_REF_KEY; 1385 } else { 1386 if (parent > 0) 1387 type = BTRFS_SHARED_DATA_REF_KEY; 1388 else 1389 type = BTRFS_EXTENT_DATA_REF_KEY; 1390 } 1391 return type; 1392 } 1393 1394 static int find_next_key(struct btrfs_path *path, int level, 1395 struct btrfs_key *key) 1396 1397 { 1398 for (; level < BTRFS_MAX_LEVEL; level++) { 1399 if (!path->nodes[level]) 1400 break; 1401 if (path->slots[level] + 1 >= 1402 btrfs_header_nritems(path->nodes[level])) 1403 continue; 1404 if (level == 0) 1405 btrfs_item_key_to_cpu(path->nodes[level], key, 1406 path->slots[level] + 1); 1407 else 1408 btrfs_node_key_to_cpu(path->nodes[level], key, 1409 path->slots[level] + 1); 1410 return 0; 1411 } 1412 return 1; 1413 } 1414 1415 /* 1416 * look for inline back ref. if back ref is found, *ref_ret is set 1417 * to the address of inline back ref, and 0 is returned. 1418 * 1419 * if back ref isn't found, *ref_ret is set to the address where it 1420 * should be inserted, and -ENOENT is returned. 1421 * 1422 * if insert is true and there are too many inline back refs, the path 1423 * points to the extent item, and -EAGAIN is returned. 1424 * 1425 * NOTE: inline back refs are ordered in the same way that back ref 1426 * items in the tree are ordered. 1427 */ 1428 static noinline_for_stack 1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1430 struct btrfs_root *root, 1431 struct btrfs_path *path, 1432 struct btrfs_extent_inline_ref **ref_ret, 1433 u64 bytenr, u64 num_bytes, 1434 u64 parent, u64 root_objectid, 1435 u64 owner, u64 offset, int insert) 1436 { 1437 struct btrfs_key key; 1438 struct extent_buffer *leaf; 1439 struct btrfs_extent_item *ei; 1440 struct btrfs_extent_inline_ref *iref; 1441 u64 flags; 1442 u64 item_size; 1443 unsigned long ptr; 1444 unsigned long end; 1445 int extra_size; 1446 int type; 1447 int want; 1448 int ret; 1449 int err = 0; 1450 1451 key.objectid = bytenr; 1452 key.type = BTRFS_EXTENT_ITEM_KEY; 1453 key.offset = num_bytes; 1454 1455 want = extent_ref_type(parent, owner); 1456 if (insert) { 1457 extra_size = btrfs_extent_inline_ref_size(want); 1458 path->keep_locks = 1; 1459 } else 1460 extra_size = -1; 1461 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1462 if (ret < 0) { 1463 err = ret; 1464 goto out; 1465 } 1466 if (ret && !insert) { 1467 err = -ENOENT; 1468 goto out; 1469 } 1470 BUG_ON(ret); /* Corruption */ 1471 1472 leaf = path->nodes[0]; 1473 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1475 if (item_size < sizeof(*ei)) { 1476 if (!insert) { 1477 err = -ENOENT; 1478 goto out; 1479 } 1480 ret = convert_extent_item_v0(trans, root, path, owner, 1481 extra_size); 1482 if (ret < 0) { 1483 err = ret; 1484 goto out; 1485 } 1486 leaf = path->nodes[0]; 1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1488 } 1489 #endif 1490 BUG_ON(item_size < sizeof(*ei)); 1491 1492 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1493 flags = btrfs_extent_flags(leaf, ei); 1494 1495 ptr = (unsigned long)(ei + 1); 1496 end = (unsigned long)ei + item_size; 1497 1498 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1499 ptr += sizeof(struct btrfs_tree_block_info); 1500 BUG_ON(ptr > end); 1501 } else { 1502 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1503 } 1504 1505 err = -ENOENT; 1506 while (1) { 1507 if (ptr >= end) { 1508 WARN_ON(ptr > end); 1509 break; 1510 } 1511 iref = (struct btrfs_extent_inline_ref *)ptr; 1512 type = btrfs_extent_inline_ref_type(leaf, iref); 1513 if (want < type) 1514 break; 1515 if (want > type) { 1516 ptr += btrfs_extent_inline_ref_size(type); 1517 continue; 1518 } 1519 1520 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1521 struct btrfs_extent_data_ref *dref; 1522 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1523 if (match_extent_data_ref(leaf, dref, root_objectid, 1524 owner, offset)) { 1525 err = 0; 1526 break; 1527 } 1528 if (hash_extent_data_ref_item(leaf, dref) < 1529 hash_extent_data_ref(root_objectid, owner, offset)) 1530 break; 1531 } else { 1532 u64 ref_offset; 1533 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1534 if (parent > 0) { 1535 if (parent == ref_offset) { 1536 err = 0; 1537 break; 1538 } 1539 if (ref_offset < parent) 1540 break; 1541 } else { 1542 if (root_objectid == ref_offset) { 1543 err = 0; 1544 break; 1545 } 1546 if (ref_offset < root_objectid) 1547 break; 1548 } 1549 } 1550 ptr += btrfs_extent_inline_ref_size(type); 1551 } 1552 if (err == -ENOENT && insert) { 1553 if (item_size + extra_size >= 1554 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1555 err = -EAGAIN; 1556 goto out; 1557 } 1558 /* 1559 * To add new inline back ref, we have to make sure 1560 * there is no corresponding back ref item. 1561 * For simplicity, we just do not add new inline back 1562 * ref if there is any kind of item for this block 1563 */ 1564 if (find_next_key(path, 0, &key) == 0 && 1565 key.objectid == bytenr && 1566 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1567 err = -EAGAIN; 1568 goto out; 1569 } 1570 } 1571 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1572 out: 1573 if (insert) { 1574 path->keep_locks = 0; 1575 btrfs_unlock_up_safe(path, 1); 1576 } 1577 return err; 1578 } 1579 1580 /* 1581 * helper to add new inline back ref 1582 */ 1583 static noinline_for_stack 1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1585 struct btrfs_root *root, 1586 struct btrfs_path *path, 1587 struct btrfs_extent_inline_ref *iref, 1588 u64 parent, u64 root_objectid, 1589 u64 owner, u64 offset, int refs_to_add, 1590 struct btrfs_delayed_extent_op *extent_op) 1591 { 1592 struct extent_buffer *leaf; 1593 struct btrfs_extent_item *ei; 1594 unsigned long ptr; 1595 unsigned long end; 1596 unsigned long item_offset; 1597 u64 refs; 1598 int size; 1599 int type; 1600 1601 leaf = path->nodes[0]; 1602 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1603 item_offset = (unsigned long)iref - (unsigned long)ei; 1604 1605 type = extent_ref_type(parent, owner); 1606 size = btrfs_extent_inline_ref_size(type); 1607 1608 btrfs_extend_item(trans, root, path, size); 1609 1610 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1611 refs = btrfs_extent_refs(leaf, ei); 1612 refs += refs_to_add; 1613 btrfs_set_extent_refs(leaf, ei, refs); 1614 if (extent_op) 1615 __run_delayed_extent_op(extent_op, leaf, ei); 1616 1617 ptr = (unsigned long)ei + item_offset; 1618 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1619 if (ptr < end - size) 1620 memmove_extent_buffer(leaf, ptr + size, ptr, 1621 end - size - ptr); 1622 1623 iref = (struct btrfs_extent_inline_ref *)ptr; 1624 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1625 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1626 struct btrfs_extent_data_ref *dref; 1627 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1628 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1629 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1630 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1631 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1632 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1633 struct btrfs_shared_data_ref *sref; 1634 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1635 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1636 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1637 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1638 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1639 } else { 1640 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1641 } 1642 btrfs_mark_buffer_dirty(leaf); 1643 } 1644 1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1646 struct btrfs_root *root, 1647 struct btrfs_path *path, 1648 struct btrfs_extent_inline_ref **ref_ret, 1649 u64 bytenr, u64 num_bytes, u64 parent, 1650 u64 root_objectid, u64 owner, u64 offset) 1651 { 1652 int ret; 1653 1654 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1655 bytenr, num_bytes, parent, 1656 root_objectid, owner, offset, 0); 1657 if (ret != -ENOENT) 1658 return ret; 1659 1660 btrfs_release_path(path); 1661 *ref_ret = NULL; 1662 1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1664 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1665 root_objectid); 1666 } else { 1667 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1668 root_objectid, owner, offset); 1669 } 1670 return ret; 1671 } 1672 1673 /* 1674 * helper to update/remove inline back ref 1675 */ 1676 static noinline_for_stack 1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1678 struct btrfs_root *root, 1679 struct btrfs_path *path, 1680 struct btrfs_extent_inline_ref *iref, 1681 int refs_to_mod, 1682 struct btrfs_delayed_extent_op *extent_op) 1683 { 1684 struct extent_buffer *leaf; 1685 struct btrfs_extent_item *ei; 1686 struct btrfs_extent_data_ref *dref = NULL; 1687 struct btrfs_shared_data_ref *sref = NULL; 1688 unsigned long ptr; 1689 unsigned long end; 1690 u32 item_size; 1691 int size; 1692 int type; 1693 u64 refs; 1694 1695 leaf = path->nodes[0]; 1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1697 refs = btrfs_extent_refs(leaf, ei); 1698 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1699 refs += refs_to_mod; 1700 btrfs_set_extent_refs(leaf, ei, refs); 1701 if (extent_op) 1702 __run_delayed_extent_op(extent_op, leaf, ei); 1703 1704 type = btrfs_extent_inline_ref_type(leaf, iref); 1705 1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1707 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1708 refs = btrfs_extent_data_ref_count(leaf, dref); 1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1710 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1711 refs = btrfs_shared_data_ref_count(leaf, sref); 1712 } else { 1713 refs = 1; 1714 BUG_ON(refs_to_mod != -1); 1715 } 1716 1717 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1718 refs += refs_to_mod; 1719 1720 if (refs > 0) { 1721 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1722 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1723 else 1724 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1725 } else { 1726 size = btrfs_extent_inline_ref_size(type); 1727 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1728 ptr = (unsigned long)iref; 1729 end = (unsigned long)ei + item_size; 1730 if (ptr + size < end) 1731 memmove_extent_buffer(leaf, ptr, ptr + size, 1732 end - ptr - size); 1733 item_size -= size; 1734 btrfs_truncate_item(trans, root, path, item_size, 1); 1735 } 1736 btrfs_mark_buffer_dirty(leaf); 1737 } 1738 1739 static noinline_for_stack 1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1741 struct btrfs_root *root, 1742 struct btrfs_path *path, 1743 u64 bytenr, u64 num_bytes, u64 parent, 1744 u64 root_objectid, u64 owner, 1745 u64 offset, int refs_to_add, 1746 struct btrfs_delayed_extent_op *extent_op) 1747 { 1748 struct btrfs_extent_inline_ref *iref; 1749 int ret; 1750 1751 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1752 bytenr, num_bytes, parent, 1753 root_objectid, owner, offset, 1); 1754 if (ret == 0) { 1755 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1756 update_inline_extent_backref(trans, root, path, iref, 1757 refs_to_add, extent_op); 1758 } else if (ret == -ENOENT) { 1759 setup_inline_extent_backref(trans, root, path, iref, parent, 1760 root_objectid, owner, offset, 1761 refs_to_add, extent_op); 1762 ret = 0; 1763 } 1764 return ret; 1765 } 1766 1767 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1768 struct btrfs_root *root, 1769 struct btrfs_path *path, 1770 u64 bytenr, u64 parent, u64 root_objectid, 1771 u64 owner, u64 offset, int refs_to_add) 1772 { 1773 int ret; 1774 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1775 BUG_ON(refs_to_add != 1); 1776 ret = insert_tree_block_ref(trans, root, path, bytenr, 1777 parent, root_objectid); 1778 } else { 1779 ret = insert_extent_data_ref(trans, root, path, bytenr, 1780 parent, root_objectid, 1781 owner, offset, refs_to_add); 1782 } 1783 return ret; 1784 } 1785 1786 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1787 struct btrfs_root *root, 1788 struct btrfs_path *path, 1789 struct btrfs_extent_inline_ref *iref, 1790 int refs_to_drop, int is_data) 1791 { 1792 int ret = 0; 1793 1794 BUG_ON(!is_data && refs_to_drop != 1); 1795 if (iref) { 1796 update_inline_extent_backref(trans, root, path, iref, 1797 -refs_to_drop, NULL); 1798 } else if (is_data) { 1799 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1800 } else { 1801 ret = btrfs_del_item(trans, root, path); 1802 } 1803 return ret; 1804 } 1805 1806 static int btrfs_issue_discard(struct block_device *bdev, 1807 u64 start, u64 len) 1808 { 1809 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1810 } 1811 1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1813 u64 num_bytes, u64 *actual_bytes) 1814 { 1815 int ret; 1816 u64 discarded_bytes = 0; 1817 struct btrfs_bio *bbio = NULL; 1818 1819 1820 /* Tell the block device(s) that the sectors can be discarded */ 1821 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1822 bytenr, &num_bytes, &bbio, 0); 1823 /* Error condition is -ENOMEM */ 1824 if (!ret) { 1825 struct btrfs_bio_stripe *stripe = bbio->stripes; 1826 int i; 1827 1828 1829 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1830 if (!stripe->dev->can_discard) 1831 continue; 1832 1833 ret = btrfs_issue_discard(stripe->dev->bdev, 1834 stripe->physical, 1835 stripe->length); 1836 if (!ret) 1837 discarded_bytes += stripe->length; 1838 else if (ret != -EOPNOTSUPP) 1839 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1840 1841 /* 1842 * Just in case we get back EOPNOTSUPP for some reason, 1843 * just ignore the return value so we don't screw up 1844 * people calling discard_extent. 1845 */ 1846 ret = 0; 1847 } 1848 kfree(bbio); 1849 } 1850 1851 if (actual_bytes) 1852 *actual_bytes = discarded_bytes; 1853 1854 1855 return ret; 1856 } 1857 1858 /* Can return -ENOMEM */ 1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1860 struct btrfs_root *root, 1861 u64 bytenr, u64 num_bytes, u64 parent, 1862 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1863 { 1864 int ret; 1865 struct btrfs_fs_info *fs_info = root->fs_info; 1866 1867 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1868 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1869 1870 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1871 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1872 num_bytes, 1873 parent, root_objectid, (int)owner, 1874 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1875 } else { 1876 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1877 num_bytes, 1878 parent, root_objectid, owner, offset, 1879 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1880 } 1881 return ret; 1882 } 1883 1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 u64 bytenr, u64 num_bytes, 1887 u64 parent, u64 root_objectid, 1888 u64 owner, u64 offset, int refs_to_add, 1889 struct btrfs_delayed_extent_op *extent_op) 1890 { 1891 struct btrfs_path *path; 1892 struct extent_buffer *leaf; 1893 struct btrfs_extent_item *item; 1894 u64 refs; 1895 int ret; 1896 int err = 0; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 path->reada = 1; 1903 path->leave_spinning = 1; 1904 /* this will setup the path even if it fails to insert the back ref */ 1905 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1906 path, bytenr, num_bytes, parent, 1907 root_objectid, owner, offset, 1908 refs_to_add, extent_op); 1909 if (ret == 0) 1910 goto out; 1911 1912 if (ret != -EAGAIN) { 1913 err = ret; 1914 goto out; 1915 } 1916 1917 leaf = path->nodes[0]; 1918 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1919 refs = btrfs_extent_refs(leaf, item); 1920 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1921 if (extent_op) 1922 __run_delayed_extent_op(extent_op, leaf, item); 1923 1924 btrfs_mark_buffer_dirty(leaf); 1925 btrfs_release_path(path); 1926 1927 path->reada = 1; 1928 path->leave_spinning = 1; 1929 1930 /* now insert the actual backref */ 1931 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1932 path, bytenr, parent, root_objectid, 1933 owner, offset, refs_to_add); 1934 if (ret) 1935 btrfs_abort_transaction(trans, root, ret); 1936 out: 1937 btrfs_free_path(path); 1938 return err; 1939 } 1940 1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 struct btrfs_delayed_ref_node *node, 1944 struct btrfs_delayed_extent_op *extent_op, 1945 int insert_reserved) 1946 { 1947 int ret = 0; 1948 struct btrfs_delayed_data_ref *ref; 1949 struct btrfs_key ins; 1950 u64 parent = 0; 1951 u64 ref_root = 0; 1952 u64 flags = 0; 1953 1954 ins.objectid = node->bytenr; 1955 ins.offset = node->num_bytes; 1956 ins.type = BTRFS_EXTENT_ITEM_KEY; 1957 1958 ref = btrfs_delayed_node_to_data_ref(node); 1959 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1960 parent = ref->parent; 1961 else 1962 ref_root = ref->root; 1963 1964 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1965 if (extent_op) { 1966 BUG_ON(extent_op->update_key); 1967 flags |= extent_op->flags_to_set; 1968 } 1969 ret = alloc_reserved_file_extent(trans, root, 1970 parent, ref_root, flags, 1971 ref->objectid, ref->offset, 1972 &ins, node->ref_mod); 1973 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1974 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1975 node->num_bytes, parent, 1976 ref_root, ref->objectid, 1977 ref->offset, node->ref_mod, 1978 extent_op); 1979 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1980 ret = __btrfs_free_extent(trans, root, node->bytenr, 1981 node->num_bytes, parent, 1982 ref_root, ref->objectid, 1983 ref->offset, node->ref_mod, 1984 extent_op); 1985 } else { 1986 BUG(); 1987 } 1988 return ret; 1989 } 1990 1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1992 struct extent_buffer *leaf, 1993 struct btrfs_extent_item *ei) 1994 { 1995 u64 flags = btrfs_extent_flags(leaf, ei); 1996 if (extent_op->update_flags) { 1997 flags |= extent_op->flags_to_set; 1998 btrfs_set_extent_flags(leaf, ei, flags); 1999 } 2000 2001 if (extent_op->update_key) { 2002 struct btrfs_tree_block_info *bi; 2003 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2004 bi = (struct btrfs_tree_block_info *)(ei + 1); 2005 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2006 } 2007 } 2008 2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 struct btrfs_delayed_ref_node *node, 2012 struct btrfs_delayed_extent_op *extent_op) 2013 { 2014 struct btrfs_key key; 2015 struct btrfs_path *path; 2016 struct btrfs_extent_item *ei; 2017 struct extent_buffer *leaf; 2018 u32 item_size; 2019 int ret; 2020 int err = 0; 2021 2022 if (trans->aborted) 2023 return 0; 2024 2025 path = btrfs_alloc_path(); 2026 if (!path) 2027 return -ENOMEM; 2028 2029 key.objectid = node->bytenr; 2030 key.type = BTRFS_EXTENT_ITEM_KEY; 2031 key.offset = node->num_bytes; 2032 2033 path->reada = 1; 2034 path->leave_spinning = 1; 2035 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2036 path, 0, 1); 2037 if (ret < 0) { 2038 err = ret; 2039 goto out; 2040 } 2041 if (ret > 0) { 2042 err = -EIO; 2043 goto out; 2044 } 2045 2046 leaf = path->nodes[0]; 2047 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2049 if (item_size < sizeof(*ei)) { 2050 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2051 path, (u64)-1, 0); 2052 if (ret < 0) { 2053 err = ret; 2054 goto out; 2055 } 2056 leaf = path->nodes[0]; 2057 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2058 } 2059 #endif 2060 BUG_ON(item_size < sizeof(*ei)); 2061 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2062 __run_delayed_extent_op(extent_op, leaf, ei); 2063 2064 btrfs_mark_buffer_dirty(leaf); 2065 out: 2066 btrfs_free_path(path); 2067 return err; 2068 } 2069 2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2071 struct btrfs_root *root, 2072 struct btrfs_delayed_ref_node *node, 2073 struct btrfs_delayed_extent_op *extent_op, 2074 int insert_reserved) 2075 { 2076 int ret = 0; 2077 struct btrfs_delayed_tree_ref *ref; 2078 struct btrfs_key ins; 2079 u64 parent = 0; 2080 u64 ref_root = 0; 2081 2082 ins.objectid = node->bytenr; 2083 ins.offset = node->num_bytes; 2084 ins.type = BTRFS_EXTENT_ITEM_KEY; 2085 2086 ref = btrfs_delayed_node_to_tree_ref(node); 2087 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2088 parent = ref->parent; 2089 else 2090 ref_root = ref->root; 2091 2092 BUG_ON(node->ref_mod != 1); 2093 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2094 BUG_ON(!extent_op || !extent_op->update_flags || 2095 !extent_op->update_key); 2096 ret = alloc_reserved_tree_block(trans, root, 2097 parent, ref_root, 2098 extent_op->flags_to_set, 2099 &extent_op->key, 2100 ref->level, &ins); 2101 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2102 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2103 node->num_bytes, parent, ref_root, 2104 ref->level, 0, 1, extent_op); 2105 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2106 ret = __btrfs_free_extent(trans, root, node->bytenr, 2107 node->num_bytes, parent, ref_root, 2108 ref->level, 0, 1, extent_op); 2109 } else { 2110 BUG(); 2111 } 2112 return ret; 2113 } 2114 2115 /* helper function to actually process a single delayed ref entry */ 2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2117 struct btrfs_root *root, 2118 struct btrfs_delayed_ref_node *node, 2119 struct btrfs_delayed_extent_op *extent_op, 2120 int insert_reserved) 2121 { 2122 int ret = 0; 2123 2124 if (trans->aborted) 2125 return 0; 2126 2127 if (btrfs_delayed_ref_is_head(node)) { 2128 struct btrfs_delayed_ref_head *head; 2129 /* 2130 * we've hit the end of the chain and we were supposed 2131 * to insert this extent into the tree. But, it got 2132 * deleted before we ever needed to insert it, so all 2133 * we have to do is clean up the accounting 2134 */ 2135 BUG_ON(extent_op); 2136 head = btrfs_delayed_node_to_head(node); 2137 if (insert_reserved) { 2138 btrfs_pin_extent(root, node->bytenr, 2139 node->num_bytes, 1); 2140 if (head->is_data) { 2141 ret = btrfs_del_csums(trans, root, 2142 node->bytenr, 2143 node->num_bytes); 2144 } 2145 } 2146 mutex_unlock(&head->mutex); 2147 return ret; 2148 } 2149 2150 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2151 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2152 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2153 insert_reserved); 2154 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2155 node->type == BTRFS_SHARED_DATA_REF_KEY) 2156 ret = run_delayed_data_ref(trans, root, node, extent_op, 2157 insert_reserved); 2158 else 2159 BUG(); 2160 return ret; 2161 } 2162 2163 static noinline struct btrfs_delayed_ref_node * 2164 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2165 { 2166 struct rb_node *node; 2167 struct btrfs_delayed_ref_node *ref; 2168 int action = BTRFS_ADD_DELAYED_REF; 2169 again: 2170 /* 2171 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2172 * this prevents ref count from going down to zero when 2173 * there still are pending delayed ref. 2174 */ 2175 node = rb_prev(&head->node.rb_node); 2176 while (1) { 2177 if (!node) 2178 break; 2179 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2180 rb_node); 2181 if (ref->bytenr != head->node.bytenr) 2182 break; 2183 if (ref->action == action) 2184 return ref; 2185 node = rb_prev(node); 2186 } 2187 if (action == BTRFS_ADD_DELAYED_REF) { 2188 action = BTRFS_DROP_DELAYED_REF; 2189 goto again; 2190 } 2191 return NULL; 2192 } 2193 2194 /* 2195 * Returns 0 on success or if called with an already aborted transaction. 2196 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2197 */ 2198 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2199 struct btrfs_root *root, 2200 struct list_head *cluster) 2201 { 2202 struct btrfs_delayed_ref_root *delayed_refs; 2203 struct btrfs_delayed_ref_node *ref; 2204 struct btrfs_delayed_ref_head *locked_ref = NULL; 2205 struct btrfs_delayed_extent_op *extent_op; 2206 struct btrfs_fs_info *fs_info = root->fs_info; 2207 int ret; 2208 int count = 0; 2209 int must_insert_reserved = 0; 2210 2211 delayed_refs = &trans->transaction->delayed_refs; 2212 while (1) { 2213 if (!locked_ref) { 2214 /* pick a new head ref from the cluster list */ 2215 if (list_empty(cluster)) 2216 break; 2217 2218 locked_ref = list_entry(cluster->next, 2219 struct btrfs_delayed_ref_head, cluster); 2220 2221 /* grab the lock that says we are going to process 2222 * all the refs for this head */ 2223 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2224 2225 /* 2226 * we may have dropped the spin lock to get the head 2227 * mutex lock, and that might have given someone else 2228 * time to free the head. If that's true, it has been 2229 * removed from our list and we can move on. 2230 */ 2231 if (ret == -EAGAIN) { 2232 locked_ref = NULL; 2233 count++; 2234 continue; 2235 } 2236 } 2237 2238 /* 2239 * We need to try and merge add/drops of the same ref since we 2240 * can run into issues with relocate dropping the implicit ref 2241 * and then it being added back again before the drop can 2242 * finish. If we merged anything we need to re-loop so we can 2243 * get a good ref. 2244 */ 2245 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2246 locked_ref); 2247 2248 /* 2249 * locked_ref is the head node, so we have to go one 2250 * node back for any delayed ref updates 2251 */ 2252 ref = select_delayed_ref(locked_ref); 2253 2254 if (ref && ref->seq && 2255 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2256 /* 2257 * there are still refs with lower seq numbers in the 2258 * process of being added. Don't run this ref yet. 2259 */ 2260 list_del_init(&locked_ref->cluster); 2261 mutex_unlock(&locked_ref->mutex); 2262 locked_ref = NULL; 2263 delayed_refs->num_heads_ready++; 2264 spin_unlock(&delayed_refs->lock); 2265 cond_resched(); 2266 spin_lock(&delayed_refs->lock); 2267 continue; 2268 } 2269 2270 /* 2271 * record the must insert reserved flag before we 2272 * drop the spin lock. 2273 */ 2274 must_insert_reserved = locked_ref->must_insert_reserved; 2275 locked_ref->must_insert_reserved = 0; 2276 2277 extent_op = locked_ref->extent_op; 2278 locked_ref->extent_op = NULL; 2279 2280 if (!ref) { 2281 /* All delayed refs have been processed, Go ahead 2282 * and send the head node to run_one_delayed_ref, 2283 * so that any accounting fixes can happen 2284 */ 2285 ref = &locked_ref->node; 2286 2287 if (extent_op && must_insert_reserved) { 2288 kfree(extent_op); 2289 extent_op = NULL; 2290 } 2291 2292 if (extent_op) { 2293 spin_unlock(&delayed_refs->lock); 2294 2295 ret = run_delayed_extent_op(trans, root, 2296 ref, extent_op); 2297 kfree(extent_op); 2298 2299 if (ret) { 2300 list_del_init(&locked_ref->cluster); 2301 mutex_unlock(&locked_ref->mutex); 2302 2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret); 2304 spin_lock(&delayed_refs->lock); 2305 return ret; 2306 } 2307 2308 goto next; 2309 } 2310 2311 list_del_init(&locked_ref->cluster); 2312 locked_ref = NULL; 2313 } 2314 2315 ref->in_tree = 0; 2316 rb_erase(&ref->rb_node, &delayed_refs->root); 2317 delayed_refs->num_entries--; 2318 if (locked_ref) { 2319 /* 2320 * when we play the delayed ref, also correct the 2321 * ref_mod on head 2322 */ 2323 switch (ref->action) { 2324 case BTRFS_ADD_DELAYED_REF: 2325 case BTRFS_ADD_DELAYED_EXTENT: 2326 locked_ref->node.ref_mod -= ref->ref_mod; 2327 break; 2328 case BTRFS_DROP_DELAYED_REF: 2329 locked_ref->node.ref_mod += ref->ref_mod; 2330 break; 2331 default: 2332 WARN_ON(1); 2333 } 2334 } 2335 spin_unlock(&delayed_refs->lock); 2336 2337 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2338 must_insert_reserved); 2339 2340 btrfs_put_delayed_ref(ref); 2341 kfree(extent_op); 2342 count++; 2343 2344 if (ret) { 2345 if (locked_ref) { 2346 list_del_init(&locked_ref->cluster); 2347 mutex_unlock(&locked_ref->mutex); 2348 } 2349 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret); 2350 spin_lock(&delayed_refs->lock); 2351 return ret; 2352 } 2353 2354 next: 2355 cond_resched(); 2356 spin_lock(&delayed_refs->lock); 2357 } 2358 return count; 2359 } 2360 2361 #ifdef SCRAMBLE_DELAYED_REFS 2362 /* 2363 * Normally delayed refs get processed in ascending bytenr order. This 2364 * correlates in most cases to the order added. To expose dependencies on this 2365 * order, we start to process the tree in the middle instead of the beginning 2366 */ 2367 static u64 find_middle(struct rb_root *root) 2368 { 2369 struct rb_node *n = root->rb_node; 2370 struct btrfs_delayed_ref_node *entry; 2371 int alt = 1; 2372 u64 middle; 2373 u64 first = 0, last = 0; 2374 2375 n = rb_first(root); 2376 if (n) { 2377 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2378 first = entry->bytenr; 2379 } 2380 n = rb_last(root); 2381 if (n) { 2382 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2383 last = entry->bytenr; 2384 } 2385 n = root->rb_node; 2386 2387 while (n) { 2388 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2389 WARN_ON(!entry->in_tree); 2390 2391 middle = entry->bytenr; 2392 2393 if (alt) 2394 n = n->rb_left; 2395 else 2396 n = n->rb_right; 2397 2398 alt = 1 - alt; 2399 } 2400 return middle; 2401 } 2402 #endif 2403 2404 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2405 struct btrfs_fs_info *fs_info) 2406 { 2407 struct qgroup_update *qgroup_update; 2408 int ret = 0; 2409 2410 if (list_empty(&trans->qgroup_ref_list) != 2411 !trans->delayed_ref_elem.seq) { 2412 /* list without seq or seq without list */ 2413 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", 2414 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2415 trans->delayed_ref_elem.seq); 2416 BUG(); 2417 } 2418 2419 if (!trans->delayed_ref_elem.seq) 2420 return 0; 2421 2422 while (!list_empty(&trans->qgroup_ref_list)) { 2423 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2424 struct qgroup_update, list); 2425 list_del(&qgroup_update->list); 2426 if (!ret) 2427 ret = btrfs_qgroup_account_ref( 2428 trans, fs_info, qgroup_update->node, 2429 qgroup_update->extent_op); 2430 kfree(qgroup_update); 2431 } 2432 2433 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2434 2435 return ret; 2436 } 2437 2438 /* 2439 * this starts processing the delayed reference count updates and 2440 * extent insertions we have queued up so far. count can be 2441 * 0, which means to process everything in the tree at the start 2442 * of the run (but not newly added entries), or it can be some target 2443 * number you'd like to process. 2444 * 2445 * Returns 0 on success or if called with an aborted transaction 2446 * Returns <0 on error and aborts the transaction 2447 */ 2448 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2449 struct btrfs_root *root, unsigned long count) 2450 { 2451 struct rb_node *node; 2452 struct btrfs_delayed_ref_root *delayed_refs; 2453 struct btrfs_delayed_ref_node *ref; 2454 struct list_head cluster; 2455 int ret; 2456 u64 delayed_start; 2457 int run_all = count == (unsigned long)-1; 2458 int run_most = 0; 2459 int loops; 2460 2461 /* We'll clean this up in btrfs_cleanup_transaction */ 2462 if (trans->aborted) 2463 return 0; 2464 2465 if (root == root->fs_info->extent_root) 2466 root = root->fs_info->tree_root; 2467 2468 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2469 2470 delayed_refs = &trans->transaction->delayed_refs; 2471 INIT_LIST_HEAD(&cluster); 2472 again: 2473 loops = 0; 2474 spin_lock(&delayed_refs->lock); 2475 2476 #ifdef SCRAMBLE_DELAYED_REFS 2477 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2478 #endif 2479 2480 if (count == 0) { 2481 count = delayed_refs->num_entries * 2; 2482 run_most = 1; 2483 } 2484 while (1) { 2485 if (!(run_all || run_most) && 2486 delayed_refs->num_heads_ready < 64) 2487 break; 2488 2489 /* 2490 * go find something we can process in the rbtree. We start at 2491 * the beginning of the tree, and then build a cluster 2492 * of refs to process starting at the first one we are able to 2493 * lock 2494 */ 2495 delayed_start = delayed_refs->run_delayed_start; 2496 ret = btrfs_find_ref_cluster(trans, &cluster, 2497 delayed_refs->run_delayed_start); 2498 if (ret) 2499 break; 2500 2501 ret = run_clustered_refs(trans, root, &cluster); 2502 if (ret < 0) { 2503 spin_unlock(&delayed_refs->lock); 2504 btrfs_abort_transaction(trans, root, ret); 2505 return ret; 2506 } 2507 2508 count -= min_t(unsigned long, ret, count); 2509 2510 if (count == 0) 2511 break; 2512 2513 if (delayed_start >= delayed_refs->run_delayed_start) { 2514 if (loops == 0) { 2515 /* 2516 * btrfs_find_ref_cluster looped. let's do one 2517 * more cycle. if we don't run any delayed ref 2518 * during that cycle (because we can't because 2519 * all of them are blocked), bail out. 2520 */ 2521 loops = 1; 2522 } else { 2523 /* 2524 * no runnable refs left, stop trying 2525 */ 2526 BUG_ON(run_all); 2527 break; 2528 } 2529 } 2530 if (ret) { 2531 /* refs were run, let's reset staleness detection */ 2532 loops = 0; 2533 } 2534 } 2535 2536 if (run_all) { 2537 if (!list_empty(&trans->new_bgs)) { 2538 spin_unlock(&delayed_refs->lock); 2539 btrfs_create_pending_block_groups(trans, root); 2540 spin_lock(&delayed_refs->lock); 2541 } 2542 2543 node = rb_first(&delayed_refs->root); 2544 if (!node) 2545 goto out; 2546 count = (unsigned long)-1; 2547 2548 while (node) { 2549 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2550 rb_node); 2551 if (btrfs_delayed_ref_is_head(ref)) { 2552 struct btrfs_delayed_ref_head *head; 2553 2554 head = btrfs_delayed_node_to_head(ref); 2555 atomic_inc(&ref->refs); 2556 2557 spin_unlock(&delayed_refs->lock); 2558 /* 2559 * Mutex was contended, block until it's 2560 * released and try again 2561 */ 2562 mutex_lock(&head->mutex); 2563 mutex_unlock(&head->mutex); 2564 2565 btrfs_put_delayed_ref(ref); 2566 cond_resched(); 2567 goto again; 2568 } 2569 node = rb_next(node); 2570 } 2571 spin_unlock(&delayed_refs->lock); 2572 schedule_timeout(1); 2573 goto again; 2574 } 2575 out: 2576 spin_unlock(&delayed_refs->lock); 2577 assert_qgroups_uptodate(trans); 2578 return 0; 2579 } 2580 2581 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2582 struct btrfs_root *root, 2583 u64 bytenr, u64 num_bytes, u64 flags, 2584 int is_data) 2585 { 2586 struct btrfs_delayed_extent_op *extent_op; 2587 int ret; 2588 2589 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2590 if (!extent_op) 2591 return -ENOMEM; 2592 2593 extent_op->flags_to_set = flags; 2594 extent_op->update_flags = 1; 2595 extent_op->update_key = 0; 2596 extent_op->is_data = is_data ? 1 : 0; 2597 2598 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2599 num_bytes, extent_op); 2600 if (ret) 2601 kfree(extent_op); 2602 return ret; 2603 } 2604 2605 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2606 struct btrfs_root *root, 2607 struct btrfs_path *path, 2608 u64 objectid, u64 offset, u64 bytenr) 2609 { 2610 struct btrfs_delayed_ref_head *head; 2611 struct btrfs_delayed_ref_node *ref; 2612 struct btrfs_delayed_data_ref *data_ref; 2613 struct btrfs_delayed_ref_root *delayed_refs; 2614 struct rb_node *node; 2615 int ret = 0; 2616 2617 ret = -ENOENT; 2618 delayed_refs = &trans->transaction->delayed_refs; 2619 spin_lock(&delayed_refs->lock); 2620 head = btrfs_find_delayed_ref_head(trans, bytenr); 2621 if (!head) 2622 goto out; 2623 2624 if (!mutex_trylock(&head->mutex)) { 2625 atomic_inc(&head->node.refs); 2626 spin_unlock(&delayed_refs->lock); 2627 2628 btrfs_release_path(path); 2629 2630 /* 2631 * Mutex was contended, block until it's released and let 2632 * caller try again 2633 */ 2634 mutex_lock(&head->mutex); 2635 mutex_unlock(&head->mutex); 2636 btrfs_put_delayed_ref(&head->node); 2637 return -EAGAIN; 2638 } 2639 2640 node = rb_prev(&head->node.rb_node); 2641 if (!node) 2642 goto out_unlock; 2643 2644 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2645 2646 if (ref->bytenr != bytenr) 2647 goto out_unlock; 2648 2649 ret = 1; 2650 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2651 goto out_unlock; 2652 2653 data_ref = btrfs_delayed_node_to_data_ref(ref); 2654 2655 node = rb_prev(node); 2656 if (node) { 2657 int seq = ref->seq; 2658 2659 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2660 if (ref->bytenr == bytenr && ref->seq == seq) 2661 goto out_unlock; 2662 } 2663 2664 if (data_ref->root != root->root_key.objectid || 2665 data_ref->objectid != objectid || data_ref->offset != offset) 2666 goto out_unlock; 2667 2668 ret = 0; 2669 out_unlock: 2670 mutex_unlock(&head->mutex); 2671 out: 2672 spin_unlock(&delayed_refs->lock); 2673 return ret; 2674 } 2675 2676 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2677 struct btrfs_root *root, 2678 struct btrfs_path *path, 2679 u64 objectid, u64 offset, u64 bytenr) 2680 { 2681 struct btrfs_root *extent_root = root->fs_info->extent_root; 2682 struct extent_buffer *leaf; 2683 struct btrfs_extent_data_ref *ref; 2684 struct btrfs_extent_inline_ref *iref; 2685 struct btrfs_extent_item *ei; 2686 struct btrfs_key key; 2687 u32 item_size; 2688 int ret; 2689 2690 key.objectid = bytenr; 2691 key.offset = (u64)-1; 2692 key.type = BTRFS_EXTENT_ITEM_KEY; 2693 2694 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2695 if (ret < 0) 2696 goto out; 2697 BUG_ON(ret == 0); /* Corruption */ 2698 2699 ret = -ENOENT; 2700 if (path->slots[0] == 0) 2701 goto out; 2702 2703 path->slots[0]--; 2704 leaf = path->nodes[0]; 2705 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2706 2707 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2708 goto out; 2709 2710 ret = 1; 2711 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2713 if (item_size < sizeof(*ei)) { 2714 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2715 goto out; 2716 } 2717 #endif 2718 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2719 2720 if (item_size != sizeof(*ei) + 2721 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2722 goto out; 2723 2724 if (btrfs_extent_generation(leaf, ei) <= 2725 btrfs_root_last_snapshot(&root->root_item)) 2726 goto out; 2727 2728 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2729 if (btrfs_extent_inline_ref_type(leaf, iref) != 2730 BTRFS_EXTENT_DATA_REF_KEY) 2731 goto out; 2732 2733 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2734 if (btrfs_extent_refs(leaf, ei) != 2735 btrfs_extent_data_ref_count(leaf, ref) || 2736 btrfs_extent_data_ref_root(leaf, ref) != 2737 root->root_key.objectid || 2738 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2739 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2740 goto out; 2741 2742 ret = 0; 2743 out: 2744 return ret; 2745 } 2746 2747 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2748 struct btrfs_root *root, 2749 u64 objectid, u64 offset, u64 bytenr) 2750 { 2751 struct btrfs_path *path; 2752 int ret; 2753 int ret2; 2754 2755 path = btrfs_alloc_path(); 2756 if (!path) 2757 return -ENOENT; 2758 2759 do { 2760 ret = check_committed_ref(trans, root, path, objectid, 2761 offset, bytenr); 2762 if (ret && ret != -ENOENT) 2763 goto out; 2764 2765 ret2 = check_delayed_ref(trans, root, path, objectid, 2766 offset, bytenr); 2767 } while (ret2 == -EAGAIN); 2768 2769 if (ret2 && ret2 != -ENOENT) { 2770 ret = ret2; 2771 goto out; 2772 } 2773 2774 if (ret != -ENOENT || ret2 != -ENOENT) 2775 ret = 0; 2776 out: 2777 btrfs_free_path(path); 2778 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2779 WARN_ON(ret > 0); 2780 return ret; 2781 } 2782 2783 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2784 struct btrfs_root *root, 2785 struct extent_buffer *buf, 2786 int full_backref, int inc, int for_cow) 2787 { 2788 u64 bytenr; 2789 u64 num_bytes; 2790 u64 parent; 2791 u64 ref_root; 2792 u32 nritems; 2793 struct btrfs_key key; 2794 struct btrfs_file_extent_item *fi; 2795 int i; 2796 int level; 2797 int ret = 0; 2798 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2799 u64, u64, u64, u64, u64, u64, int); 2800 2801 ref_root = btrfs_header_owner(buf); 2802 nritems = btrfs_header_nritems(buf); 2803 level = btrfs_header_level(buf); 2804 2805 if (!root->ref_cows && level == 0) 2806 return 0; 2807 2808 if (inc) 2809 process_func = btrfs_inc_extent_ref; 2810 else 2811 process_func = btrfs_free_extent; 2812 2813 if (full_backref) 2814 parent = buf->start; 2815 else 2816 parent = 0; 2817 2818 for (i = 0; i < nritems; i++) { 2819 if (level == 0) { 2820 btrfs_item_key_to_cpu(buf, &key, i); 2821 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2822 continue; 2823 fi = btrfs_item_ptr(buf, i, 2824 struct btrfs_file_extent_item); 2825 if (btrfs_file_extent_type(buf, fi) == 2826 BTRFS_FILE_EXTENT_INLINE) 2827 continue; 2828 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2829 if (bytenr == 0) 2830 continue; 2831 2832 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2833 key.offset -= btrfs_file_extent_offset(buf, fi); 2834 ret = process_func(trans, root, bytenr, num_bytes, 2835 parent, ref_root, key.objectid, 2836 key.offset, for_cow); 2837 if (ret) 2838 goto fail; 2839 } else { 2840 bytenr = btrfs_node_blockptr(buf, i); 2841 num_bytes = btrfs_level_size(root, level - 1); 2842 ret = process_func(trans, root, bytenr, num_bytes, 2843 parent, ref_root, level - 1, 0, 2844 for_cow); 2845 if (ret) 2846 goto fail; 2847 } 2848 } 2849 return 0; 2850 fail: 2851 return ret; 2852 } 2853 2854 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2855 struct extent_buffer *buf, int full_backref, int for_cow) 2856 { 2857 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2858 } 2859 2860 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2861 struct extent_buffer *buf, int full_backref, int for_cow) 2862 { 2863 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2864 } 2865 2866 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2867 struct btrfs_root *root, 2868 struct btrfs_path *path, 2869 struct btrfs_block_group_cache *cache) 2870 { 2871 int ret; 2872 struct btrfs_root *extent_root = root->fs_info->extent_root; 2873 unsigned long bi; 2874 struct extent_buffer *leaf; 2875 2876 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2877 if (ret < 0) 2878 goto fail; 2879 BUG_ON(ret); /* Corruption */ 2880 2881 leaf = path->nodes[0]; 2882 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2883 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2884 btrfs_mark_buffer_dirty(leaf); 2885 btrfs_release_path(path); 2886 fail: 2887 if (ret) { 2888 btrfs_abort_transaction(trans, root, ret); 2889 return ret; 2890 } 2891 return 0; 2892 2893 } 2894 2895 static struct btrfs_block_group_cache * 2896 next_block_group(struct btrfs_root *root, 2897 struct btrfs_block_group_cache *cache) 2898 { 2899 struct rb_node *node; 2900 spin_lock(&root->fs_info->block_group_cache_lock); 2901 node = rb_next(&cache->cache_node); 2902 btrfs_put_block_group(cache); 2903 if (node) { 2904 cache = rb_entry(node, struct btrfs_block_group_cache, 2905 cache_node); 2906 btrfs_get_block_group(cache); 2907 } else 2908 cache = NULL; 2909 spin_unlock(&root->fs_info->block_group_cache_lock); 2910 return cache; 2911 } 2912 2913 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2914 struct btrfs_trans_handle *trans, 2915 struct btrfs_path *path) 2916 { 2917 struct btrfs_root *root = block_group->fs_info->tree_root; 2918 struct inode *inode = NULL; 2919 u64 alloc_hint = 0; 2920 int dcs = BTRFS_DC_ERROR; 2921 int num_pages = 0; 2922 int retries = 0; 2923 int ret = 0; 2924 2925 /* 2926 * If this block group is smaller than 100 megs don't bother caching the 2927 * block group. 2928 */ 2929 if (block_group->key.offset < (100 * 1024 * 1024)) { 2930 spin_lock(&block_group->lock); 2931 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2932 spin_unlock(&block_group->lock); 2933 return 0; 2934 } 2935 2936 again: 2937 inode = lookup_free_space_inode(root, block_group, path); 2938 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2939 ret = PTR_ERR(inode); 2940 btrfs_release_path(path); 2941 goto out; 2942 } 2943 2944 if (IS_ERR(inode)) { 2945 BUG_ON(retries); 2946 retries++; 2947 2948 if (block_group->ro) 2949 goto out_free; 2950 2951 ret = create_free_space_inode(root, trans, block_group, path); 2952 if (ret) 2953 goto out_free; 2954 goto again; 2955 } 2956 2957 /* We've already setup this transaction, go ahead and exit */ 2958 if (block_group->cache_generation == trans->transid && 2959 i_size_read(inode)) { 2960 dcs = BTRFS_DC_SETUP; 2961 goto out_put; 2962 } 2963 2964 /* 2965 * We want to set the generation to 0, that way if anything goes wrong 2966 * from here on out we know not to trust this cache when we load up next 2967 * time. 2968 */ 2969 BTRFS_I(inode)->generation = 0; 2970 ret = btrfs_update_inode(trans, root, inode); 2971 WARN_ON(ret); 2972 2973 if (i_size_read(inode) > 0) { 2974 ret = btrfs_truncate_free_space_cache(root, trans, path, 2975 inode); 2976 if (ret) 2977 goto out_put; 2978 } 2979 2980 spin_lock(&block_group->lock); 2981 if (block_group->cached != BTRFS_CACHE_FINISHED || 2982 !btrfs_test_opt(root, SPACE_CACHE)) { 2983 /* 2984 * don't bother trying to write stuff out _if_ 2985 * a) we're not cached, 2986 * b) we're with nospace_cache mount option. 2987 */ 2988 dcs = BTRFS_DC_WRITTEN; 2989 spin_unlock(&block_group->lock); 2990 goto out_put; 2991 } 2992 spin_unlock(&block_group->lock); 2993 2994 /* 2995 * Try to preallocate enough space based on how big the block group is. 2996 * Keep in mind this has to include any pinned space which could end up 2997 * taking up quite a bit since it's not folded into the other space 2998 * cache. 2999 */ 3000 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3001 if (!num_pages) 3002 num_pages = 1; 3003 3004 num_pages *= 16; 3005 num_pages *= PAGE_CACHE_SIZE; 3006 3007 ret = btrfs_check_data_free_space(inode, num_pages); 3008 if (ret) 3009 goto out_put; 3010 3011 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3012 num_pages, num_pages, 3013 &alloc_hint); 3014 if (!ret) 3015 dcs = BTRFS_DC_SETUP; 3016 btrfs_free_reserved_data_space(inode, num_pages); 3017 3018 out_put: 3019 iput(inode); 3020 out_free: 3021 btrfs_release_path(path); 3022 out: 3023 spin_lock(&block_group->lock); 3024 if (!ret && dcs == BTRFS_DC_SETUP) 3025 block_group->cache_generation = trans->transid; 3026 block_group->disk_cache_state = dcs; 3027 spin_unlock(&block_group->lock); 3028 3029 return ret; 3030 } 3031 3032 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3033 struct btrfs_root *root) 3034 { 3035 struct btrfs_block_group_cache *cache; 3036 int err = 0; 3037 struct btrfs_path *path; 3038 u64 last = 0; 3039 3040 path = btrfs_alloc_path(); 3041 if (!path) 3042 return -ENOMEM; 3043 3044 again: 3045 while (1) { 3046 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3047 while (cache) { 3048 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3049 break; 3050 cache = next_block_group(root, cache); 3051 } 3052 if (!cache) { 3053 if (last == 0) 3054 break; 3055 last = 0; 3056 continue; 3057 } 3058 err = cache_save_setup(cache, trans, path); 3059 last = cache->key.objectid + cache->key.offset; 3060 btrfs_put_block_group(cache); 3061 } 3062 3063 while (1) { 3064 if (last == 0) { 3065 err = btrfs_run_delayed_refs(trans, root, 3066 (unsigned long)-1); 3067 if (err) /* File system offline */ 3068 goto out; 3069 } 3070 3071 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3072 while (cache) { 3073 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3074 btrfs_put_block_group(cache); 3075 goto again; 3076 } 3077 3078 if (cache->dirty) 3079 break; 3080 cache = next_block_group(root, cache); 3081 } 3082 if (!cache) { 3083 if (last == 0) 3084 break; 3085 last = 0; 3086 continue; 3087 } 3088 3089 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3090 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3091 cache->dirty = 0; 3092 last = cache->key.objectid + cache->key.offset; 3093 3094 err = write_one_cache_group(trans, root, path, cache); 3095 if (err) /* File system offline */ 3096 goto out; 3097 3098 btrfs_put_block_group(cache); 3099 } 3100 3101 while (1) { 3102 /* 3103 * I don't think this is needed since we're just marking our 3104 * preallocated extent as written, but just in case it can't 3105 * hurt. 3106 */ 3107 if (last == 0) { 3108 err = btrfs_run_delayed_refs(trans, root, 3109 (unsigned long)-1); 3110 if (err) /* File system offline */ 3111 goto out; 3112 } 3113 3114 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3115 while (cache) { 3116 /* 3117 * Really this shouldn't happen, but it could if we 3118 * couldn't write the entire preallocated extent and 3119 * splitting the extent resulted in a new block. 3120 */ 3121 if (cache->dirty) { 3122 btrfs_put_block_group(cache); 3123 goto again; 3124 } 3125 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3126 break; 3127 cache = next_block_group(root, cache); 3128 } 3129 if (!cache) { 3130 if (last == 0) 3131 break; 3132 last = 0; 3133 continue; 3134 } 3135 3136 err = btrfs_write_out_cache(root, trans, cache, path); 3137 3138 /* 3139 * If we didn't have an error then the cache state is still 3140 * NEED_WRITE, so we can set it to WRITTEN. 3141 */ 3142 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3143 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3144 last = cache->key.objectid + cache->key.offset; 3145 btrfs_put_block_group(cache); 3146 } 3147 out: 3148 3149 btrfs_free_path(path); 3150 return err; 3151 } 3152 3153 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3154 { 3155 struct btrfs_block_group_cache *block_group; 3156 int readonly = 0; 3157 3158 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3159 if (!block_group || block_group->ro) 3160 readonly = 1; 3161 if (block_group) 3162 btrfs_put_block_group(block_group); 3163 return readonly; 3164 } 3165 3166 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3167 u64 total_bytes, u64 bytes_used, 3168 struct btrfs_space_info **space_info) 3169 { 3170 struct btrfs_space_info *found; 3171 int i; 3172 int factor; 3173 3174 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3175 BTRFS_BLOCK_GROUP_RAID10)) 3176 factor = 2; 3177 else 3178 factor = 1; 3179 3180 found = __find_space_info(info, flags); 3181 if (found) { 3182 spin_lock(&found->lock); 3183 found->total_bytes += total_bytes; 3184 found->disk_total += total_bytes * factor; 3185 found->bytes_used += bytes_used; 3186 found->disk_used += bytes_used * factor; 3187 found->full = 0; 3188 spin_unlock(&found->lock); 3189 *space_info = found; 3190 return 0; 3191 } 3192 found = kzalloc(sizeof(*found), GFP_NOFS); 3193 if (!found) 3194 return -ENOMEM; 3195 3196 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3197 INIT_LIST_HEAD(&found->block_groups[i]); 3198 init_rwsem(&found->groups_sem); 3199 spin_lock_init(&found->lock); 3200 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3201 found->total_bytes = total_bytes; 3202 found->disk_total = total_bytes * factor; 3203 found->bytes_used = bytes_used; 3204 found->disk_used = bytes_used * factor; 3205 found->bytes_pinned = 0; 3206 found->bytes_reserved = 0; 3207 found->bytes_readonly = 0; 3208 found->bytes_may_use = 0; 3209 found->full = 0; 3210 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3211 found->chunk_alloc = 0; 3212 found->flush = 0; 3213 init_waitqueue_head(&found->wait); 3214 *space_info = found; 3215 list_add_rcu(&found->list, &info->space_info); 3216 if (flags & BTRFS_BLOCK_GROUP_DATA) 3217 info->data_sinfo = found; 3218 return 0; 3219 } 3220 3221 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3222 { 3223 u64 extra_flags = chunk_to_extended(flags) & 3224 BTRFS_EXTENDED_PROFILE_MASK; 3225 3226 if (flags & BTRFS_BLOCK_GROUP_DATA) 3227 fs_info->avail_data_alloc_bits |= extra_flags; 3228 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3229 fs_info->avail_metadata_alloc_bits |= extra_flags; 3230 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3231 fs_info->avail_system_alloc_bits |= extra_flags; 3232 } 3233 3234 /* 3235 * returns target flags in extended format or 0 if restripe for this 3236 * chunk_type is not in progress 3237 * 3238 * should be called with either volume_mutex or balance_lock held 3239 */ 3240 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3241 { 3242 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3243 u64 target = 0; 3244 3245 if (!bctl) 3246 return 0; 3247 3248 if (flags & BTRFS_BLOCK_GROUP_DATA && 3249 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3250 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3251 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3252 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3253 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3254 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3255 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3256 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3257 } 3258 3259 return target; 3260 } 3261 3262 /* 3263 * @flags: available profiles in extended format (see ctree.h) 3264 * 3265 * Returns reduced profile in chunk format. If profile changing is in 3266 * progress (either running or paused) picks the target profile (if it's 3267 * already available), otherwise falls back to plain reducing. 3268 */ 3269 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3270 { 3271 /* 3272 * we add in the count of missing devices because we want 3273 * to make sure that any RAID levels on a degraded FS 3274 * continue to be honored. 3275 */ 3276 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3277 root->fs_info->fs_devices->missing_devices; 3278 u64 target; 3279 3280 /* 3281 * see if restripe for this chunk_type is in progress, if so 3282 * try to reduce to the target profile 3283 */ 3284 spin_lock(&root->fs_info->balance_lock); 3285 target = get_restripe_target(root->fs_info, flags); 3286 if (target) { 3287 /* pick target profile only if it's already available */ 3288 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3289 spin_unlock(&root->fs_info->balance_lock); 3290 return extended_to_chunk(target); 3291 } 3292 } 3293 spin_unlock(&root->fs_info->balance_lock); 3294 3295 if (num_devices == 1) 3296 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3297 if (num_devices < 4) 3298 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3299 3300 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3301 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3302 BTRFS_BLOCK_GROUP_RAID10))) { 3303 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3304 } 3305 3306 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3307 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3308 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3309 } 3310 3311 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3312 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3313 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3314 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3315 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3316 } 3317 3318 return extended_to_chunk(flags); 3319 } 3320 3321 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3322 { 3323 if (flags & BTRFS_BLOCK_GROUP_DATA) 3324 flags |= root->fs_info->avail_data_alloc_bits; 3325 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3326 flags |= root->fs_info->avail_system_alloc_bits; 3327 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3328 flags |= root->fs_info->avail_metadata_alloc_bits; 3329 3330 return btrfs_reduce_alloc_profile(root, flags); 3331 } 3332 3333 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3334 { 3335 u64 flags; 3336 3337 if (data) 3338 flags = BTRFS_BLOCK_GROUP_DATA; 3339 else if (root == root->fs_info->chunk_root) 3340 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3341 else 3342 flags = BTRFS_BLOCK_GROUP_METADATA; 3343 3344 return get_alloc_profile(root, flags); 3345 } 3346 3347 /* 3348 * This will check the space that the inode allocates from to make sure we have 3349 * enough space for bytes. 3350 */ 3351 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3352 { 3353 struct btrfs_space_info *data_sinfo; 3354 struct btrfs_root *root = BTRFS_I(inode)->root; 3355 struct btrfs_fs_info *fs_info = root->fs_info; 3356 u64 used; 3357 int ret = 0, committed = 0, alloc_chunk = 1; 3358 3359 /* make sure bytes are sectorsize aligned */ 3360 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3361 3362 if (root == root->fs_info->tree_root || 3363 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3364 alloc_chunk = 0; 3365 committed = 1; 3366 } 3367 3368 data_sinfo = fs_info->data_sinfo; 3369 if (!data_sinfo) 3370 goto alloc; 3371 3372 again: 3373 /* make sure we have enough space to handle the data first */ 3374 spin_lock(&data_sinfo->lock); 3375 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3376 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3377 data_sinfo->bytes_may_use; 3378 3379 if (used + bytes > data_sinfo->total_bytes) { 3380 struct btrfs_trans_handle *trans; 3381 3382 /* 3383 * if we don't have enough free bytes in this space then we need 3384 * to alloc a new chunk. 3385 */ 3386 if (!data_sinfo->full && alloc_chunk) { 3387 u64 alloc_target; 3388 3389 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3390 spin_unlock(&data_sinfo->lock); 3391 alloc: 3392 alloc_target = btrfs_get_alloc_profile(root, 1); 3393 trans = btrfs_join_transaction(root); 3394 if (IS_ERR(trans)) 3395 return PTR_ERR(trans); 3396 3397 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3398 alloc_target, 3399 CHUNK_ALLOC_NO_FORCE); 3400 btrfs_end_transaction(trans, root); 3401 if (ret < 0) { 3402 if (ret != -ENOSPC) 3403 return ret; 3404 else 3405 goto commit_trans; 3406 } 3407 3408 if (!data_sinfo) 3409 data_sinfo = fs_info->data_sinfo; 3410 3411 goto again; 3412 } 3413 3414 /* 3415 * If we have less pinned bytes than we want to allocate then 3416 * don't bother committing the transaction, it won't help us. 3417 */ 3418 if (data_sinfo->bytes_pinned < bytes) 3419 committed = 1; 3420 spin_unlock(&data_sinfo->lock); 3421 3422 /* commit the current transaction and try again */ 3423 commit_trans: 3424 if (!committed && 3425 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3426 committed = 1; 3427 trans = btrfs_join_transaction(root); 3428 if (IS_ERR(trans)) 3429 return PTR_ERR(trans); 3430 ret = btrfs_commit_transaction(trans, root); 3431 if (ret) 3432 return ret; 3433 goto again; 3434 } 3435 3436 return -ENOSPC; 3437 } 3438 data_sinfo->bytes_may_use += bytes; 3439 trace_btrfs_space_reservation(root->fs_info, "space_info", 3440 data_sinfo->flags, bytes, 1); 3441 spin_unlock(&data_sinfo->lock); 3442 3443 return 0; 3444 } 3445 3446 /* 3447 * Called if we need to clear a data reservation for this inode. 3448 */ 3449 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3450 { 3451 struct btrfs_root *root = BTRFS_I(inode)->root; 3452 struct btrfs_space_info *data_sinfo; 3453 3454 /* make sure bytes are sectorsize aligned */ 3455 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3456 3457 data_sinfo = root->fs_info->data_sinfo; 3458 spin_lock(&data_sinfo->lock); 3459 data_sinfo->bytes_may_use -= bytes; 3460 trace_btrfs_space_reservation(root->fs_info, "space_info", 3461 data_sinfo->flags, bytes, 0); 3462 spin_unlock(&data_sinfo->lock); 3463 } 3464 3465 static void force_metadata_allocation(struct btrfs_fs_info *info) 3466 { 3467 struct list_head *head = &info->space_info; 3468 struct btrfs_space_info *found; 3469 3470 rcu_read_lock(); 3471 list_for_each_entry_rcu(found, head, list) { 3472 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3473 found->force_alloc = CHUNK_ALLOC_FORCE; 3474 } 3475 rcu_read_unlock(); 3476 } 3477 3478 static int should_alloc_chunk(struct btrfs_root *root, 3479 struct btrfs_space_info *sinfo, int force) 3480 { 3481 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3482 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3483 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3484 u64 thresh; 3485 3486 if (force == CHUNK_ALLOC_FORCE) 3487 return 1; 3488 3489 /* 3490 * We need to take into account the global rsv because for all intents 3491 * and purposes it's used space. Don't worry about locking the 3492 * global_rsv, it doesn't change except when the transaction commits. 3493 */ 3494 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3495 num_allocated += global_rsv->size; 3496 3497 /* 3498 * in limited mode, we want to have some free space up to 3499 * about 1% of the FS size. 3500 */ 3501 if (force == CHUNK_ALLOC_LIMITED) { 3502 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3503 thresh = max_t(u64, 64 * 1024 * 1024, 3504 div_factor_fine(thresh, 1)); 3505 3506 if (num_bytes - num_allocated < thresh) 3507 return 1; 3508 } 3509 3510 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3511 return 0; 3512 return 1; 3513 } 3514 3515 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3516 { 3517 u64 num_dev; 3518 3519 if (type & BTRFS_BLOCK_GROUP_RAID10 || 3520 type & BTRFS_BLOCK_GROUP_RAID0) 3521 num_dev = root->fs_info->fs_devices->rw_devices; 3522 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3523 num_dev = 2; 3524 else 3525 num_dev = 1; /* DUP or single */ 3526 3527 /* metadata for updaing devices and chunk tree */ 3528 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3529 } 3530 3531 static void check_system_chunk(struct btrfs_trans_handle *trans, 3532 struct btrfs_root *root, u64 type) 3533 { 3534 struct btrfs_space_info *info; 3535 u64 left; 3536 u64 thresh; 3537 3538 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3539 spin_lock(&info->lock); 3540 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3541 info->bytes_reserved - info->bytes_readonly; 3542 spin_unlock(&info->lock); 3543 3544 thresh = get_system_chunk_thresh(root, type); 3545 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3546 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3547 left, thresh, type); 3548 dump_space_info(info, 0, 0); 3549 } 3550 3551 if (left < thresh) { 3552 u64 flags; 3553 3554 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3555 btrfs_alloc_chunk(trans, root, flags); 3556 } 3557 } 3558 3559 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3560 struct btrfs_root *extent_root, u64 flags, int force) 3561 { 3562 struct btrfs_space_info *space_info; 3563 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3564 int wait_for_alloc = 0; 3565 int ret = 0; 3566 3567 space_info = __find_space_info(extent_root->fs_info, flags); 3568 if (!space_info) { 3569 ret = update_space_info(extent_root->fs_info, flags, 3570 0, 0, &space_info); 3571 BUG_ON(ret); /* -ENOMEM */ 3572 } 3573 BUG_ON(!space_info); /* Logic error */ 3574 3575 again: 3576 spin_lock(&space_info->lock); 3577 if (force < space_info->force_alloc) 3578 force = space_info->force_alloc; 3579 if (space_info->full) { 3580 spin_unlock(&space_info->lock); 3581 return 0; 3582 } 3583 3584 if (!should_alloc_chunk(extent_root, space_info, force)) { 3585 spin_unlock(&space_info->lock); 3586 return 0; 3587 } else if (space_info->chunk_alloc) { 3588 wait_for_alloc = 1; 3589 } else { 3590 space_info->chunk_alloc = 1; 3591 } 3592 3593 spin_unlock(&space_info->lock); 3594 3595 mutex_lock(&fs_info->chunk_mutex); 3596 3597 /* 3598 * The chunk_mutex is held throughout the entirety of a chunk 3599 * allocation, so once we've acquired the chunk_mutex we know that the 3600 * other guy is done and we need to recheck and see if we should 3601 * allocate. 3602 */ 3603 if (wait_for_alloc) { 3604 mutex_unlock(&fs_info->chunk_mutex); 3605 wait_for_alloc = 0; 3606 goto again; 3607 } 3608 3609 /* 3610 * If we have mixed data/metadata chunks we want to make sure we keep 3611 * allocating mixed chunks instead of individual chunks. 3612 */ 3613 if (btrfs_mixed_space_info(space_info)) 3614 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3615 3616 /* 3617 * if we're doing a data chunk, go ahead and make sure that 3618 * we keep a reasonable number of metadata chunks allocated in the 3619 * FS as well. 3620 */ 3621 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3622 fs_info->data_chunk_allocations++; 3623 if (!(fs_info->data_chunk_allocations % 3624 fs_info->metadata_ratio)) 3625 force_metadata_allocation(fs_info); 3626 } 3627 3628 /* 3629 * Check if we have enough space in SYSTEM chunk because we may need 3630 * to update devices. 3631 */ 3632 check_system_chunk(trans, extent_root, flags); 3633 3634 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3635 if (ret < 0 && ret != -ENOSPC) 3636 goto out; 3637 3638 spin_lock(&space_info->lock); 3639 if (ret) 3640 space_info->full = 1; 3641 else 3642 ret = 1; 3643 3644 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3645 space_info->chunk_alloc = 0; 3646 spin_unlock(&space_info->lock); 3647 out: 3648 mutex_unlock(&fs_info->chunk_mutex); 3649 return ret; 3650 } 3651 3652 static int can_overcommit(struct btrfs_root *root, 3653 struct btrfs_space_info *space_info, u64 bytes, 3654 enum btrfs_reserve_flush_enum flush) 3655 { 3656 u64 profile = btrfs_get_alloc_profile(root, 0); 3657 u64 avail; 3658 u64 used; 3659 3660 used = space_info->bytes_used + space_info->bytes_reserved + 3661 space_info->bytes_pinned + space_info->bytes_readonly + 3662 space_info->bytes_may_use; 3663 3664 spin_lock(&root->fs_info->free_chunk_lock); 3665 avail = root->fs_info->free_chunk_space; 3666 spin_unlock(&root->fs_info->free_chunk_lock); 3667 3668 /* 3669 * If we have dup, raid1 or raid10 then only half of the free 3670 * space is actually useable. 3671 */ 3672 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3673 BTRFS_BLOCK_GROUP_RAID1 | 3674 BTRFS_BLOCK_GROUP_RAID10)) 3675 avail >>= 1; 3676 3677 /* 3678 * If we aren't flushing all things, let us overcommit up to 3679 * 1/2th of the space. If we can flush, don't let us overcommit 3680 * too much, let it overcommit up to 1/8 of the space. 3681 */ 3682 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3683 avail >>= 3; 3684 else 3685 avail >>= 1; 3686 3687 if (used + bytes < space_info->total_bytes + avail) 3688 return 1; 3689 return 0; 3690 } 3691 3692 static int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb, 3693 unsigned long nr_pages, 3694 enum wb_reason reason) 3695 { 3696 if (!writeback_in_progress(sb->s_bdi) && 3697 down_read_trylock(&sb->s_umount)) { 3698 writeback_inodes_sb_nr(sb, nr_pages, reason); 3699 up_read(&sb->s_umount); 3700 return 1; 3701 } 3702 3703 return 0; 3704 } 3705 3706 /* 3707 * shrink metadata reservation for delalloc 3708 */ 3709 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3710 bool wait_ordered) 3711 { 3712 struct btrfs_block_rsv *block_rsv; 3713 struct btrfs_space_info *space_info; 3714 struct btrfs_trans_handle *trans; 3715 u64 delalloc_bytes; 3716 u64 max_reclaim; 3717 long time_left; 3718 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3719 int loops = 0; 3720 enum btrfs_reserve_flush_enum flush; 3721 3722 trans = (struct btrfs_trans_handle *)current->journal_info; 3723 block_rsv = &root->fs_info->delalloc_block_rsv; 3724 space_info = block_rsv->space_info; 3725 3726 smp_mb(); 3727 delalloc_bytes = root->fs_info->delalloc_bytes; 3728 if (delalloc_bytes == 0) { 3729 if (trans) 3730 return; 3731 btrfs_wait_ordered_extents(root, 0); 3732 return; 3733 } 3734 3735 while (delalloc_bytes && loops < 3) { 3736 max_reclaim = min(delalloc_bytes, to_reclaim); 3737 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3738 writeback_inodes_sb_nr_if_idle_safe(root->fs_info->sb, 3739 nr_pages, 3740 WB_REASON_FS_FREE_SPACE); 3741 3742 /* 3743 * We need to wait for the async pages to actually start before 3744 * we do anything. 3745 */ 3746 wait_event(root->fs_info->async_submit_wait, 3747 !atomic_read(&root->fs_info->async_delalloc_pages)); 3748 3749 if (!trans) 3750 flush = BTRFS_RESERVE_FLUSH_ALL; 3751 else 3752 flush = BTRFS_RESERVE_NO_FLUSH; 3753 spin_lock(&space_info->lock); 3754 if (can_overcommit(root, space_info, orig, flush)) { 3755 spin_unlock(&space_info->lock); 3756 break; 3757 } 3758 spin_unlock(&space_info->lock); 3759 3760 loops++; 3761 if (wait_ordered && !trans) { 3762 btrfs_wait_ordered_extents(root, 0); 3763 } else { 3764 time_left = schedule_timeout_killable(1); 3765 if (time_left) 3766 break; 3767 } 3768 smp_mb(); 3769 delalloc_bytes = root->fs_info->delalloc_bytes; 3770 } 3771 } 3772 3773 /** 3774 * maybe_commit_transaction - possibly commit the transaction if its ok to 3775 * @root - the root we're allocating for 3776 * @bytes - the number of bytes we want to reserve 3777 * @force - force the commit 3778 * 3779 * This will check to make sure that committing the transaction will actually 3780 * get us somewhere and then commit the transaction if it does. Otherwise it 3781 * will return -ENOSPC. 3782 */ 3783 static int may_commit_transaction(struct btrfs_root *root, 3784 struct btrfs_space_info *space_info, 3785 u64 bytes, int force) 3786 { 3787 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3788 struct btrfs_trans_handle *trans; 3789 3790 trans = (struct btrfs_trans_handle *)current->journal_info; 3791 if (trans) 3792 return -EAGAIN; 3793 3794 if (force) 3795 goto commit; 3796 3797 /* See if there is enough pinned space to make this reservation */ 3798 spin_lock(&space_info->lock); 3799 if (space_info->bytes_pinned >= bytes) { 3800 spin_unlock(&space_info->lock); 3801 goto commit; 3802 } 3803 spin_unlock(&space_info->lock); 3804 3805 /* 3806 * See if there is some space in the delayed insertion reservation for 3807 * this reservation. 3808 */ 3809 if (space_info != delayed_rsv->space_info) 3810 return -ENOSPC; 3811 3812 spin_lock(&space_info->lock); 3813 spin_lock(&delayed_rsv->lock); 3814 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3815 spin_unlock(&delayed_rsv->lock); 3816 spin_unlock(&space_info->lock); 3817 return -ENOSPC; 3818 } 3819 spin_unlock(&delayed_rsv->lock); 3820 spin_unlock(&space_info->lock); 3821 3822 commit: 3823 trans = btrfs_join_transaction(root); 3824 if (IS_ERR(trans)) 3825 return -ENOSPC; 3826 3827 return btrfs_commit_transaction(trans, root); 3828 } 3829 3830 enum flush_state { 3831 FLUSH_DELAYED_ITEMS_NR = 1, 3832 FLUSH_DELAYED_ITEMS = 2, 3833 FLUSH_DELALLOC = 3, 3834 FLUSH_DELALLOC_WAIT = 4, 3835 ALLOC_CHUNK = 5, 3836 COMMIT_TRANS = 6, 3837 }; 3838 3839 static int flush_space(struct btrfs_root *root, 3840 struct btrfs_space_info *space_info, u64 num_bytes, 3841 u64 orig_bytes, int state) 3842 { 3843 struct btrfs_trans_handle *trans; 3844 int nr; 3845 int ret = 0; 3846 3847 switch (state) { 3848 case FLUSH_DELAYED_ITEMS_NR: 3849 case FLUSH_DELAYED_ITEMS: 3850 if (state == FLUSH_DELAYED_ITEMS_NR) { 3851 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 3852 3853 nr = (int)div64_u64(num_bytes, bytes); 3854 if (!nr) 3855 nr = 1; 3856 nr *= 2; 3857 } else { 3858 nr = -1; 3859 } 3860 trans = btrfs_join_transaction(root); 3861 if (IS_ERR(trans)) { 3862 ret = PTR_ERR(trans); 3863 break; 3864 } 3865 ret = btrfs_run_delayed_items_nr(trans, root, nr); 3866 btrfs_end_transaction(trans, root); 3867 break; 3868 case FLUSH_DELALLOC: 3869 case FLUSH_DELALLOC_WAIT: 3870 shrink_delalloc(root, num_bytes, orig_bytes, 3871 state == FLUSH_DELALLOC_WAIT); 3872 break; 3873 case ALLOC_CHUNK: 3874 trans = btrfs_join_transaction(root); 3875 if (IS_ERR(trans)) { 3876 ret = PTR_ERR(trans); 3877 break; 3878 } 3879 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3880 btrfs_get_alloc_profile(root, 0), 3881 CHUNK_ALLOC_NO_FORCE); 3882 btrfs_end_transaction(trans, root); 3883 if (ret == -ENOSPC) 3884 ret = 0; 3885 break; 3886 case COMMIT_TRANS: 3887 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3888 break; 3889 default: 3890 ret = -ENOSPC; 3891 break; 3892 } 3893 3894 return ret; 3895 } 3896 /** 3897 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3898 * @root - the root we're allocating for 3899 * @block_rsv - the block_rsv we're allocating for 3900 * @orig_bytes - the number of bytes we want 3901 * @flush - whether or not we can flush to make our reservation 3902 * 3903 * This will reserve orgi_bytes number of bytes from the space info associated 3904 * with the block_rsv. If there is not enough space it will make an attempt to 3905 * flush out space to make room. It will do this by flushing delalloc if 3906 * possible or committing the transaction. If flush is 0 then no attempts to 3907 * regain reservations will be made and this will fail if there is not enough 3908 * space already. 3909 */ 3910 static int reserve_metadata_bytes(struct btrfs_root *root, 3911 struct btrfs_block_rsv *block_rsv, 3912 u64 orig_bytes, 3913 enum btrfs_reserve_flush_enum flush) 3914 { 3915 struct btrfs_space_info *space_info = block_rsv->space_info; 3916 u64 used; 3917 u64 num_bytes = orig_bytes; 3918 int flush_state = FLUSH_DELAYED_ITEMS_NR; 3919 int ret = 0; 3920 bool flushing = false; 3921 3922 again: 3923 ret = 0; 3924 spin_lock(&space_info->lock); 3925 /* 3926 * We only want to wait if somebody other than us is flushing and we 3927 * are actually allowed to flush all things. 3928 */ 3929 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 3930 space_info->flush) { 3931 spin_unlock(&space_info->lock); 3932 /* 3933 * If we have a trans handle we can't wait because the flusher 3934 * may have to commit the transaction, which would mean we would 3935 * deadlock since we are waiting for the flusher to finish, but 3936 * hold the current transaction open. 3937 */ 3938 if (current->journal_info) 3939 return -EAGAIN; 3940 ret = wait_event_killable(space_info->wait, !space_info->flush); 3941 /* Must have been killed, return */ 3942 if (ret) 3943 return -EINTR; 3944 3945 spin_lock(&space_info->lock); 3946 } 3947 3948 ret = -ENOSPC; 3949 used = space_info->bytes_used + space_info->bytes_reserved + 3950 space_info->bytes_pinned + space_info->bytes_readonly + 3951 space_info->bytes_may_use; 3952 3953 /* 3954 * The idea here is that we've not already over-reserved the block group 3955 * then we can go ahead and save our reservation first and then start 3956 * flushing if we need to. Otherwise if we've already overcommitted 3957 * lets start flushing stuff first and then come back and try to make 3958 * our reservation. 3959 */ 3960 if (used <= space_info->total_bytes) { 3961 if (used + orig_bytes <= space_info->total_bytes) { 3962 space_info->bytes_may_use += orig_bytes; 3963 trace_btrfs_space_reservation(root->fs_info, 3964 "space_info", space_info->flags, orig_bytes, 1); 3965 ret = 0; 3966 } else { 3967 /* 3968 * Ok set num_bytes to orig_bytes since we aren't 3969 * overocmmitted, this way we only try and reclaim what 3970 * we need. 3971 */ 3972 num_bytes = orig_bytes; 3973 } 3974 } else { 3975 /* 3976 * Ok we're over committed, set num_bytes to the overcommitted 3977 * amount plus the amount of bytes that we need for this 3978 * reservation. 3979 */ 3980 num_bytes = used - space_info->total_bytes + 3981 (orig_bytes * 2); 3982 } 3983 3984 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 3985 space_info->bytes_may_use += orig_bytes; 3986 trace_btrfs_space_reservation(root->fs_info, "space_info", 3987 space_info->flags, orig_bytes, 3988 1); 3989 ret = 0; 3990 } 3991 3992 /* 3993 * Couldn't make our reservation, save our place so while we're trying 3994 * to reclaim space we can actually use it instead of somebody else 3995 * stealing it from us. 3996 * 3997 * We make the other tasks wait for the flush only when we can flush 3998 * all things. 3999 */ 4000 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4001 flushing = true; 4002 space_info->flush = 1; 4003 } 4004 4005 spin_unlock(&space_info->lock); 4006 4007 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4008 goto out; 4009 4010 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4011 flush_state); 4012 flush_state++; 4013 4014 /* 4015 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4016 * would happen. So skip delalloc flush. 4017 */ 4018 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4019 (flush_state == FLUSH_DELALLOC || 4020 flush_state == FLUSH_DELALLOC_WAIT)) 4021 flush_state = ALLOC_CHUNK; 4022 4023 if (!ret) 4024 goto again; 4025 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4026 flush_state < COMMIT_TRANS) 4027 goto again; 4028 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4029 flush_state <= COMMIT_TRANS) 4030 goto again; 4031 4032 out: 4033 if (flushing) { 4034 spin_lock(&space_info->lock); 4035 space_info->flush = 0; 4036 wake_up_all(&space_info->wait); 4037 spin_unlock(&space_info->lock); 4038 } 4039 return ret; 4040 } 4041 4042 static struct btrfs_block_rsv *get_block_rsv( 4043 const struct btrfs_trans_handle *trans, 4044 const struct btrfs_root *root) 4045 { 4046 struct btrfs_block_rsv *block_rsv = NULL; 4047 4048 if (root->ref_cows) 4049 block_rsv = trans->block_rsv; 4050 4051 if (root == root->fs_info->csum_root && trans->adding_csums) 4052 block_rsv = trans->block_rsv; 4053 4054 if (!block_rsv) 4055 block_rsv = root->block_rsv; 4056 4057 if (!block_rsv) 4058 block_rsv = &root->fs_info->empty_block_rsv; 4059 4060 return block_rsv; 4061 } 4062 4063 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4064 u64 num_bytes) 4065 { 4066 int ret = -ENOSPC; 4067 spin_lock(&block_rsv->lock); 4068 if (block_rsv->reserved >= num_bytes) { 4069 block_rsv->reserved -= num_bytes; 4070 if (block_rsv->reserved < block_rsv->size) 4071 block_rsv->full = 0; 4072 ret = 0; 4073 } 4074 spin_unlock(&block_rsv->lock); 4075 return ret; 4076 } 4077 4078 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4079 u64 num_bytes, int update_size) 4080 { 4081 spin_lock(&block_rsv->lock); 4082 block_rsv->reserved += num_bytes; 4083 if (update_size) 4084 block_rsv->size += num_bytes; 4085 else if (block_rsv->reserved >= block_rsv->size) 4086 block_rsv->full = 1; 4087 spin_unlock(&block_rsv->lock); 4088 } 4089 4090 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4091 struct btrfs_block_rsv *block_rsv, 4092 struct btrfs_block_rsv *dest, u64 num_bytes) 4093 { 4094 struct btrfs_space_info *space_info = block_rsv->space_info; 4095 4096 spin_lock(&block_rsv->lock); 4097 if (num_bytes == (u64)-1) 4098 num_bytes = block_rsv->size; 4099 block_rsv->size -= num_bytes; 4100 if (block_rsv->reserved >= block_rsv->size) { 4101 num_bytes = block_rsv->reserved - block_rsv->size; 4102 block_rsv->reserved = block_rsv->size; 4103 block_rsv->full = 1; 4104 } else { 4105 num_bytes = 0; 4106 } 4107 spin_unlock(&block_rsv->lock); 4108 4109 if (num_bytes > 0) { 4110 if (dest) { 4111 spin_lock(&dest->lock); 4112 if (!dest->full) { 4113 u64 bytes_to_add; 4114 4115 bytes_to_add = dest->size - dest->reserved; 4116 bytes_to_add = min(num_bytes, bytes_to_add); 4117 dest->reserved += bytes_to_add; 4118 if (dest->reserved >= dest->size) 4119 dest->full = 1; 4120 num_bytes -= bytes_to_add; 4121 } 4122 spin_unlock(&dest->lock); 4123 } 4124 if (num_bytes) { 4125 spin_lock(&space_info->lock); 4126 space_info->bytes_may_use -= num_bytes; 4127 trace_btrfs_space_reservation(fs_info, "space_info", 4128 space_info->flags, num_bytes, 0); 4129 space_info->reservation_progress++; 4130 spin_unlock(&space_info->lock); 4131 } 4132 } 4133 } 4134 4135 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4136 struct btrfs_block_rsv *dst, u64 num_bytes) 4137 { 4138 int ret; 4139 4140 ret = block_rsv_use_bytes(src, num_bytes); 4141 if (ret) 4142 return ret; 4143 4144 block_rsv_add_bytes(dst, num_bytes, 1); 4145 return 0; 4146 } 4147 4148 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4149 { 4150 memset(rsv, 0, sizeof(*rsv)); 4151 spin_lock_init(&rsv->lock); 4152 rsv->type = type; 4153 } 4154 4155 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4156 unsigned short type) 4157 { 4158 struct btrfs_block_rsv *block_rsv; 4159 struct btrfs_fs_info *fs_info = root->fs_info; 4160 4161 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4162 if (!block_rsv) 4163 return NULL; 4164 4165 btrfs_init_block_rsv(block_rsv, type); 4166 block_rsv->space_info = __find_space_info(fs_info, 4167 BTRFS_BLOCK_GROUP_METADATA); 4168 return block_rsv; 4169 } 4170 4171 void btrfs_free_block_rsv(struct btrfs_root *root, 4172 struct btrfs_block_rsv *rsv) 4173 { 4174 if (!rsv) 4175 return; 4176 btrfs_block_rsv_release(root, rsv, (u64)-1); 4177 kfree(rsv); 4178 } 4179 4180 int btrfs_block_rsv_add(struct btrfs_root *root, 4181 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4182 enum btrfs_reserve_flush_enum flush) 4183 { 4184 int ret; 4185 4186 if (num_bytes == 0) 4187 return 0; 4188 4189 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4190 if (!ret) { 4191 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4192 return 0; 4193 } 4194 4195 return ret; 4196 } 4197 4198 int btrfs_block_rsv_check(struct btrfs_root *root, 4199 struct btrfs_block_rsv *block_rsv, int min_factor) 4200 { 4201 u64 num_bytes = 0; 4202 int ret = -ENOSPC; 4203 4204 if (!block_rsv) 4205 return 0; 4206 4207 spin_lock(&block_rsv->lock); 4208 num_bytes = div_factor(block_rsv->size, min_factor); 4209 if (block_rsv->reserved >= num_bytes) 4210 ret = 0; 4211 spin_unlock(&block_rsv->lock); 4212 4213 return ret; 4214 } 4215 4216 int btrfs_block_rsv_refill(struct btrfs_root *root, 4217 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4218 enum btrfs_reserve_flush_enum flush) 4219 { 4220 u64 num_bytes = 0; 4221 int ret = -ENOSPC; 4222 4223 if (!block_rsv) 4224 return 0; 4225 4226 spin_lock(&block_rsv->lock); 4227 num_bytes = min_reserved; 4228 if (block_rsv->reserved >= num_bytes) 4229 ret = 0; 4230 else 4231 num_bytes -= block_rsv->reserved; 4232 spin_unlock(&block_rsv->lock); 4233 4234 if (!ret) 4235 return 0; 4236 4237 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4238 if (!ret) { 4239 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4240 return 0; 4241 } 4242 4243 return ret; 4244 } 4245 4246 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4247 struct btrfs_block_rsv *dst_rsv, 4248 u64 num_bytes) 4249 { 4250 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4251 } 4252 4253 void btrfs_block_rsv_release(struct btrfs_root *root, 4254 struct btrfs_block_rsv *block_rsv, 4255 u64 num_bytes) 4256 { 4257 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4258 if (global_rsv->full || global_rsv == block_rsv || 4259 block_rsv->space_info != global_rsv->space_info) 4260 global_rsv = NULL; 4261 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4262 num_bytes); 4263 } 4264 4265 /* 4266 * helper to calculate size of global block reservation. 4267 * the desired value is sum of space used by extent tree, 4268 * checksum tree and root tree 4269 */ 4270 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4271 { 4272 struct btrfs_space_info *sinfo; 4273 u64 num_bytes; 4274 u64 meta_used; 4275 u64 data_used; 4276 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4277 4278 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4279 spin_lock(&sinfo->lock); 4280 data_used = sinfo->bytes_used; 4281 spin_unlock(&sinfo->lock); 4282 4283 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4284 spin_lock(&sinfo->lock); 4285 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4286 data_used = 0; 4287 meta_used = sinfo->bytes_used; 4288 spin_unlock(&sinfo->lock); 4289 4290 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4291 csum_size * 2; 4292 num_bytes += div64_u64(data_used + meta_used, 50); 4293 4294 if (num_bytes * 3 > meta_used) 4295 num_bytes = div64_u64(meta_used, 3); 4296 4297 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4298 } 4299 4300 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4301 { 4302 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4303 struct btrfs_space_info *sinfo = block_rsv->space_info; 4304 u64 num_bytes; 4305 4306 num_bytes = calc_global_metadata_size(fs_info); 4307 4308 spin_lock(&sinfo->lock); 4309 spin_lock(&block_rsv->lock); 4310 4311 block_rsv->size = num_bytes; 4312 4313 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4314 sinfo->bytes_reserved + sinfo->bytes_readonly + 4315 sinfo->bytes_may_use; 4316 4317 if (sinfo->total_bytes > num_bytes) { 4318 num_bytes = sinfo->total_bytes - num_bytes; 4319 block_rsv->reserved += num_bytes; 4320 sinfo->bytes_may_use += num_bytes; 4321 trace_btrfs_space_reservation(fs_info, "space_info", 4322 sinfo->flags, num_bytes, 1); 4323 } 4324 4325 if (block_rsv->reserved >= block_rsv->size) { 4326 num_bytes = block_rsv->reserved - block_rsv->size; 4327 sinfo->bytes_may_use -= num_bytes; 4328 trace_btrfs_space_reservation(fs_info, "space_info", 4329 sinfo->flags, num_bytes, 0); 4330 sinfo->reservation_progress++; 4331 block_rsv->reserved = block_rsv->size; 4332 block_rsv->full = 1; 4333 } 4334 4335 spin_unlock(&block_rsv->lock); 4336 spin_unlock(&sinfo->lock); 4337 } 4338 4339 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4340 { 4341 struct btrfs_space_info *space_info; 4342 4343 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4344 fs_info->chunk_block_rsv.space_info = space_info; 4345 4346 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4347 fs_info->global_block_rsv.space_info = space_info; 4348 fs_info->delalloc_block_rsv.space_info = space_info; 4349 fs_info->trans_block_rsv.space_info = space_info; 4350 fs_info->empty_block_rsv.space_info = space_info; 4351 fs_info->delayed_block_rsv.space_info = space_info; 4352 4353 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4354 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4355 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4356 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4357 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4358 4359 update_global_block_rsv(fs_info); 4360 } 4361 4362 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4363 { 4364 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4365 (u64)-1); 4366 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4367 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4368 WARN_ON(fs_info->trans_block_rsv.size > 0); 4369 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4370 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4371 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4372 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4373 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4374 } 4375 4376 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4377 struct btrfs_root *root) 4378 { 4379 if (!trans->block_rsv) 4380 return; 4381 4382 if (!trans->bytes_reserved) 4383 return; 4384 4385 trace_btrfs_space_reservation(root->fs_info, "transaction", 4386 trans->transid, trans->bytes_reserved, 0); 4387 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4388 trans->bytes_reserved = 0; 4389 } 4390 4391 /* Can only return 0 or -ENOSPC */ 4392 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4393 struct inode *inode) 4394 { 4395 struct btrfs_root *root = BTRFS_I(inode)->root; 4396 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4397 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4398 4399 /* 4400 * We need to hold space in order to delete our orphan item once we've 4401 * added it, so this takes the reservation so we can release it later 4402 * when we are truly done with the orphan item. 4403 */ 4404 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4405 trace_btrfs_space_reservation(root->fs_info, "orphan", 4406 btrfs_ino(inode), num_bytes, 1); 4407 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4408 } 4409 4410 void btrfs_orphan_release_metadata(struct inode *inode) 4411 { 4412 struct btrfs_root *root = BTRFS_I(inode)->root; 4413 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4414 trace_btrfs_space_reservation(root->fs_info, "orphan", 4415 btrfs_ino(inode), num_bytes, 0); 4416 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4417 } 4418 4419 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4420 struct btrfs_pending_snapshot *pending) 4421 { 4422 struct btrfs_root *root = pending->root; 4423 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4424 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4425 /* 4426 * two for root back/forward refs, two for directory entries, 4427 * one for root of the snapshot and one for parent inode. 4428 */ 4429 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6); 4430 dst_rsv->space_info = src_rsv->space_info; 4431 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4432 } 4433 4434 /** 4435 * drop_outstanding_extent - drop an outstanding extent 4436 * @inode: the inode we're dropping the extent for 4437 * 4438 * This is called when we are freeing up an outstanding extent, either called 4439 * after an error or after an extent is written. This will return the number of 4440 * reserved extents that need to be freed. This must be called with 4441 * BTRFS_I(inode)->lock held. 4442 */ 4443 static unsigned drop_outstanding_extent(struct inode *inode) 4444 { 4445 unsigned drop_inode_space = 0; 4446 unsigned dropped_extents = 0; 4447 4448 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4449 BTRFS_I(inode)->outstanding_extents--; 4450 4451 if (BTRFS_I(inode)->outstanding_extents == 0 && 4452 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4453 &BTRFS_I(inode)->runtime_flags)) 4454 drop_inode_space = 1; 4455 4456 /* 4457 * If we have more or the same amount of outsanding extents than we have 4458 * reserved then we need to leave the reserved extents count alone. 4459 */ 4460 if (BTRFS_I(inode)->outstanding_extents >= 4461 BTRFS_I(inode)->reserved_extents) 4462 return drop_inode_space; 4463 4464 dropped_extents = BTRFS_I(inode)->reserved_extents - 4465 BTRFS_I(inode)->outstanding_extents; 4466 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4467 return dropped_extents + drop_inode_space; 4468 } 4469 4470 /** 4471 * calc_csum_metadata_size - return the amount of metada space that must be 4472 * reserved/free'd for the given bytes. 4473 * @inode: the inode we're manipulating 4474 * @num_bytes: the number of bytes in question 4475 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4476 * 4477 * This adjusts the number of csum_bytes in the inode and then returns the 4478 * correct amount of metadata that must either be reserved or freed. We 4479 * calculate how many checksums we can fit into one leaf and then divide the 4480 * number of bytes that will need to be checksumed by this value to figure out 4481 * how many checksums will be required. If we are adding bytes then the number 4482 * may go up and we will return the number of additional bytes that must be 4483 * reserved. If it is going down we will return the number of bytes that must 4484 * be freed. 4485 * 4486 * This must be called with BTRFS_I(inode)->lock held. 4487 */ 4488 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4489 int reserve) 4490 { 4491 struct btrfs_root *root = BTRFS_I(inode)->root; 4492 u64 csum_size; 4493 int num_csums_per_leaf; 4494 int num_csums; 4495 int old_csums; 4496 4497 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4498 BTRFS_I(inode)->csum_bytes == 0) 4499 return 0; 4500 4501 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4502 if (reserve) 4503 BTRFS_I(inode)->csum_bytes += num_bytes; 4504 else 4505 BTRFS_I(inode)->csum_bytes -= num_bytes; 4506 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4507 num_csums_per_leaf = (int)div64_u64(csum_size, 4508 sizeof(struct btrfs_csum_item) + 4509 sizeof(struct btrfs_disk_key)); 4510 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4511 num_csums = num_csums + num_csums_per_leaf - 1; 4512 num_csums = num_csums / num_csums_per_leaf; 4513 4514 old_csums = old_csums + num_csums_per_leaf - 1; 4515 old_csums = old_csums / num_csums_per_leaf; 4516 4517 /* No change, no need to reserve more */ 4518 if (old_csums == num_csums) 4519 return 0; 4520 4521 if (reserve) 4522 return btrfs_calc_trans_metadata_size(root, 4523 num_csums - old_csums); 4524 4525 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4526 } 4527 4528 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4529 { 4530 struct btrfs_root *root = BTRFS_I(inode)->root; 4531 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4532 u64 to_reserve = 0; 4533 u64 csum_bytes; 4534 unsigned nr_extents = 0; 4535 int extra_reserve = 0; 4536 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4537 int ret = 0; 4538 bool delalloc_lock = true; 4539 4540 /* If we are a free space inode we need to not flush since we will be in 4541 * the middle of a transaction commit. We also don't need the delalloc 4542 * mutex since we won't race with anybody. We need this mostly to make 4543 * lockdep shut its filthy mouth. 4544 */ 4545 if (btrfs_is_free_space_inode(inode)) { 4546 flush = BTRFS_RESERVE_NO_FLUSH; 4547 delalloc_lock = false; 4548 } 4549 4550 if (flush != BTRFS_RESERVE_NO_FLUSH && 4551 btrfs_transaction_in_commit(root->fs_info)) 4552 schedule_timeout(1); 4553 4554 if (delalloc_lock) 4555 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4556 4557 num_bytes = ALIGN(num_bytes, root->sectorsize); 4558 4559 spin_lock(&BTRFS_I(inode)->lock); 4560 BTRFS_I(inode)->outstanding_extents++; 4561 4562 if (BTRFS_I(inode)->outstanding_extents > 4563 BTRFS_I(inode)->reserved_extents) 4564 nr_extents = BTRFS_I(inode)->outstanding_extents - 4565 BTRFS_I(inode)->reserved_extents; 4566 4567 /* 4568 * Add an item to reserve for updating the inode when we complete the 4569 * delalloc io. 4570 */ 4571 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4572 &BTRFS_I(inode)->runtime_flags)) { 4573 nr_extents++; 4574 extra_reserve = 1; 4575 } 4576 4577 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4578 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4579 csum_bytes = BTRFS_I(inode)->csum_bytes; 4580 spin_unlock(&BTRFS_I(inode)->lock); 4581 4582 if (root->fs_info->quota_enabled) 4583 ret = btrfs_qgroup_reserve(root, num_bytes + 4584 nr_extents * root->leafsize); 4585 4586 /* 4587 * ret != 0 here means the qgroup reservation failed, we go straight to 4588 * the shared error handling then. 4589 */ 4590 if (ret == 0) 4591 ret = reserve_metadata_bytes(root, block_rsv, 4592 to_reserve, flush); 4593 4594 if (ret) { 4595 u64 to_free = 0; 4596 unsigned dropped; 4597 4598 spin_lock(&BTRFS_I(inode)->lock); 4599 dropped = drop_outstanding_extent(inode); 4600 /* 4601 * If the inodes csum_bytes is the same as the original 4602 * csum_bytes then we know we haven't raced with any free()ers 4603 * so we can just reduce our inodes csum bytes and carry on. 4604 * Otherwise we have to do the normal free thing to account for 4605 * the case that the free side didn't free up its reserve 4606 * because of this outstanding reservation. 4607 */ 4608 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4609 calc_csum_metadata_size(inode, num_bytes, 0); 4610 else 4611 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4612 spin_unlock(&BTRFS_I(inode)->lock); 4613 if (dropped) 4614 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4615 4616 if (to_free) { 4617 btrfs_block_rsv_release(root, block_rsv, to_free); 4618 trace_btrfs_space_reservation(root->fs_info, 4619 "delalloc", 4620 btrfs_ino(inode), 4621 to_free, 0); 4622 } 4623 if (root->fs_info->quota_enabled) { 4624 btrfs_qgroup_free(root, num_bytes + 4625 nr_extents * root->leafsize); 4626 } 4627 if (delalloc_lock) 4628 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4629 return ret; 4630 } 4631 4632 spin_lock(&BTRFS_I(inode)->lock); 4633 if (extra_reserve) { 4634 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4635 &BTRFS_I(inode)->runtime_flags); 4636 nr_extents--; 4637 } 4638 BTRFS_I(inode)->reserved_extents += nr_extents; 4639 spin_unlock(&BTRFS_I(inode)->lock); 4640 4641 if (delalloc_lock) 4642 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4643 4644 if (to_reserve) 4645 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4646 btrfs_ino(inode), to_reserve, 1); 4647 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4648 4649 return 0; 4650 } 4651 4652 /** 4653 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4654 * @inode: the inode to release the reservation for 4655 * @num_bytes: the number of bytes we're releasing 4656 * 4657 * This will release the metadata reservation for an inode. This can be called 4658 * once we complete IO for a given set of bytes to release their metadata 4659 * reservations. 4660 */ 4661 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4662 { 4663 struct btrfs_root *root = BTRFS_I(inode)->root; 4664 u64 to_free = 0; 4665 unsigned dropped; 4666 4667 num_bytes = ALIGN(num_bytes, root->sectorsize); 4668 spin_lock(&BTRFS_I(inode)->lock); 4669 dropped = drop_outstanding_extent(inode); 4670 4671 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4672 spin_unlock(&BTRFS_I(inode)->lock); 4673 if (dropped > 0) 4674 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4675 4676 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4677 btrfs_ino(inode), to_free, 0); 4678 if (root->fs_info->quota_enabled) { 4679 btrfs_qgroup_free(root, num_bytes + 4680 dropped * root->leafsize); 4681 } 4682 4683 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4684 to_free); 4685 } 4686 4687 /** 4688 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4689 * @inode: inode we're writing to 4690 * @num_bytes: the number of bytes we want to allocate 4691 * 4692 * This will do the following things 4693 * 4694 * o reserve space in the data space info for num_bytes 4695 * o reserve space in the metadata space info based on number of outstanding 4696 * extents and how much csums will be needed 4697 * o add to the inodes ->delalloc_bytes 4698 * o add it to the fs_info's delalloc inodes list. 4699 * 4700 * This will return 0 for success and -ENOSPC if there is no space left. 4701 */ 4702 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4703 { 4704 int ret; 4705 4706 ret = btrfs_check_data_free_space(inode, num_bytes); 4707 if (ret) 4708 return ret; 4709 4710 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4711 if (ret) { 4712 btrfs_free_reserved_data_space(inode, num_bytes); 4713 return ret; 4714 } 4715 4716 return 0; 4717 } 4718 4719 /** 4720 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4721 * @inode: inode we're releasing space for 4722 * @num_bytes: the number of bytes we want to free up 4723 * 4724 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4725 * called in the case that we don't need the metadata AND data reservations 4726 * anymore. So if there is an error or we insert an inline extent. 4727 * 4728 * This function will release the metadata space that was not used and will 4729 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4730 * list if there are no delalloc bytes left. 4731 */ 4732 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4733 { 4734 btrfs_delalloc_release_metadata(inode, num_bytes); 4735 btrfs_free_reserved_data_space(inode, num_bytes); 4736 } 4737 4738 static int update_block_group(struct btrfs_trans_handle *trans, 4739 struct btrfs_root *root, 4740 u64 bytenr, u64 num_bytes, int alloc) 4741 { 4742 struct btrfs_block_group_cache *cache = NULL; 4743 struct btrfs_fs_info *info = root->fs_info; 4744 u64 total = num_bytes; 4745 u64 old_val; 4746 u64 byte_in_group; 4747 int factor; 4748 4749 /* block accounting for super block */ 4750 spin_lock(&info->delalloc_lock); 4751 old_val = btrfs_super_bytes_used(info->super_copy); 4752 if (alloc) 4753 old_val += num_bytes; 4754 else 4755 old_val -= num_bytes; 4756 btrfs_set_super_bytes_used(info->super_copy, old_val); 4757 spin_unlock(&info->delalloc_lock); 4758 4759 while (total) { 4760 cache = btrfs_lookup_block_group(info, bytenr); 4761 if (!cache) 4762 return -ENOENT; 4763 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4764 BTRFS_BLOCK_GROUP_RAID1 | 4765 BTRFS_BLOCK_GROUP_RAID10)) 4766 factor = 2; 4767 else 4768 factor = 1; 4769 /* 4770 * If this block group has free space cache written out, we 4771 * need to make sure to load it if we are removing space. This 4772 * is because we need the unpinning stage to actually add the 4773 * space back to the block group, otherwise we will leak space. 4774 */ 4775 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4776 cache_block_group(cache, trans, NULL, 1); 4777 4778 byte_in_group = bytenr - cache->key.objectid; 4779 WARN_ON(byte_in_group > cache->key.offset); 4780 4781 spin_lock(&cache->space_info->lock); 4782 spin_lock(&cache->lock); 4783 4784 if (btrfs_test_opt(root, SPACE_CACHE) && 4785 cache->disk_cache_state < BTRFS_DC_CLEAR) 4786 cache->disk_cache_state = BTRFS_DC_CLEAR; 4787 4788 cache->dirty = 1; 4789 old_val = btrfs_block_group_used(&cache->item); 4790 num_bytes = min(total, cache->key.offset - byte_in_group); 4791 if (alloc) { 4792 old_val += num_bytes; 4793 btrfs_set_block_group_used(&cache->item, old_val); 4794 cache->reserved -= num_bytes; 4795 cache->space_info->bytes_reserved -= num_bytes; 4796 cache->space_info->bytes_used += num_bytes; 4797 cache->space_info->disk_used += num_bytes * factor; 4798 spin_unlock(&cache->lock); 4799 spin_unlock(&cache->space_info->lock); 4800 } else { 4801 old_val -= num_bytes; 4802 btrfs_set_block_group_used(&cache->item, old_val); 4803 cache->pinned += num_bytes; 4804 cache->space_info->bytes_pinned += num_bytes; 4805 cache->space_info->bytes_used -= num_bytes; 4806 cache->space_info->disk_used -= num_bytes * factor; 4807 spin_unlock(&cache->lock); 4808 spin_unlock(&cache->space_info->lock); 4809 4810 set_extent_dirty(info->pinned_extents, 4811 bytenr, bytenr + num_bytes - 1, 4812 GFP_NOFS | __GFP_NOFAIL); 4813 } 4814 btrfs_put_block_group(cache); 4815 total -= num_bytes; 4816 bytenr += num_bytes; 4817 } 4818 return 0; 4819 } 4820 4821 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4822 { 4823 struct btrfs_block_group_cache *cache; 4824 u64 bytenr; 4825 4826 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4827 if (!cache) 4828 return 0; 4829 4830 bytenr = cache->key.objectid; 4831 btrfs_put_block_group(cache); 4832 4833 return bytenr; 4834 } 4835 4836 static int pin_down_extent(struct btrfs_root *root, 4837 struct btrfs_block_group_cache *cache, 4838 u64 bytenr, u64 num_bytes, int reserved) 4839 { 4840 spin_lock(&cache->space_info->lock); 4841 spin_lock(&cache->lock); 4842 cache->pinned += num_bytes; 4843 cache->space_info->bytes_pinned += num_bytes; 4844 if (reserved) { 4845 cache->reserved -= num_bytes; 4846 cache->space_info->bytes_reserved -= num_bytes; 4847 } 4848 spin_unlock(&cache->lock); 4849 spin_unlock(&cache->space_info->lock); 4850 4851 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4852 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4853 return 0; 4854 } 4855 4856 /* 4857 * this function must be called within transaction 4858 */ 4859 int btrfs_pin_extent(struct btrfs_root *root, 4860 u64 bytenr, u64 num_bytes, int reserved) 4861 { 4862 struct btrfs_block_group_cache *cache; 4863 4864 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4865 BUG_ON(!cache); /* Logic error */ 4866 4867 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4868 4869 btrfs_put_block_group(cache); 4870 return 0; 4871 } 4872 4873 /* 4874 * this function must be called within transaction 4875 */ 4876 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4877 struct btrfs_root *root, 4878 u64 bytenr, u64 num_bytes) 4879 { 4880 struct btrfs_block_group_cache *cache; 4881 4882 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4883 BUG_ON(!cache); /* Logic error */ 4884 4885 /* 4886 * pull in the free space cache (if any) so that our pin 4887 * removes the free space from the cache. We have load_only set 4888 * to one because the slow code to read in the free extents does check 4889 * the pinned extents. 4890 */ 4891 cache_block_group(cache, trans, root, 1); 4892 4893 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4894 4895 /* remove us from the free space cache (if we're there at all) */ 4896 btrfs_remove_free_space(cache, bytenr, num_bytes); 4897 btrfs_put_block_group(cache); 4898 return 0; 4899 } 4900 4901 /** 4902 * btrfs_update_reserved_bytes - update the block_group and space info counters 4903 * @cache: The cache we are manipulating 4904 * @num_bytes: The number of bytes in question 4905 * @reserve: One of the reservation enums 4906 * 4907 * This is called by the allocator when it reserves space, or by somebody who is 4908 * freeing space that was never actually used on disk. For example if you 4909 * reserve some space for a new leaf in transaction A and before transaction A 4910 * commits you free that leaf, you call this with reserve set to 0 in order to 4911 * clear the reservation. 4912 * 4913 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4914 * ENOSPC accounting. For data we handle the reservation through clearing the 4915 * delalloc bits in the io_tree. We have to do this since we could end up 4916 * allocating less disk space for the amount of data we have reserved in the 4917 * case of compression. 4918 * 4919 * If this is a reservation and the block group has become read only we cannot 4920 * make the reservation and return -EAGAIN, otherwise this function always 4921 * succeeds. 4922 */ 4923 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4924 u64 num_bytes, int reserve) 4925 { 4926 struct btrfs_space_info *space_info = cache->space_info; 4927 int ret = 0; 4928 4929 spin_lock(&space_info->lock); 4930 spin_lock(&cache->lock); 4931 if (reserve != RESERVE_FREE) { 4932 if (cache->ro) { 4933 ret = -EAGAIN; 4934 } else { 4935 cache->reserved += num_bytes; 4936 space_info->bytes_reserved += num_bytes; 4937 if (reserve == RESERVE_ALLOC) { 4938 trace_btrfs_space_reservation(cache->fs_info, 4939 "space_info", space_info->flags, 4940 num_bytes, 0); 4941 space_info->bytes_may_use -= num_bytes; 4942 } 4943 } 4944 } else { 4945 if (cache->ro) 4946 space_info->bytes_readonly += num_bytes; 4947 cache->reserved -= num_bytes; 4948 space_info->bytes_reserved -= num_bytes; 4949 space_info->reservation_progress++; 4950 } 4951 spin_unlock(&cache->lock); 4952 spin_unlock(&space_info->lock); 4953 return ret; 4954 } 4955 4956 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4957 struct btrfs_root *root) 4958 { 4959 struct btrfs_fs_info *fs_info = root->fs_info; 4960 struct btrfs_caching_control *next; 4961 struct btrfs_caching_control *caching_ctl; 4962 struct btrfs_block_group_cache *cache; 4963 4964 down_write(&fs_info->extent_commit_sem); 4965 4966 list_for_each_entry_safe(caching_ctl, next, 4967 &fs_info->caching_block_groups, list) { 4968 cache = caching_ctl->block_group; 4969 if (block_group_cache_done(cache)) { 4970 cache->last_byte_to_unpin = (u64)-1; 4971 list_del_init(&caching_ctl->list); 4972 put_caching_control(caching_ctl); 4973 } else { 4974 cache->last_byte_to_unpin = caching_ctl->progress; 4975 } 4976 } 4977 4978 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4979 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4980 else 4981 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4982 4983 up_write(&fs_info->extent_commit_sem); 4984 4985 update_global_block_rsv(fs_info); 4986 } 4987 4988 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4989 { 4990 struct btrfs_fs_info *fs_info = root->fs_info; 4991 struct btrfs_block_group_cache *cache = NULL; 4992 struct btrfs_space_info *space_info; 4993 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4994 u64 len; 4995 bool readonly; 4996 4997 while (start <= end) { 4998 readonly = false; 4999 if (!cache || 5000 start >= cache->key.objectid + cache->key.offset) { 5001 if (cache) 5002 btrfs_put_block_group(cache); 5003 cache = btrfs_lookup_block_group(fs_info, start); 5004 BUG_ON(!cache); /* Logic error */ 5005 } 5006 5007 len = cache->key.objectid + cache->key.offset - start; 5008 len = min(len, end + 1 - start); 5009 5010 if (start < cache->last_byte_to_unpin) { 5011 len = min(len, cache->last_byte_to_unpin - start); 5012 btrfs_add_free_space(cache, start, len); 5013 } 5014 5015 start += len; 5016 space_info = cache->space_info; 5017 5018 spin_lock(&space_info->lock); 5019 spin_lock(&cache->lock); 5020 cache->pinned -= len; 5021 space_info->bytes_pinned -= len; 5022 if (cache->ro) { 5023 space_info->bytes_readonly += len; 5024 readonly = true; 5025 } 5026 spin_unlock(&cache->lock); 5027 if (!readonly && global_rsv->space_info == space_info) { 5028 spin_lock(&global_rsv->lock); 5029 if (!global_rsv->full) { 5030 len = min(len, global_rsv->size - 5031 global_rsv->reserved); 5032 global_rsv->reserved += len; 5033 space_info->bytes_may_use += len; 5034 if (global_rsv->reserved >= global_rsv->size) 5035 global_rsv->full = 1; 5036 } 5037 spin_unlock(&global_rsv->lock); 5038 } 5039 spin_unlock(&space_info->lock); 5040 } 5041 5042 if (cache) 5043 btrfs_put_block_group(cache); 5044 return 0; 5045 } 5046 5047 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5048 struct btrfs_root *root) 5049 { 5050 struct btrfs_fs_info *fs_info = root->fs_info; 5051 struct extent_io_tree *unpin; 5052 u64 start; 5053 u64 end; 5054 int ret; 5055 5056 if (trans->aborted) 5057 return 0; 5058 5059 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5060 unpin = &fs_info->freed_extents[1]; 5061 else 5062 unpin = &fs_info->freed_extents[0]; 5063 5064 while (1) { 5065 ret = find_first_extent_bit(unpin, 0, &start, &end, 5066 EXTENT_DIRTY, NULL); 5067 if (ret) 5068 break; 5069 5070 if (btrfs_test_opt(root, DISCARD)) 5071 ret = btrfs_discard_extent(root, start, 5072 end + 1 - start, NULL); 5073 5074 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5075 unpin_extent_range(root, start, end); 5076 cond_resched(); 5077 } 5078 5079 return 0; 5080 } 5081 5082 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5083 struct btrfs_root *root, 5084 u64 bytenr, u64 num_bytes, u64 parent, 5085 u64 root_objectid, u64 owner_objectid, 5086 u64 owner_offset, int refs_to_drop, 5087 struct btrfs_delayed_extent_op *extent_op) 5088 { 5089 struct btrfs_key key; 5090 struct btrfs_path *path; 5091 struct btrfs_fs_info *info = root->fs_info; 5092 struct btrfs_root *extent_root = info->extent_root; 5093 struct extent_buffer *leaf; 5094 struct btrfs_extent_item *ei; 5095 struct btrfs_extent_inline_ref *iref; 5096 int ret; 5097 int is_data; 5098 int extent_slot = 0; 5099 int found_extent = 0; 5100 int num_to_del = 1; 5101 u32 item_size; 5102 u64 refs; 5103 5104 path = btrfs_alloc_path(); 5105 if (!path) 5106 return -ENOMEM; 5107 5108 path->reada = 1; 5109 path->leave_spinning = 1; 5110 5111 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5112 BUG_ON(!is_data && refs_to_drop != 1); 5113 5114 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5115 bytenr, num_bytes, parent, 5116 root_objectid, owner_objectid, 5117 owner_offset); 5118 if (ret == 0) { 5119 extent_slot = path->slots[0]; 5120 while (extent_slot >= 0) { 5121 btrfs_item_key_to_cpu(path->nodes[0], &key, 5122 extent_slot); 5123 if (key.objectid != bytenr) 5124 break; 5125 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5126 key.offset == num_bytes) { 5127 found_extent = 1; 5128 break; 5129 } 5130 if (path->slots[0] - extent_slot > 5) 5131 break; 5132 extent_slot--; 5133 } 5134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5135 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5136 if (found_extent && item_size < sizeof(*ei)) 5137 found_extent = 0; 5138 #endif 5139 if (!found_extent) { 5140 BUG_ON(iref); 5141 ret = remove_extent_backref(trans, extent_root, path, 5142 NULL, refs_to_drop, 5143 is_data); 5144 if (ret) { 5145 btrfs_abort_transaction(trans, extent_root, ret); 5146 goto out; 5147 } 5148 btrfs_release_path(path); 5149 path->leave_spinning = 1; 5150 5151 key.objectid = bytenr; 5152 key.type = BTRFS_EXTENT_ITEM_KEY; 5153 key.offset = num_bytes; 5154 5155 ret = btrfs_search_slot(trans, extent_root, 5156 &key, path, -1, 1); 5157 if (ret) { 5158 printk(KERN_ERR "umm, got %d back from search" 5159 ", was looking for %llu\n", ret, 5160 (unsigned long long)bytenr); 5161 if (ret > 0) 5162 btrfs_print_leaf(extent_root, 5163 path->nodes[0]); 5164 } 5165 if (ret < 0) { 5166 btrfs_abort_transaction(trans, extent_root, ret); 5167 goto out; 5168 } 5169 extent_slot = path->slots[0]; 5170 } 5171 } else if (ret == -ENOENT) { 5172 btrfs_print_leaf(extent_root, path->nodes[0]); 5173 WARN_ON(1); 5174 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5175 "parent %llu root %llu owner %llu offset %llu\n", 5176 (unsigned long long)bytenr, 5177 (unsigned long long)parent, 5178 (unsigned long long)root_objectid, 5179 (unsigned long long)owner_objectid, 5180 (unsigned long long)owner_offset); 5181 } else { 5182 btrfs_abort_transaction(trans, extent_root, ret); 5183 goto out; 5184 } 5185 5186 leaf = path->nodes[0]; 5187 item_size = btrfs_item_size_nr(leaf, extent_slot); 5188 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5189 if (item_size < sizeof(*ei)) { 5190 BUG_ON(found_extent || extent_slot != path->slots[0]); 5191 ret = convert_extent_item_v0(trans, extent_root, path, 5192 owner_objectid, 0); 5193 if (ret < 0) { 5194 btrfs_abort_transaction(trans, extent_root, ret); 5195 goto out; 5196 } 5197 5198 btrfs_release_path(path); 5199 path->leave_spinning = 1; 5200 5201 key.objectid = bytenr; 5202 key.type = BTRFS_EXTENT_ITEM_KEY; 5203 key.offset = num_bytes; 5204 5205 ret = btrfs_search_slot(trans, extent_root, &key, path, 5206 -1, 1); 5207 if (ret) { 5208 printk(KERN_ERR "umm, got %d back from search" 5209 ", was looking for %llu\n", ret, 5210 (unsigned long long)bytenr); 5211 btrfs_print_leaf(extent_root, path->nodes[0]); 5212 } 5213 if (ret < 0) { 5214 btrfs_abort_transaction(trans, extent_root, ret); 5215 goto out; 5216 } 5217 5218 extent_slot = path->slots[0]; 5219 leaf = path->nodes[0]; 5220 item_size = btrfs_item_size_nr(leaf, extent_slot); 5221 } 5222 #endif 5223 BUG_ON(item_size < sizeof(*ei)); 5224 ei = btrfs_item_ptr(leaf, extent_slot, 5225 struct btrfs_extent_item); 5226 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5227 struct btrfs_tree_block_info *bi; 5228 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5229 bi = (struct btrfs_tree_block_info *)(ei + 1); 5230 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5231 } 5232 5233 refs = btrfs_extent_refs(leaf, ei); 5234 BUG_ON(refs < refs_to_drop); 5235 refs -= refs_to_drop; 5236 5237 if (refs > 0) { 5238 if (extent_op) 5239 __run_delayed_extent_op(extent_op, leaf, ei); 5240 /* 5241 * In the case of inline back ref, reference count will 5242 * be updated by remove_extent_backref 5243 */ 5244 if (iref) { 5245 BUG_ON(!found_extent); 5246 } else { 5247 btrfs_set_extent_refs(leaf, ei, refs); 5248 btrfs_mark_buffer_dirty(leaf); 5249 } 5250 if (found_extent) { 5251 ret = remove_extent_backref(trans, extent_root, path, 5252 iref, refs_to_drop, 5253 is_data); 5254 if (ret) { 5255 btrfs_abort_transaction(trans, extent_root, ret); 5256 goto out; 5257 } 5258 } 5259 } else { 5260 if (found_extent) { 5261 BUG_ON(is_data && refs_to_drop != 5262 extent_data_ref_count(root, path, iref)); 5263 if (iref) { 5264 BUG_ON(path->slots[0] != extent_slot); 5265 } else { 5266 BUG_ON(path->slots[0] != extent_slot + 1); 5267 path->slots[0] = extent_slot; 5268 num_to_del = 2; 5269 } 5270 } 5271 5272 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5273 num_to_del); 5274 if (ret) { 5275 btrfs_abort_transaction(trans, extent_root, ret); 5276 goto out; 5277 } 5278 btrfs_release_path(path); 5279 5280 if (is_data) { 5281 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5282 if (ret) { 5283 btrfs_abort_transaction(trans, extent_root, ret); 5284 goto out; 5285 } 5286 } 5287 5288 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5289 if (ret) { 5290 btrfs_abort_transaction(trans, extent_root, ret); 5291 goto out; 5292 } 5293 } 5294 out: 5295 btrfs_free_path(path); 5296 return ret; 5297 } 5298 5299 /* 5300 * when we free an block, it is possible (and likely) that we free the last 5301 * delayed ref for that extent as well. This searches the delayed ref tree for 5302 * a given extent, and if there are no other delayed refs to be processed, it 5303 * removes it from the tree. 5304 */ 5305 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5306 struct btrfs_root *root, u64 bytenr) 5307 { 5308 struct btrfs_delayed_ref_head *head; 5309 struct btrfs_delayed_ref_root *delayed_refs; 5310 struct btrfs_delayed_ref_node *ref; 5311 struct rb_node *node; 5312 int ret = 0; 5313 5314 delayed_refs = &trans->transaction->delayed_refs; 5315 spin_lock(&delayed_refs->lock); 5316 head = btrfs_find_delayed_ref_head(trans, bytenr); 5317 if (!head) 5318 goto out; 5319 5320 node = rb_prev(&head->node.rb_node); 5321 if (!node) 5322 goto out; 5323 5324 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5325 5326 /* there are still entries for this ref, we can't drop it */ 5327 if (ref->bytenr == bytenr) 5328 goto out; 5329 5330 if (head->extent_op) { 5331 if (!head->must_insert_reserved) 5332 goto out; 5333 kfree(head->extent_op); 5334 head->extent_op = NULL; 5335 } 5336 5337 /* 5338 * waiting for the lock here would deadlock. If someone else has it 5339 * locked they are already in the process of dropping it anyway 5340 */ 5341 if (!mutex_trylock(&head->mutex)) 5342 goto out; 5343 5344 /* 5345 * at this point we have a head with no other entries. Go 5346 * ahead and process it. 5347 */ 5348 head->node.in_tree = 0; 5349 rb_erase(&head->node.rb_node, &delayed_refs->root); 5350 5351 delayed_refs->num_entries--; 5352 5353 /* 5354 * we don't take a ref on the node because we're removing it from the 5355 * tree, so we just steal the ref the tree was holding. 5356 */ 5357 delayed_refs->num_heads--; 5358 if (list_empty(&head->cluster)) 5359 delayed_refs->num_heads_ready--; 5360 5361 list_del_init(&head->cluster); 5362 spin_unlock(&delayed_refs->lock); 5363 5364 BUG_ON(head->extent_op); 5365 if (head->must_insert_reserved) 5366 ret = 1; 5367 5368 mutex_unlock(&head->mutex); 5369 btrfs_put_delayed_ref(&head->node); 5370 return ret; 5371 out: 5372 spin_unlock(&delayed_refs->lock); 5373 return 0; 5374 } 5375 5376 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5377 struct btrfs_root *root, 5378 struct extent_buffer *buf, 5379 u64 parent, int last_ref) 5380 { 5381 struct btrfs_block_group_cache *cache = NULL; 5382 int ret; 5383 5384 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5385 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5386 buf->start, buf->len, 5387 parent, root->root_key.objectid, 5388 btrfs_header_level(buf), 5389 BTRFS_DROP_DELAYED_REF, NULL, 0); 5390 BUG_ON(ret); /* -ENOMEM */ 5391 } 5392 5393 if (!last_ref) 5394 return; 5395 5396 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5397 5398 if (btrfs_header_generation(buf) == trans->transid) { 5399 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5400 ret = check_ref_cleanup(trans, root, buf->start); 5401 if (!ret) 5402 goto out; 5403 } 5404 5405 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5406 pin_down_extent(root, cache, buf->start, buf->len, 1); 5407 goto out; 5408 } 5409 5410 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5411 5412 btrfs_add_free_space(cache, buf->start, buf->len); 5413 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5414 } 5415 out: 5416 /* 5417 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5418 * anymore. 5419 */ 5420 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5421 btrfs_put_block_group(cache); 5422 } 5423 5424 /* Can return -ENOMEM */ 5425 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5426 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5427 u64 owner, u64 offset, int for_cow) 5428 { 5429 int ret; 5430 struct btrfs_fs_info *fs_info = root->fs_info; 5431 5432 /* 5433 * tree log blocks never actually go into the extent allocation 5434 * tree, just update pinning info and exit early. 5435 */ 5436 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5437 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5438 /* unlocks the pinned mutex */ 5439 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5440 ret = 0; 5441 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5442 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5443 num_bytes, 5444 parent, root_objectid, (int)owner, 5445 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5446 } else { 5447 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5448 num_bytes, 5449 parent, root_objectid, owner, 5450 offset, BTRFS_DROP_DELAYED_REF, 5451 NULL, for_cow); 5452 } 5453 return ret; 5454 } 5455 5456 static u64 stripe_align(struct btrfs_root *root, u64 val) 5457 { 5458 u64 mask = ((u64)root->stripesize - 1); 5459 u64 ret = (val + mask) & ~mask; 5460 return ret; 5461 } 5462 5463 /* 5464 * when we wait for progress in the block group caching, its because 5465 * our allocation attempt failed at least once. So, we must sleep 5466 * and let some progress happen before we try again. 5467 * 5468 * This function will sleep at least once waiting for new free space to 5469 * show up, and then it will check the block group free space numbers 5470 * for our min num_bytes. Another option is to have it go ahead 5471 * and look in the rbtree for a free extent of a given size, but this 5472 * is a good start. 5473 */ 5474 static noinline int 5475 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5476 u64 num_bytes) 5477 { 5478 struct btrfs_caching_control *caching_ctl; 5479 DEFINE_WAIT(wait); 5480 5481 caching_ctl = get_caching_control(cache); 5482 if (!caching_ctl) 5483 return 0; 5484 5485 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5486 (cache->free_space_ctl->free_space >= num_bytes)); 5487 5488 put_caching_control(caching_ctl); 5489 return 0; 5490 } 5491 5492 static noinline int 5493 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5494 { 5495 struct btrfs_caching_control *caching_ctl; 5496 DEFINE_WAIT(wait); 5497 5498 caching_ctl = get_caching_control(cache); 5499 if (!caching_ctl) 5500 return 0; 5501 5502 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5503 5504 put_caching_control(caching_ctl); 5505 return 0; 5506 } 5507 5508 int __get_raid_index(u64 flags) 5509 { 5510 int index; 5511 5512 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5513 index = 0; 5514 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5515 index = 1; 5516 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5517 index = 2; 5518 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5519 index = 3; 5520 else 5521 index = 4; 5522 5523 return index; 5524 } 5525 5526 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5527 { 5528 return __get_raid_index(cache->flags); 5529 } 5530 5531 enum btrfs_loop_type { 5532 LOOP_CACHING_NOWAIT = 0, 5533 LOOP_CACHING_WAIT = 1, 5534 LOOP_ALLOC_CHUNK = 2, 5535 LOOP_NO_EMPTY_SIZE = 3, 5536 }; 5537 5538 /* 5539 * walks the btree of allocated extents and find a hole of a given size. 5540 * The key ins is changed to record the hole: 5541 * ins->objectid == block start 5542 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5543 * ins->offset == number of blocks 5544 * Any available blocks before search_start are skipped. 5545 */ 5546 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5547 struct btrfs_root *orig_root, 5548 u64 num_bytes, u64 empty_size, 5549 u64 hint_byte, struct btrfs_key *ins, 5550 u64 data) 5551 { 5552 int ret = 0; 5553 struct btrfs_root *root = orig_root->fs_info->extent_root; 5554 struct btrfs_free_cluster *last_ptr = NULL; 5555 struct btrfs_block_group_cache *block_group = NULL; 5556 struct btrfs_block_group_cache *used_block_group; 5557 u64 search_start = 0; 5558 int empty_cluster = 2 * 1024 * 1024; 5559 struct btrfs_space_info *space_info; 5560 int loop = 0; 5561 int index = __get_raid_index(data); 5562 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5563 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5564 bool found_uncached_bg = false; 5565 bool failed_cluster_refill = false; 5566 bool failed_alloc = false; 5567 bool use_cluster = true; 5568 bool have_caching_bg = false; 5569 5570 WARN_ON(num_bytes < root->sectorsize); 5571 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5572 ins->objectid = 0; 5573 ins->offset = 0; 5574 5575 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5576 5577 space_info = __find_space_info(root->fs_info, data); 5578 if (!space_info) { 5579 printk(KERN_ERR "No space info for %llu\n", data); 5580 return -ENOSPC; 5581 } 5582 5583 /* 5584 * If the space info is for both data and metadata it means we have a 5585 * small filesystem and we can't use the clustering stuff. 5586 */ 5587 if (btrfs_mixed_space_info(space_info)) 5588 use_cluster = false; 5589 5590 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5591 last_ptr = &root->fs_info->meta_alloc_cluster; 5592 if (!btrfs_test_opt(root, SSD)) 5593 empty_cluster = 64 * 1024; 5594 } 5595 5596 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5597 btrfs_test_opt(root, SSD)) { 5598 last_ptr = &root->fs_info->data_alloc_cluster; 5599 } 5600 5601 if (last_ptr) { 5602 spin_lock(&last_ptr->lock); 5603 if (last_ptr->block_group) 5604 hint_byte = last_ptr->window_start; 5605 spin_unlock(&last_ptr->lock); 5606 } 5607 5608 search_start = max(search_start, first_logical_byte(root, 0)); 5609 search_start = max(search_start, hint_byte); 5610 5611 if (!last_ptr) 5612 empty_cluster = 0; 5613 5614 if (search_start == hint_byte) { 5615 block_group = btrfs_lookup_block_group(root->fs_info, 5616 search_start); 5617 used_block_group = block_group; 5618 /* 5619 * we don't want to use the block group if it doesn't match our 5620 * allocation bits, or if its not cached. 5621 * 5622 * However if we are re-searching with an ideal block group 5623 * picked out then we don't care that the block group is cached. 5624 */ 5625 if (block_group && block_group_bits(block_group, data) && 5626 block_group->cached != BTRFS_CACHE_NO) { 5627 down_read(&space_info->groups_sem); 5628 if (list_empty(&block_group->list) || 5629 block_group->ro) { 5630 /* 5631 * someone is removing this block group, 5632 * we can't jump into the have_block_group 5633 * target because our list pointers are not 5634 * valid 5635 */ 5636 btrfs_put_block_group(block_group); 5637 up_read(&space_info->groups_sem); 5638 } else { 5639 index = get_block_group_index(block_group); 5640 goto have_block_group; 5641 } 5642 } else if (block_group) { 5643 btrfs_put_block_group(block_group); 5644 } 5645 } 5646 search: 5647 have_caching_bg = false; 5648 down_read(&space_info->groups_sem); 5649 list_for_each_entry(block_group, &space_info->block_groups[index], 5650 list) { 5651 u64 offset; 5652 int cached; 5653 5654 used_block_group = block_group; 5655 btrfs_get_block_group(block_group); 5656 search_start = block_group->key.objectid; 5657 5658 /* 5659 * this can happen if we end up cycling through all the 5660 * raid types, but we want to make sure we only allocate 5661 * for the proper type. 5662 */ 5663 if (!block_group_bits(block_group, data)) { 5664 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5665 BTRFS_BLOCK_GROUP_RAID1 | 5666 BTRFS_BLOCK_GROUP_RAID10; 5667 5668 /* 5669 * if they asked for extra copies and this block group 5670 * doesn't provide them, bail. This does allow us to 5671 * fill raid0 from raid1. 5672 */ 5673 if ((data & extra) && !(block_group->flags & extra)) 5674 goto loop; 5675 } 5676 5677 have_block_group: 5678 cached = block_group_cache_done(block_group); 5679 if (unlikely(!cached)) { 5680 found_uncached_bg = true; 5681 ret = cache_block_group(block_group, trans, 5682 orig_root, 0); 5683 BUG_ON(ret < 0); 5684 ret = 0; 5685 } 5686 5687 if (unlikely(block_group->ro)) 5688 goto loop; 5689 5690 /* 5691 * Ok we want to try and use the cluster allocator, so 5692 * lets look there 5693 */ 5694 if (last_ptr) { 5695 /* 5696 * the refill lock keeps out other 5697 * people trying to start a new cluster 5698 */ 5699 spin_lock(&last_ptr->refill_lock); 5700 used_block_group = last_ptr->block_group; 5701 if (used_block_group != block_group && 5702 (!used_block_group || 5703 used_block_group->ro || 5704 !block_group_bits(used_block_group, data))) { 5705 used_block_group = block_group; 5706 goto refill_cluster; 5707 } 5708 5709 if (used_block_group != block_group) 5710 btrfs_get_block_group(used_block_group); 5711 5712 offset = btrfs_alloc_from_cluster(used_block_group, 5713 last_ptr, num_bytes, used_block_group->key.objectid); 5714 if (offset) { 5715 /* we have a block, we're done */ 5716 spin_unlock(&last_ptr->refill_lock); 5717 trace_btrfs_reserve_extent_cluster(root, 5718 block_group, search_start, num_bytes); 5719 goto checks; 5720 } 5721 5722 WARN_ON(last_ptr->block_group != used_block_group); 5723 if (used_block_group != block_group) { 5724 btrfs_put_block_group(used_block_group); 5725 used_block_group = block_group; 5726 } 5727 refill_cluster: 5728 BUG_ON(used_block_group != block_group); 5729 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5730 * set up a new clusters, so lets just skip it 5731 * and let the allocator find whatever block 5732 * it can find. If we reach this point, we 5733 * will have tried the cluster allocator 5734 * plenty of times and not have found 5735 * anything, so we are likely way too 5736 * fragmented for the clustering stuff to find 5737 * anything. 5738 * 5739 * However, if the cluster is taken from the 5740 * current block group, release the cluster 5741 * first, so that we stand a better chance of 5742 * succeeding in the unclustered 5743 * allocation. */ 5744 if (loop >= LOOP_NO_EMPTY_SIZE && 5745 last_ptr->block_group != block_group) { 5746 spin_unlock(&last_ptr->refill_lock); 5747 goto unclustered_alloc; 5748 } 5749 5750 /* 5751 * this cluster didn't work out, free it and 5752 * start over 5753 */ 5754 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5755 5756 if (loop >= LOOP_NO_EMPTY_SIZE) { 5757 spin_unlock(&last_ptr->refill_lock); 5758 goto unclustered_alloc; 5759 } 5760 5761 /* allocate a cluster in this block group */ 5762 ret = btrfs_find_space_cluster(trans, root, 5763 block_group, last_ptr, 5764 search_start, num_bytes, 5765 empty_cluster + empty_size); 5766 if (ret == 0) { 5767 /* 5768 * now pull our allocation out of this 5769 * cluster 5770 */ 5771 offset = btrfs_alloc_from_cluster(block_group, 5772 last_ptr, num_bytes, 5773 search_start); 5774 if (offset) { 5775 /* we found one, proceed */ 5776 spin_unlock(&last_ptr->refill_lock); 5777 trace_btrfs_reserve_extent_cluster(root, 5778 block_group, search_start, 5779 num_bytes); 5780 goto checks; 5781 } 5782 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5783 && !failed_cluster_refill) { 5784 spin_unlock(&last_ptr->refill_lock); 5785 5786 failed_cluster_refill = true; 5787 wait_block_group_cache_progress(block_group, 5788 num_bytes + empty_cluster + empty_size); 5789 goto have_block_group; 5790 } 5791 5792 /* 5793 * at this point we either didn't find a cluster 5794 * or we weren't able to allocate a block from our 5795 * cluster. Free the cluster we've been trying 5796 * to use, and go to the next block group 5797 */ 5798 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5799 spin_unlock(&last_ptr->refill_lock); 5800 goto loop; 5801 } 5802 5803 unclustered_alloc: 5804 spin_lock(&block_group->free_space_ctl->tree_lock); 5805 if (cached && 5806 block_group->free_space_ctl->free_space < 5807 num_bytes + empty_cluster + empty_size) { 5808 spin_unlock(&block_group->free_space_ctl->tree_lock); 5809 goto loop; 5810 } 5811 spin_unlock(&block_group->free_space_ctl->tree_lock); 5812 5813 offset = btrfs_find_space_for_alloc(block_group, search_start, 5814 num_bytes, empty_size); 5815 /* 5816 * If we didn't find a chunk, and we haven't failed on this 5817 * block group before, and this block group is in the middle of 5818 * caching and we are ok with waiting, then go ahead and wait 5819 * for progress to be made, and set failed_alloc to true. 5820 * 5821 * If failed_alloc is true then we've already waited on this 5822 * block group once and should move on to the next block group. 5823 */ 5824 if (!offset && !failed_alloc && !cached && 5825 loop > LOOP_CACHING_NOWAIT) { 5826 wait_block_group_cache_progress(block_group, 5827 num_bytes + empty_size); 5828 failed_alloc = true; 5829 goto have_block_group; 5830 } else if (!offset) { 5831 if (!cached) 5832 have_caching_bg = true; 5833 goto loop; 5834 } 5835 checks: 5836 search_start = stripe_align(root, offset); 5837 5838 /* move on to the next group */ 5839 if (search_start + num_bytes > 5840 used_block_group->key.objectid + used_block_group->key.offset) { 5841 btrfs_add_free_space(used_block_group, offset, num_bytes); 5842 goto loop; 5843 } 5844 5845 if (offset < search_start) 5846 btrfs_add_free_space(used_block_group, offset, 5847 search_start - offset); 5848 BUG_ON(offset > search_start); 5849 5850 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5851 alloc_type); 5852 if (ret == -EAGAIN) { 5853 btrfs_add_free_space(used_block_group, offset, num_bytes); 5854 goto loop; 5855 } 5856 5857 /* we are all good, lets return */ 5858 ins->objectid = search_start; 5859 ins->offset = num_bytes; 5860 5861 trace_btrfs_reserve_extent(orig_root, block_group, 5862 search_start, num_bytes); 5863 if (used_block_group != block_group) 5864 btrfs_put_block_group(used_block_group); 5865 btrfs_put_block_group(block_group); 5866 break; 5867 loop: 5868 failed_cluster_refill = false; 5869 failed_alloc = false; 5870 BUG_ON(index != get_block_group_index(block_group)); 5871 if (used_block_group != block_group) 5872 btrfs_put_block_group(used_block_group); 5873 btrfs_put_block_group(block_group); 5874 } 5875 up_read(&space_info->groups_sem); 5876 5877 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5878 goto search; 5879 5880 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5881 goto search; 5882 5883 /* 5884 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5885 * caching kthreads as we move along 5886 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5887 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5888 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5889 * again 5890 */ 5891 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5892 index = 0; 5893 loop++; 5894 if (loop == LOOP_ALLOC_CHUNK) { 5895 ret = do_chunk_alloc(trans, root, data, 5896 CHUNK_ALLOC_FORCE); 5897 /* 5898 * Do not bail out on ENOSPC since we 5899 * can do more things. 5900 */ 5901 if (ret < 0 && ret != -ENOSPC) { 5902 btrfs_abort_transaction(trans, 5903 root, ret); 5904 goto out; 5905 } 5906 } 5907 5908 if (loop == LOOP_NO_EMPTY_SIZE) { 5909 empty_size = 0; 5910 empty_cluster = 0; 5911 } 5912 5913 goto search; 5914 } else if (!ins->objectid) { 5915 ret = -ENOSPC; 5916 } else if (ins->objectid) { 5917 ret = 0; 5918 } 5919 out: 5920 5921 return ret; 5922 } 5923 5924 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5925 int dump_block_groups) 5926 { 5927 struct btrfs_block_group_cache *cache; 5928 int index = 0; 5929 5930 spin_lock(&info->lock); 5931 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5932 (unsigned long long)info->flags, 5933 (unsigned long long)(info->total_bytes - info->bytes_used - 5934 info->bytes_pinned - info->bytes_reserved - 5935 info->bytes_readonly), 5936 (info->full) ? "" : "not "); 5937 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5938 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5939 (unsigned long long)info->total_bytes, 5940 (unsigned long long)info->bytes_used, 5941 (unsigned long long)info->bytes_pinned, 5942 (unsigned long long)info->bytes_reserved, 5943 (unsigned long long)info->bytes_may_use, 5944 (unsigned long long)info->bytes_readonly); 5945 spin_unlock(&info->lock); 5946 5947 if (!dump_block_groups) 5948 return; 5949 5950 down_read(&info->groups_sem); 5951 again: 5952 list_for_each_entry(cache, &info->block_groups[index], list) { 5953 spin_lock(&cache->lock); 5954 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 5955 (unsigned long long)cache->key.objectid, 5956 (unsigned long long)cache->key.offset, 5957 (unsigned long long)btrfs_block_group_used(&cache->item), 5958 (unsigned long long)cache->pinned, 5959 (unsigned long long)cache->reserved, 5960 cache->ro ? "[readonly]" : ""); 5961 btrfs_dump_free_space(cache, bytes); 5962 spin_unlock(&cache->lock); 5963 } 5964 if (++index < BTRFS_NR_RAID_TYPES) 5965 goto again; 5966 up_read(&info->groups_sem); 5967 } 5968 5969 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5970 struct btrfs_root *root, 5971 u64 num_bytes, u64 min_alloc_size, 5972 u64 empty_size, u64 hint_byte, 5973 struct btrfs_key *ins, u64 data) 5974 { 5975 bool final_tried = false; 5976 int ret; 5977 5978 data = btrfs_get_alloc_profile(root, data); 5979 again: 5980 WARN_ON(num_bytes < root->sectorsize); 5981 ret = find_free_extent(trans, root, num_bytes, empty_size, 5982 hint_byte, ins, data); 5983 5984 if (ret == -ENOSPC) { 5985 if (!final_tried) { 5986 num_bytes = num_bytes >> 1; 5987 num_bytes = num_bytes & ~(root->sectorsize - 1); 5988 num_bytes = max(num_bytes, min_alloc_size); 5989 if (num_bytes == min_alloc_size) 5990 final_tried = true; 5991 goto again; 5992 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 5993 struct btrfs_space_info *sinfo; 5994 5995 sinfo = __find_space_info(root->fs_info, data); 5996 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5997 "wanted %llu\n", (unsigned long long)data, 5998 (unsigned long long)num_bytes); 5999 if (sinfo) 6000 dump_space_info(sinfo, num_bytes, 1); 6001 } 6002 } 6003 6004 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6005 6006 return ret; 6007 } 6008 6009 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6010 u64 start, u64 len, int pin) 6011 { 6012 struct btrfs_block_group_cache *cache; 6013 int ret = 0; 6014 6015 cache = btrfs_lookup_block_group(root->fs_info, start); 6016 if (!cache) { 6017 printk(KERN_ERR "Unable to find block group for %llu\n", 6018 (unsigned long long)start); 6019 return -ENOSPC; 6020 } 6021 6022 if (btrfs_test_opt(root, DISCARD)) 6023 ret = btrfs_discard_extent(root, start, len, NULL); 6024 6025 if (pin) 6026 pin_down_extent(root, cache, start, len, 1); 6027 else { 6028 btrfs_add_free_space(cache, start, len); 6029 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6030 } 6031 btrfs_put_block_group(cache); 6032 6033 trace_btrfs_reserved_extent_free(root, start, len); 6034 6035 return ret; 6036 } 6037 6038 int btrfs_free_reserved_extent(struct btrfs_root *root, 6039 u64 start, u64 len) 6040 { 6041 return __btrfs_free_reserved_extent(root, start, len, 0); 6042 } 6043 6044 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6045 u64 start, u64 len) 6046 { 6047 return __btrfs_free_reserved_extent(root, start, len, 1); 6048 } 6049 6050 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6051 struct btrfs_root *root, 6052 u64 parent, u64 root_objectid, 6053 u64 flags, u64 owner, u64 offset, 6054 struct btrfs_key *ins, int ref_mod) 6055 { 6056 int ret; 6057 struct btrfs_fs_info *fs_info = root->fs_info; 6058 struct btrfs_extent_item *extent_item; 6059 struct btrfs_extent_inline_ref *iref; 6060 struct btrfs_path *path; 6061 struct extent_buffer *leaf; 6062 int type; 6063 u32 size; 6064 6065 if (parent > 0) 6066 type = BTRFS_SHARED_DATA_REF_KEY; 6067 else 6068 type = BTRFS_EXTENT_DATA_REF_KEY; 6069 6070 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6071 6072 path = btrfs_alloc_path(); 6073 if (!path) 6074 return -ENOMEM; 6075 6076 path->leave_spinning = 1; 6077 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6078 ins, size); 6079 if (ret) { 6080 btrfs_free_path(path); 6081 return ret; 6082 } 6083 6084 leaf = path->nodes[0]; 6085 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6086 struct btrfs_extent_item); 6087 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6088 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6089 btrfs_set_extent_flags(leaf, extent_item, 6090 flags | BTRFS_EXTENT_FLAG_DATA); 6091 6092 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6093 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6094 if (parent > 0) { 6095 struct btrfs_shared_data_ref *ref; 6096 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6097 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6098 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6099 } else { 6100 struct btrfs_extent_data_ref *ref; 6101 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6102 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6103 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6104 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6105 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6106 } 6107 6108 btrfs_mark_buffer_dirty(path->nodes[0]); 6109 btrfs_free_path(path); 6110 6111 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6112 if (ret) { /* -ENOENT, logic error */ 6113 printk(KERN_ERR "btrfs update block group failed for %llu " 6114 "%llu\n", (unsigned long long)ins->objectid, 6115 (unsigned long long)ins->offset); 6116 BUG(); 6117 } 6118 return ret; 6119 } 6120 6121 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6122 struct btrfs_root *root, 6123 u64 parent, u64 root_objectid, 6124 u64 flags, struct btrfs_disk_key *key, 6125 int level, struct btrfs_key *ins) 6126 { 6127 int ret; 6128 struct btrfs_fs_info *fs_info = root->fs_info; 6129 struct btrfs_extent_item *extent_item; 6130 struct btrfs_tree_block_info *block_info; 6131 struct btrfs_extent_inline_ref *iref; 6132 struct btrfs_path *path; 6133 struct extent_buffer *leaf; 6134 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6135 6136 path = btrfs_alloc_path(); 6137 if (!path) 6138 return -ENOMEM; 6139 6140 path->leave_spinning = 1; 6141 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6142 ins, size); 6143 if (ret) { 6144 btrfs_free_path(path); 6145 return ret; 6146 } 6147 6148 leaf = path->nodes[0]; 6149 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6150 struct btrfs_extent_item); 6151 btrfs_set_extent_refs(leaf, extent_item, 1); 6152 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6153 btrfs_set_extent_flags(leaf, extent_item, 6154 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6155 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6156 6157 btrfs_set_tree_block_key(leaf, block_info, key); 6158 btrfs_set_tree_block_level(leaf, block_info, level); 6159 6160 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6161 if (parent > 0) { 6162 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6163 btrfs_set_extent_inline_ref_type(leaf, iref, 6164 BTRFS_SHARED_BLOCK_REF_KEY); 6165 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6166 } else { 6167 btrfs_set_extent_inline_ref_type(leaf, iref, 6168 BTRFS_TREE_BLOCK_REF_KEY); 6169 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6170 } 6171 6172 btrfs_mark_buffer_dirty(leaf); 6173 btrfs_free_path(path); 6174 6175 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6176 if (ret) { /* -ENOENT, logic error */ 6177 printk(KERN_ERR "btrfs update block group failed for %llu " 6178 "%llu\n", (unsigned long long)ins->objectid, 6179 (unsigned long long)ins->offset); 6180 BUG(); 6181 } 6182 return ret; 6183 } 6184 6185 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6186 struct btrfs_root *root, 6187 u64 root_objectid, u64 owner, 6188 u64 offset, struct btrfs_key *ins) 6189 { 6190 int ret; 6191 6192 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6193 6194 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6195 ins->offset, 0, 6196 root_objectid, owner, offset, 6197 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6198 return ret; 6199 } 6200 6201 /* 6202 * this is used by the tree logging recovery code. It records that 6203 * an extent has been allocated and makes sure to clear the free 6204 * space cache bits as well 6205 */ 6206 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6207 struct btrfs_root *root, 6208 u64 root_objectid, u64 owner, u64 offset, 6209 struct btrfs_key *ins) 6210 { 6211 int ret; 6212 struct btrfs_block_group_cache *block_group; 6213 struct btrfs_caching_control *caching_ctl; 6214 u64 start = ins->objectid; 6215 u64 num_bytes = ins->offset; 6216 6217 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6218 cache_block_group(block_group, trans, NULL, 0); 6219 caching_ctl = get_caching_control(block_group); 6220 6221 if (!caching_ctl) { 6222 BUG_ON(!block_group_cache_done(block_group)); 6223 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6224 BUG_ON(ret); /* -ENOMEM */ 6225 } else { 6226 mutex_lock(&caching_ctl->mutex); 6227 6228 if (start >= caching_ctl->progress) { 6229 ret = add_excluded_extent(root, start, num_bytes); 6230 BUG_ON(ret); /* -ENOMEM */ 6231 } else if (start + num_bytes <= caching_ctl->progress) { 6232 ret = btrfs_remove_free_space(block_group, 6233 start, num_bytes); 6234 BUG_ON(ret); /* -ENOMEM */ 6235 } else { 6236 num_bytes = caching_ctl->progress - start; 6237 ret = btrfs_remove_free_space(block_group, 6238 start, num_bytes); 6239 BUG_ON(ret); /* -ENOMEM */ 6240 6241 start = caching_ctl->progress; 6242 num_bytes = ins->objectid + ins->offset - 6243 caching_ctl->progress; 6244 ret = add_excluded_extent(root, start, num_bytes); 6245 BUG_ON(ret); /* -ENOMEM */ 6246 } 6247 6248 mutex_unlock(&caching_ctl->mutex); 6249 put_caching_control(caching_ctl); 6250 } 6251 6252 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6253 RESERVE_ALLOC_NO_ACCOUNT); 6254 BUG_ON(ret); /* logic error */ 6255 btrfs_put_block_group(block_group); 6256 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6257 0, owner, offset, ins, 1); 6258 return ret; 6259 } 6260 6261 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6262 struct btrfs_root *root, 6263 u64 bytenr, u32 blocksize, 6264 int level) 6265 { 6266 struct extent_buffer *buf; 6267 6268 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6269 if (!buf) 6270 return ERR_PTR(-ENOMEM); 6271 btrfs_set_header_generation(buf, trans->transid); 6272 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6273 btrfs_tree_lock(buf); 6274 clean_tree_block(trans, root, buf); 6275 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6276 6277 btrfs_set_lock_blocking(buf); 6278 btrfs_set_buffer_uptodate(buf); 6279 6280 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6281 /* 6282 * we allow two log transactions at a time, use different 6283 * EXENT bit to differentiate dirty pages. 6284 */ 6285 if (root->log_transid % 2 == 0) 6286 set_extent_dirty(&root->dirty_log_pages, buf->start, 6287 buf->start + buf->len - 1, GFP_NOFS); 6288 else 6289 set_extent_new(&root->dirty_log_pages, buf->start, 6290 buf->start + buf->len - 1, GFP_NOFS); 6291 } else { 6292 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6293 buf->start + buf->len - 1, GFP_NOFS); 6294 } 6295 trans->blocks_used++; 6296 /* this returns a buffer locked for blocking */ 6297 return buf; 6298 } 6299 6300 static struct btrfs_block_rsv * 6301 use_block_rsv(struct btrfs_trans_handle *trans, 6302 struct btrfs_root *root, u32 blocksize) 6303 { 6304 struct btrfs_block_rsv *block_rsv; 6305 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6306 int ret; 6307 6308 block_rsv = get_block_rsv(trans, root); 6309 6310 if (block_rsv->size == 0) { 6311 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6312 BTRFS_RESERVE_NO_FLUSH); 6313 /* 6314 * If we couldn't reserve metadata bytes try and use some from 6315 * the global reserve. 6316 */ 6317 if (ret && block_rsv != global_rsv) { 6318 ret = block_rsv_use_bytes(global_rsv, blocksize); 6319 if (!ret) 6320 return global_rsv; 6321 return ERR_PTR(ret); 6322 } else if (ret) { 6323 return ERR_PTR(ret); 6324 } 6325 return block_rsv; 6326 } 6327 6328 ret = block_rsv_use_bytes(block_rsv, blocksize); 6329 if (!ret) 6330 return block_rsv; 6331 if (ret && !block_rsv->failfast) { 6332 static DEFINE_RATELIMIT_STATE(_rs, 6333 DEFAULT_RATELIMIT_INTERVAL, 6334 /*DEFAULT_RATELIMIT_BURST*/ 2); 6335 if (__ratelimit(&_rs)) 6336 WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n", 6337 ret); 6338 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6339 BTRFS_RESERVE_NO_FLUSH); 6340 if (!ret) { 6341 return block_rsv; 6342 } else if (ret && block_rsv != global_rsv) { 6343 ret = block_rsv_use_bytes(global_rsv, blocksize); 6344 if (!ret) 6345 return global_rsv; 6346 } 6347 } 6348 6349 return ERR_PTR(-ENOSPC); 6350 } 6351 6352 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6353 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6354 { 6355 block_rsv_add_bytes(block_rsv, blocksize, 0); 6356 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6357 } 6358 6359 /* 6360 * finds a free extent and does all the dirty work required for allocation 6361 * returns the key for the extent through ins, and a tree buffer for 6362 * the first block of the extent through buf. 6363 * 6364 * returns the tree buffer or NULL. 6365 */ 6366 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6367 struct btrfs_root *root, u32 blocksize, 6368 u64 parent, u64 root_objectid, 6369 struct btrfs_disk_key *key, int level, 6370 u64 hint, u64 empty_size) 6371 { 6372 struct btrfs_key ins; 6373 struct btrfs_block_rsv *block_rsv; 6374 struct extent_buffer *buf; 6375 u64 flags = 0; 6376 int ret; 6377 6378 6379 block_rsv = use_block_rsv(trans, root, blocksize); 6380 if (IS_ERR(block_rsv)) 6381 return ERR_CAST(block_rsv); 6382 6383 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6384 empty_size, hint, &ins, 0); 6385 if (ret) { 6386 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6387 return ERR_PTR(ret); 6388 } 6389 6390 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6391 blocksize, level); 6392 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6393 6394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6395 if (parent == 0) 6396 parent = ins.objectid; 6397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6398 } else 6399 BUG_ON(parent > 0); 6400 6401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6402 struct btrfs_delayed_extent_op *extent_op; 6403 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 6404 BUG_ON(!extent_op); /* -ENOMEM */ 6405 if (key) 6406 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6407 else 6408 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6409 extent_op->flags_to_set = flags; 6410 extent_op->update_key = 1; 6411 extent_op->update_flags = 1; 6412 extent_op->is_data = 0; 6413 6414 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6415 ins.objectid, 6416 ins.offset, parent, root_objectid, 6417 level, BTRFS_ADD_DELAYED_EXTENT, 6418 extent_op, 0); 6419 BUG_ON(ret); /* -ENOMEM */ 6420 } 6421 return buf; 6422 } 6423 6424 struct walk_control { 6425 u64 refs[BTRFS_MAX_LEVEL]; 6426 u64 flags[BTRFS_MAX_LEVEL]; 6427 struct btrfs_key update_progress; 6428 int stage; 6429 int level; 6430 int shared_level; 6431 int update_ref; 6432 int keep_locks; 6433 int reada_slot; 6434 int reada_count; 6435 int for_reloc; 6436 }; 6437 6438 #define DROP_REFERENCE 1 6439 #define UPDATE_BACKREF 2 6440 6441 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6442 struct btrfs_root *root, 6443 struct walk_control *wc, 6444 struct btrfs_path *path) 6445 { 6446 u64 bytenr; 6447 u64 generation; 6448 u64 refs; 6449 u64 flags; 6450 u32 nritems; 6451 u32 blocksize; 6452 struct btrfs_key key; 6453 struct extent_buffer *eb; 6454 int ret; 6455 int slot; 6456 int nread = 0; 6457 6458 if (path->slots[wc->level] < wc->reada_slot) { 6459 wc->reada_count = wc->reada_count * 2 / 3; 6460 wc->reada_count = max(wc->reada_count, 2); 6461 } else { 6462 wc->reada_count = wc->reada_count * 3 / 2; 6463 wc->reada_count = min_t(int, wc->reada_count, 6464 BTRFS_NODEPTRS_PER_BLOCK(root)); 6465 } 6466 6467 eb = path->nodes[wc->level]; 6468 nritems = btrfs_header_nritems(eb); 6469 blocksize = btrfs_level_size(root, wc->level - 1); 6470 6471 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6472 if (nread >= wc->reada_count) 6473 break; 6474 6475 cond_resched(); 6476 bytenr = btrfs_node_blockptr(eb, slot); 6477 generation = btrfs_node_ptr_generation(eb, slot); 6478 6479 if (slot == path->slots[wc->level]) 6480 goto reada; 6481 6482 if (wc->stage == UPDATE_BACKREF && 6483 generation <= root->root_key.offset) 6484 continue; 6485 6486 /* We don't lock the tree block, it's OK to be racy here */ 6487 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6488 &refs, &flags); 6489 /* We don't care about errors in readahead. */ 6490 if (ret < 0) 6491 continue; 6492 BUG_ON(refs == 0); 6493 6494 if (wc->stage == DROP_REFERENCE) { 6495 if (refs == 1) 6496 goto reada; 6497 6498 if (wc->level == 1 && 6499 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6500 continue; 6501 if (!wc->update_ref || 6502 generation <= root->root_key.offset) 6503 continue; 6504 btrfs_node_key_to_cpu(eb, &key, slot); 6505 ret = btrfs_comp_cpu_keys(&key, 6506 &wc->update_progress); 6507 if (ret < 0) 6508 continue; 6509 } else { 6510 if (wc->level == 1 && 6511 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6512 continue; 6513 } 6514 reada: 6515 ret = readahead_tree_block(root, bytenr, blocksize, 6516 generation); 6517 if (ret) 6518 break; 6519 nread++; 6520 } 6521 wc->reada_slot = slot; 6522 } 6523 6524 /* 6525 * hepler to process tree block while walking down the tree. 6526 * 6527 * when wc->stage == UPDATE_BACKREF, this function updates 6528 * back refs for pointers in the block. 6529 * 6530 * NOTE: return value 1 means we should stop walking down. 6531 */ 6532 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6533 struct btrfs_root *root, 6534 struct btrfs_path *path, 6535 struct walk_control *wc, int lookup_info) 6536 { 6537 int level = wc->level; 6538 struct extent_buffer *eb = path->nodes[level]; 6539 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6540 int ret; 6541 6542 if (wc->stage == UPDATE_BACKREF && 6543 btrfs_header_owner(eb) != root->root_key.objectid) 6544 return 1; 6545 6546 /* 6547 * when reference count of tree block is 1, it won't increase 6548 * again. once full backref flag is set, we never clear it. 6549 */ 6550 if (lookup_info && 6551 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6552 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6553 BUG_ON(!path->locks[level]); 6554 ret = btrfs_lookup_extent_info(trans, root, 6555 eb->start, eb->len, 6556 &wc->refs[level], 6557 &wc->flags[level]); 6558 BUG_ON(ret == -ENOMEM); 6559 if (ret) 6560 return ret; 6561 BUG_ON(wc->refs[level] == 0); 6562 } 6563 6564 if (wc->stage == DROP_REFERENCE) { 6565 if (wc->refs[level] > 1) 6566 return 1; 6567 6568 if (path->locks[level] && !wc->keep_locks) { 6569 btrfs_tree_unlock_rw(eb, path->locks[level]); 6570 path->locks[level] = 0; 6571 } 6572 return 0; 6573 } 6574 6575 /* wc->stage == UPDATE_BACKREF */ 6576 if (!(wc->flags[level] & flag)) { 6577 BUG_ON(!path->locks[level]); 6578 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6579 BUG_ON(ret); /* -ENOMEM */ 6580 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6581 BUG_ON(ret); /* -ENOMEM */ 6582 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6583 eb->len, flag, 0); 6584 BUG_ON(ret); /* -ENOMEM */ 6585 wc->flags[level] |= flag; 6586 } 6587 6588 /* 6589 * the block is shared by multiple trees, so it's not good to 6590 * keep the tree lock 6591 */ 6592 if (path->locks[level] && level > 0) { 6593 btrfs_tree_unlock_rw(eb, path->locks[level]); 6594 path->locks[level] = 0; 6595 } 6596 return 0; 6597 } 6598 6599 /* 6600 * hepler to process tree block pointer. 6601 * 6602 * when wc->stage == DROP_REFERENCE, this function checks 6603 * reference count of the block pointed to. if the block 6604 * is shared and we need update back refs for the subtree 6605 * rooted at the block, this function changes wc->stage to 6606 * UPDATE_BACKREF. if the block is shared and there is no 6607 * need to update back, this function drops the reference 6608 * to the block. 6609 * 6610 * NOTE: return value 1 means we should stop walking down. 6611 */ 6612 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6613 struct btrfs_root *root, 6614 struct btrfs_path *path, 6615 struct walk_control *wc, int *lookup_info) 6616 { 6617 u64 bytenr; 6618 u64 generation; 6619 u64 parent; 6620 u32 blocksize; 6621 struct btrfs_key key; 6622 struct extent_buffer *next; 6623 int level = wc->level; 6624 int reada = 0; 6625 int ret = 0; 6626 6627 generation = btrfs_node_ptr_generation(path->nodes[level], 6628 path->slots[level]); 6629 /* 6630 * if the lower level block was created before the snapshot 6631 * was created, we know there is no need to update back refs 6632 * for the subtree 6633 */ 6634 if (wc->stage == UPDATE_BACKREF && 6635 generation <= root->root_key.offset) { 6636 *lookup_info = 1; 6637 return 1; 6638 } 6639 6640 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6641 blocksize = btrfs_level_size(root, level - 1); 6642 6643 next = btrfs_find_tree_block(root, bytenr, blocksize); 6644 if (!next) { 6645 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6646 if (!next) 6647 return -ENOMEM; 6648 reada = 1; 6649 } 6650 btrfs_tree_lock(next); 6651 btrfs_set_lock_blocking(next); 6652 6653 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6654 &wc->refs[level - 1], 6655 &wc->flags[level - 1]); 6656 if (ret < 0) { 6657 btrfs_tree_unlock(next); 6658 return ret; 6659 } 6660 6661 BUG_ON(wc->refs[level - 1] == 0); 6662 *lookup_info = 0; 6663 6664 if (wc->stage == DROP_REFERENCE) { 6665 if (wc->refs[level - 1] > 1) { 6666 if (level == 1 && 6667 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6668 goto skip; 6669 6670 if (!wc->update_ref || 6671 generation <= root->root_key.offset) 6672 goto skip; 6673 6674 btrfs_node_key_to_cpu(path->nodes[level], &key, 6675 path->slots[level]); 6676 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6677 if (ret < 0) 6678 goto skip; 6679 6680 wc->stage = UPDATE_BACKREF; 6681 wc->shared_level = level - 1; 6682 } 6683 } else { 6684 if (level == 1 && 6685 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6686 goto skip; 6687 } 6688 6689 if (!btrfs_buffer_uptodate(next, generation, 0)) { 6690 btrfs_tree_unlock(next); 6691 free_extent_buffer(next); 6692 next = NULL; 6693 *lookup_info = 1; 6694 } 6695 6696 if (!next) { 6697 if (reada && level == 1) 6698 reada_walk_down(trans, root, wc, path); 6699 next = read_tree_block(root, bytenr, blocksize, generation); 6700 if (!next) 6701 return -EIO; 6702 btrfs_tree_lock(next); 6703 btrfs_set_lock_blocking(next); 6704 } 6705 6706 level--; 6707 BUG_ON(level != btrfs_header_level(next)); 6708 path->nodes[level] = next; 6709 path->slots[level] = 0; 6710 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6711 wc->level = level; 6712 if (wc->level == 1) 6713 wc->reada_slot = 0; 6714 return 0; 6715 skip: 6716 wc->refs[level - 1] = 0; 6717 wc->flags[level - 1] = 0; 6718 if (wc->stage == DROP_REFERENCE) { 6719 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6720 parent = path->nodes[level]->start; 6721 } else { 6722 BUG_ON(root->root_key.objectid != 6723 btrfs_header_owner(path->nodes[level])); 6724 parent = 0; 6725 } 6726 6727 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6728 root->root_key.objectid, level - 1, 0, 0); 6729 BUG_ON(ret); /* -ENOMEM */ 6730 } 6731 btrfs_tree_unlock(next); 6732 free_extent_buffer(next); 6733 *lookup_info = 1; 6734 return 1; 6735 } 6736 6737 /* 6738 * hepler to process tree block while walking up the tree. 6739 * 6740 * when wc->stage == DROP_REFERENCE, this function drops 6741 * reference count on the block. 6742 * 6743 * when wc->stage == UPDATE_BACKREF, this function changes 6744 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6745 * to UPDATE_BACKREF previously while processing the block. 6746 * 6747 * NOTE: return value 1 means we should stop walking up. 6748 */ 6749 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6750 struct btrfs_root *root, 6751 struct btrfs_path *path, 6752 struct walk_control *wc) 6753 { 6754 int ret; 6755 int level = wc->level; 6756 struct extent_buffer *eb = path->nodes[level]; 6757 u64 parent = 0; 6758 6759 if (wc->stage == UPDATE_BACKREF) { 6760 BUG_ON(wc->shared_level < level); 6761 if (level < wc->shared_level) 6762 goto out; 6763 6764 ret = find_next_key(path, level + 1, &wc->update_progress); 6765 if (ret > 0) 6766 wc->update_ref = 0; 6767 6768 wc->stage = DROP_REFERENCE; 6769 wc->shared_level = -1; 6770 path->slots[level] = 0; 6771 6772 /* 6773 * check reference count again if the block isn't locked. 6774 * we should start walking down the tree again if reference 6775 * count is one. 6776 */ 6777 if (!path->locks[level]) { 6778 BUG_ON(level == 0); 6779 btrfs_tree_lock(eb); 6780 btrfs_set_lock_blocking(eb); 6781 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6782 6783 ret = btrfs_lookup_extent_info(trans, root, 6784 eb->start, eb->len, 6785 &wc->refs[level], 6786 &wc->flags[level]); 6787 if (ret < 0) { 6788 btrfs_tree_unlock_rw(eb, path->locks[level]); 6789 path->locks[level] = 0; 6790 return ret; 6791 } 6792 BUG_ON(wc->refs[level] == 0); 6793 if (wc->refs[level] == 1) { 6794 btrfs_tree_unlock_rw(eb, path->locks[level]); 6795 path->locks[level] = 0; 6796 return 1; 6797 } 6798 } 6799 } 6800 6801 /* wc->stage == DROP_REFERENCE */ 6802 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6803 6804 if (wc->refs[level] == 1) { 6805 if (level == 0) { 6806 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6807 ret = btrfs_dec_ref(trans, root, eb, 1, 6808 wc->for_reloc); 6809 else 6810 ret = btrfs_dec_ref(trans, root, eb, 0, 6811 wc->for_reloc); 6812 BUG_ON(ret); /* -ENOMEM */ 6813 } 6814 /* make block locked assertion in clean_tree_block happy */ 6815 if (!path->locks[level] && 6816 btrfs_header_generation(eb) == trans->transid) { 6817 btrfs_tree_lock(eb); 6818 btrfs_set_lock_blocking(eb); 6819 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6820 } 6821 clean_tree_block(trans, root, eb); 6822 } 6823 6824 if (eb == root->node) { 6825 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6826 parent = eb->start; 6827 else 6828 BUG_ON(root->root_key.objectid != 6829 btrfs_header_owner(eb)); 6830 } else { 6831 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6832 parent = path->nodes[level + 1]->start; 6833 else 6834 BUG_ON(root->root_key.objectid != 6835 btrfs_header_owner(path->nodes[level + 1])); 6836 } 6837 6838 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6839 out: 6840 wc->refs[level] = 0; 6841 wc->flags[level] = 0; 6842 return 0; 6843 } 6844 6845 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6846 struct btrfs_root *root, 6847 struct btrfs_path *path, 6848 struct walk_control *wc) 6849 { 6850 int level = wc->level; 6851 int lookup_info = 1; 6852 int ret; 6853 6854 while (level >= 0) { 6855 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6856 if (ret > 0) 6857 break; 6858 6859 if (level == 0) 6860 break; 6861 6862 if (path->slots[level] >= 6863 btrfs_header_nritems(path->nodes[level])) 6864 break; 6865 6866 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6867 if (ret > 0) { 6868 path->slots[level]++; 6869 continue; 6870 } else if (ret < 0) 6871 return ret; 6872 level = wc->level; 6873 } 6874 return 0; 6875 } 6876 6877 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6878 struct btrfs_root *root, 6879 struct btrfs_path *path, 6880 struct walk_control *wc, int max_level) 6881 { 6882 int level = wc->level; 6883 int ret; 6884 6885 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6886 while (level < max_level && path->nodes[level]) { 6887 wc->level = level; 6888 if (path->slots[level] + 1 < 6889 btrfs_header_nritems(path->nodes[level])) { 6890 path->slots[level]++; 6891 return 0; 6892 } else { 6893 ret = walk_up_proc(trans, root, path, wc); 6894 if (ret > 0) 6895 return 0; 6896 6897 if (path->locks[level]) { 6898 btrfs_tree_unlock_rw(path->nodes[level], 6899 path->locks[level]); 6900 path->locks[level] = 0; 6901 } 6902 free_extent_buffer(path->nodes[level]); 6903 path->nodes[level] = NULL; 6904 level++; 6905 } 6906 } 6907 return 1; 6908 } 6909 6910 /* 6911 * drop a subvolume tree. 6912 * 6913 * this function traverses the tree freeing any blocks that only 6914 * referenced by the tree. 6915 * 6916 * when a shared tree block is found. this function decreases its 6917 * reference count by one. if update_ref is true, this function 6918 * also make sure backrefs for the shared block and all lower level 6919 * blocks are properly updated. 6920 */ 6921 int btrfs_drop_snapshot(struct btrfs_root *root, 6922 struct btrfs_block_rsv *block_rsv, int update_ref, 6923 int for_reloc) 6924 { 6925 struct btrfs_path *path; 6926 struct btrfs_trans_handle *trans; 6927 struct btrfs_root *tree_root = root->fs_info->tree_root; 6928 struct btrfs_root_item *root_item = &root->root_item; 6929 struct walk_control *wc; 6930 struct btrfs_key key; 6931 int err = 0; 6932 int ret; 6933 int level; 6934 6935 path = btrfs_alloc_path(); 6936 if (!path) { 6937 err = -ENOMEM; 6938 goto out; 6939 } 6940 6941 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6942 if (!wc) { 6943 btrfs_free_path(path); 6944 err = -ENOMEM; 6945 goto out; 6946 } 6947 6948 trans = btrfs_start_transaction(tree_root, 0); 6949 if (IS_ERR(trans)) { 6950 err = PTR_ERR(trans); 6951 goto out_free; 6952 } 6953 6954 if (block_rsv) 6955 trans->block_rsv = block_rsv; 6956 6957 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6958 level = btrfs_header_level(root->node); 6959 path->nodes[level] = btrfs_lock_root_node(root); 6960 btrfs_set_lock_blocking(path->nodes[level]); 6961 path->slots[level] = 0; 6962 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6963 memset(&wc->update_progress, 0, 6964 sizeof(wc->update_progress)); 6965 } else { 6966 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6967 memcpy(&wc->update_progress, &key, 6968 sizeof(wc->update_progress)); 6969 6970 level = root_item->drop_level; 6971 BUG_ON(level == 0); 6972 path->lowest_level = level; 6973 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6974 path->lowest_level = 0; 6975 if (ret < 0) { 6976 err = ret; 6977 goto out_end_trans; 6978 } 6979 WARN_ON(ret > 0); 6980 6981 /* 6982 * unlock our path, this is safe because only this 6983 * function is allowed to delete this snapshot 6984 */ 6985 btrfs_unlock_up_safe(path, 0); 6986 6987 level = btrfs_header_level(root->node); 6988 while (1) { 6989 btrfs_tree_lock(path->nodes[level]); 6990 btrfs_set_lock_blocking(path->nodes[level]); 6991 6992 ret = btrfs_lookup_extent_info(trans, root, 6993 path->nodes[level]->start, 6994 path->nodes[level]->len, 6995 &wc->refs[level], 6996 &wc->flags[level]); 6997 if (ret < 0) { 6998 err = ret; 6999 goto out_end_trans; 7000 } 7001 BUG_ON(wc->refs[level] == 0); 7002 7003 if (level == root_item->drop_level) 7004 break; 7005 7006 btrfs_tree_unlock(path->nodes[level]); 7007 WARN_ON(wc->refs[level] != 1); 7008 level--; 7009 } 7010 } 7011 7012 wc->level = level; 7013 wc->shared_level = -1; 7014 wc->stage = DROP_REFERENCE; 7015 wc->update_ref = update_ref; 7016 wc->keep_locks = 0; 7017 wc->for_reloc = for_reloc; 7018 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7019 7020 while (1) { 7021 ret = walk_down_tree(trans, root, path, wc); 7022 if (ret < 0) { 7023 err = ret; 7024 break; 7025 } 7026 7027 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7028 if (ret < 0) { 7029 err = ret; 7030 break; 7031 } 7032 7033 if (ret > 0) { 7034 BUG_ON(wc->stage != DROP_REFERENCE); 7035 break; 7036 } 7037 7038 if (wc->stage == DROP_REFERENCE) { 7039 level = wc->level; 7040 btrfs_node_key(path->nodes[level], 7041 &root_item->drop_progress, 7042 path->slots[level]); 7043 root_item->drop_level = level; 7044 } 7045 7046 BUG_ON(wc->level == 0); 7047 if (btrfs_should_end_transaction(trans, tree_root)) { 7048 ret = btrfs_update_root(trans, tree_root, 7049 &root->root_key, 7050 root_item); 7051 if (ret) { 7052 btrfs_abort_transaction(trans, tree_root, ret); 7053 err = ret; 7054 goto out_end_trans; 7055 } 7056 7057 btrfs_end_transaction_throttle(trans, tree_root); 7058 trans = btrfs_start_transaction(tree_root, 0); 7059 if (IS_ERR(trans)) { 7060 err = PTR_ERR(trans); 7061 goto out_free; 7062 } 7063 if (block_rsv) 7064 trans->block_rsv = block_rsv; 7065 } 7066 } 7067 btrfs_release_path(path); 7068 if (err) 7069 goto out_end_trans; 7070 7071 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7072 if (ret) { 7073 btrfs_abort_transaction(trans, tree_root, ret); 7074 goto out_end_trans; 7075 } 7076 7077 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7078 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 7079 NULL, NULL); 7080 if (ret < 0) { 7081 btrfs_abort_transaction(trans, tree_root, ret); 7082 err = ret; 7083 goto out_end_trans; 7084 } else if (ret > 0) { 7085 /* if we fail to delete the orphan item this time 7086 * around, it'll get picked up the next time. 7087 * 7088 * The most common failure here is just -ENOENT. 7089 */ 7090 btrfs_del_orphan_item(trans, tree_root, 7091 root->root_key.objectid); 7092 } 7093 } 7094 7095 if (root->in_radix) { 7096 btrfs_free_fs_root(tree_root->fs_info, root); 7097 } else { 7098 free_extent_buffer(root->node); 7099 free_extent_buffer(root->commit_root); 7100 kfree(root); 7101 } 7102 out_end_trans: 7103 btrfs_end_transaction_throttle(trans, tree_root); 7104 out_free: 7105 kfree(wc); 7106 btrfs_free_path(path); 7107 out: 7108 if (err) 7109 btrfs_std_error(root->fs_info, err); 7110 return err; 7111 } 7112 7113 /* 7114 * drop subtree rooted at tree block 'node'. 7115 * 7116 * NOTE: this function will unlock and release tree block 'node' 7117 * only used by relocation code 7118 */ 7119 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7120 struct btrfs_root *root, 7121 struct extent_buffer *node, 7122 struct extent_buffer *parent) 7123 { 7124 struct btrfs_path *path; 7125 struct walk_control *wc; 7126 int level; 7127 int parent_level; 7128 int ret = 0; 7129 int wret; 7130 7131 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7132 7133 path = btrfs_alloc_path(); 7134 if (!path) 7135 return -ENOMEM; 7136 7137 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7138 if (!wc) { 7139 btrfs_free_path(path); 7140 return -ENOMEM; 7141 } 7142 7143 btrfs_assert_tree_locked(parent); 7144 parent_level = btrfs_header_level(parent); 7145 extent_buffer_get(parent); 7146 path->nodes[parent_level] = parent; 7147 path->slots[parent_level] = btrfs_header_nritems(parent); 7148 7149 btrfs_assert_tree_locked(node); 7150 level = btrfs_header_level(node); 7151 path->nodes[level] = node; 7152 path->slots[level] = 0; 7153 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7154 7155 wc->refs[parent_level] = 1; 7156 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7157 wc->level = level; 7158 wc->shared_level = -1; 7159 wc->stage = DROP_REFERENCE; 7160 wc->update_ref = 0; 7161 wc->keep_locks = 1; 7162 wc->for_reloc = 1; 7163 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7164 7165 while (1) { 7166 wret = walk_down_tree(trans, root, path, wc); 7167 if (wret < 0) { 7168 ret = wret; 7169 break; 7170 } 7171 7172 wret = walk_up_tree(trans, root, path, wc, parent_level); 7173 if (wret < 0) 7174 ret = wret; 7175 if (wret != 0) 7176 break; 7177 } 7178 7179 kfree(wc); 7180 btrfs_free_path(path); 7181 return ret; 7182 } 7183 7184 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7185 { 7186 u64 num_devices; 7187 u64 stripped; 7188 7189 /* 7190 * if restripe for this chunk_type is on pick target profile and 7191 * return, otherwise do the usual balance 7192 */ 7193 stripped = get_restripe_target(root->fs_info, flags); 7194 if (stripped) 7195 return extended_to_chunk(stripped); 7196 7197 /* 7198 * we add in the count of missing devices because we want 7199 * to make sure that any RAID levels on a degraded FS 7200 * continue to be honored. 7201 */ 7202 num_devices = root->fs_info->fs_devices->rw_devices + 7203 root->fs_info->fs_devices->missing_devices; 7204 7205 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7206 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7207 7208 if (num_devices == 1) { 7209 stripped |= BTRFS_BLOCK_GROUP_DUP; 7210 stripped = flags & ~stripped; 7211 7212 /* turn raid0 into single device chunks */ 7213 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7214 return stripped; 7215 7216 /* turn mirroring into duplication */ 7217 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7218 BTRFS_BLOCK_GROUP_RAID10)) 7219 return stripped | BTRFS_BLOCK_GROUP_DUP; 7220 } else { 7221 /* they already had raid on here, just return */ 7222 if (flags & stripped) 7223 return flags; 7224 7225 stripped |= BTRFS_BLOCK_GROUP_DUP; 7226 stripped = flags & ~stripped; 7227 7228 /* switch duplicated blocks with raid1 */ 7229 if (flags & BTRFS_BLOCK_GROUP_DUP) 7230 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7231 7232 /* this is drive concat, leave it alone */ 7233 } 7234 7235 return flags; 7236 } 7237 7238 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7239 { 7240 struct btrfs_space_info *sinfo = cache->space_info; 7241 u64 num_bytes; 7242 u64 min_allocable_bytes; 7243 int ret = -ENOSPC; 7244 7245 7246 /* 7247 * We need some metadata space and system metadata space for 7248 * allocating chunks in some corner cases until we force to set 7249 * it to be readonly. 7250 */ 7251 if ((sinfo->flags & 7252 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7253 !force) 7254 min_allocable_bytes = 1 * 1024 * 1024; 7255 else 7256 min_allocable_bytes = 0; 7257 7258 spin_lock(&sinfo->lock); 7259 spin_lock(&cache->lock); 7260 7261 if (cache->ro) { 7262 ret = 0; 7263 goto out; 7264 } 7265 7266 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7267 cache->bytes_super - btrfs_block_group_used(&cache->item); 7268 7269 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7270 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7271 min_allocable_bytes <= sinfo->total_bytes) { 7272 sinfo->bytes_readonly += num_bytes; 7273 cache->ro = 1; 7274 ret = 0; 7275 } 7276 out: 7277 spin_unlock(&cache->lock); 7278 spin_unlock(&sinfo->lock); 7279 return ret; 7280 } 7281 7282 int btrfs_set_block_group_ro(struct btrfs_root *root, 7283 struct btrfs_block_group_cache *cache) 7284 7285 { 7286 struct btrfs_trans_handle *trans; 7287 u64 alloc_flags; 7288 int ret; 7289 7290 BUG_ON(cache->ro); 7291 7292 trans = btrfs_join_transaction(root); 7293 if (IS_ERR(trans)) 7294 return PTR_ERR(trans); 7295 7296 alloc_flags = update_block_group_flags(root, cache->flags); 7297 if (alloc_flags != cache->flags) { 7298 ret = do_chunk_alloc(trans, root, alloc_flags, 7299 CHUNK_ALLOC_FORCE); 7300 if (ret < 0) 7301 goto out; 7302 } 7303 7304 ret = set_block_group_ro(cache, 0); 7305 if (!ret) 7306 goto out; 7307 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7308 ret = do_chunk_alloc(trans, root, alloc_flags, 7309 CHUNK_ALLOC_FORCE); 7310 if (ret < 0) 7311 goto out; 7312 ret = set_block_group_ro(cache, 0); 7313 out: 7314 btrfs_end_transaction(trans, root); 7315 return ret; 7316 } 7317 7318 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7319 struct btrfs_root *root, u64 type) 7320 { 7321 u64 alloc_flags = get_alloc_profile(root, type); 7322 return do_chunk_alloc(trans, root, alloc_flags, 7323 CHUNK_ALLOC_FORCE); 7324 } 7325 7326 /* 7327 * helper to account the unused space of all the readonly block group in the 7328 * list. takes mirrors into account. 7329 */ 7330 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7331 { 7332 struct btrfs_block_group_cache *block_group; 7333 u64 free_bytes = 0; 7334 int factor; 7335 7336 list_for_each_entry(block_group, groups_list, list) { 7337 spin_lock(&block_group->lock); 7338 7339 if (!block_group->ro) { 7340 spin_unlock(&block_group->lock); 7341 continue; 7342 } 7343 7344 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7345 BTRFS_BLOCK_GROUP_RAID10 | 7346 BTRFS_BLOCK_GROUP_DUP)) 7347 factor = 2; 7348 else 7349 factor = 1; 7350 7351 free_bytes += (block_group->key.offset - 7352 btrfs_block_group_used(&block_group->item)) * 7353 factor; 7354 7355 spin_unlock(&block_group->lock); 7356 } 7357 7358 return free_bytes; 7359 } 7360 7361 /* 7362 * helper to account the unused space of all the readonly block group in the 7363 * space_info. takes mirrors into account. 7364 */ 7365 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7366 { 7367 int i; 7368 u64 free_bytes = 0; 7369 7370 spin_lock(&sinfo->lock); 7371 7372 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7373 if (!list_empty(&sinfo->block_groups[i])) 7374 free_bytes += __btrfs_get_ro_block_group_free_space( 7375 &sinfo->block_groups[i]); 7376 7377 spin_unlock(&sinfo->lock); 7378 7379 return free_bytes; 7380 } 7381 7382 void btrfs_set_block_group_rw(struct btrfs_root *root, 7383 struct btrfs_block_group_cache *cache) 7384 { 7385 struct btrfs_space_info *sinfo = cache->space_info; 7386 u64 num_bytes; 7387 7388 BUG_ON(!cache->ro); 7389 7390 spin_lock(&sinfo->lock); 7391 spin_lock(&cache->lock); 7392 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7393 cache->bytes_super - btrfs_block_group_used(&cache->item); 7394 sinfo->bytes_readonly -= num_bytes; 7395 cache->ro = 0; 7396 spin_unlock(&cache->lock); 7397 spin_unlock(&sinfo->lock); 7398 } 7399 7400 /* 7401 * checks to see if its even possible to relocate this block group. 7402 * 7403 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7404 * ok to go ahead and try. 7405 */ 7406 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7407 { 7408 struct btrfs_block_group_cache *block_group; 7409 struct btrfs_space_info *space_info; 7410 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7411 struct btrfs_device *device; 7412 u64 min_free; 7413 u64 dev_min = 1; 7414 u64 dev_nr = 0; 7415 u64 target; 7416 int index; 7417 int full = 0; 7418 int ret = 0; 7419 7420 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7421 7422 /* odd, couldn't find the block group, leave it alone */ 7423 if (!block_group) 7424 return -1; 7425 7426 min_free = btrfs_block_group_used(&block_group->item); 7427 7428 /* no bytes used, we're good */ 7429 if (!min_free) 7430 goto out; 7431 7432 space_info = block_group->space_info; 7433 spin_lock(&space_info->lock); 7434 7435 full = space_info->full; 7436 7437 /* 7438 * if this is the last block group we have in this space, we can't 7439 * relocate it unless we're able to allocate a new chunk below. 7440 * 7441 * Otherwise, we need to make sure we have room in the space to handle 7442 * all of the extents from this block group. If we can, we're good 7443 */ 7444 if ((space_info->total_bytes != block_group->key.offset) && 7445 (space_info->bytes_used + space_info->bytes_reserved + 7446 space_info->bytes_pinned + space_info->bytes_readonly + 7447 min_free < space_info->total_bytes)) { 7448 spin_unlock(&space_info->lock); 7449 goto out; 7450 } 7451 spin_unlock(&space_info->lock); 7452 7453 /* 7454 * ok we don't have enough space, but maybe we have free space on our 7455 * devices to allocate new chunks for relocation, so loop through our 7456 * alloc devices and guess if we have enough space. if this block 7457 * group is going to be restriped, run checks against the target 7458 * profile instead of the current one. 7459 */ 7460 ret = -1; 7461 7462 /* 7463 * index: 7464 * 0: raid10 7465 * 1: raid1 7466 * 2: dup 7467 * 3: raid0 7468 * 4: single 7469 */ 7470 target = get_restripe_target(root->fs_info, block_group->flags); 7471 if (target) { 7472 index = __get_raid_index(extended_to_chunk(target)); 7473 } else { 7474 /* 7475 * this is just a balance, so if we were marked as full 7476 * we know there is no space for a new chunk 7477 */ 7478 if (full) 7479 goto out; 7480 7481 index = get_block_group_index(block_group); 7482 } 7483 7484 if (index == 0) { 7485 dev_min = 4; 7486 /* Divide by 2 */ 7487 min_free >>= 1; 7488 } else if (index == 1) { 7489 dev_min = 2; 7490 } else if (index == 2) { 7491 /* Multiply by 2 */ 7492 min_free <<= 1; 7493 } else if (index == 3) { 7494 dev_min = fs_devices->rw_devices; 7495 do_div(min_free, dev_min); 7496 } 7497 7498 mutex_lock(&root->fs_info->chunk_mutex); 7499 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7500 u64 dev_offset; 7501 7502 /* 7503 * check to make sure we can actually find a chunk with enough 7504 * space to fit our block group in. 7505 */ 7506 if (device->total_bytes > device->bytes_used + min_free && 7507 !device->is_tgtdev_for_dev_replace) { 7508 ret = find_free_dev_extent(device, min_free, 7509 &dev_offset, NULL); 7510 if (!ret) 7511 dev_nr++; 7512 7513 if (dev_nr >= dev_min) 7514 break; 7515 7516 ret = -1; 7517 } 7518 } 7519 mutex_unlock(&root->fs_info->chunk_mutex); 7520 out: 7521 btrfs_put_block_group(block_group); 7522 return ret; 7523 } 7524 7525 static int find_first_block_group(struct btrfs_root *root, 7526 struct btrfs_path *path, struct btrfs_key *key) 7527 { 7528 int ret = 0; 7529 struct btrfs_key found_key; 7530 struct extent_buffer *leaf; 7531 int slot; 7532 7533 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7534 if (ret < 0) 7535 goto out; 7536 7537 while (1) { 7538 slot = path->slots[0]; 7539 leaf = path->nodes[0]; 7540 if (slot >= btrfs_header_nritems(leaf)) { 7541 ret = btrfs_next_leaf(root, path); 7542 if (ret == 0) 7543 continue; 7544 if (ret < 0) 7545 goto out; 7546 break; 7547 } 7548 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7549 7550 if (found_key.objectid >= key->objectid && 7551 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7552 ret = 0; 7553 goto out; 7554 } 7555 path->slots[0]++; 7556 } 7557 out: 7558 return ret; 7559 } 7560 7561 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7562 { 7563 struct btrfs_block_group_cache *block_group; 7564 u64 last = 0; 7565 7566 while (1) { 7567 struct inode *inode; 7568 7569 block_group = btrfs_lookup_first_block_group(info, last); 7570 while (block_group) { 7571 spin_lock(&block_group->lock); 7572 if (block_group->iref) 7573 break; 7574 spin_unlock(&block_group->lock); 7575 block_group = next_block_group(info->tree_root, 7576 block_group); 7577 } 7578 if (!block_group) { 7579 if (last == 0) 7580 break; 7581 last = 0; 7582 continue; 7583 } 7584 7585 inode = block_group->inode; 7586 block_group->iref = 0; 7587 block_group->inode = NULL; 7588 spin_unlock(&block_group->lock); 7589 iput(inode); 7590 last = block_group->key.objectid + block_group->key.offset; 7591 btrfs_put_block_group(block_group); 7592 } 7593 } 7594 7595 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7596 { 7597 struct btrfs_block_group_cache *block_group; 7598 struct btrfs_space_info *space_info; 7599 struct btrfs_caching_control *caching_ctl; 7600 struct rb_node *n; 7601 7602 down_write(&info->extent_commit_sem); 7603 while (!list_empty(&info->caching_block_groups)) { 7604 caching_ctl = list_entry(info->caching_block_groups.next, 7605 struct btrfs_caching_control, list); 7606 list_del(&caching_ctl->list); 7607 put_caching_control(caching_ctl); 7608 } 7609 up_write(&info->extent_commit_sem); 7610 7611 spin_lock(&info->block_group_cache_lock); 7612 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7613 block_group = rb_entry(n, struct btrfs_block_group_cache, 7614 cache_node); 7615 rb_erase(&block_group->cache_node, 7616 &info->block_group_cache_tree); 7617 spin_unlock(&info->block_group_cache_lock); 7618 7619 down_write(&block_group->space_info->groups_sem); 7620 list_del(&block_group->list); 7621 up_write(&block_group->space_info->groups_sem); 7622 7623 if (block_group->cached == BTRFS_CACHE_STARTED) 7624 wait_block_group_cache_done(block_group); 7625 7626 /* 7627 * We haven't cached this block group, which means we could 7628 * possibly have excluded extents on this block group. 7629 */ 7630 if (block_group->cached == BTRFS_CACHE_NO) 7631 free_excluded_extents(info->extent_root, block_group); 7632 7633 btrfs_remove_free_space_cache(block_group); 7634 btrfs_put_block_group(block_group); 7635 7636 spin_lock(&info->block_group_cache_lock); 7637 } 7638 spin_unlock(&info->block_group_cache_lock); 7639 7640 /* now that all the block groups are freed, go through and 7641 * free all the space_info structs. This is only called during 7642 * the final stages of unmount, and so we know nobody is 7643 * using them. We call synchronize_rcu() once before we start, 7644 * just to be on the safe side. 7645 */ 7646 synchronize_rcu(); 7647 7648 release_global_block_rsv(info); 7649 7650 while(!list_empty(&info->space_info)) { 7651 space_info = list_entry(info->space_info.next, 7652 struct btrfs_space_info, 7653 list); 7654 if (space_info->bytes_pinned > 0 || 7655 space_info->bytes_reserved > 0 || 7656 space_info->bytes_may_use > 0) { 7657 WARN_ON(1); 7658 dump_space_info(space_info, 0, 0); 7659 } 7660 list_del(&space_info->list); 7661 kfree(space_info); 7662 } 7663 return 0; 7664 } 7665 7666 static void __link_block_group(struct btrfs_space_info *space_info, 7667 struct btrfs_block_group_cache *cache) 7668 { 7669 int index = get_block_group_index(cache); 7670 7671 down_write(&space_info->groups_sem); 7672 list_add_tail(&cache->list, &space_info->block_groups[index]); 7673 up_write(&space_info->groups_sem); 7674 } 7675 7676 int btrfs_read_block_groups(struct btrfs_root *root) 7677 { 7678 struct btrfs_path *path; 7679 int ret; 7680 struct btrfs_block_group_cache *cache; 7681 struct btrfs_fs_info *info = root->fs_info; 7682 struct btrfs_space_info *space_info; 7683 struct btrfs_key key; 7684 struct btrfs_key found_key; 7685 struct extent_buffer *leaf; 7686 int need_clear = 0; 7687 u64 cache_gen; 7688 7689 root = info->extent_root; 7690 key.objectid = 0; 7691 key.offset = 0; 7692 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7693 path = btrfs_alloc_path(); 7694 if (!path) 7695 return -ENOMEM; 7696 path->reada = 1; 7697 7698 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7699 if (btrfs_test_opt(root, SPACE_CACHE) && 7700 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7701 need_clear = 1; 7702 if (btrfs_test_opt(root, CLEAR_CACHE)) 7703 need_clear = 1; 7704 7705 while (1) { 7706 ret = find_first_block_group(root, path, &key); 7707 if (ret > 0) 7708 break; 7709 if (ret != 0) 7710 goto error; 7711 leaf = path->nodes[0]; 7712 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7713 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7714 if (!cache) { 7715 ret = -ENOMEM; 7716 goto error; 7717 } 7718 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7719 GFP_NOFS); 7720 if (!cache->free_space_ctl) { 7721 kfree(cache); 7722 ret = -ENOMEM; 7723 goto error; 7724 } 7725 7726 atomic_set(&cache->count, 1); 7727 spin_lock_init(&cache->lock); 7728 cache->fs_info = info; 7729 INIT_LIST_HEAD(&cache->list); 7730 INIT_LIST_HEAD(&cache->cluster_list); 7731 7732 if (need_clear) { 7733 /* 7734 * When we mount with old space cache, we need to 7735 * set BTRFS_DC_CLEAR and set dirty flag. 7736 * 7737 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 7738 * truncate the old free space cache inode and 7739 * setup a new one. 7740 * b) Setting 'dirty flag' makes sure that we flush 7741 * the new space cache info onto disk. 7742 */ 7743 cache->disk_cache_state = BTRFS_DC_CLEAR; 7744 if (btrfs_test_opt(root, SPACE_CACHE)) 7745 cache->dirty = 1; 7746 } 7747 7748 read_extent_buffer(leaf, &cache->item, 7749 btrfs_item_ptr_offset(leaf, path->slots[0]), 7750 sizeof(cache->item)); 7751 memcpy(&cache->key, &found_key, sizeof(found_key)); 7752 7753 key.objectid = found_key.objectid + found_key.offset; 7754 btrfs_release_path(path); 7755 cache->flags = btrfs_block_group_flags(&cache->item); 7756 cache->sectorsize = root->sectorsize; 7757 7758 btrfs_init_free_space_ctl(cache); 7759 7760 /* 7761 * We need to exclude the super stripes now so that the space 7762 * info has super bytes accounted for, otherwise we'll think 7763 * we have more space than we actually do. 7764 */ 7765 exclude_super_stripes(root, cache); 7766 7767 /* 7768 * check for two cases, either we are full, and therefore 7769 * don't need to bother with the caching work since we won't 7770 * find any space, or we are empty, and we can just add all 7771 * the space in and be done with it. This saves us _alot_ of 7772 * time, particularly in the full case. 7773 */ 7774 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7775 cache->last_byte_to_unpin = (u64)-1; 7776 cache->cached = BTRFS_CACHE_FINISHED; 7777 free_excluded_extents(root, cache); 7778 } else if (btrfs_block_group_used(&cache->item) == 0) { 7779 cache->last_byte_to_unpin = (u64)-1; 7780 cache->cached = BTRFS_CACHE_FINISHED; 7781 add_new_free_space(cache, root->fs_info, 7782 found_key.objectid, 7783 found_key.objectid + 7784 found_key.offset); 7785 free_excluded_extents(root, cache); 7786 } 7787 7788 ret = update_space_info(info, cache->flags, found_key.offset, 7789 btrfs_block_group_used(&cache->item), 7790 &space_info); 7791 BUG_ON(ret); /* -ENOMEM */ 7792 cache->space_info = space_info; 7793 spin_lock(&cache->space_info->lock); 7794 cache->space_info->bytes_readonly += cache->bytes_super; 7795 spin_unlock(&cache->space_info->lock); 7796 7797 __link_block_group(space_info, cache); 7798 7799 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7800 BUG_ON(ret); /* Logic error */ 7801 7802 set_avail_alloc_bits(root->fs_info, cache->flags); 7803 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7804 set_block_group_ro(cache, 1); 7805 } 7806 7807 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7808 if (!(get_alloc_profile(root, space_info->flags) & 7809 (BTRFS_BLOCK_GROUP_RAID10 | 7810 BTRFS_BLOCK_GROUP_RAID1 | 7811 BTRFS_BLOCK_GROUP_DUP))) 7812 continue; 7813 /* 7814 * avoid allocating from un-mirrored block group if there are 7815 * mirrored block groups. 7816 */ 7817 list_for_each_entry(cache, &space_info->block_groups[3], list) 7818 set_block_group_ro(cache, 1); 7819 list_for_each_entry(cache, &space_info->block_groups[4], list) 7820 set_block_group_ro(cache, 1); 7821 } 7822 7823 init_global_block_rsv(info); 7824 ret = 0; 7825 error: 7826 btrfs_free_path(path); 7827 return ret; 7828 } 7829 7830 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 7831 struct btrfs_root *root) 7832 { 7833 struct btrfs_block_group_cache *block_group, *tmp; 7834 struct btrfs_root *extent_root = root->fs_info->extent_root; 7835 struct btrfs_block_group_item item; 7836 struct btrfs_key key; 7837 int ret = 0; 7838 7839 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 7840 new_bg_list) { 7841 list_del_init(&block_group->new_bg_list); 7842 7843 if (ret) 7844 continue; 7845 7846 spin_lock(&block_group->lock); 7847 memcpy(&item, &block_group->item, sizeof(item)); 7848 memcpy(&key, &block_group->key, sizeof(key)); 7849 spin_unlock(&block_group->lock); 7850 7851 ret = btrfs_insert_item(trans, extent_root, &key, &item, 7852 sizeof(item)); 7853 if (ret) 7854 btrfs_abort_transaction(trans, extent_root, ret); 7855 } 7856 } 7857 7858 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7859 struct btrfs_root *root, u64 bytes_used, 7860 u64 type, u64 chunk_objectid, u64 chunk_offset, 7861 u64 size) 7862 { 7863 int ret; 7864 struct btrfs_root *extent_root; 7865 struct btrfs_block_group_cache *cache; 7866 7867 extent_root = root->fs_info->extent_root; 7868 7869 root->fs_info->last_trans_log_full_commit = trans->transid; 7870 7871 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7872 if (!cache) 7873 return -ENOMEM; 7874 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7875 GFP_NOFS); 7876 if (!cache->free_space_ctl) { 7877 kfree(cache); 7878 return -ENOMEM; 7879 } 7880 7881 cache->key.objectid = chunk_offset; 7882 cache->key.offset = size; 7883 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7884 cache->sectorsize = root->sectorsize; 7885 cache->fs_info = root->fs_info; 7886 7887 atomic_set(&cache->count, 1); 7888 spin_lock_init(&cache->lock); 7889 INIT_LIST_HEAD(&cache->list); 7890 INIT_LIST_HEAD(&cache->cluster_list); 7891 INIT_LIST_HEAD(&cache->new_bg_list); 7892 7893 btrfs_init_free_space_ctl(cache); 7894 7895 btrfs_set_block_group_used(&cache->item, bytes_used); 7896 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7897 cache->flags = type; 7898 btrfs_set_block_group_flags(&cache->item, type); 7899 7900 cache->last_byte_to_unpin = (u64)-1; 7901 cache->cached = BTRFS_CACHE_FINISHED; 7902 exclude_super_stripes(root, cache); 7903 7904 add_new_free_space(cache, root->fs_info, chunk_offset, 7905 chunk_offset + size); 7906 7907 free_excluded_extents(root, cache); 7908 7909 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7910 &cache->space_info); 7911 BUG_ON(ret); /* -ENOMEM */ 7912 update_global_block_rsv(root->fs_info); 7913 7914 spin_lock(&cache->space_info->lock); 7915 cache->space_info->bytes_readonly += cache->bytes_super; 7916 spin_unlock(&cache->space_info->lock); 7917 7918 __link_block_group(cache->space_info, cache); 7919 7920 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7921 BUG_ON(ret); /* Logic error */ 7922 7923 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 7924 7925 set_avail_alloc_bits(extent_root->fs_info, type); 7926 7927 return 0; 7928 } 7929 7930 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7931 { 7932 u64 extra_flags = chunk_to_extended(flags) & 7933 BTRFS_EXTENDED_PROFILE_MASK; 7934 7935 if (flags & BTRFS_BLOCK_GROUP_DATA) 7936 fs_info->avail_data_alloc_bits &= ~extra_flags; 7937 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7938 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7939 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7940 fs_info->avail_system_alloc_bits &= ~extra_flags; 7941 } 7942 7943 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7944 struct btrfs_root *root, u64 group_start) 7945 { 7946 struct btrfs_path *path; 7947 struct btrfs_block_group_cache *block_group; 7948 struct btrfs_free_cluster *cluster; 7949 struct btrfs_root *tree_root = root->fs_info->tree_root; 7950 struct btrfs_key key; 7951 struct inode *inode; 7952 int ret; 7953 int index; 7954 int factor; 7955 7956 root = root->fs_info->extent_root; 7957 7958 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7959 BUG_ON(!block_group); 7960 BUG_ON(!block_group->ro); 7961 7962 /* 7963 * Free the reserved super bytes from this block group before 7964 * remove it. 7965 */ 7966 free_excluded_extents(root, block_group); 7967 7968 memcpy(&key, &block_group->key, sizeof(key)); 7969 index = get_block_group_index(block_group); 7970 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7971 BTRFS_BLOCK_GROUP_RAID1 | 7972 BTRFS_BLOCK_GROUP_RAID10)) 7973 factor = 2; 7974 else 7975 factor = 1; 7976 7977 /* make sure this block group isn't part of an allocation cluster */ 7978 cluster = &root->fs_info->data_alloc_cluster; 7979 spin_lock(&cluster->refill_lock); 7980 btrfs_return_cluster_to_free_space(block_group, cluster); 7981 spin_unlock(&cluster->refill_lock); 7982 7983 /* 7984 * make sure this block group isn't part of a metadata 7985 * allocation cluster 7986 */ 7987 cluster = &root->fs_info->meta_alloc_cluster; 7988 spin_lock(&cluster->refill_lock); 7989 btrfs_return_cluster_to_free_space(block_group, cluster); 7990 spin_unlock(&cluster->refill_lock); 7991 7992 path = btrfs_alloc_path(); 7993 if (!path) { 7994 ret = -ENOMEM; 7995 goto out; 7996 } 7997 7998 inode = lookup_free_space_inode(tree_root, block_group, path); 7999 if (!IS_ERR(inode)) { 8000 ret = btrfs_orphan_add(trans, inode); 8001 if (ret) { 8002 btrfs_add_delayed_iput(inode); 8003 goto out; 8004 } 8005 clear_nlink(inode); 8006 /* One for the block groups ref */ 8007 spin_lock(&block_group->lock); 8008 if (block_group->iref) { 8009 block_group->iref = 0; 8010 block_group->inode = NULL; 8011 spin_unlock(&block_group->lock); 8012 iput(inode); 8013 } else { 8014 spin_unlock(&block_group->lock); 8015 } 8016 /* One for our lookup ref */ 8017 btrfs_add_delayed_iput(inode); 8018 } 8019 8020 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8021 key.offset = block_group->key.objectid; 8022 key.type = 0; 8023 8024 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8025 if (ret < 0) 8026 goto out; 8027 if (ret > 0) 8028 btrfs_release_path(path); 8029 if (ret == 0) { 8030 ret = btrfs_del_item(trans, tree_root, path); 8031 if (ret) 8032 goto out; 8033 btrfs_release_path(path); 8034 } 8035 8036 spin_lock(&root->fs_info->block_group_cache_lock); 8037 rb_erase(&block_group->cache_node, 8038 &root->fs_info->block_group_cache_tree); 8039 spin_unlock(&root->fs_info->block_group_cache_lock); 8040 8041 down_write(&block_group->space_info->groups_sem); 8042 /* 8043 * we must use list_del_init so people can check to see if they 8044 * are still on the list after taking the semaphore 8045 */ 8046 list_del_init(&block_group->list); 8047 if (list_empty(&block_group->space_info->block_groups[index])) 8048 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8049 up_write(&block_group->space_info->groups_sem); 8050 8051 if (block_group->cached == BTRFS_CACHE_STARTED) 8052 wait_block_group_cache_done(block_group); 8053 8054 btrfs_remove_free_space_cache(block_group); 8055 8056 spin_lock(&block_group->space_info->lock); 8057 block_group->space_info->total_bytes -= block_group->key.offset; 8058 block_group->space_info->bytes_readonly -= block_group->key.offset; 8059 block_group->space_info->disk_total -= block_group->key.offset * factor; 8060 spin_unlock(&block_group->space_info->lock); 8061 8062 memcpy(&key, &block_group->key, sizeof(key)); 8063 8064 btrfs_clear_space_info_full(root->fs_info); 8065 8066 btrfs_put_block_group(block_group); 8067 btrfs_put_block_group(block_group); 8068 8069 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8070 if (ret > 0) 8071 ret = -EIO; 8072 if (ret < 0) 8073 goto out; 8074 8075 ret = btrfs_del_item(trans, root, path); 8076 out: 8077 btrfs_free_path(path); 8078 return ret; 8079 } 8080 8081 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8082 { 8083 struct btrfs_space_info *space_info; 8084 struct btrfs_super_block *disk_super; 8085 u64 features; 8086 u64 flags; 8087 int mixed = 0; 8088 int ret; 8089 8090 disk_super = fs_info->super_copy; 8091 if (!btrfs_super_root(disk_super)) 8092 return 1; 8093 8094 features = btrfs_super_incompat_flags(disk_super); 8095 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8096 mixed = 1; 8097 8098 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8099 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8100 if (ret) 8101 goto out; 8102 8103 if (mixed) { 8104 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8105 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8106 } else { 8107 flags = BTRFS_BLOCK_GROUP_METADATA; 8108 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8109 if (ret) 8110 goto out; 8111 8112 flags = BTRFS_BLOCK_GROUP_DATA; 8113 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8114 } 8115 out: 8116 return ret; 8117 } 8118 8119 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8120 { 8121 return unpin_extent_range(root, start, end); 8122 } 8123 8124 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8125 u64 num_bytes, u64 *actual_bytes) 8126 { 8127 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8128 } 8129 8130 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8131 { 8132 struct btrfs_fs_info *fs_info = root->fs_info; 8133 struct btrfs_block_group_cache *cache = NULL; 8134 u64 group_trimmed; 8135 u64 start; 8136 u64 end; 8137 u64 trimmed = 0; 8138 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8139 int ret = 0; 8140 8141 /* 8142 * try to trim all FS space, our block group may start from non-zero. 8143 */ 8144 if (range->len == total_bytes) 8145 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8146 else 8147 cache = btrfs_lookup_block_group(fs_info, range->start); 8148 8149 while (cache) { 8150 if (cache->key.objectid >= (range->start + range->len)) { 8151 btrfs_put_block_group(cache); 8152 break; 8153 } 8154 8155 start = max(range->start, cache->key.objectid); 8156 end = min(range->start + range->len, 8157 cache->key.objectid + cache->key.offset); 8158 8159 if (end - start >= range->minlen) { 8160 if (!block_group_cache_done(cache)) { 8161 ret = cache_block_group(cache, NULL, root, 0); 8162 if (!ret) 8163 wait_block_group_cache_done(cache); 8164 } 8165 ret = btrfs_trim_block_group(cache, 8166 &group_trimmed, 8167 start, 8168 end, 8169 range->minlen); 8170 8171 trimmed += group_trimmed; 8172 if (ret) { 8173 btrfs_put_block_group(cache); 8174 break; 8175 } 8176 } 8177 8178 cache = next_block_group(fs_info->tree_root, cache); 8179 } 8180 8181 range->len = trimmed; 8182 return ret; 8183 } 8184