1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins); 99 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 100 struct btrfs_root *extent_root, u64 flags, 101 int force); 102 static int find_next_key(struct btrfs_path *path, int level, 103 struct btrfs_key *key); 104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 105 int dump_block_groups); 106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 107 u64 num_bytes, int reserve, 108 int delalloc); 109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 110 u64 num_bytes); 111 int btrfs_pin_extent(struct btrfs_root *root, 112 u64 bytenr, u64 num_bytes, int reserved); 113 114 static noinline int 115 block_group_cache_done(struct btrfs_block_group_cache *cache) 116 { 117 smp_mb(); 118 return cache->cached == BTRFS_CACHE_FINISHED || 119 cache->cached == BTRFS_CACHE_ERROR; 120 } 121 122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 123 { 124 return (cache->flags & bits) == bits; 125 } 126 127 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 128 { 129 atomic_inc(&cache->count); 130 } 131 132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 133 { 134 if (atomic_dec_and_test(&cache->count)) { 135 WARN_ON(cache->pinned > 0); 136 WARN_ON(cache->reserved > 0); 137 kfree(cache->free_space_ctl); 138 kfree(cache); 139 } 140 } 141 142 /* 143 * this adds the block group to the fs_info rb tree for the block group 144 * cache 145 */ 146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 147 struct btrfs_block_group_cache *block_group) 148 { 149 struct rb_node **p; 150 struct rb_node *parent = NULL; 151 struct btrfs_block_group_cache *cache; 152 153 spin_lock(&info->block_group_cache_lock); 154 p = &info->block_group_cache_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 cache = rb_entry(parent, struct btrfs_block_group_cache, 159 cache_node); 160 if (block_group->key.objectid < cache->key.objectid) { 161 p = &(*p)->rb_left; 162 } else if (block_group->key.objectid > cache->key.objectid) { 163 p = &(*p)->rb_right; 164 } else { 165 spin_unlock(&info->block_group_cache_lock); 166 return -EEXIST; 167 } 168 } 169 170 rb_link_node(&block_group->cache_node, parent, p); 171 rb_insert_color(&block_group->cache_node, 172 &info->block_group_cache_tree); 173 174 if (info->first_logical_byte > block_group->key.objectid) 175 info->first_logical_byte = block_group->key.objectid; 176 177 spin_unlock(&info->block_group_cache_lock); 178 179 return 0; 180 } 181 182 /* 183 * This will return the block group at or after bytenr if contains is 0, else 184 * it will return the block group that contains the bytenr 185 */ 186 static struct btrfs_block_group_cache * 187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 188 int contains) 189 { 190 struct btrfs_block_group_cache *cache, *ret = NULL; 191 struct rb_node *n; 192 u64 end, start; 193 194 spin_lock(&info->block_group_cache_lock); 195 n = info->block_group_cache_tree.rb_node; 196 197 while (n) { 198 cache = rb_entry(n, struct btrfs_block_group_cache, 199 cache_node); 200 end = cache->key.objectid + cache->key.offset - 1; 201 start = cache->key.objectid; 202 203 if (bytenr < start) { 204 if (!contains && (!ret || start < ret->key.objectid)) 205 ret = cache; 206 n = n->rb_left; 207 } else if (bytenr > start) { 208 if (contains && bytenr <= end) { 209 ret = cache; 210 break; 211 } 212 n = n->rb_right; 213 } else { 214 ret = cache; 215 break; 216 } 217 } 218 if (ret) { 219 btrfs_get_block_group(ret); 220 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 221 info->first_logical_byte = ret->key.objectid; 222 } 223 spin_unlock(&info->block_group_cache_lock); 224 225 return ret; 226 } 227 228 static int add_excluded_extent(struct btrfs_root *root, 229 u64 start, u64 num_bytes) 230 { 231 u64 end = start + num_bytes - 1; 232 set_extent_bits(&root->fs_info->freed_extents[0], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 set_extent_bits(&root->fs_info->freed_extents[1], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 return 0; 237 } 238 239 static void free_excluded_extents(struct btrfs_root *root, 240 struct btrfs_block_group_cache *cache) 241 { 242 u64 start, end; 243 244 start = cache->key.objectid; 245 end = start + cache->key.offset - 1; 246 247 clear_extent_bits(&root->fs_info->freed_extents[0], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 clear_extent_bits(&root->fs_info->freed_extents[1], 250 start, end, EXTENT_UPTODATE, GFP_NOFS); 251 } 252 253 static int exclude_super_stripes(struct btrfs_root *root, 254 struct btrfs_block_group_cache *cache) 255 { 256 u64 bytenr; 257 u64 *logical; 258 int stripe_len; 259 int i, nr, ret; 260 261 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 262 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 263 cache->bytes_super += stripe_len; 264 ret = add_excluded_extent(root, cache->key.objectid, 265 stripe_len); 266 if (ret) 267 return ret; 268 } 269 270 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 271 bytenr = btrfs_sb_offset(i); 272 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 273 cache->key.objectid, bytenr, 274 0, &logical, &nr, &stripe_len); 275 if (ret) 276 return ret; 277 278 while (nr--) { 279 u64 start, len; 280 281 if (logical[nr] > cache->key.objectid + 282 cache->key.offset) 283 continue; 284 285 if (logical[nr] + stripe_len <= cache->key.objectid) 286 continue; 287 288 start = logical[nr]; 289 if (start < cache->key.objectid) { 290 start = cache->key.objectid; 291 len = (logical[nr] + stripe_len) - start; 292 } else { 293 len = min_t(u64, stripe_len, 294 cache->key.objectid + 295 cache->key.offset - start); 296 } 297 298 cache->bytes_super += len; 299 ret = add_excluded_extent(root, start, len); 300 if (ret) { 301 kfree(logical); 302 return ret; 303 } 304 } 305 306 kfree(logical); 307 } 308 return 0; 309 } 310 311 static struct btrfs_caching_control * 312 get_caching_control(struct btrfs_block_group_cache *cache) 313 { 314 struct btrfs_caching_control *ctl; 315 316 spin_lock(&cache->lock); 317 if (!cache->caching_ctl) { 318 spin_unlock(&cache->lock); 319 return NULL; 320 } 321 322 ctl = cache->caching_ctl; 323 atomic_inc(&ctl->count); 324 spin_unlock(&cache->lock); 325 return ctl; 326 } 327 328 static void put_caching_control(struct btrfs_caching_control *ctl) 329 { 330 if (atomic_dec_and_test(&ctl->count)) 331 kfree(ctl); 332 } 333 334 #ifdef CONFIG_BTRFS_DEBUG 335 static void fragment_free_space(struct btrfs_root *root, 336 struct btrfs_block_group_cache *block_group) 337 { 338 u64 start = block_group->key.objectid; 339 u64 len = block_group->key.offset; 340 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 341 root->nodesize : root->sectorsize; 342 u64 step = chunk << 1; 343 344 while (len > chunk) { 345 btrfs_remove_free_space(block_group, start, chunk); 346 start += step; 347 if (len < step) 348 len = 0; 349 else 350 len -= step; 351 } 352 } 353 #endif 354 355 /* 356 * this is only called by cache_block_group, since we could have freed extents 357 * we need to check the pinned_extents for any extents that can't be used yet 358 * since their free space will be released as soon as the transaction commits. 359 */ 360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 361 struct btrfs_fs_info *info, u64 start, u64 end) 362 { 363 u64 extent_start, extent_end, size, total_added = 0; 364 int ret; 365 366 while (start < end) { 367 ret = find_first_extent_bit(info->pinned_extents, start, 368 &extent_start, &extent_end, 369 EXTENT_DIRTY | EXTENT_UPTODATE, 370 NULL); 371 if (ret) 372 break; 373 374 if (extent_start <= start) { 375 start = extent_end + 1; 376 } else if (extent_start > start && extent_start < end) { 377 size = extent_start - start; 378 total_added += size; 379 ret = btrfs_add_free_space(block_group, start, 380 size); 381 BUG_ON(ret); /* -ENOMEM or logic error */ 382 start = extent_end + 1; 383 } else { 384 break; 385 } 386 } 387 388 if (start < end) { 389 size = end - start; 390 total_added += size; 391 ret = btrfs_add_free_space(block_group, start, size); 392 BUG_ON(ret); /* -ENOMEM or logic error */ 393 } 394 395 return total_added; 396 } 397 398 static noinline void caching_thread(struct btrfs_work *work) 399 { 400 struct btrfs_block_group_cache *block_group; 401 struct btrfs_fs_info *fs_info; 402 struct btrfs_caching_control *caching_ctl; 403 struct btrfs_root *extent_root; 404 struct btrfs_path *path; 405 struct extent_buffer *leaf; 406 struct btrfs_key key; 407 u64 total_found = 0; 408 u64 last = 0; 409 u32 nritems; 410 int ret = -ENOMEM; 411 bool wakeup = true; 412 413 caching_ctl = container_of(work, struct btrfs_caching_control, work); 414 block_group = caching_ctl->block_group; 415 fs_info = block_group->fs_info; 416 extent_root = fs_info->extent_root; 417 418 path = btrfs_alloc_path(); 419 if (!path) 420 goto out; 421 422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 423 424 #ifdef CONFIG_BTRFS_DEBUG 425 /* 426 * If we're fragmenting we don't want to make anybody think we can 427 * allocate from this block group until we've had a chance to fragment 428 * the free space. 429 */ 430 if (btrfs_should_fragment_free_space(extent_root, block_group)) 431 wakeup = false; 432 #endif 433 /* 434 * We don't want to deadlock with somebody trying to allocate a new 435 * extent for the extent root while also trying to search the extent 436 * root to add free space. So we skip locking and search the commit 437 * root, since its read-only 438 */ 439 path->skip_locking = 1; 440 path->search_commit_root = 1; 441 path->reada = 1; 442 443 key.objectid = last; 444 key.offset = 0; 445 key.type = BTRFS_EXTENT_ITEM_KEY; 446 again: 447 mutex_lock(&caching_ctl->mutex); 448 /* need to make sure the commit_root doesn't disappear */ 449 down_read(&fs_info->commit_root_sem); 450 451 next: 452 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 453 if (ret < 0) 454 goto err; 455 456 leaf = path->nodes[0]; 457 nritems = btrfs_header_nritems(leaf); 458 459 while (1) { 460 if (btrfs_fs_closing(fs_info) > 1) { 461 last = (u64)-1; 462 break; 463 } 464 465 if (path->slots[0] < nritems) { 466 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 467 } else { 468 ret = find_next_key(path, 0, &key); 469 if (ret) 470 break; 471 472 if (need_resched() || 473 rwsem_is_contended(&fs_info->commit_root_sem)) { 474 if (wakeup) 475 caching_ctl->progress = last; 476 btrfs_release_path(path); 477 up_read(&fs_info->commit_root_sem); 478 mutex_unlock(&caching_ctl->mutex); 479 cond_resched(); 480 goto again; 481 } 482 483 ret = btrfs_next_leaf(extent_root, path); 484 if (ret < 0) 485 goto err; 486 if (ret) 487 break; 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 continue; 491 } 492 493 if (key.objectid < last) { 494 key.objectid = last; 495 key.offset = 0; 496 key.type = BTRFS_EXTENT_ITEM_KEY; 497 498 if (wakeup) 499 caching_ctl->progress = last; 500 btrfs_release_path(path); 501 goto next; 502 } 503 504 if (key.objectid < block_group->key.objectid) { 505 path->slots[0]++; 506 continue; 507 } 508 509 if (key.objectid >= block_group->key.objectid + 510 block_group->key.offset) 511 break; 512 513 if (key.type == BTRFS_EXTENT_ITEM_KEY || 514 key.type == BTRFS_METADATA_ITEM_KEY) { 515 total_found += add_new_free_space(block_group, 516 fs_info, last, 517 key.objectid); 518 if (key.type == BTRFS_METADATA_ITEM_KEY) 519 last = key.objectid + 520 fs_info->tree_root->nodesize; 521 else 522 last = key.objectid + key.offset; 523 524 if (total_found > (1024 * 1024 * 2)) { 525 total_found = 0; 526 if (wakeup) 527 wake_up(&caching_ctl->wait); 528 } 529 } 530 path->slots[0]++; 531 } 532 ret = 0; 533 534 total_found += add_new_free_space(block_group, fs_info, last, 535 block_group->key.objectid + 536 block_group->key.offset); 537 spin_lock(&block_group->lock); 538 block_group->caching_ctl = NULL; 539 block_group->cached = BTRFS_CACHE_FINISHED; 540 spin_unlock(&block_group->lock); 541 542 #ifdef CONFIG_BTRFS_DEBUG 543 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 544 u64 bytes_used; 545 546 spin_lock(&block_group->space_info->lock); 547 spin_lock(&block_group->lock); 548 bytes_used = block_group->key.offset - 549 btrfs_block_group_used(&block_group->item); 550 block_group->space_info->bytes_used += bytes_used >> 1; 551 spin_unlock(&block_group->lock); 552 spin_unlock(&block_group->space_info->lock); 553 fragment_free_space(extent_root, block_group); 554 } 555 #endif 556 557 caching_ctl->progress = (u64)-1; 558 err: 559 btrfs_free_path(path); 560 up_read(&fs_info->commit_root_sem); 561 562 free_excluded_extents(extent_root, block_group); 563 564 mutex_unlock(&caching_ctl->mutex); 565 out: 566 if (ret) { 567 spin_lock(&block_group->lock); 568 block_group->caching_ctl = NULL; 569 block_group->cached = BTRFS_CACHE_ERROR; 570 spin_unlock(&block_group->lock); 571 } 572 wake_up(&caching_ctl->wait); 573 574 put_caching_control(caching_ctl); 575 btrfs_put_block_group(block_group); 576 } 577 578 static int cache_block_group(struct btrfs_block_group_cache *cache, 579 int load_cache_only) 580 { 581 DEFINE_WAIT(wait); 582 struct btrfs_fs_info *fs_info = cache->fs_info; 583 struct btrfs_caching_control *caching_ctl; 584 int ret = 0; 585 586 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 587 if (!caching_ctl) 588 return -ENOMEM; 589 590 INIT_LIST_HEAD(&caching_ctl->list); 591 mutex_init(&caching_ctl->mutex); 592 init_waitqueue_head(&caching_ctl->wait); 593 caching_ctl->block_group = cache; 594 caching_ctl->progress = cache->key.objectid; 595 atomic_set(&caching_ctl->count, 1); 596 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 597 caching_thread, NULL, NULL); 598 599 spin_lock(&cache->lock); 600 /* 601 * This should be a rare occasion, but this could happen I think in the 602 * case where one thread starts to load the space cache info, and then 603 * some other thread starts a transaction commit which tries to do an 604 * allocation while the other thread is still loading the space cache 605 * info. The previous loop should have kept us from choosing this block 606 * group, but if we've moved to the state where we will wait on caching 607 * block groups we need to first check if we're doing a fast load here, 608 * so we can wait for it to finish, otherwise we could end up allocating 609 * from a block group who's cache gets evicted for one reason or 610 * another. 611 */ 612 while (cache->cached == BTRFS_CACHE_FAST) { 613 struct btrfs_caching_control *ctl; 614 615 ctl = cache->caching_ctl; 616 atomic_inc(&ctl->count); 617 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 618 spin_unlock(&cache->lock); 619 620 schedule(); 621 622 finish_wait(&ctl->wait, &wait); 623 put_caching_control(ctl); 624 spin_lock(&cache->lock); 625 } 626 627 if (cache->cached != BTRFS_CACHE_NO) { 628 spin_unlock(&cache->lock); 629 kfree(caching_ctl); 630 return 0; 631 } 632 WARN_ON(cache->caching_ctl); 633 cache->caching_ctl = caching_ctl; 634 cache->cached = BTRFS_CACHE_FAST; 635 spin_unlock(&cache->lock); 636 637 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 638 mutex_lock(&caching_ctl->mutex); 639 ret = load_free_space_cache(fs_info, cache); 640 641 spin_lock(&cache->lock); 642 if (ret == 1) { 643 cache->caching_ctl = NULL; 644 cache->cached = BTRFS_CACHE_FINISHED; 645 cache->last_byte_to_unpin = (u64)-1; 646 caching_ctl->progress = (u64)-1; 647 } else { 648 if (load_cache_only) { 649 cache->caching_ctl = NULL; 650 cache->cached = BTRFS_CACHE_NO; 651 } else { 652 cache->cached = BTRFS_CACHE_STARTED; 653 cache->has_caching_ctl = 1; 654 } 655 } 656 spin_unlock(&cache->lock); 657 #ifdef CONFIG_BTRFS_DEBUG 658 if (ret == 1 && 659 btrfs_should_fragment_free_space(fs_info->extent_root, 660 cache)) { 661 u64 bytes_used; 662 663 spin_lock(&cache->space_info->lock); 664 spin_lock(&cache->lock); 665 bytes_used = cache->key.offset - 666 btrfs_block_group_used(&cache->item); 667 cache->space_info->bytes_used += bytes_used >> 1; 668 spin_unlock(&cache->lock); 669 spin_unlock(&cache->space_info->lock); 670 fragment_free_space(fs_info->extent_root, cache); 671 } 672 #endif 673 mutex_unlock(&caching_ctl->mutex); 674 675 wake_up(&caching_ctl->wait); 676 if (ret == 1) { 677 put_caching_control(caching_ctl); 678 free_excluded_extents(fs_info->extent_root, cache); 679 return 0; 680 } 681 } else { 682 /* 683 * We are not going to do the fast caching, set cached to the 684 * appropriate value and wakeup any waiters. 685 */ 686 spin_lock(&cache->lock); 687 if (load_cache_only) { 688 cache->caching_ctl = NULL; 689 cache->cached = BTRFS_CACHE_NO; 690 } else { 691 cache->cached = BTRFS_CACHE_STARTED; 692 cache->has_caching_ctl = 1; 693 } 694 spin_unlock(&cache->lock); 695 wake_up(&caching_ctl->wait); 696 } 697 698 if (load_cache_only) { 699 put_caching_control(caching_ctl); 700 return 0; 701 } 702 703 down_write(&fs_info->commit_root_sem); 704 atomic_inc(&caching_ctl->count); 705 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 706 up_write(&fs_info->commit_root_sem); 707 708 btrfs_get_block_group(cache); 709 710 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 711 712 return ret; 713 } 714 715 /* 716 * return the block group that starts at or after bytenr 717 */ 718 static struct btrfs_block_group_cache * 719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 720 { 721 struct btrfs_block_group_cache *cache; 722 723 cache = block_group_cache_tree_search(info, bytenr, 0); 724 725 return cache; 726 } 727 728 /* 729 * return the block group that contains the given bytenr 730 */ 731 struct btrfs_block_group_cache *btrfs_lookup_block_group( 732 struct btrfs_fs_info *info, 733 u64 bytenr) 734 { 735 struct btrfs_block_group_cache *cache; 736 737 cache = block_group_cache_tree_search(info, bytenr, 1); 738 739 return cache; 740 } 741 742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 743 u64 flags) 744 { 745 struct list_head *head = &info->space_info; 746 struct btrfs_space_info *found; 747 748 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 749 750 rcu_read_lock(); 751 list_for_each_entry_rcu(found, head, list) { 752 if (found->flags & flags) { 753 rcu_read_unlock(); 754 return found; 755 } 756 } 757 rcu_read_unlock(); 758 return NULL; 759 } 760 761 /* 762 * after adding space to the filesystem, we need to clear the full flags 763 * on all the space infos. 764 */ 765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 766 { 767 struct list_head *head = &info->space_info; 768 struct btrfs_space_info *found; 769 770 rcu_read_lock(); 771 list_for_each_entry_rcu(found, head, list) 772 found->full = 0; 773 rcu_read_unlock(); 774 } 775 776 /* simple helper to search for an existing data extent at a given offset */ 777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 778 { 779 int ret; 780 struct btrfs_key key; 781 struct btrfs_path *path; 782 783 path = btrfs_alloc_path(); 784 if (!path) 785 return -ENOMEM; 786 787 key.objectid = start; 788 key.offset = len; 789 key.type = BTRFS_EXTENT_ITEM_KEY; 790 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 791 0, 0); 792 btrfs_free_path(path); 793 return ret; 794 } 795 796 /* 797 * helper function to lookup reference count and flags of a tree block. 798 * 799 * the head node for delayed ref is used to store the sum of all the 800 * reference count modifications queued up in the rbtree. the head 801 * node may also store the extent flags to set. This way you can check 802 * to see what the reference count and extent flags would be if all of 803 * the delayed refs are not processed. 804 */ 805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 806 struct btrfs_root *root, u64 bytenr, 807 u64 offset, int metadata, u64 *refs, u64 *flags) 808 { 809 struct btrfs_delayed_ref_head *head; 810 struct btrfs_delayed_ref_root *delayed_refs; 811 struct btrfs_path *path; 812 struct btrfs_extent_item *ei; 813 struct extent_buffer *leaf; 814 struct btrfs_key key; 815 u32 item_size; 816 u64 num_refs; 817 u64 extent_flags; 818 int ret; 819 820 /* 821 * If we don't have skinny metadata, don't bother doing anything 822 * different 823 */ 824 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 825 offset = root->nodesize; 826 metadata = 0; 827 } 828 829 path = btrfs_alloc_path(); 830 if (!path) 831 return -ENOMEM; 832 833 if (!trans) { 834 path->skip_locking = 1; 835 path->search_commit_root = 1; 836 } 837 838 search_again: 839 key.objectid = bytenr; 840 key.offset = offset; 841 if (metadata) 842 key.type = BTRFS_METADATA_ITEM_KEY; 843 else 844 key.type = BTRFS_EXTENT_ITEM_KEY; 845 846 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 847 &key, path, 0, 0); 848 if (ret < 0) 849 goto out_free; 850 851 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 852 if (path->slots[0]) { 853 path->slots[0]--; 854 btrfs_item_key_to_cpu(path->nodes[0], &key, 855 path->slots[0]); 856 if (key.objectid == bytenr && 857 key.type == BTRFS_EXTENT_ITEM_KEY && 858 key.offset == root->nodesize) 859 ret = 0; 860 } 861 } 862 863 if (ret == 0) { 864 leaf = path->nodes[0]; 865 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 866 if (item_size >= sizeof(*ei)) { 867 ei = btrfs_item_ptr(leaf, path->slots[0], 868 struct btrfs_extent_item); 869 num_refs = btrfs_extent_refs(leaf, ei); 870 extent_flags = btrfs_extent_flags(leaf, ei); 871 } else { 872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 873 struct btrfs_extent_item_v0 *ei0; 874 BUG_ON(item_size != sizeof(*ei0)); 875 ei0 = btrfs_item_ptr(leaf, path->slots[0], 876 struct btrfs_extent_item_v0); 877 num_refs = btrfs_extent_refs_v0(leaf, ei0); 878 /* FIXME: this isn't correct for data */ 879 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 880 #else 881 BUG(); 882 #endif 883 } 884 BUG_ON(num_refs == 0); 885 } else { 886 num_refs = 0; 887 extent_flags = 0; 888 ret = 0; 889 } 890 891 if (!trans) 892 goto out; 893 894 delayed_refs = &trans->transaction->delayed_refs; 895 spin_lock(&delayed_refs->lock); 896 head = btrfs_find_delayed_ref_head(trans, bytenr); 897 if (head) { 898 if (!mutex_trylock(&head->mutex)) { 899 atomic_inc(&head->node.refs); 900 spin_unlock(&delayed_refs->lock); 901 902 btrfs_release_path(path); 903 904 /* 905 * Mutex was contended, block until it's released and try 906 * again 907 */ 908 mutex_lock(&head->mutex); 909 mutex_unlock(&head->mutex); 910 btrfs_put_delayed_ref(&head->node); 911 goto search_again; 912 } 913 spin_lock(&head->lock); 914 if (head->extent_op && head->extent_op->update_flags) 915 extent_flags |= head->extent_op->flags_to_set; 916 else 917 BUG_ON(num_refs == 0); 918 919 num_refs += head->node.ref_mod; 920 spin_unlock(&head->lock); 921 mutex_unlock(&head->mutex); 922 } 923 spin_unlock(&delayed_refs->lock); 924 out: 925 WARN_ON(num_refs == 0); 926 if (refs) 927 *refs = num_refs; 928 if (flags) 929 *flags = extent_flags; 930 out_free: 931 btrfs_free_path(path); 932 return ret; 933 } 934 935 /* 936 * Back reference rules. Back refs have three main goals: 937 * 938 * 1) differentiate between all holders of references to an extent so that 939 * when a reference is dropped we can make sure it was a valid reference 940 * before freeing the extent. 941 * 942 * 2) Provide enough information to quickly find the holders of an extent 943 * if we notice a given block is corrupted or bad. 944 * 945 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 946 * maintenance. This is actually the same as #2, but with a slightly 947 * different use case. 948 * 949 * There are two kinds of back refs. The implicit back refs is optimized 950 * for pointers in non-shared tree blocks. For a given pointer in a block, 951 * back refs of this kind provide information about the block's owner tree 952 * and the pointer's key. These information allow us to find the block by 953 * b-tree searching. The full back refs is for pointers in tree blocks not 954 * referenced by their owner trees. The location of tree block is recorded 955 * in the back refs. Actually the full back refs is generic, and can be 956 * used in all cases the implicit back refs is used. The major shortcoming 957 * of the full back refs is its overhead. Every time a tree block gets 958 * COWed, we have to update back refs entry for all pointers in it. 959 * 960 * For a newly allocated tree block, we use implicit back refs for 961 * pointers in it. This means most tree related operations only involve 962 * implicit back refs. For a tree block created in old transaction, the 963 * only way to drop a reference to it is COW it. So we can detect the 964 * event that tree block loses its owner tree's reference and do the 965 * back refs conversion. 966 * 967 * When a tree block is COW'd through a tree, there are four cases: 968 * 969 * The reference count of the block is one and the tree is the block's 970 * owner tree. Nothing to do in this case. 971 * 972 * The reference count of the block is one and the tree is not the 973 * block's owner tree. In this case, full back refs is used for pointers 974 * in the block. Remove these full back refs, add implicit back refs for 975 * every pointers in the new block. 976 * 977 * The reference count of the block is greater than one and the tree is 978 * the block's owner tree. In this case, implicit back refs is used for 979 * pointers in the block. Add full back refs for every pointers in the 980 * block, increase lower level extents' reference counts. The original 981 * implicit back refs are entailed to the new block. 982 * 983 * The reference count of the block is greater than one and the tree is 984 * not the block's owner tree. Add implicit back refs for every pointer in 985 * the new block, increase lower level extents' reference count. 986 * 987 * Back Reference Key composing: 988 * 989 * The key objectid corresponds to the first byte in the extent, 990 * The key type is used to differentiate between types of back refs. 991 * There are different meanings of the key offset for different types 992 * of back refs. 993 * 994 * File extents can be referenced by: 995 * 996 * - multiple snapshots, subvolumes, or different generations in one subvol 997 * - different files inside a single subvolume 998 * - different offsets inside a file (bookend extents in file.c) 999 * 1000 * The extent ref structure for the implicit back refs has fields for: 1001 * 1002 * - Objectid of the subvolume root 1003 * - objectid of the file holding the reference 1004 * - original offset in the file 1005 * - how many bookend extents 1006 * 1007 * The key offset for the implicit back refs is hash of the first 1008 * three fields. 1009 * 1010 * The extent ref structure for the full back refs has field for: 1011 * 1012 * - number of pointers in the tree leaf 1013 * 1014 * The key offset for the implicit back refs is the first byte of 1015 * the tree leaf 1016 * 1017 * When a file extent is allocated, The implicit back refs is used. 1018 * the fields are filled in: 1019 * 1020 * (root_key.objectid, inode objectid, offset in file, 1) 1021 * 1022 * When a file extent is removed file truncation, we find the 1023 * corresponding implicit back refs and check the following fields: 1024 * 1025 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1026 * 1027 * Btree extents can be referenced by: 1028 * 1029 * - Different subvolumes 1030 * 1031 * Both the implicit back refs and the full back refs for tree blocks 1032 * only consist of key. The key offset for the implicit back refs is 1033 * objectid of block's owner tree. The key offset for the full back refs 1034 * is the first byte of parent block. 1035 * 1036 * When implicit back refs is used, information about the lowest key and 1037 * level of the tree block are required. These information are stored in 1038 * tree block info structure. 1039 */ 1040 1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1043 struct btrfs_root *root, 1044 struct btrfs_path *path, 1045 u64 owner, u32 extra_size) 1046 { 1047 struct btrfs_extent_item *item; 1048 struct btrfs_extent_item_v0 *ei0; 1049 struct btrfs_extent_ref_v0 *ref0; 1050 struct btrfs_tree_block_info *bi; 1051 struct extent_buffer *leaf; 1052 struct btrfs_key key; 1053 struct btrfs_key found_key; 1054 u32 new_size = sizeof(*item); 1055 u64 refs; 1056 int ret; 1057 1058 leaf = path->nodes[0]; 1059 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1060 1061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1062 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1063 struct btrfs_extent_item_v0); 1064 refs = btrfs_extent_refs_v0(leaf, ei0); 1065 1066 if (owner == (u64)-1) { 1067 while (1) { 1068 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1069 ret = btrfs_next_leaf(root, path); 1070 if (ret < 0) 1071 return ret; 1072 BUG_ON(ret > 0); /* Corruption */ 1073 leaf = path->nodes[0]; 1074 } 1075 btrfs_item_key_to_cpu(leaf, &found_key, 1076 path->slots[0]); 1077 BUG_ON(key.objectid != found_key.objectid); 1078 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1079 path->slots[0]++; 1080 continue; 1081 } 1082 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1083 struct btrfs_extent_ref_v0); 1084 owner = btrfs_ref_objectid_v0(leaf, ref0); 1085 break; 1086 } 1087 } 1088 btrfs_release_path(path); 1089 1090 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1091 new_size += sizeof(*bi); 1092 1093 new_size -= sizeof(*ei0); 1094 ret = btrfs_search_slot(trans, root, &key, path, 1095 new_size + extra_size, 1); 1096 if (ret < 0) 1097 return ret; 1098 BUG_ON(ret); /* Corruption */ 1099 1100 btrfs_extend_item(root, path, new_size); 1101 1102 leaf = path->nodes[0]; 1103 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1104 btrfs_set_extent_refs(leaf, item, refs); 1105 /* FIXME: get real generation */ 1106 btrfs_set_extent_generation(leaf, item, 0); 1107 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1108 btrfs_set_extent_flags(leaf, item, 1109 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1110 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1111 bi = (struct btrfs_tree_block_info *)(item + 1); 1112 /* FIXME: get first key of the block */ 1113 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1114 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1115 } else { 1116 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1117 } 1118 btrfs_mark_buffer_dirty(leaf); 1119 return 0; 1120 } 1121 #endif 1122 1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1124 { 1125 u32 high_crc = ~(u32)0; 1126 u32 low_crc = ~(u32)0; 1127 __le64 lenum; 1128 1129 lenum = cpu_to_le64(root_objectid); 1130 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1131 lenum = cpu_to_le64(owner); 1132 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1133 lenum = cpu_to_le64(offset); 1134 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1135 1136 return ((u64)high_crc << 31) ^ (u64)low_crc; 1137 } 1138 1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1140 struct btrfs_extent_data_ref *ref) 1141 { 1142 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1143 btrfs_extent_data_ref_objectid(leaf, ref), 1144 btrfs_extent_data_ref_offset(leaf, ref)); 1145 } 1146 1147 static int match_extent_data_ref(struct extent_buffer *leaf, 1148 struct btrfs_extent_data_ref *ref, 1149 u64 root_objectid, u64 owner, u64 offset) 1150 { 1151 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1152 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1153 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1154 return 0; 1155 return 1; 1156 } 1157 1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1159 struct btrfs_root *root, 1160 struct btrfs_path *path, 1161 u64 bytenr, u64 parent, 1162 u64 root_objectid, 1163 u64 owner, u64 offset) 1164 { 1165 struct btrfs_key key; 1166 struct btrfs_extent_data_ref *ref; 1167 struct extent_buffer *leaf; 1168 u32 nritems; 1169 int ret; 1170 int recow; 1171 int err = -ENOENT; 1172 1173 key.objectid = bytenr; 1174 if (parent) { 1175 key.type = BTRFS_SHARED_DATA_REF_KEY; 1176 key.offset = parent; 1177 } else { 1178 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1179 key.offset = hash_extent_data_ref(root_objectid, 1180 owner, offset); 1181 } 1182 again: 1183 recow = 0; 1184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1185 if (ret < 0) { 1186 err = ret; 1187 goto fail; 1188 } 1189 1190 if (parent) { 1191 if (!ret) 1192 return 0; 1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1194 key.type = BTRFS_EXTENT_REF_V0_KEY; 1195 btrfs_release_path(path); 1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1197 if (ret < 0) { 1198 err = ret; 1199 goto fail; 1200 } 1201 if (!ret) 1202 return 0; 1203 #endif 1204 goto fail; 1205 } 1206 1207 leaf = path->nodes[0]; 1208 nritems = btrfs_header_nritems(leaf); 1209 while (1) { 1210 if (path->slots[0] >= nritems) { 1211 ret = btrfs_next_leaf(root, path); 1212 if (ret < 0) 1213 err = ret; 1214 if (ret) 1215 goto fail; 1216 1217 leaf = path->nodes[0]; 1218 nritems = btrfs_header_nritems(leaf); 1219 recow = 1; 1220 } 1221 1222 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1223 if (key.objectid != bytenr || 1224 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1225 goto fail; 1226 1227 ref = btrfs_item_ptr(leaf, path->slots[0], 1228 struct btrfs_extent_data_ref); 1229 1230 if (match_extent_data_ref(leaf, ref, root_objectid, 1231 owner, offset)) { 1232 if (recow) { 1233 btrfs_release_path(path); 1234 goto again; 1235 } 1236 err = 0; 1237 break; 1238 } 1239 path->slots[0]++; 1240 } 1241 fail: 1242 return err; 1243 } 1244 1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1246 struct btrfs_root *root, 1247 struct btrfs_path *path, 1248 u64 bytenr, u64 parent, 1249 u64 root_objectid, u64 owner, 1250 u64 offset, int refs_to_add) 1251 { 1252 struct btrfs_key key; 1253 struct extent_buffer *leaf; 1254 u32 size; 1255 u32 num_refs; 1256 int ret; 1257 1258 key.objectid = bytenr; 1259 if (parent) { 1260 key.type = BTRFS_SHARED_DATA_REF_KEY; 1261 key.offset = parent; 1262 size = sizeof(struct btrfs_shared_data_ref); 1263 } else { 1264 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1265 key.offset = hash_extent_data_ref(root_objectid, 1266 owner, offset); 1267 size = sizeof(struct btrfs_extent_data_ref); 1268 } 1269 1270 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1271 if (ret && ret != -EEXIST) 1272 goto fail; 1273 1274 leaf = path->nodes[0]; 1275 if (parent) { 1276 struct btrfs_shared_data_ref *ref; 1277 ref = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_shared_data_ref); 1279 if (ret == 0) { 1280 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1281 } else { 1282 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1283 num_refs += refs_to_add; 1284 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1285 } 1286 } else { 1287 struct btrfs_extent_data_ref *ref; 1288 while (ret == -EEXIST) { 1289 ref = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_extent_data_ref); 1291 if (match_extent_data_ref(leaf, ref, root_objectid, 1292 owner, offset)) 1293 break; 1294 btrfs_release_path(path); 1295 key.offset++; 1296 ret = btrfs_insert_empty_item(trans, root, path, &key, 1297 size); 1298 if (ret && ret != -EEXIST) 1299 goto fail; 1300 1301 leaf = path->nodes[0]; 1302 } 1303 ref = btrfs_item_ptr(leaf, path->slots[0], 1304 struct btrfs_extent_data_ref); 1305 if (ret == 0) { 1306 btrfs_set_extent_data_ref_root(leaf, ref, 1307 root_objectid); 1308 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1309 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1310 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1311 } else { 1312 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1313 num_refs += refs_to_add; 1314 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1315 } 1316 } 1317 btrfs_mark_buffer_dirty(leaf); 1318 ret = 0; 1319 fail: 1320 btrfs_release_path(path); 1321 return ret; 1322 } 1323 1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1325 struct btrfs_root *root, 1326 struct btrfs_path *path, 1327 int refs_to_drop, int *last_ref) 1328 { 1329 struct btrfs_key key; 1330 struct btrfs_extent_data_ref *ref1 = NULL; 1331 struct btrfs_shared_data_ref *ref2 = NULL; 1332 struct extent_buffer *leaf; 1333 u32 num_refs = 0; 1334 int ret = 0; 1335 1336 leaf = path->nodes[0]; 1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1338 1339 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1340 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1341 struct btrfs_extent_data_ref); 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1344 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1345 struct btrfs_shared_data_ref); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1349 struct btrfs_extent_ref_v0 *ref0; 1350 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_ref_v0); 1352 num_refs = btrfs_ref_count_v0(leaf, ref0); 1353 #endif 1354 } else { 1355 BUG(); 1356 } 1357 1358 BUG_ON(num_refs < refs_to_drop); 1359 num_refs -= refs_to_drop; 1360 1361 if (num_refs == 0) { 1362 ret = btrfs_del_item(trans, root, path); 1363 *last_ref = 1; 1364 } else { 1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1366 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1367 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1368 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1370 else { 1371 struct btrfs_extent_ref_v0 *ref0; 1372 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1373 struct btrfs_extent_ref_v0); 1374 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1375 } 1376 #endif 1377 btrfs_mark_buffer_dirty(leaf); 1378 } 1379 return ret; 1380 } 1381 1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1383 struct btrfs_extent_inline_ref *iref) 1384 { 1385 struct btrfs_key key; 1386 struct extent_buffer *leaf; 1387 struct btrfs_extent_data_ref *ref1; 1388 struct btrfs_shared_data_ref *ref2; 1389 u32 num_refs = 0; 1390 1391 leaf = path->nodes[0]; 1392 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1393 if (iref) { 1394 if (btrfs_extent_inline_ref_type(leaf, iref) == 1395 BTRFS_EXTENT_DATA_REF_KEY) { 1396 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1397 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1398 } else { 1399 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1400 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1401 } 1402 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1403 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1404 struct btrfs_extent_data_ref); 1405 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1406 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1407 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1408 struct btrfs_shared_data_ref); 1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1411 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1412 struct btrfs_extent_ref_v0 *ref0; 1413 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1414 struct btrfs_extent_ref_v0); 1415 num_refs = btrfs_ref_count_v0(leaf, ref0); 1416 #endif 1417 } else { 1418 WARN_ON(1); 1419 } 1420 return num_refs; 1421 } 1422 1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1424 struct btrfs_root *root, 1425 struct btrfs_path *path, 1426 u64 bytenr, u64 parent, 1427 u64 root_objectid) 1428 { 1429 struct btrfs_key key; 1430 int ret; 1431 1432 key.objectid = bytenr; 1433 if (parent) { 1434 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1435 key.offset = parent; 1436 } else { 1437 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1438 key.offset = root_objectid; 1439 } 1440 1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1442 if (ret > 0) 1443 ret = -ENOENT; 1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1445 if (ret == -ENOENT && parent) { 1446 btrfs_release_path(path); 1447 key.type = BTRFS_EXTENT_REF_V0_KEY; 1448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1449 if (ret > 0) 1450 ret = -ENOENT; 1451 } 1452 #endif 1453 return ret; 1454 } 1455 1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1457 struct btrfs_root *root, 1458 struct btrfs_path *path, 1459 u64 bytenr, u64 parent, 1460 u64 root_objectid) 1461 { 1462 struct btrfs_key key; 1463 int ret; 1464 1465 key.objectid = bytenr; 1466 if (parent) { 1467 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1468 key.offset = parent; 1469 } else { 1470 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1471 key.offset = root_objectid; 1472 } 1473 1474 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1475 btrfs_release_path(path); 1476 return ret; 1477 } 1478 1479 static inline int extent_ref_type(u64 parent, u64 owner) 1480 { 1481 int type; 1482 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1483 if (parent > 0) 1484 type = BTRFS_SHARED_BLOCK_REF_KEY; 1485 else 1486 type = BTRFS_TREE_BLOCK_REF_KEY; 1487 } else { 1488 if (parent > 0) 1489 type = BTRFS_SHARED_DATA_REF_KEY; 1490 else 1491 type = BTRFS_EXTENT_DATA_REF_KEY; 1492 } 1493 return type; 1494 } 1495 1496 static int find_next_key(struct btrfs_path *path, int level, 1497 struct btrfs_key *key) 1498 1499 { 1500 for (; level < BTRFS_MAX_LEVEL; level++) { 1501 if (!path->nodes[level]) 1502 break; 1503 if (path->slots[level] + 1 >= 1504 btrfs_header_nritems(path->nodes[level])) 1505 continue; 1506 if (level == 0) 1507 btrfs_item_key_to_cpu(path->nodes[level], key, 1508 path->slots[level] + 1); 1509 else 1510 btrfs_node_key_to_cpu(path->nodes[level], key, 1511 path->slots[level] + 1); 1512 return 0; 1513 } 1514 return 1; 1515 } 1516 1517 /* 1518 * look for inline back ref. if back ref is found, *ref_ret is set 1519 * to the address of inline back ref, and 0 is returned. 1520 * 1521 * if back ref isn't found, *ref_ret is set to the address where it 1522 * should be inserted, and -ENOENT is returned. 1523 * 1524 * if insert is true and there are too many inline back refs, the path 1525 * points to the extent item, and -EAGAIN is returned. 1526 * 1527 * NOTE: inline back refs are ordered in the same way that back ref 1528 * items in the tree are ordered. 1529 */ 1530 static noinline_for_stack 1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1532 struct btrfs_root *root, 1533 struct btrfs_path *path, 1534 struct btrfs_extent_inline_ref **ref_ret, 1535 u64 bytenr, u64 num_bytes, 1536 u64 parent, u64 root_objectid, 1537 u64 owner, u64 offset, int insert) 1538 { 1539 struct btrfs_key key; 1540 struct extent_buffer *leaf; 1541 struct btrfs_extent_item *ei; 1542 struct btrfs_extent_inline_ref *iref; 1543 u64 flags; 1544 u64 item_size; 1545 unsigned long ptr; 1546 unsigned long end; 1547 int extra_size; 1548 int type; 1549 int want; 1550 int ret; 1551 int err = 0; 1552 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1553 SKINNY_METADATA); 1554 1555 key.objectid = bytenr; 1556 key.type = BTRFS_EXTENT_ITEM_KEY; 1557 key.offset = num_bytes; 1558 1559 want = extent_ref_type(parent, owner); 1560 if (insert) { 1561 extra_size = btrfs_extent_inline_ref_size(want); 1562 path->keep_locks = 1; 1563 } else 1564 extra_size = -1; 1565 1566 /* 1567 * Owner is our parent level, so we can just add one to get the level 1568 * for the block we are interested in. 1569 */ 1570 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1571 key.type = BTRFS_METADATA_ITEM_KEY; 1572 key.offset = owner; 1573 } 1574 1575 again: 1576 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1577 if (ret < 0) { 1578 err = ret; 1579 goto out; 1580 } 1581 1582 /* 1583 * We may be a newly converted file system which still has the old fat 1584 * extent entries for metadata, so try and see if we have one of those. 1585 */ 1586 if (ret > 0 && skinny_metadata) { 1587 skinny_metadata = false; 1588 if (path->slots[0]) { 1589 path->slots[0]--; 1590 btrfs_item_key_to_cpu(path->nodes[0], &key, 1591 path->slots[0]); 1592 if (key.objectid == bytenr && 1593 key.type == BTRFS_EXTENT_ITEM_KEY && 1594 key.offset == num_bytes) 1595 ret = 0; 1596 } 1597 if (ret) { 1598 key.objectid = bytenr; 1599 key.type = BTRFS_EXTENT_ITEM_KEY; 1600 key.offset = num_bytes; 1601 btrfs_release_path(path); 1602 goto again; 1603 } 1604 } 1605 1606 if (ret && !insert) { 1607 err = -ENOENT; 1608 goto out; 1609 } else if (WARN_ON(ret)) { 1610 err = -EIO; 1611 goto out; 1612 } 1613 1614 leaf = path->nodes[0]; 1615 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1617 if (item_size < sizeof(*ei)) { 1618 if (!insert) { 1619 err = -ENOENT; 1620 goto out; 1621 } 1622 ret = convert_extent_item_v0(trans, root, path, owner, 1623 extra_size); 1624 if (ret < 0) { 1625 err = ret; 1626 goto out; 1627 } 1628 leaf = path->nodes[0]; 1629 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1630 } 1631 #endif 1632 BUG_ON(item_size < sizeof(*ei)); 1633 1634 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1635 flags = btrfs_extent_flags(leaf, ei); 1636 1637 ptr = (unsigned long)(ei + 1); 1638 end = (unsigned long)ei + item_size; 1639 1640 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1641 ptr += sizeof(struct btrfs_tree_block_info); 1642 BUG_ON(ptr > end); 1643 } 1644 1645 err = -ENOENT; 1646 while (1) { 1647 if (ptr >= end) { 1648 WARN_ON(ptr > end); 1649 break; 1650 } 1651 iref = (struct btrfs_extent_inline_ref *)ptr; 1652 type = btrfs_extent_inline_ref_type(leaf, iref); 1653 if (want < type) 1654 break; 1655 if (want > type) { 1656 ptr += btrfs_extent_inline_ref_size(type); 1657 continue; 1658 } 1659 1660 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1661 struct btrfs_extent_data_ref *dref; 1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1663 if (match_extent_data_ref(leaf, dref, root_objectid, 1664 owner, offset)) { 1665 err = 0; 1666 break; 1667 } 1668 if (hash_extent_data_ref_item(leaf, dref) < 1669 hash_extent_data_ref(root_objectid, owner, offset)) 1670 break; 1671 } else { 1672 u64 ref_offset; 1673 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1674 if (parent > 0) { 1675 if (parent == ref_offset) { 1676 err = 0; 1677 break; 1678 } 1679 if (ref_offset < parent) 1680 break; 1681 } else { 1682 if (root_objectid == ref_offset) { 1683 err = 0; 1684 break; 1685 } 1686 if (ref_offset < root_objectid) 1687 break; 1688 } 1689 } 1690 ptr += btrfs_extent_inline_ref_size(type); 1691 } 1692 if (err == -ENOENT && insert) { 1693 if (item_size + extra_size >= 1694 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1695 err = -EAGAIN; 1696 goto out; 1697 } 1698 /* 1699 * To add new inline back ref, we have to make sure 1700 * there is no corresponding back ref item. 1701 * For simplicity, we just do not add new inline back 1702 * ref if there is any kind of item for this block 1703 */ 1704 if (find_next_key(path, 0, &key) == 0 && 1705 key.objectid == bytenr && 1706 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1707 err = -EAGAIN; 1708 goto out; 1709 } 1710 } 1711 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1712 out: 1713 if (insert) { 1714 path->keep_locks = 0; 1715 btrfs_unlock_up_safe(path, 1); 1716 } 1717 return err; 1718 } 1719 1720 /* 1721 * helper to add new inline back ref 1722 */ 1723 static noinline_for_stack 1724 void setup_inline_extent_backref(struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref *iref, 1727 u64 parent, u64 root_objectid, 1728 u64 owner, u64 offset, int refs_to_add, 1729 struct btrfs_delayed_extent_op *extent_op) 1730 { 1731 struct extent_buffer *leaf; 1732 struct btrfs_extent_item *ei; 1733 unsigned long ptr; 1734 unsigned long end; 1735 unsigned long item_offset; 1736 u64 refs; 1737 int size; 1738 int type; 1739 1740 leaf = path->nodes[0]; 1741 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1742 item_offset = (unsigned long)iref - (unsigned long)ei; 1743 1744 type = extent_ref_type(parent, owner); 1745 size = btrfs_extent_inline_ref_size(type); 1746 1747 btrfs_extend_item(root, path, size); 1748 1749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1750 refs = btrfs_extent_refs(leaf, ei); 1751 refs += refs_to_add; 1752 btrfs_set_extent_refs(leaf, ei, refs); 1753 if (extent_op) 1754 __run_delayed_extent_op(extent_op, leaf, ei); 1755 1756 ptr = (unsigned long)ei + item_offset; 1757 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1758 if (ptr < end - size) 1759 memmove_extent_buffer(leaf, ptr + size, ptr, 1760 end - size - ptr); 1761 1762 iref = (struct btrfs_extent_inline_ref *)ptr; 1763 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1764 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1765 struct btrfs_extent_data_ref *dref; 1766 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1767 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1768 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1769 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1770 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1771 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1772 struct btrfs_shared_data_ref *sref; 1773 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1774 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1775 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1776 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1777 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1778 } else { 1779 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1780 } 1781 btrfs_mark_buffer_dirty(leaf); 1782 } 1783 1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1785 struct btrfs_root *root, 1786 struct btrfs_path *path, 1787 struct btrfs_extent_inline_ref **ref_ret, 1788 u64 bytenr, u64 num_bytes, u64 parent, 1789 u64 root_objectid, u64 owner, u64 offset) 1790 { 1791 int ret; 1792 1793 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1794 bytenr, num_bytes, parent, 1795 root_objectid, owner, offset, 0); 1796 if (ret != -ENOENT) 1797 return ret; 1798 1799 btrfs_release_path(path); 1800 *ref_ret = NULL; 1801 1802 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1803 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1804 root_objectid); 1805 } else { 1806 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1807 root_objectid, owner, offset); 1808 } 1809 return ret; 1810 } 1811 1812 /* 1813 * helper to update/remove inline back ref 1814 */ 1815 static noinline_for_stack 1816 void update_inline_extent_backref(struct btrfs_root *root, 1817 struct btrfs_path *path, 1818 struct btrfs_extent_inline_ref *iref, 1819 int refs_to_mod, 1820 struct btrfs_delayed_extent_op *extent_op, 1821 int *last_ref) 1822 { 1823 struct extent_buffer *leaf; 1824 struct btrfs_extent_item *ei; 1825 struct btrfs_extent_data_ref *dref = NULL; 1826 struct btrfs_shared_data_ref *sref = NULL; 1827 unsigned long ptr; 1828 unsigned long end; 1829 u32 item_size; 1830 int size; 1831 int type; 1832 u64 refs; 1833 1834 leaf = path->nodes[0]; 1835 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1836 refs = btrfs_extent_refs(leaf, ei); 1837 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1838 refs += refs_to_mod; 1839 btrfs_set_extent_refs(leaf, ei, refs); 1840 if (extent_op) 1841 __run_delayed_extent_op(extent_op, leaf, ei); 1842 1843 type = btrfs_extent_inline_ref_type(leaf, iref); 1844 1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1846 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1847 refs = btrfs_extent_data_ref_count(leaf, dref); 1848 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1849 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1850 refs = btrfs_shared_data_ref_count(leaf, sref); 1851 } else { 1852 refs = 1; 1853 BUG_ON(refs_to_mod != -1); 1854 } 1855 1856 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1857 refs += refs_to_mod; 1858 1859 if (refs > 0) { 1860 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1861 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1862 else 1863 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1864 } else { 1865 *last_ref = 1; 1866 size = btrfs_extent_inline_ref_size(type); 1867 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1868 ptr = (unsigned long)iref; 1869 end = (unsigned long)ei + item_size; 1870 if (ptr + size < end) 1871 memmove_extent_buffer(leaf, ptr, ptr + size, 1872 end - ptr - size); 1873 item_size -= size; 1874 btrfs_truncate_item(root, path, item_size, 1); 1875 } 1876 btrfs_mark_buffer_dirty(leaf); 1877 } 1878 1879 static noinline_for_stack 1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1881 struct btrfs_root *root, 1882 struct btrfs_path *path, 1883 u64 bytenr, u64 num_bytes, u64 parent, 1884 u64 root_objectid, u64 owner, 1885 u64 offset, int refs_to_add, 1886 struct btrfs_delayed_extent_op *extent_op) 1887 { 1888 struct btrfs_extent_inline_ref *iref; 1889 int ret; 1890 1891 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1892 bytenr, num_bytes, parent, 1893 root_objectid, owner, offset, 1); 1894 if (ret == 0) { 1895 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1896 update_inline_extent_backref(root, path, iref, 1897 refs_to_add, extent_op, NULL); 1898 } else if (ret == -ENOENT) { 1899 setup_inline_extent_backref(root, path, iref, parent, 1900 root_objectid, owner, offset, 1901 refs_to_add, extent_op); 1902 ret = 0; 1903 } 1904 return ret; 1905 } 1906 1907 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1908 struct btrfs_root *root, 1909 struct btrfs_path *path, 1910 u64 bytenr, u64 parent, u64 root_objectid, 1911 u64 owner, u64 offset, int refs_to_add) 1912 { 1913 int ret; 1914 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1915 BUG_ON(refs_to_add != 1); 1916 ret = insert_tree_block_ref(trans, root, path, bytenr, 1917 parent, root_objectid); 1918 } else { 1919 ret = insert_extent_data_ref(trans, root, path, bytenr, 1920 parent, root_objectid, 1921 owner, offset, refs_to_add); 1922 } 1923 return ret; 1924 } 1925 1926 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1927 struct btrfs_root *root, 1928 struct btrfs_path *path, 1929 struct btrfs_extent_inline_ref *iref, 1930 int refs_to_drop, int is_data, int *last_ref) 1931 { 1932 int ret = 0; 1933 1934 BUG_ON(!is_data && refs_to_drop != 1); 1935 if (iref) { 1936 update_inline_extent_backref(root, path, iref, 1937 -refs_to_drop, NULL, last_ref); 1938 } else if (is_data) { 1939 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1940 last_ref); 1941 } else { 1942 *last_ref = 1; 1943 ret = btrfs_del_item(trans, root, path); 1944 } 1945 return ret; 1946 } 1947 1948 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1950 u64 *discarded_bytes) 1951 { 1952 int j, ret = 0; 1953 u64 bytes_left, end; 1954 u64 aligned_start = ALIGN(start, 1 << 9); 1955 1956 if (WARN_ON(start != aligned_start)) { 1957 len -= aligned_start - start; 1958 len = round_down(len, 1 << 9); 1959 start = aligned_start; 1960 } 1961 1962 *discarded_bytes = 0; 1963 1964 if (!len) 1965 return 0; 1966 1967 end = start + len; 1968 bytes_left = len; 1969 1970 /* Skip any superblocks on this device. */ 1971 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1972 u64 sb_start = btrfs_sb_offset(j); 1973 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1974 u64 size = sb_start - start; 1975 1976 if (!in_range(sb_start, start, bytes_left) && 1977 !in_range(sb_end, start, bytes_left) && 1978 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1979 continue; 1980 1981 /* 1982 * Superblock spans beginning of range. Adjust start and 1983 * try again. 1984 */ 1985 if (sb_start <= start) { 1986 start += sb_end - start; 1987 if (start > end) { 1988 bytes_left = 0; 1989 break; 1990 } 1991 bytes_left = end - start; 1992 continue; 1993 } 1994 1995 if (size) { 1996 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1997 GFP_NOFS, 0); 1998 if (!ret) 1999 *discarded_bytes += size; 2000 else if (ret != -EOPNOTSUPP) 2001 return ret; 2002 } 2003 2004 start = sb_end; 2005 if (start > end) { 2006 bytes_left = 0; 2007 break; 2008 } 2009 bytes_left = end - start; 2010 } 2011 2012 if (bytes_left) { 2013 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2014 GFP_NOFS, 0); 2015 if (!ret) 2016 *discarded_bytes += bytes_left; 2017 } 2018 return ret; 2019 } 2020 2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2022 u64 num_bytes, u64 *actual_bytes) 2023 { 2024 int ret; 2025 u64 discarded_bytes = 0; 2026 struct btrfs_bio *bbio = NULL; 2027 2028 2029 /* Tell the block device(s) that the sectors can be discarded */ 2030 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 2031 bytenr, &num_bytes, &bbio, 0); 2032 /* Error condition is -ENOMEM */ 2033 if (!ret) { 2034 struct btrfs_bio_stripe *stripe = bbio->stripes; 2035 int i; 2036 2037 2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2039 u64 bytes; 2040 if (!stripe->dev->can_discard) 2041 continue; 2042 2043 ret = btrfs_issue_discard(stripe->dev->bdev, 2044 stripe->physical, 2045 stripe->length, 2046 &bytes); 2047 if (!ret) 2048 discarded_bytes += bytes; 2049 else if (ret != -EOPNOTSUPP) 2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2051 2052 /* 2053 * Just in case we get back EOPNOTSUPP for some reason, 2054 * just ignore the return value so we don't screw up 2055 * people calling discard_extent. 2056 */ 2057 ret = 0; 2058 } 2059 btrfs_put_bbio(bbio); 2060 } 2061 2062 if (actual_bytes) 2063 *actual_bytes = discarded_bytes; 2064 2065 2066 if (ret == -EOPNOTSUPP) 2067 ret = 0; 2068 return ret; 2069 } 2070 2071 /* Can return -ENOMEM */ 2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2073 struct btrfs_root *root, 2074 u64 bytenr, u64 num_bytes, u64 parent, 2075 u64 root_objectid, u64 owner, u64 offset) 2076 { 2077 int ret; 2078 struct btrfs_fs_info *fs_info = root->fs_info; 2079 2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2081 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2082 2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2085 num_bytes, 2086 parent, root_objectid, (int)owner, 2087 BTRFS_ADD_DELAYED_REF, NULL); 2088 } else { 2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2090 num_bytes, parent, root_objectid, 2091 owner, offset, 0, 2092 BTRFS_ADD_DELAYED_REF, NULL); 2093 } 2094 return ret; 2095 } 2096 2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2098 struct btrfs_root *root, 2099 struct btrfs_delayed_ref_node *node, 2100 u64 parent, u64 root_objectid, 2101 u64 owner, u64 offset, int refs_to_add, 2102 struct btrfs_delayed_extent_op *extent_op) 2103 { 2104 struct btrfs_fs_info *fs_info = root->fs_info; 2105 struct btrfs_path *path; 2106 struct extent_buffer *leaf; 2107 struct btrfs_extent_item *item; 2108 struct btrfs_key key; 2109 u64 bytenr = node->bytenr; 2110 u64 num_bytes = node->num_bytes; 2111 u64 refs; 2112 int ret; 2113 2114 path = btrfs_alloc_path(); 2115 if (!path) 2116 return -ENOMEM; 2117 2118 path->reada = 1; 2119 path->leave_spinning = 1; 2120 /* this will setup the path even if it fails to insert the back ref */ 2121 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2122 bytenr, num_bytes, parent, 2123 root_objectid, owner, offset, 2124 refs_to_add, extent_op); 2125 if ((ret < 0 && ret != -EAGAIN) || !ret) 2126 goto out; 2127 2128 /* 2129 * Ok we had -EAGAIN which means we didn't have space to insert and 2130 * inline extent ref, so just update the reference count and add a 2131 * normal backref. 2132 */ 2133 leaf = path->nodes[0]; 2134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2135 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2136 refs = btrfs_extent_refs(leaf, item); 2137 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2138 if (extent_op) 2139 __run_delayed_extent_op(extent_op, leaf, item); 2140 2141 btrfs_mark_buffer_dirty(leaf); 2142 btrfs_release_path(path); 2143 2144 path->reada = 1; 2145 path->leave_spinning = 1; 2146 /* now insert the actual backref */ 2147 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2148 path, bytenr, parent, root_objectid, 2149 owner, offset, refs_to_add); 2150 if (ret) 2151 btrfs_abort_transaction(trans, root, ret); 2152 out: 2153 btrfs_free_path(path); 2154 return ret; 2155 } 2156 2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2158 struct btrfs_root *root, 2159 struct btrfs_delayed_ref_node *node, 2160 struct btrfs_delayed_extent_op *extent_op, 2161 int insert_reserved) 2162 { 2163 int ret = 0; 2164 struct btrfs_delayed_data_ref *ref; 2165 struct btrfs_key ins; 2166 u64 parent = 0; 2167 u64 ref_root = 0; 2168 u64 flags = 0; 2169 2170 ins.objectid = node->bytenr; 2171 ins.offset = node->num_bytes; 2172 ins.type = BTRFS_EXTENT_ITEM_KEY; 2173 2174 ref = btrfs_delayed_node_to_data_ref(node); 2175 trace_run_delayed_data_ref(node, ref, node->action); 2176 2177 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2178 parent = ref->parent; 2179 ref_root = ref->root; 2180 2181 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2182 if (extent_op) 2183 flags |= extent_op->flags_to_set; 2184 ret = alloc_reserved_file_extent(trans, root, 2185 parent, ref_root, flags, 2186 ref->objectid, ref->offset, 2187 &ins, node->ref_mod); 2188 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2189 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2190 ref_root, ref->objectid, 2191 ref->offset, node->ref_mod, 2192 extent_op); 2193 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2194 ret = __btrfs_free_extent(trans, root, node, parent, 2195 ref_root, ref->objectid, 2196 ref->offset, node->ref_mod, 2197 extent_op); 2198 } else { 2199 BUG(); 2200 } 2201 return ret; 2202 } 2203 2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2205 struct extent_buffer *leaf, 2206 struct btrfs_extent_item *ei) 2207 { 2208 u64 flags = btrfs_extent_flags(leaf, ei); 2209 if (extent_op->update_flags) { 2210 flags |= extent_op->flags_to_set; 2211 btrfs_set_extent_flags(leaf, ei, flags); 2212 } 2213 2214 if (extent_op->update_key) { 2215 struct btrfs_tree_block_info *bi; 2216 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2217 bi = (struct btrfs_tree_block_info *)(ei + 1); 2218 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2219 } 2220 } 2221 2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2223 struct btrfs_root *root, 2224 struct btrfs_delayed_ref_node *node, 2225 struct btrfs_delayed_extent_op *extent_op) 2226 { 2227 struct btrfs_key key; 2228 struct btrfs_path *path; 2229 struct btrfs_extent_item *ei; 2230 struct extent_buffer *leaf; 2231 u32 item_size; 2232 int ret; 2233 int err = 0; 2234 int metadata = !extent_op->is_data; 2235 2236 if (trans->aborted) 2237 return 0; 2238 2239 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2240 metadata = 0; 2241 2242 path = btrfs_alloc_path(); 2243 if (!path) 2244 return -ENOMEM; 2245 2246 key.objectid = node->bytenr; 2247 2248 if (metadata) { 2249 key.type = BTRFS_METADATA_ITEM_KEY; 2250 key.offset = extent_op->level; 2251 } else { 2252 key.type = BTRFS_EXTENT_ITEM_KEY; 2253 key.offset = node->num_bytes; 2254 } 2255 2256 again: 2257 path->reada = 1; 2258 path->leave_spinning = 1; 2259 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2260 path, 0, 1); 2261 if (ret < 0) { 2262 err = ret; 2263 goto out; 2264 } 2265 if (ret > 0) { 2266 if (metadata) { 2267 if (path->slots[0] > 0) { 2268 path->slots[0]--; 2269 btrfs_item_key_to_cpu(path->nodes[0], &key, 2270 path->slots[0]); 2271 if (key.objectid == node->bytenr && 2272 key.type == BTRFS_EXTENT_ITEM_KEY && 2273 key.offset == node->num_bytes) 2274 ret = 0; 2275 } 2276 if (ret > 0) { 2277 btrfs_release_path(path); 2278 metadata = 0; 2279 2280 key.objectid = node->bytenr; 2281 key.offset = node->num_bytes; 2282 key.type = BTRFS_EXTENT_ITEM_KEY; 2283 goto again; 2284 } 2285 } else { 2286 err = -EIO; 2287 goto out; 2288 } 2289 } 2290 2291 leaf = path->nodes[0]; 2292 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2294 if (item_size < sizeof(*ei)) { 2295 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2296 path, (u64)-1, 0); 2297 if (ret < 0) { 2298 err = ret; 2299 goto out; 2300 } 2301 leaf = path->nodes[0]; 2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2303 } 2304 #endif 2305 BUG_ON(item_size < sizeof(*ei)); 2306 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2307 __run_delayed_extent_op(extent_op, leaf, ei); 2308 2309 btrfs_mark_buffer_dirty(leaf); 2310 out: 2311 btrfs_free_path(path); 2312 return err; 2313 } 2314 2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2316 struct btrfs_root *root, 2317 struct btrfs_delayed_ref_node *node, 2318 struct btrfs_delayed_extent_op *extent_op, 2319 int insert_reserved) 2320 { 2321 int ret = 0; 2322 struct btrfs_delayed_tree_ref *ref; 2323 struct btrfs_key ins; 2324 u64 parent = 0; 2325 u64 ref_root = 0; 2326 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2327 SKINNY_METADATA); 2328 2329 ref = btrfs_delayed_node_to_tree_ref(node); 2330 trace_run_delayed_tree_ref(node, ref, node->action); 2331 2332 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2333 parent = ref->parent; 2334 ref_root = ref->root; 2335 2336 ins.objectid = node->bytenr; 2337 if (skinny_metadata) { 2338 ins.offset = ref->level; 2339 ins.type = BTRFS_METADATA_ITEM_KEY; 2340 } else { 2341 ins.offset = node->num_bytes; 2342 ins.type = BTRFS_EXTENT_ITEM_KEY; 2343 } 2344 2345 BUG_ON(node->ref_mod != 1); 2346 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2347 BUG_ON(!extent_op || !extent_op->update_flags); 2348 ret = alloc_reserved_tree_block(trans, root, 2349 parent, ref_root, 2350 extent_op->flags_to_set, 2351 &extent_op->key, 2352 ref->level, &ins); 2353 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2354 ret = __btrfs_inc_extent_ref(trans, root, node, 2355 parent, ref_root, 2356 ref->level, 0, 1, 2357 extent_op); 2358 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2359 ret = __btrfs_free_extent(trans, root, node, 2360 parent, ref_root, 2361 ref->level, 0, 1, extent_op); 2362 } else { 2363 BUG(); 2364 } 2365 return ret; 2366 } 2367 2368 /* helper function to actually process a single delayed ref entry */ 2369 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2370 struct btrfs_root *root, 2371 struct btrfs_delayed_ref_node *node, 2372 struct btrfs_delayed_extent_op *extent_op, 2373 int insert_reserved) 2374 { 2375 int ret = 0; 2376 2377 if (trans->aborted) { 2378 if (insert_reserved) 2379 btrfs_pin_extent(root, node->bytenr, 2380 node->num_bytes, 1); 2381 return 0; 2382 } 2383 2384 if (btrfs_delayed_ref_is_head(node)) { 2385 struct btrfs_delayed_ref_head *head; 2386 /* 2387 * we've hit the end of the chain and we were supposed 2388 * to insert this extent into the tree. But, it got 2389 * deleted before we ever needed to insert it, so all 2390 * we have to do is clean up the accounting 2391 */ 2392 BUG_ON(extent_op); 2393 head = btrfs_delayed_node_to_head(node); 2394 trace_run_delayed_ref_head(node, head, node->action); 2395 2396 if (insert_reserved) { 2397 btrfs_pin_extent(root, node->bytenr, 2398 node->num_bytes, 1); 2399 if (head->is_data) { 2400 ret = btrfs_del_csums(trans, root, 2401 node->bytenr, 2402 node->num_bytes); 2403 } 2404 } 2405 2406 /* Also free its reserved qgroup space */ 2407 btrfs_qgroup_free_delayed_ref(root->fs_info, 2408 head->qgroup_ref_root, 2409 head->qgroup_reserved); 2410 return ret; 2411 } 2412 2413 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2414 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2415 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2416 insert_reserved); 2417 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2418 node->type == BTRFS_SHARED_DATA_REF_KEY) 2419 ret = run_delayed_data_ref(trans, root, node, extent_op, 2420 insert_reserved); 2421 else 2422 BUG(); 2423 return ret; 2424 } 2425 2426 static inline struct btrfs_delayed_ref_node * 2427 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2428 { 2429 struct btrfs_delayed_ref_node *ref; 2430 2431 if (list_empty(&head->ref_list)) 2432 return NULL; 2433 2434 /* 2435 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2436 * This is to prevent a ref count from going down to zero, which deletes 2437 * the extent item from the extent tree, when there still are references 2438 * to add, which would fail because they would not find the extent item. 2439 */ 2440 list_for_each_entry(ref, &head->ref_list, list) { 2441 if (ref->action == BTRFS_ADD_DELAYED_REF) 2442 return ref; 2443 } 2444 2445 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2446 list); 2447 } 2448 2449 /* 2450 * Returns 0 on success or if called with an already aborted transaction. 2451 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2452 */ 2453 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2454 struct btrfs_root *root, 2455 unsigned long nr) 2456 { 2457 struct btrfs_delayed_ref_root *delayed_refs; 2458 struct btrfs_delayed_ref_node *ref; 2459 struct btrfs_delayed_ref_head *locked_ref = NULL; 2460 struct btrfs_delayed_extent_op *extent_op; 2461 struct btrfs_fs_info *fs_info = root->fs_info; 2462 ktime_t start = ktime_get(); 2463 int ret; 2464 unsigned long count = 0; 2465 unsigned long actual_count = 0; 2466 int must_insert_reserved = 0; 2467 2468 delayed_refs = &trans->transaction->delayed_refs; 2469 while (1) { 2470 if (!locked_ref) { 2471 if (count >= nr) 2472 break; 2473 2474 spin_lock(&delayed_refs->lock); 2475 locked_ref = btrfs_select_ref_head(trans); 2476 if (!locked_ref) { 2477 spin_unlock(&delayed_refs->lock); 2478 break; 2479 } 2480 2481 /* grab the lock that says we are going to process 2482 * all the refs for this head */ 2483 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2484 spin_unlock(&delayed_refs->lock); 2485 /* 2486 * we may have dropped the spin lock to get the head 2487 * mutex lock, and that might have given someone else 2488 * time to free the head. If that's true, it has been 2489 * removed from our list and we can move on. 2490 */ 2491 if (ret == -EAGAIN) { 2492 locked_ref = NULL; 2493 count++; 2494 continue; 2495 } 2496 } 2497 2498 /* 2499 * We need to try and merge add/drops of the same ref since we 2500 * can run into issues with relocate dropping the implicit ref 2501 * and then it being added back again before the drop can 2502 * finish. If we merged anything we need to re-loop so we can 2503 * get a good ref. 2504 * Or we can get node references of the same type that weren't 2505 * merged when created due to bumps in the tree mod seq, and 2506 * we need to merge them to prevent adding an inline extent 2507 * backref before dropping it (triggering a BUG_ON at 2508 * insert_inline_extent_backref()). 2509 */ 2510 spin_lock(&locked_ref->lock); 2511 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2512 locked_ref); 2513 2514 /* 2515 * locked_ref is the head node, so we have to go one 2516 * node back for any delayed ref updates 2517 */ 2518 ref = select_delayed_ref(locked_ref); 2519 2520 if (ref && ref->seq && 2521 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2522 spin_unlock(&locked_ref->lock); 2523 btrfs_delayed_ref_unlock(locked_ref); 2524 spin_lock(&delayed_refs->lock); 2525 locked_ref->processing = 0; 2526 delayed_refs->num_heads_ready++; 2527 spin_unlock(&delayed_refs->lock); 2528 locked_ref = NULL; 2529 cond_resched(); 2530 count++; 2531 continue; 2532 } 2533 2534 /* 2535 * record the must insert reserved flag before we 2536 * drop the spin lock. 2537 */ 2538 must_insert_reserved = locked_ref->must_insert_reserved; 2539 locked_ref->must_insert_reserved = 0; 2540 2541 extent_op = locked_ref->extent_op; 2542 locked_ref->extent_op = NULL; 2543 2544 if (!ref) { 2545 2546 2547 /* All delayed refs have been processed, Go ahead 2548 * and send the head node to run_one_delayed_ref, 2549 * so that any accounting fixes can happen 2550 */ 2551 ref = &locked_ref->node; 2552 2553 if (extent_op && must_insert_reserved) { 2554 btrfs_free_delayed_extent_op(extent_op); 2555 extent_op = NULL; 2556 } 2557 2558 if (extent_op) { 2559 spin_unlock(&locked_ref->lock); 2560 ret = run_delayed_extent_op(trans, root, 2561 ref, extent_op); 2562 btrfs_free_delayed_extent_op(extent_op); 2563 2564 if (ret) { 2565 /* 2566 * Need to reset must_insert_reserved if 2567 * there was an error so the abort stuff 2568 * can cleanup the reserved space 2569 * properly. 2570 */ 2571 if (must_insert_reserved) 2572 locked_ref->must_insert_reserved = 1; 2573 locked_ref->processing = 0; 2574 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2575 btrfs_delayed_ref_unlock(locked_ref); 2576 return ret; 2577 } 2578 continue; 2579 } 2580 2581 /* 2582 * Need to drop our head ref lock and re-aqcuire the 2583 * delayed ref lock and then re-check to make sure 2584 * nobody got added. 2585 */ 2586 spin_unlock(&locked_ref->lock); 2587 spin_lock(&delayed_refs->lock); 2588 spin_lock(&locked_ref->lock); 2589 if (!list_empty(&locked_ref->ref_list) || 2590 locked_ref->extent_op) { 2591 spin_unlock(&locked_ref->lock); 2592 spin_unlock(&delayed_refs->lock); 2593 continue; 2594 } 2595 ref->in_tree = 0; 2596 delayed_refs->num_heads--; 2597 rb_erase(&locked_ref->href_node, 2598 &delayed_refs->href_root); 2599 spin_unlock(&delayed_refs->lock); 2600 } else { 2601 actual_count++; 2602 ref->in_tree = 0; 2603 list_del(&ref->list); 2604 } 2605 atomic_dec(&delayed_refs->num_entries); 2606 2607 if (!btrfs_delayed_ref_is_head(ref)) { 2608 /* 2609 * when we play the delayed ref, also correct the 2610 * ref_mod on head 2611 */ 2612 switch (ref->action) { 2613 case BTRFS_ADD_DELAYED_REF: 2614 case BTRFS_ADD_DELAYED_EXTENT: 2615 locked_ref->node.ref_mod -= ref->ref_mod; 2616 break; 2617 case BTRFS_DROP_DELAYED_REF: 2618 locked_ref->node.ref_mod += ref->ref_mod; 2619 break; 2620 default: 2621 WARN_ON(1); 2622 } 2623 } 2624 spin_unlock(&locked_ref->lock); 2625 2626 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2627 must_insert_reserved); 2628 2629 btrfs_free_delayed_extent_op(extent_op); 2630 if (ret) { 2631 locked_ref->processing = 0; 2632 btrfs_delayed_ref_unlock(locked_ref); 2633 btrfs_put_delayed_ref(ref); 2634 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2635 return ret; 2636 } 2637 2638 /* 2639 * If this node is a head, that means all the refs in this head 2640 * have been dealt with, and we will pick the next head to deal 2641 * with, so we must unlock the head and drop it from the cluster 2642 * list before we release it. 2643 */ 2644 if (btrfs_delayed_ref_is_head(ref)) { 2645 if (locked_ref->is_data && 2646 locked_ref->total_ref_mod < 0) { 2647 spin_lock(&delayed_refs->lock); 2648 delayed_refs->pending_csums -= ref->num_bytes; 2649 spin_unlock(&delayed_refs->lock); 2650 } 2651 btrfs_delayed_ref_unlock(locked_ref); 2652 locked_ref = NULL; 2653 } 2654 btrfs_put_delayed_ref(ref); 2655 count++; 2656 cond_resched(); 2657 } 2658 2659 /* 2660 * We don't want to include ref heads since we can have empty ref heads 2661 * and those will drastically skew our runtime down since we just do 2662 * accounting, no actual extent tree updates. 2663 */ 2664 if (actual_count > 0) { 2665 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2666 u64 avg; 2667 2668 /* 2669 * We weigh the current average higher than our current runtime 2670 * to avoid large swings in the average. 2671 */ 2672 spin_lock(&delayed_refs->lock); 2673 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2674 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2675 spin_unlock(&delayed_refs->lock); 2676 } 2677 return 0; 2678 } 2679 2680 #ifdef SCRAMBLE_DELAYED_REFS 2681 /* 2682 * Normally delayed refs get processed in ascending bytenr order. This 2683 * correlates in most cases to the order added. To expose dependencies on this 2684 * order, we start to process the tree in the middle instead of the beginning 2685 */ 2686 static u64 find_middle(struct rb_root *root) 2687 { 2688 struct rb_node *n = root->rb_node; 2689 struct btrfs_delayed_ref_node *entry; 2690 int alt = 1; 2691 u64 middle; 2692 u64 first = 0, last = 0; 2693 2694 n = rb_first(root); 2695 if (n) { 2696 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2697 first = entry->bytenr; 2698 } 2699 n = rb_last(root); 2700 if (n) { 2701 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2702 last = entry->bytenr; 2703 } 2704 n = root->rb_node; 2705 2706 while (n) { 2707 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2708 WARN_ON(!entry->in_tree); 2709 2710 middle = entry->bytenr; 2711 2712 if (alt) 2713 n = n->rb_left; 2714 else 2715 n = n->rb_right; 2716 2717 alt = 1 - alt; 2718 } 2719 return middle; 2720 } 2721 #endif 2722 2723 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2724 { 2725 u64 num_bytes; 2726 2727 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2728 sizeof(struct btrfs_extent_inline_ref)); 2729 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2730 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2731 2732 /* 2733 * We don't ever fill up leaves all the way so multiply by 2 just to be 2734 * closer to what we're really going to want to ouse. 2735 */ 2736 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2737 } 2738 2739 /* 2740 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2741 * would require to store the csums for that many bytes. 2742 */ 2743 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2744 { 2745 u64 csum_size; 2746 u64 num_csums_per_leaf; 2747 u64 num_csums; 2748 2749 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2750 num_csums_per_leaf = div64_u64(csum_size, 2751 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2752 num_csums = div64_u64(csum_bytes, root->sectorsize); 2753 num_csums += num_csums_per_leaf - 1; 2754 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2755 return num_csums; 2756 } 2757 2758 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2759 struct btrfs_root *root) 2760 { 2761 struct btrfs_block_rsv *global_rsv; 2762 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2763 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2764 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2765 u64 num_bytes, num_dirty_bgs_bytes; 2766 int ret = 0; 2767 2768 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2769 num_heads = heads_to_leaves(root, num_heads); 2770 if (num_heads > 1) 2771 num_bytes += (num_heads - 1) * root->nodesize; 2772 num_bytes <<= 1; 2773 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2774 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2775 num_dirty_bgs); 2776 global_rsv = &root->fs_info->global_block_rsv; 2777 2778 /* 2779 * If we can't allocate any more chunks lets make sure we have _lots_ of 2780 * wiggle room since running delayed refs can create more delayed refs. 2781 */ 2782 if (global_rsv->space_info->full) { 2783 num_dirty_bgs_bytes <<= 1; 2784 num_bytes <<= 1; 2785 } 2786 2787 spin_lock(&global_rsv->lock); 2788 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2789 ret = 1; 2790 spin_unlock(&global_rsv->lock); 2791 return ret; 2792 } 2793 2794 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2795 struct btrfs_root *root) 2796 { 2797 struct btrfs_fs_info *fs_info = root->fs_info; 2798 u64 num_entries = 2799 atomic_read(&trans->transaction->delayed_refs.num_entries); 2800 u64 avg_runtime; 2801 u64 val; 2802 2803 smp_mb(); 2804 avg_runtime = fs_info->avg_delayed_ref_runtime; 2805 val = num_entries * avg_runtime; 2806 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2807 return 1; 2808 if (val >= NSEC_PER_SEC / 2) 2809 return 2; 2810 2811 return btrfs_check_space_for_delayed_refs(trans, root); 2812 } 2813 2814 struct async_delayed_refs { 2815 struct btrfs_root *root; 2816 int count; 2817 int error; 2818 int sync; 2819 struct completion wait; 2820 struct btrfs_work work; 2821 }; 2822 2823 static void delayed_ref_async_start(struct btrfs_work *work) 2824 { 2825 struct async_delayed_refs *async; 2826 struct btrfs_trans_handle *trans; 2827 int ret; 2828 2829 async = container_of(work, struct async_delayed_refs, work); 2830 2831 trans = btrfs_join_transaction(async->root); 2832 if (IS_ERR(trans)) { 2833 async->error = PTR_ERR(trans); 2834 goto done; 2835 } 2836 2837 /* 2838 * trans->sync means that when we call end_transaciton, we won't 2839 * wait on delayed refs 2840 */ 2841 trans->sync = true; 2842 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2843 if (ret) 2844 async->error = ret; 2845 2846 ret = btrfs_end_transaction(trans, async->root); 2847 if (ret && !async->error) 2848 async->error = ret; 2849 done: 2850 if (async->sync) 2851 complete(&async->wait); 2852 else 2853 kfree(async); 2854 } 2855 2856 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2857 unsigned long count, int wait) 2858 { 2859 struct async_delayed_refs *async; 2860 int ret; 2861 2862 async = kmalloc(sizeof(*async), GFP_NOFS); 2863 if (!async) 2864 return -ENOMEM; 2865 2866 async->root = root->fs_info->tree_root; 2867 async->count = count; 2868 async->error = 0; 2869 if (wait) 2870 async->sync = 1; 2871 else 2872 async->sync = 0; 2873 init_completion(&async->wait); 2874 2875 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2876 delayed_ref_async_start, NULL, NULL); 2877 2878 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2879 2880 if (wait) { 2881 wait_for_completion(&async->wait); 2882 ret = async->error; 2883 kfree(async); 2884 return ret; 2885 } 2886 return 0; 2887 } 2888 2889 /* 2890 * this starts processing the delayed reference count updates and 2891 * extent insertions we have queued up so far. count can be 2892 * 0, which means to process everything in the tree at the start 2893 * of the run (but not newly added entries), or it can be some target 2894 * number you'd like to process. 2895 * 2896 * Returns 0 on success or if called with an aborted transaction 2897 * Returns <0 on error and aborts the transaction 2898 */ 2899 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, unsigned long count) 2901 { 2902 struct rb_node *node; 2903 struct btrfs_delayed_ref_root *delayed_refs; 2904 struct btrfs_delayed_ref_head *head; 2905 int ret; 2906 int run_all = count == (unsigned long)-1; 2907 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2908 2909 /* We'll clean this up in btrfs_cleanup_transaction */ 2910 if (trans->aborted) 2911 return 0; 2912 2913 if (root == root->fs_info->extent_root) 2914 root = root->fs_info->tree_root; 2915 2916 delayed_refs = &trans->transaction->delayed_refs; 2917 if (count == 0) 2918 count = atomic_read(&delayed_refs->num_entries) * 2; 2919 2920 again: 2921 #ifdef SCRAMBLE_DELAYED_REFS 2922 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2923 #endif 2924 trans->can_flush_pending_bgs = false; 2925 ret = __btrfs_run_delayed_refs(trans, root, count); 2926 if (ret < 0) { 2927 btrfs_abort_transaction(trans, root, ret); 2928 return ret; 2929 } 2930 2931 if (run_all) { 2932 if (!list_empty(&trans->new_bgs)) 2933 btrfs_create_pending_block_groups(trans, root); 2934 2935 spin_lock(&delayed_refs->lock); 2936 node = rb_first(&delayed_refs->href_root); 2937 if (!node) { 2938 spin_unlock(&delayed_refs->lock); 2939 goto out; 2940 } 2941 count = (unsigned long)-1; 2942 2943 while (node) { 2944 head = rb_entry(node, struct btrfs_delayed_ref_head, 2945 href_node); 2946 if (btrfs_delayed_ref_is_head(&head->node)) { 2947 struct btrfs_delayed_ref_node *ref; 2948 2949 ref = &head->node; 2950 atomic_inc(&ref->refs); 2951 2952 spin_unlock(&delayed_refs->lock); 2953 /* 2954 * Mutex was contended, block until it's 2955 * released and try again 2956 */ 2957 mutex_lock(&head->mutex); 2958 mutex_unlock(&head->mutex); 2959 2960 btrfs_put_delayed_ref(ref); 2961 cond_resched(); 2962 goto again; 2963 } else { 2964 WARN_ON(1); 2965 } 2966 node = rb_next(node); 2967 } 2968 spin_unlock(&delayed_refs->lock); 2969 cond_resched(); 2970 goto again; 2971 } 2972 out: 2973 assert_qgroups_uptodate(trans); 2974 trans->can_flush_pending_bgs = can_flush_pending_bgs; 2975 return 0; 2976 } 2977 2978 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2979 struct btrfs_root *root, 2980 u64 bytenr, u64 num_bytes, u64 flags, 2981 int level, int is_data) 2982 { 2983 struct btrfs_delayed_extent_op *extent_op; 2984 int ret; 2985 2986 extent_op = btrfs_alloc_delayed_extent_op(); 2987 if (!extent_op) 2988 return -ENOMEM; 2989 2990 extent_op->flags_to_set = flags; 2991 extent_op->update_flags = 1; 2992 extent_op->update_key = 0; 2993 extent_op->is_data = is_data ? 1 : 0; 2994 extent_op->level = level; 2995 2996 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2997 num_bytes, extent_op); 2998 if (ret) 2999 btrfs_free_delayed_extent_op(extent_op); 3000 return ret; 3001 } 3002 3003 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3004 struct btrfs_root *root, 3005 struct btrfs_path *path, 3006 u64 objectid, u64 offset, u64 bytenr) 3007 { 3008 struct btrfs_delayed_ref_head *head; 3009 struct btrfs_delayed_ref_node *ref; 3010 struct btrfs_delayed_data_ref *data_ref; 3011 struct btrfs_delayed_ref_root *delayed_refs; 3012 int ret = 0; 3013 3014 delayed_refs = &trans->transaction->delayed_refs; 3015 spin_lock(&delayed_refs->lock); 3016 head = btrfs_find_delayed_ref_head(trans, bytenr); 3017 if (!head) { 3018 spin_unlock(&delayed_refs->lock); 3019 return 0; 3020 } 3021 3022 if (!mutex_trylock(&head->mutex)) { 3023 atomic_inc(&head->node.refs); 3024 spin_unlock(&delayed_refs->lock); 3025 3026 btrfs_release_path(path); 3027 3028 /* 3029 * Mutex was contended, block until it's released and let 3030 * caller try again 3031 */ 3032 mutex_lock(&head->mutex); 3033 mutex_unlock(&head->mutex); 3034 btrfs_put_delayed_ref(&head->node); 3035 return -EAGAIN; 3036 } 3037 spin_unlock(&delayed_refs->lock); 3038 3039 spin_lock(&head->lock); 3040 list_for_each_entry(ref, &head->ref_list, list) { 3041 /* If it's a shared ref we know a cross reference exists */ 3042 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3043 ret = 1; 3044 break; 3045 } 3046 3047 data_ref = btrfs_delayed_node_to_data_ref(ref); 3048 3049 /* 3050 * If our ref doesn't match the one we're currently looking at 3051 * then we have a cross reference. 3052 */ 3053 if (data_ref->root != root->root_key.objectid || 3054 data_ref->objectid != objectid || 3055 data_ref->offset != offset) { 3056 ret = 1; 3057 break; 3058 } 3059 } 3060 spin_unlock(&head->lock); 3061 mutex_unlock(&head->mutex); 3062 return ret; 3063 } 3064 3065 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3066 struct btrfs_root *root, 3067 struct btrfs_path *path, 3068 u64 objectid, u64 offset, u64 bytenr) 3069 { 3070 struct btrfs_root *extent_root = root->fs_info->extent_root; 3071 struct extent_buffer *leaf; 3072 struct btrfs_extent_data_ref *ref; 3073 struct btrfs_extent_inline_ref *iref; 3074 struct btrfs_extent_item *ei; 3075 struct btrfs_key key; 3076 u32 item_size; 3077 int ret; 3078 3079 key.objectid = bytenr; 3080 key.offset = (u64)-1; 3081 key.type = BTRFS_EXTENT_ITEM_KEY; 3082 3083 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3084 if (ret < 0) 3085 goto out; 3086 BUG_ON(ret == 0); /* Corruption */ 3087 3088 ret = -ENOENT; 3089 if (path->slots[0] == 0) 3090 goto out; 3091 3092 path->slots[0]--; 3093 leaf = path->nodes[0]; 3094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3095 3096 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3097 goto out; 3098 3099 ret = 1; 3100 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3101 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3102 if (item_size < sizeof(*ei)) { 3103 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3104 goto out; 3105 } 3106 #endif 3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3108 3109 if (item_size != sizeof(*ei) + 3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3111 goto out; 3112 3113 if (btrfs_extent_generation(leaf, ei) <= 3114 btrfs_root_last_snapshot(&root->root_item)) 3115 goto out; 3116 3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3118 if (btrfs_extent_inline_ref_type(leaf, iref) != 3119 BTRFS_EXTENT_DATA_REF_KEY) 3120 goto out; 3121 3122 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3123 if (btrfs_extent_refs(leaf, ei) != 3124 btrfs_extent_data_ref_count(leaf, ref) || 3125 btrfs_extent_data_ref_root(leaf, ref) != 3126 root->root_key.objectid || 3127 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3128 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3129 goto out; 3130 3131 ret = 0; 3132 out: 3133 return ret; 3134 } 3135 3136 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3137 struct btrfs_root *root, 3138 u64 objectid, u64 offset, u64 bytenr) 3139 { 3140 struct btrfs_path *path; 3141 int ret; 3142 int ret2; 3143 3144 path = btrfs_alloc_path(); 3145 if (!path) 3146 return -ENOENT; 3147 3148 do { 3149 ret = check_committed_ref(trans, root, path, objectid, 3150 offset, bytenr); 3151 if (ret && ret != -ENOENT) 3152 goto out; 3153 3154 ret2 = check_delayed_ref(trans, root, path, objectid, 3155 offset, bytenr); 3156 } while (ret2 == -EAGAIN); 3157 3158 if (ret2 && ret2 != -ENOENT) { 3159 ret = ret2; 3160 goto out; 3161 } 3162 3163 if (ret != -ENOENT || ret2 != -ENOENT) 3164 ret = 0; 3165 out: 3166 btrfs_free_path(path); 3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3168 WARN_ON(ret > 0); 3169 return ret; 3170 } 3171 3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3173 struct btrfs_root *root, 3174 struct extent_buffer *buf, 3175 int full_backref, int inc) 3176 { 3177 u64 bytenr; 3178 u64 num_bytes; 3179 u64 parent; 3180 u64 ref_root; 3181 u32 nritems; 3182 struct btrfs_key key; 3183 struct btrfs_file_extent_item *fi; 3184 int i; 3185 int level; 3186 int ret = 0; 3187 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3188 u64, u64, u64, u64, u64, u64); 3189 3190 3191 if (btrfs_test_is_dummy_root(root)) 3192 return 0; 3193 3194 ref_root = btrfs_header_owner(buf); 3195 nritems = btrfs_header_nritems(buf); 3196 level = btrfs_header_level(buf); 3197 3198 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3199 return 0; 3200 3201 if (inc) 3202 process_func = btrfs_inc_extent_ref; 3203 else 3204 process_func = btrfs_free_extent; 3205 3206 if (full_backref) 3207 parent = buf->start; 3208 else 3209 parent = 0; 3210 3211 for (i = 0; i < nritems; i++) { 3212 if (level == 0) { 3213 btrfs_item_key_to_cpu(buf, &key, i); 3214 if (key.type != BTRFS_EXTENT_DATA_KEY) 3215 continue; 3216 fi = btrfs_item_ptr(buf, i, 3217 struct btrfs_file_extent_item); 3218 if (btrfs_file_extent_type(buf, fi) == 3219 BTRFS_FILE_EXTENT_INLINE) 3220 continue; 3221 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3222 if (bytenr == 0) 3223 continue; 3224 3225 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3226 key.offset -= btrfs_file_extent_offset(buf, fi); 3227 ret = process_func(trans, root, bytenr, num_bytes, 3228 parent, ref_root, key.objectid, 3229 key.offset); 3230 if (ret) 3231 goto fail; 3232 } else { 3233 bytenr = btrfs_node_blockptr(buf, i); 3234 num_bytes = root->nodesize; 3235 ret = process_func(trans, root, bytenr, num_bytes, 3236 parent, ref_root, level - 1, 0); 3237 if (ret) 3238 goto fail; 3239 } 3240 } 3241 return 0; 3242 fail: 3243 return ret; 3244 } 3245 3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3247 struct extent_buffer *buf, int full_backref) 3248 { 3249 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3250 } 3251 3252 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3253 struct extent_buffer *buf, int full_backref) 3254 { 3255 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3256 } 3257 3258 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3259 struct btrfs_root *root, 3260 struct btrfs_path *path, 3261 struct btrfs_block_group_cache *cache) 3262 { 3263 int ret; 3264 struct btrfs_root *extent_root = root->fs_info->extent_root; 3265 unsigned long bi; 3266 struct extent_buffer *leaf; 3267 3268 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3269 if (ret) { 3270 if (ret > 0) 3271 ret = -ENOENT; 3272 goto fail; 3273 } 3274 3275 leaf = path->nodes[0]; 3276 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3277 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3278 btrfs_mark_buffer_dirty(leaf); 3279 fail: 3280 btrfs_release_path(path); 3281 return ret; 3282 3283 } 3284 3285 static struct btrfs_block_group_cache * 3286 next_block_group(struct btrfs_root *root, 3287 struct btrfs_block_group_cache *cache) 3288 { 3289 struct rb_node *node; 3290 3291 spin_lock(&root->fs_info->block_group_cache_lock); 3292 3293 /* If our block group was removed, we need a full search. */ 3294 if (RB_EMPTY_NODE(&cache->cache_node)) { 3295 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3296 3297 spin_unlock(&root->fs_info->block_group_cache_lock); 3298 btrfs_put_block_group(cache); 3299 cache = btrfs_lookup_first_block_group(root->fs_info, 3300 next_bytenr); 3301 return cache; 3302 } 3303 node = rb_next(&cache->cache_node); 3304 btrfs_put_block_group(cache); 3305 if (node) { 3306 cache = rb_entry(node, struct btrfs_block_group_cache, 3307 cache_node); 3308 btrfs_get_block_group(cache); 3309 } else 3310 cache = NULL; 3311 spin_unlock(&root->fs_info->block_group_cache_lock); 3312 return cache; 3313 } 3314 3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3316 struct btrfs_trans_handle *trans, 3317 struct btrfs_path *path) 3318 { 3319 struct btrfs_root *root = block_group->fs_info->tree_root; 3320 struct inode *inode = NULL; 3321 u64 alloc_hint = 0; 3322 int dcs = BTRFS_DC_ERROR; 3323 u64 num_pages = 0; 3324 int retries = 0; 3325 int ret = 0; 3326 3327 /* 3328 * If this block group is smaller than 100 megs don't bother caching the 3329 * block group. 3330 */ 3331 if (block_group->key.offset < (100 * 1024 * 1024)) { 3332 spin_lock(&block_group->lock); 3333 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3334 spin_unlock(&block_group->lock); 3335 return 0; 3336 } 3337 3338 if (trans->aborted) 3339 return 0; 3340 again: 3341 inode = lookup_free_space_inode(root, block_group, path); 3342 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3343 ret = PTR_ERR(inode); 3344 btrfs_release_path(path); 3345 goto out; 3346 } 3347 3348 if (IS_ERR(inode)) { 3349 BUG_ON(retries); 3350 retries++; 3351 3352 if (block_group->ro) 3353 goto out_free; 3354 3355 ret = create_free_space_inode(root, trans, block_group, path); 3356 if (ret) 3357 goto out_free; 3358 goto again; 3359 } 3360 3361 /* We've already setup this transaction, go ahead and exit */ 3362 if (block_group->cache_generation == trans->transid && 3363 i_size_read(inode)) { 3364 dcs = BTRFS_DC_SETUP; 3365 goto out_put; 3366 } 3367 3368 /* 3369 * We want to set the generation to 0, that way if anything goes wrong 3370 * from here on out we know not to trust this cache when we load up next 3371 * time. 3372 */ 3373 BTRFS_I(inode)->generation = 0; 3374 ret = btrfs_update_inode(trans, root, inode); 3375 if (ret) { 3376 /* 3377 * So theoretically we could recover from this, simply set the 3378 * super cache generation to 0 so we know to invalidate the 3379 * cache, but then we'd have to keep track of the block groups 3380 * that fail this way so we know we _have_ to reset this cache 3381 * before the next commit or risk reading stale cache. So to 3382 * limit our exposure to horrible edge cases lets just abort the 3383 * transaction, this only happens in really bad situations 3384 * anyway. 3385 */ 3386 btrfs_abort_transaction(trans, root, ret); 3387 goto out_put; 3388 } 3389 WARN_ON(ret); 3390 3391 if (i_size_read(inode) > 0) { 3392 ret = btrfs_check_trunc_cache_free_space(root, 3393 &root->fs_info->global_block_rsv); 3394 if (ret) 3395 goto out_put; 3396 3397 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3398 if (ret) 3399 goto out_put; 3400 } 3401 3402 spin_lock(&block_group->lock); 3403 if (block_group->cached != BTRFS_CACHE_FINISHED || 3404 !btrfs_test_opt(root, SPACE_CACHE)) { 3405 /* 3406 * don't bother trying to write stuff out _if_ 3407 * a) we're not cached, 3408 * b) we're with nospace_cache mount option. 3409 */ 3410 dcs = BTRFS_DC_WRITTEN; 3411 spin_unlock(&block_group->lock); 3412 goto out_put; 3413 } 3414 spin_unlock(&block_group->lock); 3415 3416 /* 3417 * We hit an ENOSPC when setting up the cache in this transaction, just 3418 * skip doing the setup, we've already cleared the cache so we're safe. 3419 */ 3420 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3421 ret = -ENOSPC; 3422 goto out_put; 3423 } 3424 3425 /* 3426 * Try to preallocate enough space based on how big the block group is. 3427 * Keep in mind this has to include any pinned space which could end up 3428 * taking up quite a bit since it's not folded into the other space 3429 * cache. 3430 */ 3431 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3432 if (!num_pages) 3433 num_pages = 1; 3434 3435 num_pages *= 16; 3436 num_pages *= PAGE_CACHE_SIZE; 3437 3438 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3439 if (ret) 3440 goto out_put; 3441 3442 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3443 num_pages, num_pages, 3444 &alloc_hint); 3445 /* 3446 * Our cache requires contiguous chunks so that we don't modify a bunch 3447 * of metadata or split extents when writing the cache out, which means 3448 * we can enospc if we are heavily fragmented in addition to just normal 3449 * out of space conditions. So if we hit this just skip setting up any 3450 * other block groups for this transaction, maybe we'll unpin enough 3451 * space the next time around. 3452 */ 3453 if (!ret) 3454 dcs = BTRFS_DC_SETUP; 3455 else if (ret == -ENOSPC) 3456 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3457 btrfs_free_reserved_data_space(inode, 0, num_pages); 3458 3459 out_put: 3460 iput(inode); 3461 out_free: 3462 btrfs_release_path(path); 3463 out: 3464 spin_lock(&block_group->lock); 3465 if (!ret && dcs == BTRFS_DC_SETUP) 3466 block_group->cache_generation = trans->transid; 3467 block_group->disk_cache_state = dcs; 3468 spin_unlock(&block_group->lock); 3469 3470 return ret; 3471 } 3472 3473 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3474 struct btrfs_root *root) 3475 { 3476 struct btrfs_block_group_cache *cache, *tmp; 3477 struct btrfs_transaction *cur_trans = trans->transaction; 3478 struct btrfs_path *path; 3479 3480 if (list_empty(&cur_trans->dirty_bgs) || 3481 !btrfs_test_opt(root, SPACE_CACHE)) 3482 return 0; 3483 3484 path = btrfs_alloc_path(); 3485 if (!path) 3486 return -ENOMEM; 3487 3488 /* Could add new block groups, use _safe just in case */ 3489 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3490 dirty_list) { 3491 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3492 cache_save_setup(cache, trans, path); 3493 } 3494 3495 btrfs_free_path(path); 3496 return 0; 3497 } 3498 3499 /* 3500 * transaction commit does final block group cache writeback during a 3501 * critical section where nothing is allowed to change the FS. This is 3502 * required in order for the cache to actually match the block group, 3503 * but can introduce a lot of latency into the commit. 3504 * 3505 * So, btrfs_start_dirty_block_groups is here to kick off block group 3506 * cache IO. There's a chance we'll have to redo some of it if the 3507 * block group changes again during the commit, but it greatly reduces 3508 * the commit latency by getting rid of the easy block groups while 3509 * we're still allowing others to join the commit. 3510 */ 3511 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3512 struct btrfs_root *root) 3513 { 3514 struct btrfs_block_group_cache *cache; 3515 struct btrfs_transaction *cur_trans = trans->transaction; 3516 int ret = 0; 3517 int should_put; 3518 struct btrfs_path *path = NULL; 3519 LIST_HEAD(dirty); 3520 struct list_head *io = &cur_trans->io_bgs; 3521 int num_started = 0; 3522 int loops = 0; 3523 3524 spin_lock(&cur_trans->dirty_bgs_lock); 3525 if (list_empty(&cur_trans->dirty_bgs)) { 3526 spin_unlock(&cur_trans->dirty_bgs_lock); 3527 return 0; 3528 } 3529 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3530 spin_unlock(&cur_trans->dirty_bgs_lock); 3531 3532 again: 3533 /* 3534 * make sure all the block groups on our dirty list actually 3535 * exist 3536 */ 3537 btrfs_create_pending_block_groups(trans, root); 3538 3539 if (!path) { 3540 path = btrfs_alloc_path(); 3541 if (!path) 3542 return -ENOMEM; 3543 } 3544 3545 /* 3546 * cache_write_mutex is here only to save us from balance or automatic 3547 * removal of empty block groups deleting this block group while we are 3548 * writing out the cache 3549 */ 3550 mutex_lock(&trans->transaction->cache_write_mutex); 3551 while (!list_empty(&dirty)) { 3552 cache = list_first_entry(&dirty, 3553 struct btrfs_block_group_cache, 3554 dirty_list); 3555 /* 3556 * this can happen if something re-dirties a block 3557 * group that is already under IO. Just wait for it to 3558 * finish and then do it all again 3559 */ 3560 if (!list_empty(&cache->io_list)) { 3561 list_del_init(&cache->io_list); 3562 btrfs_wait_cache_io(root, trans, cache, 3563 &cache->io_ctl, path, 3564 cache->key.objectid); 3565 btrfs_put_block_group(cache); 3566 } 3567 3568 3569 /* 3570 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3571 * if it should update the cache_state. Don't delete 3572 * until after we wait. 3573 * 3574 * Since we're not running in the commit critical section 3575 * we need the dirty_bgs_lock to protect from update_block_group 3576 */ 3577 spin_lock(&cur_trans->dirty_bgs_lock); 3578 list_del_init(&cache->dirty_list); 3579 spin_unlock(&cur_trans->dirty_bgs_lock); 3580 3581 should_put = 1; 3582 3583 cache_save_setup(cache, trans, path); 3584 3585 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3586 cache->io_ctl.inode = NULL; 3587 ret = btrfs_write_out_cache(root, trans, cache, path); 3588 if (ret == 0 && cache->io_ctl.inode) { 3589 num_started++; 3590 should_put = 0; 3591 3592 /* 3593 * the cache_write_mutex is protecting 3594 * the io_list 3595 */ 3596 list_add_tail(&cache->io_list, io); 3597 } else { 3598 /* 3599 * if we failed to write the cache, the 3600 * generation will be bad and life goes on 3601 */ 3602 ret = 0; 3603 } 3604 } 3605 if (!ret) { 3606 ret = write_one_cache_group(trans, root, path, cache); 3607 /* 3608 * Our block group might still be attached to the list 3609 * of new block groups in the transaction handle of some 3610 * other task (struct btrfs_trans_handle->new_bgs). This 3611 * means its block group item isn't yet in the extent 3612 * tree. If this happens ignore the error, as we will 3613 * try again later in the critical section of the 3614 * transaction commit. 3615 */ 3616 if (ret == -ENOENT) { 3617 ret = 0; 3618 spin_lock(&cur_trans->dirty_bgs_lock); 3619 if (list_empty(&cache->dirty_list)) { 3620 list_add_tail(&cache->dirty_list, 3621 &cur_trans->dirty_bgs); 3622 btrfs_get_block_group(cache); 3623 } 3624 spin_unlock(&cur_trans->dirty_bgs_lock); 3625 } else if (ret) { 3626 btrfs_abort_transaction(trans, root, ret); 3627 } 3628 } 3629 3630 /* if its not on the io list, we need to put the block group */ 3631 if (should_put) 3632 btrfs_put_block_group(cache); 3633 3634 if (ret) 3635 break; 3636 3637 /* 3638 * Avoid blocking other tasks for too long. It might even save 3639 * us from writing caches for block groups that are going to be 3640 * removed. 3641 */ 3642 mutex_unlock(&trans->transaction->cache_write_mutex); 3643 mutex_lock(&trans->transaction->cache_write_mutex); 3644 } 3645 mutex_unlock(&trans->transaction->cache_write_mutex); 3646 3647 /* 3648 * go through delayed refs for all the stuff we've just kicked off 3649 * and then loop back (just once) 3650 */ 3651 ret = btrfs_run_delayed_refs(trans, root, 0); 3652 if (!ret && loops == 0) { 3653 loops++; 3654 spin_lock(&cur_trans->dirty_bgs_lock); 3655 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3656 /* 3657 * dirty_bgs_lock protects us from concurrent block group 3658 * deletes too (not just cache_write_mutex). 3659 */ 3660 if (!list_empty(&dirty)) { 3661 spin_unlock(&cur_trans->dirty_bgs_lock); 3662 goto again; 3663 } 3664 spin_unlock(&cur_trans->dirty_bgs_lock); 3665 } 3666 3667 btrfs_free_path(path); 3668 return ret; 3669 } 3670 3671 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3672 struct btrfs_root *root) 3673 { 3674 struct btrfs_block_group_cache *cache; 3675 struct btrfs_transaction *cur_trans = trans->transaction; 3676 int ret = 0; 3677 int should_put; 3678 struct btrfs_path *path; 3679 struct list_head *io = &cur_trans->io_bgs; 3680 int num_started = 0; 3681 3682 path = btrfs_alloc_path(); 3683 if (!path) 3684 return -ENOMEM; 3685 3686 /* 3687 * We don't need the lock here since we are protected by the transaction 3688 * commit. We want to do the cache_save_setup first and then run the 3689 * delayed refs to make sure we have the best chance at doing this all 3690 * in one shot. 3691 */ 3692 while (!list_empty(&cur_trans->dirty_bgs)) { 3693 cache = list_first_entry(&cur_trans->dirty_bgs, 3694 struct btrfs_block_group_cache, 3695 dirty_list); 3696 3697 /* 3698 * this can happen if cache_save_setup re-dirties a block 3699 * group that is already under IO. Just wait for it to 3700 * finish and then do it all again 3701 */ 3702 if (!list_empty(&cache->io_list)) { 3703 list_del_init(&cache->io_list); 3704 btrfs_wait_cache_io(root, trans, cache, 3705 &cache->io_ctl, path, 3706 cache->key.objectid); 3707 btrfs_put_block_group(cache); 3708 } 3709 3710 /* 3711 * don't remove from the dirty list until after we've waited 3712 * on any pending IO 3713 */ 3714 list_del_init(&cache->dirty_list); 3715 should_put = 1; 3716 3717 cache_save_setup(cache, trans, path); 3718 3719 if (!ret) 3720 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3721 3722 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3723 cache->io_ctl.inode = NULL; 3724 ret = btrfs_write_out_cache(root, trans, cache, path); 3725 if (ret == 0 && cache->io_ctl.inode) { 3726 num_started++; 3727 should_put = 0; 3728 list_add_tail(&cache->io_list, io); 3729 } else { 3730 /* 3731 * if we failed to write the cache, the 3732 * generation will be bad and life goes on 3733 */ 3734 ret = 0; 3735 } 3736 } 3737 if (!ret) { 3738 ret = write_one_cache_group(trans, root, path, cache); 3739 if (ret) 3740 btrfs_abort_transaction(trans, root, ret); 3741 } 3742 3743 /* if its not on the io list, we need to put the block group */ 3744 if (should_put) 3745 btrfs_put_block_group(cache); 3746 } 3747 3748 while (!list_empty(io)) { 3749 cache = list_first_entry(io, struct btrfs_block_group_cache, 3750 io_list); 3751 list_del_init(&cache->io_list); 3752 btrfs_wait_cache_io(root, trans, cache, 3753 &cache->io_ctl, path, cache->key.objectid); 3754 btrfs_put_block_group(cache); 3755 } 3756 3757 btrfs_free_path(path); 3758 return ret; 3759 } 3760 3761 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3762 { 3763 struct btrfs_block_group_cache *block_group; 3764 int readonly = 0; 3765 3766 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3767 if (!block_group || block_group->ro) 3768 readonly = 1; 3769 if (block_group) 3770 btrfs_put_block_group(block_group); 3771 return readonly; 3772 } 3773 3774 static const char *alloc_name(u64 flags) 3775 { 3776 switch (flags) { 3777 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3778 return "mixed"; 3779 case BTRFS_BLOCK_GROUP_METADATA: 3780 return "metadata"; 3781 case BTRFS_BLOCK_GROUP_DATA: 3782 return "data"; 3783 case BTRFS_BLOCK_GROUP_SYSTEM: 3784 return "system"; 3785 default: 3786 WARN_ON(1); 3787 return "invalid-combination"; 3788 }; 3789 } 3790 3791 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3792 u64 total_bytes, u64 bytes_used, 3793 struct btrfs_space_info **space_info) 3794 { 3795 struct btrfs_space_info *found; 3796 int i; 3797 int factor; 3798 int ret; 3799 3800 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3801 BTRFS_BLOCK_GROUP_RAID10)) 3802 factor = 2; 3803 else 3804 factor = 1; 3805 3806 found = __find_space_info(info, flags); 3807 if (found) { 3808 spin_lock(&found->lock); 3809 found->total_bytes += total_bytes; 3810 found->disk_total += total_bytes * factor; 3811 found->bytes_used += bytes_used; 3812 found->disk_used += bytes_used * factor; 3813 if (total_bytes > 0) 3814 found->full = 0; 3815 spin_unlock(&found->lock); 3816 *space_info = found; 3817 return 0; 3818 } 3819 found = kzalloc(sizeof(*found), GFP_NOFS); 3820 if (!found) 3821 return -ENOMEM; 3822 3823 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3824 if (ret) { 3825 kfree(found); 3826 return ret; 3827 } 3828 3829 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3830 INIT_LIST_HEAD(&found->block_groups[i]); 3831 init_rwsem(&found->groups_sem); 3832 spin_lock_init(&found->lock); 3833 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3834 found->total_bytes = total_bytes; 3835 found->disk_total = total_bytes * factor; 3836 found->bytes_used = bytes_used; 3837 found->disk_used = bytes_used * factor; 3838 found->bytes_pinned = 0; 3839 found->bytes_reserved = 0; 3840 found->bytes_readonly = 0; 3841 found->bytes_may_use = 0; 3842 found->full = 0; 3843 found->max_extent_size = 0; 3844 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3845 found->chunk_alloc = 0; 3846 found->flush = 0; 3847 init_waitqueue_head(&found->wait); 3848 INIT_LIST_HEAD(&found->ro_bgs); 3849 3850 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3851 info->space_info_kobj, "%s", 3852 alloc_name(found->flags)); 3853 if (ret) { 3854 kfree(found); 3855 return ret; 3856 } 3857 3858 *space_info = found; 3859 list_add_rcu(&found->list, &info->space_info); 3860 if (flags & BTRFS_BLOCK_GROUP_DATA) 3861 info->data_sinfo = found; 3862 3863 return ret; 3864 } 3865 3866 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3867 { 3868 u64 extra_flags = chunk_to_extended(flags) & 3869 BTRFS_EXTENDED_PROFILE_MASK; 3870 3871 write_seqlock(&fs_info->profiles_lock); 3872 if (flags & BTRFS_BLOCK_GROUP_DATA) 3873 fs_info->avail_data_alloc_bits |= extra_flags; 3874 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3875 fs_info->avail_metadata_alloc_bits |= extra_flags; 3876 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3877 fs_info->avail_system_alloc_bits |= extra_flags; 3878 write_sequnlock(&fs_info->profiles_lock); 3879 } 3880 3881 /* 3882 * returns target flags in extended format or 0 if restripe for this 3883 * chunk_type is not in progress 3884 * 3885 * should be called with either volume_mutex or balance_lock held 3886 */ 3887 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3888 { 3889 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3890 u64 target = 0; 3891 3892 if (!bctl) 3893 return 0; 3894 3895 if (flags & BTRFS_BLOCK_GROUP_DATA && 3896 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3897 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3898 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3899 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3900 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3901 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3902 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3903 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3904 } 3905 3906 return target; 3907 } 3908 3909 /* 3910 * @flags: available profiles in extended format (see ctree.h) 3911 * 3912 * Returns reduced profile in chunk format. If profile changing is in 3913 * progress (either running or paused) picks the target profile (if it's 3914 * already available), otherwise falls back to plain reducing. 3915 */ 3916 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3917 { 3918 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3919 u64 target; 3920 u64 raid_type; 3921 u64 allowed = 0; 3922 3923 /* 3924 * see if restripe for this chunk_type is in progress, if so 3925 * try to reduce to the target profile 3926 */ 3927 spin_lock(&root->fs_info->balance_lock); 3928 target = get_restripe_target(root->fs_info, flags); 3929 if (target) { 3930 /* pick target profile only if it's already available */ 3931 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3932 spin_unlock(&root->fs_info->balance_lock); 3933 return extended_to_chunk(target); 3934 } 3935 } 3936 spin_unlock(&root->fs_info->balance_lock); 3937 3938 /* First, mask out the RAID levels which aren't possible */ 3939 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3940 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 3941 allowed |= btrfs_raid_group[raid_type]; 3942 } 3943 allowed &= flags; 3944 3945 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 3946 allowed = BTRFS_BLOCK_GROUP_RAID6; 3947 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 3948 allowed = BTRFS_BLOCK_GROUP_RAID5; 3949 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 3950 allowed = BTRFS_BLOCK_GROUP_RAID10; 3951 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 3952 allowed = BTRFS_BLOCK_GROUP_RAID1; 3953 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 3954 allowed = BTRFS_BLOCK_GROUP_RAID0; 3955 3956 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 3957 3958 return extended_to_chunk(flags | allowed); 3959 } 3960 3961 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3962 { 3963 unsigned seq; 3964 u64 flags; 3965 3966 do { 3967 flags = orig_flags; 3968 seq = read_seqbegin(&root->fs_info->profiles_lock); 3969 3970 if (flags & BTRFS_BLOCK_GROUP_DATA) 3971 flags |= root->fs_info->avail_data_alloc_bits; 3972 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3973 flags |= root->fs_info->avail_system_alloc_bits; 3974 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3975 flags |= root->fs_info->avail_metadata_alloc_bits; 3976 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3977 3978 return btrfs_reduce_alloc_profile(root, flags); 3979 } 3980 3981 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3982 { 3983 u64 flags; 3984 u64 ret; 3985 3986 if (data) 3987 flags = BTRFS_BLOCK_GROUP_DATA; 3988 else if (root == root->fs_info->chunk_root) 3989 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3990 else 3991 flags = BTRFS_BLOCK_GROUP_METADATA; 3992 3993 ret = get_alloc_profile(root, flags); 3994 return ret; 3995 } 3996 3997 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 3998 { 3999 struct btrfs_space_info *data_sinfo; 4000 struct btrfs_root *root = BTRFS_I(inode)->root; 4001 struct btrfs_fs_info *fs_info = root->fs_info; 4002 u64 used; 4003 int ret = 0; 4004 int need_commit = 2; 4005 int have_pinned_space; 4006 4007 /* make sure bytes are sectorsize aligned */ 4008 bytes = ALIGN(bytes, root->sectorsize); 4009 4010 if (btrfs_is_free_space_inode(inode)) { 4011 need_commit = 0; 4012 ASSERT(current->journal_info); 4013 } 4014 4015 data_sinfo = fs_info->data_sinfo; 4016 if (!data_sinfo) 4017 goto alloc; 4018 4019 again: 4020 /* make sure we have enough space to handle the data first */ 4021 spin_lock(&data_sinfo->lock); 4022 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4023 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4024 data_sinfo->bytes_may_use; 4025 4026 if (used + bytes > data_sinfo->total_bytes) { 4027 struct btrfs_trans_handle *trans; 4028 4029 /* 4030 * if we don't have enough free bytes in this space then we need 4031 * to alloc a new chunk. 4032 */ 4033 if (!data_sinfo->full) { 4034 u64 alloc_target; 4035 4036 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4037 spin_unlock(&data_sinfo->lock); 4038 alloc: 4039 alloc_target = btrfs_get_alloc_profile(root, 1); 4040 /* 4041 * It is ugly that we don't call nolock join 4042 * transaction for the free space inode case here. 4043 * But it is safe because we only do the data space 4044 * reservation for the free space cache in the 4045 * transaction context, the common join transaction 4046 * just increase the counter of the current transaction 4047 * handler, doesn't try to acquire the trans_lock of 4048 * the fs. 4049 */ 4050 trans = btrfs_join_transaction(root); 4051 if (IS_ERR(trans)) 4052 return PTR_ERR(trans); 4053 4054 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4055 alloc_target, 4056 CHUNK_ALLOC_NO_FORCE); 4057 btrfs_end_transaction(trans, root); 4058 if (ret < 0) { 4059 if (ret != -ENOSPC) 4060 return ret; 4061 else { 4062 have_pinned_space = 1; 4063 goto commit_trans; 4064 } 4065 } 4066 4067 if (!data_sinfo) 4068 data_sinfo = fs_info->data_sinfo; 4069 4070 goto again; 4071 } 4072 4073 /* 4074 * If we don't have enough pinned space to deal with this 4075 * allocation, and no removed chunk in current transaction, 4076 * don't bother committing the transaction. 4077 */ 4078 have_pinned_space = percpu_counter_compare( 4079 &data_sinfo->total_bytes_pinned, 4080 used + bytes - data_sinfo->total_bytes); 4081 spin_unlock(&data_sinfo->lock); 4082 4083 /* commit the current transaction and try again */ 4084 commit_trans: 4085 if (need_commit && 4086 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4087 need_commit--; 4088 4089 if (need_commit > 0) 4090 btrfs_wait_ordered_roots(fs_info, -1); 4091 4092 trans = btrfs_join_transaction(root); 4093 if (IS_ERR(trans)) 4094 return PTR_ERR(trans); 4095 if (have_pinned_space >= 0 || 4096 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4097 &trans->transaction->flags) || 4098 need_commit > 0) { 4099 ret = btrfs_commit_transaction(trans, root); 4100 if (ret) 4101 return ret; 4102 /* 4103 * make sure that all running delayed iput are 4104 * done 4105 */ 4106 down_write(&root->fs_info->delayed_iput_sem); 4107 up_write(&root->fs_info->delayed_iput_sem); 4108 goto again; 4109 } else { 4110 btrfs_end_transaction(trans, root); 4111 } 4112 } 4113 4114 trace_btrfs_space_reservation(root->fs_info, 4115 "space_info:enospc", 4116 data_sinfo->flags, bytes, 1); 4117 return -ENOSPC; 4118 } 4119 data_sinfo->bytes_may_use += bytes; 4120 trace_btrfs_space_reservation(root->fs_info, "space_info", 4121 data_sinfo->flags, bytes, 1); 4122 spin_unlock(&data_sinfo->lock); 4123 4124 return ret; 4125 } 4126 4127 /* 4128 * New check_data_free_space() with ability for precious data reservation 4129 * Will replace old btrfs_check_data_free_space(), but for patch split, 4130 * add a new function first and then replace it. 4131 */ 4132 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4133 { 4134 struct btrfs_root *root = BTRFS_I(inode)->root; 4135 int ret; 4136 4137 /* align the range */ 4138 len = round_up(start + len, root->sectorsize) - 4139 round_down(start, root->sectorsize); 4140 start = round_down(start, root->sectorsize); 4141 4142 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4143 if (ret < 0) 4144 return ret; 4145 4146 /* 4147 * Use new btrfs_qgroup_reserve_data to reserve precious data space 4148 * 4149 * TODO: Find a good method to avoid reserve data space for NOCOW 4150 * range, but don't impact performance on quota disable case. 4151 */ 4152 ret = btrfs_qgroup_reserve_data(inode, start, len); 4153 return ret; 4154 } 4155 4156 /* 4157 * Called if we need to clear a data reservation for this inode 4158 * Normally in a error case. 4159 * 4160 * This one will *NOT* use accurate qgroup reserved space API, just for case 4161 * which we can't sleep and is sure it won't affect qgroup reserved space. 4162 * Like clear_bit_hook(). 4163 */ 4164 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4165 u64 len) 4166 { 4167 struct btrfs_root *root = BTRFS_I(inode)->root; 4168 struct btrfs_space_info *data_sinfo; 4169 4170 /* Make sure the range is aligned to sectorsize */ 4171 len = round_up(start + len, root->sectorsize) - 4172 round_down(start, root->sectorsize); 4173 start = round_down(start, root->sectorsize); 4174 4175 data_sinfo = root->fs_info->data_sinfo; 4176 spin_lock(&data_sinfo->lock); 4177 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4178 data_sinfo->bytes_may_use = 0; 4179 else 4180 data_sinfo->bytes_may_use -= len; 4181 trace_btrfs_space_reservation(root->fs_info, "space_info", 4182 data_sinfo->flags, len, 0); 4183 spin_unlock(&data_sinfo->lock); 4184 } 4185 4186 /* 4187 * Called if we need to clear a data reservation for this inode 4188 * Normally in a error case. 4189 * 4190 * This one will handle the per-indoe data rsv map for accurate reserved 4191 * space framework. 4192 */ 4193 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4194 { 4195 btrfs_free_reserved_data_space_noquota(inode, start, len); 4196 btrfs_qgroup_free_data(inode, start, len); 4197 } 4198 4199 static void force_metadata_allocation(struct btrfs_fs_info *info) 4200 { 4201 struct list_head *head = &info->space_info; 4202 struct btrfs_space_info *found; 4203 4204 rcu_read_lock(); 4205 list_for_each_entry_rcu(found, head, list) { 4206 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4207 found->force_alloc = CHUNK_ALLOC_FORCE; 4208 } 4209 rcu_read_unlock(); 4210 } 4211 4212 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4213 { 4214 return (global->size << 1); 4215 } 4216 4217 static int should_alloc_chunk(struct btrfs_root *root, 4218 struct btrfs_space_info *sinfo, int force) 4219 { 4220 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4221 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4222 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4223 u64 thresh; 4224 4225 if (force == CHUNK_ALLOC_FORCE) 4226 return 1; 4227 4228 /* 4229 * We need to take into account the global rsv because for all intents 4230 * and purposes it's used space. Don't worry about locking the 4231 * global_rsv, it doesn't change except when the transaction commits. 4232 */ 4233 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4234 num_allocated += calc_global_rsv_need_space(global_rsv); 4235 4236 /* 4237 * in limited mode, we want to have some free space up to 4238 * about 1% of the FS size. 4239 */ 4240 if (force == CHUNK_ALLOC_LIMITED) { 4241 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4242 thresh = max_t(u64, 64 * 1024 * 1024, 4243 div_factor_fine(thresh, 1)); 4244 4245 if (num_bytes - num_allocated < thresh) 4246 return 1; 4247 } 4248 4249 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4250 return 0; 4251 return 1; 4252 } 4253 4254 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4255 { 4256 u64 num_dev; 4257 4258 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4259 BTRFS_BLOCK_GROUP_RAID0 | 4260 BTRFS_BLOCK_GROUP_RAID5 | 4261 BTRFS_BLOCK_GROUP_RAID6)) 4262 num_dev = root->fs_info->fs_devices->rw_devices; 4263 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4264 num_dev = 2; 4265 else 4266 num_dev = 1; /* DUP or single */ 4267 4268 return num_dev; 4269 } 4270 4271 /* 4272 * If @is_allocation is true, reserve space in the system space info necessary 4273 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4274 * removing a chunk. 4275 */ 4276 void check_system_chunk(struct btrfs_trans_handle *trans, 4277 struct btrfs_root *root, 4278 u64 type) 4279 { 4280 struct btrfs_space_info *info; 4281 u64 left; 4282 u64 thresh; 4283 int ret = 0; 4284 u64 num_devs; 4285 4286 /* 4287 * Needed because we can end up allocating a system chunk and for an 4288 * atomic and race free space reservation in the chunk block reserve. 4289 */ 4290 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4291 4292 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4293 spin_lock(&info->lock); 4294 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4295 info->bytes_reserved - info->bytes_readonly - 4296 info->bytes_may_use; 4297 spin_unlock(&info->lock); 4298 4299 num_devs = get_profile_num_devs(root, type); 4300 4301 /* num_devs device items to update and 1 chunk item to add or remove */ 4302 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4303 btrfs_calc_trans_metadata_size(root, 1); 4304 4305 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4306 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4307 left, thresh, type); 4308 dump_space_info(info, 0, 0); 4309 } 4310 4311 if (left < thresh) { 4312 u64 flags; 4313 4314 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4315 /* 4316 * Ignore failure to create system chunk. We might end up not 4317 * needing it, as we might not need to COW all nodes/leafs from 4318 * the paths we visit in the chunk tree (they were already COWed 4319 * or created in the current transaction for example). 4320 */ 4321 ret = btrfs_alloc_chunk(trans, root, flags); 4322 } 4323 4324 if (!ret) { 4325 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4326 &root->fs_info->chunk_block_rsv, 4327 thresh, BTRFS_RESERVE_NO_FLUSH); 4328 if (!ret) 4329 trans->chunk_bytes_reserved += thresh; 4330 } 4331 } 4332 4333 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4334 struct btrfs_root *extent_root, u64 flags, int force) 4335 { 4336 struct btrfs_space_info *space_info; 4337 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4338 int wait_for_alloc = 0; 4339 int ret = 0; 4340 4341 /* Don't re-enter if we're already allocating a chunk */ 4342 if (trans->allocating_chunk) 4343 return -ENOSPC; 4344 4345 space_info = __find_space_info(extent_root->fs_info, flags); 4346 if (!space_info) { 4347 ret = update_space_info(extent_root->fs_info, flags, 4348 0, 0, &space_info); 4349 BUG_ON(ret); /* -ENOMEM */ 4350 } 4351 BUG_ON(!space_info); /* Logic error */ 4352 4353 again: 4354 spin_lock(&space_info->lock); 4355 if (force < space_info->force_alloc) 4356 force = space_info->force_alloc; 4357 if (space_info->full) { 4358 if (should_alloc_chunk(extent_root, space_info, force)) 4359 ret = -ENOSPC; 4360 else 4361 ret = 0; 4362 spin_unlock(&space_info->lock); 4363 return ret; 4364 } 4365 4366 if (!should_alloc_chunk(extent_root, space_info, force)) { 4367 spin_unlock(&space_info->lock); 4368 return 0; 4369 } else if (space_info->chunk_alloc) { 4370 wait_for_alloc = 1; 4371 } else { 4372 space_info->chunk_alloc = 1; 4373 } 4374 4375 spin_unlock(&space_info->lock); 4376 4377 mutex_lock(&fs_info->chunk_mutex); 4378 4379 /* 4380 * The chunk_mutex is held throughout the entirety of a chunk 4381 * allocation, so once we've acquired the chunk_mutex we know that the 4382 * other guy is done and we need to recheck and see if we should 4383 * allocate. 4384 */ 4385 if (wait_for_alloc) { 4386 mutex_unlock(&fs_info->chunk_mutex); 4387 wait_for_alloc = 0; 4388 goto again; 4389 } 4390 4391 trans->allocating_chunk = true; 4392 4393 /* 4394 * If we have mixed data/metadata chunks we want to make sure we keep 4395 * allocating mixed chunks instead of individual chunks. 4396 */ 4397 if (btrfs_mixed_space_info(space_info)) 4398 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4399 4400 /* 4401 * if we're doing a data chunk, go ahead and make sure that 4402 * we keep a reasonable number of metadata chunks allocated in the 4403 * FS as well. 4404 */ 4405 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4406 fs_info->data_chunk_allocations++; 4407 if (!(fs_info->data_chunk_allocations % 4408 fs_info->metadata_ratio)) 4409 force_metadata_allocation(fs_info); 4410 } 4411 4412 /* 4413 * Check if we have enough space in SYSTEM chunk because we may need 4414 * to update devices. 4415 */ 4416 check_system_chunk(trans, extent_root, flags); 4417 4418 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4419 trans->allocating_chunk = false; 4420 4421 spin_lock(&space_info->lock); 4422 if (ret < 0 && ret != -ENOSPC) 4423 goto out; 4424 if (ret) 4425 space_info->full = 1; 4426 else 4427 ret = 1; 4428 4429 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4430 out: 4431 space_info->chunk_alloc = 0; 4432 spin_unlock(&space_info->lock); 4433 mutex_unlock(&fs_info->chunk_mutex); 4434 /* 4435 * When we allocate a new chunk we reserve space in the chunk block 4436 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4437 * add new nodes/leafs to it if we end up needing to do it when 4438 * inserting the chunk item and updating device items as part of the 4439 * second phase of chunk allocation, performed by 4440 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4441 * large number of new block groups to create in our transaction 4442 * handle's new_bgs list to avoid exhausting the chunk block reserve 4443 * in extreme cases - like having a single transaction create many new 4444 * block groups when starting to write out the free space caches of all 4445 * the block groups that were made dirty during the lifetime of the 4446 * transaction. 4447 */ 4448 if (trans->can_flush_pending_bgs && 4449 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) { 4450 btrfs_create_pending_block_groups(trans, trans->root); 4451 btrfs_trans_release_chunk_metadata(trans); 4452 } 4453 return ret; 4454 } 4455 4456 static int can_overcommit(struct btrfs_root *root, 4457 struct btrfs_space_info *space_info, u64 bytes, 4458 enum btrfs_reserve_flush_enum flush) 4459 { 4460 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4461 u64 profile = btrfs_get_alloc_profile(root, 0); 4462 u64 space_size; 4463 u64 avail; 4464 u64 used; 4465 4466 used = space_info->bytes_used + space_info->bytes_reserved + 4467 space_info->bytes_pinned + space_info->bytes_readonly; 4468 4469 /* 4470 * We only want to allow over committing if we have lots of actual space 4471 * free, but if we don't have enough space to handle the global reserve 4472 * space then we could end up having a real enospc problem when trying 4473 * to allocate a chunk or some other such important allocation. 4474 */ 4475 spin_lock(&global_rsv->lock); 4476 space_size = calc_global_rsv_need_space(global_rsv); 4477 spin_unlock(&global_rsv->lock); 4478 if (used + space_size >= space_info->total_bytes) 4479 return 0; 4480 4481 used += space_info->bytes_may_use; 4482 4483 spin_lock(&root->fs_info->free_chunk_lock); 4484 avail = root->fs_info->free_chunk_space; 4485 spin_unlock(&root->fs_info->free_chunk_lock); 4486 4487 /* 4488 * If we have dup, raid1 or raid10 then only half of the free 4489 * space is actually useable. For raid56, the space info used 4490 * doesn't include the parity drive, so we don't have to 4491 * change the math 4492 */ 4493 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4494 BTRFS_BLOCK_GROUP_RAID1 | 4495 BTRFS_BLOCK_GROUP_RAID10)) 4496 avail >>= 1; 4497 4498 /* 4499 * If we aren't flushing all things, let us overcommit up to 4500 * 1/2th of the space. If we can flush, don't let us overcommit 4501 * too much, let it overcommit up to 1/8 of the space. 4502 */ 4503 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4504 avail >>= 3; 4505 else 4506 avail >>= 1; 4507 4508 if (used + bytes < space_info->total_bytes + avail) 4509 return 1; 4510 return 0; 4511 } 4512 4513 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4514 unsigned long nr_pages, int nr_items) 4515 { 4516 struct super_block *sb = root->fs_info->sb; 4517 4518 if (down_read_trylock(&sb->s_umount)) { 4519 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4520 up_read(&sb->s_umount); 4521 } else { 4522 /* 4523 * We needn't worry the filesystem going from r/w to r/o though 4524 * we don't acquire ->s_umount mutex, because the filesystem 4525 * should guarantee the delalloc inodes list be empty after 4526 * the filesystem is readonly(all dirty pages are written to 4527 * the disk). 4528 */ 4529 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4530 if (!current->journal_info) 4531 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4532 } 4533 } 4534 4535 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4536 { 4537 u64 bytes; 4538 int nr; 4539 4540 bytes = btrfs_calc_trans_metadata_size(root, 1); 4541 nr = (int)div64_u64(to_reclaim, bytes); 4542 if (!nr) 4543 nr = 1; 4544 return nr; 4545 } 4546 4547 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4548 4549 /* 4550 * shrink metadata reservation for delalloc 4551 */ 4552 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4553 bool wait_ordered) 4554 { 4555 struct btrfs_block_rsv *block_rsv; 4556 struct btrfs_space_info *space_info; 4557 struct btrfs_trans_handle *trans; 4558 u64 delalloc_bytes; 4559 u64 max_reclaim; 4560 long time_left; 4561 unsigned long nr_pages; 4562 int loops; 4563 int items; 4564 enum btrfs_reserve_flush_enum flush; 4565 4566 /* Calc the number of the pages we need flush for space reservation */ 4567 items = calc_reclaim_items_nr(root, to_reclaim); 4568 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4569 4570 trans = (struct btrfs_trans_handle *)current->journal_info; 4571 block_rsv = &root->fs_info->delalloc_block_rsv; 4572 space_info = block_rsv->space_info; 4573 4574 delalloc_bytes = percpu_counter_sum_positive( 4575 &root->fs_info->delalloc_bytes); 4576 if (delalloc_bytes == 0) { 4577 if (trans) 4578 return; 4579 if (wait_ordered) 4580 btrfs_wait_ordered_roots(root->fs_info, items); 4581 return; 4582 } 4583 4584 loops = 0; 4585 while (delalloc_bytes && loops < 3) { 4586 max_reclaim = min(delalloc_bytes, to_reclaim); 4587 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4588 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4589 /* 4590 * We need to wait for the async pages to actually start before 4591 * we do anything. 4592 */ 4593 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4594 if (!max_reclaim) 4595 goto skip_async; 4596 4597 if (max_reclaim <= nr_pages) 4598 max_reclaim = 0; 4599 else 4600 max_reclaim -= nr_pages; 4601 4602 wait_event(root->fs_info->async_submit_wait, 4603 atomic_read(&root->fs_info->async_delalloc_pages) <= 4604 (int)max_reclaim); 4605 skip_async: 4606 if (!trans) 4607 flush = BTRFS_RESERVE_FLUSH_ALL; 4608 else 4609 flush = BTRFS_RESERVE_NO_FLUSH; 4610 spin_lock(&space_info->lock); 4611 if (can_overcommit(root, space_info, orig, flush)) { 4612 spin_unlock(&space_info->lock); 4613 break; 4614 } 4615 spin_unlock(&space_info->lock); 4616 4617 loops++; 4618 if (wait_ordered && !trans) { 4619 btrfs_wait_ordered_roots(root->fs_info, items); 4620 } else { 4621 time_left = schedule_timeout_killable(1); 4622 if (time_left) 4623 break; 4624 } 4625 delalloc_bytes = percpu_counter_sum_positive( 4626 &root->fs_info->delalloc_bytes); 4627 } 4628 } 4629 4630 /** 4631 * maybe_commit_transaction - possibly commit the transaction if its ok to 4632 * @root - the root we're allocating for 4633 * @bytes - the number of bytes we want to reserve 4634 * @force - force the commit 4635 * 4636 * This will check to make sure that committing the transaction will actually 4637 * get us somewhere and then commit the transaction if it does. Otherwise it 4638 * will return -ENOSPC. 4639 */ 4640 static int may_commit_transaction(struct btrfs_root *root, 4641 struct btrfs_space_info *space_info, 4642 u64 bytes, int force) 4643 { 4644 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4645 struct btrfs_trans_handle *trans; 4646 4647 trans = (struct btrfs_trans_handle *)current->journal_info; 4648 if (trans) 4649 return -EAGAIN; 4650 4651 if (force) 4652 goto commit; 4653 4654 /* See if there is enough pinned space to make this reservation */ 4655 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4656 bytes) >= 0) 4657 goto commit; 4658 4659 /* 4660 * See if there is some space in the delayed insertion reservation for 4661 * this reservation. 4662 */ 4663 if (space_info != delayed_rsv->space_info) 4664 return -ENOSPC; 4665 4666 spin_lock(&delayed_rsv->lock); 4667 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4668 bytes - delayed_rsv->size) >= 0) { 4669 spin_unlock(&delayed_rsv->lock); 4670 return -ENOSPC; 4671 } 4672 spin_unlock(&delayed_rsv->lock); 4673 4674 commit: 4675 trans = btrfs_join_transaction(root); 4676 if (IS_ERR(trans)) 4677 return -ENOSPC; 4678 4679 return btrfs_commit_transaction(trans, root); 4680 } 4681 4682 enum flush_state { 4683 FLUSH_DELAYED_ITEMS_NR = 1, 4684 FLUSH_DELAYED_ITEMS = 2, 4685 FLUSH_DELALLOC = 3, 4686 FLUSH_DELALLOC_WAIT = 4, 4687 ALLOC_CHUNK = 5, 4688 COMMIT_TRANS = 6, 4689 }; 4690 4691 static int flush_space(struct btrfs_root *root, 4692 struct btrfs_space_info *space_info, u64 num_bytes, 4693 u64 orig_bytes, int state) 4694 { 4695 struct btrfs_trans_handle *trans; 4696 int nr; 4697 int ret = 0; 4698 4699 switch (state) { 4700 case FLUSH_DELAYED_ITEMS_NR: 4701 case FLUSH_DELAYED_ITEMS: 4702 if (state == FLUSH_DELAYED_ITEMS_NR) 4703 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4704 else 4705 nr = -1; 4706 4707 trans = btrfs_join_transaction(root); 4708 if (IS_ERR(trans)) { 4709 ret = PTR_ERR(trans); 4710 break; 4711 } 4712 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4713 btrfs_end_transaction(trans, root); 4714 break; 4715 case FLUSH_DELALLOC: 4716 case FLUSH_DELALLOC_WAIT: 4717 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4718 state == FLUSH_DELALLOC_WAIT); 4719 break; 4720 case ALLOC_CHUNK: 4721 trans = btrfs_join_transaction(root); 4722 if (IS_ERR(trans)) { 4723 ret = PTR_ERR(trans); 4724 break; 4725 } 4726 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4727 btrfs_get_alloc_profile(root, 0), 4728 CHUNK_ALLOC_NO_FORCE); 4729 btrfs_end_transaction(trans, root); 4730 if (ret == -ENOSPC) 4731 ret = 0; 4732 break; 4733 case COMMIT_TRANS: 4734 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4735 break; 4736 default: 4737 ret = -ENOSPC; 4738 break; 4739 } 4740 4741 return ret; 4742 } 4743 4744 static inline u64 4745 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4746 struct btrfs_space_info *space_info) 4747 { 4748 u64 used; 4749 u64 expected; 4750 u64 to_reclaim; 4751 4752 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4753 16 * 1024 * 1024); 4754 spin_lock(&space_info->lock); 4755 if (can_overcommit(root, space_info, to_reclaim, 4756 BTRFS_RESERVE_FLUSH_ALL)) { 4757 to_reclaim = 0; 4758 goto out; 4759 } 4760 4761 used = space_info->bytes_used + space_info->bytes_reserved + 4762 space_info->bytes_pinned + space_info->bytes_readonly + 4763 space_info->bytes_may_use; 4764 if (can_overcommit(root, space_info, 1024 * 1024, 4765 BTRFS_RESERVE_FLUSH_ALL)) 4766 expected = div_factor_fine(space_info->total_bytes, 95); 4767 else 4768 expected = div_factor_fine(space_info->total_bytes, 90); 4769 4770 if (used > expected) 4771 to_reclaim = used - expected; 4772 else 4773 to_reclaim = 0; 4774 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4775 space_info->bytes_reserved); 4776 out: 4777 spin_unlock(&space_info->lock); 4778 4779 return to_reclaim; 4780 } 4781 4782 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4783 struct btrfs_fs_info *fs_info, u64 used) 4784 { 4785 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4786 4787 /* If we're just plain full then async reclaim just slows us down. */ 4788 if (space_info->bytes_used >= thresh) 4789 return 0; 4790 4791 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4792 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4793 } 4794 4795 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4796 struct btrfs_fs_info *fs_info, 4797 int flush_state) 4798 { 4799 u64 used; 4800 4801 spin_lock(&space_info->lock); 4802 /* 4803 * We run out of space and have not got any free space via flush_space, 4804 * so don't bother doing async reclaim. 4805 */ 4806 if (flush_state > COMMIT_TRANS && space_info->full) { 4807 spin_unlock(&space_info->lock); 4808 return 0; 4809 } 4810 4811 used = space_info->bytes_used + space_info->bytes_reserved + 4812 space_info->bytes_pinned + space_info->bytes_readonly + 4813 space_info->bytes_may_use; 4814 if (need_do_async_reclaim(space_info, fs_info, used)) { 4815 spin_unlock(&space_info->lock); 4816 return 1; 4817 } 4818 spin_unlock(&space_info->lock); 4819 4820 return 0; 4821 } 4822 4823 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4824 { 4825 struct btrfs_fs_info *fs_info; 4826 struct btrfs_space_info *space_info; 4827 u64 to_reclaim; 4828 int flush_state; 4829 4830 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4831 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4832 4833 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4834 space_info); 4835 if (!to_reclaim) 4836 return; 4837 4838 flush_state = FLUSH_DELAYED_ITEMS_NR; 4839 do { 4840 flush_space(fs_info->fs_root, space_info, to_reclaim, 4841 to_reclaim, flush_state); 4842 flush_state++; 4843 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4844 flush_state)) 4845 return; 4846 } while (flush_state < COMMIT_TRANS); 4847 } 4848 4849 void btrfs_init_async_reclaim_work(struct work_struct *work) 4850 { 4851 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4852 } 4853 4854 /** 4855 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4856 * @root - the root we're allocating for 4857 * @block_rsv - the block_rsv we're allocating for 4858 * @orig_bytes - the number of bytes we want 4859 * @flush - whether or not we can flush to make our reservation 4860 * 4861 * This will reserve orgi_bytes number of bytes from the space info associated 4862 * with the block_rsv. If there is not enough space it will make an attempt to 4863 * flush out space to make room. It will do this by flushing delalloc if 4864 * possible or committing the transaction. If flush is 0 then no attempts to 4865 * regain reservations will be made and this will fail if there is not enough 4866 * space already. 4867 */ 4868 static int reserve_metadata_bytes(struct btrfs_root *root, 4869 struct btrfs_block_rsv *block_rsv, 4870 u64 orig_bytes, 4871 enum btrfs_reserve_flush_enum flush) 4872 { 4873 struct btrfs_space_info *space_info = block_rsv->space_info; 4874 u64 used; 4875 u64 num_bytes = orig_bytes; 4876 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4877 int ret = 0; 4878 bool flushing = false; 4879 4880 again: 4881 ret = 0; 4882 spin_lock(&space_info->lock); 4883 /* 4884 * We only want to wait if somebody other than us is flushing and we 4885 * are actually allowed to flush all things. 4886 */ 4887 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4888 space_info->flush) { 4889 spin_unlock(&space_info->lock); 4890 /* 4891 * If we have a trans handle we can't wait because the flusher 4892 * may have to commit the transaction, which would mean we would 4893 * deadlock since we are waiting for the flusher to finish, but 4894 * hold the current transaction open. 4895 */ 4896 if (current->journal_info) 4897 return -EAGAIN; 4898 ret = wait_event_killable(space_info->wait, !space_info->flush); 4899 /* Must have been killed, return */ 4900 if (ret) 4901 return -EINTR; 4902 4903 spin_lock(&space_info->lock); 4904 } 4905 4906 ret = -ENOSPC; 4907 used = space_info->bytes_used + space_info->bytes_reserved + 4908 space_info->bytes_pinned + space_info->bytes_readonly + 4909 space_info->bytes_may_use; 4910 4911 /* 4912 * The idea here is that we've not already over-reserved the block group 4913 * then we can go ahead and save our reservation first and then start 4914 * flushing if we need to. Otherwise if we've already overcommitted 4915 * lets start flushing stuff first and then come back and try to make 4916 * our reservation. 4917 */ 4918 if (used <= space_info->total_bytes) { 4919 if (used + orig_bytes <= space_info->total_bytes) { 4920 space_info->bytes_may_use += orig_bytes; 4921 trace_btrfs_space_reservation(root->fs_info, 4922 "space_info", space_info->flags, orig_bytes, 1); 4923 ret = 0; 4924 } else { 4925 /* 4926 * Ok set num_bytes to orig_bytes since we aren't 4927 * overocmmitted, this way we only try and reclaim what 4928 * we need. 4929 */ 4930 num_bytes = orig_bytes; 4931 } 4932 } else { 4933 /* 4934 * Ok we're over committed, set num_bytes to the overcommitted 4935 * amount plus the amount of bytes that we need for this 4936 * reservation. 4937 */ 4938 num_bytes = used - space_info->total_bytes + 4939 (orig_bytes * 2); 4940 } 4941 4942 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4943 space_info->bytes_may_use += orig_bytes; 4944 trace_btrfs_space_reservation(root->fs_info, "space_info", 4945 space_info->flags, orig_bytes, 4946 1); 4947 ret = 0; 4948 } 4949 4950 /* 4951 * Couldn't make our reservation, save our place so while we're trying 4952 * to reclaim space we can actually use it instead of somebody else 4953 * stealing it from us. 4954 * 4955 * We make the other tasks wait for the flush only when we can flush 4956 * all things. 4957 */ 4958 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4959 flushing = true; 4960 space_info->flush = 1; 4961 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4962 used += orig_bytes; 4963 /* 4964 * We will do the space reservation dance during log replay, 4965 * which means we won't have fs_info->fs_root set, so don't do 4966 * the async reclaim as we will panic. 4967 */ 4968 if (!root->fs_info->log_root_recovering && 4969 need_do_async_reclaim(space_info, root->fs_info, used) && 4970 !work_busy(&root->fs_info->async_reclaim_work)) 4971 queue_work(system_unbound_wq, 4972 &root->fs_info->async_reclaim_work); 4973 } 4974 spin_unlock(&space_info->lock); 4975 4976 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4977 goto out; 4978 4979 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4980 flush_state); 4981 flush_state++; 4982 4983 /* 4984 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4985 * would happen. So skip delalloc flush. 4986 */ 4987 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4988 (flush_state == FLUSH_DELALLOC || 4989 flush_state == FLUSH_DELALLOC_WAIT)) 4990 flush_state = ALLOC_CHUNK; 4991 4992 if (!ret) 4993 goto again; 4994 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4995 flush_state < COMMIT_TRANS) 4996 goto again; 4997 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4998 flush_state <= COMMIT_TRANS) 4999 goto again; 5000 5001 out: 5002 if (ret == -ENOSPC && 5003 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5004 struct btrfs_block_rsv *global_rsv = 5005 &root->fs_info->global_block_rsv; 5006 5007 if (block_rsv != global_rsv && 5008 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5009 ret = 0; 5010 } 5011 if (ret == -ENOSPC) 5012 trace_btrfs_space_reservation(root->fs_info, 5013 "space_info:enospc", 5014 space_info->flags, orig_bytes, 1); 5015 if (flushing) { 5016 spin_lock(&space_info->lock); 5017 space_info->flush = 0; 5018 wake_up_all(&space_info->wait); 5019 spin_unlock(&space_info->lock); 5020 } 5021 return ret; 5022 } 5023 5024 static struct btrfs_block_rsv *get_block_rsv( 5025 const struct btrfs_trans_handle *trans, 5026 const struct btrfs_root *root) 5027 { 5028 struct btrfs_block_rsv *block_rsv = NULL; 5029 5030 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5031 (root == root->fs_info->csum_root && trans->adding_csums) || 5032 (root == root->fs_info->uuid_root)) 5033 block_rsv = trans->block_rsv; 5034 5035 if (!block_rsv) 5036 block_rsv = root->block_rsv; 5037 5038 if (!block_rsv) 5039 block_rsv = &root->fs_info->empty_block_rsv; 5040 5041 return block_rsv; 5042 } 5043 5044 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5045 u64 num_bytes) 5046 { 5047 int ret = -ENOSPC; 5048 spin_lock(&block_rsv->lock); 5049 if (block_rsv->reserved >= num_bytes) { 5050 block_rsv->reserved -= num_bytes; 5051 if (block_rsv->reserved < block_rsv->size) 5052 block_rsv->full = 0; 5053 ret = 0; 5054 } 5055 spin_unlock(&block_rsv->lock); 5056 return ret; 5057 } 5058 5059 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5060 u64 num_bytes, int update_size) 5061 { 5062 spin_lock(&block_rsv->lock); 5063 block_rsv->reserved += num_bytes; 5064 if (update_size) 5065 block_rsv->size += num_bytes; 5066 else if (block_rsv->reserved >= block_rsv->size) 5067 block_rsv->full = 1; 5068 spin_unlock(&block_rsv->lock); 5069 } 5070 5071 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5072 struct btrfs_block_rsv *dest, u64 num_bytes, 5073 int min_factor) 5074 { 5075 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5076 u64 min_bytes; 5077 5078 if (global_rsv->space_info != dest->space_info) 5079 return -ENOSPC; 5080 5081 spin_lock(&global_rsv->lock); 5082 min_bytes = div_factor(global_rsv->size, min_factor); 5083 if (global_rsv->reserved < min_bytes + num_bytes) { 5084 spin_unlock(&global_rsv->lock); 5085 return -ENOSPC; 5086 } 5087 global_rsv->reserved -= num_bytes; 5088 if (global_rsv->reserved < global_rsv->size) 5089 global_rsv->full = 0; 5090 spin_unlock(&global_rsv->lock); 5091 5092 block_rsv_add_bytes(dest, num_bytes, 1); 5093 return 0; 5094 } 5095 5096 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5097 struct btrfs_block_rsv *block_rsv, 5098 struct btrfs_block_rsv *dest, u64 num_bytes) 5099 { 5100 struct btrfs_space_info *space_info = block_rsv->space_info; 5101 5102 spin_lock(&block_rsv->lock); 5103 if (num_bytes == (u64)-1) 5104 num_bytes = block_rsv->size; 5105 block_rsv->size -= num_bytes; 5106 if (block_rsv->reserved >= block_rsv->size) { 5107 num_bytes = block_rsv->reserved - block_rsv->size; 5108 block_rsv->reserved = block_rsv->size; 5109 block_rsv->full = 1; 5110 } else { 5111 num_bytes = 0; 5112 } 5113 spin_unlock(&block_rsv->lock); 5114 5115 if (num_bytes > 0) { 5116 if (dest) { 5117 spin_lock(&dest->lock); 5118 if (!dest->full) { 5119 u64 bytes_to_add; 5120 5121 bytes_to_add = dest->size - dest->reserved; 5122 bytes_to_add = min(num_bytes, bytes_to_add); 5123 dest->reserved += bytes_to_add; 5124 if (dest->reserved >= dest->size) 5125 dest->full = 1; 5126 num_bytes -= bytes_to_add; 5127 } 5128 spin_unlock(&dest->lock); 5129 } 5130 if (num_bytes) { 5131 spin_lock(&space_info->lock); 5132 space_info->bytes_may_use -= num_bytes; 5133 trace_btrfs_space_reservation(fs_info, "space_info", 5134 space_info->flags, num_bytes, 0); 5135 spin_unlock(&space_info->lock); 5136 } 5137 } 5138 } 5139 5140 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5141 struct btrfs_block_rsv *dst, u64 num_bytes) 5142 { 5143 int ret; 5144 5145 ret = block_rsv_use_bytes(src, num_bytes); 5146 if (ret) 5147 return ret; 5148 5149 block_rsv_add_bytes(dst, num_bytes, 1); 5150 return 0; 5151 } 5152 5153 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5154 { 5155 memset(rsv, 0, sizeof(*rsv)); 5156 spin_lock_init(&rsv->lock); 5157 rsv->type = type; 5158 } 5159 5160 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5161 unsigned short type) 5162 { 5163 struct btrfs_block_rsv *block_rsv; 5164 struct btrfs_fs_info *fs_info = root->fs_info; 5165 5166 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5167 if (!block_rsv) 5168 return NULL; 5169 5170 btrfs_init_block_rsv(block_rsv, type); 5171 block_rsv->space_info = __find_space_info(fs_info, 5172 BTRFS_BLOCK_GROUP_METADATA); 5173 return block_rsv; 5174 } 5175 5176 void btrfs_free_block_rsv(struct btrfs_root *root, 5177 struct btrfs_block_rsv *rsv) 5178 { 5179 if (!rsv) 5180 return; 5181 btrfs_block_rsv_release(root, rsv, (u64)-1); 5182 kfree(rsv); 5183 } 5184 5185 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5186 { 5187 kfree(rsv); 5188 } 5189 5190 int btrfs_block_rsv_add(struct btrfs_root *root, 5191 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5192 enum btrfs_reserve_flush_enum flush) 5193 { 5194 int ret; 5195 5196 if (num_bytes == 0) 5197 return 0; 5198 5199 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5200 if (!ret) { 5201 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5202 return 0; 5203 } 5204 5205 return ret; 5206 } 5207 5208 int btrfs_block_rsv_check(struct btrfs_root *root, 5209 struct btrfs_block_rsv *block_rsv, int min_factor) 5210 { 5211 u64 num_bytes = 0; 5212 int ret = -ENOSPC; 5213 5214 if (!block_rsv) 5215 return 0; 5216 5217 spin_lock(&block_rsv->lock); 5218 num_bytes = div_factor(block_rsv->size, min_factor); 5219 if (block_rsv->reserved >= num_bytes) 5220 ret = 0; 5221 spin_unlock(&block_rsv->lock); 5222 5223 return ret; 5224 } 5225 5226 int btrfs_block_rsv_refill(struct btrfs_root *root, 5227 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5228 enum btrfs_reserve_flush_enum flush) 5229 { 5230 u64 num_bytes = 0; 5231 int ret = -ENOSPC; 5232 5233 if (!block_rsv) 5234 return 0; 5235 5236 spin_lock(&block_rsv->lock); 5237 num_bytes = min_reserved; 5238 if (block_rsv->reserved >= num_bytes) 5239 ret = 0; 5240 else 5241 num_bytes -= block_rsv->reserved; 5242 spin_unlock(&block_rsv->lock); 5243 5244 if (!ret) 5245 return 0; 5246 5247 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5248 if (!ret) { 5249 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5250 return 0; 5251 } 5252 5253 return ret; 5254 } 5255 5256 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5257 struct btrfs_block_rsv *dst_rsv, 5258 u64 num_bytes) 5259 { 5260 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5261 } 5262 5263 void btrfs_block_rsv_release(struct btrfs_root *root, 5264 struct btrfs_block_rsv *block_rsv, 5265 u64 num_bytes) 5266 { 5267 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5268 if (global_rsv == block_rsv || 5269 block_rsv->space_info != global_rsv->space_info) 5270 global_rsv = NULL; 5271 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5272 num_bytes); 5273 } 5274 5275 /* 5276 * helper to calculate size of global block reservation. 5277 * the desired value is sum of space used by extent tree, 5278 * checksum tree and root tree 5279 */ 5280 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5281 { 5282 struct btrfs_space_info *sinfo; 5283 u64 num_bytes; 5284 u64 meta_used; 5285 u64 data_used; 5286 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5287 5288 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5289 spin_lock(&sinfo->lock); 5290 data_used = sinfo->bytes_used; 5291 spin_unlock(&sinfo->lock); 5292 5293 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5294 spin_lock(&sinfo->lock); 5295 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5296 data_used = 0; 5297 meta_used = sinfo->bytes_used; 5298 spin_unlock(&sinfo->lock); 5299 5300 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5301 csum_size * 2; 5302 num_bytes += div_u64(data_used + meta_used, 50); 5303 5304 if (num_bytes * 3 > meta_used) 5305 num_bytes = div_u64(meta_used, 3); 5306 5307 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5308 } 5309 5310 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5311 { 5312 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5313 struct btrfs_space_info *sinfo = block_rsv->space_info; 5314 u64 num_bytes; 5315 5316 num_bytes = calc_global_metadata_size(fs_info); 5317 5318 spin_lock(&sinfo->lock); 5319 spin_lock(&block_rsv->lock); 5320 5321 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5322 5323 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5324 sinfo->bytes_reserved + sinfo->bytes_readonly + 5325 sinfo->bytes_may_use; 5326 5327 if (sinfo->total_bytes > num_bytes) { 5328 num_bytes = sinfo->total_bytes - num_bytes; 5329 block_rsv->reserved += num_bytes; 5330 sinfo->bytes_may_use += num_bytes; 5331 trace_btrfs_space_reservation(fs_info, "space_info", 5332 sinfo->flags, num_bytes, 1); 5333 } 5334 5335 if (block_rsv->reserved >= block_rsv->size) { 5336 num_bytes = block_rsv->reserved - block_rsv->size; 5337 sinfo->bytes_may_use -= num_bytes; 5338 trace_btrfs_space_reservation(fs_info, "space_info", 5339 sinfo->flags, num_bytes, 0); 5340 block_rsv->reserved = block_rsv->size; 5341 block_rsv->full = 1; 5342 } 5343 5344 spin_unlock(&block_rsv->lock); 5345 spin_unlock(&sinfo->lock); 5346 } 5347 5348 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5349 { 5350 struct btrfs_space_info *space_info; 5351 5352 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5353 fs_info->chunk_block_rsv.space_info = space_info; 5354 5355 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5356 fs_info->global_block_rsv.space_info = space_info; 5357 fs_info->delalloc_block_rsv.space_info = space_info; 5358 fs_info->trans_block_rsv.space_info = space_info; 5359 fs_info->empty_block_rsv.space_info = space_info; 5360 fs_info->delayed_block_rsv.space_info = space_info; 5361 5362 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5363 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5364 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5365 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5366 if (fs_info->quota_root) 5367 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5368 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5369 5370 update_global_block_rsv(fs_info); 5371 } 5372 5373 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5374 { 5375 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5376 (u64)-1); 5377 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5378 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5379 WARN_ON(fs_info->trans_block_rsv.size > 0); 5380 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5381 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5382 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5383 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5384 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5385 } 5386 5387 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5388 struct btrfs_root *root) 5389 { 5390 if (!trans->block_rsv) 5391 return; 5392 5393 if (!trans->bytes_reserved) 5394 return; 5395 5396 trace_btrfs_space_reservation(root->fs_info, "transaction", 5397 trans->transid, trans->bytes_reserved, 0); 5398 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5399 trans->bytes_reserved = 0; 5400 } 5401 5402 /* 5403 * To be called after all the new block groups attached to the transaction 5404 * handle have been created (btrfs_create_pending_block_groups()). 5405 */ 5406 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5407 { 5408 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5409 5410 if (!trans->chunk_bytes_reserved) 5411 return; 5412 5413 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5414 5415 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5416 trans->chunk_bytes_reserved); 5417 trans->chunk_bytes_reserved = 0; 5418 } 5419 5420 /* Can only return 0 or -ENOSPC */ 5421 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5422 struct inode *inode) 5423 { 5424 struct btrfs_root *root = BTRFS_I(inode)->root; 5425 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5426 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5427 5428 /* 5429 * We need to hold space in order to delete our orphan item once we've 5430 * added it, so this takes the reservation so we can release it later 5431 * when we are truly done with the orphan item. 5432 */ 5433 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5434 trace_btrfs_space_reservation(root->fs_info, "orphan", 5435 btrfs_ino(inode), num_bytes, 1); 5436 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5437 } 5438 5439 void btrfs_orphan_release_metadata(struct inode *inode) 5440 { 5441 struct btrfs_root *root = BTRFS_I(inode)->root; 5442 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5443 trace_btrfs_space_reservation(root->fs_info, "orphan", 5444 btrfs_ino(inode), num_bytes, 0); 5445 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5446 } 5447 5448 /* 5449 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5450 * root: the root of the parent directory 5451 * rsv: block reservation 5452 * items: the number of items that we need do reservation 5453 * qgroup_reserved: used to return the reserved size in qgroup 5454 * 5455 * This function is used to reserve the space for snapshot/subvolume 5456 * creation and deletion. Those operations are different with the 5457 * common file/directory operations, they change two fs/file trees 5458 * and root tree, the number of items that the qgroup reserves is 5459 * different with the free space reservation. So we can not use 5460 * the space reseravtion mechanism in start_transaction(). 5461 */ 5462 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5463 struct btrfs_block_rsv *rsv, 5464 int items, 5465 u64 *qgroup_reserved, 5466 bool use_global_rsv) 5467 { 5468 u64 num_bytes; 5469 int ret; 5470 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5471 5472 if (root->fs_info->quota_enabled) { 5473 /* One for parent inode, two for dir entries */ 5474 num_bytes = 3 * root->nodesize; 5475 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5476 if (ret) 5477 return ret; 5478 } else { 5479 num_bytes = 0; 5480 } 5481 5482 *qgroup_reserved = num_bytes; 5483 5484 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5485 rsv->space_info = __find_space_info(root->fs_info, 5486 BTRFS_BLOCK_GROUP_METADATA); 5487 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5488 BTRFS_RESERVE_FLUSH_ALL); 5489 5490 if (ret == -ENOSPC && use_global_rsv) 5491 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5492 5493 if (ret && *qgroup_reserved) 5494 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5495 5496 return ret; 5497 } 5498 5499 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5500 struct btrfs_block_rsv *rsv, 5501 u64 qgroup_reserved) 5502 { 5503 btrfs_block_rsv_release(root, rsv, (u64)-1); 5504 } 5505 5506 /** 5507 * drop_outstanding_extent - drop an outstanding extent 5508 * @inode: the inode we're dropping the extent for 5509 * @num_bytes: the number of bytes we're relaseing. 5510 * 5511 * This is called when we are freeing up an outstanding extent, either called 5512 * after an error or after an extent is written. This will return the number of 5513 * reserved extents that need to be freed. This must be called with 5514 * BTRFS_I(inode)->lock held. 5515 */ 5516 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5517 { 5518 unsigned drop_inode_space = 0; 5519 unsigned dropped_extents = 0; 5520 unsigned num_extents = 0; 5521 5522 num_extents = (unsigned)div64_u64(num_bytes + 5523 BTRFS_MAX_EXTENT_SIZE - 1, 5524 BTRFS_MAX_EXTENT_SIZE); 5525 ASSERT(num_extents); 5526 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5527 BTRFS_I(inode)->outstanding_extents -= num_extents; 5528 5529 if (BTRFS_I(inode)->outstanding_extents == 0 && 5530 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5531 &BTRFS_I(inode)->runtime_flags)) 5532 drop_inode_space = 1; 5533 5534 /* 5535 * If we have more or the same amount of outsanding extents than we have 5536 * reserved then we need to leave the reserved extents count alone. 5537 */ 5538 if (BTRFS_I(inode)->outstanding_extents >= 5539 BTRFS_I(inode)->reserved_extents) 5540 return drop_inode_space; 5541 5542 dropped_extents = BTRFS_I(inode)->reserved_extents - 5543 BTRFS_I(inode)->outstanding_extents; 5544 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5545 return dropped_extents + drop_inode_space; 5546 } 5547 5548 /** 5549 * calc_csum_metadata_size - return the amount of metada space that must be 5550 * reserved/free'd for the given bytes. 5551 * @inode: the inode we're manipulating 5552 * @num_bytes: the number of bytes in question 5553 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5554 * 5555 * This adjusts the number of csum_bytes in the inode and then returns the 5556 * correct amount of metadata that must either be reserved or freed. We 5557 * calculate how many checksums we can fit into one leaf and then divide the 5558 * number of bytes that will need to be checksumed by this value to figure out 5559 * how many checksums will be required. If we are adding bytes then the number 5560 * may go up and we will return the number of additional bytes that must be 5561 * reserved. If it is going down we will return the number of bytes that must 5562 * be freed. 5563 * 5564 * This must be called with BTRFS_I(inode)->lock held. 5565 */ 5566 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5567 int reserve) 5568 { 5569 struct btrfs_root *root = BTRFS_I(inode)->root; 5570 u64 old_csums, num_csums; 5571 5572 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5573 BTRFS_I(inode)->csum_bytes == 0) 5574 return 0; 5575 5576 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5577 if (reserve) 5578 BTRFS_I(inode)->csum_bytes += num_bytes; 5579 else 5580 BTRFS_I(inode)->csum_bytes -= num_bytes; 5581 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5582 5583 /* No change, no need to reserve more */ 5584 if (old_csums == num_csums) 5585 return 0; 5586 5587 if (reserve) 5588 return btrfs_calc_trans_metadata_size(root, 5589 num_csums - old_csums); 5590 5591 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5592 } 5593 5594 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5595 { 5596 struct btrfs_root *root = BTRFS_I(inode)->root; 5597 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5598 u64 to_reserve = 0; 5599 u64 csum_bytes; 5600 unsigned nr_extents = 0; 5601 int extra_reserve = 0; 5602 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5603 int ret = 0; 5604 bool delalloc_lock = true; 5605 u64 to_free = 0; 5606 unsigned dropped; 5607 5608 /* If we are a free space inode we need to not flush since we will be in 5609 * the middle of a transaction commit. We also don't need the delalloc 5610 * mutex since we won't race with anybody. We need this mostly to make 5611 * lockdep shut its filthy mouth. 5612 */ 5613 if (btrfs_is_free_space_inode(inode)) { 5614 flush = BTRFS_RESERVE_NO_FLUSH; 5615 delalloc_lock = false; 5616 } 5617 5618 if (flush != BTRFS_RESERVE_NO_FLUSH && 5619 btrfs_transaction_in_commit(root->fs_info)) 5620 schedule_timeout(1); 5621 5622 if (delalloc_lock) 5623 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5624 5625 num_bytes = ALIGN(num_bytes, root->sectorsize); 5626 5627 spin_lock(&BTRFS_I(inode)->lock); 5628 nr_extents = (unsigned)div64_u64(num_bytes + 5629 BTRFS_MAX_EXTENT_SIZE - 1, 5630 BTRFS_MAX_EXTENT_SIZE); 5631 BTRFS_I(inode)->outstanding_extents += nr_extents; 5632 nr_extents = 0; 5633 5634 if (BTRFS_I(inode)->outstanding_extents > 5635 BTRFS_I(inode)->reserved_extents) 5636 nr_extents = BTRFS_I(inode)->outstanding_extents - 5637 BTRFS_I(inode)->reserved_extents; 5638 5639 /* 5640 * Add an item to reserve for updating the inode when we complete the 5641 * delalloc io. 5642 */ 5643 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5644 &BTRFS_I(inode)->runtime_flags)) { 5645 nr_extents++; 5646 extra_reserve = 1; 5647 } 5648 5649 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5650 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5651 csum_bytes = BTRFS_I(inode)->csum_bytes; 5652 spin_unlock(&BTRFS_I(inode)->lock); 5653 5654 if (root->fs_info->quota_enabled) { 5655 ret = btrfs_qgroup_reserve_meta(root, 5656 nr_extents * root->nodesize); 5657 if (ret) 5658 goto out_fail; 5659 } 5660 5661 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5662 if (unlikely(ret)) { 5663 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5664 goto out_fail; 5665 } 5666 5667 spin_lock(&BTRFS_I(inode)->lock); 5668 if (extra_reserve) { 5669 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5670 &BTRFS_I(inode)->runtime_flags); 5671 nr_extents--; 5672 } 5673 BTRFS_I(inode)->reserved_extents += nr_extents; 5674 spin_unlock(&BTRFS_I(inode)->lock); 5675 5676 if (delalloc_lock) 5677 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5678 5679 if (to_reserve) 5680 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5681 btrfs_ino(inode), to_reserve, 1); 5682 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5683 5684 return 0; 5685 5686 out_fail: 5687 spin_lock(&BTRFS_I(inode)->lock); 5688 dropped = drop_outstanding_extent(inode, num_bytes); 5689 /* 5690 * If the inodes csum_bytes is the same as the original 5691 * csum_bytes then we know we haven't raced with any free()ers 5692 * so we can just reduce our inodes csum bytes and carry on. 5693 */ 5694 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5695 calc_csum_metadata_size(inode, num_bytes, 0); 5696 } else { 5697 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5698 u64 bytes; 5699 5700 /* 5701 * This is tricky, but first we need to figure out how much we 5702 * free'd from any free-ers that occured during this 5703 * reservation, so we reset ->csum_bytes to the csum_bytes 5704 * before we dropped our lock, and then call the free for the 5705 * number of bytes that were freed while we were trying our 5706 * reservation. 5707 */ 5708 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5709 BTRFS_I(inode)->csum_bytes = csum_bytes; 5710 to_free = calc_csum_metadata_size(inode, bytes, 0); 5711 5712 5713 /* 5714 * Now we need to see how much we would have freed had we not 5715 * been making this reservation and our ->csum_bytes were not 5716 * artificially inflated. 5717 */ 5718 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5719 bytes = csum_bytes - orig_csum_bytes; 5720 bytes = calc_csum_metadata_size(inode, bytes, 0); 5721 5722 /* 5723 * Now reset ->csum_bytes to what it should be. If bytes is 5724 * more than to_free then we would have free'd more space had we 5725 * not had an artificially high ->csum_bytes, so we need to free 5726 * the remainder. If bytes is the same or less then we don't 5727 * need to do anything, the other free-ers did the correct 5728 * thing. 5729 */ 5730 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5731 if (bytes > to_free) 5732 to_free = bytes - to_free; 5733 else 5734 to_free = 0; 5735 } 5736 spin_unlock(&BTRFS_I(inode)->lock); 5737 if (dropped) 5738 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5739 5740 if (to_free) { 5741 btrfs_block_rsv_release(root, block_rsv, to_free); 5742 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5743 btrfs_ino(inode), to_free, 0); 5744 } 5745 if (delalloc_lock) 5746 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5747 return ret; 5748 } 5749 5750 /** 5751 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5752 * @inode: the inode to release the reservation for 5753 * @num_bytes: the number of bytes we're releasing 5754 * 5755 * This will release the metadata reservation for an inode. This can be called 5756 * once we complete IO for a given set of bytes to release their metadata 5757 * reservations. 5758 */ 5759 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5760 { 5761 struct btrfs_root *root = BTRFS_I(inode)->root; 5762 u64 to_free = 0; 5763 unsigned dropped; 5764 5765 num_bytes = ALIGN(num_bytes, root->sectorsize); 5766 spin_lock(&BTRFS_I(inode)->lock); 5767 dropped = drop_outstanding_extent(inode, num_bytes); 5768 5769 if (num_bytes) 5770 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5771 spin_unlock(&BTRFS_I(inode)->lock); 5772 if (dropped > 0) 5773 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5774 5775 if (btrfs_test_is_dummy_root(root)) 5776 return; 5777 5778 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5779 btrfs_ino(inode), to_free, 0); 5780 5781 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5782 to_free); 5783 } 5784 5785 /** 5786 * btrfs_delalloc_reserve_space - reserve data and metadata space for 5787 * delalloc 5788 * @inode: inode we're writing to 5789 * @start: start range we are writing to 5790 * @len: how long the range we are writing to 5791 * 5792 * TODO: This function will finally replace old btrfs_delalloc_reserve_space() 5793 * 5794 * This will do the following things 5795 * 5796 * o reserve space in data space info for num bytes 5797 * and reserve precious corresponding qgroup space 5798 * (Done in check_data_free_space) 5799 * 5800 * o reserve space for metadata space, based on the number of outstanding 5801 * extents and how much csums will be needed 5802 * also reserve metadata space in a per root over-reserve method. 5803 * o add to the inodes->delalloc_bytes 5804 * o add it to the fs_info's delalloc inodes list. 5805 * (Above 3 all done in delalloc_reserve_metadata) 5806 * 5807 * Return 0 for success 5808 * Return <0 for error(-ENOSPC or -EQUOT) 5809 */ 5810 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 5811 { 5812 int ret; 5813 5814 ret = btrfs_check_data_free_space(inode, start, len); 5815 if (ret < 0) 5816 return ret; 5817 ret = btrfs_delalloc_reserve_metadata(inode, len); 5818 if (ret < 0) 5819 btrfs_free_reserved_data_space(inode, start, len); 5820 return ret; 5821 } 5822 5823 /** 5824 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5825 * @inode: inode we're releasing space for 5826 * @start: start position of the space already reserved 5827 * @len: the len of the space already reserved 5828 * 5829 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5830 * called in the case that we don't need the metadata AND data reservations 5831 * anymore. So if there is an error or we insert an inline extent. 5832 * 5833 * This function will release the metadata space that was not used and will 5834 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5835 * list if there are no delalloc bytes left. 5836 * Also it will handle the qgroup reserved space. 5837 */ 5838 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 5839 { 5840 btrfs_delalloc_release_metadata(inode, len); 5841 btrfs_free_reserved_data_space(inode, start, len); 5842 } 5843 5844 static int update_block_group(struct btrfs_trans_handle *trans, 5845 struct btrfs_root *root, u64 bytenr, 5846 u64 num_bytes, int alloc) 5847 { 5848 struct btrfs_block_group_cache *cache = NULL; 5849 struct btrfs_fs_info *info = root->fs_info; 5850 u64 total = num_bytes; 5851 u64 old_val; 5852 u64 byte_in_group; 5853 int factor; 5854 5855 /* block accounting for super block */ 5856 spin_lock(&info->delalloc_root_lock); 5857 old_val = btrfs_super_bytes_used(info->super_copy); 5858 if (alloc) 5859 old_val += num_bytes; 5860 else 5861 old_val -= num_bytes; 5862 btrfs_set_super_bytes_used(info->super_copy, old_val); 5863 spin_unlock(&info->delalloc_root_lock); 5864 5865 while (total) { 5866 cache = btrfs_lookup_block_group(info, bytenr); 5867 if (!cache) 5868 return -ENOENT; 5869 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5870 BTRFS_BLOCK_GROUP_RAID1 | 5871 BTRFS_BLOCK_GROUP_RAID10)) 5872 factor = 2; 5873 else 5874 factor = 1; 5875 /* 5876 * If this block group has free space cache written out, we 5877 * need to make sure to load it if we are removing space. This 5878 * is because we need the unpinning stage to actually add the 5879 * space back to the block group, otherwise we will leak space. 5880 */ 5881 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5882 cache_block_group(cache, 1); 5883 5884 byte_in_group = bytenr - cache->key.objectid; 5885 WARN_ON(byte_in_group > cache->key.offset); 5886 5887 spin_lock(&cache->space_info->lock); 5888 spin_lock(&cache->lock); 5889 5890 if (btrfs_test_opt(root, SPACE_CACHE) && 5891 cache->disk_cache_state < BTRFS_DC_CLEAR) 5892 cache->disk_cache_state = BTRFS_DC_CLEAR; 5893 5894 old_val = btrfs_block_group_used(&cache->item); 5895 num_bytes = min(total, cache->key.offset - byte_in_group); 5896 if (alloc) { 5897 old_val += num_bytes; 5898 btrfs_set_block_group_used(&cache->item, old_val); 5899 cache->reserved -= num_bytes; 5900 cache->space_info->bytes_reserved -= num_bytes; 5901 cache->space_info->bytes_used += num_bytes; 5902 cache->space_info->disk_used += num_bytes * factor; 5903 spin_unlock(&cache->lock); 5904 spin_unlock(&cache->space_info->lock); 5905 } else { 5906 old_val -= num_bytes; 5907 btrfs_set_block_group_used(&cache->item, old_val); 5908 cache->pinned += num_bytes; 5909 cache->space_info->bytes_pinned += num_bytes; 5910 cache->space_info->bytes_used -= num_bytes; 5911 cache->space_info->disk_used -= num_bytes * factor; 5912 spin_unlock(&cache->lock); 5913 spin_unlock(&cache->space_info->lock); 5914 5915 set_extent_dirty(info->pinned_extents, 5916 bytenr, bytenr + num_bytes - 1, 5917 GFP_NOFS | __GFP_NOFAIL); 5918 /* 5919 * No longer have used bytes in this block group, queue 5920 * it for deletion. 5921 */ 5922 if (old_val == 0) { 5923 spin_lock(&info->unused_bgs_lock); 5924 if (list_empty(&cache->bg_list)) { 5925 btrfs_get_block_group(cache); 5926 list_add_tail(&cache->bg_list, 5927 &info->unused_bgs); 5928 } 5929 spin_unlock(&info->unused_bgs_lock); 5930 } 5931 } 5932 5933 spin_lock(&trans->transaction->dirty_bgs_lock); 5934 if (list_empty(&cache->dirty_list)) { 5935 list_add_tail(&cache->dirty_list, 5936 &trans->transaction->dirty_bgs); 5937 trans->transaction->num_dirty_bgs++; 5938 btrfs_get_block_group(cache); 5939 } 5940 spin_unlock(&trans->transaction->dirty_bgs_lock); 5941 5942 btrfs_put_block_group(cache); 5943 total -= num_bytes; 5944 bytenr += num_bytes; 5945 } 5946 return 0; 5947 } 5948 5949 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5950 { 5951 struct btrfs_block_group_cache *cache; 5952 u64 bytenr; 5953 5954 spin_lock(&root->fs_info->block_group_cache_lock); 5955 bytenr = root->fs_info->first_logical_byte; 5956 spin_unlock(&root->fs_info->block_group_cache_lock); 5957 5958 if (bytenr < (u64)-1) 5959 return bytenr; 5960 5961 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5962 if (!cache) 5963 return 0; 5964 5965 bytenr = cache->key.objectid; 5966 btrfs_put_block_group(cache); 5967 5968 return bytenr; 5969 } 5970 5971 static int pin_down_extent(struct btrfs_root *root, 5972 struct btrfs_block_group_cache *cache, 5973 u64 bytenr, u64 num_bytes, int reserved) 5974 { 5975 spin_lock(&cache->space_info->lock); 5976 spin_lock(&cache->lock); 5977 cache->pinned += num_bytes; 5978 cache->space_info->bytes_pinned += num_bytes; 5979 if (reserved) { 5980 cache->reserved -= num_bytes; 5981 cache->space_info->bytes_reserved -= num_bytes; 5982 } 5983 spin_unlock(&cache->lock); 5984 spin_unlock(&cache->space_info->lock); 5985 5986 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5987 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5988 if (reserved) 5989 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5990 return 0; 5991 } 5992 5993 /* 5994 * this function must be called within transaction 5995 */ 5996 int btrfs_pin_extent(struct btrfs_root *root, 5997 u64 bytenr, u64 num_bytes, int reserved) 5998 { 5999 struct btrfs_block_group_cache *cache; 6000 6001 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6002 BUG_ON(!cache); /* Logic error */ 6003 6004 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6005 6006 btrfs_put_block_group(cache); 6007 return 0; 6008 } 6009 6010 /* 6011 * this function must be called within transaction 6012 */ 6013 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6014 u64 bytenr, u64 num_bytes) 6015 { 6016 struct btrfs_block_group_cache *cache; 6017 int ret; 6018 6019 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6020 if (!cache) 6021 return -EINVAL; 6022 6023 /* 6024 * pull in the free space cache (if any) so that our pin 6025 * removes the free space from the cache. We have load_only set 6026 * to one because the slow code to read in the free extents does check 6027 * the pinned extents. 6028 */ 6029 cache_block_group(cache, 1); 6030 6031 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6032 6033 /* remove us from the free space cache (if we're there at all) */ 6034 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6035 btrfs_put_block_group(cache); 6036 return ret; 6037 } 6038 6039 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6040 { 6041 int ret; 6042 struct btrfs_block_group_cache *block_group; 6043 struct btrfs_caching_control *caching_ctl; 6044 6045 block_group = btrfs_lookup_block_group(root->fs_info, start); 6046 if (!block_group) 6047 return -EINVAL; 6048 6049 cache_block_group(block_group, 0); 6050 caching_ctl = get_caching_control(block_group); 6051 6052 if (!caching_ctl) { 6053 /* Logic error */ 6054 BUG_ON(!block_group_cache_done(block_group)); 6055 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6056 } else { 6057 mutex_lock(&caching_ctl->mutex); 6058 6059 if (start >= caching_ctl->progress) { 6060 ret = add_excluded_extent(root, start, num_bytes); 6061 } else if (start + num_bytes <= caching_ctl->progress) { 6062 ret = btrfs_remove_free_space(block_group, 6063 start, num_bytes); 6064 } else { 6065 num_bytes = caching_ctl->progress - start; 6066 ret = btrfs_remove_free_space(block_group, 6067 start, num_bytes); 6068 if (ret) 6069 goto out_lock; 6070 6071 num_bytes = (start + num_bytes) - 6072 caching_ctl->progress; 6073 start = caching_ctl->progress; 6074 ret = add_excluded_extent(root, start, num_bytes); 6075 } 6076 out_lock: 6077 mutex_unlock(&caching_ctl->mutex); 6078 put_caching_control(caching_ctl); 6079 } 6080 btrfs_put_block_group(block_group); 6081 return ret; 6082 } 6083 6084 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6085 struct extent_buffer *eb) 6086 { 6087 struct btrfs_file_extent_item *item; 6088 struct btrfs_key key; 6089 int found_type; 6090 int i; 6091 6092 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6093 return 0; 6094 6095 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6096 btrfs_item_key_to_cpu(eb, &key, i); 6097 if (key.type != BTRFS_EXTENT_DATA_KEY) 6098 continue; 6099 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6100 found_type = btrfs_file_extent_type(eb, item); 6101 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6102 continue; 6103 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6104 continue; 6105 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6106 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6107 __exclude_logged_extent(log, key.objectid, key.offset); 6108 } 6109 6110 return 0; 6111 } 6112 6113 /** 6114 * btrfs_update_reserved_bytes - update the block_group and space info counters 6115 * @cache: The cache we are manipulating 6116 * @num_bytes: The number of bytes in question 6117 * @reserve: One of the reservation enums 6118 * @delalloc: The blocks are allocated for the delalloc write 6119 * 6120 * This is called by the allocator when it reserves space, or by somebody who is 6121 * freeing space that was never actually used on disk. For example if you 6122 * reserve some space for a new leaf in transaction A and before transaction A 6123 * commits you free that leaf, you call this with reserve set to 0 in order to 6124 * clear the reservation. 6125 * 6126 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 6127 * ENOSPC accounting. For data we handle the reservation through clearing the 6128 * delalloc bits in the io_tree. We have to do this since we could end up 6129 * allocating less disk space for the amount of data we have reserved in the 6130 * case of compression. 6131 * 6132 * If this is a reservation and the block group has become read only we cannot 6133 * make the reservation and return -EAGAIN, otherwise this function always 6134 * succeeds. 6135 */ 6136 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 6137 u64 num_bytes, int reserve, int delalloc) 6138 { 6139 struct btrfs_space_info *space_info = cache->space_info; 6140 int ret = 0; 6141 6142 spin_lock(&space_info->lock); 6143 spin_lock(&cache->lock); 6144 if (reserve != RESERVE_FREE) { 6145 if (cache->ro) { 6146 ret = -EAGAIN; 6147 } else { 6148 cache->reserved += num_bytes; 6149 space_info->bytes_reserved += num_bytes; 6150 if (reserve == RESERVE_ALLOC) { 6151 trace_btrfs_space_reservation(cache->fs_info, 6152 "space_info", space_info->flags, 6153 num_bytes, 0); 6154 space_info->bytes_may_use -= num_bytes; 6155 } 6156 6157 if (delalloc) 6158 cache->delalloc_bytes += num_bytes; 6159 } 6160 } else { 6161 if (cache->ro) 6162 space_info->bytes_readonly += num_bytes; 6163 cache->reserved -= num_bytes; 6164 space_info->bytes_reserved -= num_bytes; 6165 6166 if (delalloc) 6167 cache->delalloc_bytes -= num_bytes; 6168 } 6169 spin_unlock(&cache->lock); 6170 spin_unlock(&space_info->lock); 6171 return ret; 6172 } 6173 6174 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6175 struct btrfs_root *root) 6176 { 6177 struct btrfs_fs_info *fs_info = root->fs_info; 6178 struct btrfs_caching_control *next; 6179 struct btrfs_caching_control *caching_ctl; 6180 struct btrfs_block_group_cache *cache; 6181 6182 down_write(&fs_info->commit_root_sem); 6183 6184 list_for_each_entry_safe(caching_ctl, next, 6185 &fs_info->caching_block_groups, list) { 6186 cache = caching_ctl->block_group; 6187 if (block_group_cache_done(cache)) { 6188 cache->last_byte_to_unpin = (u64)-1; 6189 list_del_init(&caching_ctl->list); 6190 put_caching_control(caching_ctl); 6191 } else { 6192 cache->last_byte_to_unpin = caching_ctl->progress; 6193 } 6194 } 6195 6196 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6197 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6198 else 6199 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6200 6201 up_write(&fs_info->commit_root_sem); 6202 6203 update_global_block_rsv(fs_info); 6204 } 6205 6206 /* 6207 * Returns the free cluster for the given space info and sets empty_cluster to 6208 * what it should be based on the mount options. 6209 */ 6210 static struct btrfs_free_cluster * 6211 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6212 u64 *empty_cluster) 6213 { 6214 struct btrfs_free_cluster *ret = NULL; 6215 bool ssd = btrfs_test_opt(root, SSD); 6216 6217 *empty_cluster = 0; 6218 if (btrfs_mixed_space_info(space_info)) 6219 return ret; 6220 6221 if (ssd) 6222 *empty_cluster = 2 * 1024 * 1024; 6223 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6224 ret = &root->fs_info->meta_alloc_cluster; 6225 if (!ssd) 6226 *empty_cluster = 64 * 1024; 6227 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6228 ret = &root->fs_info->data_alloc_cluster; 6229 } 6230 6231 return ret; 6232 } 6233 6234 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6235 const bool return_free_space) 6236 { 6237 struct btrfs_fs_info *fs_info = root->fs_info; 6238 struct btrfs_block_group_cache *cache = NULL; 6239 struct btrfs_space_info *space_info; 6240 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6241 struct btrfs_free_cluster *cluster = NULL; 6242 u64 len; 6243 u64 total_unpinned = 0; 6244 u64 empty_cluster = 0; 6245 bool readonly; 6246 6247 while (start <= end) { 6248 readonly = false; 6249 if (!cache || 6250 start >= cache->key.objectid + cache->key.offset) { 6251 if (cache) 6252 btrfs_put_block_group(cache); 6253 total_unpinned = 0; 6254 cache = btrfs_lookup_block_group(fs_info, start); 6255 BUG_ON(!cache); /* Logic error */ 6256 6257 cluster = fetch_cluster_info(root, 6258 cache->space_info, 6259 &empty_cluster); 6260 empty_cluster <<= 1; 6261 } 6262 6263 len = cache->key.objectid + cache->key.offset - start; 6264 len = min(len, end + 1 - start); 6265 6266 if (start < cache->last_byte_to_unpin) { 6267 len = min(len, cache->last_byte_to_unpin - start); 6268 if (return_free_space) 6269 btrfs_add_free_space(cache, start, len); 6270 } 6271 6272 start += len; 6273 total_unpinned += len; 6274 space_info = cache->space_info; 6275 6276 /* 6277 * If this space cluster has been marked as fragmented and we've 6278 * unpinned enough in this block group to potentially allow a 6279 * cluster to be created inside of it go ahead and clear the 6280 * fragmented check. 6281 */ 6282 if (cluster && cluster->fragmented && 6283 total_unpinned > empty_cluster) { 6284 spin_lock(&cluster->lock); 6285 cluster->fragmented = 0; 6286 spin_unlock(&cluster->lock); 6287 } 6288 6289 spin_lock(&space_info->lock); 6290 spin_lock(&cache->lock); 6291 cache->pinned -= len; 6292 space_info->bytes_pinned -= len; 6293 space_info->max_extent_size = 0; 6294 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6295 if (cache->ro) { 6296 space_info->bytes_readonly += len; 6297 readonly = true; 6298 } 6299 spin_unlock(&cache->lock); 6300 if (!readonly && global_rsv->space_info == space_info) { 6301 spin_lock(&global_rsv->lock); 6302 if (!global_rsv->full) { 6303 len = min(len, global_rsv->size - 6304 global_rsv->reserved); 6305 global_rsv->reserved += len; 6306 space_info->bytes_may_use += len; 6307 if (global_rsv->reserved >= global_rsv->size) 6308 global_rsv->full = 1; 6309 } 6310 spin_unlock(&global_rsv->lock); 6311 } 6312 spin_unlock(&space_info->lock); 6313 } 6314 6315 if (cache) 6316 btrfs_put_block_group(cache); 6317 return 0; 6318 } 6319 6320 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6321 struct btrfs_root *root) 6322 { 6323 struct btrfs_fs_info *fs_info = root->fs_info; 6324 struct btrfs_block_group_cache *block_group, *tmp; 6325 struct list_head *deleted_bgs; 6326 struct extent_io_tree *unpin; 6327 u64 start; 6328 u64 end; 6329 int ret; 6330 6331 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6332 unpin = &fs_info->freed_extents[1]; 6333 else 6334 unpin = &fs_info->freed_extents[0]; 6335 6336 while (!trans->aborted) { 6337 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6338 ret = find_first_extent_bit(unpin, 0, &start, &end, 6339 EXTENT_DIRTY, NULL); 6340 if (ret) { 6341 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6342 break; 6343 } 6344 6345 if (btrfs_test_opt(root, DISCARD)) 6346 ret = btrfs_discard_extent(root, start, 6347 end + 1 - start, NULL); 6348 6349 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6350 unpin_extent_range(root, start, end, true); 6351 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6352 cond_resched(); 6353 } 6354 6355 /* 6356 * Transaction is finished. We don't need the lock anymore. We 6357 * do need to clean up the block groups in case of a transaction 6358 * abort. 6359 */ 6360 deleted_bgs = &trans->transaction->deleted_bgs; 6361 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6362 u64 trimmed = 0; 6363 6364 ret = -EROFS; 6365 if (!trans->aborted) 6366 ret = btrfs_discard_extent(root, 6367 block_group->key.objectid, 6368 block_group->key.offset, 6369 &trimmed); 6370 6371 list_del_init(&block_group->bg_list); 6372 btrfs_put_block_group_trimming(block_group); 6373 btrfs_put_block_group(block_group); 6374 6375 if (ret) { 6376 const char *errstr = btrfs_decode_error(ret); 6377 btrfs_warn(fs_info, 6378 "Discard failed while removing blockgroup: errno=%d %s\n", 6379 ret, errstr); 6380 } 6381 } 6382 6383 return 0; 6384 } 6385 6386 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6387 u64 owner, u64 root_objectid) 6388 { 6389 struct btrfs_space_info *space_info; 6390 u64 flags; 6391 6392 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6393 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6394 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6395 else 6396 flags = BTRFS_BLOCK_GROUP_METADATA; 6397 } else { 6398 flags = BTRFS_BLOCK_GROUP_DATA; 6399 } 6400 6401 space_info = __find_space_info(fs_info, flags); 6402 BUG_ON(!space_info); /* Logic bug */ 6403 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6404 } 6405 6406 6407 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6408 struct btrfs_root *root, 6409 struct btrfs_delayed_ref_node *node, u64 parent, 6410 u64 root_objectid, u64 owner_objectid, 6411 u64 owner_offset, int refs_to_drop, 6412 struct btrfs_delayed_extent_op *extent_op) 6413 { 6414 struct btrfs_key key; 6415 struct btrfs_path *path; 6416 struct btrfs_fs_info *info = root->fs_info; 6417 struct btrfs_root *extent_root = info->extent_root; 6418 struct extent_buffer *leaf; 6419 struct btrfs_extent_item *ei; 6420 struct btrfs_extent_inline_ref *iref; 6421 int ret; 6422 int is_data; 6423 int extent_slot = 0; 6424 int found_extent = 0; 6425 int num_to_del = 1; 6426 u32 item_size; 6427 u64 refs; 6428 u64 bytenr = node->bytenr; 6429 u64 num_bytes = node->num_bytes; 6430 int last_ref = 0; 6431 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6432 SKINNY_METADATA); 6433 6434 path = btrfs_alloc_path(); 6435 if (!path) 6436 return -ENOMEM; 6437 6438 path->reada = 1; 6439 path->leave_spinning = 1; 6440 6441 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6442 BUG_ON(!is_data && refs_to_drop != 1); 6443 6444 if (is_data) 6445 skinny_metadata = 0; 6446 6447 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6448 bytenr, num_bytes, parent, 6449 root_objectid, owner_objectid, 6450 owner_offset); 6451 if (ret == 0) { 6452 extent_slot = path->slots[0]; 6453 while (extent_slot >= 0) { 6454 btrfs_item_key_to_cpu(path->nodes[0], &key, 6455 extent_slot); 6456 if (key.objectid != bytenr) 6457 break; 6458 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6459 key.offset == num_bytes) { 6460 found_extent = 1; 6461 break; 6462 } 6463 if (key.type == BTRFS_METADATA_ITEM_KEY && 6464 key.offset == owner_objectid) { 6465 found_extent = 1; 6466 break; 6467 } 6468 if (path->slots[0] - extent_slot > 5) 6469 break; 6470 extent_slot--; 6471 } 6472 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6473 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6474 if (found_extent && item_size < sizeof(*ei)) 6475 found_extent = 0; 6476 #endif 6477 if (!found_extent) { 6478 BUG_ON(iref); 6479 ret = remove_extent_backref(trans, extent_root, path, 6480 NULL, refs_to_drop, 6481 is_data, &last_ref); 6482 if (ret) { 6483 btrfs_abort_transaction(trans, extent_root, ret); 6484 goto out; 6485 } 6486 btrfs_release_path(path); 6487 path->leave_spinning = 1; 6488 6489 key.objectid = bytenr; 6490 key.type = BTRFS_EXTENT_ITEM_KEY; 6491 key.offset = num_bytes; 6492 6493 if (!is_data && skinny_metadata) { 6494 key.type = BTRFS_METADATA_ITEM_KEY; 6495 key.offset = owner_objectid; 6496 } 6497 6498 ret = btrfs_search_slot(trans, extent_root, 6499 &key, path, -1, 1); 6500 if (ret > 0 && skinny_metadata && path->slots[0]) { 6501 /* 6502 * Couldn't find our skinny metadata item, 6503 * see if we have ye olde extent item. 6504 */ 6505 path->slots[0]--; 6506 btrfs_item_key_to_cpu(path->nodes[0], &key, 6507 path->slots[0]); 6508 if (key.objectid == bytenr && 6509 key.type == BTRFS_EXTENT_ITEM_KEY && 6510 key.offset == num_bytes) 6511 ret = 0; 6512 } 6513 6514 if (ret > 0 && skinny_metadata) { 6515 skinny_metadata = false; 6516 key.objectid = bytenr; 6517 key.type = BTRFS_EXTENT_ITEM_KEY; 6518 key.offset = num_bytes; 6519 btrfs_release_path(path); 6520 ret = btrfs_search_slot(trans, extent_root, 6521 &key, path, -1, 1); 6522 } 6523 6524 if (ret) { 6525 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6526 ret, bytenr); 6527 if (ret > 0) 6528 btrfs_print_leaf(extent_root, 6529 path->nodes[0]); 6530 } 6531 if (ret < 0) { 6532 btrfs_abort_transaction(trans, extent_root, ret); 6533 goto out; 6534 } 6535 extent_slot = path->slots[0]; 6536 } 6537 } else if (WARN_ON(ret == -ENOENT)) { 6538 btrfs_print_leaf(extent_root, path->nodes[0]); 6539 btrfs_err(info, 6540 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6541 bytenr, parent, root_objectid, owner_objectid, 6542 owner_offset); 6543 btrfs_abort_transaction(trans, extent_root, ret); 6544 goto out; 6545 } else { 6546 btrfs_abort_transaction(trans, extent_root, ret); 6547 goto out; 6548 } 6549 6550 leaf = path->nodes[0]; 6551 item_size = btrfs_item_size_nr(leaf, extent_slot); 6552 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6553 if (item_size < sizeof(*ei)) { 6554 BUG_ON(found_extent || extent_slot != path->slots[0]); 6555 ret = convert_extent_item_v0(trans, extent_root, path, 6556 owner_objectid, 0); 6557 if (ret < 0) { 6558 btrfs_abort_transaction(trans, extent_root, ret); 6559 goto out; 6560 } 6561 6562 btrfs_release_path(path); 6563 path->leave_spinning = 1; 6564 6565 key.objectid = bytenr; 6566 key.type = BTRFS_EXTENT_ITEM_KEY; 6567 key.offset = num_bytes; 6568 6569 ret = btrfs_search_slot(trans, extent_root, &key, path, 6570 -1, 1); 6571 if (ret) { 6572 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6573 ret, bytenr); 6574 btrfs_print_leaf(extent_root, path->nodes[0]); 6575 } 6576 if (ret < 0) { 6577 btrfs_abort_transaction(trans, extent_root, ret); 6578 goto out; 6579 } 6580 6581 extent_slot = path->slots[0]; 6582 leaf = path->nodes[0]; 6583 item_size = btrfs_item_size_nr(leaf, extent_slot); 6584 } 6585 #endif 6586 BUG_ON(item_size < sizeof(*ei)); 6587 ei = btrfs_item_ptr(leaf, extent_slot, 6588 struct btrfs_extent_item); 6589 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6590 key.type == BTRFS_EXTENT_ITEM_KEY) { 6591 struct btrfs_tree_block_info *bi; 6592 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6593 bi = (struct btrfs_tree_block_info *)(ei + 1); 6594 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6595 } 6596 6597 refs = btrfs_extent_refs(leaf, ei); 6598 if (refs < refs_to_drop) { 6599 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6600 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6601 ret = -EINVAL; 6602 btrfs_abort_transaction(trans, extent_root, ret); 6603 goto out; 6604 } 6605 refs -= refs_to_drop; 6606 6607 if (refs > 0) { 6608 if (extent_op) 6609 __run_delayed_extent_op(extent_op, leaf, ei); 6610 /* 6611 * In the case of inline back ref, reference count will 6612 * be updated by remove_extent_backref 6613 */ 6614 if (iref) { 6615 BUG_ON(!found_extent); 6616 } else { 6617 btrfs_set_extent_refs(leaf, ei, refs); 6618 btrfs_mark_buffer_dirty(leaf); 6619 } 6620 if (found_extent) { 6621 ret = remove_extent_backref(trans, extent_root, path, 6622 iref, refs_to_drop, 6623 is_data, &last_ref); 6624 if (ret) { 6625 btrfs_abort_transaction(trans, extent_root, ret); 6626 goto out; 6627 } 6628 } 6629 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6630 root_objectid); 6631 } else { 6632 if (found_extent) { 6633 BUG_ON(is_data && refs_to_drop != 6634 extent_data_ref_count(path, iref)); 6635 if (iref) { 6636 BUG_ON(path->slots[0] != extent_slot); 6637 } else { 6638 BUG_ON(path->slots[0] != extent_slot + 1); 6639 path->slots[0] = extent_slot; 6640 num_to_del = 2; 6641 } 6642 } 6643 6644 last_ref = 1; 6645 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6646 num_to_del); 6647 if (ret) { 6648 btrfs_abort_transaction(trans, extent_root, ret); 6649 goto out; 6650 } 6651 btrfs_release_path(path); 6652 6653 if (is_data) { 6654 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6655 if (ret) { 6656 btrfs_abort_transaction(trans, extent_root, ret); 6657 goto out; 6658 } 6659 } 6660 6661 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6662 if (ret) { 6663 btrfs_abort_transaction(trans, extent_root, ret); 6664 goto out; 6665 } 6666 } 6667 btrfs_release_path(path); 6668 6669 out: 6670 btrfs_free_path(path); 6671 return ret; 6672 } 6673 6674 /* 6675 * when we free an block, it is possible (and likely) that we free the last 6676 * delayed ref for that extent as well. This searches the delayed ref tree for 6677 * a given extent, and if there are no other delayed refs to be processed, it 6678 * removes it from the tree. 6679 */ 6680 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6681 struct btrfs_root *root, u64 bytenr) 6682 { 6683 struct btrfs_delayed_ref_head *head; 6684 struct btrfs_delayed_ref_root *delayed_refs; 6685 int ret = 0; 6686 6687 delayed_refs = &trans->transaction->delayed_refs; 6688 spin_lock(&delayed_refs->lock); 6689 head = btrfs_find_delayed_ref_head(trans, bytenr); 6690 if (!head) 6691 goto out_delayed_unlock; 6692 6693 spin_lock(&head->lock); 6694 if (!list_empty(&head->ref_list)) 6695 goto out; 6696 6697 if (head->extent_op) { 6698 if (!head->must_insert_reserved) 6699 goto out; 6700 btrfs_free_delayed_extent_op(head->extent_op); 6701 head->extent_op = NULL; 6702 } 6703 6704 /* 6705 * waiting for the lock here would deadlock. If someone else has it 6706 * locked they are already in the process of dropping it anyway 6707 */ 6708 if (!mutex_trylock(&head->mutex)) 6709 goto out; 6710 6711 /* 6712 * at this point we have a head with no other entries. Go 6713 * ahead and process it. 6714 */ 6715 head->node.in_tree = 0; 6716 rb_erase(&head->href_node, &delayed_refs->href_root); 6717 6718 atomic_dec(&delayed_refs->num_entries); 6719 6720 /* 6721 * we don't take a ref on the node because we're removing it from the 6722 * tree, so we just steal the ref the tree was holding. 6723 */ 6724 delayed_refs->num_heads--; 6725 if (head->processing == 0) 6726 delayed_refs->num_heads_ready--; 6727 head->processing = 0; 6728 spin_unlock(&head->lock); 6729 spin_unlock(&delayed_refs->lock); 6730 6731 BUG_ON(head->extent_op); 6732 if (head->must_insert_reserved) 6733 ret = 1; 6734 6735 mutex_unlock(&head->mutex); 6736 btrfs_put_delayed_ref(&head->node); 6737 return ret; 6738 out: 6739 spin_unlock(&head->lock); 6740 6741 out_delayed_unlock: 6742 spin_unlock(&delayed_refs->lock); 6743 return 0; 6744 } 6745 6746 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6747 struct btrfs_root *root, 6748 struct extent_buffer *buf, 6749 u64 parent, int last_ref) 6750 { 6751 int pin = 1; 6752 int ret; 6753 6754 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6755 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6756 buf->start, buf->len, 6757 parent, root->root_key.objectid, 6758 btrfs_header_level(buf), 6759 BTRFS_DROP_DELAYED_REF, NULL); 6760 BUG_ON(ret); /* -ENOMEM */ 6761 } 6762 6763 if (!last_ref) 6764 return; 6765 6766 if (btrfs_header_generation(buf) == trans->transid) { 6767 struct btrfs_block_group_cache *cache; 6768 6769 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6770 ret = check_ref_cleanup(trans, root, buf->start); 6771 if (!ret) 6772 goto out; 6773 } 6774 6775 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6776 6777 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6778 pin_down_extent(root, cache, buf->start, buf->len, 1); 6779 btrfs_put_block_group(cache); 6780 goto out; 6781 } 6782 6783 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6784 6785 btrfs_add_free_space(cache, buf->start, buf->len); 6786 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6787 btrfs_put_block_group(cache); 6788 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6789 pin = 0; 6790 } 6791 out: 6792 if (pin) 6793 add_pinned_bytes(root->fs_info, buf->len, 6794 btrfs_header_level(buf), 6795 root->root_key.objectid); 6796 6797 /* 6798 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6799 * anymore. 6800 */ 6801 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6802 } 6803 6804 /* Can return -ENOMEM */ 6805 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6806 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6807 u64 owner, u64 offset) 6808 { 6809 int ret; 6810 struct btrfs_fs_info *fs_info = root->fs_info; 6811 6812 if (btrfs_test_is_dummy_root(root)) 6813 return 0; 6814 6815 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6816 6817 /* 6818 * tree log blocks never actually go into the extent allocation 6819 * tree, just update pinning info and exit early. 6820 */ 6821 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6822 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6823 /* unlocks the pinned mutex */ 6824 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6825 ret = 0; 6826 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6827 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6828 num_bytes, 6829 parent, root_objectid, (int)owner, 6830 BTRFS_DROP_DELAYED_REF, NULL); 6831 } else { 6832 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6833 num_bytes, 6834 parent, root_objectid, owner, 6835 offset, 0, 6836 BTRFS_DROP_DELAYED_REF, NULL); 6837 } 6838 return ret; 6839 } 6840 6841 /* 6842 * when we wait for progress in the block group caching, its because 6843 * our allocation attempt failed at least once. So, we must sleep 6844 * and let some progress happen before we try again. 6845 * 6846 * This function will sleep at least once waiting for new free space to 6847 * show up, and then it will check the block group free space numbers 6848 * for our min num_bytes. Another option is to have it go ahead 6849 * and look in the rbtree for a free extent of a given size, but this 6850 * is a good start. 6851 * 6852 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6853 * any of the information in this block group. 6854 */ 6855 static noinline void 6856 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6857 u64 num_bytes) 6858 { 6859 struct btrfs_caching_control *caching_ctl; 6860 6861 caching_ctl = get_caching_control(cache); 6862 if (!caching_ctl) 6863 return; 6864 6865 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6866 (cache->free_space_ctl->free_space >= num_bytes)); 6867 6868 put_caching_control(caching_ctl); 6869 } 6870 6871 static noinline int 6872 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6873 { 6874 struct btrfs_caching_control *caching_ctl; 6875 int ret = 0; 6876 6877 caching_ctl = get_caching_control(cache); 6878 if (!caching_ctl) 6879 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6880 6881 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6882 if (cache->cached == BTRFS_CACHE_ERROR) 6883 ret = -EIO; 6884 put_caching_control(caching_ctl); 6885 return ret; 6886 } 6887 6888 int __get_raid_index(u64 flags) 6889 { 6890 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6891 return BTRFS_RAID_RAID10; 6892 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6893 return BTRFS_RAID_RAID1; 6894 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6895 return BTRFS_RAID_DUP; 6896 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6897 return BTRFS_RAID_RAID0; 6898 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6899 return BTRFS_RAID_RAID5; 6900 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6901 return BTRFS_RAID_RAID6; 6902 6903 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6904 } 6905 6906 int get_block_group_index(struct btrfs_block_group_cache *cache) 6907 { 6908 return __get_raid_index(cache->flags); 6909 } 6910 6911 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6912 [BTRFS_RAID_RAID10] = "raid10", 6913 [BTRFS_RAID_RAID1] = "raid1", 6914 [BTRFS_RAID_DUP] = "dup", 6915 [BTRFS_RAID_RAID0] = "raid0", 6916 [BTRFS_RAID_SINGLE] = "single", 6917 [BTRFS_RAID_RAID5] = "raid5", 6918 [BTRFS_RAID_RAID6] = "raid6", 6919 }; 6920 6921 static const char *get_raid_name(enum btrfs_raid_types type) 6922 { 6923 if (type >= BTRFS_NR_RAID_TYPES) 6924 return NULL; 6925 6926 return btrfs_raid_type_names[type]; 6927 } 6928 6929 enum btrfs_loop_type { 6930 LOOP_CACHING_NOWAIT = 0, 6931 LOOP_CACHING_WAIT = 1, 6932 LOOP_ALLOC_CHUNK = 2, 6933 LOOP_NO_EMPTY_SIZE = 3, 6934 }; 6935 6936 static inline void 6937 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6938 int delalloc) 6939 { 6940 if (delalloc) 6941 down_read(&cache->data_rwsem); 6942 } 6943 6944 static inline void 6945 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6946 int delalloc) 6947 { 6948 btrfs_get_block_group(cache); 6949 if (delalloc) 6950 down_read(&cache->data_rwsem); 6951 } 6952 6953 static struct btrfs_block_group_cache * 6954 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6955 struct btrfs_free_cluster *cluster, 6956 int delalloc) 6957 { 6958 struct btrfs_block_group_cache *used_bg; 6959 bool locked = false; 6960 again: 6961 spin_lock(&cluster->refill_lock); 6962 if (locked) { 6963 if (used_bg == cluster->block_group) 6964 return used_bg; 6965 6966 up_read(&used_bg->data_rwsem); 6967 btrfs_put_block_group(used_bg); 6968 } 6969 6970 used_bg = cluster->block_group; 6971 if (!used_bg) 6972 return NULL; 6973 6974 if (used_bg == block_group) 6975 return used_bg; 6976 6977 btrfs_get_block_group(used_bg); 6978 6979 if (!delalloc) 6980 return used_bg; 6981 6982 if (down_read_trylock(&used_bg->data_rwsem)) 6983 return used_bg; 6984 6985 spin_unlock(&cluster->refill_lock); 6986 down_read(&used_bg->data_rwsem); 6987 locked = true; 6988 goto again; 6989 } 6990 6991 static inline void 6992 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6993 int delalloc) 6994 { 6995 if (delalloc) 6996 up_read(&cache->data_rwsem); 6997 btrfs_put_block_group(cache); 6998 } 6999 7000 /* 7001 * walks the btree of allocated extents and find a hole of a given size. 7002 * The key ins is changed to record the hole: 7003 * ins->objectid == start position 7004 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7005 * ins->offset == the size of the hole. 7006 * Any available blocks before search_start are skipped. 7007 * 7008 * If there is no suitable free space, we will record the max size of 7009 * the free space extent currently. 7010 */ 7011 static noinline int find_free_extent(struct btrfs_root *orig_root, 7012 u64 num_bytes, u64 empty_size, 7013 u64 hint_byte, struct btrfs_key *ins, 7014 u64 flags, int delalloc) 7015 { 7016 int ret = 0; 7017 struct btrfs_root *root = orig_root->fs_info->extent_root; 7018 struct btrfs_free_cluster *last_ptr = NULL; 7019 struct btrfs_block_group_cache *block_group = NULL; 7020 u64 search_start = 0; 7021 u64 max_extent_size = 0; 7022 u64 empty_cluster = 0; 7023 struct btrfs_space_info *space_info; 7024 int loop = 0; 7025 int index = __get_raid_index(flags); 7026 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 7027 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 7028 bool failed_cluster_refill = false; 7029 bool failed_alloc = false; 7030 bool use_cluster = true; 7031 bool have_caching_bg = false; 7032 bool orig_have_caching_bg = false; 7033 bool full_search = false; 7034 7035 WARN_ON(num_bytes < root->sectorsize); 7036 ins->type = BTRFS_EXTENT_ITEM_KEY; 7037 ins->objectid = 0; 7038 ins->offset = 0; 7039 7040 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7041 7042 space_info = __find_space_info(root->fs_info, flags); 7043 if (!space_info) { 7044 btrfs_err(root->fs_info, "No space info for %llu", flags); 7045 return -ENOSPC; 7046 } 7047 7048 /* 7049 * If our free space is heavily fragmented we may not be able to make 7050 * big contiguous allocations, so instead of doing the expensive search 7051 * for free space, simply return ENOSPC with our max_extent_size so we 7052 * can go ahead and search for a more manageable chunk. 7053 * 7054 * If our max_extent_size is large enough for our allocation simply 7055 * disable clustering since we will likely not be able to find enough 7056 * space to create a cluster and induce latency trying. 7057 */ 7058 if (unlikely(space_info->max_extent_size)) { 7059 spin_lock(&space_info->lock); 7060 if (space_info->max_extent_size && 7061 num_bytes > space_info->max_extent_size) { 7062 ins->offset = space_info->max_extent_size; 7063 spin_unlock(&space_info->lock); 7064 return -ENOSPC; 7065 } else if (space_info->max_extent_size) { 7066 use_cluster = false; 7067 } 7068 spin_unlock(&space_info->lock); 7069 } 7070 7071 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7072 if (last_ptr) { 7073 spin_lock(&last_ptr->lock); 7074 if (last_ptr->block_group) 7075 hint_byte = last_ptr->window_start; 7076 if (last_ptr->fragmented) { 7077 /* 7078 * We still set window_start so we can keep track of the 7079 * last place we found an allocation to try and save 7080 * some time. 7081 */ 7082 hint_byte = last_ptr->window_start; 7083 use_cluster = false; 7084 } 7085 spin_unlock(&last_ptr->lock); 7086 } 7087 7088 search_start = max(search_start, first_logical_byte(root, 0)); 7089 search_start = max(search_start, hint_byte); 7090 if (search_start == hint_byte) { 7091 block_group = btrfs_lookup_block_group(root->fs_info, 7092 search_start); 7093 /* 7094 * we don't want to use the block group if it doesn't match our 7095 * allocation bits, or if its not cached. 7096 * 7097 * However if we are re-searching with an ideal block group 7098 * picked out then we don't care that the block group is cached. 7099 */ 7100 if (block_group && block_group_bits(block_group, flags) && 7101 block_group->cached != BTRFS_CACHE_NO) { 7102 down_read(&space_info->groups_sem); 7103 if (list_empty(&block_group->list) || 7104 block_group->ro) { 7105 /* 7106 * someone is removing this block group, 7107 * we can't jump into the have_block_group 7108 * target because our list pointers are not 7109 * valid 7110 */ 7111 btrfs_put_block_group(block_group); 7112 up_read(&space_info->groups_sem); 7113 } else { 7114 index = get_block_group_index(block_group); 7115 btrfs_lock_block_group(block_group, delalloc); 7116 goto have_block_group; 7117 } 7118 } else if (block_group) { 7119 btrfs_put_block_group(block_group); 7120 } 7121 } 7122 search: 7123 have_caching_bg = false; 7124 if (index == 0 || index == __get_raid_index(flags)) 7125 full_search = true; 7126 down_read(&space_info->groups_sem); 7127 list_for_each_entry(block_group, &space_info->block_groups[index], 7128 list) { 7129 u64 offset; 7130 int cached; 7131 7132 btrfs_grab_block_group(block_group, delalloc); 7133 search_start = block_group->key.objectid; 7134 7135 /* 7136 * this can happen if we end up cycling through all the 7137 * raid types, but we want to make sure we only allocate 7138 * for the proper type. 7139 */ 7140 if (!block_group_bits(block_group, flags)) { 7141 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7142 BTRFS_BLOCK_GROUP_RAID1 | 7143 BTRFS_BLOCK_GROUP_RAID5 | 7144 BTRFS_BLOCK_GROUP_RAID6 | 7145 BTRFS_BLOCK_GROUP_RAID10; 7146 7147 /* 7148 * if they asked for extra copies and this block group 7149 * doesn't provide them, bail. This does allow us to 7150 * fill raid0 from raid1. 7151 */ 7152 if ((flags & extra) && !(block_group->flags & extra)) 7153 goto loop; 7154 } 7155 7156 have_block_group: 7157 cached = block_group_cache_done(block_group); 7158 if (unlikely(!cached)) { 7159 have_caching_bg = true; 7160 ret = cache_block_group(block_group, 0); 7161 BUG_ON(ret < 0); 7162 ret = 0; 7163 } 7164 7165 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7166 goto loop; 7167 if (unlikely(block_group->ro)) 7168 goto loop; 7169 7170 /* 7171 * Ok we want to try and use the cluster allocator, so 7172 * lets look there 7173 */ 7174 if (last_ptr && use_cluster) { 7175 struct btrfs_block_group_cache *used_block_group; 7176 unsigned long aligned_cluster; 7177 /* 7178 * the refill lock keeps out other 7179 * people trying to start a new cluster 7180 */ 7181 used_block_group = btrfs_lock_cluster(block_group, 7182 last_ptr, 7183 delalloc); 7184 if (!used_block_group) 7185 goto refill_cluster; 7186 7187 if (used_block_group != block_group && 7188 (used_block_group->ro || 7189 !block_group_bits(used_block_group, flags))) 7190 goto release_cluster; 7191 7192 offset = btrfs_alloc_from_cluster(used_block_group, 7193 last_ptr, 7194 num_bytes, 7195 used_block_group->key.objectid, 7196 &max_extent_size); 7197 if (offset) { 7198 /* we have a block, we're done */ 7199 spin_unlock(&last_ptr->refill_lock); 7200 trace_btrfs_reserve_extent_cluster(root, 7201 used_block_group, 7202 search_start, num_bytes); 7203 if (used_block_group != block_group) { 7204 btrfs_release_block_group(block_group, 7205 delalloc); 7206 block_group = used_block_group; 7207 } 7208 goto checks; 7209 } 7210 7211 WARN_ON(last_ptr->block_group != used_block_group); 7212 release_cluster: 7213 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7214 * set up a new clusters, so lets just skip it 7215 * and let the allocator find whatever block 7216 * it can find. If we reach this point, we 7217 * will have tried the cluster allocator 7218 * plenty of times and not have found 7219 * anything, so we are likely way too 7220 * fragmented for the clustering stuff to find 7221 * anything. 7222 * 7223 * However, if the cluster is taken from the 7224 * current block group, release the cluster 7225 * first, so that we stand a better chance of 7226 * succeeding in the unclustered 7227 * allocation. */ 7228 if (loop >= LOOP_NO_EMPTY_SIZE && 7229 used_block_group != block_group) { 7230 spin_unlock(&last_ptr->refill_lock); 7231 btrfs_release_block_group(used_block_group, 7232 delalloc); 7233 goto unclustered_alloc; 7234 } 7235 7236 /* 7237 * this cluster didn't work out, free it and 7238 * start over 7239 */ 7240 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7241 7242 if (used_block_group != block_group) 7243 btrfs_release_block_group(used_block_group, 7244 delalloc); 7245 refill_cluster: 7246 if (loop >= LOOP_NO_EMPTY_SIZE) { 7247 spin_unlock(&last_ptr->refill_lock); 7248 goto unclustered_alloc; 7249 } 7250 7251 aligned_cluster = max_t(unsigned long, 7252 empty_cluster + empty_size, 7253 block_group->full_stripe_len); 7254 7255 /* allocate a cluster in this block group */ 7256 ret = btrfs_find_space_cluster(root, block_group, 7257 last_ptr, search_start, 7258 num_bytes, 7259 aligned_cluster); 7260 if (ret == 0) { 7261 /* 7262 * now pull our allocation out of this 7263 * cluster 7264 */ 7265 offset = btrfs_alloc_from_cluster(block_group, 7266 last_ptr, 7267 num_bytes, 7268 search_start, 7269 &max_extent_size); 7270 if (offset) { 7271 /* we found one, proceed */ 7272 spin_unlock(&last_ptr->refill_lock); 7273 trace_btrfs_reserve_extent_cluster(root, 7274 block_group, search_start, 7275 num_bytes); 7276 goto checks; 7277 } 7278 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7279 && !failed_cluster_refill) { 7280 spin_unlock(&last_ptr->refill_lock); 7281 7282 failed_cluster_refill = true; 7283 wait_block_group_cache_progress(block_group, 7284 num_bytes + empty_cluster + empty_size); 7285 goto have_block_group; 7286 } 7287 7288 /* 7289 * at this point we either didn't find a cluster 7290 * or we weren't able to allocate a block from our 7291 * cluster. Free the cluster we've been trying 7292 * to use, and go to the next block group 7293 */ 7294 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7295 spin_unlock(&last_ptr->refill_lock); 7296 goto loop; 7297 } 7298 7299 unclustered_alloc: 7300 /* 7301 * We are doing an unclustered alloc, set the fragmented flag so 7302 * we don't bother trying to setup a cluster again until we get 7303 * more space. 7304 */ 7305 if (unlikely(last_ptr)) { 7306 spin_lock(&last_ptr->lock); 7307 last_ptr->fragmented = 1; 7308 spin_unlock(&last_ptr->lock); 7309 } 7310 spin_lock(&block_group->free_space_ctl->tree_lock); 7311 if (cached && 7312 block_group->free_space_ctl->free_space < 7313 num_bytes + empty_cluster + empty_size) { 7314 if (block_group->free_space_ctl->free_space > 7315 max_extent_size) 7316 max_extent_size = 7317 block_group->free_space_ctl->free_space; 7318 spin_unlock(&block_group->free_space_ctl->tree_lock); 7319 goto loop; 7320 } 7321 spin_unlock(&block_group->free_space_ctl->tree_lock); 7322 7323 offset = btrfs_find_space_for_alloc(block_group, search_start, 7324 num_bytes, empty_size, 7325 &max_extent_size); 7326 /* 7327 * If we didn't find a chunk, and we haven't failed on this 7328 * block group before, and this block group is in the middle of 7329 * caching and we are ok with waiting, then go ahead and wait 7330 * for progress to be made, and set failed_alloc to true. 7331 * 7332 * If failed_alloc is true then we've already waited on this 7333 * block group once and should move on to the next block group. 7334 */ 7335 if (!offset && !failed_alloc && !cached && 7336 loop > LOOP_CACHING_NOWAIT) { 7337 wait_block_group_cache_progress(block_group, 7338 num_bytes + empty_size); 7339 failed_alloc = true; 7340 goto have_block_group; 7341 } else if (!offset) { 7342 goto loop; 7343 } 7344 checks: 7345 search_start = ALIGN(offset, root->stripesize); 7346 7347 /* move on to the next group */ 7348 if (search_start + num_bytes > 7349 block_group->key.objectid + block_group->key.offset) { 7350 btrfs_add_free_space(block_group, offset, num_bytes); 7351 goto loop; 7352 } 7353 7354 if (offset < search_start) 7355 btrfs_add_free_space(block_group, offset, 7356 search_start - offset); 7357 BUG_ON(offset > search_start); 7358 7359 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7360 alloc_type, delalloc); 7361 if (ret == -EAGAIN) { 7362 btrfs_add_free_space(block_group, offset, num_bytes); 7363 goto loop; 7364 } 7365 7366 /* we are all good, lets return */ 7367 ins->objectid = search_start; 7368 ins->offset = num_bytes; 7369 7370 trace_btrfs_reserve_extent(orig_root, block_group, 7371 search_start, num_bytes); 7372 btrfs_release_block_group(block_group, delalloc); 7373 break; 7374 loop: 7375 failed_cluster_refill = false; 7376 failed_alloc = false; 7377 BUG_ON(index != get_block_group_index(block_group)); 7378 btrfs_release_block_group(block_group, delalloc); 7379 } 7380 up_read(&space_info->groups_sem); 7381 7382 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7383 && !orig_have_caching_bg) 7384 orig_have_caching_bg = true; 7385 7386 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7387 goto search; 7388 7389 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7390 goto search; 7391 7392 /* 7393 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7394 * caching kthreads as we move along 7395 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7396 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7397 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7398 * again 7399 */ 7400 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7401 index = 0; 7402 if (loop == LOOP_CACHING_NOWAIT) { 7403 /* 7404 * We want to skip the LOOP_CACHING_WAIT step if we 7405 * don't have any unached bgs and we've alrelady done a 7406 * full search through. 7407 */ 7408 if (orig_have_caching_bg || !full_search) 7409 loop = LOOP_CACHING_WAIT; 7410 else 7411 loop = LOOP_ALLOC_CHUNK; 7412 } else { 7413 loop++; 7414 } 7415 7416 if (loop == LOOP_ALLOC_CHUNK) { 7417 struct btrfs_trans_handle *trans; 7418 int exist = 0; 7419 7420 trans = current->journal_info; 7421 if (trans) 7422 exist = 1; 7423 else 7424 trans = btrfs_join_transaction(root); 7425 7426 if (IS_ERR(trans)) { 7427 ret = PTR_ERR(trans); 7428 goto out; 7429 } 7430 7431 ret = do_chunk_alloc(trans, root, flags, 7432 CHUNK_ALLOC_FORCE); 7433 7434 /* 7435 * If we can't allocate a new chunk we've already looped 7436 * through at least once, move on to the NO_EMPTY_SIZE 7437 * case. 7438 */ 7439 if (ret == -ENOSPC) 7440 loop = LOOP_NO_EMPTY_SIZE; 7441 7442 /* 7443 * Do not bail out on ENOSPC since we 7444 * can do more things. 7445 */ 7446 if (ret < 0 && ret != -ENOSPC) 7447 btrfs_abort_transaction(trans, 7448 root, ret); 7449 else 7450 ret = 0; 7451 if (!exist) 7452 btrfs_end_transaction(trans, root); 7453 if (ret) 7454 goto out; 7455 } 7456 7457 if (loop == LOOP_NO_EMPTY_SIZE) { 7458 /* 7459 * Don't loop again if we already have no empty_size and 7460 * no empty_cluster. 7461 */ 7462 if (empty_size == 0 && 7463 empty_cluster == 0) { 7464 ret = -ENOSPC; 7465 goto out; 7466 } 7467 empty_size = 0; 7468 empty_cluster = 0; 7469 } 7470 7471 goto search; 7472 } else if (!ins->objectid) { 7473 ret = -ENOSPC; 7474 } else if (ins->objectid) { 7475 if (!use_cluster && last_ptr) { 7476 spin_lock(&last_ptr->lock); 7477 last_ptr->window_start = ins->objectid; 7478 spin_unlock(&last_ptr->lock); 7479 } 7480 ret = 0; 7481 } 7482 out: 7483 if (ret == -ENOSPC) { 7484 spin_lock(&space_info->lock); 7485 space_info->max_extent_size = max_extent_size; 7486 spin_unlock(&space_info->lock); 7487 ins->offset = max_extent_size; 7488 } 7489 return ret; 7490 } 7491 7492 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7493 int dump_block_groups) 7494 { 7495 struct btrfs_block_group_cache *cache; 7496 int index = 0; 7497 7498 spin_lock(&info->lock); 7499 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7500 info->flags, 7501 info->total_bytes - info->bytes_used - info->bytes_pinned - 7502 info->bytes_reserved - info->bytes_readonly, 7503 (info->full) ? "" : "not "); 7504 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7505 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7506 info->total_bytes, info->bytes_used, info->bytes_pinned, 7507 info->bytes_reserved, info->bytes_may_use, 7508 info->bytes_readonly); 7509 spin_unlock(&info->lock); 7510 7511 if (!dump_block_groups) 7512 return; 7513 7514 down_read(&info->groups_sem); 7515 again: 7516 list_for_each_entry(cache, &info->block_groups[index], list) { 7517 spin_lock(&cache->lock); 7518 printk(KERN_INFO "BTRFS: " 7519 "block group %llu has %llu bytes, " 7520 "%llu used %llu pinned %llu reserved %s\n", 7521 cache->key.objectid, cache->key.offset, 7522 btrfs_block_group_used(&cache->item), cache->pinned, 7523 cache->reserved, cache->ro ? "[readonly]" : ""); 7524 btrfs_dump_free_space(cache, bytes); 7525 spin_unlock(&cache->lock); 7526 } 7527 if (++index < BTRFS_NR_RAID_TYPES) 7528 goto again; 7529 up_read(&info->groups_sem); 7530 } 7531 7532 int btrfs_reserve_extent(struct btrfs_root *root, 7533 u64 num_bytes, u64 min_alloc_size, 7534 u64 empty_size, u64 hint_byte, 7535 struct btrfs_key *ins, int is_data, int delalloc) 7536 { 7537 bool final_tried = num_bytes == min_alloc_size; 7538 u64 flags; 7539 int ret; 7540 7541 flags = btrfs_get_alloc_profile(root, is_data); 7542 again: 7543 WARN_ON(num_bytes < root->sectorsize); 7544 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7545 flags, delalloc); 7546 7547 if (ret == -ENOSPC) { 7548 if (!final_tried && ins->offset) { 7549 num_bytes = min(num_bytes >> 1, ins->offset); 7550 num_bytes = round_down(num_bytes, root->sectorsize); 7551 num_bytes = max(num_bytes, min_alloc_size); 7552 if (num_bytes == min_alloc_size) 7553 final_tried = true; 7554 goto again; 7555 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7556 struct btrfs_space_info *sinfo; 7557 7558 sinfo = __find_space_info(root->fs_info, flags); 7559 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7560 flags, num_bytes); 7561 if (sinfo) 7562 dump_space_info(sinfo, num_bytes, 1); 7563 } 7564 } 7565 7566 return ret; 7567 } 7568 7569 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7570 u64 start, u64 len, 7571 int pin, int delalloc) 7572 { 7573 struct btrfs_block_group_cache *cache; 7574 int ret = 0; 7575 7576 cache = btrfs_lookup_block_group(root->fs_info, start); 7577 if (!cache) { 7578 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7579 start); 7580 return -ENOSPC; 7581 } 7582 7583 if (pin) 7584 pin_down_extent(root, cache, start, len, 1); 7585 else { 7586 if (btrfs_test_opt(root, DISCARD)) 7587 ret = btrfs_discard_extent(root, start, len, NULL); 7588 btrfs_add_free_space(cache, start, len); 7589 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7590 } 7591 7592 btrfs_put_block_group(cache); 7593 7594 trace_btrfs_reserved_extent_free(root, start, len); 7595 7596 return ret; 7597 } 7598 7599 int btrfs_free_reserved_extent(struct btrfs_root *root, 7600 u64 start, u64 len, int delalloc) 7601 { 7602 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7603 } 7604 7605 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7606 u64 start, u64 len) 7607 { 7608 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7609 } 7610 7611 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7612 struct btrfs_root *root, 7613 u64 parent, u64 root_objectid, 7614 u64 flags, u64 owner, u64 offset, 7615 struct btrfs_key *ins, int ref_mod) 7616 { 7617 int ret; 7618 struct btrfs_fs_info *fs_info = root->fs_info; 7619 struct btrfs_extent_item *extent_item; 7620 struct btrfs_extent_inline_ref *iref; 7621 struct btrfs_path *path; 7622 struct extent_buffer *leaf; 7623 int type; 7624 u32 size; 7625 7626 if (parent > 0) 7627 type = BTRFS_SHARED_DATA_REF_KEY; 7628 else 7629 type = BTRFS_EXTENT_DATA_REF_KEY; 7630 7631 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7632 7633 path = btrfs_alloc_path(); 7634 if (!path) 7635 return -ENOMEM; 7636 7637 path->leave_spinning = 1; 7638 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7639 ins, size); 7640 if (ret) { 7641 btrfs_free_path(path); 7642 return ret; 7643 } 7644 7645 leaf = path->nodes[0]; 7646 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7647 struct btrfs_extent_item); 7648 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7649 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7650 btrfs_set_extent_flags(leaf, extent_item, 7651 flags | BTRFS_EXTENT_FLAG_DATA); 7652 7653 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7654 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7655 if (parent > 0) { 7656 struct btrfs_shared_data_ref *ref; 7657 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7658 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7659 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7660 } else { 7661 struct btrfs_extent_data_ref *ref; 7662 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7663 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7664 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7665 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7666 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7667 } 7668 7669 btrfs_mark_buffer_dirty(path->nodes[0]); 7670 btrfs_free_path(path); 7671 7672 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7673 if (ret) { /* -ENOENT, logic error */ 7674 btrfs_err(fs_info, "update block group failed for %llu %llu", 7675 ins->objectid, ins->offset); 7676 BUG(); 7677 } 7678 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7679 return ret; 7680 } 7681 7682 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7683 struct btrfs_root *root, 7684 u64 parent, u64 root_objectid, 7685 u64 flags, struct btrfs_disk_key *key, 7686 int level, struct btrfs_key *ins) 7687 { 7688 int ret; 7689 struct btrfs_fs_info *fs_info = root->fs_info; 7690 struct btrfs_extent_item *extent_item; 7691 struct btrfs_tree_block_info *block_info; 7692 struct btrfs_extent_inline_ref *iref; 7693 struct btrfs_path *path; 7694 struct extent_buffer *leaf; 7695 u32 size = sizeof(*extent_item) + sizeof(*iref); 7696 u64 num_bytes = ins->offset; 7697 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7698 SKINNY_METADATA); 7699 7700 if (!skinny_metadata) 7701 size += sizeof(*block_info); 7702 7703 path = btrfs_alloc_path(); 7704 if (!path) { 7705 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7706 root->nodesize); 7707 return -ENOMEM; 7708 } 7709 7710 path->leave_spinning = 1; 7711 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7712 ins, size); 7713 if (ret) { 7714 btrfs_free_path(path); 7715 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7716 root->nodesize); 7717 return ret; 7718 } 7719 7720 leaf = path->nodes[0]; 7721 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7722 struct btrfs_extent_item); 7723 btrfs_set_extent_refs(leaf, extent_item, 1); 7724 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7725 btrfs_set_extent_flags(leaf, extent_item, 7726 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7727 7728 if (skinny_metadata) { 7729 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7730 num_bytes = root->nodesize; 7731 } else { 7732 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7733 btrfs_set_tree_block_key(leaf, block_info, key); 7734 btrfs_set_tree_block_level(leaf, block_info, level); 7735 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7736 } 7737 7738 if (parent > 0) { 7739 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7740 btrfs_set_extent_inline_ref_type(leaf, iref, 7741 BTRFS_SHARED_BLOCK_REF_KEY); 7742 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7743 } else { 7744 btrfs_set_extent_inline_ref_type(leaf, iref, 7745 BTRFS_TREE_BLOCK_REF_KEY); 7746 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7747 } 7748 7749 btrfs_mark_buffer_dirty(leaf); 7750 btrfs_free_path(path); 7751 7752 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7753 1); 7754 if (ret) { /* -ENOENT, logic error */ 7755 btrfs_err(fs_info, "update block group failed for %llu %llu", 7756 ins->objectid, ins->offset); 7757 BUG(); 7758 } 7759 7760 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7761 return ret; 7762 } 7763 7764 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7765 struct btrfs_root *root, 7766 u64 root_objectid, u64 owner, 7767 u64 offset, u64 ram_bytes, 7768 struct btrfs_key *ins) 7769 { 7770 int ret; 7771 7772 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7773 7774 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7775 ins->offset, 0, 7776 root_objectid, owner, offset, 7777 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 7778 NULL); 7779 return ret; 7780 } 7781 7782 /* 7783 * this is used by the tree logging recovery code. It records that 7784 * an extent has been allocated and makes sure to clear the free 7785 * space cache bits as well 7786 */ 7787 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7788 struct btrfs_root *root, 7789 u64 root_objectid, u64 owner, u64 offset, 7790 struct btrfs_key *ins) 7791 { 7792 int ret; 7793 struct btrfs_block_group_cache *block_group; 7794 7795 /* 7796 * Mixed block groups will exclude before processing the log so we only 7797 * need to do the exlude dance if this fs isn't mixed. 7798 */ 7799 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7800 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7801 if (ret) 7802 return ret; 7803 } 7804 7805 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7806 if (!block_group) 7807 return -EINVAL; 7808 7809 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7810 RESERVE_ALLOC_NO_ACCOUNT, 0); 7811 BUG_ON(ret); /* logic error */ 7812 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7813 0, owner, offset, ins, 1); 7814 btrfs_put_block_group(block_group); 7815 return ret; 7816 } 7817 7818 static struct extent_buffer * 7819 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7820 u64 bytenr, int level) 7821 { 7822 struct extent_buffer *buf; 7823 7824 buf = btrfs_find_create_tree_block(root, bytenr); 7825 if (!buf) 7826 return ERR_PTR(-ENOMEM); 7827 btrfs_set_header_generation(buf, trans->transid); 7828 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7829 btrfs_tree_lock(buf); 7830 clean_tree_block(trans, root->fs_info, buf); 7831 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7832 7833 btrfs_set_lock_blocking(buf); 7834 btrfs_set_buffer_uptodate(buf); 7835 7836 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7837 buf->log_index = root->log_transid % 2; 7838 /* 7839 * we allow two log transactions at a time, use different 7840 * EXENT bit to differentiate dirty pages. 7841 */ 7842 if (buf->log_index == 0) 7843 set_extent_dirty(&root->dirty_log_pages, buf->start, 7844 buf->start + buf->len - 1, GFP_NOFS); 7845 else 7846 set_extent_new(&root->dirty_log_pages, buf->start, 7847 buf->start + buf->len - 1, GFP_NOFS); 7848 } else { 7849 buf->log_index = -1; 7850 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7851 buf->start + buf->len - 1, GFP_NOFS); 7852 } 7853 trans->blocks_used++; 7854 /* this returns a buffer locked for blocking */ 7855 return buf; 7856 } 7857 7858 static struct btrfs_block_rsv * 7859 use_block_rsv(struct btrfs_trans_handle *trans, 7860 struct btrfs_root *root, u32 blocksize) 7861 { 7862 struct btrfs_block_rsv *block_rsv; 7863 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7864 int ret; 7865 bool global_updated = false; 7866 7867 block_rsv = get_block_rsv(trans, root); 7868 7869 if (unlikely(block_rsv->size == 0)) 7870 goto try_reserve; 7871 again: 7872 ret = block_rsv_use_bytes(block_rsv, blocksize); 7873 if (!ret) 7874 return block_rsv; 7875 7876 if (block_rsv->failfast) 7877 return ERR_PTR(ret); 7878 7879 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7880 global_updated = true; 7881 update_global_block_rsv(root->fs_info); 7882 goto again; 7883 } 7884 7885 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7886 static DEFINE_RATELIMIT_STATE(_rs, 7887 DEFAULT_RATELIMIT_INTERVAL * 10, 7888 /*DEFAULT_RATELIMIT_BURST*/ 1); 7889 if (__ratelimit(&_rs)) 7890 WARN(1, KERN_DEBUG 7891 "BTRFS: block rsv returned %d\n", ret); 7892 } 7893 try_reserve: 7894 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7895 BTRFS_RESERVE_NO_FLUSH); 7896 if (!ret) 7897 return block_rsv; 7898 /* 7899 * If we couldn't reserve metadata bytes try and use some from 7900 * the global reserve if its space type is the same as the global 7901 * reservation. 7902 */ 7903 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7904 block_rsv->space_info == global_rsv->space_info) { 7905 ret = block_rsv_use_bytes(global_rsv, blocksize); 7906 if (!ret) 7907 return global_rsv; 7908 } 7909 return ERR_PTR(ret); 7910 } 7911 7912 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7913 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7914 { 7915 block_rsv_add_bytes(block_rsv, blocksize, 0); 7916 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7917 } 7918 7919 /* 7920 * finds a free extent and does all the dirty work required for allocation 7921 * returns the tree buffer or an ERR_PTR on error. 7922 */ 7923 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7924 struct btrfs_root *root, 7925 u64 parent, u64 root_objectid, 7926 struct btrfs_disk_key *key, int level, 7927 u64 hint, u64 empty_size) 7928 { 7929 struct btrfs_key ins; 7930 struct btrfs_block_rsv *block_rsv; 7931 struct extent_buffer *buf; 7932 struct btrfs_delayed_extent_op *extent_op; 7933 u64 flags = 0; 7934 int ret; 7935 u32 blocksize = root->nodesize; 7936 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7937 SKINNY_METADATA); 7938 7939 if (btrfs_test_is_dummy_root(root)) { 7940 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7941 level); 7942 if (!IS_ERR(buf)) 7943 root->alloc_bytenr += blocksize; 7944 return buf; 7945 } 7946 7947 block_rsv = use_block_rsv(trans, root, blocksize); 7948 if (IS_ERR(block_rsv)) 7949 return ERR_CAST(block_rsv); 7950 7951 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7952 empty_size, hint, &ins, 0, 0); 7953 if (ret) 7954 goto out_unuse; 7955 7956 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7957 if (IS_ERR(buf)) { 7958 ret = PTR_ERR(buf); 7959 goto out_free_reserved; 7960 } 7961 7962 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7963 if (parent == 0) 7964 parent = ins.objectid; 7965 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7966 } else 7967 BUG_ON(parent > 0); 7968 7969 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7970 extent_op = btrfs_alloc_delayed_extent_op(); 7971 if (!extent_op) { 7972 ret = -ENOMEM; 7973 goto out_free_buf; 7974 } 7975 if (key) 7976 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7977 else 7978 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7979 extent_op->flags_to_set = flags; 7980 if (skinny_metadata) 7981 extent_op->update_key = 0; 7982 else 7983 extent_op->update_key = 1; 7984 extent_op->update_flags = 1; 7985 extent_op->is_data = 0; 7986 extent_op->level = level; 7987 7988 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7989 ins.objectid, ins.offset, 7990 parent, root_objectid, level, 7991 BTRFS_ADD_DELAYED_EXTENT, 7992 extent_op); 7993 if (ret) 7994 goto out_free_delayed; 7995 } 7996 return buf; 7997 7998 out_free_delayed: 7999 btrfs_free_delayed_extent_op(extent_op); 8000 out_free_buf: 8001 free_extent_buffer(buf); 8002 out_free_reserved: 8003 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8004 out_unuse: 8005 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8006 return ERR_PTR(ret); 8007 } 8008 8009 struct walk_control { 8010 u64 refs[BTRFS_MAX_LEVEL]; 8011 u64 flags[BTRFS_MAX_LEVEL]; 8012 struct btrfs_key update_progress; 8013 int stage; 8014 int level; 8015 int shared_level; 8016 int update_ref; 8017 int keep_locks; 8018 int reada_slot; 8019 int reada_count; 8020 int for_reloc; 8021 }; 8022 8023 #define DROP_REFERENCE 1 8024 #define UPDATE_BACKREF 2 8025 8026 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8027 struct btrfs_root *root, 8028 struct walk_control *wc, 8029 struct btrfs_path *path) 8030 { 8031 u64 bytenr; 8032 u64 generation; 8033 u64 refs; 8034 u64 flags; 8035 u32 nritems; 8036 u32 blocksize; 8037 struct btrfs_key key; 8038 struct extent_buffer *eb; 8039 int ret; 8040 int slot; 8041 int nread = 0; 8042 8043 if (path->slots[wc->level] < wc->reada_slot) { 8044 wc->reada_count = wc->reada_count * 2 / 3; 8045 wc->reada_count = max(wc->reada_count, 2); 8046 } else { 8047 wc->reada_count = wc->reada_count * 3 / 2; 8048 wc->reada_count = min_t(int, wc->reada_count, 8049 BTRFS_NODEPTRS_PER_BLOCK(root)); 8050 } 8051 8052 eb = path->nodes[wc->level]; 8053 nritems = btrfs_header_nritems(eb); 8054 blocksize = root->nodesize; 8055 8056 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8057 if (nread >= wc->reada_count) 8058 break; 8059 8060 cond_resched(); 8061 bytenr = btrfs_node_blockptr(eb, slot); 8062 generation = btrfs_node_ptr_generation(eb, slot); 8063 8064 if (slot == path->slots[wc->level]) 8065 goto reada; 8066 8067 if (wc->stage == UPDATE_BACKREF && 8068 generation <= root->root_key.offset) 8069 continue; 8070 8071 /* We don't lock the tree block, it's OK to be racy here */ 8072 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8073 wc->level - 1, 1, &refs, 8074 &flags); 8075 /* We don't care about errors in readahead. */ 8076 if (ret < 0) 8077 continue; 8078 BUG_ON(refs == 0); 8079 8080 if (wc->stage == DROP_REFERENCE) { 8081 if (refs == 1) 8082 goto reada; 8083 8084 if (wc->level == 1 && 8085 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8086 continue; 8087 if (!wc->update_ref || 8088 generation <= root->root_key.offset) 8089 continue; 8090 btrfs_node_key_to_cpu(eb, &key, slot); 8091 ret = btrfs_comp_cpu_keys(&key, 8092 &wc->update_progress); 8093 if (ret < 0) 8094 continue; 8095 } else { 8096 if (wc->level == 1 && 8097 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8098 continue; 8099 } 8100 reada: 8101 readahead_tree_block(root, bytenr); 8102 nread++; 8103 } 8104 wc->reada_slot = slot; 8105 } 8106 8107 /* 8108 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 8109 * for later qgroup accounting. 8110 * 8111 * Current, this function does nothing. 8112 */ 8113 static int account_leaf_items(struct btrfs_trans_handle *trans, 8114 struct btrfs_root *root, 8115 struct extent_buffer *eb) 8116 { 8117 int nr = btrfs_header_nritems(eb); 8118 int i, extent_type; 8119 struct btrfs_key key; 8120 struct btrfs_file_extent_item *fi; 8121 u64 bytenr, num_bytes; 8122 8123 for (i = 0; i < nr; i++) { 8124 btrfs_item_key_to_cpu(eb, &key, i); 8125 8126 if (key.type != BTRFS_EXTENT_DATA_KEY) 8127 continue; 8128 8129 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8130 /* filter out non qgroup-accountable extents */ 8131 extent_type = btrfs_file_extent_type(eb, fi); 8132 8133 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8134 continue; 8135 8136 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8137 if (!bytenr) 8138 continue; 8139 8140 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8141 } 8142 return 0; 8143 } 8144 8145 /* 8146 * Walk up the tree from the bottom, freeing leaves and any interior 8147 * nodes which have had all slots visited. If a node (leaf or 8148 * interior) is freed, the node above it will have it's slot 8149 * incremented. The root node will never be freed. 8150 * 8151 * At the end of this function, we should have a path which has all 8152 * slots incremented to the next position for a search. If we need to 8153 * read a new node it will be NULL and the node above it will have the 8154 * correct slot selected for a later read. 8155 * 8156 * If we increment the root nodes slot counter past the number of 8157 * elements, 1 is returned to signal completion of the search. 8158 */ 8159 static int adjust_slots_upwards(struct btrfs_root *root, 8160 struct btrfs_path *path, int root_level) 8161 { 8162 int level = 0; 8163 int nr, slot; 8164 struct extent_buffer *eb; 8165 8166 if (root_level == 0) 8167 return 1; 8168 8169 while (level <= root_level) { 8170 eb = path->nodes[level]; 8171 nr = btrfs_header_nritems(eb); 8172 path->slots[level]++; 8173 slot = path->slots[level]; 8174 if (slot >= nr || level == 0) { 8175 /* 8176 * Don't free the root - we will detect this 8177 * condition after our loop and return a 8178 * positive value for caller to stop walking the tree. 8179 */ 8180 if (level != root_level) { 8181 btrfs_tree_unlock_rw(eb, path->locks[level]); 8182 path->locks[level] = 0; 8183 8184 free_extent_buffer(eb); 8185 path->nodes[level] = NULL; 8186 path->slots[level] = 0; 8187 } 8188 } else { 8189 /* 8190 * We have a valid slot to walk back down 8191 * from. Stop here so caller can process these 8192 * new nodes. 8193 */ 8194 break; 8195 } 8196 8197 level++; 8198 } 8199 8200 eb = path->nodes[root_level]; 8201 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8202 return 1; 8203 8204 return 0; 8205 } 8206 8207 /* 8208 * root_eb is the subtree root and is locked before this function is called. 8209 * TODO: Modify this function to mark all (including complete shared node) 8210 * to dirty_extent_root to allow it get accounted in qgroup. 8211 */ 8212 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8213 struct btrfs_root *root, 8214 struct extent_buffer *root_eb, 8215 u64 root_gen, 8216 int root_level) 8217 { 8218 int ret = 0; 8219 int level; 8220 struct extent_buffer *eb = root_eb; 8221 struct btrfs_path *path = NULL; 8222 8223 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8224 BUG_ON(root_eb == NULL); 8225 8226 if (!root->fs_info->quota_enabled) 8227 return 0; 8228 8229 if (!extent_buffer_uptodate(root_eb)) { 8230 ret = btrfs_read_buffer(root_eb, root_gen); 8231 if (ret) 8232 goto out; 8233 } 8234 8235 if (root_level == 0) { 8236 ret = account_leaf_items(trans, root, root_eb); 8237 goto out; 8238 } 8239 8240 path = btrfs_alloc_path(); 8241 if (!path) 8242 return -ENOMEM; 8243 8244 /* 8245 * Walk down the tree. Missing extent blocks are filled in as 8246 * we go. Metadata is accounted every time we read a new 8247 * extent block. 8248 * 8249 * When we reach a leaf, we account for file extent items in it, 8250 * walk back up the tree (adjusting slot pointers as we go) 8251 * and restart the search process. 8252 */ 8253 extent_buffer_get(root_eb); /* For path */ 8254 path->nodes[root_level] = root_eb; 8255 path->slots[root_level] = 0; 8256 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8257 walk_down: 8258 level = root_level; 8259 while (level >= 0) { 8260 if (path->nodes[level] == NULL) { 8261 int parent_slot; 8262 u64 child_gen; 8263 u64 child_bytenr; 8264 8265 /* We need to get child blockptr/gen from 8266 * parent before we can read it. */ 8267 eb = path->nodes[level + 1]; 8268 parent_slot = path->slots[level + 1]; 8269 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8270 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8271 8272 eb = read_tree_block(root, child_bytenr, child_gen); 8273 if (IS_ERR(eb)) { 8274 ret = PTR_ERR(eb); 8275 goto out; 8276 } else if (!extent_buffer_uptodate(eb)) { 8277 free_extent_buffer(eb); 8278 ret = -EIO; 8279 goto out; 8280 } 8281 8282 path->nodes[level] = eb; 8283 path->slots[level] = 0; 8284 8285 btrfs_tree_read_lock(eb); 8286 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8287 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8288 } 8289 8290 if (level == 0) { 8291 ret = account_leaf_items(trans, root, path->nodes[level]); 8292 if (ret) 8293 goto out; 8294 8295 /* Nonzero return here means we completed our search */ 8296 ret = adjust_slots_upwards(root, path, root_level); 8297 if (ret) 8298 break; 8299 8300 /* Restart search with new slots */ 8301 goto walk_down; 8302 } 8303 8304 level--; 8305 } 8306 8307 ret = 0; 8308 out: 8309 btrfs_free_path(path); 8310 8311 return ret; 8312 } 8313 8314 /* 8315 * helper to process tree block while walking down the tree. 8316 * 8317 * when wc->stage == UPDATE_BACKREF, this function updates 8318 * back refs for pointers in the block. 8319 * 8320 * NOTE: return value 1 means we should stop walking down. 8321 */ 8322 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8323 struct btrfs_root *root, 8324 struct btrfs_path *path, 8325 struct walk_control *wc, int lookup_info) 8326 { 8327 int level = wc->level; 8328 struct extent_buffer *eb = path->nodes[level]; 8329 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8330 int ret; 8331 8332 if (wc->stage == UPDATE_BACKREF && 8333 btrfs_header_owner(eb) != root->root_key.objectid) 8334 return 1; 8335 8336 /* 8337 * when reference count of tree block is 1, it won't increase 8338 * again. once full backref flag is set, we never clear it. 8339 */ 8340 if (lookup_info && 8341 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8342 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8343 BUG_ON(!path->locks[level]); 8344 ret = btrfs_lookup_extent_info(trans, root, 8345 eb->start, level, 1, 8346 &wc->refs[level], 8347 &wc->flags[level]); 8348 BUG_ON(ret == -ENOMEM); 8349 if (ret) 8350 return ret; 8351 BUG_ON(wc->refs[level] == 0); 8352 } 8353 8354 if (wc->stage == DROP_REFERENCE) { 8355 if (wc->refs[level] > 1) 8356 return 1; 8357 8358 if (path->locks[level] && !wc->keep_locks) { 8359 btrfs_tree_unlock_rw(eb, path->locks[level]); 8360 path->locks[level] = 0; 8361 } 8362 return 0; 8363 } 8364 8365 /* wc->stage == UPDATE_BACKREF */ 8366 if (!(wc->flags[level] & flag)) { 8367 BUG_ON(!path->locks[level]); 8368 ret = btrfs_inc_ref(trans, root, eb, 1); 8369 BUG_ON(ret); /* -ENOMEM */ 8370 ret = btrfs_dec_ref(trans, root, eb, 0); 8371 BUG_ON(ret); /* -ENOMEM */ 8372 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8373 eb->len, flag, 8374 btrfs_header_level(eb), 0); 8375 BUG_ON(ret); /* -ENOMEM */ 8376 wc->flags[level] |= flag; 8377 } 8378 8379 /* 8380 * the block is shared by multiple trees, so it's not good to 8381 * keep the tree lock 8382 */ 8383 if (path->locks[level] && level > 0) { 8384 btrfs_tree_unlock_rw(eb, path->locks[level]); 8385 path->locks[level] = 0; 8386 } 8387 return 0; 8388 } 8389 8390 /* 8391 * helper to process tree block pointer. 8392 * 8393 * when wc->stage == DROP_REFERENCE, this function checks 8394 * reference count of the block pointed to. if the block 8395 * is shared and we need update back refs for the subtree 8396 * rooted at the block, this function changes wc->stage to 8397 * UPDATE_BACKREF. if the block is shared and there is no 8398 * need to update back, this function drops the reference 8399 * to the block. 8400 * 8401 * NOTE: return value 1 means we should stop walking down. 8402 */ 8403 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8404 struct btrfs_root *root, 8405 struct btrfs_path *path, 8406 struct walk_control *wc, int *lookup_info) 8407 { 8408 u64 bytenr; 8409 u64 generation; 8410 u64 parent; 8411 u32 blocksize; 8412 struct btrfs_key key; 8413 struct extent_buffer *next; 8414 int level = wc->level; 8415 int reada = 0; 8416 int ret = 0; 8417 bool need_account = false; 8418 8419 generation = btrfs_node_ptr_generation(path->nodes[level], 8420 path->slots[level]); 8421 /* 8422 * if the lower level block was created before the snapshot 8423 * was created, we know there is no need to update back refs 8424 * for the subtree 8425 */ 8426 if (wc->stage == UPDATE_BACKREF && 8427 generation <= root->root_key.offset) { 8428 *lookup_info = 1; 8429 return 1; 8430 } 8431 8432 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8433 blocksize = root->nodesize; 8434 8435 next = btrfs_find_tree_block(root->fs_info, bytenr); 8436 if (!next) { 8437 next = btrfs_find_create_tree_block(root, bytenr); 8438 if (!next) 8439 return -ENOMEM; 8440 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8441 level - 1); 8442 reada = 1; 8443 } 8444 btrfs_tree_lock(next); 8445 btrfs_set_lock_blocking(next); 8446 8447 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8448 &wc->refs[level - 1], 8449 &wc->flags[level - 1]); 8450 if (ret < 0) { 8451 btrfs_tree_unlock(next); 8452 return ret; 8453 } 8454 8455 if (unlikely(wc->refs[level - 1] == 0)) { 8456 btrfs_err(root->fs_info, "Missing references."); 8457 BUG(); 8458 } 8459 *lookup_info = 0; 8460 8461 if (wc->stage == DROP_REFERENCE) { 8462 if (wc->refs[level - 1] > 1) { 8463 need_account = true; 8464 if (level == 1 && 8465 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8466 goto skip; 8467 8468 if (!wc->update_ref || 8469 generation <= root->root_key.offset) 8470 goto skip; 8471 8472 btrfs_node_key_to_cpu(path->nodes[level], &key, 8473 path->slots[level]); 8474 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8475 if (ret < 0) 8476 goto skip; 8477 8478 wc->stage = UPDATE_BACKREF; 8479 wc->shared_level = level - 1; 8480 } 8481 } else { 8482 if (level == 1 && 8483 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8484 goto skip; 8485 } 8486 8487 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8488 btrfs_tree_unlock(next); 8489 free_extent_buffer(next); 8490 next = NULL; 8491 *lookup_info = 1; 8492 } 8493 8494 if (!next) { 8495 if (reada && level == 1) 8496 reada_walk_down(trans, root, wc, path); 8497 next = read_tree_block(root, bytenr, generation); 8498 if (IS_ERR(next)) { 8499 return PTR_ERR(next); 8500 } else if (!extent_buffer_uptodate(next)) { 8501 free_extent_buffer(next); 8502 return -EIO; 8503 } 8504 btrfs_tree_lock(next); 8505 btrfs_set_lock_blocking(next); 8506 } 8507 8508 level--; 8509 BUG_ON(level != btrfs_header_level(next)); 8510 path->nodes[level] = next; 8511 path->slots[level] = 0; 8512 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8513 wc->level = level; 8514 if (wc->level == 1) 8515 wc->reada_slot = 0; 8516 return 0; 8517 skip: 8518 wc->refs[level - 1] = 0; 8519 wc->flags[level - 1] = 0; 8520 if (wc->stage == DROP_REFERENCE) { 8521 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8522 parent = path->nodes[level]->start; 8523 } else { 8524 BUG_ON(root->root_key.objectid != 8525 btrfs_header_owner(path->nodes[level])); 8526 parent = 0; 8527 } 8528 8529 if (need_account) { 8530 ret = account_shared_subtree(trans, root, next, 8531 generation, level - 1); 8532 if (ret) { 8533 btrfs_err_rl(root->fs_info, 8534 "Error " 8535 "%d accounting shared subtree. Quota " 8536 "is out of sync, rescan required.", 8537 ret); 8538 } 8539 } 8540 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8541 root->root_key.objectid, level - 1, 0); 8542 BUG_ON(ret); /* -ENOMEM */ 8543 } 8544 btrfs_tree_unlock(next); 8545 free_extent_buffer(next); 8546 *lookup_info = 1; 8547 return 1; 8548 } 8549 8550 /* 8551 * helper to process tree block while walking up the tree. 8552 * 8553 * when wc->stage == DROP_REFERENCE, this function drops 8554 * reference count on the block. 8555 * 8556 * when wc->stage == UPDATE_BACKREF, this function changes 8557 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8558 * to UPDATE_BACKREF previously while processing the block. 8559 * 8560 * NOTE: return value 1 means we should stop walking up. 8561 */ 8562 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8563 struct btrfs_root *root, 8564 struct btrfs_path *path, 8565 struct walk_control *wc) 8566 { 8567 int ret; 8568 int level = wc->level; 8569 struct extent_buffer *eb = path->nodes[level]; 8570 u64 parent = 0; 8571 8572 if (wc->stage == UPDATE_BACKREF) { 8573 BUG_ON(wc->shared_level < level); 8574 if (level < wc->shared_level) 8575 goto out; 8576 8577 ret = find_next_key(path, level + 1, &wc->update_progress); 8578 if (ret > 0) 8579 wc->update_ref = 0; 8580 8581 wc->stage = DROP_REFERENCE; 8582 wc->shared_level = -1; 8583 path->slots[level] = 0; 8584 8585 /* 8586 * check reference count again if the block isn't locked. 8587 * we should start walking down the tree again if reference 8588 * count is one. 8589 */ 8590 if (!path->locks[level]) { 8591 BUG_ON(level == 0); 8592 btrfs_tree_lock(eb); 8593 btrfs_set_lock_blocking(eb); 8594 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8595 8596 ret = btrfs_lookup_extent_info(trans, root, 8597 eb->start, level, 1, 8598 &wc->refs[level], 8599 &wc->flags[level]); 8600 if (ret < 0) { 8601 btrfs_tree_unlock_rw(eb, path->locks[level]); 8602 path->locks[level] = 0; 8603 return ret; 8604 } 8605 BUG_ON(wc->refs[level] == 0); 8606 if (wc->refs[level] == 1) { 8607 btrfs_tree_unlock_rw(eb, path->locks[level]); 8608 path->locks[level] = 0; 8609 return 1; 8610 } 8611 } 8612 } 8613 8614 /* wc->stage == DROP_REFERENCE */ 8615 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8616 8617 if (wc->refs[level] == 1) { 8618 if (level == 0) { 8619 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8620 ret = btrfs_dec_ref(trans, root, eb, 1); 8621 else 8622 ret = btrfs_dec_ref(trans, root, eb, 0); 8623 BUG_ON(ret); /* -ENOMEM */ 8624 ret = account_leaf_items(trans, root, eb); 8625 if (ret) { 8626 btrfs_err_rl(root->fs_info, 8627 "error " 8628 "%d accounting leaf items. Quota " 8629 "is out of sync, rescan required.", 8630 ret); 8631 } 8632 } 8633 /* make block locked assertion in clean_tree_block happy */ 8634 if (!path->locks[level] && 8635 btrfs_header_generation(eb) == trans->transid) { 8636 btrfs_tree_lock(eb); 8637 btrfs_set_lock_blocking(eb); 8638 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8639 } 8640 clean_tree_block(trans, root->fs_info, eb); 8641 } 8642 8643 if (eb == root->node) { 8644 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8645 parent = eb->start; 8646 else 8647 BUG_ON(root->root_key.objectid != 8648 btrfs_header_owner(eb)); 8649 } else { 8650 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8651 parent = path->nodes[level + 1]->start; 8652 else 8653 BUG_ON(root->root_key.objectid != 8654 btrfs_header_owner(path->nodes[level + 1])); 8655 } 8656 8657 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8658 out: 8659 wc->refs[level] = 0; 8660 wc->flags[level] = 0; 8661 return 0; 8662 } 8663 8664 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8665 struct btrfs_root *root, 8666 struct btrfs_path *path, 8667 struct walk_control *wc) 8668 { 8669 int level = wc->level; 8670 int lookup_info = 1; 8671 int ret; 8672 8673 while (level >= 0) { 8674 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8675 if (ret > 0) 8676 break; 8677 8678 if (level == 0) 8679 break; 8680 8681 if (path->slots[level] >= 8682 btrfs_header_nritems(path->nodes[level])) 8683 break; 8684 8685 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8686 if (ret > 0) { 8687 path->slots[level]++; 8688 continue; 8689 } else if (ret < 0) 8690 return ret; 8691 level = wc->level; 8692 } 8693 return 0; 8694 } 8695 8696 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8697 struct btrfs_root *root, 8698 struct btrfs_path *path, 8699 struct walk_control *wc, int max_level) 8700 { 8701 int level = wc->level; 8702 int ret; 8703 8704 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8705 while (level < max_level && path->nodes[level]) { 8706 wc->level = level; 8707 if (path->slots[level] + 1 < 8708 btrfs_header_nritems(path->nodes[level])) { 8709 path->slots[level]++; 8710 return 0; 8711 } else { 8712 ret = walk_up_proc(trans, root, path, wc); 8713 if (ret > 0) 8714 return 0; 8715 8716 if (path->locks[level]) { 8717 btrfs_tree_unlock_rw(path->nodes[level], 8718 path->locks[level]); 8719 path->locks[level] = 0; 8720 } 8721 free_extent_buffer(path->nodes[level]); 8722 path->nodes[level] = NULL; 8723 level++; 8724 } 8725 } 8726 return 1; 8727 } 8728 8729 /* 8730 * drop a subvolume tree. 8731 * 8732 * this function traverses the tree freeing any blocks that only 8733 * referenced by the tree. 8734 * 8735 * when a shared tree block is found. this function decreases its 8736 * reference count by one. if update_ref is true, this function 8737 * also make sure backrefs for the shared block and all lower level 8738 * blocks are properly updated. 8739 * 8740 * If called with for_reloc == 0, may exit early with -EAGAIN 8741 */ 8742 int btrfs_drop_snapshot(struct btrfs_root *root, 8743 struct btrfs_block_rsv *block_rsv, int update_ref, 8744 int for_reloc) 8745 { 8746 struct btrfs_path *path; 8747 struct btrfs_trans_handle *trans; 8748 struct btrfs_root *tree_root = root->fs_info->tree_root; 8749 struct btrfs_root_item *root_item = &root->root_item; 8750 struct walk_control *wc; 8751 struct btrfs_key key; 8752 int err = 0; 8753 int ret; 8754 int level; 8755 bool root_dropped = false; 8756 8757 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8758 8759 path = btrfs_alloc_path(); 8760 if (!path) { 8761 err = -ENOMEM; 8762 goto out; 8763 } 8764 8765 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8766 if (!wc) { 8767 btrfs_free_path(path); 8768 err = -ENOMEM; 8769 goto out; 8770 } 8771 8772 trans = btrfs_start_transaction(tree_root, 0); 8773 if (IS_ERR(trans)) { 8774 err = PTR_ERR(trans); 8775 goto out_free; 8776 } 8777 8778 if (block_rsv) 8779 trans->block_rsv = block_rsv; 8780 8781 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8782 level = btrfs_header_level(root->node); 8783 path->nodes[level] = btrfs_lock_root_node(root); 8784 btrfs_set_lock_blocking(path->nodes[level]); 8785 path->slots[level] = 0; 8786 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8787 memset(&wc->update_progress, 0, 8788 sizeof(wc->update_progress)); 8789 } else { 8790 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8791 memcpy(&wc->update_progress, &key, 8792 sizeof(wc->update_progress)); 8793 8794 level = root_item->drop_level; 8795 BUG_ON(level == 0); 8796 path->lowest_level = level; 8797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8798 path->lowest_level = 0; 8799 if (ret < 0) { 8800 err = ret; 8801 goto out_end_trans; 8802 } 8803 WARN_ON(ret > 0); 8804 8805 /* 8806 * unlock our path, this is safe because only this 8807 * function is allowed to delete this snapshot 8808 */ 8809 btrfs_unlock_up_safe(path, 0); 8810 8811 level = btrfs_header_level(root->node); 8812 while (1) { 8813 btrfs_tree_lock(path->nodes[level]); 8814 btrfs_set_lock_blocking(path->nodes[level]); 8815 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8816 8817 ret = btrfs_lookup_extent_info(trans, root, 8818 path->nodes[level]->start, 8819 level, 1, &wc->refs[level], 8820 &wc->flags[level]); 8821 if (ret < 0) { 8822 err = ret; 8823 goto out_end_trans; 8824 } 8825 BUG_ON(wc->refs[level] == 0); 8826 8827 if (level == root_item->drop_level) 8828 break; 8829 8830 btrfs_tree_unlock(path->nodes[level]); 8831 path->locks[level] = 0; 8832 WARN_ON(wc->refs[level] != 1); 8833 level--; 8834 } 8835 } 8836 8837 wc->level = level; 8838 wc->shared_level = -1; 8839 wc->stage = DROP_REFERENCE; 8840 wc->update_ref = update_ref; 8841 wc->keep_locks = 0; 8842 wc->for_reloc = for_reloc; 8843 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8844 8845 while (1) { 8846 8847 ret = walk_down_tree(trans, root, path, wc); 8848 if (ret < 0) { 8849 err = ret; 8850 break; 8851 } 8852 8853 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8854 if (ret < 0) { 8855 err = ret; 8856 break; 8857 } 8858 8859 if (ret > 0) { 8860 BUG_ON(wc->stage != DROP_REFERENCE); 8861 break; 8862 } 8863 8864 if (wc->stage == DROP_REFERENCE) { 8865 level = wc->level; 8866 btrfs_node_key(path->nodes[level], 8867 &root_item->drop_progress, 8868 path->slots[level]); 8869 root_item->drop_level = level; 8870 } 8871 8872 BUG_ON(wc->level == 0); 8873 if (btrfs_should_end_transaction(trans, tree_root) || 8874 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8875 ret = btrfs_update_root(trans, tree_root, 8876 &root->root_key, 8877 root_item); 8878 if (ret) { 8879 btrfs_abort_transaction(trans, tree_root, ret); 8880 err = ret; 8881 goto out_end_trans; 8882 } 8883 8884 btrfs_end_transaction_throttle(trans, tree_root); 8885 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8886 pr_debug("BTRFS: drop snapshot early exit\n"); 8887 err = -EAGAIN; 8888 goto out_free; 8889 } 8890 8891 trans = btrfs_start_transaction(tree_root, 0); 8892 if (IS_ERR(trans)) { 8893 err = PTR_ERR(trans); 8894 goto out_free; 8895 } 8896 if (block_rsv) 8897 trans->block_rsv = block_rsv; 8898 } 8899 } 8900 btrfs_release_path(path); 8901 if (err) 8902 goto out_end_trans; 8903 8904 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8905 if (ret) { 8906 btrfs_abort_transaction(trans, tree_root, ret); 8907 goto out_end_trans; 8908 } 8909 8910 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8911 ret = btrfs_find_root(tree_root, &root->root_key, path, 8912 NULL, NULL); 8913 if (ret < 0) { 8914 btrfs_abort_transaction(trans, tree_root, ret); 8915 err = ret; 8916 goto out_end_trans; 8917 } else if (ret > 0) { 8918 /* if we fail to delete the orphan item this time 8919 * around, it'll get picked up the next time. 8920 * 8921 * The most common failure here is just -ENOENT. 8922 */ 8923 btrfs_del_orphan_item(trans, tree_root, 8924 root->root_key.objectid); 8925 } 8926 } 8927 8928 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8929 btrfs_add_dropped_root(trans, root); 8930 } else { 8931 free_extent_buffer(root->node); 8932 free_extent_buffer(root->commit_root); 8933 btrfs_put_fs_root(root); 8934 } 8935 root_dropped = true; 8936 out_end_trans: 8937 btrfs_end_transaction_throttle(trans, tree_root); 8938 out_free: 8939 kfree(wc); 8940 btrfs_free_path(path); 8941 out: 8942 /* 8943 * So if we need to stop dropping the snapshot for whatever reason we 8944 * need to make sure to add it back to the dead root list so that we 8945 * keep trying to do the work later. This also cleans up roots if we 8946 * don't have it in the radix (like when we recover after a power fail 8947 * or unmount) so we don't leak memory. 8948 */ 8949 if (!for_reloc && root_dropped == false) 8950 btrfs_add_dead_root(root); 8951 if (err && err != -EAGAIN) 8952 btrfs_std_error(root->fs_info, err, NULL); 8953 return err; 8954 } 8955 8956 /* 8957 * drop subtree rooted at tree block 'node'. 8958 * 8959 * NOTE: this function will unlock and release tree block 'node' 8960 * only used by relocation code 8961 */ 8962 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8963 struct btrfs_root *root, 8964 struct extent_buffer *node, 8965 struct extent_buffer *parent) 8966 { 8967 struct btrfs_path *path; 8968 struct walk_control *wc; 8969 int level; 8970 int parent_level; 8971 int ret = 0; 8972 int wret; 8973 8974 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8975 8976 path = btrfs_alloc_path(); 8977 if (!path) 8978 return -ENOMEM; 8979 8980 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8981 if (!wc) { 8982 btrfs_free_path(path); 8983 return -ENOMEM; 8984 } 8985 8986 btrfs_assert_tree_locked(parent); 8987 parent_level = btrfs_header_level(parent); 8988 extent_buffer_get(parent); 8989 path->nodes[parent_level] = parent; 8990 path->slots[parent_level] = btrfs_header_nritems(parent); 8991 8992 btrfs_assert_tree_locked(node); 8993 level = btrfs_header_level(node); 8994 path->nodes[level] = node; 8995 path->slots[level] = 0; 8996 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8997 8998 wc->refs[parent_level] = 1; 8999 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9000 wc->level = level; 9001 wc->shared_level = -1; 9002 wc->stage = DROP_REFERENCE; 9003 wc->update_ref = 0; 9004 wc->keep_locks = 1; 9005 wc->for_reloc = 1; 9006 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9007 9008 while (1) { 9009 wret = walk_down_tree(trans, root, path, wc); 9010 if (wret < 0) { 9011 ret = wret; 9012 break; 9013 } 9014 9015 wret = walk_up_tree(trans, root, path, wc, parent_level); 9016 if (wret < 0) 9017 ret = wret; 9018 if (wret != 0) 9019 break; 9020 } 9021 9022 kfree(wc); 9023 btrfs_free_path(path); 9024 return ret; 9025 } 9026 9027 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9028 { 9029 u64 num_devices; 9030 u64 stripped; 9031 9032 /* 9033 * if restripe for this chunk_type is on pick target profile and 9034 * return, otherwise do the usual balance 9035 */ 9036 stripped = get_restripe_target(root->fs_info, flags); 9037 if (stripped) 9038 return extended_to_chunk(stripped); 9039 9040 num_devices = root->fs_info->fs_devices->rw_devices; 9041 9042 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9043 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9044 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9045 9046 if (num_devices == 1) { 9047 stripped |= BTRFS_BLOCK_GROUP_DUP; 9048 stripped = flags & ~stripped; 9049 9050 /* turn raid0 into single device chunks */ 9051 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9052 return stripped; 9053 9054 /* turn mirroring into duplication */ 9055 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9056 BTRFS_BLOCK_GROUP_RAID10)) 9057 return stripped | BTRFS_BLOCK_GROUP_DUP; 9058 } else { 9059 /* they already had raid on here, just return */ 9060 if (flags & stripped) 9061 return flags; 9062 9063 stripped |= BTRFS_BLOCK_GROUP_DUP; 9064 stripped = flags & ~stripped; 9065 9066 /* switch duplicated blocks with raid1 */ 9067 if (flags & BTRFS_BLOCK_GROUP_DUP) 9068 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9069 9070 /* this is drive concat, leave it alone */ 9071 } 9072 9073 return flags; 9074 } 9075 9076 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9077 { 9078 struct btrfs_space_info *sinfo = cache->space_info; 9079 u64 num_bytes; 9080 u64 min_allocable_bytes; 9081 int ret = -ENOSPC; 9082 9083 /* 9084 * We need some metadata space and system metadata space for 9085 * allocating chunks in some corner cases until we force to set 9086 * it to be readonly. 9087 */ 9088 if ((sinfo->flags & 9089 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9090 !force) 9091 min_allocable_bytes = 1 * 1024 * 1024; 9092 else 9093 min_allocable_bytes = 0; 9094 9095 spin_lock(&sinfo->lock); 9096 spin_lock(&cache->lock); 9097 9098 if (cache->ro) { 9099 cache->ro++; 9100 ret = 0; 9101 goto out; 9102 } 9103 9104 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9105 cache->bytes_super - btrfs_block_group_used(&cache->item); 9106 9107 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9108 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9109 min_allocable_bytes <= sinfo->total_bytes) { 9110 sinfo->bytes_readonly += num_bytes; 9111 cache->ro++; 9112 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9113 ret = 0; 9114 } 9115 out: 9116 spin_unlock(&cache->lock); 9117 spin_unlock(&sinfo->lock); 9118 return ret; 9119 } 9120 9121 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9122 struct btrfs_block_group_cache *cache) 9123 9124 { 9125 struct btrfs_trans_handle *trans; 9126 u64 alloc_flags; 9127 int ret; 9128 9129 again: 9130 trans = btrfs_join_transaction(root); 9131 if (IS_ERR(trans)) 9132 return PTR_ERR(trans); 9133 9134 /* 9135 * we're not allowed to set block groups readonly after the dirty 9136 * block groups cache has started writing. If it already started, 9137 * back off and let this transaction commit 9138 */ 9139 mutex_lock(&root->fs_info->ro_block_group_mutex); 9140 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9141 u64 transid = trans->transid; 9142 9143 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9144 btrfs_end_transaction(trans, root); 9145 9146 ret = btrfs_wait_for_commit(root, transid); 9147 if (ret) 9148 return ret; 9149 goto again; 9150 } 9151 9152 /* 9153 * if we are changing raid levels, try to allocate a corresponding 9154 * block group with the new raid level. 9155 */ 9156 alloc_flags = update_block_group_flags(root, cache->flags); 9157 if (alloc_flags != cache->flags) { 9158 ret = do_chunk_alloc(trans, root, alloc_flags, 9159 CHUNK_ALLOC_FORCE); 9160 /* 9161 * ENOSPC is allowed here, we may have enough space 9162 * already allocated at the new raid level to 9163 * carry on 9164 */ 9165 if (ret == -ENOSPC) 9166 ret = 0; 9167 if (ret < 0) 9168 goto out; 9169 } 9170 9171 ret = inc_block_group_ro(cache, 0); 9172 if (!ret) 9173 goto out; 9174 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9175 ret = do_chunk_alloc(trans, root, alloc_flags, 9176 CHUNK_ALLOC_FORCE); 9177 if (ret < 0) 9178 goto out; 9179 ret = inc_block_group_ro(cache, 0); 9180 out: 9181 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9182 alloc_flags = update_block_group_flags(root, cache->flags); 9183 lock_chunks(root->fs_info->chunk_root); 9184 check_system_chunk(trans, root, alloc_flags); 9185 unlock_chunks(root->fs_info->chunk_root); 9186 } 9187 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9188 9189 btrfs_end_transaction(trans, root); 9190 return ret; 9191 } 9192 9193 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9194 struct btrfs_root *root, u64 type) 9195 { 9196 u64 alloc_flags = get_alloc_profile(root, type); 9197 return do_chunk_alloc(trans, root, alloc_flags, 9198 CHUNK_ALLOC_FORCE); 9199 } 9200 9201 /* 9202 * helper to account the unused space of all the readonly block group in the 9203 * space_info. takes mirrors into account. 9204 */ 9205 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9206 { 9207 struct btrfs_block_group_cache *block_group; 9208 u64 free_bytes = 0; 9209 int factor; 9210 9211 /* It's df, we don't care if it's racey */ 9212 if (list_empty(&sinfo->ro_bgs)) 9213 return 0; 9214 9215 spin_lock(&sinfo->lock); 9216 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9217 spin_lock(&block_group->lock); 9218 9219 if (!block_group->ro) { 9220 spin_unlock(&block_group->lock); 9221 continue; 9222 } 9223 9224 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9225 BTRFS_BLOCK_GROUP_RAID10 | 9226 BTRFS_BLOCK_GROUP_DUP)) 9227 factor = 2; 9228 else 9229 factor = 1; 9230 9231 free_bytes += (block_group->key.offset - 9232 btrfs_block_group_used(&block_group->item)) * 9233 factor; 9234 9235 spin_unlock(&block_group->lock); 9236 } 9237 spin_unlock(&sinfo->lock); 9238 9239 return free_bytes; 9240 } 9241 9242 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9243 struct btrfs_block_group_cache *cache) 9244 { 9245 struct btrfs_space_info *sinfo = cache->space_info; 9246 u64 num_bytes; 9247 9248 BUG_ON(!cache->ro); 9249 9250 spin_lock(&sinfo->lock); 9251 spin_lock(&cache->lock); 9252 if (!--cache->ro) { 9253 num_bytes = cache->key.offset - cache->reserved - 9254 cache->pinned - cache->bytes_super - 9255 btrfs_block_group_used(&cache->item); 9256 sinfo->bytes_readonly -= num_bytes; 9257 list_del_init(&cache->ro_list); 9258 } 9259 spin_unlock(&cache->lock); 9260 spin_unlock(&sinfo->lock); 9261 } 9262 9263 /* 9264 * checks to see if its even possible to relocate this block group. 9265 * 9266 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9267 * ok to go ahead and try. 9268 */ 9269 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9270 { 9271 struct btrfs_block_group_cache *block_group; 9272 struct btrfs_space_info *space_info; 9273 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9274 struct btrfs_device *device; 9275 struct btrfs_trans_handle *trans; 9276 u64 min_free; 9277 u64 dev_min = 1; 9278 u64 dev_nr = 0; 9279 u64 target; 9280 int index; 9281 int full = 0; 9282 int ret = 0; 9283 9284 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9285 9286 /* odd, couldn't find the block group, leave it alone */ 9287 if (!block_group) 9288 return -1; 9289 9290 min_free = btrfs_block_group_used(&block_group->item); 9291 9292 /* no bytes used, we're good */ 9293 if (!min_free) 9294 goto out; 9295 9296 space_info = block_group->space_info; 9297 spin_lock(&space_info->lock); 9298 9299 full = space_info->full; 9300 9301 /* 9302 * if this is the last block group we have in this space, we can't 9303 * relocate it unless we're able to allocate a new chunk below. 9304 * 9305 * Otherwise, we need to make sure we have room in the space to handle 9306 * all of the extents from this block group. If we can, we're good 9307 */ 9308 if ((space_info->total_bytes != block_group->key.offset) && 9309 (space_info->bytes_used + space_info->bytes_reserved + 9310 space_info->bytes_pinned + space_info->bytes_readonly + 9311 min_free < space_info->total_bytes)) { 9312 spin_unlock(&space_info->lock); 9313 goto out; 9314 } 9315 spin_unlock(&space_info->lock); 9316 9317 /* 9318 * ok we don't have enough space, but maybe we have free space on our 9319 * devices to allocate new chunks for relocation, so loop through our 9320 * alloc devices and guess if we have enough space. if this block 9321 * group is going to be restriped, run checks against the target 9322 * profile instead of the current one. 9323 */ 9324 ret = -1; 9325 9326 /* 9327 * index: 9328 * 0: raid10 9329 * 1: raid1 9330 * 2: dup 9331 * 3: raid0 9332 * 4: single 9333 */ 9334 target = get_restripe_target(root->fs_info, block_group->flags); 9335 if (target) { 9336 index = __get_raid_index(extended_to_chunk(target)); 9337 } else { 9338 /* 9339 * this is just a balance, so if we were marked as full 9340 * we know there is no space for a new chunk 9341 */ 9342 if (full) 9343 goto out; 9344 9345 index = get_block_group_index(block_group); 9346 } 9347 9348 if (index == BTRFS_RAID_RAID10) { 9349 dev_min = 4; 9350 /* Divide by 2 */ 9351 min_free >>= 1; 9352 } else if (index == BTRFS_RAID_RAID1) { 9353 dev_min = 2; 9354 } else if (index == BTRFS_RAID_DUP) { 9355 /* Multiply by 2 */ 9356 min_free <<= 1; 9357 } else if (index == BTRFS_RAID_RAID0) { 9358 dev_min = fs_devices->rw_devices; 9359 min_free = div64_u64(min_free, dev_min); 9360 } 9361 9362 /* We need to do this so that we can look at pending chunks */ 9363 trans = btrfs_join_transaction(root); 9364 if (IS_ERR(trans)) { 9365 ret = PTR_ERR(trans); 9366 goto out; 9367 } 9368 9369 mutex_lock(&root->fs_info->chunk_mutex); 9370 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9371 u64 dev_offset; 9372 9373 /* 9374 * check to make sure we can actually find a chunk with enough 9375 * space to fit our block group in. 9376 */ 9377 if (device->total_bytes > device->bytes_used + min_free && 9378 !device->is_tgtdev_for_dev_replace) { 9379 ret = find_free_dev_extent(trans, device, min_free, 9380 &dev_offset, NULL); 9381 if (!ret) 9382 dev_nr++; 9383 9384 if (dev_nr >= dev_min) 9385 break; 9386 9387 ret = -1; 9388 } 9389 } 9390 mutex_unlock(&root->fs_info->chunk_mutex); 9391 btrfs_end_transaction(trans, root); 9392 out: 9393 btrfs_put_block_group(block_group); 9394 return ret; 9395 } 9396 9397 static int find_first_block_group(struct btrfs_root *root, 9398 struct btrfs_path *path, struct btrfs_key *key) 9399 { 9400 int ret = 0; 9401 struct btrfs_key found_key; 9402 struct extent_buffer *leaf; 9403 int slot; 9404 9405 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9406 if (ret < 0) 9407 goto out; 9408 9409 while (1) { 9410 slot = path->slots[0]; 9411 leaf = path->nodes[0]; 9412 if (slot >= btrfs_header_nritems(leaf)) { 9413 ret = btrfs_next_leaf(root, path); 9414 if (ret == 0) 9415 continue; 9416 if (ret < 0) 9417 goto out; 9418 break; 9419 } 9420 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9421 9422 if (found_key.objectid >= key->objectid && 9423 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9424 ret = 0; 9425 goto out; 9426 } 9427 path->slots[0]++; 9428 } 9429 out: 9430 return ret; 9431 } 9432 9433 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9434 { 9435 struct btrfs_block_group_cache *block_group; 9436 u64 last = 0; 9437 9438 while (1) { 9439 struct inode *inode; 9440 9441 block_group = btrfs_lookup_first_block_group(info, last); 9442 while (block_group) { 9443 spin_lock(&block_group->lock); 9444 if (block_group->iref) 9445 break; 9446 spin_unlock(&block_group->lock); 9447 block_group = next_block_group(info->tree_root, 9448 block_group); 9449 } 9450 if (!block_group) { 9451 if (last == 0) 9452 break; 9453 last = 0; 9454 continue; 9455 } 9456 9457 inode = block_group->inode; 9458 block_group->iref = 0; 9459 block_group->inode = NULL; 9460 spin_unlock(&block_group->lock); 9461 iput(inode); 9462 last = block_group->key.objectid + block_group->key.offset; 9463 btrfs_put_block_group(block_group); 9464 } 9465 } 9466 9467 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9468 { 9469 struct btrfs_block_group_cache *block_group; 9470 struct btrfs_space_info *space_info; 9471 struct btrfs_caching_control *caching_ctl; 9472 struct rb_node *n; 9473 9474 down_write(&info->commit_root_sem); 9475 while (!list_empty(&info->caching_block_groups)) { 9476 caching_ctl = list_entry(info->caching_block_groups.next, 9477 struct btrfs_caching_control, list); 9478 list_del(&caching_ctl->list); 9479 put_caching_control(caching_ctl); 9480 } 9481 up_write(&info->commit_root_sem); 9482 9483 spin_lock(&info->unused_bgs_lock); 9484 while (!list_empty(&info->unused_bgs)) { 9485 block_group = list_first_entry(&info->unused_bgs, 9486 struct btrfs_block_group_cache, 9487 bg_list); 9488 list_del_init(&block_group->bg_list); 9489 btrfs_put_block_group(block_group); 9490 } 9491 spin_unlock(&info->unused_bgs_lock); 9492 9493 spin_lock(&info->block_group_cache_lock); 9494 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9495 block_group = rb_entry(n, struct btrfs_block_group_cache, 9496 cache_node); 9497 rb_erase(&block_group->cache_node, 9498 &info->block_group_cache_tree); 9499 RB_CLEAR_NODE(&block_group->cache_node); 9500 spin_unlock(&info->block_group_cache_lock); 9501 9502 down_write(&block_group->space_info->groups_sem); 9503 list_del(&block_group->list); 9504 up_write(&block_group->space_info->groups_sem); 9505 9506 if (block_group->cached == BTRFS_CACHE_STARTED) 9507 wait_block_group_cache_done(block_group); 9508 9509 /* 9510 * We haven't cached this block group, which means we could 9511 * possibly have excluded extents on this block group. 9512 */ 9513 if (block_group->cached == BTRFS_CACHE_NO || 9514 block_group->cached == BTRFS_CACHE_ERROR) 9515 free_excluded_extents(info->extent_root, block_group); 9516 9517 btrfs_remove_free_space_cache(block_group); 9518 btrfs_put_block_group(block_group); 9519 9520 spin_lock(&info->block_group_cache_lock); 9521 } 9522 spin_unlock(&info->block_group_cache_lock); 9523 9524 /* now that all the block groups are freed, go through and 9525 * free all the space_info structs. This is only called during 9526 * the final stages of unmount, and so we know nobody is 9527 * using them. We call synchronize_rcu() once before we start, 9528 * just to be on the safe side. 9529 */ 9530 synchronize_rcu(); 9531 9532 release_global_block_rsv(info); 9533 9534 while (!list_empty(&info->space_info)) { 9535 int i; 9536 9537 space_info = list_entry(info->space_info.next, 9538 struct btrfs_space_info, 9539 list); 9540 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9541 if (WARN_ON(space_info->bytes_pinned > 0 || 9542 space_info->bytes_reserved > 0 || 9543 space_info->bytes_may_use > 0)) { 9544 dump_space_info(space_info, 0, 0); 9545 } 9546 } 9547 list_del(&space_info->list); 9548 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9549 struct kobject *kobj; 9550 kobj = space_info->block_group_kobjs[i]; 9551 space_info->block_group_kobjs[i] = NULL; 9552 if (kobj) { 9553 kobject_del(kobj); 9554 kobject_put(kobj); 9555 } 9556 } 9557 kobject_del(&space_info->kobj); 9558 kobject_put(&space_info->kobj); 9559 } 9560 return 0; 9561 } 9562 9563 static void __link_block_group(struct btrfs_space_info *space_info, 9564 struct btrfs_block_group_cache *cache) 9565 { 9566 int index = get_block_group_index(cache); 9567 bool first = false; 9568 9569 down_write(&space_info->groups_sem); 9570 if (list_empty(&space_info->block_groups[index])) 9571 first = true; 9572 list_add_tail(&cache->list, &space_info->block_groups[index]); 9573 up_write(&space_info->groups_sem); 9574 9575 if (first) { 9576 struct raid_kobject *rkobj; 9577 int ret; 9578 9579 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9580 if (!rkobj) 9581 goto out_err; 9582 rkobj->raid_type = index; 9583 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9584 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9585 "%s", get_raid_name(index)); 9586 if (ret) { 9587 kobject_put(&rkobj->kobj); 9588 goto out_err; 9589 } 9590 space_info->block_group_kobjs[index] = &rkobj->kobj; 9591 } 9592 9593 return; 9594 out_err: 9595 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9596 } 9597 9598 static struct btrfs_block_group_cache * 9599 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9600 { 9601 struct btrfs_block_group_cache *cache; 9602 9603 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9604 if (!cache) 9605 return NULL; 9606 9607 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9608 GFP_NOFS); 9609 if (!cache->free_space_ctl) { 9610 kfree(cache); 9611 return NULL; 9612 } 9613 9614 cache->key.objectid = start; 9615 cache->key.offset = size; 9616 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9617 9618 cache->sectorsize = root->sectorsize; 9619 cache->fs_info = root->fs_info; 9620 cache->full_stripe_len = btrfs_full_stripe_len(root, 9621 &root->fs_info->mapping_tree, 9622 start); 9623 atomic_set(&cache->count, 1); 9624 spin_lock_init(&cache->lock); 9625 init_rwsem(&cache->data_rwsem); 9626 INIT_LIST_HEAD(&cache->list); 9627 INIT_LIST_HEAD(&cache->cluster_list); 9628 INIT_LIST_HEAD(&cache->bg_list); 9629 INIT_LIST_HEAD(&cache->ro_list); 9630 INIT_LIST_HEAD(&cache->dirty_list); 9631 INIT_LIST_HEAD(&cache->io_list); 9632 btrfs_init_free_space_ctl(cache); 9633 atomic_set(&cache->trimming, 0); 9634 9635 return cache; 9636 } 9637 9638 int btrfs_read_block_groups(struct btrfs_root *root) 9639 { 9640 struct btrfs_path *path; 9641 int ret; 9642 struct btrfs_block_group_cache *cache; 9643 struct btrfs_fs_info *info = root->fs_info; 9644 struct btrfs_space_info *space_info; 9645 struct btrfs_key key; 9646 struct btrfs_key found_key; 9647 struct extent_buffer *leaf; 9648 int need_clear = 0; 9649 u64 cache_gen; 9650 9651 root = info->extent_root; 9652 key.objectid = 0; 9653 key.offset = 0; 9654 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9655 path = btrfs_alloc_path(); 9656 if (!path) 9657 return -ENOMEM; 9658 path->reada = 1; 9659 9660 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9661 if (btrfs_test_opt(root, SPACE_CACHE) && 9662 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9663 need_clear = 1; 9664 if (btrfs_test_opt(root, CLEAR_CACHE)) 9665 need_clear = 1; 9666 9667 while (1) { 9668 ret = find_first_block_group(root, path, &key); 9669 if (ret > 0) 9670 break; 9671 if (ret != 0) 9672 goto error; 9673 9674 leaf = path->nodes[0]; 9675 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9676 9677 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9678 found_key.offset); 9679 if (!cache) { 9680 ret = -ENOMEM; 9681 goto error; 9682 } 9683 9684 if (need_clear) { 9685 /* 9686 * When we mount with old space cache, we need to 9687 * set BTRFS_DC_CLEAR and set dirty flag. 9688 * 9689 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9690 * truncate the old free space cache inode and 9691 * setup a new one. 9692 * b) Setting 'dirty flag' makes sure that we flush 9693 * the new space cache info onto disk. 9694 */ 9695 if (btrfs_test_opt(root, SPACE_CACHE)) 9696 cache->disk_cache_state = BTRFS_DC_CLEAR; 9697 } 9698 9699 read_extent_buffer(leaf, &cache->item, 9700 btrfs_item_ptr_offset(leaf, path->slots[0]), 9701 sizeof(cache->item)); 9702 cache->flags = btrfs_block_group_flags(&cache->item); 9703 9704 key.objectid = found_key.objectid + found_key.offset; 9705 btrfs_release_path(path); 9706 9707 /* 9708 * We need to exclude the super stripes now so that the space 9709 * info has super bytes accounted for, otherwise we'll think 9710 * we have more space than we actually do. 9711 */ 9712 ret = exclude_super_stripes(root, cache); 9713 if (ret) { 9714 /* 9715 * We may have excluded something, so call this just in 9716 * case. 9717 */ 9718 free_excluded_extents(root, cache); 9719 btrfs_put_block_group(cache); 9720 goto error; 9721 } 9722 9723 /* 9724 * check for two cases, either we are full, and therefore 9725 * don't need to bother with the caching work since we won't 9726 * find any space, or we are empty, and we can just add all 9727 * the space in and be done with it. This saves us _alot_ of 9728 * time, particularly in the full case. 9729 */ 9730 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9731 cache->last_byte_to_unpin = (u64)-1; 9732 cache->cached = BTRFS_CACHE_FINISHED; 9733 free_excluded_extents(root, cache); 9734 } else if (btrfs_block_group_used(&cache->item) == 0) { 9735 cache->last_byte_to_unpin = (u64)-1; 9736 cache->cached = BTRFS_CACHE_FINISHED; 9737 add_new_free_space(cache, root->fs_info, 9738 found_key.objectid, 9739 found_key.objectid + 9740 found_key.offset); 9741 free_excluded_extents(root, cache); 9742 } 9743 9744 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9745 if (ret) { 9746 btrfs_remove_free_space_cache(cache); 9747 btrfs_put_block_group(cache); 9748 goto error; 9749 } 9750 9751 ret = update_space_info(info, cache->flags, found_key.offset, 9752 btrfs_block_group_used(&cache->item), 9753 &space_info); 9754 if (ret) { 9755 btrfs_remove_free_space_cache(cache); 9756 spin_lock(&info->block_group_cache_lock); 9757 rb_erase(&cache->cache_node, 9758 &info->block_group_cache_tree); 9759 RB_CLEAR_NODE(&cache->cache_node); 9760 spin_unlock(&info->block_group_cache_lock); 9761 btrfs_put_block_group(cache); 9762 goto error; 9763 } 9764 9765 cache->space_info = space_info; 9766 spin_lock(&cache->space_info->lock); 9767 cache->space_info->bytes_readonly += cache->bytes_super; 9768 spin_unlock(&cache->space_info->lock); 9769 9770 __link_block_group(space_info, cache); 9771 9772 set_avail_alloc_bits(root->fs_info, cache->flags); 9773 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9774 inc_block_group_ro(cache, 1); 9775 } else if (btrfs_block_group_used(&cache->item) == 0) { 9776 spin_lock(&info->unused_bgs_lock); 9777 /* Should always be true but just in case. */ 9778 if (list_empty(&cache->bg_list)) { 9779 btrfs_get_block_group(cache); 9780 list_add_tail(&cache->bg_list, 9781 &info->unused_bgs); 9782 } 9783 spin_unlock(&info->unused_bgs_lock); 9784 } 9785 } 9786 9787 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9788 if (!(get_alloc_profile(root, space_info->flags) & 9789 (BTRFS_BLOCK_GROUP_RAID10 | 9790 BTRFS_BLOCK_GROUP_RAID1 | 9791 BTRFS_BLOCK_GROUP_RAID5 | 9792 BTRFS_BLOCK_GROUP_RAID6 | 9793 BTRFS_BLOCK_GROUP_DUP))) 9794 continue; 9795 /* 9796 * avoid allocating from un-mirrored block group if there are 9797 * mirrored block groups. 9798 */ 9799 list_for_each_entry(cache, 9800 &space_info->block_groups[BTRFS_RAID_RAID0], 9801 list) 9802 inc_block_group_ro(cache, 1); 9803 list_for_each_entry(cache, 9804 &space_info->block_groups[BTRFS_RAID_SINGLE], 9805 list) 9806 inc_block_group_ro(cache, 1); 9807 } 9808 9809 init_global_block_rsv(info); 9810 ret = 0; 9811 error: 9812 btrfs_free_path(path); 9813 return ret; 9814 } 9815 9816 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9817 struct btrfs_root *root) 9818 { 9819 struct btrfs_block_group_cache *block_group, *tmp; 9820 struct btrfs_root *extent_root = root->fs_info->extent_root; 9821 struct btrfs_block_group_item item; 9822 struct btrfs_key key; 9823 int ret = 0; 9824 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 9825 9826 trans->can_flush_pending_bgs = false; 9827 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9828 if (ret) 9829 goto next; 9830 9831 spin_lock(&block_group->lock); 9832 memcpy(&item, &block_group->item, sizeof(item)); 9833 memcpy(&key, &block_group->key, sizeof(key)); 9834 spin_unlock(&block_group->lock); 9835 9836 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9837 sizeof(item)); 9838 if (ret) 9839 btrfs_abort_transaction(trans, extent_root, ret); 9840 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9841 key.objectid, key.offset); 9842 if (ret) 9843 btrfs_abort_transaction(trans, extent_root, ret); 9844 next: 9845 list_del_init(&block_group->bg_list); 9846 } 9847 trans->can_flush_pending_bgs = can_flush_pending_bgs; 9848 } 9849 9850 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9851 struct btrfs_root *root, u64 bytes_used, 9852 u64 type, u64 chunk_objectid, u64 chunk_offset, 9853 u64 size) 9854 { 9855 int ret; 9856 struct btrfs_root *extent_root; 9857 struct btrfs_block_group_cache *cache; 9858 9859 extent_root = root->fs_info->extent_root; 9860 9861 btrfs_set_log_full_commit(root->fs_info, trans); 9862 9863 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9864 if (!cache) 9865 return -ENOMEM; 9866 9867 btrfs_set_block_group_used(&cache->item, bytes_used); 9868 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9869 btrfs_set_block_group_flags(&cache->item, type); 9870 9871 cache->flags = type; 9872 cache->last_byte_to_unpin = (u64)-1; 9873 cache->cached = BTRFS_CACHE_FINISHED; 9874 ret = exclude_super_stripes(root, cache); 9875 if (ret) { 9876 /* 9877 * We may have excluded something, so call this just in 9878 * case. 9879 */ 9880 free_excluded_extents(root, cache); 9881 btrfs_put_block_group(cache); 9882 return ret; 9883 } 9884 9885 add_new_free_space(cache, root->fs_info, chunk_offset, 9886 chunk_offset + size); 9887 9888 free_excluded_extents(root, cache); 9889 9890 #ifdef CONFIG_BTRFS_DEBUG 9891 if (btrfs_should_fragment_free_space(root, cache)) { 9892 u64 new_bytes_used = size - bytes_used; 9893 9894 bytes_used += new_bytes_used >> 1; 9895 fragment_free_space(root, cache); 9896 } 9897 #endif 9898 /* 9899 * Call to ensure the corresponding space_info object is created and 9900 * assigned to our block group, but don't update its counters just yet. 9901 * We want our bg to be added to the rbtree with its ->space_info set. 9902 */ 9903 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9904 &cache->space_info); 9905 if (ret) { 9906 btrfs_remove_free_space_cache(cache); 9907 btrfs_put_block_group(cache); 9908 return ret; 9909 } 9910 9911 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9912 if (ret) { 9913 btrfs_remove_free_space_cache(cache); 9914 btrfs_put_block_group(cache); 9915 return ret; 9916 } 9917 9918 /* 9919 * Now that our block group has its ->space_info set and is inserted in 9920 * the rbtree, update the space info's counters. 9921 */ 9922 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9923 &cache->space_info); 9924 if (ret) { 9925 btrfs_remove_free_space_cache(cache); 9926 spin_lock(&root->fs_info->block_group_cache_lock); 9927 rb_erase(&cache->cache_node, 9928 &root->fs_info->block_group_cache_tree); 9929 RB_CLEAR_NODE(&cache->cache_node); 9930 spin_unlock(&root->fs_info->block_group_cache_lock); 9931 btrfs_put_block_group(cache); 9932 return ret; 9933 } 9934 update_global_block_rsv(root->fs_info); 9935 9936 spin_lock(&cache->space_info->lock); 9937 cache->space_info->bytes_readonly += cache->bytes_super; 9938 spin_unlock(&cache->space_info->lock); 9939 9940 __link_block_group(cache->space_info, cache); 9941 9942 list_add_tail(&cache->bg_list, &trans->new_bgs); 9943 9944 set_avail_alloc_bits(extent_root->fs_info, type); 9945 9946 return 0; 9947 } 9948 9949 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9950 { 9951 u64 extra_flags = chunk_to_extended(flags) & 9952 BTRFS_EXTENDED_PROFILE_MASK; 9953 9954 write_seqlock(&fs_info->profiles_lock); 9955 if (flags & BTRFS_BLOCK_GROUP_DATA) 9956 fs_info->avail_data_alloc_bits &= ~extra_flags; 9957 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9958 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9959 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9960 fs_info->avail_system_alloc_bits &= ~extra_flags; 9961 write_sequnlock(&fs_info->profiles_lock); 9962 } 9963 9964 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9965 struct btrfs_root *root, u64 group_start, 9966 struct extent_map *em) 9967 { 9968 struct btrfs_path *path; 9969 struct btrfs_block_group_cache *block_group; 9970 struct btrfs_free_cluster *cluster; 9971 struct btrfs_root *tree_root = root->fs_info->tree_root; 9972 struct btrfs_key key; 9973 struct inode *inode; 9974 struct kobject *kobj = NULL; 9975 int ret; 9976 int index; 9977 int factor; 9978 struct btrfs_caching_control *caching_ctl = NULL; 9979 bool remove_em; 9980 9981 root = root->fs_info->extent_root; 9982 9983 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9984 BUG_ON(!block_group); 9985 BUG_ON(!block_group->ro); 9986 9987 /* 9988 * Free the reserved super bytes from this block group before 9989 * remove it. 9990 */ 9991 free_excluded_extents(root, block_group); 9992 9993 memcpy(&key, &block_group->key, sizeof(key)); 9994 index = get_block_group_index(block_group); 9995 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9996 BTRFS_BLOCK_GROUP_RAID1 | 9997 BTRFS_BLOCK_GROUP_RAID10)) 9998 factor = 2; 9999 else 10000 factor = 1; 10001 10002 /* make sure this block group isn't part of an allocation cluster */ 10003 cluster = &root->fs_info->data_alloc_cluster; 10004 spin_lock(&cluster->refill_lock); 10005 btrfs_return_cluster_to_free_space(block_group, cluster); 10006 spin_unlock(&cluster->refill_lock); 10007 10008 /* 10009 * make sure this block group isn't part of a metadata 10010 * allocation cluster 10011 */ 10012 cluster = &root->fs_info->meta_alloc_cluster; 10013 spin_lock(&cluster->refill_lock); 10014 btrfs_return_cluster_to_free_space(block_group, cluster); 10015 spin_unlock(&cluster->refill_lock); 10016 10017 path = btrfs_alloc_path(); 10018 if (!path) { 10019 ret = -ENOMEM; 10020 goto out; 10021 } 10022 10023 /* 10024 * get the inode first so any iput calls done for the io_list 10025 * aren't the final iput (no unlinks allowed now) 10026 */ 10027 inode = lookup_free_space_inode(tree_root, block_group, path); 10028 10029 mutex_lock(&trans->transaction->cache_write_mutex); 10030 /* 10031 * make sure our free spache cache IO is done before remove the 10032 * free space inode 10033 */ 10034 spin_lock(&trans->transaction->dirty_bgs_lock); 10035 if (!list_empty(&block_group->io_list)) { 10036 list_del_init(&block_group->io_list); 10037 10038 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10039 10040 spin_unlock(&trans->transaction->dirty_bgs_lock); 10041 btrfs_wait_cache_io(root, trans, block_group, 10042 &block_group->io_ctl, path, 10043 block_group->key.objectid); 10044 btrfs_put_block_group(block_group); 10045 spin_lock(&trans->transaction->dirty_bgs_lock); 10046 } 10047 10048 if (!list_empty(&block_group->dirty_list)) { 10049 list_del_init(&block_group->dirty_list); 10050 btrfs_put_block_group(block_group); 10051 } 10052 spin_unlock(&trans->transaction->dirty_bgs_lock); 10053 mutex_unlock(&trans->transaction->cache_write_mutex); 10054 10055 if (!IS_ERR(inode)) { 10056 ret = btrfs_orphan_add(trans, inode); 10057 if (ret) { 10058 btrfs_add_delayed_iput(inode); 10059 goto out; 10060 } 10061 clear_nlink(inode); 10062 /* One for the block groups ref */ 10063 spin_lock(&block_group->lock); 10064 if (block_group->iref) { 10065 block_group->iref = 0; 10066 block_group->inode = NULL; 10067 spin_unlock(&block_group->lock); 10068 iput(inode); 10069 } else { 10070 spin_unlock(&block_group->lock); 10071 } 10072 /* One for our lookup ref */ 10073 btrfs_add_delayed_iput(inode); 10074 } 10075 10076 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10077 key.offset = block_group->key.objectid; 10078 key.type = 0; 10079 10080 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10081 if (ret < 0) 10082 goto out; 10083 if (ret > 0) 10084 btrfs_release_path(path); 10085 if (ret == 0) { 10086 ret = btrfs_del_item(trans, tree_root, path); 10087 if (ret) 10088 goto out; 10089 btrfs_release_path(path); 10090 } 10091 10092 spin_lock(&root->fs_info->block_group_cache_lock); 10093 rb_erase(&block_group->cache_node, 10094 &root->fs_info->block_group_cache_tree); 10095 RB_CLEAR_NODE(&block_group->cache_node); 10096 10097 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10098 root->fs_info->first_logical_byte = (u64)-1; 10099 spin_unlock(&root->fs_info->block_group_cache_lock); 10100 10101 down_write(&block_group->space_info->groups_sem); 10102 /* 10103 * we must use list_del_init so people can check to see if they 10104 * are still on the list after taking the semaphore 10105 */ 10106 list_del_init(&block_group->list); 10107 if (list_empty(&block_group->space_info->block_groups[index])) { 10108 kobj = block_group->space_info->block_group_kobjs[index]; 10109 block_group->space_info->block_group_kobjs[index] = NULL; 10110 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10111 } 10112 up_write(&block_group->space_info->groups_sem); 10113 if (kobj) { 10114 kobject_del(kobj); 10115 kobject_put(kobj); 10116 } 10117 10118 if (block_group->has_caching_ctl) 10119 caching_ctl = get_caching_control(block_group); 10120 if (block_group->cached == BTRFS_CACHE_STARTED) 10121 wait_block_group_cache_done(block_group); 10122 if (block_group->has_caching_ctl) { 10123 down_write(&root->fs_info->commit_root_sem); 10124 if (!caching_ctl) { 10125 struct btrfs_caching_control *ctl; 10126 10127 list_for_each_entry(ctl, 10128 &root->fs_info->caching_block_groups, list) 10129 if (ctl->block_group == block_group) { 10130 caching_ctl = ctl; 10131 atomic_inc(&caching_ctl->count); 10132 break; 10133 } 10134 } 10135 if (caching_ctl) 10136 list_del_init(&caching_ctl->list); 10137 up_write(&root->fs_info->commit_root_sem); 10138 if (caching_ctl) { 10139 /* Once for the caching bgs list and once for us. */ 10140 put_caching_control(caching_ctl); 10141 put_caching_control(caching_ctl); 10142 } 10143 } 10144 10145 spin_lock(&trans->transaction->dirty_bgs_lock); 10146 if (!list_empty(&block_group->dirty_list)) { 10147 WARN_ON(1); 10148 } 10149 if (!list_empty(&block_group->io_list)) { 10150 WARN_ON(1); 10151 } 10152 spin_unlock(&trans->transaction->dirty_bgs_lock); 10153 btrfs_remove_free_space_cache(block_group); 10154 10155 spin_lock(&block_group->space_info->lock); 10156 list_del_init(&block_group->ro_list); 10157 10158 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 10159 WARN_ON(block_group->space_info->total_bytes 10160 < block_group->key.offset); 10161 WARN_ON(block_group->space_info->bytes_readonly 10162 < block_group->key.offset); 10163 WARN_ON(block_group->space_info->disk_total 10164 < block_group->key.offset * factor); 10165 } 10166 block_group->space_info->total_bytes -= block_group->key.offset; 10167 block_group->space_info->bytes_readonly -= block_group->key.offset; 10168 block_group->space_info->disk_total -= block_group->key.offset * factor; 10169 10170 spin_unlock(&block_group->space_info->lock); 10171 10172 memcpy(&key, &block_group->key, sizeof(key)); 10173 10174 lock_chunks(root); 10175 if (!list_empty(&em->list)) { 10176 /* We're in the transaction->pending_chunks list. */ 10177 free_extent_map(em); 10178 } 10179 spin_lock(&block_group->lock); 10180 block_group->removed = 1; 10181 /* 10182 * At this point trimming can't start on this block group, because we 10183 * removed the block group from the tree fs_info->block_group_cache_tree 10184 * so no one can't find it anymore and even if someone already got this 10185 * block group before we removed it from the rbtree, they have already 10186 * incremented block_group->trimming - if they didn't, they won't find 10187 * any free space entries because we already removed them all when we 10188 * called btrfs_remove_free_space_cache(). 10189 * 10190 * And we must not remove the extent map from the fs_info->mapping_tree 10191 * to prevent the same logical address range and physical device space 10192 * ranges from being reused for a new block group. This is because our 10193 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10194 * completely transactionless, so while it is trimming a range the 10195 * currently running transaction might finish and a new one start, 10196 * allowing for new block groups to be created that can reuse the same 10197 * physical device locations unless we take this special care. 10198 * 10199 * There may also be an implicit trim operation if the file system 10200 * is mounted with -odiscard. The same protections must remain 10201 * in place until the extents have been discarded completely when 10202 * the transaction commit has completed. 10203 */ 10204 remove_em = (atomic_read(&block_group->trimming) == 0); 10205 /* 10206 * Make sure a trimmer task always sees the em in the pinned_chunks list 10207 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10208 * before checking block_group->removed). 10209 */ 10210 if (!remove_em) { 10211 /* 10212 * Our em might be in trans->transaction->pending_chunks which 10213 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10214 * and so is the fs_info->pinned_chunks list. 10215 * 10216 * So at this point we must be holding the chunk_mutex to avoid 10217 * any races with chunk allocation (more specifically at 10218 * volumes.c:contains_pending_extent()), to ensure it always 10219 * sees the em, either in the pending_chunks list or in the 10220 * pinned_chunks list. 10221 */ 10222 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10223 } 10224 spin_unlock(&block_group->lock); 10225 10226 if (remove_em) { 10227 struct extent_map_tree *em_tree; 10228 10229 em_tree = &root->fs_info->mapping_tree.map_tree; 10230 write_lock(&em_tree->lock); 10231 /* 10232 * The em might be in the pending_chunks list, so make sure the 10233 * chunk mutex is locked, since remove_extent_mapping() will 10234 * delete us from that list. 10235 */ 10236 remove_extent_mapping(em_tree, em); 10237 write_unlock(&em_tree->lock); 10238 /* once for the tree */ 10239 free_extent_map(em); 10240 } 10241 10242 unlock_chunks(root); 10243 10244 btrfs_put_block_group(block_group); 10245 btrfs_put_block_group(block_group); 10246 10247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10248 if (ret > 0) 10249 ret = -EIO; 10250 if (ret < 0) 10251 goto out; 10252 10253 ret = btrfs_del_item(trans, root, path); 10254 out: 10255 btrfs_free_path(path); 10256 return ret; 10257 } 10258 10259 /* 10260 * Process the unused_bgs list and remove any that don't have any allocated 10261 * space inside of them. 10262 */ 10263 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10264 { 10265 struct btrfs_block_group_cache *block_group; 10266 struct btrfs_space_info *space_info; 10267 struct btrfs_root *root = fs_info->extent_root; 10268 struct btrfs_trans_handle *trans; 10269 int ret = 0; 10270 10271 if (!fs_info->open) 10272 return; 10273 10274 spin_lock(&fs_info->unused_bgs_lock); 10275 while (!list_empty(&fs_info->unused_bgs)) { 10276 u64 start, end; 10277 int trimming; 10278 10279 block_group = list_first_entry(&fs_info->unused_bgs, 10280 struct btrfs_block_group_cache, 10281 bg_list); 10282 list_del_init(&block_group->bg_list); 10283 10284 space_info = block_group->space_info; 10285 10286 if (ret || btrfs_mixed_space_info(space_info)) { 10287 btrfs_put_block_group(block_group); 10288 continue; 10289 } 10290 spin_unlock(&fs_info->unused_bgs_lock); 10291 10292 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10293 10294 /* Don't want to race with allocators so take the groups_sem */ 10295 down_write(&space_info->groups_sem); 10296 spin_lock(&block_group->lock); 10297 if (block_group->reserved || 10298 btrfs_block_group_used(&block_group->item) || 10299 block_group->ro || 10300 list_is_singular(&block_group->list)) { 10301 /* 10302 * We want to bail if we made new allocations or have 10303 * outstanding allocations in this block group. We do 10304 * the ro check in case balance is currently acting on 10305 * this block group. 10306 */ 10307 spin_unlock(&block_group->lock); 10308 up_write(&space_info->groups_sem); 10309 goto next; 10310 } 10311 spin_unlock(&block_group->lock); 10312 10313 /* We don't want to force the issue, only flip if it's ok. */ 10314 ret = inc_block_group_ro(block_group, 0); 10315 up_write(&space_info->groups_sem); 10316 if (ret < 0) { 10317 ret = 0; 10318 goto next; 10319 } 10320 10321 /* 10322 * Want to do this before we do anything else so we can recover 10323 * properly if we fail to join the transaction. 10324 */ 10325 /* 1 for btrfs_orphan_reserve_metadata() */ 10326 trans = btrfs_start_transaction(root, 1); 10327 if (IS_ERR(trans)) { 10328 btrfs_dec_block_group_ro(root, block_group); 10329 ret = PTR_ERR(trans); 10330 goto next; 10331 } 10332 10333 /* 10334 * We could have pending pinned extents for this block group, 10335 * just delete them, we don't care about them anymore. 10336 */ 10337 start = block_group->key.objectid; 10338 end = start + block_group->key.offset - 1; 10339 /* 10340 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10341 * btrfs_finish_extent_commit(). If we are at transaction N, 10342 * another task might be running finish_extent_commit() for the 10343 * previous transaction N - 1, and have seen a range belonging 10344 * to the block group in freed_extents[] before we were able to 10345 * clear the whole block group range from freed_extents[]. This 10346 * means that task can lookup for the block group after we 10347 * unpinned it from freed_extents[] and removed it, leading to 10348 * a BUG_ON() at btrfs_unpin_extent_range(). 10349 */ 10350 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10351 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10352 EXTENT_DIRTY, GFP_NOFS); 10353 if (ret) { 10354 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10355 btrfs_dec_block_group_ro(root, block_group); 10356 goto end_trans; 10357 } 10358 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10359 EXTENT_DIRTY, GFP_NOFS); 10360 if (ret) { 10361 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10362 btrfs_dec_block_group_ro(root, block_group); 10363 goto end_trans; 10364 } 10365 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10366 10367 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10368 spin_lock(&space_info->lock); 10369 spin_lock(&block_group->lock); 10370 10371 space_info->bytes_pinned -= block_group->pinned; 10372 space_info->bytes_readonly += block_group->pinned; 10373 percpu_counter_add(&space_info->total_bytes_pinned, 10374 -block_group->pinned); 10375 block_group->pinned = 0; 10376 10377 spin_unlock(&block_group->lock); 10378 spin_unlock(&space_info->lock); 10379 10380 /* DISCARD can flip during remount */ 10381 trimming = btrfs_test_opt(root, DISCARD); 10382 10383 /* Implicit trim during transaction commit. */ 10384 if (trimming) 10385 btrfs_get_block_group_trimming(block_group); 10386 10387 /* 10388 * Btrfs_remove_chunk will abort the transaction if things go 10389 * horribly wrong. 10390 */ 10391 ret = btrfs_remove_chunk(trans, root, 10392 block_group->key.objectid); 10393 10394 if (ret) { 10395 if (trimming) 10396 btrfs_put_block_group_trimming(block_group); 10397 goto end_trans; 10398 } 10399 10400 /* 10401 * If we're not mounted with -odiscard, we can just forget 10402 * about this block group. Otherwise we'll need to wait 10403 * until transaction commit to do the actual discard. 10404 */ 10405 if (trimming) { 10406 WARN_ON(!list_empty(&block_group->bg_list)); 10407 spin_lock(&trans->transaction->deleted_bgs_lock); 10408 list_move(&block_group->bg_list, 10409 &trans->transaction->deleted_bgs); 10410 spin_unlock(&trans->transaction->deleted_bgs_lock); 10411 btrfs_get_block_group(block_group); 10412 } 10413 end_trans: 10414 btrfs_end_transaction(trans, root); 10415 next: 10416 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10417 btrfs_put_block_group(block_group); 10418 spin_lock(&fs_info->unused_bgs_lock); 10419 } 10420 spin_unlock(&fs_info->unused_bgs_lock); 10421 } 10422 10423 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10424 { 10425 struct btrfs_space_info *space_info; 10426 struct btrfs_super_block *disk_super; 10427 u64 features; 10428 u64 flags; 10429 int mixed = 0; 10430 int ret; 10431 10432 disk_super = fs_info->super_copy; 10433 if (!btrfs_super_root(disk_super)) 10434 return 1; 10435 10436 features = btrfs_super_incompat_flags(disk_super); 10437 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10438 mixed = 1; 10439 10440 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10441 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10442 if (ret) 10443 goto out; 10444 10445 if (mixed) { 10446 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10447 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10448 } else { 10449 flags = BTRFS_BLOCK_GROUP_METADATA; 10450 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10451 if (ret) 10452 goto out; 10453 10454 flags = BTRFS_BLOCK_GROUP_DATA; 10455 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10456 } 10457 out: 10458 return ret; 10459 } 10460 10461 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10462 { 10463 return unpin_extent_range(root, start, end, false); 10464 } 10465 10466 /* 10467 * It used to be that old block groups would be left around forever. 10468 * Iterating over them would be enough to trim unused space. Since we 10469 * now automatically remove them, we also need to iterate over unallocated 10470 * space. 10471 * 10472 * We don't want a transaction for this since the discard may take a 10473 * substantial amount of time. We don't require that a transaction be 10474 * running, but we do need to take a running transaction into account 10475 * to ensure that we're not discarding chunks that were released in 10476 * the current transaction. 10477 * 10478 * Holding the chunks lock will prevent other threads from allocating 10479 * or releasing chunks, but it won't prevent a running transaction 10480 * from committing and releasing the memory that the pending chunks 10481 * list head uses. For that, we need to take a reference to the 10482 * transaction. 10483 */ 10484 static int btrfs_trim_free_extents(struct btrfs_device *device, 10485 u64 minlen, u64 *trimmed) 10486 { 10487 u64 start = 0, len = 0; 10488 int ret; 10489 10490 *trimmed = 0; 10491 10492 /* Not writeable = nothing to do. */ 10493 if (!device->writeable) 10494 return 0; 10495 10496 /* No free space = nothing to do. */ 10497 if (device->total_bytes <= device->bytes_used) 10498 return 0; 10499 10500 ret = 0; 10501 10502 while (1) { 10503 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10504 struct btrfs_transaction *trans; 10505 u64 bytes; 10506 10507 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10508 if (ret) 10509 return ret; 10510 10511 down_read(&fs_info->commit_root_sem); 10512 10513 spin_lock(&fs_info->trans_lock); 10514 trans = fs_info->running_transaction; 10515 if (trans) 10516 atomic_inc(&trans->use_count); 10517 spin_unlock(&fs_info->trans_lock); 10518 10519 ret = find_free_dev_extent_start(trans, device, minlen, start, 10520 &start, &len); 10521 if (trans) 10522 btrfs_put_transaction(trans); 10523 10524 if (ret) { 10525 up_read(&fs_info->commit_root_sem); 10526 mutex_unlock(&fs_info->chunk_mutex); 10527 if (ret == -ENOSPC) 10528 ret = 0; 10529 break; 10530 } 10531 10532 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10533 up_read(&fs_info->commit_root_sem); 10534 mutex_unlock(&fs_info->chunk_mutex); 10535 10536 if (ret) 10537 break; 10538 10539 start += len; 10540 *trimmed += bytes; 10541 10542 if (fatal_signal_pending(current)) { 10543 ret = -ERESTARTSYS; 10544 break; 10545 } 10546 10547 cond_resched(); 10548 } 10549 10550 return ret; 10551 } 10552 10553 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10554 { 10555 struct btrfs_fs_info *fs_info = root->fs_info; 10556 struct btrfs_block_group_cache *cache = NULL; 10557 struct btrfs_device *device; 10558 struct list_head *devices; 10559 u64 group_trimmed; 10560 u64 start; 10561 u64 end; 10562 u64 trimmed = 0; 10563 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10564 int ret = 0; 10565 10566 /* 10567 * try to trim all FS space, our block group may start from non-zero. 10568 */ 10569 if (range->len == total_bytes) 10570 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10571 else 10572 cache = btrfs_lookup_block_group(fs_info, range->start); 10573 10574 while (cache) { 10575 if (cache->key.objectid >= (range->start + range->len)) { 10576 btrfs_put_block_group(cache); 10577 break; 10578 } 10579 10580 start = max(range->start, cache->key.objectid); 10581 end = min(range->start + range->len, 10582 cache->key.objectid + cache->key.offset); 10583 10584 if (end - start >= range->minlen) { 10585 if (!block_group_cache_done(cache)) { 10586 ret = cache_block_group(cache, 0); 10587 if (ret) { 10588 btrfs_put_block_group(cache); 10589 break; 10590 } 10591 ret = wait_block_group_cache_done(cache); 10592 if (ret) { 10593 btrfs_put_block_group(cache); 10594 break; 10595 } 10596 } 10597 ret = btrfs_trim_block_group(cache, 10598 &group_trimmed, 10599 start, 10600 end, 10601 range->minlen); 10602 10603 trimmed += group_trimmed; 10604 if (ret) { 10605 btrfs_put_block_group(cache); 10606 break; 10607 } 10608 } 10609 10610 cache = next_block_group(fs_info->tree_root, cache); 10611 } 10612 10613 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10614 devices = &root->fs_info->fs_devices->alloc_list; 10615 list_for_each_entry(device, devices, dev_alloc_list) { 10616 ret = btrfs_trim_free_extents(device, range->minlen, 10617 &group_trimmed); 10618 if (ret) 10619 break; 10620 10621 trimmed += group_trimmed; 10622 } 10623 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10624 10625 range->len = trimmed; 10626 return ret; 10627 } 10628 10629 /* 10630 * btrfs_{start,end}_write_no_snapshoting() are similar to 10631 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10632 * data into the page cache through nocow before the subvolume is snapshoted, 10633 * but flush the data into disk after the snapshot creation, or to prevent 10634 * operations while snapshoting is ongoing and that cause the snapshot to be 10635 * inconsistent (writes followed by expanding truncates for example). 10636 */ 10637 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10638 { 10639 percpu_counter_dec(&root->subv_writers->counter); 10640 /* 10641 * Make sure counter is updated before we wake up waiters. 10642 */ 10643 smp_mb(); 10644 if (waitqueue_active(&root->subv_writers->wait)) 10645 wake_up(&root->subv_writers->wait); 10646 } 10647 10648 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10649 { 10650 if (atomic_read(&root->will_be_snapshoted)) 10651 return 0; 10652 10653 percpu_counter_inc(&root->subv_writers->counter); 10654 /* 10655 * Make sure counter is updated before we check for snapshot creation. 10656 */ 10657 smp_mb(); 10658 if (atomic_read(&root->will_be_snapshoted)) { 10659 btrfs_end_write_no_snapshoting(root); 10660 return 0; 10661 } 10662 return 1; 10663 } 10664