xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "extent-tree.h"
42 #include "root-tree.h"
43 #include "file-item.h"
44 #include "orphan.h"
45 #include "tree-checker.h"
46 
47 #undef SCRAMBLE_DELAYED_REFS
48 
49 
50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 			       struct btrfs_delayed_ref_node *node, u64 parent,
52 			       u64 root_objectid, u64 owner_objectid,
53 			       u64 owner_offset, int refs_to_drop,
54 			       struct btrfs_delayed_extent_op *extra_op);
55 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
56 				    struct extent_buffer *leaf,
57 				    struct btrfs_extent_item *ei);
58 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
59 				      u64 parent, u64 root_objectid,
60 				      u64 flags, u64 owner, u64 offset,
61 				      struct btrfs_key *ins, int ref_mod);
62 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
63 				     struct btrfs_delayed_ref_node *node,
64 				     struct btrfs_delayed_extent_op *extent_op);
65 static int find_next_key(struct btrfs_path *path, int level,
66 			 struct btrfs_key *key);
67 
68 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
69 {
70 	return (cache->flags & bits) == bits;
71 }
72 
73 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
74 			      u64 start, u64 num_bytes)
75 {
76 	u64 end = start + num_bytes - 1;
77 	set_extent_bits(&fs_info->excluded_extents, start, end,
78 			EXTENT_UPTODATE);
79 	return 0;
80 }
81 
82 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
83 {
84 	struct btrfs_fs_info *fs_info = cache->fs_info;
85 	u64 start, end;
86 
87 	start = cache->start;
88 	end = start + cache->length - 1;
89 
90 	clear_extent_bits(&fs_info->excluded_extents, start, end,
91 			  EXTENT_UPTODATE);
92 }
93 
94 /* simple helper to search for an existing data extent at a given offset */
95 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
96 {
97 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
98 	int ret;
99 	struct btrfs_key key;
100 	struct btrfs_path *path;
101 
102 	path = btrfs_alloc_path();
103 	if (!path)
104 		return -ENOMEM;
105 
106 	key.objectid = start;
107 	key.offset = len;
108 	key.type = BTRFS_EXTENT_ITEM_KEY;
109 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
110 	btrfs_free_path(path);
111 	return ret;
112 }
113 
114 /*
115  * helper function to lookup reference count and flags of a tree block.
116  *
117  * the head node for delayed ref is used to store the sum of all the
118  * reference count modifications queued up in the rbtree. the head
119  * node may also store the extent flags to set. This way you can check
120  * to see what the reference count and extent flags would be if all of
121  * the delayed refs are not processed.
122  */
123 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
124 			     struct btrfs_fs_info *fs_info, u64 bytenr,
125 			     u64 offset, int metadata, u64 *refs, u64 *flags)
126 {
127 	struct btrfs_root *extent_root;
128 	struct btrfs_delayed_ref_head *head;
129 	struct btrfs_delayed_ref_root *delayed_refs;
130 	struct btrfs_path *path;
131 	struct btrfs_extent_item *ei;
132 	struct extent_buffer *leaf;
133 	struct btrfs_key key;
134 	u32 item_size;
135 	u64 num_refs;
136 	u64 extent_flags;
137 	int ret;
138 
139 	/*
140 	 * If we don't have skinny metadata, don't bother doing anything
141 	 * different
142 	 */
143 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
144 		offset = fs_info->nodesize;
145 		metadata = 0;
146 	}
147 
148 	path = btrfs_alloc_path();
149 	if (!path)
150 		return -ENOMEM;
151 
152 	if (!trans) {
153 		path->skip_locking = 1;
154 		path->search_commit_root = 1;
155 	}
156 
157 search_again:
158 	key.objectid = bytenr;
159 	key.offset = offset;
160 	if (metadata)
161 		key.type = BTRFS_METADATA_ITEM_KEY;
162 	else
163 		key.type = BTRFS_EXTENT_ITEM_KEY;
164 
165 	extent_root = btrfs_extent_root(fs_info, bytenr);
166 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
167 	if (ret < 0)
168 		goto out_free;
169 
170 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
171 		if (path->slots[0]) {
172 			path->slots[0]--;
173 			btrfs_item_key_to_cpu(path->nodes[0], &key,
174 					      path->slots[0]);
175 			if (key.objectid == bytenr &&
176 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
177 			    key.offset == fs_info->nodesize)
178 				ret = 0;
179 		}
180 	}
181 
182 	if (ret == 0) {
183 		leaf = path->nodes[0];
184 		item_size = btrfs_item_size(leaf, path->slots[0]);
185 		if (item_size >= sizeof(*ei)) {
186 			ei = btrfs_item_ptr(leaf, path->slots[0],
187 					    struct btrfs_extent_item);
188 			num_refs = btrfs_extent_refs(leaf, ei);
189 			extent_flags = btrfs_extent_flags(leaf, ei);
190 		} else {
191 			ret = -EINVAL;
192 			btrfs_print_v0_err(fs_info);
193 			if (trans)
194 				btrfs_abort_transaction(trans, ret);
195 			else
196 				btrfs_handle_fs_error(fs_info, ret, NULL);
197 
198 			goto out_free;
199 		}
200 
201 		BUG_ON(num_refs == 0);
202 	} else {
203 		num_refs = 0;
204 		extent_flags = 0;
205 		ret = 0;
206 	}
207 
208 	if (!trans)
209 		goto out;
210 
211 	delayed_refs = &trans->transaction->delayed_refs;
212 	spin_lock(&delayed_refs->lock);
213 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
214 	if (head) {
215 		if (!mutex_trylock(&head->mutex)) {
216 			refcount_inc(&head->refs);
217 			spin_unlock(&delayed_refs->lock);
218 
219 			btrfs_release_path(path);
220 
221 			/*
222 			 * Mutex was contended, block until it's released and try
223 			 * again
224 			 */
225 			mutex_lock(&head->mutex);
226 			mutex_unlock(&head->mutex);
227 			btrfs_put_delayed_ref_head(head);
228 			goto search_again;
229 		}
230 		spin_lock(&head->lock);
231 		if (head->extent_op && head->extent_op->update_flags)
232 			extent_flags |= head->extent_op->flags_to_set;
233 		else
234 			BUG_ON(num_refs == 0);
235 
236 		num_refs += head->ref_mod;
237 		spin_unlock(&head->lock);
238 		mutex_unlock(&head->mutex);
239 	}
240 	spin_unlock(&delayed_refs->lock);
241 out:
242 	WARN_ON(num_refs == 0);
243 	if (refs)
244 		*refs = num_refs;
245 	if (flags)
246 		*flags = extent_flags;
247 out_free:
248 	btrfs_free_path(path);
249 	return ret;
250 }
251 
252 /*
253  * Back reference rules.  Back refs have three main goals:
254  *
255  * 1) differentiate between all holders of references to an extent so that
256  *    when a reference is dropped we can make sure it was a valid reference
257  *    before freeing the extent.
258  *
259  * 2) Provide enough information to quickly find the holders of an extent
260  *    if we notice a given block is corrupted or bad.
261  *
262  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
263  *    maintenance.  This is actually the same as #2, but with a slightly
264  *    different use case.
265  *
266  * There are two kinds of back refs. The implicit back refs is optimized
267  * for pointers in non-shared tree blocks. For a given pointer in a block,
268  * back refs of this kind provide information about the block's owner tree
269  * and the pointer's key. These information allow us to find the block by
270  * b-tree searching. The full back refs is for pointers in tree blocks not
271  * referenced by their owner trees. The location of tree block is recorded
272  * in the back refs. Actually the full back refs is generic, and can be
273  * used in all cases the implicit back refs is used. The major shortcoming
274  * of the full back refs is its overhead. Every time a tree block gets
275  * COWed, we have to update back refs entry for all pointers in it.
276  *
277  * For a newly allocated tree block, we use implicit back refs for
278  * pointers in it. This means most tree related operations only involve
279  * implicit back refs. For a tree block created in old transaction, the
280  * only way to drop a reference to it is COW it. So we can detect the
281  * event that tree block loses its owner tree's reference and do the
282  * back refs conversion.
283  *
284  * When a tree block is COWed through a tree, there are four cases:
285  *
286  * The reference count of the block is one and the tree is the block's
287  * owner tree. Nothing to do in this case.
288  *
289  * The reference count of the block is one and the tree is not the
290  * block's owner tree. In this case, full back refs is used for pointers
291  * in the block. Remove these full back refs, add implicit back refs for
292  * every pointers in the new block.
293  *
294  * The reference count of the block is greater than one and the tree is
295  * the block's owner tree. In this case, implicit back refs is used for
296  * pointers in the block. Add full back refs for every pointers in the
297  * block, increase lower level extents' reference counts. The original
298  * implicit back refs are entailed to the new block.
299  *
300  * The reference count of the block is greater than one and the tree is
301  * not the block's owner tree. Add implicit back refs for every pointer in
302  * the new block, increase lower level extents' reference count.
303  *
304  * Back Reference Key composing:
305  *
306  * The key objectid corresponds to the first byte in the extent,
307  * The key type is used to differentiate between types of back refs.
308  * There are different meanings of the key offset for different types
309  * of back refs.
310  *
311  * File extents can be referenced by:
312  *
313  * - multiple snapshots, subvolumes, or different generations in one subvol
314  * - different files inside a single subvolume
315  * - different offsets inside a file (bookend extents in file.c)
316  *
317  * The extent ref structure for the implicit back refs has fields for:
318  *
319  * - Objectid of the subvolume root
320  * - objectid of the file holding the reference
321  * - original offset in the file
322  * - how many bookend extents
323  *
324  * The key offset for the implicit back refs is hash of the first
325  * three fields.
326  *
327  * The extent ref structure for the full back refs has field for:
328  *
329  * - number of pointers in the tree leaf
330  *
331  * The key offset for the implicit back refs is the first byte of
332  * the tree leaf
333  *
334  * When a file extent is allocated, The implicit back refs is used.
335  * the fields are filled in:
336  *
337  *     (root_key.objectid, inode objectid, offset in file, 1)
338  *
339  * When a file extent is removed file truncation, we find the
340  * corresponding implicit back refs and check the following fields:
341  *
342  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
343  *
344  * Btree extents can be referenced by:
345  *
346  * - Different subvolumes
347  *
348  * Both the implicit back refs and the full back refs for tree blocks
349  * only consist of key. The key offset for the implicit back refs is
350  * objectid of block's owner tree. The key offset for the full back refs
351  * is the first byte of parent block.
352  *
353  * When implicit back refs is used, information about the lowest key and
354  * level of the tree block are required. These information are stored in
355  * tree block info structure.
356  */
357 
358 /*
359  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
360  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
361  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
362  */
363 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
364 				     struct btrfs_extent_inline_ref *iref,
365 				     enum btrfs_inline_ref_type is_data)
366 {
367 	int type = btrfs_extent_inline_ref_type(eb, iref);
368 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
369 
370 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
371 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
372 	    type == BTRFS_SHARED_DATA_REF_KEY ||
373 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
374 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
375 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
376 				return type;
377 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
378 				ASSERT(eb->fs_info);
379 				/*
380 				 * Every shared one has parent tree block,
381 				 * which must be aligned to sector size.
382 				 */
383 				if (offset &&
384 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
385 					return type;
386 			}
387 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
388 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
389 				return type;
390 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
391 				ASSERT(eb->fs_info);
392 				/*
393 				 * Every shared one has parent tree block,
394 				 * which must be aligned to sector size.
395 				 */
396 				if (offset &&
397 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
398 					return type;
399 			}
400 		} else {
401 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
402 			return type;
403 		}
404 	}
405 
406 	btrfs_print_leaf((struct extent_buffer *)eb);
407 	btrfs_err(eb->fs_info,
408 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
409 		  eb->start, (unsigned long)iref, type);
410 	WARN_ON(1);
411 
412 	return BTRFS_REF_TYPE_INVALID;
413 }
414 
415 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
416 {
417 	u32 high_crc = ~(u32)0;
418 	u32 low_crc = ~(u32)0;
419 	__le64 lenum;
420 
421 	lenum = cpu_to_le64(root_objectid);
422 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
423 	lenum = cpu_to_le64(owner);
424 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
425 	lenum = cpu_to_le64(offset);
426 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
427 
428 	return ((u64)high_crc << 31) ^ (u64)low_crc;
429 }
430 
431 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
432 				     struct btrfs_extent_data_ref *ref)
433 {
434 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
435 				    btrfs_extent_data_ref_objectid(leaf, ref),
436 				    btrfs_extent_data_ref_offset(leaf, ref));
437 }
438 
439 static int match_extent_data_ref(struct extent_buffer *leaf,
440 				 struct btrfs_extent_data_ref *ref,
441 				 u64 root_objectid, u64 owner, u64 offset)
442 {
443 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
444 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
445 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
446 		return 0;
447 	return 1;
448 }
449 
450 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
451 					   struct btrfs_path *path,
452 					   u64 bytenr, u64 parent,
453 					   u64 root_objectid,
454 					   u64 owner, u64 offset)
455 {
456 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
457 	struct btrfs_key key;
458 	struct btrfs_extent_data_ref *ref;
459 	struct extent_buffer *leaf;
460 	u32 nritems;
461 	int ret;
462 	int recow;
463 	int err = -ENOENT;
464 
465 	key.objectid = bytenr;
466 	if (parent) {
467 		key.type = BTRFS_SHARED_DATA_REF_KEY;
468 		key.offset = parent;
469 	} else {
470 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
471 		key.offset = hash_extent_data_ref(root_objectid,
472 						  owner, offset);
473 	}
474 again:
475 	recow = 0;
476 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
477 	if (ret < 0) {
478 		err = ret;
479 		goto fail;
480 	}
481 
482 	if (parent) {
483 		if (!ret)
484 			return 0;
485 		goto fail;
486 	}
487 
488 	leaf = path->nodes[0];
489 	nritems = btrfs_header_nritems(leaf);
490 	while (1) {
491 		if (path->slots[0] >= nritems) {
492 			ret = btrfs_next_leaf(root, path);
493 			if (ret < 0)
494 				err = ret;
495 			if (ret)
496 				goto fail;
497 
498 			leaf = path->nodes[0];
499 			nritems = btrfs_header_nritems(leaf);
500 			recow = 1;
501 		}
502 
503 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
504 		if (key.objectid != bytenr ||
505 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
506 			goto fail;
507 
508 		ref = btrfs_item_ptr(leaf, path->slots[0],
509 				     struct btrfs_extent_data_ref);
510 
511 		if (match_extent_data_ref(leaf, ref, root_objectid,
512 					  owner, offset)) {
513 			if (recow) {
514 				btrfs_release_path(path);
515 				goto again;
516 			}
517 			err = 0;
518 			break;
519 		}
520 		path->slots[0]++;
521 	}
522 fail:
523 	return err;
524 }
525 
526 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
527 					   struct btrfs_path *path,
528 					   u64 bytenr, u64 parent,
529 					   u64 root_objectid, u64 owner,
530 					   u64 offset, int refs_to_add)
531 {
532 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
533 	struct btrfs_key key;
534 	struct extent_buffer *leaf;
535 	u32 size;
536 	u32 num_refs;
537 	int ret;
538 
539 	key.objectid = bytenr;
540 	if (parent) {
541 		key.type = BTRFS_SHARED_DATA_REF_KEY;
542 		key.offset = parent;
543 		size = sizeof(struct btrfs_shared_data_ref);
544 	} else {
545 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
546 		key.offset = hash_extent_data_ref(root_objectid,
547 						  owner, offset);
548 		size = sizeof(struct btrfs_extent_data_ref);
549 	}
550 
551 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
552 	if (ret && ret != -EEXIST)
553 		goto fail;
554 
555 	leaf = path->nodes[0];
556 	if (parent) {
557 		struct btrfs_shared_data_ref *ref;
558 		ref = btrfs_item_ptr(leaf, path->slots[0],
559 				     struct btrfs_shared_data_ref);
560 		if (ret == 0) {
561 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
562 		} else {
563 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
564 			num_refs += refs_to_add;
565 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
566 		}
567 	} else {
568 		struct btrfs_extent_data_ref *ref;
569 		while (ret == -EEXIST) {
570 			ref = btrfs_item_ptr(leaf, path->slots[0],
571 					     struct btrfs_extent_data_ref);
572 			if (match_extent_data_ref(leaf, ref, root_objectid,
573 						  owner, offset))
574 				break;
575 			btrfs_release_path(path);
576 			key.offset++;
577 			ret = btrfs_insert_empty_item(trans, root, path, &key,
578 						      size);
579 			if (ret && ret != -EEXIST)
580 				goto fail;
581 
582 			leaf = path->nodes[0];
583 		}
584 		ref = btrfs_item_ptr(leaf, path->slots[0],
585 				     struct btrfs_extent_data_ref);
586 		if (ret == 0) {
587 			btrfs_set_extent_data_ref_root(leaf, ref,
588 						       root_objectid);
589 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
590 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
591 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
592 		} else {
593 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
594 			num_refs += refs_to_add;
595 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
596 		}
597 	}
598 	btrfs_mark_buffer_dirty(leaf);
599 	ret = 0;
600 fail:
601 	btrfs_release_path(path);
602 	return ret;
603 }
604 
605 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
606 					   struct btrfs_root *root,
607 					   struct btrfs_path *path,
608 					   int refs_to_drop)
609 {
610 	struct btrfs_key key;
611 	struct btrfs_extent_data_ref *ref1 = NULL;
612 	struct btrfs_shared_data_ref *ref2 = NULL;
613 	struct extent_buffer *leaf;
614 	u32 num_refs = 0;
615 	int ret = 0;
616 
617 	leaf = path->nodes[0];
618 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
619 
620 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
621 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
622 				      struct btrfs_extent_data_ref);
623 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
624 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
625 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
626 				      struct btrfs_shared_data_ref);
627 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
628 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
629 		btrfs_print_v0_err(trans->fs_info);
630 		btrfs_abort_transaction(trans, -EINVAL);
631 		return -EINVAL;
632 	} else {
633 		BUG();
634 	}
635 
636 	BUG_ON(num_refs < refs_to_drop);
637 	num_refs -= refs_to_drop;
638 
639 	if (num_refs == 0) {
640 		ret = btrfs_del_item(trans, root, path);
641 	} else {
642 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
643 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
644 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
645 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
646 		btrfs_mark_buffer_dirty(leaf);
647 	}
648 	return ret;
649 }
650 
651 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
652 					  struct btrfs_extent_inline_ref *iref)
653 {
654 	struct btrfs_key key;
655 	struct extent_buffer *leaf;
656 	struct btrfs_extent_data_ref *ref1;
657 	struct btrfs_shared_data_ref *ref2;
658 	u32 num_refs = 0;
659 	int type;
660 
661 	leaf = path->nodes[0];
662 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
663 
664 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
665 	if (iref) {
666 		/*
667 		 * If type is invalid, we should have bailed out earlier than
668 		 * this call.
669 		 */
670 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
671 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
672 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
673 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
674 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 		} else {
676 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
677 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
678 		}
679 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
680 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
681 				      struct btrfs_extent_data_ref);
682 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
683 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
684 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
685 				      struct btrfs_shared_data_ref);
686 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
687 	} else {
688 		WARN_ON(1);
689 	}
690 	return num_refs;
691 }
692 
693 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
694 					  struct btrfs_path *path,
695 					  u64 bytenr, u64 parent,
696 					  u64 root_objectid)
697 {
698 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
699 	struct btrfs_key key;
700 	int ret;
701 
702 	key.objectid = bytenr;
703 	if (parent) {
704 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
705 		key.offset = parent;
706 	} else {
707 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
708 		key.offset = root_objectid;
709 	}
710 
711 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
712 	if (ret > 0)
713 		ret = -ENOENT;
714 	return ret;
715 }
716 
717 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
718 					  struct btrfs_path *path,
719 					  u64 bytenr, u64 parent,
720 					  u64 root_objectid)
721 {
722 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
723 	struct btrfs_key key;
724 	int ret;
725 
726 	key.objectid = bytenr;
727 	if (parent) {
728 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
729 		key.offset = parent;
730 	} else {
731 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
732 		key.offset = root_objectid;
733 	}
734 
735 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
736 	btrfs_release_path(path);
737 	return ret;
738 }
739 
740 static inline int extent_ref_type(u64 parent, u64 owner)
741 {
742 	int type;
743 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
744 		if (parent > 0)
745 			type = BTRFS_SHARED_BLOCK_REF_KEY;
746 		else
747 			type = BTRFS_TREE_BLOCK_REF_KEY;
748 	} else {
749 		if (parent > 0)
750 			type = BTRFS_SHARED_DATA_REF_KEY;
751 		else
752 			type = BTRFS_EXTENT_DATA_REF_KEY;
753 	}
754 	return type;
755 }
756 
757 static int find_next_key(struct btrfs_path *path, int level,
758 			 struct btrfs_key *key)
759 
760 {
761 	for (; level < BTRFS_MAX_LEVEL; level++) {
762 		if (!path->nodes[level])
763 			break;
764 		if (path->slots[level] + 1 >=
765 		    btrfs_header_nritems(path->nodes[level]))
766 			continue;
767 		if (level == 0)
768 			btrfs_item_key_to_cpu(path->nodes[level], key,
769 					      path->slots[level] + 1);
770 		else
771 			btrfs_node_key_to_cpu(path->nodes[level], key,
772 					      path->slots[level] + 1);
773 		return 0;
774 	}
775 	return 1;
776 }
777 
778 /*
779  * look for inline back ref. if back ref is found, *ref_ret is set
780  * to the address of inline back ref, and 0 is returned.
781  *
782  * if back ref isn't found, *ref_ret is set to the address where it
783  * should be inserted, and -ENOENT is returned.
784  *
785  * if insert is true and there are too many inline back refs, the path
786  * points to the extent item, and -EAGAIN is returned.
787  *
788  * NOTE: inline back refs are ordered in the same way that back ref
789  *	 items in the tree are ordered.
790  */
791 static noinline_for_stack
792 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
793 				 struct btrfs_path *path,
794 				 struct btrfs_extent_inline_ref **ref_ret,
795 				 u64 bytenr, u64 num_bytes,
796 				 u64 parent, u64 root_objectid,
797 				 u64 owner, u64 offset, int insert)
798 {
799 	struct btrfs_fs_info *fs_info = trans->fs_info;
800 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
801 	struct btrfs_key key;
802 	struct extent_buffer *leaf;
803 	struct btrfs_extent_item *ei;
804 	struct btrfs_extent_inline_ref *iref;
805 	u64 flags;
806 	u64 item_size;
807 	unsigned long ptr;
808 	unsigned long end;
809 	int extra_size;
810 	int type;
811 	int want;
812 	int ret;
813 	int err = 0;
814 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
815 	int needed;
816 
817 	key.objectid = bytenr;
818 	key.type = BTRFS_EXTENT_ITEM_KEY;
819 	key.offset = num_bytes;
820 
821 	want = extent_ref_type(parent, owner);
822 	if (insert) {
823 		extra_size = btrfs_extent_inline_ref_size(want);
824 		path->search_for_extension = 1;
825 		path->keep_locks = 1;
826 	} else
827 		extra_size = -1;
828 
829 	/*
830 	 * Owner is our level, so we can just add one to get the level for the
831 	 * block we are interested in.
832 	 */
833 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
834 		key.type = BTRFS_METADATA_ITEM_KEY;
835 		key.offset = owner;
836 	}
837 
838 again:
839 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
840 	if (ret < 0) {
841 		err = ret;
842 		goto out;
843 	}
844 
845 	/*
846 	 * We may be a newly converted file system which still has the old fat
847 	 * extent entries for metadata, so try and see if we have one of those.
848 	 */
849 	if (ret > 0 && skinny_metadata) {
850 		skinny_metadata = false;
851 		if (path->slots[0]) {
852 			path->slots[0]--;
853 			btrfs_item_key_to_cpu(path->nodes[0], &key,
854 					      path->slots[0]);
855 			if (key.objectid == bytenr &&
856 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
857 			    key.offset == num_bytes)
858 				ret = 0;
859 		}
860 		if (ret) {
861 			key.objectid = bytenr;
862 			key.type = BTRFS_EXTENT_ITEM_KEY;
863 			key.offset = num_bytes;
864 			btrfs_release_path(path);
865 			goto again;
866 		}
867 	}
868 
869 	if (ret && !insert) {
870 		err = -ENOENT;
871 		goto out;
872 	} else if (WARN_ON(ret)) {
873 		err = -EIO;
874 		goto out;
875 	}
876 
877 	leaf = path->nodes[0];
878 	item_size = btrfs_item_size(leaf, path->slots[0]);
879 	if (unlikely(item_size < sizeof(*ei))) {
880 		err = -EINVAL;
881 		btrfs_print_v0_err(fs_info);
882 		btrfs_abort_transaction(trans, err);
883 		goto out;
884 	}
885 
886 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
887 	flags = btrfs_extent_flags(leaf, ei);
888 
889 	ptr = (unsigned long)(ei + 1);
890 	end = (unsigned long)ei + item_size;
891 
892 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
893 		ptr += sizeof(struct btrfs_tree_block_info);
894 		BUG_ON(ptr > end);
895 	}
896 
897 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
898 		needed = BTRFS_REF_TYPE_DATA;
899 	else
900 		needed = BTRFS_REF_TYPE_BLOCK;
901 
902 	err = -ENOENT;
903 	while (1) {
904 		if (ptr >= end) {
905 			if (ptr > end) {
906 				err = -EUCLEAN;
907 				btrfs_print_leaf(path->nodes[0]);
908 				btrfs_crit(fs_info,
909 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
910 					path->slots[0], root_objectid, owner, offset, parent);
911 			}
912 			break;
913 		}
914 		iref = (struct btrfs_extent_inline_ref *)ptr;
915 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
916 		if (type == BTRFS_REF_TYPE_INVALID) {
917 			err = -EUCLEAN;
918 			goto out;
919 		}
920 
921 		if (want < type)
922 			break;
923 		if (want > type) {
924 			ptr += btrfs_extent_inline_ref_size(type);
925 			continue;
926 		}
927 
928 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
929 			struct btrfs_extent_data_ref *dref;
930 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
931 			if (match_extent_data_ref(leaf, dref, root_objectid,
932 						  owner, offset)) {
933 				err = 0;
934 				break;
935 			}
936 			if (hash_extent_data_ref_item(leaf, dref) <
937 			    hash_extent_data_ref(root_objectid, owner, offset))
938 				break;
939 		} else {
940 			u64 ref_offset;
941 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
942 			if (parent > 0) {
943 				if (parent == ref_offset) {
944 					err = 0;
945 					break;
946 				}
947 				if (ref_offset < parent)
948 					break;
949 			} else {
950 				if (root_objectid == ref_offset) {
951 					err = 0;
952 					break;
953 				}
954 				if (ref_offset < root_objectid)
955 					break;
956 			}
957 		}
958 		ptr += btrfs_extent_inline_ref_size(type);
959 	}
960 	if (err == -ENOENT && insert) {
961 		if (item_size + extra_size >=
962 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
963 			err = -EAGAIN;
964 			goto out;
965 		}
966 		/*
967 		 * To add new inline back ref, we have to make sure
968 		 * there is no corresponding back ref item.
969 		 * For simplicity, we just do not add new inline back
970 		 * ref if there is any kind of item for this block
971 		 */
972 		if (find_next_key(path, 0, &key) == 0 &&
973 		    key.objectid == bytenr &&
974 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
975 			err = -EAGAIN;
976 			goto out;
977 		}
978 	}
979 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
980 out:
981 	if (insert) {
982 		path->keep_locks = 0;
983 		path->search_for_extension = 0;
984 		btrfs_unlock_up_safe(path, 1);
985 	}
986 	return err;
987 }
988 
989 /*
990  * helper to add new inline back ref
991  */
992 static noinline_for_stack
993 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
994 				 struct btrfs_path *path,
995 				 struct btrfs_extent_inline_ref *iref,
996 				 u64 parent, u64 root_objectid,
997 				 u64 owner, u64 offset, int refs_to_add,
998 				 struct btrfs_delayed_extent_op *extent_op)
999 {
1000 	struct extent_buffer *leaf;
1001 	struct btrfs_extent_item *ei;
1002 	unsigned long ptr;
1003 	unsigned long end;
1004 	unsigned long item_offset;
1005 	u64 refs;
1006 	int size;
1007 	int type;
1008 
1009 	leaf = path->nodes[0];
1010 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1011 	item_offset = (unsigned long)iref - (unsigned long)ei;
1012 
1013 	type = extent_ref_type(parent, owner);
1014 	size = btrfs_extent_inline_ref_size(type);
1015 
1016 	btrfs_extend_item(path, size);
1017 
1018 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1019 	refs = btrfs_extent_refs(leaf, ei);
1020 	refs += refs_to_add;
1021 	btrfs_set_extent_refs(leaf, ei, refs);
1022 	if (extent_op)
1023 		__run_delayed_extent_op(extent_op, leaf, ei);
1024 
1025 	ptr = (unsigned long)ei + item_offset;
1026 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1027 	if (ptr < end - size)
1028 		memmove_extent_buffer(leaf, ptr + size, ptr,
1029 				      end - size - ptr);
1030 
1031 	iref = (struct btrfs_extent_inline_ref *)ptr;
1032 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1033 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1034 		struct btrfs_extent_data_ref *dref;
1035 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1036 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1037 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1038 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1039 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1040 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1041 		struct btrfs_shared_data_ref *sref;
1042 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1043 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1044 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1046 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1047 	} else {
1048 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1049 	}
1050 	btrfs_mark_buffer_dirty(leaf);
1051 }
1052 
1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1054 				 struct btrfs_path *path,
1055 				 struct btrfs_extent_inline_ref **ref_ret,
1056 				 u64 bytenr, u64 num_bytes, u64 parent,
1057 				 u64 root_objectid, u64 owner, u64 offset)
1058 {
1059 	int ret;
1060 
1061 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1062 					   num_bytes, parent, root_objectid,
1063 					   owner, offset, 0);
1064 	if (ret != -ENOENT)
1065 		return ret;
1066 
1067 	btrfs_release_path(path);
1068 	*ref_ret = NULL;
1069 
1070 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1071 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1072 					    root_objectid);
1073 	} else {
1074 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1075 					     root_objectid, owner, offset);
1076 	}
1077 	return ret;
1078 }
1079 
1080 /*
1081  * helper to update/remove inline back ref
1082  */
1083 static noinline_for_stack
1084 void update_inline_extent_backref(struct btrfs_path *path,
1085 				  struct btrfs_extent_inline_ref *iref,
1086 				  int refs_to_mod,
1087 				  struct btrfs_delayed_extent_op *extent_op)
1088 {
1089 	struct extent_buffer *leaf = path->nodes[0];
1090 	struct btrfs_extent_item *ei;
1091 	struct btrfs_extent_data_ref *dref = NULL;
1092 	struct btrfs_shared_data_ref *sref = NULL;
1093 	unsigned long ptr;
1094 	unsigned long end;
1095 	u32 item_size;
1096 	int size;
1097 	int type;
1098 	u64 refs;
1099 
1100 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 	refs = btrfs_extent_refs(leaf, ei);
1102 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1103 	refs += refs_to_mod;
1104 	btrfs_set_extent_refs(leaf, ei, refs);
1105 	if (extent_op)
1106 		__run_delayed_extent_op(extent_op, leaf, ei);
1107 
1108 	/*
1109 	 * If type is invalid, we should have bailed out after
1110 	 * lookup_inline_extent_backref().
1111 	 */
1112 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1113 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1114 
1115 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1116 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1117 		refs = btrfs_extent_data_ref_count(leaf, dref);
1118 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1119 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1120 		refs = btrfs_shared_data_ref_count(leaf, sref);
1121 	} else {
1122 		refs = 1;
1123 		BUG_ON(refs_to_mod != -1);
1124 	}
1125 
1126 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1127 	refs += refs_to_mod;
1128 
1129 	if (refs > 0) {
1130 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1131 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1132 		else
1133 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1134 	} else {
1135 		size =  btrfs_extent_inline_ref_size(type);
1136 		item_size = btrfs_item_size(leaf, path->slots[0]);
1137 		ptr = (unsigned long)iref;
1138 		end = (unsigned long)ei + item_size;
1139 		if (ptr + size < end)
1140 			memmove_extent_buffer(leaf, ptr, ptr + size,
1141 					      end - ptr - size);
1142 		item_size -= size;
1143 		btrfs_truncate_item(path, item_size, 1);
1144 	}
1145 	btrfs_mark_buffer_dirty(leaf);
1146 }
1147 
1148 static noinline_for_stack
1149 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1150 				 struct btrfs_path *path,
1151 				 u64 bytenr, u64 num_bytes, u64 parent,
1152 				 u64 root_objectid, u64 owner,
1153 				 u64 offset, int refs_to_add,
1154 				 struct btrfs_delayed_extent_op *extent_op)
1155 {
1156 	struct btrfs_extent_inline_ref *iref;
1157 	int ret;
1158 
1159 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1160 					   num_bytes, parent, root_objectid,
1161 					   owner, offset, 1);
1162 	if (ret == 0) {
1163 		/*
1164 		 * We're adding refs to a tree block we already own, this
1165 		 * should not happen at all.
1166 		 */
1167 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1168 			btrfs_crit(trans->fs_info,
1169 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1170 				   bytenr, num_bytes, root_objectid);
1171 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1172 				WARN_ON(1);
1173 				btrfs_crit(trans->fs_info,
1174 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1175 				btrfs_print_leaf(path->nodes[0]);
1176 			}
1177 			return -EUCLEAN;
1178 		}
1179 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1180 	} else if (ret == -ENOENT) {
1181 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1182 					    root_objectid, owner, offset,
1183 					    refs_to_add, extent_op);
1184 		ret = 0;
1185 	}
1186 	return ret;
1187 }
1188 
1189 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1190 				 struct btrfs_root *root,
1191 				 struct btrfs_path *path,
1192 				 struct btrfs_extent_inline_ref *iref,
1193 				 int refs_to_drop, int is_data)
1194 {
1195 	int ret = 0;
1196 
1197 	BUG_ON(!is_data && refs_to_drop != 1);
1198 	if (iref)
1199 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1200 	else if (is_data)
1201 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1202 	else
1203 		ret = btrfs_del_item(trans, root, path);
1204 	return ret;
1205 }
1206 
1207 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1208 			       u64 *discarded_bytes)
1209 {
1210 	int j, ret = 0;
1211 	u64 bytes_left, end;
1212 	u64 aligned_start = ALIGN(start, 1 << 9);
1213 
1214 	if (WARN_ON(start != aligned_start)) {
1215 		len -= aligned_start - start;
1216 		len = round_down(len, 1 << 9);
1217 		start = aligned_start;
1218 	}
1219 
1220 	*discarded_bytes = 0;
1221 
1222 	if (!len)
1223 		return 0;
1224 
1225 	end = start + len;
1226 	bytes_left = len;
1227 
1228 	/* Skip any superblocks on this device. */
1229 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1230 		u64 sb_start = btrfs_sb_offset(j);
1231 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1232 		u64 size = sb_start - start;
1233 
1234 		if (!in_range(sb_start, start, bytes_left) &&
1235 		    !in_range(sb_end, start, bytes_left) &&
1236 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1237 			continue;
1238 
1239 		/*
1240 		 * Superblock spans beginning of range.  Adjust start and
1241 		 * try again.
1242 		 */
1243 		if (sb_start <= start) {
1244 			start += sb_end - start;
1245 			if (start > end) {
1246 				bytes_left = 0;
1247 				break;
1248 			}
1249 			bytes_left = end - start;
1250 			continue;
1251 		}
1252 
1253 		if (size) {
1254 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1255 						   GFP_NOFS);
1256 			if (!ret)
1257 				*discarded_bytes += size;
1258 			else if (ret != -EOPNOTSUPP)
1259 				return ret;
1260 		}
1261 
1262 		start = sb_end;
1263 		if (start > end) {
1264 			bytes_left = 0;
1265 			break;
1266 		}
1267 		bytes_left = end - start;
1268 	}
1269 
1270 	if (bytes_left) {
1271 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1272 					   GFP_NOFS);
1273 		if (!ret)
1274 			*discarded_bytes += bytes_left;
1275 	}
1276 	return ret;
1277 }
1278 
1279 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1280 {
1281 	struct btrfs_device *dev = stripe->dev;
1282 	struct btrfs_fs_info *fs_info = dev->fs_info;
1283 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1284 	u64 phys = stripe->physical;
1285 	u64 len = stripe->length;
1286 	u64 discarded = 0;
1287 	int ret = 0;
1288 
1289 	/* Zone reset on a zoned filesystem */
1290 	if (btrfs_can_zone_reset(dev, phys, len)) {
1291 		u64 src_disc;
1292 
1293 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1294 		if (ret)
1295 			goto out;
1296 
1297 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1298 		    dev != dev_replace->srcdev)
1299 			goto out;
1300 
1301 		src_disc = discarded;
1302 
1303 		/* Send to replace target as well */
1304 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1305 					      &discarded);
1306 		discarded += src_disc;
1307 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1308 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1309 	} else {
1310 		ret = 0;
1311 		*bytes = 0;
1312 	}
1313 
1314 out:
1315 	*bytes = discarded;
1316 	return ret;
1317 }
1318 
1319 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1320 			 u64 num_bytes, u64 *actual_bytes)
1321 {
1322 	int ret = 0;
1323 	u64 discarded_bytes = 0;
1324 	u64 end = bytenr + num_bytes;
1325 	u64 cur = bytenr;
1326 
1327 	/*
1328 	 * Avoid races with device replace and make sure the devices in the
1329 	 * stripes don't go away while we are discarding.
1330 	 */
1331 	btrfs_bio_counter_inc_blocked(fs_info);
1332 	while (cur < end) {
1333 		struct btrfs_discard_stripe *stripes;
1334 		unsigned int num_stripes;
1335 		int i;
1336 
1337 		num_bytes = end - cur;
1338 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1339 		if (IS_ERR(stripes)) {
1340 			ret = PTR_ERR(stripes);
1341 			if (ret == -EOPNOTSUPP)
1342 				ret = 0;
1343 			break;
1344 		}
1345 
1346 		for (i = 0; i < num_stripes; i++) {
1347 			struct btrfs_discard_stripe *stripe = stripes + i;
1348 			u64 bytes;
1349 
1350 			if (!stripe->dev->bdev) {
1351 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1352 				continue;
1353 			}
1354 
1355 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1356 					&stripe->dev->dev_state))
1357 				continue;
1358 
1359 			ret = do_discard_extent(stripe, &bytes);
1360 			if (ret) {
1361 				/*
1362 				 * Keep going if discard is not supported by the
1363 				 * device.
1364 				 */
1365 				if (ret != -EOPNOTSUPP)
1366 					break;
1367 				ret = 0;
1368 			} else {
1369 				discarded_bytes += bytes;
1370 			}
1371 		}
1372 		kfree(stripes);
1373 		if (ret)
1374 			break;
1375 		cur += num_bytes;
1376 	}
1377 	btrfs_bio_counter_dec(fs_info);
1378 	if (actual_bytes)
1379 		*actual_bytes = discarded_bytes;
1380 	return ret;
1381 }
1382 
1383 /* Can return -ENOMEM */
1384 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1385 			 struct btrfs_ref *generic_ref)
1386 {
1387 	struct btrfs_fs_info *fs_info = trans->fs_info;
1388 	int ret;
1389 
1390 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1391 	       generic_ref->action);
1392 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1393 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1394 
1395 	if (generic_ref->type == BTRFS_REF_METADATA)
1396 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1397 	else
1398 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1399 
1400 	btrfs_ref_tree_mod(fs_info, generic_ref);
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * __btrfs_inc_extent_ref - insert backreference for a given extent
1407  *
1408  * The counterpart is in __btrfs_free_extent(), with examples and more details
1409  * how it works.
1410  *
1411  * @trans:	    Handle of transaction
1412  *
1413  * @node:	    The delayed ref node used to get the bytenr/length for
1414  *		    extent whose references are incremented.
1415  *
1416  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1417  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1418  *		    bytenr of the parent block. Since new extents are always
1419  *		    created with indirect references, this will only be the case
1420  *		    when relocating a shared extent. In that case, root_objectid
1421  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1422  *		    be 0
1423  *
1424  * @root_objectid:  The id of the root where this modification has originated,
1425  *		    this can be either one of the well-known metadata trees or
1426  *		    the subvolume id which references this extent.
1427  *
1428  * @owner:	    For data extents it is the inode number of the owning file.
1429  *		    For metadata extents this parameter holds the level in the
1430  *		    tree of the extent.
1431  *
1432  * @offset:	    For metadata extents the offset is ignored and is currently
1433  *		    always passed as 0. For data extents it is the fileoffset
1434  *		    this extent belongs to.
1435  *
1436  * @refs_to_add     Number of references to add
1437  *
1438  * @extent_op       Pointer to a structure, holding information necessary when
1439  *                  updating a tree block's flags
1440  *
1441  */
1442 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1443 				  struct btrfs_delayed_ref_node *node,
1444 				  u64 parent, u64 root_objectid,
1445 				  u64 owner, u64 offset, int refs_to_add,
1446 				  struct btrfs_delayed_extent_op *extent_op)
1447 {
1448 	struct btrfs_path *path;
1449 	struct extent_buffer *leaf;
1450 	struct btrfs_extent_item *item;
1451 	struct btrfs_key key;
1452 	u64 bytenr = node->bytenr;
1453 	u64 num_bytes = node->num_bytes;
1454 	u64 refs;
1455 	int ret;
1456 
1457 	path = btrfs_alloc_path();
1458 	if (!path)
1459 		return -ENOMEM;
1460 
1461 	/* this will setup the path even if it fails to insert the back ref */
1462 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1463 					   parent, root_objectid, owner,
1464 					   offset, refs_to_add, extent_op);
1465 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1466 		goto out;
1467 
1468 	/*
1469 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1470 	 * inline extent ref, so just update the reference count and add a
1471 	 * normal backref.
1472 	 */
1473 	leaf = path->nodes[0];
1474 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1475 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1476 	refs = btrfs_extent_refs(leaf, item);
1477 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1478 	if (extent_op)
1479 		__run_delayed_extent_op(extent_op, leaf, item);
1480 
1481 	btrfs_mark_buffer_dirty(leaf);
1482 	btrfs_release_path(path);
1483 
1484 	/* now insert the actual backref */
1485 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1486 		BUG_ON(refs_to_add != 1);
1487 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1488 					    root_objectid);
1489 	} else {
1490 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1491 					     root_objectid, owner, offset,
1492 					     refs_to_add);
1493 	}
1494 	if (ret)
1495 		btrfs_abort_transaction(trans, ret);
1496 out:
1497 	btrfs_free_path(path);
1498 	return ret;
1499 }
1500 
1501 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1502 				struct btrfs_delayed_ref_node *node,
1503 				struct btrfs_delayed_extent_op *extent_op,
1504 				int insert_reserved)
1505 {
1506 	int ret = 0;
1507 	struct btrfs_delayed_data_ref *ref;
1508 	struct btrfs_key ins;
1509 	u64 parent = 0;
1510 	u64 ref_root = 0;
1511 	u64 flags = 0;
1512 
1513 	ins.objectid = node->bytenr;
1514 	ins.offset = node->num_bytes;
1515 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1516 
1517 	ref = btrfs_delayed_node_to_data_ref(node);
1518 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1519 
1520 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1521 		parent = ref->parent;
1522 	ref_root = ref->root;
1523 
1524 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1525 		if (extent_op)
1526 			flags |= extent_op->flags_to_set;
1527 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1528 						 flags, ref->objectid,
1529 						 ref->offset, &ins,
1530 						 node->ref_mod);
1531 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1532 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1533 					     ref->objectid, ref->offset,
1534 					     node->ref_mod, extent_op);
1535 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1536 		ret = __btrfs_free_extent(trans, node, parent,
1537 					  ref_root, ref->objectid,
1538 					  ref->offset, node->ref_mod,
1539 					  extent_op);
1540 	} else {
1541 		BUG();
1542 	}
1543 	return ret;
1544 }
1545 
1546 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1547 				    struct extent_buffer *leaf,
1548 				    struct btrfs_extent_item *ei)
1549 {
1550 	u64 flags = btrfs_extent_flags(leaf, ei);
1551 	if (extent_op->update_flags) {
1552 		flags |= extent_op->flags_to_set;
1553 		btrfs_set_extent_flags(leaf, ei, flags);
1554 	}
1555 
1556 	if (extent_op->update_key) {
1557 		struct btrfs_tree_block_info *bi;
1558 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1559 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1560 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1561 	}
1562 }
1563 
1564 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1565 				 struct btrfs_delayed_ref_head *head,
1566 				 struct btrfs_delayed_extent_op *extent_op)
1567 {
1568 	struct btrfs_fs_info *fs_info = trans->fs_info;
1569 	struct btrfs_root *root;
1570 	struct btrfs_key key;
1571 	struct btrfs_path *path;
1572 	struct btrfs_extent_item *ei;
1573 	struct extent_buffer *leaf;
1574 	u32 item_size;
1575 	int ret;
1576 	int err = 0;
1577 	int metadata = 1;
1578 
1579 	if (TRANS_ABORTED(trans))
1580 		return 0;
1581 
1582 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1583 		metadata = 0;
1584 
1585 	path = btrfs_alloc_path();
1586 	if (!path)
1587 		return -ENOMEM;
1588 
1589 	key.objectid = head->bytenr;
1590 
1591 	if (metadata) {
1592 		key.type = BTRFS_METADATA_ITEM_KEY;
1593 		key.offset = extent_op->level;
1594 	} else {
1595 		key.type = BTRFS_EXTENT_ITEM_KEY;
1596 		key.offset = head->num_bytes;
1597 	}
1598 
1599 	root = btrfs_extent_root(fs_info, key.objectid);
1600 again:
1601 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1602 	if (ret < 0) {
1603 		err = ret;
1604 		goto out;
1605 	}
1606 	if (ret > 0) {
1607 		if (metadata) {
1608 			if (path->slots[0] > 0) {
1609 				path->slots[0]--;
1610 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1611 						      path->slots[0]);
1612 				if (key.objectid == head->bytenr &&
1613 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1614 				    key.offset == head->num_bytes)
1615 					ret = 0;
1616 			}
1617 			if (ret > 0) {
1618 				btrfs_release_path(path);
1619 				metadata = 0;
1620 
1621 				key.objectid = head->bytenr;
1622 				key.offset = head->num_bytes;
1623 				key.type = BTRFS_EXTENT_ITEM_KEY;
1624 				goto again;
1625 			}
1626 		} else {
1627 			err = -EIO;
1628 			goto out;
1629 		}
1630 	}
1631 
1632 	leaf = path->nodes[0];
1633 	item_size = btrfs_item_size(leaf, path->slots[0]);
1634 
1635 	if (unlikely(item_size < sizeof(*ei))) {
1636 		err = -EINVAL;
1637 		btrfs_print_v0_err(fs_info);
1638 		btrfs_abort_transaction(trans, err);
1639 		goto out;
1640 	}
1641 
1642 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1643 	__run_delayed_extent_op(extent_op, leaf, ei);
1644 
1645 	btrfs_mark_buffer_dirty(leaf);
1646 out:
1647 	btrfs_free_path(path);
1648 	return err;
1649 }
1650 
1651 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1652 				struct btrfs_delayed_ref_node *node,
1653 				struct btrfs_delayed_extent_op *extent_op,
1654 				int insert_reserved)
1655 {
1656 	int ret = 0;
1657 	struct btrfs_delayed_tree_ref *ref;
1658 	u64 parent = 0;
1659 	u64 ref_root = 0;
1660 
1661 	ref = btrfs_delayed_node_to_tree_ref(node);
1662 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1663 
1664 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1665 		parent = ref->parent;
1666 	ref_root = ref->root;
1667 
1668 	if (node->ref_mod != 1) {
1669 		btrfs_err(trans->fs_info,
1670 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1671 			  node->bytenr, node->ref_mod, node->action, ref_root,
1672 			  parent);
1673 		return -EIO;
1674 	}
1675 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1676 		BUG_ON(!extent_op || !extent_op->update_flags);
1677 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1678 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1679 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1680 					     ref->level, 0, 1, extent_op);
1681 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1682 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1683 					  ref->level, 0, 1, extent_op);
1684 	} else {
1685 		BUG();
1686 	}
1687 	return ret;
1688 }
1689 
1690 /* helper function to actually process a single delayed ref entry */
1691 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1692 			       struct btrfs_delayed_ref_node *node,
1693 			       struct btrfs_delayed_extent_op *extent_op,
1694 			       int insert_reserved)
1695 {
1696 	int ret = 0;
1697 
1698 	if (TRANS_ABORTED(trans)) {
1699 		if (insert_reserved)
1700 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1701 		return 0;
1702 	}
1703 
1704 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1705 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706 		ret = run_delayed_tree_ref(trans, node, extent_op,
1707 					   insert_reserved);
1708 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1709 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1710 		ret = run_delayed_data_ref(trans, node, extent_op,
1711 					   insert_reserved);
1712 	else
1713 		BUG();
1714 	if (ret && insert_reserved)
1715 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1716 	return ret;
1717 }
1718 
1719 static inline struct btrfs_delayed_ref_node *
1720 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1721 {
1722 	struct btrfs_delayed_ref_node *ref;
1723 
1724 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1725 		return NULL;
1726 
1727 	/*
1728 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1729 	 * This is to prevent a ref count from going down to zero, which deletes
1730 	 * the extent item from the extent tree, when there still are references
1731 	 * to add, which would fail because they would not find the extent item.
1732 	 */
1733 	if (!list_empty(&head->ref_add_list))
1734 		return list_first_entry(&head->ref_add_list,
1735 				struct btrfs_delayed_ref_node, add_list);
1736 
1737 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1738 		       struct btrfs_delayed_ref_node, ref_node);
1739 	ASSERT(list_empty(&ref->add_list));
1740 	return ref;
1741 }
1742 
1743 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1744 				      struct btrfs_delayed_ref_head *head)
1745 {
1746 	spin_lock(&delayed_refs->lock);
1747 	head->processing = 0;
1748 	delayed_refs->num_heads_ready++;
1749 	spin_unlock(&delayed_refs->lock);
1750 	btrfs_delayed_ref_unlock(head);
1751 }
1752 
1753 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1754 				struct btrfs_delayed_ref_head *head)
1755 {
1756 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1757 
1758 	if (!extent_op)
1759 		return NULL;
1760 
1761 	if (head->must_insert_reserved) {
1762 		head->extent_op = NULL;
1763 		btrfs_free_delayed_extent_op(extent_op);
1764 		return NULL;
1765 	}
1766 	return extent_op;
1767 }
1768 
1769 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1770 				     struct btrfs_delayed_ref_head *head)
1771 {
1772 	struct btrfs_delayed_extent_op *extent_op;
1773 	int ret;
1774 
1775 	extent_op = cleanup_extent_op(head);
1776 	if (!extent_op)
1777 		return 0;
1778 	head->extent_op = NULL;
1779 	spin_unlock(&head->lock);
1780 	ret = run_delayed_extent_op(trans, head, extent_op);
1781 	btrfs_free_delayed_extent_op(extent_op);
1782 	return ret ? ret : 1;
1783 }
1784 
1785 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1786 				  struct btrfs_delayed_ref_root *delayed_refs,
1787 				  struct btrfs_delayed_ref_head *head)
1788 {
1789 	int nr_items = 1;	/* Dropping this ref head update. */
1790 
1791 	/*
1792 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1793 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1794 	 */
1795 	if (head->total_ref_mod < 0 && head->is_data) {
1796 		spin_lock(&delayed_refs->lock);
1797 		delayed_refs->pending_csums -= head->num_bytes;
1798 		spin_unlock(&delayed_refs->lock);
1799 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1800 	}
1801 
1802 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1803 }
1804 
1805 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1806 			    struct btrfs_delayed_ref_head *head)
1807 {
1808 
1809 	struct btrfs_fs_info *fs_info = trans->fs_info;
1810 	struct btrfs_delayed_ref_root *delayed_refs;
1811 	int ret;
1812 
1813 	delayed_refs = &trans->transaction->delayed_refs;
1814 
1815 	ret = run_and_cleanup_extent_op(trans, head);
1816 	if (ret < 0) {
1817 		unselect_delayed_ref_head(delayed_refs, head);
1818 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1819 		return ret;
1820 	} else if (ret) {
1821 		return ret;
1822 	}
1823 
1824 	/*
1825 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1826 	 * and then re-check to make sure nobody got added.
1827 	 */
1828 	spin_unlock(&head->lock);
1829 	spin_lock(&delayed_refs->lock);
1830 	spin_lock(&head->lock);
1831 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1832 		spin_unlock(&head->lock);
1833 		spin_unlock(&delayed_refs->lock);
1834 		return 1;
1835 	}
1836 	btrfs_delete_ref_head(delayed_refs, head);
1837 	spin_unlock(&head->lock);
1838 	spin_unlock(&delayed_refs->lock);
1839 
1840 	if (head->must_insert_reserved) {
1841 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1842 		if (head->is_data) {
1843 			struct btrfs_root *csum_root;
1844 
1845 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1846 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1847 					      head->num_bytes);
1848 		}
1849 	}
1850 
1851 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1852 
1853 	trace_run_delayed_ref_head(fs_info, head, 0);
1854 	btrfs_delayed_ref_unlock(head);
1855 	btrfs_put_delayed_ref_head(head);
1856 	return ret;
1857 }
1858 
1859 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1860 					struct btrfs_trans_handle *trans)
1861 {
1862 	struct btrfs_delayed_ref_root *delayed_refs =
1863 		&trans->transaction->delayed_refs;
1864 	struct btrfs_delayed_ref_head *head = NULL;
1865 	int ret;
1866 
1867 	spin_lock(&delayed_refs->lock);
1868 	head = btrfs_select_ref_head(delayed_refs);
1869 	if (!head) {
1870 		spin_unlock(&delayed_refs->lock);
1871 		return head;
1872 	}
1873 
1874 	/*
1875 	 * Grab the lock that says we are going to process all the refs for
1876 	 * this head
1877 	 */
1878 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1879 	spin_unlock(&delayed_refs->lock);
1880 
1881 	/*
1882 	 * We may have dropped the spin lock to get the head mutex lock, and
1883 	 * that might have given someone else time to free the head.  If that's
1884 	 * true, it has been removed from our list and we can move on.
1885 	 */
1886 	if (ret == -EAGAIN)
1887 		head = ERR_PTR(-EAGAIN);
1888 
1889 	return head;
1890 }
1891 
1892 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1893 				    struct btrfs_delayed_ref_head *locked_ref,
1894 				    unsigned long *run_refs)
1895 {
1896 	struct btrfs_fs_info *fs_info = trans->fs_info;
1897 	struct btrfs_delayed_ref_root *delayed_refs;
1898 	struct btrfs_delayed_extent_op *extent_op;
1899 	struct btrfs_delayed_ref_node *ref;
1900 	int must_insert_reserved = 0;
1901 	int ret;
1902 
1903 	delayed_refs = &trans->transaction->delayed_refs;
1904 
1905 	lockdep_assert_held(&locked_ref->mutex);
1906 	lockdep_assert_held(&locked_ref->lock);
1907 
1908 	while ((ref = select_delayed_ref(locked_ref))) {
1909 		if (ref->seq &&
1910 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1911 			spin_unlock(&locked_ref->lock);
1912 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1913 			return -EAGAIN;
1914 		}
1915 
1916 		(*run_refs)++;
1917 		ref->in_tree = 0;
1918 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1919 		RB_CLEAR_NODE(&ref->ref_node);
1920 		if (!list_empty(&ref->add_list))
1921 			list_del(&ref->add_list);
1922 		/*
1923 		 * When we play the delayed ref, also correct the ref_mod on
1924 		 * head
1925 		 */
1926 		switch (ref->action) {
1927 		case BTRFS_ADD_DELAYED_REF:
1928 		case BTRFS_ADD_DELAYED_EXTENT:
1929 			locked_ref->ref_mod -= ref->ref_mod;
1930 			break;
1931 		case BTRFS_DROP_DELAYED_REF:
1932 			locked_ref->ref_mod += ref->ref_mod;
1933 			break;
1934 		default:
1935 			WARN_ON(1);
1936 		}
1937 		atomic_dec(&delayed_refs->num_entries);
1938 
1939 		/*
1940 		 * Record the must_insert_reserved flag before we drop the
1941 		 * spin lock.
1942 		 */
1943 		must_insert_reserved = locked_ref->must_insert_reserved;
1944 		locked_ref->must_insert_reserved = 0;
1945 
1946 		extent_op = locked_ref->extent_op;
1947 		locked_ref->extent_op = NULL;
1948 		spin_unlock(&locked_ref->lock);
1949 
1950 		ret = run_one_delayed_ref(trans, ref, extent_op,
1951 					  must_insert_reserved);
1952 
1953 		btrfs_free_delayed_extent_op(extent_op);
1954 		if (ret) {
1955 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1956 			btrfs_put_delayed_ref(ref);
1957 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1958 				    ret);
1959 			return ret;
1960 		}
1961 
1962 		btrfs_put_delayed_ref(ref);
1963 		cond_resched();
1964 
1965 		spin_lock(&locked_ref->lock);
1966 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Returns 0 on success or if called with an already aborted transaction.
1974  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1975  */
1976 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1977 					     unsigned long nr)
1978 {
1979 	struct btrfs_fs_info *fs_info = trans->fs_info;
1980 	struct btrfs_delayed_ref_root *delayed_refs;
1981 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1982 	ktime_t start = ktime_get();
1983 	int ret;
1984 	unsigned long count = 0;
1985 	unsigned long actual_count = 0;
1986 
1987 	delayed_refs = &trans->transaction->delayed_refs;
1988 	do {
1989 		if (!locked_ref) {
1990 			locked_ref = btrfs_obtain_ref_head(trans);
1991 			if (IS_ERR_OR_NULL(locked_ref)) {
1992 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1993 					continue;
1994 				} else {
1995 					break;
1996 				}
1997 			}
1998 			count++;
1999 		}
2000 		/*
2001 		 * We need to try and merge add/drops of the same ref since we
2002 		 * can run into issues with relocate dropping the implicit ref
2003 		 * and then it being added back again before the drop can
2004 		 * finish.  If we merged anything we need to re-loop so we can
2005 		 * get a good ref.
2006 		 * Or we can get node references of the same type that weren't
2007 		 * merged when created due to bumps in the tree mod seq, and
2008 		 * we need to merge them to prevent adding an inline extent
2009 		 * backref before dropping it (triggering a BUG_ON at
2010 		 * insert_inline_extent_backref()).
2011 		 */
2012 		spin_lock(&locked_ref->lock);
2013 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2014 
2015 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2016 						      &actual_count);
2017 		if (ret < 0 && ret != -EAGAIN) {
2018 			/*
2019 			 * Error, btrfs_run_delayed_refs_for_head already
2020 			 * unlocked everything so just bail out
2021 			 */
2022 			return ret;
2023 		} else if (!ret) {
2024 			/*
2025 			 * Success, perform the usual cleanup of a processed
2026 			 * head
2027 			 */
2028 			ret = cleanup_ref_head(trans, locked_ref);
2029 			if (ret > 0 ) {
2030 				/* We dropped our lock, we need to loop. */
2031 				ret = 0;
2032 				continue;
2033 			} else if (ret) {
2034 				return ret;
2035 			}
2036 		}
2037 
2038 		/*
2039 		 * Either success case or btrfs_run_delayed_refs_for_head
2040 		 * returned -EAGAIN, meaning we need to select another head
2041 		 */
2042 
2043 		locked_ref = NULL;
2044 		cond_resched();
2045 	} while ((nr != -1 && count < nr) || locked_ref);
2046 
2047 	/*
2048 	 * We don't want to include ref heads since we can have empty ref heads
2049 	 * and those will drastically skew our runtime down since we just do
2050 	 * accounting, no actual extent tree updates.
2051 	 */
2052 	if (actual_count > 0) {
2053 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2054 		u64 avg;
2055 
2056 		/*
2057 		 * We weigh the current average higher than our current runtime
2058 		 * to avoid large swings in the average.
2059 		 */
2060 		spin_lock(&delayed_refs->lock);
2061 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2062 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2063 		spin_unlock(&delayed_refs->lock);
2064 	}
2065 	return 0;
2066 }
2067 
2068 #ifdef SCRAMBLE_DELAYED_REFS
2069 /*
2070  * Normally delayed refs get processed in ascending bytenr order. This
2071  * correlates in most cases to the order added. To expose dependencies on this
2072  * order, we start to process the tree in the middle instead of the beginning
2073  */
2074 static u64 find_middle(struct rb_root *root)
2075 {
2076 	struct rb_node *n = root->rb_node;
2077 	struct btrfs_delayed_ref_node *entry;
2078 	int alt = 1;
2079 	u64 middle;
2080 	u64 first = 0, last = 0;
2081 
2082 	n = rb_first(root);
2083 	if (n) {
2084 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2085 		first = entry->bytenr;
2086 	}
2087 	n = rb_last(root);
2088 	if (n) {
2089 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090 		last = entry->bytenr;
2091 	}
2092 	n = root->rb_node;
2093 
2094 	while (n) {
2095 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 		WARN_ON(!entry->in_tree);
2097 
2098 		middle = entry->bytenr;
2099 
2100 		if (alt)
2101 			n = n->rb_left;
2102 		else
2103 			n = n->rb_right;
2104 
2105 		alt = 1 - alt;
2106 	}
2107 	return middle;
2108 }
2109 #endif
2110 
2111 /*
2112  * this starts processing the delayed reference count updates and
2113  * extent insertions we have queued up so far.  count can be
2114  * 0, which means to process everything in the tree at the start
2115  * of the run (but not newly added entries), or it can be some target
2116  * number you'd like to process.
2117  *
2118  * Returns 0 on success or if called with an aborted transaction
2119  * Returns <0 on error and aborts the transaction
2120  */
2121 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2122 			   unsigned long count)
2123 {
2124 	struct btrfs_fs_info *fs_info = trans->fs_info;
2125 	struct rb_node *node;
2126 	struct btrfs_delayed_ref_root *delayed_refs;
2127 	struct btrfs_delayed_ref_head *head;
2128 	int ret;
2129 	int run_all = count == (unsigned long)-1;
2130 
2131 	/* We'll clean this up in btrfs_cleanup_transaction */
2132 	if (TRANS_ABORTED(trans))
2133 		return 0;
2134 
2135 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2136 		return 0;
2137 
2138 	delayed_refs = &trans->transaction->delayed_refs;
2139 	if (count == 0)
2140 		count = delayed_refs->num_heads_ready;
2141 
2142 again:
2143 #ifdef SCRAMBLE_DELAYED_REFS
2144 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2145 #endif
2146 	ret = __btrfs_run_delayed_refs(trans, count);
2147 	if (ret < 0) {
2148 		btrfs_abort_transaction(trans, ret);
2149 		return ret;
2150 	}
2151 
2152 	if (run_all) {
2153 		btrfs_create_pending_block_groups(trans);
2154 
2155 		spin_lock(&delayed_refs->lock);
2156 		node = rb_first_cached(&delayed_refs->href_root);
2157 		if (!node) {
2158 			spin_unlock(&delayed_refs->lock);
2159 			goto out;
2160 		}
2161 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2162 				href_node);
2163 		refcount_inc(&head->refs);
2164 		spin_unlock(&delayed_refs->lock);
2165 
2166 		/* Mutex was contended, block until it's released and retry. */
2167 		mutex_lock(&head->mutex);
2168 		mutex_unlock(&head->mutex);
2169 
2170 		btrfs_put_delayed_ref_head(head);
2171 		cond_resched();
2172 		goto again;
2173 	}
2174 out:
2175 	return 0;
2176 }
2177 
2178 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2179 				struct extent_buffer *eb, u64 flags,
2180 				int level)
2181 {
2182 	struct btrfs_delayed_extent_op *extent_op;
2183 	int ret;
2184 
2185 	extent_op = btrfs_alloc_delayed_extent_op();
2186 	if (!extent_op)
2187 		return -ENOMEM;
2188 
2189 	extent_op->flags_to_set = flags;
2190 	extent_op->update_flags = true;
2191 	extent_op->update_key = false;
2192 	extent_op->level = level;
2193 
2194 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2195 	if (ret)
2196 		btrfs_free_delayed_extent_op(extent_op);
2197 	return ret;
2198 }
2199 
2200 static noinline int check_delayed_ref(struct btrfs_root *root,
2201 				      struct btrfs_path *path,
2202 				      u64 objectid, u64 offset, u64 bytenr)
2203 {
2204 	struct btrfs_delayed_ref_head *head;
2205 	struct btrfs_delayed_ref_node *ref;
2206 	struct btrfs_delayed_data_ref *data_ref;
2207 	struct btrfs_delayed_ref_root *delayed_refs;
2208 	struct btrfs_transaction *cur_trans;
2209 	struct rb_node *node;
2210 	int ret = 0;
2211 
2212 	spin_lock(&root->fs_info->trans_lock);
2213 	cur_trans = root->fs_info->running_transaction;
2214 	if (cur_trans)
2215 		refcount_inc(&cur_trans->use_count);
2216 	spin_unlock(&root->fs_info->trans_lock);
2217 	if (!cur_trans)
2218 		return 0;
2219 
2220 	delayed_refs = &cur_trans->delayed_refs;
2221 	spin_lock(&delayed_refs->lock);
2222 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2223 	if (!head) {
2224 		spin_unlock(&delayed_refs->lock);
2225 		btrfs_put_transaction(cur_trans);
2226 		return 0;
2227 	}
2228 
2229 	if (!mutex_trylock(&head->mutex)) {
2230 		if (path->nowait) {
2231 			spin_unlock(&delayed_refs->lock);
2232 			btrfs_put_transaction(cur_trans);
2233 			return -EAGAIN;
2234 		}
2235 
2236 		refcount_inc(&head->refs);
2237 		spin_unlock(&delayed_refs->lock);
2238 
2239 		btrfs_release_path(path);
2240 
2241 		/*
2242 		 * Mutex was contended, block until it's released and let
2243 		 * caller try again
2244 		 */
2245 		mutex_lock(&head->mutex);
2246 		mutex_unlock(&head->mutex);
2247 		btrfs_put_delayed_ref_head(head);
2248 		btrfs_put_transaction(cur_trans);
2249 		return -EAGAIN;
2250 	}
2251 	spin_unlock(&delayed_refs->lock);
2252 
2253 	spin_lock(&head->lock);
2254 	/*
2255 	 * XXX: We should replace this with a proper search function in the
2256 	 * future.
2257 	 */
2258 	for (node = rb_first_cached(&head->ref_tree); node;
2259 	     node = rb_next(node)) {
2260 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2261 		/* If it's a shared ref we know a cross reference exists */
2262 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2263 			ret = 1;
2264 			break;
2265 		}
2266 
2267 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2268 
2269 		/*
2270 		 * If our ref doesn't match the one we're currently looking at
2271 		 * then we have a cross reference.
2272 		 */
2273 		if (data_ref->root != root->root_key.objectid ||
2274 		    data_ref->objectid != objectid ||
2275 		    data_ref->offset != offset) {
2276 			ret = 1;
2277 			break;
2278 		}
2279 	}
2280 	spin_unlock(&head->lock);
2281 	mutex_unlock(&head->mutex);
2282 	btrfs_put_transaction(cur_trans);
2283 	return ret;
2284 }
2285 
2286 static noinline int check_committed_ref(struct btrfs_root *root,
2287 					struct btrfs_path *path,
2288 					u64 objectid, u64 offset, u64 bytenr,
2289 					bool strict)
2290 {
2291 	struct btrfs_fs_info *fs_info = root->fs_info;
2292 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2293 	struct extent_buffer *leaf;
2294 	struct btrfs_extent_data_ref *ref;
2295 	struct btrfs_extent_inline_ref *iref;
2296 	struct btrfs_extent_item *ei;
2297 	struct btrfs_key key;
2298 	u32 item_size;
2299 	int type;
2300 	int ret;
2301 
2302 	key.objectid = bytenr;
2303 	key.offset = (u64)-1;
2304 	key.type = BTRFS_EXTENT_ITEM_KEY;
2305 
2306 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2307 	if (ret < 0)
2308 		goto out;
2309 	BUG_ON(ret == 0); /* Corruption */
2310 
2311 	ret = -ENOENT;
2312 	if (path->slots[0] == 0)
2313 		goto out;
2314 
2315 	path->slots[0]--;
2316 	leaf = path->nodes[0];
2317 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2318 
2319 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2320 		goto out;
2321 
2322 	ret = 1;
2323 	item_size = btrfs_item_size(leaf, path->slots[0]);
2324 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 
2326 	/* If extent item has more than 1 inline ref then it's shared */
2327 	if (item_size != sizeof(*ei) +
2328 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2329 		goto out;
2330 
2331 	/*
2332 	 * If extent created before last snapshot => it's shared unless the
2333 	 * snapshot has been deleted. Use the heuristic if strict is false.
2334 	 */
2335 	if (!strict &&
2336 	    (btrfs_extent_generation(leaf, ei) <=
2337 	     btrfs_root_last_snapshot(&root->root_item)))
2338 		goto out;
2339 
2340 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2341 
2342 	/* If this extent has SHARED_DATA_REF then it's shared */
2343 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2344 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2345 		goto out;
2346 
2347 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2348 	if (btrfs_extent_refs(leaf, ei) !=
2349 	    btrfs_extent_data_ref_count(leaf, ref) ||
2350 	    btrfs_extent_data_ref_root(leaf, ref) !=
2351 	    root->root_key.objectid ||
2352 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2353 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2354 		goto out;
2355 
2356 	ret = 0;
2357 out:
2358 	return ret;
2359 }
2360 
2361 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2362 			  u64 bytenr, bool strict, struct btrfs_path *path)
2363 {
2364 	int ret;
2365 
2366 	do {
2367 		ret = check_committed_ref(root, path, objectid,
2368 					  offset, bytenr, strict);
2369 		if (ret && ret != -ENOENT)
2370 			goto out;
2371 
2372 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2373 	} while (ret == -EAGAIN);
2374 
2375 out:
2376 	btrfs_release_path(path);
2377 	if (btrfs_is_data_reloc_root(root))
2378 		WARN_ON(ret > 0);
2379 	return ret;
2380 }
2381 
2382 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2383 			   struct btrfs_root *root,
2384 			   struct extent_buffer *buf,
2385 			   int full_backref, int inc)
2386 {
2387 	struct btrfs_fs_info *fs_info = root->fs_info;
2388 	u64 bytenr;
2389 	u64 num_bytes;
2390 	u64 parent;
2391 	u64 ref_root;
2392 	u32 nritems;
2393 	struct btrfs_key key;
2394 	struct btrfs_file_extent_item *fi;
2395 	struct btrfs_ref generic_ref = { 0 };
2396 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2397 	int i;
2398 	int action;
2399 	int level;
2400 	int ret = 0;
2401 
2402 	if (btrfs_is_testing(fs_info))
2403 		return 0;
2404 
2405 	ref_root = btrfs_header_owner(buf);
2406 	nritems = btrfs_header_nritems(buf);
2407 	level = btrfs_header_level(buf);
2408 
2409 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2410 		return 0;
2411 
2412 	if (full_backref)
2413 		parent = buf->start;
2414 	else
2415 		parent = 0;
2416 	if (inc)
2417 		action = BTRFS_ADD_DELAYED_REF;
2418 	else
2419 		action = BTRFS_DROP_DELAYED_REF;
2420 
2421 	for (i = 0; i < nritems; i++) {
2422 		if (level == 0) {
2423 			btrfs_item_key_to_cpu(buf, &key, i);
2424 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2425 				continue;
2426 			fi = btrfs_item_ptr(buf, i,
2427 					    struct btrfs_file_extent_item);
2428 			if (btrfs_file_extent_type(buf, fi) ==
2429 			    BTRFS_FILE_EXTENT_INLINE)
2430 				continue;
2431 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2432 			if (bytenr == 0)
2433 				continue;
2434 
2435 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2436 			key.offset -= btrfs_file_extent_offset(buf, fi);
2437 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2438 					       num_bytes, parent);
2439 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2440 					    key.offset, root->root_key.objectid,
2441 					    for_reloc);
2442 			if (inc)
2443 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2444 			else
2445 				ret = btrfs_free_extent(trans, &generic_ref);
2446 			if (ret)
2447 				goto fail;
2448 		} else {
2449 			bytenr = btrfs_node_blockptr(buf, i);
2450 			num_bytes = fs_info->nodesize;
2451 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2452 					       num_bytes, parent);
2453 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2454 					    root->root_key.objectid, for_reloc);
2455 			if (inc)
2456 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2457 			else
2458 				ret = btrfs_free_extent(trans, &generic_ref);
2459 			if (ret)
2460 				goto fail;
2461 		}
2462 	}
2463 	return 0;
2464 fail:
2465 	return ret;
2466 }
2467 
2468 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2469 		  struct extent_buffer *buf, int full_backref)
2470 {
2471 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2472 }
2473 
2474 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2475 		  struct extent_buffer *buf, int full_backref)
2476 {
2477 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2478 }
2479 
2480 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2481 {
2482 	struct btrfs_fs_info *fs_info = root->fs_info;
2483 	u64 flags;
2484 	u64 ret;
2485 
2486 	if (data)
2487 		flags = BTRFS_BLOCK_GROUP_DATA;
2488 	else if (root == fs_info->chunk_root)
2489 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2490 	else
2491 		flags = BTRFS_BLOCK_GROUP_METADATA;
2492 
2493 	ret = btrfs_get_alloc_profile(fs_info, flags);
2494 	return ret;
2495 }
2496 
2497 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2498 {
2499 	struct rb_node *leftmost;
2500 	u64 bytenr = 0;
2501 
2502 	read_lock(&fs_info->block_group_cache_lock);
2503 	/* Get the block group with the lowest logical start address. */
2504 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2505 	if (leftmost) {
2506 		struct btrfs_block_group *bg;
2507 
2508 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2509 		bytenr = bg->start;
2510 	}
2511 	read_unlock(&fs_info->block_group_cache_lock);
2512 
2513 	return bytenr;
2514 }
2515 
2516 static int pin_down_extent(struct btrfs_trans_handle *trans,
2517 			   struct btrfs_block_group *cache,
2518 			   u64 bytenr, u64 num_bytes, int reserved)
2519 {
2520 	struct btrfs_fs_info *fs_info = cache->fs_info;
2521 
2522 	spin_lock(&cache->space_info->lock);
2523 	spin_lock(&cache->lock);
2524 	cache->pinned += num_bytes;
2525 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2526 					     num_bytes);
2527 	if (reserved) {
2528 		cache->reserved -= num_bytes;
2529 		cache->space_info->bytes_reserved -= num_bytes;
2530 	}
2531 	spin_unlock(&cache->lock);
2532 	spin_unlock(&cache->space_info->lock);
2533 
2534 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2535 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2536 	return 0;
2537 }
2538 
2539 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2540 		     u64 bytenr, u64 num_bytes, int reserved)
2541 {
2542 	struct btrfs_block_group *cache;
2543 
2544 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2545 	BUG_ON(!cache); /* Logic error */
2546 
2547 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2548 
2549 	btrfs_put_block_group(cache);
2550 	return 0;
2551 }
2552 
2553 /*
2554  * this function must be called within transaction
2555  */
2556 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2557 				    u64 bytenr, u64 num_bytes)
2558 {
2559 	struct btrfs_block_group *cache;
2560 	int ret;
2561 
2562 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2563 	if (!cache)
2564 		return -EINVAL;
2565 
2566 	/*
2567 	 * Fully cache the free space first so that our pin removes the free space
2568 	 * from the cache.
2569 	 */
2570 	ret = btrfs_cache_block_group(cache, true);
2571 	if (ret)
2572 		goto out;
2573 
2574 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2575 
2576 	/* remove us from the free space cache (if we're there at all) */
2577 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2578 out:
2579 	btrfs_put_block_group(cache);
2580 	return ret;
2581 }
2582 
2583 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2584 				   u64 start, u64 num_bytes)
2585 {
2586 	int ret;
2587 	struct btrfs_block_group *block_group;
2588 
2589 	block_group = btrfs_lookup_block_group(fs_info, start);
2590 	if (!block_group)
2591 		return -EINVAL;
2592 
2593 	ret = btrfs_cache_block_group(block_group, true);
2594 	if (ret)
2595 		goto out;
2596 
2597 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2598 out:
2599 	btrfs_put_block_group(block_group);
2600 	return ret;
2601 }
2602 
2603 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2604 {
2605 	struct btrfs_fs_info *fs_info = eb->fs_info;
2606 	struct btrfs_file_extent_item *item;
2607 	struct btrfs_key key;
2608 	int found_type;
2609 	int i;
2610 	int ret = 0;
2611 
2612 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2613 		return 0;
2614 
2615 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2616 		btrfs_item_key_to_cpu(eb, &key, i);
2617 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2618 			continue;
2619 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2620 		found_type = btrfs_file_extent_type(eb, item);
2621 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2622 			continue;
2623 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2624 			continue;
2625 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2626 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2627 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2628 		if (ret)
2629 			break;
2630 	}
2631 
2632 	return ret;
2633 }
2634 
2635 static void
2636 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2637 {
2638 	atomic_inc(&bg->reservations);
2639 }
2640 
2641 /*
2642  * Returns the free cluster for the given space info and sets empty_cluster to
2643  * what it should be based on the mount options.
2644  */
2645 static struct btrfs_free_cluster *
2646 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2647 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2648 {
2649 	struct btrfs_free_cluster *ret = NULL;
2650 
2651 	*empty_cluster = 0;
2652 	if (btrfs_mixed_space_info(space_info))
2653 		return ret;
2654 
2655 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2656 		ret = &fs_info->meta_alloc_cluster;
2657 		if (btrfs_test_opt(fs_info, SSD))
2658 			*empty_cluster = SZ_2M;
2659 		else
2660 			*empty_cluster = SZ_64K;
2661 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2662 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2663 		*empty_cluster = SZ_2M;
2664 		ret = &fs_info->data_alloc_cluster;
2665 	}
2666 
2667 	return ret;
2668 }
2669 
2670 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2671 			      u64 start, u64 end,
2672 			      const bool return_free_space)
2673 {
2674 	struct btrfs_block_group *cache = NULL;
2675 	struct btrfs_space_info *space_info;
2676 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2677 	struct btrfs_free_cluster *cluster = NULL;
2678 	u64 len;
2679 	u64 total_unpinned = 0;
2680 	u64 empty_cluster = 0;
2681 	bool readonly;
2682 
2683 	while (start <= end) {
2684 		readonly = false;
2685 		if (!cache ||
2686 		    start >= cache->start + cache->length) {
2687 			if (cache)
2688 				btrfs_put_block_group(cache);
2689 			total_unpinned = 0;
2690 			cache = btrfs_lookup_block_group(fs_info, start);
2691 			BUG_ON(!cache); /* Logic error */
2692 
2693 			cluster = fetch_cluster_info(fs_info,
2694 						     cache->space_info,
2695 						     &empty_cluster);
2696 			empty_cluster <<= 1;
2697 		}
2698 
2699 		len = cache->start + cache->length - start;
2700 		len = min(len, end + 1 - start);
2701 
2702 		if (return_free_space)
2703 			btrfs_add_free_space(cache, start, len);
2704 
2705 		start += len;
2706 		total_unpinned += len;
2707 		space_info = cache->space_info;
2708 
2709 		/*
2710 		 * If this space cluster has been marked as fragmented and we've
2711 		 * unpinned enough in this block group to potentially allow a
2712 		 * cluster to be created inside of it go ahead and clear the
2713 		 * fragmented check.
2714 		 */
2715 		if (cluster && cluster->fragmented &&
2716 		    total_unpinned > empty_cluster) {
2717 			spin_lock(&cluster->lock);
2718 			cluster->fragmented = 0;
2719 			spin_unlock(&cluster->lock);
2720 		}
2721 
2722 		spin_lock(&space_info->lock);
2723 		spin_lock(&cache->lock);
2724 		cache->pinned -= len;
2725 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2726 		space_info->max_extent_size = 0;
2727 		if (cache->ro) {
2728 			space_info->bytes_readonly += len;
2729 			readonly = true;
2730 		} else if (btrfs_is_zoned(fs_info)) {
2731 			/* Need reset before reusing in a zoned block group */
2732 			space_info->bytes_zone_unusable += len;
2733 			readonly = true;
2734 		}
2735 		spin_unlock(&cache->lock);
2736 		if (!readonly && return_free_space &&
2737 		    global_rsv->space_info == space_info) {
2738 			spin_lock(&global_rsv->lock);
2739 			if (!global_rsv->full) {
2740 				u64 to_add = min(len, global_rsv->size -
2741 						      global_rsv->reserved);
2742 
2743 				global_rsv->reserved += to_add;
2744 				btrfs_space_info_update_bytes_may_use(fs_info,
2745 						space_info, to_add);
2746 				if (global_rsv->reserved >= global_rsv->size)
2747 					global_rsv->full = 1;
2748 				len -= to_add;
2749 			}
2750 			spin_unlock(&global_rsv->lock);
2751 		}
2752 		/* Add to any tickets we may have */
2753 		if (!readonly && return_free_space && len)
2754 			btrfs_try_granting_tickets(fs_info, space_info);
2755 		spin_unlock(&space_info->lock);
2756 	}
2757 
2758 	if (cache)
2759 		btrfs_put_block_group(cache);
2760 	return 0;
2761 }
2762 
2763 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2764 {
2765 	struct btrfs_fs_info *fs_info = trans->fs_info;
2766 	struct btrfs_block_group *block_group, *tmp;
2767 	struct list_head *deleted_bgs;
2768 	struct extent_io_tree *unpin;
2769 	u64 start;
2770 	u64 end;
2771 	int ret;
2772 
2773 	unpin = &trans->transaction->pinned_extents;
2774 
2775 	while (!TRANS_ABORTED(trans)) {
2776 		struct extent_state *cached_state = NULL;
2777 
2778 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2779 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2780 					    EXTENT_DIRTY, &cached_state);
2781 		if (ret) {
2782 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2783 			break;
2784 		}
2785 
2786 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2787 			ret = btrfs_discard_extent(fs_info, start,
2788 						   end + 1 - start, NULL);
2789 
2790 		clear_extent_dirty(unpin, start, end, &cached_state);
2791 		unpin_extent_range(fs_info, start, end, true);
2792 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2793 		free_extent_state(cached_state);
2794 		cond_resched();
2795 	}
2796 
2797 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2798 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2799 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2800 	}
2801 
2802 	/*
2803 	 * Transaction is finished.  We don't need the lock anymore.  We
2804 	 * do need to clean up the block groups in case of a transaction
2805 	 * abort.
2806 	 */
2807 	deleted_bgs = &trans->transaction->deleted_bgs;
2808 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2809 		u64 trimmed = 0;
2810 
2811 		ret = -EROFS;
2812 		if (!TRANS_ABORTED(trans))
2813 			ret = btrfs_discard_extent(fs_info,
2814 						   block_group->start,
2815 						   block_group->length,
2816 						   &trimmed);
2817 
2818 		list_del_init(&block_group->bg_list);
2819 		btrfs_unfreeze_block_group(block_group);
2820 		btrfs_put_block_group(block_group);
2821 
2822 		if (ret) {
2823 			const char *errstr = btrfs_decode_error(ret);
2824 			btrfs_warn(fs_info,
2825 			   "discard failed while removing blockgroup: errno=%d %s",
2826 				   ret, errstr);
2827 		}
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2834 				     u64 bytenr, u64 num_bytes, bool is_data)
2835 {
2836 	int ret;
2837 
2838 	if (is_data) {
2839 		struct btrfs_root *csum_root;
2840 
2841 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2842 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2843 		if (ret) {
2844 			btrfs_abort_transaction(trans, ret);
2845 			return ret;
2846 		}
2847 	}
2848 
2849 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2850 	if (ret) {
2851 		btrfs_abort_transaction(trans, ret);
2852 		return ret;
2853 	}
2854 
2855 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2856 	if (ret)
2857 		btrfs_abort_transaction(trans, ret);
2858 
2859 	return ret;
2860 }
2861 
2862 /*
2863  * Drop one or more refs of @node.
2864  *
2865  * 1. Locate the extent refs.
2866  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2867  *    Locate it, then reduce the refs number or remove the ref line completely.
2868  *
2869  * 2. Update the refs count in EXTENT/METADATA_ITEM
2870  *
2871  * Inline backref case:
2872  *
2873  * in extent tree we have:
2874  *
2875  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2876  *		refs 2 gen 6 flags DATA
2877  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2878  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2879  *
2880  * This function gets called with:
2881  *
2882  *    node->bytenr = 13631488
2883  *    node->num_bytes = 1048576
2884  *    root_objectid = FS_TREE
2885  *    owner_objectid = 257
2886  *    owner_offset = 0
2887  *    refs_to_drop = 1
2888  *
2889  * Then we should get some like:
2890  *
2891  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2892  *		refs 1 gen 6 flags DATA
2893  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2894  *
2895  * Keyed backref case:
2896  *
2897  * in extent tree we have:
2898  *
2899  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2900  *		refs 754 gen 6 flags DATA
2901  *	[...]
2902  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2903  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2904  *
2905  * This function get called with:
2906  *
2907  *    node->bytenr = 13631488
2908  *    node->num_bytes = 1048576
2909  *    root_objectid = FS_TREE
2910  *    owner_objectid = 866
2911  *    owner_offset = 0
2912  *    refs_to_drop = 1
2913  *
2914  * Then we should get some like:
2915  *
2916  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2917  *		refs 753 gen 6 flags DATA
2918  *
2919  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2920  */
2921 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2922 			       struct btrfs_delayed_ref_node *node, u64 parent,
2923 			       u64 root_objectid, u64 owner_objectid,
2924 			       u64 owner_offset, int refs_to_drop,
2925 			       struct btrfs_delayed_extent_op *extent_op)
2926 {
2927 	struct btrfs_fs_info *info = trans->fs_info;
2928 	struct btrfs_key key;
2929 	struct btrfs_path *path;
2930 	struct btrfs_root *extent_root;
2931 	struct extent_buffer *leaf;
2932 	struct btrfs_extent_item *ei;
2933 	struct btrfs_extent_inline_ref *iref;
2934 	int ret;
2935 	int is_data;
2936 	int extent_slot = 0;
2937 	int found_extent = 0;
2938 	int num_to_del = 1;
2939 	u32 item_size;
2940 	u64 refs;
2941 	u64 bytenr = node->bytenr;
2942 	u64 num_bytes = node->num_bytes;
2943 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2944 
2945 	extent_root = btrfs_extent_root(info, bytenr);
2946 	ASSERT(extent_root);
2947 
2948 	path = btrfs_alloc_path();
2949 	if (!path)
2950 		return -ENOMEM;
2951 
2952 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2953 
2954 	if (!is_data && refs_to_drop != 1) {
2955 		btrfs_crit(info,
2956 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2957 			   node->bytenr, refs_to_drop);
2958 		ret = -EINVAL;
2959 		btrfs_abort_transaction(trans, ret);
2960 		goto out;
2961 	}
2962 
2963 	if (is_data)
2964 		skinny_metadata = false;
2965 
2966 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2967 				    parent, root_objectid, owner_objectid,
2968 				    owner_offset);
2969 	if (ret == 0) {
2970 		/*
2971 		 * Either the inline backref or the SHARED_DATA_REF/
2972 		 * SHARED_BLOCK_REF is found
2973 		 *
2974 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2975 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2976 		 */
2977 		extent_slot = path->slots[0];
2978 		while (extent_slot >= 0) {
2979 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2980 					      extent_slot);
2981 			if (key.objectid != bytenr)
2982 				break;
2983 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2984 			    key.offset == num_bytes) {
2985 				found_extent = 1;
2986 				break;
2987 			}
2988 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2989 			    key.offset == owner_objectid) {
2990 				found_extent = 1;
2991 				break;
2992 			}
2993 
2994 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2995 			if (path->slots[0] - extent_slot > 5)
2996 				break;
2997 			extent_slot--;
2998 		}
2999 
3000 		if (!found_extent) {
3001 			if (iref) {
3002 				btrfs_crit(info,
3003 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3004 				btrfs_abort_transaction(trans, -EUCLEAN);
3005 				goto err_dump;
3006 			}
3007 			/* Must be SHARED_* item, remove the backref first */
3008 			ret = remove_extent_backref(trans, extent_root, path,
3009 						    NULL, refs_to_drop, is_data);
3010 			if (ret) {
3011 				btrfs_abort_transaction(trans, ret);
3012 				goto out;
3013 			}
3014 			btrfs_release_path(path);
3015 
3016 			/* Slow path to locate EXTENT/METADATA_ITEM */
3017 			key.objectid = bytenr;
3018 			key.type = BTRFS_EXTENT_ITEM_KEY;
3019 			key.offset = num_bytes;
3020 
3021 			if (!is_data && skinny_metadata) {
3022 				key.type = BTRFS_METADATA_ITEM_KEY;
3023 				key.offset = owner_objectid;
3024 			}
3025 
3026 			ret = btrfs_search_slot(trans, extent_root,
3027 						&key, path, -1, 1);
3028 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3029 				/*
3030 				 * Couldn't find our skinny metadata item,
3031 				 * see if we have ye olde extent item.
3032 				 */
3033 				path->slots[0]--;
3034 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3035 						      path->slots[0]);
3036 				if (key.objectid == bytenr &&
3037 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3038 				    key.offset == num_bytes)
3039 					ret = 0;
3040 			}
3041 
3042 			if (ret > 0 && skinny_metadata) {
3043 				skinny_metadata = false;
3044 				key.objectid = bytenr;
3045 				key.type = BTRFS_EXTENT_ITEM_KEY;
3046 				key.offset = num_bytes;
3047 				btrfs_release_path(path);
3048 				ret = btrfs_search_slot(trans, extent_root,
3049 							&key, path, -1, 1);
3050 			}
3051 
3052 			if (ret) {
3053 				btrfs_err(info,
3054 					  "umm, got %d back from search, was looking for %llu",
3055 					  ret, bytenr);
3056 				if (ret > 0)
3057 					btrfs_print_leaf(path->nodes[0]);
3058 			}
3059 			if (ret < 0) {
3060 				btrfs_abort_transaction(trans, ret);
3061 				goto out;
3062 			}
3063 			extent_slot = path->slots[0];
3064 		}
3065 	} else if (WARN_ON(ret == -ENOENT)) {
3066 		btrfs_print_leaf(path->nodes[0]);
3067 		btrfs_err(info,
3068 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3069 			bytenr, parent, root_objectid, owner_objectid,
3070 			owner_offset);
3071 		btrfs_abort_transaction(trans, ret);
3072 		goto out;
3073 	} else {
3074 		btrfs_abort_transaction(trans, ret);
3075 		goto out;
3076 	}
3077 
3078 	leaf = path->nodes[0];
3079 	item_size = btrfs_item_size(leaf, extent_slot);
3080 	if (unlikely(item_size < sizeof(*ei))) {
3081 		ret = -EINVAL;
3082 		btrfs_print_v0_err(info);
3083 		btrfs_abort_transaction(trans, ret);
3084 		goto out;
3085 	}
3086 	ei = btrfs_item_ptr(leaf, extent_slot,
3087 			    struct btrfs_extent_item);
3088 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3089 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3090 		struct btrfs_tree_block_info *bi;
3091 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3092 			btrfs_crit(info,
3093 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3094 				   key.objectid, key.type, key.offset,
3095 				   owner_objectid, item_size,
3096 				   sizeof(*ei) + sizeof(*bi));
3097 			btrfs_abort_transaction(trans, -EUCLEAN);
3098 			goto err_dump;
3099 		}
3100 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3101 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3102 	}
3103 
3104 	refs = btrfs_extent_refs(leaf, ei);
3105 	if (refs < refs_to_drop) {
3106 		btrfs_crit(info,
3107 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3108 			  refs_to_drop, refs, bytenr);
3109 		btrfs_abort_transaction(trans, -EUCLEAN);
3110 		goto err_dump;
3111 	}
3112 	refs -= refs_to_drop;
3113 
3114 	if (refs > 0) {
3115 		if (extent_op)
3116 			__run_delayed_extent_op(extent_op, leaf, ei);
3117 		/*
3118 		 * In the case of inline back ref, reference count will
3119 		 * be updated by remove_extent_backref
3120 		 */
3121 		if (iref) {
3122 			if (!found_extent) {
3123 				btrfs_crit(info,
3124 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3125 				btrfs_abort_transaction(trans, -EUCLEAN);
3126 				goto err_dump;
3127 			}
3128 		} else {
3129 			btrfs_set_extent_refs(leaf, ei, refs);
3130 			btrfs_mark_buffer_dirty(leaf);
3131 		}
3132 		if (found_extent) {
3133 			ret = remove_extent_backref(trans, extent_root, path,
3134 						    iref, refs_to_drop, is_data);
3135 			if (ret) {
3136 				btrfs_abort_transaction(trans, ret);
3137 				goto out;
3138 			}
3139 		}
3140 	} else {
3141 		/* In this branch refs == 1 */
3142 		if (found_extent) {
3143 			if (is_data && refs_to_drop !=
3144 			    extent_data_ref_count(path, iref)) {
3145 				btrfs_crit(info,
3146 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3147 					   extent_data_ref_count(path, iref),
3148 					   refs_to_drop);
3149 				btrfs_abort_transaction(trans, -EUCLEAN);
3150 				goto err_dump;
3151 			}
3152 			if (iref) {
3153 				if (path->slots[0] != extent_slot) {
3154 					btrfs_crit(info,
3155 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3156 						   key.objectid, key.type,
3157 						   key.offset);
3158 					btrfs_abort_transaction(trans, -EUCLEAN);
3159 					goto err_dump;
3160 				}
3161 			} else {
3162 				/*
3163 				 * No inline ref, we must be at SHARED_* item,
3164 				 * And it's single ref, it must be:
3165 				 * |	extent_slot	  ||extent_slot + 1|
3166 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3167 				 */
3168 				if (path->slots[0] != extent_slot + 1) {
3169 					btrfs_crit(info,
3170 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3171 					btrfs_abort_transaction(trans, -EUCLEAN);
3172 					goto err_dump;
3173 				}
3174 				path->slots[0] = extent_slot;
3175 				num_to_del = 2;
3176 			}
3177 		}
3178 
3179 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3180 				      num_to_del);
3181 		if (ret) {
3182 			btrfs_abort_transaction(trans, ret);
3183 			goto out;
3184 		}
3185 		btrfs_release_path(path);
3186 
3187 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3188 	}
3189 	btrfs_release_path(path);
3190 
3191 out:
3192 	btrfs_free_path(path);
3193 	return ret;
3194 err_dump:
3195 	/*
3196 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3197 	 * dump for debug build.
3198 	 */
3199 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3200 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3201 			   path->slots[0], extent_slot);
3202 		btrfs_print_leaf(path->nodes[0]);
3203 	}
3204 
3205 	btrfs_free_path(path);
3206 	return -EUCLEAN;
3207 }
3208 
3209 /*
3210  * when we free an block, it is possible (and likely) that we free the last
3211  * delayed ref for that extent as well.  This searches the delayed ref tree for
3212  * a given extent, and if there are no other delayed refs to be processed, it
3213  * removes it from the tree.
3214  */
3215 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3216 				      u64 bytenr)
3217 {
3218 	struct btrfs_delayed_ref_head *head;
3219 	struct btrfs_delayed_ref_root *delayed_refs;
3220 	int ret = 0;
3221 
3222 	delayed_refs = &trans->transaction->delayed_refs;
3223 	spin_lock(&delayed_refs->lock);
3224 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3225 	if (!head)
3226 		goto out_delayed_unlock;
3227 
3228 	spin_lock(&head->lock);
3229 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3230 		goto out;
3231 
3232 	if (cleanup_extent_op(head) != NULL)
3233 		goto out;
3234 
3235 	/*
3236 	 * waiting for the lock here would deadlock.  If someone else has it
3237 	 * locked they are already in the process of dropping it anyway
3238 	 */
3239 	if (!mutex_trylock(&head->mutex))
3240 		goto out;
3241 
3242 	btrfs_delete_ref_head(delayed_refs, head);
3243 	head->processing = 0;
3244 
3245 	spin_unlock(&head->lock);
3246 	spin_unlock(&delayed_refs->lock);
3247 
3248 	BUG_ON(head->extent_op);
3249 	if (head->must_insert_reserved)
3250 		ret = 1;
3251 
3252 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3253 	mutex_unlock(&head->mutex);
3254 	btrfs_put_delayed_ref_head(head);
3255 	return ret;
3256 out:
3257 	spin_unlock(&head->lock);
3258 
3259 out_delayed_unlock:
3260 	spin_unlock(&delayed_refs->lock);
3261 	return 0;
3262 }
3263 
3264 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3265 			   u64 root_id,
3266 			   struct extent_buffer *buf,
3267 			   u64 parent, int last_ref)
3268 {
3269 	struct btrfs_fs_info *fs_info = trans->fs_info;
3270 	struct btrfs_ref generic_ref = { 0 };
3271 	int ret;
3272 
3273 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3274 			       buf->start, buf->len, parent);
3275 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3276 			    root_id, 0, false);
3277 
3278 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3279 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3280 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3281 		BUG_ON(ret); /* -ENOMEM */
3282 	}
3283 
3284 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3285 		struct btrfs_block_group *cache;
3286 		bool must_pin = false;
3287 
3288 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3289 			ret = check_ref_cleanup(trans, buf->start);
3290 			if (!ret) {
3291 				btrfs_redirty_list_add(trans->transaction, buf);
3292 				goto out;
3293 			}
3294 		}
3295 
3296 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3297 
3298 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3299 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3300 			btrfs_put_block_group(cache);
3301 			goto out;
3302 		}
3303 
3304 		/*
3305 		 * If there are tree mod log users we may have recorded mod log
3306 		 * operations for this node.  If we re-allocate this node we
3307 		 * could replay operations on this node that happened when it
3308 		 * existed in a completely different root.  For example if it
3309 		 * was part of root A, then was reallocated to root B, and we
3310 		 * are doing a btrfs_old_search_slot(root b), we could replay
3311 		 * operations that happened when the block was part of root A,
3312 		 * giving us an inconsistent view of the btree.
3313 		 *
3314 		 * We are safe from races here because at this point no other
3315 		 * node or root points to this extent buffer, so if after this
3316 		 * check a new tree mod log user joins we will not have an
3317 		 * existing log of operations on this node that we have to
3318 		 * contend with.
3319 		 */
3320 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3321 			must_pin = true;
3322 
3323 		if (must_pin || btrfs_is_zoned(fs_info)) {
3324 			btrfs_redirty_list_add(trans->transaction, buf);
3325 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3326 			btrfs_put_block_group(cache);
3327 			goto out;
3328 		}
3329 
3330 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3331 
3332 		btrfs_add_free_space(cache, buf->start, buf->len);
3333 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3334 		btrfs_put_block_group(cache);
3335 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3336 	}
3337 out:
3338 	if (last_ref) {
3339 		/*
3340 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3341 		 * matter anymore.
3342 		 */
3343 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3344 	}
3345 }
3346 
3347 /* Can return -ENOMEM */
3348 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3349 {
3350 	struct btrfs_fs_info *fs_info = trans->fs_info;
3351 	int ret;
3352 
3353 	if (btrfs_is_testing(fs_info))
3354 		return 0;
3355 
3356 	/*
3357 	 * tree log blocks never actually go into the extent allocation
3358 	 * tree, just update pinning info and exit early.
3359 	 */
3360 	if ((ref->type == BTRFS_REF_METADATA &&
3361 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3362 	    (ref->type == BTRFS_REF_DATA &&
3363 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3364 		/* unlocks the pinned mutex */
3365 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3366 		ret = 0;
3367 	} else if (ref->type == BTRFS_REF_METADATA) {
3368 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3369 	} else {
3370 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3371 	}
3372 
3373 	if (!((ref->type == BTRFS_REF_METADATA &&
3374 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3375 	      (ref->type == BTRFS_REF_DATA &&
3376 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3377 		btrfs_ref_tree_mod(fs_info, ref);
3378 
3379 	return ret;
3380 }
3381 
3382 enum btrfs_loop_type {
3383 	LOOP_CACHING_NOWAIT,
3384 	LOOP_CACHING_WAIT,
3385 	LOOP_ALLOC_CHUNK,
3386 	LOOP_NO_EMPTY_SIZE,
3387 };
3388 
3389 static inline void
3390 btrfs_lock_block_group(struct btrfs_block_group *cache,
3391 		       int delalloc)
3392 {
3393 	if (delalloc)
3394 		down_read(&cache->data_rwsem);
3395 }
3396 
3397 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3398 		       int delalloc)
3399 {
3400 	btrfs_get_block_group(cache);
3401 	if (delalloc)
3402 		down_read(&cache->data_rwsem);
3403 }
3404 
3405 static struct btrfs_block_group *btrfs_lock_cluster(
3406 		   struct btrfs_block_group *block_group,
3407 		   struct btrfs_free_cluster *cluster,
3408 		   int delalloc)
3409 	__acquires(&cluster->refill_lock)
3410 {
3411 	struct btrfs_block_group *used_bg = NULL;
3412 
3413 	spin_lock(&cluster->refill_lock);
3414 	while (1) {
3415 		used_bg = cluster->block_group;
3416 		if (!used_bg)
3417 			return NULL;
3418 
3419 		if (used_bg == block_group)
3420 			return used_bg;
3421 
3422 		btrfs_get_block_group(used_bg);
3423 
3424 		if (!delalloc)
3425 			return used_bg;
3426 
3427 		if (down_read_trylock(&used_bg->data_rwsem))
3428 			return used_bg;
3429 
3430 		spin_unlock(&cluster->refill_lock);
3431 
3432 		/* We should only have one-level nested. */
3433 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3434 
3435 		spin_lock(&cluster->refill_lock);
3436 		if (used_bg == cluster->block_group)
3437 			return used_bg;
3438 
3439 		up_read(&used_bg->data_rwsem);
3440 		btrfs_put_block_group(used_bg);
3441 	}
3442 }
3443 
3444 static inline void
3445 btrfs_release_block_group(struct btrfs_block_group *cache,
3446 			 int delalloc)
3447 {
3448 	if (delalloc)
3449 		up_read(&cache->data_rwsem);
3450 	btrfs_put_block_group(cache);
3451 }
3452 
3453 enum btrfs_extent_allocation_policy {
3454 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3455 	BTRFS_EXTENT_ALLOC_ZONED,
3456 };
3457 
3458 /*
3459  * Structure used internally for find_free_extent() function.  Wraps needed
3460  * parameters.
3461  */
3462 struct find_free_extent_ctl {
3463 	/* Basic allocation info */
3464 	u64 ram_bytes;
3465 	u64 num_bytes;
3466 	u64 min_alloc_size;
3467 	u64 empty_size;
3468 	u64 flags;
3469 	int delalloc;
3470 
3471 	/* Where to start the search inside the bg */
3472 	u64 search_start;
3473 
3474 	/* For clustered allocation */
3475 	u64 empty_cluster;
3476 	struct btrfs_free_cluster *last_ptr;
3477 	bool use_cluster;
3478 
3479 	bool have_caching_bg;
3480 	bool orig_have_caching_bg;
3481 
3482 	/* Allocation is called for tree-log */
3483 	bool for_treelog;
3484 
3485 	/* Allocation is called for data relocation */
3486 	bool for_data_reloc;
3487 
3488 	/* RAID index, converted from flags */
3489 	int index;
3490 
3491 	/*
3492 	 * Current loop number, check find_free_extent_update_loop() for details
3493 	 */
3494 	int loop;
3495 
3496 	/*
3497 	 * Whether we're refilling a cluster, if true we need to re-search
3498 	 * current block group but don't try to refill the cluster again.
3499 	 */
3500 	bool retry_clustered;
3501 
3502 	/*
3503 	 * Whether we're updating free space cache, if true we need to re-search
3504 	 * current block group but don't try updating free space cache again.
3505 	 */
3506 	bool retry_unclustered;
3507 
3508 	/* If current block group is cached */
3509 	int cached;
3510 
3511 	/* Max contiguous hole found */
3512 	u64 max_extent_size;
3513 
3514 	/* Total free space from free space cache, not always contiguous */
3515 	u64 total_free_space;
3516 
3517 	/* Found result */
3518 	u64 found_offset;
3519 
3520 	/* Hint where to start looking for an empty space */
3521 	u64 hint_byte;
3522 
3523 	/* Allocation policy */
3524 	enum btrfs_extent_allocation_policy policy;
3525 };
3526 
3527 
3528 /*
3529  * Helper function for find_free_extent().
3530  *
3531  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3532  * Return -EAGAIN to inform caller that we need to re-search this block group
3533  * Return >0 to inform caller that we find nothing
3534  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3535  */
3536 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3537 				      struct find_free_extent_ctl *ffe_ctl,
3538 				      struct btrfs_block_group **cluster_bg_ret)
3539 {
3540 	struct btrfs_block_group *cluster_bg;
3541 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3542 	u64 aligned_cluster;
3543 	u64 offset;
3544 	int ret;
3545 
3546 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3547 	if (!cluster_bg)
3548 		goto refill_cluster;
3549 	if (cluster_bg != bg && (cluster_bg->ro ||
3550 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3551 		goto release_cluster;
3552 
3553 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3554 			ffe_ctl->num_bytes, cluster_bg->start,
3555 			&ffe_ctl->max_extent_size);
3556 	if (offset) {
3557 		/* We have a block, we're done */
3558 		spin_unlock(&last_ptr->refill_lock);
3559 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3560 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3561 		*cluster_bg_ret = cluster_bg;
3562 		ffe_ctl->found_offset = offset;
3563 		return 0;
3564 	}
3565 	WARN_ON(last_ptr->block_group != cluster_bg);
3566 
3567 release_cluster:
3568 	/*
3569 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3570 	 * lets just skip it and let the allocator find whatever block it can
3571 	 * find. If we reach this point, we will have tried the cluster
3572 	 * allocator plenty of times and not have found anything, so we are
3573 	 * likely way too fragmented for the clustering stuff to find anything.
3574 	 *
3575 	 * However, if the cluster is taken from the current block group,
3576 	 * release the cluster first, so that we stand a better chance of
3577 	 * succeeding in the unclustered allocation.
3578 	 */
3579 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3580 		spin_unlock(&last_ptr->refill_lock);
3581 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3582 		return -ENOENT;
3583 	}
3584 
3585 	/* This cluster didn't work out, free it and start over */
3586 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3587 
3588 	if (cluster_bg != bg)
3589 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3590 
3591 refill_cluster:
3592 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3593 		spin_unlock(&last_ptr->refill_lock);
3594 		return -ENOENT;
3595 	}
3596 
3597 	aligned_cluster = max_t(u64,
3598 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3599 			bg->full_stripe_len);
3600 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3601 			ffe_ctl->num_bytes, aligned_cluster);
3602 	if (ret == 0) {
3603 		/* Now pull our allocation out of this cluster */
3604 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3605 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3606 				&ffe_ctl->max_extent_size);
3607 		if (offset) {
3608 			/* We found one, proceed */
3609 			spin_unlock(&last_ptr->refill_lock);
3610 			trace_btrfs_reserve_extent_cluster(bg,
3611 					ffe_ctl->search_start,
3612 					ffe_ctl->num_bytes);
3613 			ffe_ctl->found_offset = offset;
3614 			return 0;
3615 		}
3616 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3617 		   !ffe_ctl->retry_clustered) {
3618 		spin_unlock(&last_ptr->refill_lock);
3619 
3620 		ffe_ctl->retry_clustered = true;
3621 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3622 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3623 		return -EAGAIN;
3624 	}
3625 	/*
3626 	 * At this point we either didn't find a cluster or we weren't able to
3627 	 * allocate a block from our cluster.  Free the cluster we've been
3628 	 * trying to use, and go to the next block group.
3629 	 */
3630 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3631 	spin_unlock(&last_ptr->refill_lock);
3632 	return 1;
3633 }
3634 
3635 /*
3636  * Return >0 to inform caller that we find nothing
3637  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3638  * Return -EAGAIN to inform caller that we need to re-search this block group
3639  */
3640 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3641 					struct find_free_extent_ctl *ffe_ctl)
3642 {
3643 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3644 	u64 offset;
3645 
3646 	/*
3647 	 * We are doing an unclustered allocation, set the fragmented flag so
3648 	 * we don't bother trying to setup a cluster again until we get more
3649 	 * space.
3650 	 */
3651 	if (unlikely(last_ptr)) {
3652 		spin_lock(&last_ptr->lock);
3653 		last_ptr->fragmented = 1;
3654 		spin_unlock(&last_ptr->lock);
3655 	}
3656 	if (ffe_ctl->cached) {
3657 		struct btrfs_free_space_ctl *free_space_ctl;
3658 
3659 		free_space_ctl = bg->free_space_ctl;
3660 		spin_lock(&free_space_ctl->tree_lock);
3661 		if (free_space_ctl->free_space <
3662 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3663 		    ffe_ctl->empty_size) {
3664 			ffe_ctl->total_free_space = max_t(u64,
3665 					ffe_ctl->total_free_space,
3666 					free_space_ctl->free_space);
3667 			spin_unlock(&free_space_ctl->tree_lock);
3668 			return 1;
3669 		}
3670 		spin_unlock(&free_space_ctl->tree_lock);
3671 	}
3672 
3673 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3674 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3675 			&ffe_ctl->max_extent_size);
3676 
3677 	/*
3678 	 * If we didn't find a chunk, and we haven't failed on this block group
3679 	 * before, and this block group is in the middle of caching and we are
3680 	 * ok with waiting, then go ahead and wait for progress to be made, and
3681 	 * set @retry_unclustered to true.
3682 	 *
3683 	 * If @retry_unclustered is true then we've already waited on this
3684 	 * block group once and should move on to the next block group.
3685 	 */
3686 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3687 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3688 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3689 						      ffe_ctl->empty_size);
3690 		ffe_ctl->retry_unclustered = true;
3691 		return -EAGAIN;
3692 	} else if (!offset) {
3693 		return 1;
3694 	}
3695 	ffe_ctl->found_offset = offset;
3696 	return 0;
3697 }
3698 
3699 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3700 				   struct find_free_extent_ctl *ffe_ctl,
3701 				   struct btrfs_block_group **bg_ret)
3702 {
3703 	int ret;
3704 
3705 	/* We want to try and use the cluster allocator, so lets look there */
3706 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3707 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3708 		if (ret >= 0 || ret == -EAGAIN)
3709 			return ret;
3710 		/* ret == -ENOENT case falls through */
3711 	}
3712 
3713 	return find_free_extent_unclustered(block_group, ffe_ctl);
3714 }
3715 
3716 /*
3717  * Tree-log block group locking
3718  * ============================
3719  *
3720  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3721  * indicates the starting address of a block group, which is reserved only
3722  * for tree-log metadata.
3723  *
3724  * Lock nesting
3725  * ============
3726  *
3727  * space_info::lock
3728  *   block_group::lock
3729  *     fs_info::treelog_bg_lock
3730  */
3731 
3732 /*
3733  * Simple allocator for sequential-only block group. It only allows sequential
3734  * allocation. No need to play with trees. This function also reserves the
3735  * bytes as in btrfs_add_reserved_bytes.
3736  */
3737 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3738 			       struct find_free_extent_ctl *ffe_ctl,
3739 			       struct btrfs_block_group **bg_ret)
3740 {
3741 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3742 	struct btrfs_space_info *space_info = block_group->space_info;
3743 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3744 	u64 start = block_group->start;
3745 	u64 num_bytes = ffe_ctl->num_bytes;
3746 	u64 avail;
3747 	u64 bytenr = block_group->start;
3748 	u64 log_bytenr;
3749 	u64 data_reloc_bytenr;
3750 	int ret = 0;
3751 	bool skip = false;
3752 
3753 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3754 
3755 	/*
3756 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3757 	 * group, and vice versa.
3758 	 */
3759 	spin_lock(&fs_info->treelog_bg_lock);
3760 	log_bytenr = fs_info->treelog_bg;
3761 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3762 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3763 		skip = true;
3764 	spin_unlock(&fs_info->treelog_bg_lock);
3765 	if (skip)
3766 		return 1;
3767 
3768 	/*
3769 	 * Do not allow non-relocation blocks in the dedicated relocation block
3770 	 * group, and vice versa.
3771 	 */
3772 	spin_lock(&fs_info->relocation_bg_lock);
3773 	data_reloc_bytenr = fs_info->data_reloc_bg;
3774 	if (data_reloc_bytenr &&
3775 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3776 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3777 		skip = true;
3778 	spin_unlock(&fs_info->relocation_bg_lock);
3779 	if (skip)
3780 		return 1;
3781 
3782 	/* Check RO and no space case before trying to activate it */
3783 	spin_lock(&block_group->lock);
3784 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3785 		ret = 1;
3786 		/*
3787 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3788 		 * Return the error after taking the locks.
3789 		 */
3790 	}
3791 	spin_unlock(&block_group->lock);
3792 
3793 	if (!ret && !btrfs_zone_activate(block_group)) {
3794 		ret = 1;
3795 		/*
3796 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3797 		 * Return the error after taking the locks.
3798 		 */
3799 	}
3800 
3801 	spin_lock(&space_info->lock);
3802 	spin_lock(&block_group->lock);
3803 	spin_lock(&fs_info->treelog_bg_lock);
3804 	spin_lock(&fs_info->relocation_bg_lock);
3805 
3806 	if (ret)
3807 		goto out;
3808 
3809 	ASSERT(!ffe_ctl->for_treelog ||
3810 	       block_group->start == fs_info->treelog_bg ||
3811 	       fs_info->treelog_bg == 0);
3812 	ASSERT(!ffe_ctl->for_data_reloc ||
3813 	       block_group->start == fs_info->data_reloc_bg ||
3814 	       fs_info->data_reloc_bg == 0);
3815 
3816 	if (block_group->ro ||
3817 	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3818 		ret = 1;
3819 		goto out;
3820 	}
3821 
3822 	/*
3823 	 * Do not allow currently using block group to be tree-log dedicated
3824 	 * block group.
3825 	 */
3826 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3827 	    (block_group->used || block_group->reserved)) {
3828 		ret = 1;
3829 		goto out;
3830 	}
3831 
3832 	/*
3833 	 * Do not allow currently used block group to be the data relocation
3834 	 * dedicated block group.
3835 	 */
3836 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3837 	    (block_group->used || block_group->reserved)) {
3838 		ret = 1;
3839 		goto out;
3840 	}
3841 
3842 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3843 	avail = block_group->zone_capacity - block_group->alloc_offset;
3844 	if (avail < num_bytes) {
3845 		if (ffe_ctl->max_extent_size < avail) {
3846 			/*
3847 			 * With sequential allocator, free space is always
3848 			 * contiguous
3849 			 */
3850 			ffe_ctl->max_extent_size = avail;
3851 			ffe_ctl->total_free_space = avail;
3852 		}
3853 		ret = 1;
3854 		goto out;
3855 	}
3856 
3857 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3858 		fs_info->treelog_bg = block_group->start;
3859 
3860 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3861 		fs_info->data_reloc_bg = block_group->start;
3862 
3863 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3864 	block_group->alloc_offset += num_bytes;
3865 	spin_lock(&ctl->tree_lock);
3866 	ctl->free_space -= num_bytes;
3867 	spin_unlock(&ctl->tree_lock);
3868 
3869 	/*
3870 	 * We do not check if found_offset is aligned to stripesize. The
3871 	 * address is anyway rewritten when using zone append writing.
3872 	 */
3873 
3874 	ffe_ctl->search_start = ffe_ctl->found_offset;
3875 
3876 out:
3877 	if (ret && ffe_ctl->for_treelog)
3878 		fs_info->treelog_bg = 0;
3879 	if (ret && ffe_ctl->for_data_reloc &&
3880 	    fs_info->data_reloc_bg == block_group->start) {
3881 		/*
3882 		 * Do not allow further allocations from this block group.
3883 		 * Compared to increasing the ->ro, setting the
3884 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3885 		 *  writers to come in. See btrfs_inc_nocow_writers().
3886 		 *
3887 		 * We need to disable an allocation to avoid an allocation of
3888 		 * regular (non-relocation data) extent. With mix of relocation
3889 		 * extents and regular extents, we can dispatch WRITE commands
3890 		 * (for relocation extents) and ZONE APPEND commands (for
3891 		 * regular extents) at the same time to the same zone, which
3892 		 * easily break the write pointer.
3893 		 */
3894 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3895 		fs_info->data_reloc_bg = 0;
3896 	}
3897 	spin_unlock(&fs_info->relocation_bg_lock);
3898 	spin_unlock(&fs_info->treelog_bg_lock);
3899 	spin_unlock(&block_group->lock);
3900 	spin_unlock(&space_info->lock);
3901 	return ret;
3902 }
3903 
3904 static int do_allocation(struct btrfs_block_group *block_group,
3905 			 struct find_free_extent_ctl *ffe_ctl,
3906 			 struct btrfs_block_group **bg_ret)
3907 {
3908 	switch (ffe_ctl->policy) {
3909 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3910 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3911 	case BTRFS_EXTENT_ALLOC_ZONED:
3912 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3913 	default:
3914 		BUG();
3915 	}
3916 }
3917 
3918 static void release_block_group(struct btrfs_block_group *block_group,
3919 				struct find_free_extent_ctl *ffe_ctl,
3920 				int delalloc)
3921 {
3922 	switch (ffe_ctl->policy) {
3923 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3924 		ffe_ctl->retry_clustered = false;
3925 		ffe_ctl->retry_unclustered = false;
3926 		break;
3927 	case BTRFS_EXTENT_ALLOC_ZONED:
3928 		/* Nothing to do */
3929 		break;
3930 	default:
3931 		BUG();
3932 	}
3933 
3934 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3935 	       ffe_ctl->index);
3936 	btrfs_release_block_group(block_group, delalloc);
3937 }
3938 
3939 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3940 				   struct btrfs_key *ins)
3941 {
3942 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3943 
3944 	if (!ffe_ctl->use_cluster && last_ptr) {
3945 		spin_lock(&last_ptr->lock);
3946 		last_ptr->window_start = ins->objectid;
3947 		spin_unlock(&last_ptr->lock);
3948 	}
3949 }
3950 
3951 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3952 			 struct btrfs_key *ins)
3953 {
3954 	switch (ffe_ctl->policy) {
3955 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3956 		found_extent_clustered(ffe_ctl, ins);
3957 		break;
3958 	case BTRFS_EXTENT_ALLOC_ZONED:
3959 		/* Nothing to do */
3960 		break;
3961 	default:
3962 		BUG();
3963 	}
3964 }
3965 
3966 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3967 				    struct find_free_extent_ctl *ffe_ctl)
3968 {
3969 	/* If we can activate new zone, just allocate a chunk and use it */
3970 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3971 		return 0;
3972 
3973 	/*
3974 	 * We already reached the max active zones. Try to finish one block
3975 	 * group to make a room for a new block group. This is only possible
3976 	 * for a data block group because btrfs_zone_finish() may need to wait
3977 	 * for a running transaction which can cause a deadlock for metadata
3978 	 * allocation.
3979 	 */
3980 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3981 		int ret = btrfs_zone_finish_one_bg(fs_info);
3982 
3983 		if (ret == 1)
3984 			return 0;
3985 		else if (ret < 0)
3986 			return ret;
3987 	}
3988 
3989 	/*
3990 	 * If we have enough free space left in an already active block group
3991 	 * and we can't activate any other zone now, do not allow allocating a
3992 	 * new chunk and let find_free_extent() retry with a smaller size.
3993 	 */
3994 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3995 		return -ENOSPC;
3996 
3997 	/*
3998 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3999 	 * activate a new block group, allocating it may not help. Let's tell a
4000 	 * caller to try again and hope it progress something by writing some
4001 	 * parts of the region. That is only possible for data block groups,
4002 	 * where a part of the region can be written.
4003 	 */
4004 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4005 		return -EAGAIN;
4006 
4007 	/*
4008 	 * We cannot activate a new block group and no enough space left in any
4009 	 * block groups. So, allocating a new block group may not help. But,
4010 	 * there is nothing to do anyway, so let's go with it.
4011 	 */
4012 	return 0;
4013 }
4014 
4015 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4016 			      struct find_free_extent_ctl *ffe_ctl)
4017 {
4018 	switch (ffe_ctl->policy) {
4019 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4020 		return 0;
4021 	case BTRFS_EXTENT_ALLOC_ZONED:
4022 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4023 	default:
4024 		BUG();
4025 	}
4026 }
4027 
4028 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4029 {
4030 	switch (ffe_ctl->policy) {
4031 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4032 		/*
4033 		 * If we can't allocate a new chunk we've already looped through
4034 		 * at least once, move on to the NO_EMPTY_SIZE case.
4035 		 */
4036 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4037 		return 0;
4038 	case BTRFS_EXTENT_ALLOC_ZONED:
4039 		/* Give up here */
4040 		return -ENOSPC;
4041 	default:
4042 		BUG();
4043 	}
4044 }
4045 
4046 /*
4047  * Return >0 means caller needs to re-search for free extent
4048  * Return 0 means we have the needed free extent.
4049  * Return <0 means we failed to locate any free extent.
4050  */
4051 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4052 					struct btrfs_key *ins,
4053 					struct find_free_extent_ctl *ffe_ctl,
4054 					bool full_search)
4055 {
4056 	struct btrfs_root *root = fs_info->chunk_root;
4057 	int ret;
4058 
4059 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4060 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4061 		ffe_ctl->orig_have_caching_bg = true;
4062 
4063 	if (ins->objectid) {
4064 		found_extent(ffe_ctl, ins);
4065 		return 0;
4066 	}
4067 
4068 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4069 		return 1;
4070 
4071 	ffe_ctl->index++;
4072 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4073 		return 1;
4074 
4075 	/*
4076 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4077 	 *			caching kthreads as we move along
4078 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4079 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4080 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4081 	 *		       again
4082 	 */
4083 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4084 		ffe_ctl->index = 0;
4085 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4086 			/*
4087 			 * We want to skip the LOOP_CACHING_WAIT step if we
4088 			 * don't have any uncached bgs and we've already done a
4089 			 * full search through.
4090 			 */
4091 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4092 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4093 			else
4094 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4095 		} else {
4096 			ffe_ctl->loop++;
4097 		}
4098 
4099 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4100 			struct btrfs_trans_handle *trans;
4101 			int exist = 0;
4102 
4103 			/*Check if allocation policy allows to create a new chunk */
4104 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4105 			if (ret)
4106 				return ret;
4107 
4108 			trans = current->journal_info;
4109 			if (trans)
4110 				exist = 1;
4111 			else
4112 				trans = btrfs_join_transaction(root);
4113 
4114 			if (IS_ERR(trans)) {
4115 				ret = PTR_ERR(trans);
4116 				return ret;
4117 			}
4118 
4119 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4120 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4121 
4122 			/* Do not bail out on ENOSPC since we can do more. */
4123 			if (ret == -ENOSPC)
4124 				ret = chunk_allocation_failed(ffe_ctl);
4125 			else if (ret < 0)
4126 				btrfs_abort_transaction(trans, ret);
4127 			else
4128 				ret = 0;
4129 			if (!exist)
4130 				btrfs_end_transaction(trans);
4131 			if (ret)
4132 				return ret;
4133 		}
4134 
4135 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4136 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4137 				return -ENOSPC;
4138 
4139 			/*
4140 			 * Don't loop again if we already have no empty_size and
4141 			 * no empty_cluster.
4142 			 */
4143 			if (ffe_ctl->empty_size == 0 &&
4144 			    ffe_ctl->empty_cluster == 0)
4145 				return -ENOSPC;
4146 			ffe_ctl->empty_size = 0;
4147 			ffe_ctl->empty_cluster = 0;
4148 		}
4149 		return 1;
4150 	}
4151 	return -ENOSPC;
4152 }
4153 
4154 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4155 					struct find_free_extent_ctl *ffe_ctl,
4156 					struct btrfs_space_info *space_info,
4157 					struct btrfs_key *ins)
4158 {
4159 	/*
4160 	 * If our free space is heavily fragmented we may not be able to make
4161 	 * big contiguous allocations, so instead of doing the expensive search
4162 	 * for free space, simply return ENOSPC with our max_extent_size so we
4163 	 * can go ahead and search for a more manageable chunk.
4164 	 *
4165 	 * If our max_extent_size is large enough for our allocation simply
4166 	 * disable clustering since we will likely not be able to find enough
4167 	 * space to create a cluster and induce latency trying.
4168 	 */
4169 	if (space_info->max_extent_size) {
4170 		spin_lock(&space_info->lock);
4171 		if (space_info->max_extent_size &&
4172 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4173 			ins->offset = space_info->max_extent_size;
4174 			spin_unlock(&space_info->lock);
4175 			return -ENOSPC;
4176 		} else if (space_info->max_extent_size) {
4177 			ffe_ctl->use_cluster = false;
4178 		}
4179 		spin_unlock(&space_info->lock);
4180 	}
4181 
4182 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4183 					       &ffe_ctl->empty_cluster);
4184 	if (ffe_ctl->last_ptr) {
4185 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4186 
4187 		spin_lock(&last_ptr->lock);
4188 		if (last_ptr->block_group)
4189 			ffe_ctl->hint_byte = last_ptr->window_start;
4190 		if (last_ptr->fragmented) {
4191 			/*
4192 			 * We still set window_start so we can keep track of the
4193 			 * last place we found an allocation to try and save
4194 			 * some time.
4195 			 */
4196 			ffe_ctl->hint_byte = last_ptr->window_start;
4197 			ffe_ctl->use_cluster = false;
4198 		}
4199 		spin_unlock(&last_ptr->lock);
4200 	}
4201 
4202 	return 0;
4203 }
4204 
4205 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4206 			      struct find_free_extent_ctl *ffe_ctl,
4207 			      struct btrfs_space_info *space_info,
4208 			      struct btrfs_key *ins)
4209 {
4210 	switch (ffe_ctl->policy) {
4211 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4212 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4213 						    space_info, ins);
4214 	case BTRFS_EXTENT_ALLOC_ZONED:
4215 		if (ffe_ctl->for_treelog) {
4216 			spin_lock(&fs_info->treelog_bg_lock);
4217 			if (fs_info->treelog_bg)
4218 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4219 			spin_unlock(&fs_info->treelog_bg_lock);
4220 		}
4221 		if (ffe_ctl->for_data_reloc) {
4222 			spin_lock(&fs_info->relocation_bg_lock);
4223 			if (fs_info->data_reloc_bg)
4224 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4225 			spin_unlock(&fs_info->relocation_bg_lock);
4226 		}
4227 		return 0;
4228 	default:
4229 		BUG();
4230 	}
4231 }
4232 
4233 /*
4234  * walks the btree of allocated extents and find a hole of a given size.
4235  * The key ins is changed to record the hole:
4236  * ins->objectid == start position
4237  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4238  * ins->offset == the size of the hole.
4239  * Any available blocks before search_start are skipped.
4240  *
4241  * If there is no suitable free space, we will record the max size of
4242  * the free space extent currently.
4243  *
4244  * The overall logic and call chain:
4245  *
4246  * find_free_extent()
4247  * |- Iterate through all block groups
4248  * |  |- Get a valid block group
4249  * |  |- Try to do clustered allocation in that block group
4250  * |  |- Try to do unclustered allocation in that block group
4251  * |  |- Check if the result is valid
4252  * |  |  |- If valid, then exit
4253  * |  |- Jump to next block group
4254  * |
4255  * |- Push harder to find free extents
4256  *    |- If not found, re-iterate all block groups
4257  */
4258 static noinline int find_free_extent(struct btrfs_root *root,
4259 				     struct btrfs_key *ins,
4260 				     struct find_free_extent_ctl *ffe_ctl)
4261 {
4262 	struct btrfs_fs_info *fs_info = root->fs_info;
4263 	int ret = 0;
4264 	int cache_block_group_error = 0;
4265 	struct btrfs_block_group *block_group = NULL;
4266 	struct btrfs_space_info *space_info;
4267 	bool full_search = false;
4268 
4269 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4270 
4271 	ffe_ctl->search_start = 0;
4272 	/* For clustered allocation */
4273 	ffe_ctl->empty_cluster = 0;
4274 	ffe_ctl->last_ptr = NULL;
4275 	ffe_ctl->use_cluster = true;
4276 	ffe_ctl->have_caching_bg = false;
4277 	ffe_ctl->orig_have_caching_bg = false;
4278 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4279 	ffe_ctl->loop = 0;
4280 	/* For clustered allocation */
4281 	ffe_ctl->retry_clustered = false;
4282 	ffe_ctl->retry_unclustered = false;
4283 	ffe_ctl->cached = 0;
4284 	ffe_ctl->max_extent_size = 0;
4285 	ffe_ctl->total_free_space = 0;
4286 	ffe_ctl->found_offset = 0;
4287 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4288 
4289 	if (btrfs_is_zoned(fs_info))
4290 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4291 
4292 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4293 	ins->objectid = 0;
4294 	ins->offset = 0;
4295 
4296 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4297 			       ffe_ctl->flags);
4298 
4299 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4300 	if (!space_info) {
4301 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4302 		return -ENOSPC;
4303 	}
4304 
4305 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4306 	if (ret < 0)
4307 		return ret;
4308 
4309 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4310 				    first_logical_byte(fs_info));
4311 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4312 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4313 		block_group = btrfs_lookup_block_group(fs_info,
4314 						       ffe_ctl->search_start);
4315 		/*
4316 		 * we don't want to use the block group if it doesn't match our
4317 		 * allocation bits, or if its not cached.
4318 		 *
4319 		 * However if we are re-searching with an ideal block group
4320 		 * picked out then we don't care that the block group is cached.
4321 		 */
4322 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4323 		    block_group->cached != BTRFS_CACHE_NO) {
4324 			down_read(&space_info->groups_sem);
4325 			if (list_empty(&block_group->list) ||
4326 			    block_group->ro) {
4327 				/*
4328 				 * someone is removing this block group,
4329 				 * we can't jump into the have_block_group
4330 				 * target because our list pointers are not
4331 				 * valid
4332 				 */
4333 				btrfs_put_block_group(block_group);
4334 				up_read(&space_info->groups_sem);
4335 			} else {
4336 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4337 							block_group->flags);
4338 				btrfs_lock_block_group(block_group,
4339 						       ffe_ctl->delalloc);
4340 				goto have_block_group;
4341 			}
4342 		} else if (block_group) {
4343 			btrfs_put_block_group(block_group);
4344 		}
4345 	}
4346 search:
4347 	ffe_ctl->have_caching_bg = false;
4348 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4349 	    ffe_ctl->index == 0)
4350 		full_search = true;
4351 	down_read(&space_info->groups_sem);
4352 	list_for_each_entry(block_group,
4353 			    &space_info->block_groups[ffe_ctl->index], list) {
4354 		struct btrfs_block_group *bg_ret;
4355 
4356 		/* If the block group is read-only, we can skip it entirely. */
4357 		if (unlikely(block_group->ro)) {
4358 			if (ffe_ctl->for_treelog)
4359 				btrfs_clear_treelog_bg(block_group);
4360 			if (ffe_ctl->for_data_reloc)
4361 				btrfs_clear_data_reloc_bg(block_group);
4362 			continue;
4363 		}
4364 
4365 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4366 		ffe_ctl->search_start = block_group->start;
4367 
4368 		/*
4369 		 * this can happen if we end up cycling through all the
4370 		 * raid types, but we want to make sure we only allocate
4371 		 * for the proper type.
4372 		 */
4373 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4374 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4375 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4376 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4377 				BTRFS_BLOCK_GROUP_RAID10;
4378 
4379 			/*
4380 			 * if they asked for extra copies and this block group
4381 			 * doesn't provide them, bail.  This does allow us to
4382 			 * fill raid0 from raid1.
4383 			 */
4384 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4385 				goto loop;
4386 
4387 			/*
4388 			 * This block group has different flags than we want.
4389 			 * It's possible that we have MIXED_GROUP flag but no
4390 			 * block group is mixed.  Just skip such block group.
4391 			 */
4392 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4393 			continue;
4394 		}
4395 
4396 have_block_group:
4397 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4398 		if (unlikely(!ffe_ctl->cached)) {
4399 			ffe_ctl->have_caching_bg = true;
4400 			ret = btrfs_cache_block_group(block_group, false);
4401 
4402 			/*
4403 			 * If we get ENOMEM here or something else we want to
4404 			 * try other block groups, because it may not be fatal.
4405 			 * However if we can't find anything else we need to
4406 			 * save our return here so that we return the actual
4407 			 * error that caused problems, not ENOSPC.
4408 			 */
4409 			if (ret < 0) {
4410 				if (!cache_block_group_error)
4411 					cache_block_group_error = ret;
4412 				ret = 0;
4413 				goto loop;
4414 			}
4415 			ret = 0;
4416 		}
4417 
4418 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4419 			goto loop;
4420 
4421 		bg_ret = NULL;
4422 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4423 		if (ret == 0) {
4424 			if (bg_ret && bg_ret != block_group) {
4425 				btrfs_release_block_group(block_group,
4426 							  ffe_ctl->delalloc);
4427 				block_group = bg_ret;
4428 			}
4429 		} else if (ret == -EAGAIN) {
4430 			goto have_block_group;
4431 		} else if (ret > 0) {
4432 			goto loop;
4433 		}
4434 
4435 		/* Checks */
4436 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4437 						 fs_info->stripesize);
4438 
4439 		/* move on to the next group */
4440 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4441 		    block_group->start + block_group->length) {
4442 			btrfs_add_free_space_unused(block_group,
4443 					    ffe_ctl->found_offset,
4444 					    ffe_ctl->num_bytes);
4445 			goto loop;
4446 		}
4447 
4448 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4449 			btrfs_add_free_space_unused(block_group,
4450 					ffe_ctl->found_offset,
4451 					ffe_ctl->search_start - ffe_ctl->found_offset);
4452 
4453 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4454 					       ffe_ctl->num_bytes,
4455 					       ffe_ctl->delalloc);
4456 		if (ret == -EAGAIN) {
4457 			btrfs_add_free_space_unused(block_group,
4458 					ffe_ctl->found_offset,
4459 					ffe_ctl->num_bytes);
4460 			goto loop;
4461 		}
4462 		btrfs_inc_block_group_reservations(block_group);
4463 
4464 		/* we are all good, lets return */
4465 		ins->objectid = ffe_ctl->search_start;
4466 		ins->offset = ffe_ctl->num_bytes;
4467 
4468 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4469 					   ffe_ctl->num_bytes);
4470 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4471 		break;
4472 loop:
4473 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4474 		cond_resched();
4475 	}
4476 	up_read(&space_info->groups_sem);
4477 
4478 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4479 	if (ret > 0)
4480 		goto search;
4481 
4482 	if (ret == -ENOSPC && !cache_block_group_error) {
4483 		/*
4484 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4485 		 * any contiguous hole.
4486 		 */
4487 		if (!ffe_ctl->max_extent_size)
4488 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4489 		spin_lock(&space_info->lock);
4490 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4491 		spin_unlock(&space_info->lock);
4492 		ins->offset = ffe_ctl->max_extent_size;
4493 	} else if (ret == -ENOSPC) {
4494 		ret = cache_block_group_error;
4495 	}
4496 	return ret;
4497 }
4498 
4499 /*
4500  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4501  *			  hole that is at least as big as @num_bytes.
4502  *
4503  * @root           -	The root that will contain this extent
4504  *
4505  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4506  *			is used for accounting purposes. This value differs
4507  *			from @num_bytes only in the case of compressed extents.
4508  *
4509  * @num_bytes      -	Number of bytes to allocate on-disk.
4510  *
4511  * @min_alloc_size -	Indicates the minimum amount of space that the
4512  *			allocator should try to satisfy. In some cases
4513  *			@num_bytes may be larger than what is required and if
4514  *			the filesystem is fragmented then allocation fails.
4515  *			However, the presence of @min_alloc_size gives a
4516  *			chance to try and satisfy the smaller allocation.
4517  *
4518  * @empty_size     -	A hint that you plan on doing more COW. This is the
4519  *			size in bytes the allocator should try to find free
4520  *			next to the block it returns.  This is just a hint and
4521  *			may be ignored by the allocator.
4522  *
4523  * @hint_byte      -	Hint to the allocator to start searching above the byte
4524  *			address passed. It might be ignored.
4525  *
4526  * @ins            -	This key is modified to record the found hole. It will
4527  *			have the following values:
4528  *			ins->objectid == start position
4529  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4530  *			ins->offset == the size of the hole.
4531  *
4532  * @is_data        -	Boolean flag indicating whether an extent is
4533  *			allocated for data (true) or metadata (false)
4534  *
4535  * @delalloc       -	Boolean flag indicating whether this allocation is for
4536  *			delalloc or not. If 'true' data_rwsem of block groups
4537  *			is going to be acquired.
4538  *
4539  *
4540  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4541  * case -ENOSPC is returned then @ins->offset will contain the size of the
4542  * largest available hole the allocator managed to find.
4543  */
4544 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4545 			 u64 num_bytes, u64 min_alloc_size,
4546 			 u64 empty_size, u64 hint_byte,
4547 			 struct btrfs_key *ins, int is_data, int delalloc)
4548 {
4549 	struct btrfs_fs_info *fs_info = root->fs_info;
4550 	struct find_free_extent_ctl ffe_ctl = {};
4551 	bool final_tried = num_bytes == min_alloc_size;
4552 	u64 flags;
4553 	int ret;
4554 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4555 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4556 
4557 	flags = get_alloc_profile_by_root(root, is_data);
4558 again:
4559 	WARN_ON(num_bytes < fs_info->sectorsize);
4560 
4561 	ffe_ctl.ram_bytes = ram_bytes;
4562 	ffe_ctl.num_bytes = num_bytes;
4563 	ffe_ctl.min_alloc_size = min_alloc_size;
4564 	ffe_ctl.empty_size = empty_size;
4565 	ffe_ctl.flags = flags;
4566 	ffe_ctl.delalloc = delalloc;
4567 	ffe_ctl.hint_byte = hint_byte;
4568 	ffe_ctl.for_treelog = for_treelog;
4569 	ffe_ctl.for_data_reloc = for_data_reloc;
4570 
4571 	ret = find_free_extent(root, ins, &ffe_ctl);
4572 	if (!ret && !is_data) {
4573 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4574 	} else if (ret == -ENOSPC) {
4575 		if (!final_tried && ins->offset) {
4576 			num_bytes = min(num_bytes >> 1, ins->offset);
4577 			num_bytes = round_down(num_bytes,
4578 					       fs_info->sectorsize);
4579 			num_bytes = max(num_bytes, min_alloc_size);
4580 			ram_bytes = num_bytes;
4581 			if (num_bytes == min_alloc_size)
4582 				final_tried = true;
4583 			goto again;
4584 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4585 			struct btrfs_space_info *sinfo;
4586 
4587 			sinfo = btrfs_find_space_info(fs_info, flags);
4588 			btrfs_err(fs_info,
4589 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4590 				  flags, num_bytes, for_treelog, for_data_reloc);
4591 			if (sinfo)
4592 				btrfs_dump_space_info(fs_info, sinfo,
4593 						      num_bytes, 1);
4594 		}
4595 	}
4596 
4597 	return ret;
4598 }
4599 
4600 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4601 			       u64 start, u64 len, int delalloc)
4602 {
4603 	struct btrfs_block_group *cache;
4604 
4605 	cache = btrfs_lookup_block_group(fs_info, start);
4606 	if (!cache) {
4607 		btrfs_err(fs_info, "Unable to find block group for %llu",
4608 			  start);
4609 		return -ENOSPC;
4610 	}
4611 
4612 	btrfs_add_free_space(cache, start, len);
4613 	btrfs_free_reserved_bytes(cache, len, delalloc);
4614 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4615 
4616 	btrfs_put_block_group(cache);
4617 	return 0;
4618 }
4619 
4620 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4621 			      u64 len)
4622 {
4623 	struct btrfs_block_group *cache;
4624 	int ret = 0;
4625 
4626 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4627 	if (!cache) {
4628 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4629 			  start);
4630 		return -ENOSPC;
4631 	}
4632 
4633 	ret = pin_down_extent(trans, cache, start, len, 1);
4634 	btrfs_put_block_group(cache);
4635 	return ret;
4636 }
4637 
4638 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4639 				 u64 num_bytes)
4640 {
4641 	struct btrfs_fs_info *fs_info = trans->fs_info;
4642 	int ret;
4643 
4644 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4645 	if (ret)
4646 		return ret;
4647 
4648 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4649 	if (ret) {
4650 		ASSERT(!ret);
4651 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4652 			  bytenr, num_bytes);
4653 		return ret;
4654 	}
4655 
4656 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4657 	return 0;
4658 }
4659 
4660 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4661 				      u64 parent, u64 root_objectid,
4662 				      u64 flags, u64 owner, u64 offset,
4663 				      struct btrfs_key *ins, int ref_mod)
4664 {
4665 	struct btrfs_fs_info *fs_info = trans->fs_info;
4666 	struct btrfs_root *extent_root;
4667 	int ret;
4668 	struct btrfs_extent_item *extent_item;
4669 	struct btrfs_extent_inline_ref *iref;
4670 	struct btrfs_path *path;
4671 	struct extent_buffer *leaf;
4672 	int type;
4673 	u32 size;
4674 
4675 	if (parent > 0)
4676 		type = BTRFS_SHARED_DATA_REF_KEY;
4677 	else
4678 		type = BTRFS_EXTENT_DATA_REF_KEY;
4679 
4680 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4681 
4682 	path = btrfs_alloc_path();
4683 	if (!path)
4684 		return -ENOMEM;
4685 
4686 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4687 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4688 	if (ret) {
4689 		btrfs_free_path(path);
4690 		return ret;
4691 	}
4692 
4693 	leaf = path->nodes[0];
4694 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4695 				     struct btrfs_extent_item);
4696 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4697 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4698 	btrfs_set_extent_flags(leaf, extent_item,
4699 			       flags | BTRFS_EXTENT_FLAG_DATA);
4700 
4701 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4703 	if (parent > 0) {
4704 		struct btrfs_shared_data_ref *ref;
4705 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4706 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4707 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4708 	} else {
4709 		struct btrfs_extent_data_ref *ref;
4710 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4711 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4712 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4713 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4714 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4715 	}
4716 
4717 	btrfs_mark_buffer_dirty(path->nodes[0]);
4718 	btrfs_free_path(path);
4719 
4720 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4721 }
4722 
4723 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4724 				     struct btrfs_delayed_ref_node *node,
4725 				     struct btrfs_delayed_extent_op *extent_op)
4726 {
4727 	struct btrfs_fs_info *fs_info = trans->fs_info;
4728 	struct btrfs_root *extent_root;
4729 	int ret;
4730 	struct btrfs_extent_item *extent_item;
4731 	struct btrfs_key extent_key;
4732 	struct btrfs_tree_block_info *block_info;
4733 	struct btrfs_extent_inline_ref *iref;
4734 	struct btrfs_path *path;
4735 	struct extent_buffer *leaf;
4736 	struct btrfs_delayed_tree_ref *ref;
4737 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4738 	u64 flags = extent_op->flags_to_set;
4739 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4740 
4741 	ref = btrfs_delayed_node_to_tree_ref(node);
4742 
4743 	extent_key.objectid = node->bytenr;
4744 	if (skinny_metadata) {
4745 		extent_key.offset = ref->level;
4746 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4747 	} else {
4748 		extent_key.offset = node->num_bytes;
4749 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4750 		size += sizeof(*block_info);
4751 	}
4752 
4753 	path = btrfs_alloc_path();
4754 	if (!path)
4755 		return -ENOMEM;
4756 
4757 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4758 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4759 				      size);
4760 	if (ret) {
4761 		btrfs_free_path(path);
4762 		return ret;
4763 	}
4764 
4765 	leaf = path->nodes[0];
4766 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4767 				     struct btrfs_extent_item);
4768 	btrfs_set_extent_refs(leaf, extent_item, 1);
4769 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4770 	btrfs_set_extent_flags(leaf, extent_item,
4771 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4772 
4773 	if (skinny_metadata) {
4774 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4775 	} else {
4776 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4777 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4778 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4779 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4780 	}
4781 
4782 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4783 		btrfs_set_extent_inline_ref_type(leaf, iref,
4784 						 BTRFS_SHARED_BLOCK_REF_KEY);
4785 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4786 	} else {
4787 		btrfs_set_extent_inline_ref_type(leaf, iref,
4788 						 BTRFS_TREE_BLOCK_REF_KEY);
4789 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4790 	}
4791 
4792 	btrfs_mark_buffer_dirty(leaf);
4793 	btrfs_free_path(path);
4794 
4795 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4796 }
4797 
4798 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4799 				     struct btrfs_root *root, u64 owner,
4800 				     u64 offset, u64 ram_bytes,
4801 				     struct btrfs_key *ins)
4802 {
4803 	struct btrfs_ref generic_ref = { 0 };
4804 
4805 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4806 
4807 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4808 			       ins->objectid, ins->offset, 0);
4809 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4810 			    offset, 0, false);
4811 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4812 
4813 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4814 }
4815 
4816 /*
4817  * this is used by the tree logging recovery code.  It records that
4818  * an extent has been allocated and makes sure to clear the free
4819  * space cache bits as well
4820  */
4821 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4822 				   u64 root_objectid, u64 owner, u64 offset,
4823 				   struct btrfs_key *ins)
4824 {
4825 	struct btrfs_fs_info *fs_info = trans->fs_info;
4826 	int ret;
4827 	struct btrfs_block_group *block_group;
4828 	struct btrfs_space_info *space_info;
4829 
4830 	/*
4831 	 * Mixed block groups will exclude before processing the log so we only
4832 	 * need to do the exclude dance if this fs isn't mixed.
4833 	 */
4834 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4835 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4836 					      ins->offset);
4837 		if (ret)
4838 			return ret;
4839 	}
4840 
4841 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4842 	if (!block_group)
4843 		return -EINVAL;
4844 
4845 	space_info = block_group->space_info;
4846 	spin_lock(&space_info->lock);
4847 	spin_lock(&block_group->lock);
4848 	space_info->bytes_reserved += ins->offset;
4849 	block_group->reserved += ins->offset;
4850 	spin_unlock(&block_group->lock);
4851 	spin_unlock(&space_info->lock);
4852 
4853 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4854 					 offset, ins, 1);
4855 	if (ret)
4856 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4857 	btrfs_put_block_group(block_group);
4858 	return ret;
4859 }
4860 
4861 static struct extent_buffer *
4862 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4863 		      u64 bytenr, int level, u64 owner,
4864 		      enum btrfs_lock_nesting nest)
4865 {
4866 	struct btrfs_fs_info *fs_info = root->fs_info;
4867 	struct extent_buffer *buf;
4868 	u64 lockdep_owner = owner;
4869 
4870 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4871 	if (IS_ERR(buf))
4872 		return buf;
4873 
4874 	/*
4875 	 * Extra safety check in case the extent tree is corrupted and extent
4876 	 * allocator chooses to use a tree block which is already used and
4877 	 * locked.
4878 	 */
4879 	if (buf->lock_owner == current->pid) {
4880 		btrfs_err_rl(fs_info,
4881 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4882 			buf->start, btrfs_header_owner(buf), current->pid);
4883 		free_extent_buffer(buf);
4884 		return ERR_PTR(-EUCLEAN);
4885 	}
4886 
4887 	/*
4888 	 * The reloc trees are just snapshots, so we need them to appear to be
4889 	 * just like any other fs tree WRT lockdep.
4890 	 *
4891 	 * The exception however is in replace_path() in relocation, where we
4892 	 * hold the lock on the original fs root and then search for the reloc
4893 	 * root.  At that point we need to make sure any reloc root buffers are
4894 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4895 	 * lockdep happy.
4896 	 */
4897 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4898 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4899 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4900 
4901 	/* btrfs_clean_tree_block() accesses generation field. */
4902 	btrfs_set_header_generation(buf, trans->transid);
4903 
4904 	/*
4905 	 * This needs to stay, because we could allocate a freed block from an
4906 	 * old tree into a new tree, so we need to make sure this new block is
4907 	 * set to the appropriate level and owner.
4908 	 */
4909 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4910 
4911 	__btrfs_tree_lock(buf, nest);
4912 	btrfs_clean_tree_block(buf);
4913 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4914 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4915 
4916 	set_extent_buffer_uptodate(buf);
4917 
4918 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4919 	btrfs_set_header_level(buf, level);
4920 	btrfs_set_header_bytenr(buf, buf->start);
4921 	btrfs_set_header_generation(buf, trans->transid);
4922 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4923 	btrfs_set_header_owner(buf, owner);
4924 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4925 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4926 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4927 		buf->log_index = root->log_transid % 2;
4928 		/*
4929 		 * we allow two log transactions at a time, use different
4930 		 * EXTENT bit to differentiate dirty pages.
4931 		 */
4932 		if (buf->log_index == 0)
4933 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4934 					buf->start + buf->len - 1, GFP_NOFS);
4935 		else
4936 			set_extent_new(&root->dirty_log_pages, buf->start,
4937 					buf->start + buf->len - 1);
4938 	} else {
4939 		buf->log_index = -1;
4940 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4941 			 buf->start + buf->len - 1, GFP_NOFS);
4942 	}
4943 	/* this returns a buffer locked for blocking */
4944 	return buf;
4945 }
4946 
4947 /*
4948  * finds a free extent and does all the dirty work required for allocation
4949  * returns the tree buffer or an ERR_PTR on error.
4950  */
4951 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4952 					     struct btrfs_root *root,
4953 					     u64 parent, u64 root_objectid,
4954 					     const struct btrfs_disk_key *key,
4955 					     int level, u64 hint,
4956 					     u64 empty_size,
4957 					     enum btrfs_lock_nesting nest)
4958 {
4959 	struct btrfs_fs_info *fs_info = root->fs_info;
4960 	struct btrfs_key ins;
4961 	struct btrfs_block_rsv *block_rsv;
4962 	struct extent_buffer *buf;
4963 	struct btrfs_delayed_extent_op *extent_op;
4964 	struct btrfs_ref generic_ref = { 0 };
4965 	u64 flags = 0;
4966 	int ret;
4967 	u32 blocksize = fs_info->nodesize;
4968 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4969 
4970 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4971 	if (btrfs_is_testing(fs_info)) {
4972 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4973 					    level, root_objectid, nest);
4974 		if (!IS_ERR(buf))
4975 			root->alloc_bytenr += blocksize;
4976 		return buf;
4977 	}
4978 #endif
4979 
4980 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4981 	if (IS_ERR(block_rsv))
4982 		return ERR_CAST(block_rsv);
4983 
4984 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4985 				   empty_size, hint, &ins, 0, 0);
4986 	if (ret)
4987 		goto out_unuse;
4988 
4989 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4990 				    root_objectid, nest);
4991 	if (IS_ERR(buf)) {
4992 		ret = PTR_ERR(buf);
4993 		goto out_free_reserved;
4994 	}
4995 
4996 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4997 		if (parent == 0)
4998 			parent = ins.objectid;
4999 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5000 	} else
5001 		BUG_ON(parent > 0);
5002 
5003 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5004 		extent_op = btrfs_alloc_delayed_extent_op();
5005 		if (!extent_op) {
5006 			ret = -ENOMEM;
5007 			goto out_free_buf;
5008 		}
5009 		if (key)
5010 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5011 		else
5012 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5013 		extent_op->flags_to_set = flags;
5014 		extent_op->update_key = skinny_metadata ? false : true;
5015 		extent_op->update_flags = true;
5016 		extent_op->level = level;
5017 
5018 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5019 				       ins.objectid, ins.offset, parent);
5020 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5021 				    root->root_key.objectid, false);
5022 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5023 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5024 		if (ret)
5025 			goto out_free_delayed;
5026 	}
5027 	return buf;
5028 
5029 out_free_delayed:
5030 	btrfs_free_delayed_extent_op(extent_op);
5031 out_free_buf:
5032 	btrfs_tree_unlock(buf);
5033 	free_extent_buffer(buf);
5034 out_free_reserved:
5035 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5036 out_unuse:
5037 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5038 	return ERR_PTR(ret);
5039 }
5040 
5041 struct walk_control {
5042 	u64 refs[BTRFS_MAX_LEVEL];
5043 	u64 flags[BTRFS_MAX_LEVEL];
5044 	struct btrfs_key update_progress;
5045 	struct btrfs_key drop_progress;
5046 	int drop_level;
5047 	int stage;
5048 	int level;
5049 	int shared_level;
5050 	int update_ref;
5051 	int keep_locks;
5052 	int reada_slot;
5053 	int reada_count;
5054 	int restarted;
5055 };
5056 
5057 #define DROP_REFERENCE	1
5058 #define UPDATE_BACKREF	2
5059 
5060 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5061 				     struct btrfs_root *root,
5062 				     struct walk_control *wc,
5063 				     struct btrfs_path *path)
5064 {
5065 	struct btrfs_fs_info *fs_info = root->fs_info;
5066 	u64 bytenr;
5067 	u64 generation;
5068 	u64 refs;
5069 	u64 flags;
5070 	u32 nritems;
5071 	struct btrfs_key key;
5072 	struct extent_buffer *eb;
5073 	int ret;
5074 	int slot;
5075 	int nread = 0;
5076 
5077 	if (path->slots[wc->level] < wc->reada_slot) {
5078 		wc->reada_count = wc->reada_count * 2 / 3;
5079 		wc->reada_count = max(wc->reada_count, 2);
5080 	} else {
5081 		wc->reada_count = wc->reada_count * 3 / 2;
5082 		wc->reada_count = min_t(int, wc->reada_count,
5083 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5084 	}
5085 
5086 	eb = path->nodes[wc->level];
5087 	nritems = btrfs_header_nritems(eb);
5088 
5089 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5090 		if (nread >= wc->reada_count)
5091 			break;
5092 
5093 		cond_resched();
5094 		bytenr = btrfs_node_blockptr(eb, slot);
5095 		generation = btrfs_node_ptr_generation(eb, slot);
5096 
5097 		if (slot == path->slots[wc->level])
5098 			goto reada;
5099 
5100 		if (wc->stage == UPDATE_BACKREF &&
5101 		    generation <= root->root_key.offset)
5102 			continue;
5103 
5104 		/* We don't lock the tree block, it's OK to be racy here */
5105 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5106 					       wc->level - 1, 1, &refs,
5107 					       &flags);
5108 		/* We don't care about errors in readahead. */
5109 		if (ret < 0)
5110 			continue;
5111 		BUG_ON(refs == 0);
5112 
5113 		if (wc->stage == DROP_REFERENCE) {
5114 			if (refs == 1)
5115 				goto reada;
5116 
5117 			if (wc->level == 1 &&
5118 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5119 				continue;
5120 			if (!wc->update_ref ||
5121 			    generation <= root->root_key.offset)
5122 				continue;
5123 			btrfs_node_key_to_cpu(eb, &key, slot);
5124 			ret = btrfs_comp_cpu_keys(&key,
5125 						  &wc->update_progress);
5126 			if (ret < 0)
5127 				continue;
5128 		} else {
5129 			if (wc->level == 1 &&
5130 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5131 				continue;
5132 		}
5133 reada:
5134 		btrfs_readahead_node_child(eb, slot);
5135 		nread++;
5136 	}
5137 	wc->reada_slot = slot;
5138 }
5139 
5140 /*
5141  * helper to process tree block while walking down the tree.
5142  *
5143  * when wc->stage == UPDATE_BACKREF, this function updates
5144  * back refs for pointers in the block.
5145  *
5146  * NOTE: return value 1 means we should stop walking down.
5147  */
5148 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5149 				   struct btrfs_root *root,
5150 				   struct btrfs_path *path,
5151 				   struct walk_control *wc, int lookup_info)
5152 {
5153 	struct btrfs_fs_info *fs_info = root->fs_info;
5154 	int level = wc->level;
5155 	struct extent_buffer *eb = path->nodes[level];
5156 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5157 	int ret;
5158 
5159 	if (wc->stage == UPDATE_BACKREF &&
5160 	    btrfs_header_owner(eb) != root->root_key.objectid)
5161 		return 1;
5162 
5163 	/*
5164 	 * when reference count of tree block is 1, it won't increase
5165 	 * again. once full backref flag is set, we never clear it.
5166 	 */
5167 	if (lookup_info &&
5168 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5169 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5170 		BUG_ON(!path->locks[level]);
5171 		ret = btrfs_lookup_extent_info(trans, fs_info,
5172 					       eb->start, level, 1,
5173 					       &wc->refs[level],
5174 					       &wc->flags[level]);
5175 		BUG_ON(ret == -ENOMEM);
5176 		if (ret)
5177 			return ret;
5178 		BUG_ON(wc->refs[level] == 0);
5179 	}
5180 
5181 	if (wc->stage == DROP_REFERENCE) {
5182 		if (wc->refs[level] > 1)
5183 			return 1;
5184 
5185 		if (path->locks[level] && !wc->keep_locks) {
5186 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5187 			path->locks[level] = 0;
5188 		}
5189 		return 0;
5190 	}
5191 
5192 	/* wc->stage == UPDATE_BACKREF */
5193 	if (!(wc->flags[level] & flag)) {
5194 		BUG_ON(!path->locks[level]);
5195 		ret = btrfs_inc_ref(trans, root, eb, 1);
5196 		BUG_ON(ret); /* -ENOMEM */
5197 		ret = btrfs_dec_ref(trans, root, eb, 0);
5198 		BUG_ON(ret); /* -ENOMEM */
5199 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5200 						  btrfs_header_level(eb));
5201 		BUG_ON(ret); /* -ENOMEM */
5202 		wc->flags[level] |= flag;
5203 	}
5204 
5205 	/*
5206 	 * the block is shared by multiple trees, so it's not good to
5207 	 * keep the tree lock
5208 	 */
5209 	if (path->locks[level] && level > 0) {
5210 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5211 		path->locks[level] = 0;
5212 	}
5213 	return 0;
5214 }
5215 
5216 /*
5217  * This is used to verify a ref exists for this root to deal with a bug where we
5218  * would have a drop_progress key that hadn't been updated properly.
5219  */
5220 static int check_ref_exists(struct btrfs_trans_handle *trans,
5221 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5222 			    int level)
5223 {
5224 	struct btrfs_path *path;
5225 	struct btrfs_extent_inline_ref *iref;
5226 	int ret;
5227 
5228 	path = btrfs_alloc_path();
5229 	if (!path)
5230 		return -ENOMEM;
5231 
5232 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5233 				    root->fs_info->nodesize, parent,
5234 				    root->root_key.objectid, level, 0);
5235 	btrfs_free_path(path);
5236 	if (ret == -ENOENT)
5237 		return 0;
5238 	if (ret < 0)
5239 		return ret;
5240 	return 1;
5241 }
5242 
5243 /*
5244  * helper to process tree block pointer.
5245  *
5246  * when wc->stage == DROP_REFERENCE, this function checks
5247  * reference count of the block pointed to. if the block
5248  * is shared and we need update back refs for the subtree
5249  * rooted at the block, this function changes wc->stage to
5250  * UPDATE_BACKREF. if the block is shared and there is no
5251  * need to update back, this function drops the reference
5252  * to the block.
5253  *
5254  * NOTE: return value 1 means we should stop walking down.
5255  */
5256 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5257 				 struct btrfs_root *root,
5258 				 struct btrfs_path *path,
5259 				 struct walk_control *wc, int *lookup_info)
5260 {
5261 	struct btrfs_fs_info *fs_info = root->fs_info;
5262 	u64 bytenr;
5263 	u64 generation;
5264 	u64 parent;
5265 	struct btrfs_tree_parent_check check = { 0 };
5266 	struct btrfs_key key;
5267 	struct btrfs_ref ref = { 0 };
5268 	struct extent_buffer *next;
5269 	int level = wc->level;
5270 	int reada = 0;
5271 	int ret = 0;
5272 	bool need_account = false;
5273 
5274 	generation = btrfs_node_ptr_generation(path->nodes[level],
5275 					       path->slots[level]);
5276 	/*
5277 	 * if the lower level block was created before the snapshot
5278 	 * was created, we know there is no need to update back refs
5279 	 * for the subtree
5280 	 */
5281 	if (wc->stage == UPDATE_BACKREF &&
5282 	    generation <= root->root_key.offset) {
5283 		*lookup_info = 1;
5284 		return 1;
5285 	}
5286 
5287 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5288 
5289 	check.level = level - 1;
5290 	check.transid = generation;
5291 	check.owner_root = root->root_key.objectid;
5292 	check.has_first_key = true;
5293 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5294 			      path->slots[level]);
5295 
5296 	next = find_extent_buffer(fs_info, bytenr);
5297 	if (!next) {
5298 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5299 				root->root_key.objectid, level - 1);
5300 		if (IS_ERR(next))
5301 			return PTR_ERR(next);
5302 		reada = 1;
5303 	}
5304 	btrfs_tree_lock(next);
5305 
5306 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5307 				       &wc->refs[level - 1],
5308 				       &wc->flags[level - 1]);
5309 	if (ret < 0)
5310 		goto out_unlock;
5311 
5312 	if (unlikely(wc->refs[level - 1] == 0)) {
5313 		btrfs_err(fs_info, "Missing references.");
5314 		ret = -EIO;
5315 		goto out_unlock;
5316 	}
5317 	*lookup_info = 0;
5318 
5319 	if (wc->stage == DROP_REFERENCE) {
5320 		if (wc->refs[level - 1] > 1) {
5321 			need_account = true;
5322 			if (level == 1 &&
5323 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5324 				goto skip;
5325 
5326 			if (!wc->update_ref ||
5327 			    generation <= root->root_key.offset)
5328 				goto skip;
5329 
5330 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5331 					      path->slots[level]);
5332 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5333 			if (ret < 0)
5334 				goto skip;
5335 
5336 			wc->stage = UPDATE_BACKREF;
5337 			wc->shared_level = level - 1;
5338 		}
5339 	} else {
5340 		if (level == 1 &&
5341 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5342 			goto skip;
5343 	}
5344 
5345 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5346 		btrfs_tree_unlock(next);
5347 		free_extent_buffer(next);
5348 		next = NULL;
5349 		*lookup_info = 1;
5350 	}
5351 
5352 	if (!next) {
5353 		if (reada && level == 1)
5354 			reada_walk_down(trans, root, wc, path);
5355 		next = read_tree_block(fs_info, bytenr, &check);
5356 		if (IS_ERR(next)) {
5357 			return PTR_ERR(next);
5358 		} else if (!extent_buffer_uptodate(next)) {
5359 			free_extent_buffer(next);
5360 			return -EIO;
5361 		}
5362 		btrfs_tree_lock(next);
5363 	}
5364 
5365 	level--;
5366 	ASSERT(level == btrfs_header_level(next));
5367 	if (level != btrfs_header_level(next)) {
5368 		btrfs_err(root->fs_info, "mismatched level");
5369 		ret = -EIO;
5370 		goto out_unlock;
5371 	}
5372 	path->nodes[level] = next;
5373 	path->slots[level] = 0;
5374 	path->locks[level] = BTRFS_WRITE_LOCK;
5375 	wc->level = level;
5376 	if (wc->level == 1)
5377 		wc->reada_slot = 0;
5378 	return 0;
5379 skip:
5380 	wc->refs[level - 1] = 0;
5381 	wc->flags[level - 1] = 0;
5382 	if (wc->stage == DROP_REFERENCE) {
5383 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5384 			parent = path->nodes[level]->start;
5385 		} else {
5386 			ASSERT(root->root_key.objectid ==
5387 			       btrfs_header_owner(path->nodes[level]));
5388 			if (root->root_key.objectid !=
5389 			    btrfs_header_owner(path->nodes[level])) {
5390 				btrfs_err(root->fs_info,
5391 						"mismatched block owner");
5392 				ret = -EIO;
5393 				goto out_unlock;
5394 			}
5395 			parent = 0;
5396 		}
5397 
5398 		/*
5399 		 * If we had a drop_progress we need to verify the refs are set
5400 		 * as expected.  If we find our ref then we know that from here
5401 		 * on out everything should be correct, and we can clear the
5402 		 * ->restarted flag.
5403 		 */
5404 		if (wc->restarted) {
5405 			ret = check_ref_exists(trans, root, bytenr, parent,
5406 					       level - 1);
5407 			if (ret < 0)
5408 				goto out_unlock;
5409 			if (ret == 0)
5410 				goto no_delete;
5411 			ret = 0;
5412 			wc->restarted = 0;
5413 		}
5414 
5415 		/*
5416 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5417 		 * already accounted them at merge time (replace_path),
5418 		 * thus we could skip expensive subtree trace here.
5419 		 */
5420 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5421 		    need_account) {
5422 			ret = btrfs_qgroup_trace_subtree(trans, next,
5423 							 generation, level - 1);
5424 			if (ret) {
5425 				btrfs_err_rl(fs_info,
5426 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5427 					     ret);
5428 			}
5429 		}
5430 
5431 		/*
5432 		 * We need to update the next key in our walk control so we can
5433 		 * update the drop_progress key accordingly.  We don't care if
5434 		 * find_next_key doesn't find a key because that means we're at
5435 		 * the end and are going to clean up now.
5436 		 */
5437 		wc->drop_level = level;
5438 		find_next_key(path, level, &wc->drop_progress);
5439 
5440 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5441 				       fs_info->nodesize, parent);
5442 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5443 				    0, false);
5444 		ret = btrfs_free_extent(trans, &ref);
5445 		if (ret)
5446 			goto out_unlock;
5447 	}
5448 no_delete:
5449 	*lookup_info = 1;
5450 	ret = 1;
5451 
5452 out_unlock:
5453 	btrfs_tree_unlock(next);
5454 	free_extent_buffer(next);
5455 
5456 	return ret;
5457 }
5458 
5459 /*
5460  * helper to process tree block while walking up the tree.
5461  *
5462  * when wc->stage == DROP_REFERENCE, this function drops
5463  * reference count on the block.
5464  *
5465  * when wc->stage == UPDATE_BACKREF, this function changes
5466  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5467  * to UPDATE_BACKREF previously while processing the block.
5468  *
5469  * NOTE: return value 1 means we should stop walking up.
5470  */
5471 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5472 				 struct btrfs_root *root,
5473 				 struct btrfs_path *path,
5474 				 struct walk_control *wc)
5475 {
5476 	struct btrfs_fs_info *fs_info = root->fs_info;
5477 	int ret;
5478 	int level = wc->level;
5479 	struct extent_buffer *eb = path->nodes[level];
5480 	u64 parent = 0;
5481 
5482 	if (wc->stage == UPDATE_BACKREF) {
5483 		BUG_ON(wc->shared_level < level);
5484 		if (level < wc->shared_level)
5485 			goto out;
5486 
5487 		ret = find_next_key(path, level + 1, &wc->update_progress);
5488 		if (ret > 0)
5489 			wc->update_ref = 0;
5490 
5491 		wc->stage = DROP_REFERENCE;
5492 		wc->shared_level = -1;
5493 		path->slots[level] = 0;
5494 
5495 		/*
5496 		 * check reference count again if the block isn't locked.
5497 		 * we should start walking down the tree again if reference
5498 		 * count is one.
5499 		 */
5500 		if (!path->locks[level]) {
5501 			BUG_ON(level == 0);
5502 			btrfs_tree_lock(eb);
5503 			path->locks[level] = BTRFS_WRITE_LOCK;
5504 
5505 			ret = btrfs_lookup_extent_info(trans, fs_info,
5506 						       eb->start, level, 1,
5507 						       &wc->refs[level],
5508 						       &wc->flags[level]);
5509 			if (ret < 0) {
5510 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5511 				path->locks[level] = 0;
5512 				return ret;
5513 			}
5514 			BUG_ON(wc->refs[level] == 0);
5515 			if (wc->refs[level] == 1) {
5516 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5517 				path->locks[level] = 0;
5518 				return 1;
5519 			}
5520 		}
5521 	}
5522 
5523 	/* wc->stage == DROP_REFERENCE */
5524 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5525 
5526 	if (wc->refs[level] == 1) {
5527 		if (level == 0) {
5528 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5529 				ret = btrfs_dec_ref(trans, root, eb, 1);
5530 			else
5531 				ret = btrfs_dec_ref(trans, root, eb, 0);
5532 			BUG_ON(ret); /* -ENOMEM */
5533 			if (is_fstree(root->root_key.objectid)) {
5534 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5535 				if (ret) {
5536 					btrfs_err_rl(fs_info,
5537 	"error %d accounting leaf items, quota is out of sync, rescan required",
5538 					     ret);
5539 				}
5540 			}
5541 		}
5542 		/* make block locked assertion in btrfs_clean_tree_block happy */
5543 		if (!path->locks[level] &&
5544 		    btrfs_header_generation(eb) == trans->transid) {
5545 			btrfs_tree_lock(eb);
5546 			path->locks[level] = BTRFS_WRITE_LOCK;
5547 		}
5548 		btrfs_clean_tree_block(eb);
5549 	}
5550 
5551 	if (eb == root->node) {
5552 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5553 			parent = eb->start;
5554 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5555 			goto owner_mismatch;
5556 	} else {
5557 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5558 			parent = path->nodes[level + 1]->start;
5559 		else if (root->root_key.objectid !=
5560 			 btrfs_header_owner(path->nodes[level + 1]))
5561 			goto owner_mismatch;
5562 	}
5563 
5564 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5565 			      wc->refs[level] == 1);
5566 out:
5567 	wc->refs[level] = 0;
5568 	wc->flags[level] = 0;
5569 	return 0;
5570 
5571 owner_mismatch:
5572 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5573 		     btrfs_header_owner(eb), root->root_key.objectid);
5574 	return -EUCLEAN;
5575 }
5576 
5577 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5578 				   struct btrfs_root *root,
5579 				   struct btrfs_path *path,
5580 				   struct walk_control *wc)
5581 {
5582 	int level = wc->level;
5583 	int lookup_info = 1;
5584 	int ret;
5585 
5586 	while (level >= 0) {
5587 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5588 		if (ret > 0)
5589 			break;
5590 
5591 		if (level == 0)
5592 			break;
5593 
5594 		if (path->slots[level] >=
5595 		    btrfs_header_nritems(path->nodes[level]))
5596 			break;
5597 
5598 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5599 		if (ret > 0) {
5600 			path->slots[level]++;
5601 			continue;
5602 		} else if (ret < 0)
5603 			return ret;
5604 		level = wc->level;
5605 	}
5606 	return 0;
5607 }
5608 
5609 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5610 				 struct btrfs_root *root,
5611 				 struct btrfs_path *path,
5612 				 struct walk_control *wc, int max_level)
5613 {
5614 	int level = wc->level;
5615 	int ret;
5616 
5617 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5618 	while (level < max_level && path->nodes[level]) {
5619 		wc->level = level;
5620 		if (path->slots[level] + 1 <
5621 		    btrfs_header_nritems(path->nodes[level])) {
5622 			path->slots[level]++;
5623 			return 0;
5624 		} else {
5625 			ret = walk_up_proc(trans, root, path, wc);
5626 			if (ret > 0)
5627 				return 0;
5628 			if (ret < 0)
5629 				return ret;
5630 
5631 			if (path->locks[level]) {
5632 				btrfs_tree_unlock_rw(path->nodes[level],
5633 						     path->locks[level]);
5634 				path->locks[level] = 0;
5635 			}
5636 			free_extent_buffer(path->nodes[level]);
5637 			path->nodes[level] = NULL;
5638 			level++;
5639 		}
5640 	}
5641 	return 1;
5642 }
5643 
5644 /*
5645  * drop a subvolume tree.
5646  *
5647  * this function traverses the tree freeing any blocks that only
5648  * referenced by the tree.
5649  *
5650  * when a shared tree block is found. this function decreases its
5651  * reference count by one. if update_ref is true, this function
5652  * also make sure backrefs for the shared block and all lower level
5653  * blocks are properly updated.
5654  *
5655  * If called with for_reloc == 0, may exit early with -EAGAIN
5656  */
5657 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5658 {
5659 	const bool is_reloc_root = (root->root_key.objectid ==
5660 				    BTRFS_TREE_RELOC_OBJECTID);
5661 	struct btrfs_fs_info *fs_info = root->fs_info;
5662 	struct btrfs_path *path;
5663 	struct btrfs_trans_handle *trans;
5664 	struct btrfs_root *tree_root = fs_info->tree_root;
5665 	struct btrfs_root_item *root_item = &root->root_item;
5666 	struct walk_control *wc;
5667 	struct btrfs_key key;
5668 	int err = 0;
5669 	int ret;
5670 	int level;
5671 	bool root_dropped = false;
5672 	bool unfinished_drop = false;
5673 
5674 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5675 
5676 	path = btrfs_alloc_path();
5677 	if (!path) {
5678 		err = -ENOMEM;
5679 		goto out;
5680 	}
5681 
5682 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5683 	if (!wc) {
5684 		btrfs_free_path(path);
5685 		err = -ENOMEM;
5686 		goto out;
5687 	}
5688 
5689 	/*
5690 	 * Use join to avoid potential EINTR from transaction start. See
5691 	 * wait_reserve_ticket and the whole reservation callchain.
5692 	 */
5693 	if (for_reloc)
5694 		trans = btrfs_join_transaction(tree_root);
5695 	else
5696 		trans = btrfs_start_transaction(tree_root, 0);
5697 	if (IS_ERR(trans)) {
5698 		err = PTR_ERR(trans);
5699 		goto out_free;
5700 	}
5701 
5702 	err = btrfs_run_delayed_items(trans);
5703 	if (err)
5704 		goto out_end_trans;
5705 
5706 	/*
5707 	 * This will help us catch people modifying the fs tree while we're
5708 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5709 	 * dropped as we unlock the root node and parent nodes as we walk down
5710 	 * the tree, assuming nothing will change.  If something does change
5711 	 * then we'll have stale information and drop references to blocks we've
5712 	 * already dropped.
5713 	 */
5714 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5715 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5716 
5717 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5718 		level = btrfs_header_level(root->node);
5719 		path->nodes[level] = btrfs_lock_root_node(root);
5720 		path->slots[level] = 0;
5721 		path->locks[level] = BTRFS_WRITE_LOCK;
5722 		memset(&wc->update_progress, 0,
5723 		       sizeof(wc->update_progress));
5724 	} else {
5725 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5726 		memcpy(&wc->update_progress, &key,
5727 		       sizeof(wc->update_progress));
5728 
5729 		level = btrfs_root_drop_level(root_item);
5730 		BUG_ON(level == 0);
5731 		path->lowest_level = level;
5732 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733 		path->lowest_level = 0;
5734 		if (ret < 0) {
5735 			err = ret;
5736 			goto out_end_trans;
5737 		}
5738 		WARN_ON(ret > 0);
5739 
5740 		/*
5741 		 * unlock our path, this is safe because only this
5742 		 * function is allowed to delete this snapshot
5743 		 */
5744 		btrfs_unlock_up_safe(path, 0);
5745 
5746 		level = btrfs_header_level(root->node);
5747 		while (1) {
5748 			btrfs_tree_lock(path->nodes[level]);
5749 			path->locks[level] = BTRFS_WRITE_LOCK;
5750 
5751 			ret = btrfs_lookup_extent_info(trans, fs_info,
5752 						path->nodes[level]->start,
5753 						level, 1, &wc->refs[level],
5754 						&wc->flags[level]);
5755 			if (ret < 0) {
5756 				err = ret;
5757 				goto out_end_trans;
5758 			}
5759 			BUG_ON(wc->refs[level] == 0);
5760 
5761 			if (level == btrfs_root_drop_level(root_item))
5762 				break;
5763 
5764 			btrfs_tree_unlock(path->nodes[level]);
5765 			path->locks[level] = 0;
5766 			WARN_ON(wc->refs[level] != 1);
5767 			level--;
5768 		}
5769 	}
5770 
5771 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5772 	wc->level = level;
5773 	wc->shared_level = -1;
5774 	wc->stage = DROP_REFERENCE;
5775 	wc->update_ref = update_ref;
5776 	wc->keep_locks = 0;
5777 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5778 
5779 	while (1) {
5780 
5781 		ret = walk_down_tree(trans, root, path, wc);
5782 		if (ret < 0) {
5783 			err = ret;
5784 			break;
5785 		}
5786 
5787 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5788 		if (ret < 0) {
5789 			err = ret;
5790 			break;
5791 		}
5792 
5793 		if (ret > 0) {
5794 			BUG_ON(wc->stage != DROP_REFERENCE);
5795 			break;
5796 		}
5797 
5798 		if (wc->stage == DROP_REFERENCE) {
5799 			wc->drop_level = wc->level;
5800 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5801 					      &wc->drop_progress,
5802 					      path->slots[wc->drop_level]);
5803 		}
5804 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5805 				      &wc->drop_progress);
5806 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5807 
5808 		BUG_ON(wc->level == 0);
5809 		if (btrfs_should_end_transaction(trans) ||
5810 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5811 			ret = btrfs_update_root(trans, tree_root,
5812 						&root->root_key,
5813 						root_item);
5814 			if (ret) {
5815 				btrfs_abort_transaction(trans, ret);
5816 				err = ret;
5817 				goto out_end_trans;
5818 			}
5819 
5820 			if (!is_reloc_root)
5821 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5822 
5823 			btrfs_end_transaction_throttle(trans);
5824 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5825 				btrfs_debug(fs_info,
5826 					    "drop snapshot early exit");
5827 				err = -EAGAIN;
5828 				goto out_free;
5829 			}
5830 
5831 		       /*
5832 			* Use join to avoid potential EINTR from transaction
5833 			* start. See wait_reserve_ticket and the whole
5834 			* reservation callchain.
5835 			*/
5836 			if (for_reloc)
5837 				trans = btrfs_join_transaction(tree_root);
5838 			else
5839 				trans = btrfs_start_transaction(tree_root, 0);
5840 			if (IS_ERR(trans)) {
5841 				err = PTR_ERR(trans);
5842 				goto out_free;
5843 			}
5844 		}
5845 	}
5846 	btrfs_release_path(path);
5847 	if (err)
5848 		goto out_end_trans;
5849 
5850 	ret = btrfs_del_root(trans, &root->root_key);
5851 	if (ret) {
5852 		btrfs_abort_transaction(trans, ret);
5853 		err = ret;
5854 		goto out_end_trans;
5855 	}
5856 
5857 	if (!is_reloc_root) {
5858 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5859 				      NULL, NULL);
5860 		if (ret < 0) {
5861 			btrfs_abort_transaction(trans, ret);
5862 			err = ret;
5863 			goto out_end_trans;
5864 		} else if (ret > 0) {
5865 			/* if we fail to delete the orphan item this time
5866 			 * around, it'll get picked up the next time.
5867 			 *
5868 			 * The most common failure here is just -ENOENT.
5869 			 */
5870 			btrfs_del_orphan_item(trans, tree_root,
5871 					      root->root_key.objectid);
5872 		}
5873 	}
5874 
5875 	/*
5876 	 * This subvolume is going to be completely dropped, and won't be
5877 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5878 	 * commit transaction time.  So free it here manually.
5879 	 */
5880 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5881 	btrfs_qgroup_free_meta_all_pertrans(root);
5882 
5883 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5884 		btrfs_add_dropped_root(trans, root);
5885 	else
5886 		btrfs_put_root(root);
5887 	root_dropped = true;
5888 out_end_trans:
5889 	if (!is_reloc_root)
5890 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5891 
5892 	btrfs_end_transaction_throttle(trans);
5893 out_free:
5894 	kfree(wc);
5895 	btrfs_free_path(path);
5896 out:
5897 	/*
5898 	 * We were an unfinished drop root, check to see if there are any
5899 	 * pending, and if not clear and wake up any waiters.
5900 	 */
5901 	if (!err && unfinished_drop)
5902 		btrfs_maybe_wake_unfinished_drop(fs_info);
5903 
5904 	/*
5905 	 * So if we need to stop dropping the snapshot for whatever reason we
5906 	 * need to make sure to add it back to the dead root list so that we
5907 	 * keep trying to do the work later.  This also cleans up roots if we
5908 	 * don't have it in the radix (like when we recover after a power fail
5909 	 * or unmount) so we don't leak memory.
5910 	 */
5911 	if (!for_reloc && !root_dropped)
5912 		btrfs_add_dead_root(root);
5913 	return err;
5914 }
5915 
5916 /*
5917  * drop subtree rooted at tree block 'node'.
5918  *
5919  * NOTE: this function will unlock and release tree block 'node'
5920  * only used by relocation code
5921  */
5922 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5923 			struct btrfs_root *root,
5924 			struct extent_buffer *node,
5925 			struct extent_buffer *parent)
5926 {
5927 	struct btrfs_fs_info *fs_info = root->fs_info;
5928 	struct btrfs_path *path;
5929 	struct walk_control *wc;
5930 	int level;
5931 	int parent_level;
5932 	int ret = 0;
5933 	int wret;
5934 
5935 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5936 
5937 	path = btrfs_alloc_path();
5938 	if (!path)
5939 		return -ENOMEM;
5940 
5941 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5942 	if (!wc) {
5943 		btrfs_free_path(path);
5944 		return -ENOMEM;
5945 	}
5946 
5947 	btrfs_assert_tree_write_locked(parent);
5948 	parent_level = btrfs_header_level(parent);
5949 	atomic_inc(&parent->refs);
5950 	path->nodes[parent_level] = parent;
5951 	path->slots[parent_level] = btrfs_header_nritems(parent);
5952 
5953 	btrfs_assert_tree_write_locked(node);
5954 	level = btrfs_header_level(node);
5955 	path->nodes[level] = node;
5956 	path->slots[level] = 0;
5957 	path->locks[level] = BTRFS_WRITE_LOCK;
5958 
5959 	wc->refs[parent_level] = 1;
5960 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5961 	wc->level = level;
5962 	wc->shared_level = -1;
5963 	wc->stage = DROP_REFERENCE;
5964 	wc->update_ref = 0;
5965 	wc->keep_locks = 1;
5966 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5967 
5968 	while (1) {
5969 		wret = walk_down_tree(trans, root, path, wc);
5970 		if (wret < 0) {
5971 			ret = wret;
5972 			break;
5973 		}
5974 
5975 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5976 		if (wret < 0)
5977 			ret = wret;
5978 		if (wret != 0)
5979 			break;
5980 	}
5981 
5982 	kfree(wc);
5983 	btrfs_free_path(path);
5984 	return ret;
5985 }
5986 
5987 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5988 				   u64 start, u64 end)
5989 {
5990 	return unpin_extent_range(fs_info, start, end, false);
5991 }
5992 
5993 /*
5994  * It used to be that old block groups would be left around forever.
5995  * Iterating over them would be enough to trim unused space.  Since we
5996  * now automatically remove them, we also need to iterate over unallocated
5997  * space.
5998  *
5999  * We don't want a transaction for this since the discard may take a
6000  * substantial amount of time.  We don't require that a transaction be
6001  * running, but we do need to take a running transaction into account
6002  * to ensure that we're not discarding chunks that were released or
6003  * allocated in the current transaction.
6004  *
6005  * Holding the chunks lock will prevent other threads from allocating
6006  * or releasing chunks, but it won't prevent a running transaction
6007  * from committing and releasing the memory that the pending chunks
6008  * list head uses.  For that, we need to take a reference to the
6009  * transaction and hold the commit root sem.  We only need to hold
6010  * it while performing the free space search since we have already
6011  * held back allocations.
6012  */
6013 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6014 {
6015 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6016 	int ret;
6017 
6018 	*trimmed = 0;
6019 
6020 	/* Discard not supported = nothing to do. */
6021 	if (!bdev_max_discard_sectors(device->bdev))
6022 		return 0;
6023 
6024 	/* Not writable = nothing to do. */
6025 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6026 		return 0;
6027 
6028 	/* No free space = nothing to do. */
6029 	if (device->total_bytes <= device->bytes_used)
6030 		return 0;
6031 
6032 	ret = 0;
6033 
6034 	while (1) {
6035 		struct btrfs_fs_info *fs_info = device->fs_info;
6036 		u64 bytes;
6037 
6038 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6039 		if (ret)
6040 			break;
6041 
6042 		find_first_clear_extent_bit(&device->alloc_state, start,
6043 					    &start, &end,
6044 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6045 
6046 		/* Check if there are any CHUNK_* bits left */
6047 		if (start > device->total_bytes) {
6048 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6049 			btrfs_warn_in_rcu(fs_info,
6050 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6051 					  start, end - start + 1,
6052 					  btrfs_dev_name(device),
6053 					  device->total_bytes);
6054 			mutex_unlock(&fs_info->chunk_mutex);
6055 			ret = 0;
6056 			break;
6057 		}
6058 
6059 		/* Ensure we skip the reserved space on each device. */
6060 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6061 
6062 		/*
6063 		 * If find_first_clear_extent_bit find a range that spans the
6064 		 * end of the device it will set end to -1, in this case it's up
6065 		 * to the caller to trim the value to the size of the device.
6066 		 */
6067 		end = min(end, device->total_bytes - 1);
6068 
6069 		len = end - start + 1;
6070 
6071 		/* We didn't find any extents */
6072 		if (!len) {
6073 			mutex_unlock(&fs_info->chunk_mutex);
6074 			ret = 0;
6075 			break;
6076 		}
6077 
6078 		ret = btrfs_issue_discard(device->bdev, start, len,
6079 					  &bytes);
6080 		if (!ret)
6081 			set_extent_bits(&device->alloc_state, start,
6082 					start + bytes - 1,
6083 					CHUNK_TRIMMED);
6084 		mutex_unlock(&fs_info->chunk_mutex);
6085 
6086 		if (ret)
6087 			break;
6088 
6089 		start += len;
6090 		*trimmed += bytes;
6091 
6092 		if (fatal_signal_pending(current)) {
6093 			ret = -ERESTARTSYS;
6094 			break;
6095 		}
6096 
6097 		cond_resched();
6098 	}
6099 
6100 	return ret;
6101 }
6102 
6103 /*
6104  * Trim the whole filesystem by:
6105  * 1) trimming the free space in each block group
6106  * 2) trimming the unallocated space on each device
6107  *
6108  * This will also continue trimming even if a block group or device encounters
6109  * an error.  The return value will be the last error, or 0 if nothing bad
6110  * happens.
6111  */
6112 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6113 {
6114 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6115 	struct btrfs_block_group *cache = NULL;
6116 	struct btrfs_device *device;
6117 	u64 group_trimmed;
6118 	u64 range_end = U64_MAX;
6119 	u64 start;
6120 	u64 end;
6121 	u64 trimmed = 0;
6122 	u64 bg_failed = 0;
6123 	u64 dev_failed = 0;
6124 	int bg_ret = 0;
6125 	int dev_ret = 0;
6126 	int ret = 0;
6127 
6128 	if (range->start == U64_MAX)
6129 		return -EINVAL;
6130 
6131 	/*
6132 	 * Check range overflow if range->len is set.
6133 	 * The default range->len is U64_MAX.
6134 	 */
6135 	if (range->len != U64_MAX &&
6136 	    check_add_overflow(range->start, range->len, &range_end))
6137 		return -EINVAL;
6138 
6139 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6140 	for (; cache; cache = btrfs_next_block_group(cache)) {
6141 		if (cache->start >= range_end) {
6142 			btrfs_put_block_group(cache);
6143 			break;
6144 		}
6145 
6146 		start = max(range->start, cache->start);
6147 		end = min(range_end, cache->start + cache->length);
6148 
6149 		if (end - start >= range->minlen) {
6150 			if (!btrfs_block_group_done(cache)) {
6151 				ret = btrfs_cache_block_group(cache, true);
6152 				if (ret) {
6153 					bg_failed++;
6154 					bg_ret = ret;
6155 					continue;
6156 				}
6157 			}
6158 			ret = btrfs_trim_block_group(cache,
6159 						     &group_trimmed,
6160 						     start,
6161 						     end,
6162 						     range->minlen);
6163 
6164 			trimmed += group_trimmed;
6165 			if (ret) {
6166 				bg_failed++;
6167 				bg_ret = ret;
6168 				continue;
6169 			}
6170 		}
6171 	}
6172 
6173 	if (bg_failed)
6174 		btrfs_warn(fs_info,
6175 			"failed to trim %llu block group(s), last error %d",
6176 			bg_failed, bg_ret);
6177 
6178 	mutex_lock(&fs_devices->device_list_mutex);
6179 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6180 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6181 			continue;
6182 
6183 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6184 		if (ret) {
6185 			dev_failed++;
6186 			dev_ret = ret;
6187 			break;
6188 		}
6189 
6190 		trimmed += group_trimmed;
6191 	}
6192 	mutex_unlock(&fs_devices->device_list_mutex);
6193 
6194 	if (dev_failed)
6195 		btrfs_warn(fs_info,
6196 			"failed to trim %llu device(s), last error %d",
6197 			dev_failed, dev_ret);
6198 	range->len = trimmed;
6199 	if (bg_ret)
6200 		return bg_ret;
6201 	return dev_ret;
6202 }
6203