1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 struct btrfs_fs_info *info, u64 start, u64 end) 342 { 343 u64 extent_start, extent_end, size, total_added = 0; 344 int ret; 345 346 while (start < end) { 347 ret = find_first_extent_bit(info->pinned_extents, start, 348 &extent_start, &extent_end, 349 EXTENT_DIRTY | EXTENT_UPTODATE, 350 NULL); 351 if (ret) 352 break; 353 354 if (extent_start <= start) { 355 start = extent_end + 1; 356 } else if (extent_start > start && extent_start < end) { 357 size = extent_start - start; 358 total_added += size; 359 ret = btrfs_add_free_space(block_group, start, 360 size); 361 BUG_ON(ret); /* -ENOMEM or logic error */ 362 start = extent_end + 1; 363 } else { 364 break; 365 } 366 } 367 368 if (start < end) { 369 size = end - start; 370 total_added += size; 371 ret = btrfs_add_free_space(block_group, start, size); 372 BUG_ON(ret); /* -ENOMEM or logic error */ 373 } 374 375 return total_added; 376 } 377 378 static noinline void caching_thread(struct btrfs_work *work) 379 { 380 struct btrfs_block_group_cache *block_group; 381 struct btrfs_fs_info *fs_info; 382 struct btrfs_caching_control *caching_ctl; 383 struct btrfs_root *extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret = -ENOMEM; 391 392 caching_ctl = container_of(work, struct btrfs_caching_control, work); 393 block_group = caching_ctl->block_group; 394 fs_info = block_group->fs_info; 395 extent_root = fs_info->extent_root; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 goto out; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 /* 404 * We don't want to deadlock with somebody trying to allocate a new 405 * extent for the extent root while also trying to search the extent 406 * root to add free space. So we skip locking and search the commit 407 * root, since its read-only 408 */ 409 path->skip_locking = 1; 410 path->search_commit_root = 1; 411 path->reada = 1; 412 413 key.objectid = last; 414 key.offset = 0; 415 key.type = BTRFS_EXTENT_ITEM_KEY; 416 again: 417 mutex_lock(&caching_ctl->mutex); 418 /* need to make sure the commit_root doesn't disappear */ 419 down_read(&fs_info->commit_root_sem); 420 421 next: 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 423 if (ret < 0) 424 goto err; 425 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 429 while (1) { 430 if (btrfs_fs_closing(fs_info) > 1) { 431 last = (u64)-1; 432 break; 433 } 434 435 if (path->slots[0] < nritems) { 436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 437 } else { 438 ret = find_next_key(path, 0, &key); 439 if (ret) 440 break; 441 442 if (need_resched() || 443 rwsem_is_contended(&fs_info->commit_root_sem)) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->commit_root_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < last) { 463 key.objectid = last; 464 key.offset = 0; 465 key.type = BTRFS_EXTENT_ITEM_KEY; 466 467 caching_ctl->progress = last; 468 btrfs_release_path(path); 469 goto next; 470 } 471 472 if (key.objectid < block_group->key.objectid) { 473 path->slots[0]++; 474 continue; 475 } 476 477 if (key.objectid >= block_group->key.objectid + 478 block_group->key.offset) 479 break; 480 481 if (key.type == BTRFS_EXTENT_ITEM_KEY || 482 key.type == BTRFS_METADATA_ITEM_KEY) { 483 total_found += add_new_free_space(block_group, 484 fs_info, last, 485 key.objectid); 486 if (key.type == BTRFS_METADATA_ITEM_KEY) 487 last = key.objectid + 488 fs_info->tree_root->nodesize; 489 else 490 last = key.objectid + key.offset; 491 492 if (total_found > (1024 * 1024 * 2)) { 493 total_found = 0; 494 wake_up(&caching_ctl->wait); 495 } 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 501 total_found += add_new_free_space(block_group, fs_info, last, 502 block_group->key.objectid + 503 block_group->key.offset); 504 caching_ctl->progress = (u64)-1; 505 506 spin_lock(&block_group->lock); 507 block_group->caching_ctl = NULL; 508 block_group->cached = BTRFS_CACHE_FINISHED; 509 spin_unlock(&block_group->lock); 510 511 err: 512 btrfs_free_path(path); 513 up_read(&fs_info->commit_root_sem); 514 515 free_excluded_extents(extent_root, block_group); 516 517 mutex_unlock(&caching_ctl->mutex); 518 out: 519 if (ret) { 520 spin_lock(&block_group->lock); 521 block_group->caching_ctl = NULL; 522 block_group->cached = BTRFS_CACHE_ERROR; 523 spin_unlock(&block_group->lock); 524 } 525 wake_up(&caching_ctl->wait); 526 527 put_caching_control(caching_ctl); 528 btrfs_put_block_group(block_group); 529 } 530 531 static int cache_block_group(struct btrfs_block_group_cache *cache, 532 int load_cache_only) 533 { 534 DEFINE_WAIT(wait); 535 struct btrfs_fs_info *fs_info = cache->fs_info; 536 struct btrfs_caching_control *caching_ctl; 537 int ret = 0; 538 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 540 if (!caching_ctl) 541 return -ENOMEM; 542 543 INIT_LIST_HEAD(&caching_ctl->list); 544 mutex_init(&caching_ctl->mutex); 545 init_waitqueue_head(&caching_ctl->wait); 546 caching_ctl->block_group = cache; 547 caching_ctl->progress = cache->key.objectid; 548 atomic_set(&caching_ctl->count, 1); 549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 550 caching_thread, NULL, NULL); 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 mutex_lock(&caching_ctl->mutex); 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 caching_ctl->progress = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 cache->has_caching_ctl = 1; 607 } 608 } 609 spin_unlock(&cache->lock); 610 mutex_unlock(&caching_ctl->mutex); 611 612 wake_up(&caching_ctl->wait); 613 if (ret == 1) { 614 put_caching_control(caching_ctl); 615 free_excluded_extents(fs_info->extent_root, cache); 616 return 0; 617 } 618 } else { 619 /* 620 * We are not going to do the fast caching, set cached to the 621 * appropriate value and wakeup any waiters. 622 */ 623 spin_lock(&cache->lock); 624 if (load_cache_only) { 625 cache->caching_ctl = NULL; 626 cache->cached = BTRFS_CACHE_NO; 627 } else { 628 cache->cached = BTRFS_CACHE_STARTED; 629 cache->has_caching_ctl = 1; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1320 struct btrfs_path *path, 1321 struct btrfs_extent_inline_ref *iref) 1322 { 1323 struct btrfs_key key; 1324 struct extent_buffer *leaf; 1325 struct btrfs_extent_data_ref *ref1; 1326 struct btrfs_shared_data_ref *ref2; 1327 u32 num_refs = 0; 1328 1329 leaf = path->nodes[0]; 1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1331 if (iref) { 1332 if (btrfs_extent_inline_ref_type(leaf, iref) == 1333 BTRFS_EXTENT_DATA_REF_KEY) { 1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1336 } else { 1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1339 } 1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1341 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_extent_data_ref); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1345 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1346 struct btrfs_shared_data_ref); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1350 struct btrfs_extent_ref_v0 *ref0; 1351 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1352 struct btrfs_extent_ref_v0); 1353 num_refs = btrfs_ref_count_v0(leaf, ref0); 1354 #endif 1355 } else { 1356 WARN_ON(1); 1357 } 1358 return num_refs; 1359 } 1360 1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1362 struct btrfs_root *root, 1363 struct btrfs_path *path, 1364 u64 bytenr, u64 parent, 1365 u64 root_objectid) 1366 { 1367 struct btrfs_key key; 1368 int ret; 1369 1370 key.objectid = bytenr; 1371 if (parent) { 1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1373 key.offset = parent; 1374 } else { 1375 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1376 key.offset = root_objectid; 1377 } 1378 1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1380 if (ret > 0) 1381 ret = -ENOENT; 1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1383 if (ret == -ENOENT && parent) { 1384 btrfs_release_path(path); 1385 key.type = BTRFS_EXTENT_REF_V0_KEY; 1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1387 if (ret > 0) 1388 ret = -ENOENT; 1389 } 1390 #endif 1391 return ret; 1392 } 1393 1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1395 struct btrfs_root *root, 1396 struct btrfs_path *path, 1397 u64 bytenr, u64 parent, 1398 u64 root_objectid) 1399 { 1400 struct btrfs_key key; 1401 int ret; 1402 1403 key.objectid = bytenr; 1404 if (parent) { 1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1406 key.offset = parent; 1407 } else { 1408 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1409 key.offset = root_objectid; 1410 } 1411 1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1413 btrfs_release_path(path); 1414 return ret; 1415 } 1416 1417 static inline int extent_ref_type(u64 parent, u64 owner) 1418 { 1419 int type; 1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1421 if (parent > 0) 1422 type = BTRFS_SHARED_BLOCK_REF_KEY; 1423 else 1424 type = BTRFS_TREE_BLOCK_REF_KEY; 1425 } else { 1426 if (parent > 0) 1427 type = BTRFS_SHARED_DATA_REF_KEY; 1428 else 1429 type = BTRFS_EXTENT_DATA_REF_KEY; 1430 } 1431 return type; 1432 } 1433 1434 static int find_next_key(struct btrfs_path *path, int level, 1435 struct btrfs_key *key) 1436 1437 { 1438 for (; level < BTRFS_MAX_LEVEL; level++) { 1439 if (!path->nodes[level]) 1440 break; 1441 if (path->slots[level] + 1 >= 1442 btrfs_header_nritems(path->nodes[level])) 1443 continue; 1444 if (level == 0) 1445 btrfs_item_key_to_cpu(path->nodes[level], key, 1446 path->slots[level] + 1); 1447 else 1448 btrfs_node_key_to_cpu(path->nodes[level], key, 1449 path->slots[level] + 1); 1450 return 0; 1451 } 1452 return 1; 1453 } 1454 1455 /* 1456 * look for inline back ref. if back ref is found, *ref_ret is set 1457 * to the address of inline back ref, and 0 is returned. 1458 * 1459 * if back ref isn't found, *ref_ret is set to the address where it 1460 * should be inserted, and -ENOENT is returned. 1461 * 1462 * if insert is true and there are too many inline back refs, the path 1463 * points to the extent item, and -EAGAIN is returned. 1464 * 1465 * NOTE: inline back refs are ordered in the same way that back ref 1466 * items in the tree are ordered. 1467 */ 1468 static noinline_for_stack 1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1470 struct btrfs_root *root, 1471 struct btrfs_path *path, 1472 struct btrfs_extent_inline_ref **ref_ret, 1473 u64 bytenr, u64 num_bytes, 1474 u64 parent, u64 root_objectid, 1475 u64 owner, u64 offset, int insert) 1476 { 1477 struct btrfs_key key; 1478 struct extent_buffer *leaf; 1479 struct btrfs_extent_item *ei; 1480 struct btrfs_extent_inline_ref *iref; 1481 u64 flags; 1482 u64 item_size; 1483 unsigned long ptr; 1484 unsigned long end; 1485 int extra_size; 1486 int type; 1487 int want; 1488 int ret; 1489 int err = 0; 1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1491 SKINNY_METADATA); 1492 1493 key.objectid = bytenr; 1494 key.type = BTRFS_EXTENT_ITEM_KEY; 1495 key.offset = num_bytes; 1496 1497 want = extent_ref_type(parent, owner); 1498 if (insert) { 1499 extra_size = btrfs_extent_inline_ref_size(want); 1500 path->keep_locks = 1; 1501 } else 1502 extra_size = -1; 1503 1504 /* 1505 * Owner is our parent level, so we can just add one to get the level 1506 * for the block we are interested in. 1507 */ 1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1509 key.type = BTRFS_METADATA_ITEM_KEY; 1510 key.offset = owner; 1511 } 1512 1513 again: 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1515 if (ret < 0) { 1516 err = ret; 1517 goto out; 1518 } 1519 1520 /* 1521 * We may be a newly converted file system which still has the old fat 1522 * extent entries for metadata, so try and see if we have one of those. 1523 */ 1524 if (ret > 0 && skinny_metadata) { 1525 skinny_metadata = false; 1526 if (path->slots[0]) { 1527 path->slots[0]--; 1528 btrfs_item_key_to_cpu(path->nodes[0], &key, 1529 path->slots[0]); 1530 if (key.objectid == bytenr && 1531 key.type == BTRFS_EXTENT_ITEM_KEY && 1532 key.offset == num_bytes) 1533 ret = 0; 1534 } 1535 if (ret) { 1536 key.objectid = bytenr; 1537 key.type = BTRFS_EXTENT_ITEM_KEY; 1538 key.offset = num_bytes; 1539 btrfs_release_path(path); 1540 goto again; 1541 } 1542 } 1543 1544 if (ret && !insert) { 1545 err = -ENOENT; 1546 goto out; 1547 } else if (WARN_ON(ret)) { 1548 err = -EIO; 1549 goto out; 1550 } 1551 1552 leaf = path->nodes[0]; 1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1555 if (item_size < sizeof(*ei)) { 1556 if (!insert) { 1557 err = -ENOENT; 1558 goto out; 1559 } 1560 ret = convert_extent_item_v0(trans, root, path, owner, 1561 extra_size); 1562 if (ret < 0) { 1563 err = ret; 1564 goto out; 1565 } 1566 leaf = path->nodes[0]; 1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1568 } 1569 #endif 1570 BUG_ON(item_size < sizeof(*ei)); 1571 1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1573 flags = btrfs_extent_flags(leaf, ei); 1574 1575 ptr = (unsigned long)(ei + 1); 1576 end = (unsigned long)ei + item_size; 1577 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1579 ptr += sizeof(struct btrfs_tree_block_info); 1580 BUG_ON(ptr > end); 1581 } 1582 1583 err = -ENOENT; 1584 while (1) { 1585 if (ptr >= end) { 1586 WARN_ON(ptr > end); 1587 break; 1588 } 1589 iref = (struct btrfs_extent_inline_ref *)ptr; 1590 type = btrfs_extent_inline_ref_type(leaf, iref); 1591 if (want < type) 1592 break; 1593 if (want > type) { 1594 ptr += btrfs_extent_inline_ref_size(type); 1595 continue; 1596 } 1597 1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1599 struct btrfs_extent_data_ref *dref; 1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1601 if (match_extent_data_ref(leaf, dref, root_objectid, 1602 owner, offset)) { 1603 err = 0; 1604 break; 1605 } 1606 if (hash_extent_data_ref_item(leaf, dref) < 1607 hash_extent_data_ref(root_objectid, owner, offset)) 1608 break; 1609 } else { 1610 u64 ref_offset; 1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1612 if (parent > 0) { 1613 if (parent == ref_offset) { 1614 err = 0; 1615 break; 1616 } 1617 if (ref_offset < parent) 1618 break; 1619 } else { 1620 if (root_objectid == ref_offset) { 1621 err = 0; 1622 break; 1623 } 1624 if (ref_offset < root_objectid) 1625 break; 1626 } 1627 } 1628 ptr += btrfs_extent_inline_ref_size(type); 1629 } 1630 if (err == -ENOENT && insert) { 1631 if (item_size + extra_size >= 1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1633 err = -EAGAIN; 1634 goto out; 1635 } 1636 /* 1637 * To add new inline back ref, we have to make sure 1638 * there is no corresponding back ref item. 1639 * For simplicity, we just do not add new inline back 1640 * ref if there is any kind of item for this block 1641 */ 1642 if (find_next_key(path, 0, &key) == 0 && 1643 key.objectid == bytenr && 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1645 err = -EAGAIN; 1646 goto out; 1647 } 1648 } 1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1650 out: 1651 if (insert) { 1652 path->keep_locks = 0; 1653 btrfs_unlock_up_safe(path, 1); 1654 } 1655 return err; 1656 } 1657 1658 /* 1659 * helper to add new inline back ref 1660 */ 1661 static noinline_for_stack 1662 void setup_inline_extent_backref(struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref *iref, 1665 u64 parent, u64 root_objectid, 1666 u64 owner, u64 offset, int refs_to_add, 1667 struct btrfs_delayed_extent_op *extent_op) 1668 { 1669 struct extent_buffer *leaf; 1670 struct btrfs_extent_item *ei; 1671 unsigned long ptr; 1672 unsigned long end; 1673 unsigned long item_offset; 1674 u64 refs; 1675 int size; 1676 int type; 1677 1678 leaf = path->nodes[0]; 1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1680 item_offset = (unsigned long)iref - (unsigned long)ei; 1681 1682 type = extent_ref_type(parent, owner); 1683 size = btrfs_extent_inline_ref_size(type); 1684 1685 btrfs_extend_item(root, path, size); 1686 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 refs = btrfs_extent_refs(leaf, ei); 1689 refs += refs_to_add; 1690 btrfs_set_extent_refs(leaf, ei, refs); 1691 if (extent_op) 1692 __run_delayed_extent_op(extent_op, leaf, ei); 1693 1694 ptr = (unsigned long)ei + item_offset; 1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1696 if (ptr < end - size) 1697 memmove_extent_buffer(leaf, ptr + size, ptr, 1698 end - size - ptr); 1699 1700 iref = (struct btrfs_extent_inline_ref *)ptr; 1701 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1703 struct btrfs_extent_data_ref *dref; 1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1710 struct btrfs_shared_data_ref *sref; 1711 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1716 } else { 1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1718 } 1719 btrfs_mark_buffer_dirty(leaf); 1720 } 1721 1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1723 struct btrfs_root *root, 1724 struct btrfs_path *path, 1725 struct btrfs_extent_inline_ref **ref_ret, 1726 u64 bytenr, u64 num_bytes, u64 parent, 1727 u64 root_objectid, u64 owner, u64 offset) 1728 { 1729 int ret; 1730 1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1732 bytenr, num_bytes, parent, 1733 root_objectid, owner, offset, 0); 1734 if (ret != -ENOENT) 1735 return ret; 1736 1737 btrfs_release_path(path); 1738 *ref_ret = NULL; 1739 1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1742 root_objectid); 1743 } else { 1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1745 root_objectid, owner, offset); 1746 } 1747 return ret; 1748 } 1749 1750 /* 1751 * helper to update/remove inline back ref 1752 */ 1753 static noinline_for_stack 1754 void update_inline_extent_backref(struct btrfs_root *root, 1755 struct btrfs_path *path, 1756 struct btrfs_extent_inline_ref *iref, 1757 int refs_to_mod, 1758 struct btrfs_delayed_extent_op *extent_op, 1759 int *last_ref) 1760 { 1761 struct extent_buffer *leaf; 1762 struct btrfs_extent_item *ei; 1763 struct btrfs_extent_data_ref *dref = NULL; 1764 struct btrfs_shared_data_ref *sref = NULL; 1765 unsigned long ptr; 1766 unsigned long end; 1767 u32 item_size; 1768 int size; 1769 int type; 1770 u64 refs; 1771 1772 leaf = path->nodes[0]; 1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1774 refs = btrfs_extent_refs(leaf, ei); 1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1776 refs += refs_to_mod; 1777 btrfs_set_extent_refs(leaf, ei, refs); 1778 if (extent_op) 1779 __run_delayed_extent_op(extent_op, leaf, ei); 1780 1781 type = btrfs_extent_inline_ref_type(leaf, iref); 1782 1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1785 refs = btrfs_extent_data_ref_count(leaf, dref); 1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1787 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1788 refs = btrfs_shared_data_ref_count(leaf, sref); 1789 } else { 1790 refs = 1; 1791 BUG_ON(refs_to_mod != -1); 1792 } 1793 1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1795 refs += refs_to_mod; 1796 1797 if (refs > 0) { 1798 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1799 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1800 else 1801 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1802 } else { 1803 *last_ref = 1; 1804 size = btrfs_extent_inline_ref_size(type); 1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1806 ptr = (unsigned long)iref; 1807 end = (unsigned long)ei + item_size; 1808 if (ptr + size < end) 1809 memmove_extent_buffer(leaf, ptr, ptr + size, 1810 end - ptr - size); 1811 item_size -= size; 1812 btrfs_truncate_item(root, path, item_size, 1); 1813 } 1814 btrfs_mark_buffer_dirty(leaf); 1815 } 1816 1817 static noinline_for_stack 1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 struct btrfs_path *path, 1821 u64 bytenr, u64 num_bytes, u64 parent, 1822 u64 root_objectid, u64 owner, 1823 u64 offset, int refs_to_add, 1824 struct btrfs_delayed_extent_op *extent_op) 1825 { 1826 struct btrfs_extent_inline_ref *iref; 1827 int ret; 1828 1829 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1830 bytenr, num_bytes, parent, 1831 root_objectid, owner, offset, 1); 1832 if (ret == 0) { 1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1834 update_inline_extent_backref(root, path, iref, 1835 refs_to_add, extent_op, NULL); 1836 } else if (ret == -ENOENT) { 1837 setup_inline_extent_backref(root, path, iref, parent, 1838 root_objectid, owner, offset, 1839 refs_to_add, extent_op); 1840 ret = 0; 1841 } 1842 return ret; 1843 } 1844 1845 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1846 struct btrfs_root *root, 1847 struct btrfs_path *path, 1848 u64 bytenr, u64 parent, u64 root_objectid, 1849 u64 owner, u64 offset, int refs_to_add) 1850 { 1851 int ret; 1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1853 BUG_ON(refs_to_add != 1); 1854 ret = insert_tree_block_ref(trans, root, path, bytenr, 1855 parent, root_objectid); 1856 } else { 1857 ret = insert_extent_data_ref(trans, root, path, bytenr, 1858 parent, root_objectid, 1859 owner, offset, refs_to_add); 1860 } 1861 return ret; 1862 } 1863 1864 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1865 struct btrfs_root *root, 1866 struct btrfs_path *path, 1867 struct btrfs_extent_inline_ref *iref, 1868 int refs_to_drop, int is_data, int *last_ref) 1869 { 1870 int ret = 0; 1871 1872 BUG_ON(!is_data && refs_to_drop != 1); 1873 if (iref) { 1874 update_inline_extent_backref(root, path, iref, 1875 -refs_to_drop, NULL, last_ref); 1876 } else if (is_data) { 1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1878 last_ref); 1879 } else { 1880 *last_ref = 1; 1881 ret = btrfs_del_item(trans, root, path); 1882 } 1883 return ret; 1884 } 1885 1886 static int btrfs_issue_discard(struct block_device *bdev, 1887 u64 start, u64 len) 1888 { 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1890 } 1891 1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1893 u64 num_bytes, u64 *actual_bytes) 1894 { 1895 int ret; 1896 u64 discarded_bytes = 0; 1897 struct btrfs_bio *bbio = NULL; 1898 1899 1900 /* Tell the block device(s) that the sectors can be discarded */ 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1902 bytenr, &num_bytes, &bbio, 0); 1903 /* Error condition is -ENOMEM */ 1904 if (!ret) { 1905 struct btrfs_bio_stripe *stripe = bbio->stripes; 1906 int i; 1907 1908 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1910 if (!stripe->dev->can_discard) 1911 continue; 1912 1913 ret = btrfs_issue_discard(stripe->dev->bdev, 1914 stripe->physical, 1915 stripe->length); 1916 if (!ret) 1917 discarded_bytes += stripe->length; 1918 else if (ret != -EOPNOTSUPP) 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1920 1921 /* 1922 * Just in case we get back EOPNOTSUPP for some reason, 1923 * just ignore the return value so we don't screw up 1924 * people calling discard_extent. 1925 */ 1926 ret = 0; 1927 } 1928 btrfs_put_bbio(bbio); 1929 } 1930 1931 if (actual_bytes) 1932 *actual_bytes = discarded_bytes; 1933 1934 1935 if (ret == -EOPNOTSUPP) 1936 ret = 0; 1937 return ret; 1938 } 1939 1940 /* Can return -ENOMEM */ 1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 u64 bytenr, u64 num_bytes, u64 parent, 1944 u64 root_objectid, u64 owner, u64 offset, 1945 int no_quota) 1946 { 1947 int ret; 1948 struct btrfs_fs_info *fs_info = root->fs_info; 1949 1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1951 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1952 1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1955 num_bytes, 1956 parent, root_objectid, (int)owner, 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1958 } else { 1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1960 num_bytes, 1961 parent, root_objectid, owner, offset, 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1963 } 1964 return ret; 1965 } 1966 1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1968 struct btrfs_root *root, 1969 struct btrfs_delayed_ref_node *node, 1970 u64 parent, u64 root_objectid, 1971 u64 owner, u64 offset, int refs_to_add, 1972 struct btrfs_delayed_extent_op *extent_op) 1973 { 1974 struct btrfs_fs_info *fs_info = root->fs_info; 1975 struct btrfs_path *path; 1976 struct extent_buffer *leaf; 1977 struct btrfs_extent_item *item; 1978 struct btrfs_key key; 1979 u64 bytenr = node->bytenr; 1980 u64 num_bytes = node->num_bytes; 1981 u64 refs; 1982 int ret; 1983 int no_quota = node->no_quota; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || !ret) 2000 goto out; 2001 2002 /* 2003 * Ok we had -EAGAIN which means we didn't have space to insert and 2004 * inline extent ref, so just update the reference count and add a 2005 * normal backref. 2006 */ 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2010 refs = btrfs_extent_refs(leaf, item); 2011 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2012 if (extent_op) 2013 __run_delayed_extent_op(extent_op, leaf, item); 2014 2015 btrfs_mark_buffer_dirty(leaf); 2016 btrfs_release_path(path); 2017 2018 path->reada = 1; 2019 path->leave_spinning = 1; 2020 /* now insert the actual backref */ 2021 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2022 path, bytenr, parent, root_objectid, 2023 owner, offset, refs_to_add); 2024 if (ret) 2025 btrfs_abort_transaction(trans, root, ret); 2026 out: 2027 btrfs_free_path(path); 2028 return ret; 2029 } 2030 2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2032 struct btrfs_root *root, 2033 struct btrfs_delayed_ref_node *node, 2034 struct btrfs_delayed_extent_op *extent_op, 2035 int insert_reserved) 2036 { 2037 int ret = 0; 2038 struct btrfs_delayed_data_ref *ref; 2039 struct btrfs_key ins; 2040 u64 parent = 0; 2041 u64 ref_root = 0; 2042 u64 flags = 0; 2043 2044 ins.objectid = node->bytenr; 2045 ins.offset = node->num_bytes; 2046 ins.type = BTRFS_EXTENT_ITEM_KEY; 2047 2048 ref = btrfs_delayed_node_to_data_ref(node); 2049 trace_run_delayed_data_ref(node, ref, node->action); 2050 2051 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2052 parent = ref->parent; 2053 ref_root = ref->root; 2054 2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2056 if (extent_op) 2057 flags |= extent_op->flags_to_set; 2058 ret = alloc_reserved_file_extent(trans, root, 2059 parent, ref_root, flags, 2060 ref->objectid, ref->offset, 2061 &ins, node->ref_mod); 2062 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2063 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2064 ref_root, ref->objectid, 2065 ref->offset, node->ref_mod, 2066 extent_op); 2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2068 ret = __btrfs_free_extent(trans, root, node, parent, 2069 ref_root, ref->objectid, 2070 ref->offset, node->ref_mod, 2071 extent_op); 2072 } else { 2073 BUG(); 2074 } 2075 return ret; 2076 } 2077 2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2079 struct extent_buffer *leaf, 2080 struct btrfs_extent_item *ei) 2081 { 2082 u64 flags = btrfs_extent_flags(leaf, ei); 2083 if (extent_op->update_flags) { 2084 flags |= extent_op->flags_to_set; 2085 btrfs_set_extent_flags(leaf, ei, flags); 2086 } 2087 2088 if (extent_op->update_key) { 2089 struct btrfs_tree_block_info *bi; 2090 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2091 bi = (struct btrfs_tree_block_info *)(ei + 1); 2092 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2093 } 2094 } 2095 2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2097 struct btrfs_root *root, 2098 struct btrfs_delayed_ref_node *node, 2099 struct btrfs_delayed_extent_op *extent_op) 2100 { 2101 struct btrfs_key key; 2102 struct btrfs_path *path; 2103 struct btrfs_extent_item *ei; 2104 struct extent_buffer *leaf; 2105 u32 item_size; 2106 int ret; 2107 int err = 0; 2108 int metadata = !extent_op->is_data; 2109 2110 if (trans->aborted) 2111 return 0; 2112 2113 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2114 metadata = 0; 2115 2116 path = btrfs_alloc_path(); 2117 if (!path) 2118 return -ENOMEM; 2119 2120 key.objectid = node->bytenr; 2121 2122 if (metadata) { 2123 key.type = BTRFS_METADATA_ITEM_KEY; 2124 key.offset = extent_op->level; 2125 } else { 2126 key.type = BTRFS_EXTENT_ITEM_KEY; 2127 key.offset = node->num_bytes; 2128 } 2129 2130 again: 2131 path->reada = 1; 2132 path->leave_spinning = 1; 2133 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2134 path, 0, 1); 2135 if (ret < 0) { 2136 err = ret; 2137 goto out; 2138 } 2139 if (ret > 0) { 2140 if (metadata) { 2141 if (path->slots[0] > 0) { 2142 path->slots[0]--; 2143 btrfs_item_key_to_cpu(path->nodes[0], &key, 2144 path->slots[0]); 2145 if (key.objectid == node->bytenr && 2146 key.type == BTRFS_EXTENT_ITEM_KEY && 2147 key.offset == node->num_bytes) 2148 ret = 0; 2149 } 2150 if (ret > 0) { 2151 btrfs_release_path(path); 2152 metadata = 0; 2153 2154 key.objectid = node->bytenr; 2155 key.offset = node->num_bytes; 2156 key.type = BTRFS_EXTENT_ITEM_KEY; 2157 goto again; 2158 } 2159 } else { 2160 err = -EIO; 2161 goto out; 2162 } 2163 } 2164 2165 leaf = path->nodes[0]; 2166 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2168 if (item_size < sizeof(*ei)) { 2169 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2170 path, (u64)-1, 0); 2171 if (ret < 0) { 2172 err = ret; 2173 goto out; 2174 } 2175 leaf = path->nodes[0]; 2176 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2177 } 2178 #endif 2179 BUG_ON(item_size < sizeof(*ei)); 2180 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2181 __run_delayed_extent_op(extent_op, leaf, ei); 2182 2183 btrfs_mark_buffer_dirty(leaf); 2184 out: 2185 btrfs_free_path(path); 2186 return err; 2187 } 2188 2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2190 struct btrfs_root *root, 2191 struct btrfs_delayed_ref_node *node, 2192 struct btrfs_delayed_extent_op *extent_op, 2193 int insert_reserved) 2194 { 2195 int ret = 0; 2196 struct btrfs_delayed_tree_ref *ref; 2197 struct btrfs_key ins; 2198 u64 parent = 0; 2199 u64 ref_root = 0; 2200 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2201 SKINNY_METADATA); 2202 2203 ref = btrfs_delayed_node_to_tree_ref(node); 2204 trace_run_delayed_tree_ref(node, ref, node->action); 2205 2206 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2207 parent = ref->parent; 2208 ref_root = ref->root; 2209 2210 ins.objectid = node->bytenr; 2211 if (skinny_metadata) { 2212 ins.offset = ref->level; 2213 ins.type = BTRFS_METADATA_ITEM_KEY; 2214 } else { 2215 ins.offset = node->num_bytes; 2216 ins.type = BTRFS_EXTENT_ITEM_KEY; 2217 } 2218 2219 BUG_ON(node->ref_mod != 1); 2220 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2221 BUG_ON(!extent_op || !extent_op->update_flags); 2222 ret = alloc_reserved_tree_block(trans, root, 2223 parent, ref_root, 2224 extent_op->flags_to_set, 2225 &extent_op->key, 2226 ref->level, &ins, 2227 node->no_quota); 2228 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2229 ret = __btrfs_inc_extent_ref(trans, root, node, 2230 parent, ref_root, 2231 ref->level, 0, 1, 2232 extent_op); 2233 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2234 ret = __btrfs_free_extent(trans, root, node, 2235 parent, ref_root, 2236 ref->level, 0, 1, extent_op); 2237 } else { 2238 BUG(); 2239 } 2240 return ret; 2241 } 2242 2243 /* helper function to actually process a single delayed ref entry */ 2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2245 struct btrfs_root *root, 2246 struct btrfs_delayed_ref_node *node, 2247 struct btrfs_delayed_extent_op *extent_op, 2248 int insert_reserved) 2249 { 2250 int ret = 0; 2251 2252 if (trans->aborted) { 2253 if (insert_reserved) 2254 btrfs_pin_extent(root, node->bytenr, 2255 node->num_bytes, 1); 2256 return 0; 2257 } 2258 2259 if (btrfs_delayed_ref_is_head(node)) { 2260 struct btrfs_delayed_ref_head *head; 2261 /* 2262 * we've hit the end of the chain and we were supposed 2263 * to insert this extent into the tree. But, it got 2264 * deleted before we ever needed to insert it, so all 2265 * we have to do is clean up the accounting 2266 */ 2267 BUG_ON(extent_op); 2268 head = btrfs_delayed_node_to_head(node); 2269 trace_run_delayed_ref_head(node, head, node->action); 2270 2271 if (insert_reserved) { 2272 btrfs_pin_extent(root, node->bytenr, 2273 node->num_bytes, 1); 2274 if (head->is_data) { 2275 ret = btrfs_del_csums(trans, root, 2276 node->bytenr, 2277 node->num_bytes); 2278 } 2279 } 2280 return ret; 2281 } 2282 2283 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2284 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2285 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2286 insert_reserved); 2287 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2288 node->type == BTRFS_SHARED_DATA_REF_KEY) 2289 ret = run_delayed_data_ref(trans, root, node, extent_op, 2290 insert_reserved); 2291 else 2292 BUG(); 2293 return ret; 2294 } 2295 2296 static inline struct btrfs_delayed_ref_node * 2297 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2298 { 2299 struct btrfs_delayed_ref_node *ref; 2300 2301 if (list_empty(&head->ref_list)) 2302 return NULL; 2303 2304 /* 2305 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2306 * This is to prevent a ref count from going down to zero, which deletes 2307 * the extent item from the extent tree, when there still are references 2308 * to add, which would fail because they would not find the extent item. 2309 */ 2310 list_for_each_entry(ref, &head->ref_list, list) { 2311 if (ref->action == BTRFS_ADD_DELAYED_REF) 2312 return ref; 2313 } 2314 2315 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2316 list); 2317 } 2318 2319 /* 2320 * Returns 0 on success or if called with an already aborted transaction. 2321 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2322 */ 2323 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2324 struct btrfs_root *root, 2325 unsigned long nr) 2326 { 2327 struct btrfs_delayed_ref_root *delayed_refs; 2328 struct btrfs_delayed_ref_node *ref; 2329 struct btrfs_delayed_ref_head *locked_ref = NULL; 2330 struct btrfs_delayed_extent_op *extent_op; 2331 struct btrfs_fs_info *fs_info = root->fs_info; 2332 ktime_t start = ktime_get(); 2333 int ret; 2334 unsigned long count = 0; 2335 unsigned long actual_count = 0; 2336 int must_insert_reserved = 0; 2337 2338 delayed_refs = &trans->transaction->delayed_refs; 2339 while (1) { 2340 if (!locked_ref) { 2341 if (count >= nr) 2342 break; 2343 2344 spin_lock(&delayed_refs->lock); 2345 locked_ref = btrfs_select_ref_head(trans); 2346 if (!locked_ref) { 2347 spin_unlock(&delayed_refs->lock); 2348 break; 2349 } 2350 2351 /* grab the lock that says we are going to process 2352 * all the refs for this head */ 2353 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2354 spin_unlock(&delayed_refs->lock); 2355 /* 2356 * we may have dropped the spin lock to get the head 2357 * mutex lock, and that might have given someone else 2358 * time to free the head. If that's true, it has been 2359 * removed from our list and we can move on. 2360 */ 2361 if (ret == -EAGAIN) { 2362 locked_ref = NULL; 2363 count++; 2364 continue; 2365 } 2366 } 2367 2368 spin_lock(&locked_ref->lock); 2369 2370 /* 2371 * locked_ref is the head node, so we have to go one 2372 * node back for any delayed ref updates 2373 */ 2374 ref = select_delayed_ref(locked_ref); 2375 2376 if (ref && ref->seq && 2377 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2378 spin_unlock(&locked_ref->lock); 2379 btrfs_delayed_ref_unlock(locked_ref); 2380 spin_lock(&delayed_refs->lock); 2381 locked_ref->processing = 0; 2382 delayed_refs->num_heads_ready++; 2383 spin_unlock(&delayed_refs->lock); 2384 locked_ref = NULL; 2385 cond_resched(); 2386 count++; 2387 continue; 2388 } 2389 2390 /* 2391 * record the must insert reserved flag before we 2392 * drop the spin lock. 2393 */ 2394 must_insert_reserved = locked_ref->must_insert_reserved; 2395 locked_ref->must_insert_reserved = 0; 2396 2397 extent_op = locked_ref->extent_op; 2398 locked_ref->extent_op = NULL; 2399 2400 if (!ref) { 2401 2402 2403 /* All delayed refs have been processed, Go ahead 2404 * and send the head node to run_one_delayed_ref, 2405 * so that any accounting fixes can happen 2406 */ 2407 ref = &locked_ref->node; 2408 2409 if (extent_op && must_insert_reserved) { 2410 btrfs_free_delayed_extent_op(extent_op); 2411 extent_op = NULL; 2412 } 2413 2414 if (extent_op) { 2415 spin_unlock(&locked_ref->lock); 2416 ret = run_delayed_extent_op(trans, root, 2417 ref, extent_op); 2418 btrfs_free_delayed_extent_op(extent_op); 2419 2420 if (ret) { 2421 /* 2422 * Need to reset must_insert_reserved if 2423 * there was an error so the abort stuff 2424 * can cleanup the reserved space 2425 * properly. 2426 */ 2427 if (must_insert_reserved) 2428 locked_ref->must_insert_reserved = 1; 2429 locked_ref->processing = 0; 2430 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2431 btrfs_delayed_ref_unlock(locked_ref); 2432 return ret; 2433 } 2434 continue; 2435 } 2436 2437 /* 2438 * Need to drop our head ref lock and re-aqcuire the 2439 * delayed ref lock and then re-check to make sure 2440 * nobody got added. 2441 */ 2442 spin_unlock(&locked_ref->lock); 2443 spin_lock(&delayed_refs->lock); 2444 spin_lock(&locked_ref->lock); 2445 if (!list_empty(&locked_ref->ref_list) || 2446 locked_ref->extent_op) { 2447 spin_unlock(&locked_ref->lock); 2448 spin_unlock(&delayed_refs->lock); 2449 continue; 2450 } 2451 ref->in_tree = 0; 2452 delayed_refs->num_heads--; 2453 rb_erase(&locked_ref->href_node, 2454 &delayed_refs->href_root); 2455 spin_unlock(&delayed_refs->lock); 2456 } else { 2457 actual_count++; 2458 ref->in_tree = 0; 2459 list_del(&ref->list); 2460 } 2461 atomic_dec(&delayed_refs->num_entries); 2462 2463 if (!btrfs_delayed_ref_is_head(ref)) { 2464 /* 2465 * when we play the delayed ref, also correct the 2466 * ref_mod on head 2467 */ 2468 switch (ref->action) { 2469 case BTRFS_ADD_DELAYED_REF: 2470 case BTRFS_ADD_DELAYED_EXTENT: 2471 locked_ref->node.ref_mod -= ref->ref_mod; 2472 break; 2473 case BTRFS_DROP_DELAYED_REF: 2474 locked_ref->node.ref_mod += ref->ref_mod; 2475 break; 2476 default: 2477 WARN_ON(1); 2478 } 2479 } 2480 spin_unlock(&locked_ref->lock); 2481 2482 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2483 must_insert_reserved); 2484 2485 btrfs_free_delayed_extent_op(extent_op); 2486 if (ret) { 2487 locked_ref->processing = 0; 2488 btrfs_delayed_ref_unlock(locked_ref); 2489 btrfs_put_delayed_ref(ref); 2490 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2491 return ret; 2492 } 2493 2494 /* 2495 * If this node is a head, that means all the refs in this head 2496 * have been dealt with, and we will pick the next head to deal 2497 * with, so we must unlock the head and drop it from the cluster 2498 * list before we release it. 2499 */ 2500 if (btrfs_delayed_ref_is_head(ref)) { 2501 if (locked_ref->is_data && 2502 locked_ref->total_ref_mod < 0) { 2503 spin_lock(&delayed_refs->lock); 2504 delayed_refs->pending_csums -= ref->num_bytes; 2505 spin_unlock(&delayed_refs->lock); 2506 } 2507 btrfs_delayed_ref_unlock(locked_ref); 2508 locked_ref = NULL; 2509 } 2510 btrfs_put_delayed_ref(ref); 2511 count++; 2512 cond_resched(); 2513 } 2514 2515 /* 2516 * We don't want to include ref heads since we can have empty ref heads 2517 * and those will drastically skew our runtime down since we just do 2518 * accounting, no actual extent tree updates. 2519 */ 2520 if (actual_count > 0) { 2521 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2522 u64 avg; 2523 2524 /* 2525 * We weigh the current average higher than our current runtime 2526 * to avoid large swings in the average. 2527 */ 2528 spin_lock(&delayed_refs->lock); 2529 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2530 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2531 spin_unlock(&delayed_refs->lock); 2532 } 2533 return 0; 2534 } 2535 2536 #ifdef SCRAMBLE_DELAYED_REFS 2537 /* 2538 * Normally delayed refs get processed in ascending bytenr order. This 2539 * correlates in most cases to the order added. To expose dependencies on this 2540 * order, we start to process the tree in the middle instead of the beginning 2541 */ 2542 static u64 find_middle(struct rb_root *root) 2543 { 2544 struct rb_node *n = root->rb_node; 2545 struct btrfs_delayed_ref_node *entry; 2546 int alt = 1; 2547 u64 middle; 2548 u64 first = 0, last = 0; 2549 2550 n = rb_first(root); 2551 if (n) { 2552 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2553 first = entry->bytenr; 2554 } 2555 n = rb_last(root); 2556 if (n) { 2557 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2558 last = entry->bytenr; 2559 } 2560 n = root->rb_node; 2561 2562 while (n) { 2563 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2564 WARN_ON(!entry->in_tree); 2565 2566 middle = entry->bytenr; 2567 2568 if (alt) 2569 n = n->rb_left; 2570 else 2571 n = n->rb_right; 2572 2573 alt = 1 - alt; 2574 } 2575 return middle; 2576 } 2577 #endif 2578 2579 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2580 { 2581 u64 num_bytes; 2582 2583 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2584 sizeof(struct btrfs_extent_inline_ref)); 2585 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2586 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2587 2588 /* 2589 * We don't ever fill up leaves all the way so multiply by 2 just to be 2590 * closer to what we're really going to want to ouse. 2591 */ 2592 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2593 } 2594 2595 /* 2596 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2597 * would require to store the csums for that many bytes. 2598 */ 2599 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2600 { 2601 u64 csum_size; 2602 u64 num_csums_per_leaf; 2603 u64 num_csums; 2604 2605 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2606 num_csums_per_leaf = div64_u64(csum_size, 2607 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2608 num_csums = div64_u64(csum_bytes, root->sectorsize); 2609 num_csums += num_csums_per_leaf - 1; 2610 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2611 return num_csums; 2612 } 2613 2614 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2615 struct btrfs_root *root) 2616 { 2617 struct btrfs_block_rsv *global_rsv; 2618 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2619 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2620 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2621 u64 num_bytes, num_dirty_bgs_bytes; 2622 int ret = 0; 2623 2624 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2625 num_heads = heads_to_leaves(root, num_heads); 2626 if (num_heads > 1) 2627 num_bytes += (num_heads - 1) * root->nodesize; 2628 num_bytes <<= 1; 2629 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2630 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2631 num_dirty_bgs); 2632 global_rsv = &root->fs_info->global_block_rsv; 2633 2634 /* 2635 * If we can't allocate any more chunks lets make sure we have _lots_ of 2636 * wiggle room since running delayed refs can create more delayed refs. 2637 */ 2638 if (global_rsv->space_info->full) { 2639 num_dirty_bgs_bytes <<= 1; 2640 num_bytes <<= 1; 2641 } 2642 2643 spin_lock(&global_rsv->lock); 2644 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2645 ret = 1; 2646 spin_unlock(&global_rsv->lock); 2647 return ret; 2648 } 2649 2650 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2651 struct btrfs_root *root) 2652 { 2653 struct btrfs_fs_info *fs_info = root->fs_info; 2654 u64 num_entries = 2655 atomic_read(&trans->transaction->delayed_refs.num_entries); 2656 u64 avg_runtime; 2657 u64 val; 2658 2659 smp_mb(); 2660 avg_runtime = fs_info->avg_delayed_ref_runtime; 2661 val = num_entries * avg_runtime; 2662 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2663 return 1; 2664 if (val >= NSEC_PER_SEC / 2) 2665 return 2; 2666 2667 return btrfs_check_space_for_delayed_refs(trans, root); 2668 } 2669 2670 struct async_delayed_refs { 2671 struct btrfs_root *root; 2672 int count; 2673 int error; 2674 int sync; 2675 struct completion wait; 2676 struct btrfs_work work; 2677 }; 2678 2679 static void delayed_ref_async_start(struct btrfs_work *work) 2680 { 2681 struct async_delayed_refs *async; 2682 struct btrfs_trans_handle *trans; 2683 int ret; 2684 2685 async = container_of(work, struct async_delayed_refs, work); 2686 2687 trans = btrfs_join_transaction(async->root); 2688 if (IS_ERR(trans)) { 2689 async->error = PTR_ERR(trans); 2690 goto done; 2691 } 2692 2693 /* 2694 * trans->sync means that when we call end_transaciton, we won't 2695 * wait on delayed refs 2696 */ 2697 trans->sync = true; 2698 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2699 if (ret) 2700 async->error = ret; 2701 2702 ret = btrfs_end_transaction(trans, async->root); 2703 if (ret && !async->error) 2704 async->error = ret; 2705 done: 2706 if (async->sync) 2707 complete(&async->wait); 2708 else 2709 kfree(async); 2710 } 2711 2712 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2713 unsigned long count, int wait) 2714 { 2715 struct async_delayed_refs *async; 2716 int ret; 2717 2718 async = kmalloc(sizeof(*async), GFP_NOFS); 2719 if (!async) 2720 return -ENOMEM; 2721 2722 async->root = root->fs_info->tree_root; 2723 async->count = count; 2724 async->error = 0; 2725 if (wait) 2726 async->sync = 1; 2727 else 2728 async->sync = 0; 2729 init_completion(&async->wait); 2730 2731 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2732 delayed_ref_async_start, NULL, NULL); 2733 2734 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2735 2736 if (wait) { 2737 wait_for_completion(&async->wait); 2738 ret = async->error; 2739 kfree(async); 2740 return ret; 2741 } 2742 return 0; 2743 } 2744 2745 /* 2746 * this starts processing the delayed reference count updates and 2747 * extent insertions we have queued up so far. count can be 2748 * 0, which means to process everything in the tree at the start 2749 * of the run (but not newly added entries), or it can be some target 2750 * number you'd like to process. 2751 * 2752 * Returns 0 on success or if called with an aborted transaction 2753 * Returns <0 on error and aborts the transaction 2754 */ 2755 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2756 struct btrfs_root *root, unsigned long count) 2757 { 2758 struct rb_node *node; 2759 struct btrfs_delayed_ref_root *delayed_refs; 2760 struct btrfs_delayed_ref_head *head; 2761 int ret; 2762 int run_all = count == (unsigned long)-1; 2763 2764 /* We'll clean this up in btrfs_cleanup_transaction */ 2765 if (trans->aborted) 2766 return 0; 2767 2768 if (root == root->fs_info->extent_root) 2769 root = root->fs_info->tree_root; 2770 2771 delayed_refs = &trans->transaction->delayed_refs; 2772 if (count == 0) 2773 count = atomic_read(&delayed_refs->num_entries) * 2; 2774 2775 again: 2776 #ifdef SCRAMBLE_DELAYED_REFS 2777 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2778 #endif 2779 ret = __btrfs_run_delayed_refs(trans, root, count); 2780 if (ret < 0) { 2781 btrfs_abort_transaction(trans, root, ret); 2782 return ret; 2783 } 2784 2785 if (run_all) { 2786 if (!list_empty(&trans->new_bgs)) 2787 btrfs_create_pending_block_groups(trans, root); 2788 2789 spin_lock(&delayed_refs->lock); 2790 node = rb_first(&delayed_refs->href_root); 2791 if (!node) { 2792 spin_unlock(&delayed_refs->lock); 2793 goto out; 2794 } 2795 count = (unsigned long)-1; 2796 2797 while (node) { 2798 head = rb_entry(node, struct btrfs_delayed_ref_head, 2799 href_node); 2800 if (btrfs_delayed_ref_is_head(&head->node)) { 2801 struct btrfs_delayed_ref_node *ref; 2802 2803 ref = &head->node; 2804 atomic_inc(&ref->refs); 2805 2806 spin_unlock(&delayed_refs->lock); 2807 /* 2808 * Mutex was contended, block until it's 2809 * released and try again 2810 */ 2811 mutex_lock(&head->mutex); 2812 mutex_unlock(&head->mutex); 2813 2814 btrfs_put_delayed_ref(ref); 2815 cond_resched(); 2816 goto again; 2817 } else { 2818 WARN_ON(1); 2819 } 2820 node = rb_next(node); 2821 } 2822 spin_unlock(&delayed_refs->lock); 2823 cond_resched(); 2824 goto again; 2825 } 2826 out: 2827 assert_qgroups_uptodate(trans); 2828 return 0; 2829 } 2830 2831 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2832 struct btrfs_root *root, 2833 u64 bytenr, u64 num_bytes, u64 flags, 2834 int level, int is_data) 2835 { 2836 struct btrfs_delayed_extent_op *extent_op; 2837 int ret; 2838 2839 extent_op = btrfs_alloc_delayed_extent_op(); 2840 if (!extent_op) 2841 return -ENOMEM; 2842 2843 extent_op->flags_to_set = flags; 2844 extent_op->update_flags = 1; 2845 extent_op->update_key = 0; 2846 extent_op->is_data = is_data ? 1 : 0; 2847 extent_op->level = level; 2848 2849 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2850 num_bytes, extent_op); 2851 if (ret) 2852 btrfs_free_delayed_extent_op(extent_op); 2853 return ret; 2854 } 2855 2856 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, 2859 u64 objectid, u64 offset, u64 bytenr) 2860 { 2861 struct btrfs_delayed_ref_head *head; 2862 struct btrfs_delayed_ref_node *ref; 2863 struct btrfs_delayed_data_ref *data_ref; 2864 struct btrfs_delayed_ref_root *delayed_refs; 2865 int ret = 0; 2866 2867 delayed_refs = &trans->transaction->delayed_refs; 2868 spin_lock(&delayed_refs->lock); 2869 head = btrfs_find_delayed_ref_head(trans, bytenr); 2870 if (!head) { 2871 spin_unlock(&delayed_refs->lock); 2872 return 0; 2873 } 2874 2875 if (!mutex_trylock(&head->mutex)) { 2876 atomic_inc(&head->node.refs); 2877 spin_unlock(&delayed_refs->lock); 2878 2879 btrfs_release_path(path); 2880 2881 /* 2882 * Mutex was contended, block until it's released and let 2883 * caller try again 2884 */ 2885 mutex_lock(&head->mutex); 2886 mutex_unlock(&head->mutex); 2887 btrfs_put_delayed_ref(&head->node); 2888 return -EAGAIN; 2889 } 2890 spin_unlock(&delayed_refs->lock); 2891 2892 spin_lock(&head->lock); 2893 list_for_each_entry(ref, &head->ref_list, list) { 2894 /* If it's a shared ref we know a cross reference exists */ 2895 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2896 ret = 1; 2897 break; 2898 } 2899 2900 data_ref = btrfs_delayed_node_to_data_ref(ref); 2901 2902 /* 2903 * If our ref doesn't match the one we're currently looking at 2904 * then we have a cross reference. 2905 */ 2906 if (data_ref->root != root->root_key.objectid || 2907 data_ref->objectid != objectid || 2908 data_ref->offset != offset) { 2909 ret = 1; 2910 break; 2911 } 2912 } 2913 spin_unlock(&head->lock); 2914 mutex_unlock(&head->mutex); 2915 return ret; 2916 } 2917 2918 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2919 struct btrfs_root *root, 2920 struct btrfs_path *path, 2921 u64 objectid, u64 offset, u64 bytenr) 2922 { 2923 struct btrfs_root *extent_root = root->fs_info->extent_root; 2924 struct extent_buffer *leaf; 2925 struct btrfs_extent_data_ref *ref; 2926 struct btrfs_extent_inline_ref *iref; 2927 struct btrfs_extent_item *ei; 2928 struct btrfs_key key; 2929 u32 item_size; 2930 int ret; 2931 2932 key.objectid = bytenr; 2933 key.offset = (u64)-1; 2934 key.type = BTRFS_EXTENT_ITEM_KEY; 2935 2936 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2937 if (ret < 0) 2938 goto out; 2939 BUG_ON(ret == 0); /* Corruption */ 2940 2941 ret = -ENOENT; 2942 if (path->slots[0] == 0) 2943 goto out; 2944 2945 path->slots[0]--; 2946 leaf = path->nodes[0]; 2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2948 2949 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2950 goto out; 2951 2952 ret = 1; 2953 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2955 if (item_size < sizeof(*ei)) { 2956 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2957 goto out; 2958 } 2959 #endif 2960 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2961 2962 if (item_size != sizeof(*ei) + 2963 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2964 goto out; 2965 2966 if (btrfs_extent_generation(leaf, ei) <= 2967 btrfs_root_last_snapshot(&root->root_item)) 2968 goto out; 2969 2970 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2971 if (btrfs_extent_inline_ref_type(leaf, iref) != 2972 BTRFS_EXTENT_DATA_REF_KEY) 2973 goto out; 2974 2975 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2976 if (btrfs_extent_refs(leaf, ei) != 2977 btrfs_extent_data_ref_count(leaf, ref) || 2978 btrfs_extent_data_ref_root(leaf, ref) != 2979 root->root_key.objectid || 2980 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2981 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2982 goto out; 2983 2984 ret = 0; 2985 out: 2986 return ret; 2987 } 2988 2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2990 struct btrfs_root *root, 2991 u64 objectid, u64 offset, u64 bytenr) 2992 { 2993 struct btrfs_path *path; 2994 int ret; 2995 int ret2; 2996 2997 path = btrfs_alloc_path(); 2998 if (!path) 2999 return -ENOENT; 3000 3001 do { 3002 ret = check_committed_ref(trans, root, path, objectid, 3003 offset, bytenr); 3004 if (ret && ret != -ENOENT) 3005 goto out; 3006 3007 ret2 = check_delayed_ref(trans, root, path, objectid, 3008 offset, bytenr); 3009 } while (ret2 == -EAGAIN); 3010 3011 if (ret2 && ret2 != -ENOENT) { 3012 ret = ret2; 3013 goto out; 3014 } 3015 3016 if (ret != -ENOENT || ret2 != -ENOENT) 3017 ret = 0; 3018 out: 3019 btrfs_free_path(path); 3020 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3021 WARN_ON(ret > 0); 3022 return ret; 3023 } 3024 3025 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3026 struct btrfs_root *root, 3027 struct extent_buffer *buf, 3028 int full_backref, int inc) 3029 { 3030 u64 bytenr; 3031 u64 num_bytes; 3032 u64 parent; 3033 u64 ref_root; 3034 u32 nritems; 3035 struct btrfs_key key; 3036 struct btrfs_file_extent_item *fi; 3037 int i; 3038 int level; 3039 int ret = 0; 3040 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3041 u64, u64, u64, u64, u64, u64, int); 3042 3043 3044 if (btrfs_test_is_dummy_root(root)) 3045 return 0; 3046 3047 ref_root = btrfs_header_owner(buf); 3048 nritems = btrfs_header_nritems(buf); 3049 level = btrfs_header_level(buf); 3050 3051 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3052 return 0; 3053 3054 if (inc) 3055 process_func = btrfs_inc_extent_ref; 3056 else 3057 process_func = btrfs_free_extent; 3058 3059 if (full_backref) 3060 parent = buf->start; 3061 else 3062 parent = 0; 3063 3064 for (i = 0; i < nritems; i++) { 3065 if (level == 0) { 3066 btrfs_item_key_to_cpu(buf, &key, i); 3067 if (key.type != BTRFS_EXTENT_DATA_KEY) 3068 continue; 3069 fi = btrfs_item_ptr(buf, i, 3070 struct btrfs_file_extent_item); 3071 if (btrfs_file_extent_type(buf, fi) == 3072 BTRFS_FILE_EXTENT_INLINE) 3073 continue; 3074 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3075 if (bytenr == 0) 3076 continue; 3077 3078 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3079 key.offset -= btrfs_file_extent_offset(buf, fi); 3080 ret = process_func(trans, root, bytenr, num_bytes, 3081 parent, ref_root, key.objectid, 3082 key.offset, 1); 3083 if (ret) 3084 goto fail; 3085 } else { 3086 bytenr = btrfs_node_blockptr(buf, i); 3087 num_bytes = root->nodesize; 3088 ret = process_func(trans, root, bytenr, num_bytes, 3089 parent, ref_root, level - 1, 0, 3090 1); 3091 if (ret) 3092 goto fail; 3093 } 3094 } 3095 return 0; 3096 fail: 3097 return ret; 3098 } 3099 3100 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3101 struct extent_buffer *buf, int full_backref) 3102 { 3103 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3104 } 3105 3106 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3107 struct extent_buffer *buf, int full_backref) 3108 { 3109 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3110 } 3111 3112 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3113 struct btrfs_root *root, 3114 struct btrfs_path *path, 3115 struct btrfs_block_group_cache *cache) 3116 { 3117 int ret; 3118 struct btrfs_root *extent_root = root->fs_info->extent_root; 3119 unsigned long bi; 3120 struct extent_buffer *leaf; 3121 3122 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3123 if (ret) { 3124 if (ret > 0) 3125 ret = -ENOENT; 3126 goto fail; 3127 } 3128 3129 leaf = path->nodes[0]; 3130 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3131 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3132 btrfs_mark_buffer_dirty(leaf); 3133 fail: 3134 btrfs_release_path(path); 3135 return ret; 3136 3137 } 3138 3139 static struct btrfs_block_group_cache * 3140 next_block_group(struct btrfs_root *root, 3141 struct btrfs_block_group_cache *cache) 3142 { 3143 struct rb_node *node; 3144 3145 spin_lock(&root->fs_info->block_group_cache_lock); 3146 3147 /* If our block group was removed, we need a full search. */ 3148 if (RB_EMPTY_NODE(&cache->cache_node)) { 3149 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3150 3151 spin_unlock(&root->fs_info->block_group_cache_lock); 3152 btrfs_put_block_group(cache); 3153 cache = btrfs_lookup_first_block_group(root->fs_info, 3154 next_bytenr); 3155 return cache; 3156 } 3157 node = rb_next(&cache->cache_node); 3158 btrfs_put_block_group(cache); 3159 if (node) { 3160 cache = rb_entry(node, struct btrfs_block_group_cache, 3161 cache_node); 3162 btrfs_get_block_group(cache); 3163 } else 3164 cache = NULL; 3165 spin_unlock(&root->fs_info->block_group_cache_lock); 3166 return cache; 3167 } 3168 3169 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3170 struct btrfs_trans_handle *trans, 3171 struct btrfs_path *path) 3172 { 3173 struct btrfs_root *root = block_group->fs_info->tree_root; 3174 struct inode *inode = NULL; 3175 u64 alloc_hint = 0; 3176 int dcs = BTRFS_DC_ERROR; 3177 u64 num_pages = 0; 3178 int retries = 0; 3179 int ret = 0; 3180 3181 /* 3182 * If this block group is smaller than 100 megs don't bother caching the 3183 * block group. 3184 */ 3185 if (block_group->key.offset < (100 * 1024 * 1024)) { 3186 spin_lock(&block_group->lock); 3187 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3188 spin_unlock(&block_group->lock); 3189 return 0; 3190 } 3191 3192 if (trans->aborted) 3193 return 0; 3194 again: 3195 inode = lookup_free_space_inode(root, block_group, path); 3196 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3197 ret = PTR_ERR(inode); 3198 btrfs_release_path(path); 3199 goto out; 3200 } 3201 3202 if (IS_ERR(inode)) { 3203 BUG_ON(retries); 3204 retries++; 3205 3206 if (block_group->ro) 3207 goto out_free; 3208 3209 ret = create_free_space_inode(root, trans, block_group, path); 3210 if (ret) 3211 goto out_free; 3212 goto again; 3213 } 3214 3215 /* We've already setup this transaction, go ahead and exit */ 3216 if (block_group->cache_generation == trans->transid && 3217 i_size_read(inode)) { 3218 dcs = BTRFS_DC_SETUP; 3219 goto out_put; 3220 } 3221 3222 /* 3223 * We want to set the generation to 0, that way if anything goes wrong 3224 * from here on out we know not to trust this cache when we load up next 3225 * time. 3226 */ 3227 BTRFS_I(inode)->generation = 0; 3228 ret = btrfs_update_inode(trans, root, inode); 3229 if (ret) { 3230 /* 3231 * So theoretically we could recover from this, simply set the 3232 * super cache generation to 0 so we know to invalidate the 3233 * cache, but then we'd have to keep track of the block groups 3234 * that fail this way so we know we _have_ to reset this cache 3235 * before the next commit or risk reading stale cache. So to 3236 * limit our exposure to horrible edge cases lets just abort the 3237 * transaction, this only happens in really bad situations 3238 * anyway. 3239 */ 3240 btrfs_abort_transaction(trans, root, ret); 3241 goto out_put; 3242 } 3243 WARN_ON(ret); 3244 3245 if (i_size_read(inode) > 0) { 3246 ret = btrfs_check_trunc_cache_free_space(root, 3247 &root->fs_info->global_block_rsv); 3248 if (ret) 3249 goto out_put; 3250 3251 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3252 if (ret) 3253 goto out_put; 3254 } 3255 3256 spin_lock(&block_group->lock); 3257 if (block_group->cached != BTRFS_CACHE_FINISHED || 3258 !btrfs_test_opt(root, SPACE_CACHE)) { 3259 /* 3260 * don't bother trying to write stuff out _if_ 3261 * a) we're not cached, 3262 * b) we're with nospace_cache mount option. 3263 */ 3264 dcs = BTRFS_DC_WRITTEN; 3265 spin_unlock(&block_group->lock); 3266 goto out_put; 3267 } 3268 spin_unlock(&block_group->lock); 3269 3270 /* 3271 * Try to preallocate enough space based on how big the block group is. 3272 * Keep in mind this has to include any pinned space which could end up 3273 * taking up quite a bit since it's not folded into the other space 3274 * cache. 3275 */ 3276 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3277 if (!num_pages) 3278 num_pages = 1; 3279 3280 num_pages *= 16; 3281 num_pages *= PAGE_CACHE_SIZE; 3282 3283 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3284 if (ret) 3285 goto out_put; 3286 3287 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3288 num_pages, num_pages, 3289 &alloc_hint); 3290 if (!ret) 3291 dcs = BTRFS_DC_SETUP; 3292 btrfs_free_reserved_data_space(inode, num_pages); 3293 3294 out_put: 3295 iput(inode); 3296 out_free: 3297 btrfs_release_path(path); 3298 out: 3299 spin_lock(&block_group->lock); 3300 if (!ret && dcs == BTRFS_DC_SETUP) 3301 block_group->cache_generation = trans->transid; 3302 block_group->disk_cache_state = dcs; 3303 spin_unlock(&block_group->lock); 3304 3305 return ret; 3306 } 3307 3308 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3309 struct btrfs_root *root) 3310 { 3311 struct btrfs_block_group_cache *cache, *tmp; 3312 struct btrfs_transaction *cur_trans = trans->transaction; 3313 struct btrfs_path *path; 3314 3315 if (list_empty(&cur_trans->dirty_bgs) || 3316 !btrfs_test_opt(root, SPACE_CACHE)) 3317 return 0; 3318 3319 path = btrfs_alloc_path(); 3320 if (!path) 3321 return -ENOMEM; 3322 3323 /* Could add new block groups, use _safe just in case */ 3324 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3325 dirty_list) { 3326 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3327 cache_save_setup(cache, trans, path); 3328 } 3329 3330 btrfs_free_path(path); 3331 return 0; 3332 } 3333 3334 /* 3335 * transaction commit does final block group cache writeback during a 3336 * critical section where nothing is allowed to change the FS. This is 3337 * required in order for the cache to actually match the block group, 3338 * but can introduce a lot of latency into the commit. 3339 * 3340 * So, btrfs_start_dirty_block_groups is here to kick off block group 3341 * cache IO. There's a chance we'll have to redo some of it if the 3342 * block group changes again during the commit, but it greatly reduces 3343 * the commit latency by getting rid of the easy block groups while 3344 * we're still allowing others to join the commit. 3345 */ 3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3347 struct btrfs_root *root) 3348 { 3349 struct btrfs_block_group_cache *cache; 3350 struct btrfs_transaction *cur_trans = trans->transaction; 3351 int ret = 0; 3352 int should_put; 3353 struct btrfs_path *path = NULL; 3354 LIST_HEAD(dirty); 3355 struct list_head *io = &cur_trans->io_bgs; 3356 int num_started = 0; 3357 int loops = 0; 3358 3359 spin_lock(&cur_trans->dirty_bgs_lock); 3360 if (list_empty(&cur_trans->dirty_bgs)) { 3361 spin_unlock(&cur_trans->dirty_bgs_lock); 3362 return 0; 3363 } 3364 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3365 spin_unlock(&cur_trans->dirty_bgs_lock); 3366 3367 again: 3368 /* 3369 * make sure all the block groups on our dirty list actually 3370 * exist 3371 */ 3372 btrfs_create_pending_block_groups(trans, root); 3373 3374 if (!path) { 3375 path = btrfs_alloc_path(); 3376 if (!path) 3377 return -ENOMEM; 3378 } 3379 3380 /* 3381 * cache_write_mutex is here only to save us from balance or automatic 3382 * removal of empty block groups deleting this block group while we are 3383 * writing out the cache 3384 */ 3385 mutex_lock(&trans->transaction->cache_write_mutex); 3386 while (!list_empty(&dirty)) { 3387 cache = list_first_entry(&dirty, 3388 struct btrfs_block_group_cache, 3389 dirty_list); 3390 /* 3391 * this can happen if something re-dirties a block 3392 * group that is already under IO. Just wait for it to 3393 * finish and then do it all again 3394 */ 3395 if (!list_empty(&cache->io_list)) { 3396 list_del_init(&cache->io_list); 3397 btrfs_wait_cache_io(root, trans, cache, 3398 &cache->io_ctl, path, 3399 cache->key.objectid); 3400 btrfs_put_block_group(cache); 3401 } 3402 3403 3404 /* 3405 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3406 * if it should update the cache_state. Don't delete 3407 * until after we wait. 3408 * 3409 * Since we're not running in the commit critical section 3410 * we need the dirty_bgs_lock to protect from update_block_group 3411 */ 3412 spin_lock(&cur_trans->dirty_bgs_lock); 3413 list_del_init(&cache->dirty_list); 3414 spin_unlock(&cur_trans->dirty_bgs_lock); 3415 3416 should_put = 1; 3417 3418 cache_save_setup(cache, trans, path); 3419 3420 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3421 cache->io_ctl.inode = NULL; 3422 ret = btrfs_write_out_cache(root, trans, cache, path); 3423 if (ret == 0 && cache->io_ctl.inode) { 3424 num_started++; 3425 should_put = 0; 3426 3427 /* 3428 * the cache_write_mutex is protecting 3429 * the io_list 3430 */ 3431 list_add_tail(&cache->io_list, io); 3432 } else { 3433 /* 3434 * if we failed to write the cache, the 3435 * generation will be bad and life goes on 3436 */ 3437 ret = 0; 3438 } 3439 } 3440 if (!ret) { 3441 ret = write_one_cache_group(trans, root, path, cache); 3442 /* 3443 * Our block group might still be attached to the list 3444 * of new block groups in the transaction handle of some 3445 * other task (struct btrfs_trans_handle->new_bgs). This 3446 * means its block group item isn't yet in the extent 3447 * tree. If this happens ignore the error, as we will 3448 * try again later in the critical section of the 3449 * transaction commit. 3450 */ 3451 if (ret == -ENOENT) { 3452 ret = 0; 3453 spin_lock(&cur_trans->dirty_bgs_lock); 3454 if (list_empty(&cache->dirty_list)) { 3455 list_add_tail(&cache->dirty_list, 3456 &cur_trans->dirty_bgs); 3457 btrfs_get_block_group(cache); 3458 } 3459 spin_unlock(&cur_trans->dirty_bgs_lock); 3460 } else if (ret) { 3461 btrfs_abort_transaction(trans, root, ret); 3462 } 3463 } 3464 3465 /* if its not on the io list, we need to put the block group */ 3466 if (should_put) 3467 btrfs_put_block_group(cache); 3468 3469 if (ret) 3470 break; 3471 3472 /* 3473 * Avoid blocking other tasks for too long. It might even save 3474 * us from writing caches for block groups that are going to be 3475 * removed. 3476 */ 3477 mutex_unlock(&trans->transaction->cache_write_mutex); 3478 mutex_lock(&trans->transaction->cache_write_mutex); 3479 } 3480 mutex_unlock(&trans->transaction->cache_write_mutex); 3481 3482 /* 3483 * go through delayed refs for all the stuff we've just kicked off 3484 * and then loop back (just once) 3485 */ 3486 ret = btrfs_run_delayed_refs(trans, root, 0); 3487 if (!ret && loops == 0) { 3488 loops++; 3489 spin_lock(&cur_trans->dirty_bgs_lock); 3490 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3491 /* 3492 * dirty_bgs_lock protects us from concurrent block group 3493 * deletes too (not just cache_write_mutex). 3494 */ 3495 if (!list_empty(&dirty)) { 3496 spin_unlock(&cur_trans->dirty_bgs_lock); 3497 goto again; 3498 } 3499 spin_unlock(&cur_trans->dirty_bgs_lock); 3500 } 3501 3502 btrfs_free_path(path); 3503 return ret; 3504 } 3505 3506 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3507 struct btrfs_root *root) 3508 { 3509 struct btrfs_block_group_cache *cache; 3510 struct btrfs_transaction *cur_trans = trans->transaction; 3511 int ret = 0; 3512 int should_put; 3513 struct btrfs_path *path; 3514 struct list_head *io = &cur_trans->io_bgs; 3515 int num_started = 0; 3516 3517 path = btrfs_alloc_path(); 3518 if (!path) 3519 return -ENOMEM; 3520 3521 /* 3522 * We don't need the lock here since we are protected by the transaction 3523 * commit. We want to do the cache_save_setup first and then run the 3524 * delayed refs to make sure we have the best chance at doing this all 3525 * in one shot. 3526 */ 3527 while (!list_empty(&cur_trans->dirty_bgs)) { 3528 cache = list_first_entry(&cur_trans->dirty_bgs, 3529 struct btrfs_block_group_cache, 3530 dirty_list); 3531 3532 /* 3533 * this can happen if cache_save_setup re-dirties a block 3534 * group that is already under IO. Just wait for it to 3535 * finish and then do it all again 3536 */ 3537 if (!list_empty(&cache->io_list)) { 3538 list_del_init(&cache->io_list); 3539 btrfs_wait_cache_io(root, trans, cache, 3540 &cache->io_ctl, path, 3541 cache->key.objectid); 3542 btrfs_put_block_group(cache); 3543 } 3544 3545 /* 3546 * don't remove from the dirty list until after we've waited 3547 * on any pending IO 3548 */ 3549 list_del_init(&cache->dirty_list); 3550 should_put = 1; 3551 3552 cache_save_setup(cache, trans, path); 3553 3554 if (!ret) 3555 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3556 3557 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3558 cache->io_ctl.inode = NULL; 3559 ret = btrfs_write_out_cache(root, trans, cache, path); 3560 if (ret == 0 && cache->io_ctl.inode) { 3561 num_started++; 3562 should_put = 0; 3563 list_add_tail(&cache->io_list, io); 3564 } else { 3565 /* 3566 * if we failed to write the cache, the 3567 * generation will be bad and life goes on 3568 */ 3569 ret = 0; 3570 } 3571 } 3572 if (!ret) { 3573 ret = write_one_cache_group(trans, root, path, cache); 3574 if (ret) 3575 btrfs_abort_transaction(trans, root, ret); 3576 } 3577 3578 /* if its not on the io list, we need to put the block group */ 3579 if (should_put) 3580 btrfs_put_block_group(cache); 3581 } 3582 3583 while (!list_empty(io)) { 3584 cache = list_first_entry(io, struct btrfs_block_group_cache, 3585 io_list); 3586 list_del_init(&cache->io_list); 3587 btrfs_wait_cache_io(root, trans, cache, 3588 &cache->io_ctl, path, cache->key.objectid); 3589 btrfs_put_block_group(cache); 3590 } 3591 3592 btrfs_free_path(path); 3593 return ret; 3594 } 3595 3596 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3597 { 3598 struct btrfs_block_group_cache *block_group; 3599 int readonly = 0; 3600 3601 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3602 if (!block_group || block_group->ro) 3603 readonly = 1; 3604 if (block_group) 3605 btrfs_put_block_group(block_group); 3606 return readonly; 3607 } 3608 3609 static const char *alloc_name(u64 flags) 3610 { 3611 switch (flags) { 3612 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3613 return "mixed"; 3614 case BTRFS_BLOCK_GROUP_METADATA: 3615 return "metadata"; 3616 case BTRFS_BLOCK_GROUP_DATA: 3617 return "data"; 3618 case BTRFS_BLOCK_GROUP_SYSTEM: 3619 return "system"; 3620 default: 3621 WARN_ON(1); 3622 return "invalid-combination"; 3623 }; 3624 } 3625 3626 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3627 u64 total_bytes, u64 bytes_used, 3628 struct btrfs_space_info **space_info) 3629 { 3630 struct btrfs_space_info *found; 3631 int i; 3632 int factor; 3633 int ret; 3634 3635 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3636 BTRFS_BLOCK_GROUP_RAID10)) 3637 factor = 2; 3638 else 3639 factor = 1; 3640 3641 found = __find_space_info(info, flags); 3642 if (found) { 3643 spin_lock(&found->lock); 3644 found->total_bytes += total_bytes; 3645 found->disk_total += total_bytes * factor; 3646 found->bytes_used += bytes_used; 3647 found->disk_used += bytes_used * factor; 3648 if (total_bytes > 0) 3649 found->full = 0; 3650 spin_unlock(&found->lock); 3651 *space_info = found; 3652 return 0; 3653 } 3654 found = kzalloc(sizeof(*found), GFP_NOFS); 3655 if (!found) 3656 return -ENOMEM; 3657 3658 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3659 if (ret) { 3660 kfree(found); 3661 return ret; 3662 } 3663 3664 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3665 INIT_LIST_HEAD(&found->block_groups[i]); 3666 init_rwsem(&found->groups_sem); 3667 spin_lock_init(&found->lock); 3668 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3669 found->total_bytes = total_bytes; 3670 found->disk_total = total_bytes * factor; 3671 found->bytes_used = bytes_used; 3672 found->disk_used = bytes_used * factor; 3673 found->bytes_pinned = 0; 3674 found->bytes_reserved = 0; 3675 found->bytes_readonly = 0; 3676 found->bytes_may_use = 0; 3677 if (total_bytes > 0) 3678 found->full = 0; 3679 else 3680 found->full = 1; 3681 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3682 found->chunk_alloc = 0; 3683 found->flush = 0; 3684 init_waitqueue_head(&found->wait); 3685 INIT_LIST_HEAD(&found->ro_bgs); 3686 3687 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3688 info->space_info_kobj, "%s", 3689 alloc_name(found->flags)); 3690 if (ret) { 3691 kfree(found); 3692 return ret; 3693 } 3694 3695 *space_info = found; 3696 list_add_rcu(&found->list, &info->space_info); 3697 if (flags & BTRFS_BLOCK_GROUP_DATA) 3698 info->data_sinfo = found; 3699 3700 return ret; 3701 } 3702 3703 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3704 { 3705 u64 extra_flags = chunk_to_extended(flags) & 3706 BTRFS_EXTENDED_PROFILE_MASK; 3707 3708 write_seqlock(&fs_info->profiles_lock); 3709 if (flags & BTRFS_BLOCK_GROUP_DATA) 3710 fs_info->avail_data_alloc_bits |= extra_flags; 3711 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3712 fs_info->avail_metadata_alloc_bits |= extra_flags; 3713 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3714 fs_info->avail_system_alloc_bits |= extra_flags; 3715 write_sequnlock(&fs_info->profiles_lock); 3716 } 3717 3718 /* 3719 * returns target flags in extended format or 0 if restripe for this 3720 * chunk_type is not in progress 3721 * 3722 * should be called with either volume_mutex or balance_lock held 3723 */ 3724 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3725 { 3726 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3727 u64 target = 0; 3728 3729 if (!bctl) 3730 return 0; 3731 3732 if (flags & BTRFS_BLOCK_GROUP_DATA && 3733 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3734 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3735 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3736 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3737 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3738 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3739 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3740 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3741 } 3742 3743 return target; 3744 } 3745 3746 /* 3747 * @flags: available profiles in extended format (see ctree.h) 3748 * 3749 * Returns reduced profile in chunk format. If profile changing is in 3750 * progress (either running or paused) picks the target profile (if it's 3751 * already available), otherwise falls back to plain reducing. 3752 */ 3753 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3754 { 3755 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3756 u64 target; 3757 u64 tmp; 3758 3759 /* 3760 * see if restripe for this chunk_type is in progress, if so 3761 * try to reduce to the target profile 3762 */ 3763 spin_lock(&root->fs_info->balance_lock); 3764 target = get_restripe_target(root->fs_info, flags); 3765 if (target) { 3766 /* pick target profile only if it's already available */ 3767 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3768 spin_unlock(&root->fs_info->balance_lock); 3769 return extended_to_chunk(target); 3770 } 3771 } 3772 spin_unlock(&root->fs_info->balance_lock); 3773 3774 /* First, mask out the RAID levels which aren't possible */ 3775 if (num_devices == 1) 3776 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3777 BTRFS_BLOCK_GROUP_RAID5); 3778 if (num_devices < 3) 3779 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3780 if (num_devices < 4) 3781 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3782 3783 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3784 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3785 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3786 flags &= ~tmp; 3787 3788 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3789 tmp = BTRFS_BLOCK_GROUP_RAID6; 3790 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3791 tmp = BTRFS_BLOCK_GROUP_RAID5; 3792 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3793 tmp = BTRFS_BLOCK_GROUP_RAID10; 3794 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3795 tmp = BTRFS_BLOCK_GROUP_RAID1; 3796 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3797 tmp = BTRFS_BLOCK_GROUP_RAID0; 3798 3799 return extended_to_chunk(flags | tmp); 3800 } 3801 3802 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3803 { 3804 unsigned seq; 3805 u64 flags; 3806 3807 do { 3808 flags = orig_flags; 3809 seq = read_seqbegin(&root->fs_info->profiles_lock); 3810 3811 if (flags & BTRFS_BLOCK_GROUP_DATA) 3812 flags |= root->fs_info->avail_data_alloc_bits; 3813 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3814 flags |= root->fs_info->avail_system_alloc_bits; 3815 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3816 flags |= root->fs_info->avail_metadata_alloc_bits; 3817 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3818 3819 return btrfs_reduce_alloc_profile(root, flags); 3820 } 3821 3822 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3823 { 3824 u64 flags; 3825 u64 ret; 3826 3827 if (data) 3828 flags = BTRFS_BLOCK_GROUP_DATA; 3829 else if (root == root->fs_info->chunk_root) 3830 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3831 else 3832 flags = BTRFS_BLOCK_GROUP_METADATA; 3833 3834 ret = get_alloc_profile(root, flags); 3835 return ret; 3836 } 3837 3838 /* 3839 * This will check the space that the inode allocates from to make sure we have 3840 * enough space for bytes. 3841 */ 3842 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3843 { 3844 struct btrfs_space_info *data_sinfo; 3845 struct btrfs_root *root = BTRFS_I(inode)->root; 3846 struct btrfs_fs_info *fs_info = root->fs_info; 3847 u64 used; 3848 int ret = 0; 3849 int need_commit = 2; 3850 int have_pinned_space; 3851 3852 /* make sure bytes are sectorsize aligned */ 3853 bytes = ALIGN(bytes, root->sectorsize); 3854 3855 if (btrfs_is_free_space_inode(inode)) { 3856 need_commit = 0; 3857 ASSERT(current->journal_info); 3858 } 3859 3860 data_sinfo = fs_info->data_sinfo; 3861 if (!data_sinfo) 3862 goto alloc; 3863 3864 again: 3865 /* make sure we have enough space to handle the data first */ 3866 spin_lock(&data_sinfo->lock); 3867 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3868 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3869 data_sinfo->bytes_may_use; 3870 3871 if (used + bytes > data_sinfo->total_bytes) { 3872 struct btrfs_trans_handle *trans; 3873 3874 /* 3875 * if we don't have enough free bytes in this space then we need 3876 * to alloc a new chunk. 3877 */ 3878 if (!data_sinfo->full) { 3879 u64 alloc_target; 3880 3881 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3882 spin_unlock(&data_sinfo->lock); 3883 alloc: 3884 alloc_target = btrfs_get_alloc_profile(root, 1); 3885 /* 3886 * It is ugly that we don't call nolock join 3887 * transaction for the free space inode case here. 3888 * But it is safe because we only do the data space 3889 * reservation for the free space cache in the 3890 * transaction context, the common join transaction 3891 * just increase the counter of the current transaction 3892 * handler, doesn't try to acquire the trans_lock of 3893 * the fs. 3894 */ 3895 trans = btrfs_join_transaction(root); 3896 if (IS_ERR(trans)) 3897 return PTR_ERR(trans); 3898 3899 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3900 alloc_target, 3901 CHUNK_ALLOC_NO_FORCE); 3902 btrfs_end_transaction(trans, root); 3903 if (ret < 0) { 3904 if (ret != -ENOSPC) 3905 return ret; 3906 else { 3907 have_pinned_space = 1; 3908 goto commit_trans; 3909 } 3910 } 3911 3912 if (!data_sinfo) 3913 data_sinfo = fs_info->data_sinfo; 3914 3915 goto again; 3916 } 3917 3918 /* 3919 * If we don't have enough pinned space to deal with this 3920 * allocation, and no removed chunk in current transaction, 3921 * don't bother committing the transaction. 3922 */ 3923 have_pinned_space = percpu_counter_compare( 3924 &data_sinfo->total_bytes_pinned, 3925 used + bytes - data_sinfo->total_bytes); 3926 spin_unlock(&data_sinfo->lock); 3927 3928 /* commit the current transaction and try again */ 3929 commit_trans: 3930 if (need_commit && 3931 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3932 need_commit--; 3933 3934 if (need_commit > 0) 3935 btrfs_wait_ordered_roots(fs_info, -1); 3936 3937 trans = btrfs_join_transaction(root); 3938 if (IS_ERR(trans)) 3939 return PTR_ERR(trans); 3940 if (have_pinned_space >= 0 || 3941 trans->transaction->have_free_bgs || 3942 need_commit > 0) { 3943 ret = btrfs_commit_transaction(trans, root); 3944 if (ret) 3945 return ret; 3946 /* 3947 * make sure that all running delayed iput are 3948 * done 3949 */ 3950 down_write(&root->fs_info->delayed_iput_sem); 3951 up_write(&root->fs_info->delayed_iput_sem); 3952 goto again; 3953 } else { 3954 btrfs_end_transaction(trans, root); 3955 } 3956 } 3957 3958 trace_btrfs_space_reservation(root->fs_info, 3959 "space_info:enospc", 3960 data_sinfo->flags, bytes, 1); 3961 return -ENOSPC; 3962 } 3963 ret = btrfs_qgroup_reserve(root, write_bytes); 3964 if (ret) 3965 goto out; 3966 data_sinfo->bytes_may_use += bytes; 3967 trace_btrfs_space_reservation(root->fs_info, "space_info", 3968 data_sinfo->flags, bytes, 1); 3969 out: 3970 spin_unlock(&data_sinfo->lock); 3971 3972 return ret; 3973 } 3974 3975 /* 3976 * Called if we need to clear a data reservation for this inode. 3977 */ 3978 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3979 { 3980 struct btrfs_root *root = BTRFS_I(inode)->root; 3981 struct btrfs_space_info *data_sinfo; 3982 3983 /* make sure bytes are sectorsize aligned */ 3984 bytes = ALIGN(bytes, root->sectorsize); 3985 3986 data_sinfo = root->fs_info->data_sinfo; 3987 spin_lock(&data_sinfo->lock); 3988 WARN_ON(data_sinfo->bytes_may_use < bytes); 3989 data_sinfo->bytes_may_use -= bytes; 3990 trace_btrfs_space_reservation(root->fs_info, "space_info", 3991 data_sinfo->flags, bytes, 0); 3992 spin_unlock(&data_sinfo->lock); 3993 } 3994 3995 static void force_metadata_allocation(struct btrfs_fs_info *info) 3996 { 3997 struct list_head *head = &info->space_info; 3998 struct btrfs_space_info *found; 3999 4000 rcu_read_lock(); 4001 list_for_each_entry_rcu(found, head, list) { 4002 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4003 found->force_alloc = CHUNK_ALLOC_FORCE; 4004 } 4005 rcu_read_unlock(); 4006 } 4007 4008 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4009 { 4010 return (global->size << 1); 4011 } 4012 4013 static int should_alloc_chunk(struct btrfs_root *root, 4014 struct btrfs_space_info *sinfo, int force) 4015 { 4016 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4017 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4018 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4019 u64 thresh; 4020 4021 if (force == CHUNK_ALLOC_FORCE) 4022 return 1; 4023 4024 /* 4025 * We need to take into account the global rsv because for all intents 4026 * and purposes it's used space. Don't worry about locking the 4027 * global_rsv, it doesn't change except when the transaction commits. 4028 */ 4029 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4030 num_allocated += calc_global_rsv_need_space(global_rsv); 4031 4032 /* 4033 * in limited mode, we want to have some free space up to 4034 * about 1% of the FS size. 4035 */ 4036 if (force == CHUNK_ALLOC_LIMITED) { 4037 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4038 thresh = max_t(u64, 64 * 1024 * 1024, 4039 div_factor_fine(thresh, 1)); 4040 4041 if (num_bytes - num_allocated < thresh) 4042 return 1; 4043 } 4044 4045 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4046 return 0; 4047 return 1; 4048 } 4049 4050 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4051 { 4052 u64 num_dev; 4053 4054 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4055 BTRFS_BLOCK_GROUP_RAID0 | 4056 BTRFS_BLOCK_GROUP_RAID5 | 4057 BTRFS_BLOCK_GROUP_RAID6)) 4058 num_dev = root->fs_info->fs_devices->rw_devices; 4059 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4060 num_dev = 2; 4061 else 4062 num_dev = 1; /* DUP or single */ 4063 4064 return num_dev; 4065 } 4066 4067 /* 4068 * If @is_allocation is true, reserve space in the system space info necessary 4069 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4070 * removing a chunk. 4071 */ 4072 void check_system_chunk(struct btrfs_trans_handle *trans, 4073 struct btrfs_root *root, 4074 u64 type) 4075 { 4076 struct btrfs_space_info *info; 4077 u64 left; 4078 u64 thresh; 4079 int ret = 0; 4080 u64 num_devs; 4081 4082 /* 4083 * Needed because we can end up allocating a system chunk and for an 4084 * atomic and race free space reservation in the chunk block reserve. 4085 */ 4086 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4087 4088 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4089 spin_lock(&info->lock); 4090 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4091 info->bytes_reserved - info->bytes_readonly - 4092 info->bytes_may_use; 4093 spin_unlock(&info->lock); 4094 4095 num_devs = get_profile_num_devs(root, type); 4096 4097 /* num_devs device items to update and 1 chunk item to add or remove */ 4098 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4099 btrfs_calc_trans_metadata_size(root, 1); 4100 4101 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4102 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4103 left, thresh, type); 4104 dump_space_info(info, 0, 0); 4105 } 4106 4107 if (left < thresh) { 4108 u64 flags; 4109 4110 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4111 /* 4112 * Ignore failure to create system chunk. We might end up not 4113 * needing it, as we might not need to COW all nodes/leafs from 4114 * the paths we visit in the chunk tree (they were already COWed 4115 * or created in the current transaction for example). 4116 */ 4117 ret = btrfs_alloc_chunk(trans, root, flags); 4118 } 4119 4120 if (!ret) { 4121 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4122 &root->fs_info->chunk_block_rsv, 4123 thresh, BTRFS_RESERVE_NO_FLUSH); 4124 if (!ret) 4125 trans->chunk_bytes_reserved += thresh; 4126 } 4127 } 4128 4129 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4130 struct btrfs_root *extent_root, u64 flags, int force) 4131 { 4132 struct btrfs_space_info *space_info; 4133 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4134 int wait_for_alloc = 0; 4135 int ret = 0; 4136 4137 /* Don't re-enter if we're already allocating a chunk */ 4138 if (trans->allocating_chunk) 4139 return -ENOSPC; 4140 4141 space_info = __find_space_info(extent_root->fs_info, flags); 4142 if (!space_info) { 4143 ret = update_space_info(extent_root->fs_info, flags, 4144 0, 0, &space_info); 4145 BUG_ON(ret); /* -ENOMEM */ 4146 } 4147 BUG_ON(!space_info); /* Logic error */ 4148 4149 again: 4150 spin_lock(&space_info->lock); 4151 if (force < space_info->force_alloc) 4152 force = space_info->force_alloc; 4153 if (space_info->full) { 4154 if (should_alloc_chunk(extent_root, space_info, force)) 4155 ret = -ENOSPC; 4156 else 4157 ret = 0; 4158 spin_unlock(&space_info->lock); 4159 return ret; 4160 } 4161 4162 if (!should_alloc_chunk(extent_root, space_info, force)) { 4163 spin_unlock(&space_info->lock); 4164 return 0; 4165 } else if (space_info->chunk_alloc) { 4166 wait_for_alloc = 1; 4167 } else { 4168 space_info->chunk_alloc = 1; 4169 } 4170 4171 spin_unlock(&space_info->lock); 4172 4173 mutex_lock(&fs_info->chunk_mutex); 4174 4175 /* 4176 * The chunk_mutex is held throughout the entirety of a chunk 4177 * allocation, so once we've acquired the chunk_mutex we know that the 4178 * other guy is done and we need to recheck and see if we should 4179 * allocate. 4180 */ 4181 if (wait_for_alloc) { 4182 mutex_unlock(&fs_info->chunk_mutex); 4183 wait_for_alloc = 0; 4184 goto again; 4185 } 4186 4187 trans->allocating_chunk = true; 4188 4189 /* 4190 * If we have mixed data/metadata chunks we want to make sure we keep 4191 * allocating mixed chunks instead of individual chunks. 4192 */ 4193 if (btrfs_mixed_space_info(space_info)) 4194 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4195 4196 /* 4197 * if we're doing a data chunk, go ahead and make sure that 4198 * we keep a reasonable number of metadata chunks allocated in the 4199 * FS as well. 4200 */ 4201 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4202 fs_info->data_chunk_allocations++; 4203 if (!(fs_info->data_chunk_allocations % 4204 fs_info->metadata_ratio)) 4205 force_metadata_allocation(fs_info); 4206 } 4207 4208 /* 4209 * Check if we have enough space in SYSTEM chunk because we may need 4210 * to update devices. 4211 */ 4212 check_system_chunk(trans, extent_root, flags); 4213 4214 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4215 trans->allocating_chunk = false; 4216 4217 spin_lock(&space_info->lock); 4218 if (ret < 0 && ret != -ENOSPC) 4219 goto out; 4220 if (ret) 4221 space_info->full = 1; 4222 else 4223 ret = 1; 4224 4225 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4226 out: 4227 space_info->chunk_alloc = 0; 4228 spin_unlock(&space_info->lock); 4229 mutex_unlock(&fs_info->chunk_mutex); 4230 return ret; 4231 } 4232 4233 static int can_overcommit(struct btrfs_root *root, 4234 struct btrfs_space_info *space_info, u64 bytes, 4235 enum btrfs_reserve_flush_enum flush) 4236 { 4237 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4238 u64 profile = btrfs_get_alloc_profile(root, 0); 4239 u64 space_size; 4240 u64 avail; 4241 u64 used; 4242 4243 used = space_info->bytes_used + space_info->bytes_reserved + 4244 space_info->bytes_pinned + space_info->bytes_readonly; 4245 4246 /* 4247 * We only want to allow over committing if we have lots of actual space 4248 * free, but if we don't have enough space to handle the global reserve 4249 * space then we could end up having a real enospc problem when trying 4250 * to allocate a chunk or some other such important allocation. 4251 */ 4252 spin_lock(&global_rsv->lock); 4253 space_size = calc_global_rsv_need_space(global_rsv); 4254 spin_unlock(&global_rsv->lock); 4255 if (used + space_size >= space_info->total_bytes) 4256 return 0; 4257 4258 used += space_info->bytes_may_use; 4259 4260 spin_lock(&root->fs_info->free_chunk_lock); 4261 avail = root->fs_info->free_chunk_space; 4262 spin_unlock(&root->fs_info->free_chunk_lock); 4263 4264 /* 4265 * If we have dup, raid1 or raid10 then only half of the free 4266 * space is actually useable. For raid56, the space info used 4267 * doesn't include the parity drive, so we don't have to 4268 * change the math 4269 */ 4270 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4271 BTRFS_BLOCK_GROUP_RAID1 | 4272 BTRFS_BLOCK_GROUP_RAID10)) 4273 avail >>= 1; 4274 4275 /* 4276 * If we aren't flushing all things, let us overcommit up to 4277 * 1/2th of the space. If we can flush, don't let us overcommit 4278 * too much, let it overcommit up to 1/8 of the space. 4279 */ 4280 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4281 avail >>= 3; 4282 else 4283 avail >>= 1; 4284 4285 if (used + bytes < space_info->total_bytes + avail) 4286 return 1; 4287 return 0; 4288 } 4289 4290 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4291 unsigned long nr_pages, int nr_items) 4292 { 4293 struct super_block *sb = root->fs_info->sb; 4294 4295 if (down_read_trylock(&sb->s_umount)) { 4296 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4297 up_read(&sb->s_umount); 4298 } else { 4299 /* 4300 * We needn't worry the filesystem going from r/w to r/o though 4301 * we don't acquire ->s_umount mutex, because the filesystem 4302 * should guarantee the delalloc inodes list be empty after 4303 * the filesystem is readonly(all dirty pages are written to 4304 * the disk). 4305 */ 4306 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4307 if (!current->journal_info) 4308 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4309 } 4310 } 4311 4312 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4313 { 4314 u64 bytes; 4315 int nr; 4316 4317 bytes = btrfs_calc_trans_metadata_size(root, 1); 4318 nr = (int)div64_u64(to_reclaim, bytes); 4319 if (!nr) 4320 nr = 1; 4321 return nr; 4322 } 4323 4324 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4325 4326 /* 4327 * shrink metadata reservation for delalloc 4328 */ 4329 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4330 bool wait_ordered) 4331 { 4332 struct btrfs_block_rsv *block_rsv; 4333 struct btrfs_space_info *space_info; 4334 struct btrfs_trans_handle *trans; 4335 u64 delalloc_bytes; 4336 u64 max_reclaim; 4337 long time_left; 4338 unsigned long nr_pages; 4339 int loops; 4340 int items; 4341 enum btrfs_reserve_flush_enum flush; 4342 4343 /* Calc the number of the pages we need flush for space reservation */ 4344 items = calc_reclaim_items_nr(root, to_reclaim); 4345 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4346 4347 trans = (struct btrfs_trans_handle *)current->journal_info; 4348 block_rsv = &root->fs_info->delalloc_block_rsv; 4349 space_info = block_rsv->space_info; 4350 4351 delalloc_bytes = percpu_counter_sum_positive( 4352 &root->fs_info->delalloc_bytes); 4353 if (delalloc_bytes == 0) { 4354 if (trans) 4355 return; 4356 if (wait_ordered) 4357 btrfs_wait_ordered_roots(root->fs_info, items); 4358 return; 4359 } 4360 4361 loops = 0; 4362 while (delalloc_bytes && loops < 3) { 4363 max_reclaim = min(delalloc_bytes, to_reclaim); 4364 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4365 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4366 /* 4367 * We need to wait for the async pages to actually start before 4368 * we do anything. 4369 */ 4370 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4371 if (!max_reclaim) 4372 goto skip_async; 4373 4374 if (max_reclaim <= nr_pages) 4375 max_reclaim = 0; 4376 else 4377 max_reclaim -= nr_pages; 4378 4379 wait_event(root->fs_info->async_submit_wait, 4380 atomic_read(&root->fs_info->async_delalloc_pages) <= 4381 (int)max_reclaim); 4382 skip_async: 4383 if (!trans) 4384 flush = BTRFS_RESERVE_FLUSH_ALL; 4385 else 4386 flush = BTRFS_RESERVE_NO_FLUSH; 4387 spin_lock(&space_info->lock); 4388 if (can_overcommit(root, space_info, orig, flush)) { 4389 spin_unlock(&space_info->lock); 4390 break; 4391 } 4392 spin_unlock(&space_info->lock); 4393 4394 loops++; 4395 if (wait_ordered && !trans) { 4396 btrfs_wait_ordered_roots(root->fs_info, items); 4397 } else { 4398 time_left = schedule_timeout_killable(1); 4399 if (time_left) 4400 break; 4401 } 4402 delalloc_bytes = percpu_counter_sum_positive( 4403 &root->fs_info->delalloc_bytes); 4404 } 4405 } 4406 4407 /** 4408 * maybe_commit_transaction - possibly commit the transaction if its ok to 4409 * @root - the root we're allocating for 4410 * @bytes - the number of bytes we want to reserve 4411 * @force - force the commit 4412 * 4413 * This will check to make sure that committing the transaction will actually 4414 * get us somewhere and then commit the transaction if it does. Otherwise it 4415 * will return -ENOSPC. 4416 */ 4417 static int may_commit_transaction(struct btrfs_root *root, 4418 struct btrfs_space_info *space_info, 4419 u64 bytes, int force) 4420 { 4421 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4422 struct btrfs_trans_handle *trans; 4423 4424 trans = (struct btrfs_trans_handle *)current->journal_info; 4425 if (trans) 4426 return -EAGAIN; 4427 4428 if (force) 4429 goto commit; 4430 4431 /* See if there is enough pinned space to make this reservation */ 4432 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4433 bytes) >= 0) 4434 goto commit; 4435 4436 /* 4437 * See if there is some space in the delayed insertion reservation for 4438 * this reservation. 4439 */ 4440 if (space_info != delayed_rsv->space_info) 4441 return -ENOSPC; 4442 4443 spin_lock(&delayed_rsv->lock); 4444 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4445 bytes - delayed_rsv->size) >= 0) { 4446 spin_unlock(&delayed_rsv->lock); 4447 return -ENOSPC; 4448 } 4449 spin_unlock(&delayed_rsv->lock); 4450 4451 commit: 4452 trans = btrfs_join_transaction(root); 4453 if (IS_ERR(trans)) 4454 return -ENOSPC; 4455 4456 return btrfs_commit_transaction(trans, root); 4457 } 4458 4459 enum flush_state { 4460 FLUSH_DELAYED_ITEMS_NR = 1, 4461 FLUSH_DELAYED_ITEMS = 2, 4462 FLUSH_DELALLOC = 3, 4463 FLUSH_DELALLOC_WAIT = 4, 4464 ALLOC_CHUNK = 5, 4465 COMMIT_TRANS = 6, 4466 }; 4467 4468 static int flush_space(struct btrfs_root *root, 4469 struct btrfs_space_info *space_info, u64 num_bytes, 4470 u64 orig_bytes, int state) 4471 { 4472 struct btrfs_trans_handle *trans; 4473 int nr; 4474 int ret = 0; 4475 4476 switch (state) { 4477 case FLUSH_DELAYED_ITEMS_NR: 4478 case FLUSH_DELAYED_ITEMS: 4479 if (state == FLUSH_DELAYED_ITEMS_NR) 4480 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4481 else 4482 nr = -1; 4483 4484 trans = btrfs_join_transaction(root); 4485 if (IS_ERR(trans)) { 4486 ret = PTR_ERR(trans); 4487 break; 4488 } 4489 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4490 btrfs_end_transaction(trans, root); 4491 break; 4492 case FLUSH_DELALLOC: 4493 case FLUSH_DELALLOC_WAIT: 4494 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4495 state == FLUSH_DELALLOC_WAIT); 4496 break; 4497 case ALLOC_CHUNK: 4498 trans = btrfs_join_transaction(root); 4499 if (IS_ERR(trans)) { 4500 ret = PTR_ERR(trans); 4501 break; 4502 } 4503 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4504 btrfs_get_alloc_profile(root, 0), 4505 CHUNK_ALLOC_NO_FORCE); 4506 btrfs_end_transaction(trans, root); 4507 if (ret == -ENOSPC) 4508 ret = 0; 4509 break; 4510 case COMMIT_TRANS: 4511 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4512 break; 4513 default: 4514 ret = -ENOSPC; 4515 break; 4516 } 4517 4518 return ret; 4519 } 4520 4521 static inline u64 4522 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4523 struct btrfs_space_info *space_info) 4524 { 4525 u64 used; 4526 u64 expected; 4527 u64 to_reclaim; 4528 4529 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4530 16 * 1024 * 1024); 4531 spin_lock(&space_info->lock); 4532 if (can_overcommit(root, space_info, to_reclaim, 4533 BTRFS_RESERVE_FLUSH_ALL)) { 4534 to_reclaim = 0; 4535 goto out; 4536 } 4537 4538 used = space_info->bytes_used + space_info->bytes_reserved + 4539 space_info->bytes_pinned + space_info->bytes_readonly + 4540 space_info->bytes_may_use; 4541 if (can_overcommit(root, space_info, 1024 * 1024, 4542 BTRFS_RESERVE_FLUSH_ALL)) 4543 expected = div_factor_fine(space_info->total_bytes, 95); 4544 else 4545 expected = div_factor_fine(space_info->total_bytes, 90); 4546 4547 if (used > expected) 4548 to_reclaim = used - expected; 4549 else 4550 to_reclaim = 0; 4551 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4552 space_info->bytes_reserved); 4553 out: 4554 spin_unlock(&space_info->lock); 4555 4556 return to_reclaim; 4557 } 4558 4559 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4560 struct btrfs_fs_info *fs_info, u64 used) 4561 { 4562 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4563 4564 /* If we're just plain full then async reclaim just slows us down. */ 4565 if (space_info->bytes_used >= thresh) 4566 return 0; 4567 4568 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4569 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4570 } 4571 4572 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4573 struct btrfs_fs_info *fs_info, 4574 int flush_state) 4575 { 4576 u64 used; 4577 4578 spin_lock(&space_info->lock); 4579 /* 4580 * We run out of space and have not got any free space via flush_space, 4581 * so don't bother doing async reclaim. 4582 */ 4583 if (flush_state > COMMIT_TRANS && space_info->full) { 4584 spin_unlock(&space_info->lock); 4585 return 0; 4586 } 4587 4588 used = space_info->bytes_used + space_info->bytes_reserved + 4589 space_info->bytes_pinned + space_info->bytes_readonly + 4590 space_info->bytes_may_use; 4591 if (need_do_async_reclaim(space_info, fs_info, used)) { 4592 spin_unlock(&space_info->lock); 4593 return 1; 4594 } 4595 spin_unlock(&space_info->lock); 4596 4597 return 0; 4598 } 4599 4600 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4601 { 4602 struct btrfs_fs_info *fs_info; 4603 struct btrfs_space_info *space_info; 4604 u64 to_reclaim; 4605 int flush_state; 4606 4607 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4608 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4609 4610 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4611 space_info); 4612 if (!to_reclaim) 4613 return; 4614 4615 flush_state = FLUSH_DELAYED_ITEMS_NR; 4616 do { 4617 flush_space(fs_info->fs_root, space_info, to_reclaim, 4618 to_reclaim, flush_state); 4619 flush_state++; 4620 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4621 flush_state)) 4622 return; 4623 } while (flush_state < COMMIT_TRANS); 4624 } 4625 4626 void btrfs_init_async_reclaim_work(struct work_struct *work) 4627 { 4628 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4629 } 4630 4631 /** 4632 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4633 * @root - the root we're allocating for 4634 * @block_rsv - the block_rsv we're allocating for 4635 * @orig_bytes - the number of bytes we want 4636 * @flush - whether or not we can flush to make our reservation 4637 * 4638 * This will reserve orgi_bytes number of bytes from the space info associated 4639 * with the block_rsv. If there is not enough space it will make an attempt to 4640 * flush out space to make room. It will do this by flushing delalloc if 4641 * possible or committing the transaction. If flush is 0 then no attempts to 4642 * regain reservations will be made and this will fail if there is not enough 4643 * space already. 4644 */ 4645 static int reserve_metadata_bytes(struct btrfs_root *root, 4646 struct btrfs_block_rsv *block_rsv, 4647 u64 orig_bytes, 4648 enum btrfs_reserve_flush_enum flush) 4649 { 4650 struct btrfs_space_info *space_info = block_rsv->space_info; 4651 u64 used; 4652 u64 num_bytes = orig_bytes; 4653 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4654 int ret = 0; 4655 bool flushing = false; 4656 4657 again: 4658 ret = 0; 4659 spin_lock(&space_info->lock); 4660 /* 4661 * We only want to wait if somebody other than us is flushing and we 4662 * are actually allowed to flush all things. 4663 */ 4664 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4665 space_info->flush) { 4666 spin_unlock(&space_info->lock); 4667 /* 4668 * If we have a trans handle we can't wait because the flusher 4669 * may have to commit the transaction, which would mean we would 4670 * deadlock since we are waiting for the flusher to finish, but 4671 * hold the current transaction open. 4672 */ 4673 if (current->journal_info) 4674 return -EAGAIN; 4675 ret = wait_event_killable(space_info->wait, !space_info->flush); 4676 /* Must have been killed, return */ 4677 if (ret) 4678 return -EINTR; 4679 4680 spin_lock(&space_info->lock); 4681 } 4682 4683 ret = -ENOSPC; 4684 used = space_info->bytes_used + space_info->bytes_reserved + 4685 space_info->bytes_pinned + space_info->bytes_readonly + 4686 space_info->bytes_may_use; 4687 4688 /* 4689 * The idea here is that we've not already over-reserved the block group 4690 * then we can go ahead and save our reservation first and then start 4691 * flushing if we need to. Otherwise if we've already overcommitted 4692 * lets start flushing stuff first and then come back and try to make 4693 * our reservation. 4694 */ 4695 if (used <= space_info->total_bytes) { 4696 if (used + orig_bytes <= space_info->total_bytes) { 4697 space_info->bytes_may_use += orig_bytes; 4698 trace_btrfs_space_reservation(root->fs_info, 4699 "space_info", space_info->flags, orig_bytes, 1); 4700 ret = 0; 4701 } else { 4702 /* 4703 * Ok set num_bytes to orig_bytes since we aren't 4704 * overocmmitted, this way we only try and reclaim what 4705 * we need. 4706 */ 4707 num_bytes = orig_bytes; 4708 } 4709 } else { 4710 /* 4711 * Ok we're over committed, set num_bytes to the overcommitted 4712 * amount plus the amount of bytes that we need for this 4713 * reservation. 4714 */ 4715 num_bytes = used - space_info->total_bytes + 4716 (orig_bytes * 2); 4717 } 4718 4719 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4720 space_info->bytes_may_use += orig_bytes; 4721 trace_btrfs_space_reservation(root->fs_info, "space_info", 4722 space_info->flags, orig_bytes, 4723 1); 4724 ret = 0; 4725 } 4726 4727 /* 4728 * Couldn't make our reservation, save our place so while we're trying 4729 * to reclaim space we can actually use it instead of somebody else 4730 * stealing it from us. 4731 * 4732 * We make the other tasks wait for the flush only when we can flush 4733 * all things. 4734 */ 4735 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4736 flushing = true; 4737 space_info->flush = 1; 4738 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4739 used += orig_bytes; 4740 /* 4741 * We will do the space reservation dance during log replay, 4742 * which means we won't have fs_info->fs_root set, so don't do 4743 * the async reclaim as we will panic. 4744 */ 4745 if (!root->fs_info->log_root_recovering && 4746 need_do_async_reclaim(space_info, root->fs_info, used) && 4747 !work_busy(&root->fs_info->async_reclaim_work)) 4748 queue_work(system_unbound_wq, 4749 &root->fs_info->async_reclaim_work); 4750 } 4751 spin_unlock(&space_info->lock); 4752 4753 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4754 goto out; 4755 4756 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4757 flush_state); 4758 flush_state++; 4759 4760 /* 4761 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4762 * would happen. So skip delalloc flush. 4763 */ 4764 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4765 (flush_state == FLUSH_DELALLOC || 4766 flush_state == FLUSH_DELALLOC_WAIT)) 4767 flush_state = ALLOC_CHUNK; 4768 4769 if (!ret) 4770 goto again; 4771 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4772 flush_state < COMMIT_TRANS) 4773 goto again; 4774 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4775 flush_state <= COMMIT_TRANS) 4776 goto again; 4777 4778 out: 4779 if (ret == -ENOSPC && 4780 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4781 struct btrfs_block_rsv *global_rsv = 4782 &root->fs_info->global_block_rsv; 4783 4784 if (block_rsv != global_rsv && 4785 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4786 ret = 0; 4787 } 4788 if (ret == -ENOSPC) 4789 trace_btrfs_space_reservation(root->fs_info, 4790 "space_info:enospc", 4791 space_info->flags, orig_bytes, 1); 4792 if (flushing) { 4793 spin_lock(&space_info->lock); 4794 space_info->flush = 0; 4795 wake_up_all(&space_info->wait); 4796 spin_unlock(&space_info->lock); 4797 } 4798 return ret; 4799 } 4800 4801 static struct btrfs_block_rsv *get_block_rsv( 4802 const struct btrfs_trans_handle *trans, 4803 const struct btrfs_root *root) 4804 { 4805 struct btrfs_block_rsv *block_rsv = NULL; 4806 4807 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4808 block_rsv = trans->block_rsv; 4809 4810 if (root == root->fs_info->csum_root && trans->adding_csums) 4811 block_rsv = trans->block_rsv; 4812 4813 if (root == root->fs_info->uuid_root) 4814 block_rsv = trans->block_rsv; 4815 4816 if (!block_rsv) 4817 block_rsv = root->block_rsv; 4818 4819 if (!block_rsv) 4820 block_rsv = &root->fs_info->empty_block_rsv; 4821 4822 return block_rsv; 4823 } 4824 4825 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4826 u64 num_bytes) 4827 { 4828 int ret = -ENOSPC; 4829 spin_lock(&block_rsv->lock); 4830 if (block_rsv->reserved >= num_bytes) { 4831 block_rsv->reserved -= num_bytes; 4832 if (block_rsv->reserved < block_rsv->size) 4833 block_rsv->full = 0; 4834 ret = 0; 4835 } 4836 spin_unlock(&block_rsv->lock); 4837 return ret; 4838 } 4839 4840 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4841 u64 num_bytes, int update_size) 4842 { 4843 spin_lock(&block_rsv->lock); 4844 block_rsv->reserved += num_bytes; 4845 if (update_size) 4846 block_rsv->size += num_bytes; 4847 else if (block_rsv->reserved >= block_rsv->size) 4848 block_rsv->full = 1; 4849 spin_unlock(&block_rsv->lock); 4850 } 4851 4852 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4853 struct btrfs_block_rsv *dest, u64 num_bytes, 4854 int min_factor) 4855 { 4856 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4857 u64 min_bytes; 4858 4859 if (global_rsv->space_info != dest->space_info) 4860 return -ENOSPC; 4861 4862 spin_lock(&global_rsv->lock); 4863 min_bytes = div_factor(global_rsv->size, min_factor); 4864 if (global_rsv->reserved < min_bytes + num_bytes) { 4865 spin_unlock(&global_rsv->lock); 4866 return -ENOSPC; 4867 } 4868 global_rsv->reserved -= num_bytes; 4869 if (global_rsv->reserved < global_rsv->size) 4870 global_rsv->full = 0; 4871 spin_unlock(&global_rsv->lock); 4872 4873 block_rsv_add_bytes(dest, num_bytes, 1); 4874 return 0; 4875 } 4876 4877 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4878 struct btrfs_block_rsv *block_rsv, 4879 struct btrfs_block_rsv *dest, u64 num_bytes) 4880 { 4881 struct btrfs_space_info *space_info = block_rsv->space_info; 4882 4883 spin_lock(&block_rsv->lock); 4884 if (num_bytes == (u64)-1) 4885 num_bytes = block_rsv->size; 4886 block_rsv->size -= num_bytes; 4887 if (block_rsv->reserved >= block_rsv->size) { 4888 num_bytes = block_rsv->reserved - block_rsv->size; 4889 block_rsv->reserved = block_rsv->size; 4890 block_rsv->full = 1; 4891 } else { 4892 num_bytes = 0; 4893 } 4894 spin_unlock(&block_rsv->lock); 4895 4896 if (num_bytes > 0) { 4897 if (dest) { 4898 spin_lock(&dest->lock); 4899 if (!dest->full) { 4900 u64 bytes_to_add; 4901 4902 bytes_to_add = dest->size - dest->reserved; 4903 bytes_to_add = min(num_bytes, bytes_to_add); 4904 dest->reserved += bytes_to_add; 4905 if (dest->reserved >= dest->size) 4906 dest->full = 1; 4907 num_bytes -= bytes_to_add; 4908 } 4909 spin_unlock(&dest->lock); 4910 } 4911 if (num_bytes) { 4912 spin_lock(&space_info->lock); 4913 space_info->bytes_may_use -= num_bytes; 4914 trace_btrfs_space_reservation(fs_info, "space_info", 4915 space_info->flags, num_bytes, 0); 4916 spin_unlock(&space_info->lock); 4917 } 4918 } 4919 } 4920 4921 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4922 struct btrfs_block_rsv *dst, u64 num_bytes) 4923 { 4924 int ret; 4925 4926 ret = block_rsv_use_bytes(src, num_bytes); 4927 if (ret) 4928 return ret; 4929 4930 block_rsv_add_bytes(dst, num_bytes, 1); 4931 return 0; 4932 } 4933 4934 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4935 { 4936 memset(rsv, 0, sizeof(*rsv)); 4937 spin_lock_init(&rsv->lock); 4938 rsv->type = type; 4939 } 4940 4941 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4942 unsigned short type) 4943 { 4944 struct btrfs_block_rsv *block_rsv; 4945 struct btrfs_fs_info *fs_info = root->fs_info; 4946 4947 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4948 if (!block_rsv) 4949 return NULL; 4950 4951 btrfs_init_block_rsv(block_rsv, type); 4952 block_rsv->space_info = __find_space_info(fs_info, 4953 BTRFS_BLOCK_GROUP_METADATA); 4954 return block_rsv; 4955 } 4956 4957 void btrfs_free_block_rsv(struct btrfs_root *root, 4958 struct btrfs_block_rsv *rsv) 4959 { 4960 if (!rsv) 4961 return; 4962 btrfs_block_rsv_release(root, rsv, (u64)-1); 4963 kfree(rsv); 4964 } 4965 4966 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4967 { 4968 kfree(rsv); 4969 } 4970 4971 int btrfs_block_rsv_add(struct btrfs_root *root, 4972 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4973 enum btrfs_reserve_flush_enum flush) 4974 { 4975 int ret; 4976 4977 if (num_bytes == 0) 4978 return 0; 4979 4980 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4981 if (!ret) { 4982 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4983 return 0; 4984 } 4985 4986 return ret; 4987 } 4988 4989 int btrfs_block_rsv_check(struct btrfs_root *root, 4990 struct btrfs_block_rsv *block_rsv, int min_factor) 4991 { 4992 u64 num_bytes = 0; 4993 int ret = -ENOSPC; 4994 4995 if (!block_rsv) 4996 return 0; 4997 4998 spin_lock(&block_rsv->lock); 4999 num_bytes = div_factor(block_rsv->size, min_factor); 5000 if (block_rsv->reserved >= num_bytes) 5001 ret = 0; 5002 spin_unlock(&block_rsv->lock); 5003 5004 return ret; 5005 } 5006 5007 int btrfs_block_rsv_refill(struct btrfs_root *root, 5008 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5009 enum btrfs_reserve_flush_enum flush) 5010 { 5011 u64 num_bytes = 0; 5012 int ret = -ENOSPC; 5013 5014 if (!block_rsv) 5015 return 0; 5016 5017 spin_lock(&block_rsv->lock); 5018 num_bytes = min_reserved; 5019 if (block_rsv->reserved >= num_bytes) 5020 ret = 0; 5021 else 5022 num_bytes -= block_rsv->reserved; 5023 spin_unlock(&block_rsv->lock); 5024 5025 if (!ret) 5026 return 0; 5027 5028 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5029 if (!ret) { 5030 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5031 return 0; 5032 } 5033 5034 return ret; 5035 } 5036 5037 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5038 struct btrfs_block_rsv *dst_rsv, 5039 u64 num_bytes) 5040 { 5041 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5042 } 5043 5044 void btrfs_block_rsv_release(struct btrfs_root *root, 5045 struct btrfs_block_rsv *block_rsv, 5046 u64 num_bytes) 5047 { 5048 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5049 if (global_rsv == block_rsv || 5050 block_rsv->space_info != global_rsv->space_info) 5051 global_rsv = NULL; 5052 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5053 num_bytes); 5054 } 5055 5056 /* 5057 * helper to calculate size of global block reservation. 5058 * the desired value is sum of space used by extent tree, 5059 * checksum tree and root tree 5060 */ 5061 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5062 { 5063 struct btrfs_space_info *sinfo; 5064 u64 num_bytes; 5065 u64 meta_used; 5066 u64 data_used; 5067 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5068 5069 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5070 spin_lock(&sinfo->lock); 5071 data_used = sinfo->bytes_used; 5072 spin_unlock(&sinfo->lock); 5073 5074 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5075 spin_lock(&sinfo->lock); 5076 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5077 data_used = 0; 5078 meta_used = sinfo->bytes_used; 5079 spin_unlock(&sinfo->lock); 5080 5081 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5082 csum_size * 2; 5083 num_bytes += div_u64(data_used + meta_used, 50); 5084 5085 if (num_bytes * 3 > meta_used) 5086 num_bytes = div_u64(meta_used, 3); 5087 5088 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5089 } 5090 5091 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5092 { 5093 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5094 struct btrfs_space_info *sinfo = block_rsv->space_info; 5095 u64 num_bytes; 5096 5097 num_bytes = calc_global_metadata_size(fs_info); 5098 5099 spin_lock(&sinfo->lock); 5100 spin_lock(&block_rsv->lock); 5101 5102 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5103 5104 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5105 sinfo->bytes_reserved + sinfo->bytes_readonly + 5106 sinfo->bytes_may_use; 5107 5108 if (sinfo->total_bytes > num_bytes) { 5109 num_bytes = sinfo->total_bytes - num_bytes; 5110 block_rsv->reserved += num_bytes; 5111 sinfo->bytes_may_use += num_bytes; 5112 trace_btrfs_space_reservation(fs_info, "space_info", 5113 sinfo->flags, num_bytes, 1); 5114 } 5115 5116 if (block_rsv->reserved >= block_rsv->size) { 5117 num_bytes = block_rsv->reserved - block_rsv->size; 5118 sinfo->bytes_may_use -= num_bytes; 5119 trace_btrfs_space_reservation(fs_info, "space_info", 5120 sinfo->flags, num_bytes, 0); 5121 block_rsv->reserved = block_rsv->size; 5122 block_rsv->full = 1; 5123 } 5124 5125 spin_unlock(&block_rsv->lock); 5126 spin_unlock(&sinfo->lock); 5127 } 5128 5129 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5130 { 5131 struct btrfs_space_info *space_info; 5132 5133 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5134 fs_info->chunk_block_rsv.space_info = space_info; 5135 5136 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5137 fs_info->global_block_rsv.space_info = space_info; 5138 fs_info->delalloc_block_rsv.space_info = space_info; 5139 fs_info->trans_block_rsv.space_info = space_info; 5140 fs_info->empty_block_rsv.space_info = space_info; 5141 fs_info->delayed_block_rsv.space_info = space_info; 5142 5143 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5144 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5145 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5146 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5147 if (fs_info->quota_root) 5148 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5149 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5150 5151 update_global_block_rsv(fs_info); 5152 } 5153 5154 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5155 { 5156 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5157 (u64)-1); 5158 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5159 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5160 WARN_ON(fs_info->trans_block_rsv.size > 0); 5161 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5162 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5163 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5164 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5165 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5166 } 5167 5168 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5169 struct btrfs_root *root) 5170 { 5171 if (!trans->block_rsv) 5172 return; 5173 5174 if (!trans->bytes_reserved) 5175 return; 5176 5177 trace_btrfs_space_reservation(root->fs_info, "transaction", 5178 trans->transid, trans->bytes_reserved, 0); 5179 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5180 trans->bytes_reserved = 0; 5181 } 5182 5183 /* 5184 * To be called after all the new block groups attached to the transaction 5185 * handle have been created (btrfs_create_pending_block_groups()). 5186 */ 5187 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5188 { 5189 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5190 5191 if (!trans->chunk_bytes_reserved) 5192 return; 5193 5194 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5195 5196 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5197 trans->chunk_bytes_reserved); 5198 trans->chunk_bytes_reserved = 0; 5199 } 5200 5201 /* Can only return 0 or -ENOSPC */ 5202 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5203 struct inode *inode) 5204 { 5205 struct btrfs_root *root = BTRFS_I(inode)->root; 5206 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5207 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5208 5209 /* 5210 * We need to hold space in order to delete our orphan item once we've 5211 * added it, so this takes the reservation so we can release it later 5212 * when we are truly done with the orphan item. 5213 */ 5214 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5215 trace_btrfs_space_reservation(root->fs_info, "orphan", 5216 btrfs_ino(inode), num_bytes, 1); 5217 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5218 } 5219 5220 void btrfs_orphan_release_metadata(struct inode *inode) 5221 { 5222 struct btrfs_root *root = BTRFS_I(inode)->root; 5223 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5224 trace_btrfs_space_reservation(root->fs_info, "orphan", 5225 btrfs_ino(inode), num_bytes, 0); 5226 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5227 } 5228 5229 /* 5230 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5231 * root: the root of the parent directory 5232 * rsv: block reservation 5233 * items: the number of items that we need do reservation 5234 * qgroup_reserved: used to return the reserved size in qgroup 5235 * 5236 * This function is used to reserve the space for snapshot/subvolume 5237 * creation and deletion. Those operations are different with the 5238 * common file/directory operations, they change two fs/file trees 5239 * and root tree, the number of items that the qgroup reserves is 5240 * different with the free space reservation. So we can not use 5241 * the space reseravtion mechanism in start_transaction(). 5242 */ 5243 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5244 struct btrfs_block_rsv *rsv, 5245 int items, 5246 u64 *qgroup_reserved, 5247 bool use_global_rsv) 5248 { 5249 u64 num_bytes; 5250 int ret; 5251 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5252 5253 if (root->fs_info->quota_enabled) { 5254 /* One for parent inode, two for dir entries */ 5255 num_bytes = 3 * root->nodesize; 5256 ret = btrfs_qgroup_reserve(root, num_bytes); 5257 if (ret) 5258 return ret; 5259 } else { 5260 num_bytes = 0; 5261 } 5262 5263 *qgroup_reserved = num_bytes; 5264 5265 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5266 rsv->space_info = __find_space_info(root->fs_info, 5267 BTRFS_BLOCK_GROUP_METADATA); 5268 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5269 BTRFS_RESERVE_FLUSH_ALL); 5270 5271 if (ret == -ENOSPC && use_global_rsv) 5272 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5273 5274 if (ret) { 5275 if (*qgroup_reserved) 5276 btrfs_qgroup_free(root, *qgroup_reserved); 5277 } 5278 5279 return ret; 5280 } 5281 5282 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5283 struct btrfs_block_rsv *rsv, 5284 u64 qgroup_reserved) 5285 { 5286 btrfs_block_rsv_release(root, rsv, (u64)-1); 5287 } 5288 5289 /** 5290 * drop_outstanding_extent - drop an outstanding extent 5291 * @inode: the inode we're dropping the extent for 5292 * @num_bytes: the number of bytes we're relaseing. 5293 * 5294 * This is called when we are freeing up an outstanding extent, either called 5295 * after an error or after an extent is written. This will return the number of 5296 * reserved extents that need to be freed. This must be called with 5297 * BTRFS_I(inode)->lock held. 5298 */ 5299 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5300 { 5301 unsigned drop_inode_space = 0; 5302 unsigned dropped_extents = 0; 5303 unsigned num_extents = 0; 5304 5305 num_extents = (unsigned)div64_u64(num_bytes + 5306 BTRFS_MAX_EXTENT_SIZE - 1, 5307 BTRFS_MAX_EXTENT_SIZE); 5308 ASSERT(num_extents); 5309 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5310 BTRFS_I(inode)->outstanding_extents -= num_extents; 5311 5312 if (BTRFS_I(inode)->outstanding_extents == 0 && 5313 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5314 &BTRFS_I(inode)->runtime_flags)) 5315 drop_inode_space = 1; 5316 5317 /* 5318 * If we have more or the same amount of outsanding extents than we have 5319 * reserved then we need to leave the reserved extents count alone. 5320 */ 5321 if (BTRFS_I(inode)->outstanding_extents >= 5322 BTRFS_I(inode)->reserved_extents) 5323 return drop_inode_space; 5324 5325 dropped_extents = BTRFS_I(inode)->reserved_extents - 5326 BTRFS_I(inode)->outstanding_extents; 5327 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5328 return dropped_extents + drop_inode_space; 5329 } 5330 5331 /** 5332 * calc_csum_metadata_size - return the amount of metada space that must be 5333 * reserved/free'd for the given bytes. 5334 * @inode: the inode we're manipulating 5335 * @num_bytes: the number of bytes in question 5336 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5337 * 5338 * This adjusts the number of csum_bytes in the inode and then returns the 5339 * correct amount of metadata that must either be reserved or freed. We 5340 * calculate how many checksums we can fit into one leaf and then divide the 5341 * number of bytes that will need to be checksumed by this value to figure out 5342 * how many checksums will be required. If we are adding bytes then the number 5343 * may go up and we will return the number of additional bytes that must be 5344 * reserved. If it is going down we will return the number of bytes that must 5345 * be freed. 5346 * 5347 * This must be called with BTRFS_I(inode)->lock held. 5348 */ 5349 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5350 int reserve) 5351 { 5352 struct btrfs_root *root = BTRFS_I(inode)->root; 5353 u64 old_csums, num_csums; 5354 5355 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5356 BTRFS_I(inode)->csum_bytes == 0) 5357 return 0; 5358 5359 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5360 if (reserve) 5361 BTRFS_I(inode)->csum_bytes += num_bytes; 5362 else 5363 BTRFS_I(inode)->csum_bytes -= num_bytes; 5364 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5365 5366 /* No change, no need to reserve more */ 5367 if (old_csums == num_csums) 5368 return 0; 5369 5370 if (reserve) 5371 return btrfs_calc_trans_metadata_size(root, 5372 num_csums - old_csums); 5373 5374 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5375 } 5376 5377 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5378 { 5379 struct btrfs_root *root = BTRFS_I(inode)->root; 5380 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5381 u64 to_reserve = 0; 5382 u64 csum_bytes; 5383 unsigned nr_extents = 0; 5384 int extra_reserve = 0; 5385 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5386 int ret = 0; 5387 bool delalloc_lock = true; 5388 u64 to_free = 0; 5389 unsigned dropped; 5390 5391 /* If we are a free space inode we need to not flush since we will be in 5392 * the middle of a transaction commit. We also don't need the delalloc 5393 * mutex since we won't race with anybody. We need this mostly to make 5394 * lockdep shut its filthy mouth. 5395 */ 5396 if (btrfs_is_free_space_inode(inode)) { 5397 flush = BTRFS_RESERVE_NO_FLUSH; 5398 delalloc_lock = false; 5399 } 5400 5401 if (flush != BTRFS_RESERVE_NO_FLUSH && 5402 btrfs_transaction_in_commit(root->fs_info)) 5403 schedule_timeout(1); 5404 5405 if (delalloc_lock) 5406 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5407 5408 num_bytes = ALIGN(num_bytes, root->sectorsize); 5409 5410 spin_lock(&BTRFS_I(inode)->lock); 5411 nr_extents = (unsigned)div64_u64(num_bytes + 5412 BTRFS_MAX_EXTENT_SIZE - 1, 5413 BTRFS_MAX_EXTENT_SIZE); 5414 BTRFS_I(inode)->outstanding_extents += nr_extents; 5415 nr_extents = 0; 5416 5417 if (BTRFS_I(inode)->outstanding_extents > 5418 BTRFS_I(inode)->reserved_extents) 5419 nr_extents = BTRFS_I(inode)->outstanding_extents - 5420 BTRFS_I(inode)->reserved_extents; 5421 5422 /* 5423 * Add an item to reserve for updating the inode when we complete the 5424 * delalloc io. 5425 */ 5426 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5427 &BTRFS_I(inode)->runtime_flags)) { 5428 nr_extents++; 5429 extra_reserve = 1; 5430 } 5431 5432 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5433 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5434 csum_bytes = BTRFS_I(inode)->csum_bytes; 5435 spin_unlock(&BTRFS_I(inode)->lock); 5436 5437 if (root->fs_info->quota_enabled) { 5438 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5439 if (ret) 5440 goto out_fail; 5441 } 5442 5443 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5444 if (unlikely(ret)) { 5445 if (root->fs_info->quota_enabled) 5446 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5447 goto out_fail; 5448 } 5449 5450 spin_lock(&BTRFS_I(inode)->lock); 5451 if (extra_reserve) { 5452 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5453 &BTRFS_I(inode)->runtime_flags); 5454 nr_extents--; 5455 } 5456 BTRFS_I(inode)->reserved_extents += nr_extents; 5457 spin_unlock(&BTRFS_I(inode)->lock); 5458 5459 if (delalloc_lock) 5460 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5461 5462 if (to_reserve) 5463 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5464 btrfs_ino(inode), to_reserve, 1); 5465 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5466 5467 return 0; 5468 5469 out_fail: 5470 spin_lock(&BTRFS_I(inode)->lock); 5471 dropped = drop_outstanding_extent(inode, num_bytes); 5472 /* 5473 * If the inodes csum_bytes is the same as the original 5474 * csum_bytes then we know we haven't raced with any free()ers 5475 * so we can just reduce our inodes csum bytes and carry on. 5476 */ 5477 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5478 calc_csum_metadata_size(inode, num_bytes, 0); 5479 } else { 5480 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5481 u64 bytes; 5482 5483 /* 5484 * This is tricky, but first we need to figure out how much we 5485 * free'd from any free-ers that occured during this 5486 * reservation, so we reset ->csum_bytes to the csum_bytes 5487 * before we dropped our lock, and then call the free for the 5488 * number of bytes that were freed while we were trying our 5489 * reservation. 5490 */ 5491 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5492 BTRFS_I(inode)->csum_bytes = csum_bytes; 5493 to_free = calc_csum_metadata_size(inode, bytes, 0); 5494 5495 5496 /* 5497 * Now we need to see how much we would have freed had we not 5498 * been making this reservation and our ->csum_bytes were not 5499 * artificially inflated. 5500 */ 5501 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5502 bytes = csum_bytes - orig_csum_bytes; 5503 bytes = calc_csum_metadata_size(inode, bytes, 0); 5504 5505 /* 5506 * Now reset ->csum_bytes to what it should be. If bytes is 5507 * more than to_free then we would have free'd more space had we 5508 * not had an artificially high ->csum_bytes, so we need to free 5509 * the remainder. If bytes is the same or less then we don't 5510 * need to do anything, the other free-ers did the correct 5511 * thing. 5512 */ 5513 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5514 if (bytes > to_free) 5515 to_free = bytes - to_free; 5516 else 5517 to_free = 0; 5518 } 5519 spin_unlock(&BTRFS_I(inode)->lock); 5520 if (dropped) 5521 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5522 5523 if (to_free) { 5524 btrfs_block_rsv_release(root, block_rsv, to_free); 5525 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5526 btrfs_ino(inode), to_free, 0); 5527 } 5528 if (delalloc_lock) 5529 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5530 return ret; 5531 } 5532 5533 /** 5534 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5535 * @inode: the inode to release the reservation for 5536 * @num_bytes: the number of bytes we're releasing 5537 * 5538 * This will release the metadata reservation for an inode. This can be called 5539 * once we complete IO for a given set of bytes to release their metadata 5540 * reservations. 5541 */ 5542 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5543 { 5544 struct btrfs_root *root = BTRFS_I(inode)->root; 5545 u64 to_free = 0; 5546 unsigned dropped; 5547 5548 num_bytes = ALIGN(num_bytes, root->sectorsize); 5549 spin_lock(&BTRFS_I(inode)->lock); 5550 dropped = drop_outstanding_extent(inode, num_bytes); 5551 5552 if (num_bytes) 5553 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5554 spin_unlock(&BTRFS_I(inode)->lock); 5555 if (dropped > 0) 5556 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5557 5558 if (btrfs_test_is_dummy_root(root)) 5559 return; 5560 5561 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5562 btrfs_ino(inode), to_free, 0); 5563 5564 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5565 to_free); 5566 } 5567 5568 /** 5569 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5570 * @inode: inode we're writing to 5571 * @num_bytes: the number of bytes we want to allocate 5572 * 5573 * This will do the following things 5574 * 5575 * o reserve space in the data space info for num_bytes 5576 * o reserve space in the metadata space info based on number of outstanding 5577 * extents and how much csums will be needed 5578 * o add to the inodes ->delalloc_bytes 5579 * o add it to the fs_info's delalloc inodes list. 5580 * 5581 * This will return 0 for success and -ENOSPC if there is no space left. 5582 */ 5583 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5584 { 5585 int ret; 5586 5587 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5588 if (ret) 5589 return ret; 5590 5591 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5592 if (ret) { 5593 btrfs_free_reserved_data_space(inode, num_bytes); 5594 return ret; 5595 } 5596 5597 return 0; 5598 } 5599 5600 /** 5601 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5602 * @inode: inode we're releasing space for 5603 * @num_bytes: the number of bytes we want to free up 5604 * 5605 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5606 * called in the case that we don't need the metadata AND data reservations 5607 * anymore. So if there is an error or we insert an inline extent. 5608 * 5609 * This function will release the metadata space that was not used and will 5610 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5611 * list if there are no delalloc bytes left. 5612 */ 5613 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5614 { 5615 btrfs_delalloc_release_metadata(inode, num_bytes); 5616 btrfs_free_reserved_data_space(inode, num_bytes); 5617 } 5618 5619 static int update_block_group(struct btrfs_trans_handle *trans, 5620 struct btrfs_root *root, u64 bytenr, 5621 u64 num_bytes, int alloc) 5622 { 5623 struct btrfs_block_group_cache *cache = NULL; 5624 struct btrfs_fs_info *info = root->fs_info; 5625 u64 total = num_bytes; 5626 u64 old_val; 5627 u64 byte_in_group; 5628 int factor; 5629 5630 /* block accounting for super block */ 5631 spin_lock(&info->delalloc_root_lock); 5632 old_val = btrfs_super_bytes_used(info->super_copy); 5633 if (alloc) 5634 old_val += num_bytes; 5635 else 5636 old_val -= num_bytes; 5637 btrfs_set_super_bytes_used(info->super_copy, old_val); 5638 spin_unlock(&info->delalloc_root_lock); 5639 5640 while (total) { 5641 cache = btrfs_lookup_block_group(info, bytenr); 5642 if (!cache) 5643 return -ENOENT; 5644 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5645 BTRFS_BLOCK_GROUP_RAID1 | 5646 BTRFS_BLOCK_GROUP_RAID10)) 5647 factor = 2; 5648 else 5649 factor = 1; 5650 /* 5651 * If this block group has free space cache written out, we 5652 * need to make sure to load it if we are removing space. This 5653 * is because we need the unpinning stage to actually add the 5654 * space back to the block group, otherwise we will leak space. 5655 */ 5656 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5657 cache_block_group(cache, 1); 5658 5659 byte_in_group = bytenr - cache->key.objectid; 5660 WARN_ON(byte_in_group > cache->key.offset); 5661 5662 spin_lock(&cache->space_info->lock); 5663 spin_lock(&cache->lock); 5664 5665 if (btrfs_test_opt(root, SPACE_CACHE) && 5666 cache->disk_cache_state < BTRFS_DC_CLEAR) 5667 cache->disk_cache_state = BTRFS_DC_CLEAR; 5668 5669 old_val = btrfs_block_group_used(&cache->item); 5670 num_bytes = min(total, cache->key.offset - byte_in_group); 5671 if (alloc) { 5672 old_val += num_bytes; 5673 btrfs_set_block_group_used(&cache->item, old_val); 5674 cache->reserved -= num_bytes; 5675 cache->space_info->bytes_reserved -= num_bytes; 5676 cache->space_info->bytes_used += num_bytes; 5677 cache->space_info->disk_used += num_bytes * factor; 5678 spin_unlock(&cache->lock); 5679 spin_unlock(&cache->space_info->lock); 5680 } else { 5681 old_val -= num_bytes; 5682 btrfs_set_block_group_used(&cache->item, old_val); 5683 cache->pinned += num_bytes; 5684 cache->space_info->bytes_pinned += num_bytes; 5685 cache->space_info->bytes_used -= num_bytes; 5686 cache->space_info->disk_used -= num_bytes * factor; 5687 spin_unlock(&cache->lock); 5688 spin_unlock(&cache->space_info->lock); 5689 5690 set_extent_dirty(info->pinned_extents, 5691 bytenr, bytenr + num_bytes - 1, 5692 GFP_NOFS | __GFP_NOFAIL); 5693 /* 5694 * No longer have used bytes in this block group, queue 5695 * it for deletion. 5696 */ 5697 if (old_val == 0) { 5698 spin_lock(&info->unused_bgs_lock); 5699 if (list_empty(&cache->bg_list)) { 5700 btrfs_get_block_group(cache); 5701 list_add_tail(&cache->bg_list, 5702 &info->unused_bgs); 5703 } 5704 spin_unlock(&info->unused_bgs_lock); 5705 } 5706 } 5707 5708 spin_lock(&trans->transaction->dirty_bgs_lock); 5709 if (list_empty(&cache->dirty_list)) { 5710 list_add_tail(&cache->dirty_list, 5711 &trans->transaction->dirty_bgs); 5712 trans->transaction->num_dirty_bgs++; 5713 btrfs_get_block_group(cache); 5714 } 5715 spin_unlock(&trans->transaction->dirty_bgs_lock); 5716 5717 btrfs_put_block_group(cache); 5718 total -= num_bytes; 5719 bytenr += num_bytes; 5720 } 5721 return 0; 5722 } 5723 5724 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5725 { 5726 struct btrfs_block_group_cache *cache; 5727 u64 bytenr; 5728 5729 spin_lock(&root->fs_info->block_group_cache_lock); 5730 bytenr = root->fs_info->first_logical_byte; 5731 spin_unlock(&root->fs_info->block_group_cache_lock); 5732 5733 if (bytenr < (u64)-1) 5734 return bytenr; 5735 5736 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5737 if (!cache) 5738 return 0; 5739 5740 bytenr = cache->key.objectid; 5741 btrfs_put_block_group(cache); 5742 5743 return bytenr; 5744 } 5745 5746 static int pin_down_extent(struct btrfs_root *root, 5747 struct btrfs_block_group_cache *cache, 5748 u64 bytenr, u64 num_bytes, int reserved) 5749 { 5750 spin_lock(&cache->space_info->lock); 5751 spin_lock(&cache->lock); 5752 cache->pinned += num_bytes; 5753 cache->space_info->bytes_pinned += num_bytes; 5754 if (reserved) { 5755 cache->reserved -= num_bytes; 5756 cache->space_info->bytes_reserved -= num_bytes; 5757 } 5758 spin_unlock(&cache->lock); 5759 spin_unlock(&cache->space_info->lock); 5760 5761 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5762 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5763 if (reserved) 5764 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5765 return 0; 5766 } 5767 5768 /* 5769 * this function must be called within transaction 5770 */ 5771 int btrfs_pin_extent(struct btrfs_root *root, 5772 u64 bytenr, u64 num_bytes, int reserved) 5773 { 5774 struct btrfs_block_group_cache *cache; 5775 5776 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5777 BUG_ON(!cache); /* Logic error */ 5778 5779 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5780 5781 btrfs_put_block_group(cache); 5782 return 0; 5783 } 5784 5785 /* 5786 * this function must be called within transaction 5787 */ 5788 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5789 u64 bytenr, u64 num_bytes) 5790 { 5791 struct btrfs_block_group_cache *cache; 5792 int ret; 5793 5794 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5795 if (!cache) 5796 return -EINVAL; 5797 5798 /* 5799 * pull in the free space cache (if any) so that our pin 5800 * removes the free space from the cache. We have load_only set 5801 * to one because the slow code to read in the free extents does check 5802 * the pinned extents. 5803 */ 5804 cache_block_group(cache, 1); 5805 5806 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5807 5808 /* remove us from the free space cache (if we're there at all) */ 5809 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5810 btrfs_put_block_group(cache); 5811 return ret; 5812 } 5813 5814 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5815 { 5816 int ret; 5817 struct btrfs_block_group_cache *block_group; 5818 struct btrfs_caching_control *caching_ctl; 5819 5820 block_group = btrfs_lookup_block_group(root->fs_info, start); 5821 if (!block_group) 5822 return -EINVAL; 5823 5824 cache_block_group(block_group, 0); 5825 caching_ctl = get_caching_control(block_group); 5826 5827 if (!caching_ctl) { 5828 /* Logic error */ 5829 BUG_ON(!block_group_cache_done(block_group)); 5830 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5831 } else { 5832 mutex_lock(&caching_ctl->mutex); 5833 5834 if (start >= caching_ctl->progress) { 5835 ret = add_excluded_extent(root, start, num_bytes); 5836 } else if (start + num_bytes <= caching_ctl->progress) { 5837 ret = btrfs_remove_free_space(block_group, 5838 start, num_bytes); 5839 } else { 5840 num_bytes = caching_ctl->progress - start; 5841 ret = btrfs_remove_free_space(block_group, 5842 start, num_bytes); 5843 if (ret) 5844 goto out_lock; 5845 5846 num_bytes = (start + num_bytes) - 5847 caching_ctl->progress; 5848 start = caching_ctl->progress; 5849 ret = add_excluded_extent(root, start, num_bytes); 5850 } 5851 out_lock: 5852 mutex_unlock(&caching_ctl->mutex); 5853 put_caching_control(caching_ctl); 5854 } 5855 btrfs_put_block_group(block_group); 5856 return ret; 5857 } 5858 5859 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5860 struct extent_buffer *eb) 5861 { 5862 struct btrfs_file_extent_item *item; 5863 struct btrfs_key key; 5864 int found_type; 5865 int i; 5866 5867 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5868 return 0; 5869 5870 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5871 btrfs_item_key_to_cpu(eb, &key, i); 5872 if (key.type != BTRFS_EXTENT_DATA_KEY) 5873 continue; 5874 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5875 found_type = btrfs_file_extent_type(eb, item); 5876 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5877 continue; 5878 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5879 continue; 5880 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5881 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5882 __exclude_logged_extent(log, key.objectid, key.offset); 5883 } 5884 5885 return 0; 5886 } 5887 5888 /** 5889 * btrfs_update_reserved_bytes - update the block_group and space info counters 5890 * @cache: The cache we are manipulating 5891 * @num_bytes: The number of bytes in question 5892 * @reserve: One of the reservation enums 5893 * @delalloc: The blocks are allocated for the delalloc write 5894 * 5895 * This is called by the allocator when it reserves space, or by somebody who is 5896 * freeing space that was never actually used on disk. For example if you 5897 * reserve some space for a new leaf in transaction A and before transaction A 5898 * commits you free that leaf, you call this with reserve set to 0 in order to 5899 * clear the reservation. 5900 * 5901 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5902 * ENOSPC accounting. For data we handle the reservation through clearing the 5903 * delalloc bits in the io_tree. We have to do this since we could end up 5904 * allocating less disk space for the amount of data we have reserved in the 5905 * case of compression. 5906 * 5907 * If this is a reservation and the block group has become read only we cannot 5908 * make the reservation and return -EAGAIN, otherwise this function always 5909 * succeeds. 5910 */ 5911 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5912 u64 num_bytes, int reserve, int delalloc) 5913 { 5914 struct btrfs_space_info *space_info = cache->space_info; 5915 int ret = 0; 5916 5917 spin_lock(&space_info->lock); 5918 spin_lock(&cache->lock); 5919 if (reserve != RESERVE_FREE) { 5920 if (cache->ro) { 5921 ret = -EAGAIN; 5922 } else { 5923 cache->reserved += num_bytes; 5924 space_info->bytes_reserved += num_bytes; 5925 if (reserve == RESERVE_ALLOC) { 5926 trace_btrfs_space_reservation(cache->fs_info, 5927 "space_info", space_info->flags, 5928 num_bytes, 0); 5929 space_info->bytes_may_use -= num_bytes; 5930 } 5931 5932 if (delalloc) 5933 cache->delalloc_bytes += num_bytes; 5934 } 5935 } else { 5936 if (cache->ro) 5937 space_info->bytes_readonly += num_bytes; 5938 cache->reserved -= num_bytes; 5939 space_info->bytes_reserved -= num_bytes; 5940 5941 if (delalloc) 5942 cache->delalloc_bytes -= num_bytes; 5943 } 5944 spin_unlock(&cache->lock); 5945 spin_unlock(&space_info->lock); 5946 return ret; 5947 } 5948 5949 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5950 struct btrfs_root *root) 5951 { 5952 struct btrfs_fs_info *fs_info = root->fs_info; 5953 struct btrfs_caching_control *next; 5954 struct btrfs_caching_control *caching_ctl; 5955 struct btrfs_block_group_cache *cache; 5956 5957 down_write(&fs_info->commit_root_sem); 5958 5959 list_for_each_entry_safe(caching_ctl, next, 5960 &fs_info->caching_block_groups, list) { 5961 cache = caching_ctl->block_group; 5962 if (block_group_cache_done(cache)) { 5963 cache->last_byte_to_unpin = (u64)-1; 5964 list_del_init(&caching_ctl->list); 5965 put_caching_control(caching_ctl); 5966 } else { 5967 cache->last_byte_to_unpin = caching_ctl->progress; 5968 } 5969 } 5970 5971 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5972 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5973 else 5974 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5975 5976 up_write(&fs_info->commit_root_sem); 5977 5978 update_global_block_rsv(fs_info); 5979 } 5980 5981 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 5982 const bool return_free_space) 5983 { 5984 struct btrfs_fs_info *fs_info = root->fs_info; 5985 struct btrfs_block_group_cache *cache = NULL; 5986 struct btrfs_space_info *space_info; 5987 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5988 u64 len; 5989 bool readonly; 5990 5991 while (start <= end) { 5992 readonly = false; 5993 if (!cache || 5994 start >= cache->key.objectid + cache->key.offset) { 5995 if (cache) 5996 btrfs_put_block_group(cache); 5997 cache = btrfs_lookup_block_group(fs_info, start); 5998 BUG_ON(!cache); /* Logic error */ 5999 } 6000 6001 len = cache->key.objectid + cache->key.offset - start; 6002 len = min(len, end + 1 - start); 6003 6004 if (start < cache->last_byte_to_unpin) { 6005 len = min(len, cache->last_byte_to_unpin - start); 6006 if (return_free_space) 6007 btrfs_add_free_space(cache, start, len); 6008 } 6009 6010 start += len; 6011 space_info = cache->space_info; 6012 6013 spin_lock(&space_info->lock); 6014 spin_lock(&cache->lock); 6015 cache->pinned -= len; 6016 space_info->bytes_pinned -= len; 6017 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6018 if (cache->ro) { 6019 space_info->bytes_readonly += len; 6020 readonly = true; 6021 } 6022 spin_unlock(&cache->lock); 6023 if (!readonly && global_rsv->space_info == space_info) { 6024 spin_lock(&global_rsv->lock); 6025 if (!global_rsv->full) { 6026 len = min(len, global_rsv->size - 6027 global_rsv->reserved); 6028 global_rsv->reserved += len; 6029 space_info->bytes_may_use += len; 6030 if (global_rsv->reserved >= global_rsv->size) 6031 global_rsv->full = 1; 6032 } 6033 spin_unlock(&global_rsv->lock); 6034 } 6035 spin_unlock(&space_info->lock); 6036 } 6037 6038 if (cache) 6039 btrfs_put_block_group(cache); 6040 return 0; 6041 } 6042 6043 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6044 struct btrfs_root *root) 6045 { 6046 struct btrfs_fs_info *fs_info = root->fs_info; 6047 struct extent_io_tree *unpin; 6048 u64 start; 6049 u64 end; 6050 int ret; 6051 6052 if (trans->aborted) 6053 return 0; 6054 6055 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6056 unpin = &fs_info->freed_extents[1]; 6057 else 6058 unpin = &fs_info->freed_extents[0]; 6059 6060 while (1) { 6061 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6062 ret = find_first_extent_bit(unpin, 0, &start, &end, 6063 EXTENT_DIRTY, NULL); 6064 if (ret) { 6065 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6066 break; 6067 } 6068 6069 if (btrfs_test_opt(root, DISCARD)) 6070 ret = btrfs_discard_extent(root, start, 6071 end + 1 - start, NULL); 6072 6073 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6074 unpin_extent_range(root, start, end, true); 6075 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6076 cond_resched(); 6077 } 6078 6079 return 0; 6080 } 6081 6082 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6083 u64 owner, u64 root_objectid) 6084 { 6085 struct btrfs_space_info *space_info; 6086 u64 flags; 6087 6088 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6089 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6090 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6091 else 6092 flags = BTRFS_BLOCK_GROUP_METADATA; 6093 } else { 6094 flags = BTRFS_BLOCK_GROUP_DATA; 6095 } 6096 6097 space_info = __find_space_info(fs_info, flags); 6098 BUG_ON(!space_info); /* Logic bug */ 6099 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6100 } 6101 6102 6103 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6104 struct btrfs_root *root, 6105 struct btrfs_delayed_ref_node *node, u64 parent, 6106 u64 root_objectid, u64 owner_objectid, 6107 u64 owner_offset, int refs_to_drop, 6108 struct btrfs_delayed_extent_op *extent_op) 6109 { 6110 struct btrfs_key key; 6111 struct btrfs_path *path; 6112 struct btrfs_fs_info *info = root->fs_info; 6113 struct btrfs_root *extent_root = info->extent_root; 6114 struct extent_buffer *leaf; 6115 struct btrfs_extent_item *ei; 6116 struct btrfs_extent_inline_ref *iref; 6117 int ret; 6118 int is_data; 6119 int extent_slot = 0; 6120 int found_extent = 0; 6121 int num_to_del = 1; 6122 int no_quota = node->no_quota; 6123 u32 item_size; 6124 u64 refs; 6125 u64 bytenr = node->bytenr; 6126 u64 num_bytes = node->num_bytes; 6127 int last_ref = 0; 6128 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6129 SKINNY_METADATA); 6130 6131 if (!info->quota_enabled || !is_fstree(root_objectid)) 6132 no_quota = 1; 6133 6134 path = btrfs_alloc_path(); 6135 if (!path) 6136 return -ENOMEM; 6137 6138 path->reada = 1; 6139 path->leave_spinning = 1; 6140 6141 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6142 BUG_ON(!is_data && refs_to_drop != 1); 6143 6144 if (is_data) 6145 skinny_metadata = 0; 6146 6147 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6148 bytenr, num_bytes, parent, 6149 root_objectid, owner_objectid, 6150 owner_offset); 6151 if (ret == 0) { 6152 extent_slot = path->slots[0]; 6153 while (extent_slot >= 0) { 6154 btrfs_item_key_to_cpu(path->nodes[0], &key, 6155 extent_slot); 6156 if (key.objectid != bytenr) 6157 break; 6158 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6159 key.offset == num_bytes) { 6160 found_extent = 1; 6161 break; 6162 } 6163 if (key.type == BTRFS_METADATA_ITEM_KEY && 6164 key.offset == owner_objectid) { 6165 found_extent = 1; 6166 break; 6167 } 6168 if (path->slots[0] - extent_slot > 5) 6169 break; 6170 extent_slot--; 6171 } 6172 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6173 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6174 if (found_extent && item_size < sizeof(*ei)) 6175 found_extent = 0; 6176 #endif 6177 if (!found_extent) { 6178 BUG_ON(iref); 6179 ret = remove_extent_backref(trans, extent_root, path, 6180 NULL, refs_to_drop, 6181 is_data, &last_ref); 6182 if (ret) { 6183 btrfs_abort_transaction(trans, extent_root, ret); 6184 goto out; 6185 } 6186 btrfs_release_path(path); 6187 path->leave_spinning = 1; 6188 6189 key.objectid = bytenr; 6190 key.type = BTRFS_EXTENT_ITEM_KEY; 6191 key.offset = num_bytes; 6192 6193 if (!is_data && skinny_metadata) { 6194 key.type = BTRFS_METADATA_ITEM_KEY; 6195 key.offset = owner_objectid; 6196 } 6197 6198 ret = btrfs_search_slot(trans, extent_root, 6199 &key, path, -1, 1); 6200 if (ret > 0 && skinny_metadata && path->slots[0]) { 6201 /* 6202 * Couldn't find our skinny metadata item, 6203 * see if we have ye olde extent item. 6204 */ 6205 path->slots[0]--; 6206 btrfs_item_key_to_cpu(path->nodes[0], &key, 6207 path->slots[0]); 6208 if (key.objectid == bytenr && 6209 key.type == BTRFS_EXTENT_ITEM_KEY && 6210 key.offset == num_bytes) 6211 ret = 0; 6212 } 6213 6214 if (ret > 0 && skinny_metadata) { 6215 skinny_metadata = false; 6216 key.objectid = bytenr; 6217 key.type = BTRFS_EXTENT_ITEM_KEY; 6218 key.offset = num_bytes; 6219 btrfs_release_path(path); 6220 ret = btrfs_search_slot(trans, extent_root, 6221 &key, path, -1, 1); 6222 } 6223 6224 if (ret) { 6225 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6226 ret, bytenr); 6227 if (ret > 0) 6228 btrfs_print_leaf(extent_root, 6229 path->nodes[0]); 6230 } 6231 if (ret < 0) { 6232 btrfs_abort_transaction(trans, extent_root, ret); 6233 goto out; 6234 } 6235 extent_slot = path->slots[0]; 6236 } 6237 } else if (WARN_ON(ret == -ENOENT)) { 6238 btrfs_print_leaf(extent_root, path->nodes[0]); 6239 btrfs_err(info, 6240 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6241 bytenr, parent, root_objectid, owner_objectid, 6242 owner_offset); 6243 btrfs_abort_transaction(trans, extent_root, ret); 6244 goto out; 6245 } else { 6246 btrfs_abort_transaction(trans, extent_root, ret); 6247 goto out; 6248 } 6249 6250 leaf = path->nodes[0]; 6251 item_size = btrfs_item_size_nr(leaf, extent_slot); 6252 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6253 if (item_size < sizeof(*ei)) { 6254 BUG_ON(found_extent || extent_slot != path->slots[0]); 6255 ret = convert_extent_item_v0(trans, extent_root, path, 6256 owner_objectid, 0); 6257 if (ret < 0) { 6258 btrfs_abort_transaction(trans, extent_root, ret); 6259 goto out; 6260 } 6261 6262 btrfs_release_path(path); 6263 path->leave_spinning = 1; 6264 6265 key.objectid = bytenr; 6266 key.type = BTRFS_EXTENT_ITEM_KEY; 6267 key.offset = num_bytes; 6268 6269 ret = btrfs_search_slot(trans, extent_root, &key, path, 6270 -1, 1); 6271 if (ret) { 6272 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6273 ret, bytenr); 6274 btrfs_print_leaf(extent_root, path->nodes[0]); 6275 } 6276 if (ret < 0) { 6277 btrfs_abort_transaction(trans, extent_root, ret); 6278 goto out; 6279 } 6280 6281 extent_slot = path->slots[0]; 6282 leaf = path->nodes[0]; 6283 item_size = btrfs_item_size_nr(leaf, extent_slot); 6284 } 6285 #endif 6286 BUG_ON(item_size < sizeof(*ei)); 6287 ei = btrfs_item_ptr(leaf, extent_slot, 6288 struct btrfs_extent_item); 6289 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6290 key.type == BTRFS_EXTENT_ITEM_KEY) { 6291 struct btrfs_tree_block_info *bi; 6292 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6293 bi = (struct btrfs_tree_block_info *)(ei + 1); 6294 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6295 } 6296 6297 refs = btrfs_extent_refs(leaf, ei); 6298 if (refs < refs_to_drop) { 6299 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6300 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6301 ret = -EINVAL; 6302 btrfs_abort_transaction(trans, extent_root, ret); 6303 goto out; 6304 } 6305 refs -= refs_to_drop; 6306 6307 if (refs > 0) { 6308 if (extent_op) 6309 __run_delayed_extent_op(extent_op, leaf, ei); 6310 /* 6311 * In the case of inline back ref, reference count will 6312 * be updated by remove_extent_backref 6313 */ 6314 if (iref) { 6315 BUG_ON(!found_extent); 6316 } else { 6317 btrfs_set_extent_refs(leaf, ei, refs); 6318 btrfs_mark_buffer_dirty(leaf); 6319 } 6320 if (found_extent) { 6321 ret = remove_extent_backref(trans, extent_root, path, 6322 iref, refs_to_drop, 6323 is_data, &last_ref); 6324 if (ret) { 6325 btrfs_abort_transaction(trans, extent_root, ret); 6326 goto out; 6327 } 6328 } 6329 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6330 root_objectid); 6331 } else { 6332 if (found_extent) { 6333 BUG_ON(is_data && refs_to_drop != 6334 extent_data_ref_count(root, path, iref)); 6335 if (iref) { 6336 BUG_ON(path->slots[0] != extent_slot); 6337 } else { 6338 BUG_ON(path->slots[0] != extent_slot + 1); 6339 path->slots[0] = extent_slot; 6340 num_to_del = 2; 6341 } 6342 } 6343 6344 last_ref = 1; 6345 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6346 num_to_del); 6347 if (ret) { 6348 btrfs_abort_transaction(trans, extent_root, ret); 6349 goto out; 6350 } 6351 btrfs_release_path(path); 6352 6353 if (is_data) { 6354 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6355 if (ret) { 6356 btrfs_abort_transaction(trans, extent_root, ret); 6357 goto out; 6358 } 6359 } 6360 6361 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6362 if (ret) { 6363 btrfs_abort_transaction(trans, extent_root, ret); 6364 goto out; 6365 } 6366 } 6367 btrfs_release_path(path); 6368 6369 out: 6370 btrfs_free_path(path); 6371 return ret; 6372 } 6373 6374 /* 6375 * when we free an block, it is possible (and likely) that we free the last 6376 * delayed ref for that extent as well. This searches the delayed ref tree for 6377 * a given extent, and if there are no other delayed refs to be processed, it 6378 * removes it from the tree. 6379 */ 6380 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6381 struct btrfs_root *root, u64 bytenr) 6382 { 6383 struct btrfs_delayed_ref_head *head; 6384 struct btrfs_delayed_ref_root *delayed_refs; 6385 int ret = 0; 6386 6387 delayed_refs = &trans->transaction->delayed_refs; 6388 spin_lock(&delayed_refs->lock); 6389 head = btrfs_find_delayed_ref_head(trans, bytenr); 6390 if (!head) 6391 goto out_delayed_unlock; 6392 6393 spin_lock(&head->lock); 6394 if (!list_empty(&head->ref_list)) 6395 goto out; 6396 6397 if (head->extent_op) { 6398 if (!head->must_insert_reserved) 6399 goto out; 6400 btrfs_free_delayed_extent_op(head->extent_op); 6401 head->extent_op = NULL; 6402 } 6403 6404 /* 6405 * waiting for the lock here would deadlock. If someone else has it 6406 * locked they are already in the process of dropping it anyway 6407 */ 6408 if (!mutex_trylock(&head->mutex)) 6409 goto out; 6410 6411 /* 6412 * at this point we have a head with no other entries. Go 6413 * ahead and process it. 6414 */ 6415 head->node.in_tree = 0; 6416 rb_erase(&head->href_node, &delayed_refs->href_root); 6417 6418 atomic_dec(&delayed_refs->num_entries); 6419 6420 /* 6421 * we don't take a ref on the node because we're removing it from the 6422 * tree, so we just steal the ref the tree was holding. 6423 */ 6424 delayed_refs->num_heads--; 6425 if (head->processing == 0) 6426 delayed_refs->num_heads_ready--; 6427 head->processing = 0; 6428 spin_unlock(&head->lock); 6429 spin_unlock(&delayed_refs->lock); 6430 6431 BUG_ON(head->extent_op); 6432 if (head->must_insert_reserved) 6433 ret = 1; 6434 6435 mutex_unlock(&head->mutex); 6436 btrfs_put_delayed_ref(&head->node); 6437 return ret; 6438 out: 6439 spin_unlock(&head->lock); 6440 6441 out_delayed_unlock: 6442 spin_unlock(&delayed_refs->lock); 6443 return 0; 6444 } 6445 6446 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6447 struct btrfs_root *root, 6448 struct extent_buffer *buf, 6449 u64 parent, int last_ref) 6450 { 6451 int pin = 1; 6452 int ret; 6453 6454 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6455 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6456 buf->start, buf->len, 6457 parent, root->root_key.objectid, 6458 btrfs_header_level(buf), 6459 BTRFS_DROP_DELAYED_REF, NULL, 0); 6460 BUG_ON(ret); /* -ENOMEM */ 6461 } 6462 6463 if (!last_ref) 6464 return; 6465 6466 if (btrfs_header_generation(buf) == trans->transid) { 6467 struct btrfs_block_group_cache *cache; 6468 6469 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6470 ret = check_ref_cleanup(trans, root, buf->start); 6471 if (!ret) 6472 goto out; 6473 } 6474 6475 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6476 6477 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6478 pin_down_extent(root, cache, buf->start, buf->len, 1); 6479 btrfs_put_block_group(cache); 6480 goto out; 6481 } 6482 6483 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6484 6485 btrfs_add_free_space(cache, buf->start, buf->len); 6486 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6487 btrfs_put_block_group(cache); 6488 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6489 pin = 0; 6490 } 6491 out: 6492 if (pin) 6493 add_pinned_bytes(root->fs_info, buf->len, 6494 btrfs_header_level(buf), 6495 root->root_key.objectid); 6496 6497 /* 6498 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6499 * anymore. 6500 */ 6501 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6502 } 6503 6504 /* Can return -ENOMEM */ 6505 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6506 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6507 u64 owner, u64 offset, int no_quota) 6508 { 6509 int ret; 6510 struct btrfs_fs_info *fs_info = root->fs_info; 6511 6512 if (btrfs_test_is_dummy_root(root)) 6513 return 0; 6514 6515 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6516 6517 /* 6518 * tree log blocks never actually go into the extent allocation 6519 * tree, just update pinning info and exit early. 6520 */ 6521 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6522 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6523 /* unlocks the pinned mutex */ 6524 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6525 ret = 0; 6526 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6527 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6528 num_bytes, 6529 parent, root_objectid, (int)owner, 6530 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6531 } else { 6532 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6533 num_bytes, 6534 parent, root_objectid, owner, 6535 offset, BTRFS_DROP_DELAYED_REF, 6536 NULL, no_quota); 6537 } 6538 return ret; 6539 } 6540 6541 /* 6542 * when we wait for progress in the block group caching, its because 6543 * our allocation attempt failed at least once. So, we must sleep 6544 * and let some progress happen before we try again. 6545 * 6546 * This function will sleep at least once waiting for new free space to 6547 * show up, and then it will check the block group free space numbers 6548 * for our min num_bytes. Another option is to have it go ahead 6549 * and look in the rbtree for a free extent of a given size, but this 6550 * is a good start. 6551 * 6552 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6553 * any of the information in this block group. 6554 */ 6555 static noinline void 6556 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6557 u64 num_bytes) 6558 { 6559 struct btrfs_caching_control *caching_ctl; 6560 6561 caching_ctl = get_caching_control(cache); 6562 if (!caching_ctl) 6563 return; 6564 6565 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6566 (cache->free_space_ctl->free_space >= num_bytes)); 6567 6568 put_caching_control(caching_ctl); 6569 } 6570 6571 static noinline int 6572 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6573 { 6574 struct btrfs_caching_control *caching_ctl; 6575 int ret = 0; 6576 6577 caching_ctl = get_caching_control(cache); 6578 if (!caching_ctl) 6579 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6580 6581 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6582 if (cache->cached == BTRFS_CACHE_ERROR) 6583 ret = -EIO; 6584 put_caching_control(caching_ctl); 6585 return ret; 6586 } 6587 6588 int __get_raid_index(u64 flags) 6589 { 6590 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6591 return BTRFS_RAID_RAID10; 6592 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6593 return BTRFS_RAID_RAID1; 6594 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6595 return BTRFS_RAID_DUP; 6596 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6597 return BTRFS_RAID_RAID0; 6598 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6599 return BTRFS_RAID_RAID5; 6600 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6601 return BTRFS_RAID_RAID6; 6602 6603 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6604 } 6605 6606 int get_block_group_index(struct btrfs_block_group_cache *cache) 6607 { 6608 return __get_raid_index(cache->flags); 6609 } 6610 6611 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6612 [BTRFS_RAID_RAID10] = "raid10", 6613 [BTRFS_RAID_RAID1] = "raid1", 6614 [BTRFS_RAID_DUP] = "dup", 6615 [BTRFS_RAID_RAID0] = "raid0", 6616 [BTRFS_RAID_SINGLE] = "single", 6617 [BTRFS_RAID_RAID5] = "raid5", 6618 [BTRFS_RAID_RAID6] = "raid6", 6619 }; 6620 6621 static const char *get_raid_name(enum btrfs_raid_types type) 6622 { 6623 if (type >= BTRFS_NR_RAID_TYPES) 6624 return NULL; 6625 6626 return btrfs_raid_type_names[type]; 6627 } 6628 6629 enum btrfs_loop_type { 6630 LOOP_CACHING_NOWAIT = 0, 6631 LOOP_CACHING_WAIT = 1, 6632 LOOP_ALLOC_CHUNK = 2, 6633 LOOP_NO_EMPTY_SIZE = 3, 6634 }; 6635 6636 static inline void 6637 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6638 int delalloc) 6639 { 6640 if (delalloc) 6641 down_read(&cache->data_rwsem); 6642 } 6643 6644 static inline void 6645 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6646 int delalloc) 6647 { 6648 btrfs_get_block_group(cache); 6649 if (delalloc) 6650 down_read(&cache->data_rwsem); 6651 } 6652 6653 static struct btrfs_block_group_cache * 6654 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6655 struct btrfs_free_cluster *cluster, 6656 int delalloc) 6657 { 6658 struct btrfs_block_group_cache *used_bg; 6659 bool locked = false; 6660 again: 6661 spin_lock(&cluster->refill_lock); 6662 if (locked) { 6663 if (used_bg == cluster->block_group) 6664 return used_bg; 6665 6666 up_read(&used_bg->data_rwsem); 6667 btrfs_put_block_group(used_bg); 6668 } 6669 6670 used_bg = cluster->block_group; 6671 if (!used_bg) 6672 return NULL; 6673 6674 if (used_bg == block_group) 6675 return used_bg; 6676 6677 btrfs_get_block_group(used_bg); 6678 6679 if (!delalloc) 6680 return used_bg; 6681 6682 if (down_read_trylock(&used_bg->data_rwsem)) 6683 return used_bg; 6684 6685 spin_unlock(&cluster->refill_lock); 6686 down_read(&used_bg->data_rwsem); 6687 locked = true; 6688 goto again; 6689 } 6690 6691 static inline void 6692 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6693 int delalloc) 6694 { 6695 if (delalloc) 6696 up_read(&cache->data_rwsem); 6697 btrfs_put_block_group(cache); 6698 } 6699 6700 /* 6701 * walks the btree of allocated extents and find a hole of a given size. 6702 * The key ins is changed to record the hole: 6703 * ins->objectid == start position 6704 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6705 * ins->offset == the size of the hole. 6706 * Any available blocks before search_start are skipped. 6707 * 6708 * If there is no suitable free space, we will record the max size of 6709 * the free space extent currently. 6710 */ 6711 static noinline int find_free_extent(struct btrfs_root *orig_root, 6712 u64 num_bytes, u64 empty_size, 6713 u64 hint_byte, struct btrfs_key *ins, 6714 u64 flags, int delalloc) 6715 { 6716 int ret = 0; 6717 struct btrfs_root *root = orig_root->fs_info->extent_root; 6718 struct btrfs_free_cluster *last_ptr = NULL; 6719 struct btrfs_block_group_cache *block_group = NULL; 6720 u64 search_start = 0; 6721 u64 max_extent_size = 0; 6722 int empty_cluster = 2 * 1024 * 1024; 6723 struct btrfs_space_info *space_info; 6724 int loop = 0; 6725 int index = __get_raid_index(flags); 6726 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6727 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6728 bool failed_cluster_refill = false; 6729 bool failed_alloc = false; 6730 bool use_cluster = true; 6731 bool have_caching_bg = false; 6732 6733 WARN_ON(num_bytes < root->sectorsize); 6734 ins->type = BTRFS_EXTENT_ITEM_KEY; 6735 ins->objectid = 0; 6736 ins->offset = 0; 6737 6738 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6739 6740 space_info = __find_space_info(root->fs_info, flags); 6741 if (!space_info) { 6742 btrfs_err(root->fs_info, "No space info for %llu", flags); 6743 return -ENOSPC; 6744 } 6745 6746 /* 6747 * If the space info is for both data and metadata it means we have a 6748 * small filesystem and we can't use the clustering stuff. 6749 */ 6750 if (btrfs_mixed_space_info(space_info)) 6751 use_cluster = false; 6752 6753 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6754 last_ptr = &root->fs_info->meta_alloc_cluster; 6755 if (!btrfs_test_opt(root, SSD)) 6756 empty_cluster = 64 * 1024; 6757 } 6758 6759 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6760 btrfs_test_opt(root, SSD)) { 6761 last_ptr = &root->fs_info->data_alloc_cluster; 6762 } 6763 6764 if (last_ptr) { 6765 spin_lock(&last_ptr->lock); 6766 if (last_ptr->block_group) 6767 hint_byte = last_ptr->window_start; 6768 spin_unlock(&last_ptr->lock); 6769 } 6770 6771 search_start = max(search_start, first_logical_byte(root, 0)); 6772 search_start = max(search_start, hint_byte); 6773 6774 if (!last_ptr) 6775 empty_cluster = 0; 6776 6777 if (search_start == hint_byte) { 6778 block_group = btrfs_lookup_block_group(root->fs_info, 6779 search_start); 6780 /* 6781 * we don't want to use the block group if it doesn't match our 6782 * allocation bits, or if its not cached. 6783 * 6784 * However if we are re-searching with an ideal block group 6785 * picked out then we don't care that the block group is cached. 6786 */ 6787 if (block_group && block_group_bits(block_group, flags) && 6788 block_group->cached != BTRFS_CACHE_NO) { 6789 down_read(&space_info->groups_sem); 6790 if (list_empty(&block_group->list) || 6791 block_group->ro) { 6792 /* 6793 * someone is removing this block group, 6794 * we can't jump into the have_block_group 6795 * target because our list pointers are not 6796 * valid 6797 */ 6798 btrfs_put_block_group(block_group); 6799 up_read(&space_info->groups_sem); 6800 } else { 6801 index = get_block_group_index(block_group); 6802 btrfs_lock_block_group(block_group, delalloc); 6803 goto have_block_group; 6804 } 6805 } else if (block_group) { 6806 btrfs_put_block_group(block_group); 6807 } 6808 } 6809 search: 6810 have_caching_bg = false; 6811 down_read(&space_info->groups_sem); 6812 list_for_each_entry(block_group, &space_info->block_groups[index], 6813 list) { 6814 u64 offset; 6815 int cached; 6816 6817 btrfs_grab_block_group(block_group, delalloc); 6818 search_start = block_group->key.objectid; 6819 6820 /* 6821 * this can happen if we end up cycling through all the 6822 * raid types, but we want to make sure we only allocate 6823 * for the proper type. 6824 */ 6825 if (!block_group_bits(block_group, flags)) { 6826 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6827 BTRFS_BLOCK_GROUP_RAID1 | 6828 BTRFS_BLOCK_GROUP_RAID5 | 6829 BTRFS_BLOCK_GROUP_RAID6 | 6830 BTRFS_BLOCK_GROUP_RAID10; 6831 6832 /* 6833 * if they asked for extra copies and this block group 6834 * doesn't provide them, bail. This does allow us to 6835 * fill raid0 from raid1. 6836 */ 6837 if ((flags & extra) && !(block_group->flags & extra)) 6838 goto loop; 6839 } 6840 6841 have_block_group: 6842 cached = block_group_cache_done(block_group); 6843 if (unlikely(!cached)) { 6844 ret = cache_block_group(block_group, 0); 6845 BUG_ON(ret < 0); 6846 ret = 0; 6847 } 6848 6849 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6850 goto loop; 6851 if (unlikely(block_group->ro)) 6852 goto loop; 6853 6854 /* 6855 * Ok we want to try and use the cluster allocator, so 6856 * lets look there 6857 */ 6858 if (last_ptr) { 6859 struct btrfs_block_group_cache *used_block_group; 6860 unsigned long aligned_cluster; 6861 /* 6862 * the refill lock keeps out other 6863 * people trying to start a new cluster 6864 */ 6865 used_block_group = btrfs_lock_cluster(block_group, 6866 last_ptr, 6867 delalloc); 6868 if (!used_block_group) 6869 goto refill_cluster; 6870 6871 if (used_block_group != block_group && 6872 (used_block_group->ro || 6873 !block_group_bits(used_block_group, flags))) 6874 goto release_cluster; 6875 6876 offset = btrfs_alloc_from_cluster(used_block_group, 6877 last_ptr, 6878 num_bytes, 6879 used_block_group->key.objectid, 6880 &max_extent_size); 6881 if (offset) { 6882 /* we have a block, we're done */ 6883 spin_unlock(&last_ptr->refill_lock); 6884 trace_btrfs_reserve_extent_cluster(root, 6885 used_block_group, 6886 search_start, num_bytes); 6887 if (used_block_group != block_group) { 6888 btrfs_release_block_group(block_group, 6889 delalloc); 6890 block_group = used_block_group; 6891 } 6892 goto checks; 6893 } 6894 6895 WARN_ON(last_ptr->block_group != used_block_group); 6896 release_cluster: 6897 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6898 * set up a new clusters, so lets just skip it 6899 * and let the allocator find whatever block 6900 * it can find. If we reach this point, we 6901 * will have tried the cluster allocator 6902 * plenty of times and not have found 6903 * anything, so we are likely way too 6904 * fragmented for the clustering stuff to find 6905 * anything. 6906 * 6907 * However, if the cluster is taken from the 6908 * current block group, release the cluster 6909 * first, so that we stand a better chance of 6910 * succeeding in the unclustered 6911 * allocation. */ 6912 if (loop >= LOOP_NO_EMPTY_SIZE && 6913 used_block_group != block_group) { 6914 spin_unlock(&last_ptr->refill_lock); 6915 btrfs_release_block_group(used_block_group, 6916 delalloc); 6917 goto unclustered_alloc; 6918 } 6919 6920 /* 6921 * this cluster didn't work out, free it and 6922 * start over 6923 */ 6924 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6925 6926 if (used_block_group != block_group) 6927 btrfs_release_block_group(used_block_group, 6928 delalloc); 6929 refill_cluster: 6930 if (loop >= LOOP_NO_EMPTY_SIZE) { 6931 spin_unlock(&last_ptr->refill_lock); 6932 goto unclustered_alloc; 6933 } 6934 6935 aligned_cluster = max_t(unsigned long, 6936 empty_cluster + empty_size, 6937 block_group->full_stripe_len); 6938 6939 /* allocate a cluster in this block group */ 6940 ret = btrfs_find_space_cluster(root, block_group, 6941 last_ptr, search_start, 6942 num_bytes, 6943 aligned_cluster); 6944 if (ret == 0) { 6945 /* 6946 * now pull our allocation out of this 6947 * cluster 6948 */ 6949 offset = btrfs_alloc_from_cluster(block_group, 6950 last_ptr, 6951 num_bytes, 6952 search_start, 6953 &max_extent_size); 6954 if (offset) { 6955 /* we found one, proceed */ 6956 spin_unlock(&last_ptr->refill_lock); 6957 trace_btrfs_reserve_extent_cluster(root, 6958 block_group, search_start, 6959 num_bytes); 6960 goto checks; 6961 } 6962 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6963 && !failed_cluster_refill) { 6964 spin_unlock(&last_ptr->refill_lock); 6965 6966 failed_cluster_refill = true; 6967 wait_block_group_cache_progress(block_group, 6968 num_bytes + empty_cluster + empty_size); 6969 goto have_block_group; 6970 } 6971 6972 /* 6973 * at this point we either didn't find a cluster 6974 * or we weren't able to allocate a block from our 6975 * cluster. Free the cluster we've been trying 6976 * to use, and go to the next block group 6977 */ 6978 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6979 spin_unlock(&last_ptr->refill_lock); 6980 goto loop; 6981 } 6982 6983 unclustered_alloc: 6984 spin_lock(&block_group->free_space_ctl->tree_lock); 6985 if (cached && 6986 block_group->free_space_ctl->free_space < 6987 num_bytes + empty_cluster + empty_size) { 6988 if (block_group->free_space_ctl->free_space > 6989 max_extent_size) 6990 max_extent_size = 6991 block_group->free_space_ctl->free_space; 6992 spin_unlock(&block_group->free_space_ctl->tree_lock); 6993 goto loop; 6994 } 6995 spin_unlock(&block_group->free_space_ctl->tree_lock); 6996 6997 offset = btrfs_find_space_for_alloc(block_group, search_start, 6998 num_bytes, empty_size, 6999 &max_extent_size); 7000 /* 7001 * If we didn't find a chunk, and we haven't failed on this 7002 * block group before, and this block group is in the middle of 7003 * caching and we are ok with waiting, then go ahead and wait 7004 * for progress to be made, and set failed_alloc to true. 7005 * 7006 * If failed_alloc is true then we've already waited on this 7007 * block group once and should move on to the next block group. 7008 */ 7009 if (!offset && !failed_alloc && !cached && 7010 loop > LOOP_CACHING_NOWAIT) { 7011 wait_block_group_cache_progress(block_group, 7012 num_bytes + empty_size); 7013 failed_alloc = true; 7014 goto have_block_group; 7015 } else if (!offset) { 7016 if (!cached) 7017 have_caching_bg = true; 7018 goto loop; 7019 } 7020 checks: 7021 search_start = ALIGN(offset, root->stripesize); 7022 7023 /* move on to the next group */ 7024 if (search_start + num_bytes > 7025 block_group->key.objectid + block_group->key.offset) { 7026 btrfs_add_free_space(block_group, offset, num_bytes); 7027 goto loop; 7028 } 7029 7030 if (offset < search_start) 7031 btrfs_add_free_space(block_group, offset, 7032 search_start - offset); 7033 BUG_ON(offset > search_start); 7034 7035 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7036 alloc_type, delalloc); 7037 if (ret == -EAGAIN) { 7038 btrfs_add_free_space(block_group, offset, num_bytes); 7039 goto loop; 7040 } 7041 7042 /* we are all good, lets return */ 7043 ins->objectid = search_start; 7044 ins->offset = num_bytes; 7045 7046 trace_btrfs_reserve_extent(orig_root, block_group, 7047 search_start, num_bytes); 7048 btrfs_release_block_group(block_group, delalloc); 7049 break; 7050 loop: 7051 failed_cluster_refill = false; 7052 failed_alloc = false; 7053 BUG_ON(index != get_block_group_index(block_group)); 7054 btrfs_release_block_group(block_group, delalloc); 7055 } 7056 up_read(&space_info->groups_sem); 7057 7058 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7059 goto search; 7060 7061 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7062 goto search; 7063 7064 /* 7065 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7066 * caching kthreads as we move along 7067 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7068 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7069 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7070 * again 7071 */ 7072 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7073 index = 0; 7074 loop++; 7075 if (loop == LOOP_ALLOC_CHUNK) { 7076 struct btrfs_trans_handle *trans; 7077 int exist = 0; 7078 7079 trans = current->journal_info; 7080 if (trans) 7081 exist = 1; 7082 else 7083 trans = btrfs_join_transaction(root); 7084 7085 if (IS_ERR(trans)) { 7086 ret = PTR_ERR(trans); 7087 goto out; 7088 } 7089 7090 ret = do_chunk_alloc(trans, root, flags, 7091 CHUNK_ALLOC_FORCE); 7092 /* 7093 * Do not bail out on ENOSPC since we 7094 * can do more things. 7095 */ 7096 if (ret < 0 && ret != -ENOSPC) 7097 btrfs_abort_transaction(trans, 7098 root, ret); 7099 else 7100 ret = 0; 7101 if (!exist) 7102 btrfs_end_transaction(trans, root); 7103 if (ret) 7104 goto out; 7105 } 7106 7107 if (loop == LOOP_NO_EMPTY_SIZE) { 7108 empty_size = 0; 7109 empty_cluster = 0; 7110 } 7111 7112 goto search; 7113 } else if (!ins->objectid) { 7114 ret = -ENOSPC; 7115 } else if (ins->objectid) { 7116 ret = 0; 7117 } 7118 out: 7119 if (ret == -ENOSPC) 7120 ins->offset = max_extent_size; 7121 return ret; 7122 } 7123 7124 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7125 int dump_block_groups) 7126 { 7127 struct btrfs_block_group_cache *cache; 7128 int index = 0; 7129 7130 spin_lock(&info->lock); 7131 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7132 info->flags, 7133 info->total_bytes - info->bytes_used - info->bytes_pinned - 7134 info->bytes_reserved - info->bytes_readonly, 7135 (info->full) ? "" : "not "); 7136 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7137 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7138 info->total_bytes, info->bytes_used, info->bytes_pinned, 7139 info->bytes_reserved, info->bytes_may_use, 7140 info->bytes_readonly); 7141 spin_unlock(&info->lock); 7142 7143 if (!dump_block_groups) 7144 return; 7145 7146 down_read(&info->groups_sem); 7147 again: 7148 list_for_each_entry(cache, &info->block_groups[index], list) { 7149 spin_lock(&cache->lock); 7150 printk(KERN_INFO "BTRFS: " 7151 "block group %llu has %llu bytes, " 7152 "%llu used %llu pinned %llu reserved %s\n", 7153 cache->key.objectid, cache->key.offset, 7154 btrfs_block_group_used(&cache->item), cache->pinned, 7155 cache->reserved, cache->ro ? "[readonly]" : ""); 7156 btrfs_dump_free_space(cache, bytes); 7157 spin_unlock(&cache->lock); 7158 } 7159 if (++index < BTRFS_NR_RAID_TYPES) 7160 goto again; 7161 up_read(&info->groups_sem); 7162 } 7163 7164 int btrfs_reserve_extent(struct btrfs_root *root, 7165 u64 num_bytes, u64 min_alloc_size, 7166 u64 empty_size, u64 hint_byte, 7167 struct btrfs_key *ins, int is_data, int delalloc) 7168 { 7169 bool final_tried = false; 7170 u64 flags; 7171 int ret; 7172 7173 flags = btrfs_get_alloc_profile(root, is_data); 7174 again: 7175 WARN_ON(num_bytes < root->sectorsize); 7176 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7177 flags, delalloc); 7178 7179 if (ret == -ENOSPC) { 7180 if (!final_tried && ins->offset) { 7181 num_bytes = min(num_bytes >> 1, ins->offset); 7182 num_bytes = round_down(num_bytes, root->sectorsize); 7183 num_bytes = max(num_bytes, min_alloc_size); 7184 if (num_bytes == min_alloc_size) 7185 final_tried = true; 7186 goto again; 7187 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7188 struct btrfs_space_info *sinfo; 7189 7190 sinfo = __find_space_info(root->fs_info, flags); 7191 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7192 flags, num_bytes); 7193 if (sinfo) 7194 dump_space_info(sinfo, num_bytes, 1); 7195 } 7196 } 7197 7198 return ret; 7199 } 7200 7201 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7202 u64 start, u64 len, 7203 int pin, int delalloc) 7204 { 7205 struct btrfs_block_group_cache *cache; 7206 int ret = 0; 7207 7208 cache = btrfs_lookup_block_group(root->fs_info, start); 7209 if (!cache) { 7210 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7211 start); 7212 return -ENOSPC; 7213 } 7214 7215 if (pin) 7216 pin_down_extent(root, cache, start, len, 1); 7217 else { 7218 if (btrfs_test_opt(root, DISCARD)) 7219 ret = btrfs_discard_extent(root, start, len, NULL); 7220 btrfs_add_free_space(cache, start, len); 7221 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7222 } 7223 7224 btrfs_put_block_group(cache); 7225 7226 trace_btrfs_reserved_extent_free(root, start, len); 7227 7228 return ret; 7229 } 7230 7231 int btrfs_free_reserved_extent(struct btrfs_root *root, 7232 u64 start, u64 len, int delalloc) 7233 { 7234 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7235 } 7236 7237 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7238 u64 start, u64 len) 7239 { 7240 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7241 } 7242 7243 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7244 struct btrfs_root *root, 7245 u64 parent, u64 root_objectid, 7246 u64 flags, u64 owner, u64 offset, 7247 struct btrfs_key *ins, int ref_mod) 7248 { 7249 int ret; 7250 struct btrfs_fs_info *fs_info = root->fs_info; 7251 struct btrfs_extent_item *extent_item; 7252 struct btrfs_extent_inline_ref *iref; 7253 struct btrfs_path *path; 7254 struct extent_buffer *leaf; 7255 int type; 7256 u32 size; 7257 7258 if (parent > 0) 7259 type = BTRFS_SHARED_DATA_REF_KEY; 7260 else 7261 type = BTRFS_EXTENT_DATA_REF_KEY; 7262 7263 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7264 7265 path = btrfs_alloc_path(); 7266 if (!path) 7267 return -ENOMEM; 7268 7269 path->leave_spinning = 1; 7270 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7271 ins, size); 7272 if (ret) { 7273 btrfs_free_path(path); 7274 return ret; 7275 } 7276 7277 leaf = path->nodes[0]; 7278 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7279 struct btrfs_extent_item); 7280 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7281 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7282 btrfs_set_extent_flags(leaf, extent_item, 7283 flags | BTRFS_EXTENT_FLAG_DATA); 7284 7285 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7286 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7287 if (parent > 0) { 7288 struct btrfs_shared_data_ref *ref; 7289 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7290 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7291 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7292 } else { 7293 struct btrfs_extent_data_ref *ref; 7294 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7295 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7296 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7297 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7298 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7299 } 7300 7301 btrfs_mark_buffer_dirty(path->nodes[0]); 7302 btrfs_free_path(path); 7303 7304 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7305 if (ret) { /* -ENOENT, logic error */ 7306 btrfs_err(fs_info, "update block group failed for %llu %llu", 7307 ins->objectid, ins->offset); 7308 BUG(); 7309 } 7310 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7311 return ret; 7312 } 7313 7314 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7315 struct btrfs_root *root, 7316 u64 parent, u64 root_objectid, 7317 u64 flags, struct btrfs_disk_key *key, 7318 int level, struct btrfs_key *ins, 7319 int no_quota) 7320 { 7321 int ret; 7322 struct btrfs_fs_info *fs_info = root->fs_info; 7323 struct btrfs_extent_item *extent_item; 7324 struct btrfs_tree_block_info *block_info; 7325 struct btrfs_extent_inline_ref *iref; 7326 struct btrfs_path *path; 7327 struct extent_buffer *leaf; 7328 u32 size = sizeof(*extent_item) + sizeof(*iref); 7329 u64 num_bytes = ins->offset; 7330 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7331 SKINNY_METADATA); 7332 7333 if (!skinny_metadata) 7334 size += sizeof(*block_info); 7335 7336 path = btrfs_alloc_path(); 7337 if (!path) { 7338 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7339 root->nodesize); 7340 return -ENOMEM; 7341 } 7342 7343 path->leave_spinning = 1; 7344 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7345 ins, size); 7346 if (ret) { 7347 btrfs_free_path(path); 7348 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7349 root->nodesize); 7350 return ret; 7351 } 7352 7353 leaf = path->nodes[0]; 7354 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7355 struct btrfs_extent_item); 7356 btrfs_set_extent_refs(leaf, extent_item, 1); 7357 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7358 btrfs_set_extent_flags(leaf, extent_item, 7359 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7360 7361 if (skinny_metadata) { 7362 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7363 num_bytes = root->nodesize; 7364 } else { 7365 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7366 btrfs_set_tree_block_key(leaf, block_info, key); 7367 btrfs_set_tree_block_level(leaf, block_info, level); 7368 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7369 } 7370 7371 if (parent > 0) { 7372 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7373 btrfs_set_extent_inline_ref_type(leaf, iref, 7374 BTRFS_SHARED_BLOCK_REF_KEY); 7375 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7376 } else { 7377 btrfs_set_extent_inline_ref_type(leaf, iref, 7378 BTRFS_TREE_BLOCK_REF_KEY); 7379 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7380 } 7381 7382 btrfs_mark_buffer_dirty(leaf); 7383 btrfs_free_path(path); 7384 7385 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7386 1); 7387 if (ret) { /* -ENOENT, logic error */ 7388 btrfs_err(fs_info, "update block group failed for %llu %llu", 7389 ins->objectid, ins->offset); 7390 BUG(); 7391 } 7392 7393 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7394 return ret; 7395 } 7396 7397 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7398 struct btrfs_root *root, 7399 u64 root_objectid, u64 owner, 7400 u64 offset, struct btrfs_key *ins) 7401 { 7402 int ret; 7403 7404 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7405 7406 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7407 ins->offset, 0, 7408 root_objectid, owner, offset, 7409 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7410 return ret; 7411 } 7412 7413 /* 7414 * this is used by the tree logging recovery code. It records that 7415 * an extent has been allocated and makes sure to clear the free 7416 * space cache bits as well 7417 */ 7418 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7419 struct btrfs_root *root, 7420 u64 root_objectid, u64 owner, u64 offset, 7421 struct btrfs_key *ins) 7422 { 7423 int ret; 7424 struct btrfs_block_group_cache *block_group; 7425 7426 /* 7427 * Mixed block groups will exclude before processing the log so we only 7428 * need to do the exlude dance if this fs isn't mixed. 7429 */ 7430 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7431 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7432 if (ret) 7433 return ret; 7434 } 7435 7436 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7437 if (!block_group) 7438 return -EINVAL; 7439 7440 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7441 RESERVE_ALLOC_NO_ACCOUNT, 0); 7442 BUG_ON(ret); /* logic error */ 7443 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7444 0, owner, offset, ins, 1); 7445 btrfs_put_block_group(block_group); 7446 return ret; 7447 } 7448 7449 static struct extent_buffer * 7450 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7451 u64 bytenr, int level) 7452 { 7453 struct extent_buffer *buf; 7454 7455 buf = btrfs_find_create_tree_block(root, bytenr); 7456 if (!buf) 7457 return ERR_PTR(-ENOMEM); 7458 btrfs_set_header_generation(buf, trans->transid); 7459 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7460 btrfs_tree_lock(buf); 7461 clean_tree_block(trans, root->fs_info, buf); 7462 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7463 7464 btrfs_set_lock_blocking(buf); 7465 btrfs_set_buffer_uptodate(buf); 7466 7467 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7468 buf->log_index = root->log_transid % 2; 7469 /* 7470 * we allow two log transactions at a time, use different 7471 * EXENT bit to differentiate dirty pages. 7472 */ 7473 if (buf->log_index == 0) 7474 set_extent_dirty(&root->dirty_log_pages, buf->start, 7475 buf->start + buf->len - 1, GFP_NOFS); 7476 else 7477 set_extent_new(&root->dirty_log_pages, buf->start, 7478 buf->start + buf->len - 1, GFP_NOFS); 7479 } else { 7480 buf->log_index = -1; 7481 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7482 buf->start + buf->len - 1, GFP_NOFS); 7483 } 7484 trans->blocks_used++; 7485 /* this returns a buffer locked for blocking */ 7486 return buf; 7487 } 7488 7489 static struct btrfs_block_rsv * 7490 use_block_rsv(struct btrfs_trans_handle *trans, 7491 struct btrfs_root *root, u32 blocksize) 7492 { 7493 struct btrfs_block_rsv *block_rsv; 7494 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7495 int ret; 7496 bool global_updated = false; 7497 7498 block_rsv = get_block_rsv(trans, root); 7499 7500 if (unlikely(block_rsv->size == 0)) 7501 goto try_reserve; 7502 again: 7503 ret = block_rsv_use_bytes(block_rsv, blocksize); 7504 if (!ret) 7505 return block_rsv; 7506 7507 if (block_rsv->failfast) 7508 return ERR_PTR(ret); 7509 7510 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7511 global_updated = true; 7512 update_global_block_rsv(root->fs_info); 7513 goto again; 7514 } 7515 7516 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7517 static DEFINE_RATELIMIT_STATE(_rs, 7518 DEFAULT_RATELIMIT_INTERVAL * 10, 7519 /*DEFAULT_RATELIMIT_BURST*/ 1); 7520 if (__ratelimit(&_rs)) 7521 WARN(1, KERN_DEBUG 7522 "BTRFS: block rsv returned %d\n", ret); 7523 } 7524 try_reserve: 7525 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7526 BTRFS_RESERVE_NO_FLUSH); 7527 if (!ret) 7528 return block_rsv; 7529 /* 7530 * If we couldn't reserve metadata bytes try and use some from 7531 * the global reserve if its space type is the same as the global 7532 * reservation. 7533 */ 7534 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7535 block_rsv->space_info == global_rsv->space_info) { 7536 ret = block_rsv_use_bytes(global_rsv, blocksize); 7537 if (!ret) 7538 return global_rsv; 7539 } 7540 return ERR_PTR(ret); 7541 } 7542 7543 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7544 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7545 { 7546 block_rsv_add_bytes(block_rsv, blocksize, 0); 7547 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7548 } 7549 7550 /* 7551 * finds a free extent and does all the dirty work required for allocation 7552 * returns the key for the extent through ins, and a tree buffer for 7553 * the first block of the extent through buf. 7554 * 7555 * returns the tree buffer or an ERR_PTR on error. 7556 */ 7557 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7558 struct btrfs_root *root, 7559 u64 parent, u64 root_objectid, 7560 struct btrfs_disk_key *key, int level, 7561 u64 hint, u64 empty_size) 7562 { 7563 struct btrfs_key ins; 7564 struct btrfs_block_rsv *block_rsv; 7565 struct extent_buffer *buf; 7566 struct btrfs_delayed_extent_op *extent_op; 7567 u64 flags = 0; 7568 int ret; 7569 u32 blocksize = root->nodesize; 7570 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7571 SKINNY_METADATA); 7572 7573 if (btrfs_test_is_dummy_root(root)) { 7574 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7575 level); 7576 if (!IS_ERR(buf)) 7577 root->alloc_bytenr += blocksize; 7578 return buf; 7579 } 7580 7581 block_rsv = use_block_rsv(trans, root, blocksize); 7582 if (IS_ERR(block_rsv)) 7583 return ERR_CAST(block_rsv); 7584 7585 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7586 empty_size, hint, &ins, 0, 0); 7587 if (ret) 7588 goto out_unuse; 7589 7590 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7591 if (IS_ERR(buf)) { 7592 ret = PTR_ERR(buf); 7593 goto out_free_reserved; 7594 } 7595 7596 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7597 if (parent == 0) 7598 parent = ins.objectid; 7599 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7600 } else 7601 BUG_ON(parent > 0); 7602 7603 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7604 extent_op = btrfs_alloc_delayed_extent_op(); 7605 if (!extent_op) { 7606 ret = -ENOMEM; 7607 goto out_free_buf; 7608 } 7609 if (key) 7610 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7611 else 7612 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7613 extent_op->flags_to_set = flags; 7614 if (skinny_metadata) 7615 extent_op->update_key = 0; 7616 else 7617 extent_op->update_key = 1; 7618 extent_op->update_flags = 1; 7619 extent_op->is_data = 0; 7620 extent_op->level = level; 7621 7622 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7623 ins.objectid, ins.offset, 7624 parent, root_objectid, level, 7625 BTRFS_ADD_DELAYED_EXTENT, 7626 extent_op, 0); 7627 if (ret) 7628 goto out_free_delayed; 7629 } 7630 return buf; 7631 7632 out_free_delayed: 7633 btrfs_free_delayed_extent_op(extent_op); 7634 out_free_buf: 7635 free_extent_buffer(buf); 7636 out_free_reserved: 7637 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7638 out_unuse: 7639 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7640 return ERR_PTR(ret); 7641 } 7642 7643 struct walk_control { 7644 u64 refs[BTRFS_MAX_LEVEL]; 7645 u64 flags[BTRFS_MAX_LEVEL]; 7646 struct btrfs_key update_progress; 7647 int stage; 7648 int level; 7649 int shared_level; 7650 int update_ref; 7651 int keep_locks; 7652 int reada_slot; 7653 int reada_count; 7654 int for_reloc; 7655 }; 7656 7657 #define DROP_REFERENCE 1 7658 #define UPDATE_BACKREF 2 7659 7660 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7661 struct btrfs_root *root, 7662 struct walk_control *wc, 7663 struct btrfs_path *path) 7664 { 7665 u64 bytenr; 7666 u64 generation; 7667 u64 refs; 7668 u64 flags; 7669 u32 nritems; 7670 u32 blocksize; 7671 struct btrfs_key key; 7672 struct extent_buffer *eb; 7673 int ret; 7674 int slot; 7675 int nread = 0; 7676 7677 if (path->slots[wc->level] < wc->reada_slot) { 7678 wc->reada_count = wc->reada_count * 2 / 3; 7679 wc->reada_count = max(wc->reada_count, 2); 7680 } else { 7681 wc->reada_count = wc->reada_count * 3 / 2; 7682 wc->reada_count = min_t(int, wc->reada_count, 7683 BTRFS_NODEPTRS_PER_BLOCK(root)); 7684 } 7685 7686 eb = path->nodes[wc->level]; 7687 nritems = btrfs_header_nritems(eb); 7688 blocksize = root->nodesize; 7689 7690 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7691 if (nread >= wc->reada_count) 7692 break; 7693 7694 cond_resched(); 7695 bytenr = btrfs_node_blockptr(eb, slot); 7696 generation = btrfs_node_ptr_generation(eb, slot); 7697 7698 if (slot == path->slots[wc->level]) 7699 goto reada; 7700 7701 if (wc->stage == UPDATE_BACKREF && 7702 generation <= root->root_key.offset) 7703 continue; 7704 7705 /* We don't lock the tree block, it's OK to be racy here */ 7706 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7707 wc->level - 1, 1, &refs, 7708 &flags); 7709 /* We don't care about errors in readahead. */ 7710 if (ret < 0) 7711 continue; 7712 BUG_ON(refs == 0); 7713 7714 if (wc->stage == DROP_REFERENCE) { 7715 if (refs == 1) 7716 goto reada; 7717 7718 if (wc->level == 1 && 7719 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7720 continue; 7721 if (!wc->update_ref || 7722 generation <= root->root_key.offset) 7723 continue; 7724 btrfs_node_key_to_cpu(eb, &key, slot); 7725 ret = btrfs_comp_cpu_keys(&key, 7726 &wc->update_progress); 7727 if (ret < 0) 7728 continue; 7729 } else { 7730 if (wc->level == 1 && 7731 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7732 continue; 7733 } 7734 reada: 7735 readahead_tree_block(root, bytenr); 7736 nread++; 7737 } 7738 wc->reada_slot = slot; 7739 } 7740 7741 /* 7742 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 7743 * for later qgroup accounting. 7744 * 7745 * Current, this function does nothing. 7746 */ 7747 static int account_leaf_items(struct btrfs_trans_handle *trans, 7748 struct btrfs_root *root, 7749 struct extent_buffer *eb) 7750 { 7751 int nr = btrfs_header_nritems(eb); 7752 int i, extent_type; 7753 struct btrfs_key key; 7754 struct btrfs_file_extent_item *fi; 7755 u64 bytenr, num_bytes; 7756 7757 for (i = 0; i < nr; i++) { 7758 btrfs_item_key_to_cpu(eb, &key, i); 7759 7760 if (key.type != BTRFS_EXTENT_DATA_KEY) 7761 continue; 7762 7763 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7764 /* filter out non qgroup-accountable extents */ 7765 extent_type = btrfs_file_extent_type(eb, fi); 7766 7767 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7768 continue; 7769 7770 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7771 if (!bytenr) 7772 continue; 7773 7774 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7775 } 7776 return 0; 7777 } 7778 7779 /* 7780 * Walk up the tree from the bottom, freeing leaves and any interior 7781 * nodes which have had all slots visited. If a node (leaf or 7782 * interior) is freed, the node above it will have it's slot 7783 * incremented. The root node will never be freed. 7784 * 7785 * At the end of this function, we should have a path which has all 7786 * slots incremented to the next position for a search. If we need to 7787 * read a new node it will be NULL and the node above it will have the 7788 * correct slot selected for a later read. 7789 * 7790 * If we increment the root nodes slot counter past the number of 7791 * elements, 1 is returned to signal completion of the search. 7792 */ 7793 static int adjust_slots_upwards(struct btrfs_root *root, 7794 struct btrfs_path *path, int root_level) 7795 { 7796 int level = 0; 7797 int nr, slot; 7798 struct extent_buffer *eb; 7799 7800 if (root_level == 0) 7801 return 1; 7802 7803 while (level <= root_level) { 7804 eb = path->nodes[level]; 7805 nr = btrfs_header_nritems(eb); 7806 path->slots[level]++; 7807 slot = path->slots[level]; 7808 if (slot >= nr || level == 0) { 7809 /* 7810 * Don't free the root - we will detect this 7811 * condition after our loop and return a 7812 * positive value for caller to stop walking the tree. 7813 */ 7814 if (level != root_level) { 7815 btrfs_tree_unlock_rw(eb, path->locks[level]); 7816 path->locks[level] = 0; 7817 7818 free_extent_buffer(eb); 7819 path->nodes[level] = NULL; 7820 path->slots[level] = 0; 7821 } 7822 } else { 7823 /* 7824 * We have a valid slot to walk back down 7825 * from. Stop here so caller can process these 7826 * new nodes. 7827 */ 7828 break; 7829 } 7830 7831 level++; 7832 } 7833 7834 eb = path->nodes[root_level]; 7835 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7836 return 1; 7837 7838 return 0; 7839 } 7840 7841 /* 7842 * root_eb is the subtree root and is locked before this function is called. 7843 * TODO: Modify this function to mark all (including complete shared node) 7844 * to dirty_extent_root to allow it get accounted in qgroup. 7845 */ 7846 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7847 struct btrfs_root *root, 7848 struct extent_buffer *root_eb, 7849 u64 root_gen, 7850 int root_level) 7851 { 7852 int ret = 0; 7853 int level; 7854 struct extent_buffer *eb = root_eb; 7855 struct btrfs_path *path = NULL; 7856 7857 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7858 BUG_ON(root_eb == NULL); 7859 7860 if (!root->fs_info->quota_enabled) 7861 return 0; 7862 7863 if (!extent_buffer_uptodate(root_eb)) { 7864 ret = btrfs_read_buffer(root_eb, root_gen); 7865 if (ret) 7866 goto out; 7867 } 7868 7869 if (root_level == 0) { 7870 ret = account_leaf_items(trans, root, root_eb); 7871 goto out; 7872 } 7873 7874 path = btrfs_alloc_path(); 7875 if (!path) 7876 return -ENOMEM; 7877 7878 /* 7879 * Walk down the tree. Missing extent blocks are filled in as 7880 * we go. Metadata is accounted every time we read a new 7881 * extent block. 7882 * 7883 * When we reach a leaf, we account for file extent items in it, 7884 * walk back up the tree (adjusting slot pointers as we go) 7885 * and restart the search process. 7886 */ 7887 extent_buffer_get(root_eb); /* For path */ 7888 path->nodes[root_level] = root_eb; 7889 path->slots[root_level] = 0; 7890 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7891 walk_down: 7892 level = root_level; 7893 while (level >= 0) { 7894 if (path->nodes[level] == NULL) { 7895 int parent_slot; 7896 u64 child_gen; 7897 u64 child_bytenr; 7898 7899 /* We need to get child blockptr/gen from 7900 * parent before we can read it. */ 7901 eb = path->nodes[level + 1]; 7902 parent_slot = path->slots[level + 1]; 7903 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7904 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7905 7906 eb = read_tree_block(root, child_bytenr, child_gen); 7907 if (IS_ERR(eb)) { 7908 ret = PTR_ERR(eb); 7909 goto out; 7910 } else if (!extent_buffer_uptodate(eb)) { 7911 free_extent_buffer(eb); 7912 ret = -EIO; 7913 goto out; 7914 } 7915 7916 path->nodes[level] = eb; 7917 path->slots[level] = 0; 7918 7919 btrfs_tree_read_lock(eb); 7920 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7921 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7922 } 7923 7924 if (level == 0) { 7925 ret = account_leaf_items(trans, root, path->nodes[level]); 7926 if (ret) 7927 goto out; 7928 7929 /* Nonzero return here means we completed our search */ 7930 ret = adjust_slots_upwards(root, path, root_level); 7931 if (ret) 7932 break; 7933 7934 /* Restart search with new slots */ 7935 goto walk_down; 7936 } 7937 7938 level--; 7939 } 7940 7941 ret = 0; 7942 out: 7943 btrfs_free_path(path); 7944 7945 return ret; 7946 } 7947 7948 /* 7949 * helper to process tree block while walking down the tree. 7950 * 7951 * when wc->stage == UPDATE_BACKREF, this function updates 7952 * back refs for pointers in the block. 7953 * 7954 * NOTE: return value 1 means we should stop walking down. 7955 */ 7956 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7957 struct btrfs_root *root, 7958 struct btrfs_path *path, 7959 struct walk_control *wc, int lookup_info) 7960 { 7961 int level = wc->level; 7962 struct extent_buffer *eb = path->nodes[level]; 7963 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7964 int ret; 7965 7966 if (wc->stage == UPDATE_BACKREF && 7967 btrfs_header_owner(eb) != root->root_key.objectid) 7968 return 1; 7969 7970 /* 7971 * when reference count of tree block is 1, it won't increase 7972 * again. once full backref flag is set, we never clear it. 7973 */ 7974 if (lookup_info && 7975 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7976 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7977 BUG_ON(!path->locks[level]); 7978 ret = btrfs_lookup_extent_info(trans, root, 7979 eb->start, level, 1, 7980 &wc->refs[level], 7981 &wc->flags[level]); 7982 BUG_ON(ret == -ENOMEM); 7983 if (ret) 7984 return ret; 7985 BUG_ON(wc->refs[level] == 0); 7986 } 7987 7988 if (wc->stage == DROP_REFERENCE) { 7989 if (wc->refs[level] > 1) 7990 return 1; 7991 7992 if (path->locks[level] && !wc->keep_locks) { 7993 btrfs_tree_unlock_rw(eb, path->locks[level]); 7994 path->locks[level] = 0; 7995 } 7996 return 0; 7997 } 7998 7999 /* wc->stage == UPDATE_BACKREF */ 8000 if (!(wc->flags[level] & flag)) { 8001 BUG_ON(!path->locks[level]); 8002 ret = btrfs_inc_ref(trans, root, eb, 1); 8003 BUG_ON(ret); /* -ENOMEM */ 8004 ret = btrfs_dec_ref(trans, root, eb, 0); 8005 BUG_ON(ret); /* -ENOMEM */ 8006 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8007 eb->len, flag, 8008 btrfs_header_level(eb), 0); 8009 BUG_ON(ret); /* -ENOMEM */ 8010 wc->flags[level] |= flag; 8011 } 8012 8013 /* 8014 * the block is shared by multiple trees, so it's not good to 8015 * keep the tree lock 8016 */ 8017 if (path->locks[level] && level > 0) { 8018 btrfs_tree_unlock_rw(eb, path->locks[level]); 8019 path->locks[level] = 0; 8020 } 8021 return 0; 8022 } 8023 8024 /* 8025 * helper to process tree block pointer. 8026 * 8027 * when wc->stage == DROP_REFERENCE, this function checks 8028 * reference count of the block pointed to. if the block 8029 * is shared and we need update back refs for the subtree 8030 * rooted at the block, this function changes wc->stage to 8031 * UPDATE_BACKREF. if the block is shared and there is no 8032 * need to update back, this function drops the reference 8033 * to the block. 8034 * 8035 * NOTE: return value 1 means we should stop walking down. 8036 */ 8037 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8038 struct btrfs_root *root, 8039 struct btrfs_path *path, 8040 struct walk_control *wc, int *lookup_info) 8041 { 8042 u64 bytenr; 8043 u64 generation; 8044 u64 parent; 8045 u32 blocksize; 8046 struct btrfs_key key; 8047 struct extent_buffer *next; 8048 int level = wc->level; 8049 int reada = 0; 8050 int ret = 0; 8051 bool need_account = false; 8052 8053 generation = btrfs_node_ptr_generation(path->nodes[level], 8054 path->slots[level]); 8055 /* 8056 * if the lower level block was created before the snapshot 8057 * was created, we know there is no need to update back refs 8058 * for the subtree 8059 */ 8060 if (wc->stage == UPDATE_BACKREF && 8061 generation <= root->root_key.offset) { 8062 *lookup_info = 1; 8063 return 1; 8064 } 8065 8066 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8067 blocksize = root->nodesize; 8068 8069 next = btrfs_find_tree_block(root->fs_info, bytenr); 8070 if (!next) { 8071 next = btrfs_find_create_tree_block(root, bytenr); 8072 if (!next) 8073 return -ENOMEM; 8074 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8075 level - 1); 8076 reada = 1; 8077 } 8078 btrfs_tree_lock(next); 8079 btrfs_set_lock_blocking(next); 8080 8081 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8082 &wc->refs[level - 1], 8083 &wc->flags[level - 1]); 8084 if (ret < 0) { 8085 btrfs_tree_unlock(next); 8086 return ret; 8087 } 8088 8089 if (unlikely(wc->refs[level - 1] == 0)) { 8090 btrfs_err(root->fs_info, "Missing references."); 8091 BUG(); 8092 } 8093 *lookup_info = 0; 8094 8095 if (wc->stage == DROP_REFERENCE) { 8096 if (wc->refs[level - 1] > 1) { 8097 need_account = true; 8098 if (level == 1 && 8099 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8100 goto skip; 8101 8102 if (!wc->update_ref || 8103 generation <= root->root_key.offset) 8104 goto skip; 8105 8106 btrfs_node_key_to_cpu(path->nodes[level], &key, 8107 path->slots[level]); 8108 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8109 if (ret < 0) 8110 goto skip; 8111 8112 wc->stage = UPDATE_BACKREF; 8113 wc->shared_level = level - 1; 8114 } 8115 } else { 8116 if (level == 1 && 8117 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8118 goto skip; 8119 } 8120 8121 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8122 btrfs_tree_unlock(next); 8123 free_extent_buffer(next); 8124 next = NULL; 8125 *lookup_info = 1; 8126 } 8127 8128 if (!next) { 8129 if (reada && level == 1) 8130 reada_walk_down(trans, root, wc, path); 8131 next = read_tree_block(root, bytenr, generation); 8132 if (IS_ERR(next)) { 8133 return PTR_ERR(next); 8134 } else if (!extent_buffer_uptodate(next)) { 8135 free_extent_buffer(next); 8136 return -EIO; 8137 } 8138 btrfs_tree_lock(next); 8139 btrfs_set_lock_blocking(next); 8140 } 8141 8142 level--; 8143 BUG_ON(level != btrfs_header_level(next)); 8144 path->nodes[level] = next; 8145 path->slots[level] = 0; 8146 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8147 wc->level = level; 8148 if (wc->level == 1) 8149 wc->reada_slot = 0; 8150 return 0; 8151 skip: 8152 wc->refs[level - 1] = 0; 8153 wc->flags[level - 1] = 0; 8154 if (wc->stage == DROP_REFERENCE) { 8155 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8156 parent = path->nodes[level]->start; 8157 } else { 8158 BUG_ON(root->root_key.objectid != 8159 btrfs_header_owner(path->nodes[level])); 8160 parent = 0; 8161 } 8162 8163 if (need_account) { 8164 ret = account_shared_subtree(trans, root, next, 8165 generation, level - 1); 8166 if (ret) { 8167 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8168 "%d accounting shared subtree. Quota " 8169 "is out of sync, rescan required.\n", 8170 root->fs_info->sb->s_id, ret); 8171 } 8172 } 8173 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8174 root->root_key.objectid, level - 1, 0, 0); 8175 BUG_ON(ret); /* -ENOMEM */ 8176 } 8177 btrfs_tree_unlock(next); 8178 free_extent_buffer(next); 8179 *lookup_info = 1; 8180 return 1; 8181 } 8182 8183 /* 8184 * helper to process tree block while walking up the tree. 8185 * 8186 * when wc->stage == DROP_REFERENCE, this function drops 8187 * reference count on the block. 8188 * 8189 * when wc->stage == UPDATE_BACKREF, this function changes 8190 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8191 * to UPDATE_BACKREF previously while processing the block. 8192 * 8193 * NOTE: return value 1 means we should stop walking up. 8194 */ 8195 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8196 struct btrfs_root *root, 8197 struct btrfs_path *path, 8198 struct walk_control *wc) 8199 { 8200 int ret; 8201 int level = wc->level; 8202 struct extent_buffer *eb = path->nodes[level]; 8203 u64 parent = 0; 8204 8205 if (wc->stage == UPDATE_BACKREF) { 8206 BUG_ON(wc->shared_level < level); 8207 if (level < wc->shared_level) 8208 goto out; 8209 8210 ret = find_next_key(path, level + 1, &wc->update_progress); 8211 if (ret > 0) 8212 wc->update_ref = 0; 8213 8214 wc->stage = DROP_REFERENCE; 8215 wc->shared_level = -1; 8216 path->slots[level] = 0; 8217 8218 /* 8219 * check reference count again if the block isn't locked. 8220 * we should start walking down the tree again if reference 8221 * count is one. 8222 */ 8223 if (!path->locks[level]) { 8224 BUG_ON(level == 0); 8225 btrfs_tree_lock(eb); 8226 btrfs_set_lock_blocking(eb); 8227 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8228 8229 ret = btrfs_lookup_extent_info(trans, root, 8230 eb->start, level, 1, 8231 &wc->refs[level], 8232 &wc->flags[level]); 8233 if (ret < 0) { 8234 btrfs_tree_unlock_rw(eb, path->locks[level]); 8235 path->locks[level] = 0; 8236 return ret; 8237 } 8238 BUG_ON(wc->refs[level] == 0); 8239 if (wc->refs[level] == 1) { 8240 btrfs_tree_unlock_rw(eb, path->locks[level]); 8241 path->locks[level] = 0; 8242 return 1; 8243 } 8244 } 8245 } 8246 8247 /* wc->stage == DROP_REFERENCE */ 8248 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8249 8250 if (wc->refs[level] == 1) { 8251 if (level == 0) { 8252 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8253 ret = btrfs_dec_ref(trans, root, eb, 1); 8254 else 8255 ret = btrfs_dec_ref(trans, root, eb, 0); 8256 BUG_ON(ret); /* -ENOMEM */ 8257 ret = account_leaf_items(trans, root, eb); 8258 if (ret) { 8259 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8260 "%d accounting leaf items. Quota " 8261 "is out of sync, rescan required.\n", 8262 root->fs_info->sb->s_id, ret); 8263 } 8264 } 8265 /* make block locked assertion in clean_tree_block happy */ 8266 if (!path->locks[level] && 8267 btrfs_header_generation(eb) == trans->transid) { 8268 btrfs_tree_lock(eb); 8269 btrfs_set_lock_blocking(eb); 8270 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8271 } 8272 clean_tree_block(trans, root->fs_info, eb); 8273 } 8274 8275 if (eb == root->node) { 8276 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8277 parent = eb->start; 8278 else 8279 BUG_ON(root->root_key.objectid != 8280 btrfs_header_owner(eb)); 8281 } else { 8282 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8283 parent = path->nodes[level + 1]->start; 8284 else 8285 BUG_ON(root->root_key.objectid != 8286 btrfs_header_owner(path->nodes[level + 1])); 8287 } 8288 8289 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8290 out: 8291 wc->refs[level] = 0; 8292 wc->flags[level] = 0; 8293 return 0; 8294 } 8295 8296 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8297 struct btrfs_root *root, 8298 struct btrfs_path *path, 8299 struct walk_control *wc) 8300 { 8301 int level = wc->level; 8302 int lookup_info = 1; 8303 int ret; 8304 8305 while (level >= 0) { 8306 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8307 if (ret > 0) 8308 break; 8309 8310 if (level == 0) 8311 break; 8312 8313 if (path->slots[level] >= 8314 btrfs_header_nritems(path->nodes[level])) 8315 break; 8316 8317 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8318 if (ret > 0) { 8319 path->slots[level]++; 8320 continue; 8321 } else if (ret < 0) 8322 return ret; 8323 level = wc->level; 8324 } 8325 return 0; 8326 } 8327 8328 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8329 struct btrfs_root *root, 8330 struct btrfs_path *path, 8331 struct walk_control *wc, int max_level) 8332 { 8333 int level = wc->level; 8334 int ret; 8335 8336 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8337 while (level < max_level && path->nodes[level]) { 8338 wc->level = level; 8339 if (path->slots[level] + 1 < 8340 btrfs_header_nritems(path->nodes[level])) { 8341 path->slots[level]++; 8342 return 0; 8343 } else { 8344 ret = walk_up_proc(trans, root, path, wc); 8345 if (ret > 0) 8346 return 0; 8347 8348 if (path->locks[level]) { 8349 btrfs_tree_unlock_rw(path->nodes[level], 8350 path->locks[level]); 8351 path->locks[level] = 0; 8352 } 8353 free_extent_buffer(path->nodes[level]); 8354 path->nodes[level] = NULL; 8355 level++; 8356 } 8357 } 8358 return 1; 8359 } 8360 8361 /* 8362 * drop a subvolume tree. 8363 * 8364 * this function traverses the tree freeing any blocks that only 8365 * referenced by the tree. 8366 * 8367 * when a shared tree block is found. this function decreases its 8368 * reference count by one. if update_ref is true, this function 8369 * also make sure backrefs for the shared block and all lower level 8370 * blocks are properly updated. 8371 * 8372 * If called with for_reloc == 0, may exit early with -EAGAIN 8373 */ 8374 int btrfs_drop_snapshot(struct btrfs_root *root, 8375 struct btrfs_block_rsv *block_rsv, int update_ref, 8376 int for_reloc) 8377 { 8378 struct btrfs_path *path; 8379 struct btrfs_trans_handle *trans; 8380 struct btrfs_root *tree_root = root->fs_info->tree_root; 8381 struct btrfs_root_item *root_item = &root->root_item; 8382 struct walk_control *wc; 8383 struct btrfs_key key; 8384 int err = 0; 8385 int ret; 8386 int level; 8387 bool root_dropped = false; 8388 8389 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8390 8391 path = btrfs_alloc_path(); 8392 if (!path) { 8393 err = -ENOMEM; 8394 goto out; 8395 } 8396 8397 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8398 if (!wc) { 8399 btrfs_free_path(path); 8400 err = -ENOMEM; 8401 goto out; 8402 } 8403 8404 trans = btrfs_start_transaction(tree_root, 0); 8405 if (IS_ERR(trans)) { 8406 err = PTR_ERR(trans); 8407 goto out_free; 8408 } 8409 8410 if (block_rsv) 8411 trans->block_rsv = block_rsv; 8412 8413 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8414 level = btrfs_header_level(root->node); 8415 path->nodes[level] = btrfs_lock_root_node(root); 8416 btrfs_set_lock_blocking(path->nodes[level]); 8417 path->slots[level] = 0; 8418 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8419 memset(&wc->update_progress, 0, 8420 sizeof(wc->update_progress)); 8421 } else { 8422 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8423 memcpy(&wc->update_progress, &key, 8424 sizeof(wc->update_progress)); 8425 8426 level = root_item->drop_level; 8427 BUG_ON(level == 0); 8428 path->lowest_level = level; 8429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8430 path->lowest_level = 0; 8431 if (ret < 0) { 8432 err = ret; 8433 goto out_end_trans; 8434 } 8435 WARN_ON(ret > 0); 8436 8437 /* 8438 * unlock our path, this is safe because only this 8439 * function is allowed to delete this snapshot 8440 */ 8441 btrfs_unlock_up_safe(path, 0); 8442 8443 level = btrfs_header_level(root->node); 8444 while (1) { 8445 btrfs_tree_lock(path->nodes[level]); 8446 btrfs_set_lock_blocking(path->nodes[level]); 8447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8448 8449 ret = btrfs_lookup_extent_info(trans, root, 8450 path->nodes[level]->start, 8451 level, 1, &wc->refs[level], 8452 &wc->flags[level]); 8453 if (ret < 0) { 8454 err = ret; 8455 goto out_end_trans; 8456 } 8457 BUG_ON(wc->refs[level] == 0); 8458 8459 if (level == root_item->drop_level) 8460 break; 8461 8462 btrfs_tree_unlock(path->nodes[level]); 8463 path->locks[level] = 0; 8464 WARN_ON(wc->refs[level] != 1); 8465 level--; 8466 } 8467 } 8468 8469 wc->level = level; 8470 wc->shared_level = -1; 8471 wc->stage = DROP_REFERENCE; 8472 wc->update_ref = update_ref; 8473 wc->keep_locks = 0; 8474 wc->for_reloc = for_reloc; 8475 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8476 8477 while (1) { 8478 8479 ret = walk_down_tree(trans, root, path, wc); 8480 if (ret < 0) { 8481 err = ret; 8482 break; 8483 } 8484 8485 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8486 if (ret < 0) { 8487 err = ret; 8488 break; 8489 } 8490 8491 if (ret > 0) { 8492 BUG_ON(wc->stage != DROP_REFERENCE); 8493 break; 8494 } 8495 8496 if (wc->stage == DROP_REFERENCE) { 8497 level = wc->level; 8498 btrfs_node_key(path->nodes[level], 8499 &root_item->drop_progress, 8500 path->slots[level]); 8501 root_item->drop_level = level; 8502 } 8503 8504 BUG_ON(wc->level == 0); 8505 if (btrfs_should_end_transaction(trans, tree_root) || 8506 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8507 ret = btrfs_update_root(trans, tree_root, 8508 &root->root_key, 8509 root_item); 8510 if (ret) { 8511 btrfs_abort_transaction(trans, tree_root, ret); 8512 err = ret; 8513 goto out_end_trans; 8514 } 8515 8516 btrfs_end_transaction_throttle(trans, tree_root); 8517 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8518 pr_debug("BTRFS: drop snapshot early exit\n"); 8519 err = -EAGAIN; 8520 goto out_free; 8521 } 8522 8523 trans = btrfs_start_transaction(tree_root, 0); 8524 if (IS_ERR(trans)) { 8525 err = PTR_ERR(trans); 8526 goto out_free; 8527 } 8528 if (block_rsv) 8529 trans->block_rsv = block_rsv; 8530 } 8531 } 8532 btrfs_release_path(path); 8533 if (err) 8534 goto out_end_trans; 8535 8536 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8537 if (ret) { 8538 btrfs_abort_transaction(trans, tree_root, ret); 8539 goto out_end_trans; 8540 } 8541 8542 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8543 ret = btrfs_find_root(tree_root, &root->root_key, path, 8544 NULL, NULL); 8545 if (ret < 0) { 8546 btrfs_abort_transaction(trans, tree_root, ret); 8547 err = ret; 8548 goto out_end_trans; 8549 } else if (ret > 0) { 8550 /* if we fail to delete the orphan item this time 8551 * around, it'll get picked up the next time. 8552 * 8553 * The most common failure here is just -ENOENT. 8554 */ 8555 btrfs_del_orphan_item(trans, tree_root, 8556 root->root_key.objectid); 8557 } 8558 } 8559 8560 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8561 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8562 } else { 8563 free_extent_buffer(root->node); 8564 free_extent_buffer(root->commit_root); 8565 btrfs_put_fs_root(root); 8566 } 8567 root_dropped = true; 8568 out_end_trans: 8569 btrfs_end_transaction_throttle(trans, tree_root); 8570 out_free: 8571 kfree(wc); 8572 btrfs_free_path(path); 8573 out: 8574 /* 8575 * So if we need to stop dropping the snapshot for whatever reason we 8576 * need to make sure to add it back to the dead root list so that we 8577 * keep trying to do the work later. This also cleans up roots if we 8578 * don't have it in the radix (like when we recover after a power fail 8579 * or unmount) so we don't leak memory. 8580 */ 8581 if (!for_reloc && root_dropped == false) 8582 btrfs_add_dead_root(root); 8583 if (err && err != -EAGAIN) 8584 btrfs_std_error(root->fs_info, err); 8585 return err; 8586 } 8587 8588 /* 8589 * drop subtree rooted at tree block 'node'. 8590 * 8591 * NOTE: this function will unlock and release tree block 'node' 8592 * only used by relocation code 8593 */ 8594 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8595 struct btrfs_root *root, 8596 struct extent_buffer *node, 8597 struct extent_buffer *parent) 8598 { 8599 struct btrfs_path *path; 8600 struct walk_control *wc; 8601 int level; 8602 int parent_level; 8603 int ret = 0; 8604 int wret; 8605 8606 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8607 8608 path = btrfs_alloc_path(); 8609 if (!path) 8610 return -ENOMEM; 8611 8612 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8613 if (!wc) { 8614 btrfs_free_path(path); 8615 return -ENOMEM; 8616 } 8617 8618 btrfs_assert_tree_locked(parent); 8619 parent_level = btrfs_header_level(parent); 8620 extent_buffer_get(parent); 8621 path->nodes[parent_level] = parent; 8622 path->slots[parent_level] = btrfs_header_nritems(parent); 8623 8624 btrfs_assert_tree_locked(node); 8625 level = btrfs_header_level(node); 8626 path->nodes[level] = node; 8627 path->slots[level] = 0; 8628 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8629 8630 wc->refs[parent_level] = 1; 8631 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8632 wc->level = level; 8633 wc->shared_level = -1; 8634 wc->stage = DROP_REFERENCE; 8635 wc->update_ref = 0; 8636 wc->keep_locks = 1; 8637 wc->for_reloc = 1; 8638 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8639 8640 while (1) { 8641 wret = walk_down_tree(trans, root, path, wc); 8642 if (wret < 0) { 8643 ret = wret; 8644 break; 8645 } 8646 8647 wret = walk_up_tree(trans, root, path, wc, parent_level); 8648 if (wret < 0) 8649 ret = wret; 8650 if (wret != 0) 8651 break; 8652 } 8653 8654 kfree(wc); 8655 btrfs_free_path(path); 8656 return ret; 8657 } 8658 8659 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8660 { 8661 u64 num_devices; 8662 u64 stripped; 8663 8664 /* 8665 * if restripe for this chunk_type is on pick target profile and 8666 * return, otherwise do the usual balance 8667 */ 8668 stripped = get_restripe_target(root->fs_info, flags); 8669 if (stripped) 8670 return extended_to_chunk(stripped); 8671 8672 num_devices = root->fs_info->fs_devices->rw_devices; 8673 8674 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8675 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8676 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8677 8678 if (num_devices == 1) { 8679 stripped |= BTRFS_BLOCK_GROUP_DUP; 8680 stripped = flags & ~stripped; 8681 8682 /* turn raid0 into single device chunks */ 8683 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8684 return stripped; 8685 8686 /* turn mirroring into duplication */ 8687 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8688 BTRFS_BLOCK_GROUP_RAID10)) 8689 return stripped | BTRFS_BLOCK_GROUP_DUP; 8690 } else { 8691 /* they already had raid on here, just return */ 8692 if (flags & stripped) 8693 return flags; 8694 8695 stripped |= BTRFS_BLOCK_GROUP_DUP; 8696 stripped = flags & ~stripped; 8697 8698 /* switch duplicated blocks with raid1 */ 8699 if (flags & BTRFS_BLOCK_GROUP_DUP) 8700 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8701 8702 /* this is drive concat, leave it alone */ 8703 } 8704 8705 return flags; 8706 } 8707 8708 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8709 { 8710 struct btrfs_space_info *sinfo = cache->space_info; 8711 u64 num_bytes; 8712 u64 min_allocable_bytes; 8713 int ret = -ENOSPC; 8714 8715 8716 /* 8717 * We need some metadata space and system metadata space for 8718 * allocating chunks in some corner cases until we force to set 8719 * it to be readonly. 8720 */ 8721 if ((sinfo->flags & 8722 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8723 !force) 8724 min_allocable_bytes = 1 * 1024 * 1024; 8725 else 8726 min_allocable_bytes = 0; 8727 8728 spin_lock(&sinfo->lock); 8729 spin_lock(&cache->lock); 8730 8731 if (cache->ro) { 8732 ret = 0; 8733 goto out; 8734 } 8735 8736 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8737 cache->bytes_super - btrfs_block_group_used(&cache->item); 8738 8739 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8740 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8741 min_allocable_bytes <= sinfo->total_bytes) { 8742 sinfo->bytes_readonly += num_bytes; 8743 cache->ro = 1; 8744 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8745 ret = 0; 8746 } 8747 out: 8748 spin_unlock(&cache->lock); 8749 spin_unlock(&sinfo->lock); 8750 return ret; 8751 } 8752 8753 int btrfs_set_block_group_ro(struct btrfs_root *root, 8754 struct btrfs_block_group_cache *cache) 8755 8756 { 8757 struct btrfs_trans_handle *trans; 8758 u64 alloc_flags; 8759 int ret; 8760 8761 BUG_ON(cache->ro); 8762 8763 again: 8764 trans = btrfs_join_transaction(root); 8765 if (IS_ERR(trans)) 8766 return PTR_ERR(trans); 8767 8768 /* 8769 * we're not allowed to set block groups readonly after the dirty 8770 * block groups cache has started writing. If it already started, 8771 * back off and let this transaction commit 8772 */ 8773 mutex_lock(&root->fs_info->ro_block_group_mutex); 8774 if (trans->transaction->dirty_bg_run) { 8775 u64 transid = trans->transid; 8776 8777 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8778 btrfs_end_transaction(trans, root); 8779 8780 ret = btrfs_wait_for_commit(root, transid); 8781 if (ret) 8782 return ret; 8783 goto again; 8784 } 8785 8786 /* 8787 * if we are changing raid levels, try to allocate a corresponding 8788 * block group with the new raid level. 8789 */ 8790 alloc_flags = update_block_group_flags(root, cache->flags); 8791 if (alloc_flags != cache->flags) { 8792 ret = do_chunk_alloc(trans, root, alloc_flags, 8793 CHUNK_ALLOC_FORCE); 8794 /* 8795 * ENOSPC is allowed here, we may have enough space 8796 * already allocated at the new raid level to 8797 * carry on 8798 */ 8799 if (ret == -ENOSPC) 8800 ret = 0; 8801 if (ret < 0) 8802 goto out; 8803 } 8804 8805 ret = set_block_group_ro(cache, 0); 8806 if (!ret) 8807 goto out; 8808 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8809 ret = do_chunk_alloc(trans, root, alloc_flags, 8810 CHUNK_ALLOC_FORCE); 8811 if (ret < 0) 8812 goto out; 8813 ret = set_block_group_ro(cache, 0); 8814 out: 8815 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8816 alloc_flags = update_block_group_flags(root, cache->flags); 8817 lock_chunks(root->fs_info->chunk_root); 8818 check_system_chunk(trans, root, alloc_flags); 8819 unlock_chunks(root->fs_info->chunk_root); 8820 } 8821 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8822 8823 btrfs_end_transaction(trans, root); 8824 return ret; 8825 } 8826 8827 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8828 struct btrfs_root *root, u64 type) 8829 { 8830 u64 alloc_flags = get_alloc_profile(root, type); 8831 return do_chunk_alloc(trans, root, alloc_flags, 8832 CHUNK_ALLOC_FORCE); 8833 } 8834 8835 /* 8836 * helper to account the unused space of all the readonly block group in the 8837 * space_info. takes mirrors into account. 8838 */ 8839 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8840 { 8841 struct btrfs_block_group_cache *block_group; 8842 u64 free_bytes = 0; 8843 int factor; 8844 8845 /* It's df, we don't care if it's racey */ 8846 if (list_empty(&sinfo->ro_bgs)) 8847 return 0; 8848 8849 spin_lock(&sinfo->lock); 8850 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8851 spin_lock(&block_group->lock); 8852 8853 if (!block_group->ro) { 8854 spin_unlock(&block_group->lock); 8855 continue; 8856 } 8857 8858 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8859 BTRFS_BLOCK_GROUP_RAID10 | 8860 BTRFS_BLOCK_GROUP_DUP)) 8861 factor = 2; 8862 else 8863 factor = 1; 8864 8865 free_bytes += (block_group->key.offset - 8866 btrfs_block_group_used(&block_group->item)) * 8867 factor; 8868 8869 spin_unlock(&block_group->lock); 8870 } 8871 spin_unlock(&sinfo->lock); 8872 8873 return free_bytes; 8874 } 8875 8876 void btrfs_set_block_group_rw(struct btrfs_root *root, 8877 struct btrfs_block_group_cache *cache) 8878 { 8879 struct btrfs_space_info *sinfo = cache->space_info; 8880 u64 num_bytes; 8881 8882 BUG_ON(!cache->ro); 8883 8884 spin_lock(&sinfo->lock); 8885 spin_lock(&cache->lock); 8886 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8887 cache->bytes_super - btrfs_block_group_used(&cache->item); 8888 sinfo->bytes_readonly -= num_bytes; 8889 cache->ro = 0; 8890 list_del_init(&cache->ro_list); 8891 spin_unlock(&cache->lock); 8892 spin_unlock(&sinfo->lock); 8893 } 8894 8895 /* 8896 * checks to see if its even possible to relocate this block group. 8897 * 8898 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8899 * ok to go ahead and try. 8900 */ 8901 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8902 { 8903 struct btrfs_block_group_cache *block_group; 8904 struct btrfs_space_info *space_info; 8905 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8906 struct btrfs_device *device; 8907 struct btrfs_trans_handle *trans; 8908 u64 min_free; 8909 u64 dev_min = 1; 8910 u64 dev_nr = 0; 8911 u64 target; 8912 int index; 8913 int full = 0; 8914 int ret = 0; 8915 8916 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8917 8918 /* odd, couldn't find the block group, leave it alone */ 8919 if (!block_group) 8920 return -1; 8921 8922 min_free = btrfs_block_group_used(&block_group->item); 8923 8924 /* no bytes used, we're good */ 8925 if (!min_free) 8926 goto out; 8927 8928 space_info = block_group->space_info; 8929 spin_lock(&space_info->lock); 8930 8931 full = space_info->full; 8932 8933 /* 8934 * if this is the last block group we have in this space, we can't 8935 * relocate it unless we're able to allocate a new chunk below. 8936 * 8937 * Otherwise, we need to make sure we have room in the space to handle 8938 * all of the extents from this block group. If we can, we're good 8939 */ 8940 if ((space_info->total_bytes != block_group->key.offset) && 8941 (space_info->bytes_used + space_info->bytes_reserved + 8942 space_info->bytes_pinned + space_info->bytes_readonly + 8943 min_free < space_info->total_bytes)) { 8944 spin_unlock(&space_info->lock); 8945 goto out; 8946 } 8947 spin_unlock(&space_info->lock); 8948 8949 /* 8950 * ok we don't have enough space, but maybe we have free space on our 8951 * devices to allocate new chunks for relocation, so loop through our 8952 * alloc devices and guess if we have enough space. if this block 8953 * group is going to be restriped, run checks against the target 8954 * profile instead of the current one. 8955 */ 8956 ret = -1; 8957 8958 /* 8959 * index: 8960 * 0: raid10 8961 * 1: raid1 8962 * 2: dup 8963 * 3: raid0 8964 * 4: single 8965 */ 8966 target = get_restripe_target(root->fs_info, block_group->flags); 8967 if (target) { 8968 index = __get_raid_index(extended_to_chunk(target)); 8969 } else { 8970 /* 8971 * this is just a balance, so if we were marked as full 8972 * we know there is no space for a new chunk 8973 */ 8974 if (full) 8975 goto out; 8976 8977 index = get_block_group_index(block_group); 8978 } 8979 8980 if (index == BTRFS_RAID_RAID10) { 8981 dev_min = 4; 8982 /* Divide by 2 */ 8983 min_free >>= 1; 8984 } else if (index == BTRFS_RAID_RAID1) { 8985 dev_min = 2; 8986 } else if (index == BTRFS_RAID_DUP) { 8987 /* Multiply by 2 */ 8988 min_free <<= 1; 8989 } else if (index == BTRFS_RAID_RAID0) { 8990 dev_min = fs_devices->rw_devices; 8991 min_free = div64_u64(min_free, dev_min); 8992 } 8993 8994 /* We need to do this so that we can look at pending chunks */ 8995 trans = btrfs_join_transaction(root); 8996 if (IS_ERR(trans)) { 8997 ret = PTR_ERR(trans); 8998 goto out; 8999 } 9000 9001 mutex_lock(&root->fs_info->chunk_mutex); 9002 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9003 u64 dev_offset; 9004 9005 /* 9006 * check to make sure we can actually find a chunk with enough 9007 * space to fit our block group in. 9008 */ 9009 if (device->total_bytes > device->bytes_used + min_free && 9010 !device->is_tgtdev_for_dev_replace) { 9011 ret = find_free_dev_extent(trans, device, min_free, 9012 &dev_offset, NULL); 9013 if (!ret) 9014 dev_nr++; 9015 9016 if (dev_nr >= dev_min) 9017 break; 9018 9019 ret = -1; 9020 } 9021 } 9022 mutex_unlock(&root->fs_info->chunk_mutex); 9023 btrfs_end_transaction(trans, root); 9024 out: 9025 btrfs_put_block_group(block_group); 9026 return ret; 9027 } 9028 9029 static int find_first_block_group(struct btrfs_root *root, 9030 struct btrfs_path *path, struct btrfs_key *key) 9031 { 9032 int ret = 0; 9033 struct btrfs_key found_key; 9034 struct extent_buffer *leaf; 9035 int slot; 9036 9037 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9038 if (ret < 0) 9039 goto out; 9040 9041 while (1) { 9042 slot = path->slots[0]; 9043 leaf = path->nodes[0]; 9044 if (slot >= btrfs_header_nritems(leaf)) { 9045 ret = btrfs_next_leaf(root, path); 9046 if (ret == 0) 9047 continue; 9048 if (ret < 0) 9049 goto out; 9050 break; 9051 } 9052 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9053 9054 if (found_key.objectid >= key->objectid && 9055 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9056 ret = 0; 9057 goto out; 9058 } 9059 path->slots[0]++; 9060 } 9061 out: 9062 return ret; 9063 } 9064 9065 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9066 { 9067 struct btrfs_block_group_cache *block_group; 9068 u64 last = 0; 9069 9070 while (1) { 9071 struct inode *inode; 9072 9073 block_group = btrfs_lookup_first_block_group(info, last); 9074 while (block_group) { 9075 spin_lock(&block_group->lock); 9076 if (block_group->iref) 9077 break; 9078 spin_unlock(&block_group->lock); 9079 block_group = next_block_group(info->tree_root, 9080 block_group); 9081 } 9082 if (!block_group) { 9083 if (last == 0) 9084 break; 9085 last = 0; 9086 continue; 9087 } 9088 9089 inode = block_group->inode; 9090 block_group->iref = 0; 9091 block_group->inode = NULL; 9092 spin_unlock(&block_group->lock); 9093 iput(inode); 9094 last = block_group->key.objectid + block_group->key.offset; 9095 btrfs_put_block_group(block_group); 9096 } 9097 } 9098 9099 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9100 { 9101 struct btrfs_block_group_cache *block_group; 9102 struct btrfs_space_info *space_info; 9103 struct btrfs_caching_control *caching_ctl; 9104 struct rb_node *n; 9105 9106 down_write(&info->commit_root_sem); 9107 while (!list_empty(&info->caching_block_groups)) { 9108 caching_ctl = list_entry(info->caching_block_groups.next, 9109 struct btrfs_caching_control, list); 9110 list_del(&caching_ctl->list); 9111 put_caching_control(caching_ctl); 9112 } 9113 up_write(&info->commit_root_sem); 9114 9115 spin_lock(&info->unused_bgs_lock); 9116 while (!list_empty(&info->unused_bgs)) { 9117 block_group = list_first_entry(&info->unused_bgs, 9118 struct btrfs_block_group_cache, 9119 bg_list); 9120 list_del_init(&block_group->bg_list); 9121 btrfs_put_block_group(block_group); 9122 } 9123 spin_unlock(&info->unused_bgs_lock); 9124 9125 spin_lock(&info->block_group_cache_lock); 9126 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9127 block_group = rb_entry(n, struct btrfs_block_group_cache, 9128 cache_node); 9129 rb_erase(&block_group->cache_node, 9130 &info->block_group_cache_tree); 9131 RB_CLEAR_NODE(&block_group->cache_node); 9132 spin_unlock(&info->block_group_cache_lock); 9133 9134 down_write(&block_group->space_info->groups_sem); 9135 list_del(&block_group->list); 9136 up_write(&block_group->space_info->groups_sem); 9137 9138 if (block_group->cached == BTRFS_CACHE_STARTED) 9139 wait_block_group_cache_done(block_group); 9140 9141 /* 9142 * We haven't cached this block group, which means we could 9143 * possibly have excluded extents on this block group. 9144 */ 9145 if (block_group->cached == BTRFS_CACHE_NO || 9146 block_group->cached == BTRFS_CACHE_ERROR) 9147 free_excluded_extents(info->extent_root, block_group); 9148 9149 btrfs_remove_free_space_cache(block_group); 9150 btrfs_put_block_group(block_group); 9151 9152 spin_lock(&info->block_group_cache_lock); 9153 } 9154 spin_unlock(&info->block_group_cache_lock); 9155 9156 /* now that all the block groups are freed, go through and 9157 * free all the space_info structs. This is only called during 9158 * the final stages of unmount, and so we know nobody is 9159 * using them. We call synchronize_rcu() once before we start, 9160 * just to be on the safe side. 9161 */ 9162 synchronize_rcu(); 9163 9164 release_global_block_rsv(info); 9165 9166 while (!list_empty(&info->space_info)) { 9167 int i; 9168 9169 space_info = list_entry(info->space_info.next, 9170 struct btrfs_space_info, 9171 list); 9172 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9173 if (WARN_ON(space_info->bytes_pinned > 0 || 9174 space_info->bytes_reserved > 0 || 9175 space_info->bytes_may_use > 0)) { 9176 dump_space_info(space_info, 0, 0); 9177 } 9178 } 9179 list_del(&space_info->list); 9180 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9181 struct kobject *kobj; 9182 kobj = space_info->block_group_kobjs[i]; 9183 space_info->block_group_kobjs[i] = NULL; 9184 if (kobj) { 9185 kobject_del(kobj); 9186 kobject_put(kobj); 9187 } 9188 } 9189 kobject_del(&space_info->kobj); 9190 kobject_put(&space_info->kobj); 9191 } 9192 return 0; 9193 } 9194 9195 static void __link_block_group(struct btrfs_space_info *space_info, 9196 struct btrfs_block_group_cache *cache) 9197 { 9198 int index = get_block_group_index(cache); 9199 bool first = false; 9200 9201 down_write(&space_info->groups_sem); 9202 if (list_empty(&space_info->block_groups[index])) 9203 first = true; 9204 list_add_tail(&cache->list, &space_info->block_groups[index]); 9205 up_write(&space_info->groups_sem); 9206 9207 if (first) { 9208 struct raid_kobject *rkobj; 9209 int ret; 9210 9211 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9212 if (!rkobj) 9213 goto out_err; 9214 rkobj->raid_type = index; 9215 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9216 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9217 "%s", get_raid_name(index)); 9218 if (ret) { 9219 kobject_put(&rkobj->kobj); 9220 goto out_err; 9221 } 9222 space_info->block_group_kobjs[index] = &rkobj->kobj; 9223 } 9224 9225 return; 9226 out_err: 9227 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9228 } 9229 9230 static struct btrfs_block_group_cache * 9231 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9232 { 9233 struct btrfs_block_group_cache *cache; 9234 9235 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9236 if (!cache) 9237 return NULL; 9238 9239 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9240 GFP_NOFS); 9241 if (!cache->free_space_ctl) { 9242 kfree(cache); 9243 return NULL; 9244 } 9245 9246 cache->key.objectid = start; 9247 cache->key.offset = size; 9248 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9249 9250 cache->sectorsize = root->sectorsize; 9251 cache->fs_info = root->fs_info; 9252 cache->full_stripe_len = btrfs_full_stripe_len(root, 9253 &root->fs_info->mapping_tree, 9254 start); 9255 atomic_set(&cache->count, 1); 9256 spin_lock_init(&cache->lock); 9257 init_rwsem(&cache->data_rwsem); 9258 INIT_LIST_HEAD(&cache->list); 9259 INIT_LIST_HEAD(&cache->cluster_list); 9260 INIT_LIST_HEAD(&cache->bg_list); 9261 INIT_LIST_HEAD(&cache->ro_list); 9262 INIT_LIST_HEAD(&cache->dirty_list); 9263 INIT_LIST_HEAD(&cache->io_list); 9264 btrfs_init_free_space_ctl(cache); 9265 atomic_set(&cache->trimming, 0); 9266 9267 return cache; 9268 } 9269 9270 int btrfs_read_block_groups(struct btrfs_root *root) 9271 { 9272 struct btrfs_path *path; 9273 int ret; 9274 struct btrfs_block_group_cache *cache; 9275 struct btrfs_fs_info *info = root->fs_info; 9276 struct btrfs_space_info *space_info; 9277 struct btrfs_key key; 9278 struct btrfs_key found_key; 9279 struct extent_buffer *leaf; 9280 int need_clear = 0; 9281 u64 cache_gen; 9282 9283 root = info->extent_root; 9284 key.objectid = 0; 9285 key.offset = 0; 9286 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9287 path = btrfs_alloc_path(); 9288 if (!path) 9289 return -ENOMEM; 9290 path->reada = 1; 9291 9292 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9293 if (btrfs_test_opt(root, SPACE_CACHE) && 9294 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9295 need_clear = 1; 9296 if (btrfs_test_opt(root, CLEAR_CACHE)) 9297 need_clear = 1; 9298 9299 while (1) { 9300 ret = find_first_block_group(root, path, &key); 9301 if (ret > 0) 9302 break; 9303 if (ret != 0) 9304 goto error; 9305 9306 leaf = path->nodes[0]; 9307 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9308 9309 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9310 found_key.offset); 9311 if (!cache) { 9312 ret = -ENOMEM; 9313 goto error; 9314 } 9315 9316 if (need_clear) { 9317 /* 9318 * When we mount with old space cache, we need to 9319 * set BTRFS_DC_CLEAR and set dirty flag. 9320 * 9321 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9322 * truncate the old free space cache inode and 9323 * setup a new one. 9324 * b) Setting 'dirty flag' makes sure that we flush 9325 * the new space cache info onto disk. 9326 */ 9327 if (btrfs_test_opt(root, SPACE_CACHE)) 9328 cache->disk_cache_state = BTRFS_DC_CLEAR; 9329 } 9330 9331 read_extent_buffer(leaf, &cache->item, 9332 btrfs_item_ptr_offset(leaf, path->slots[0]), 9333 sizeof(cache->item)); 9334 cache->flags = btrfs_block_group_flags(&cache->item); 9335 9336 key.objectid = found_key.objectid + found_key.offset; 9337 btrfs_release_path(path); 9338 9339 /* 9340 * We need to exclude the super stripes now so that the space 9341 * info has super bytes accounted for, otherwise we'll think 9342 * we have more space than we actually do. 9343 */ 9344 ret = exclude_super_stripes(root, cache); 9345 if (ret) { 9346 /* 9347 * We may have excluded something, so call this just in 9348 * case. 9349 */ 9350 free_excluded_extents(root, cache); 9351 btrfs_put_block_group(cache); 9352 goto error; 9353 } 9354 9355 /* 9356 * check for two cases, either we are full, and therefore 9357 * don't need to bother with the caching work since we won't 9358 * find any space, or we are empty, and we can just add all 9359 * the space in and be done with it. This saves us _alot_ of 9360 * time, particularly in the full case. 9361 */ 9362 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9363 cache->last_byte_to_unpin = (u64)-1; 9364 cache->cached = BTRFS_CACHE_FINISHED; 9365 free_excluded_extents(root, cache); 9366 } else if (btrfs_block_group_used(&cache->item) == 0) { 9367 cache->last_byte_to_unpin = (u64)-1; 9368 cache->cached = BTRFS_CACHE_FINISHED; 9369 add_new_free_space(cache, root->fs_info, 9370 found_key.objectid, 9371 found_key.objectid + 9372 found_key.offset); 9373 free_excluded_extents(root, cache); 9374 } 9375 9376 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9377 if (ret) { 9378 btrfs_remove_free_space_cache(cache); 9379 btrfs_put_block_group(cache); 9380 goto error; 9381 } 9382 9383 ret = update_space_info(info, cache->flags, found_key.offset, 9384 btrfs_block_group_used(&cache->item), 9385 &space_info); 9386 if (ret) { 9387 btrfs_remove_free_space_cache(cache); 9388 spin_lock(&info->block_group_cache_lock); 9389 rb_erase(&cache->cache_node, 9390 &info->block_group_cache_tree); 9391 RB_CLEAR_NODE(&cache->cache_node); 9392 spin_unlock(&info->block_group_cache_lock); 9393 btrfs_put_block_group(cache); 9394 goto error; 9395 } 9396 9397 cache->space_info = space_info; 9398 spin_lock(&cache->space_info->lock); 9399 cache->space_info->bytes_readonly += cache->bytes_super; 9400 spin_unlock(&cache->space_info->lock); 9401 9402 __link_block_group(space_info, cache); 9403 9404 set_avail_alloc_bits(root->fs_info, cache->flags); 9405 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9406 set_block_group_ro(cache, 1); 9407 } else if (btrfs_block_group_used(&cache->item) == 0) { 9408 spin_lock(&info->unused_bgs_lock); 9409 /* Should always be true but just in case. */ 9410 if (list_empty(&cache->bg_list)) { 9411 btrfs_get_block_group(cache); 9412 list_add_tail(&cache->bg_list, 9413 &info->unused_bgs); 9414 } 9415 spin_unlock(&info->unused_bgs_lock); 9416 } 9417 } 9418 9419 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9420 if (!(get_alloc_profile(root, space_info->flags) & 9421 (BTRFS_BLOCK_GROUP_RAID10 | 9422 BTRFS_BLOCK_GROUP_RAID1 | 9423 BTRFS_BLOCK_GROUP_RAID5 | 9424 BTRFS_BLOCK_GROUP_RAID6 | 9425 BTRFS_BLOCK_GROUP_DUP))) 9426 continue; 9427 /* 9428 * avoid allocating from un-mirrored block group if there are 9429 * mirrored block groups. 9430 */ 9431 list_for_each_entry(cache, 9432 &space_info->block_groups[BTRFS_RAID_RAID0], 9433 list) 9434 set_block_group_ro(cache, 1); 9435 list_for_each_entry(cache, 9436 &space_info->block_groups[BTRFS_RAID_SINGLE], 9437 list) 9438 set_block_group_ro(cache, 1); 9439 } 9440 9441 init_global_block_rsv(info); 9442 ret = 0; 9443 error: 9444 btrfs_free_path(path); 9445 return ret; 9446 } 9447 9448 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9449 struct btrfs_root *root) 9450 { 9451 struct btrfs_block_group_cache *block_group, *tmp; 9452 struct btrfs_root *extent_root = root->fs_info->extent_root; 9453 struct btrfs_block_group_item item; 9454 struct btrfs_key key; 9455 int ret = 0; 9456 9457 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9458 if (ret) 9459 goto next; 9460 9461 spin_lock(&block_group->lock); 9462 memcpy(&item, &block_group->item, sizeof(item)); 9463 memcpy(&key, &block_group->key, sizeof(key)); 9464 spin_unlock(&block_group->lock); 9465 9466 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9467 sizeof(item)); 9468 if (ret) 9469 btrfs_abort_transaction(trans, extent_root, ret); 9470 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9471 key.objectid, key.offset); 9472 if (ret) 9473 btrfs_abort_transaction(trans, extent_root, ret); 9474 next: 9475 list_del_init(&block_group->bg_list); 9476 } 9477 } 9478 9479 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9480 struct btrfs_root *root, u64 bytes_used, 9481 u64 type, u64 chunk_objectid, u64 chunk_offset, 9482 u64 size) 9483 { 9484 int ret; 9485 struct btrfs_root *extent_root; 9486 struct btrfs_block_group_cache *cache; 9487 9488 extent_root = root->fs_info->extent_root; 9489 9490 btrfs_set_log_full_commit(root->fs_info, trans); 9491 9492 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9493 if (!cache) 9494 return -ENOMEM; 9495 9496 btrfs_set_block_group_used(&cache->item, bytes_used); 9497 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9498 btrfs_set_block_group_flags(&cache->item, type); 9499 9500 cache->flags = type; 9501 cache->last_byte_to_unpin = (u64)-1; 9502 cache->cached = BTRFS_CACHE_FINISHED; 9503 ret = exclude_super_stripes(root, cache); 9504 if (ret) { 9505 /* 9506 * We may have excluded something, so call this just in 9507 * case. 9508 */ 9509 free_excluded_extents(root, cache); 9510 btrfs_put_block_group(cache); 9511 return ret; 9512 } 9513 9514 add_new_free_space(cache, root->fs_info, chunk_offset, 9515 chunk_offset + size); 9516 9517 free_excluded_extents(root, cache); 9518 9519 /* 9520 * Call to ensure the corresponding space_info object is created and 9521 * assigned to our block group, but don't update its counters just yet. 9522 * We want our bg to be added to the rbtree with its ->space_info set. 9523 */ 9524 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9525 &cache->space_info); 9526 if (ret) { 9527 btrfs_remove_free_space_cache(cache); 9528 btrfs_put_block_group(cache); 9529 return ret; 9530 } 9531 9532 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9533 if (ret) { 9534 btrfs_remove_free_space_cache(cache); 9535 btrfs_put_block_group(cache); 9536 return ret; 9537 } 9538 9539 /* 9540 * Now that our block group has its ->space_info set and is inserted in 9541 * the rbtree, update the space info's counters. 9542 */ 9543 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9544 &cache->space_info); 9545 if (ret) { 9546 btrfs_remove_free_space_cache(cache); 9547 spin_lock(&root->fs_info->block_group_cache_lock); 9548 rb_erase(&cache->cache_node, 9549 &root->fs_info->block_group_cache_tree); 9550 RB_CLEAR_NODE(&cache->cache_node); 9551 spin_unlock(&root->fs_info->block_group_cache_lock); 9552 btrfs_put_block_group(cache); 9553 return ret; 9554 } 9555 update_global_block_rsv(root->fs_info); 9556 9557 spin_lock(&cache->space_info->lock); 9558 cache->space_info->bytes_readonly += cache->bytes_super; 9559 spin_unlock(&cache->space_info->lock); 9560 9561 __link_block_group(cache->space_info, cache); 9562 9563 list_add_tail(&cache->bg_list, &trans->new_bgs); 9564 9565 set_avail_alloc_bits(extent_root->fs_info, type); 9566 9567 return 0; 9568 } 9569 9570 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9571 { 9572 u64 extra_flags = chunk_to_extended(flags) & 9573 BTRFS_EXTENDED_PROFILE_MASK; 9574 9575 write_seqlock(&fs_info->profiles_lock); 9576 if (flags & BTRFS_BLOCK_GROUP_DATA) 9577 fs_info->avail_data_alloc_bits &= ~extra_flags; 9578 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9579 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9580 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9581 fs_info->avail_system_alloc_bits &= ~extra_flags; 9582 write_sequnlock(&fs_info->profiles_lock); 9583 } 9584 9585 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9586 struct btrfs_root *root, u64 group_start, 9587 struct extent_map *em) 9588 { 9589 struct btrfs_path *path; 9590 struct btrfs_block_group_cache *block_group; 9591 struct btrfs_free_cluster *cluster; 9592 struct btrfs_root *tree_root = root->fs_info->tree_root; 9593 struct btrfs_key key; 9594 struct inode *inode; 9595 struct kobject *kobj = NULL; 9596 int ret; 9597 int index; 9598 int factor; 9599 struct btrfs_caching_control *caching_ctl = NULL; 9600 bool remove_em; 9601 9602 root = root->fs_info->extent_root; 9603 9604 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9605 BUG_ON(!block_group); 9606 BUG_ON(!block_group->ro); 9607 9608 /* 9609 * Free the reserved super bytes from this block group before 9610 * remove it. 9611 */ 9612 free_excluded_extents(root, block_group); 9613 9614 memcpy(&key, &block_group->key, sizeof(key)); 9615 index = get_block_group_index(block_group); 9616 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9617 BTRFS_BLOCK_GROUP_RAID1 | 9618 BTRFS_BLOCK_GROUP_RAID10)) 9619 factor = 2; 9620 else 9621 factor = 1; 9622 9623 /* make sure this block group isn't part of an allocation cluster */ 9624 cluster = &root->fs_info->data_alloc_cluster; 9625 spin_lock(&cluster->refill_lock); 9626 btrfs_return_cluster_to_free_space(block_group, cluster); 9627 spin_unlock(&cluster->refill_lock); 9628 9629 /* 9630 * make sure this block group isn't part of a metadata 9631 * allocation cluster 9632 */ 9633 cluster = &root->fs_info->meta_alloc_cluster; 9634 spin_lock(&cluster->refill_lock); 9635 btrfs_return_cluster_to_free_space(block_group, cluster); 9636 spin_unlock(&cluster->refill_lock); 9637 9638 path = btrfs_alloc_path(); 9639 if (!path) { 9640 ret = -ENOMEM; 9641 goto out; 9642 } 9643 9644 /* 9645 * get the inode first so any iput calls done for the io_list 9646 * aren't the final iput (no unlinks allowed now) 9647 */ 9648 inode = lookup_free_space_inode(tree_root, block_group, path); 9649 9650 mutex_lock(&trans->transaction->cache_write_mutex); 9651 /* 9652 * make sure our free spache cache IO is done before remove the 9653 * free space inode 9654 */ 9655 spin_lock(&trans->transaction->dirty_bgs_lock); 9656 if (!list_empty(&block_group->io_list)) { 9657 list_del_init(&block_group->io_list); 9658 9659 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9660 9661 spin_unlock(&trans->transaction->dirty_bgs_lock); 9662 btrfs_wait_cache_io(root, trans, block_group, 9663 &block_group->io_ctl, path, 9664 block_group->key.objectid); 9665 btrfs_put_block_group(block_group); 9666 spin_lock(&trans->transaction->dirty_bgs_lock); 9667 } 9668 9669 if (!list_empty(&block_group->dirty_list)) { 9670 list_del_init(&block_group->dirty_list); 9671 btrfs_put_block_group(block_group); 9672 } 9673 spin_unlock(&trans->transaction->dirty_bgs_lock); 9674 mutex_unlock(&trans->transaction->cache_write_mutex); 9675 9676 if (!IS_ERR(inode)) { 9677 ret = btrfs_orphan_add(trans, inode); 9678 if (ret) { 9679 btrfs_add_delayed_iput(inode); 9680 goto out; 9681 } 9682 clear_nlink(inode); 9683 /* One for the block groups ref */ 9684 spin_lock(&block_group->lock); 9685 if (block_group->iref) { 9686 block_group->iref = 0; 9687 block_group->inode = NULL; 9688 spin_unlock(&block_group->lock); 9689 iput(inode); 9690 } else { 9691 spin_unlock(&block_group->lock); 9692 } 9693 /* One for our lookup ref */ 9694 btrfs_add_delayed_iput(inode); 9695 } 9696 9697 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9698 key.offset = block_group->key.objectid; 9699 key.type = 0; 9700 9701 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9702 if (ret < 0) 9703 goto out; 9704 if (ret > 0) 9705 btrfs_release_path(path); 9706 if (ret == 0) { 9707 ret = btrfs_del_item(trans, tree_root, path); 9708 if (ret) 9709 goto out; 9710 btrfs_release_path(path); 9711 } 9712 9713 spin_lock(&root->fs_info->block_group_cache_lock); 9714 rb_erase(&block_group->cache_node, 9715 &root->fs_info->block_group_cache_tree); 9716 RB_CLEAR_NODE(&block_group->cache_node); 9717 9718 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9719 root->fs_info->first_logical_byte = (u64)-1; 9720 spin_unlock(&root->fs_info->block_group_cache_lock); 9721 9722 down_write(&block_group->space_info->groups_sem); 9723 /* 9724 * we must use list_del_init so people can check to see if they 9725 * are still on the list after taking the semaphore 9726 */ 9727 list_del_init(&block_group->list); 9728 if (list_empty(&block_group->space_info->block_groups[index])) { 9729 kobj = block_group->space_info->block_group_kobjs[index]; 9730 block_group->space_info->block_group_kobjs[index] = NULL; 9731 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9732 } 9733 up_write(&block_group->space_info->groups_sem); 9734 if (kobj) { 9735 kobject_del(kobj); 9736 kobject_put(kobj); 9737 } 9738 9739 if (block_group->has_caching_ctl) 9740 caching_ctl = get_caching_control(block_group); 9741 if (block_group->cached == BTRFS_CACHE_STARTED) 9742 wait_block_group_cache_done(block_group); 9743 if (block_group->has_caching_ctl) { 9744 down_write(&root->fs_info->commit_root_sem); 9745 if (!caching_ctl) { 9746 struct btrfs_caching_control *ctl; 9747 9748 list_for_each_entry(ctl, 9749 &root->fs_info->caching_block_groups, list) 9750 if (ctl->block_group == block_group) { 9751 caching_ctl = ctl; 9752 atomic_inc(&caching_ctl->count); 9753 break; 9754 } 9755 } 9756 if (caching_ctl) 9757 list_del_init(&caching_ctl->list); 9758 up_write(&root->fs_info->commit_root_sem); 9759 if (caching_ctl) { 9760 /* Once for the caching bgs list and once for us. */ 9761 put_caching_control(caching_ctl); 9762 put_caching_control(caching_ctl); 9763 } 9764 } 9765 9766 spin_lock(&trans->transaction->dirty_bgs_lock); 9767 if (!list_empty(&block_group->dirty_list)) { 9768 WARN_ON(1); 9769 } 9770 if (!list_empty(&block_group->io_list)) { 9771 WARN_ON(1); 9772 } 9773 spin_unlock(&trans->transaction->dirty_bgs_lock); 9774 btrfs_remove_free_space_cache(block_group); 9775 9776 spin_lock(&block_group->space_info->lock); 9777 list_del_init(&block_group->ro_list); 9778 9779 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9780 WARN_ON(block_group->space_info->total_bytes 9781 < block_group->key.offset); 9782 WARN_ON(block_group->space_info->bytes_readonly 9783 < block_group->key.offset); 9784 WARN_ON(block_group->space_info->disk_total 9785 < block_group->key.offset * factor); 9786 } 9787 block_group->space_info->total_bytes -= block_group->key.offset; 9788 block_group->space_info->bytes_readonly -= block_group->key.offset; 9789 block_group->space_info->disk_total -= block_group->key.offset * factor; 9790 9791 spin_unlock(&block_group->space_info->lock); 9792 9793 memcpy(&key, &block_group->key, sizeof(key)); 9794 9795 lock_chunks(root); 9796 if (!list_empty(&em->list)) { 9797 /* We're in the transaction->pending_chunks list. */ 9798 free_extent_map(em); 9799 } 9800 spin_lock(&block_group->lock); 9801 block_group->removed = 1; 9802 /* 9803 * At this point trimming can't start on this block group, because we 9804 * removed the block group from the tree fs_info->block_group_cache_tree 9805 * so no one can't find it anymore and even if someone already got this 9806 * block group before we removed it from the rbtree, they have already 9807 * incremented block_group->trimming - if they didn't, they won't find 9808 * any free space entries because we already removed them all when we 9809 * called btrfs_remove_free_space_cache(). 9810 * 9811 * And we must not remove the extent map from the fs_info->mapping_tree 9812 * to prevent the same logical address range and physical device space 9813 * ranges from being reused for a new block group. This is because our 9814 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9815 * completely transactionless, so while it is trimming a range the 9816 * currently running transaction might finish and a new one start, 9817 * allowing for new block groups to be created that can reuse the same 9818 * physical device locations unless we take this special care. 9819 */ 9820 remove_em = (atomic_read(&block_group->trimming) == 0); 9821 /* 9822 * Make sure a trimmer task always sees the em in the pinned_chunks list 9823 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9824 * before checking block_group->removed). 9825 */ 9826 if (!remove_em) { 9827 /* 9828 * Our em might be in trans->transaction->pending_chunks which 9829 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9830 * and so is the fs_info->pinned_chunks list. 9831 * 9832 * So at this point we must be holding the chunk_mutex to avoid 9833 * any races with chunk allocation (more specifically at 9834 * volumes.c:contains_pending_extent()), to ensure it always 9835 * sees the em, either in the pending_chunks list or in the 9836 * pinned_chunks list. 9837 */ 9838 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9839 } 9840 spin_unlock(&block_group->lock); 9841 9842 if (remove_em) { 9843 struct extent_map_tree *em_tree; 9844 9845 em_tree = &root->fs_info->mapping_tree.map_tree; 9846 write_lock(&em_tree->lock); 9847 /* 9848 * The em might be in the pending_chunks list, so make sure the 9849 * chunk mutex is locked, since remove_extent_mapping() will 9850 * delete us from that list. 9851 */ 9852 remove_extent_mapping(em_tree, em); 9853 write_unlock(&em_tree->lock); 9854 /* once for the tree */ 9855 free_extent_map(em); 9856 } 9857 9858 unlock_chunks(root); 9859 9860 btrfs_put_block_group(block_group); 9861 btrfs_put_block_group(block_group); 9862 9863 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9864 if (ret > 0) 9865 ret = -EIO; 9866 if (ret < 0) 9867 goto out; 9868 9869 ret = btrfs_del_item(trans, root, path); 9870 out: 9871 btrfs_free_path(path); 9872 return ret; 9873 } 9874 9875 /* 9876 * Process the unused_bgs list and remove any that don't have any allocated 9877 * space inside of them. 9878 */ 9879 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9880 { 9881 struct btrfs_block_group_cache *block_group; 9882 struct btrfs_space_info *space_info; 9883 struct btrfs_root *root = fs_info->extent_root; 9884 struct btrfs_trans_handle *trans; 9885 int ret = 0; 9886 9887 if (!fs_info->open) 9888 return; 9889 9890 spin_lock(&fs_info->unused_bgs_lock); 9891 while (!list_empty(&fs_info->unused_bgs)) { 9892 u64 start, end; 9893 9894 block_group = list_first_entry(&fs_info->unused_bgs, 9895 struct btrfs_block_group_cache, 9896 bg_list); 9897 space_info = block_group->space_info; 9898 list_del_init(&block_group->bg_list); 9899 if (ret || btrfs_mixed_space_info(space_info)) { 9900 btrfs_put_block_group(block_group); 9901 continue; 9902 } 9903 spin_unlock(&fs_info->unused_bgs_lock); 9904 9905 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 9906 9907 /* Don't want to race with allocators so take the groups_sem */ 9908 down_write(&space_info->groups_sem); 9909 spin_lock(&block_group->lock); 9910 if (block_group->reserved || 9911 btrfs_block_group_used(&block_group->item) || 9912 block_group->ro) { 9913 /* 9914 * We want to bail if we made new allocations or have 9915 * outstanding allocations in this block group. We do 9916 * the ro check in case balance is currently acting on 9917 * this block group. 9918 */ 9919 spin_unlock(&block_group->lock); 9920 up_write(&space_info->groups_sem); 9921 goto next; 9922 } 9923 spin_unlock(&block_group->lock); 9924 9925 /* We don't want to force the issue, only flip if it's ok. */ 9926 ret = set_block_group_ro(block_group, 0); 9927 up_write(&space_info->groups_sem); 9928 if (ret < 0) { 9929 ret = 0; 9930 goto next; 9931 } 9932 9933 /* 9934 * Want to do this before we do anything else so we can recover 9935 * properly if we fail to join the transaction. 9936 */ 9937 /* 1 for btrfs_orphan_reserve_metadata() */ 9938 trans = btrfs_start_transaction(root, 1); 9939 if (IS_ERR(trans)) { 9940 btrfs_set_block_group_rw(root, block_group); 9941 ret = PTR_ERR(trans); 9942 goto next; 9943 } 9944 9945 /* 9946 * We could have pending pinned extents for this block group, 9947 * just delete them, we don't care about them anymore. 9948 */ 9949 start = block_group->key.objectid; 9950 end = start + block_group->key.offset - 1; 9951 /* 9952 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9953 * btrfs_finish_extent_commit(). If we are at transaction N, 9954 * another task might be running finish_extent_commit() for the 9955 * previous transaction N - 1, and have seen a range belonging 9956 * to the block group in freed_extents[] before we were able to 9957 * clear the whole block group range from freed_extents[]. This 9958 * means that task can lookup for the block group after we 9959 * unpinned it from freed_extents[] and removed it, leading to 9960 * a BUG_ON() at btrfs_unpin_extent_range(). 9961 */ 9962 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9963 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9964 EXTENT_DIRTY, GFP_NOFS); 9965 if (ret) { 9966 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9967 btrfs_set_block_group_rw(root, block_group); 9968 goto end_trans; 9969 } 9970 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 9971 EXTENT_DIRTY, GFP_NOFS); 9972 if (ret) { 9973 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9974 btrfs_set_block_group_rw(root, block_group); 9975 goto end_trans; 9976 } 9977 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9978 9979 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9980 spin_lock(&space_info->lock); 9981 spin_lock(&block_group->lock); 9982 9983 space_info->bytes_pinned -= block_group->pinned; 9984 space_info->bytes_readonly += block_group->pinned; 9985 percpu_counter_add(&space_info->total_bytes_pinned, 9986 -block_group->pinned); 9987 block_group->pinned = 0; 9988 9989 spin_unlock(&block_group->lock); 9990 spin_unlock(&space_info->lock); 9991 9992 /* 9993 * Btrfs_remove_chunk will abort the transaction if things go 9994 * horribly wrong. 9995 */ 9996 ret = btrfs_remove_chunk(trans, root, 9997 block_group->key.objectid); 9998 end_trans: 9999 btrfs_end_transaction(trans, root); 10000 next: 10001 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 10002 btrfs_put_block_group(block_group); 10003 spin_lock(&fs_info->unused_bgs_lock); 10004 } 10005 spin_unlock(&fs_info->unused_bgs_lock); 10006 } 10007 10008 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10009 { 10010 struct btrfs_space_info *space_info; 10011 struct btrfs_super_block *disk_super; 10012 u64 features; 10013 u64 flags; 10014 int mixed = 0; 10015 int ret; 10016 10017 disk_super = fs_info->super_copy; 10018 if (!btrfs_super_root(disk_super)) 10019 return 1; 10020 10021 features = btrfs_super_incompat_flags(disk_super); 10022 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10023 mixed = 1; 10024 10025 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10026 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10027 if (ret) 10028 goto out; 10029 10030 if (mixed) { 10031 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10032 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10033 } else { 10034 flags = BTRFS_BLOCK_GROUP_METADATA; 10035 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10036 if (ret) 10037 goto out; 10038 10039 flags = BTRFS_BLOCK_GROUP_DATA; 10040 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10041 } 10042 out: 10043 return ret; 10044 } 10045 10046 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10047 { 10048 return unpin_extent_range(root, start, end, false); 10049 } 10050 10051 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10052 { 10053 struct btrfs_fs_info *fs_info = root->fs_info; 10054 struct btrfs_block_group_cache *cache = NULL; 10055 u64 group_trimmed; 10056 u64 start; 10057 u64 end; 10058 u64 trimmed = 0; 10059 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10060 int ret = 0; 10061 10062 /* 10063 * try to trim all FS space, our block group may start from non-zero. 10064 */ 10065 if (range->len == total_bytes) 10066 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10067 else 10068 cache = btrfs_lookup_block_group(fs_info, range->start); 10069 10070 while (cache) { 10071 if (cache->key.objectid >= (range->start + range->len)) { 10072 btrfs_put_block_group(cache); 10073 break; 10074 } 10075 10076 start = max(range->start, cache->key.objectid); 10077 end = min(range->start + range->len, 10078 cache->key.objectid + cache->key.offset); 10079 10080 if (end - start >= range->minlen) { 10081 if (!block_group_cache_done(cache)) { 10082 ret = cache_block_group(cache, 0); 10083 if (ret) { 10084 btrfs_put_block_group(cache); 10085 break; 10086 } 10087 ret = wait_block_group_cache_done(cache); 10088 if (ret) { 10089 btrfs_put_block_group(cache); 10090 break; 10091 } 10092 } 10093 ret = btrfs_trim_block_group(cache, 10094 &group_trimmed, 10095 start, 10096 end, 10097 range->minlen); 10098 10099 trimmed += group_trimmed; 10100 if (ret) { 10101 btrfs_put_block_group(cache); 10102 break; 10103 } 10104 } 10105 10106 cache = next_block_group(fs_info->tree_root, cache); 10107 } 10108 10109 range->len = trimmed; 10110 return ret; 10111 } 10112 10113 /* 10114 * btrfs_{start,end}_write_no_snapshoting() are similar to 10115 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10116 * data into the page cache through nocow before the subvolume is snapshoted, 10117 * but flush the data into disk after the snapshot creation, or to prevent 10118 * operations while snapshoting is ongoing and that cause the snapshot to be 10119 * inconsistent (writes followed by expanding truncates for example). 10120 */ 10121 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10122 { 10123 percpu_counter_dec(&root->subv_writers->counter); 10124 /* 10125 * Make sure counter is updated before we wake up 10126 * waiters. 10127 */ 10128 smp_mb(); 10129 if (waitqueue_active(&root->subv_writers->wait)) 10130 wake_up(&root->subv_writers->wait); 10131 } 10132 10133 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10134 { 10135 if (atomic_read(&root->will_be_snapshoted)) 10136 return 0; 10137 10138 percpu_counter_inc(&root->subv_writers->counter); 10139 /* 10140 * Make sure counter is updated before we check for snapshot creation. 10141 */ 10142 smp_mb(); 10143 if (atomic_read(&root->will_be_snapshoted)) { 10144 btrfs_end_write_no_snapshoting(root); 10145 return 0; 10146 } 10147 return 1; 10148 } 10149