xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 92b19ff5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				struct btrfs_delayed_ref_node *node, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 			      struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 	u64 extent_start, extent_end, size, total_added = 0;
344 	int ret;
345 
346 	while (start < end) {
347 		ret = find_first_extent_bit(info->pinned_extents, start,
348 					    &extent_start, &extent_end,
349 					    EXTENT_DIRTY | EXTENT_UPTODATE,
350 					    NULL);
351 		if (ret)
352 			break;
353 
354 		if (extent_start <= start) {
355 			start = extent_end + 1;
356 		} else if (extent_start > start && extent_start < end) {
357 			size = extent_start - start;
358 			total_added += size;
359 			ret = btrfs_add_free_space(block_group, start,
360 						   size);
361 			BUG_ON(ret); /* -ENOMEM or logic error */
362 			start = extent_end + 1;
363 		} else {
364 			break;
365 		}
366 	}
367 
368 	if (start < end) {
369 		size = end - start;
370 		total_added += size;
371 		ret = btrfs_add_free_space(block_group, start, size);
372 		BUG_ON(ret); /* -ENOMEM or logic error */
373 	}
374 
375 	return total_added;
376 }
377 
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 	struct btrfs_block_group_cache *block_group;
381 	struct btrfs_fs_info *fs_info;
382 	struct btrfs_caching_control *caching_ctl;
383 	struct btrfs_root *extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret = -ENOMEM;
391 
392 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 	block_group = caching_ctl->block_group;
394 	fs_info = block_group->fs_info;
395 	extent_root = fs_info->extent_root;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		goto out;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 	/*
404 	 * We don't want to deadlock with somebody trying to allocate a new
405 	 * extent for the extent root while also trying to search the extent
406 	 * root to add free space.  So we skip locking and search the commit
407 	 * root, since its read-only
408 	 */
409 	path->skip_locking = 1;
410 	path->search_commit_root = 1;
411 	path->reada = 1;
412 
413 	key.objectid = last;
414 	key.offset = 0;
415 	key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 	mutex_lock(&caching_ctl->mutex);
418 	/* need to make sure the commit_root doesn't disappear */
419 	down_read(&fs_info->commit_root_sem);
420 
421 next:
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched() ||
443 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
444 				caching_ctl->progress = last;
445 				btrfs_release_path(path);
446 				up_read(&fs_info->commit_root_sem);
447 				mutex_unlock(&caching_ctl->mutex);
448 				cond_resched();
449 				goto again;
450 			}
451 
452 			ret = btrfs_next_leaf(extent_root, path);
453 			if (ret < 0)
454 				goto err;
455 			if (ret)
456 				break;
457 			leaf = path->nodes[0];
458 			nritems = btrfs_header_nritems(leaf);
459 			continue;
460 		}
461 
462 		if (key.objectid < last) {
463 			key.objectid = last;
464 			key.offset = 0;
465 			key.type = BTRFS_EXTENT_ITEM_KEY;
466 
467 			caching_ctl->progress = last;
468 			btrfs_release_path(path);
469 			goto next;
470 		}
471 
472 		if (key.objectid < block_group->key.objectid) {
473 			path->slots[0]++;
474 			continue;
475 		}
476 
477 		if (key.objectid >= block_group->key.objectid +
478 		    block_group->key.offset)
479 			break;
480 
481 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 		    key.type == BTRFS_METADATA_ITEM_KEY) {
483 			total_found += add_new_free_space(block_group,
484 							  fs_info, last,
485 							  key.objectid);
486 			if (key.type == BTRFS_METADATA_ITEM_KEY)
487 				last = key.objectid +
488 					fs_info->tree_root->nodesize;
489 			else
490 				last = key.objectid + key.offset;
491 
492 			if (total_found > (1024 * 1024 * 2)) {
493 				total_found = 0;
494 				wake_up(&caching_ctl->wait);
495 			}
496 		}
497 		path->slots[0]++;
498 	}
499 	ret = 0;
500 
501 	total_found += add_new_free_space(block_group, fs_info, last,
502 					  block_group->key.objectid +
503 					  block_group->key.offset);
504 	caching_ctl->progress = (u64)-1;
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 err:
512 	btrfs_free_path(path);
513 	up_read(&fs_info->commit_root_sem);
514 
515 	free_excluded_extents(extent_root, block_group);
516 
517 	mutex_unlock(&caching_ctl->mutex);
518 out:
519 	if (ret) {
520 		spin_lock(&block_group->lock);
521 		block_group->caching_ctl = NULL;
522 		block_group->cached = BTRFS_CACHE_ERROR;
523 		spin_unlock(&block_group->lock);
524 	}
525 	wake_up(&caching_ctl->wait);
526 
527 	put_caching_control(caching_ctl);
528 	btrfs_put_block_group(block_group);
529 }
530 
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 			     int load_cache_only)
533 {
534 	DEFINE_WAIT(wait);
535 	struct btrfs_fs_info *fs_info = cache->fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	int ret = 0;
538 
539 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 	if (!caching_ctl)
541 		return -ENOMEM;
542 
543 	INIT_LIST_HEAD(&caching_ctl->list);
544 	mutex_init(&caching_ctl->mutex);
545 	init_waitqueue_head(&caching_ctl->wait);
546 	caching_ctl->block_group = cache;
547 	caching_ctl->progress = cache->key.objectid;
548 	atomic_set(&caching_ctl->count, 1);
549 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 			caching_thread, NULL, NULL);
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		mutex_lock(&caching_ctl->mutex);
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 			caching_ctl->progress = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 				cache->has_caching_ctl = 1;
607 			}
608 		}
609 		spin_unlock(&cache->lock);
610 		mutex_unlock(&caching_ctl->mutex);
611 
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 			cache->has_caching_ctl = 1;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->nodesize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 				&key, path, 0, 0);
785 	if (ret < 0)
786 		goto out_free;
787 
788 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 		if (path->slots[0]) {
790 			path->slots[0]--;
791 			btrfs_item_key_to_cpu(path->nodes[0], &key,
792 					      path->slots[0]);
793 			if (key.objectid == bytenr &&
794 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
795 			    key.offset == root->nodesize)
796 				ret = 0;
797 		}
798 	}
799 
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 		if (item_size >= sizeof(*ei)) {
804 			ei = btrfs_item_ptr(leaf, path->slots[0],
805 					    struct btrfs_extent_item);
806 			num_refs = btrfs_extent_refs(leaf, ei);
807 			extent_flags = btrfs_extent_flags(leaf, ei);
808 		} else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 			struct btrfs_extent_item_v0 *ei0;
811 			BUG_ON(item_size != sizeof(*ei0));
812 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 					     struct btrfs_extent_item_v0);
814 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 			/* FIXME: this isn't correct for data */
816 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 			BUG();
819 #endif
820 		}
821 		BUG_ON(num_refs == 0);
822 	} else {
823 		num_refs = 0;
824 		extent_flags = 0;
825 		ret = 0;
826 	}
827 
828 	if (!trans)
829 		goto out;
830 
831 	delayed_refs = &trans->transaction->delayed_refs;
832 	spin_lock(&delayed_refs->lock);
833 	head = btrfs_find_delayed_ref_head(trans, bytenr);
834 	if (head) {
835 		if (!mutex_trylock(&head->mutex)) {
836 			atomic_inc(&head->node.refs);
837 			spin_unlock(&delayed_refs->lock);
838 
839 			btrfs_release_path(path);
840 
841 			/*
842 			 * Mutex was contended, block until it's released and try
843 			 * again
844 			 */
845 			mutex_lock(&head->mutex);
846 			mutex_unlock(&head->mutex);
847 			btrfs_put_delayed_ref(&head->node);
848 			goto search_again;
849 		}
850 		spin_lock(&head->lock);
851 		if (head->extent_op && head->extent_op->update_flags)
852 			extent_flags |= head->extent_op->flags_to_set;
853 		else
854 			BUG_ON(num_refs == 0);
855 
856 		num_refs += head->node.ref_mod;
857 		spin_unlock(&head->lock);
858 		mutex_unlock(&head->mutex);
859 	}
860 	spin_unlock(&delayed_refs->lock);
861 out:
862 	WARN_ON(num_refs == 0);
863 	if (refs)
864 		*refs = num_refs;
865 	if (flags)
866 		*flags = extent_flags;
867 out_free:
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 /*
873  * Back reference rules.  Back refs have three main goals:
874  *
875  * 1) differentiate between all holders of references to an extent so that
876  *    when a reference is dropped we can make sure it was a valid reference
877  *    before freeing the extent.
878  *
879  * 2) Provide enough information to quickly find the holders of an extent
880  *    if we notice a given block is corrupted or bad.
881  *
882  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883  *    maintenance.  This is actually the same as #2, but with a slightly
884  *    different use case.
885  *
886  * There are two kinds of back refs. The implicit back refs is optimized
887  * for pointers in non-shared tree blocks. For a given pointer in a block,
888  * back refs of this kind provide information about the block's owner tree
889  * and the pointer's key. These information allow us to find the block by
890  * b-tree searching. The full back refs is for pointers in tree blocks not
891  * referenced by their owner trees. The location of tree block is recorded
892  * in the back refs. Actually the full back refs is generic, and can be
893  * used in all cases the implicit back refs is used. The major shortcoming
894  * of the full back refs is its overhead. Every time a tree block gets
895  * COWed, we have to update back refs entry for all pointers in it.
896  *
897  * For a newly allocated tree block, we use implicit back refs for
898  * pointers in it. This means most tree related operations only involve
899  * implicit back refs. For a tree block created in old transaction, the
900  * only way to drop a reference to it is COW it. So we can detect the
901  * event that tree block loses its owner tree's reference and do the
902  * back refs conversion.
903  *
904  * When a tree block is COW'd through a tree, there are four cases:
905  *
906  * The reference count of the block is one and the tree is the block's
907  * owner tree. Nothing to do in this case.
908  *
909  * The reference count of the block is one and the tree is not the
910  * block's owner tree. In this case, full back refs is used for pointers
911  * in the block. Remove these full back refs, add implicit back refs for
912  * every pointers in the new block.
913  *
914  * The reference count of the block is greater than one and the tree is
915  * the block's owner tree. In this case, implicit back refs is used for
916  * pointers in the block. Add full back refs for every pointers in the
917  * block, increase lower level extents' reference counts. The original
918  * implicit back refs are entailed to the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * not the block's owner tree. Add implicit back refs for every pointer in
922  * the new block, increase lower level extents' reference count.
923  *
924  * Back Reference Key composing:
925  *
926  * The key objectid corresponds to the first byte in the extent,
927  * The key type is used to differentiate between types of back refs.
928  * There are different meanings of the key offset for different types
929  * of back refs.
930  *
931  * File extents can be referenced by:
932  *
933  * - multiple snapshots, subvolumes, or different generations in one subvol
934  * - different files inside a single subvolume
935  * - different offsets inside a file (bookend extents in file.c)
936  *
937  * The extent ref structure for the implicit back refs has fields for:
938  *
939  * - Objectid of the subvolume root
940  * - objectid of the file holding the reference
941  * - original offset in the file
942  * - how many bookend extents
943  *
944  * The key offset for the implicit back refs is hash of the first
945  * three fields.
946  *
947  * The extent ref structure for the full back refs has field for:
948  *
949  * - number of pointers in the tree leaf
950  *
951  * The key offset for the implicit back refs is the first byte of
952  * the tree leaf
953  *
954  * When a file extent is allocated, The implicit back refs is used.
955  * the fields are filled in:
956  *
957  *     (root_key.objectid, inode objectid, offset in file, 1)
958  *
959  * When a file extent is removed file truncation, we find the
960  * corresponding implicit back refs and check the following fields:
961  *
962  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
963  *
964  * Btree extents can be referenced by:
965  *
966  * - Different subvolumes
967  *
968  * Both the implicit back refs and the full back refs for tree blocks
969  * only consist of key. The key offset for the implicit back refs is
970  * objectid of block's owner tree. The key offset for the full back refs
971  * is the first byte of parent block.
972  *
973  * When implicit back refs is used, information about the lowest key and
974  * level of the tree block are required. These information are stored in
975  * tree block info structure.
976  */
977 
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  u64 owner, u32 extra_size)
983 {
984 	struct btrfs_extent_item *item;
985 	struct btrfs_extent_item_v0 *ei0;
986 	struct btrfs_extent_ref_v0 *ref0;
987 	struct btrfs_tree_block_info *bi;
988 	struct extent_buffer *leaf;
989 	struct btrfs_key key;
990 	struct btrfs_key found_key;
991 	u32 new_size = sizeof(*item);
992 	u64 refs;
993 	int ret;
994 
995 	leaf = path->nodes[0];
996 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997 
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 			     struct btrfs_extent_item_v0);
1001 	refs = btrfs_extent_refs_v0(leaf, ei0);
1002 
1003 	if (owner == (u64)-1) {
1004 		while (1) {
1005 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 				ret = btrfs_next_leaf(root, path);
1007 				if (ret < 0)
1008 					return ret;
1009 				BUG_ON(ret > 0); /* Corruption */
1010 				leaf = path->nodes[0];
1011 			}
1012 			btrfs_item_key_to_cpu(leaf, &found_key,
1013 					      path->slots[0]);
1014 			BUG_ON(key.objectid != found_key.objectid);
1015 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 				path->slots[0]++;
1017 				continue;
1018 			}
1019 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 					      struct btrfs_extent_ref_v0);
1021 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 			break;
1023 		}
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 		new_size += sizeof(*bi);
1029 
1030 	new_size -= sizeof(*ei0);
1031 	ret = btrfs_search_slot(trans, root, &key, path,
1032 				new_size + extra_size, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 	BUG_ON(ret); /* Corruption */
1036 
1037 	btrfs_extend_item(root, path, new_size);
1038 
1039 	leaf = path->nodes[0];
1040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 	btrfs_set_extent_refs(leaf, item, refs);
1042 	/* FIXME: get real generation */
1043 	btrfs_set_extent_generation(leaf, item, 0);
1044 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 		btrfs_set_extent_flags(leaf, item,
1046 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 		bi = (struct btrfs_tree_block_info *)(item + 1);
1049 		/* FIXME: get first key of the block */
1050 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 	} else {
1053 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 	}
1055 	btrfs_mark_buffer_dirty(leaf);
1056 	return 0;
1057 }
1058 #endif
1059 
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	u32 high_crc = ~(u32)0;
1063 	u32 low_crc = ~(u32)0;
1064 	__le64 lenum;
1065 
1066 	lenum = cpu_to_le64(root_objectid);
1067 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 	lenum = cpu_to_le64(owner);
1069 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 	lenum = cpu_to_le64(offset);
1071 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 
1073 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075 
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 				     struct btrfs_extent_data_ref *ref)
1078 {
1079 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 				    btrfs_extent_data_ref_objectid(leaf, ref),
1081 				    btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083 
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 				 struct btrfs_extent_data_ref *ref,
1086 				 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 		return 0;
1092 	return 1;
1093 }
1094 
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 					   struct btrfs_root *root,
1097 					   struct btrfs_path *path,
1098 					   u64 bytenr, u64 parent,
1099 					   u64 root_objectid,
1100 					   u64 owner, u64 offset)
1101 {
1102 	struct btrfs_key key;
1103 	struct btrfs_extent_data_ref *ref;
1104 	struct extent_buffer *leaf;
1105 	u32 nritems;
1106 	int ret;
1107 	int recow;
1108 	int err = -ENOENT;
1109 
1110 	key.objectid = bytenr;
1111 	if (parent) {
1112 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 		key.offset = parent;
1114 	} else {
1115 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 		key.offset = hash_extent_data_ref(root_objectid,
1117 						  owner, offset);
1118 	}
1119 again:
1120 	recow = 0;
1121 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 	if (ret < 0) {
1123 		err = ret;
1124 		goto fail;
1125 	}
1126 
1127 	if (parent) {
1128 		if (!ret)
1129 			return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 		btrfs_release_path(path);
1133 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 		if (ret < 0) {
1135 			err = ret;
1136 			goto fail;
1137 		}
1138 		if (!ret)
1139 			return 0;
1140 #endif
1141 		goto fail;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	nritems = btrfs_header_nritems(leaf);
1146 	while (1) {
1147 		if (path->slots[0] >= nritems) {
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret < 0)
1150 				err = ret;
1151 			if (ret)
1152 				goto fail;
1153 
1154 			leaf = path->nodes[0];
1155 			nritems = btrfs_header_nritems(leaf);
1156 			recow = 1;
1157 		}
1158 
1159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 		if (key.objectid != bytenr ||
1161 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 			goto fail;
1163 
1164 		ref = btrfs_item_ptr(leaf, path->slots[0],
1165 				     struct btrfs_extent_data_ref);
1166 
1167 		if (match_extent_data_ref(leaf, ref, root_objectid,
1168 					  owner, offset)) {
1169 			if (recow) {
1170 				btrfs_release_path(path);
1171 				goto again;
1172 			}
1173 			err = 0;
1174 			break;
1175 		}
1176 		path->slots[0]++;
1177 	}
1178 fail:
1179 	return err;
1180 }
1181 
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 					   struct btrfs_root *root,
1184 					   struct btrfs_path *path,
1185 					   u64 bytenr, u64 parent,
1186 					   u64 root_objectid, u64 owner,
1187 					   u64 offset, int refs_to_add)
1188 {
1189 	struct btrfs_key key;
1190 	struct extent_buffer *leaf;
1191 	u32 size;
1192 	u32 num_refs;
1193 	int ret;
1194 
1195 	key.objectid = bytenr;
1196 	if (parent) {
1197 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 		key.offset = parent;
1199 		size = sizeof(struct btrfs_shared_data_ref);
1200 	} else {
1201 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 		key.offset = hash_extent_data_ref(root_objectid,
1203 						  owner, offset);
1204 		size = sizeof(struct btrfs_extent_data_ref);
1205 	}
1206 
1207 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 	if (ret && ret != -EEXIST)
1209 		goto fail;
1210 
1211 	leaf = path->nodes[0];
1212 	if (parent) {
1213 		struct btrfs_shared_data_ref *ref;
1214 		ref = btrfs_item_ptr(leaf, path->slots[0],
1215 				     struct btrfs_shared_data_ref);
1216 		if (ret == 0) {
1217 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 		} else {
1219 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 			num_refs += refs_to_add;
1221 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 		}
1223 	} else {
1224 		struct btrfs_extent_data_ref *ref;
1225 		while (ret == -EEXIST) {
1226 			ref = btrfs_item_ptr(leaf, path->slots[0],
1227 					     struct btrfs_extent_data_ref);
1228 			if (match_extent_data_ref(leaf, ref, root_objectid,
1229 						  owner, offset))
1230 				break;
1231 			btrfs_release_path(path);
1232 			key.offset++;
1233 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 						      size);
1235 			if (ret && ret != -EEXIST)
1236 				goto fail;
1237 
1238 			leaf = path->nodes[0];
1239 		}
1240 		ref = btrfs_item_ptr(leaf, path->slots[0],
1241 				     struct btrfs_extent_data_ref);
1242 		if (ret == 0) {
1243 			btrfs_set_extent_data_ref_root(leaf, ref,
1244 						       root_objectid);
1245 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 		} else {
1249 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 			num_refs += refs_to_add;
1251 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 		}
1253 	}
1254 	btrfs_mark_buffer_dirty(leaf);
1255 	ret = 0;
1256 fail:
1257 	btrfs_release_path(path);
1258 	return ret;
1259 }
1260 
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   int refs_to_drop, int *last_ref)
1265 {
1266 	struct btrfs_key key;
1267 	struct btrfs_extent_data_ref *ref1 = NULL;
1268 	struct btrfs_shared_data_ref *ref2 = NULL;
1269 	struct extent_buffer *leaf;
1270 	u32 num_refs = 0;
1271 	int ret = 0;
1272 
1273 	leaf = path->nodes[0];
1274 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275 
1276 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 				      struct btrfs_extent_data_ref);
1279 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 				      struct btrfs_shared_data_ref);
1283 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 		struct btrfs_extent_ref_v0 *ref0;
1287 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_ref_v0);
1289 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 	} else {
1292 		BUG();
1293 	}
1294 
1295 	BUG_ON(num_refs < refs_to_drop);
1296 	num_refs -= refs_to_drop;
1297 
1298 	if (num_refs == 0) {
1299 		ret = btrfs_del_item(trans, root, path);
1300 		*last_ref = 1;
1301 	} else {
1302 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 		else {
1308 			struct btrfs_extent_ref_v0 *ref0;
1309 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 					struct btrfs_extent_ref_v0);
1311 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 		}
1313 #endif
1314 		btrfs_mark_buffer_dirty(leaf);
1315 	}
1316 	return ret;
1317 }
1318 
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 					  struct btrfs_path *path,
1321 					  struct btrfs_extent_inline_ref *iref)
1322 {
1323 	struct btrfs_key key;
1324 	struct extent_buffer *leaf;
1325 	struct btrfs_extent_data_ref *ref1;
1326 	struct btrfs_shared_data_ref *ref2;
1327 	u32 num_refs = 0;
1328 
1329 	leaf = path->nodes[0];
1330 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 	if (iref) {
1332 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 		    BTRFS_EXTENT_DATA_REF_KEY) {
1334 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 		} else {
1337 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 		}
1340 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 				      struct btrfs_extent_data_ref);
1343 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 				      struct btrfs_shared_data_ref);
1347 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 		struct btrfs_extent_ref_v0 *ref0;
1351 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 				      struct btrfs_extent_ref_v0);
1353 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 	} else {
1356 		WARN_ON(1);
1357 	}
1358 	return num_refs;
1359 }
1360 
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 					  struct btrfs_root *root,
1363 					  struct btrfs_path *path,
1364 					  u64 bytenr, u64 parent,
1365 					  u64 root_objectid)
1366 {
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	key.objectid = bytenr;
1371 	if (parent) {
1372 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 		key.offset = parent;
1374 	} else {
1375 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 		key.offset = root_objectid;
1377 	}
1378 
1379 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 	if (ret > 0)
1381 		ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 	if (ret == -ENOENT && parent) {
1384 		btrfs_release_path(path);
1385 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 		if (ret > 0)
1388 			ret = -ENOENT;
1389 	}
1390 #endif
1391 	return ret;
1392 }
1393 
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 					  struct btrfs_root *root,
1396 					  struct btrfs_path *path,
1397 					  u64 bytenr, u64 parent,
1398 					  u64 root_objectid)
1399 {
1400 	struct btrfs_key key;
1401 	int ret;
1402 
1403 	key.objectid = bytenr;
1404 	if (parent) {
1405 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 		key.offset = parent;
1407 	} else {
1408 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 		key.offset = root_objectid;
1410 	}
1411 
1412 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 	btrfs_release_path(path);
1414 	return ret;
1415 }
1416 
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 	int type;
1420 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 		if (parent > 0)
1422 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 		else
1424 			type = BTRFS_TREE_BLOCK_REF_KEY;
1425 	} else {
1426 		if (parent > 0)
1427 			type = BTRFS_SHARED_DATA_REF_KEY;
1428 		else
1429 			type = BTRFS_EXTENT_DATA_REF_KEY;
1430 	}
1431 	return type;
1432 }
1433 
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 			 struct btrfs_key *key)
1436 
1437 {
1438 	for (; level < BTRFS_MAX_LEVEL; level++) {
1439 		if (!path->nodes[level])
1440 			break;
1441 		if (path->slots[level] + 1 >=
1442 		    btrfs_header_nritems(path->nodes[level]))
1443 			continue;
1444 		if (level == 0)
1445 			btrfs_item_key_to_cpu(path->nodes[level], key,
1446 					      path->slots[level] + 1);
1447 		else
1448 			btrfs_node_key_to_cpu(path->nodes[level], key,
1449 					      path->slots[level] + 1);
1450 		return 0;
1451 	}
1452 	return 1;
1453 }
1454 
1455 /*
1456  * look for inline back ref. if back ref is found, *ref_ret is set
1457  * to the address of inline back ref, and 0 is returned.
1458  *
1459  * if back ref isn't found, *ref_ret is set to the address where it
1460  * should be inserted, and -ENOENT is returned.
1461  *
1462  * if insert is true and there are too many inline back refs, the path
1463  * points to the extent item, and -EAGAIN is returned.
1464  *
1465  * NOTE: inline back refs are ordered in the same way that back ref
1466  *	 items in the tree are ordered.
1467  */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 				 struct btrfs_root *root,
1471 				 struct btrfs_path *path,
1472 				 struct btrfs_extent_inline_ref **ref_ret,
1473 				 u64 bytenr, u64 num_bytes,
1474 				 u64 parent, u64 root_objectid,
1475 				 u64 owner, u64 offset, int insert)
1476 {
1477 	struct btrfs_key key;
1478 	struct extent_buffer *leaf;
1479 	struct btrfs_extent_item *ei;
1480 	struct btrfs_extent_inline_ref *iref;
1481 	u64 flags;
1482 	u64 item_size;
1483 	unsigned long ptr;
1484 	unsigned long end;
1485 	int extra_size;
1486 	int type;
1487 	int want;
1488 	int ret;
1489 	int err = 0;
1490 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 						 SKINNY_METADATA);
1492 
1493 	key.objectid = bytenr;
1494 	key.type = BTRFS_EXTENT_ITEM_KEY;
1495 	key.offset = num_bytes;
1496 
1497 	want = extent_ref_type(parent, owner);
1498 	if (insert) {
1499 		extra_size = btrfs_extent_inline_ref_size(want);
1500 		path->keep_locks = 1;
1501 	} else
1502 		extra_size = -1;
1503 
1504 	/*
1505 	 * Owner is our parent level, so we can just add one to get the level
1506 	 * for the block we are interested in.
1507 	 */
1508 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		key.type = BTRFS_METADATA_ITEM_KEY;
1510 		key.offset = owner;
1511 	}
1512 
1513 again:
1514 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 	if (ret < 0) {
1516 		err = ret;
1517 		goto out;
1518 	}
1519 
1520 	/*
1521 	 * We may be a newly converted file system which still has the old fat
1522 	 * extent entries for metadata, so try and see if we have one of those.
1523 	 */
1524 	if (ret > 0 && skinny_metadata) {
1525 		skinny_metadata = false;
1526 		if (path->slots[0]) {
1527 			path->slots[0]--;
1528 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 					      path->slots[0]);
1530 			if (key.objectid == bytenr &&
1531 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 			    key.offset == num_bytes)
1533 				ret = 0;
1534 		}
1535 		if (ret) {
1536 			key.objectid = bytenr;
1537 			key.type = BTRFS_EXTENT_ITEM_KEY;
1538 			key.offset = num_bytes;
1539 			btrfs_release_path(path);
1540 			goto again;
1541 		}
1542 	}
1543 
1544 	if (ret && !insert) {
1545 		err = -ENOENT;
1546 		goto out;
1547 	} else if (WARN_ON(ret)) {
1548 		err = -EIO;
1549 		goto out;
1550 	}
1551 
1552 	leaf = path->nodes[0];
1553 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 	if (item_size < sizeof(*ei)) {
1556 		if (!insert) {
1557 			err = -ENOENT;
1558 			goto out;
1559 		}
1560 		ret = convert_extent_item_v0(trans, root, path, owner,
1561 					     extra_size);
1562 		if (ret < 0) {
1563 			err = ret;
1564 			goto out;
1565 		}
1566 		leaf = path->nodes[0];
1567 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 	}
1569 #endif
1570 	BUG_ON(item_size < sizeof(*ei));
1571 
1572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 	flags = btrfs_extent_flags(leaf, ei);
1574 
1575 	ptr = (unsigned long)(ei + 1);
1576 	end = (unsigned long)ei + item_size;
1577 
1578 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 		ptr += sizeof(struct btrfs_tree_block_info);
1580 		BUG_ON(ptr > end);
1581 	}
1582 
1583 	err = -ENOENT;
1584 	while (1) {
1585 		if (ptr >= end) {
1586 			WARN_ON(ptr > end);
1587 			break;
1588 		}
1589 		iref = (struct btrfs_extent_inline_ref *)ptr;
1590 		type = btrfs_extent_inline_ref_type(leaf, iref);
1591 		if (want < type)
1592 			break;
1593 		if (want > type) {
1594 			ptr += btrfs_extent_inline_ref_size(type);
1595 			continue;
1596 		}
1597 
1598 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 			struct btrfs_extent_data_ref *dref;
1600 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 			if (match_extent_data_ref(leaf, dref, root_objectid,
1602 						  owner, offset)) {
1603 				err = 0;
1604 				break;
1605 			}
1606 			if (hash_extent_data_ref_item(leaf, dref) <
1607 			    hash_extent_data_ref(root_objectid, owner, offset))
1608 				break;
1609 		} else {
1610 			u64 ref_offset;
1611 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 			if (parent > 0) {
1613 				if (parent == ref_offset) {
1614 					err = 0;
1615 					break;
1616 				}
1617 				if (ref_offset < parent)
1618 					break;
1619 			} else {
1620 				if (root_objectid == ref_offset) {
1621 					err = 0;
1622 					break;
1623 				}
1624 				if (ref_offset < root_objectid)
1625 					break;
1626 			}
1627 		}
1628 		ptr += btrfs_extent_inline_ref_size(type);
1629 	}
1630 	if (err == -ENOENT && insert) {
1631 		if (item_size + extra_size >=
1632 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 			err = -EAGAIN;
1634 			goto out;
1635 		}
1636 		/*
1637 		 * To add new inline back ref, we have to make sure
1638 		 * there is no corresponding back ref item.
1639 		 * For simplicity, we just do not add new inline back
1640 		 * ref if there is any kind of item for this block
1641 		 */
1642 		if (find_next_key(path, 0, &key) == 0 &&
1643 		    key.objectid == bytenr &&
1644 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 			err = -EAGAIN;
1646 			goto out;
1647 		}
1648 	}
1649 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 	if (insert) {
1652 		path->keep_locks = 0;
1653 		btrfs_unlock_up_safe(path, 1);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  * helper to add new inline back ref
1660  */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 				 struct btrfs_path *path,
1664 				 struct btrfs_extent_inline_ref *iref,
1665 				 u64 parent, u64 root_objectid,
1666 				 u64 owner, u64 offset, int refs_to_add,
1667 				 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 	struct extent_buffer *leaf;
1670 	struct btrfs_extent_item *ei;
1671 	unsigned long ptr;
1672 	unsigned long end;
1673 	unsigned long item_offset;
1674 	u64 refs;
1675 	int size;
1676 	int type;
1677 
1678 	leaf = path->nodes[0];
1679 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 	item_offset = (unsigned long)iref - (unsigned long)ei;
1681 
1682 	type = extent_ref_type(parent, owner);
1683 	size = btrfs_extent_inline_ref_size(type);
1684 
1685 	btrfs_extend_item(root, path, size);
1686 
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	refs = btrfs_extent_refs(leaf, ei);
1689 	refs += refs_to_add;
1690 	btrfs_set_extent_refs(leaf, ei, refs);
1691 	if (extent_op)
1692 		__run_delayed_extent_op(extent_op, leaf, ei);
1693 
1694 	ptr = (unsigned long)ei + item_offset;
1695 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 	if (ptr < end - size)
1697 		memmove_extent_buffer(leaf, ptr + size, ptr,
1698 				      end - size - ptr);
1699 
1700 	iref = (struct btrfs_extent_inline_ref *)ptr;
1701 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 		struct btrfs_extent_data_ref *dref;
1704 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		struct btrfs_shared_data_ref *sref;
1711 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 	} else {
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 	}
1719 	btrfs_mark_buffer_dirty(leaf);
1720 }
1721 
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 				 struct btrfs_root *root,
1724 				 struct btrfs_path *path,
1725 				 struct btrfs_extent_inline_ref **ref_ret,
1726 				 u64 bytenr, u64 num_bytes, u64 parent,
1727 				 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 	int ret;
1730 
1731 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 					   bytenr, num_bytes, parent,
1733 					   root_objectid, owner, offset, 0);
1734 	if (ret != -ENOENT)
1735 		return ret;
1736 
1737 	btrfs_release_path(path);
1738 	*ref_ret = NULL;
1739 
1740 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 					    root_objectid);
1743 	} else {
1744 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 					     root_objectid, owner, offset);
1746 	}
1747 	return ret;
1748 }
1749 
1750 /*
1751  * helper to update/remove inline back ref
1752  */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 				  struct btrfs_path *path,
1756 				  struct btrfs_extent_inline_ref *iref,
1757 				  int refs_to_mod,
1758 				  struct btrfs_delayed_extent_op *extent_op,
1759 				  int *last_ref)
1760 {
1761 	struct extent_buffer *leaf;
1762 	struct btrfs_extent_item *ei;
1763 	struct btrfs_extent_data_ref *dref = NULL;
1764 	struct btrfs_shared_data_ref *sref = NULL;
1765 	unsigned long ptr;
1766 	unsigned long end;
1767 	u32 item_size;
1768 	int size;
1769 	int type;
1770 	u64 refs;
1771 
1772 	leaf = path->nodes[0];
1773 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 	refs = btrfs_extent_refs(leaf, ei);
1775 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 	refs += refs_to_mod;
1777 	btrfs_set_extent_refs(leaf, ei, refs);
1778 	if (extent_op)
1779 		__run_delayed_extent_op(extent_op, leaf, ei);
1780 
1781 	type = btrfs_extent_inline_ref_type(leaf, iref);
1782 
1783 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 		refs = btrfs_extent_data_ref_count(leaf, dref);
1786 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 		refs = btrfs_shared_data_ref_count(leaf, sref);
1789 	} else {
1790 		refs = 1;
1791 		BUG_ON(refs_to_mod != -1);
1792 	}
1793 
1794 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 	refs += refs_to_mod;
1796 
1797 	if (refs > 0) {
1798 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 		else
1801 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 	} else {
1803 		*last_ref = 1;
1804 		size =  btrfs_extent_inline_ref_size(type);
1805 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 		ptr = (unsigned long)iref;
1807 		end = (unsigned long)ei + item_size;
1808 		if (ptr + size < end)
1809 			memmove_extent_buffer(leaf, ptr, ptr + size,
1810 					      end - ptr - size);
1811 		item_size -= size;
1812 		btrfs_truncate_item(root, path, item_size, 1);
1813 	}
1814 	btrfs_mark_buffer_dirty(leaf);
1815 }
1816 
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 				 struct btrfs_root *root,
1820 				 struct btrfs_path *path,
1821 				 u64 bytenr, u64 num_bytes, u64 parent,
1822 				 u64 root_objectid, u64 owner,
1823 				 u64 offset, int refs_to_add,
1824 				 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 	struct btrfs_extent_inline_ref *iref;
1827 	int ret;
1828 
1829 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 					   bytenr, num_bytes, parent,
1831 					   root_objectid, owner, offset, 1);
1832 	if (ret == 0) {
1833 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 		update_inline_extent_backref(root, path, iref,
1835 					     refs_to_add, extent_op, NULL);
1836 	} else if (ret == -ENOENT) {
1837 		setup_inline_extent_backref(root, path, iref, parent,
1838 					    root_objectid, owner, offset,
1839 					    refs_to_add, extent_op);
1840 		ret = 0;
1841 	}
1842 	return ret;
1843 }
1844 
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 				 struct btrfs_root *root,
1847 				 struct btrfs_path *path,
1848 				 u64 bytenr, u64 parent, u64 root_objectid,
1849 				 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 	int ret;
1852 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 		BUG_ON(refs_to_add != 1);
1854 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 					    parent, root_objectid);
1856 	} else {
1857 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 					     parent, root_objectid,
1859 					     owner, offset, refs_to_add);
1860 	}
1861 	return ret;
1862 }
1863 
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 				 struct btrfs_root *root,
1866 				 struct btrfs_path *path,
1867 				 struct btrfs_extent_inline_ref *iref,
1868 				 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 	int ret = 0;
1871 
1872 	BUG_ON(!is_data && refs_to_drop != 1);
1873 	if (iref) {
1874 		update_inline_extent_backref(root, path, iref,
1875 					     -refs_to_drop, NULL, last_ref);
1876 	} else if (is_data) {
1877 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 					     last_ref);
1879 	} else {
1880 		*last_ref = 1;
1881 		ret = btrfs_del_item(trans, root, path);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 				u64 start, u64 len)
1888 {
1889 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891 
1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 			 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 	int ret;
1896 	u64 discarded_bytes = 0;
1897 	struct btrfs_bio *bbio = NULL;
1898 
1899 
1900 	/* Tell the block device(s) that the sectors can be discarded */
1901 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 			      bytenr, &num_bytes, &bbio, 0);
1903 	/* Error condition is -ENOMEM */
1904 	if (!ret) {
1905 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 		int i;
1907 
1908 
1909 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 			if (!stripe->dev->can_discard)
1911 				continue;
1912 
1913 			ret = btrfs_issue_discard(stripe->dev->bdev,
1914 						  stripe->physical,
1915 						  stripe->length);
1916 			if (!ret)
1917 				discarded_bytes += stripe->length;
1918 			else if (ret != -EOPNOTSUPP)
1919 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920 
1921 			/*
1922 			 * Just in case we get back EOPNOTSUPP for some reason,
1923 			 * just ignore the return value so we don't screw up
1924 			 * people calling discard_extent.
1925 			 */
1926 			ret = 0;
1927 		}
1928 		btrfs_put_bbio(bbio);
1929 	}
1930 
1931 	if (actual_bytes)
1932 		*actual_bytes = discarded_bytes;
1933 
1934 
1935 	if (ret == -EOPNOTSUPP)
1936 		ret = 0;
1937 	return ret;
1938 }
1939 
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 			 struct btrfs_root *root,
1943 			 u64 bytenr, u64 num_bytes, u64 parent,
1944 			 u64 root_objectid, u64 owner, u64 offset,
1945 			 int no_quota)
1946 {
1947 	int ret;
1948 	struct btrfs_fs_info *fs_info = root->fs_info;
1949 
1950 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952 
1953 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 					num_bytes,
1956 					parent, root_objectid, (int)owner,
1957 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 	} else {
1959 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 					num_bytes,
1961 					parent, root_objectid, owner, offset,
1962 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 	}
1964 	return ret;
1965 }
1966 
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 				  struct btrfs_root *root,
1969 				  struct btrfs_delayed_ref_node *node,
1970 				  u64 parent, u64 root_objectid,
1971 				  u64 owner, u64 offset, int refs_to_add,
1972 				  struct btrfs_delayed_extent_op *extent_op)
1973 {
1974 	struct btrfs_fs_info *fs_info = root->fs_info;
1975 	struct btrfs_path *path;
1976 	struct extent_buffer *leaf;
1977 	struct btrfs_extent_item *item;
1978 	struct btrfs_key key;
1979 	u64 bytenr = node->bytenr;
1980 	u64 num_bytes = node->num_bytes;
1981 	u64 refs;
1982 	int ret;
1983 	int no_quota = node->no_quota;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2000 		goto out;
2001 
2002 	/*
2003 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 	 * inline extent ref, so just update the reference count and add a
2005 	 * normal backref.
2006 	 */
2007 	leaf = path->nodes[0];
2008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 	refs = btrfs_extent_refs(leaf, item);
2011 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2012 	if (extent_op)
2013 		__run_delayed_extent_op(extent_op, leaf, item);
2014 
2015 	btrfs_mark_buffer_dirty(leaf);
2016 	btrfs_release_path(path);
2017 
2018 	path->reada = 1;
2019 	path->leave_spinning = 1;
2020 	/* now insert the actual backref */
2021 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2022 				    path, bytenr, parent, root_objectid,
2023 				    owner, offset, refs_to_add);
2024 	if (ret)
2025 		btrfs_abort_transaction(trans, root, ret);
2026 out:
2027 	btrfs_free_path(path);
2028 	return ret;
2029 }
2030 
2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2032 				struct btrfs_root *root,
2033 				struct btrfs_delayed_ref_node *node,
2034 				struct btrfs_delayed_extent_op *extent_op,
2035 				int insert_reserved)
2036 {
2037 	int ret = 0;
2038 	struct btrfs_delayed_data_ref *ref;
2039 	struct btrfs_key ins;
2040 	u64 parent = 0;
2041 	u64 ref_root = 0;
2042 	u64 flags = 0;
2043 
2044 	ins.objectid = node->bytenr;
2045 	ins.offset = node->num_bytes;
2046 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2047 
2048 	ref = btrfs_delayed_node_to_data_ref(node);
2049 	trace_run_delayed_data_ref(node, ref, node->action);
2050 
2051 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2052 		parent = ref->parent;
2053 	ref_root = ref->root;
2054 
2055 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2056 		if (extent_op)
2057 			flags |= extent_op->flags_to_set;
2058 		ret = alloc_reserved_file_extent(trans, root,
2059 						 parent, ref_root, flags,
2060 						 ref->objectid, ref->offset,
2061 						 &ins, node->ref_mod);
2062 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2063 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2064 					     ref_root, ref->objectid,
2065 					     ref->offset, node->ref_mod,
2066 					     extent_op);
2067 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2068 		ret = __btrfs_free_extent(trans, root, node, parent,
2069 					  ref_root, ref->objectid,
2070 					  ref->offset, node->ref_mod,
2071 					  extent_op);
2072 	} else {
2073 		BUG();
2074 	}
2075 	return ret;
2076 }
2077 
2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2079 				    struct extent_buffer *leaf,
2080 				    struct btrfs_extent_item *ei)
2081 {
2082 	u64 flags = btrfs_extent_flags(leaf, ei);
2083 	if (extent_op->update_flags) {
2084 		flags |= extent_op->flags_to_set;
2085 		btrfs_set_extent_flags(leaf, ei, flags);
2086 	}
2087 
2088 	if (extent_op->update_key) {
2089 		struct btrfs_tree_block_info *bi;
2090 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2091 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2092 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2093 	}
2094 }
2095 
2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2097 				 struct btrfs_root *root,
2098 				 struct btrfs_delayed_ref_node *node,
2099 				 struct btrfs_delayed_extent_op *extent_op)
2100 {
2101 	struct btrfs_key key;
2102 	struct btrfs_path *path;
2103 	struct btrfs_extent_item *ei;
2104 	struct extent_buffer *leaf;
2105 	u32 item_size;
2106 	int ret;
2107 	int err = 0;
2108 	int metadata = !extent_op->is_data;
2109 
2110 	if (trans->aborted)
2111 		return 0;
2112 
2113 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2114 		metadata = 0;
2115 
2116 	path = btrfs_alloc_path();
2117 	if (!path)
2118 		return -ENOMEM;
2119 
2120 	key.objectid = node->bytenr;
2121 
2122 	if (metadata) {
2123 		key.type = BTRFS_METADATA_ITEM_KEY;
2124 		key.offset = extent_op->level;
2125 	} else {
2126 		key.type = BTRFS_EXTENT_ITEM_KEY;
2127 		key.offset = node->num_bytes;
2128 	}
2129 
2130 again:
2131 	path->reada = 1;
2132 	path->leave_spinning = 1;
2133 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2134 				path, 0, 1);
2135 	if (ret < 0) {
2136 		err = ret;
2137 		goto out;
2138 	}
2139 	if (ret > 0) {
2140 		if (metadata) {
2141 			if (path->slots[0] > 0) {
2142 				path->slots[0]--;
2143 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2144 						      path->slots[0]);
2145 				if (key.objectid == node->bytenr &&
2146 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2147 				    key.offset == node->num_bytes)
2148 					ret = 0;
2149 			}
2150 			if (ret > 0) {
2151 				btrfs_release_path(path);
2152 				metadata = 0;
2153 
2154 				key.objectid = node->bytenr;
2155 				key.offset = node->num_bytes;
2156 				key.type = BTRFS_EXTENT_ITEM_KEY;
2157 				goto again;
2158 			}
2159 		} else {
2160 			err = -EIO;
2161 			goto out;
2162 		}
2163 	}
2164 
2165 	leaf = path->nodes[0];
2166 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 	if (item_size < sizeof(*ei)) {
2169 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2170 					     path, (u64)-1, 0);
2171 		if (ret < 0) {
2172 			err = ret;
2173 			goto out;
2174 		}
2175 		leaf = path->nodes[0];
2176 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2177 	}
2178 #endif
2179 	BUG_ON(item_size < sizeof(*ei));
2180 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2181 	__run_delayed_extent_op(extent_op, leaf, ei);
2182 
2183 	btrfs_mark_buffer_dirty(leaf);
2184 out:
2185 	btrfs_free_path(path);
2186 	return err;
2187 }
2188 
2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2190 				struct btrfs_root *root,
2191 				struct btrfs_delayed_ref_node *node,
2192 				struct btrfs_delayed_extent_op *extent_op,
2193 				int insert_reserved)
2194 {
2195 	int ret = 0;
2196 	struct btrfs_delayed_tree_ref *ref;
2197 	struct btrfs_key ins;
2198 	u64 parent = 0;
2199 	u64 ref_root = 0;
2200 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2201 						 SKINNY_METADATA);
2202 
2203 	ref = btrfs_delayed_node_to_tree_ref(node);
2204 	trace_run_delayed_tree_ref(node, ref, node->action);
2205 
2206 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2207 		parent = ref->parent;
2208 	ref_root = ref->root;
2209 
2210 	ins.objectid = node->bytenr;
2211 	if (skinny_metadata) {
2212 		ins.offset = ref->level;
2213 		ins.type = BTRFS_METADATA_ITEM_KEY;
2214 	} else {
2215 		ins.offset = node->num_bytes;
2216 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2217 	}
2218 
2219 	BUG_ON(node->ref_mod != 1);
2220 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2221 		BUG_ON(!extent_op || !extent_op->update_flags);
2222 		ret = alloc_reserved_tree_block(trans, root,
2223 						parent, ref_root,
2224 						extent_op->flags_to_set,
2225 						&extent_op->key,
2226 						ref->level, &ins,
2227 						node->no_quota);
2228 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2229 		ret = __btrfs_inc_extent_ref(trans, root, node,
2230 					     parent, ref_root,
2231 					     ref->level, 0, 1,
2232 					     extent_op);
2233 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2234 		ret = __btrfs_free_extent(trans, root, node,
2235 					  parent, ref_root,
2236 					  ref->level, 0, 1, extent_op);
2237 	} else {
2238 		BUG();
2239 	}
2240 	return ret;
2241 }
2242 
2243 /* helper function to actually process a single delayed ref entry */
2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2245 			       struct btrfs_root *root,
2246 			       struct btrfs_delayed_ref_node *node,
2247 			       struct btrfs_delayed_extent_op *extent_op,
2248 			       int insert_reserved)
2249 {
2250 	int ret = 0;
2251 
2252 	if (trans->aborted) {
2253 		if (insert_reserved)
2254 			btrfs_pin_extent(root, node->bytenr,
2255 					 node->num_bytes, 1);
2256 		return 0;
2257 	}
2258 
2259 	if (btrfs_delayed_ref_is_head(node)) {
2260 		struct btrfs_delayed_ref_head *head;
2261 		/*
2262 		 * we've hit the end of the chain and we were supposed
2263 		 * to insert this extent into the tree.  But, it got
2264 		 * deleted before we ever needed to insert it, so all
2265 		 * we have to do is clean up the accounting
2266 		 */
2267 		BUG_ON(extent_op);
2268 		head = btrfs_delayed_node_to_head(node);
2269 		trace_run_delayed_ref_head(node, head, node->action);
2270 
2271 		if (insert_reserved) {
2272 			btrfs_pin_extent(root, node->bytenr,
2273 					 node->num_bytes, 1);
2274 			if (head->is_data) {
2275 				ret = btrfs_del_csums(trans, root,
2276 						      node->bytenr,
2277 						      node->num_bytes);
2278 			}
2279 		}
2280 		return ret;
2281 	}
2282 
2283 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2286 					   insert_reserved);
2287 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2288 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2290 					   insert_reserved);
2291 	else
2292 		BUG();
2293 	return ret;
2294 }
2295 
2296 static inline struct btrfs_delayed_ref_node *
2297 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2298 {
2299 	struct btrfs_delayed_ref_node *ref;
2300 
2301 	if (list_empty(&head->ref_list))
2302 		return NULL;
2303 
2304 	/*
2305 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2306 	 * This is to prevent a ref count from going down to zero, which deletes
2307 	 * the extent item from the extent tree, when there still are references
2308 	 * to add, which would fail because they would not find the extent item.
2309 	 */
2310 	list_for_each_entry(ref, &head->ref_list, list) {
2311 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2312 			return ref;
2313 	}
2314 
2315 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2316 			  list);
2317 }
2318 
2319 /*
2320  * Returns 0 on success or if called with an already aborted transaction.
2321  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2322  */
2323 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2324 					     struct btrfs_root *root,
2325 					     unsigned long nr)
2326 {
2327 	struct btrfs_delayed_ref_root *delayed_refs;
2328 	struct btrfs_delayed_ref_node *ref;
2329 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2330 	struct btrfs_delayed_extent_op *extent_op;
2331 	struct btrfs_fs_info *fs_info = root->fs_info;
2332 	ktime_t start = ktime_get();
2333 	int ret;
2334 	unsigned long count = 0;
2335 	unsigned long actual_count = 0;
2336 	int must_insert_reserved = 0;
2337 
2338 	delayed_refs = &trans->transaction->delayed_refs;
2339 	while (1) {
2340 		if (!locked_ref) {
2341 			if (count >= nr)
2342 				break;
2343 
2344 			spin_lock(&delayed_refs->lock);
2345 			locked_ref = btrfs_select_ref_head(trans);
2346 			if (!locked_ref) {
2347 				spin_unlock(&delayed_refs->lock);
2348 				break;
2349 			}
2350 
2351 			/* grab the lock that says we are going to process
2352 			 * all the refs for this head */
2353 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2354 			spin_unlock(&delayed_refs->lock);
2355 			/*
2356 			 * we may have dropped the spin lock to get the head
2357 			 * mutex lock, and that might have given someone else
2358 			 * time to free the head.  If that's true, it has been
2359 			 * removed from our list and we can move on.
2360 			 */
2361 			if (ret == -EAGAIN) {
2362 				locked_ref = NULL;
2363 				count++;
2364 				continue;
2365 			}
2366 		}
2367 
2368 		spin_lock(&locked_ref->lock);
2369 
2370 		/*
2371 		 * locked_ref is the head node, so we have to go one
2372 		 * node back for any delayed ref updates
2373 		 */
2374 		ref = select_delayed_ref(locked_ref);
2375 
2376 		if (ref && ref->seq &&
2377 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2378 			spin_unlock(&locked_ref->lock);
2379 			btrfs_delayed_ref_unlock(locked_ref);
2380 			spin_lock(&delayed_refs->lock);
2381 			locked_ref->processing = 0;
2382 			delayed_refs->num_heads_ready++;
2383 			spin_unlock(&delayed_refs->lock);
2384 			locked_ref = NULL;
2385 			cond_resched();
2386 			count++;
2387 			continue;
2388 		}
2389 
2390 		/*
2391 		 * record the must insert reserved flag before we
2392 		 * drop the spin lock.
2393 		 */
2394 		must_insert_reserved = locked_ref->must_insert_reserved;
2395 		locked_ref->must_insert_reserved = 0;
2396 
2397 		extent_op = locked_ref->extent_op;
2398 		locked_ref->extent_op = NULL;
2399 
2400 		if (!ref) {
2401 
2402 
2403 			/* All delayed refs have been processed, Go ahead
2404 			 * and send the head node to run_one_delayed_ref,
2405 			 * so that any accounting fixes can happen
2406 			 */
2407 			ref = &locked_ref->node;
2408 
2409 			if (extent_op && must_insert_reserved) {
2410 				btrfs_free_delayed_extent_op(extent_op);
2411 				extent_op = NULL;
2412 			}
2413 
2414 			if (extent_op) {
2415 				spin_unlock(&locked_ref->lock);
2416 				ret = run_delayed_extent_op(trans, root,
2417 							    ref, extent_op);
2418 				btrfs_free_delayed_extent_op(extent_op);
2419 
2420 				if (ret) {
2421 					/*
2422 					 * Need to reset must_insert_reserved if
2423 					 * there was an error so the abort stuff
2424 					 * can cleanup the reserved space
2425 					 * properly.
2426 					 */
2427 					if (must_insert_reserved)
2428 						locked_ref->must_insert_reserved = 1;
2429 					locked_ref->processing = 0;
2430 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2431 					btrfs_delayed_ref_unlock(locked_ref);
2432 					return ret;
2433 				}
2434 				continue;
2435 			}
2436 
2437 			/*
2438 			 * Need to drop our head ref lock and re-aqcuire the
2439 			 * delayed ref lock and then re-check to make sure
2440 			 * nobody got added.
2441 			 */
2442 			spin_unlock(&locked_ref->lock);
2443 			spin_lock(&delayed_refs->lock);
2444 			spin_lock(&locked_ref->lock);
2445 			if (!list_empty(&locked_ref->ref_list) ||
2446 			    locked_ref->extent_op) {
2447 				spin_unlock(&locked_ref->lock);
2448 				spin_unlock(&delayed_refs->lock);
2449 				continue;
2450 			}
2451 			ref->in_tree = 0;
2452 			delayed_refs->num_heads--;
2453 			rb_erase(&locked_ref->href_node,
2454 				 &delayed_refs->href_root);
2455 			spin_unlock(&delayed_refs->lock);
2456 		} else {
2457 			actual_count++;
2458 			ref->in_tree = 0;
2459 			list_del(&ref->list);
2460 		}
2461 		atomic_dec(&delayed_refs->num_entries);
2462 
2463 		if (!btrfs_delayed_ref_is_head(ref)) {
2464 			/*
2465 			 * when we play the delayed ref, also correct the
2466 			 * ref_mod on head
2467 			 */
2468 			switch (ref->action) {
2469 			case BTRFS_ADD_DELAYED_REF:
2470 			case BTRFS_ADD_DELAYED_EXTENT:
2471 				locked_ref->node.ref_mod -= ref->ref_mod;
2472 				break;
2473 			case BTRFS_DROP_DELAYED_REF:
2474 				locked_ref->node.ref_mod += ref->ref_mod;
2475 				break;
2476 			default:
2477 				WARN_ON(1);
2478 			}
2479 		}
2480 		spin_unlock(&locked_ref->lock);
2481 
2482 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2483 					  must_insert_reserved);
2484 
2485 		btrfs_free_delayed_extent_op(extent_op);
2486 		if (ret) {
2487 			locked_ref->processing = 0;
2488 			btrfs_delayed_ref_unlock(locked_ref);
2489 			btrfs_put_delayed_ref(ref);
2490 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2491 			return ret;
2492 		}
2493 
2494 		/*
2495 		 * If this node is a head, that means all the refs in this head
2496 		 * have been dealt with, and we will pick the next head to deal
2497 		 * with, so we must unlock the head and drop it from the cluster
2498 		 * list before we release it.
2499 		 */
2500 		if (btrfs_delayed_ref_is_head(ref)) {
2501 			if (locked_ref->is_data &&
2502 			    locked_ref->total_ref_mod < 0) {
2503 				spin_lock(&delayed_refs->lock);
2504 				delayed_refs->pending_csums -= ref->num_bytes;
2505 				spin_unlock(&delayed_refs->lock);
2506 			}
2507 			btrfs_delayed_ref_unlock(locked_ref);
2508 			locked_ref = NULL;
2509 		}
2510 		btrfs_put_delayed_ref(ref);
2511 		count++;
2512 		cond_resched();
2513 	}
2514 
2515 	/*
2516 	 * We don't want to include ref heads since we can have empty ref heads
2517 	 * and those will drastically skew our runtime down since we just do
2518 	 * accounting, no actual extent tree updates.
2519 	 */
2520 	if (actual_count > 0) {
2521 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2522 		u64 avg;
2523 
2524 		/*
2525 		 * We weigh the current average higher than our current runtime
2526 		 * to avoid large swings in the average.
2527 		 */
2528 		spin_lock(&delayed_refs->lock);
2529 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2530 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2531 		spin_unlock(&delayed_refs->lock);
2532 	}
2533 	return 0;
2534 }
2535 
2536 #ifdef SCRAMBLE_DELAYED_REFS
2537 /*
2538  * Normally delayed refs get processed in ascending bytenr order. This
2539  * correlates in most cases to the order added. To expose dependencies on this
2540  * order, we start to process the tree in the middle instead of the beginning
2541  */
2542 static u64 find_middle(struct rb_root *root)
2543 {
2544 	struct rb_node *n = root->rb_node;
2545 	struct btrfs_delayed_ref_node *entry;
2546 	int alt = 1;
2547 	u64 middle;
2548 	u64 first = 0, last = 0;
2549 
2550 	n = rb_first(root);
2551 	if (n) {
2552 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2553 		first = entry->bytenr;
2554 	}
2555 	n = rb_last(root);
2556 	if (n) {
2557 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2558 		last = entry->bytenr;
2559 	}
2560 	n = root->rb_node;
2561 
2562 	while (n) {
2563 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2564 		WARN_ON(!entry->in_tree);
2565 
2566 		middle = entry->bytenr;
2567 
2568 		if (alt)
2569 			n = n->rb_left;
2570 		else
2571 			n = n->rb_right;
2572 
2573 		alt = 1 - alt;
2574 	}
2575 	return middle;
2576 }
2577 #endif
2578 
2579 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2580 {
2581 	u64 num_bytes;
2582 
2583 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2584 			     sizeof(struct btrfs_extent_inline_ref));
2585 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2586 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2587 
2588 	/*
2589 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2590 	 * closer to what we're really going to want to ouse.
2591 	 */
2592 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2593 }
2594 
2595 /*
2596  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2597  * would require to store the csums for that many bytes.
2598  */
2599 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2600 {
2601 	u64 csum_size;
2602 	u64 num_csums_per_leaf;
2603 	u64 num_csums;
2604 
2605 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2606 	num_csums_per_leaf = div64_u64(csum_size,
2607 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2608 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2609 	num_csums += num_csums_per_leaf - 1;
2610 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2611 	return num_csums;
2612 }
2613 
2614 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2615 				       struct btrfs_root *root)
2616 {
2617 	struct btrfs_block_rsv *global_rsv;
2618 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2619 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2620 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2621 	u64 num_bytes, num_dirty_bgs_bytes;
2622 	int ret = 0;
2623 
2624 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2625 	num_heads = heads_to_leaves(root, num_heads);
2626 	if (num_heads > 1)
2627 		num_bytes += (num_heads - 1) * root->nodesize;
2628 	num_bytes <<= 1;
2629 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2630 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2631 							     num_dirty_bgs);
2632 	global_rsv = &root->fs_info->global_block_rsv;
2633 
2634 	/*
2635 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2636 	 * wiggle room since running delayed refs can create more delayed refs.
2637 	 */
2638 	if (global_rsv->space_info->full) {
2639 		num_dirty_bgs_bytes <<= 1;
2640 		num_bytes <<= 1;
2641 	}
2642 
2643 	spin_lock(&global_rsv->lock);
2644 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2645 		ret = 1;
2646 	spin_unlock(&global_rsv->lock);
2647 	return ret;
2648 }
2649 
2650 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2651 				       struct btrfs_root *root)
2652 {
2653 	struct btrfs_fs_info *fs_info = root->fs_info;
2654 	u64 num_entries =
2655 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2656 	u64 avg_runtime;
2657 	u64 val;
2658 
2659 	smp_mb();
2660 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2661 	val = num_entries * avg_runtime;
2662 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2663 		return 1;
2664 	if (val >= NSEC_PER_SEC / 2)
2665 		return 2;
2666 
2667 	return btrfs_check_space_for_delayed_refs(trans, root);
2668 }
2669 
2670 struct async_delayed_refs {
2671 	struct btrfs_root *root;
2672 	int count;
2673 	int error;
2674 	int sync;
2675 	struct completion wait;
2676 	struct btrfs_work work;
2677 };
2678 
2679 static void delayed_ref_async_start(struct btrfs_work *work)
2680 {
2681 	struct async_delayed_refs *async;
2682 	struct btrfs_trans_handle *trans;
2683 	int ret;
2684 
2685 	async = container_of(work, struct async_delayed_refs, work);
2686 
2687 	trans = btrfs_join_transaction(async->root);
2688 	if (IS_ERR(trans)) {
2689 		async->error = PTR_ERR(trans);
2690 		goto done;
2691 	}
2692 
2693 	/*
2694 	 * trans->sync means that when we call end_transaciton, we won't
2695 	 * wait on delayed refs
2696 	 */
2697 	trans->sync = true;
2698 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2699 	if (ret)
2700 		async->error = ret;
2701 
2702 	ret = btrfs_end_transaction(trans, async->root);
2703 	if (ret && !async->error)
2704 		async->error = ret;
2705 done:
2706 	if (async->sync)
2707 		complete(&async->wait);
2708 	else
2709 		kfree(async);
2710 }
2711 
2712 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2713 				 unsigned long count, int wait)
2714 {
2715 	struct async_delayed_refs *async;
2716 	int ret;
2717 
2718 	async = kmalloc(sizeof(*async), GFP_NOFS);
2719 	if (!async)
2720 		return -ENOMEM;
2721 
2722 	async->root = root->fs_info->tree_root;
2723 	async->count = count;
2724 	async->error = 0;
2725 	if (wait)
2726 		async->sync = 1;
2727 	else
2728 		async->sync = 0;
2729 	init_completion(&async->wait);
2730 
2731 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2732 			delayed_ref_async_start, NULL, NULL);
2733 
2734 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2735 
2736 	if (wait) {
2737 		wait_for_completion(&async->wait);
2738 		ret = async->error;
2739 		kfree(async);
2740 		return ret;
2741 	}
2742 	return 0;
2743 }
2744 
2745 /*
2746  * this starts processing the delayed reference count updates and
2747  * extent insertions we have queued up so far.  count can be
2748  * 0, which means to process everything in the tree at the start
2749  * of the run (but not newly added entries), or it can be some target
2750  * number you'd like to process.
2751  *
2752  * Returns 0 on success or if called with an aborted transaction
2753  * Returns <0 on error and aborts the transaction
2754  */
2755 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2756 			   struct btrfs_root *root, unsigned long count)
2757 {
2758 	struct rb_node *node;
2759 	struct btrfs_delayed_ref_root *delayed_refs;
2760 	struct btrfs_delayed_ref_head *head;
2761 	int ret;
2762 	int run_all = count == (unsigned long)-1;
2763 
2764 	/* We'll clean this up in btrfs_cleanup_transaction */
2765 	if (trans->aborted)
2766 		return 0;
2767 
2768 	if (root == root->fs_info->extent_root)
2769 		root = root->fs_info->tree_root;
2770 
2771 	delayed_refs = &trans->transaction->delayed_refs;
2772 	if (count == 0)
2773 		count = atomic_read(&delayed_refs->num_entries) * 2;
2774 
2775 again:
2776 #ifdef SCRAMBLE_DELAYED_REFS
2777 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2778 #endif
2779 	ret = __btrfs_run_delayed_refs(trans, root, count);
2780 	if (ret < 0) {
2781 		btrfs_abort_transaction(trans, root, ret);
2782 		return ret;
2783 	}
2784 
2785 	if (run_all) {
2786 		if (!list_empty(&trans->new_bgs))
2787 			btrfs_create_pending_block_groups(trans, root);
2788 
2789 		spin_lock(&delayed_refs->lock);
2790 		node = rb_first(&delayed_refs->href_root);
2791 		if (!node) {
2792 			spin_unlock(&delayed_refs->lock);
2793 			goto out;
2794 		}
2795 		count = (unsigned long)-1;
2796 
2797 		while (node) {
2798 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2799 					href_node);
2800 			if (btrfs_delayed_ref_is_head(&head->node)) {
2801 				struct btrfs_delayed_ref_node *ref;
2802 
2803 				ref = &head->node;
2804 				atomic_inc(&ref->refs);
2805 
2806 				spin_unlock(&delayed_refs->lock);
2807 				/*
2808 				 * Mutex was contended, block until it's
2809 				 * released and try again
2810 				 */
2811 				mutex_lock(&head->mutex);
2812 				mutex_unlock(&head->mutex);
2813 
2814 				btrfs_put_delayed_ref(ref);
2815 				cond_resched();
2816 				goto again;
2817 			} else {
2818 				WARN_ON(1);
2819 			}
2820 			node = rb_next(node);
2821 		}
2822 		spin_unlock(&delayed_refs->lock);
2823 		cond_resched();
2824 		goto again;
2825 	}
2826 out:
2827 	assert_qgroups_uptodate(trans);
2828 	return 0;
2829 }
2830 
2831 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2832 				struct btrfs_root *root,
2833 				u64 bytenr, u64 num_bytes, u64 flags,
2834 				int level, int is_data)
2835 {
2836 	struct btrfs_delayed_extent_op *extent_op;
2837 	int ret;
2838 
2839 	extent_op = btrfs_alloc_delayed_extent_op();
2840 	if (!extent_op)
2841 		return -ENOMEM;
2842 
2843 	extent_op->flags_to_set = flags;
2844 	extent_op->update_flags = 1;
2845 	extent_op->update_key = 0;
2846 	extent_op->is_data = is_data ? 1 : 0;
2847 	extent_op->level = level;
2848 
2849 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2850 					  num_bytes, extent_op);
2851 	if (ret)
2852 		btrfs_free_delayed_extent_op(extent_op);
2853 	return ret;
2854 }
2855 
2856 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2857 				      struct btrfs_root *root,
2858 				      struct btrfs_path *path,
2859 				      u64 objectid, u64 offset, u64 bytenr)
2860 {
2861 	struct btrfs_delayed_ref_head *head;
2862 	struct btrfs_delayed_ref_node *ref;
2863 	struct btrfs_delayed_data_ref *data_ref;
2864 	struct btrfs_delayed_ref_root *delayed_refs;
2865 	int ret = 0;
2866 
2867 	delayed_refs = &trans->transaction->delayed_refs;
2868 	spin_lock(&delayed_refs->lock);
2869 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2870 	if (!head) {
2871 		spin_unlock(&delayed_refs->lock);
2872 		return 0;
2873 	}
2874 
2875 	if (!mutex_trylock(&head->mutex)) {
2876 		atomic_inc(&head->node.refs);
2877 		spin_unlock(&delayed_refs->lock);
2878 
2879 		btrfs_release_path(path);
2880 
2881 		/*
2882 		 * Mutex was contended, block until it's released and let
2883 		 * caller try again
2884 		 */
2885 		mutex_lock(&head->mutex);
2886 		mutex_unlock(&head->mutex);
2887 		btrfs_put_delayed_ref(&head->node);
2888 		return -EAGAIN;
2889 	}
2890 	spin_unlock(&delayed_refs->lock);
2891 
2892 	spin_lock(&head->lock);
2893 	list_for_each_entry(ref, &head->ref_list, list) {
2894 		/* If it's a shared ref we know a cross reference exists */
2895 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2896 			ret = 1;
2897 			break;
2898 		}
2899 
2900 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2901 
2902 		/*
2903 		 * If our ref doesn't match the one we're currently looking at
2904 		 * then we have a cross reference.
2905 		 */
2906 		if (data_ref->root != root->root_key.objectid ||
2907 		    data_ref->objectid != objectid ||
2908 		    data_ref->offset != offset) {
2909 			ret = 1;
2910 			break;
2911 		}
2912 	}
2913 	spin_unlock(&head->lock);
2914 	mutex_unlock(&head->mutex);
2915 	return ret;
2916 }
2917 
2918 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2919 					struct btrfs_root *root,
2920 					struct btrfs_path *path,
2921 					u64 objectid, u64 offset, u64 bytenr)
2922 {
2923 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2924 	struct extent_buffer *leaf;
2925 	struct btrfs_extent_data_ref *ref;
2926 	struct btrfs_extent_inline_ref *iref;
2927 	struct btrfs_extent_item *ei;
2928 	struct btrfs_key key;
2929 	u32 item_size;
2930 	int ret;
2931 
2932 	key.objectid = bytenr;
2933 	key.offset = (u64)-1;
2934 	key.type = BTRFS_EXTENT_ITEM_KEY;
2935 
2936 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2937 	if (ret < 0)
2938 		goto out;
2939 	BUG_ON(ret == 0); /* Corruption */
2940 
2941 	ret = -ENOENT;
2942 	if (path->slots[0] == 0)
2943 		goto out;
2944 
2945 	path->slots[0]--;
2946 	leaf = path->nodes[0];
2947 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948 
2949 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2950 		goto out;
2951 
2952 	ret = 1;
2953 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2955 	if (item_size < sizeof(*ei)) {
2956 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2957 		goto out;
2958 	}
2959 #endif
2960 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2961 
2962 	if (item_size != sizeof(*ei) +
2963 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2964 		goto out;
2965 
2966 	if (btrfs_extent_generation(leaf, ei) <=
2967 	    btrfs_root_last_snapshot(&root->root_item))
2968 		goto out;
2969 
2970 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2971 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2972 	    BTRFS_EXTENT_DATA_REF_KEY)
2973 		goto out;
2974 
2975 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2976 	if (btrfs_extent_refs(leaf, ei) !=
2977 	    btrfs_extent_data_ref_count(leaf, ref) ||
2978 	    btrfs_extent_data_ref_root(leaf, ref) !=
2979 	    root->root_key.objectid ||
2980 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2981 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2982 		goto out;
2983 
2984 	ret = 0;
2985 out:
2986 	return ret;
2987 }
2988 
2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2990 			  struct btrfs_root *root,
2991 			  u64 objectid, u64 offset, u64 bytenr)
2992 {
2993 	struct btrfs_path *path;
2994 	int ret;
2995 	int ret2;
2996 
2997 	path = btrfs_alloc_path();
2998 	if (!path)
2999 		return -ENOENT;
3000 
3001 	do {
3002 		ret = check_committed_ref(trans, root, path, objectid,
3003 					  offset, bytenr);
3004 		if (ret && ret != -ENOENT)
3005 			goto out;
3006 
3007 		ret2 = check_delayed_ref(trans, root, path, objectid,
3008 					 offset, bytenr);
3009 	} while (ret2 == -EAGAIN);
3010 
3011 	if (ret2 && ret2 != -ENOENT) {
3012 		ret = ret2;
3013 		goto out;
3014 	}
3015 
3016 	if (ret != -ENOENT || ret2 != -ENOENT)
3017 		ret = 0;
3018 out:
3019 	btrfs_free_path(path);
3020 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3021 		WARN_ON(ret > 0);
3022 	return ret;
3023 }
3024 
3025 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3026 			   struct btrfs_root *root,
3027 			   struct extent_buffer *buf,
3028 			   int full_backref, int inc)
3029 {
3030 	u64 bytenr;
3031 	u64 num_bytes;
3032 	u64 parent;
3033 	u64 ref_root;
3034 	u32 nritems;
3035 	struct btrfs_key key;
3036 	struct btrfs_file_extent_item *fi;
3037 	int i;
3038 	int level;
3039 	int ret = 0;
3040 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3041 			    u64, u64, u64, u64, u64, u64, int);
3042 
3043 
3044 	if (btrfs_test_is_dummy_root(root))
3045 		return 0;
3046 
3047 	ref_root = btrfs_header_owner(buf);
3048 	nritems = btrfs_header_nritems(buf);
3049 	level = btrfs_header_level(buf);
3050 
3051 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3052 		return 0;
3053 
3054 	if (inc)
3055 		process_func = btrfs_inc_extent_ref;
3056 	else
3057 		process_func = btrfs_free_extent;
3058 
3059 	if (full_backref)
3060 		parent = buf->start;
3061 	else
3062 		parent = 0;
3063 
3064 	for (i = 0; i < nritems; i++) {
3065 		if (level == 0) {
3066 			btrfs_item_key_to_cpu(buf, &key, i);
3067 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3068 				continue;
3069 			fi = btrfs_item_ptr(buf, i,
3070 					    struct btrfs_file_extent_item);
3071 			if (btrfs_file_extent_type(buf, fi) ==
3072 			    BTRFS_FILE_EXTENT_INLINE)
3073 				continue;
3074 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3075 			if (bytenr == 0)
3076 				continue;
3077 
3078 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3079 			key.offset -= btrfs_file_extent_offset(buf, fi);
3080 			ret = process_func(trans, root, bytenr, num_bytes,
3081 					   parent, ref_root, key.objectid,
3082 					   key.offset, 1);
3083 			if (ret)
3084 				goto fail;
3085 		} else {
3086 			bytenr = btrfs_node_blockptr(buf, i);
3087 			num_bytes = root->nodesize;
3088 			ret = process_func(trans, root, bytenr, num_bytes,
3089 					   parent, ref_root, level - 1, 0,
3090 					   1);
3091 			if (ret)
3092 				goto fail;
3093 		}
3094 	}
3095 	return 0;
3096 fail:
3097 	return ret;
3098 }
3099 
3100 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3101 		  struct extent_buffer *buf, int full_backref)
3102 {
3103 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3104 }
3105 
3106 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3107 		  struct extent_buffer *buf, int full_backref)
3108 {
3109 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3110 }
3111 
3112 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3113 				 struct btrfs_root *root,
3114 				 struct btrfs_path *path,
3115 				 struct btrfs_block_group_cache *cache)
3116 {
3117 	int ret;
3118 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3119 	unsigned long bi;
3120 	struct extent_buffer *leaf;
3121 
3122 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3123 	if (ret) {
3124 		if (ret > 0)
3125 			ret = -ENOENT;
3126 		goto fail;
3127 	}
3128 
3129 	leaf = path->nodes[0];
3130 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3131 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3132 	btrfs_mark_buffer_dirty(leaf);
3133 fail:
3134 	btrfs_release_path(path);
3135 	return ret;
3136 
3137 }
3138 
3139 static struct btrfs_block_group_cache *
3140 next_block_group(struct btrfs_root *root,
3141 		 struct btrfs_block_group_cache *cache)
3142 {
3143 	struct rb_node *node;
3144 
3145 	spin_lock(&root->fs_info->block_group_cache_lock);
3146 
3147 	/* If our block group was removed, we need a full search. */
3148 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3149 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3150 
3151 		spin_unlock(&root->fs_info->block_group_cache_lock);
3152 		btrfs_put_block_group(cache);
3153 		cache = btrfs_lookup_first_block_group(root->fs_info,
3154 						       next_bytenr);
3155 		return cache;
3156 	}
3157 	node = rb_next(&cache->cache_node);
3158 	btrfs_put_block_group(cache);
3159 	if (node) {
3160 		cache = rb_entry(node, struct btrfs_block_group_cache,
3161 				 cache_node);
3162 		btrfs_get_block_group(cache);
3163 	} else
3164 		cache = NULL;
3165 	spin_unlock(&root->fs_info->block_group_cache_lock);
3166 	return cache;
3167 }
3168 
3169 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3170 			    struct btrfs_trans_handle *trans,
3171 			    struct btrfs_path *path)
3172 {
3173 	struct btrfs_root *root = block_group->fs_info->tree_root;
3174 	struct inode *inode = NULL;
3175 	u64 alloc_hint = 0;
3176 	int dcs = BTRFS_DC_ERROR;
3177 	u64 num_pages = 0;
3178 	int retries = 0;
3179 	int ret = 0;
3180 
3181 	/*
3182 	 * If this block group is smaller than 100 megs don't bother caching the
3183 	 * block group.
3184 	 */
3185 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3186 		spin_lock(&block_group->lock);
3187 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3188 		spin_unlock(&block_group->lock);
3189 		return 0;
3190 	}
3191 
3192 	if (trans->aborted)
3193 		return 0;
3194 again:
3195 	inode = lookup_free_space_inode(root, block_group, path);
3196 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3197 		ret = PTR_ERR(inode);
3198 		btrfs_release_path(path);
3199 		goto out;
3200 	}
3201 
3202 	if (IS_ERR(inode)) {
3203 		BUG_ON(retries);
3204 		retries++;
3205 
3206 		if (block_group->ro)
3207 			goto out_free;
3208 
3209 		ret = create_free_space_inode(root, trans, block_group, path);
3210 		if (ret)
3211 			goto out_free;
3212 		goto again;
3213 	}
3214 
3215 	/* We've already setup this transaction, go ahead and exit */
3216 	if (block_group->cache_generation == trans->transid &&
3217 	    i_size_read(inode)) {
3218 		dcs = BTRFS_DC_SETUP;
3219 		goto out_put;
3220 	}
3221 
3222 	/*
3223 	 * We want to set the generation to 0, that way if anything goes wrong
3224 	 * from here on out we know not to trust this cache when we load up next
3225 	 * time.
3226 	 */
3227 	BTRFS_I(inode)->generation = 0;
3228 	ret = btrfs_update_inode(trans, root, inode);
3229 	if (ret) {
3230 		/*
3231 		 * So theoretically we could recover from this, simply set the
3232 		 * super cache generation to 0 so we know to invalidate the
3233 		 * cache, but then we'd have to keep track of the block groups
3234 		 * that fail this way so we know we _have_ to reset this cache
3235 		 * before the next commit or risk reading stale cache.  So to
3236 		 * limit our exposure to horrible edge cases lets just abort the
3237 		 * transaction, this only happens in really bad situations
3238 		 * anyway.
3239 		 */
3240 		btrfs_abort_transaction(trans, root, ret);
3241 		goto out_put;
3242 	}
3243 	WARN_ON(ret);
3244 
3245 	if (i_size_read(inode) > 0) {
3246 		ret = btrfs_check_trunc_cache_free_space(root,
3247 					&root->fs_info->global_block_rsv);
3248 		if (ret)
3249 			goto out_put;
3250 
3251 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3252 		if (ret)
3253 			goto out_put;
3254 	}
3255 
3256 	spin_lock(&block_group->lock);
3257 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3258 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3259 		/*
3260 		 * don't bother trying to write stuff out _if_
3261 		 * a) we're not cached,
3262 		 * b) we're with nospace_cache mount option.
3263 		 */
3264 		dcs = BTRFS_DC_WRITTEN;
3265 		spin_unlock(&block_group->lock);
3266 		goto out_put;
3267 	}
3268 	spin_unlock(&block_group->lock);
3269 
3270 	/*
3271 	 * Try to preallocate enough space based on how big the block group is.
3272 	 * Keep in mind this has to include any pinned space which could end up
3273 	 * taking up quite a bit since it's not folded into the other space
3274 	 * cache.
3275 	 */
3276 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3277 	if (!num_pages)
3278 		num_pages = 1;
3279 
3280 	num_pages *= 16;
3281 	num_pages *= PAGE_CACHE_SIZE;
3282 
3283 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3284 	if (ret)
3285 		goto out_put;
3286 
3287 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3288 					      num_pages, num_pages,
3289 					      &alloc_hint);
3290 	if (!ret)
3291 		dcs = BTRFS_DC_SETUP;
3292 	btrfs_free_reserved_data_space(inode, num_pages);
3293 
3294 out_put:
3295 	iput(inode);
3296 out_free:
3297 	btrfs_release_path(path);
3298 out:
3299 	spin_lock(&block_group->lock);
3300 	if (!ret && dcs == BTRFS_DC_SETUP)
3301 		block_group->cache_generation = trans->transid;
3302 	block_group->disk_cache_state = dcs;
3303 	spin_unlock(&block_group->lock);
3304 
3305 	return ret;
3306 }
3307 
3308 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3309 			    struct btrfs_root *root)
3310 {
3311 	struct btrfs_block_group_cache *cache, *tmp;
3312 	struct btrfs_transaction *cur_trans = trans->transaction;
3313 	struct btrfs_path *path;
3314 
3315 	if (list_empty(&cur_trans->dirty_bgs) ||
3316 	    !btrfs_test_opt(root, SPACE_CACHE))
3317 		return 0;
3318 
3319 	path = btrfs_alloc_path();
3320 	if (!path)
3321 		return -ENOMEM;
3322 
3323 	/* Could add new block groups, use _safe just in case */
3324 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3325 				 dirty_list) {
3326 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3327 			cache_save_setup(cache, trans, path);
3328 	}
3329 
3330 	btrfs_free_path(path);
3331 	return 0;
3332 }
3333 
3334 /*
3335  * transaction commit does final block group cache writeback during a
3336  * critical section where nothing is allowed to change the FS.  This is
3337  * required in order for the cache to actually match the block group,
3338  * but can introduce a lot of latency into the commit.
3339  *
3340  * So, btrfs_start_dirty_block_groups is here to kick off block group
3341  * cache IO.  There's a chance we'll have to redo some of it if the
3342  * block group changes again during the commit, but it greatly reduces
3343  * the commit latency by getting rid of the easy block groups while
3344  * we're still allowing others to join the commit.
3345  */
3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3347 				   struct btrfs_root *root)
3348 {
3349 	struct btrfs_block_group_cache *cache;
3350 	struct btrfs_transaction *cur_trans = trans->transaction;
3351 	int ret = 0;
3352 	int should_put;
3353 	struct btrfs_path *path = NULL;
3354 	LIST_HEAD(dirty);
3355 	struct list_head *io = &cur_trans->io_bgs;
3356 	int num_started = 0;
3357 	int loops = 0;
3358 
3359 	spin_lock(&cur_trans->dirty_bgs_lock);
3360 	if (list_empty(&cur_trans->dirty_bgs)) {
3361 		spin_unlock(&cur_trans->dirty_bgs_lock);
3362 		return 0;
3363 	}
3364 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3365 	spin_unlock(&cur_trans->dirty_bgs_lock);
3366 
3367 again:
3368 	/*
3369 	 * make sure all the block groups on our dirty list actually
3370 	 * exist
3371 	 */
3372 	btrfs_create_pending_block_groups(trans, root);
3373 
3374 	if (!path) {
3375 		path = btrfs_alloc_path();
3376 		if (!path)
3377 			return -ENOMEM;
3378 	}
3379 
3380 	/*
3381 	 * cache_write_mutex is here only to save us from balance or automatic
3382 	 * removal of empty block groups deleting this block group while we are
3383 	 * writing out the cache
3384 	 */
3385 	mutex_lock(&trans->transaction->cache_write_mutex);
3386 	while (!list_empty(&dirty)) {
3387 		cache = list_first_entry(&dirty,
3388 					 struct btrfs_block_group_cache,
3389 					 dirty_list);
3390 		/*
3391 		 * this can happen if something re-dirties a block
3392 		 * group that is already under IO.  Just wait for it to
3393 		 * finish and then do it all again
3394 		 */
3395 		if (!list_empty(&cache->io_list)) {
3396 			list_del_init(&cache->io_list);
3397 			btrfs_wait_cache_io(root, trans, cache,
3398 					    &cache->io_ctl, path,
3399 					    cache->key.objectid);
3400 			btrfs_put_block_group(cache);
3401 		}
3402 
3403 
3404 		/*
3405 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3406 		 * if it should update the cache_state.  Don't delete
3407 		 * until after we wait.
3408 		 *
3409 		 * Since we're not running in the commit critical section
3410 		 * we need the dirty_bgs_lock to protect from update_block_group
3411 		 */
3412 		spin_lock(&cur_trans->dirty_bgs_lock);
3413 		list_del_init(&cache->dirty_list);
3414 		spin_unlock(&cur_trans->dirty_bgs_lock);
3415 
3416 		should_put = 1;
3417 
3418 		cache_save_setup(cache, trans, path);
3419 
3420 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3421 			cache->io_ctl.inode = NULL;
3422 			ret = btrfs_write_out_cache(root, trans, cache, path);
3423 			if (ret == 0 && cache->io_ctl.inode) {
3424 				num_started++;
3425 				should_put = 0;
3426 
3427 				/*
3428 				 * the cache_write_mutex is protecting
3429 				 * the io_list
3430 				 */
3431 				list_add_tail(&cache->io_list, io);
3432 			} else {
3433 				/*
3434 				 * if we failed to write the cache, the
3435 				 * generation will be bad and life goes on
3436 				 */
3437 				ret = 0;
3438 			}
3439 		}
3440 		if (!ret) {
3441 			ret = write_one_cache_group(trans, root, path, cache);
3442 			/*
3443 			 * Our block group might still be attached to the list
3444 			 * of new block groups in the transaction handle of some
3445 			 * other task (struct btrfs_trans_handle->new_bgs). This
3446 			 * means its block group item isn't yet in the extent
3447 			 * tree. If this happens ignore the error, as we will
3448 			 * try again later in the critical section of the
3449 			 * transaction commit.
3450 			 */
3451 			if (ret == -ENOENT) {
3452 				ret = 0;
3453 				spin_lock(&cur_trans->dirty_bgs_lock);
3454 				if (list_empty(&cache->dirty_list)) {
3455 					list_add_tail(&cache->dirty_list,
3456 						      &cur_trans->dirty_bgs);
3457 					btrfs_get_block_group(cache);
3458 				}
3459 				spin_unlock(&cur_trans->dirty_bgs_lock);
3460 			} else if (ret) {
3461 				btrfs_abort_transaction(trans, root, ret);
3462 			}
3463 		}
3464 
3465 		/* if its not on the io list, we need to put the block group */
3466 		if (should_put)
3467 			btrfs_put_block_group(cache);
3468 
3469 		if (ret)
3470 			break;
3471 
3472 		/*
3473 		 * Avoid blocking other tasks for too long. It might even save
3474 		 * us from writing caches for block groups that are going to be
3475 		 * removed.
3476 		 */
3477 		mutex_unlock(&trans->transaction->cache_write_mutex);
3478 		mutex_lock(&trans->transaction->cache_write_mutex);
3479 	}
3480 	mutex_unlock(&trans->transaction->cache_write_mutex);
3481 
3482 	/*
3483 	 * go through delayed refs for all the stuff we've just kicked off
3484 	 * and then loop back (just once)
3485 	 */
3486 	ret = btrfs_run_delayed_refs(trans, root, 0);
3487 	if (!ret && loops == 0) {
3488 		loops++;
3489 		spin_lock(&cur_trans->dirty_bgs_lock);
3490 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3491 		/*
3492 		 * dirty_bgs_lock protects us from concurrent block group
3493 		 * deletes too (not just cache_write_mutex).
3494 		 */
3495 		if (!list_empty(&dirty)) {
3496 			spin_unlock(&cur_trans->dirty_bgs_lock);
3497 			goto again;
3498 		}
3499 		spin_unlock(&cur_trans->dirty_bgs_lock);
3500 	}
3501 
3502 	btrfs_free_path(path);
3503 	return ret;
3504 }
3505 
3506 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3507 				   struct btrfs_root *root)
3508 {
3509 	struct btrfs_block_group_cache *cache;
3510 	struct btrfs_transaction *cur_trans = trans->transaction;
3511 	int ret = 0;
3512 	int should_put;
3513 	struct btrfs_path *path;
3514 	struct list_head *io = &cur_trans->io_bgs;
3515 	int num_started = 0;
3516 
3517 	path = btrfs_alloc_path();
3518 	if (!path)
3519 		return -ENOMEM;
3520 
3521 	/*
3522 	 * We don't need the lock here since we are protected by the transaction
3523 	 * commit.  We want to do the cache_save_setup first and then run the
3524 	 * delayed refs to make sure we have the best chance at doing this all
3525 	 * in one shot.
3526 	 */
3527 	while (!list_empty(&cur_trans->dirty_bgs)) {
3528 		cache = list_first_entry(&cur_trans->dirty_bgs,
3529 					 struct btrfs_block_group_cache,
3530 					 dirty_list);
3531 
3532 		/*
3533 		 * this can happen if cache_save_setup re-dirties a block
3534 		 * group that is already under IO.  Just wait for it to
3535 		 * finish and then do it all again
3536 		 */
3537 		if (!list_empty(&cache->io_list)) {
3538 			list_del_init(&cache->io_list);
3539 			btrfs_wait_cache_io(root, trans, cache,
3540 					    &cache->io_ctl, path,
3541 					    cache->key.objectid);
3542 			btrfs_put_block_group(cache);
3543 		}
3544 
3545 		/*
3546 		 * don't remove from the dirty list until after we've waited
3547 		 * on any pending IO
3548 		 */
3549 		list_del_init(&cache->dirty_list);
3550 		should_put = 1;
3551 
3552 		cache_save_setup(cache, trans, path);
3553 
3554 		if (!ret)
3555 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3556 
3557 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3558 			cache->io_ctl.inode = NULL;
3559 			ret = btrfs_write_out_cache(root, trans, cache, path);
3560 			if (ret == 0 && cache->io_ctl.inode) {
3561 				num_started++;
3562 				should_put = 0;
3563 				list_add_tail(&cache->io_list, io);
3564 			} else {
3565 				/*
3566 				 * if we failed to write the cache, the
3567 				 * generation will be bad and life goes on
3568 				 */
3569 				ret = 0;
3570 			}
3571 		}
3572 		if (!ret) {
3573 			ret = write_one_cache_group(trans, root, path, cache);
3574 			if (ret)
3575 				btrfs_abort_transaction(trans, root, ret);
3576 		}
3577 
3578 		/* if its not on the io list, we need to put the block group */
3579 		if (should_put)
3580 			btrfs_put_block_group(cache);
3581 	}
3582 
3583 	while (!list_empty(io)) {
3584 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3585 					 io_list);
3586 		list_del_init(&cache->io_list);
3587 		btrfs_wait_cache_io(root, trans, cache,
3588 				    &cache->io_ctl, path, cache->key.objectid);
3589 		btrfs_put_block_group(cache);
3590 	}
3591 
3592 	btrfs_free_path(path);
3593 	return ret;
3594 }
3595 
3596 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3597 {
3598 	struct btrfs_block_group_cache *block_group;
3599 	int readonly = 0;
3600 
3601 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3602 	if (!block_group || block_group->ro)
3603 		readonly = 1;
3604 	if (block_group)
3605 		btrfs_put_block_group(block_group);
3606 	return readonly;
3607 }
3608 
3609 static const char *alloc_name(u64 flags)
3610 {
3611 	switch (flags) {
3612 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3613 		return "mixed";
3614 	case BTRFS_BLOCK_GROUP_METADATA:
3615 		return "metadata";
3616 	case BTRFS_BLOCK_GROUP_DATA:
3617 		return "data";
3618 	case BTRFS_BLOCK_GROUP_SYSTEM:
3619 		return "system";
3620 	default:
3621 		WARN_ON(1);
3622 		return "invalid-combination";
3623 	};
3624 }
3625 
3626 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3627 			     u64 total_bytes, u64 bytes_used,
3628 			     struct btrfs_space_info **space_info)
3629 {
3630 	struct btrfs_space_info *found;
3631 	int i;
3632 	int factor;
3633 	int ret;
3634 
3635 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3636 		     BTRFS_BLOCK_GROUP_RAID10))
3637 		factor = 2;
3638 	else
3639 		factor = 1;
3640 
3641 	found = __find_space_info(info, flags);
3642 	if (found) {
3643 		spin_lock(&found->lock);
3644 		found->total_bytes += total_bytes;
3645 		found->disk_total += total_bytes * factor;
3646 		found->bytes_used += bytes_used;
3647 		found->disk_used += bytes_used * factor;
3648 		if (total_bytes > 0)
3649 			found->full = 0;
3650 		spin_unlock(&found->lock);
3651 		*space_info = found;
3652 		return 0;
3653 	}
3654 	found = kzalloc(sizeof(*found), GFP_NOFS);
3655 	if (!found)
3656 		return -ENOMEM;
3657 
3658 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3659 	if (ret) {
3660 		kfree(found);
3661 		return ret;
3662 	}
3663 
3664 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3665 		INIT_LIST_HEAD(&found->block_groups[i]);
3666 	init_rwsem(&found->groups_sem);
3667 	spin_lock_init(&found->lock);
3668 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3669 	found->total_bytes = total_bytes;
3670 	found->disk_total = total_bytes * factor;
3671 	found->bytes_used = bytes_used;
3672 	found->disk_used = bytes_used * factor;
3673 	found->bytes_pinned = 0;
3674 	found->bytes_reserved = 0;
3675 	found->bytes_readonly = 0;
3676 	found->bytes_may_use = 0;
3677 	if (total_bytes > 0)
3678 		found->full = 0;
3679 	else
3680 		found->full = 1;
3681 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3682 	found->chunk_alloc = 0;
3683 	found->flush = 0;
3684 	init_waitqueue_head(&found->wait);
3685 	INIT_LIST_HEAD(&found->ro_bgs);
3686 
3687 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3688 				    info->space_info_kobj, "%s",
3689 				    alloc_name(found->flags));
3690 	if (ret) {
3691 		kfree(found);
3692 		return ret;
3693 	}
3694 
3695 	*space_info = found;
3696 	list_add_rcu(&found->list, &info->space_info);
3697 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3698 		info->data_sinfo = found;
3699 
3700 	return ret;
3701 }
3702 
3703 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3704 {
3705 	u64 extra_flags = chunk_to_extended(flags) &
3706 				BTRFS_EXTENDED_PROFILE_MASK;
3707 
3708 	write_seqlock(&fs_info->profiles_lock);
3709 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 		fs_info->avail_data_alloc_bits |= extra_flags;
3711 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3712 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3713 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3714 		fs_info->avail_system_alloc_bits |= extra_flags;
3715 	write_sequnlock(&fs_info->profiles_lock);
3716 }
3717 
3718 /*
3719  * returns target flags in extended format or 0 if restripe for this
3720  * chunk_type is not in progress
3721  *
3722  * should be called with either volume_mutex or balance_lock held
3723  */
3724 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3725 {
3726 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 	u64 target = 0;
3728 
3729 	if (!bctl)
3730 		return 0;
3731 
3732 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3733 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3734 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3735 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3736 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3737 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3738 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3739 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3740 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3741 	}
3742 
3743 	return target;
3744 }
3745 
3746 /*
3747  * @flags: available profiles in extended format (see ctree.h)
3748  *
3749  * Returns reduced profile in chunk format.  If profile changing is in
3750  * progress (either running or paused) picks the target profile (if it's
3751  * already available), otherwise falls back to plain reducing.
3752  */
3753 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3754 {
3755 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3756 	u64 target;
3757 	u64 tmp;
3758 
3759 	/*
3760 	 * see if restripe for this chunk_type is in progress, if so
3761 	 * try to reduce to the target profile
3762 	 */
3763 	spin_lock(&root->fs_info->balance_lock);
3764 	target = get_restripe_target(root->fs_info, flags);
3765 	if (target) {
3766 		/* pick target profile only if it's already available */
3767 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3768 			spin_unlock(&root->fs_info->balance_lock);
3769 			return extended_to_chunk(target);
3770 		}
3771 	}
3772 	spin_unlock(&root->fs_info->balance_lock);
3773 
3774 	/* First, mask out the RAID levels which aren't possible */
3775 	if (num_devices == 1)
3776 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3777 			   BTRFS_BLOCK_GROUP_RAID5);
3778 	if (num_devices < 3)
3779 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3780 	if (num_devices < 4)
3781 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3782 
3783 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3784 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3785 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3786 	flags &= ~tmp;
3787 
3788 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3789 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3790 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3791 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3792 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3793 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3794 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3795 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3796 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3797 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3798 
3799 	return extended_to_chunk(flags | tmp);
3800 }
3801 
3802 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3803 {
3804 	unsigned seq;
3805 	u64 flags;
3806 
3807 	do {
3808 		flags = orig_flags;
3809 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3810 
3811 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3812 			flags |= root->fs_info->avail_data_alloc_bits;
3813 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3814 			flags |= root->fs_info->avail_system_alloc_bits;
3815 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3816 			flags |= root->fs_info->avail_metadata_alloc_bits;
3817 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3818 
3819 	return btrfs_reduce_alloc_profile(root, flags);
3820 }
3821 
3822 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3823 {
3824 	u64 flags;
3825 	u64 ret;
3826 
3827 	if (data)
3828 		flags = BTRFS_BLOCK_GROUP_DATA;
3829 	else if (root == root->fs_info->chunk_root)
3830 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3831 	else
3832 		flags = BTRFS_BLOCK_GROUP_METADATA;
3833 
3834 	ret = get_alloc_profile(root, flags);
3835 	return ret;
3836 }
3837 
3838 /*
3839  * This will check the space that the inode allocates from to make sure we have
3840  * enough space for bytes.
3841  */
3842 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3843 {
3844 	struct btrfs_space_info *data_sinfo;
3845 	struct btrfs_root *root = BTRFS_I(inode)->root;
3846 	struct btrfs_fs_info *fs_info = root->fs_info;
3847 	u64 used;
3848 	int ret = 0;
3849 	int need_commit = 2;
3850 	int have_pinned_space;
3851 
3852 	/* make sure bytes are sectorsize aligned */
3853 	bytes = ALIGN(bytes, root->sectorsize);
3854 
3855 	if (btrfs_is_free_space_inode(inode)) {
3856 		need_commit = 0;
3857 		ASSERT(current->journal_info);
3858 	}
3859 
3860 	data_sinfo = fs_info->data_sinfo;
3861 	if (!data_sinfo)
3862 		goto alloc;
3863 
3864 again:
3865 	/* make sure we have enough space to handle the data first */
3866 	spin_lock(&data_sinfo->lock);
3867 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3868 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3869 		data_sinfo->bytes_may_use;
3870 
3871 	if (used + bytes > data_sinfo->total_bytes) {
3872 		struct btrfs_trans_handle *trans;
3873 
3874 		/*
3875 		 * if we don't have enough free bytes in this space then we need
3876 		 * to alloc a new chunk.
3877 		 */
3878 		if (!data_sinfo->full) {
3879 			u64 alloc_target;
3880 
3881 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3882 			spin_unlock(&data_sinfo->lock);
3883 alloc:
3884 			alloc_target = btrfs_get_alloc_profile(root, 1);
3885 			/*
3886 			 * It is ugly that we don't call nolock join
3887 			 * transaction for the free space inode case here.
3888 			 * But it is safe because we only do the data space
3889 			 * reservation for the free space cache in the
3890 			 * transaction context, the common join transaction
3891 			 * just increase the counter of the current transaction
3892 			 * handler, doesn't try to acquire the trans_lock of
3893 			 * the fs.
3894 			 */
3895 			trans = btrfs_join_transaction(root);
3896 			if (IS_ERR(trans))
3897 				return PTR_ERR(trans);
3898 
3899 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3900 					     alloc_target,
3901 					     CHUNK_ALLOC_NO_FORCE);
3902 			btrfs_end_transaction(trans, root);
3903 			if (ret < 0) {
3904 				if (ret != -ENOSPC)
3905 					return ret;
3906 				else {
3907 					have_pinned_space = 1;
3908 					goto commit_trans;
3909 				}
3910 			}
3911 
3912 			if (!data_sinfo)
3913 				data_sinfo = fs_info->data_sinfo;
3914 
3915 			goto again;
3916 		}
3917 
3918 		/*
3919 		 * If we don't have enough pinned space to deal with this
3920 		 * allocation, and no removed chunk in current transaction,
3921 		 * don't bother committing the transaction.
3922 		 */
3923 		have_pinned_space = percpu_counter_compare(
3924 			&data_sinfo->total_bytes_pinned,
3925 			used + bytes - data_sinfo->total_bytes);
3926 		spin_unlock(&data_sinfo->lock);
3927 
3928 		/* commit the current transaction and try again */
3929 commit_trans:
3930 		if (need_commit &&
3931 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3932 			need_commit--;
3933 
3934 			if (need_commit > 0)
3935 				btrfs_wait_ordered_roots(fs_info, -1);
3936 
3937 			trans = btrfs_join_transaction(root);
3938 			if (IS_ERR(trans))
3939 				return PTR_ERR(trans);
3940 			if (have_pinned_space >= 0 ||
3941 			    trans->transaction->have_free_bgs ||
3942 			    need_commit > 0) {
3943 				ret = btrfs_commit_transaction(trans, root);
3944 				if (ret)
3945 					return ret;
3946 				/*
3947 				 * make sure that all running delayed iput are
3948 				 * done
3949 				 */
3950 				down_write(&root->fs_info->delayed_iput_sem);
3951 				up_write(&root->fs_info->delayed_iput_sem);
3952 				goto again;
3953 			} else {
3954 				btrfs_end_transaction(trans, root);
3955 			}
3956 		}
3957 
3958 		trace_btrfs_space_reservation(root->fs_info,
3959 					      "space_info:enospc",
3960 					      data_sinfo->flags, bytes, 1);
3961 		return -ENOSPC;
3962 	}
3963 	ret = btrfs_qgroup_reserve(root, write_bytes);
3964 	if (ret)
3965 		goto out;
3966 	data_sinfo->bytes_may_use += bytes;
3967 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3968 				      data_sinfo->flags, bytes, 1);
3969 out:
3970 	spin_unlock(&data_sinfo->lock);
3971 
3972 	return ret;
3973 }
3974 
3975 /*
3976  * Called if we need to clear a data reservation for this inode.
3977  */
3978 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3979 {
3980 	struct btrfs_root *root = BTRFS_I(inode)->root;
3981 	struct btrfs_space_info *data_sinfo;
3982 
3983 	/* make sure bytes are sectorsize aligned */
3984 	bytes = ALIGN(bytes, root->sectorsize);
3985 
3986 	data_sinfo = root->fs_info->data_sinfo;
3987 	spin_lock(&data_sinfo->lock);
3988 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3989 	data_sinfo->bytes_may_use -= bytes;
3990 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3991 				      data_sinfo->flags, bytes, 0);
3992 	spin_unlock(&data_sinfo->lock);
3993 }
3994 
3995 static void force_metadata_allocation(struct btrfs_fs_info *info)
3996 {
3997 	struct list_head *head = &info->space_info;
3998 	struct btrfs_space_info *found;
3999 
4000 	rcu_read_lock();
4001 	list_for_each_entry_rcu(found, head, list) {
4002 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4003 			found->force_alloc = CHUNK_ALLOC_FORCE;
4004 	}
4005 	rcu_read_unlock();
4006 }
4007 
4008 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4009 {
4010 	return (global->size << 1);
4011 }
4012 
4013 static int should_alloc_chunk(struct btrfs_root *root,
4014 			      struct btrfs_space_info *sinfo, int force)
4015 {
4016 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4017 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4018 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4019 	u64 thresh;
4020 
4021 	if (force == CHUNK_ALLOC_FORCE)
4022 		return 1;
4023 
4024 	/*
4025 	 * We need to take into account the global rsv because for all intents
4026 	 * and purposes it's used space.  Don't worry about locking the
4027 	 * global_rsv, it doesn't change except when the transaction commits.
4028 	 */
4029 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4030 		num_allocated += calc_global_rsv_need_space(global_rsv);
4031 
4032 	/*
4033 	 * in limited mode, we want to have some free space up to
4034 	 * about 1% of the FS size.
4035 	 */
4036 	if (force == CHUNK_ALLOC_LIMITED) {
4037 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4038 		thresh = max_t(u64, 64 * 1024 * 1024,
4039 			       div_factor_fine(thresh, 1));
4040 
4041 		if (num_bytes - num_allocated < thresh)
4042 			return 1;
4043 	}
4044 
4045 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4046 		return 0;
4047 	return 1;
4048 }
4049 
4050 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4051 {
4052 	u64 num_dev;
4053 
4054 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4055 		    BTRFS_BLOCK_GROUP_RAID0 |
4056 		    BTRFS_BLOCK_GROUP_RAID5 |
4057 		    BTRFS_BLOCK_GROUP_RAID6))
4058 		num_dev = root->fs_info->fs_devices->rw_devices;
4059 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4060 		num_dev = 2;
4061 	else
4062 		num_dev = 1;	/* DUP or single */
4063 
4064 	return num_dev;
4065 }
4066 
4067 /*
4068  * If @is_allocation is true, reserve space in the system space info necessary
4069  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4070  * removing a chunk.
4071  */
4072 void check_system_chunk(struct btrfs_trans_handle *trans,
4073 			struct btrfs_root *root,
4074 			u64 type)
4075 {
4076 	struct btrfs_space_info *info;
4077 	u64 left;
4078 	u64 thresh;
4079 	int ret = 0;
4080 	u64 num_devs;
4081 
4082 	/*
4083 	 * Needed because we can end up allocating a system chunk and for an
4084 	 * atomic and race free space reservation in the chunk block reserve.
4085 	 */
4086 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4087 
4088 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4089 	spin_lock(&info->lock);
4090 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4091 		info->bytes_reserved - info->bytes_readonly -
4092 		info->bytes_may_use;
4093 	spin_unlock(&info->lock);
4094 
4095 	num_devs = get_profile_num_devs(root, type);
4096 
4097 	/* num_devs device items to update and 1 chunk item to add or remove */
4098 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4099 		btrfs_calc_trans_metadata_size(root, 1);
4100 
4101 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4102 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4103 			left, thresh, type);
4104 		dump_space_info(info, 0, 0);
4105 	}
4106 
4107 	if (left < thresh) {
4108 		u64 flags;
4109 
4110 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4111 		/*
4112 		 * Ignore failure to create system chunk. We might end up not
4113 		 * needing it, as we might not need to COW all nodes/leafs from
4114 		 * the paths we visit in the chunk tree (they were already COWed
4115 		 * or created in the current transaction for example).
4116 		 */
4117 		ret = btrfs_alloc_chunk(trans, root, flags);
4118 	}
4119 
4120 	if (!ret) {
4121 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4122 					  &root->fs_info->chunk_block_rsv,
4123 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4124 		if (!ret)
4125 			trans->chunk_bytes_reserved += thresh;
4126 	}
4127 }
4128 
4129 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4130 			  struct btrfs_root *extent_root, u64 flags, int force)
4131 {
4132 	struct btrfs_space_info *space_info;
4133 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4134 	int wait_for_alloc = 0;
4135 	int ret = 0;
4136 
4137 	/* Don't re-enter if we're already allocating a chunk */
4138 	if (trans->allocating_chunk)
4139 		return -ENOSPC;
4140 
4141 	space_info = __find_space_info(extent_root->fs_info, flags);
4142 	if (!space_info) {
4143 		ret = update_space_info(extent_root->fs_info, flags,
4144 					0, 0, &space_info);
4145 		BUG_ON(ret); /* -ENOMEM */
4146 	}
4147 	BUG_ON(!space_info); /* Logic error */
4148 
4149 again:
4150 	spin_lock(&space_info->lock);
4151 	if (force < space_info->force_alloc)
4152 		force = space_info->force_alloc;
4153 	if (space_info->full) {
4154 		if (should_alloc_chunk(extent_root, space_info, force))
4155 			ret = -ENOSPC;
4156 		else
4157 			ret = 0;
4158 		spin_unlock(&space_info->lock);
4159 		return ret;
4160 	}
4161 
4162 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4163 		spin_unlock(&space_info->lock);
4164 		return 0;
4165 	} else if (space_info->chunk_alloc) {
4166 		wait_for_alloc = 1;
4167 	} else {
4168 		space_info->chunk_alloc = 1;
4169 	}
4170 
4171 	spin_unlock(&space_info->lock);
4172 
4173 	mutex_lock(&fs_info->chunk_mutex);
4174 
4175 	/*
4176 	 * The chunk_mutex is held throughout the entirety of a chunk
4177 	 * allocation, so once we've acquired the chunk_mutex we know that the
4178 	 * other guy is done and we need to recheck and see if we should
4179 	 * allocate.
4180 	 */
4181 	if (wait_for_alloc) {
4182 		mutex_unlock(&fs_info->chunk_mutex);
4183 		wait_for_alloc = 0;
4184 		goto again;
4185 	}
4186 
4187 	trans->allocating_chunk = true;
4188 
4189 	/*
4190 	 * If we have mixed data/metadata chunks we want to make sure we keep
4191 	 * allocating mixed chunks instead of individual chunks.
4192 	 */
4193 	if (btrfs_mixed_space_info(space_info))
4194 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4195 
4196 	/*
4197 	 * if we're doing a data chunk, go ahead and make sure that
4198 	 * we keep a reasonable number of metadata chunks allocated in the
4199 	 * FS as well.
4200 	 */
4201 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4202 		fs_info->data_chunk_allocations++;
4203 		if (!(fs_info->data_chunk_allocations %
4204 		      fs_info->metadata_ratio))
4205 			force_metadata_allocation(fs_info);
4206 	}
4207 
4208 	/*
4209 	 * Check if we have enough space in SYSTEM chunk because we may need
4210 	 * to update devices.
4211 	 */
4212 	check_system_chunk(trans, extent_root, flags);
4213 
4214 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4215 	trans->allocating_chunk = false;
4216 
4217 	spin_lock(&space_info->lock);
4218 	if (ret < 0 && ret != -ENOSPC)
4219 		goto out;
4220 	if (ret)
4221 		space_info->full = 1;
4222 	else
4223 		ret = 1;
4224 
4225 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4226 out:
4227 	space_info->chunk_alloc = 0;
4228 	spin_unlock(&space_info->lock);
4229 	mutex_unlock(&fs_info->chunk_mutex);
4230 	return ret;
4231 }
4232 
4233 static int can_overcommit(struct btrfs_root *root,
4234 			  struct btrfs_space_info *space_info, u64 bytes,
4235 			  enum btrfs_reserve_flush_enum flush)
4236 {
4237 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4238 	u64 profile = btrfs_get_alloc_profile(root, 0);
4239 	u64 space_size;
4240 	u64 avail;
4241 	u64 used;
4242 
4243 	used = space_info->bytes_used + space_info->bytes_reserved +
4244 		space_info->bytes_pinned + space_info->bytes_readonly;
4245 
4246 	/*
4247 	 * We only want to allow over committing if we have lots of actual space
4248 	 * free, but if we don't have enough space to handle the global reserve
4249 	 * space then we could end up having a real enospc problem when trying
4250 	 * to allocate a chunk or some other such important allocation.
4251 	 */
4252 	spin_lock(&global_rsv->lock);
4253 	space_size = calc_global_rsv_need_space(global_rsv);
4254 	spin_unlock(&global_rsv->lock);
4255 	if (used + space_size >= space_info->total_bytes)
4256 		return 0;
4257 
4258 	used += space_info->bytes_may_use;
4259 
4260 	spin_lock(&root->fs_info->free_chunk_lock);
4261 	avail = root->fs_info->free_chunk_space;
4262 	spin_unlock(&root->fs_info->free_chunk_lock);
4263 
4264 	/*
4265 	 * If we have dup, raid1 or raid10 then only half of the free
4266 	 * space is actually useable.  For raid56, the space info used
4267 	 * doesn't include the parity drive, so we don't have to
4268 	 * change the math
4269 	 */
4270 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4271 		       BTRFS_BLOCK_GROUP_RAID1 |
4272 		       BTRFS_BLOCK_GROUP_RAID10))
4273 		avail >>= 1;
4274 
4275 	/*
4276 	 * If we aren't flushing all things, let us overcommit up to
4277 	 * 1/2th of the space. If we can flush, don't let us overcommit
4278 	 * too much, let it overcommit up to 1/8 of the space.
4279 	 */
4280 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4281 		avail >>= 3;
4282 	else
4283 		avail >>= 1;
4284 
4285 	if (used + bytes < space_info->total_bytes + avail)
4286 		return 1;
4287 	return 0;
4288 }
4289 
4290 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4291 					 unsigned long nr_pages, int nr_items)
4292 {
4293 	struct super_block *sb = root->fs_info->sb;
4294 
4295 	if (down_read_trylock(&sb->s_umount)) {
4296 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4297 		up_read(&sb->s_umount);
4298 	} else {
4299 		/*
4300 		 * We needn't worry the filesystem going from r/w to r/o though
4301 		 * we don't acquire ->s_umount mutex, because the filesystem
4302 		 * should guarantee the delalloc inodes list be empty after
4303 		 * the filesystem is readonly(all dirty pages are written to
4304 		 * the disk).
4305 		 */
4306 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4307 		if (!current->journal_info)
4308 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4309 	}
4310 }
4311 
4312 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4313 {
4314 	u64 bytes;
4315 	int nr;
4316 
4317 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4318 	nr = (int)div64_u64(to_reclaim, bytes);
4319 	if (!nr)
4320 		nr = 1;
4321 	return nr;
4322 }
4323 
4324 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4325 
4326 /*
4327  * shrink metadata reservation for delalloc
4328  */
4329 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4330 			    bool wait_ordered)
4331 {
4332 	struct btrfs_block_rsv *block_rsv;
4333 	struct btrfs_space_info *space_info;
4334 	struct btrfs_trans_handle *trans;
4335 	u64 delalloc_bytes;
4336 	u64 max_reclaim;
4337 	long time_left;
4338 	unsigned long nr_pages;
4339 	int loops;
4340 	int items;
4341 	enum btrfs_reserve_flush_enum flush;
4342 
4343 	/* Calc the number of the pages we need flush for space reservation */
4344 	items = calc_reclaim_items_nr(root, to_reclaim);
4345 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4346 
4347 	trans = (struct btrfs_trans_handle *)current->journal_info;
4348 	block_rsv = &root->fs_info->delalloc_block_rsv;
4349 	space_info = block_rsv->space_info;
4350 
4351 	delalloc_bytes = percpu_counter_sum_positive(
4352 						&root->fs_info->delalloc_bytes);
4353 	if (delalloc_bytes == 0) {
4354 		if (trans)
4355 			return;
4356 		if (wait_ordered)
4357 			btrfs_wait_ordered_roots(root->fs_info, items);
4358 		return;
4359 	}
4360 
4361 	loops = 0;
4362 	while (delalloc_bytes && loops < 3) {
4363 		max_reclaim = min(delalloc_bytes, to_reclaim);
4364 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4365 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4366 		/*
4367 		 * We need to wait for the async pages to actually start before
4368 		 * we do anything.
4369 		 */
4370 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4371 		if (!max_reclaim)
4372 			goto skip_async;
4373 
4374 		if (max_reclaim <= nr_pages)
4375 			max_reclaim = 0;
4376 		else
4377 			max_reclaim -= nr_pages;
4378 
4379 		wait_event(root->fs_info->async_submit_wait,
4380 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4381 			   (int)max_reclaim);
4382 skip_async:
4383 		if (!trans)
4384 			flush = BTRFS_RESERVE_FLUSH_ALL;
4385 		else
4386 			flush = BTRFS_RESERVE_NO_FLUSH;
4387 		spin_lock(&space_info->lock);
4388 		if (can_overcommit(root, space_info, orig, flush)) {
4389 			spin_unlock(&space_info->lock);
4390 			break;
4391 		}
4392 		spin_unlock(&space_info->lock);
4393 
4394 		loops++;
4395 		if (wait_ordered && !trans) {
4396 			btrfs_wait_ordered_roots(root->fs_info, items);
4397 		} else {
4398 			time_left = schedule_timeout_killable(1);
4399 			if (time_left)
4400 				break;
4401 		}
4402 		delalloc_bytes = percpu_counter_sum_positive(
4403 						&root->fs_info->delalloc_bytes);
4404 	}
4405 }
4406 
4407 /**
4408  * maybe_commit_transaction - possibly commit the transaction if its ok to
4409  * @root - the root we're allocating for
4410  * @bytes - the number of bytes we want to reserve
4411  * @force - force the commit
4412  *
4413  * This will check to make sure that committing the transaction will actually
4414  * get us somewhere and then commit the transaction if it does.  Otherwise it
4415  * will return -ENOSPC.
4416  */
4417 static int may_commit_transaction(struct btrfs_root *root,
4418 				  struct btrfs_space_info *space_info,
4419 				  u64 bytes, int force)
4420 {
4421 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4422 	struct btrfs_trans_handle *trans;
4423 
4424 	trans = (struct btrfs_trans_handle *)current->journal_info;
4425 	if (trans)
4426 		return -EAGAIN;
4427 
4428 	if (force)
4429 		goto commit;
4430 
4431 	/* See if there is enough pinned space to make this reservation */
4432 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4433 				   bytes) >= 0)
4434 		goto commit;
4435 
4436 	/*
4437 	 * See if there is some space in the delayed insertion reservation for
4438 	 * this reservation.
4439 	 */
4440 	if (space_info != delayed_rsv->space_info)
4441 		return -ENOSPC;
4442 
4443 	spin_lock(&delayed_rsv->lock);
4444 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4445 				   bytes - delayed_rsv->size) >= 0) {
4446 		spin_unlock(&delayed_rsv->lock);
4447 		return -ENOSPC;
4448 	}
4449 	spin_unlock(&delayed_rsv->lock);
4450 
4451 commit:
4452 	trans = btrfs_join_transaction(root);
4453 	if (IS_ERR(trans))
4454 		return -ENOSPC;
4455 
4456 	return btrfs_commit_transaction(trans, root);
4457 }
4458 
4459 enum flush_state {
4460 	FLUSH_DELAYED_ITEMS_NR	=	1,
4461 	FLUSH_DELAYED_ITEMS	=	2,
4462 	FLUSH_DELALLOC		=	3,
4463 	FLUSH_DELALLOC_WAIT	=	4,
4464 	ALLOC_CHUNK		=	5,
4465 	COMMIT_TRANS		=	6,
4466 };
4467 
4468 static int flush_space(struct btrfs_root *root,
4469 		       struct btrfs_space_info *space_info, u64 num_bytes,
4470 		       u64 orig_bytes, int state)
4471 {
4472 	struct btrfs_trans_handle *trans;
4473 	int nr;
4474 	int ret = 0;
4475 
4476 	switch (state) {
4477 	case FLUSH_DELAYED_ITEMS_NR:
4478 	case FLUSH_DELAYED_ITEMS:
4479 		if (state == FLUSH_DELAYED_ITEMS_NR)
4480 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4481 		else
4482 			nr = -1;
4483 
4484 		trans = btrfs_join_transaction(root);
4485 		if (IS_ERR(trans)) {
4486 			ret = PTR_ERR(trans);
4487 			break;
4488 		}
4489 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4490 		btrfs_end_transaction(trans, root);
4491 		break;
4492 	case FLUSH_DELALLOC:
4493 	case FLUSH_DELALLOC_WAIT:
4494 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4495 				state == FLUSH_DELALLOC_WAIT);
4496 		break;
4497 	case ALLOC_CHUNK:
4498 		trans = btrfs_join_transaction(root);
4499 		if (IS_ERR(trans)) {
4500 			ret = PTR_ERR(trans);
4501 			break;
4502 		}
4503 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4504 				     btrfs_get_alloc_profile(root, 0),
4505 				     CHUNK_ALLOC_NO_FORCE);
4506 		btrfs_end_transaction(trans, root);
4507 		if (ret == -ENOSPC)
4508 			ret = 0;
4509 		break;
4510 	case COMMIT_TRANS:
4511 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4512 		break;
4513 	default:
4514 		ret = -ENOSPC;
4515 		break;
4516 	}
4517 
4518 	return ret;
4519 }
4520 
4521 static inline u64
4522 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4523 				 struct btrfs_space_info *space_info)
4524 {
4525 	u64 used;
4526 	u64 expected;
4527 	u64 to_reclaim;
4528 
4529 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4530 				16 * 1024 * 1024);
4531 	spin_lock(&space_info->lock);
4532 	if (can_overcommit(root, space_info, to_reclaim,
4533 			   BTRFS_RESERVE_FLUSH_ALL)) {
4534 		to_reclaim = 0;
4535 		goto out;
4536 	}
4537 
4538 	used = space_info->bytes_used + space_info->bytes_reserved +
4539 	       space_info->bytes_pinned + space_info->bytes_readonly +
4540 	       space_info->bytes_may_use;
4541 	if (can_overcommit(root, space_info, 1024 * 1024,
4542 			   BTRFS_RESERVE_FLUSH_ALL))
4543 		expected = div_factor_fine(space_info->total_bytes, 95);
4544 	else
4545 		expected = div_factor_fine(space_info->total_bytes, 90);
4546 
4547 	if (used > expected)
4548 		to_reclaim = used - expected;
4549 	else
4550 		to_reclaim = 0;
4551 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4552 				     space_info->bytes_reserved);
4553 out:
4554 	spin_unlock(&space_info->lock);
4555 
4556 	return to_reclaim;
4557 }
4558 
4559 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4560 					struct btrfs_fs_info *fs_info, u64 used)
4561 {
4562 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4563 
4564 	/* If we're just plain full then async reclaim just slows us down. */
4565 	if (space_info->bytes_used >= thresh)
4566 		return 0;
4567 
4568 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4569 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4570 }
4571 
4572 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4573 				       struct btrfs_fs_info *fs_info,
4574 				       int flush_state)
4575 {
4576 	u64 used;
4577 
4578 	spin_lock(&space_info->lock);
4579 	/*
4580 	 * We run out of space and have not got any free space via flush_space,
4581 	 * so don't bother doing async reclaim.
4582 	 */
4583 	if (flush_state > COMMIT_TRANS && space_info->full) {
4584 		spin_unlock(&space_info->lock);
4585 		return 0;
4586 	}
4587 
4588 	used = space_info->bytes_used + space_info->bytes_reserved +
4589 	       space_info->bytes_pinned + space_info->bytes_readonly +
4590 	       space_info->bytes_may_use;
4591 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4592 		spin_unlock(&space_info->lock);
4593 		return 1;
4594 	}
4595 	spin_unlock(&space_info->lock);
4596 
4597 	return 0;
4598 }
4599 
4600 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4601 {
4602 	struct btrfs_fs_info *fs_info;
4603 	struct btrfs_space_info *space_info;
4604 	u64 to_reclaim;
4605 	int flush_state;
4606 
4607 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4608 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4609 
4610 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4611 						      space_info);
4612 	if (!to_reclaim)
4613 		return;
4614 
4615 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4616 	do {
4617 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4618 			    to_reclaim, flush_state);
4619 		flush_state++;
4620 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4621 						 flush_state))
4622 			return;
4623 	} while (flush_state < COMMIT_TRANS);
4624 }
4625 
4626 void btrfs_init_async_reclaim_work(struct work_struct *work)
4627 {
4628 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4629 }
4630 
4631 /**
4632  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4633  * @root - the root we're allocating for
4634  * @block_rsv - the block_rsv we're allocating for
4635  * @orig_bytes - the number of bytes we want
4636  * @flush - whether or not we can flush to make our reservation
4637  *
4638  * This will reserve orgi_bytes number of bytes from the space info associated
4639  * with the block_rsv.  If there is not enough space it will make an attempt to
4640  * flush out space to make room.  It will do this by flushing delalloc if
4641  * possible or committing the transaction.  If flush is 0 then no attempts to
4642  * regain reservations will be made and this will fail if there is not enough
4643  * space already.
4644  */
4645 static int reserve_metadata_bytes(struct btrfs_root *root,
4646 				  struct btrfs_block_rsv *block_rsv,
4647 				  u64 orig_bytes,
4648 				  enum btrfs_reserve_flush_enum flush)
4649 {
4650 	struct btrfs_space_info *space_info = block_rsv->space_info;
4651 	u64 used;
4652 	u64 num_bytes = orig_bytes;
4653 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4654 	int ret = 0;
4655 	bool flushing = false;
4656 
4657 again:
4658 	ret = 0;
4659 	spin_lock(&space_info->lock);
4660 	/*
4661 	 * We only want to wait if somebody other than us is flushing and we
4662 	 * are actually allowed to flush all things.
4663 	 */
4664 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4665 	       space_info->flush) {
4666 		spin_unlock(&space_info->lock);
4667 		/*
4668 		 * If we have a trans handle we can't wait because the flusher
4669 		 * may have to commit the transaction, which would mean we would
4670 		 * deadlock since we are waiting for the flusher to finish, but
4671 		 * hold the current transaction open.
4672 		 */
4673 		if (current->journal_info)
4674 			return -EAGAIN;
4675 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4676 		/* Must have been killed, return */
4677 		if (ret)
4678 			return -EINTR;
4679 
4680 		spin_lock(&space_info->lock);
4681 	}
4682 
4683 	ret = -ENOSPC;
4684 	used = space_info->bytes_used + space_info->bytes_reserved +
4685 		space_info->bytes_pinned + space_info->bytes_readonly +
4686 		space_info->bytes_may_use;
4687 
4688 	/*
4689 	 * The idea here is that we've not already over-reserved the block group
4690 	 * then we can go ahead and save our reservation first and then start
4691 	 * flushing if we need to.  Otherwise if we've already overcommitted
4692 	 * lets start flushing stuff first and then come back and try to make
4693 	 * our reservation.
4694 	 */
4695 	if (used <= space_info->total_bytes) {
4696 		if (used + orig_bytes <= space_info->total_bytes) {
4697 			space_info->bytes_may_use += orig_bytes;
4698 			trace_btrfs_space_reservation(root->fs_info,
4699 				"space_info", space_info->flags, orig_bytes, 1);
4700 			ret = 0;
4701 		} else {
4702 			/*
4703 			 * Ok set num_bytes to orig_bytes since we aren't
4704 			 * overocmmitted, this way we only try and reclaim what
4705 			 * we need.
4706 			 */
4707 			num_bytes = orig_bytes;
4708 		}
4709 	} else {
4710 		/*
4711 		 * Ok we're over committed, set num_bytes to the overcommitted
4712 		 * amount plus the amount of bytes that we need for this
4713 		 * reservation.
4714 		 */
4715 		num_bytes = used - space_info->total_bytes +
4716 			(orig_bytes * 2);
4717 	}
4718 
4719 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4720 		space_info->bytes_may_use += orig_bytes;
4721 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4722 					      space_info->flags, orig_bytes,
4723 					      1);
4724 		ret = 0;
4725 	}
4726 
4727 	/*
4728 	 * Couldn't make our reservation, save our place so while we're trying
4729 	 * to reclaim space we can actually use it instead of somebody else
4730 	 * stealing it from us.
4731 	 *
4732 	 * We make the other tasks wait for the flush only when we can flush
4733 	 * all things.
4734 	 */
4735 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4736 		flushing = true;
4737 		space_info->flush = 1;
4738 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4739 		used += orig_bytes;
4740 		/*
4741 		 * We will do the space reservation dance during log replay,
4742 		 * which means we won't have fs_info->fs_root set, so don't do
4743 		 * the async reclaim as we will panic.
4744 		 */
4745 		if (!root->fs_info->log_root_recovering &&
4746 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4747 		    !work_busy(&root->fs_info->async_reclaim_work))
4748 			queue_work(system_unbound_wq,
4749 				   &root->fs_info->async_reclaim_work);
4750 	}
4751 	spin_unlock(&space_info->lock);
4752 
4753 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4754 		goto out;
4755 
4756 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4757 			  flush_state);
4758 	flush_state++;
4759 
4760 	/*
4761 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4762 	 * would happen. So skip delalloc flush.
4763 	 */
4764 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4765 	    (flush_state == FLUSH_DELALLOC ||
4766 	     flush_state == FLUSH_DELALLOC_WAIT))
4767 		flush_state = ALLOC_CHUNK;
4768 
4769 	if (!ret)
4770 		goto again;
4771 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4772 		 flush_state < COMMIT_TRANS)
4773 		goto again;
4774 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4775 		 flush_state <= COMMIT_TRANS)
4776 		goto again;
4777 
4778 out:
4779 	if (ret == -ENOSPC &&
4780 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4781 		struct btrfs_block_rsv *global_rsv =
4782 			&root->fs_info->global_block_rsv;
4783 
4784 		if (block_rsv != global_rsv &&
4785 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4786 			ret = 0;
4787 	}
4788 	if (ret == -ENOSPC)
4789 		trace_btrfs_space_reservation(root->fs_info,
4790 					      "space_info:enospc",
4791 					      space_info->flags, orig_bytes, 1);
4792 	if (flushing) {
4793 		spin_lock(&space_info->lock);
4794 		space_info->flush = 0;
4795 		wake_up_all(&space_info->wait);
4796 		spin_unlock(&space_info->lock);
4797 	}
4798 	return ret;
4799 }
4800 
4801 static struct btrfs_block_rsv *get_block_rsv(
4802 					const struct btrfs_trans_handle *trans,
4803 					const struct btrfs_root *root)
4804 {
4805 	struct btrfs_block_rsv *block_rsv = NULL;
4806 
4807 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4808 		block_rsv = trans->block_rsv;
4809 
4810 	if (root == root->fs_info->csum_root && trans->adding_csums)
4811 		block_rsv = trans->block_rsv;
4812 
4813 	if (root == root->fs_info->uuid_root)
4814 		block_rsv = trans->block_rsv;
4815 
4816 	if (!block_rsv)
4817 		block_rsv = root->block_rsv;
4818 
4819 	if (!block_rsv)
4820 		block_rsv = &root->fs_info->empty_block_rsv;
4821 
4822 	return block_rsv;
4823 }
4824 
4825 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4826 			       u64 num_bytes)
4827 {
4828 	int ret = -ENOSPC;
4829 	spin_lock(&block_rsv->lock);
4830 	if (block_rsv->reserved >= num_bytes) {
4831 		block_rsv->reserved -= num_bytes;
4832 		if (block_rsv->reserved < block_rsv->size)
4833 			block_rsv->full = 0;
4834 		ret = 0;
4835 	}
4836 	spin_unlock(&block_rsv->lock);
4837 	return ret;
4838 }
4839 
4840 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4841 				u64 num_bytes, int update_size)
4842 {
4843 	spin_lock(&block_rsv->lock);
4844 	block_rsv->reserved += num_bytes;
4845 	if (update_size)
4846 		block_rsv->size += num_bytes;
4847 	else if (block_rsv->reserved >= block_rsv->size)
4848 		block_rsv->full = 1;
4849 	spin_unlock(&block_rsv->lock);
4850 }
4851 
4852 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4853 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4854 			     int min_factor)
4855 {
4856 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4857 	u64 min_bytes;
4858 
4859 	if (global_rsv->space_info != dest->space_info)
4860 		return -ENOSPC;
4861 
4862 	spin_lock(&global_rsv->lock);
4863 	min_bytes = div_factor(global_rsv->size, min_factor);
4864 	if (global_rsv->reserved < min_bytes + num_bytes) {
4865 		spin_unlock(&global_rsv->lock);
4866 		return -ENOSPC;
4867 	}
4868 	global_rsv->reserved -= num_bytes;
4869 	if (global_rsv->reserved < global_rsv->size)
4870 		global_rsv->full = 0;
4871 	spin_unlock(&global_rsv->lock);
4872 
4873 	block_rsv_add_bytes(dest, num_bytes, 1);
4874 	return 0;
4875 }
4876 
4877 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4878 				    struct btrfs_block_rsv *block_rsv,
4879 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4880 {
4881 	struct btrfs_space_info *space_info = block_rsv->space_info;
4882 
4883 	spin_lock(&block_rsv->lock);
4884 	if (num_bytes == (u64)-1)
4885 		num_bytes = block_rsv->size;
4886 	block_rsv->size -= num_bytes;
4887 	if (block_rsv->reserved >= block_rsv->size) {
4888 		num_bytes = block_rsv->reserved - block_rsv->size;
4889 		block_rsv->reserved = block_rsv->size;
4890 		block_rsv->full = 1;
4891 	} else {
4892 		num_bytes = 0;
4893 	}
4894 	spin_unlock(&block_rsv->lock);
4895 
4896 	if (num_bytes > 0) {
4897 		if (dest) {
4898 			spin_lock(&dest->lock);
4899 			if (!dest->full) {
4900 				u64 bytes_to_add;
4901 
4902 				bytes_to_add = dest->size - dest->reserved;
4903 				bytes_to_add = min(num_bytes, bytes_to_add);
4904 				dest->reserved += bytes_to_add;
4905 				if (dest->reserved >= dest->size)
4906 					dest->full = 1;
4907 				num_bytes -= bytes_to_add;
4908 			}
4909 			spin_unlock(&dest->lock);
4910 		}
4911 		if (num_bytes) {
4912 			spin_lock(&space_info->lock);
4913 			space_info->bytes_may_use -= num_bytes;
4914 			trace_btrfs_space_reservation(fs_info, "space_info",
4915 					space_info->flags, num_bytes, 0);
4916 			spin_unlock(&space_info->lock);
4917 		}
4918 	}
4919 }
4920 
4921 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4922 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4923 {
4924 	int ret;
4925 
4926 	ret = block_rsv_use_bytes(src, num_bytes);
4927 	if (ret)
4928 		return ret;
4929 
4930 	block_rsv_add_bytes(dst, num_bytes, 1);
4931 	return 0;
4932 }
4933 
4934 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4935 {
4936 	memset(rsv, 0, sizeof(*rsv));
4937 	spin_lock_init(&rsv->lock);
4938 	rsv->type = type;
4939 }
4940 
4941 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4942 					      unsigned short type)
4943 {
4944 	struct btrfs_block_rsv *block_rsv;
4945 	struct btrfs_fs_info *fs_info = root->fs_info;
4946 
4947 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4948 	if (!block_rsv)
4949 		return NULL;
4950 
4951 	btrfs_init_block_rsv(block_rsv, type);
4952 	block_rsv->space_info = __find_space_info(fs_info,
4953 						  BTRFS_BLOCK_GROUP_METADATA);
4954 	return block_rsv;
4955 }
4956 
4957 void btrfs_free_block_rsv(struct btrfs_root *root,
4958 			  struct btrfs_block_rsv *rsv)
4959 {
4960 	if (!rsv)
4961 		return;
4962 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4963 	kfree(rsv);
4964 }
4965 
4966 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4967 {
4968 	kfree(rsv);
4969 }
4970 
4971 int btrfs_block_rsv_add(struct btrfs_root *root,
4972 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4973 			enum btrfs_reserve_flush_enum flush)
4974 {
4975 	int ret;
4976 
4977 	if (num_bytes == 0)
4978 		return 0;
4979 
4980 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4981 	if (!ret) {
4982 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4983 		return 0;
4984 	}
4985 
4986 	return ret;
4987 }
4988 
4989 int btrfs_block_rsv_check(struct btrfs_root *root,
4990 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4991 {
4992 	u64 num_bytes = 0;
4993 	int ret = -ENOSPC;
4994 
4995 	if (!block_rsv)
4996 		return 0;
4997 
4998 	spin_lock(&block_rsv->lock);
4999 	num_bytes = div_factor(block_rsv->size, min_factor);
5000 	if (block_rsv->reserved >= num_bytes)
5001 		ret = 0;
5002 	spin_unlock(&block_rsv->lock);
5003 
5004 	return ret;
5005 }
5006 
5007 int btrfs_block_rsv_refill(struct btrfs_root *root,
5008 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5009 			   enum btrfs_reserve_flush_enum flush)
5010 {
5011 	u64 num_bytes = 0;
5012 	int ret = -ENOSPC;
5013 
5014 	if (!block_rsv)
5015 		return 0;
5016 
5017 	spin_lock(&block_rsv->lock);
5018 	num_bytes = min_reserved;
5019 	if (block_rsv->reserved >= num_bytes)
5020 		ret = 0;
5021 	else
5022 		num_bytes -= block_rsv->reserved;
5023 	spin_unlock(&block_rsv->lock);
5024 
5025 	if (!ret)
5026 		return 0;
5027 
5028 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5029 	if (!ret) {
5030 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5031 		return 0;
5032 	}
5033 
5034 	return ret;
5035 }
5036 
5037 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5038 			    struct btrfs_block_rsv *dst_rsv,
5039 			    u64 num_bytes)
5040 {
5041 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5042 }
5043 
5044 void btrfs_block_rsv_release(struct btrfs_root *root,
5045 			     struct btrfs_block_rsv *block_rsv,
5046 			     u64 num_bytes)
5047 {
5048 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5049 	if (global_rsv == block_rsv ||
5050 	    block_rsv->space_info != global_rsv->space_info)
5051 		global_rsv = NULL;
5052 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5053 				num_bytes);
5054 }
5055 
5056 /*
5057  * helper to calculate size of global block reservation.
5058  * the desired value is sum of space used by extent tree,
5059  * checksum tree and root tree
5060  */
5061 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5062 {
5063 	struct btrfs_space_info *sinfo;
5064 	u64 num_bytes;
5065 	u64 meta_used;
5066 	u64 data_used;
5067 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5068 
5069 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5070 	spin_lock(&sinfo->lock);
5071 	data_used = sinfo->bytes_used;
5072 	spin_unlock(&sinfo->lock);
5073 
5074 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5075 	spin_lock(&sinfo->lock);
5076 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5077 		data_used = 0;
5078 	meta_used = sinfo->bytes_used;
5079 	spin_unlock(&sinfo->lock);
5080 
5081 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5082 		    csum_size * 2;
5083 	num_bytes += div_u64(data_used + meta_used, 50);
5084 
5085 	if (num_bytes * 3 > meta_used)
5086 		num_bytes = div_u64(meta_used, 3);
5087 
5088 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5089 }
5090 
5091 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5092 {
5093 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5094 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5095 	u64 num_bytes;
5096 
5097 	num_bytes = calc_global_metadata_size(fs_info);
5098 
5099 	spin_lock(&sinfo->lock);
5100 	spin_lock(&block_rsv->lock);
5101 
5102 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5103 
5104 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5105 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5106 		    sinfo->bytes_may_use;
5107 
5108 	if (sinfo->total_bytes > num_bytes) {
5109 		num_bytes = sinfo->total_bytes - num_bytes;
5110 		block_rsv->reserved += num_bytes;
5111 		sinfo->bytes_may_use += num_bytes;
5112 		trace_btrfs_space_reservation(fs_info, "space_info",
5113 				      sinfo->flags, num_bytes, 1);
5114 	}
5115 
5116 	if (block_rsv->reserved >= block_rsv->size) {
5117 		num_bytes = block_rsv->reserved - block_rsv->size;
5118 		sinfo->bytes_may_use -= num_bytes;
5119 		trace_btrfs_space_reservation(fs_info, "space_info",
5120 				      sinfo->flags, num_bytes, 0);
5121 		block_rsv->reserved = block_rsv->size;
5122 		block_rsv->full = 1;
5123 	}
5124 
5125 	spin_unlock(&block_rsv->lock);
5126 	spin_unlock(&sinfo->lock);
5127 }
5128 
5129 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5130 {
5131 	struct btrfs_space_info *space_info;
5132 
5133 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5134 	fs_info->chunk_block_rsv.space_info = space_info;
5135 
5136 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5137 	fs_info->global_block_rsv.space_info = space_info;
5138 	fs_info->delalloc_block_rsv.space_info = space_info;
5139 	fs_info->trans_block_rsv.space_info = space_info;
5140 	fs_info->empty_block_rsv.space_info = space_info;
5141 	fs_info->delayed_block_rsv.space_info = space_info;
5142 
5143 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5144 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5145 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5146 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5147 	if (fs_info->quota_root)
5148 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5149 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5150 
5151 	update_global_block_rsv(fs_info);
5152 }
5153 
5154 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5155 {
5156 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5157 				(u64)-1);
5158 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5159 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5160 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5161 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5162 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5163 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5164 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5165 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5166 }
5167 
5168 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5169 				  struct btrfs_root *root)
5170 {
5171 	if (!trans->block_rsv)
5172 		return;
5173 
5174 	if (!trans->bytes_reserved)
5175 		return;
5176 
5177 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5178 				      trans->transid, trans->bytes_reserved, 0);
5179 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5180 	trans->bytes_reserved = 0;
5181 }
5182 
5183 /*
5184  * To be called after all the new block groups attached to the transaction
5185  * handle have been created (btrfs_create_pending_block_groups()).
5186  */
5187 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5188 {
5189 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5190 
5191 	if (!trans->chunk_bytes_reserved)
5192 		return;
5193 
5194 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5195 
5196 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5197 				trans->chunk_bytes_reserved);
5198 	trans->chunk_bytes_reserved = 0;
5199 }
5200 
5201 /* Can only return 0 or -ENOSPC */
5202 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5203 				  struct inode *inode)
5204 {
5205 	struct btrfs_root *root = BTRFS_I(inode)->root;
5206 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5207 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5208 
5209 	/*
5210 	 * We need to hold space in order to delete our orphan item once we've
5211 	 * added it, so this takes the reservation so we can release it later
5212 	 * when we are truly done with the orphan item.
5213 	 */
5214 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5215 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5216 				      btrfs_ino(inode), num_bytes, 1);
5217 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5218 }
5219 
5220 void btrfs_orphan_release_metadata(struct inode *inode)
5221 {
5222 	struct btrfs_root *root = BTRFS_I(inode)->root;
5223 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5224 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5225 				      btrfs_ino(inode), num_bytes, 0);
5226 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5227 }
5228 
5229 /*
5230  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5231  * root: the root of the parent directory
5232  * rsv: block reservation
5233  * items: the number of items that we need do reservation
5234  * qgroup_reserved: used to return the reserved size in qgroup
5235  *
5236  * This function is used to reserve the space for snapshot/subvolume
5237  * creation and deletion. Those operations are different with the
5238  * common file/directory operations, they change two fs/file trees
5239  * and root tree, the number of items that the qgroup reserves is
5240  * different with the free space reservation. So we can not use
5241  * the space reseravtion mechanism in start_transaction().
5242  */
5243 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5244 				     struct btrfs_block_rsv *rsv,
5245 				     int items,
5246 				     u64 *qgroup_reserved,
5247 				     bool use_global_rsv)
5248 {
5249 	u64 num_bytes;
5250 	int ret;
5251 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5252 
5253 	if (root->fs_info->quota_enabled) {
5254 		/* One for parent inode, two for dir entries */
5255 		num_bytes = 3 * root->nodesize;
5256 		ret = btrfs_qgroup_reserve(root, num_bytes);
5257 		if (ret)
5258 			return ret;
5259 	} else {
5260 		num_bytes = 0;
5261 	}
5262 
5263 	*qgroup_reserved = num_bytes;
5264 
5265 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5266 	rsv->space_info = __find_space_info(root->fs_info,
5267 					    BTRFS_BLOCK_GROUP_METADATA);
5268 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5269 				  BTRFS_RESERVE_FLUSH_ALL);
5270 
5271 	if (ret == -ENOSPC && use_global_rsv)
5272 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5273 
5274 	if (ret) {
5275 		if (*qgroup_reserved)
5276 			btrfs_qgroup_free(root, *qgroup_reserved);
5277 	}
5278 
5279 	return ret;
5280 }
5281 
5282 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5283 				      struct btrfs_block_rsv *rsv,
5284 				      u64 qgroup_reserved)
5285 {
5286 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5287 }
5288 
5289 /**
5290  * drop_outstanding_extent - drop an outstanding extent
5291  * @inode: the inode we're dropping the extent for
5292  * @num_bytes: the number of bytes we're relaseing.
5293  *
5294  * This is called when we are freeing up an outstanding extent, either called
5295  * after an error or after an extent is written.  This will return the number of
5296  * reserved extents that need to be freed.  This must be called with
5297  * BTRFS_I(inode)->lock held.
5298  */
5299 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5300 {
5301 	unsigned drop_inode_space = 0;
5302 	unsigned dropped_extents = 0;
5303 	unsigned num_extents = 0;
5304 
5305 	num_extents = (unsigned)div64_u64(num_bytes +
5306 					  BTRFS_MAX_EXTENT_SIZE - 1,
5307 					  BTRFS_MAX_EXTENT_SIZE);
5308 	ASSERT(num_extents);
5309 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5310 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5311 
5312 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5313 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5314 			       &BTRFS_I(inode)->runtime_flags))
5315 		drop_inode_space = 1;
5316 
5317 	/*
5318 	 * If we have more or the same amount of outsanding extents than we have
5319 	 * reserved then we need to leave the reserved extents count alone.
5320 	 */
5321 	if (BTRFS_I(inode)->outstanding_extents >=
5322 	    BTRFS_I(inode)->reserved_extents)
5323 		return drop_inode_space;
5324 
5325 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5326 		BTRFS_I(inode)->outstanding_extents;
5327 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5328 	return dropped_extents + drop_inode_space;
5329 }
5330 
5331 /**
5332  * calc_csum_metadata_size - return the amount of metada space that must be
5333  *	reserved/free'd for the given bytes.
5334  * @inode: the inode we're manipulating
5335  * @num_bytes: the number of bytes in question
5336  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5337  *
5338  * This adjusts the number of csum_bytes in the inode and then returns the
5339  * correct amount of metadata that must either be reserved or freed.  We
5340  * calculate how many checksums we can fit into one leaf and then divide the
5341  * number of bytes that will need to be checksumed by this value to figure out
5342  * how many checksums will be required.  If we are adding bytes then the number
5343  * may go up and we will return the number of additional bytes that must be
5344  * reserved.  If it is going down we will return the number of bytes that must
5345  * be freed.
5346  *
5347  * This must be called with BTRFS_I(inode)->lock held.
5348  */
5349 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5350 				   int reserve)
5351 {
5352 	struct btrfs_root *root = BTRFS_I(inode)->root;
5353 	u64 old_csums, num_csums;
5354 
5355 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5356 	    BTRFS_I(inode)->csum_bytes == 0)
5357 		return 0;
5358 
5359 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5360 	if (reserve)
5361 		BTRFS_I(inode)->csum_bytes += num_bytes;
5362 	else
5363 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5364 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5365 
5366 	/* No change, no need to reserve more */
5367 	if (old_csums == num_csums)
5368 		return 0;
5369 
5370 	if (reserve)
5371 		return btrfs_calc_trans_metadata_size(root,
5372 						      num_csums - old_csums);
5373 
5374 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5375 }
5376 
5377 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5378 {
5379 	struct btrfs_root *root = BTRFS_I(inode)->root;
5380 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5381 	u64 to_reserve = 0;
5382 	u64 csum_bytes;
5383 	unsigned nr_extents = 0;
5384 	int extra_reserve = 0;
5385 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5386 	int ret = 0;
5387 	bool delalloc_lock = true;
5388 	u64 to_free = 0;
5389 	unsigned dropped;
5390 
5391 	/* If we are a free space inode we need to not flush since we will be in
5392 	 * the middle of a transaction commit.  We also don't need the delalloc
5393 	 * mutex since we won't race with anybody.  We need this mostly to make
5394 	 * lockdep shut its filthy mouth.
5395 	 */
5396 	if (btrfs_is_free_space_inode(inode)) {
5397 		flush = BTRFS_RESERVE_NO_FLUSH;
5398 		delalloc_lock = false;
5399 	}
5400 
5401 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5402 	    btrfs_transaction_in_commit(root->fs_info))
5403 		schedule_timeout(1);
5404 
5405 	if (delalloc_lock)
5406 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5407 
5408 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5409 
5410 	spin_lock(&BTRFS_I(inode)->lock);
5411 	nr_extents = (unsigned)div64_u64(num_bytes +
5412 					 BTRFS_MAX_EXTENT_SIZE - 1,
5413 					 BTRFS_MAX_EXTENT_SIZE);
5414 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5415 	nr_extents = 0;
5416 
5417 	if (BTRFS_I(inode)->outstanding_extents >
5418 	    BTRFS_I(inode)->reserved_extents)
5419 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5420 			BTRFS_I(inode)->reserved_extents;
5421 
5422 	/*
5423 	 * Add an item to reserve for updating the inode when we complete the
5424 	 * delalloc io.
5425 	 */
5426 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5427 		      &BTRFS_I(inode)->runtime_flags)) {
5428 		nr_extents++;
5429 		extra_reserve = 1;
5430 	}
5431 
5432 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5433 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5434 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5435 	spin_unlock(&BTRFS_I(inode)->lock);
5436 
5437 	if (root->fs_info->quota_enabled) {
5438 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5439 		if (ret)
5440 			goto out_fail;
5441 	}
5442 
5443 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5444 	if (unlikely(ret)) {
5445 		if (root->fs_info->quota_enabled)
5446 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5447 		goto out_fail;
5448 	}
5449 
5450 	spin_lock(&BTRFS_I(inode)->lock);
5451 	if (extra_reserve) {
5452 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5453 			&BTRFS_I(inode)->runtime_flags);
5454 		nr_extents--;
5455 	}
5456 	BTRFS_I(inode)->reserved_extents += nr_extents;
5457 	spin_unlock(&BTRFS_I(inode)->lock);
5458 
5459 	if (delalloc_lock)
5460 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5461 
5462 	if (to_reserve)
5463 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5464 					      btrfs_ino(inode), to_reserve, 1);
5465 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5466 
5467 	return 0;
5468 
5469 out_fail:
5470 	spin_lock(&BTRFS_I(inode)->lock);
5471 	dropped = drop_outstanding_extent(inode, num_bytes);
5472 	/*
5473 	 * If the inodes csum_bytes is the same as the original
5474 	 * csum_bytes then we know we haven't raced with any free()ers
5475 	 * so we can just reduce our inodes csum bytes and carry on.
5476 	 */
5477 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5478 		calc_csum_metadata_size(inode, num_bytes, 0);
5479 	} else {
5480 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5481 		u64 bytes;
5482 
5483 		/*
5484 		 * This is tricky, but first we need to figure out how much we
5485 		 * free'd from any free-ers that occured during this
5486 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5487 		 * before we dropped our lock, and then call the free for the
5488 		 * number of bytes that were freed while we were trying our
5489 		 * reservation.
5490 		 */
5491 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5492 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5493 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5494 
5495 
5496 		/*
5497 		 * Now we need to see how much we would have freed had we not
5498 		 * been making this reservation and our ->csum_bytes were not
5499 		 * artificially inflated.
5500 		 */
5501 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5502 		bytes = csum_bytes - orig_csum_bytes;
5503 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5504 
5505 		/*
5506 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5507 		 * more than to_free then we would have free'd more space had we
5508 		 * not had an artificially high ->csum_bytes, so we need to free
5509 		 * the remainder.  If bytes is the same or less then we don't
5510 		 * need to do anything, the other free-ers did the correct
5511 		 * thing.
5512 		 */
5513 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5514 		if (bytes > to_free)
5515 			to_free = bytes - to_free;
5516 		else
5517 			to_free = 0;
5518 	}
5519 	spin_unlock(&BTRFS_I(inode)->lock);
5520 	if (dropped)
5521 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5522 
5523 	if (to_free) {
5524 		btrfs_block_rsv_release(root, block_rsv, to_free);
5525 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5526 					      btrfs_ino(inode), to_free, 0);
5527 	}
5528 	if (delalloc_lock)
5529 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5530 	return ret;
5531 }
5532 
5533 /**
5534  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5535  * @inode: the inode to release the reservation for
5536  * @num_bytes: the number of bytes we're releasing
5537  *
5538  * This will release the metadata reservation for an inode.  This can be called
5539  * once we complete IO for a given set of bytes to release their metadata
5540  * reservations.
5541  */
5542 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5543 {
5544 	struct btrfs_root *root = BTRFS_I(inode)->root;
5545 	u64 to_free = 0;
5546 	unsigned dropped;
5547 
5548 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5549 	spin_lock(&BTRFS_I(inode)->lock);
5550 	dropped = drop_outstanding_extent(inode, num_bytes);
5551 
5552 	if (num_bytes)
5553 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5554 	spin_unlock(&BTRFS_I(inode)->lock);
5555 	if (dropped > 0)
5556 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5557 
5558 	if (btrfs_test_is_dummy_root(root))
5559 		return;
5560 
5561 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5562 				      btrfs_ino(inode), to_free, 0);
5563 
5564 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5565 				to_free);
5566 }
5567 
5568 /**
5569  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5570  * @inode: inode we're writing to
5571  * @num_bytes: the number of bytes we want to allocate
5572  *
5573  * This will do the following things
5574  *
5575  * o reserve space in the data space info for num_bytes
5576  * o reserve space in the metadata space info based on number of outstanding
5577  *   extents and how much csums will be needed
5578  * o add to the inodes ->delalloc_bytes
5579  * o add it to the fs_info's delalloc inodes list.
5580  *
5581  * This will return 0 for success and -ENOSPC if there is no space left.
5582  */
5583 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5584 {
5585 	int ret;
5586 
5587 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5588 	if (ret)
5589 		return ret;
5590 
5591 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5592 	if (ret) {
5593 		btrfs_free_reserved_data_space(inode, num_bytes);
5594 		return ret;
5595 	}
5596 
5597 	return 0;
5598 }
5599 
5600 /**
5601  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5602  * @inode: inode we're releasing space for
5603  * @num_bytes: the number of bytes we want to free up
5604  *
5605  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5606  * called in the case that we don't need the metadata AND data reservations
5607  * anymore.  So if there is an error or we insert an inline extent.
5608  *
5609  * This function will release the metadata space that was not used and will
5610  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5611  * list if there are no delalloc bytes left.
5612  */
5613 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5614 {
5615 	btrfs_delalloc_release_metadata(inode, num_bytes);
5616 	btrfs_free_reserved_data_space(inode, num_bytes);
5617 }
5618 
5619 static int update_block_group(struct btrfs_trans_handle *trans,
5620 			      struct btrfs_root *root, u64 bytenr,
5621 			      u64 num_bytes, int alloc)
5622 {
5623 	struct btrfs_block_group_cache *cache = NULL;
5624 	struct btrfs_fs_info *info = root->fs_info;
5625 	u64 total = num_bytes;
5626 	u64 old_val;
5627 	u64 byte_in_group;
5628 	int factor;
5629 
5630 	/* block accounting for super block */
5631 	spin_lock(&info->delalloc_root_lock);
5632 	old_val = btrfs_super_bytes_used(info->super_copy);
5633 	if (alloc)
5634 		old_val += num_bytes;
5635 	else
5636 		old_val -= num_bytes;
5637 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5638 	spin_unlock(&info->delalloc_root_lock);
5639 
5640 	while (total) {
5641 		cache = btrfs_lookup_block_group(info, bytenr);
5642 		if (!cache)
5643 			return -ENOENT;
5644 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5645 				    BTRFS_BLOCK_GROUP_RAID1 |
5646 				    BTRFS_BLOCK_GROUP_RAID10))
5647 			factor = 2;
5648 		else
5649 			factor = 1;
5650 		/*
5651 		 * If this block group has free space cache written out, we
5652 		 * need to make sure to load it if we are removing space.  This
5653 		 * is because we need the unpinning stage to actually add the
5654 		 * space back to the block group, otherwise we will leak space.
5655 		 */
5656 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5657 			cache_block_group(cache, 1);
5658 
5659 		byte_in_group = bytenr - cache->key.objectid;
5660 		WARN_ON(byte_in_group > cache->key.offset);
5661 
5662 		spin_lock(&cache->space_info->lock);
5663 		spin_lock(&cache->lock);
5664 
5665 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5666 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5667 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5668 
5669 		old_val = btrfs_block_group_used(&cache->item);
5670 		num_bytes = min(total, cache->key.offset - byte_in_group);
5671 		if (alloc) {
5672 			old_val += num_bytes;
5673 			btrfs_set_block_group_used(&cache->item, old_val);
5674 			cache->reserved -= num_bytes;
5675 			cache->space_info->bytes_reserved -= num_bytes;
5676 			cache->space_info->bytes_used += num_bytes;
5677 			cache->space_info->disk_used += num_bytes * factor;
5678 			spin_unlock(&cache->lock);
5679 			spin_unlock(&cache->space_info->lock);
5680 		} else {
5681 			old_val -= num_bytes;
5682 			btrfs_set_block_group_used(&cache->item, old_val);
5683 			cache->pinned += num_bytes;
5684 			cache->space_info->bytes_pinned += num_bytes;
5685 			cache->space_info->bytes_used -= num_bytes;
5686 			cache->space_info->disk_used -= num_bytes * factor;
5687 			spin_unlock(&cache->lock);
5688 			spin_unlock(&cache->space_info->lock);
5689 
5690 			set_extent_dirty(info->pinned_extents,
5691 					 bytenr, bytenr + num_bytes - 1,
5692 					 GFP_NOFS | __GFP_NOFAIL);
5693 			/*
5694 			 * No longer have used bytes in this block group, queue
5695 			 * it for deletion.
5696 			 */
5697 			if (old_val == 0) {
5698 				spin_lock(&info->unused_bgs_lock);
5699 				if (list_empty(&cache->bg_list)) {
5700 					btrfs_get_block_group(cache);
5701 					list_add_tail(&cache->bg_list,
5702 						      &info->unused_bgs);
5703 				}
5704 				spin_unlock(&info->unused_bgs_lock);
5705 			}
5706 		}
5707 
5708 		spin_lock(&trans->transaction->dirty_bgs_lock);
5709 		if (list_empty(&cache->dirty_list)) {
5710 			list_add_tail(&cache->dirty_list,
5711 				      &trans->transaction->dirty_bgs);
5712 				trans->transaction->num_dirty_bgs++;
5713 			btrfs_get_block_group(cache);
5714 		}
5715 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5716 
5717 		btrfs_put_block_group(cache);
5718 		total -= num_bytes;
5719 		bytenr += num_bytes;
5720 	}
5721 	return 0;
5722 }
5723 
5724 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5725 {
5726 	struct btrfs_block_group_cache *cache;
5727 	u64 bytenr;
5728 
5729 	spin_lock(&root->fs_info->block_group_cache_lock);
5730 	bytenr = root->fs_info->first_logical_byte;
5731 	spin_unlock(&root->fs_info->block_group_cache_lock);
5732 
5733 	if (bytenr < (u64)-1)
5734 		return bytenr;
5735 
5736 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5737 	if (!cache)
5738 		return 0;
5739 
5740 	bytenr = cache->key.objectid;
5741 	btrfs_put_block_group(cache);
5742 
5743 	return bytenr;
5744 }
5745 
5746 static int pin_down_extent(struct btrfs_root *root,
5747 			   struct btrfs_block_group_cache *cache,
5748 			   u64 bytenr, u64 num_bytes, int reserved)
5749 {
5750 	spin_lock(&cache->space_info->lock);
5751 	spin_lock(&cache->lock);
5752 	cache->pinned += num_bytes;
5753 	cache->space_info->bytes_pinned += num_bytes;
5754 	if (reserved) {
5755 		cache->reserved -= num_bytes;
5756 		cache->space_info->bytes_reserved -= num_bytes;
5757 	}
5758 	spin_unlock(&cache->lock);
5759 	spin_unlock(&cache->space_info->lock);
5760 
5761 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5762 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5763 	if (reserved)
5764 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5765 	return 0;
5766 }
5767 
5768 /*
5769  * this function must be called within transaction
5770  */
5771 int btrfs_pin_extent(struct btrfs_root *root,
5772 		     u64 bytenr, u64 num_bytes, int reserved)
5773 {
5774 	struct btrfs_block_group_cache *cache;
5775 
5776 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5777 	BUG_ON(!cache); /* Logic error */
5778 
5779 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5780 
5781 	btrfs_put_block_group(cache);
5782 	return 0;
5783 }
5784 
5785 /*
5786  * this function must be called within transaction
5787  */
5788 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5789 				    u64 bytenr, u64 num_bytes)
5790 {
5791 	struct btrfs_block_group_cache *cache;
5792 	int ret;
5793 
5794 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5795 	if (!cache)
5796 		return -EINVAL;
5797 
5798 	/*
5799 	 * pull in the free space cache (if any) so that our pin
5800 	 * removes the free space from the cache.  We have load_only set
5801 	 * to one because the slow code to read in the free extents does check
5802 	 * the pinned extents.
5803 	 */
5804 	cache_block_group(cache, 1);
5805 
5806 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5807 
5808 	/* remove us from the free space cache (if we're there at all) */
5809 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5810 	btrfs_put_block_group(cache);
5811 	return ret;
5812 }
5813 
5814 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5815 {
5816 	int ret;
5817 	struct btrfs_block_group_cache *block_group;
5818 	struct btrfs_caching_control *caching_ctl;
5819 
5820 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5821 	if (!block_group)
5822 		return -EINVAL;
5823 
5824 	cache_block_group(block_group, 0);
5825 	caching_ctl = get_caching_control(block_group);
5826 
5827 	if (!caching_ctl) {
5828 		/* Logic error */
5829 		BUG_ON(!block_group_cache_done(block_group));
5830 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5831 	} else {
5832 		mutex_lock(&caching_ctl->mutex);
5833 
5834 		if (start >= caching_ctl->progress) {
5835 			ret = add_excluded_extent(root, start, num_bytes);
5836 		} else if (start + num_bytes <= caching_ctl->progress) {
5837 			ret = btrfs_remove_free_space(block_group,
5838 						      start, num_bytes);
5839 		} else {
5840 			num_bytes = caching_ctl->progress - start;
5841 			ret = btrfs_remove_free_space(block_group,
5842 						      start, num_bytes);
5843 			if (ret)
5844 				goto out_lock;
5845 
5846 			num_bytes = (start + num_bytes) -
5847 				caching_ctl->progress;
5848 			start = caching_ctl->progress;
5849 			ret = add_excluded_extent(root, start, num_bytes);
5850 		}
5851 out_lock:
5852 		mutex_unlock(&caching_ctl->mutex);
5853 		put_caching_control(caching_ctl);
5854 	}
5855 	btrfs_put_block_group(block_group);
5856 	return ret;
5857 }
5858 
5859 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5860 				 struct extent_buffer *eb)
5861 {
5862 	struct btrfs_file_extent_item *item;
5863 	struct btrfs_key key;
5864 	int found_type;
5865 	int i;
5866 
5867 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5868 		return 0;
5869 
5870 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5871 		btrfs_item_key_to_cpu(eb, &key, i);
5872 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5873 			continue;
5874 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5875 		found_type = btrfs_file_extent_type(eb, item);
5876 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5877 			continue;
5878 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5879 			continue;
5880 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5881 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5882 		__exclude_logged_extent(log, key.objectid, key.offset);
5883 	}
5884 
5885 	return 0;
5886 }
5887 
5888 /**
5889  * btrfs_update_reserved_bytes - update the block_group and space info counters
5890  * @cache:	The cache we are manipulating
5891  * @num_bytes:	The number of bytes in question
5892  * @reserve:	One of the reservation enums
5893  * @delalloc:   The blocks are allocated for the delalloc write
5894  *
5895  * This is called by the allocator when it reserves space, or by somebody who is
5896  * freeing space that was never actually used on disk.  For example if you
5897  * reserve some space for a new leaf in transaction A and before transaction A
5898  * commits you free that leaf, you call this with reserve set to 0 in order to
5899  * clear the reservation.
5900  *
5901  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5902  * ENOSPC accounting.  For data we handle the reservation through clearing the
5903  * delalloc bits in the io_tree.  We have to do this since we could end up
5904  * allocating less disk space for the amount of data we have reserved in the
5905  * case of compression.
5906  *
5907  * If this is a reservation and the block group has become read only we cannot
5908  * make the reservation and return -EAGAIN, otherwise this function always
5909  * succeeds.
5910  */
5911 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5912 				       u64 num_bytes, int reserve, int delalloc)
5913 {
5914 	struct btrfs_space_info *space_info = cache->space_info;
5915 	int ret = 0;
5916 
5917 	spin_lock(&space_info->lock);
5918 	spin_lock(&cache->lock);
5919 	if (reserve != RESERVE_FREE) {
5920 		if (cache->ro) {
5921 			ret = -EAGAIN;
5922 		} else {
5923 			cache->reserved += num_bytes;
5924 			space_info->bytes_reserved += num_bytes;
5925 			if (reserve == RESERVE_ALLOC) {
5926 				trace_btrfs_space_reservation(cache->fs_info,
5927 						"space_info", space_info->flags,
5928 						num_bytes, 0);
5929 				space_info->bytes_may_use -= num_bytes;
5930 			}
5931 
5932 			if (delalloc)
5933 				cache->delalloc_bytes += num_bytes;
5934 		}
5935 	} else {
5936 		if (cache->ro)
5937 			space_info->bytes_readonly += num_bytes;
5938 		cache->reserved -= num_bytes;
5939 		space_info->bytes_reserved -= num_bytes;
5940 
5941 		if (delalloc)
5942 			cache->delalloc_bytes -= num_bytes;
5943 	}
5944 	spin_unlock(&cache->lock);
5945 	spin_unlock(&space_info->lock);
5946 	return ret;
5947 }
5948 
5949 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5950 				struct btrfs_root *root)
5951 {
5952 	struct btrfs_fs_info *fs_info = root->fs_info;
5953 	struct btrfs_caching_control *next;
5954 	struct btrfs_caching_control *caching_ctl;
5955 	struct btrfs_block_group_cache *cache;
5956 
5957 	down_write(&fs_info->commit_root_sem);
5958 
5959 	list_for_each_entry_safe(caching_ctl, next,
5960 				 &fs_info->caching_block_groups, list) {
5961 		cache = caching_ctl->block_group;
5962 		if (block_group_cache_done(cache)) {
5963 			cache->last_byte_to_unpin = (u64)-1;
5964 			list_del_init(&caching_ctl->list);
5965 			put_caching_control(caching_ctl);
5966 		} else {
5967 			cache->last_byte_to_unpin = caching_ctl->progress;
5968 		}
5969 	}
5970 
5971 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5972 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5973 	else
5974 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5975 
5976 	up_write(&fs_info->commit_root_sem);
5977 
5978 	update_global_block_rsv(fs_info);
5979 }
5980 
5981 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5982 			      const bool return_free_space)
5983 {
5984 	struct btrfs_fs_info *fs_info = root->fs_info;
5985 	struct btrfs_block_group_cache *cache = NULL;
5986 	struct btrfs_space_info *space_info;
5987 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5988 	u64 len;
5989 	bool readonly;
5990 
5991 	while (start <= end) {
5992 		readonly = false;
5993 		if (!cache ||
5994 		    start >= cache->key.objectid + cache->key.offset) {
5995 			if (cache)
5996 				btrfs_put_block_group(cache);
5997 			cache = btrfs_lookup_block_group(fs_info, start);
5998 			BUG_ON(!cache); /* Logic error */
5999 		}
6000 
6001 		len = cache->key.objectid + cache->key.offset - start;
6002 		len = min(len, end + 1 - start);
6003 
6004 		if (start < cache->last_byte_to_unpin) {
6005 			len = min(len, cache->last_byte_to_unpin - start);
6006 			if (return_free_space)
6007 				btrfs_add_free_space(cache, start, len);
6008 		}
6009 
6010 		start += len;
6011 		space_info = cache->space_info;
6012 
6013 		spin_lock(&space_info->lock);
6014 		spin_lock(&cache->lock);
6015 		cache->pinned -= len;
6016 		space_info->bytes_pinned -= len;
6017 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6018 		if (cache->ro) {
6019 			space_info->bytes_readonly += len;
6020 			readonly = true;
6021 		}
6022 		spin_unlock(&cache->lock);
6023 		if (!readonly && global_rsv->space_info == space_info) {
6024 			spin_lock(&global_rsv->lock);
6025 			if (!global_rsv->full) {
6026 				len = min(len, global_rsv->size -
6027 					  global_rsv->reserved);
6028 				global_rsv->reserved += len;
6029 				space_info->bytes_may_use += len;
6030 				if (global_rsv->reserved >= global_rsv->size)
6031 					global_rsv->full = 1;
6032 			}
6033 			spin_unlock(&global_rsv->lock);
6034 		}
6035 		spin_unlock(&space_info->lock);
6036 	}
6037 
6038 	if (cache)
6039 		btrfs_put_block_group(cache);
6040 	return 0;
6041 }
6042 
6043 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6044 			       struct btrfs_root *root)
6045 {
6046 	struct btrfs_fs_info *fs_info = root->fs_info;
6047 	struct extent_io_tree *unpin;
6048 	u64 start;
6049 	u64 end;
6050 	int ret;
6051 
6052 	if (trans->aborted)
6053 		return 0;
6054 
6055 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6056 		unpin = &fs_info->freed_extents[1];
6057 	else
6058 		unpin = &fs_info->freed_extents[0];
6059 
6060 	while (1) {
6061 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6062 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6063 					    EXTENT_DIRTY, NULL);
6064 		if (ret) {
6065 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6066 			break;
6067 		}
6068 
6069 		if (btrfs_test_opt(root, DISCARD))
6070 			ret = btrfs_discard_extent(root, start,
6071 						   end + 1 - start, NULL);
6072 
6073 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6074 		unpin_extent_range(root, start, end, true);
6075 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6076 		cond_resched();
6077 	}
6078 
6079 	return 0;
6080 }
6081 
6082 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6083 			     u64 owner, u64 root_objectid)
6084 {
6085 	struct btrfs_space_info *space_info;
6086 	u64 flags;
6087 
6088 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6089 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6090 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6091 		else
6092 			flags = BTRFS_BLOCK_GROUP_METADATA;
6093 	} else {
6094 		flags = BTRFS_BLOCK_GROUP_DATA;
6095 	}
6096 
6097 	space_info = __find_space_info(fs_info, flags);
6098 	BUG_ON(!space_info); /* Logic bug */
6099 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6100 }
6101 
6102 
6103 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6104 				struct btrfs_root *root,
6105 				struct btrfs_delayed_ref_node *node, u64 parent,
6106 				u64 root_objectid, u64 owner_objectid,
6107 				u64 owner_offset, int refs_to_drop,
6108 				struct btrfs_delayed_extent_op *extent_op)
6109 {
6110 	struct btrfs_key key;
6111 	struct btrfs_path *path;
6112 	struct btrfs_fs_info *info = root->fs_info;
6113 	struct btrfs_root *extent_root = info->extent_root;
6114 	struct extent_buffer *leaf;
6115 	struct btrfs_extent_item *ei;
6116 	struct btrfs_extent_inline_ref *iref;
6117 	int ret;
6118 	int is_data;
6119 	int extent_slot = 0;
6120 	int found_extent = 0;
6121 	int num_to_del = 1;
6122 	int no_quota = node->no_quota;
6123 	u32 item_size;
6124 	u64 refs;
6125 	u64 bytenr = node->bytenr;
6126 	u64 num_bytes = node->num_bytes;
6127 	int last_ref = 0;
6128 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6129 						 SKINNY_METADATA);
6130 
6131 	if (!info->quota_enabled || !is_fstree(root_objectid))
6132 		no_quota = 1;
6133 
6134 	path = btrfs_alloc_path();
6135 	if (!path)
6136 		return -ENOMEM;
6137 
6138 	path->reada = 1;
6139 	path->leave_spinning = 1;
6140 
6141 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6142 	BUG_ON(!is_data && refs_to_drop != 1);
6143 
6144 	if (is_data)
6145 		skinny_metadata = 0;
6146 
6147 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6148 				    bytenr, num_bytes, parent,
6149 				    root_objectid, owner_objectid,
6150 				    owner_offset);
6151 	if (ret == 0) {
6152 		extent_slot = path->slots[0];
6153 		while (extent_slot >= 0) {
6154 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6155 					      extent_slot);
6156 			if (key.objectid != bytenr)
6157 				break;
6158 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6159 			    key.offset == num_bytes) {
6160 				found_extent = 1;
6161 				break;
6162 			}
6163 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6164 			    key.offset == owner_objectid) {
6165 				found_extent = 1;
6166 				break;
6167 			}
6168 			if (path->slots[0] - extent_slot > 5)
6169 				break;
6170 			extent_slot--;
6171 		}
6172 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6173 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6174 		if (found_extent && item_size < sizeof(*ei))
6175 			found_extent = 0;
6176 #endif
6177 		if (!found_extent) {
6178 			BUG_ON(iref);
6179 			ret = remove_extent_backref(trans, extent_root, path,
6180 						    NULL, refs_to_drop,
6181 						    is_data, &last_ref);
6182 			if (ret) {
6183 				btrfs_abort_transaction(trans, extent_root, ret);
6184 				goto out;
6185 			}
6186 			btrfs_release_path(path);
6187 			path->leave_spinning = 1;
6188 
6189 			key.objectid = bytenr;
6190 			key.type = BTRFS_EXTENT_ITEM_KEY;
6191 			key.offset = num_bytes;
6192 
6193 			if (!is_data && skinny_metadata) {
6194 				key.type = BTRFS_METADATA_ITEM_KEY;
6195 				key.offset = owner_objectid;
6196 			}
6197 
6198 			ret = btrfs_search_slot(trans, extent_root,
6199 						&key, path, -1, 1);
6200 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6201 				/*
6202 				 * Couldn't find our skinny metadata item,
6203 				 * see if we have ye olde extent item.
6204 				 */
6205 				path->slots[0]--;
6206 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6207 						      path->slots[0]);
6208 				if (key.objectid == bytenr &&
6209 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6210 				    key.offset == num_bytes)
6211 					ret = 0;
6212 			}
6213 
6214 			if (ret > 0 && skinny_metadata) {
6215 				skinny_metadata = false;
6216 				key.objectid = bytenr;
6217 				key.type = BTRFS_EXTENT_ITEM_KEY;
6218 				key.offset = num_bytes;
6219 				btrfs_release_path(path);
6220 				ret = btrfs_search_slot(trans, extent_root,
6221 							&key, path, -1, 1);
6222 			}
6223 
6224 			if (ret) {
6225 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6226 					ret, bytenr);
6227 				if (ret > 0)
6228 					btrfs_print_leaf(extent_root,
6229 							 path->nodes[0]);
6230 			}
6231 			if (ret < 0) {
6232 				btrfs_abort_transaction(trans, extent_root, ret);
6233 				goto out;
6234 			}
6235 			extent_slot = path->slots[0];
6236 		}
6237 	} else if (WARN_ON(ret == -ENOENT)) {
6238 		btrfs_print_leaf(extent_root, path->nodes[0]);
6239 		btrfs_err(info,
6240 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6241 			bytenr, parent, root_objectid, owner_objectid,
6242 			owner_offset);
6243 		btrfs_abort_transaction(trans, extent_root, ret);
6244 		goto out;
6245 	} else {
6246 		btrfs_abort_transaction(trans, extent_root, ret);
6247 		goto out;
6248 	}
6249 
6250 	leaf = path->nodes[0];
6251 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6252 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6253 	if (item_size < sizeof(*ei)) {
6254 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6255 		ret = convert_extent_item_v0(trans, extent_root, path,
6256 					     owner_objectid, 0);
6257 		if (ret < 0) {
6258 			btrfs_abort_transaction(trans, extent_root, ret);
6259 			goto out;
6260 		}
6261 
6262 		btrfs_release_path(path);
6263 		path->leave_spinning = 1;
6264 
6265 		key.objectid = bytenr;
6266 		key.type = BTRFS_EXTENT_ITEM_KEY;
6267 		key.offset = num_bytes;
6268 
6269 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6270 					-1, 1);
6271 		if (ret) {
6272 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6273 				ret, bytenr);
6274 			btrfs_print_leaf(extent_root, path->nodes[0]);
6275 		}
6276 		if (ret < 0) {
6277 			btrfs_abort_transaction(trans, extent_root, ret);
6278 			goto out;
6279 		}
6280 
6281 		extent_slot = path->slots[0];
6282 		leaf = path->nodes[0];
6283 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6284 	}
6285 #endif
6286 	BUG_ON(item_size < sizeof(*ei));
6287 	ei = btrfs_item_ptr(leaf, extent_slot,
6288 			    struct btrfs_extent_item);
6289 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6290 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6291 		struct btrfs_tree_block_info *bi;
6292 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6293 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6294 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6295 	}
6296 
6297 	refs = btrfs_extent_refs(leaf, ei);
6298 	if (refs < refs_to_drop) {
6299 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6300 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6301 		ret = -EINVAL;
6302 		btrfs_abort_transaction(trans, extent_root, ret);
6303 		goto out;
6304 	}
6305 	refs -= refs_to_drop;
6306 
6307 	if (refs > 0) {
6308 		if (extent_op)
6309 			__run_delayed_extent_op(extent_op, leaf, ei);
6310 		/*
6311 		 * In the case of inline back ref, reference count will
6312 		 * be updated by remove_extent_backref
6313 		 */
6314 		if (iref) {
6315 			BUG_ON(!found_extent);
6316 		} else {
6317 			btrfs_set_extent_refs(leaf, ei, refs);
6318 			btrfs_mark_buffer_dirty(leaf);
6319 		}
6320 		if (found_extent) {
6321 			ret = remove_extent_backref(trans, extent_root, path,
6322 						    iref, refs_to_drop,
6323 						    is_data, &last_ref);
6324 			if (ret) {
6325 				btrfs_abort_transaction(trans, extent_root, ret);
6326 				goto out;
6327 			}
6328 		}
6329 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6330 				 root_objectid);
6331 	} else {
6332 		if (found_extent) {
6333 			BUG_ON(is_data && refs_to_drop !=
6334 			       extent_data_ref_count(root, path, iref));
6335 			if (iref) {
6336 				BUG_ON(path->slots[0] != extent_slot);
6337 			} else {
6338 				BUG_ON(path->slots[0] != extent_slot + 1);
6339 				path->slots[0] = extent_slot;
6340 				num_to_del = 2;
6341 			}
6342 		}
6343 
6344 		last_ref = 1;
6345 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6346 				      num_to_del);
6347 		if (ret) {
6348 			btrfs_abort_transaction(trans, extent_root, ret);
6349 			goto out;
6350 		}
6351 		btrfs_release_path(path);
6352 
6353 		if (is_data) {
6354 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6355 			if (ret) {
6356 				btrfs_abort_transaction(trans, extent_root, ret);
6357 				goto out;
6358 			}
6359 		}
6360 
6361 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6362 		if (ret) {
6363 			btrfs_abort_transaction(trans, extent_root, ret);
6364 			goto out;
6365 		}
6366 	}
6367 	btrfs_release_path(path);
6368 
6369 out:
6370 	btrfs_free_path(path);
6371 	return ret;
6372 }
6373 
6374 /*
6375  * when we free an block, it is possible (and likely) that we free the last
6376  * delayed ref for that extent as well.  This searches the delayed ref tree for
6377  * a given extent, and if there are no other delayed refs to be processed, it
6378  * removes it from the tree.
6379  */
6380 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6381 				      struct btrfs_root *root, u64 bytenr)
6382 {
6383 	struct btrfs_delayed_ref_head *head;
6384 	struct btrfs_delayed_ref_root *delayed_refs;
6385 	int ret = 0;
6386 
6387 	delayed_refs = &trans->transaction->delayed_refs;
6388 	spin_lock(&delayed_refs->lock);
6389 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6390 	if (!head)
6391 		goto out_delayed_unlock;
6392 
6393 	spin_lock(&head->lock);
6394 	if (!list_empty(&head->ref_list))
6395 		goto out;
6396 
6397 	if (head->extent_op) {
6398 		if (!head->must_insert_reserved)
6399 			goto out;
6400 		btrfs_free_delayed_extent_op(head->extent_op);
6401 		head->extent_op = NULL;
6402 	}
6403 
6404 	/*
6405 	 * waiting for the lock here would deadlock.  If someone else has it
6406 	 * locked they are already in the process of dropping it anyway
6407 	 */
6408 	if (!mutex_trylock(&head->mutex))
6409 		goto out;
6410 
6411 	/*
6412 	 * at this point we have a head with no other entries.  Go
6413 	 * ahead and process it.
6414 	 */
6415 	head->node.in_tree = 0;
6416 	rb_erase(&head->href_node, &delayed_refs->href_root);
6417 
6418 	atomic_dec(&delayed_refs->num_entries);
6419 
6420 	/*
6421 	 * we don't take a ref on the node because we're removing it from the
6422 	 * tree, so we just steal the ref the tree was holding.
6423 	 */
6424 	delayed_refs->num_heads--;
6425 	if (head->processing == 0)
6426 		delayed_refs->num_heads_ready--;
6427 	head->processing = 0;
6428 	spin_unlock(&head->lock);
6429 	spin_unlock(&delayed_refs->lock);
6430 
6431 	BUG_ON(head->extent_op);
6432 	if (head->must_insert_reserved)
6433 		ret = 1;
6434 
6435 	mutex_unlock(&head->mutex);
6436 	btrfs_put_delayed_ref(&head->node);
6437 	return ret;
6438 out:
6439 	spin_unlock(&head->lock);
6440 
6441 out_delayed_unlock:
6442 	spin_unlock(&delayed_refs->lock);
6443 	return 0;
6444 }
6445 
6446 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6447 			   struct btrfs_root *root,
6448 			   struct extent_buffer *buf,
6449 			   u64 parent, int last_ref)
6450 {
6451 	int pin = 1;
6452 	int ret;
6453 
6454 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6455 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6456 					buf->start, buf->len,
6457 					parent, root->root_key.objectid,
6458 					btrfs_header_level(buf),
6459 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6460 		BUG_ON(ret); /* -ENOMEM */
6461 	}
6462 
6463 	if (!last_ref)
6464 		return;
6465 
6466 	if (btrfs_header_generation(buf) == trans->transid) {
6467 		struct btrfs_block_group_cache *cache;
6468 
6469 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6470 			ret = check_ref_cleanup(trans, root, buf->start);
6471 			if (!ret)
6472 				goto out;
6473 		}
6474 
6475 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6476 
6477 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6478 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6479 			btrfs_put_block_group(cache);
6480 			goto out;
6481 		}
6482 
6483 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6484 
6485 		btrfs_add_free_space(cache, buf->start, buf->len);
6486 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6487 		btrfs_put_block_group(cache);
6488 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6489 		pin = 0;
6490 	}
6491 out:
6492 	if (pin)
6493 		add_pinned_bytes(root->fs_info, buf->len,
6494 				 btrfs_header_level(buf),
6495 				 root->root_key.objectid);
6496 
6497 	/*
6498 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6499 	 * anymore.
6500 	 */
6501 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6502 }
6503 
6504 /* Can return -ENOMEM */
6505 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6506 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6507 		      u64 owner, u64 offset, int no_quota)
6508 {
6509 	int ret;
6510 	struct btrfs_fs_info *fs_info = root->fs_info;
6511 
6512 	if (btrfs_test_is_dummy_root(root))
6513 		return 0;
6514 
6515 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6516 
6517 	/*
6518 	 * tree log blocks never actually go into the extent allocation
6519 	 * tree, just update pinning info and exit early.
6520 	 */
6521 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6522 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6523 		/* unlocks the pinned mutex */
6524 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6525 		ret = 0;
6526 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6527 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6528 					num_bytes,
6529 					parent, root_objectid, (int)owner,
6530 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6531 	} else {
6532 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6533 						num_bytes,
6534 						parent, root_objectid, owner,
6535 						offset, BTRFS_DROP_DELAYED_REF,
6536 						NULL, no_quota);
6537 	}
6538 	return ret;
6539 }
6540 
6541 /*
6542  * when we wait for progress in the block group caching, its because
6543  * our allocation attempt failed at least once.  So, we must sleep
6544  * and let some progress happen before we try again.
6545  *
6546  * This function will sleep at least once waiting for new free space to
6547  * show up, and then it will check the block group free space numbers
6548  * for our min num_bytes.  Another option is to have it go ahead
6549  * and look in the rbtree for a free extent of a given size, but this
6550  * is a good start.
6551  *
6552  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6553  * any of the information in this block group.
6554  */
6555 static noinline void
6556 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6557 				u64 num_bytes)
6558 {
6559 	struct btrfs_caching_control *caching_ctl;
6560 
6561 	caching_ctl = get_caching_control(cache);
6562 	if (!caching_ctl)
6563 		return;
6564 
6565 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6566 		   (cache->free_space_ctl->free_space >= num_bytes));
6567 
6568 	put_caching_control(caching_ctl);
6569 }
6570 
6571 static noinline int
6572 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6573 {
6574 	struct btrfs_caching_control *caching_ctl;
6575 	int ret = 0;
6576 
6577 	caching_ctl = get_caching_control(cache);
6578 	if (!caching_ctl)
6579 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6580 
6581 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6582 	if (cache->cached == BTRFS_CACHE_ERROR)
6583 		ret = -EIO;
6584 	put_caching_control(caching_ctl);
6585 	return ret;
6586 }
6587 
6588 int __get_raid_index(u64 flags)
6589 {
6590 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6591 		return BTRFS_RAID_RAID10;
6592 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6593 		return BTRFS_RAID_RAID1;
6594 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6595 		return BTRFS_RAID_DUP;
6596 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6597 		return BTRFS_RAID_RAID0;
6598 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6599 		return BTRFS_RAID_RAID5;
6600 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6601 		return BTRFS_RAID_RAID6;
6602 
6603 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6604 }
6605 
6606 int get_block_group_index(struct btrfs_block_group_cache *cache)
6607 {
6608 	return __get_raid_index(cache->flags);
6609 }
6610 
6611 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6612 	[BTRFS_RAID_RAID10]	= "raid10",
6613 	[BTRFS_RAID_RAID1]	= "raid1",
6614 	[BTRFS_RAID_DUP]	= "dup",
6615 	[BTRFS_RAID_RAID0]	= "raid0",
6616 	[BTRFS_RAID_SINGLE]	= "single",
6617 	[BTRFS_RAID_RAID5]	= "raid5",
6618 	[BTRFS_RAID_RAID6]	= "raid6",
6619 };
6620 
6621 static const char *get_raid_name(enum btrfs_raid_types type)
6622 {
6623 	if (type >= BTRFS_NR_RAID_TYPES)
6624 		return NULL;
6625 
6626 	return btrfs_raid_type_names[type];
6627 }
6628 
6629 enum btrfs_loop_type {
6630 	LOOP_CACHING_NOWAIT = 0,
6631 	LOOP_CACHING_WAIT = 1,
6632 	LOOP_ALLOC_CHUNK = 2,
6633 	LOOP_NO_EMPTY_SIZE = 3,
6634 };
6635 
6636 static inline void
6637 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6638 		       int delalloc)
6639 {
6640 	if (delalloc)
6641 		down_read(&cache->data_rwsem);
6642 }
6643 
6644 static inline void
6645 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6646 		       int delalloc)
6647 {
6648 	btrfs_get_block_group(cache);
6649 	if (delalloc)
6650 		down_read(&cache->data_rwsem);
6651 }
6652 
6653 static struct btrfs_block_group_cache *
6654 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6655 		   struct btrfs_free_cluster *cluster,
6656 		   int delalloc)
6657 {
6658 	struct btrfs_block_group_cache *used_bg;
6659 	bool locked = false;
6660 again:
6661 	spin_lock(&cluster->refill_lock);
6662 	if (locked) {
6663 		if (used_bg == cluster->block_group)
6664 			return used_bg;
6665 
6666 		up_read(&used_bg->data_rwsem);
6667 		btrfs_put_block_group(used_bg);
6668 	}
6669 
6670 	used_bg = cluster->block_group;
6671 	if (!used_bg)
6672 		return NULL;
6673 
6674 	if (used_bg == block_group)
6675 		return used_bg;
6676 
6677 	btrfs_get_block_group(used_bg);
6678 
6679 	if (!delalloc)
6680 		return used_bg;
6681 
6682 	if (down_read_trylock(&used_bg->data_rwsem))
6683 		return used_bg;
6684 
6685 	spin_unlock(&cluster->refill_lock);
6686 	down_read(&used_bg->data_rwsem);
6687 	locked = true;
6688 	goto again;
6689 }
6690 
6691 static inline void
6692 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6693 			 int delalloc)
6694 {
6695 	if (delalloc)
6696 		up_read(&cache->data_rwsem);
6697 	btrfs_put_block_group(cache);
6698 }
6699 
6700 /*
6701  * walks the btree of allocated extents and find a hole of a given size.
6702  * The key ins is changed to record the hole:
6703  * ins->objectid == start position
6704  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6705  * ins->offset == the size of the hole.
6706  * Any available blocks before search_start are skipped.
6707  *
6708  * If there is no suitable free space, we will record the max size of
6709  * the free space extent currently.
6710  */
6711 static noinline int find_free_extent(struct btrfs_root *orig_root,
6712 				     u64 num_bytes, u64 empty_size,
6713 				     u64 hint_byte, struct btrfs_key *ins,
6714 				     u64 flags, int delalloc)
6715 {
6716 	int ret = 0;
6717 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6718 	struct btrfs_free_cluster *last_ptr = NULL;
6719 	struct btrfs_block_group_cache *block_group = NULL;
6720 	u64 search_start = 0;
6721 	u64 max_extent_size = 0;
6722 	int empty_cluster = 2 * 1024 * 1024;
6723 	struct btrfs_space_info *space_info;
6724 	int loop = 0;
6725 	int index = __get_raid_index(flags);
6726 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6727 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6728 	bool failed_cluster_refill = false;
6729 	bool failed_alloc = false;
6730 	bool use_cluster = true;
6731 	bool have_caching_bg = false;
6732 
6733 	WARN_ON(num_bytes < root->sectorsize);
6734 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6735 	ins->objectid = 0;
6736 	ins->offset = 0;
6737 
6738 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6739 
6740 	space_info = __find_space_info(root->fs_info, flags);
6741 	if (!space_info) {
6742 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6743 		return -ENOSPC;
6744 	}
6745 
6746 	/*
6747 	 * If the space info is for both data and metadata it means we have a
6748 	 * small filesystem and we can't use the clustering stuff.
6749 	 */
6750 	if (btrfs_mixed_space_info(space_info))
6751 		use_cluster = false;
6752 
6753 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6754 		last_ptr = &root->fs_info->meta_alloc_cluster;
6755 		if (!btrfs_test_opt(root, SSD))
6756 			empty_cluster = 64 * 1024;
6757 	}
6758 
6759 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6760 	    btrfs_test_opt(root, SSD)) {
6761 		last_ptr = &root->fs_info->data_alloc_cluster;
6762 	}
6763 
6764 	if (last_ptr) {
6765 		spin_lock(&last_ptr->lock);
6766 		if (last_ptr->block_group)
6767 			hint_byte = last_ptr->window_start;
6768 		spin_unlock(&last_ptr->lock);
6769 	}
6770 
6771 	search_start = max(search_start, first_logical_byte(root, 0));
6772 	search_start = max(search_start, hint_byte);
6773 
6774 	if (!last_ptr)
6775 		empty_cluster = 0;
6776 
6777 	if (search_start == hint_byte) {
6778 		block_group = btrfs_lookup_block_group(root->fs_info,
6779 						       search_start);
6780 		/*
6781 		 * we don't want to use the block group if it doesn't match our
6782 		 * allocation bits, or if its not cached.
6783 		 *
6784 		 * However if we are re-searching with an ideal block group
6785 		 * picked out then we don't care that the block group is cached.
6786 		 */
6787 		if (block_group && block_group_bits(block_group, flags) &&
6788 		    block_group->cached != BTRFS_CACHE_NO) {
6789 			down_read(&space_info->groups_sem);
6790 			if (list_empty(&block_group->list) ||
6791 			    block_group->ro) {
6792 				/*
6793 				 * someone is removing this block group,
6794 				 * we can't jump into the have_block_group
6795 				 * target because our list pointers are not
6796 				 * valid
6797 				 */
6798 				btrfs_put_block_group(block_group);
6799 				up_read(&space_info->groups_sem);
6800 			} else {
6801 				index = get_block_group_index(block_group);
6802 				btrfs_lock_block_group(block_group, delalloc);
6803 				goto have_block_group;
6804 			}
6805 		} else if (block_group) {
6806 			btrfs_put_block_group(block_group);
6807 		}
6808 	}
6809 search:
6810 	have_caching_bg = false;
6811 	down_read(&space_info->groups_sem);
6812 	list_for_each_entry(block_group, &space_info->block_groups[index],
6813 			    list) {
6814 		u64 offset;
6815 		int cached;
6816 
6817 		btrfs_grab_block_group(block_group, delalloc);
6818 		search_start = block_group->key.objectid;
6819 
6820 		/*
6821 		 * this can happen if we end up cycling through all the
6822 		 * raid types, but we want to make sure we only allocate
6823 		 * for the proper type.
6824 		 */
6825 		if (!block_group_bits(block_group, flags)) {
6826 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6827 				BTRFS_BLOCK_GROUP_RAID1 |
6828 				BTRFS_BLOCK_GROUP_RAID5 |
6829 				BTRFS_BLOCK_GROUP_RAID6 |
6830 				BTRFS_BLOCK_GROUP_RAID10;
6831 
6832 			/*
6833 			 * if they asked for extra copies and this block group
6834 			 * doesn't provide them, bail.  This does allow us to
6835 			 * fill raid0 from raid1.
6836 			 */
6837 			if ((flags & extra) && !(block_group->flags & extra))
6838 				goto loop;
6839 		}
6840 
6841 have_block_group:
6842 		cached = block_group_cache_done(block_group);
6843 		if (unlikely(!cached)) {
6844 			ret = cache_block_group(block_group, 0);
6845 			BUG_ON(ret < 0);
6846 			ret = 0;
6847 		}
6848 
6849 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6850 			goto loop;
6851 		if (unlikely(block_group->ro))
6852 			goto loop;
6853 
6854 		/*
6855 		 * Ok we want to try and use the cluster allocator, so
6856 		 * lets look there
6857 		 */
6858 		if (last_ptr) {
6859 			struct btrfs_block_group_cache *used_block_group;
6860 			unsigned long aligned_cluster;
6861 			/*
6862 			 * the refill lock keeps out other
6863 			 * people trying to start a new cluster
6864 			 */
6865 			used_block_group = btrfs_lock_cluster(block_group,
6866 							      last_ptr,
6867 							      delalloc);
6868 			if (!used_block_group)
6869 				goto refill_cluster;
6870 
6871 			if (used_block_group != block_group &&
6872 			    (used_block_group->ro ||
6873 			     !block_group_bits(used_block_group, flags)))
6874 				goto release_cluster;
6875 
6876 			offset = btrfs_alloc_from_cluster(used_block_group,
6877 						last_ptr,
6878 						num_bytes,
6879 						used_block_group->key.objectid,
6880 						&max_extent_size);
6881 			if (offset) {
6882 				/* we have a block, we're done */
6883 				spin_unlock(&last_ptr->refill_lock);
6884 				trace_btrfs_reserve_extent_cluster(root,
6885 						used_block_group,
6886 						search_start, num_bytes);
6887 				if (used_block_group != block_group) {
6888 					btrfs_release_block_group(block_group,
6889 								  delalloc);
6890 					block_group = used_block_group;
6891 				}
6892 				goto checks;
6893 			}
6894 
6895 			WARN_ON(last_ptr->block_group != used_block_group);
6896 release_cluster:
6897 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6898 			 * set up a new clusters, so lets just skip it
6899 			 * and let the allocator find whatever block
6900 			 * it can find.  If we reach this point, we
6901 			 * will have tried the cluster allocator
6902 			 * plenty of times and not have found
6903 			 * anything, so we are likely way too
6904 			 * fragmented for the clustering stuff to find
6905 			 * anything.
6906 			 *
6907 			 * However, if the cluster is taken from the
6908 			 * current block group, release the cluster
6909 			 * first, so that we stand a better chance of
6910 			 * succeeding in the unclustered
6911 			 * allocation.  */
6912 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6913 			    used_block_group != block_group) {
6914 				spin_unlock(&last_ptr->refill_lock);
6915 				btrfs_release_block_group(used_block_group,
6916 							  delalloc);
6917 				goto unclustered_alloc;
6918 			}
6919 
6920 			/*
6921 			 * this cluster didn't work out, free it and
6922 			 * start over
6923 			 */
6924 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6925 
6926 			if (used_block_group != block_group)
6927 				btrfs_release_block_group(used_block_group,
6928 							  delalloc);
6929 refill_cluster:
6930 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6931 				spin_unlock(&last_ptr->refill_lock);
6932 				goto unclustered_alloc;
6933 			}
6934 
6935 			aligned_cluster = max_t(unsigned long,
6936 						empty_cluster + empty_size,
6937 					      block_group->full_stripe_len);
6938 
6939 			/* allocate a cluster in this block group */
6940 			ret = btrfs_find_space_cluster(root, block_group,
6941 						       last_ptr, search_start,
6942 						       num_bytes,
6943 						       aligned_cluster);
6944 			if (ret == 0) {
6945 				/*
6946 				 * now pull our allocation out of this
6947 				 * cluster
6948 				 */
6949 				offset = btrfs_alloc_from_cluster(block_group,
6950 							last_ptr,
6951 							num_bytes,
6952 							search_start,
6953 							&max_extent_size);
6954 				if (offset) {
6955 					/* we found one, proceed */
6956 					spin_unlock(&last_ptr->refill_lock);
6957 					trace_btrfs_reserve_extent_cluster(root,
6958 						block_group, search_start,
6959 						num_bytes);
6960 					goto checks;
6961 				}
6962 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6963 				   && !failed_cluster_refill) {
6964 				spin_unlock(&last_ptr->refill_lock);
6965 
6966 				failed_cluster_refill = true;
6967 				wait_block_group_cache_progress(block_group,
6968 				       num_bytes + empty_cluster + empty_size);
6969 				goto have_block_group;
6970 			}
6971 
6972 			/*
6973 			 * at this point we either didn't find a cluster
6974 			 * or we weren't able to allocate a block from our
6975 			 * cluster.  Free the cluster we've been trying
6976 			 * to use, and go to the next block group
6977 			 */
6978 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6979 			spin_unlock(&last_ptr->refill_lock);
6980 			goto loop;
6981 		}
6982 
6983 unclustered_alloc:
6984 		spin_lock(&block_group->free_space_ctl->tree_lock);
6985 		if (cached &&
6986 		    block_group->free_space_ctl->free_space <
6987 		    num_bytes + empty_cluster + empty_size) {
6988 			if (block_group->free_space_ctl->free_space >
6989 			    max_extent_size)
6990 				max_extent_size =
6991 					block_group->free_space_ctl->free_space;
6992 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6993 			goto loop;
6994 		}
6995 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6996 
6997 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6998 						    num_bytes, empty_size,
6999 						    &max_extent_size);
7000 		/*
7001 		 * If we didn't find a chunk, and we haven't failed on this
7002 		 * block group before, and this block group is in the middle of
7003 		 * caching and we are ok with waiting, then go ahead and wait
7004 		 * for progress to be made, and set failed_alloc to true.
7005 		 *
7006 		 * If failed_alloc is true then we've already waited on this
7007 		 * block group once and should move on to the next block group.
7008 		 */
7009 		if (!offset && !failed_alloc && !cached &&
7010 		    loop > LOOP_CACHING_NOWAIT) {
7011 			wait_block_group_cache_progress(block_group,
7012 						num_bytes + empty_size);
7013 			failed_alloc = true;
7014 			goto have_block_group;
7015 		} else if (!offset) {
7016 			if (!cached)
7017 				have_caching_bg = true;
7018 			goto loop;
7019 		}
7020 checks:
7021 		search_start = ALIGN(offset, root->stripesize);
7022 
7023 		/* move on to the next group */
7024 		if (search_start + num_bytes >
7025 		    block_group->key.objectid + block_group->key.offset) {
7026 			btrfs_add_free_space(block_group, offset, num_bytes);
7027 			goto loop;
7028 		}
7029 
7030 		if (offset < search_start)
7031 			btrfs_add_free_space(block_group, offset,
7032 					     search_start - offset);
7033 		BUG_ON(offset > search_start);
7034 
7035 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7036 						  alloc_type, delalloc);
7037 		if (ret == -EAGAIN) {
7038 			btrfs_add_free_space(block_group, offset, num_bytes);
7039 			goto loop;
7040 		}
7041 
7042 		/* we are all good, lets return */
7043 		ins->objectid = search_start;
7044 		ins->offset = num_bytes;
7045 
7046 		trace_btrfs_reserve_extent(orig_root, block_group,
7047 					   search_start, num_bytes);
7048 		btrfs_release_block_group(block_group, delalloc);
7049 		break;
7050 loop:
7051 		failed_cluster_refill = false;
7052 		failed_alloc = false;
7053 		BUG_ON(index != get_block_group_index(block_group));
7054 		btrfs_release_block_group(block_group, delalloc);
7055 	}
7056 	up_read(&space_info->groups_sem);
7057 
7058 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7059 		goto search;
7060 
7061 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7062 		goto search;
7063 
7064 	/*
7065 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7066 	 *			caching kthreads as we move along
7067 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7068 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7069 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7070 	 *			again
7071 	 */
7072 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7073 		index = 0;
7074 		loop++;
7075 		if (loop == LOOP_ALLOC_CHUNK) {
7076 			struct btrfs_trans_handle *trans;
7077 			int exist = 0;
7078 
7079 			trans = current->journal_info;
7080 			if (trans)
7081 				exist = 1;
7082 			else
7083 				trans = btrfs_join_transaction(root);
7084 
7085 			if (IS_ERR(trans)) {
7086 				ret = PTR_ERR(trans);
7087 				goto out;
7088 			}
7089 
7090 			ret = do_chunk_alloc(trans, root, flags,
7091 					     CHUNK_ALLOC_FORCE);
7092 			/*
7093 			 * Do not bail out on ENOSPC since we
7094 			 * can do more things.
7095 			 */
7096 			if (ret < 0 && ret != -ENOSPC)
7097 				btrfs_abort_transaction(trans,
7098 							root, ret);
7099 			else
7100 				ret = 0;
7101 			if (!exist)
7102 				btrfs_end_transaction(trans, root);
7103 			if (ret)
7104 				goto out;
7105 		}
7106 
7107 		if (loop == LOOP_NO_EMPTY_SIZE) {
7108 			empty_size = 0;
7109 			empty_cluster = 0;
7110 		}
7111 
7112 		goto search;
7113 	} else if (!ins->objectid) {
7114 		ret = -ENOSPC;
7115 	} else if (ins->objectid) {
7116 		ret = 0;
7117 	}
7118 out:
7119 	if (ret == -ENOSPC)
7120 		ins->offset = max_extent_size;
7121 	return ret;
7122 }
7123 
7124 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7125 			    int dump_block_groups)
7126 {
7127 	struct btrfs_block_group_cache *cache;
7128 	int index = 0;
7129 
7130 	spin_lock(&info->lock);
7131 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7132 	       info->flags,
7133 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7134 	       info->bytes_reserved - info->bytes_readonly,
7135 	       (info->full) ? "" : "not ");
7136 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7137 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7138 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7139 	       info->bytes_reserved, info->bytes_may_use,
7140 	       info->bytes_readonly);
7141 	spin_unlock(&info->lock);
7142 
7143 	if (!dump_block_groups)
7144 		return;
7145 
7146 	down_read(&info->groups_sem);
7147 again:
7148 	list_for_each_entry(cache, &info->block_groups[index], list) {
7149 		spin_lock(&cache->lock);
7150 		printk(KERN_INFO "BTRFS: "
7151 			   "block group %llu has %llu bytes, "
7152 			   "%llu used %llu pinned %llu reserved %s\n",
7153 		       cache->key.objectid, cache->key.offset,
7154 		       btrfs_block_group_used(&cache->item), cache->pinned,
7155 		       cache->reserved, cache->ro ? "[readonly]" : "");
7156 		btrfs_dump_free_space(cache, bytes);
7157 		spin_unlock(&cache->lock);
7158 	}
7159 	if (++index < BTRFS_NR_RAID_TYPES)
7160 		goto again;
7161 	up_read(&info->groups_sem);
7162 }
7163 
7164 int btrfs_reserve_extent(struct btrfs_root *root,
7165 			 u64 num_bytes, u64 min_alloc_size,
7166 			 u64 empty_size, u64 hint_byte,
7167 			 struct btrfs_key *ins, int is_data, int delalloc)
7168 {
7169 	bool final_tried = false;
7170 	u64 flags;
7171 	int ret;
7172 
7173 	flags = btrfs_get_alloc_profile(root, is_data);
7174 again:
7175 	WARN_ON(num_bytes < root->sectorsize);
7176 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7177 			       flags, delalloc);
7178 
7179 	if (ret == -ENOSPC) {
7180 		if (!final_tried && ins->offset) {
7181 			num_bytes = min(num_bytes >> 1, ins->offset);
7182 			num_bytes = round_down(num_bytes, root->sectorsize);
7183 			num_bytes = max(num_bytes, min_alloc_size);
7184 			if (num_bytes == min_alloc_size)
7185 				final_tried = true;
7186 			goto again;
7187 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7188 			struct btrfs_space_info *sinfo;
7189 
7190 			sinfo = __find_space_info(root->fs_info, flags);
7191 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7192 				flags, num_bytes);
7193 			if (sinfo)
7194 				dump_space_info(sinfo, num_bytes, 1);
7195 		}
7196 	}
7197 
7198 	return ret;
7199 }
7200 
7201 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7202 					u64 start, u64 len,
7203 					int pin, int delalloc)
7204 {
7205 	struct btrfs_block_group_cache *cache;
7206 	int ret = 0;
7207 
7208 	cache = btrfs_lookup_block_group(root->fs_info, start);
7209 	if (!cache) {
7210 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7211 			start);
7212 		return -ENOSPC;
7213 	}
7214 
7215 	if (pin)
7216 		pin_down_extent(root, cache, start, len, 1);
7217 	else {
7218 		if (btrfs_test_opt(root, DISCARD))
7219 			ret = btrfs_discard_extent(root, start, len, NULL);
7220 		btrfs_add_free_space(cache, start, len);
7221 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7222 	}
7223 
7224 	btrfs_put_block_group(cache);
7225 
7226 	trace_btrfs_reserved_extent_free(root, start, len);
7227 
7228 	return ret;
7229 }
7230 
7231 int btrfs_free_reserved_extent(struct btrfs_root *root,
7232 			       u64 start, u64 len, int delalloc)
7233 {
7234 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7235 }
7236 
7237 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7238 				       u64 start, u64 len)
7239 {
7240 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7241 }
7242 
7243 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7244 				      struct btrfs_root *root,
7245 				      u64 parent, u64 root_objectid,
7246 				      u64 flags, u64 owner, u64 offset,
7247 				      struct btrfs_key *ins, int ref_mod)
7248 {
7249 	int ret;
7250 	struct btrfs_fs_info *fs_info = root->fs_info;
7251 	struct btrfs_extent_item *extent_item;
7252 	struct btrfs_extent_inline_ref *iref;
7253 	struct btrfs_path *path;
7254 	struct extent_buffer *leaf;
7255 	int type;
7256 	u32 size;
7257 
7258 	if (parent > 0)
7259 		type = BTRFS_SHARED_DATA_REF_KEY;
7260 	else
7261 		type = BTRFS_EXTENT_DATA_REF_KEY;
7262 
7263 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7264 
7265 	path = btrfs_alloc_path();
7266 	if (!path)
7267 		return -ENOMEM;
7268 
7269 	path->leave_spinning = 1;
7270 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7271 				      ins, size);
7272 	if (ret) {
7273 		btrfs_free_path(path);
7274 		return ret;
7275 	}
7276 
7277 	leaf = path->nodes[0];
7278 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7279 				     struct btrfs_extent_item);
7280 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7281 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7282 	btrfs_set_extent_flags(leaf, extent_item,
7283 			       flags | BTRFS_EXTENT_FLAG_DATA);
7284 
7285 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7286 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7287 	if (parent > 0) {
7288 		struct btrfs_shared_data_ref *ref;
7289 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7290 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7291 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7292 	} else {
7293 		struct btrfs_extent_data_ref *ref;
7294 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7295 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7296 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7297 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7298 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7299 	}
7300 
7301 	btrfs_mark_buffer_dirty(path->nodes[0]);
7302 	btrfs_free_path(path);
7303 
7304 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7305 	if (ret) { /* -ENOENT, logic error */
7306 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7307 			ins->objectid, ins->offset);
7308 		BUG();
7309 	}
7310 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7311 	return ret;
7312 }
7313 
7314 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7315 				     struct btrfs_root *root,
7316 				     u64 parent, u64 root_objectid,
7317 				     u64 flags, struct btrfs_disk_key *key,
7318 				     int level, struct btrfs_key *ins,
7319 				     int no_quota)
7320 {
7321 	int ret;
7322 	struct btrfs_fs_info *fs_info = root->fs_info;
7323 	struct btrfs_extent_item *extent_item;
7324 	struct btrfs_tree_block_info *block_info;
7325 	struct btrfs_extent_inline_ref *iref;
7326 	struct btrfs_path *path;
7327 	struct extent_buffer *leaf;
7328 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7329 	u64 num_bytes = ins->offset;
7330 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7331 						 SKINNY_METADATA);
7332 
7333 	if (!skinny_metadata)
7334 		size += sizeof(*block_info);
7335 
7336 	path = btrfs_alloc_path();
7337 	if (!path) {
7338 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7339 						   root->nodesize);
7340 		return -ENOMEM;
7341 	}
7342 
7343 	path->leave_spinning = 1;
7344 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7345 				      ins, size);
7346 	if (ret) {
7347 		btrfs_free_path(path);
7348 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7349 						   root->nodesize);
7350 		return ret;
7351 	}
7352 
7353 	leaf = path->nodes[0];
7354 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7355 				     struct btrfs_extent_item);
7356 	btrfs_set_extent_refs(leaf, extent_item, 1);
7357 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7358 	btrfs_set_extent_flags(leaf, extent_item,
7359 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7360 
7361 	if (skinny_metadata) {
7362 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7363 		num_bytes = root->nodesize;
7364 	} else {
7365 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7366 		btrfs_set_tree_block_key(leaf, block_info, key);
7367 		btrfs_set_tree_block_level(leaf, block_info, level);
7368 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7369 	}
7370 
7371 	if (parent > 0) {
7372 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7373 		btrfs_set_extent_inline_ref_type(leaf, iref,
7374 						 BTRFS_SHARED_BLOCK_REF_KEY);
7375 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7376 	} else {
7377 		btrfs_set_extent_inline_ref_type(leaf, iref,
7378 						 BTRFS_TREE_BLOCK_REF_KEY);
7379 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7380 	}
7381 
7382 	btrfs_mark_buffer_dirty(leaf);
7383 	btrfs_free_path(path);
7384 
7385 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7386 				 1);
7387 	if (ret) { /* -ENOENT, logic error */
7388 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7389 			ins->objectid, ins->offset);
7390 		BUG();
7391 	}
7392 
7393 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7394 	return ret;
7395 }
7396 
7397 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7398 				     struct btrfs_root *root,
7399 				     u64 root_objectid, u64 owner,
7400 				     u64 offset, struct btrfs_key *ins)
7401 {
7402 	int ret;
7403 
7404 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7405 
7406 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7407 					 ins->offset, 0,
7408 					 root_objectid, owner, offset,
7409 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7410 	return ret;
7411 }
7412 
7413 /*
7414  * this is used by the tree logging recovery code.  It records that
7415  * an extent has been allocated and makes sure to clear the free
7416  * space cache bits as well
7417  */
7418 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7419 				   struct btrfs_root *root,
7420 				   u64 root_objectid, u64 owner, u64 offset,
7421 				   struct btrfs_key *ins)
7422 {
7423 	int ret;
7424 	struct btrfs_block_group_cache *block_group;
7425 
7426 	/*
7427 	 * Mixed block groups will exclude before processing the log so we only
7428 	 * need to do the exlude dance if this fs isn't mixed.
7429 	 */
7430 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7431 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7432 		if (ret)
7433 			return ret;
7434 	}
7435 
7436 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7437 	if (!block_group)
7438 		return -EINVAL;
7439 
7440 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7441 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7442 	BUG_ON(ret); /* logic error */
7443 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7444 					 0, owner, offset, ins, 1);
7445 	btrfs_put_block_group(block_group);
7446 	return ret;
7447 }
7448 
7449 static struct extent_buffer *
7450 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7451 		      u64 bytenr, int level)
7452 {
7453 	struct extent_buffer *buf;
7454 
7455 	buf = btrfs_find_create_tree_block(root, bytenr);
7456 	if (!buf)
7457 		return ERR_PTR(-ENOMEM);
7458 	btrfs_set_header_generation(buf, trans->transid);
7459 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7460 	btrfs_tree_lock(buf);
7461 	clean_tree_block(trans, root->fs_info, buf);
7462 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7463 
7464 	btrfs_set_lock_blocking(buf);
7465 	btrfs_set_buffer_uptodate(buf);
7466 
7467 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7468 		buf->log_index = root->log_transid % 2;
7469 		/*
7470 		 * we allow two log transactions at a time, use different
7471 		 * EXENT bit to differentiate dirty pages.
7472 		 */
7473 		if (buf->log_index == 0)
7474 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7475 					buf->start + buf->len - 1, GFP_NOFS);
7476 		else
7477 			set_extent_new(&root->dirty_log_pages, buf->start,
7478 					buf->start + buf->len - 1, GFP_NOFS);
7479 	} else {
7480 		buf->log_index = -1;
7481 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7482 			 buf->start + buf->len - 1, GFP_NOFS);
7483 	}
7484 	trans->blocks_used++;
7485 	/* this returns a buffer locked for blocking */
7486 	return buf;
7487 }
7488 
7489 static struct btrfs_block_rsv *
7490 use_block_rsv(struct btrfs_trans_handle *trans,
7491 	      struct btrfs_root *root, u32 blocksize)
7492 {
7493 	struct btrfs_block_rsv *block_rsv;
7494 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7495 	int ret;
7496 	bool global_updated = false;
7497 
7498 	block_rsv = get_block_rsv(trans, root);
7499 
7500 	if (unlikely(block_rsv->size == 0))
7501 		goto try_reserve;
7502 again:
7503 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7504 	if (!ret)
7505 		return block_rsv;
7506 
7507 	if (block_rsv->failfast)
7508 		return ERR_PTR(ret);
7509 
7510 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7511 		global_updated = true;
7512 		update_global_block_rsv(root->fs_info);
7513 		goto again;
7514 	}
7515 
7516 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7517 		static DEFINE_RATELIMIT_STATE(_rs,
7518 				DEFAULT_RATELIMIT_INTERVAL * 10,
7519 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7520 		if (__ratelimit(&_rs))
7521 			WARN(1, KERN_DEBUG
7522 				"BTRFS: block rsv returned %d\n", ret);
7523 	}
7524 try_reserve:
7525 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7526 				     BTRFS_RESERVE_NO_FLUSH);
7527 	if (!ret)
7528 		return block_rsv;
7529 	/*
7530 	 * If we couldn't reserve metadata bytes try and use some from
7531 	 * the global reserve if its space type is the same as the global
7532 	 * reservation.
7533 	 */
7534 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7535 	    block_rsv->space_info == global_rsv->space_info) {
7536 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7537 		if (!ret)
7538 			return global_rsv;
7539 	}
7540 	return ERR_PTR(ret);
7541 }
7542 
7543 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7544 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7545 {
7546 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7547 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7548 }
7549 
7550 /*
7551  * finds a free extent and does all the dirty work required for allocation
7552  * returns the key for the extent through ins, and a tree buffer for
7553  * the first block of the extent through buf.
7554  *
7555  * returns the tree buffer or an ERR_PTR on error.
7556  */
7557 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7558 					struct btrfs_root *root,
7559 					u64 parent, u64 root_objectid,
7560 					struct btrfs_disk_key *key, int level,
7561 					u64 hint, u64 empty_size)
7562 {
7563 	struct btrfs_key ins;
7564 	struct btrfs_block_rsv *block_rsv;
7565 	struct extent_buffer *buf;
7566 	struct btrfs_delayed_extent_op *extent_op;
7567 	u64 flags = 0;
7568 	int ret;
7569 	u32 blocksize = root->nodesize;
7570 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7571 						 SKINNY_METADATA);
7572 
7573 	if (btrfs_test_is_dummy_root(root)) {
7574 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7575 					    level);
7576 		if (!IS_ERR(buf))
7577 			root->alloc_bytenr += blocksize;
7578 		return buf;
7579 	}
7580 
7581 	block_rsv = use_block_rsv(trans, root, blocksize);
7582 	if (IS_ERR(block_rsv))
7583 		return ERR_CAST(block_rsv);
7584 
7585 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7586 				   empty_size, hint, &ins, 0, 0);
7587 	if (ret)
7588 		goto out_unuse;
7589 
7590 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7591 	if (IS_ERR(buf)) {
7592 		ret = PTR_ERR(buf);
7593 		goto out_free_reserved;
7594 	}
7595 
7596 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7597 		if (parent == 0)
7598 			parent = ins.objectid;
7599 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7600 	} else
7601 		BUG_ON(parent > 0);
7602 
7603 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7604 		extent_op = btrfs_alloc_delayed_extent_op();
7605 		if (!extent_op) {
7606 			ret = -ENOMEM;
7607 			goto out_free_buf;
7608 		}
7609 		if (key)
7610 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7611 		else
7612 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7613 		extent_op->flags_to_set = flags;
7614 		if (skinny_metadata)
7615 			extent_op->update_key = 0;
7616 		else
7617 			extent_op->update_key = 1;
7618 		extent_op->update_flags = 1;
7619 		extent_op->is_data = 0;
7620 		extent_op->level = level;
7621 
7622 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7623 						 ins.objectid, ins.offset,
7624 						 parent, root_objectid, level,
7625 						 BTRFS_ADD_DELAYED_EXTENT,
7626 						 extent_op, 0);
7627 		if (ret)
7628 			goto out_free_delayed;
7629 	}
7630 	return buf;
7631 
7632 out_free_delayed:
7633 	btrfs_free_delayed_extent_op(extent_op);
7634 out_free_buf:
7635 	free_extent_buffer(buf);
7636 out_free_reserved:
7637 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7638 out_unuse:
7639 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7640 	return ERR_PTR(ret);
7641 }
7642 
7643 struct walk_control {
7644 	u64 refs[BTRFS_MAX_LEVEL];
7645 	u64 flags[BTRFS_MAX_LEVEL];
7646 	struct btrfs_key update_progress;
7647 	int stage;
7648 	int level;
7649 	int shared_level;
7650 	int update_ref;
7651 	int keep_locks;
7652 	int reada_slot;
7653 	int reada_count;
7654 	int for_reloc;
7655 };
7656 
7657 #define DROP_REFERENCE	1
7658 #define UPDATE_BACKREF	2
7659 
7660 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7661 				     struct btrfs_root *root,
7662 				     struct walk_control *wc,
7663 				     struct btrfs_path *path)
7664 {
7665 	u64 bytenr;
7666 	u64 generation;
7667 	u64 refs;
7668 	u64 flags;
7669 	u32 nritems;
7670 	u32 blocksize;
7671 	struct btrfs_key key;
7672 	struct extent_buffer *eb;
7673 	int ret;
7674 	int slot;
7675 	int nread = 0;
7676 
7677 	if (path->slots[wc->level] < wc->reada_slot) {
7678 		wc->reada_count = wc->reada_count * 2 / 3;
7679 		wc->reada_count = max(wc->reada_count, 2);
7680 	} else {
7681 		wc->reada_count = wc->reada_count * 3 / 2;
7682 		wc->reada_count = min_t(int, wc->reada_count,
7683 					BTRFS_NODEPTRS_PER_BLOCK(root));
7684 	}
7685 
7686 	eb = path->nodes[wc->level];
7687 	nritems = btrfs_header_nritems(eb);
7688 	blocksize = root->nodesize;
7689 
7690 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7691 		if (nread >= wc->reada_count)
7692 			break;
7693 
7694 		cond_resched();
7695 		bytenr = btrfs_node_blockptr(eb, slot);
7696 		generation = btrfs_node_ptr_generation(eb, slot);
7697 
7698 		if (slot == path->slots[wc->level])
7699 			goto reada;
7700 
7701 		if (wc->stage == UPDATE_BACKREF &&
7702 		    generation <= root->root_key.offset)
7703 			continue;
7704 
7705 		/* We don't lock the tree block, it's OK to be racy here */
7706 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7707 					       wc->level - 1, 1, &refs,
7708 					       &flags);
7709 		/* We don't care about errors in readahead. */
7710 		if (ret < 0)
7711 			continue;
7712 		BUG_ON(refs == 0);
7713 
7714 		if (wc->stage == DROP_REFERENCE) {
7715 			if (refs == 1)
7716 				goto reada;
7717 
7718 			if (wc->level == 1 &&
7719 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7720 				continue;
7721 			if (!wc->update_ref ||
7722 			    generation <= root->root_key.offset)
7723 				continue;
7724 			btrfs_node_key_to_cpu(eb, &key, slot);
7725 			ret = btrfs_comp_cpu_keys(&key,
7726 						  &wc->update_progress);
7727 			if (ret < 0)
7728 				continue;
7729 		} else {
7730 			if (wc->level == 1 &&
7731 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7732 				continue;
7733 		}
7734 reada:
7735 		readahead_tree_block(root, bytenr);
7736 		nread++;
7737 	}
7738 	wc->reada_slot = slot;
7739 }
7740 
7741 /*
7742  * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7743  * for later qgroup accounting.
7744  *
7745  * Current, this function does nothing.
7746  */
7747 static int account_leaf_items(struct btrfs_trans_handle *trans,
7748 			      struct btrfs_root *root,
7749 			      struct extent_buffer *eb)
7750 {
7751 	int nr = btrfs_header_nritems(eb);
7752 	int i, extent_type;
7753 	struct btrfs_key key;
7754 	struct btrfs_file_extent_item *fi;
7755 	u64 bytenr, num_bytes;
7756 
7757 	for (i = 0; i < nr; i++) {
7758 		btrfs_item_key_to_cpu(eb, &key, i);
7759 
7760 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7761 			continue;
7762 
7763 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7764 		/* filter out non qgroup-accountable extents  */
7765 		extent_type = btrfs_file_extent_type(eb, fi);
7766 
7767 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7768 			continue;
7769 
7770 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7771 		if (!bytenr)
7772 			continue;
7773 
7774 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7775 	}
7776 	return 0;
7777 }
7778 
7779 /*
7780  * Walk up the tree from the bottom, freeing leaves and any interior
7781  * nodes which have had all slots visited. If a node (leaf or
7782  * interior) is freed, the node above it will have it's slot
7783  * incremented. The root node will never be freed.
7784  *
7785  * At the end of this function, we should have a path which has all
7786  * slots incremented to the next position for a search. If we need to
7787  * read a new node it will be NULL and the node above it will have the
7788  * correct slot selected for a later read.
7789  *
7790  * If we increment the root nodes slot counter past the number of
7791  * elements, 1 is returned to signal completion of the search.
7792  */
7793 static int adjust_slots_upwards(struct btrfs_root *root,
7794 				struct btrfs_path *path, int root_level)
7795 {
7796 	int level = 0;
7797 	int nr, slot;
7798 	struct extent_buffer *eb;
7799 
7800 	if (root_level == 0)
7801 		return 1;
7802 
7803 	while (level <= root_level) {
7804 		eb = path->nodes[level];
7805 		nr = btrfs_header_nritems(eb);
7806 		path->slots[level]++;
7807 		slot = path->slots[level];
7808 		if (slot >= nr || level == 0) {
7809 			/*
7810 			 * Don't free the root -  we will detect this
7811 			 * condition after our loop and return a
7812 			 * positive value for caller to stop walking the tree.
7813 			 */
7814 			if (level != root_level) {
7815 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7816 				path->locks[level] = 0;
7817 
7818 				free_extent_buffer(eb);
7819 				path->nodes[level] = NULL;
7820 				path->slots[level] = 0;
7821 			}
7822 		} else {
7823 			/*
7824 			 * We have a valid slot to walk back down
7825 			 * from. Stop here so caller can process these
7826 			 * new nodes.
7827 			 */
7828 			break;
7829 		}
7830 
7831 		level++;
7832 	}
7833 
7834 	eb = path->nodes[root_level];
7835 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7836 		return 1;
7837 
7838 	return 0;
7839 }
7840 
7841 /*
7842  * root_eb is the subtree root and is locked before this function is called.
7843  * TODO: Modify this function to mark all (including complete shared node)
7844  * to dirty_extent_root to allow it get accounted in qgroup.
7845  */
7846 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7847 				  struct btrfs_root *root,
7848 				  struct extent_buffer *root_eb,
7849 				  u64 root_gen,
7850 				  int root_level)
7851 {
7852 	int ret = 0;
7853 	int level;
7854 	struct extent_buffer *eb = root_eb;
7855 	struct btrfs_path *path = NULL;
7856 
7857 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7858 	BUG_ON(root_eb == NULL);
7859 
7860 	if (!root->fs_info->quota_enabled)
7861 		return 0;
7862 
7863 	if (!extent_buffer_uptodate(root_eb)) {
7864 		ret = btrfs_read_buffer(root_eb, root_gen);
7865 		if (ret)
7866 			goto out;
7867 	}
7868 
7869 	if (root_level == 0) {
7870 		ret = account_leaf_items(trans, root, root_eb);
7871 		goto out;
7872 	}
7873 
7874 	path = btrfs_alloc_path();
7875 	if (!path)
7876 		return -ENOMEM;
7877 
7878 	/*
7879 	 * Walk down the tree.  Missing extent blocks are filled in as
7880 	 * we go. Metadata is accounted every time we read a new
7881 	 * extent block.
7882 	 *
7883 	 * When we reach a leaf, we account for file extent items in it,
7884 	 * walk back up the tree (adjusting slot pointers as we go)
7885 	 * and restart the search process.
7886 	 */
7887 	extent_buffer_get(root_eb); /* For path */
7888 	path->nodes[root_level] = root_eb;
7889 	path->slots[root_level] = 0;
7890 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7891 walk_down:
7892 	level = root_level;
7893 	while (level >= 0) {
7894 		if (path->nodes[level] == NULL) {
7895 			int parent_slot;
7896 			u64 child_gen;
7897 			u64 child_bytenr;
7898 
7899 			/* We need to get child blockptr/gen from
7900 			 * parent before we can read it. */
7901 			eb = path->nodes[level + 1];
7902 			parent_slot = path->slots[level + 1];
7903 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7904 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7905 
7906 			eb = read_tree_block(root, child_bytenr, child_gen);
7907 			if (IS_ERR(eb)) {
7908 				ret = PTR_ERR(eb);
7909 				goto out;
7910 			} else if (!extent_buffer_uptodate(eb)) {
7911 				free_extent_buffer(eb);
7912 				ret = -EIO;
7913 				goto out;
7914 			}
7915 
7916 			path->nodes[level] = eb;
7917 			path->slots[level] = 0;
7918 
7919 			btrfs_tree_read_lock(eb);
7920 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7921 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7922 		}
7923 
7924 		if (level == 0) {
7925 			ret = account_leaf_items(trans, root, path->nodes[level]);
7926 			if (ret)
7927 				goto out;
7928 
7929 			/* Nonzero return here means we completed our search */
7930 			ret = adjust_slots_upwards(root, path, root_level);
7931 			if (ret)
7932 				break;
7933 
7934 			/* Restart search with new slots */
7935 			goto walk_down;
7936 		}
7937 
7938 		level--;
7939 	}
7940 
7941 	ret = 0;
7942 out:
7943 	btrfs_free_path(path);
7944 
7945 	return ret;
7946 }
7947 
7948 /*
7949  * helper to process tree block while walking down the tree.
7950  *
7951  * when wc->stage == UPDATE_BACKREF, this function updates
7952  * back refs for pointers in the block.
7953  *
7954  * NOTE: return value 1 means we should stop walking down.
7955  */
7956 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7957 				   struct btrfs_root *root,
7958 				   struct btrfs_path *path,
7959 				   struct walk_control *wc, int lookup_info)
7960 {
7961 	int level = wc->level;
7962 	struct extent_buffer *eb = path->nodes[level];
7963 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7964 	int ret;
7965 
7966 	if (wc->stage == UPDATE_BACKREF &&
7967 	    btrfs_header_owner(eb) != root->root_key.objectid)
7968 		return 1;
7969 
7970 	/*
7971 	 * when reference count of tree block is 1, it won't increase
7972 	 * again. once full backref flag is set, we never clear it.
7973 	 */
7974 	if (lookup_info &&
7975 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7976 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7977 		BUG_ON(!path->locks[level]);
7978 		ret = btrfs_lookup_extent_info(trans, root,
7979 					       eb->start, level, 1,
7980 					       &wc->refs[level],
7981 					       &wc->flags[level]);
7982 		BUG_ON(ret == -ENOMEM);
7983 		if (ret)
7984 			return ret;
7985 		BUG_ON(wc->refs[level] == 0);
7986 	}
7987 
7988 	if (wc->stage == DROP_REFERENCE) {
7989 		if (wc->refs[level] > 1)
7990 			return 1;
7991 
7992 		if (path->locks[level] && !wc->keep_locks) {
7993 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7994 			path->locks[level] = 0;
7995 		}
7996 		return 0;
7997 	}
7998 
7999 	/* wc->stage == UPDATE_BACKREF */
8000 	if (!(wc->flags[level] & flag)) {
8001 		BUG_ON(!path->locks[level]);
8002 		ret = btrfs_inc_ref(trans, root, eb, 1);
8003 		BUG_ON(ret); /* -ENOMEM */
8004 		ret = btrfs_dec_ref(trans, root, eb, 0);
8005 		BUG_ON(ret); /* -ENOMEM */
8006 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8007 						  eb->len, flag,
8008 						  btrfs_header_level(eb), 0);
8009 		BUG_ON(ret); /* -ENOMEM */
8010 		wc->flags[level] |= flag;
8011 	}
8012 
8013 	/*
8014 	 * the block is shared by multiple trees, so it's not good to
8015 	 * keep the tree lock
8016 	 */
8017 	if (path->locks[level] && level > 0) {
8018 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8019 		path->locks[level] = 0;
8020 	}
8021 	return 0;
8022 }
8023 
8024 /*
8025  * helper to process tree block pointer.
8026  *
8027  * when wc->stage == DROP_REFERENCE, this function checks
8028  * reference count of the block pointed to. if the block
8029  * is shared and we need update back refs for the subtree
8030  * rooted at the block, this function changes wc->stage to
8031  * UPDATE_BACKREF. if the block is shared and there is no
8032  * need to update back, this function drops the reference
8033  * to the block.
8034  *
8035  * NOTE: return value 1 means we should stop walking down.
8036  */
8037 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8038 				 struct btrfs_root *root,
8039 				 struct btrfs_path *path,
8040 				 struct walk_control *wc, int *lookup_info)
8041 {
8042 	u64 bytenr;
8043 	u64 generation;
8044 	u64 parent;
8045 	u32 blocksize;
8046 	struct btrfs_key key;
8047 	struct extent_buffer *next;
8048 	int level = wc->level;
8049 	int reada = 0;
8050 	int ret = 0;
8051 	bool need_account = false;
8052 
8053 	generation = btrfs_node_ptr_generation(path->nodes[level],
8054 					       path->slots[level]);
8055 	/*
8056 	 * if the lower level block was created before the snapshot
8057 	 * was created, we know there is no need to update back refs
8058 	 * for the subtree
8059 	 */
8060 	if (wc->stage == UPDATE_BACKREF &&
8061 	    generation <= root->root_key.offset) {
8062 		*lookup_info = 1;
8063 		return 1;
8064 	}
8065 
8066 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8067 	blocksize = root->nodesize;
8068 
8069 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8070 	if (!next) {
8071 		next = btrfs_find_create_tree_block(root, bytenr);
8072 		if (!next)
8073 			return -ENOMEM;
8074 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8075 					       level - 1);
8076 		reada = 1;
8077 	}
8078 	btrfs_tree_lock(next);
8079 	btrfs_set_lock_blocking(next);
8080 
8081 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8082 				       &wc->refs[level - 1],
8083 				       &wc->flags[level - 1]);
8084 	if (ret < 0) {
8085 		btrfs_tree_unlock(next);
8086 		return ret;
8087 	}
8088 
8089 	if (unlikely(wc->refs[level - 1] == 0)) {
8090 		btrfs_err(root->fs_info, "Missing references.");
8091 		BUG();
8092 	}
8093 	*lookup_info = 0;
8094 
8095 	if (wc->stage == DROP_REFERENCE) {
8096 		if (wc->refs[level - 1] > 1) {
8097 			need_account = true;
8098 			if (level == 1 &&
8099 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8100 				goto skip;
8101 
8102 			if (!wc->update_ref ||
8103 			    generation <= root->root_key.offset)
8104 				goto skip;
8105 
8106 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8107 					      path->slots[level]);
8108 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8109 			if (ret < 0)
8110 				goto skip;
8111 
8112 			wc->stage = UPDATE_BACKREF;
8113 			wc->shared_level = level - 1;
8114 		}
8115 	} else {
8116 		if (level == 1 &&
8117 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8118 			goto skip;
8119 	}
8120 
8121 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8122 		btrfs_tree_unlock(next);
8123 		free_extent_buffer(next);
8124 		next = NULL;
8125 		*lookup_info = 1;
8126 	}
8127 
8128 	if (!next) {
8129 		if (reada && level == 1)
8130 			reada_walk_down(trans, root, wc, path);
8131 		next = read_tree_block(root, bytenr, generation);
8132 		if (IS_ERR(next)) {
8133 			return PTR_ERR(next);
8134 		} else if (!extent_buffer_uptodate(next)) {
8135 			free_extent_buffer(next);
8136 			return -EIO;
8137 		}
8138 		btrfs_tree_lock(next);
8139 		btrfs_set_lock_blocking(next);
8140 	}
8141 
8142 	level--;
8143 	BUG_ON(level != btrfs_header_level(next));
8144 	path->nodes[level] = next;
8145 	path->slots[level] = 0;
8146 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8147 	wc->level = level;
8148 	if (wc->level == 1)
8149 		wc->reada_slot = 0;
8150 	return 0;
8151 skip:
8152 	wc->refs[level - 1] = 0;
8153 	wc->flags[level - 1] = 0;
8154 	if (wc->stage == DROP_REFERENCE) {
8155 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8156 			parent = path->nodes[level]->start;
8157 		} else {
8158 			BUG_ON(root->root_key.objectid !=
8159 			       btrfs_header_owner(path->nodes[level]));
8160 			parent = 0;
8161 		}
8162 
8163 		if (need_account) {
8164 			ret = account_shared_subtree(trans, root, next,
8165 						     generation, level - 1);
8166 			if (ret) {
8167 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8168 					"%d accounting shared subtree. Quota "
8169 					"is out of sync, rescan required.\n",
8170 					root->fs_info->sb->s_id, ret);
8171 			}
8172 		}
8173 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8174 				root->root_key.objectid, level - 1, 0, 0);
8175 		BUG_ON(ret); /* -ENOMEM */
8176 	}
8177 	btrfs_tree_unlock(next);
8178 	free_extent_buffer(next);
8179 	*lookup_info = 1;
8180 	return 1;
8181 }
8182 
8183 /*
8184  * helper to process tree block while walking up the tree.
8185  *
8186  * when wc->stage == DROP_REFERENCE, this function drops
8187  * reference count on the block.
8188  *
8189  * when wc->stage == UPDATE_BACKREF, this function changes
8190  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8191  * to UPDATE_BACKREF previously while processing the block.
8192  *
8193  * NOTE: return value 1 means we should stop walking up.
8194  */
8195 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8196 				 struct btrfs_root *root,
8197 				 struct btrfs_path *path,
8198 				 struct walk_control *wc)
8199 {
8200 	int ret;
8201 	int level = wc->level;
8202 	struct extent_buffer *eb = path->nodes[level];
8203 	u64 parent = 0;
8204 
8205 	if (wc->stage == UPDATE_BACKREF) {
8206 		BUG_ON(wc->shared_level < level);
8207 		if (level < wc->shared_level)
8208 			goto out;
8209 
8210 		ret = find_next_key(path, level + 1, &wc->update_progress);
8211 		if (ret > 0)
8212 			wc->update_ref = 0;
8213 
8214 		wc->stage = DROP_REFERENCE;
8215 		wc->shared_level = -1;
8216 		path->slots[level] = 0;
8217 
8218 		/*
8219 		 * check reference count again if the block isn't locked.
8220 		 * we should start walking down the tree again if reference
8221 		 * count is one.
8222 		 */
8223 		if (!path->locks[level]) {
8224 			BUG_ON(level == 0);
8225 			btrfs_tree_lock(eb);
8226 			btrfs_set_lock_blocking(eb);
8227 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8228 
8229 			ret = btrfs_lookup_extent_info(trans, root,
8230 						       eb->start, level, 1,
8231 						       &wc->refs[level],
8232 						       &wc->flags[level]);
8233 			if (ret < 0) {
8234 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8235 				path->locks[level] = 0;
8236 				return ret;
8237 			}
8238 			BUG_ON(wc->refs[level] == 0);
8239 			if (wc->refs[level] == 1) {
8240 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8241 				path->locks[level] = 0;
8242 				return 1;
8243 			}
8244 		}
8245 	}
8246 
8247 	/* wc->stage == DROP_REFERENCE */
8248 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8249 
8250 	if (wc->refs[level] == 1) {
8251 		if (level == 0) {
8252 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8253 				ret = btrfs_dec_ref(trans, root, eb, 1);
8254 			else
8255 				ret = btrfs_dec_ref(trans, root, eb, 0);
8256 			BUG_ON(ret); /* -ENOMEM */
8257 			ret = account_leaf_items(trans, root, eb);
8258 			if (ret) {
8259 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8260 					"%d accounting leaf items. Quota "
8261 					"is out of sync, rescan required.\n",
8262 					root->fs_info->sb->s_id, ret);
8263 			}
8264 		}
8265 		/* make block locked assertion in clean_tree_block happy */
8266 		if (!path->locks[level] &&
8267 		    btrfs_header_generation(eb) == trans->transid) {
8268 			btrfs_tree_lock(eb);
8269 			btrfs_set_lock_blocking(eb);
8270 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8271 		}
8272 		clean_tree_block(trans, root->fs_info, eb);
8273 	}
8274 
8275 	if (eb == root->node) {
8276 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8277 			parent = eb->start;
8278 		else
8279 			BUG_ON(root->root_key.objectid !=
8280 			       btrfs_header_owner(eb));
8281 	} else {
8282 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8283 			parent = path->nodes[level + 1]->start;
8284 		else
8285 			BUG_ON(root->root_key.objectid !=
8286 			       btrfs_header_owner(path->nodes[level + 1]));
8287 	}
8288 
8289 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8290 out:
8291 	wc->refs[level] = 0;
8292 	wc->flags[level] = 0;
8293 	return 0;
8294 }
8295 
8296 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8297 				   struct btrfs_root *root,
8298 				   struct btrfs_path *path,
8299 				   struct walk_control *wc)
8300 {
8301 	int level = wc->level;
8302 	int lookup_info = 1;
8303 	int ret;
8304 
8305 	while (level >= 0) {
8306 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8307 		if (ret > 0)
8308 			break;
8309 
8310 		if (level == 0)
8311 			break;
8312 
8313 		if (path->slots[level] >=
8314 		    btrfs_header_nritems(path->nodes[level]))
8315 			break;
8316 
8317 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8318 		if (ret > 0) {
8319 			path->slots[level]++;
8320 			continue;
8321 		} else if (ret < 0)
8322 			return ret;
8323 		level = wc->level;
8324 	}
8325 	return 0;
8326 }
8327 
8328 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8329 				 struct btrfs_root *root,
8330 				 struct btrfs_path *path,
8331 				 struct walk_control *wc, int max_level)
8332 {
8333 	int level = wc->level;
8334 	int ret;
8335 
8336 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8337 	while (level < max_level && path->nodes[level]) {
8338 		wc->level = level;
8339 		if (path->slots[level] + 1 <
8340 		    btrfs_header_nritems(path->nodes[level])) {
8341 			path->slots[level]++;
8342 			return 0;
8343 		} else {
8344 			ret = walk_up_proc(trans, root, path, wc);
8345 			if (ret > 0)
8346 				return 0;
8347 
8348 			if (path->locks[level]) {
8349 				btrfs_tree_unlock_rw(path->nodes[level],
8350 						     path->locks[level]);
8351 				path->locks[level] = 0;
8352 			}
8353 			free_extent_buffer(path->nodes[level]);
8354 			path->nodes[level] = NULL;
8355 			level++;
8356 		}
8357 	}
8358 	return 1;
8359 }
8360 
8361 /*
8362  * drop a subvolume tree.
8363  *
8364  * this function traverses the tree freeing any blocks that only
8365  * referenced by the tree.
8366  *
8367  * when a shared tree block is found. this function decreases its
8368  * reference count by one. if update_ref is true, this function
8369  * also make sure backrefs for the shared block and all lower level
8370  * blocks are properly updated.
8371  *
8372  * If called with for_reloc == 0, may exit early with -EAGAIN
8373  */
8374 int btrfs_drop_snapshot(struct btrfs_root *root,
8375 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8376 			 int for_reloc)
8377 {
8378 	struct btrfs_path *path;
8379 	struct btrfs_trans_handle *trans;
8380 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8381 	struct btrfs_root_item *root_item = &root->root_item;
8382 	struct walk_control *wc;
8383 	struct btrfs_key key;
8384 	int err = 0;
8385 	int ret;
8386 	int level;
8387 	bool root_dropped = false;
8388 
8389 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8390 
8391 	path = btrfs_alloc_path();
8392 	if (!path) {
8393 		err = -ENOMEM;
8394 		goto out;
8395 	}
8396 
8397 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8398 	if (!wc) {
8399 		btrfs_free_path(path);
8400 		err = -ENOMEM;
8401 		goto out;
8402 	}
8403 
8404 	trans = btrfs_start_transaction(tree_root, 0);
8405 	if (IS_ERR(trans)) {
8406 		err = PTR_ERR(trans);
8407 		goto out_free;
8408 	}
8409 
8410 	if (block_rsv)
8411 		trans->block_rsv = block_rsv;
8412 
8413 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8414 		level = btrfs_header_level(root->node);
8415 		path->nodes[level] = btrfs_lock_root_node(root);
8416 		btrfs_set_lock_blocking(path->nodes[level]);
8417 		path->slots[level] = 0;
8418 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8419 		memset(&wc->update_progress, 0,
8420 		       sizeof(wc->update_progress));
8421 	} else {
8422 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8423 		memcpy(&wc->update_progress, &key,
8424 		       sizeof(wc->update_progress));
8425 
8426 		level = root_item->drop_level;
8427 		BUG_ON(level == 0);
8428 		path->lowest_level = level;
8429 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8430 		path->lowest_level = 0;
8431 		if (ret < 0) {
8432 			err = ret;
8433 			goto out_end_trans;
8434 		}
8435 		WARN_ON(ret > 0);
8436 
8437 		/*
8438 		 * unlock our path, this is safe because only this
8439 		 * function is allowed to delete this snapshot
8440 		 */
8441 		btrfs_unlock_up_safe(path, 0);
8442 
8443 		level = btrfs_header_level(root->node);
8444 		while (1) {
8445 			btrfs_tree_lock(path->nodes[level]);
8446 			btrfs_set_lock_blocking(path->nodes[level]);
8447 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8448 
8449 			ret = btrfs_lookup_extent_info(trans, root,
8450 						path->nodes[level]->start,
8451 						level, 1, &wc->refs[level],
8452 						&wc->flags[level]);
8453 			if (ret < 0) {
8454 				err = ret;
8455 				goto out_end_trans;
8456 			}
8457 			BUG_ON(wc->refs[level] == 0);
8458 
8459 			if (level == root_item->drop_level)
8460 				break;
8461 
8462 			btrfs_tree_unlock(path->nodes[level]);
8463 			path->locks[level] = 0;
8464 			WARN_ON(wc->refs[level] != 1);
8465 			level--;
8466 		}
8467 	}
8468 
8469 	wc->level = level;
8470 	wc->shared_level = -1;
8471 	wc->stage = DROP_REFERENCE;
8472 	wc->update_ref = update_ref;
8473 	wc->keep_locks = 0;
8474 	wc->for_reloc = for_reloc;
8475 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8476 
8477 	while (1) {
8478 
8479 		ret = walk_down_tree(trans, root, path, wc);
8480 		if (ret < 0) {
8481 			err = ret;
8482 			break;
8483 		}
8484 
8485 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8486 		if (ret < 0) {
8487 			err = ret;
8488 			break;
8489 		}
8490 
8491 		if (ret > 0) {
8492 			BUG_ON(wc->stage != DROP_REFERENCE);
8493 			break;
8494 		}
8495 
8496 		if (wc->stage == DROP_REFERENCE) {
8497 			level = wc->level;
8498 			btrfs_node_key(path->nodes[level],
8499 				       &root_item->drop_progress,
8500 				       path->slots[level]);
8501 			root_item->drop_level = level;
8502 		}
8503 
8504 		BUG_ON(wc->level == 0);
8505 		if (btrfs_should_end_transaction(trans, tree_root) ||
8506 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8507 			ret = btrfs_update_root(trans, tree_root,
8508 						&root->root_key,
8509 						root_item);
8510 			if (ret) {
8511 				btrfs_abort_transaction(trans, tree_root, ret);
8512 				err = ret;
8513 				goto out_end_trans;
8514 			}
8515 
8516 			btrfs_end_transaction_throttle(trans, tree_root);
8517 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8518 				pr_debug("BTRFS: drop snapshot early exit\n");
8519 				err = -EAGAIN;
8520 				goto out_free;
8521 			}
8522 
8523 			trans = btrfs_start_transaction(tree_root, 0);
8524 			if (IS_ERR(trans)) {
8525 				err = PTR_ERR(trans);
8526 				goto out_free;
8527 			}
8528 			if (block_rsv)
8529 				trans->block_rsv = block_rsv;
8530 		}
8531 	}
8532 	btrfs_release_path(path);
8533 	if (err)
8534 		goto out_end_trans;
8535 
8536 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8537 	if (ret) {
8538 		btrfs_abort_transaction(trans, tree_root, ret);
8539 		goto out_end_trans;
8540 	}
8541 
8542 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8543 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8544 				      NULL, NULL);
8545 		if (ret < 0) {
8546 			btrfs_abort_transaction(trans, tree_root, ret);
8547 			err = ret;
8548 			goto out_end_trans;
8549 		} else if (ret > 0) {
8550 			/* if we fail to delete the orphan item this time
8551 			 * around, it'll get picked up the next time.
8552 			 *
8553 			 * The most common failure here is just -ENOENT.
8554 			 */
8555 			btrfs_del_orphan_item(trans, tree_root,
8556 					      root->root_key.objectid);
8557 		}
8558 	}
8559 
8560 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8561 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8562 	} else {
8563 		free_extent_buffer(root->node);
8564 		free_extent_buffer(root->commit_root);
8565 		btrfs_put_fs_root(root);
8566 	}
8567 	root_dropped = true;
8568 out_end_trans:
8569 	btrfs_end_transaction_throttle(trans, tree_root);
8570 out_free:
8571 	kfree(wc);
8572 	btrfs_free_path(path);
8573 out:
8574 	/*
8575 	 * So if we need to stop dropping the snapshot for whatever reason we
8576 	 * need to make sure to add it back to the dead root list so that we
8577 	 * keep trying to do the work later.  This also cleans up roots if we
8578 	 * don't have it in the radix (like when we recover after a power fail
8579 	 * or unmount) so we don't leak memory.
8580 	 */
8581 	if (!for_reloc && root_dropped == false)
8582 		btrfs_add_dead_root(root);
8583 	if (err && err != -EAGAIN)
8584 		btrfs_std_error(root->fs_info, err);
8585 	return err;
8586 }
8587 
8588 /*
8589  * drop subtree rooted at tree block 'node'.
8590  *
8591  * NOTE: this function will unlock and release tree block 'node'
8592  * only used by relocation code
8593  */
8594 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8595 			struct btrfs_root *root,
8596 			struct extent_buffer *node,
8597 			struct extent_buffer *parent)
8598 {
8599 	struct btrfs_path *path;
8600 	struct walk_control *wc;
8601 	int level;
8602 	int parent_level;
8603 	int ret = 0;
8604 	int wret;
8605 
8606 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8607 
8608 	path = btrfs_alloc_path();
8609 	if (!path)
8610 		return -ENOMEM;
8611 
8612 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8613 	if (!wc) {
8614 		btrfs_free_path(path);
8615 		return -ENOMEM;
8616 	}
8617 
8618 	btrfs_assert_tree_locked(parent);
8619 	parent_level = btrfs_header_level(parent);
8620 	extent_buffer_get(parent);
8621 	path->nodes[parent_level] = parent;
8622 	path->slots[parent_level] = btrfs_header_nritems(parent);
8623 
8624 	btrfs_assert_tree_locked(node);
8625 	level = btrfs_header_level(node);
8626 	path->nodes[level] = node;
8627 	path->slots[level] = 0;
8628 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8629 
8630 	wc->refs[parent_level] = 1;
8631 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8632 	wc->level = level;
8633 	wc->shared_level = -1;
8634 	wc->stage = DROP_REFERENCE;
8635 	wc->update_ref = 0;
8636 	wc->keep_locks = 1;
8637 	wc->for_reloc = 1;
8638 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8639 
8640 	while (1) {
8641 		wret = walk_down_tree(trans, root, path, wc);
8642 		if (wret < 0) {
8643 			ret = wret;
8644 			break;
8645 		}
8646 
8647 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8648 		if (wret < 0)
8649 			ret = wret;
8650 		if (wret != 0)
8651 			break;
8652 	}
8653 
8654 	kfree(wc);
8655 	btrfs_free_path(path);
8656 	return ret;
8657 }
8658 
8659 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8660 {
8661 	u64 num_devices;
8662 	u64 stripped;
8663 
8664 	/*
8665 	 * if restripe for this chunk_type is on pick target profile and
8666 	 * return, otherwise do the usual balance
8667 	 */
8668 	stripped = get_restripe_target(root->fs_info, flags);
8669 	if (stripped)
8670 		return extended_to_chunk(stripped);
8671 
8672 	num_devices = root->fs_info->fs_devices->rw_devices;
8673 
8674 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8675 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8676 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8677 
8678 	if (num_devices == 1) {
8679 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8680 		stripped = flags & ~stripped;
8681 
8682 		/* turn raid0 into single device chunks */
8683 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8684 			return stripped;
8685 
8686 		/* turn mirroring into duplication */
8687 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8688 			     BTRFS_BLOCK_GROUP_RAID10))
8689 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8690 	} else {
8691 		/* they already had raid on here, just return */
8692 		if (flags & stripped)
8693 			return flags;
8694 
8695 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8696 		stripped = flags & ~stripped;
8697 
8698 		/* switch duplicated blocks with raid1 */
8699 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8700 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8701 
8702 		/* this is drive concat, leave it alone */
8703 	}
8704 
8705 	return flags;
8706 }
8707 
8708 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8709 {
8710 	struct btrfs_space_info *sinfo = cache->space_info;
8711 	u64 num_bytes;
8712 	u64 min_allocable_bytes;
8713 	int ret = -ENOSPC;
8714 
8715 
8716 	/*
8717 	 * We need some metadata space and system metadata space for
8718 	 * allocating chunks in some corner cases until we force to set
8719 	 * it to be readonly.
8720 	 */
8721 	if ((sinfo->flags &
8722 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8723 	    !force)
8724 		min_allocable_bytes = 1 * 1024 * 1024;
8725 	else
8726 		min_allocable_bytes = 0;
8727 
8728 	spin_lock(&sinfo->lock);
8729 	spin_lock(&cache->lock);
8730 
8731 	if (cache->ro) {
8732 		ret = 0;
8733 		goto out;
8734 	}
8735 
8736 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8737 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8738 
8739 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8740 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8741 	    min_allocable_bytes <= sinfo->total_bytes) {
8742 		sinfo->bytes_readonly += num_bytes;
8743 		cache->ro = 1;
8744 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8745 		ret = 0;
8746 	}
8747 out:
8748 	spin_unlock(&cache->lock);
8749 	spin_unlock(&sinfo->lock);
8750 	return ret;
8751 }
8752 
8753 int btrfs_set_block_group_ro(struct btrfs_root *root,
8754 			     struct btrfs_block_group_cache *cache)
8755 
8756 {
8757 	struct btrfs_trans_handle *trans;
8758 	u64 alloc_flags;
8759 	int ret;
8760 
8761 	BUG_ON(cache->ro);
8762 
8763 again:
8764 	trans = btrfs_join_transaction(root);
8765 	if (IS_ERR(trans))
8766 		return PTR_ERR(trans);
8767 
8768 	/*
8769 	 * we're not allowed to set block groups readonly after the dirty
8770 	 * block groups cache has started writing.  If it already started,
8771 	 * back off and let this transaction commit
8772 	 */
8773 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8774 	if (trans->transaction->dirty_bg_run) {
8775 		u64 transid = trans->transid;
8776 
8777 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8778 		btrfs_end_transaction(trans, root);
8779 
8780 		ret = btrfs_wait_for_commit(root, transid);
8781 		if (ret)
8782 			return ret;
8783 		goto again;
8784 	}
8785 
8786 	/*
8787 	 * if we are changing raid levels, try to allocate a corresponding
8788 	 * block group with the new raid level.
8789 	 */
8790 	alloc_flags = update_block_group_flags(root, cache->flags);
8791 	if (alloc_flags != cache->flags) {
8792 		ret = do_chunk_alloc(trans, root, alloc_flags,
8793 				     CHUNK_ALLOC_FORCE);
8794 		/*
8795 		 * ENOSPC is allowed here, we may have enough space
8796 		 * already allocated at the new raid level to
8797 		 * carry on
8798 		 */
8799 		if (ret == -ENOSPC)
8800 			ret = 0;
8801 		if (ret < 0)
8802 			goto out;
8803 	}
8804 
8805 	ret = set_block_group_ro(cache, 0);
8806 	if (!ret)
8807 		goto out;
8808 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8809 	ret = do_chunk_alloc(trans, root, alloc_flags,
8810 			     CHUNK_ALLOC_FORCE);
8811 	if (ret < 0)
8812 		goto out;
8813 	ret = set_block_group_ro(cache, 0);
8814 out:
8815 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8816 		alloc_flags = update_block_group_flags(root, cache->flags);
8817 		lock_chunks(root->fs_info->chunk_root);
8818 		check_system_chunk(trans, root, alloc_flags);
8819 		unlock_chunks(root->fs_info->chunk_root);
8820 	}
8821 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8822 
8823 	btrfs_end_transaction(trans, root);
8824 	return ret;
8825 }
8826 
8827 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8828 			    struct btrfs_root *root, u64 type)
8829 {
8830 	u64 alloc_flags = get_alloc_profile(root, type);
8831 	return do_chunk_alloc(trans, root, alloc_flags,
8832 			      CHUNK_ALLOC_FORCE);
8833 }
8834 
8835 /*
8836  * helper to account the unused space of all the readonly block group in the
8837  * space_info. takes mirrors into account.
8838  */
8839 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8840 {
8841 	struct btrfs_block_group_cache *block_group;
8842 	u64 free_bytes = 0;
8843 	int factor;
8844 
8845 	/* It's df, we don't care if it's racey */
8846 	if (list_empty(&sinfo->ro_bgs))
8847 		return 0;
8848 
8849 	spin_lock(&sinfo->lock);
8850 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8851 		spin_lock(&block_group->lock);
8852 
8853 		if (!block_group->ro) {
8854 			spin_unlock(&block_group->lock);
8855 			continue;
8856 		}
8857 
8858 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8859 					  BTRFS_BLOCK_GROUP_RAID10 |
8860 					  BTRFS_BLOCK_GROUP_DUP))
8861 			factor = 2;
8862 		else
8863 			factor = 1;
8864 
8865 		free_bytes += (block_group->key.offset -
8866 			       btrfs_block_group_used(&block_group->item)) *
8867 			       factor;
8868 
8869 		spin_unlock(&block_group->lock);
8870 	}
8871 	spin_unlock(&sinfo->lock);
8872 
8873 	return free_bytes;
8874 }
8875 
8876 void btrfs_set_block_group_rw(struct btrfs_root *root,
8877 			      struct btrfs_block_group_cache *cache)
8878 {
8879 	struct btrfs_space_info *sinfo = cache->space_info;
8880 	u64 num_bytes;
8881 
8882 	BUG_ON(!cache->ro);
8883 
8884 	spin_lock(&sinfo->lock);
8885 	spin_lock(&cache->lock);
8886 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8887 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8888 	sinfo->bytes_readonly -= num_bytes;
8889 	cache->ro = 0;
8890 	list_del_init(&cache->ro_list);
8891 	spin_unlock(&cache->lock);
8892 	spin_unlock(&sinfo->lock);
8893 }
8894 
8895 /*
8896  * checks to see if its even possible to relocate this block group.
8897  *
8898  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8899  * ok to go ahead and try.
8900  */
8901 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8902 {
8903 	struct btrfs_block_group_cache *block_group;
8904 	struct btrfs_space_info *space_info;
8905 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8906 	struct btrfs_device *device;
8907 	struct btrfs_trans_handle *trans;
8908 	u64 min_free;
8909 	u64 dev_min = 1;
8910 	u64 dev_nr = 0;
8911 	u64 target;
8912 	int index;
8913 	int full = 0;
8914 	int ret = 0;
8915 
8916 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8917 
8918 	/* odd, couldn't find the block group, leave it alone */
8919 	if (!block_group)
8920 		return -1;
8921 
8922 	min_free = btrfs_block_group_used(&block_group->item);
8923 
8924 	/* no bytes used, we're good */
8925 	if (!min_free)
8926 		goto out;
8927 
8928 	space_info = block_group->space_info;
8929 	spin_lock(&space_info->lock);
8930 
8931 	full = space_info->full;
8932 
8933 	/*
8934 	 * if this is the last block group we have in this space, we can't
8935 	 * relocate it unless we're able to allocate a new chunk below.
8936 	 *
8937 	 * Otherwise, we need to make sure we have room in the space to handle
8938 	 * all of the extents from this block group.  If we can, we're good
8939 	 */
8940 	if ((space_info->total_bytes != block_group->key.offset) &&
8941 	    (space_info->bytes_used + space_info->bytes_reserved +
8942 	     space_info->bytes_pinned + space_info->bytes_readonly +
8943 	     min_free < space_info->total_bytes)) {
8944 		spin_unlock(&space_info->lock);
8945 		goto out;
8946 	}
8947 	spin_unlock(&space_info->lock);
8948 
8949 	/*
8950 	 * ok we don't have enough space, but maybe we have free space on our
8951 	 * devices to allocate new chunks for relocation, so loop through our
8952 	 * alloc devices and guess if we have enough space.  if this block
8953 	 * group is going to be restriped, run checks against the target
8954 	 * profile instead of the current one.
8955 	 */
8956 	ret = -1;
8957 
8958 	/*
8959 	 * index:
8960 	 *      0: raid10
8961 	 *      1: raid1
8962 	 *      2: dup
8963 	 *      3: raid0
8964 	 *      4: single
8965 	 */
8966 	target = get_restripe_target(root->fs_info, block_group->flags);
8967 	if (target) {
8968 		index = __get_raid_index(extended_to_chunk(target));
8969 	} else {
8970 		/*
8971 		 * this is just a balance, so if we were marked as full
8972 		 * we know there is no space for a new chunk
8973 		 */
8974 		if (full)
8975 			goto out;
8976 
8977 		index = get_block_group_index(block_group);
8978 	}
8979 
8980 	if (index == BTRFS_RAID_RAID10) {
8981 		dev_min = 4;
8982 		/* Divide by 2 */
8983 		min_free >>= 1;
8984 	} else if (index == BTRFS_RAID_RAID1) {
8985 		dev_min = 2;
8986 	} else if (index == BTRFS_RAID_DUP) {
8987 		/* Multiply by 2 */
8988 		min_free <<= 1;
8989 	} else if (index == BTRFS_RAID_RAID0) {
8990 		dev_min = fs_devices->rw_devices;
8991 		min_free = div64_u64(min_free, dev_min);
8992 	}
8993 
8994 	/* We need to do this so that we can look at pending chunks */
8995 	trans = btrfs_join_transaction(root);
8996 	if (IS_ERR(trans)) {
8997 		ret = PTR_ERR(trans);
8998 		goto out;
8999 	}
9000 
9001 	mutex_lock(&root->fs_info->chunk_mutex);
9002 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9003 		u64 dev_offset;
9004 
9005 		/*
9006 		 * check to make sure we can actually find a chunk with enough
9007 		 * space to fit our block group in.
9008 		 */
9009 		if (device->total_bytes > device->bytes_used + min_free &&
9010 		    !device->is_tgtdev_for_dev_replace) {
9011 			ret = find_free_dev_extent(trans, device, min_free,
9012 						   &dev_offset, NULL);
9013 			if (!ret)
9014 				dev_nr++;
9015 
9016 			if (dev_nr >= dev_min)
9017 				break;
9018 
9019 			ret = -1;
9020 		}
9021 	}
9022 	mutex_unlock(&root->fs_info->chunk_mutex);
9023 	btrfs_end_transaction(trans, root);
9024 out:
9025 	btrfs_put_block_group(block_group);
9026 	return ret;
9027 }
9028 
9029 static int find_first_block_group(struct btrfs_root *root,
9030 		struct btrfs_path *path, struct btrfs_key *key)
9031 {
9032 	int ret = 0;
9033 	struct btrfs_key found_key;
9034 	struct extent_buffer *leaf;
9035 	int slot;
9036 
9037 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9038 	if (ret < 0)
9039 		goto out;
9040 
9041 	while (1) {
9042 		slot = path->slots[0];
9043 		leaf = path->nodes[0];
9044 		if (slot >= btrfs_header_nritems(leaf)) {
9045 			ret = btrfs_next_leaf(root, path);
9046 			if (ret == 0)
9047 				continue;
9048 			if (ret < 0)
9049 				goto out;
9050 			break;
9051 		}
9052 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9053 
9054 		if (found_key.objectid >= key->objectid &&
9055 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9056 			ret = 0;
9057 			goto out;
9058 		}
9059 		path->slots[0]++;
9060 	}
9061 out:
9062 	return ret;
9063 }
9064 
9065 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9066 {
9067 	struct btrfs_block_group_cache *block_group;
9068 	u64 last = 0;
9069 
9070 	while (1) {
9071 		struct inode *inode;
9072 
9073 		block_group = btrfs_lookup_first_block_group(info, last);
9074 		while (block_group) {
9075 			spin_lock(&block_group->lock);
9076 			if (block_group->iref)
9077 				break;
9078 			spin_unlock(&block_group->lock);
9079 			block_group = next_block_group(info->tree_root,
9080 						       block_group);
9081 		}
9082 		if (!block_group) {
9083 			if (last == 0)
9084 				break;
9085 			last = 0;
9086 			continue;
9087 		}
9088 
9089 		inode = block_group->inode;
9090 		block_group->iref = 0;
9091 		block_group->inode = NULL;
9092 		spin_unlock(&block_group->lock);
9093 		iput(inode);
9094 		last = block_group->key.objectid + block_group->key.offset;
9095 		btrfs_put_block_group(block_group);
9096 	}
9097 }
9098 
9099 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9100 {
9101 	struct btrfs_block_group_cache *block_group;
9102 	struct btrfs_space_info *space_info;
9103 	struct btrfs_caching_control *caching_ctl;
9104 	struct rb_node *n;
9105 
9106 	down_write(&info->commit_root_sem);
9107 	while (!list_empty(&info->caching_block_groups)) {
9108 		caching_ctl = list_entry(info->caching_block_groups.next,
9109 					 struct btrfs_caching_control, list);
9110 		list_del(&caching_ctl->list);
9111 		put_caching_control(caching_ctl);
9112 	}
9113 	up_write(&info->commit_root_sem);
9114 
9115 	spin_lock(&info->unused_bgs_lock);
9116 	while (!list_empty(&info->unused_bgs)) {
9117 		block_group = list_first_entry(&info->unused_bgs,
9118 					       struct btrfs_block_group_cache,
9119 					       bg_list);
9120 		list_del_init(&block_group->bg_list);
9121 		btrfs_put_block_group(block_group);
9122 	}
9123 	spin_unlock(&info->unused_bgs_lock);
9124 
9125 	spin_lock(&info->block_group_cache_lock);
9126 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9127 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9128 				       cache_node);
9129 		rb_erase(&block_group->cache_node,
9130 			 &info->block_group_cache_tree);
9131 		RB_CLEAR_NODE(&block_group->cache_node);
9132 		spin_unlock(&info->block_group_cache_lock);
9133 
9134 		down_write(&block_group->space_info->groups_sem);
9135 		list_del(&block_group->list);
9136 		up_write(&block_group->space_info->groups_sem);
9137 
9138 		if (block_group->cached == BTRFS_CACHE_STARTED)
9139 			wait_block_group_cache_done(block_group);
9140 
9141 		/*
9142 		 * We haven't cached this block group, which means we could
9143 		 * possibly have excluded extents on this block group.
9144 		 */
9145 		if (block_group->cached == BTRFS_CACHE_NO ||
9146 		    block_group->cached == BTRFS_CACHE_ERROR)
9147 			free_excluded_extents(info->extent_root, block_group);
9148 
9149 		btrfs_remove_free_space_cache(block_group);
9150 		btrfs_put_block_group(block_group);
9151 
9152 		spin_lock(&info->block_group_cache_lock);
9153 	}
9154 	spin_unlock(&info->block_group_cache_lock);
9155 
9156 	/* now that all the block groups are freed, go through and
9157 	 * free all the space_info structs.  This is only called during
9158 	 * the final stages of unmount, and so we know nobody is
9159 	 * using them.  We call synchronize_rcu() once before we start,
9160 	 * just to be on the safe side.
9161 	 */
9162 	synchronize_rcu();
9163 
9164 	release_global_block_rsv(info);
9165 
9166 	while (!list_empty(&info->space_info)) {
9167 		int i;
9168 
9169 		space_info = list_entry(info->space_info.next,
9170 					struct btrfs_space_info,
9171 					list);
9172 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9173 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9174 			    space_info->bytes_reserved > 0 ||
9175 			    space_info->bytes_may_use > 0)) {
9176 				dump_space_info(space_info, 0, 0);
9177 			}
9178 		}
9179 		list_del(&space_info->list);
9180 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9181 			struct kobject *kobj;
9182 			kobj = space_info->block_group_kobjs[i];
9183 			space_info->block_group_kobjs[i] = NULL;
9184 			if (kobj) {
9185 				kobject_del(kobj);
9186 				kobject_put(kobj);
9187 			}
9188 		}
9189 		kobject_del(&space_info->kobj);
9190 		kobject_put(&space_info->kobj);
9191 	}
9192 	return 0;
9193 }
9194 
9195 static void __link_block_group(struct btrfs_space_info *space_info,
9196 			       struct btrfs_block_group_cache *cache)
9197 {
9198 	int index = get_block_group_index(cache);
9199 	bool first = false;
9200 
9201 	down_write(&space_info->groups_sem);
9202 	if (list_empty(&space_info->block_groups[index]))
9203 		first = true;
9204 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9205 	up_write(&space_info->groups_sem);
9206 
9207 	if (first) {
9208 		struct raid_kobject *rkobj;
9209 		int ret;
9210 
9211 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9212 		if (!rkobj)
9213 			goto out_err;
9214 		rkobj->raid_type = index;
9215 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9216 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9217 				  "%s", get_raid_name(index));
9218 		if (ret) {
9219 			kobject_put(&rkobj->kobj);
9220 			goto out_err;
9221 		}
9222 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9223 	}
9224 
9225 	return;
9226 out_err:
9227 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9228 }
9229 
9230 static struct btrfs_block_group_cache *
9231 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9232 {
9233 	struct btrfs_block_group_cache *cache;
9234 
9235 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9236 	if (!cache)
9237 		return NULL;
9238 
9239 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9240 					GFP_NOFS);
9241 	if (!cache->free_space_ctl) {
9242 		kfree(cache);
9243 		return NULL;
9244 	}
9245 
9246 	cache->key.objectid = start;
9247 	cache->key.offset = size;
9248 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9249 
9250 	cache->sectorsize = root->sectorsize;
9251 	cache->fs_info = root->fs_info;
9252 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9253 					       &root->fs_info->mapping_tree,
9254 					       start);
9255 	atomic_set(&cache->count, 1);
9256 	spin_lock_init(&cache->lock);
9257 	init_rwsem(&cache->data_rwsem);
9258 	INIT_LIST_HEAD(&cache->list);
9259 	INIT_LIST_HEAD(&cache->cluster_list);
9260 	INIT_LIST_HEAD(&cache->bg_list);
9261 	INIT_LIST_HEAD(&cache->ro_list);
9262 	INIT_LIST_HEAD(&cache->dirty_list);
9263 	INIT_LIST_HEAD(&cache->io_list);
9264 	btrfs_init_free_space_ctl(cache);
9265 	atomic_set(&cache->trimming, 0);
9266 
9267 	return cache;
9268 }
9269 
9270 int btrfs_read_block_groups(struct btrfs_root *root)
9271 {
9272 	struct btrfs_path *path;
9273 	int ret;
9274 	struct btrfs_block_group_cache *cache;
9275 	struct btrfs_fs_info *info = root->fs_info;
9276 	struct btrfs_space_info *space_info;
9277 	struct btrfs_key key;
9278 	struct btrfs_key found_key;
9279 	struct extent_buffer *leaf;
9280 	int need_clear = 0;
9281 	u64 cache_gen;
9282 
9283 	root = info->extent_root;
9284 	key.objectid = 0;
9285 	key.offset = 0;
9286 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9287 	path = btrfs_alloc_path();
9288 	if (!path)
9289 		return -ENOMEM;
9290 	path->reada = 1;
9291 
9292 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9293 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9294 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9295 		need_clear = 1;
9296 	if (btrfs_test_opt(root, CLEAR_CACHE))
9297 		need_clear = 1;
9298 
9299 	while (1) {
9300 		ret = find_first_block_group(root, path, &key);
9301 		if (ret > 0)
9302 			break;
9303 		if (ret != 0)
9304 			goto error;
9305 
9306 		leaf = path->nodes[0];
9307 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9308 
9309 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9310 						       found_key.offset);
9311 		if (!cache) {
9312 			ret = -ENOMEM;
9313 			goto error;
9314 		}
9315 
9316 		if (need_clear) {
9317 			/*
9318 			 * When we mount with old space cache, we need to
9319 			 * set BTRFS_DC_CLEAR and set dirty flag.
9320 			 *
9321 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9322 			 *    truncate the old free space cache inode and
9323 			 *    setup a new one.
9324 			 * b) Setting 'dirty flag' makes sure that we flush
9325 			 *    the new space cache info onto disk.
9326 			 */
9327 			if (btrfs_test_opt(root, SPACE_CACHE))
9328 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9329 		}
9330 
9331 		read_extent_buffer(leaf, &cache->item,
9332 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9333 				   sizeof(cache->item));
9334 		cache->flags = btrfs_block_group_flags(&cache->item);
9335 
9336 		key.objectid = found_key.objectid + found_key.offset;
9337 		btrfs_release_path(path);
9338 
9339 		/*
9340 		 * We need to exclude the super stripes now so that the space
9341 		 * info has super bytes accounted for, otherwise we'll think
9342 		 * we have more space than we actually do.
9343 		 */
9344 		ret = exclude_super_stripes(root, cache);
9345 		if (ret) {
9346 			/*
9347 			 * We may have excluded something, so call this just in
9348 			 * case.
9349 			 */
9350 			free_excluded_extents(root, cache);
9351 			btrfs_put_block_group(cache);
9352 			goto error;
9353 		}
9354 
9355 		/*
9356 		 * check for two cases, either we are full, and therefore
9357 		 * don't need to bother with the caching work since we won't
9358 		 * find any space, or we are empty, and we can just add all
9359 		 * the space in and be done with it.  This saves us _alot_ of
9360 		 * time, particularly in the full case.
9361 		 */
9362 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9363 			cache->last_byte_to_unpin = (u64)-1;
9364 			cache->cached = BTRFS_CACHE_FINISHED;
9365 			free_excluded_extents(root, cache);
9366 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9367 			cache->last_byte_to_unpin = (u64)-1;
9368 			cache->cached = BTRFS_CACHE_FINISHED;
9369 			add_new_free_space(cache, root->fs_info,
9370 					   found_key.objectid,
9371 					   found_key.objectid +
9372 					   found_key.offset);
9373 			free_excluded_extents(root, cache);
9374 		}
9375 
9376 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9377 		if (ret) {
9378 			btrfs_remove_free_space_cache(cache);
9379 			btrfs_put_block_group(cache);
9380 			goto error;
9381 		}
9382 
9383 		ret = update_space_info(info, cache->flags, found_key.offset,
9384 					btrfs_block_group_used(&cache->item),
9385 					&space_info);
9386 		if (ret) {
9387 			btrfs_remove_free_space_cache(cache);
9388 			spin_lock(&info->block_group_cache_lock);
9389 			rb_erase(&cache->cache_node,
9390 				 &info->block_group_cache_tree);
9391 			RB_CLEAR_NODE(&cache->cache_node);
9392 			spin_unlock(&info->block_group_cache_lock);
9393 			btrfs_put_block_group(cache);
9394 			goto error;
9395 		}
9396 
9397 		cache->space_info = space_info;
9398 		spin_lock(&cache->space_info->lock);
9399 		cache->space_info->bytes_readonly += cache->bytes_super;
9400 		spin_unlock(&cache->space_info->lock);
9401 
9402 		__link_block_group(space_info, cache);
9403 
9404 		set_avail_alloc_bits(root->fs_info, cache->flags);
9405 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9406 			set_block_group_ro(cache, 1);
9407 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9408 			spin_lock(&info->unused_bgs_lock);
9409 			/* Should always be true but just in case. */
9410 			if (list_empty(&cache->bg_list)) {
9411 				btrfs_get_block_group(cache);
9412 				list_add_tail(&cache->bg_list,
9413 					      &info->unused_bgs);
9414 			}
9415 			spin_unlock(&info->unused_bgs_lock);
9416 		}
9417 	}
9418 
9419 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9420 		if (!(get_alloc_profile(root, space_info->flags) &
9421 		      (BTRFS_BLOCK_GROUP_RAID10 |
9422 		       BTRFS_BLOCK_GROUP_RAID1 |
9423 		       BTRFS_BLOCK_GROUP_RAID5 |
9424 		       BTRFS_BLOCK_GROUP_RAID6 |
9425 		       BTRFS_BLOCK_GROUP_DUP)))
9426 			continue;
9427 		/*
9428 		 * avoid allocating from un-mirrored block group if there are
9429 		 * mirrored block groups.
9430 		 */
9431 		list_for_each_entry(cache,
9432 				&space_info->block_groups[BTRFS_RAID_RAID0],
9433 				list)
9434 			set_block_group_ro(cache, 1);
9435 		list_for_each_entry(cache,
9436 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9437 				list)
9438 			set_block_group_ro(cache, 1);
9439 	}
9440 
9441 	init_global_block_rsv(info);
9442 	ret = 0;
9443 error:
9444 	btrfs_free_path(path);
9445 	return ret;
9446 }
9447 
9448 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9449 				       struct btrfs_root *root)
9450 {
9451 	struct btrfs_block_group_cache *block_group, *tmp;
9452 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9453 	struct btrfs_block_group_item item;
9454 	struct btrfs_key key;
9455 	int ret = 0;
9456 
9457 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9458 		if (ret)
9459 			goto next;
9460 
9461 		spin_lock(&block_group->lock);
9462 		memcpy(&item, &block_group->item, sizeof(item));
9463 		memcpy(&key, &block_group->key, sizeof(key));
9464 		spin_unlock(&block_group->lock);
9465 
9466 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9467 					sizeof(item));
9468 		if (ret)
9469 			btrfs_abort_transaction(trans, extent_root, ret);
9470 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9471 					       key.objectid, key.offset);
9472 		if (ret)
9473 			btrfs_abort_transaction(trans, extent_root, ret);
9474 next:
9475 		list_del_init(&block_group->bg_list);
9476 	}
9477 }
9478 
9479 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9480 			   struct btrfs_root *root, u64 bytes_used,
9481 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9482 			   u64 size)
9483 {
9484 	int ret;
9485 	struct btrfs_root *extent_root;
9486 	struct btrfs_block_group_cache *cache;
9487 
9488 	extent_root = root->fs_info->extent_root;
9489 
9490 	btrfs_set_log_full_commit(root->fs_info, trans);
9491 
9492 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9493 	if (!cache)
9494 		return -ENOMEM;
9495 
9496 	btrfs_set_block_group_used(&cache->item, bytes_used);
9497 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9498 	btrfs_set_block_group_flags(&cache->item, type);
9499 
9500 	cache->flags = type;
9501 	cache->last_byte_to_unpin = (u64)-1;
9502 	cache->cached = BTRFS_CACHE_FINISHED;
9503 	ret = exclude_super_stripes(root, cache);
9504 	if (ret) {
9505 		/*
9506 		 * We may have excluded something, so call this just in
9507 		 * case.
9508 		 */
9509 		free_excluded_extents(root, cache);
9510 		btrfs_put_block_group(cache);
9511 		return ret;
9512 	}
9513 
9514 	add_new_free_space(cache, root->fs_info, chunk_offset,
9515 			   chunk_offset + size);
9516 
9517 	free_excluded_extents(root, cache);
9518 
9519 	/*
9520 	 * Call to ensure the corresponding space_info object is created and
9521 	 * assigned to our block group, but don't update its counters just yet.
9522 	 * We want our bg to be added to the rbtree with its ->space_info set.
9523 	 */
9524 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9525 				&cache->space_info);
9526 	if (ret) {
9527 		btrfs_remove_free_space_cache(cache);
9528 		btrfs_put_block_group(cache);
9529 		return ret;
9530 	}
9531 
9532 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9533 	if (ret) {
9534 		btrfs_remove_free_space_cache(cache);
9535 		btrfs_put_block_group(cache);
9536 		return ret;
9537 	}
9538 
9539 	/*
9540 	 * Now that our block group has its ->space_info set and is inserted in
9541 	 * the rbtree, update the space info's counters.
9542 	 */
9543 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9544 				&cache->space_info);
9545 	if (ret) {
9546 		btrfs_remove_free_space_cache(cache);
9547 		spin_lock(&root->fs_info->block_group_cache_lock);
9548 		rb_erase(&cache->cache_node,
9549 			 &root->fs_info->block_group_cache_tree);
9550 		RB_CLEAR_NODE(&cache->cache_node);
9551 		spin_unlock(&root->fs_info->block_group_cache_lock);
9552 		btrfs_put_block_group(cache);
9553 		return ret;
9554 	}
9555 	update_global_block_rsv(root->fs_info);
9556 
9557 	spin_lock(&cache->space_info->lock);
9558 	cache->space_info->bytes_readonly += cache->bytes_super;
9559 	spin_unlock(&cache->space_info->lock);
9560 
9561 	__link_block_group(cache->space_info, cache);
9562 
9563 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9564 
9565 	set_avail_alloc_bits(extent_root->fs_info, type);
9566 
9567 	return 0;
9568 }
9569 
9570 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9571 {
9572 	u64 extra_flags = chunk_to_extended(flags) &
9573 				BTRFS_EXTENDED_PROFILE_MASK;
9574 
9575 	write_seqlock(&fs_info->profiles_lock);
9576 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9577 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9578 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9579 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9580 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9581 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9582 	write_sequnlock(&fs_info->profiles_lock);
9583 }
9584 
9585 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9586 			     struct btrfs_root *root, u64 group_start,
9587 			     struct extent_map *em)
9588 {
9589 	struct btrfs_path *path;
9590 	struct btrfs_block_group_cache *block_group;
9591 	struct btrfs_free_cluster *cluster;
9592 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9593 	struct btrfs_key key;
9594 	struct inode *inode;
9595 	struct kobject *kobj = NULL;
9596 	int ret;
9597 	int index;
9598 	int factor;
9599 	struct btrfs_caching_control *caching_ctl = NULL;
9600 	bool remove_em;
9601 
9602 	root = root->fs_info->extent_root;
9603 
9604 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9605 	BUG_ON(!block_group);
9606 	BUG_ON(!block_group->ro);
9607 
9608 	/*
9609 	 * Free the reserved super bytes from this block group before
9610 	 * remove it.
9611 	 */
9612 	free_excluded_extents(root, block_group);
9613 
9614 	memcpy(&key, &block_group->key, sizeof(key));
9615 	index = get_block_group_index(block_group);
9616 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9617 				  BTRFS_BLOCK_GROUP_RAID1 |
9618 				  BTRFS_BLOCK_GROUP_RAID10))
9619 		factor = 2;
9620 	else
9621 		factor = 1;
9622 
9623 	/* make sure this block group isn't part of an allocation cluster */
9624 	cluster = &root->fs_info->data_alloc_cluster;
9625 	spin_lock(&cluster->refill_lock);
9626 	btrfs_return_cluster_to_free_space(block_group, cluster);
9627 	spin_unlock(&cluster->refill_lock);
9628 
9629 	/*
9630 	 * make sure this block group isn't part of a metadata
9631 	 * allocation cluster
9632 	 */
9633 	cluster = &root->fs_info->meta_alloc_cluster;
9634 	spin_lock(&cluster->refill_lock);
9635 	btrfs_return_cluster_to_free_space(block_group, cluster);
9636 	spin_unlock(&cluster->refill_lock);
9637 
9638 	path = btrfs_alloc_path();
9639 	if (!path) {
9640 		ret = -ENOMEM;
9641 		goto out;
9642 	}
9643 
9644 	/*
9645 	 * get the inode first so any iput calls done for the io_list
9646 	 * aren't the final iput (no unlinks allowed now)
9647 	 */
9648 	inode = lookup_free_space_inode(tree_root, block_group, path);
9649 
9650 	mutex_lock(&trans->transaction->cache_write_mutex);
9651 	/*
9652 	 * make sure our free spache cache IO is done before remove the
9653 	 * free space inode
9654 	 */
9655 	spin_lock(&trans->transaction->dirty_bgs_lock);
9656 	if (!list_empty(&block_group->io_list)) {
9657 		list_del_init(&block_group->io_list);
9658 
9659 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9660 
9661 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9662 		btrfs_wait_cache_io(root, trans, block_group,
9663 				    &block_group->io_ctl, path,
9664 				    block_group->key.objectid);
9665 		btrfs_put_block_group(block_group);
9666 		spin_lock(&trans->transaction->dirty_bgs_lock);
9667 	}
9668 
9669 	if (!list_empty(&block_group->dirty_list)) {
9670 		list_del_init(&block_group->dirty_list);
9671 		btrfs_put_block_group(block_group);
9672 	}
9673 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9674 	mutex_unlock(&trans->transaction->cache_write_mutex);
9675 
9676 	if (!IS_ERR(inode)) {
9677 		ret = btrfs_orphan_add(trans, inode);
9678 		if (ret) {
9679 			btrfs_add_delayed_iput(inode);
9680 			goto out;
9681 		}
9682 		clear_nlink(inode);
9683 		/* One for the block groups ref */
9684 		spin_lock(&block_group->lock);
9685 		if (block_group->iref) {
9686 			block_group->iref = 0;
9687 			block_group->inode = NULL;
9688 			spin_unlock(&block_group->lock);
9689 			iput(inode);
9690 		} else {
9691 			spin_unlock(&block_group->lock);
9692 		}
9693 		/* One for our lookup ref */
9694 		btrfs_add_delayed_iput(inode);
9695 	}
9696 
9697 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9698 	key.offset = block_group->key.objectid;
9699 	key.type = 0;
9700 
9701 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9702 	if (ret < 0)
9703 		goto out;
9704 	if (ret > 0)
9705 		btrfs_release_path(path);
9706 	if (ret == 0) {
9707 		ret = btrfs_del_item(trans, tree_root, path);
9708 		if (ret)
9709 			goto out;
9710 		btrfs_release_path(path);
9711 	}
9712 
9713 	spin_lock(&root->fs_info->block_group_cache_lock);
9714 	rb_erase(&block_group->cache_node,
9715 		 &root->fs_info->block_group_cache_tree);
9716 	RB_CLEAR_NODE(&block_group->cache_node);
9717 
9718 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9719 		root->fs_info->first_logical_byte = (u64)-1;
9720 	spin_unlock(&root->fs_info->block_group_cache_lock);
9721 
9722 	down_write(&block_group->space_info->groups_sem);
9723 	/*
9724 	 * we must use list_del_init so people can check to see if they
9725 	 * are still on the list after taking the semaphore
9726 	 */
9727 	list_del_init(&block_group->list);
9728 	if (list_empty(&block_group->space_info->block_groups[index])) {
9729 		kobj = block_group->space_info->block_group_kobjs[index];
9730 		block_group->space_info->block_group_kobjs[index] = NULL;
9731 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9732 	}
9733 	up_write(&block_group->space_info->groups_sem);
9734 	if (kobj) {
9735 		kobject_del(kobj);
9736 		kobject_put(kobj);
9737 	}
9738 
9739 	if (block_group->has_caching_ctl)
9740 		caching_ctl = get_caching_control(block_group);
9741 	if (block_group->cached == BTRFS_CACHE_STARTED)
9742 		wait_block_group_cache_done(block_group);
9743 	if (block_group->has_caching_ctl) {
9744 		down_write(&root->fs_info->commit_root_sem);
9745 		if (!caching_ctl) {
9746 			struct btrfs_caching_control *ctl;
9747 
9748 			list_for_each_entry(ctl,
9749 				    &root->fs_info->caching_block_groups, list)
9750 				if (ctl->block_group == block_group) {
9751 					caching_ctl = ctl;
9752 					atomic_inc(&caching_ctl->count);
9753 					break;
9754 				}
9755 		}
9756 		if (caching_ctl)
9757 			list_del_init(&caching_ctl->list);
9758 		up_write(&root->fs_info->commit_root_sem);
9759 		if (caching_ctl) {
9760 			/* Once for the caching bgs list and once for us. */
9761 			put_caching_control(caching_ctl);
9762 			put_caching_control(caching_ctl);
9763 		}
9764 	}
9765 
9766 	spin_lock(&trans->transaction->dirty_bgs_lock);
9767 	if (!list_empty(&block_group->dirty_list)) {
9768 		WARN_ON(1);
9769 	}
9770 	if (!list_empty(&block_group->io_list)) {
9771 		WARN_ON(1);
9772 	}
9773 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9774 	btrfs_remove_free_space_cache(block_group);
9775 
9776 	spin_lock(&block_group->space_info->lock);
9777 	list_del_init(&block_group->ro_list);
9778 
9779 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9780 		WARN_ON(block_group->space_info->total_bytes
9781 			< block_group->key.offset);
9782 		WARN_ON(block_group->space_info->bytes_readonly
9783 			< block_group->key.offset);
9784 		WARN_ON(block_group->space_info->disk_total
9785 			< block_group->key.offset * factor);
9786 	}
9787 	block_group->space_info->total_bytes -= block_group->key.offset;
9788 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9789 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9790 
9791 	spin_unlock(&block_group->space_info->lock);
9792 
9793 	memcpy(&key, &block_group->key, sizeof(key));
9794 
9795 	lock_chunks(root);
9796 	if (!list_empty(&em->list)) {
9797 		/* We're in the transaction->pending_chunks list. */
9798 		free_extent_map(em);
9799 	}
9800 	spin_lock(&block_group->lock);
9801 	block_group->removed = 1;
9802 	/*
9803 	 * At this point trimming can't start on this block group, because we
9804 	 * removed the block group from the tree fs_info->block_group_cache_tree
9805 	 * so no one can't find it anymore and even if someone already got this
9806 	 * block group before we removed it from the rbtree, they have already
9807 	 * incremented block_group->trimming - if they didn't, they won't find
9808 	 * any free space entries because we already removed them all when we
9809 	 * called btrfs_remove_free_space_cache().
9810 	 *
9811 	 * And we must not remove the extent map from the fs_info->mapping_tree
9812 	 * to prevent the same logical address range and physical device space
9813 	 * ranges from being reused for a new block group. This is because our
9814 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9815 	 * completely transactionless, so while it is trimming a range the
9816 	 * currently running transaction might finish and a new one start,
9817 	 * allowing for new block groups to be created that can reuse the same
9818 	 * physical device locations unless we take this special care.
9819 	 */
9820 	remove_em = (atomic_read(&block_group->trimming) == 0);
9821 	/*
9822 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9823 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9824 	 * before checking block_group->removed).
9825 	 */
9826 	if (!remove_em) {
9827 		/*
9828 		 * Our em might be in trans->transaction->pending_chunks which
9829 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9830 		 * and so is the fs_info->pinned_chunks list.
9831 		 *
9832 		 * So at this point we must be holding the chunk_mutex to avoid
9833 		 * any races with chunk allocation (more specifically at
9834 		 * volumes.c:contains_pending_extent()), to ensure it always
9835 		 * sees the em, either in the pending_chunks list or in the
9836 		 * pinned_chunks list.
9837 		 */
9838 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9839 	}
9840 	spin_unlock(&block_group->lock);
9841 
9842 	if (remove_em) {
9843 		struct extent_map_tree *em_tree;
9844 
9845 		em_tree = &root->fs_info->mapping_tree.map_tree;
9846 		write_lock(&em_tree->lock);
9847 		/*
9848 		 * The em might be in the pending_chunks list, so make sure the
9849 		 * chunk mutex is locked, since remove_extent_mapping() will
9850 		 * delete us from that list.
9851 		 */
9852 		remove_extent_mapping(em_tree, em);
9853 		write_unlock(&em_tree->lock);
9854 		/* once for the tree */
9855 		free_extent_map(em);
9856 	}
9857 
9858 	unlock_chunks(root);
9859 
9860 	btrfs_put_block_group(block_group);
9861 	btrfs_put_block_group(block_group);
9862 
9863 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9864 	if (ret > 0)
9865 		ret = -EIO;
9866 	if (ret < 0)
9867 		goto out;
9868 
9869 	ret = btrfs_del_item(trans, root, path);
9870 out:
9871 	btrfs_free_path(path);
9872 	return ret;
9873 }
9874 
9875 /*
9876  * Process the unused_bgs list and remove any that don't have any allocated
9877  * space inside of them.
9878  */
9879 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9880 {
9881 	struct btrfs_block_group_cache *block_group;
9882 	struct btrfs_space_info *space_info;
9883 	struct btrfs_root *root = fs_info->extent_root;
9884 	struct btrfs_trans_handle *trans;
9885 	int ret = 0;
9886 
9887 	if (!fs_info->open)
9888 		return;
9889 
9890 	spin_lock(&fs_info->unused_bgs_lock);
9891 	while (!list_empty(&fs_info->unused_bgs)) {
9892 		u64 start, end;
9893 
9894 		block_group = list_first_entry(&fs_info->unused_bgs,
9895 					       struct btrfs_block_group_cache,
9896 					       bg_list);
9897 		space_info = block_group->space_info;
9898 		list_del_init(&block_group->bg_list);
9899 		if (ret || btrfs_mixed_space_info(space_info)) {
9900 			btrfs_put_block_group(block_group);
9901 			continue;
9902 		}
9903 		spin_unlock(&fs_info->unused_bgs_lock);
9904 
9905 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
9906 
9907 		/* Don't want to race with allocators so take the groups_sem */
9908 		down_write(&space_info->groups_sem);
9909 		spin_lock(&block_group->lock);
9910 		if (block_group->reserved ||
9911 		    btrfs_block_group_used(&block_group->item) ||
9912 		    block_group->ro) {
9913 			/*
9914 			 * We want to bail if we made new allocations or have
9915 			 * outstanding allocations in this block group.  We do
9916 			 * the ro check in case balance is currently acting on
9917 			 * this block group.
9918 			 */
9919 			spin_unlock(&block_group->lock);
9920 			up_write(&space_info->groups_sem);
9921 			goto next;
9922 		}
9923 		spin_unlock(&block_group->lock);
9924 
9925 		/* We don't want to force the issue, only flip if it's ok. */
9926 		ret = set_block_group_ro(block_group, 0);
9927 		up_write(&space_info->groups_sem);
9928 		if (ret < 0) {
9929 			ret = 0;
9930 			goto next;
9931 		}
9932 
9933 		/*
9934 		 * Want to do this before we do anything else so we can recover
9935 		 * properly if we fail to join the transaction.
9936 		 */
9937 		/* 1 for btrfs_orphan_reserve_metadata() */
9938 		trans = btrfs_start_transaction(root, 1);
9939 		if (IS_ERR(trans)) {
9940 			btrfs_set_block_group_rw(root, block_group);
9941 			ret = PTR_ERR(trans);
9942 			goto next;
9943 		}
9944 
9945 		/*
9946 		 * We could have pending pinned extents for this block group,
9947 		 * just delete them, we don't care about them anymore.
9948 		 */
9949 		start = block_group->key.objectid;
9950 		end = start + block_group->key.offset - 1;
9951 		/*
9952 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9953 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9954 		 * another task might be running finish_extent_commit() for the
9955 		 * previous transaction N - 1, and have seen a range belonging
9956 		 * to the block group in freed_extents[] before we were able to
9957 		 * clear the whole block group range from freed_extents[]. This
9958 		 * means that task can lookup for the block group after we
9959 		 * unpinned it from freed_extents[] and removed it, leading to
9960 		 * a BUG_ON() at btrfs_unpin_extent_range().
9961 		 */
9962 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9963 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9964 				  EXTENT_DIRTY, GFP_NOFS);
9965 		if (ret) {
9966 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9967 			btrfs_set_block_group_rw(root, block_group);
9968 			goto end_trans;
9969 		}
9970 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9971 				  EXTENT_DIRTY, GFP_NOFS);
9972 		if (ret) {
9973 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9974 			btrfs_set_block_group_rw(root, block_group);
9975 			goto end_trans;
9976 		}
9977 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9978 
9979 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9980 		spin_lock(&space_info->lock);
9981 		spin_lock(&block_group->lock);
9982 
9983 		space_info->bytes_pinned -= block_group->pinned;
9984 		space_info->bytes_readonly += block_group->pinned;
9985 		percpu_counter_add(&space_info->total_bytes_pinned,
9986 				   -block_group->pinned);
9987 		block_group->pinned = 0;
9988 
9989 		spin_unlock(&block_group->lock);
9990 		spin_unlock(&space_info->lock);
9991 
9992 		/*
9993 		 * Btrfs_remove_chunk will abort the transaction if things go
9994 		 * horribly wrong.
9995 		 */
9996 		ret = btrfs_remove_chunk(trans, root,
9997 					 block_group->key.objectid);
9998 end_trans:
9999 		btrfs_end_transaction(trans, root);
10000 next:
10001 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10002 		btrfs_put_block_group(block_group);
10003 		spin_lock(&fs_info->unused_bgs_lock);
10004 	}
10005 	spin_unlock(&fs_info->unused_bgs_lock);
10006 }
10007 
10008 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10009 {
10010 	struct btrfs_space_info *space_info;
10011 	struct btrfs_super_block *disk_super;
10012 	u64 features;
10013 	u64 flags;
10014 	int mixed = 0;
10015 	int ret;
10016 
10017 	disk_super = fs_info->super_copy;
10018 	if (!btrfs_super_root(disk_super))
10019 		return 1;
10020 
10021 	features = btrfs_super_incompat_flags(disk_super);
10022 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10023 		mixed = 1;
10024 
10025 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10026 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10027 	if (ret)
10028 		goto out;
10029 
10030 	if (mixed) {
10031 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10032 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10033 	} else {
10034 		flags = BTRFS_BLOCK_GROUP_METADATA;
10035 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10036 		if (ret)
10037 			goto out;
10038 
10039 		flags = BTRFS_BLOCK_GROUP_DATA;
10040 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10041 	}
10042 out:
10043 	return ret;
10044 }
10045 
10046 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10047 {
10048 	return unpin_extent_range(root, start, end, false);
10049 }
10050 
10051 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10052 {
10053 	struct btrfs_fs_info *fs_info = root->fs_info;
10054 	struct btrfs_block_group_cache *cache = NULL;
10055 	u64 group_trimmed;
10056 	u64 start;
10057 	u64 end;
10058 	u64 trimmed = 0;
10059 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10060 	int ret = 0;
10061 
10062 	/*
10063 	 * try to trim all FS space, our block group may start from non-zero.
10064 	 */
10065 	if (range->len == total_bytes)
10066 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10067 	else
10068 		cache = btrfs_lookup_block_group(fs_info, range->start);
10069 
10070 	while (cache) {
10071 		if (cache->key.objectid >= (range->start + range->len)) {
10072 			btrfs_put_block_group(cache);
10073 			break;
10074 		}
10075 
10076 		start = max(range->start, cache->key.objectid);
10077 		end = min(range->start + range->len,
10078 				cache->key.objectid + cache->key.offset);
10079 
10080 		if (end - start >= range->minlen) {
10081 			if (!block_group_cache_done(cache)) {
10082 				ret = cache_block_group(cache, 0);
10083 				if (ret) {
10084 					btrfs_put_block_group(cache);
10085 					break;
10086 				}
10087 				ret = wait_block_group_cache_done(cache);
10088 				if (ret) {
10089 					btrfs_put_block_group(cache);
10090 					break;
10091 				}
10092 			}
10093 			ret = btrfs_trim_block_group(cache,
10094 						     &group_trimmed,
10095 						     start,
10096 						     end,
10097 						     range->minlen);
10098 
10099 			trimmed += group_trimmed;
10100 			if (ret) {
10101 				btrfs_put_block_group(cache);
10102 				break;
10103 			}
10104 		}
10105 
10106 		cache = next_block_group(fs_info->tree_root, cache);
10107 	}
10108 
10109 	range->len = trimmed;
10110 	return ret;
10111 }
10112 
10113 /*
10114  * btrfs_{start,end}_write_no_snapshoting() are similar to
10115  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10116  * data into the page cache through nocow before the subvolume is snapshoted,
10117  * but flush the data into disk after the snapshot creation, or to prevent
10118  * operations while snapshoting is ongoing and that cause the snapshot to be
10119  * inconsistent (writes followed by expanding truncates for example).
10120  */
10121 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10122 {
10123 	percpu_counter_dec(&root->subv_writers->counter);
10124 	/*
10125 	 * Make sure counter is updated before we wake up
10126 	 * waiters.
10127 	 */
10128 	smp_mb();
10129 	if (waitqueue_active(&root->subv_writers->wait))
10130 		wake_up(&root->subv_writers->wait);
10131 }
10132 
10133 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10134 {
10135 	if (atomic_read(&root->will_be_snapshoted))
10136 		return 0;
10137 
10138 	percpu_counter_inc(&root->subv_writers->counter);
10139 	/*
10140 	 * Make sure counter is updated before we check for snapshot creation.
10141 	 */
10142 	smp_mb();
10143 	if (atomic_read(&root->will_be_snapshoted)) {
10144 		btrfs_end_write_no_snapshoting(root);
10145 		return 0;
10146 	}
10147 	return 1;
10148 }
10149