xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 91db9311945f01901ddb9813ce11364de214a156)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 
35 #undef SCRAMBLE_DELAYED_REFS
36 
37 
38 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
39 			       struct btrfs_delayed_ref_node *node, u64 parent,
40 			       u64 root_objectid, u64 owner_objectid,
41 			       u64 owner_offset, int refs_to_drop,
42 			       struct btrfs_delayed_extent_op *extra_op);
43 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
44 				    struct extent_buffer *leaf,
45 				    struct btrfs_extent_item *ei);
46 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
47 				      u64 parent, u64 root_objectid,
48 				      u64 flags, u64 owner, u64 offset,
49 				      struct btrfs_key *ins, int ref_mod);
50 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
51 				     struct btrfs_delayed_ref_node *node,
52 				     struct btrfs_delayed_extent_op *extent_op);
53 static int find_next_key(struct btrfs_path *path, int level,
54 			 struct btrfs_key *key);
55 
56 static noinline int
57 block_group_cache_done(struct btrfs_block_group_cache *cache)
58 {
59 	smp_mb();
60 	return cache->cached == BTRFS_CACHE_FINISHED ||
61 		cache->cached == BTRFS_CACHE_ERROR;
62 }
63 
64 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
65 {
66 	return (cache->flags & bits) == bits;
67 }
68 
69 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
70 {
71 	atomic_inc(&cache->count);
72 }
73 
74 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
75 {
76 	if (atomic_dec_and_test(&cache->count)) {
77 		WARN_ON(cache->pinned > 0);
78 		WARN_ON(cache->reserved > 0);
79 
80 		/*
81 		 * If not empty, someone is still holding mutex of
82 		 * full_stripe_lock, which can only be released by caller.
83 		 * And it will definitely cause use-after-free when caller
84 		 * tries to release full stripe lock.
85 		 *
86 		 * No better way to resolve, but only to warn.
87 		 */
88 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
89 		kfree(cache->free_space_ctl);
90 		kfree(cache);
91 	}
92 }
93 
94 /*
95  * this adds the block group to the fs_info rb tree for the block group
96  * cache
97  */
98 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
99 				struct btrfs_block_group_cache *block_group)
100 {
101 	struct rb_node **p;
102 	struct rb_node *parent = NULL;
103 	struct btrfs_block_group_cache *cache;
104 
105 	spin_lock(&info->block_group_cache_lock);
106 	p = &info->block_group_cache_tree.rb_node;
107 
108 	while (*p) {
109 		parent = *p;
110 		cache = rb_entry(parent, struct btrfs_block_group_cache,
111 				 cache_node);
112 		if (block_group->key.objectid < cache->key.objectid) {
113 			p = &(*p)->rb_left;
114 		} else if (block_group->key.objectid > cache->key.objectid) {
115 			p = &(*p)->rb_right;
116 		} else {
117 			spin_unlock(&info->block_group_cache_lock);
118 			return -EEXIST;
119 		}
120 	}
121 
122 	rb_link_node(&block_group->cache_node, parent, p);
123 	rb_insert_color(&block_group->cache_node,
124 			&info->block_group_cache_tree);
125 
126 	if (info->first_logical_byte > block_group->key.objectid)
127 		info->first_logical_byte = block_group->key.objectid;
128 
129 	spin_unlock(&info->block_group_cache_lock);
130 
131 	return 0;
132 }
133 
134 /*
135  * This will return the block group at or after bytenr if contains is 0, else
136  * it will return the block group that contains the bytenr
137  */
138 static struct btrfs_block_group_cache *
139 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
140 			      int contains)
141 {
142 	struct btrfs_block_group_cache *cache, *ret = NULL;
143 	struct rb_node *n;
144 	u64 end, start;
145 
146 	spin_lock(&info->block_group_cache_lock);
147 	n = info->block_group_cache_tree.rb_node;
148 
149 	while (n) {
150 		cache = rb_entry(n, struct btrfs_block_group_cache,
151 				 cache_node);
152 		end = cache->key.objectid + cache->key.offset - 1;
153 		start = cache->key.objectid;
154 
155 		if (bytenr < start) {
156 			if (!contains && (!ret || start < ret->key.objectid))
157 				ret = cache;
158 			n = n->rb_left;
159 		} else if (bytenr > start) {
160 			if (contains && bytenr <= end) {
161 				ret = cache;
162 				break;
163 			}
164 			n = n->rb_right;
165 		} else {
166 			ret = cache;
167 			break;
168 		}
169 	}
170 	if (ret) {
171 		btrfs_get_block_group(ret);
172 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
173 			info->first_logical_byte = ret->key.objectid;
174 	}
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return ret;
178 }
179 
180 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
181 			       u64 start, u64 num_bytes)
182 {
183 	u64 end = start + num_bytes - 1;
184 	set_extent_bits(&fs_info->freed_extents[0],
185 			start, end, EXTENT_UPTODATE);
186 	set_extent_bits(&fs_info->freed_extents[1],
187 			start, end, EXTENT_UPTODATE);
188 	return 0;
189 }
190 
191 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
192 {
193 	struct btrfs_fs_info *fs_info = cache->fs_info;
194 	u64 start, end;
195 
196 	start = cache->key.objectid;
197 	end = start + cache->key.offset - 1;
198 
199 	clear_extent_bits(&fs_info->freed_extents[0],
200 			  start, end, EXTENT_UPTODATE);
201 	clear_extent_bits(&fs_info->freed_extents[1],
202 			  start, end, EXTENT_UPTODATE);
203 }
204 
205 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
206 {
207 	struct btrfs_fs_info *fs_info = cache->fs_info;
208 	u64 bytenr;
209 	u64 *logical;
210 	int stripe_len;
211 	int i, nr, ret;
212 
213 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
214 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
215 		cache->bytes_super += stripe_len;
216 		ret = add_excluded_extent(fs_info, cache->key.objectid,
217 					  stripe_len);
218 		if (ret)
219 			return ret;
220 	}
221 
222 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
223 		bytenr = btrfs_sb_offset(i);
224 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
225 				       bytenr, &logical, &nr, &stripe_len);
226 		if (ret)
227 			return ret;
228 
229 		while (nr--) {
230 			u64 start, len;
231 
232 			if (logical[nr] > cache->key.objectid +
233 			    cache->key.offset)
234 				continue;
235 
236 			if (logical[nr] + stripe_len <= cache->key.objectid)
237 				continue;
238 
239 			start = logical[nr];
240 			if (start < cache->key.objectid) {
241 				start = cache->key.objectid;
242 				len = (logical[nr] + stripe_len) - start;
243 			} else {
244 				len = min_t(u64, stripe_len,
245 					    cache->key.objectid +
246 					    cache->key.offset - start);
247 			}
248 
249 			cache->bytes_super += len;
250 			ret = add_excluded_extent(fs_info, start, len);
251 			if (ret) {
252 				kfree(logical);
253 				return ret;
254 			}
255 		}
256 
257 		kfree(logical);
258 	}
259 	return 0;
260 }
261 
262 static struct btrfs_caching_control *
263 get_caching_control(struct btrfs_block_group_cache *cache)
264 {
265 	struct btrfs_caching_control *ctl;
266 
267 	spin_lock(&cache->lock);
268 	if (!cache->caching_ctl) {
269 		spin_unlock(&cache->lock);
270 		return NULL;
271 	}
272 
273 	ctl = cache->caching_ctl;
274 	refcount_inc(&ctl->count);
275 	spin_unlock(&cache->lock);
276 	return ctl;
277 }
278 
279 static void put_caching_control(struct btrfs_caching_control *ctl)
280 {
281 	if (refcount_dec_and_test(&ctl->count))
282 		kfree(ctl);
283 }
284 
285 #ifdef CONFIG_BTRFS_DEBUG
286 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
287 {
288 	struct btrfs_fs_info *fs_info = block_group->fs_info;
289 	u64 start = block_group->key.objectid;
290 	u64 len = block_group->key.offset;
291 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
292 		fs_info->nodesize : fs_info->sectorsize;
293 	u64 step = chunk << 1;
294 
295 	while (len > chunk) {
296 		btrfs_remove_free_space(block_group, start, chunk);
297 		start += step;
298 		if (len < step)
299 			len = 0;
300 		else
301 			len -= step;
302 	}
303 }
304 #endif
305 
306 /*
307  * this is only called by cache_block_group, since we could have freed extents
308  * we need to check the pinned_extents for any extents that can't be used yet
309  * since their free space will be released as soon as the transaction commits.
310  */
311 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
312 		       u64 start, u64 end)
313 {
314 	struct btrfs_fs_info *info = block_group->fs_info;
315 	u64 extent_start, extent_end, size, total_added = 0;
316 	int ret;
317 
318 	while (start < end) {
319 		ret = find_first_extent_bit(info->pinned_extents, start,
320 					    &extent_start, &extent_end,
321 					    EXTENT_DIRTY | EXTENT_UPTODATE,
322 					    NULL);
323 		if (ret)
324 			break;
325 
326 		if (extent_start <= start) {
327 			start = extent_end + 1;
328 		} else if (extent_start > start && extent_start < end) {
329 			size = extent_start - start;
330 			total_added += size;
331 			ret = btrfs_add_free_space(block_group, start,
332 						   size);
333 			BUG_ON(ret); /* -ENOMEM or logic error */
334 			start = extent_end + 1;
335 		} else {
336 			break;
337 		}
338 	}
339 
340 	if (start < end) {
341 		size = end - start;
342 		total_added += size;
343 		ret = btrfs_add_free_space(block_group, start, size);
344 		BUG_ON(ret); /* -ENOMEM or logic error */
345 	}
346 
347 	return total_added;
348 }
349 
350 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
351 {
352 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
353 	struct btrfs_fs_info *fs_info = block_group->fs_info;
354 	struct btrfs_root *extent_root = fs_info->extent_root;
355 	struct btrfs_path *path;
356 	struct extent_buffer *leaf;
357 	struct btrfs_key key;
358 	u64 total_found = 0;
359 	u64 last = 0;
360 	u32 nritems;
361 	int ret;
362 	bool wakeup = true;
363 
364 	path = btrfs_alloc_path();
365 	if (!path)
366 		return -ENOMEM;
367 
368 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
369 
370 #ifdef CONFIG_BTRFS_DEBUG
371 	/*
372 	 * If we're fragmenting we don't want to make anybody think we can
373 	 * allocate from this block group until we've had a chance to fragment
374 	 * the free space.
375 	 */
376 	if (btrfs_should_fragment_free_space(block_group))
377 		wakeup = false;
378 #endif
379 	/*
380 	 * We don't want to deadlock with somebody trying to allocate a new
381 	 * extent for the extent root while also trying to search the extent
382 	 * root to add free space.  So we skip locking and search the commit
383 	 * root, since its read-only
384 	 */
385 	path->skip_locking = 1;
386 	path->search_commit_root = 1;
387 	path->reada = READA_FORWARD;
388 
389 	key.objectid = last;
390 	key.offset = 0;
391 	key.type = BTRFS_EXTENT_ITEM_KEY;
392 
393 next:
394 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
395 	if (ret < 0)
396 		goto out;
397 
398 	leaf = path->nodes[0];
399 	nritems = btrfs_header_nritems(leaf);
400 
401 	while (1) {
402 		if (btrfs_fs_closing(fs_info) > 1) {
403 			last = (u64)-1;
404 			break;
405 		}
406 
407 		if (path->slots[0] < nritems) {
408 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
409 		} else {
410 			ret = find_next_key(path, 0, &key);
411 			if (ret)
412 				break;
413 
414 			if (need_resched() ||
415 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
416 				if (wakeup)
417 					caching_ctl->progress = last;
418 				btrfs_release_path(path);
419 				up_read(&fs_info->commit_root_sem);
420 				mutex_unlock(&caching_ctl->mutex);
421 				cond_resched();
422 				mutex_lock(&caching_ctl->mutex);
423 				down_read(&fs_info->commit_root_sem);
424 				goto next;
425 			}
426 
427 			ret = btrfs_next_leaf(extent_root, path);
428 			if (ret < 0)
429 				goto out;
430 			if (ret)
431 				break;
432 			leaf = path->nodes[0];
433 			nritems = btrfs_header_nritems(leaf);
434 			continue;
435 		}
436 
437 		if (key.objectid < last) {
438 			key.objectid = last;
439 			key.offset = 0;
440 			key.type = BTRFS_EXTENT_ITEM_KEY;
441 
442 			if (wakeup)
443 				caching_ctl->progress = last;
444 			btrfs_release_path(path);
445 			goto next;
446 		}
447 
448 		if (key.objectid < block_group->key.objectid) {
449 			path->slots[0]++;
450 			continue;
451 		}
452 
453 		if (key.objectid >= block_group->key.objectid +
454 		    block_group->key.offset)
455 			break;
456 
457 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
458 		    key.type == BTRFS_METADATA_ITEM_KEY) {
459 			total_found += add_new_free_space(block_group, last,
460 							  key.objectid);
461 			if (key.type == BTRFS_METADATA_ITEM_KEY)
462 				last = key.objectid +
463 					fs_info->nodesize;
464 			else
465 				last = key.objectid + key.offset;
466 
467 			if (total_found > CACHING_CTL_WAKE_UP) {
468 				total_found = 0;
469 				if (wakeup)
470 					wake_up(&caching_ctl->wait);
471 			}
472 		}
473 		path->slots[0]++;
474 	}
475 	ret = 0;
476 
477 	total_found += add_new_free_space(block_group, last,
478 					  block_group->key.objectid +
479 					  block_group->key.offset);
480 	caching_ctl->progress = (u64)-1;
481 
482 out:
483 	btrfs_free_path(path);
484 	return ret;
485 }
486 
487 static noinline void caching_thread(struct btrfs_work *work)
488 {
489 	struct btrfs_block_group_cache *block_group;
490 	struct btrfs_fs_info *fs_info;
491 	struct btrfs_caching_control *caching_ctl;
492 	int ret;
493 
494 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
495 	block_group = caching_ctl->block_group;
496 	fs_info = block_group->fs_info;
497 
498 	mutex_lock(&caching_ctl->mutex);
499 	down_read(&fs_info->commit_root_sem);
500 
501 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
502 		ret = load_free_space_tree(caching_ctl);
503 	else
504 		ret = load_extent_tree_free(caching_ctl);
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 #ifdef CONFIG_BTRFS_DEBUG
512 	if (btrfs_should_fragment_free_space(block_group)) {
513 		u64 bytes_used;
514 
515 		spin_lock(&block_group->space_info->lock);
516 		spin_lock(&block_group->lock);
517 		bytes_used = block_group->key.offset -
518 			btrfs_block_group_used(&block_group->item);
519 		block_group->space_info->bytes_used += bytes_used >> 1;
520 		spin_unlock(&block_group->lock);
521 		spin_unlock(&block_group->space_info->lock);
522 		fragment_free_space(block_group);
523 	}
524 #endif
525 
526 	caching_ctl->progress = (u64)-1;
527 
528 	up_read(&fs_info->commit_root_sem);
529 	free_excluded_extents(block_group);
530 	mutex_unlock(&caching_ctl->mutex);
531 
532 	wake_up(&caching_ctl->wait);
533 
534 	put_caching_control(caching_ctl);
535 	btrfs_put_block_group(block_group);
536 }
537 
538 static int cache_block_group(struct btrfs_block_group_cache *cache,
539 			     int load_cache_only)
540 {
541 	DEFINE_WAIT(wait);
542 	struct btrfs_fs_info *fs_info = cache->fs_info;
543 	struct btrfs_caching_control *caching_ctl;
544 	int ret = 0;
545 
546 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
547 	if (!caching_ctl)
548 		return -ENOMEM;
549 
550 	INIT_LIST_HEAD(&caching_ctl->list);
551 	mutex_init(&caching_ctl->mutex);
552 	init_waitqueue_head(&caching_ctl->wait);
553 	caching_ctl->block_group = cache;
554 	caching_ctl->progress = cache->key.objectid;
555 	refcount_set(&caching_ctl->count, 1);
556 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
557 			caching_thread, NULL, NULL);
558 
559 	spin_lock(&cache->lock);
560 	/*
561 	 * This should be a rare occasion, but this could happen I think in the
562 	 * case where one thread starts to load the space cache info, and then
563 	 * some other thread starts a transaction commit which tries to do an
564 	 * allocation while the other thread is still loading the space cache
565 	 * info.  The previous loop should have kept us from choosing this block
566 	 * group, but if we've moved to the state where we will wait on caching
567 	 * block groups we need to first check if we're doing a fast load here,
568 	 * so we can wait for it to finish, otherwise we could end up allocating
569 	 * from a block group who's cache gets evicted for one reason or
570 	 * another.
571 	 */
572 	while (cache->cached == BTRFS_CACHE_FAST) {
573 		struct btrfs_caching_control *ctl;
574 
575 		ctl = cache->caching_ctl;
576 		refcount_inc(&ctl->count);
577 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
578 		spin_unlock(&cache->lock);
579 
580 		schedule();
581 
582 		finish_wait(&ctl->wait, &wait);
583 		put_caching_control(ctl);
584 		spin_lock(&cache->lock);
585 	}
586 
587 	if (cache->cached != BTRFS_CACHE_NO) {
588 		spin_unlock(&cache->lock);
589 		kfree(caching_ctl);
590 		return 0;
591 	}
592 	WARN_ON(cache->caching_ctl);
593 	cache->caching_ctl = caching_ctl;
594 	cache->cached = BTRFS_CACHE_FAST;
595 	spin_unlock(&cache->lock);
596 
597 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
598 		mutex_lock(&caching_ctl->mutex);
599 		ret = load_free_space_cache(cache);
600 
601 		spin_lock(&cache->lock);
602 		if (ret == 1) {
603 			cache->caching_ctl = NULL;
604 			cache->cached = BTRFS_CACHE_FINISHED;
605 			cache->last_byte_to_unpin = (u64)-1;
606 			caching_ctl->progress = (u64)-1;
607 		} else {
608 			if (load_cache_only) {
609 				cache->caching_ctl = NULL;
610 				cache->cached = BTRFS_CACHE_NO;
611 			} else {
612 				cache->cached = BTRFS_CACHE_STARTED;
613 				cache->has_caching_ctl = 1;
614 			}
615 		}
616 		spin_unlock(&cache->lock);
617 #ifdef CONFIG_BTRFS_DEBUG
618 		if (ret == 1 &&
619 		    btrfs_should_fragment_free_space(cache)) {
620 			u64 bytes_used;
621 
622 			spin_lock(&cache->space_info->lock);
623 			spin_lock(&cache->lock);
624 			bytes_used = cache->key.offset -
625 				btrfs_block_group_used(&cache->item);
626 			cache->space_info->bytes_used += bytes_used >> 1;
627 			spin_unlock(&cache->lock);
628 			spin_unlock(&cache->space_info->lock);
629 			fragment_free_space(cache);
630 		}
631 #endif
632 		mutex_unlock(&caching_ctl->mutex);
633 
634 		wake_up(&caching_ctl->wait);
635 		if (ret == 1) {
636 			put_caching_control(caching_ctl);
637 			free_excluded_extents(cache);
638 			return 0;
639 		}
640 	} else {
641 		/*
642 		 * We're either using the free space tree or no caching at all.
643 		 * Set cached to the appropriate value and wakeup any waiters.
644 		 */
645 		spin_lock(&cache->lock);
646 		if (load_cache_only) {
647 			cache->caching_ctl = NULL;
648 			cache->cached = BTRFS_CACHE_NO;
649 		} else {
650 			cache->cached = BTRFS_CACHE_STARTED;
651 			cache->has_caching_ctl = 1;
652 		}
653 		spin_unlock(&cache->lock);
654 		wake_up(&caching_ctl->wait);
655 	}
656 
657 	if (load_cache_only) {
658 		put_caching_control(caching_ctl);
659 		return 0;
660 	}
661 
662 	down_write(&fs_info->commit_root_sem);
663 	refcount_inc(&caching_ctl->count);
664 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
665 	up_write(&fs_info->commit_root_sem);
666 
667 	btrfs_get_block_group(cache);
668 
669 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
670 
671 	return ret;
672 }
673 
674 /*
675  * return the block group that starts at or after bytenr
676  */
677 static struct btrfs_block_group_cache *
678 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
679 {
680 	return block_group_cache_tree_search(info, bytenr, 0);
681 }
682 
683 /*
684  * return the block group that contains the given bytenr
685  */
686 struct btrfs_block_group_cache *btrfs_lookup_block_group(
687 						 struct btrfs_fs_info *info,
688 						 u64 bytenr)
689 {
690 	return block_group_cache_tree_search(info, bytenr, 1);
691 }
692 
693 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
694 {
695 	if (ref->type == BTRFS_REF_METADATA) {
696 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
697 			return BTRFS_BLOCK_GROUP_SYSTEM;
698 		else
699 			return BTRFS_BLOCK_GROUP_METADATA;
700 	}
701 	return BTRFS_BLOCK_GROUP_DATA;
702 }
703 
704 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
705 			     struct btrfs_ref *ref)
706 {
707 	struct btrfs_space_info *space_info;
708 	u64 flags = generic_ref_to_space_flags(ref);
709 
710 	space_info = btrfs_find_space_info(fs_info, flags);
711 	ASSERT(space_info);
712 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
713 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
714 }
715 
716 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
717 			     struct btrfs_ref *ref)
718 {
719 	struct btrfs_space_info *space_info;
720 	u64 flags = generic_ref_to_space_flags(ref);
721 
722 	space_info = btrfs_find_space_info(fs_info, flags);
723 	ASSERT(space_info);
724 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
725 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
726 }
727 
728 /* simple helper to search for an existing data extent at a given offset */
729 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
730 {
731 	int ret;
732 	struct btrfs_key key;
733 	struct btrfs_path *path;
734 
735 	path = btrfs_alloc_path();
736 	if (!path)
737 		return -ENOMEM;
738 
739 	key.objectid = start;
740 	key.offset = len;
741 	key.type = BTRFS_EXTENT_ITEM_KEY;
742 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
743 	btrfs_free_path(path);
744 	return ret;
745 }
746 
747 /*
748  * helper function to lookup reference count and flags of a tree block.
749  *
750  * the head node for delayed ref is used to store the sum of all the
751  * reference count modifications queued up in the rbtree. the head
752  * node may also store the extent flags to set. This way you can check
753  * to see what the reference count and extent flags would be if all of
754  * the delayed refs are not processed.
755  */
756 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
757 			     struct btrfs_fs_info *fs_info, u64 bytenr,
758 			     u64 offset, int metadata, u64 *refs, u64 *flags)
759 {
760 	struct btrfs_delayed_ref_head *head;
761 	struct btrfs_delayed_ref_root *delayed_refs;
762 	struct btrfs_path *path;
763 	struct btrfs_extent_item *ei;
764 	struct extent_buffer *leaf;
765 	struct btrfs_key key;
766 	u32 item_size;
767 	u64 num_refs;
768 	u64 extent_flags;
769 	int ret;
770 
771 	/*
772 	 * If we don't have skinny metadata, don't bother doing anything
773 	 * different
774 	 */
775 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
776 		offset = fs_info->nodesize;
777 		metadata = 0;
778 	}
779 
780 	path = btrfs_alloc_path();
781 	if (!path)
782 		return -ENOMEM;
783 
784 	if (!trans) {
785 		path->skip_locking = 1;
786 		path->search_commit_root = 1;
787 	}
788 
789 search_again:
790 	key.objectid = bytenr;
791 	key.offset = offset;
792 	if (metadata)
793 		key.type = BTRFS_METADATA_ITEM_KEY;
794 	else
795 		key.type = BTRFS_EXTENT_ITEM_KEY;
796 
797 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
798 	if (ret < 0)
799 		goto out_free;
800 
801 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
802 		if (path->slots[0]) {
803 			path->slots[0]--;
804 			btrfs_item_key_to_cpu(path->nodes[0], &key,
805 					      path->slots[0]);
806 			if (key.objectid == bytenr &&
807 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
808 			    key.offset == fs_info->nodesize)
809 				ret = 0;
810 		}
811 	}
812 
813 	if (ret == 0) {
814 		leaf = path->nodes[0];
815 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
816 		if (item_size >= sizeof(*ei)) {
817 			ei = btrfs_item_ptr(leaf, path->slots[0],
818 					    struct btrfs_extent_item);
819 			num_refs = btrfs_extent_refs(leaf, ei);
820 			extent_flags = btrfs_extent_flags(leaf, ei);
821 		} else {
822 			ret = -EINVAL;
823 			btrfs_print_v0_err(fs_info);
824 			if (trans)
825 				btrfs_abort_transaction(trans, ret);
826 			else
827 				btrfs_handle_fs_error(fs_info, ret, NULL);
828 
829 			goto out_free;
830 		}
831 
832 		BUG_ON(num_refs == 0);
833 	} else {
834 		num_refs = 0;
835 		extent_flags = 0;
836 		ret = 0;
837 	}
838 
839 	if (!trans)
840 		goto out;
841 
842 	delayed_refs = &trans->transaction->delayed_refs;
843 	spin_lock(&delayed_refs->lock);
844 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
845 	if (head) {
846 		if (!mutex_trylock(&head->mutex)) {
847 			refcount_inc(&head->refs);
848 			spin_unlock(&delayed_refs->lock);
849 
850 			btrfs_release_path(path);
851 
852 			/*
853 			 * Mutex was contended, block until it's released and try
854 			 * again
855 			 */
856 			mutex_lock(&head->mutex);
857 			mutex_unlock(&head->mutex);
858 			btrfs_put_delayed_ref_head(head);
859 			goto search_again;
860 		}
861 		spin_lock(&head->lock);
862 		if (head->extent_op && head->extent_op->update_flags)
863 			extent_flags |= head->extent_op->flags_to_set;
864 		else
865 			BUG_ON(num_refs == 0);
866 
867 		num_refs += head->ref_mod;
868 		spin_unlock(&head->lock);
869 		mutex_unlock(&head->mutex);
870 	}
871 	spin_unlock(&delayed_refs->lock);
872 out:
873 	WARN_ON(num_refs == 0);
874 	if (refs)
875 		*refs = num_refs;
876 	if (flags)
877 		*flags = extent_flags;
878 out_free:
879 	btrfs_free_path(path);
880 	return ret;
881 }
882 
883 /*
884  * Back reference rules.  Back refs have three main goals:
885  *
886  * 1) differentiate between all holders of references to an extent so that
887  *    when a reference is dropped we can make sure it was a valid reference
888  *    before freeing the extent.
889  *
890  * 2) Provide enough information to quickly find the holders of an extent
891  *    if we notice a given block is corrupted or bad.
892  *
893  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
894  *    maintenance.  This is actually the same as #2, but with a slightly
895  *    different use case.
896  *
897  * There are two kinds of back refs. The implicit back refs is optimized
898  * for pointers in non-shared tree blocks. For a given pointer in a block,
899  * back refs of this kind provide information about the block's owner tree
900  * and the pointer's key. These information allow us to find the block by
901  * b-tree searching. The full back refs is for pointers in tree blocks not
902  * referenced by their owner trees. The location of tree block is recorded
903  * in the back refs. Actually the full back refs is generic, and can be
904  * used in all cases the implicit back refs is used. The major shortcoming
905  * of the full back refs is its overhead. Every time a tree block gets
906  * COWed, we have to update back refs entry for all pointers in it.
907  *
908  * For a newly allocated tree block, we use implicit back refs for
909  * pointers in it. This means most tree related operations only involve
910  * implicit back refs. For a tree block created in old transaction, the
911  * only way to drop a reference to it is COW it. So we can detect the
912  * event that tree block loses its owner tree's reference and do the
913  * back refs conversion.
914  *
915  * When a tree block is COWed through a tree, there are four cases:
916  *
917  * The reference count of the block is one and the tree is the block's
918  * owner tree. Nothing to do in this case.
919  *
920  * The reference count of the block is one and the tree is not the
921  * block's owner tree. In this case, full back refs is used for pointers
922  * in the block. Remove these full back refs, add implicit back refs for
923  * every pointers in the new block.
924  *
925  * The reference count of the block is greater than one and the tree is
926  * the block's owner tree. In this case, implicit back refs is used for
927  * pointers in the block. Add full back refs for every pointers in the
928  * block, increase lower level extents' reference counts. The original
929  * implicit back refs are entailed to the new block.
930  *
931  * The reference count of the block is greater than one and the tree is
932  * not the block's owner tree. Add implicit back refs for every pointer in
933  * the new block, increase lower level extents' reference count.
934  *
935  * Back Reference Key composing:
936  *
937  * The key objectid corresponds to the first byte in the extent,
938  * The key type is used to differentiate between types of back refs.
939  * There are different meanings of the key offset for different types
940  * of back refs.
941  *
942  * File extents can be referenced by:
943  *
944  * - multiple snapshots, subvolumes, or different generations in one subvol
945  * - different files inside a single subvolume
946  * - different offsets inside a file (bookend extents in file.c)
947  *
948  * The extent ref structure for the implicit back refs has fields for:
949  *
950  * - Objectid of the subvolume root
951  * - objectid of the file holding the reference
952  * - original offset in the file
953  * - how many bookend extents
954  *
955  * The key offset for the implicit back refs is hash of the first
956  * three fields.
957  *
958  * The extent ref structure for the full back refs has field for:
959  *
960  * - number of pointers in the tree leaf
961  *
962  * The key offset for the implicit back refs is the first byte of
963  * the tree leaf
964  *
965  * When a file extent is allocated, The implicit back refs is used.
966  * the fields are filled in:
967  *
968  *     (root_key.objectid, inode objectid, offset in file, 1)
969  *
970  * When a file extent is removed file truncation, we find the
971  * corresponding implicit back refs and check the following fields:
972  *
973  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
974  *
975  * Btree extents can be referenced by:
976  *
977  * - Different subvolumes
978  *
979  * Both the implicit back refs and the full back refs for tree blocks
980  * only consist of key. The key offset for the implicit back refs is
981  * objectid of block's owner tree. The key offset for the full back refs
982  * is the first byte of parent block.
983  *
984  * When implicit back refs is used, information about the lowest key and
985  * level of the tree block are required. These information are stored in
986  * tree block info structure.
987  */
988 
989 /*
990  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
991  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
992  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
993  */
994 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
995 				     struct btrfs_extent_inline_ref *iref,
996 				     enum btrfs_inline_ref_type is_data)
997 {
998 	int type = btrfs_extent_inline_ref_type(eb, iref);
999 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1000 
1001 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1002 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1003 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1004 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1005 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1006 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1007 				return type;
1008 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1009 				ASSERT(eb->fs_info);
1010 				/*
1011 				 * Every shared one has parent tree
1012 				 * block, which must be aligned to
1013 				 * nodesize.
1014 				 */
1015 				if (offset &&
1016 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1017 					return type;
1018 			}
1019 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1020 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1021 				return type;
1022 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1023 				ASSERT(eb->fs_info);
1024 				/*
1025 				 * Every shared one has parent tree
1026 				 * block, which must be aligned to
1027 				 * nodesize.
1028 				 */
1029 				if (offset &&
1030 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1031 					return type;
1032 			}
1033 		} else {
1034 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1035 			return type;
1036 		}
1037 	}
1038 
1039 	btrfs_print_leaf((struct extent_buffer *)eb);
1040 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1041 		  eb->start, type);
1042 	WARN_ON(1);
1043 
1044 	return BTRFS_REF_TYPE_INVALID;
1045 }
1046 
1047 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1048 {
1049 	u32 high_crc = ~(u32)0;
1050 	u32 low_crc = ~(u32)0;
1051 	__le64 lenum;
1052 
1053 	lenum = cpu_to_le64(root_objectid);
1054 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1055 	lenum = cpu_to_le64(owner);
1056 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1057 	lenum = cpu_to_le64(offset);
1058 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1059 
1060 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1061 }
1062 
1063 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1064 				     struct btrfs_extent_data_ref *ref)
1065 {
1066 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1067 				    btrfs_extent_data_ref_objectid(leaf, ref),
1068 				    btrfs_extent_data_ref_offset(leaf, ref));
1069 }
1070 
1071 static int match_extent_data_ref(struct extent_buffer *leaf,
1072 				 struct btrfs_extent_data_ref *ref,
1073 				 u64 root_objectid, u64 owner, u64 offset)
1074 {
1075 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1076 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1077 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1078 		return 0;
1079 	return 1;
1080 }
1081 
1082 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1083 					   struct btrfs_path *path,
1084 					   u64 bytenr, u64 parent,
1085 					   u64 root_objectid,
1086 					   u64 owner, u64 offset)
1087 {
1088 	struct btrfs_root *root = trans->fs_info->extent_root;
1089 	struct btrfs_key key;
1090 	struct btrfs_extent_data_ref *ref;
1091 	struct extent_buffer *leaf;
1092 	u32 nritems;
1093 	int ret;
1094 	int recow;
1095 	int err = -ENOENT;
1096 
1097 	key.objectid = bytenr;
1098 	if (parent) {
1099 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1100 		key.offset = parent;
1101 	} else {
1102 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1103 		key.offset = hash_extent_data_ref(root_objectid,
1104 						  owner, offset);
1105 	}
1106 again:
1107 	recow = 0;
1108 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 	if (ret < 0) {
1110 		err = ret;
1111 		goto fail;
1112 	}
1113 
1114 	if (parent) {
1115 		if (!ret)
1116 			return 0;
1117 		goto fail;
1118 	}
1119 
1120 	leaf = path->nodes[0];
1121 	nritems = btrfs_header_nritems(leaf);
1122 	while (1) {
1123 		if (path->slots[0] >= nritems) {
1124 			ret = btrfs_next_leaf(root, path);
1125 			if (ret < 0)
1126 				err = ret;
1127 			if (ret)
1128 				goto fail;
1129 
1130 			leaf = path->nodes[0];
1131 			nritems = btrfs_header_nritems(leaf);
1132 			recow = 1;
1133 		}
1134 
1135 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 		if (key.objectid != bytenr ||
1137 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 			goto fail;
1139 
1140 		ref = btrfs_item_ptr(leaf, path->slots[0],
1141 				     struct btrfs_extent_data_ref);
1142 
1143 		if (match_extent_data_ref(leaf, ref, root_objectid,
1144 					  owner, offset)) {
1145 			if (recow) {
1146 				btrfs_release_path(path);
1147 				goto again;
1148 			}
1149 			err = 0;
1150 			break;
1151 		}
1152 		path->slots[0]++;
1153 	}
1154 fail:
1155 	return err;
1156 }
1157 
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 					   struct btrfs_path *path,
1160 					   u64 bytenr, u64 parent,
1161 					   u64 root_objectid, u64 owner,
1162 					   u64 offset, int refs_to_add)
1163 {
1164 	struct btrfs_root *root = trans->fs_info->extent_root;
1165 	struct btrfs_key key;
1166 	struct extent_buffer *leaf;
1167 	u32 size;
1168 	u32 num_refs;
1169 	int ret;
1170 
1171 	key.objectid = bytenr;
1172 	if (parent) {
1173 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 		key.offset = parent;
1175 		size = sizeof(struct btrfs_shared_data_ref);
1176 	} else {
1177 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 		key.offset = hash_extent_data_ref(root_objectid,
1179 						  owner, offset);
1180 		size = sizeof(struct btrfs_extent_data_ref);
1181 	}
1182 
1183 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 	if (ret && ret != -EEXIST)
1185 		goto fail;
1186 
1187 	leaf = path->nodes[0];
1188 	if (parent) {
1189 		struct btrfs_shared_data_ref *ref;
1190 		ref = btrfs_item_ptr(leaf, path->slots[0],
1191 				     struct btrfs_shared_data_ref);
1192 		if (ret == 0) {
1193 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 		} else {
1195 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 			num_refs += refs_to_add;
1197 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 		}
1199 	} else {
1200 		struct btrfs_extent_data_ref *ref;
1201 		while (ret == -EEXIST) {
1202 			ref = btrfs_item_ptr(leaf, path->slots[0],
1203 					     struct btrfs_extent_data_ref);
1204 			if (match_extent_data_ref(leaf, ref, root_objectid,
1205 						  owner, offset))
1206 				break;
1207 			btrfs_release_path(path);
1208 			key.offset++;
1209 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 						      size);
1211 			if (ret && ret != -EEXIST)
1212 				goto fail;
1213 
1214 			leaf = path->nodes[0];
1215 		}
1216 		ref = btrfs_item_ptr(leaf, path->slots[0],
1217 				     struct btrfs_extent_data_ref);
1218 		if (ret == 0) {
1219 			btrfs_set_extent_data_ref_root(leaf, ref,
1220 						       root_objectid);
1221 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 		} else {
1225 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 			num_refs += refs_to_add;
1227 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1228 		}
1229 	}
1230 	btrfs_mark_buffer_dirty(leaf);
1231 	ret = 0;
1232 fail:
1233 	btrfs_release_path(path);
1234 	return ret;
1235 }
1236 
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 					   struct btrfs_path *path,
1239 					   int refs_to_drop, int *last_ref)
1240 {
1241 	struct btrfs_key key;
1242 	struct btrfs_extent_data_ref *ref1 = NULL;
1243 	struct btrfs_shared_data_ref *ref2 = NULL;
1244 	struct extent_buffer *leaf;
1245 	u32 num_refs = 0;
1246 	int ret = 0;
1247 
1248 	leaf = path->nodes[0];
1249 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250 
1251 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 				      struct btrfs_extent_data_ref);
1254 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 				      struct btrfs_shared_data_ref);
1258 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1260 		btrfs_print_v0_err(trans->fs_info);
1261 		btrfs_abort_transaction(trans, -EINVAL);
1262 		return -EINVAL;
1263 	} else {
1264 		BUG();
1265 	}
1266 
1267 	BUG_ON(num_refs < refs_to_drop);
1268 	num_refs -= refs_to_drop;
1269 
1270 	if (num_refs == 0) {
1271 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1272 		*last_ref = 1;
1273 	} else {
1274 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1275 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1276 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1277 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1278 		btrfs_mark_buffer_dirty(leaf);
1279 	}
1280 	return ret;
1281 }
1282 
1283 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1284 					  struct btrfs_extent_inline_ref *iref)
1285 {
1286 	struct btrfs_key key;
1287 	struct extent_buffer *leaf;
1288 	struct btrfs_extent_data_ref *ref1;
1289 	struct btrfs_shared_data_ref *ref2;
1290 	u32 num_refs = 0;
1291 	int type;
1292 
1293 	leaf = path->nodes[0];
1294 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1295 
1296 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1297 	if (iref) {
1298 		/*
1299 		 * If type is invalid, we should have bailed out earlier than
1300 		 * this call.
1301 		 */
1302 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1303 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1304 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1305 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1306 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1307 		} else {
1308 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1309 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1310 		}
1311 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1312 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1313 				      struct btrfs_extent_data_ref);
1314 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1315 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1316 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1317 				      struct btrfs_shared_data_ref);
1318 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1319 	} else {
1320 		WARN_ON(1);
1321 	}
1322 	return num_refs;
1323 }
1324 
1325 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1326 					  struct btrfs_path *path,
1327 					  u64 bytenr, u64 parent,
1328 					  u64 root_objectid)
1329 {
1330 	struct btrfs_root *root = trans->fs_info->extent_root;
1331 	struct btrfs_key key;
1332 	int ret;
1333 
1334 	key.objectid = bytenr;
1335 	if (parent) {
1336 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1337 		key.offset = parent;
1338 	} else {
1339 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1340 		key.offset = root_objectid;
1341 	}
1342 
1343 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1344 	if (ret > 0)
1345 		ret = -ENOENT;
1346 	return ret;
1347 }
1348 
1349 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1350 					  struct btrfs_path *path,
1351 					  u64 bytenr, u64 parent,
1352 					  u64 root_objectid)
1353 {
1354 	struct btrfs_key key;
1355 	int ret;
1356 
1357 	key.objectid = bytenr;
1358 	if (parent) {
1359 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1360 		key.offset = parent;
1361 	} else {
1362 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1363 		key.offset = root_objectid;
1364 	}
1365 
1366 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1367 				      path, &key, 0);
1368 	btrfs_release_path(path);
1369 	return ret;
1370 }
1371 
1372 static inline int extent_ref_type(u64 parent, u64 owner)
1373 {
1374 	int type;
1375 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1376 		if (parent > 0)
1377 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1378 		else
1379 			type = BTRFS_TREE_BLOCK_REF_KEY;
1380 	} else {
1381 		if (parent > 0)
1382 			type = BTRFS_SHARED_DATA_REF_KEY;
1383 		else
1384 			type = BTRFS_EXTENT_DATA_REF_KEY;
1385 	}
1386 	return type;
1387 }
1388 
1389 static int find_next_key(struct btrfs_path *path, int level,
1390 			 struct btrfs_key *key)
1391 
1392 {
1393 	for (; level < BTRFS_MAX_LEVEL; level++) {
1394 		if (!path->nodes[level])
1395 			break;
1396 		if (path->slots[level] + 1 >=
1397 		    btrfs_header_nritems(path->nodes[level]))
1398 			continue;
1399 		if (level == 0)
1400 			btrfs_item_key_to_cpu(path->nodes[level], key,
1401 					      path->slots[level] + 1);
1402 		else
1403 			btrfs_node_key_to_cpu(path->nodes[level], key,
1404 					      path->slots[level] + 1);
1405 		return 0;
1406 	}
1407 	return 1;
1408 }
1409 
1410 /*
1411  * look for inline back ref. if back ref is found, *ref_ret is set
1412  * to the address of inline back ref, and 0 is returned.
1413  *
1414  * if back ref isn't found, *ref_ret is set to the address where it
1415  * should be inserted, and -ENOENT is returned.
1416  *
1417  * if insert is true and there are too many inline back refs, the path
1418  * points to the extent item, and -EAGAIN is returned.
1419  *
1420  * NOTE: inline back refs are ordered in the same way that back ref
1421  *	 items in the tree are ordered.
1422  */
1423 static noinline_for_stack
1424 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1425 				 struct btrfs_path *path,
1426 				 struct btrfs_extent_inline_ref **ref_ret,
1427 				 u64 bytenr, u64 num_bytes,
1428 				 u64 parent, u64 root_objectid,
1429 				 u64 owner, u64 offset, int insert)
1430 {
1431 	struct btrfs_fs_info *fs_info = trans->fs_info;
1432 	struct btrfs_root *root = fs_info->extent_root;
1433 	struct btrfs_key key;
1434 	struct extent_buffer *leaf;
1435 	struct btrfs_extent_item *ei;
1436 	struct btrfs_extent_inline_ref *iref;
1437 	u64 flags;
1438 	u64 item_size;
1439 	unsigned long ptr;
1440 	unsigned long end;
1441 	int extra_size;
1442 	int type;
1443 	int want;
1444 	int ret;
1445 	int err = 0;
1446 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1447 	int needed;
1448 
1449 	key.objectid = bytenr;
1450 	key.type = BTRFS_EXTENT_ITEM_KEY;
1451 	key.offset = num_bytes;
1452 
1453 	want = extent_ref_type(parent, owner);
1454 	if (insert) {
1455 		extra_size = btrfs_extent_inline_ref_size(want);
1456 		path->keep_locks = 1;
1457 	} else
1458 		extra_size = -1;
1459 
1460 	/*
1461 	 * Owner is our level, so we can just add one to get the level for the
1462 	 * block we are interested in.
1463 	 */
1464 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1465 		key.type = BTRFS_METADATA_ITEM_KEY;
1466 		key.offset = owner;
1467 	}
1468 
1469 again:
1470 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1471 	if (ret < 0) {
1472 		err = ret;
1473 		goto out;
1474 	}
1475 
1476 	/*
1477 	 * We may be a newly converted file system which still has the old fat
1478 	 * extent entries for metadata, so try and see if we have one of those.
1479 	 */
1480 	if (ret > 0 && skinny_metadata) {
1481 		skinny_metadata = false;
1482 		if (path->slots[0]) {
1483 			path->slots[0]--;
1484 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1485 					      path->slots[0]);
1486 			if (key.objectid == bytenr &&
1487 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1488 			    key.offset == num_bytes)
1489 				ret = 0;
1490 		}
1491 		if (ret) {
1492 			key.objectid = bytenr;
1493 			key.type = BTRFS_EXTENT_ITEM_KEY;
1494 			key.offset = num_bytes;
1495 			btrfs_release_path(path);
1496 			goto again;
1497 		}
1498 	}
1499 
1500 	if (ret && !insert) {
1501 		err = -ENOENT;
1502 		goto out;
1503 	} else if (WARN_ON(ret)) {
1504 		err = -EIO;
1505 		goto out;
1506 	}
1507 
1508 	leaf = path->nodes[0];
1509 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1510 	if (unlikely(item_size < sizeof(*ei))) {
1511 		err = -EINVAL;
1512 		btrfs_print_v0_err(fs_info);
1513 		btrfs_abort_transaction(trans, err);
1514 		goto out;
1515 	}
1516 
1517 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1518 	flags = btrfs_extent_flags(leaf, ei);
1519 
1520 	ptr = (unsigned long)(ei + 1);
1521 	end = (unsigned long)ei + item_size;
1522 
1523 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1524 		ptr += sizeof(struct btrfs_tree_block_info);
1525 		BUG_ON(ptr > end);
1526 	}
1527 
1528 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1529 		needed = BTRFS_REF_TYPE_DATA;
1530 	else
1531 		needed = BTRFS_REF_TYPE_BLOCK;
1532 
1533 	err = -ENOENT;
1534 	while (1) {
1535 		if (ptr >= end) {
1536 			WARN_ON(ptr > end);
1537 			break;
1538 		}
1539 		iref = (struct btrfs_extent_inline_ref *)ptr;
1540 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1541 		if (type == BTRFS_REF_TYPE_INVALID) {
1542 			err = -EUCLEAN;
1543 			goto out;
1544 		}
1545 
1546 		if (want < type)
1547 			break;
1548 		if (want > type) {
1549 			ptr += btrfs_extent_inline_ref_size(type);
1550 			continue;
1551 		}
1552 
1553 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1554 			struct btrfs_extent_data_ref *dref;
1555 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1556 			if (match_extent_data_ref(leaf, dref, root_objectid,
1557 						  owner, offset)) {
1558 				err = 0;
1559 				break;
1560 			}
1561 			if (hash_extent_data_ref_item(leaf, dref) <
1562 			    hash_extent_data_ref(root_objectid, owner, offset))
1563 				break;
1564 		} else {
1565 			u64 ref_offset;
1566 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1567 			if (parent > 0) {
1568 				if (parent == ref_offset) {
1569 					err = 0;
1570 					break;
1571 				}
1572 				if (ref_offset < parent)
1573 					break;
1574 			} else {
1575 				if (root_objectid == ref_offset) {
1576 					err = 0;
1577 					break;
1578 				}
1579 				if (ref_offset < root_objectid)
1580 					break;
1581 			}
1582 		}
1583 		ptr += btrfs_extent_inline_ref_size(type);
1584 	}
1585 	if (err == -ENOENT && insert) {
1586 		if (item_size + extra_size >=
1587 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1588 			err = -EAGAIN;
1589 			goto out;
1590 		}
1591 		/*
1592 		 * To add new inline back ref, we have to make sure
1593 		 * there is no corresponding back ref item.
1594 		 * For simplicity, we just do not add new inline back
1595 		 * ref if there is any kind of item for this block
1596 		 */
1597 		if (find_next_key(path, 0, &key) == 0 &&
1598 		    key.objectid == bytenr &&
1599 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1600 			err = -EAGAIN;
1601 			goto out;
1602 		}
1603 	}
1604 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1605 out:
1606 	if (insert) {
1607 		path->keep_locks = 0;
1608 		btrfs_unlock_up_safe(path, 1);
1609 	}
1610 	return err;
1611 }
1612 
1613 /*
1614  * helper to add new inline back ref
1615  */
1616 static noinline_for_stack
1617 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1618 				 struct btrfs_path *path,
1619 				 struct btrfs_extent_inline_ref *iref,
1620 				 u64 parent, u64 root_objectid,
1621 				 u64 owner, u64 offset, int refs_to_add,
1622 				 struct btrfs_delayed_extent_op *extent_op)
1623 {
1624 	struct extent_buffer *leaf;
1625 	struct btrfs_extent_item *ei;
1626 	unsigned long ptr;
1627 	unsigned long end;
1628 	unsigned long item_offset;
1629 	u64 refs;
1630 	int size;
1631 	int type;
1632 
1633 	leaf = path->nodes[0];
1634 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 	item_offset = (unsigned long)iref - (unsigned long)ei;
1636 
1637 	type = extent_ref_type(parent, owner);
1638 	size = btrfs_extent_inline_ref_size(type);
1639 
1640 	btrfs_extend_item(path, size);
1641 
1642 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1643 	refs = btrfs_extent_refs(leaf, ei);
1644 	refs += refs_to_add;
1645 	btrfs_set_extent_refs(leaf, ei, refs);
1646 	if (extent_op)
1647 		__run_delayed_extent_op(extent_op, leaf, ei);
1648 
1649 	ptr = (unsigned long)ei + item_offset;
1650 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1651 	if (ptr < end - size)
1652 		memmove_extent_buffer(leaf, ptr + size, ptr,
1653 				      end - size - ptr);
1654 
1655 	iref = (struct btrfs_extent_inline_ref *)ptr;
1656 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1657 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1658 		struct btrfs_extent_data_ref *dref;
1659 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1660 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1661 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1662 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1663 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1664 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1665 		struct btrfs_shared_data_ref *sref;
1666 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1667 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1668 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1669 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1670 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1671 	} else {
1672 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1673 	}
1674 	btrfs_mark_buffer_dirty(leaf);
1675 }
1676 
1677 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1678 				 struct btrfs_path *path,
1679 				 struct btrfs_extent_inline_ref **ref_ret,
1680 				 u64 bytenr, u64 num_bytes, u64 parent,
1681 				 u64 root_objectid, u64 owner, u64 offset)
1682 {
1683 	int ret;
1684 
1685 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1686 					   num_bytes, parent, root_objectid,
1687 					   owner, offset, 0);
1688 	if (ret != -ENOENT)
1689 		return ret;
1690 
1691 	btrfs_release_path(path);
1692 	*ref_ret = NULL;
1693 
1694 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1695 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1696 					    root_objectid);
1697 	} else {
1698 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1699 					     root_objectid, owner, offset);
1700 	}
1701 	return ret;
1702 }
1703 
1704 /*
1705  * helper to update/remove inline back ref
1706  */
1707 static noinline_for_stack
1708 void update_inline_extent_backref(struct btrfs_path *path,
1709 				  struct btrfs_extent_inline_ref *iref,
1710 				  int refs_to_mod,
1711 				  struct btrfs_delayed_extent_op *extent_op,
1712 				  int *last_ref)
1713 {
1714 	struct extent_buffer *leaf = path->nodes[0];
1715 	struct btrfs_extent_item *ei;
1716 	struct btrfs_extent_data_ref *dref = NULL;
1717 	struct btrfs_shared_data_ref *sref = NULL;
1718 	unsigned long ptr;
1719 	unsigned long end;
1720 	u32 item_size;
1721 	int size;
1722 	int type;
1723 	u64 refs;
1724 
1725 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1726 	refs = btrfs_extent_refs(leaf, ei);
1727 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1728 	refs += refs_to_mod;
1729 	btrfs_set_extent_refs(leaf, ei, refs);
1730 	if (extent_op)
1731 		__run_delayed_extent_op(extent_op, leaf, ei);
1732 
1733 	/*
1734 	 * If type is invalid, we should have bailed out after
1735 	 * lookup_inline_extent_backref().
1736 	 */
1737 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1738 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1739 
1740 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1741 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1742 		refs = btrfs_extent_data_ref_count(leaf, dref);
1743 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1744 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1745 		refs = btrfs_shared_data_ref_count(leaf, sref);
1746 	} else {
1747 		refs = 1;
1748 		BUG_ON(refs_to_mod != -1);
1749 	}
1750 
1751 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1752 	refs += refs_to_mod;
1753 
1754 	if (refs > 0) {
1755 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1756 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1757 		else
1758 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1759 	} else {
1760 		*last_ref = 1;
1761 		size =  btrfs_extent_inline_ref_size(type);
1762 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1763 		ptr = (unsigned long)iref;
1764 		end = (unsigned long)ei + item_size;
1765 		if (ptr + size < end)
1766 			memmove_extent_buffer(leaf, ptr, ptr + size,
1767 					      end - ptr - size);
1768 		item_size -= size;
1769 		btrfs_truncate_item(path, item_size, 1);
1770 	}
1771 	btrfs_mark_buffer_dirty(leaf);
1772 }
1773 
1774 static noinline_for_stack
1775 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1776 				 struct btrfs_path *path,
1777 				 u64 bytenr, u64 num_bytes, u64 parent,
1778 				 u64 root_objectid, u64 owner,
1779 				 u64 offset, int refs_to_add,
1780 				 struct btrfs_delayed_extent_op *extent_op)
1781 {
1782 	struct btrfs_extent_inline_ref *iref;
1783 	int ret;
1784 
1785 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1786 					   num_bytes, parent, root_objectid,
1787 					   owner, offset, 1);
1788 	if (ret == 0) {
1789 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1790 		update_inline_extent_backref(path, iref, refs_to_add,
1791 					     extent_op, NULL);
1792 	} else if (ret == -ENOENT) {
1793 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1794 					    root_objectid, owner, offset,
1795 					    refs_to_add, extent_op);
1796 		ret = 0;
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1802 				 struct btrfs_path *path,
1803 				 u64 bytenr, u64 parent, u64 root_objectid,
1804 				 u64 owner, u64 offset, int refs_to_add)
1805 {
1806 	int ret;
1807 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1808 		BUG_ON(refs_to_add != 1);
1809 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1810 					    root_objectid);
1811 	} else {
1812 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1813 					     root_objectid, owner, offset,
1814 					     refs_to_add);
1815 	}
1816 	return ret;
1817 }
1818 
1819 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_path *path,
1821 				 struct btrfs_extent_inline_ref *iref,
1822 				 int refs_to_drop, int is_data, int *last_ref)
1823 {
1824 	int ret = 0;
1825 
1826 	BUG_ON(!is_data && refs_to_drop != 1);
1827 	if (iref) {
1828 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1829 					     last_ref);
1830 	} else if (is_data) {
1831 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1832 					     last_ref);
1833 	} else {
1834 		*last_ref = 1;
1835 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1836 	}
1837 	return ret;
1838 }
1839 
1840 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1841 			       u64 *discarded_bytes)
1842 {
1843 	int j, ret = 0;
1844 	u64 bytes_left, end;
1845 	u64 aligned_start = ALIGN(start, 1 << 9);
1846 
1847 	if (WARN_ON(start != aligned_start)) {
1848 		len -= aligned_start - start;
1849 		len = round_down(len, 1 << 9);
1850 		start = aligned_start;
1851 	}
1852 
1853 	*discarded_bytes = 0;
1854 
1855 	if (!len)
1856 		return 0;
1857 
1858 	end = start + len;
1859 	bytes_left = len;
1860 
1861 	/* Skip any superblocks on this device. */
1862 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1863 		u64 sb_start = btrfs_sb_offset(j);
1864 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1865 		u64 size = sb_start - start;
1866 
1867 		if (!in_range(sb_start, start, bytes_left) &&
1868 		    !in_range(sb_end, start, bytes_left) &&
1869 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1870 			continue;
1871 
1872 		/*
1873 		 * Superblock spans beginning of range.  Adjust start and
1874 		 * try again.
1875 		 */
1876 		if (sb_start <= start) {
1877 			start += sb_end - start;
1878 			if (start > end) {
1879 				bytes_left = 0;
1880 				break;
1881 			}
1882 			bytes_left = end - start;
1883 			continue;
1884 		}
1885 
1886 		if (size) {
1887 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1888 						   GFP_NOFS, 0);
1889 			if (!ret)
1890 				*discarded_bytes += size;
1891 			else if (ret != -EOPNOTSUPP)
1892 				return ret;
1893 		}
1894 
1895 		start = sb_end;
1896 		if (start > end) {
1897 			bytes_left = 0;
1898 			break;
1899 		}
1900 		bytes_left = end - start;
1901 	}
1902 
1903 	if (bytes_left) {
1904 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1905 					   GFP_NOFS, 0);
1906 		if (!ret)
1907 			*discarded_bytes += bytes_left;
1908 	}
1909 	return ret;
1910 }
1911 
1912 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1913 			 u64 num_bytes, u64 *actual_bytes)
1914 {
1915 	int ret;
1916 	u64 discarded_bytes = 0;
1917 	struct btrfs_bio *bbio = NULL;
1918 
1919 
1920 	/*
1921 	 * Avoid races with device replace and make sure our bbio has devices
1922 	 * associated to its stripes that don't go away while we are discarding.
1923 	 */
1924 	btrfs_bio_counter_inc_blocked(fs_info);
1925 	/* Tell the block device(s) that the sectors can be discarded */
1926 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1927 			      &bbio, 0);
1928 	/* Error condition is -ENOMEM */
1929 	if (!ret) {
1930 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1931 		int i;
1932 
1933 
1934 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1935 			u64 bytes;
1936 			struct request_queue *req_q;
1937 
1938 			if (!stripe->dev->bdev) {
1939 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1940 				continue;
1941 			}
1942 			req_q = bdev_get_queue(stripe->dev->bdev);
1943 			if (!blk_queue_discard(req_q))
1944 				continue;
1945 
1946 			ret = btrfs_issue_discard(stripe->dev->bdev,
1947 						  stripe->physical,
1948 						  stripe->length,
1949 						  &bytes);
1950 			if (!ret)
1951 				discarded_bytes += bytes;
1952 			else if (ret != -EOPNOTSUPP)
1953 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1954 
1955 			/*
1956 			 * Just in case we get back EOPNOTSUPP for some reason,
1957 			 * just ignore the return value so we don't screw up
1958 			 * people calling discard_extent.
1959 			 */
1960 			ret = 0;
1961 		}
1962 		btrfs_put_bbio(bbio);
1963 	}
1964 	btrfs_bio_counter_dec(fs_info);
1965 
1966 	if (actual_bytes)
1967 		*actual_bytes = discarded_bytes;
1968 
1969 
1970 	if (ret == -EOPNOTSUPP)
1971 		ret = 0;
1972 	return ret;
1973 }
1974 
1975 /* Can return -ENOMEM */
1976 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1977 			 struct btrfs_ref *generic_ref)
1978 {
1979 	struct btrfs_fs_info *fs_info = trans->fs_info;
1980 	int old_ref_mod, new_ref_mod;
1981 	int ret;
1982 
1983 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1984 	       generic_ref->action);
1985 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1986 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1987 
1988 	if (generic_ref->type == BTRFS_REF_METADATA)
1989 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1990 				NULL, &old_ref_mod, &new_ref_mod);
1991 	else
1992 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1993 						 &old_ref_mod, &new_ref_mod);
1994 
1995 	btrfs_ref_tree_mod(fs_info, generic_ref);
1996 
1997 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1998 		sub_pinned_bytes(fs_info, generic_ref);
1999 
2000 	return ret;
2001 }
2002 
2003 /*
2004  * __btrfs_inc_extent_ref - insert backreference for a given extent
2005  *
2006  * @trans:	    Handle of transaction
2007  *
2008  * @node:	    The delayed ref node used to get the bytenr/length for
2009  *		    extent whose references are incremented.
2010  *
2011  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2012  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2013  *		    bytenr of the parent block. Since new extents are always
2014  *		    created with indirect references, this will only be the case
2015  *		    when relocating a shared extent. In that case, root_objectid
2016  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2017  *		    be 0
2018  *
2019  * @root_objectid:  The id of the root where this modification has originated,
2020  *		    this can be either one of the well-known metadata trees or
2021  *		    the subvolume id which references this extent.
2022  *
2023  * @owner:	    For data extents it is the inode number of the owning file.
2024  *		    For metadata extents this parameter holds the level in the
2025  *		    tree of the extent.
2026  *
2027  * @offset:	    For metadata extents the offset is ignored and is currently
2028  *		    always passed as 0. For data extents it is the fileoffset
2029  *		    this extent belongs to.
2030  *
2031  * @refs_to_add     Number of references to add
2032  *
2033  * @extent_op       Pointer to a structure, holding information necessary when
2034  *                  updating a tree block's flags
2035  *
2036  */
2037 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2038 				  struct btrfs_delayed_ref_node *node,
2039 				  u64 parent, u64 root_objectid,
2040 				  u64 owner, u64 offset, int refs_to_add,
2041 				  struct btrfs_delayed_extent_op *extent_op)
2042 {
2043 	struct btrfs_path *path;
2044 	struct extent_buffer *leaf;
2045 	struct btrfs_extent_item *item;
2046 	struct btrfs_key key;
2047 	u64 bytenr = node->bytenr;
2048 	u64 num_bytes = node->num_bytes;
2049 	u64 refs;
2050 	int ret;
2051 
2052 	path = btrfs_alloc_path();
2053 	if (!path)
2054 		return -ENOMEM;
2055 
2056 	path->reada = READA_FORWARD;
2057 	path->leave_spinning = 1;
2058 	/* this will setup the path even if it fails to insert the back ref */
2059 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2060 					   parent, root_objectid, owner,
2061 					   offset, refs_to_add, extent_op);
2062 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2063 		goto out;
2064 
2065 	/*
2066 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2067 	 * inline extent ref, so just update the reference count and add a
2068 	 * normal backref.
2069 	 */
2070 	leaf = path->nodes[0];
2071 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2072 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2073 	refs = btrfs_extent_refs(leaf, item);
2074 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2075 	if (extent_op)
2076 		__run_delayed_extent_op(extent_op, leaf, item);
2077 
2078 	btrfs_mark_buffer_dirty(leaf);
2079 	btrfs_release_path(path);
2080 
2081 	path->reada = READA_FORWARD;
2082 	path->leave_spinning = 1;
2083 	/* now insert the actual backref */
2084 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2085 				    owner, offset, refs_to_add);
2086 	if (ret)
2087 		btrfs_abort_transaction(trans, ret);
2088 out:
2089 	btrfs_free_path(path);
2090 	return ret;
2091 }
2092 
2093 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2094 				struct btrfs_delayed_ref_node *node,
2095 				struct btrfs_delayed_extent_op *extent_op,
2096 				int insert_reserved)
2097 {
2098 	int ret = 0;
2099 	struct btrfs_delayed_data_ref *ref;
2100 	struct btrfs_key ins;
2101 	u64 parent = 0;
2102 	u64 ref_root = 0;
2103 	u64 flags = 0;
2104 
2105 	ins.objectid = node->bytenr;
2106 	ins.offset = node->num_bytes;
2107 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2108 
2109 	ref = btrfs_delayed_node_to_data_ref(node);
2110 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2111 
2112 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2113 		parent = ref->parent;
2114 	ref_root = ref->root;
2115 
2116 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2117 		if (extent_op)
2118 			flags |= extent_op->flags_to_set;
2119 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
2120 						 flags, ref->objectid,
2121 						 ref->offset, &ins,
2122 						 node->ref_mod);
2123 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2124 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2125 					     ref->objectid, ref->offset,
2126 					     node->ref_mod, extent_op);
2127 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2128 		ret = __btrfs_free_extent(trans, node, parent,
2129 					  ref_root, ref->objectid,
2130 					  ref->offset, node->ref_mod,
2131 					  extent_op);
2132 	} else {
2133 		BUG();
2134 	}
2135 	return ret;
2136 }
2137 
2138 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2139 				    struct extent_buffer *leaf,
2140 				    struct btrfs_extent_item *ei)
2141 {
2142 	u64 flags = btrfs_extent_flags(leaf, ei);
2143 	if (extent_op->update_flags) {
2144 		flags |= extent_op->flags_to_set;
2145 		btrfs_set_extent_flags(leaf, ei, flags);
2146 	}
2147 
2148 	if (extent_op->update_key) {
2149 		struct btrfs_tree_block_info *bi;
2150 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2151 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2152 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2153 	}
2154 }
2155 
2156 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2157 				 struct btrfs_delayed_ref_head *head,
2158 				 struct btrfs_delayed_extent_op *extent_op)
2159 {
2160 	struct btrfs_fs_info *fs_info = trans->fs_info;
2161 	struct btrfs_key key;
2162 	struct btrfs_path *path;
2163 	struct btrfs_extent_item *ei;
2164 	struct extent_buffer *leaf;
2165 	u32 item_size;
2166 	int ret;
2167 	int err = 0;
2168 	int metadata = !extent_op->is_data;
2169 
2170 	if (trans->aborted)
2171 		return 0;
2172 
2173 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2174 		metadata = 0;
2175 
2176 	path = btrfs_alloc_path();
2177 	if (!path)
2178 		return -ENOMEM;
2179 
2180 	key.objectid = head->bytenr;
2181 
2182 	if (metadata) {
2183 		key.type = BTRFS_METADATA_ITEM_KEY;
2184 		key.offset = extent_op->level;
2185 	} else {
2186 		key.type = BTRFS_EXTENT_ITEM_KEY;
2187 		key.offset = head->num_bytes;
2188 	}
2189 
2190 again:
2191 	path->reada = READA_FORWARD;
2192 	path->leave_spinning = 1;
2193 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2194 	if (ret < 0) {
2195 		err = ret;
2196 		goto out;
2197 	}
2198 	if (ret > 0) {
2199 		if (metadata) {
2200 			if (path->slots[0] > 0) {
2201 				path->slots[0]--;
2202 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2203 						      path->slots[0]);
2204 				if (key.objectid == head->bytenr &&
2205 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2206 				    key.offset == head->num_bytes)
2207 					ret = 0;
2208 			}
2209 			if (ret > 0) {
2210 				btrfs_release_path(path);
2211 				metadata = 0;
2212 
2213 				key.objectid = head->bytenr;
2214 				key.offset = head->num_bytes;
2215 				key.type = BTRFS_EXTENT_ITEM_KEY;
2216 				goto again;
2217 			}
2218 		} else {
2219 			err = -EIO;
2220 			goto out;
2221 		}
2222 	}
2223 
2224 	leaf = path->nodes[0];
2225 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2226 
2227 	if (unlikely(item_size < sizeof(*ei))) {
2228 		err = -EINVAL;
2229 		btrfs_print_v0_err(fs_info);
2230 		btrfs_abort_transaction(trans, err);
2231 		goto out;
2232 	}
2233 
2234 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2235 	__run_delayed_extent_op(extent_op, leaf, ei);
2236 
2237 	btrfs_mark_buffer_dirty(leaf);
2238 out:
2239 	btrfs_free_path(path);
2240 	return err;
2241 }
2242 
2243 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2244 				struct btrfs_delayed_ref_node *node,
2245 				struct btrfs_delayed_extent_op *extent_op,
2246 				int insert_reserved)
2247 {
2248 	int ret = 0;
2249 	struct btrfs_delayed_tree_ref *ref;
2250 	u64 parent = 0;
2251 	u64 ref_root = 0;
2252 
2253 	ref = btrfs_delayed_node_to_tree_ref(node);
2254 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2255 
2256 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2257 		parent = ref->parent;
2258 	ref_root = ref->root;
2259 
2260 	if (node->ref_mod != 1) {
2261 		btrfs_err(trans->fs_info,
2262 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2263 			  node->bytenr, node->ref_mod, node->action, ref_root,
2264 			  parent);
2265 		return -EIO;
2266 	}
2267 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2268 		BUG_ON(!extent_op || !extent_op->update_flags);
2269 		ret = alloc_reserved_tree_block(trans, node, extent_op);
2270 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2271 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2272 					     ref->level, 0, 1, extent_op);
2273 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2274 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
2275 					  ref->level, 0, 1, extent_op);
2276 	} else {
2277 		BUG();
2278 	}
2279 	return ret;
2280 }
2281 
2282 /* helper function to actually process a single delayed ref entry */
2283 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2284 			       struct btrfs_delayed_ref_node *node,
2285 			       struct btrfs_delayed_extent_op *extent_op,
2286 			       int insert_reserved)
2287 {
2288 	int ret = 0;
2289 
2290 	if (trans->aborted) {
2291 		if (insert_reserved)
2292 			btrfs_pin_extent(trans->fs_info, node->bytenr,
2293 					 node->num_bytes, 1);
2294 		return 0;
2295 	}
2296 
2297 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2298 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2299 		ret = run_delayed_tree_ref(trans, node, extent_op,
2300 					   insert_reserved);
2301 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2302 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2303 		ret = run_delayed_data_ref(trans, node, extent_op,
2304 					   insert_reserved);
2305 	else
2306 		BUG();
2307 	if (ret && insert_reserved)
2308 		btrfs_pin_extent(trans->fs_info, node->bytenr,
2309 				 node->num_bytes, 1);
2310 	return ret;
2311 }
2312 
2313 static inline struct btrfs_delayed_ref_node *
2314 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2315 {
2316 	struct btrfs_delayed_ref_node *ref;
2317 
2318 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2319 		return NULL;
2320 
2321 	/*
2322 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2323 	 * This is to prevent a ref count from going down to zero, which deletes
2324 	 * the extent item from the extent tree, when there still are references
2325 	 * to add, which would fail because they would not find the extent item.
2326 	 */
2327 	if (!list_empty(&head->ref_add_list))
2328 		return list_first_entry(&head->ref_add_list,
2329 				struct btrfs_delayed_ref_node, add_list);
2330 
2331 	ref = rb_entry(rb_first_cached(&head->ref_tree),
2332 		       struct btrfs_delayed_ref_node, ref_node);
2333 	ASSERT(list_empty(&ref->add_list));
2334 	return ref;
2335 }
2336 
2337 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2338 				      struct btrfs_delayed_ref_head *head)
2339 {
2340 	spin_lock(&delayed_refs->lock);
2341 	head->processing = 0;
2342 	delayed_refs->num_heads_ready++;
2343 	spin_unlock(&delayed_refs->lock);
2344 	btrfs_delayed_ref_unlock(head);
2345 }
2346 
2347 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2348 				struct btrfs_delayed_ref_head *head)
2349 {
2350 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2351 
2352 	if (!extent_op)
2353 		return NULL;
2354 
2355 	if (head->must_insert_reserved) {
2356 		head->extent_op = NULL;
2357 		btrfs_free_delayed_extent_op(extent_op);
2358 		return NULL;
2359 	}
2360 	return extent_op;
2361 }
2362 
2363 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2364 				     struct btrfs_delayed_ref_head *head)
2365 {
2366 	struct btrfs_delayed_extent_op *extent_op;
2367 	int ret;
2368 
2369 	extent_op = cleanup_extent_op(head);
2370 	if (!extent_op)
2371 		return 0;
2372 	head->extent_op = NULL;
2373 	spin_unlock(&head->lock);
2374 	ret = run_delayed_extent_op(trans, head, extent_op);
2375 	btrfs_free_delayed_extent_op(extent_op);
2376 	return ret ? ret : 1;
2377 }
2378 
2379 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2380 				  struct btrfs_delayed_ref_root *delayed_refs,
2381 				  struct btrfs_delayed_ref_head *head)
2382 {
2383 	int nr_items = 1;	/* Dropping this ref head update. */
2384 
2385 	if (head->total_ref_mod < 0) {
2386 		struct btrfs_space_info *space_info;
2387 		u64 flags;
2388 
2389 		if (head->is_data)
2390 			flags = BTRFS_BLOCK_GROUP_DATA;
2391 		else if (head->is_system)
2392 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2393 		else
2394 			flags = BTRFS_BLOCK_GROUP_METADATA;
2395 		space_info = btrfs_find_space_info(fs_info, flags);
2396 		ASSERT(space_info);
2397 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2398 				   -head->num_bytes,
2399 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2400 
2401 		/*
2402 		 * We had csum deletions accounted for in our delayed refs rsv,
2403 		 * we need to drop the csum leaves for this update from our
2404 		 * delayed_refs_rsv.
2405 		 */
2406 		if (head->is_data) {
2407 			spin_lock(&delayed_refs->lock);
2408 			delayed_refs->pending_csums -= head->num_bytes;
2409 			spin_unlock(&delayed_refs->lock);
2410 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2411 				head->num_bytes);
2412 		}
2413 	}
2414 
2415 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2416 }
2417 
2418 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2419 			    struct btrfs_delayed_ref_head *head)
2420 {
2421 
2422 	struct btrfs_fs_info *fs_info = trans->fs_info;
2423 	struct btrfs_delayed_ref_root *delayed_refs;
2424 	int ret;
2425 
2426 	delayed_refs = &trans->transaction->delayed_refs;
2427 
2428 	ret = run_and_cleanup_extent_op(trans, head);
2429 	if (ret < 0) {
2430 		unselect_delayed_ref_head(delayed_refs, head);
2431 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2432 		return ret;
2433 	} else if (ret) {
2434 		return ret;
2435 	}
2436 
2437 	/*
2438 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2439 	 * and then re-check to make sure nobody got added.
2440 	 */
2441 	spin_unlock(&head->lock);
2442 	spin_lock(&delayed_refs->lock);
2443 	spin_lock(&head->lock);
2444 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2445 		spin_unlock(&head->lock);
2446 		spin_unlock(&delayed_refs->lock);
2447 		return 1;
2448 	}
2449 	btrfs_delete_ref_head(delayed_refs, head);
2450 	spin_unlock(&head->lock);
2451 	spin_unlock(&delayed_refs->lock);
2452 
2453 	if (head->must_insert_reserved) {
2454 		btrfs_pin_extent(fs_info, head->bytenr,
2455 				 head->num_bytes, 1);
2456 		if (head->is_data) {
2457 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2458 					      head->num_bytes);
2459 		}
2460 	}
2461 
2462 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2463 
2464 	trace_run_delayed_ref_head(fs_info, head, 0);
2465 	btrfs_delayed_ref_unlock(head);
2466 	btrfs_put_delayed_ref_head(head);
2467 	return 0;
2468 }
2469 
2470 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2471 					struct btrfs_trans_handle *trans)
2472 {
2473 	struct btrfs_delayed_ref_root *delayed_refs =
2474 		&trans->transaction->delayed_refs;
2475 	struct btrfs_delayed_ref_head *head = NULL;
2476 	int ret;
2477 
2478 	spin_lock(&delayed_refs->lock);
2479 	head = btrfs_select_ref_head(delayed_refs);
2480 	if (!head) {
2481 		spin_unlock(&delayed_refs->lock);
2482 		return head;
2483 	}
2484 
2485 	/*
2486 	 * Grab the lock that says we are going to process all the refs for
2487 	 * this head
2488 	 */
2489 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
2490 	spin_unlock(&delayed_refs->lock);
2491 
2492 	/*
2493 	 * We may have dropped the spin lock to get the head mutex lock, and
2494 	 * that might have given someone else time to free the head.  If that's
2495 	 * true, it has been removed from our list and we can move on.
2496 	 */
2497 	if (ret == -EAGAIN)
2498 		head = ERR_PTR(-EAGAIN);
2499 
2500 	return head;
2501 }
2502 
2503 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2504 				    struct btrfs_delayed_ref_head *locked_ref,
2505 				    unsigned long *run_refs)
2506 {
2507 	struct btrfs_fs_info *fs_info = trans->fs_info;
2508 	struct btrfs_delayed_ref_root *delayed_refs;
2509 	struct btrfs_delayed_extent_op *extent_op;
2510 	struct btrfs_delayed_ref_node *ref;
2511 	int must_insert_reserved = 0;
2512 	int ret;
2513 
2514 	delayed_refs = &trans->transaction->delayed_refs;
2515 
2516 	lockdep_assert_held(&locked_ref->mutex);
2517 	lockdep_assert_held(&locked_ref->lock);
2518 
2519 	while ((ref = select_delayed_ref(locked_ref))) {
2520 		if (ref->seq &&
2521 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2522 			spin_unlock(&locked_ref->lock);
2523 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2524 			return -EAGAIN;
2525 		}
2526 
2527 		(*run_refs)++;
2528 		ref->in_tree = 0;
2529 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2530 		RB_CLEAR_NODE(&ref->ref_node);
2531 		if (!list_empty(&ref->add_list))
2532 			list_del(&ref->add_list);
2533 		/*
2534 		 * When we play the delayed ref, also correct the ref_mod on
2535 		 * head
2536 		 */
2537 		switch (ref->action) {
2538 		case BTRFS_ADD_DELAYED_REF:
2539 		case BTRFS_ADD_DELAYED_EXTENT:
2540 			locked_ref->ref_mod -= ref->ref_mod;
2541 			break;
2542 		case BTRFS_DROP_DELAYED_REF:
2543 			locked_ref->ref_mod += ref->ref_mod;
2544 			break;
2545 		default:
2546 			WARN_ON(1);
2547 		}
2548 		atomic_dec(&delayed_refs->num_entries);
2549 
2550 		/*
2551 		 * Record the must_insert_reserved flag before we drop the
2552 		 * spin lock.
2553 		 */
2554 		must_insert_reserved = locked_ref->must_insert_reserved;
2555 		locked_ref->must_insert_reserved = 0;
2556 
2557 		extent_op = locked_ref->extent_op;
2558 		locked_ref->extent_op = NULL;
2559 		spin_unlock(&locked_ref->lock);
2560 
2561 		ret = run_one_delayed_ref(trans, ref, extent_op,
2562 					  must_insert_reserved);
2563 
2564 		btrfs_free_delayed_extent_op(extent_op);
2565 		if (ret) {
2566 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2567 			btrfs_put_delayed_ref(ref);
2568 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2569 				    ret);
2570 			return ret;
2571 		}
2572 
2573 		btrfs_put_delayed_ref(ref);
2574 		cond_resched();
2575 
2576 		spin_lock(&locked_ref->lock);
2577 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 /*
2584  * Returns 0 on success or if called with an already aborted transaction.
2585  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2586  */
2587 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2588 					     unsigned long nr)
2589 {
2590 	struct btrfs_fs_info *fs_info = trans->fs_info;
2591 	struct btrfs_delayed_ref_root *delayed_refs;
2592 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2593 	ktime_t start = ktime_get();
2594 	int ret;
2595 	unsigned long count = 0;
2596 	unsigned long actual_count = 0;
2597 
2598 	delayed_refs = &trans->transaction->delayed_refs;
2599 	do {
2600 		if (!locked_ref) {
2601 			locked_ref = btrfs_obtain_ref_head(trans);
2602 			if (IS_ERR_OR_NULL(locked_ref)) {
2603 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2604 					continue;
2605 				} else {
2606 					break;
2607 				}
2608 			}
2609 			count++;
2610 		}
2611 		/*
2612 		 * We need to try and merge add/drops of the same ref since we
2613 		 * can run into issues with relocate dropping the implicit ref
2614 		 * and then it being added back again before the drop can
2615 		 * finish.  If we merged anything we need to re-loop so we can
2616 		 * get a good ref.
2617 		 * Or we can get node references of the same type that weren't
2618 		 * merged when created due to bumps in the tree mod seq, and
2619 		 * we need to merge them to prevent adding an inline extent
2620 		 * backref before dropping it (triggering a BUG_ON at
2621 		 * insert_inline_extent_backref()).
2622 		 */
2623 		spin_lock(&locked_ref->lock);
2624 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2625 
2626 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2627 						      &actual_count);
2628 		if (ret < 0 && ret != -EAGAIN) {
2629 			/*
2630 			 * Error, btrfs_run_delayed_refs_for_head already
2631 			 * unlocked everything so just bail out
2632 			 */
2633 			return ret;
2634 		} else if (!ret) {
2635 			/*
2636 			 * Success, perform the usual cleanup of a processed
2637 			 * head
2638 			 */
2639 			ret = cleanup_ref_head(trans, locked_ref);
2640 			if (ret > 0 ) {
2641 				/* We dropped our lock, we need to loop. */
2642 				ret = 0;
2643 				continue;
2644 			} else if (ret) {
2645 				return ret;
2646 			}
2647 		}
2648 
2649 		/*
2650 		 * Either success case or btrfs_run_delayed_refs_for_head
2651 		 * returned -EAGAIN, meaning we need to select another head
2652 		 */
2653 
2654 		locked_ref = NULL;
2655 		cond_resched();
2656 	} while ((nr != -1 && count < nr) || locked_ref);
2657 
2658 	/*
2659 	 * We don't want to include ref heads since we can have empty ref heads
2660 	 * and those will drastically skew our runtime down since we just do
2661 	 * accounting, no actual extent tree updates.
2662 	 */
2663 	if (actual_count > 0) {
2664 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2665 		u64 avg;
2666 
2667 		/*
2668 		 * We weigh the current average higher than our current runtime
2669 		 * to avoid large swings in the average.
2670 		 */
2671 		spin_lock(&delayed_refs->lock);
2672 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2673 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2674 		spin_unlock(&delayed_refs->lock);
2675 	}
2676 	return 0;
2677 }
2678 
2679 #ifdef SCRAMBLE_DELAYED_REFS
2680 /*
2681  * Normally delayed refs get processed in ascending bytenr order. This
2682  * correlates in most cases to the order added. To expose dependencies on this
2683  * order, we start to process the tree in the middle instead of the beginning
2684  */
2685 static u64 find_middle(struct rb_root *root)
2686 {
2687 	struct rb_node *n = root->rb_node;
2688 	struct btrfs_delayed_ref_node *entry;
2689 	int alt = 1;
2690 	u64 middle;
2691 	u64 first = 0, last = 0;
2692 
2693 	n = rb_first(root);
2694 	if (n) {
2695 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2696 		first = entry->bytenr;
2697 	}
2698 	n = rb_last(root);
2699 	if (n) {
2700 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2701 		last = entry->bytenr;
2702 	}
2703 	n = root->rb_node;
2704 
2705 	while (n) {
2706 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2707 		WARN_ON(!entry->in_tree);
2708 
2709 		middle = entry->bytenr;
2710 
2711 		if (alt)
2712 			n = n->rb_left;
2713 		else
2714 			n = n->rb_right;
2715 
2716 		alt = 1 - alt;
2717 	}
2718 	return middle;
2719 }
2720 #endif
2721 
2722 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2723 {
2724 	u64 num_bytes;
2725 
2726 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2727 			     sizeof(struct btrfs_extent_inline_ref));
2728 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2729 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2730 
2731 	/*
2732 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2733 	 * closer to what we're really going to want to use.
2734 	 */
2735 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2736 }
2737 
2738 /*
2739  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2740  * would require to store the csums for that many bytes.
2741  */
2742 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2743 {
2744 	u64 csum_size;
2745 	u64 num_csums_per_leaf;
2746 	u64 num_csums;
2747 
2748 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2749 	num_csums_per_leaf = div64_u64(csum_size,
2750 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2751 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2752 	num_csums += num_csums_per_leaf - 1;
2753 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2754 	return num_csums;
2755 }
2756 
2757 /*
2758  * this starts processing the delayed reference count updates and
2759  * extent insertions we have queued up so far.  count can be
2760  * 0, which means to process everything in the tree at the start
2761  * of the run (but not newly added entries), or it can be some target
2762  * number you'd like to process.
2763  *
2764  * Returns 0 on success or if called with an aborted transaction
2765  * Returns <0 on error and aborts the transaction
2766  */
2767 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2768 			   unsigned long count)
2769 {
2770 	struct btrfs_fs_info *fs_info = trans->fs_info;
2771 	struct rb_node *node;
2772 	struct btrfs_delayed_ref_root *delayed_refs;
2773 	struct btrfs_delayed_ref_head *head;
2774 	int ret;
2775 	int run_all = count == (unsigned long)-1;
2776 
2777 	/* We'll clean this up in btrfs_cleanup_transaction */
2778 	if (trans->aborted)
2779 		return 0;
2780 
2781 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2782 		return 0;
2783 
2784 	delayed_refs = &trans->transaction->delayed_refs;
2785 	if (count == 0)
2786 		count = atomic_read(&delayed_refs->num_entries) * 2;
2787 
2788 again:
2789 #ifdef SCRAMBLE_DELAYED_REFS
2790 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2791 #endif
2792 	ret = __btrfs_run_delayed_refs(trans, count);
2793 	if (ret < 0) {
2794 		btrfs_abort_transaction(trans, ret);
2795 		return ret;
2796 	}
2797 
2798 	if (run_all) {
2799 		btrfs_create_pending_block_groups(trans);
2800 
2801 		spin_lock(&delayed_refs->lock);
2802 		node = rb_first_cached(&delayed_refs->href_root);
2803 		if (!node) {
2804 			spin_unlock(&delayed_refs->lock);
2805 			goto out;
2806 		}
2807 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 				href_node);
2809 		refcount_inc(&head->refs);
2810 		spin_unlock(&delayed_refs->lock);
2811 
2812 		/* Mutex was contended, block until it's released and retry. */
2813 		mutex_lock(&head->mutex);
2814 		mutex_unlock(&head->mutex);
2815 
2816 		btrfs_put_delayed_ref_head(head);
2817 		cond_resched();
2818 		goto again;
2819 	}
2820 out:
2821 	return 0;
2822 }
2823 
2824 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2825 				u64 bytenr, u64 num_bytes, u64 flags,
2826 				int level, int is_data)
2827 {
2828 	struct btrfs_delayed_extent_op *extent_op;
2829 	int ret;
2830 
2831 	extent_op = btrfs_alloc_delayed_extent_op();
2832 	if (!extent_op)
2833 		return -ENOMEM;
2834 
2835 	extent_op->flags_to_set = flags;
2836 	extent_op->update_flags = true;
2837 	extent_op->update_key = false;
2838 	extent_op->is_data = is_data ? true : false;
2839 	extent_op->level = level;
2840 
2841 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2842 	if (ret)
2843 		btrfs_free_delayed_extent_op(extent_op);
2844 	return ret;
2845 }
2846 
2847 static noinline int check_delayed_ref(struct btrfs_root *root,
2848 				      struct btrfs_path *path,
2849 				      u64 objectid, u64 offset, u64 bytenr)
2850 {
2851 	struct btrfs_delayed_ref_head *head;
2852 	struct btrfs_delayed_ref_node *ref;
2853 	struct btrfs_delayed_data_ref *data_ref;
2854 	struct btrfs_delayed_ref_root *delayed_refs;
2855 	struct btrfs_transaction *cur_trans;
2856 	struct rb_node *node;
2857 	int ret = 0;
2858 
2859 	spin_lock(&root->fs_info->trans_lock);
2860 	cur_trans = root->fs_info->running_transaction;
2861 	if (cur_trans)
2862 		refcount_inc(&cur_trans->use_count);
2863 	spin_unlock(&root->fs_info->trans_lock);
2864 	if (!cur_trans)
2865 		return 0;
2866 
2867 	delayed_refs = &cur_trans->delayed_refs;
2868 	spin_lock(&delayed_refs->lock);
2869 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2870 	if (!head) {
2871 		spin_unlock(&delayed_refs->lock);
2872 		btrfs_put_transaction(cur_trans);
2873 		return 0;
2874 	}
2875 
2876 	if (!mutex_trylock(&head->mutex)) {
2877 		refcount_inc(&head->refs);
2878 		spin_unlock(&delayed_refs->lock);
2879 
2880 		btrfs_release_path(path);
2881 
2882 		/*
2883 		 * Mutex was contended, block until it's released and let
2884 		 * caller try again
2885 		 */
2886 		mutex_lock(&head->mutex);
2887 		mutex_unlock(&head->mutex);
2888 		btrfs_put_delayed_ref_head(head);
2889 		btrfs_put_transaction(cur_trans);
2890 		return -EAGAIN;
2891 	}
2892 	spin_unlock(&delayed_refs->lock);
2893 
2894 	spin_lock(&head->lock);
2895 	/*
2896 	 * XXX: We should replace this with a proper search function in the
2897 	 * future.
2898 	 */
2899 	for (node = rb_first_cached(&head->ref_tree); node;
2900 	     node = rb_next(node)) {
2901 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2902 		/* If it's a shared ref we know a cross reference exists */
2903 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2904 			ret = 1;
2905 			break;
2906 		}
2907 
2908 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2909 
2910 		/*
2911 		 * If our ref doesn't match the one we're currently looking at
2912 		 * then we have a cross reference.
2913 		 */
2914 		if (data_ref->root != root->root_key.objectid ||
2915 		    data_ref->objectid != objectid ||
2916 		    data_ref->offset != offset) {
2917 			ret = 1;
2918 			break;
2919 		}
2920 	}
2921 	spin_unlock(&head->lock);
2922 	mutex_unlock(&head->mutex);
2923 	btrfs_put_transaction(cur_trans);
2924 	return ret;
2925 }
2926 
2927 static noinline int check_committed_ref(struct btrfs_root *root,
2928 					struct btrfs_path *path,
2929 					u64 objectid, u64 offset, u64 bytenr)
2930 {
2931 	struct btrfs_fs_info *fs_info = root->fs_info;
2932 	struct btrfs_root *extent_root = fs_info->extent_root;
2933 	struct extent_buffer *leaf;
2934 	struct btrfs_extent_data_ref *ref;
2935 	struct btrfs_extent_inline_ref *iref;
2936 	struct btrfs_extent_item *ei;
2937 	struct btrfs_key key;
2938 	u32 item_size;
2939 	int type;
2940 	int ret;
2941 
2942 	key.objectid = bytenr;
2943 	key.offset = (u64)-1;
2944 	key.type = BTRFS_EXTENT_ITEM_KEY;
2945 
2946 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2947 	if (ret < 0)
2948 		goto out;
2949 	BUG_ON(ret == 0); /* Corruption */
2950 
2951 	ret = -ENOENT;
2952 	if (path->slots[0] == 0)
2953 		goto out;
2954 
2955 	path->slots[0]--;
2956 	leaf = path->nodes[0];
2957 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2958 
2959 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2960 		goto out;
2961 
2962 	ret = 1;
2963 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2964 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2965 
2966 	if (item_size != sizeof(*ei) +
2967 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2968 		goto out;
2969 
2970 	if (btrfs_extent_generation(leaf, ei) <=
2971 	    btrfs_root_last_snapshot(&root->root_item))
2972 		goto out;
2973 
2974 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2975 
2976 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2977 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2978 		goto out;
2979 
2980 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2981 	if (btrfs_extent_refs(leaf, ei) !=
2982 	    btrfs_extent_data_ref_count(leaf, ref) ||
2983 	    btrfs_extent_data_ref_root(leaf, ref) !=
2984 	    root->root_key.objectid ||
2985 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2986 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2987 		goto out;
2988 
2989 	ret = 0;
2990 out:
2991 	return ret;
2992 }
2993 
2994 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2995 			  u64 bytenr)
2996 {
2997 	struct btrfs_path *path;
2998 	int ret;
2999 
3000 	path = btrfs_alloc_path();
3001 	if (!path)
3002 		return -ENOMEM;
3003 
3004 	do {
3005 		ret = check_committed_ref(root, path, objectid,
3006 					  offset, bytenr);
3007 		if (ret && ret != -ENOENT)
3008 			goto out;
3009 
3010 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3011 	} while (ret == -EAGAIN);
3012 
3013 out:
3014 	btrfs_free_path(path);
3015 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3016 		WARN_ON(ret > 0);
3017 	return ret;
3018 }
3019 
3020 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3021 			   struct btrfs_root *root,
3022 			   struct extent_buffer *buf,
3023 			   int full_backref, int inc)
3024 {
3025 	struct btrfs_fs_info *fs_info = root->fs_info;
3026 	u64 bytenr;
3027 	u64 num_bytes;
3028 	u64 parent;
3029 	u64 ref_root;
3030 	u32 nritems;
3031 	struct btrfs_key key;
3032 	struct btrfs_file_extent_item *fi;
3033 	struct btrfs_ref generic_ref = { 0 };
3034 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
3035 	int i;
3036 	int action;
3037 	int level;
3038 	int ret = 0;
3039 
3040 	if (btrfs_is_testing(fs_info))
3041 		return 0;
3042 
3043 	ref_root = btrfs_header_owner(buf);
3044 	nritems = btrfs_header_nritems(buf);
3045 	level = btrfs_header_level(buf);
3046 
3047 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3048 		return 0;
3049 
3050 	if (full_backref)
3051 		parent = buf->start;
3052 	else
3053 		parent = 0;
3054 	if (inc)
3055 		action = BTRFS_ADD_DELAYED_REF;
3056 	else
3057 		action = BTRFS_DROP_DELAYED_REF;
3058 
3059 	for (i = 0; i < nritems; i++) {
3060 		if (level == 0) {
3061 			btrfs_item_key_to_cpu(buf, &key, i);
3062 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3063 				continue;
3064 			fi = btrfs_item_ptr(buf, i,
3065 					    struct btrfs_file_extent_item);
3066 			if (btrfs_file_extent_type(buf, fi) ==
3067 			    BTRFS_FILE_EXTENT_INLINE)
3068 				continue;
3069 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3070 			if (bytenr == 0)
3071 				continue;
3072 
3073 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3074 			key.offset -= btrfs_file_extent_offset(buf, fi);
3075 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
3076 					       num_bytes, parent);
3077 			generic_ref.real_root = root->root_key.objectid;
3078 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3079 					    key.offset);
3080 			generic_ref.skip_qgroup = for_reloc;
3081 			if (inc)
3082 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
3083 			else
3084 				ret = btrfs_free_extent(trans, &generic_ref);
3085 			if (ret)
3086 				goto fail;
3087 		} else {
3088 			bytenr = btrfs_node_blockptr(buf, i);
3089 			num_bytes = fs_info->nodesize;
3090 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
3091 					       num_bytes, parent);
3092 			generic_ref.real_root = root->root_key.objectid;
3093 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3094 			generic_ref.skip_qgroup = for_reloc;
3095 			if (inc)
3096 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
3097 			else
3098 				ret = btrfs_free_extent(trans, &generic_ref);
3099 			if (ret)
3100 				goto fail;
3101 		}
3102 	}
3103 	return 0;
3104 fail:
3105 	return ret;
3106 }
3107 
3108 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3109 		  struct extent_buffer *buf, int full_backref)
3110 {
3111 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3112 }
3113 
3114 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3115 		  struct extent_buffer *buf, int full_backref)
3116 {
3117 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3118 }
3119 
3120 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3121 				 struct btrfs_path *path,
3122 				 struct btrfs_block_group_cache *cache)
3123 {
3124 	struct btrfs_fs_info *fs_info = trans->fs_info;
3125 	int ret;
3126 	struct btrfs_root *extent_root = fs_info->extent_root;
3127 	unsigned long bi;
3128 	struct extent_buffer *leaf;
3129 
3130 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3131 	if (ret) {
3132 		if (ret > 0)
3133 			ret = -ENOENT;
3134 		goto fail;
3135 	}
3136 
3137 	leaf = path->nodes[0];
3138 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3139 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3140 	btrfs_mark_buffer_dirty(leaf);
3141 fail:
3142 	btrfs_release_path(path);
3143 	return ret;
3144 
3145 }
3146 
3147 static struct btrfs_block_group_cache *next_block_group(
3148 		struct btrfs_block_group_cache *cache)
3149 {
3150 	struct btrfs_fs_info *fs_info = cache->fs_info;
3151 	struct rb_node *node;
3152 
3153 	spin_lock(&fs_info->block_group_cache_lock);
3154 
3155 	/* If our block group was removed, we need a full search. */
3156 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3157 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3158 
3159 		spin_unlock(&fs_info->block_group_cache_lock);
3160 		btrfs_put_block_group(cache);
3161 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3162 	}
3163 	node = rb_next(&cache->cache_node);
3164 	btrfs_put_block_group(cache);
3165 	if (node) {
3166 		cache = rb_entry(node, struct btrfs_block_group_cache,
3167 				 cache_node);
3168 		btrfs_get_block_group(cache);
3169 	} else
3170 		cache = NULL;
3171 	spin_unlock(&fs_info->block_group_cache_lock);
3172 	return cache;
3173 }
3174 
3175 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3176 			    struct btrfs_trans_handle *trans,
3177 			    struct btrfs_path *path)
3178 {
3179 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3180 	struct btrfs_root *root = fs_info->tree_root;
3181 	struct inode *inode = NULL;
3182 	struct extent_changeset *data_reserved = NULL;
3183 	u64 alloc_hint = 0;
3184 	int dcs = BTRFS_DC_ERROR;
3185 	u64 num_pages = 0;
3186 	int retries = 0;
3187 	int ret = 0;
3188 
3189 	/*
3190 	 * If this block group is smaller than 100 megs don't bother caching the
3191 	 * block group.
3192 	 */
3193 	if (block_group->key.offset < (100 * SZ_1M)) {
3194 		spin_lock(&block_group->lock);
3195 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3196 		spin_unlock(&block_group->lock);
3197 		return 0;
3198 	}
3199 
3200 	if (trans->aborted)
3201 		return 0;
3202 again:
3203 	inode = lookup_free_space_inode(block_group, path);
3204 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3205 		ret = PTR_ERR(inode);
3206 		btrfs_release_path(path);
3207 		goto out;
3208 	}
3209 
3210 	if (IS_ERR(inode)) {
3211 		BUG_ON(retries);
3212 		retries++;
3213 
3214 		if (block_group->ro)
3215 			goto out_free;
3216 
3217 		ret = create_free_space_inode(trans, block_group, path);
3218 		if (ret)
3219 			goto out_free;
3220 		goto again;
3221 	}
3222 
3223 	/*
3224 	 * We want to set the generation to 0, that way if anything goes wrong
3225 	 * from here on out we know not to trust this cache when we load up next
3226 	 * time.
3227 	 */
3228 	BTRFS_I(inode)->generation = 0;
3229 	ret = btrfs_update_inode(trans, root, inode);
3230 	if (ret) {
3231 		/*
3232 		 * So theoretically we could recover from this, simply set the
3233 		 * super cache generation to 0 so we know to invalidate the
3234 		 * cache, but then we'd have to keep track of the block groups
3235 		 * that fail this way so we know we _have_ to reset this cache
3236 		 * before the next commit or risk reading stale cache.  So to
3237 		 * limit our exposure to horrible edge cases lets just abort the
3238 		 * transaction, this only happens in really bad situations
3239 		 * anyway.
3240 		 */
3241 		btrfs_abort_transaction(trans, ret);
3242 		goto out_put;
3243 	}
3244 	WARN_ON(ret);
3245 
3246 	/* We've already setup this transaction, go ahead and exit */
3247 	if (block_group->cache_generation == trans->transid &&
3248 	    i_size_read(inode)) {
3249 		dcs = BTRFS_DC_SETUP;
3250 		goto out_put;
3251 	}
3252 
3253 	if (i_size_read(inode) > 0) {
3254 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3255 					&fs_info->global_block_rsv);
3256 		if (ret)
3257 			goto out_put;
3258 
3259 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3260 		if (ret)
3261 			goto out_put;
3262 	}
3263 
3264 	spin_lock(&block_group->lock);
3265 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3266 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3267 		/*
3268 		 * don't bother trying to write stuff out _if_
3269 		 * a) we're not cached,
3270 		 * b) we're with nospace_cache mount option,
3271 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3272 		 */
3273 		dcs = BTRFS_DC_WRITTEN;
3274 		spin_unlock(&block_group->lock);
3275 		goto out_put;
3276 	}
3277 	spin_unlock(&block_group->lock);
3278 
3279 	/*
3280 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3281 	 * skip doing the setup, we've already cleared the cache so we're safe.
3282 	 */
3283 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3284 		ret = -ENOSPC;
3285 		goto out_put;
3286 	}
3287 
3288 	/*
3289 	 * Try to preallocate enough space based on how big the block group is.
3290 	 * Keep in mind this has to include any pinned space which could end up
3291 	 * taking up quite a bit since it's not folded into the other space
3292 	 * cache.
3293 	 */
3294 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3295 	if (!num_pages)
3296 		num_pages = 1;
3297 
3298 	num_pages *= 16;
3299 	num_pages *= PAGE_SIZE;
3300 
3301 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3302 	if (ret)
3303 		goto out_put;
3304 
3305 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3306 					      num_pages, num_pages,
3307 					      &alloc_hint);
3308 	/*
3309 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3310 	 * of metadata or split extents when writing the cache out, which means
3311 	 * we can enospc if we are heavily fragmented in addition to just normal
3312 	 * out of space conditions.  So if we hit this just skip setting up any
3313 	 * other block groups for this transaction, maybe we'll unpin enough
3314 	 * space the next time around.
3315 	 */
3316 	if (!ret)
3317 		dcs = BTRFS_DC_SETUP;
3318 	else if (ret == -ENOSPC)
3319 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3320 
3321 out_put:
3322 	iput(inode);
3323 out_free:
3324 	btrfs_release_path(path);
3325 out:
3326 	spin_lock(&block_group->lock);
3327 	if (!ret && dcs == BTRFS_DC_SETUP)
3328 		block_group->cache_generation = trans->transid;
3329 	block_group->disk_cache_state = dcs;
3330 	spin_unlock(&block_group->lock);
3331 
3332 	extent_changeset_free(data_reserved);
3333 	return ret;
3334 }
3335 
3336 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3337 {
3338 	struct btrfs_fs_info *fs_info = trans->fs_info;
3339 	struct btrfs_block_group_cache *cache, *tmp;
3340 	struct btrfs_transaction *cur_trans = trans->transaction;
3341 	struct btrfs_path *path;
3342 
3343 	if (list_empty(&cur_trans->dirty_bgs) ||
3344 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3345 		return 0;
3346 
3347 	path = btrfs_alloc_path();
3348 	if (!path)
3349 		return -ENOMEM;
3350 
3351 	/* Could add new block groups, use _safe just in case */
3352 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3353 				 dirty_list) {
3354 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3355 			cache_save_setup(cache, trans, path);
3356 	}
3357 
3358 	btrfs_free_path(path);
3359 	return 0;
3360 }
3361 
3362 /*
3363  * transaction commit does final block group cache writeback during a
3364  * critical section where nothing is allowed to change the FS.  This is
3365  * required in order for the cache to actually match the block group,
3366  * but can introduce a lot of latency into the commit.
3367  *
3368  * So, btrfs_start_dirty_block_groups is here to kick off block group
3369  * cache IO.  There's a chance we'll have to redo some of it if the
3370  * block group changes again during the commit, but it greatly reduces
3371  * the commit latency by getting rid of the easy block groups while
3372  * we're still allowing others to join the commit.
3373  */
3374 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3375 {
3376 	struct btrfs_fs_info *fs_info = trans->fs_info;
3377 	struct btrfs_block_group_cache *cache;
3378 	struct btrfs_transaction *cur_trans = trans->transaction;
3379 	int ret = 0;
3380 	int should_put;
3381 	struct btrfs_path *path = NULL;
3382 	LIST_HEAD(dirty);
3383 	struct list_head *io = &cur_trans->io_bgs;
3384 	int num_started = 0;
3385 	int loops = 0;
3386 
3387 	spin_lock(&cur_trans->dirty_bgs_lock);
3388 	if (list_empty(&cur_trans->dirty_bgs)) {
3389 		spin_unlock(&cur_trans->dirty_bgs_lock);
3390 		return 0;
3391 	}
3392 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3393 	spin_unlock(&cur_trans->dirty_bgs_lock);
3394 
3395 again:
3396 	/*
3397 	 * make sure all the block groups on our dirty list actually
3398 	 * exist
3399 	 */
3400 	btrfs_create_pending_block_groups(trans);
3401 
3402 	if (!path) {
3403 		path = btrfs_alloc_path();
3404 		if (!path)
3405 			return -ENOMEM;
3406 	}
3407 
3408 	/*
3409 	 * cache_write_mutex is here only to save us from balance or automatic
3410 	 * removal of empty block groups deleting this block group while we are
3411 	 * writing out the cache
3412 	 */
3413 	mutex_lock(&trans->transaction->cache_write_mutex);
3414 	while (!list_empty(&dirty)) {
3415 		bool drop_reserve = true;
3416 
3417 		cache = list_first_entry(&dirty,
3418 					 struct btrfs_block_group_cache,
3419 					 dirty_list);
3420 		/*
3421 		 * this can happen if something re-dirties a block
3422 		 * group that is already under IO.  Just wait for it to
3423 		 * finish and then do it all again
3424 		 */
3425 		if (!list_empty(&cache->io_list)) {
3426 			list_del_init(&cache->io_list);
3427 			btrfs_wait_cache_io(trans, cache, path);
3428 			btrfs_put_block_group(cache);
3429 		}
3430 
3431 
3432 		/*
3433 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3434 		 * if it should update the cache_state.  Don't delete
3435 		 * until after we wait.
3436 		 *
3437 		 * Since we're not running in the commit critical section
3438 		 * we need the dirty_bgs_lock to protect from update_block_group
3439 		 */
3440 		spin_lock(&cur_trans->dirty_bgs_lock);
3441 		list_del_init(&cache->dirty_list);
3442 		spin_unlock(&cur_trans->dirty_bgs_lock);
3443 
3444 		should_put = 1;
3445 
3446 		cache_save_setup(cache, trans, path);
3447 
3448 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3449 			cache->io_ctl.inode = NULL;
3450 			ret = btrfs_write_out_cache(trans, cache, path);
3451 			if (ret == 0 && cache->io_ctl.inode) {
3452 				num_started++;
3453 				should_put = 0;
3454 
3455 				/*
3456 				 * The cache_write_mutex is protecting the
3457 				 * io_list, also refer to the definition of
3458 				 * btrfs_transaction::io_bgs for more details
3459 				 */
3460 				list_add_tail(&cache->io_list, io);
3461 			} else {
3462 				/*
3463 				 * if we failed to write the cache, the
3464 				 * generation will be bad and life goes on
3465 				 */
3466 				ret = 0;
3467 			}
3468 		}
3469 		if (!ret) {
3470 			ret = write_one_cache_group(trans, path, cache);
3471 			/*
3472 			 * Our block group might still be attached to the list
3473 			 * of new block groups in the transaction handle of some
3474 			 * other task (struct btrfs_trans_handle->new_bgs). This
3475 			 * means its block group item isn't yet in the extent
3476 			 * tree. If this happens ignore the error, as we will
3477 			 * try again later in the critical section of the
3478 			 * transaction commit.
3479 			 */
3480 			if (ret == -ENOENT) {
3481 				ret = 0;
3482 				spin_lock(&cur_trans->dirty_bgs_lock);
3483 				if (list_empty(&cache->dirty_list)) {
3484 					list_add_tail(&cache->dirty_list,
3485 						      &cur_trans->dirty_bgs);
3486 					btrfs_get_block_group(cache);
3487 					drop_reserve = false;
3488 				}
3489 				spin_unlock(&cur_trans->dirty_bgs_lock);
3490 			} else if (ret) {
3491 				btrfs_abort_transaction(trans, ret);
3492 			}
3493 		}
3494 
3495 		/* if it's not on the io list, we need to put the block group */
3496 		if (should_put)
3497 			btrfs_put_block_group(cache);
3498 		if (drop_reserve)
3499 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3500 
3501 		if (ret)
3502 			break;
3503 
3504 		/*
3505 		 * Avoid blocking other tasks for too long. It might even save
3506 		 * us from writing caches for block groups that are going to be
3507 		 * removed.
3508 		 */
3509 		mutex_unlock(&trans->transaction->cache_write_mutex);
3510 		mutex_lock(&trans->transaction->cache_write_mutex);
3511 	}
3512 	mutex_unlock(&trans->transaction->cache_write_mutex);
3513 
3514 	/*
3515 	 * go through delayed refs for all the stuff we've just kicked off
3516 	 * and then loop back (just once)
3517 	 */
3518 	ret = btrfs_run_delayed_refs(trans, 0);
3519 	if (!ret && loops == 0) {
3520 		loops++;
3521 		spin_lock(&cur_trans->dirty_bgs_lock);
3522 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3523 		/*
3524 		 * dirty_bgs_lock protects us from concurrent block group
3525 		 * deletes too (not just cache_write_mutex).
3526 		 */
3527 		if (!list_empty(&dirty)) {
3528 			spin_unlock(&cur_trans->dirty_bgs_lock);
3529 			goto again;
3530 		}
3531 		spin_unlock(&cur_trans->dirty_bgs_lock);
3532 	} else if (ret < 0) {
3533 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3534 	}
3535 
3536 	btrfs_free_path(path);
3537 	return ret;
3538 }
3539 
3540 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3541 {
3542 	struct btrfs_fs_info *fs_info = trans->fs_info;
3543 	struct btrfs_block_group_cache *cache;
3544 	struct btrfs_transaction *cur_trans = trans->transaction;
3545 	int ret = 0;
3546 	int should_put;
3547 	struct btrfs_path *path;
3548 	struct list_head *io = &cur_trans->io_bgs;
3549 	int num_started = 0;
3550 
3551 	path = btrfs_alloc_path();
3552 	if (!path)
3553 		return -ENOMEM;
3554 
3555 	/*
3556 	 * Even though we are in the critical section of the transaction commit,
3557 	 * we can still have concurrent tasks adding elements to this
3558 	 * transaction's list of dirty block groups. These tasks correspond to
3559 	 * endio free space workers started when writeback finishes for a
3560 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3561 	 * allocate new block groups as a result of COWing nodes of the root
3562 	 * tree when updating the free space inode. The writeback for the space
3563 	 * caches is triggered by an earlier call to
3564 	 * btrfs_start_dirty_block_groups() and iterations of the following
3565 	 * loop.
3566 	 * Also we want to do the cache_save_setup first and then run the
3567 	 * delayed refs to make sure we have the best chance at doing this all
3568 	 * in one shot.
3569 	 */
3570 	spin_lock(&cur_trans->dirty_bgs_lock);
3571 	while (!list_empty(&cur_trans->dirty_bgs)) {
3572 		cache = list_first_entry(&cur_trans->dirty_bgs,
3573 					 struct btrfs_block_group_cache,
3574 					 dirty_list);
3575 
3576 		/*
3577 		 * this can happen if cache_save_setup re-dirties a block
3578 		 * group that is already under IO.  Just wait for it to
3579 		 * finish and then do it all again
3580 		 */
3581 		if (!list_empty(&cache->io_list)) {
3582 			spin_unlock(&cur_trans->dirty_bgs_lock);
3583 			list_del_init(&cache->io_list);
3584 			btrfs_wait_cache_io(trans, cache, path);
3585 			btrfs_put_block_group(cache);
3586 			spin_lock(&cur_trans->dirty_bgs_lock);
3587 		}
3588 
3589 		/*
3590 		 * don't remove from the dirty list until after we've waited
3591 		 * on any pending IO
3592 		 */
3593 		list_del_init(&cache->dirty_list);
3594 		spin_unlock(&cur_trans->dirty_bgs_lock);
3595 		should_put = 1;
3596 
3597 		cache_save_setup(cache, trans, path);
3598 
3599 		if (!ret)
3600 			ret = btrfs_run_delayed_refs(trans,
3601 						     (unsigned long) -1);
3602 
3603 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3604 			cache->io_ctl.inode = NULL;
3605 			ret = btrfs_write_out_cache(trans, cache, path);
3606 			if (ret == 0 && cache->io_ctl.inode) {
3607 				num_started++;
3608 				should_put = 0;
3609 				list_add_tail(&cache->io_list, io);
3610 			} else {
3611 				/*
3612 				 * if we failed to write the cache, the
3613 				 * generation will be bad and life goes on
3614 				 */
3615 				ret = 0;
3616 			}
3617 		}
3618 		if (!ret) {
3619 			ret = write_one_cache_group(trans, path, cache);
3620 			/*
3621 			 * One of the free space endio workers might have
3622 			 * created a new block group while updating a free space
3623 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3624 			 * and hasn't released its transaction handle yet, in
3625 			 * which case the new block group is still attached to
3626 			 * its transaction handle and its creation has not
3627 			 * finished yet (no block group item in the extent tree
3628 			 * yet, etc). If this is the case, wait for all free
3629 			 * space endio workers to finish and retry. This is a
3630 			 * a very rare case so no need for a more efficient and
3631 			 * complex approach.
3632 			 */
3633 			if (ret == -ENOENT) {
3634 				wait_event(cur_trans->writer_wait,
3635 				   atomic_read(&cur_trans->num_writers) == 1);
3636 				ret = write_one_cache_group(trans, path, cache);
3637 			}
3638 			if (ret)
3639 				btrfs_abort_transaction(trans, ret);
3640 		}
3641 
3642 		/* if its not on the io list, we need to put the block group */
3643 		if (should_put)
3644 			btrfs_put_block_group(cache);
3645 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3646 		spin_lock(&cur_trans->dirty_bgs_lock);
3647 	}
3648 	spin_unlock(&cur_trans->dirty_bgs_lock);
3649 
3650 	/*
3651 	 * Refer to the definition of io_bgs member for details why it's safe
3652 	 * to use it without any locking
3653 	 */
3654 	while (!list_empty(io)) {
3655 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3656 					 io_list);
3657 		list_del_init(&cache->io_list);
3658 		btrfs_wait_cache_io(trans, cache, path);
3659 		btrfs_put_block_group(cache);
3660 	}
3661 
3662 	btrfs_free_path(path);
3663 	return ret;
3664 }
3665 
3666 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3667 {
3668 	struct btrfs_block_group_cache *block_group;
3669 	int readonly = 0;
3670 
3671 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3672 	if (!block_group || block_group->ro)
3673 		readonly = 1;
3674 	if (block_group)
3675 		btrfs_put_block_group(block_group);
3676 	return readonly;
3677 }
3678 
3679 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3680 {
3681 	struct btrfs_block_group_cache *bg;
3682 	bool ret = true;
3683 
3684 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3685 	if (!bg)
3686 		return false;
3687 
3688 	spin_lock(&bg->lock);
3689 	if (bg->ro)
3690 		ret = false;
3691 	else
3692 		atomic_inc(&bg->nocow_writers);
3693 	spin_unlock(&bg->lock);
3694 
3695 	/* no put on block group, done by btrfs_dec_nocow_writers */
3696 	if (!ret)
3697 		btrfs_put_block_group(bg);
3698 
3699 	return ret;
3700 
3701 }
3702 
3703 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3704 {
3705 	struct btrfs_block_group_cache *bg;
3706 
3707 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3708 	ASSERT(bg);
3709 	if (atomic_dec_and_test(&bg->nocow_writers))
3710 		wake_up_var(&bg->nocow_writers);
3711 	/*
3712 	 * Once for our lookup and once for the lookup done by a previous call
3713 	 * to btrfs_inc_nocow_writers()
3714 	 */
3715 	btrfs_put_block_group(bg);
3716 	btrfs_put_block_group(bg);
3717 }
3718 
3719 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3720 {
3721 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3722 }
3723 
3724 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3725 {
3726 	u64 extra_flags = chunk_to_extended(flags) &
3727 				BTRFS_EXTENDED_PROFILE_MASK;
3728 
3729 	write_seqlock(&fs_info->profiles_lock);
3730 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3731 		fs_info->avail_data_alloc_bits |= extra_flags;
3732 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3733 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3734 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3735 		fs_info->avail_system_alloc_bits |= extra_flags;
3736 	write_sequnlock(&fs_info->profiles_lock);
3737 }
3738 
3739 /*
3740  * returns target flags in extended format or 0 if restripe for this
3741  * chunk_type is not in progress
3742  *
3743  * should be called with balance_lock held
3744  */
3745 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3746 {
3747 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3748 	u64 target = 0;
3749 
3750 	if (!bctl)
3751 		return 0;
3752 
3753 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3754 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3756 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3757 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3759 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3760 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3762 	}
3763 
3764 	return target;
3765 }
3766 
3767 /*
3768  * @flags: available profiles in extended format (see ctree.h)
3769  *
3770  * Returns reduced profile in chunk format.  If profile changing is in
3771  * progress (either running or paused) picks the target profile (if it's
3772  * already available), otherwise falls back to plain reducing.
3773  */
3774 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
3775 {
3776 	u64 num_devices = fs_info->fs_devices->rw_devices;
3777 	u64 target;
3778 	u64 raid_type;
3779 	u64 allowed = 0;
3780 
3781 	/*
3782 	 * see if restripe for this chunk_type is in progress, if so
3783 	 * try to reduce to the target profile
3784 	 */
3785 	spin_lock(&fs_info->balance_lock);
3786 	target = get_restripe_target(fs_info, flags);
3787 	if (target) {
3788 		/* pick target profile only if it's already available */
3789 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3790 			spin_unlock(&fs_info->balance_lock);
3791 			return extended_to_chunk(target);
3792 		}
3793 	}
3794 	spin_unlock(&fs_info->balance_lock);
3795 
3796 	/* First, mask out the RAID levels which aren't possible */
3797 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3798 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3799 			allowed |= btrfs_raid_array[raid_type].bg_flag;
3800 	}
3801 	allowed &= flags;
3802 
3803 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3804 		allowed = BTRFS_BLOCK_GROUP_RAID6;
3805 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3806 		allowed = BTRFS_BLOCK_GROUP_RAID5;
3807 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3808 		allowed = BTRFS_BLOCK_GROUP_RAID10;
3809 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3810 		allowed = BTRFS_BLOCK_GROUP_RAID1;
3811 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3812 		allowed = BTRFS_BLOCK_GROUP_RAID0;
3813 
3814 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3815 
3816 	return extended_to_chunk(flags | allowed);
3817 }
3818 
3819 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
3820 {
3821 	unsigned seq;
3822 	u64 flags;
3823 
3824 	do {
3825 		flags = orig_flags;
3826 		seq = read_seqbegin(&fs_info->profiles_lock);
3827 
3828 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3829 			flags |= fs_info->avail_data_alloc_bits;
3830 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3831 			flags |= fs_info->avail_system_alloc_bits;
3832 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3833 			flags |= fs_info->avail_metadata_alloc_bits;
3834 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3835 
3836 	return btrfs_reduce_alloc_profile(fs_info, flags);
3837 }
3838 
3839 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
3840 {
3841 	struct btrfs_fs_info *fs_info = root->fs_info;
3842 	u64 flags;
3843 	u64 ret;
3844 
3845 	if (data)
3846 		flags = BTRFS_BLOCK_GROUP_DATA;
3847 	else if (root == fs_info->chunk_root)
3848 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3849 	else
3850 		flags = BTRFS_BLOCK_GROUP_METADATA;
3851 
3852 	ret = get_alloc_profile(fs_info, flags);
3853 	return ret;
3854 }
3855 
3856 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
3857 {
3858 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
3859 }
3860 
3861 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
3862 {
3863 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3864 }
3865 
3866 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
3867 {
3868 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3869 }
3870 
3871 static void force_metadata_allocation(struct btrfs_fs_info *info)
3872 {
3873 	struct list_head *head = &info->space_info;
3874 	struct btrfs_space_info *found;
3875 
3876 	rcu_read_lock();
3877 	list_for_each_entry_rcu(found, head, list) {
3878 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3879 			found->force_alloc = CHUNK_ALLOC_FORCE;
3880 	}
3881 	rcu_read_unlock();
3882 }
3883 
3884 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3885 			      struct btrfs_space_info *sinfo, int force)
3886 {
3887 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3888 	u64 thresh;
3889 
3890 	if (force == CHUNK_ALLOC_FORCE)
3891 		return 1;
3892 
3893 	/*
3894 	 * in limited mode, we want to have some free space up to
3895 	 * about 1% of the FS size.
3896 	 */
3897 	if (force == CHUNK_ALLOC_LIMITED) {
3898 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3899 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3900 
3901 		if (sinfo->total_bytes - bytes_used < thresh)
3902 			return 1;
3903 	}
3904 
3905 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3906 		return 0;
3907 	return 1;
3908 }
3909 
3910 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3911 {
3912 	u64 num_dev;
3913 
3914 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3915 	if (!num_dev)
3916 		num_dev = fs_info->fs_devices->rw_devices;
3917 
3918 	return num_dev;
3919 }
3920 
3921 /*
3922  * If @is_allocation is true, reserve space in the system space info necessary
3923  * for allocating a chunk, otherwise if it's false, reserve space necessary for
3924  * removing a chunk.
3925  */
3926 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3927 {
3928 	struct btrfs_fs_info *fs_info = trans->fs_info;
3929 	struct btrfs_space_info *info;
3930 	u64 left;
3931 	u64 thresh;
3932 	int ret = 0;
3933 	u64 num_devs;
3934 
3935 	/*
3936 	 * Needed because we can end up allocating a system chunk and for an
3937 	 * atomic and race free space reservation in the chunk block reserve.
3938 	 */
3939 	lockdep_assert_held(&fs_info->chunk_mutex);
3940 
3941 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3942 	spin_lock(&info->lock);
3943 	left = info->total_bytes - btrfs_space_info_used(info, true);
3944 	spin_unlock(&info->lock);
3945 
3946 	num_devs = get_profile_num_devs(fs_info, type);
3947 
3948 	/* num_devs device items to update and 1 chunk item to add or remove */
3949 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
3950 		btrfs_calc_trans_metadata_size(fs_info, 1);
3951 
3952 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3953 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3954 			   left, thresh, type);
3955 		btrfs_dump_space_info(fs_info, info, 0, 0);
3956 	}
3957 
3958 	if (left < thresh) {
3959 		u64 flags = btrfs_system_alloc_profile(fs_info);
3960 
3961 		/*
3962 		 * Ignore failure to create system chunk. We might end up not
3963 		 * needing it, as we might not need to COW all nodes/leafs from
3964 		 * the paths we visit in the chunk tree (they were already COWed
3965 		 * or created in the current transaction for example).
3966 		 */
3967 		ret = btrfs_alloc_chunk(trans, flags);
3968 	}
3969 
3970 	if (!ret) {
3971 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3972 					  &fs_info->chunk_block_rsv,
3973 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3974 		if (!ret)
3975 			trans->chunk_bytes_reserved += thresh;
3976 	}
3977 }
3978 
3979 /*
3980  * If force is CHUNK_ALLOC_FORCE:
3981  *    - return 1 if it successfully allocates a chunk,
3982  *    - return errors including -ENOSPC otherwise.
3983  * If force is NOT CHUNK_ALLOC_FORCE:
3984  *    - return 0 if it doesn't need to allocate a new chunk,
3985  *    - return 1 if it successfully allocates a chunk,
3986  *    - return errors including -ENOSPC otherwise.
3987  */
3988 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3989 		      enum btrfs_chunk_alloc_enum force)
3990 {
3991 	struct btrfs_fs_info *fs_info = trans->fs_info;
3992 	struct btrfs_space_info *space_info;
3993 	bool wait_for_alloc = false;
3994 	bool should_alloc = false;
3995 	int ret = 0;
3996 
3997 	/* Don't re-enter if we're already allocating a chunk */
3998 	if (trans->allocating_chunk)
3999 		return -ENOSPC;
4000 
4001 	space_info = btrfs_find_space_info(fs_info, flags);
4002 	ASSERT(space_info);
4003 
4004 	do {
4005 		spin_lock(&space_info->lock);
4006 		if (force < space_info->force_alloc)
4007 			force = space_info->force_alloc;
4008 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4009 		if (space_info->full) {
4010 			/* No more free physical space */
4011 			if (should_alloc)
4012 				ret = -ENOSPC;
4013 			else
4014 				ret = 0;
4015 			spin_unlock(&space_info->lock);
4016 			return ret;
4017 		} else if (!should_alloc) {
4018 			spin_unlock(&space_info->lock);
4019 			return 0;
4020 		} else if (space_info->chunk_alloc) {
4021 			/*
4022 			 * Someone is already allocating, so we need to block
4023 			 * until this someone is finished and then loop to
4024 			 * recheck if we should continue with our allocation
4025 			 * attempt.
4026 			 */
4027 			wait_for_alloc = true;
4028 			spin_unlock(&space_info->lock);
4029 			mutex_lock(&fs_info->chunk_mutex);
4030 			mutex_unlock(&fs_info->chunk_mutex);
4031 		} else {
4032 			/* Proceed with allocation */
4033 			space_info->chunk_alloc = 1;
4034 			wait_for_alloc = false;
4035 			spin_unlock(&space_info->lock);
4036 		}
4037 
4038 		cond_resched();
4039 	} while (wait_for_alloc);
4040 
4041 	mutex_lock(&fs_info->chunk_mutex);
4042 	trans->allocating_chunk = true;
4043 
4044 	/*
4045 	 * If we have mixed data/metadata chunks we want to make sure we keep
4046 	 * allocating mixed chunks instead of individual chunks.
4047 	 */
4048 	if (btrfs_mixed_space_info(space_info))
4049 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4050 
4051 	/*
4052 	 * if we're doing a data chunk, go ahead and make sure that
4053 	 * we keep a reasonable number of metadata chunks allocated in the
4054 	 * FS as well.
4055 	 */
4056 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4057 		fs_info->data_chunk_allocations++;
4058 		if (!(fs_info->data_chunk_allocations %
4059 		      fs_info->metadata_ratio))
4060 			force_metadata_allocation(fs_info);
4061 	}
4062 
4063 	/*
4064 	 * Check if we have enough space in SYSTEM chunk because we may need
4065 	 * to update devices.
4066 	 */
4067 	check_system_chunk(trans, flags);
4068 
4069 	ret = btrfs_alloc_chunk(trans, flags);
4070 	trans->allocating_chunk = false;
4071 
4072 	spin_lock(&space_info->lock);
4073 	if (ret < 0) {
4074 		if (ret == -ENOSPC)
4075 			space_info->full = 1;
4076 		else
4077 			goto out;
4078 	} else {
4079 		ret = 1;
4080 		space_info->max_extent_size = 0;
4081 	}
4082 
4083 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4084 out:
4085 	space_info->chunk_alloc = 0;
4086 	spin_unlock(&space_info->lock);
4087 	mutex_unlock(&fs_info->chunk_mutex);
4088 	/*
4089 	 * When we allocate a new chunk we reserve space in the chunk block
4090 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4091 	 * add new nodes/leafs to it if we end up needing to do it when
4092 	 * inserting the chunk item and updating device items as part of the
4093 	 * second phase of chunk allocation, performed by
4094 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4095 	 * large number of new block groups to create in our transaction
4096 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4097 	 * in extreme cases - like having a single transaction create many new
4098 	 * block groups when starting to write out the free space caches of all
4099 	 * the block groups that were made dirty during the lifetime of the
4100 	 * transaction.
4101 	 */
4102 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4103 		btrfs_create_pending_block_groups(trans);
4104 
4105 	return ret;
4106 }
4107 
4108 static int update_block_group(struct btrfs_trans_handle *trans,
4109 			      u64 bytenr, u64 num_bytes, int alloc)
4110 {
4111 	struct btrfs_fs_info *info = trans->fs_info;
4112 	struct btrfs_block_group_cache *cache = NULL;
4113 	u64 total = num_bytes;
4114 	u64 old_val;
4115 	u64 byte_in_group;
4116 	int factor;
4117 	int ret = 0;
4118 
4119 	/* block accounting for super block */
4120 	spin_lock(&info->delalloc_root_lock);
4121 	old_val = btrfs_super_bytes_used(info->super_copy);
4122 	if (alloc)
4123 		old_val += num_bytes;
4124 	else
4125 		old_val -= num_bytes;
4126 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4127 	spin_unlock(&info->delalloc_root_lock);
4128 
4129 	while (total) {
4130 		cache = btrfs_lookup_block_group(info, bytenr);
4131 		if (!cache) {
4132 			ret = -ENOENT;
4133 			break;
4134 		}
4135 		factor = btrfs_bg_type_to_factor(cache->flags);
4136 
4137 		/*
4138 		 * If this block group has free space cache written out, we
4139 		 * need to make sure to load it if we are removing space.  This
4140 		 * is because we need the unpinning stage to actually add the
4141 		 * space back to the block group, otherwise we will leak space.
4142 		 */
4143 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4144 			cache_block_group(cache, 1);
4145 
4146 		byte_in_group = bytenr - cache->key.objectid;
4147 		WARN_ON(byte_in_group > cache->key.offset);
4148 
4149 		spin_lock(&cache->space_info->lock);
4150 		spin_lock(&cache->lock);
4151 
4152 		if (btrfs_test_opt(info, SPACE_CACHE) &&
4153 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4154 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4155 
4156 		old_val = btrfs_block_group_used(&cache->item);
4157 		num_bytes = min(total, cache->key.offset - byte_in_group);
4158 		if (alloc) {
4159 			old_val += num_bytes;
4160 			btrfs_set_block_group_used(&cache->item, old_val);
4161 			cache->reserved -= num_bytes;
4162 			cache->space_info->bytes_reserved -= num_bytes;
4163 			cache->space_info->bytes_used += num_bytes;
4164 			cache->space_info->disk_used += num_bytes * factor;
4165 			spin_unlock(&cache->lock);
4166 			spin_unlock(&cache->space_info->lock);
4167 		} else {
4168 			old_val -= num_bytes;
4169 			btrfs_set_block_group_used(&cache->item, old_val);
4170 			cache->pinned += num_bytes;
4171 			btrfs_space_info_update_bytes_pinned(info,
4172 					cache->space_info, num_bytes);
4173 			cache->space_info->bytes_used -= num_bytes;
4174 			cache->space_info->disk_used -= num_bytes * factor;
4175 			spin_unlock(&cache->lock);
4176 			spin_unlock(&cache->space_info->lock);
4177 
4178 			trace_btrfs_space_reservation(info, "pinned",
4179 						      cache->space_info->flags,
4180 						      num_bytes, 1);
4181 			percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
4182 					   num_bytes,
4183 					   BTRFS_TOTAL_BYTES_PINNED_BATCH);
4184 			set_extent_dirty(info->pinned_extents,
4185 					 bytenr, bytenr + num_bytes - 1,
4186 					 GFP_NOFS | __GFP_NOFAIL);
4187 		}
4188 
4189 		spin_lock(&trans->transaction->dirty_bgs_lock);
4190 		if (list_empty(&cache->dirty_list)) {
4191 			list_add_tail(&cache->dirty_list,
4192 				      &trans->transaction->dirty_bgs);
4193 			trans->delayed_ref_updates++;
4194 			btrfs_get_block_group(cache);
4195 		}
4196 		spin_unlock(&trans->transaction->dirty_bgs_lock);
4197 
4198 		/*
4199 		 * No longer have used bytes in this block group, queue it for
4200 		 * deletion. We do this after adding the block group to the
4201 		 * dirty list to avoid races between cleaner kthread and space
4202 		 * cache writeout.
4203 		 */
4204 		if (!alloc && old_val == 0)
4205 			btrfs_mark_bg_unused(cache);
4206 
4207 		btrfs_put_block_group(cache);
4208 		total -= num_bytes;
4209 		bytenr += num_bytes;
4210 	}
4211 
4212 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
4213 	btrfs_update_delayed_refs_rsv(trans);
4214 	return ret;
4215 }
4216 
4217 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
4218 {
4219 	struct btrfs_block_group_cache *cache;
4220 	u64 bytenr;
4221 
4222 	spin_lock(&fs_info->block_group_cache_lock);
4223 	bytenr = fs_info->first_logical_byte;
4224 	spin_unlock(&fs_info->block_group_cache_lock);
4225 
4226 	if (bytenr < (u64)-1)
4227 		return bytenr;
4228 
4229 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
4230 	if (!cache)
4231 		return 0;
4232 
4233 	bytenr = cache->key.objectid;
4234 	btrfs_put_block_group(cache);
4235 
4236 	return bytenr;
4237 }
4238 
4239 static int pin_down_extent(struct btrfs_block_group_cache *cache,
4240 			   u64 bytenr, u64 num_bytes, int reserved)
4241 {
4242 	struct btrfs_fs_info *fs_info = cache->fs_info;
4243 
4244 	spin_lock(&cache->space_info->lock);
4245 	spin_lock(&cache->lock);
4246 	cache->pinned += num_bytes;
4247 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
4248 					     num_bytes);
4249 	if (reserved) {
4250 		cache->reserved -= num_bytes;
4251 		cache->space_info->bytes_reserved -= num_bytes;
4252 	}
4253 	spin_unlock(&cache->lock);
4254 	spin_unlock(&cache->space_info->lock);
4255 
4256 	trace_btrfs_space_reservation(fs_info, "pinned",
4257 				      cache->space_info->flags, num_bytes, 1);
4258 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
4259 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4260 	set_extent_dirty(fs_info->pinned_extents, bytenr,
4261 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4262 	return 0;
4263 }
4264 
4265 /*
4266  * this function must be called within transaction
4267  */
4268 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
4269 		     u64 bytenr, u64 num_bytes, int reserved)
4270 {
4271 	struct btrfs_block_group_cache *cache;
4272 
4273 	cache = btrfs_lookup_block_group(fs_info, bytenr);
4274 	BUG_ON(!cache); /* Logic error */
4275 
4276 	pin_down_extent(cache, bytenr, num_bytes, reserved);
4277 
4278 	btrfs_put_block_group(cache);
4279 	return 0;
4280 }
4281 
4282 /*
4283  * this function must be called within transaction
4284  */
4285 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
4286 				    u64 bytenr, u64 num_bytes)
4287 {
4288 	struct btrfs_block_group_cache *cache;
4289 	int ret;
4290 
4291 	cache = btrfs_lookup_block_group(fs_info, bytenr);
4292 	if (!cache)
4293 		return -EINVAL;
4294 
4295 	/*
4296 	 * pull in the free space cache (if any) so that our pin
4297 	 * removes the free space from the cache.  We have load_only set
4298 	 * to one because the slow code to read in the free extents does check
4299 	 * the pinned extents.
4300 	 */
4301 	cache_block_group(cache, 1);
4302 
4303 	pin_down_extent(cache, bytenr, num_bytes, 0);
4304 
4305 	/* remove us from the free space cache (if we're there at all) */
4306 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
4307 	btrfs_put_block_group(cache);
4308 	return ret;
4309 }
4310 
4311 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
4312 				   u64 start, u64 num_bytes)
4313 {
4314 	int ret;
4315 	struct btrfs_block_group_cache *block_group;
4316 	struct btrfs_caching_control *caching_ctl;
4317 
4318 	block_group = btrfs_lookup_block_group(fs_info, start);
4319 	if (!block_group)
4320 		return -EINVAL;
4321 
4322 	cache_block_group(block_group, 0);
4323 	caching_ctl = get_caching_control(block_group);
4324 
4325 	if (!caching_ctl) {
4326 		/* Logic error */
4327 		BUG_ON(!block_group_cache_done(block_group));
4328 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
4329 	} else {
4330 		mutex_lock(&caching_ctl->mutex);
4331 
4332 		if (start >= caching_ctl->progress) {
4333 			ret = add_excluded_extent(fs_info, start, num_bytes);
4334 		} else if (start + num_bytes <= caching_ctl->progress) {
4335 			ret = btrfs_remove_free_space(block_group,
4336 						      start, num_bytes);
4337 		} else {
4338 			num_bytes = caching_ctl->progress - start;
4339 			ret = btrfs_remove_free_space(block_group,
4340 						      start, num_bytes);
4341 			if (ret)
4342 				goto out_lock;
4343 
4344 			num_bytes = (start + num_bytes) -
4345 				caching_ctl->progress;
4346 			start = caching_ctl->progress;
4347 			ret = add_excluded_extent(fs_info, start, num_bytes);
4348 		}
4349 out_lock:
4350 		mutex_unlock(&caching_ctl->mutex);
4351 		put_caching_control(caching_ctl);
4352 	}
4353 	btrfs_put_block_group(block_group);
4354 	return ret;
4355 }
4356 
4357 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
4358 {
4359 	struct btrfs_fs_info *fs_info = eb->fs_info;
4360 	struct btrfs_file_extent_item *item;
4361 	struct btrfs_key key;
4362 	int found_type;
4363 	int i;
4364 	int ret = 0;
4365 
4366 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
4367 		return 0;
4368 
4369 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
4370 		btrfs_item_key_to_cpu(eb, &key, i);
4371 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4372 			continue;
4373 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
4374 		found_type = btrfs_file_extent_type(eb, item);
4375 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
4376 			continue;
4377 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
4378 			continue;
4379 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
4380 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
4381 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
4382 		if (ret)
4383 			break;
4384 	}
4385 
4386 	return ret;
4387 }
4388 
4389 static void
4390 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
4391 {
4392 	atomic_inc(&bg->reservations);
4393 }
4394 
4395 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
4396 					const u64 start)
4397 {
4398 	struct btrfs_block_group_cache *bg;
4399 
4400 	bg = btrfs_lookup_block_group(fs_info, start);
4401 	ASSERT(bg);
4402 	if (atomic_dec_and_test(&bg->reservations))
4403 		wake_up_var(&bg->reservations);
4404 	btrfs_put_block_group(bg);
4405 }
4406 
4407 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
4408 {
4409 	struct btrfs_space_info *space_info = bg->space_info;
4410 
4411 	ASSERT(bg->ro);
4412 
4413 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
4414 		return;
4415 
4416 	/*
4417 	 * Our block group is read only but before we set it to read only,
4418 	 * some task might have had allocated an extent from it already, but it
4419 	 * has not yet created a respective ordered extent (and added it to a
4420 	 * root's list of ordered extents).
4421 	 * Therefore wait for any task currently allocating extents, since the
4422 	 * block group's reservations counter is incremented while a read lock
4423 	 * on the groups' semaphore is held and decremented after releasing
4424 	 * the read access on that semaphore and creating the ordered extent.
4425 	 */
4426 	down_write(&space_info->groups_sem);
4427 	up_write(&space_info->groups_sem);
4428 
4429 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
4430 }
4431 
4432 /**
4433  * btrfs_add_reserved_bytes - update the block_group and space info counters
4434  * @cache:	The cache we are manipulating
4435  * @ram_bytes:  The number of bytes of file content, and will be same to
4436  *              @num_bytes except for the compress path.
4437  * @num_bytes:	The number of bytes in question
4438  * @delalloc:   The blocks are allocated for the delalloc write
4439  *
4440  * This is called by the allocator when it reserves space. If this is a
4441  * reservation and the block group has become read only we cannot make the
4442  * reservation and return -EAGAIN, otherwise this function always succeeds.
4443  */
4444 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
4445 				    u64 ram_bytes, u64 num_bytes, int delalloc)
4446 {
4447 	struct btrfs_space_info *space_info = cache->space_info;
4448 	int ret = 0;
4449 
4450 	spin_lock(&space_info->lock);
4451 	spin_lock(&cache->lock);
4452 	if (cache->ro) {
4453 		ret = -EAGAIN;
4454 	} else {
4455 		cache->reserved += num_bytes;
4456 		space_info->bytes_reserved += num_bytes;
4457 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
4458 						      space_info, -ram_bytes);
4459 		if (delalloc)
4460 			cache->delalloc_bytes += num_bytes;
4461 	}
4462 	spin_unlock(&cache->lock);
4463 	spin_unlock(&space_info->lock);
4464 	return ret;
4465 }
4466 
4467 /**
4468  * btrfs_free_reserved_bytes - update the block_group and space info counters
4469  * @cache:      The cache we are manipulating
4470  * @num_bytes:  The number of bytes in question
4471  * @delalloc:   The blocks are allocated for the delalloc write
4472  *
4473  * This is called by somebody who is freeing space that was never actually used
4474  * on disk.  For example if you reserve some space for a new leaf in transaction
4475  * A and before transaction A commits you free that leaf, you call this with
4476  * reserve set to 0 in order to clear the reservation.
4477  */
4478 
4479 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
4480 				      u64 num_bytes, int delalloc)
4481 {
4482 	struct btrfs_space_info *space_info = cache->space_info;
4483 
4484 	spin_lock(&space_info->lock);
4485 	spin_lock(&cache->lock);
4486 	if (cache->ro)
4487 		space_info->bytes_readonly += num_bytes;
4488 	cache->reserved -= num_bytes;
4489 	space_info->bytes_reserved -= num_bytes;
4490 	space_info->max_extent_size = 0;
4491 
4492 	if (delalloc)
4493 		cache->delalloc_bytes -= num_bytes;
4494 	spin_unlock(&cache->lock);
4495 	spin_unlock(&space_info->lock);
4496 }
4497 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
4498 {
4499 	struct btrfs_caching_control *next;
4500 	struct btrfs_caching_control *caching_ctl;
4501 	struct btrfs_block_group_cache *cache;
4502 
4503 	down_write(&fs_info->commit_root_sem);
4504 
4505 	list_for_each_entry_safe(caching_ctl, next,
4506 				 &fs_info->caching_block_groups, list) {
4507 		cache = caching_ctl->block_group;
4508 		if (block_group_cache_done(cache)) {
4509 			cache->last_byte_to_unpin = (u64)-1;
4510 			list_del_init(&caching_ctl->list);
4511 			put_caching_control(caching_ctl);
4512 		} else {
4513 			cache->last_byte_to_unpin = caching_ctl->progress;
4514 		}
4515 	}
4516 
4517 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4518 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4519 	else
4520 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4521 
4522 	up_write(&fs_info->commit_root_sem);
4523 
4524 	btrfs_update_global_block_rsv(fs_info);
4525 }
4526 
4527 /*
4528  * Returns the free cluster for the given space info and sets empty_cluster to
4529  * what it should be based on the mount options.
4530  */
4531 static struct btrfs_free_cluster *
4532 fetch_cluster_info(struct btrfs_fs_info *fs_info,
4533 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
4534 {
4535 	struct btrfs_free_cluster *ret = NULL;
4536 
4537 	*empty_cluster = 0;
4538 	if (btrfs_mixed_space_info(space_info))
4539 		return ret;
4540 
4541 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4542 		ret = &fs_info->meta_alloc_cluster;
4543 		if (btrfs_test_opt(fs_info, SSD))
4544 			*empty_cluster = SZ_2M;
4545 		else
4546 			*empty_cluster = SZ_64K;
4547 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
4548 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
4549 		*empty_cluster = SZ_2M;
4550 		ret = &fs_info->data_alloc_cluster;
4551 	}
4552 
4553 	return ret;
4554 }
4555 
4556 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
4557 			      u64 start, u64 end,
4558 			      const bool return_free_space)
4559 {
4560 	struct btrfs_block_group_cache *cache = NULL;
4561 	struct btrfs_space_info *space_info;
4562 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4563 	struct btrfs_free_cluster *cluster = NULL;
4564 	u64 len;
4565 	u64 total_unpinned = 0;
4566 	u64 empty_cluster = 0;
4567 	bool readonly;
4568 
4569 	while (start <= end) {
4570 		readonly = false;
4571 		if (!cache ||
4572 		    start >= cache->key.objectid + cache->key.offset) {
4573 			if (cache)
4574 				btrfs_put_block_group(cache);
4575 			total_unpinned = 0;
4576 			cache = btrfs_lookup_block_group(fs_info, start);
4577 			BUG_ON(!cache); /* Logic error */
4578 
4579 			cluster = fetch_cluster_info(fs_info,
4580 						     cache->space_info,
4581 						     &empty_cluster);
4582 			empty_cluster <<= 1;
4583 		}
4584 
4585 		len = cache->key.objectid + cache->key.offset - start;
4586 		len = min(len, end + 1 - start);
4587 
4588 		if (start < cache->last_byte_to_unpin) {
4589 			len = min(len, cache->last_byte_to_unpin - start);
4590 			if (return_free_space)
4591 				btrfs_add_free_space(cache, start, len);
4592 		}
4593 
4594 		start += len;
4595 		total_unpinned += len;
4596 		space_info = cache->space_info;
4597 
4598 		/*
4599 		 * If this space cluster has been marked as fragmented and we've
4600 		 * unpinned enough in this block group to potentially allow a
4601 		 * cluster to be created inside of it go ahead and clear the
4602 		 * fragmented check.
4603 		 */
4604 		if (cluster && cluster->fragmented &&
4605 		    total_unpinned > empty_cluster) {
4606 			spin_lock(&cluster->lock);
4607 			cluster->fragmented = 0;
4608 			spin_unlock(&cluster->lock);
4609 		}
4610 
4611 		spin_lock(&space_info->lock);
4612 		spin_lock(&cache->lock);
4613 		cache->pinned -= len;
4614 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
4615 
4616 		trace_btrfs_space_reservation(fs_info, "pinned",
4617 					      space_info->flags, len, 0);
4618 		space_info->max_extent_size = 0;
4619 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
4620 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4621 		if (cache->ro) {
4622 			space_info->bytes_readonly += len;
4623 			readonly = true;
4624 		}
4625 		spin_unlock(&cache->lock);
4626 		if (!readonly && return_free_space &&
4627 		    global_rsv->space_info == space_info) {
4628 			u64 to_add = len;
4629 
4630 			spin_lock(&global_rsv->lock);
4631 			if (!global_rsv->full) {
4632 				to_add = min(len, global_rsv->size -
4633 					     global_rsv->reserved);
4634 				global_rsv->reserved += to_add;
4635 				btrfs_space_info_update_bytes_may_use(fs_info,
4636 						space_info, to_add);
4637 				if (global_rsv->reserved >= global_rsv->size)
4638 					global_rsv->full = 1;
4639 				trace_btrfs_space_reservation(fs_info,
4640 							      "space_info",
4641 							      space_info->flags,
4642 							      to_add, 1);
4643 				len -= to_add;
4644 			}
4645 			spin_unlock(&global_rsv->lock);
4646 			/* Add to any tickets we may have */
4647 			if (len)
4648 				btrfs_space_info_add_new_bytes(fs_info,
4649 						space_info, len);
4650 		}
4651 		spin_unlock(&space_info->lock);
4652 	}
4653 
4654 	if (cache)
4655 		btrfs_put_block_group(cache);
4656 	return 0;
4657 }
4658 
4659 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
4660 {
4661 	struct btrfs_fs_info *fs_info = trans->fs_info;
4662 	struct btrfs_block_group_cache *block_group, *tmp;
4663 	struct list_head *deleted_bgs;
4664 	struct extent_io_tree *unpin;
4665 	u64 start;
4666 	u64 end;
4667 	int ret;
4668 
4669 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4670 		unpin = &fs_info->freed_extents[1];
4671 	else
4672 		unpin = &fs_info->freed_extents[0];
4673 
4674 	while (!trans->aborted) {
4675 		struct extent_state *cached_state = NULL;
4676 
4677 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4678 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4679 					    EXTENT_DIRTY, &cached_state);
4680 		if (ret) {
4681 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4682 			break;
4683 		}
4684 
4685 		if (btrfs_test_opt(fs_info, DISCARD))
4686 			ret = btrfs_discard_extent(fs_info, start,
4687 						   end + 1 - start, NULL);
4688 
4689 		clear_extent_dirty(unpin, start, end, &cached_state);
4690 		unpin_extent_range(fs_info, start, end, true);
4691 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4692 		free_extent_state(cached_state);
4693 		cond_resched();
4694 	}
4695 
4696 	/*
4697 	 * Transaction is finished.  We don't need the lock anymore.  We
4698 	 * do need to clean up the block groups in case of a transaction
4699 	 * abort.
4700 	 */
4701 	deleted_bgs = &trans->transaction->deleted_bgs;
4702 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
4703 		u64 trimmed = 0;
4704 
4705 		ret = -EROFS;
4706 		if (!trans->aborted)
4707 			ret = btrfs_discard_extent(fs_info,
4708 						   block_group->key.objectid,
4709 						   block_group->key.offset,
4710 						   &trimmed);
4711 
4712 		list_del_init(&block_group->bg_list);
4713 		btrfs_put_block_group_trimming(block_group);
4714 		btrfs_put_block_group(block_group);
4715 
4716 		if (ret) {
4717 			const char *errstr = btrfs_decode_error(ret);
4718 			btrfs_warn(fs_info,
4719 			   "discard failed while removing blockgroup: errno=%d %s",
4720 				   ret, errstr);
4721 		}
4722 	}
4723 
4724 	return 0;
4725 }
4726 
4727 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4728 			       struct btrfs_delayed_ref_node *node, u64 parent,
4729 			       u64 root_objectid, u64 owner_objectid,
4730 			       u64 owner_offset, int refs_to_drop,
4731 			       struct btrfs_delayed_extent_op *extent_op)
4732 {
4733 	struct btrfs_fs_info *info = trans->fs_info;
4734 	struct btrfs_key key;
4735 	struct btrfs_path *path;
4736 	struct btrfs_root *extent_root = info->extent_root;
4737 	struct extent_buffer *leaf;
4738 	struct btrfs_extent_item *ei;
4739 	struct btrfs_extent_inline_ref *iref;
4740 	int ret;
4741 	int is_data;
4742 	int extent_slot = 0;
4743 	int found_extent = 0;
4744 	int num_to_del = 1;
4745 	u32 item_size;
4746 	u64 refs;
4747 	u64 bytenr = node->bytenr;
4748 	u64 num_bytes = node->num_bytes;
4749 	int last_ref = 0;
4750 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
4751 
4752 	path = btrfs_alloc_path();
4753 	if (!path)
4754 		return -ENOMEM;
4755 
4756 	path->reada = READA_FORWARD;
4757 	path->leave_spinning = 1;
4758 
4759 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4760 	BUG_ON(!is_data && refs_to_drop != 1);
4761 
4762 	if (is_data)
4763 		skinny_metadata = false;
4764 
4765 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
4766 				    parent, root_objectid, owner_objectid,
4767 				    owner_offset);
4768 	if (ret == 0) {
4769 		extent_slot = path->slots[0];
4770 		while (extent_slot >= 0) {
4771 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4772 					      extent_slot);
4773 			if (key.objectid != bytenr)
4774 				break;
4775 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4776 			    key.offset == num_bytes) {
4777 				found_extent = 1;
4778 				break;
4779 			}
4780 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
4781 			    key.offset == owner_objectid) {
4782 				found_extent = 1;
4783 				break;
4784 			}
4785 			if (path->slots[0] - extent_slot > 5)
4786 				break;
4787 			extent_slot--;
4788 		}
4789 
4790 		if (!found_extent) {
4791 			BUG_ON(iref);
4792 			ret = remove_extent_backref(trans, path, NULL,
4793 						    refs_to_drop,
4794 						    is_data, &last_ref);
4795 			if (ret) {
4796 				btrfs_abort_transaction(trans, ret);
4797 				goto out;
4798 			}
4799 			btrfs_release_path(path);
4800 			path->leave_spinning = 1;
4801 
4802 			key.objectid = bytenr;
4803 			key.type = BTRFS_EXTENT_ITEM_KEY;
4804 			key.offset = num_bytes;
4805 
4806 			if (!is_data && skinny_metadata) {
4807 				key.type = BTRFS_METADATA_ITEM_KEY;
4808 				key.offset = owner_objectid;
4809 			}
4810 
4811 			ret = btrfs_search_slot(trans, extent_root,
4812 						&key, path, -1, 1);
4813 			if (ret > 0 && skinny_metadata && path->slots[0]) {
4814 				/*
4815 				 * Couldn't find our skinny metadata item,
4816 				 * see if we have ye olde extent item.
4817 				 */
4818 				path->slots[0]--;
4819 				btrfs_item_key_to_cpu(path->nodes[0], &key,
4820 						      path->slots[0]);
4821 				if (key.objectid == bytenr &&
4822 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
4823 				    key.offset == num_bytes)
4824 					ret = 0;
4825 			}
4826 
4827 			if (ret > 0 && skinny_metadata) {
4828 				skinny_metadata = false;
4829 				key.objectid = bytenr;
4830 				key.type = BTRFS_EXTENT_ITEM_KEY;
4831 				key.offset = num_bytes;
4832 				btrfs_release_path(path);
4833 				ret = btrfs_search_slot(trans, extent_root,
4834 							&key, path, -1, 1);
4835 			}
4836 
4837 			if (ret) {
4838 				btrfs_err(info,
4839 					  "umm, got %d back from search, was looking for %llu",
4840 					  ret, bytenr);
4841 				if (ret > 0)
4842 					btrfs_print_leaf(path->nodes[0]);
4843 			}
4844 			if (ret < 0) {
4845 				btrfs_abort_transaction(trans, ret);
4846 				goto out;
4847 			}
4848 			extent_slot = path->slots[0];
4849 		}
4850 	} else if (WARN_ON(ret == -ENOENT)) {
4851 		btrfs_print_leaf(path->nodes[0]);
4852 		btrfs_err(info,
4853 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
4854 			bytenr, parent, root_objectid, owner_objectid,
4855 			owner_offset);
4856 		btrfs_abort_transaction(trans, ret);
4857 		goto out;
4858 	} else {
4859 		btrfs_abort_transaction(trans, ret);
4860 		goto out;
4861 	}
4862 
4863 	leaf = path->nodes[0];
4864 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4865 	if (unlikely(item_size < sizeof(*ei))) {
4866 		ret = -EINVAL;
4867 		btrfs_print_v0_err(info);
4868 		btrfs_abort_transaction(trans, ret);
4869 		goto out;
4870 	}
4871 	ei = btrfs_item_ptr(leaf, extent_slot,
4872 			    struct btrfs_extent_item);
4873 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
4874 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
4875 		struct btrfs_tree_block_info *bi;
4876 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4877 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4878 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4879 	}
4880 
4881 	refs = btrfs_extent_refs(leaf, ei);
4882 	if (refs < refs_to_drop) {
4883 		btrfs_err(info,
4884 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
4885 			  refs_to_drop, refs, bytenr);
4886 		ret = -EINVAL;
4887 		btrfs_abort_transaction(trans, ret);
4888 		goto out;
4889 	}
4890 	refs -= refs_to_drop;
4891 
4892 	if (refs > 0) {
4893 		if (extent_op)
4894 			__run_delayed_extent_op(extent_op, leaf, ei);
4895 		/*
4896 		 * In the case of inline back ref, reference count will
4897 		 * be updated by remove_extent_backref
4898 		 */
4899 		if (iref) {
4900 			BUG_ON(!found_extent);
4901 		} else {
4902 			btrfs_set_extent_refs(leaf, ei, refs);
4903 			btrfs_mark_buffer_dirty(leaf);
4904 		}
4905 		if (found_extent) {
4906 			ret = remove_extent_backref(trans, path, iref,
4907 						    refs_to_drop, is_data,
4908 						    &last_ref);
4909 			if (ret) {
4910 				btrfs_abort_transaction(trans, ret);
4911 				goto out;
4912 			}
4913 		}
4914 	} else {
4915 		if (found_extent) {
4916 			BUG_ON(is_data && refs_to_drop !=
4917 			       extent_data_ref_count(path, iref));
4918 			if (iref) {
4919 				BUG_ON(path->slots[0] != extent_slot);
4920 			} else {
4921 				BUG_ON(path->slots[0] != extent_slot + 1);
4922 				path->slots[0] = extent_slot;
4923 				num_to_del = 2;
4924 			}
4925 		}
4926 
4927 		last_ref = 1;
4928 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4929 				      num_to_del);
4930 		if (ret) {
4931 			btrfs_abort_transaction(trans, ret);
4932 			goto out;
4933 		}
4934 		btrfs_release_path(path);
4935 
4936 		if (is_data) {
4937 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
4938 			if (ret) {
4939 				btrfs_abort_transaction(trans, ret);
4940 				goto out;
4941 			}
4942 		}
4943 
4944 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
4945 		if (ret) {
4946 			btrfs_abort_transaction(trans, ret);
4947 			goto out;
4948 		}
4949 
4950 		ret = update_block_group(trans, bytenr, num_bytes, 0);
4951 		if (ret) {
4952 			btrfs_abort_transaction(trans, ret);
4953 			goto out;
4954 		}
4955 	}
4956 	btrfs_release_path(path);
4957 
4958 out:
4959 	btrfs_free_path(path);
4960 	return ret;
4961 }
4962 
4963 /*
4964  * when we free an block, it is possible (and likely) that we free the last
4965  * delayed ref for that extent as well.  This searches the delayed ref tree for
4966  * a given extent, and if there are no other delayed refs to be processed, it
4967  * removes it from the tree.
4968  */
4969 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4970 				      u64 bytenr)
4971 {
4972 	struct btrfs_delayed_ref_head *head;
4973 	struct btrfs_delayed_ref_root *delayed_refs;
4974 	int ret = 0;
4975 
4976 	delayed_refs = &trans->transaction->delayed_refs;
4977 	spin_lock(&delayed_refs->lock);
4978 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
4979 	if (!head)
4980 		goto out_delayed_unlock;
4981 
4982 	spin_lock(&head->lock);
4983 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
4984 		goto out;
4985 
4986 	if (cleanup_extent_op(head) != NULL)
4987 		goto out;
4988 
4989 	/*
4990 	 * waiting for the lock here would deadlock.  If someone else has it
4991 	 * locked they are already in the process of dropping it anyway
4992 	 */
4993 	if (!mutex_trylock(&head->mutex))
4994 		goto out;
4995 
4996 	btrfs_delete_ref_head(delayed_refs, head);
4997 	head->processing = 0;
4998 
4999 	spin_unlock(&head->lock);
5000 	spin_unlock(&delayed_refs->lock);
5001 
5002 	BUG_ON(head->extent_op);
5003 	if (head->must_insert_reserved)
5004 		ret = 1;
5005 
5006 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
5007 	mutex_unlock(&head->mutex);
5008 	btrfs_put_delayed_ref_head(head);
5009 	return ret;
5010 out:
5011 	spin_unlock(&head->lock);
5012 
5013 out_delayed_unlock:
5014 	spin_unlock(&delayed_refs->lock);
5015 	return 0;
5016 }
5017 
5018 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5019 			   struct btrfs_root *root,
5020 			   struct extent_buffer *buf,
5021 			   u64 parent, int last_ref)
5022 {
5023 	struct btrfs_fs_info *fs_info = root->fs_info;
5024 	struct btrfs_ref generic_ref = { 0 };
5025 	int pin = 1;
5026 	int ret;
5027 
5028 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
5029 			       buf->start, buf->len, parent);
5030 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
5031 			    root->root_key.objectid);
5032 
5033 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5034 		int old_ref_mod, new_ref_mod;
5035 
5036 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5037 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
5038 						 &old_ref_mod, &new_ref_mod);
5039 		BUG_ON(ret); /* -ENOMEM */
5040 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
5041 	}
5042 
5043 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
5044 		struct btrfs_block_group_cache *cache;
5045 
5046 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5047 			ret = check_ref_cleanup(trans, buf->start);
5048 			if (!ret)
5049 				goto out;
5050 		}
5051 
5052 		pin = 0;
5053 		cache = btrfs_lookup_block_group(fs_info, buf->start);
5054 
5055 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5056 			pin_down_extent(cache, buf->start, buf->len, 1);
5057 			btrfs_put_block_group(cache);
5058 			goto out;
5059 		}
5060 
5061 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5062 
5063 		btrfs_add_free_space(cache, buf->start, buf->len);
5064 		btrfs_free_reserved_bytes(cache, buf->len, 0);
5065 		btrfs_put_block_group(cache);
5066 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
5067 	}
5068 out:
5069 	if (pin)
5070 		add_pinned_bytes(fs_info, &generic_ref);
5071 
5072 	if (last_ref) {
5073 		/*
5074 		 * Deleting the buffer, clear the corrupt flag since it doesn't
5075 		 * matter anymore.
5076 		 */
5077 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5078 	}
5079 }
5080 
5081 /* Can return -ENOMEM */
5082 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
5083 {
5084 	struct btrfs_fs_info *fs_info = trans->fs_info;
5085 	int old_ref_mod, new_ref_mod;
5086 	int ret;
5087 
5088 	if (btrfs_is_testing(fs_info))
5089 		return 0;
5090 
5091 	/*
5092 	 * tree log blocks never actually go into the extent allocation
5093 	 * tree, just update pinning info and exit early.
5094 	 */
5095 	if ((ref->type == BTRFS_REF_METADATA &&
5096 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
5097 	    (ref->type == BTRFS_REF_DATA &&
5098 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
5099 		/* unlocks the pinned mutex */
5100 		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
5101 		old_ref_mod = new_ref_mod = 0;
5102 		ret = 0;
5103 	} else if (ref->type == BTRFS_REF_METADATA) {
5104 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
5105 						 &old_ref_mod, &new_ref_mod);
5106 	} else {
5107 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
5108 						 &old_ref_mod, &new_ref_mod);
5109 	}
5110 
5111 	if (!((ref->type == BTRFS_REF_METADATA &&
5112 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
5113 	      (ref->type == BTRFS_REF_DATA &&
5114 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
5115 		btrfs_ref_tree_mod(fs_info, ref);
5116 
5117 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
5118 		add_pinned_bytes(fs_info, ref);
5119 
5120 	return ret;
5121 }
5122 
5123 /*
5124  * when we wait for progress in the block group caching, its because
5125  * our allocation attempt failed at least once.  So, we must sleep
5126  * and let some progress happen before we try again.
5127  *
5128  * This function will sleep at least once waiting for new free space to
5129  * show up, and then it will check the block group free space numbers
5130  * for our min num_bytes.  Another option is to have it go ahead
5131  * and look in the rbtree for a free extent of a given size, but this
5132  * is a good start.
5133  *
5134  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
5135  * any of the information in this block group.
5136  */
5137 static noinline void
5138 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5139 				u64 num_bytes)
5140 {
5141 	struct btrfs_caching_control *caching_ctl;
5142 
5143 	caching_ctl = get_caching_control(cache);
5144 	if (!caching_ctl)
5145 		return;
5146 
5147 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5148 		   (cache->free_space_ctl->free_space >= num_bytes));
5149 
5150 	put_caching_control(caching_ctl);
5151 }
5152 
5153 static noinline int
5154 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5155 {
5156 	struct btrfs_caching_control *caching_ctl;
5157 	int ret = 0;
5158 
5159 	caching_ctl = get_caching_control(cache);
5160 	if (!caching_ctl)
5161 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
5162 
5163 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5164 	if (cache->cached == BTRFS_CACHE_ERROR)
5165 		ret = -EIO;
5166 	put_caching_control(caching_ctl);
5167 	return ret;
5168 }
5169 
5170 enum btrfs_loop_type {
5171 	LOOP_CACHING_NOWAIT,
5172 	LOOP_CACHING_WAIT,
5173 	LOOP_ALLOC_CHUNK,
5174 	LOOP_NO_EMPTY_SIZE,
5175 };
5176 
5177 static inline void
5178 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
5179 		       int delalloc)
5180 {
5181 	if (delalloc)
5182 		down_read(&cache->data_rwsem);
5183 }
5184 
5185 static inline void
5186 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
5187 		       int delalloc)
5188 {
5189 	btrfs_get_block_group(cache);
5190 	if (delalloc)
5191 		down_read(&cache->data_rwsem);
5192 }
5193 
5194 static struct btrfs_block_group_cache *
5195 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
5196 		   struct btrfs_free_cluster *cluster,
5197 		   int delalloc)
5198 {
5199 	struct btrfs_block_group_cache *used_bg = NULL;
5200 
5201 	spin_lock(&cluster->refill_lock);
5202 	while (1) {
5203 		used_bg = cluster->block_group;
5204 		if (!used_bg)
5205 			return NULL;
5206 
5207 		if (used_bg == block_group)
5208 			return used_bg;
5209 
5210 		btrfs_get_block_group(used_bg);
5211 
5212 		if (!delalloc)
5213 			return used_bg;
5214 
5215 		if (down_read_trylock(&used_bg->data_rwsem))
5216 			return used_bg;
5217 
5218 		spin_unlock(&cluster->refill_lock);
5219 
5220 		/* We should only have one-level nested. */
5221 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
5222 
5223 		spin_lock(&cluster->refill_lock);
5224 		if (used_bg == cluster->block_group)
5225 			return used_bg;
5226 
5227 		up_read(&used_bg->data_rwsem);
5228 		btrfs_put_block_group(used_bg);
5229 	}
5230 }
5231 
5232 static inline void
5233 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
5234 			 int delalloc)
5235 {
5236 	if (delalloc)
5237 		up_read(&cache->data_rwsem);
5238 	btrfs_put_block_group(cache);
5239 }
5240 
5241 /*
5242  * Structure used internally for find_free_extent() function.  Wraps needed
5243  * parameters.
5244  */
5245 struct find_free_extent_ctl {
5246 	/* Basic allocation info */
5247 	u64 ram_bytes;
5248 	u64 num_bytes;
5249 	u64 empty_size;
5250 	u64 flags;
5251 	int delalloc;
5252 
5253 	/* Where to start the search inside the bg */
5254 	u64 search_start;
5255 
5256 	/* For clustered allocation */
5257 	u64 empty_cluster;
5258 
5259 	bool have_caching_bg;
5260 	bool orig_have_caching_bg;
5261 
5262 	/* RAID index, converted from flags */
5263 	int index;
5264 
5265 	/*
5266 	 * Current loop number, check find_free_extent_update_loop() for details
5267 	 */
5268 	int loop;
5269 
5270 	/*
5271 	 * Whether we're refilling a cluster, if true we need to re-search
5272 	 * current block group but don't try to refill the cluster again.
5273 	 */
5274 	bool retry_clustered;
5275 
5276 	/*
5277 	 * Whether we're updating free space cache, if true we need to re-search
5278 	 * current block group but don't try updating free space cache again.
5279 	 */
5280 	bool retry_unclustered;
5281 
5282 	/* If current block group is cached */
5283 	int cached;
5284 
5285 	/* Max contiguous hole found */
5286 	u64 max_extent_size;
5287 
5288 	/* Total free space from free space cache, not always contiguous */
5289 	u64 total_free_space;
5290 
5291 	/* Found result */
5292 	u64 found_offset;
5293 };
5294 
5295 
5296 /*
5297  * Helper function for find_free_extent().
5298  *
5299  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
5300  * Return -EAGAIN to inform caller that we need to re-search this block group
5301  * Return >0 to inform caller that we find nothing
5302  * Return 0 means we have found a location and set ffe_ctl->found_offset.
5303  */
5304 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
5305 		struct btrfs_free_cluster *last_ptr,
5306 		struct find_free_extent_ctl *ffe_ctl,
5307 		struct btrfs_block_group_cache **cluster_bg_ret)
5308 {
5309 	struct btrfs_block_group_cache *cluster_bg;
5310 	u64 aligned_cluster;
5311 	u64 offset;
5312 	int ret;
5313 
5314 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
5315 	if (!cluster_bg)
5316 		goto refill_cluster;
5317 	if (cluster_bg != bg && (cluster_bg->ro ||
5318 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
5319 		goto release_cluster;
5320 
5321 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
5322 			ffe_ctl->num_bytes, cluster_bg->key.objectid,
5323 			&ffe_ctl->max_extent_size);
5324 	if (offset) {
5325 		/* We have a block, we're done */
5326 		spin_unlock(&last_ptr->refill_lock);
5327 		trace_btrfs_reserve_extent_cluster(cluster_bg,
5328 				ffe_ctl->search_start, ffe_ctl->num_bytes);
5329 		*cluster_bg_ret = cluster_bg;
5330 		ffe_ctl->found_offset = offset;
5331 		return 0;
5332 	}
5333 	WARN_ON(last_ptr->block_group != cluster_bg);
5334 
5335 release_cluster:
5336 	/*
5337 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
5338 	 * lets just skip it and let the allocator find whatever block it can
5339 	 * find. If we reach this point, we will have tried the cluster
5340 	 * allocator plenty of times and not have found anything, so we are
5341 	 * likely way too fragmented for the clustering stuff to find anything.
5342 	 *
5343 	 * However, if the cluster is taken from the current block group,
5344 	 * release the cluster first, so that we stand a better chance of
5345 	 * succeeding in the unclustered allocation.
5346 	 */
5347 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
5348 		spin_unlock(&last_ptr->refill_lock);
5349 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
5350 		return -ENOENT;
5351 	}
5352 
5353 	/* This cluster didn't work out, free it and start over */
5354 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
5355 
5356 	if (cluster_bg != bg)
5357 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
5358 
5359 refill_cluster:
5360 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
5361 		spin_unlock(&last_ptr->refill_lock);
5362 		return -ENOENT;
5363 	}
5364 
5365 	aligned_cluster = max_t(u64,
5366 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
5367 			bg->full_stripe_len);
5368 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
5369 			ffe_ctl->num_bytes, aligned_cluster);
5370 	if (ret == 0) {
5371 		/* Now pull our allocation out of this cluster */
5372 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
5373 				ffe_ctl->num_bytes, ffe_ctl->search_start,
5374 				&ffe_ctl->max_extent_size);
5375 		if (offset) {
5376 			/* We found one, proceed */
5377 			spin_unlock(&last_ptr->refill_lock);
5378 			trace_btrfs_reserve_extent_cluster(bg,
5379 					ffe_ctl->search_start,
5380 					ffe_ctl->num_bytes);
5381 			ffe_ctl->found_offset = offset;
5382 			return 0;
5383 		}
5384 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
5385 		   !ffe_ctl->retry_clustered) {
5386 		spin_unlock(&last_ptr->refill_lock);
5387 
5388 		ffe_ctl->retry_clustered = true;
5389 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
5390 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
5391 		return -EAGAIN;
5392 	}
5393 	/*
5394 	 * At this point we either didn't find a cluster or we weren't able to
5395 	 * allocate a block from our cluster.  Free the cluster we've been
5396 	 * trying to use, and go to the next block group.
5397 	 */
5398 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
5399 	spin_unlock(&last_ptr->refill_lock);
5400 	return 1;
5401 }
5402 
5403 /*
5404  * Return >0 to inform caller that we find nothing
5405  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
5406  * Return -EAGAIN to inform caller that we need to re-search this block group
5407  */
5408 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
5409 		struct btrfs_free_cluster *last_ptr,
5410 		struct find_free_extent_ctl *ffe_ctl)
5411 {
5412 	u64 offset;
5413 
5414 	/*
5415 	 * We are doing an unclustered allocation, set the fragmented flag so
5416 	 * we don't bother trying to setup a cluster again until we get more
5417 	 * space.
5418 	 */
5419 	if (unlikely(last_ptr)) {
5420 		spin_lock(&last_ptr->lock);
5421 		last_ptr->fragmented = 1;
5422 		spin_unlock(&last_ptr->lock);
5423 	}
5424 	if (ffe_ctl->cached) {
5425 		struct btrfs_free_space_ctl *free_space_ctl;
5426 
5427 		free_space_ctl = bg->free_space_ctl;
5428 		spin_lock(&free_space_ctl->tree_lock);
5429 		if (free_space_ctl->free_space <
5430 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
5431 		    ffe_ctl->empty_size) {
5432 			ffe_ctl->total_free_space = max_t(u64,
5433 					ffe_ctl->total_free_space,
5434 					free_space_ctl->free_space);
5435 			spin_unlock(&free_space_ctl->tree_lock);
5436 			return 1;
5437 		}
5438 		spin_unlock(&free_space_ctl->tree_lock);
5439 	}
5440 
5441 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
5442 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
5443 			&ffe_ctl->max_extent_size);
5444 
5445 	/*
5446 	 * If we didn't find a chunk, and we haven't failed on this block group
5447 	 * before, and this block group is in the middle of caching and we are
5448 	 * ok with waiting, then go ahead and wait for progress to be made, and
5449 	 * set @retry_unclustered to true.
5450 	 *
5451 	 * If @retry_unclustered is true then we've already waited on this
5452 	 * block group once and should move on to the next block group.
5453 	 */
5454 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
5455 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
5456 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
5457 						ffe_ctl->empty_size);
5458 		ffe_ctl->retry_unclustered = true;
5459 		return -EAGAIN;
5460 	} else if (!offset) {
5461 		return 1;
5462 	}
5463 	ffe_ctl->found_offset = offset;
5464 	return 0;
5465 }
5466 
5467 /*
5468  * Return >0 means caller needs to re-search for free extent
5469  * Return 0 means we have the needed free extent.
5470  * Return <0 means we failed to locate any free extent.
5471  */
5472 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
5473 					struct btrfs_free_cluster *last_ptr,
5474 					struct btrfs_key *ins,
5475 					struct find_free_extent_ctl *ffe_ctl,
5476 					int full_search, bool use_cluster)
5477 {
5478 	struct btrfs_root *root = fs_info->extent_root;
5479 	int ret;
5480 
5481 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
5482 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
5483 		ffe_ctl->orig_have_caching_bg = true;
5484 
5485 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
5486 	    ffe_ctl->have_caching_bg)
5487 		return 1;
5488 
5489 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
5490 		return 1;
5491 
5492 	if (ins->objectid) {
5493 		if (!use_cluster && last_ptr) {
5494 			spin_lock(&last_ptr->lock);
5495 			last_ptr->window_start = ins->objectid;
5496 			spin_unlock(&last_ptr->lock);
5497 		}
5498 		return 0;
5499 	}
5500 
5501 	/*
5502 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5503 	 *			caching kthreads as we move along
5504 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5505 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5506 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5507 	 *		       again
5508 	 */
5509 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
5510 		ffe_ctl->index = 0;
5511 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
5512 			/*
5513 			 * We want to skip the LOOP_CACHING_WAIT step if we
5514 			 * don't have any uncached bgs and we've already done a
5515 			 * full search through.
5516 			 */
5517 			if (ffe_ctl->orig_have_caching_bg || !full_search)
5518 				ffe_ctl->loop = LOOP_CACHING_WAIT;
5519 			else
5520 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
5521 		} else {
5522 			ffe_ctl->loop++;
5523 		}
5524 
5525 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
5526 			struct btrfs_trans_handle *trans;
5527 			int exist = 0;
5528 
5529 			trans = current->journal_info;
5530 			if (trans)
5531 				exist = 1;
5532 			else
5533 				trans = btrfs_join_transaction(root);
5534 
5535 			if (IS_ERR(trans)) {
5536 				ret = PTR_ERR(trans);
5537 				return ret;
5538 			}
5539 
5540 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
5541 						CHUNK_ALLOC_FORCE);
5542 
5543 			/*
5544 			 * If we can't allocate a new chunk we've already looped
5545 			 * through at least once, move on to the NO_EMPTY_SIZE
5546 			 * case.
5547 			 */
5548 			if (ret == -ENOSPC)
5549 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
5550 
5551 			/* Do not bail out on ENOSPC since we can do more. */
5552 			if (ret < 0 && ret != -ENOSPC)
5553 				btrfs_abort_transaction(trans, ret);
5554 			else
5555 				ret = 0;
5556 			if (!exist)
5557 				btrfs_end_transaction(trans);
5558 			if (ret)
5559 				return ret;
5560 		}
5561 
5562 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
5563 			/*
5564 			 * Don't loop again if we already have no empty_size and
5565 			 * no empty_cluster.
5566 			 */
5567 			if (ffe_ctl->empty_size == 0 &&
5568 			    ffe_ctl->empty_cluster == 0)
5569 				return -ENOSPC;
5570 			ffe_ctl->empty_size = 0;
5571 			ffe_ctl->empty_cluster = 0;
5572 		}
5573 		return 1;
5574 	}
5575 	return -ENOSPC;
5576 }
5577 
5578 /*
5579  * walks the btree of allocated extents and find a hole of a given size.
5580  * The key ins is changed to record the hole:
5581  * ins->objectid == start position
5582  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5583  * ins->offset == the size of the hole.
5584  * Any available blocks before search_start are skipped.
5585  *
5586  * If there is no suitable free space, we will record the max size of
5587  * the free space extent currently.
5588  *
5589  * The overall logic and call chain:
5590  *
5591  * find_free_extent()
5592  * |- Iterate through all block groups
5593  * |  |- Get a valid block group
5594  * |  |- Try to do clustered allocation in that block group
5595  * |  |- Try to do unclustered allocation in that block group
5596  * |  |- Check if the result is valid
5597  * |  |  |- If valid, then exit
5598  * |  |- Jump to next block group
5599  * |
5600  * |- Push harder to find free extents
5601  *    |- If not found, re-iterate all block groups
5602  */
5603 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
5604 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
5605 				u64 hint_byte, struct btrfs_key *ins,
5606 				u64 flags, int delalloc)
5607 {
5608 	int ret = 0;
5609 	struct btrfs_free_cluster *last_ptr = NULL;
5610 	struct btrfs_block_group_cache *block_group = NULL;
5611 	struct find_free_extent_ctl ffe_ctl = {0};
5612 	struct btrfs_space_info *space_info;
5613 	bool use_cluster = true;
5614 	bool full_search = false;
5615 
5616 	WARN_ON(num_bytes < fs_info->sectorsize);
5617 
5618 	ffe_ctl.ram_bytes = ram_bytes;
5619 	ffe_ctl.num_bytes = num_bytes;
5620 	ffe_ctl.empty_size = empty_size;
5621 	ffe_ctl.flags = flags;
5622 	ffe_ctl.search_start = 0;
5623 	ffe_ctl.retry_clustered = false;
5624 	ffe_ctl.retry_unclustered = false;
5625 	ffe_ctl.delalloc = delalloc;
5626 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
5627 	ffe_ctl.have_caching_bg = false;
5628 	ffe_ctl.orig_have_caching_bg = false;
5629 	ffe_ctl.found_offset = 0;
5630 
5631 	ins->type = BTRFS_EXTENT_ITEM_KEY;
5632 	ins->objectid = 0;
5633 	ins->offset = 0;
5634 
5635 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
5636 
5637 	space_info = btrfs_find_space_info(fs_info, flags);
5638 	if (!space_info) {
5639 		btrfs_err(fs_info, "No space info for %llu", flags);
5640 		return -ENOSPC;
5641 	}
5642 
5643 	/*
5644 	 * If our free space is heavily fragmented we may not be able to make
5645 	 * big contiguous allocations, so instead of doing the expensive search
5646 	 * for free space, simply return ENOSPC with our max_extent_size so we
5647 	 * can go ahead and search for a more manageable chunk.
5648 	 *
5649 	 * If our max_extent_size is large enough for our allocation simply
5650 	 * disable clustering since we will likely not be able to find enough
5651 	 * space to create a cluster and induce latency trying.
5652 	 */
5653 	if (unlikely(space_info->max_extent_size)) {
5654 		spin_lock(&space_info->lock);
5655 		if (space_info->max_extent_size &&
5656 		    num_bytes > space_info->max_extent_size) {
5657 			ins->offset = space_info->max_extent_size;
5658 			spin_unlock(&space_info->lock);
5659 			return -ENOSPC;
5660 		} else if (space_info->max_extent_size) {
5661 			use_cluster = false;
5662 		}
5663 		spin_unlock(&space_info->lock);
5664 	}
5665 
5666 	last_ptr = fetch_cluster_info(fs_info, space_info,
5667 				      &ffe_ctl.empty_cluster);
5668 	if (last_ptr) {
5669 		spin_lock(&last_ptr->lock);
5670 		if (last_ptr->block_group)
5671 			hint_byte = last_ptr->window_start;
5672 		if (last_ptr->fragmented) {
5673 			/*
5674 			 * We still set window_start so we can keep track of the
5675 			 * last place we found an allocation to try and save
5676 			 * some time.
5677 			 */
5678 			hint_byte = last_ptr->window_start;
5679 			use_cluster = false;
5680 		}
5681 		spin_unlock(&last_ptr->lock);
5682 	}
5683 
5684 	ffe_ctl.search_start = max(ffe_ctl.search_start,
5685 				   first_logical_byte(fs_info, 0));
5686 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
5687 	if (ffe_ctl.search_start == hint_byte) {
5688 		block_group = btrfs_lookup_block_group(fs_info,
5689 						       ffe_ctl.search_start);
5690 		/*
5691 		 * we don't want to use the block group if it doesn't match our
5692 		 * allocation bits, or if its not cached.
5693 		 *
5694 		 * However if we are re-searching with an ideal block group
5695 		 * picked out then we don't care that the block group is cached.
5696 		 */
5697 		if (block_group && block_group_bits(block_group, flags) &&
5698 		    block_group->cached != BTRFS_CACHE_NO) {
5699 			down_read(&space_info->groups_sem);
5700 			if (list_empty(&block_group->list) ||
5701 			    block_group->ro) {
5702 				/*
5703 				 * someone is removing this block group,
5704 				 * we can't jump into the have_block_group
5705 				 * target because our list pointers are not
5706 				 * valid
5707 				 */
5708 				btrfs_put_block_group(block_group);
5709 				up_read(&space_info->groups_sem);
5710 			} else {
5711 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
5712 						block_group->flags);
5713 				btrfs_lock_block_group(block_group, delalloc);
5714 				goto have_block_group;
5715 			}
5716 		} else if (block_group) {
5717 			btrfs_put_block_group(block_group);
5718 		}
5719 	}
5720 search:
5721 	ffe_ctl.have_caching_bg = false;
5722 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
5723 	    ffe_ctl.index == 0)
5724 		full_search = true;
5725 	down_read(&space_info->groups_sem);
5726 	list_for_each_entry(block_group,
5727 			    &space_info->block_groups[ffe_ctl.index], list) {
5728 		/* If the block group is read-only, we can skip it entirely. */
5729 		if (unlikely(block_group->ro))
5730 			continue;
5731 
5732 		btrfs_grab_block_group(block_group, delalloc);
5733 		ffe_ctl.search_start = block_group->key.objectid;
5734 
5735 		/*
5736 		 * this can happen if we end up cycling through all the
5737 		 * raid types, but we want to make sure we only allocate
5738 		 * for the proper type.
5739 		 */
5740 		if (!block_group_bits(block_group, flags)) {
5741 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
5742 				BTRFS_BLOCK_GROUP_RAID1_MASK |
5743 				BTRFS_BLOCK_GROUP_RAID56_MASK |
5744 				BTRFS_BLOCK_GROUP_RAID10;
5745 
5746 			/*
5747 			 * if they asked for extra copies and this block group
5748 			 * doesn't provide them, bail.  This does allow us to
5749 			 * fill raid0 from raid1.
5750 			 */
5751 			if ((flags & extra) && !(block_group->flags & extra))
5752 				goto loop;
5753 		}
5754 
5755 have_block_group:
5756 		ffe_ctl.cached = block_group_cache_done(block_group);
5757 		if (unlikely(!ffe_ctl.cached)) {
5758 			ffe_ctl.have_caching_bg = true;
5759 			ret = cache_block_group(block_group, 0);
5760 			BUG_ON(ret < 0);
5761 			ret = 0;
5762 		}
5763 
5764 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
5765 			goto loop;
5766 
5767 		/*
5768 		 * Ok we want to try and use the cluster allocator, so
5769 		 * lets look there
5770 		 */
5771 		if (last_ptr && use_cluster) {
5772 			struct btrfs_block_group_cache *cluster_bg = NULL;
5773 
5774 			ret = find_free_extent_clustered(block_group, last_ptr,
5775 							 &ffe_ctl, &cluster_bg);
5776 
5777 			if (ret == 0) {
5778 				if (cluster_bg && cluster_bg != block_group) {
5779 					btrfs_release_block_group(block_group,
5780 								  delalloc);
5781 					block_group = cluster_bg;
5782 				}
5783 				goto checks;
5784 			} else if (ret == -EAGAIN) {
5785 				goto have_block_group;
5786 			} else if (ret > 0) {
5787 				goto loop;
5788 			}
5789 			/* ret == -ENOENT case falls through */
5790 		}
5791 
5792 		ret = find_free_extent_unclustered(block_group, last_ptr,
5793 						   &ffe_ctl);
5794 		if (ret == -EAGAIN)
5795 			goto have_block_group;
5796 		else if (ret > 0)
5797 			goto loop;
5798 		/* ret == 0 case falls through */
5799 checks:
5800 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
5801 					     fs_info->stripesize);
5802 
5803 		/* move on to the next group */
5804 		if (ffe_ctl.search_start + num_bytes >
5805 		    block_group->key.objectid + block_group->key.offset) {
5806 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
5807 					     num_bytes);
5808 			goto loop;
5809 		}
5810 
5811 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
5812 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
5813 				ffe_ctl.search_start - ffe_ctl.found_offset);
5814 
5815 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
5816 				num_bytes, delalloc);
5817 		if (ret == -EAGAIN) {
5818 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
5819 					     num_bytes);
5820 			goto loop;
5821 		}
5822 		btrfs_inc_block_group_reservations(block_group);
5823 
5824 		/* we are all good, lets return */
5825 		ins->objectid = ffe_ctl.search_start;
5826 		ins->offset = num_bytes;
5827 
5828 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
5829 					   num_bytes);
5830 		btrfs_release_block_group(block_group, delalloc);
5831 		break;
5832 loop:
5833 		ffe_ctl.retry_clustered = false;
5834 		ffe_ctl.retry_unclustered = false;
5835 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
5836 		       ffe_ctl.index);
5837 		btrfs_release_block_group(block_group, delalloc);
5838 		cond_resched();
5839 	}
5840 	up_read(&space_info->groups_sem);
5841 
5842 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
5843 					   full_search, use_cluster);
5844 	if (ret > 0)
5845 		goto search;
5846 
5847 	if (ret == -ENOSPC) {
5848 		/*
5849 		 * Use ffe_ctl->total_free_space as fallback if we can't find
5850 		 * any contiguous hole.
5851 		 */
5852 		if (!ffe_ctl.max_extent_size)
5853 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
5854 		spin_lock(&space_info->lock);
5855 		space_info->max_extent_size = ffe_ctl.max_extent_size;
5856 		spin_unlock(&space_info->lock);
5857 		ins->offset = ffe_ctl.max_extent_size;
5858 	}
5859 	return ret;
5860 }
5861 
5862 /*
5863  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
5864  *			  hole that is at least as big as @num_bytes.
5865  *
5866  * @root           -	The root that will contain this extent
5867  *
5868  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
5869  *			is used for accounting purposes. This value differs
5870  *			from @num_bytes only in the case of compressed extents.
5871  *
5872  * @num_bytes      -	Number of bytes to allocate on-disk.
5873  *
5874  * @min_alloc_size -	Indicates the minimum amount of space that the
5875  *			allocator should try to satisfy. In some cases
5876  *			@num_bytes may be larger than what is required and if
5877  *			the filesystem is fragmented then allocation fails.
5878  *			However, the presence of @min_alloc_size gives a
5879  *			chance to try and satisfy the smaller allocation.
5880  *
5881  * @empty_size     -	A hint that you plan on doing more COW. This is the
5882  *			size in bytes the allocator should try to find free
5883  *			next to the block it returns.  This is just a hint and
5884  *			may be ignored by the allocator.
5885  *
5886  * @hint_byte      -	Hint to the allocator to start searching above the byte
5887  *			address passed. It might be ignored.
5888  *
5889  * @ins            -	This key is modified to record the found hole. It will
5890  *			have the following values:
5891  *			ins->objectid == start position
5892  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
5893  *			ins->offset == the size of the hole.
5894  *
5895  * @is_data        -	Boolean flag indicating whether an extent is
5896  *			allocated for data (true) or metadata (false)
5897  *
5898  * @delalloc       -	Boolean flag indicating whether this allocation is for
5899  *			delalloc or not. If 'true' data_rwsem of block groups
5900  *			is going to be acquired.
5901  *
5902  *
5903  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
5904  * case -ENOSPC is returned then @ins->offset will contain the size of the
5905  * largest available hole the allocator managed to find.
5906  */
5907 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
5908 			 u64 num_bytes, u64 min_alloc_size,
5909 			 u64 empty_size, u64 hint_byte,
5910 			 struct btrfs_key *ins, int is_data, int delalloc)
5911 {
5912 	struct btrfs_fs_info *fs_info = root->fs_info;
5913 	bool final_tried = num_bytes == min_alloc_size;
5914 	u64 flags;
5915 	int ret;
5916 
5917 	flags = get_alloc_profile_by_root(root, is_data);
5918 again:
5919 	WARN_ON(num_bytes < fs_info->sectorsize);
5920 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
5921 			       hint_byte, ins, flags, delalloc);
5922 	if (!ret && !is_data) {
5923 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
5924 	} else if (ret == -ENOSPC) {
5925 		if (!final_tried && ins->offset) {
5926 			num_bytes = min(num_bytes >> 1, ins->offset);
5927 			num_bytes = round_down(num_bytes,
5928 					       fs_info->sectorsize);
5929 			num_bytes = max(num_bytes, min_alloc_size);
5930 			ram_bytes = num_bytes;
5931 			if (num_bytes == min_alloc_size)
5932 				final_tried = true;
5933 			goto again;
5934 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
5935 			struct btrfs_space_info *sinfo;
5936 
5937 			sinfo = btrfs_find_space_info(fs_info, flags);
5938 			btrfs_err(fs_info,
5939 				  "allocation failed flags %llu, wanted %llu",
5940 				  flags, num_bytes);
5941 			if (sinfo)
5942 				btrfs_dump_space_info(fs_info, sinfo,
5943 						      num_bytes, 1);
5944 		}
5945 	}
5946 
5947 	return ret;
5948 }
5949 
5950 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
5951 					u64 start, u64 len,
5952 					int pin, int delalloc)
5953 {
5954 	struct btrfs_block_group_cache *cache;
5955 	int ret = 0;
5956 
5957 	cache = btrfs_lookup_block_group(fs_info, start);
5958 	if (!cache) {
5959 		btrfs_err(fs_info, "Unable to find block group for %llu",
5960 			  start);
5961 		return -ENOSPC;
5962 	}
5963 
5964 	if (pin)
5965 		pin_down_extent(cache, start, len, 1);
5966 	else {
5967 		if (btrfs_test_opt(fs_info, DISCARD))
5968 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
5969 		btrfs_add_free_space(cache, start, len);
5970 		btrfs_free_reserved_bytes(cache, len, delalloc);
5971 		trace_btrfs_reserved_extent_free(fs_info, start, len);
5972 	}
5973 
5974 	btrfs_put_block_group(cache);
5975 	return ret;
5976 }
5977 
5978 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
5979 			       u64 start, u64 len, int delalloc)
5980 {
5981 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
5982 }
5983 
5984 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
5985 				       u64 start, u64 len)
5986 {
5987 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
5988 }
5989 
5990 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5991 				      u64 parent, u64 root_objectid,
5992 				      u64 flags, u64 owner, u64 offset,
5993 				      struct btrfs_key *ins, int ref_mod)
5994 {
5995 	struct btrfs_fs_info *fs_info = trans->fs_info;
5996 	int ret;
5997 	struct btrfs_extent_item *extent_item;
5998 	struct btrfs_extent_inline_ref *iref;
5999 	struct btrfs_path *path;
6000 	struct extent_buffer *leaf;
6001 	int type;
6002 	u32 size;
6003 
6004 	if (parent > 0)
6005 		type = BTRFS_SHARED_DATA_REF_KEY;
6006 	else
6007 		type = BTRFS_EXTENT_DATA_REF_KEY;
6008 
6009 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6010 
6011 	path = btrfs_alloc_path();
6012 	if (!path)
6013 		return -ENOMEM;
6014 
6015 	path->leave_spinning = 1;
6016 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6017 				      ins, size);
6018 	if (ret) {
6019 		btrfs_free_path(path);
6020 		return ret;
6021 	}
6022 
6023 	leaf = path->nodes[0];
6024 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6025 				     struct btrfs_extent_item);
6026 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6027 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6028 	btrfs_set_extent_flags(leaf, extent_item,
6029 			       flags | BTRFS_EXTENT_FLAG_DATA);
6030 
6031 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6032 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6033 	if (parent > 0) {
6034 		struct btrfs_shared_data_ref *ref;
6035 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6036 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6037 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6038 	} else {
6039 		struct btrfs_extent_data_ref *ref;
6040 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6041 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6042 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6043 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6044 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6045 	}
6046 
6047 	btrfs_mark_buffer_dirty(path->nodes[0]);
6048 	btrfs_free_path(path);
6049 
6050 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
6051 	if (ret)
6052 		return ret;
6053 
6054 	ret = update_block_group(trans, ins->objectid, ins->offset, 1);
6055 	if (ret) { /* -ENOENT, logic error */
6056 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6057 			ins->objectid, ins->offset);
6058 		BUG();
6059 	}
6060 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
6061 	return ret;
6062 }
6063 
6064 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6065 				     struct btrfs_delayed_ref_node *node,
6066 				     struct btrfs_delayed_extent_op *extent_op)
6067 {
6068 	struct btrfs_fs_info *fs_info = trans->fs_info;
6069 	int ret;
6070 	struct btrfs_extent_item *extent_item;
6071 	struct btrfs_key extent_key;
6072 	struct btrfs_tree_block_info *block_info;
6073 	struct btrfs_extent_inline_ref *iref;
6074 	struct btrfs_path *path;
6075 	struct extent_buffer *leaf;
6076 	struct btrfs_delayed_tree_ref *ref;
6077 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6078 	u64 num_bytes;
6079 	u64 flags = extent_op->flags_to_set;
6080 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
6081 
6082 	ref = btrfs_delayed_node_to_tree_ref(node);
6083 
6084 	extent_key.objectid = node->bytenr;
6085 	if (skinny_metadata) {
6086 		extent_key.offset = ref->level;
6087 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
6088 		num_bytes = fs_info->nodesize;
6089 	} else {
6090 		extent_key.offset = node->num_bytes;
6091 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6092 		size += sizeof(*block_info);
6093 		num_bytes = node->num_bytes;
6094 	}
6095 
6096 	path = btrfs_alloc_path();
6097 	if (!path)
6098 		return -ENOMEM;
6099 
6100 	path->leave_spinning = 1;
6101 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6102 				      &extent_key, size);
6103 	if (ret) {
6104 		btrfs_free_path(path);
6105 		return ret;
6106 	}
6107 
6108 	leaf = path->nodes[0];
6109 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6110 				     struct btrfs_extent_item);
6111 	btrfs_set_extent_refs(leaf, extent_item, 1);
6112 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6113 	btrfs_set_extent_flags(leaf, extent_item,
6114 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6115 
6116 	if (skinny_metadata) {
6117 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6118 	} else {
6119 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6120 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
6121 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
6122 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6123 	}
6124 
6125 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
6126 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6127 		btrfs_set_extent_inline_ref_type(leaf, iref,
6128 						 BTRFS_SHARED_BLOCK_REF_KEY);
6129 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
6130 	} else {
6131 		btrfs_set_extent_inline_ref_type(leaf, iref,
6132 						 BTRFS_TREE_BLOCK_REF_KEY);
6133 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
6134 	}
6135 
6136 	btrfs_mark_buffer_dirty(leaf);
6137 	btrfs_free_path(path);
6138 
6139 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
6140 					  num_bytes);
6141 	if (ret)
6142 		return ret;
6143 
6144 	ret = update_block_group(trans, extent_key.objectid,
6145 				 fs_info->nodesize, 1);
6146 	if (ret) { /* -ENOENT, logic error */
6147 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6148 			extent_key.objectid, extent_key.offset);
6149 		BUG();
6150 	}
6151 
6152 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
6153 					  fs_info->nodesize);
6154 	return ret;
6155 }
6156 
6157 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6158 				     struct btrfs_root *root, u64 owner,
6159 				     u64 offset, u64 ram_bytes,
6160 				     struct btrfs_key *ins)
6161 {
6162 	struct btrfs_ref generic_ref = { 0 };
6163 	int ret;
6164 
6165 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
6166 
6167 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
6168 			       ins->objectid, ins->offset, 0);
6169 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
6170 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
6171 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
6172 					 ram_bytes, NULL, NULL);
6173 	return ret;
6174 }
6175 
6176 /*
6177  * this is used by the tree logging recovery code.  It records that
6178  * an extent has been allocated and makes sure to clear the free
6179  * space cache bits as well
6180  */
6181 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6182 				   u64 root_objectid, u64 owner, u64 offset,
6183 				   struct btrfs_key *ins)
6184 {
6185 	struct btrfs_fs_info *fs_info = trans->fs_info;
6186 	int ret;
6187 	struct btrfs_block_group_cache *block_group;
6188 	struct btrfs_space_info *space_info;
6189 
6190 	/*
6191 	 * Mixed block groups will exclude before processing the log so we only
6192 	 * need to do the exclude dance if this fs isn't mixed.
6193 	 */
6194 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
6195 		ret = __exclude_logged_extent(fs_info, ins->objectid,
6196 					      ins->offset);
6197 		if (ret)
6198 			return ret;
6199 	}
6200 
6201 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
6202 	if (!block_group)
6203 		return -EINVAL;
6204 
6205 	space_info = block_group->space_info;
6206 	spin_lock(&space_info->lock);
6207 	spin_lock(&block_group->lock);
6208 	space_info->bytes_reserved += ins->offset;
6209 	block_group->reserved += ins->offset;
6210 	spin_unlock(&block_group->lock);
6211 	spin_unlock(&space_info->lock);
6212 
6213 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
6214 					 offset, ins, 1);
6215 	btrfs_put_block_group(block_group);
6216 	return ret;
6217 }
6218 
6219 static struct extent_buffer *
6220 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6221 		      u64 bytenr, int level, u64 owner)
6222 {
6223 	struct btrfs_fs_info *fs_info = root->fs_info;
6224 	struct extent_buffer *buf;
6225 
6226 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
6227 	if (IS_ERR(buf))
6228 		return buf;
6229 
6230 	/*
6231 	 * Extra safety check in case the extent tree is corrupted and extent
6232 	 * allocator chooses to use a tree block which is already used and
6233 	 * locked.
6234 	 */
6235 	if (buf->lock_owner == current->pid) {
6236 		btrfs_err_rl(fs_info,
6237 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
6238 			buf->start, btrfs_header_owner(buf), current->pid);
6239 		free_extent_buffer(buf);
6240 		return ERR_PTR(-EUCLEAN);
6241 	}
6242 
6243 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6244 	btrfs_tree_lock(buf);
6245 	btrfs_clean_tree_block(buf);
6246 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6247 
6248 	btrfs_set_lock_blocking_write(buf);
6249 	set_extent_buffer_uptodate(buf);
6250 
6251 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
6252 	btrfs_set_header_level(buf, level);
6253 	btrfs_set_header_bytenr(buf, buf->start);
6254 	btrfs_set_header_generation(buf, trans->transid);
6255 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
6256 	btrfs_set_header_owner(buf, owner);
6257 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
6258 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
6259 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6260 		buf->log_index = root->log_transid % 2;
6261 		/*
6262 		 * we allow two log transactions at a time, use different
6263 		 * EXTENT bit to differentiate dirty pages.
6264 		 */
6265 		if (buf->log_index == 0)
6266 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6267 					buf->start + buf->len - 1, GFP_NOFS);
6268 		else
6269 			set_extent_new(&root->dirty_log_pages, buf->start,
6270 					buf->start + buf->len - 1);
6271 	} else {
6272 		buf->log_index = -1;
6273 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6274 			 buf->start + buf->len - 1, GFP_NOFS);
6275 	}
6276 	trans->dirty = true;
6277 	/* this returns a buffer locked for blocking */
6278 	return buf;
6279 }
6280 
6281 /*
6282  * finds a free extent and does all the dirty work required for allocation
6283  * returns the tree buffer or an ERR_PTR on error.
6284  */
6285 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
6286 					     struct btrfs_root *root,
6287 					     u64 parent, u64 root_objectid,
6288 					     const struct btrfs_disk_key *key,
6289 					     int level, u64 hint,
6290 					     u64 empty_size)
6291 {
6292 	struct btrfs_fs_info *fs_info = root->fs_info;
6293 	struct btrfs_key ins;
6294 	struct btrfs_block_rsv *block_rsv;
6295 	struct extent_buffer *buf;
6296 	struct btrfs_delayed_extent_op *extent_op;
6297 	struct btrfs_ref generic_ref = { 0 };
6298 	u64 flags = 0;
6299 	int ret;
6300 	u32 blocksize = fs_info->nodesize;
6301 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
6302 
6303 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6304 	if (btrfs_is_testing(fs_info)) {
6305 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
6306 					    level, root_objectid);
6307 		if (!IS_ERR(buf))
6308 			root->alloc_bytenr += blocksize;
6309 		return buf;
6310 	}
6311 #endif
6312 
6313 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
6314 	if (IS_ERR(block_rsv))
6315 		return ERR_CAST(block_rsv);
6316 
6317 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
6318 				   empty_size, hint, &ins, 0, 0);
6319 	if (ret)
6320 		goto out_unuse;
6321 
6322 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
6323 				    root_objectid);
6324 	if (IS_ERR(buf)) {
6325 		ret = PTR_ERR(buf);
6326 		goto out_free_reserved;
6327 	}
6328 
6329 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6330 		if (parent == 0)
6331 			parent = ins.objectid;
6332 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6333 	} else
6334 		BUG_ON(parent > 0);
6335 
6336 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6337 		extent_op = btrfs_alloc_delayed_extent_op();
6338 		if (!extent_op) {
6339 			ret = -ENOMEM;
6340 			goto out_free_buf;
6341 		}
6342 		if (key)
6343 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6344 		else
6345 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6346 		extent_op->flags_to_set = flags;
6347 		extent_op->update_key = skinny_metadata ? false : true;
6348 		extent_op->update_flags = true;
6349 		extent_op->is_data = false;
6350 		extent_op->level = level;
6351 
6352 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
6353 				       ins.objectid, ins.offset, parent);
6354 		generic_ref.real_root = root->root_key.objectid;
6355 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
6356 		btrfs_ref_tree_mod(fs_info, &generic_ref);
6357 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
6358 						 extent_op, NULL, NULL);
6359 		if (ret)
6360 			goto out_free_delayed;
6361 	}
6362 	return buf;
6363 
6364 out_free_delayed:
6365 	btrfs_free_delayed_extent_op(extent_op);
6366 out_free_buf:
6367 	free_extent_buffer(buf);
6368 out_free_reserved:
6369 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
6370 out_unuse:
6371 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
6372 	return ERR_PTR(ret);
6373 }
6374 
6375 struct walk_control {
6376 	u64 refs[BTRFS_MAX_LEVEL];
6377 	u64 flags[BTRFS_MAX_LEVEL];
6378 	struct btrfs_key update_progress;
6379 	struct btrfs_key drop_progress;
6380 	int drop_level;
6381 	int stage;
6382 	int level;
6383 	int shared_level;
6384 	int update_ref;
6385 	int keep_locks;
6386 	int reada_slot;
6387 	int reada_count;
6388 	int restarted;
6389 };
6390 
6391 #define DROP_REFERENCE	1
6392 #define UPDATE_BACKREF	2
6393 
6394 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6395 				     struct btrfs_root *root,
6396 				     struct walk_control *wc,
6397 				     struct btrfs_path *path)
6398 {
6399 	struct btrfs_fs_info *fs_info = root->fs_info;
6400 	u64 bytenr;
6401 	u64 generation;
6402 	u64 refs;
6403 	u64 flags;
6404 	u32 nritems;
6405 	struct btrfs_key key;
6406 	struct extent_buffer *eb;
6407 	int ret;
6408 	int slot;
6409 	int nread = 0;
6410 
6411 	if (path->slots[wc->level] < wc->reada_slot) {
6412 		wc->reada_count = wc->reada_count * 2 / 3;
6413 		wc->reada_count = max(wc->reada_count, 2);
6414 	} else {
6415 		wc->reada_count = wc->reada_count * 3 / 2;
6416 		wc->reada_count = min_t(int, wc->reada_count,
6417 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
6418 	}
6419 
6420 	eb = path->nodes[wc->level];
6421 	nritems = btrfs_header_nritems(eb);
6422 
6423 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6424 		if (nread >= wc->reada_count)
6425 			break;
6426 
6427 		cond_resched();
6428 		bytenr = btrfs_node_blockptr(eb, slot);
6429 		generation = btrfs_node_ptr_generation(eb, slot);
6430 
6431 		if (slot == path->slots[wc->level])
6432 			goto reada;
6433 
6434 		if (wc->stage == UPDATE_BACKREF &&
6435 		    generation <= root->root_key.offset)
6436 			continue;
6437 
6438 		/* We don't lock the tree block, it's OK to be racy here */
6439 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
6440 					       wc->level - 1, 1, &refs,
6441 					       &flags);
6442 		/* We don't care about errors in readahead. */
6443 		if (ret < 0)
6444 			continue;
6445 		BUG_ON(refs == 0);
6446 
6447 		if (wc->stage == DROP_REFERENCE) {
6448 			if (refs == 1)
6449 				goto reada;
6450 
6451 			if (wc->level == 1 &&
6452 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6453 				continue;
6454 			if (!wc->update_ref ||
6455 			    generation <= root->root_key.offset)
6456 				continue;
6457 			btrfs_node_key_to_cpu(eb, &key, slot);
6458 			ret = btrfs_comp_cpu_keys(&key,
6459 						  &wc->update_progress);
6460 			if (ret < 0)
6461 				continue;
6462 		} else {
6463 			if (wc->level == 1 &&
6464 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6465 				continue;
6466 		}
6467 reada:
6468 		readahead_tree_block(fs_info, bytenr);
6469 		nread++;
6470 	}
6471 	wc->reada_slot = slot;
6472 }
6473 
6474 /*
6475  * helper to process tree block while walking down the tree.
6476  *
6477  * when wc->stage == UPDATE_BACKREF, this function updates
6478  * back refs for pointers in the block.
6479  *
6480  * NOTE: return value 1 means we should stop walking down.
6481  */
6482 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6483 				   struct btrfs_root *root,
6484 				   struct btrfs_path *path,
6485 				   struct walk_control *wc, int lookup_info)
6486 {
6487 	struct btrfs_fs_info *fs_info = root->fs_info;
6488 	int level = wc->level;
6489 	struct extent_buffer *eb = path->nodes[level];
6490 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6491 	int ret;
6492 
6493 	if (wc->stage == UPDATE_BACKREF &&
6494 	    btrfs_header_owner(eb) != root->root_key.objectid)
6495 		return 1;
6496 
6497 	/*
6498 	 * when reference count of tree block is 1, it won't increase
6499 	 * again. once full backref flag is set, we never clear it.
6500 	 */
6501 	if (lookup_info &&
6502 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6503 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6504 		BUG_ON(!path->locks[level]);
6505 		ret = btrfs_lookup_extent_info(trans, fs_info,
6506 					       eb->start, level, 1,
6507 					       &wc->refs[level],
6508 					       &wc->flags[level]);
6509 		BUG_ON(ret == -ENOMEM);
6510 		if (ret)
6511 			return ret;
6512 		BUG_ON(wc->refs[level] == 0);
6513 	}
6514 
6515 	if (wc->stage == DROP_REFERENCE) {
6516 		if (wc->refs[level] > 1)
6517 			return 1;
6518 
6519 		if (path->locks[level] && !wc->keep_locks) {
6520 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6521 			path->locks[level] = 0;
6522 		}
6523 		return 0;
6524 	}
6525 
6526 	/* wc->stage == UPDATE_BACKREF */
6527 	if (!(wc->flags[level] & flag)) {
6528 		BUG_ON(!path->locks[level]);
6529 		ret = btrfs_inc_ref(trans, root, eb, 1);
6530 		BUG_ON(ret); /* -ENOMEM */
6531 		ret = btrfs_dec_ref(trans, root, eb, 0);
6532 		BUG_ON(ret); /* -ENOMEM */
6533 		ret = btrfs_set_disk_extent_flags(trans, eb->start,
6534 						  eb->len, flag,
6535 						  btrfs_header_level(eb), 0);
6536 		BUG_ON(ret); /* -ENOMEM */
6537 		wc->flags[level] |= flag;
6538 	}
6539 
6540 	/*
6541 	 * the block is shared by multiple trees, so it's not good to
6542 	 * keep the tree lock
6543 	 */
6544 	if (path->locks[level] && level > 0) {
6545 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6546 		path->locks[level] = 0;
6547 	}
6548 	return 0;
6549 }
6550 
6551 /*
6552  * This is used to verify a ref exists for this root to deal with a bug where we
6553  * would have a drop_progress key that hadn't been updated properly.
6554  */
6555 static int check_ref_exists(struct btrfs_trans_handle *trans,
6556 			    struct btrfs_root *root, u64 bytenr, u64 parent,
6557 			    int level)
6558 {
6559 	struct btrfs_path *path;
6560 	struct btrfs_extent_inline_ref *iref;
6561 	int ret;
6562 
6563 	path = btrfs_alloc_path();
6564 	if (!path)
6565 		return -ENOMEM;
6566 
6567 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
6568 				    root->fs_info->nodesize, parent,
6569 				    root->root_key.objectid, level, 0);
6570 	btrfs_free_path(path);
6571 	if (ret == -ENOENT)
6572 		return 0;
6573 	if (ret < 0)
6574 		return ret;
6575 	return 1;
6576 }
6577 
6578 /*
6579  * helper to process tree block pointer.
6580  *
6581  * when wc->stage == DROP_REFERENCE, this function checks
6582  * reference count of the block pointed to. if the block
6583  * is shared and we need update back refs for the subtree
6584  * rooted at the block, this function changes wc->stage to
6585  * UPDATE_BACKREF. if the block is shared and there is no
6586  * need to update back, this function drops the reference
6587  * to the block.
6588  *
6589  * NOTE: return value 1 means we should stop walking down.
6590  */
6591 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6592 				 struct btrfs_root *root,
6593 				 struct btrfs_path *path,
6594 				 struct walk_control *wc, int *lookup_info)
6595 {
6596 	struct btrfs_fs_info *fs_info = root->fs_info;
6597 	u64 bytenr;
6598 	u64 generation;
6599 	u64 parent;
6600 	struct btrfs_key key;
6601 	struct btrfs_key first_key;
6602 	struct btrfs_ref ref = { 0 };
6603 	struct extent_buffer *next;
6604 	int level = wc->level;
6605 	int reada = 0;
6606 	int ret = 0;
6607 	bool need_account = false;
6608 
6609 	generation = btrfs_node_ptr_generation(path->nodes[level],
6610 					       path->slots[level]);
6611 	/*
6612 	 * if the lower level block was created before the snapshot
6613 	 * was created, we know there is no need to update back refs
6614 	 * for the subtree
6615 	 */
6616 	if (wc->stage == UPDATE_BACKREF &&
6617 	    generation <= root->root_key.offset) {
6618 		*lookup_info = 1;
6619 		return 1;
6620 	}
6621 
6622 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6623 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
6624 			      path->slots[level]);
6625 
6626 	next = find_extent_buffer(fs_info, bytenr);
6627 	if (!next) {
6628 		next = btrfs_find_create_tree_block(fs_info, bytenr);
6629 		if (IS_ERR(next))
6630 			return PTR_ERR(next);
6631 
6632 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
6633 					       level - 1);
6634 		reada = 1;
6635 	}
6636 	btrfs_tree_lock(next);
6637 	btrfs_set_lock_blocking_write(next);
6638 
6639 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
6640 				       &wc->refs[level - 1],
6641 				       &wc->flags[level - 1]);
6642 	if (ret < 0)
6643 		goto out_unlock;
6644 
6645 	if (unlikely(wc->refs[level - 1] == 0)) {
6646 		btrfs_err(fs_info, "Missing references.");
6647 		ret = -EIO;
6648 		goto out_unlock;
6649 	}
6650 	*lookup_info = 0;
6651 
6652 	if (wc->stage == DROP_REFERENCE) {
6653 		if (wc->refs[level - 1] > 1) {
6654 			need_account = true;
6655 			if (level == 1 &&
6656 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6657 				goto skip;
6658 
6659 			if (!wc->update_ref ||
6660 			    generation <= root->root_key.offset)
6661 				goto skip;
6662 
6663 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6664 					      path->slots[level]);
6665 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6666 			if (ret < 0)
6667 				goto skip;
6668 
6669 			wc->stage = UPDATE_BACKREF;
6670 			wc->shared_level = level - 1;
6671 		}
6672 	} else {
6673 		if (level == 1 &&
6674 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6675 			goto skip;
6676 	}
6677 
6678 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
6679 		btrfs_tree_unlock(next);
6680 		free_extent_buffer(next);
6681 		next = NULL;
6682 		*lookup_info = 1;
6683 	}
6684 
6685 	if (!next) {
6686 		if (reada && level == 1)
6687 			reada_walk_down(trans, root, wc, path);
6688 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
6689 				       &first_key);
6690 		if (IS_ERR(next)) {
6691 			return PTR_ERR(next);
6692 		} else if (!extent_buffer_uptodate(next)) {
6693 			free_extent_buffer(next);
6694 			return -EIO;
6695 		}
6696 		btrfs_tree_lock(next);
6697 		btrfs_set_lock_blocking_write(next);
6698 	}
6699 
6700 	level--;
6701 	ASSERT(level == btrfs_header_level(next));
6702 	if (level != btrfs_header_level(next)) {
6703 		btrfs_err(root->fs_info, "mismatched level");
6704 		ret = -EIO;
6705 		goto out_unlock;
6706 	}
6707 	path->nodes[level] = next;
6708 	path->slots[level] = 0;
6709 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6710 	wc->level = level;
6711 	if (wc->level == 1)
6712 		wc->reada_slot = 0;
6713 	return 0;
6714 skip:
6715 	wc->refs[level - 1] = 0;
6716 	wc->flags[level - 1] = 0;
6717 	if (wc->stage == DROP_REFERENCE) {
6718 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6719 			parent = path->nodes[level]->start;
6720 		} else {
6721 			ASSERT(root->root_key.objectid ==
6722 			       btrfs_header_owner(path->nodes[level]));
6723 			if (root->root_key.objectid !=
6724 			    btrfs_header_owner(path->nodes[level])) {
6725 				btrfs_err(root->fs_info,
6726 						"mismatched block owner");
6727 				ret = -EIO;
6728 				goto out_unlock;
6729 			}
6730 			parent = 0;
6731 		}
6732 
6733 		/*
6734 		 * If we had a drop_progress we need to verify the refs are set
6735 		 * as expected.  If we find our ref then we know that from here
6736 		 * on out everything should be correct, and we can clear the
6737 		 * ->restarted flag.
6738 		 */
6739 		if (wc->restarted) {
6740 			ret = check_ref_exists(trans, root, bytenr, parent,
6741 					       level - 1);
6742 			if (ret < 0)
6743 				goto out_unlock;
6744 			if (ret == 0)
6745 				goto no_delete;
6746 			ret = 0;
6747 			wc->restarted = 0;
6748 		}
6749 
6750 		/*
6751 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
6752 		 * already accounted them at merge time (replace_path),
6753 		 * thus we could skip expensive subtree trace here.
6754 		 */
6755 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
6756 		    need_account) {
6757 			ret = btrfs_qgroup_trace_subtree(trans, next,
6758 							 generation, level - 1);
6759 			if (ret) {
6760 				btrfs_err_rl(fs_info,
6761 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
6762 					     ret);
6763 			}
6764 		}
6765 
6766 		/*
6767 		 * We need to update the next key in our walk control so we can
6768 		 * update the drop_progress key accordingly.  We don't care if
6769 		 * find_next_key doesn't find a key because that means we're at
6770 		 * the end and are going to clean up now.
6771 		 */
6772 		wc->drop_level = level;
6773 		find_next_key(path, level, &wc->drop_progress);
6774 
6775 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
6776 				       fs_info->nodesize, parent);
6777 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
6778 		ret = btrfs_free_extent(trans, &ref);
6779 		if (ret)
6780 			goto out_unlock;
6781 	}
6782 no_delete:
6783 	*lookup_info = 1;
6784 	ret = 1;
6785 
6786 out_unlock:
6787 	btrfs_tree_unlock(next);
6788 	free_extent_buffer(next);
6789 
6790 	return ret;
6791 }
6792 
6793 /*
6794  * helper to process tree block while walking up the tree.
6795  *
6796  * when wc->stage == DROP_REFERENCE, this function drops
6797  * reference count on the block.
6798  *
6799  * when wc->stage == UPDATE_BACKREF, this function changes
6800  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6801  * to UPDATE_BACKREF previously while processing the block.
6802  *
6803  * NOTE: return value 1 means we should stop walking up.
6804  */
6805 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6806 				 struct btrfs_root *root,
6807 				 struct btrfs_path *path,
6808 				 struct walk_control *wc)
6809 {
6810 	struct btrfs_fs_info *fs_info = root->fs_info;
6811 	int ret;
6812 	int level = wc->level;
6813 	struct extent_buffer *eb = path->nodes[level];
6814 	u64 parent = 0;
6815 
6816 	if (wc->stage == UPDATE_BACKREF) {
6817 		BUG_ON(wc->shared_level < level);
6818 		if (level < wc->shared_level)
6819 			goto out;
6820 
6821 		ret = find_next_key(path, level + 1, &wc->update_progress);
6822 		if (ret > 0)
6823 			wc->update_ref = 0;
6824 
6825 		wc->stage = DROP_REFERENCE;
6826 		wc->shared_level = -1;
6827 		path->slots[level] = 0;
6828 
6829 		/*
6830 		 * check reference count again if the block isn't locked.
6831 		 * we should start walking down the tree again if reference
6832 		 * count is one.
6833 		 */
6834 		if (!path->locks[level]) {
6835 			BUG_ON(level == 0);
6836 			btrfs_tree_lock(eb);
6837 			btrfs_set_lock_blocking_write(eb);
6838 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6839 
6840 			ret = btrfs_lookup_extent_info(trans, fs_info,
6841 						       eb->start, level, 1,
6842 						       &wc->refs[level],
6843 						       &wc->flags[level]);
6844 			if (ret < 0) {
6845 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6846 				path->locks[level] = 0;
6847 				return ret;
6848 			}
6849 			BUG_ON(wc->refs[level] == 0);
6850 			if (wc->refs[level] == 1) {
6851 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6852 				path->locks[level] = 0;
6853 				return 1;
6854 			}
6855 		}
6856 	}
6857 
6858 	/* wc->stage == DROP_REFERENCE */
6859 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6860 
6861 	if (wc->refs[level] == 1) {
6862 		if (level == 0) {
6863 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6864 				ret = btrfs_dec_ref(trans, root, eb, 1);
6865 			else
6866 				ret = btrfs_dec_ref(trans, root, eb, 0);
6867 			BUG_ON(ret); /* -ENOMEM */
6868 			if (is_fstree(root->root_key.objectid)) {
6869 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
6870 				if (ret) {
6871 					btrfs_err_rl(fs_info,
6872 	"error %d accounting leaf items, quota is out of sync, rescan required",
6873 					     ret);
6874 				}
6875 			}
6876 		}
6877 		/* make block locked assertion in btrfs_clean_tree_block happy */
6878 		if (!path->locks[level] &&
6879 		    btrfs_header_generation(eb) == trans->transid) {
6880 			btrfs_tree_lock(eb);
6881 			btrfs_set_lock_blocking_write(eb);
6882 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6883 		}
6884 		btrfs_clean_tree_block(eb);
6885 	}
6886 
6887 	if (eb == root->node) {
6888 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6889 			parent = eb->start;
6890 		else if (root->root_key.objectid != btrfs_header_owner(eb))
6891 			goto owner_mismatch;
6892 	} else {
6893 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6894 			parent = path->nodes[level + 1]->start;
6895 		else if (root->root_key.objectid !=
6896 			 btrfs_header_owner(path->nodes[level + 1]))
6897 			goto owner_mismatch;
6898 	}
6899 
6900 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6901 out:
6902 	wc->refs[level] = 0;
6903 	wc->flags[level] = 0;
6904 	return 0;
6905 
6906 owner_mismatch:
6907 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
6908 		     btrfs_header_owner(eb), root->root_key.objectid);
6909 	return -EUCLEAN;
6910 }
6911 
6912 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6913 				   struct btrfs_root *root,
6914 				   struct btrfs_path *path,
6915 				   struct walk_control *wc)
6916 {
6917 	int level = wc->level;
6918 	int lookup_info = 1;
6919 	int ret;
6920 
6921 	while (level >= 0) {
6922 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6923 		if (ret > 0)
6924 			break;
6925 
6926 		if (level == 0)
6927 			break;
6928 
6929 		if (path->slots[level] >=
6930 		    btrfs_header_nritems(path->nodes[level]))
6931 			break;
6932 
6933 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6934 		if (ret > 0) {
6935 			path->slots[level]++;
6936 			continue;
6937 		} else if (ret < 0)
6938 			return ret;
6939 		level = wc->level;
6940 	}
6941 	return 0;
6942 }
6943 
6944 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6945 				 struct btrfs_root *root,
6946 				 struct btrfs_path *path,
6947 				 struct walk_control *wc, int max_level)
6948 {
6949 	int level = wc->level;
6950 	int ret;
6951 
6952 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6953 	while (level < max_level && path->nodes[level]) {
6954 		wc->level = level;
6955 		if (path->slots[level] + 1 <
6956 		    btrfs_header_nritems(path->nodes[level])) {
6957 			path->slots[level]++;
6958 			return 0;
6959 		} else {
6960 			ret = walk_up_proc(trans, root, path, wc);
6961 			if (ret > 0)
6962 				return 0;
6963 			if (ret < 0)
6964 				return ret;
6965 
6966 			if (path->locks[level]) {
6967 				btrfs_tree_unlock_rw(path->nodes[level],
6968 						     path->locks[level]);
6969 				path->locks[level] = 0;
6970 			}
6971 			free_extent_buffer(path->nodes[level]);
6972 			path->nodes[level] = NULL;
6973 			level++;
6974 		}
6975 	}
6976 	return 1;
6977 }
6978 
6979 /*
6980  * drop a subvolume tree.
6981  *
6982  * this function traverses the tree freeing any blocks that only
6983  * referenced by the tree.
6984  *
6985  * when a shared tree block is found. this function decreases its
6986  * reference count by one. if update_ref is true, this function
6987  * also make sure backrefs for the shared block and all lower level
6988  * blocks are properly updated.
6989  *
6990  * If called with for_reloc == 0, may exit early with -EAGAIN
6991  */
6992 int btrfs_drop_snapshot(struct btrfs_root *root,
6993 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6994 			 int for_reloc)
6995 {
6996 	struct btrfs_fs_info *fs_info = root->fs_info;
6997 	struct btrfs_path *path;
6998 	struct btrfs_trans_handle *trans;
6999 	struct btrfs_root *tree_root = fs_info->tree_root;
7000 	struct btrfs_root_item *root_item = &root->root_item;
7001 	struct walk_control *wc;
7002 	struct btrfs_key key;
7003 	int err = 0;
7004 	int ret;
7005 	int level;
7006 	bool root_dropped = false;
7007 
7008 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
7009 
7010 	path = btrfs_alloc_path();
7011 	if (!path) {
7012 		err = -ENOMEM;
7013 		goto out;
7014 	}
7015 
7016 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7017 	if (!wc) {
7018 		btrfs_free_path(path);
7019 		err = -ENOMEM;
7020 		goto out;
7021 	}
7022 
7023 	trans = btrfs_start_transaction(tree_root, 0);
7024 	if (IS_ERR(trans)) {
7025 		err = PTR_ERR(trans);
7026 		goto out_free;
7027 	}
7028 
7029 	err = btrfs_run_delayed_items(trans);
7030 	if (err)
7031 		goto out_end_trans;
7032 
7033 	if (block_rsv)
7034 		trans->block_rsv = block_rsv;
7035 
7036 	/*
7037 	 * This will help us catch people modifying the fs tree while we're
7038 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
7039 	 * dropped as we unlock the root node and parent nodes as we walk down
7040 	 * the tree, assuming nothing will change.  If something does change
7041 	 * then we'll have stale information and drop references to blocks we've
7042 	 * already dropped.
7043 	 */
7044 	set_bit(BTRFS_ROOT_DELETING, &root->state);
7045 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7046 		level = btrfs_header_level(root->node);
7047 		path->nodes[level] = btrfs_lock_root_node(root);
7048 		btrfs_set_lock_blocking_write(path->nodes[level]);
7049 		path->slots[level] = 0;
7050 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7051 		memset(&wc->update_progress, 0,
7052 		       sizeof(wc->update_progress));
7053 	} else {
7054 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7055 		memcpy(&wc->update_progress, &key,
7056 		       sizeof(wc->update_progress));
7057 
7058 		level = root_item->drop_level;
7059 		BUG_ON(level == 0);
7060 		path->lowest_level = level;
7061 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7062 		path->lowest_level = 0;
7063 		if (ret < 0) {
7064 			err = ret;
7065 			goto out_end_trans;
7066 		}
7067 		WARN_ON(ret > 0);
7068 
7069 		/*
7070 		 * unlock our path, this is safe because only this
7071 		 * function is allowed to delete this snapshot
7072 		 */
7073 		btrfs_unlock_up_safe(path, 0);
7074 
7075 		level = btrfs_header_level(root->node);
7076 		while (1) {
7077 			btrfs_tree_lock(path->nodes[level]);
7078 			btrfs_set_lock_blocking_write(path->nodes[level]);
7079 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7080 
7081 			ret = btrfs_lookup_extent_info(trans, fs_info,
7082 						path->nodes[level]->start,
7083 						level, 1, &wc->refs[level],
7084 						&wc->flags[level]);
7085 			if (ret < 0) {
7086 				err = ret;
7087 				goto out_end_trans;
7088 			}
7089 			BUG_ON(wc->refs[level] == 0);
7090 
7091 			if (level == root_item->drop_level)
7092 				break;
7093 
7094 			btrfs_tree_unlock(path->nodes[level]);
7095 			path->locks[level] = 0;
7096 			WARN_ON(wc->refs[level] != 1);
7097 			level--;
7098 		}
7099 	}
7100 
7101 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
7102 	wc->level = level;
7103 	wc->shared_level = -1;
7104 	wc->stage = DROP_REFERENCE;
7105 	wc->update_ref = update_ref;
7106 	wc->keep_locks = 0;
7107 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
7108 
7109 	while (1) {
7110 
7111 		ret = walk_down_tree(trans, root, path, wc);
7112 		if (ret < 0) {
7113 			err = ret;
7114 			break;
7115 		}
7116 
7117 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7118 		if (ret < 0) {
7119 			err = ret;
7120 			break;
7121 		}
7122 
7123 		if (ret > 0) {
7124 			BUG_ON(wc->stage != DROP_REFERENCE);
7125 			break;
7126 		}
7127 
7128 		if (wc->stage == DROP_REFERENCE) {
7129 			wc->drop_level = wc->level;
7130 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
7131 					      &wc->drop_progress,
7132 					      path->slots[wc->drop_level]);
7133 		}
7134 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
7135 				      &wc->drop_progress);
7136 		root_item->drop_level = wc->drop_level;
7137 
7138 		BUG_ON(wc->level == 0);
7139 		if (btrfs_should_end_transaction(trans) ||
7140 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
7141 			ret = btrfs_update_root(trans, tree_root,
7142 						&root->root_key,
7143 						root_item);
7144 			if (ret) {
7145 				btrfs_abort_transaction(trans, ret);
7146 				err = ret;
7147 				goto out_end_trans;
7148 			}
7149 
7150 			btrfs_end_transaction_throttle(trans);
7151 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
7152 				btrfs_debug(fs_info,
7153 					    "drop snapshot early exit");
7154 				err = -EAGAIN;
7155 				goto out_free;
7156 			}
7157 
7158 			trans = btrfs_start_transaction(tree_root, 0);
7159 			if (IS_ERR(trans)) {
7160 				err = PTR_ERR(trans);
7161 				goto out_free;
7162 			}
7163 			if (block_rsv)
7164 				trans->block_rsv = block_rsv;
7165 		}
7166 	}
7167 	btrfs_release_path(path);
7168 	if (err)
7169 		goto out_end_trans;
7170 
7171 	ret = btrfs_del_root(trans, &root->root_key);
7172 	if (ret) {
7173 		btrfs_abort_transaction(trans, ret);
7174 		err = ret;
7175 		goto out_end_trans;
7176 	}
7177 
7178 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7179 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7180 				      NULL, NULL);
7181 		if (ret < 0) {
7182 			btrfs_abort_transaction(trans, ret);
7183 			err = ret;
7184 			goto out_end_trans;
7185 		} else if (ret > 0) {
7186 			/* if we fail to delete the orphan item this time
7187 			 * around, it'll get picked up the next time.
7188 			 *
7189 			 * The most common failure here is just -ENOENT.
7190 			 */
7191 			btrfs_del_orphan_item(trans, tree_root,
7192 					      root->root_key.objectid);
7193 		}
7194 	}
7195 
7196 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
7197 		btrfs_add_dropped_root(trans, root);
7198 	} else {
7199 		free_extent_buffer(root->node);
7200 		free_extent_buffer(root->commit_root);
7201 		btrfs_put_fs_root(root);
7202 	}
7203 	root_dropped = true;
7204 out_end_trans:
7205 	btrfs_end_transaction_throttle(trans);
7206 out_free:
7207 	kfree(wc);
7208 	btrfs_free_path(path);
7209 out:
7210 	/*
7211 	 * So if we need to stop dropping the snapshot for whatever reason we
7212 	 * need to make sure to add it back to the dead root list so that we
7213 	 * keep trying to do the work later.  This also cleans up roots if we
7214 	 * don't have it in the radix (like when we recover after a power fail
7215 	 * or unmount) so we don't leak memory.
7216 	 */
7217 	if (!for_reloc && !root_dropped)
7218 		btrfs_add_dead_root(root);
7219 	if (err && err != -EAGAIN)
7220 		btrfs_handle_fs_error(fs_info, err, NULL);
7221 	return err;
7222 }
7223 
7224 /*
7225  * drop subtree rooted at tree block 'node'.
7226  *
7227  * NOTE: this function will unlock and release tree block 'node'
7228  * only used by relocation code
7229  */
7230 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7231 			struct btrfs_root *root,
7232 			struct extent_buffer *node,
7233 			struct extent_buffer *parent)
7234 {
7235 	struct btrfs_fs_info *fs_info = root->fs_info;
7236 	struct btrfs_path *path;
7237 	struct walk_control *wc;
7238 	int level;
7239 	int parent_level;
7240 	int ret = 0;
7241 	int wret;
7242 
7243 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7244 
7245 	path = btrfs_alloc_path();
7246 	if (!path)
7247 		return -ENOMEM;
7248 
7249 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7250 	if (!wc) {
7251 		btrfs_free_path(path);
7252 		return -ENOMEM;
7253 	}
7254 
7255 	btrfs_assert_tree_locked(parent);
7256 	parent_level = btrfs_header_level(parent);
7257 	extent_buffer_get(parent);
7258 	path->nodes[parent_level] = parent;
7259 	path->slots[parent_level] = btrfs_header_nritems(parent);
7260 
7261 	btrfs_assert_tree_locked(node);
7262 	level = btrfs_header_level(node);
7263 	path->nodes[level] = node;
7264 	path->slots[level] = 0;
7265 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7266 
7267 	wc->refs[parent_level] = 1;
7268 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7269 	wc->level = level;
7270 	wc->shared_level = -1;
7271 	wc->stage = DROP_REFERENCE;
7272 	wc->update_ref = 0;
7273 	wc->keep_locks = 1;
7274 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
7275 
7276 	while (1) {
7277 		wret = walk_down_tree(trans, root, path, wc);
7278 		if (wret < 0) {
7279 			ret = wret;
7280 			break;
7281 		}
7282 
7283 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7284 		if (wret < 0)
7285 			ret = wret;
7286 		if (wret != 0)
7287 			break;
7288 	}
7289 
7290 	kfree(wc);
7291 	btrfs_free_path(path);
7292 	return ret;
7293 }
7294 
7295 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
7296 {
7297 	u64 num_devices;
7298 	u64 stripped;
7299 
7300 	/*
7301 	 * if restripe for this chunk_type is on pick target profile and
7302 	 * return, otherwise do the usual balance
7303 	 */
7304 	stripped = get_restripe_target(fs_info, flags);
7305 	if (stripped)
7306 		return extended_to_chunk(stripped);
7307 
7308 	num_devices = fs_info->fs_devices->rw_devices;
7309 
7310 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
7311 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
7312 
7313 	if (num_devices == 1) {
7314 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7315 		stripped = flags & ~stripped;
7316 
7317 		/* turn raid0 into single device chunks */
7318 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7319 			return stripped;
7320 
7321 		/* turn mirroring into duplication */
7322 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
7323 			     BTRFS_BLOCK_GROUP_RAID10))
7324 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7325 	} else {
7326 		/* they already had raid on here, just return */
7327 		if (flags & stripped)
7328 			return flags;
7329 
7330 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7331 		stripped = flags & ~stripped;
7332 
7333 		/* switch duplicated blocks with raid1 */
7334 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7335 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7336 
7337 		/* this is drive concat, leave it alone */
7338 	}
7339 
7340 	return flags;
7341 }
7342 
7343 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7344 {
7345 	struct btrfs_space_info *sinfo = cache->space_info;
7346 	u64 num_bytes;
7347 	u64 sinfo_used;
7348 	u64 min_allocable_bytes;
7349 	int ret = -ENOSPC;
7350 
7351 	/*
7352 	 * We need some metadata space and system metadata space for
7353 	 * allocating chunks in some corner cases until we force to set
7354 	 * it to be readonly.
7355 	 */
7356 	if ((sinfo->flags &
7357 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7358 	    !force)
7359 		min_allocable_bytes = SZ_1M;
7360 	else
7361 		min_allocable_bytes = 0;
7362 
7363 	spin_lock(&sinfo->lock);
7364 	spin_lock(&cache->lock);
7365 
7366 	if (cache->ro) {
7367 		cache->ro++;
7368 		ret = 0;
7369 		goto out;
7370 	}
7371 
7372 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7373 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7374 	sinfo_used = btrfs_space_info_used(sinfo, true);
7375 
7376 	if (sinfo_used + num_bytes + min_allocable_bytes <=
7377 	    sinfo->total_bytes) {
7378 		sinfo->bytes_readonly += num_bytes;
7379 		cache->ro++;
7380 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
7381 		ret = 0;
7382 	}
7383 out:
7384 	spin_unlock(&cache->lock);
7385 	spin_unlock(&sinfo->lock);
7386 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
7387 		btrfs_info(cache->fs_info,
7388 			"unable to make block group %llu ro",
7389 			cache->key.objectid);
7390 		btrfs_info(cache->fs_info,
7391 			"sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
7392 			sinfo_used, num_bytes, min_allocable_bytes);
7393 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
7394 	}
7395 	return ret;
7396 }
7397 
7398 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
7399 
7400 {
7401 	struct btrfs_fs_info *fs_info = cache->fs_info;
7402 	struct btrfs_trans_handle *trans;
7403 	u64 alloc_flags;
7404 	int ret;
7405 
7406 again:
7407 	trans = btrfs_join_transaction(fs_info->extent_root);
7408 	if (IS_ERR(trans))
7409 		return PTR_ERR(trans);
7410 
7411 	/*
7412 	 * we're not allowed to set block groups readonly after the dirty
7413 	 * block groups cache has started writing.  If it already started,
7414 	 * back off and let this transaction commit
7415 	 */
7416 	mutex_lock(&fs_info->ro_block_group_mutex);
7417 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
7418 		u64 transid = trans->transid;
7419 
7420 		mutex_unlock(&fs_info->ro_block_group_mutex);
7421 		btrfs_end_transaction(trans);
7422 
7423 		ret = btrfs_wait_for_commit(fs_info, transid);
7424 		if (ret)
7425 			return ret;
7426 		goto again;
7427 	}
7428 
7429 	/*
7430 	 * if we are changing raid levels, try to allocate a corresponding
7431 	 * block group with the new raid level.
7432 	 */
7433 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
7434 	if (alloc_flags != cache->flags) {
7435 		ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
7436 		/*
7437 		 * ENOSPC is allowed here, we may have enough space
7438 		 * already allocated at the new raid level to
7439 		 * carry on
7440 		 */
7441 		if (ret == -ENOSPC)
7442 			ret = 0;
7443 		if (ret < 0)
7444 			goto out;
7445 	}
7446 
7447 	ret = inc_block_group_ro(cache, 0);
7448 	if (!ret)
7449 		goto out;
7450 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
7451 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
7452 	if (ret < 0)
7453 		goto out;
7454 	ret = inc_block_group_ro(cache, 0);
7455 out:
7456 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
7457 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
7458 		mutex_lock(&fs_info->chunk_mutex);
7459 		check_system_chunk(trans, alloc_flags);
7460 		mutex_unlock(&fs_info->chunk_mutex);
7461 	}
7462 	mutex_unlock(&fs_info->ro_block_group_mutex);
7463 
7464 	btrfs_end_transaction(trans);
7465 	return ret;
7466 }
7467 
7468 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
7469 {
7470 	u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
7471 
7472 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
7473 }
7474 
7475 /*
7476  * helper to account the unused space of all the readonly block group in the
7477  * space_info. takes mirrors into account.
7478  */
7479 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7480 {
7481 	struct btrfs_block_group_cache *block_group;
7482 	u64 free_bytes = 0;
7483 	int factor;
7484 
7485 	/* It's df, we don't care if it's racy */
7486 	if (list_empty(&sinfo->ro_bgs))
7487 		return 0;
7488 
7489 	spin_lock(&sinfo->lock);
7490 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
7491 		spin_lock(&block_group->lock);
7492 
7493 		if (!block_group->ro) {
7494 			spin_unlock(&block_group->lock);
7495 			continue;
7496 		}
7497 
7498 		factor = btrfs_bg_type_to_factor(block_group->flags);
7499 		free_bytes += (block_group->key.offset -
7500 			       btrfs_block_group_used(&block_group->item)) *
7501 			       factor;
7502 
7503 		spin_unlock(&block_group->lock);
7504 	}
7505 	spin_unlock(&sinfo->lock);
7506 
7507 	return free_bytes;
7508 }
7509 
7510 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
7511 {
7512 	struct btrfs_space_info *sinfo = cache->space_info;
7513 	u64 num_bytes;
7514 
7515 	BUG_ON(!cache->ro);
7516 
7517 	spin_lock(&sinfo->lock);
7518 	spin_lock(&cache->lock);
7519 	if (!--cache->ro) {
7520 		num_bytes = cache->key.offset - cache->reserved -
7521 			    cache->pinned - cache->bytes_super -
7522 			    btrfs_block_group_used(&cache->item);
7523 		sinfo->bytes_readonly -= num_bytes;
7524 		list_del_init(&cache->ro_list);
7525 	}
7526 	spin_unlock(&cache->lock);
7527 	spin_unlock(&sinfo->lock);
7528 }
7529 
7530 /*
7531  * Checks to see if it's even possible to relocate this block group.
7532  *
7533  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7534  * ok to go ahead and try.
7535  */
7536 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
7537 {
7538 	struct btrfs_block_group_cache *block_group;
7539 	struct btrfs_space_info *space_info;
7540 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7541 	struct btrfs_device *device;
7542 	u64 min_free;
7543 	u64 dev_min = 1;
7544 	u64 dev_nr = 0;
7545 	u64 target;
7546 	int debug;
7547 	int index;
7548 	int full = 0;
7549 	int ret = 0;
7550 
7551 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
7552 
7553 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7554 
7555 	/* odd, couldn't find the block group, leave it alone */
7556 	if (!block_group) {
7557 		if (debug)
7558 			btrfs_warn(fs_info,
7559 				   "can't find block group for bytenr %llu",
7560 				   bytenr);
7561 		return -1;
7562 	}
7563 
7564 	min_free = btrfs_block_group_used(&block_group->item);
7565 
7566 	/* no bytes used, we're good */
7567 	if (!min_free)
7568 		goto out;
7569 
7570 	space_info = block_group->space_info;
7571 	spin_lock(&space_info->lock);
7572 
7573 	full = space_info->full;
7574 
7575 	/*
7576 	 * if this is the last block group we have in this space, we can't
7577 	 * relocate it unless we're able to allocate a new chunk below.
7578 	 *
7579 	 * Otherwise, we need to make sure we have room in the space to handle
7580 	 * all of the extents from this block group.  If we can, we're good
7581 	 */
7582 	if ((space_info->total_bytes != block_group->key.offset) &&
7583 	    (btrfs_space_info_used(space_info, false) + min_free <
7584 	     space_info->total_bytes)) {
7585 		spin_unlock(&space_info->lock);
7586 		goto out;
7587 	}
7588 	spin_unlock(&space_info->lock);
7589 
7590 	/*
7591 	 * ok we don't have enough space, but maybe we have free space on our
7592 	 * devices to allocate new chunks for relocation, so loop through our
7593 	 * alloc devices and guess if we have enough space.  if this block
7594 	 * group is going to be restriped, run checks against the target
7595 	 * profile instead of the current one.
7596 	 */
7597 	ret = -1;
7598 
7599 	/*
7600 	 * index:
7601 	 *      0: raid10
7602 	 *      1: raid1
7603 	 *      2: dup
7604 	 *      3: raid0
7605 	 *      4: single
7606 	 */
7607 	target = get_restripe_target(fs_info, block_group->flags);
7608 	if (target) {
7609 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
7610 	} else {
7611 		/*
7612 		 * this is just a balance, so if we were marked as full
7613 		 * we know there is no space for a new chunk
7614 		 */
7615 		if (full) {
7616 			if (debug)
7617 				btrfs_warn(fs_info,
7618 					   "no space to alloc new chunk for block group %llu",
7619 					   block_group->key.objectid);
7620 			goto out;
7621 		}
7622 
7623 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
7624 	}
7625 
7626 	if (index == BTRFS_RAID_RAID10) {
7627 		dev_min = 4;
7628 		/* Divide by 2 */
7629 		min_free >>= 1;
7630 	} else if (index == BTRFS_RAID_RAID1) {
7631 		dev_min = 2;
7632 	} else if (index == BTRFS_RAID_DUP) {
7633 		/* Multiply by 2 */
7634 		min_free <<= 1;
7635 	} else if (index == BTRFS_RAID_RAID0) {
7636 		dev_min = fs_devices->rw_devices;
7637 		min_free = div64_u64(min_free, dev_min);
7638 	}
7639 
7640 	mutex_lock(&fs_info->chunk_mutex);
7641 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7642 		u64 dev_offset;
7643 
7644 		/*
7645 		 * check to make sure we can actually find a chunk with enough
7646 		 * space to fit our block group in.
7647 		 */
7648 		if (device->total_bytes > device->bytes_used + min_free &&
7649 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7650 			ret = find_free_dev_extent(device, min_free,
7651 						   &dev_offset, NULL);
7652 			if (!ret)
7653 				dev_nr++;
7654 
7655 			if (dev_nr >= dev_min)
7656 				break;
7657 
7658 			ret = -1;
7659 		}
7660 	}
7661 	if (debug && ret == -1)
7662 		btrfs_warn(fs_info,
7663 			   "no space to allocate a new chunk for block group %llu",
7664 			   block_group->key.objectid);
7665 	mutex_unlock(&fs_info->chunk_mutex);
7666 out:
7667 	btrfs_put_block_group(block_group);
7668 	return ret;
7669 }
7670 
7671 static int find_first_block_group(struct btrfs_fs_info *fs_info,
7672 				  struct btrfs_path *path,
7673 				  struct btrfs_key *key)
7674 {
7675 	struct btrfs_root *root = fs_info->extent_root;
7676 	int ret = 0;
7677 	struct btrfs_key found_key;
7678 	struct extent_buffer *leaf;
7679 	struct btrfs_block_group_item bg;
7680 	u64 flags;
7681 	int slot;
7682 
7683 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7684 	if (ret < 0)
7685 		goto out;
7686 
7687 	while (1) {
7688 		slot = path->slots[0];
7689 		leaf = path->nodes[0];
7690 		if (slot >= btrfs_header_nritems(leaf)) {
7691 			ret = btrfs_next_leaf(root, path);
7692 			if (ret == 0)
7693 				continue;
7694 			if (ret < 0)
7695 				goto out;
7696 			break;
7697 		}
7698 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7699 
7700 		if (found_key.objectid >= key->objectid &&
7701 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7702 			struct extent_map_tree *em_tree;
7703 			struct extent_map *em;
7704 
7705 			em_tree = &root->fs_info->mapping_tree;
7706 			read_lock(&em_tree->lock);
7707 			em = lookup_extent_mapping(em_tree, found_key.objectid,
7708 						   found_key.offset);
7709 			read_unlock(&em_tree->lock);
7710 			if (!em) {
7711 				btrfs_err(fs_info,
7712 			"logical %llu len %llu found bg but no related chunk",
7713 					  found_key.objectid, found_key.offset);
7714 				ret = -ENOENT;
7715 			} else if (em->start != found_key.objectid ||
7716 				   em->len != found_key.offset) {
7717 				btrfs_err(fs_info,
7718 		"block group %llu len %llu mismatch with chunk %llu len %llu",
7719 					  found_key.objectid, found_key.offset,
7720 					  em->start, em->len);
7721 				ret = -EUCLEAN;
7722 			} else {
7723 				read_extent_buffer(leaf, &bg,
7724 					btrfs_item_ptr_offset(leaf, slot),
7725 					sizeof(bg));
7726 				flags = btrfs_block_group_flags(&bg) &
7727 					BTRFS_BLOCK_GROUP_TYPE_MASK;
7728 
7729 				if (flags != (em->map_lookup->type &
7730 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
7731 					btrfs_err(fs_info,
7732 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
7733 						found_key.objectid,
7734 						found_key.offset, flags,
7735 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
7736 						 em->map_lookup->type));
7737 					ret = -EUCLEAN;
7738 				} else {
7739 					ret = 0;
7740 				}
7741 			}
7742 			free_extent_map(em);
7743 			goto out;
7744 		}
7745 		path->slots[0]++;
7746 	}
7747 out:
7748 	return ret;
7749 }
7750 
7751 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7752 {
7753 	struct btrfs_block_group_cache *block_group;
7754 	u64 last = 0;
7755 
7756 	while (1) {
7757 		struct inode *inode;
7758 
7759 		block_group = btrfs_lookup_first_block_group(info, last);
7760 		while (block_group) {
7761 			wait_block_group_cache_done(block_group);
7762 			spin_lock(&block_group->lock);
7763 			if (block_group->iref)
7764 				break;
7765 			spin_unlock(&block_group->lock);
7766 			block_group = next_block_group(block_group);
7767 		}
7768 		if (!block_group) {
7769 			if (last == 0)
7770 				break;
7771 			last = 0;
7772 			continue;
7773 		}
7774 
7775 		inode = block_group->inode;
7776 		block_group->iref = 0;
7777 		block_group->inode = NULL;
7778 		spin_unlock(&block_group->lock);
7779 		ASSERT(block_group->io_ctl.inode == NULL);
7780 		iput(inode);
7781 		last = block_group->key.objectid + block_group->key.offset;
7782 		btrfs_put_block_group(block_group);
7783 	}
7784 }
7785 
7786 /*
7787  * Must be called only after stopping all workers, since we could have block
7788  * group caching kthreads running, and therefore they could race with us if we
7789  * freed the block groups before stopping them.
7790  */
7791 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7792 {
7793 	struct btrfs_block_group_cache *block_group;
7794 	struct btrfs_space_info *space_info;
7795 	struct btrfs_caching_control *caching_ctl;
7796 	struct rb_node *n;
7797 
7798 	down_write(&info->commit_root_sem);
7799 	while (!list_empty(&info->caching_block_groups)) {
7800 		caching_ctl = list_entry(info->caching_block_groups.next,
7801 					 struct btrfs_caching_control, list);
7802 		list_del(&caching_ctl->list);
7803 		put_caching_control(caching_ctl);
7804 	}
7805 	up_write(&info->commit_root_sem);
7806 
7807 	spin_lock(&info->unused_bgs_lock);
7808 	while (!list_empty(&info->unused_bgs)) {
7809 		block_group = list_first_entry(&info->unused_bgs,
7810 					       struct btrfs_block_group_cache,
7811 					       bg_list);
7812 		list_del_init(&block_group->bg_list);
7813 		btrfs_put_block_group(block_group);
7814 	}
7815 	spin_unlock(&info->unused_bgs_lock);
7816 
7817 	spin_lock(&info->block_group_cache_lock);
7818 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7819 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7820 				       cache_node);
7821 		rb_erase(&block_group->cache_node,
7822 			 &info->block_group_cache_tree);
7823 		RB_CLEAR_NODE(&block_group->cache_node);
7824 		spin_unlock(&info->block_group_cache_lock);
7825 
7826 		down_write(&block_group->space_info->groups_sem);
7827 		list_del(&block_group->list);
7828 		up_write(&block_group->space_info->groups_sem);
7829 
7830 		/*
7831 		 * We haven't cached this block group, which means we could
7832 		 * possibly have excluded extents on this block group.
7833 		 */
7834 		if (block_group->cached == BTRFS_CACHE_NO ||
7835 		    block_group->cached == BTRFS_CACHE_ERROR)
7836 			free_excluded_extents(block_group);
7837 
7838 		btrfs_remove_free_space_cache(block_group);
7839 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
7840 		ASSERT(list_empty(&block_group->dirty_list));
7841 		ASSERT(list_empty(&block_group->io_list));
7842 		ASSERT(list_empty(&block_group->bg_list));
7843 		ASSERT(atomic_read(&block_group->count) == 1);
7844 		btrfs_put_block_group(block_group);
7845 
7846 		spin_lock(&info->block_group_cache_lock);
7847 	}
7848 	spin_unlock(&info->block_group_cache_lock);
7849 
7850 	/* now that all the block groups are freed, go through and
7851 	 * free all the space_info structs.  This is only called during
7852 	 * the final stages of unmount, and so we know nobody is
7853 	 * using them.  We call synchronize_rcu() once before we start,
7854 	 * just to be on the safe side.
7855 	 */
7856 	synchronize_rcu();
7857 
7858 	btrfs_release_global_block_rsv(info);
7859 
7860 	while (!list_empty(&info->space_info)) {
7861 		int i;
7862 
7863 		space_info = list_entry(info->space_info.next,
7864 					struct btrfs_space_info,
7865 					list);
7866 
7867 		/*
7868 		 * Do not hide this behind enospc_debug, this is actually
7869 		 * important and indicates a real bug if this happens.
7870 		 */
7871 		if (WARN_ON(space_info->bytes_pinned > 0 ||
7872 			    space_info->bytes_reserved > 0 ||
7873 			    space_info->bytes_may_use > 0))
7874 			btrfs_dump_space_info(info, space_info, 0, 0);
7875 		list_del(&space_info->list);
7876 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
7877 			struct kobject *kobj;
7878 			kobj = space_info->block_group_kobjs[i];
7879 			space_info->block_group_kobjs[i] = NULL;
7880 			if (kobj) {
7881 				kobject_del(kobj);
7882 				kobject_put(kobj);
7883 			}
7884 		}
7885 		kobject_del(&space_info->kobj);
7886 		kobject_put(&space_info->kobj);
7887 	}
7888 	return 0;
7889 }
7890 
7891 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
7892 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
7893 {
7894 	struct btrfs_space_info *space_info;
7895 	struct raid_kobject *rkobj;
7896 	LIST_HEAD(list);
7897 	int ret = 0;
7898 
7899 	spin_lock(&fs_info->pending_raid_kobjs_lock);
7900 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
7901 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
7902 
7903 	list_for_each_entry(rkobj, &list, list) {
7904 		space_info = btrfs_find_space_info(fs_info, rkobj->flags);
7905 
7906 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
7907 				"%s", btrfs_bg_type_to_raid_name(rkobj->flags));
7908 		if (ret) {
7909 			kobject_put(&rkobj->kobj);
7910 			break;
7911 		}
7912 	}
7913 	if (ret)
7914 		btrfs_warn(fs_info,
7915 			   "failed to add kobject for block cache, ignoring");
7916 }
7917 
7918 static void link_block_group(struct btrfs_block_group_cache *cache)
7919 {
7920 	struct btrfs_space_info *space_info = cache->space_info;
7921 	struct btrfs_fs_info *fs_info = cache->fs_info;
7922 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
7923 	bool first = false;
7924 
7925 	down_write(&space_info->groups_sem);
7926 	if (list_empty(&space_info->block_groups[index]))
7927 		first = true;
7928 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7929 	up_write(&space_info->groups_sem);
7930 
7931 	if (first) {
7932 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
7933 		if (!rkobj) {
7934 			btrfs_warn(cache->fs_info,
7935 				"couldn't alloc memory for raid level kobject");
7936 			return;
7937 		}
7938 		rkobj->flags = cache->flags;
7939 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
7940 
7941 		spin_lock(&fs_info->pending_raid_kobjs_lock);
7942 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
7943 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
7944 		space_info->block_group_kobjs[index] = &rkobj->kobj;
7945 	}
7946 }
7947 
7948 static struct btrfs_block_group_cache *
7949 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
7950 			       u64 start, u64 size)
7951 {
7952 	struct btrfs_block_group_cache *cache;
7953 
7954 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7955 	if (!cache)
7956 		return NULL;
7957 
7958 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7959 					GFP_NOFS);
7960 	if (!cache->free_space_ctl) {
7961 		kfree(cache);
7962 		return NULL;
7963 	}
7964 
7965 	cache->key.objectid = start;
7966 	cache->key.offset = size;
7967 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7968 
7969 	cache->fs_info = fs_info;
7970 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
7971 	set_free_space_tree_thresholds(cache);
7972 
7973 	atomic_set(&cache->count, 1);
7974 	spin_lock_init(&cache->lock);
7975 	init_rwsem(&cache->data_rwsem);
7976 	INIT_LIST_HEAD(&cache->list);
7977 	INIT_LIST_HEAD(&cache->cluster_list);
7978 	INIT_LIST_HEAD(&cache->bg_list);
7979 	INIT_LIST_HEAD(&cache->ro_list);
7980 	INIT_LIST_HEAD(&cache->dirty_list);
7981 	INIT_LIST_HEAD(&cache->io_list);
7982 	btrfs_init_free_space_ctl(cache);
7983 	atomic_set(&cache->trimming, 0);
7984 	mutex_init(&cache->free_space_lock);
7985 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
7986 
7987 	return cache;
7988 }
7989 
7990 
7991 /*
7992  * Iterate all chunks and verify that each of them has the corresponding block
7993  * group
7994  */
7995 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
7996 {
7997 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7998 	struct extent_map *em;
7999 	struct btrfs_block_group_cache *bg;
8000 	u64 start = 0;
8001 	int ret = 0;
8002 
8003 	while (1) {
8004 		read_lock(&map_tree->lock);
8005 		/*
8006 		 * lookup_extent_mapping will return the first extent map
8007 		 * intersecting the range, so setting @len to 1 is enough to
8008 		 * get the first chunk.
8009 		 */
8010 		em = lookup_extent_mapping(map_tree, start, 1);
8011 		read_unlock(&map_tree->lock);
8012 		if (!em)
8013 			break;
8014 
8015 		bg = btrfs_lookup_block_group(fs_info, em->start);
8016 		if (!bg) {
8017 			btrfs_err(fs_info,
8018 	"chunk start=%llu len=%llu doesn't have corresponding block group",
8019 				     em->start, em->len);
8020 			ret = -EUCLEAN;
8021 			free_extent_map(em);
8022 			break;
8023 		}
8024 		if (bg->key.objectid != em->start ||
8025 		    bg->key.offset != em->len ||
8026 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
8027 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
8028 			btrfs_err(fs_info,
8029 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
8030 				em->start, em->len,
8031 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
8032 				bg->key.objectid, bg->key.offset,
8033 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
8034 			ret = -EUCLEAN;
8035 			free_extent_map(em);
8036 			btrfs_put_block_group(bg);
8037 			break;
8038 		}
8039 		start = em->start + em->len;
8040 		free_extent_map(em);
8041 		btrfs_put_block_group(bg);
8042 	}
8043 	return ret;
8044 }
8045 
8046 int btrfs_read_block_groups(struct btrfs_fs_info *info)
8047 {
8048 	struct btrfs_path *path;
8049 	int ret;
8050 	struct btrfs_block_group_cache *cache;
8051 	struct btrfs_space_info *space_info;
8052 	struct btrfs_key key;
8053 	struct btrfs_key found_key;
8054 	struct extent_buffer *leaf;
8055 	int need_clear = 0;
8056 	u64 cache_gen;
8057 	u64 feature;
8058 	int mixed;
8059 
8060 	feature = btrfs_super_incompat_flags(info->super_copy);
8061 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
8062 
8063 	key.objectid = 0;
8064 	key.offset = 0;
8065 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8066 	path = btrfs_alloc_path();
8067 	if (!path)
8068 		return -ENOMEM;
8069 	path->reada = READA_FORWARD;
8070 
8071 	cache_gen = btrfs_super_cache_generation(info->super_copy);
8072 	if (btrfs_test_opt(info, SPACE_CACHE) &&
8073 	    btrfs_super_generation(info->super_copy) != cache_gen)
8074 		need_clear = 1;
8075 	if (btrfs_test_opt(info, CLEAR_CACHE))
8076 		need_clear = 1;
8077 
8078 	while (1) {
8079 		ret = find_first_block_group(info, path, &key);
8080 		if (ret > 0)
8081 			break;
8082 		if (ret != 0)
8083 			goto error;
8084 
8085 		leaf = path->nodes[0];
8086 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8087 
8088 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
8089 						       found_key.offset);
8090 		if (!cache) {
8091 			ret = -ENOMEM;
8092 			goto error;
8093 		}
8094 
8095 		if (need_clear) {
8096 			/*
8097 			 * When we mount with old space cache, we need to
8098 			 * set BTRFS_DC_CLEAR and set dirty flag.
8099 			 *
8100 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8101 			 *    truncate the old free space cache inode and
8102 			 *    setup a new one.
8103 			 * b) Setting 'dirty flag' makes sure that we flush
8104 			 *    the new space cache info onto disk.
8105 			 */
8106 			if (btrfs_test_opt(info, SPACE_CACHE))
8107 				cache->disk_cache_state = BTRFS_DC_CLEAR;
8108 		}
8109 
8110 		read_extent_buffer(leaf, &cache->item,
8111 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8112 				   sizeof(cache->item));
8113 		cache->flags = btrfs_block_group_flags(&cache->item);
8114 		if (!mixed &&
8115 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
8116 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
8117 			btrfs_err(info,
8118 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
8119 				  cache->key.objectid);
8120 			ret = -EINVAL;
8121 			goto error;
8122 		}
8123 
8124 		key.objectid = found_key.objectid + found_key.offset;
8125 		btrfs_release_path(path);
8126 
8127 		/*
8128 		 * We need to exclude the super stripes now so that the space
8129 		 * info has super bytes accounted for, otherwise we'll think
8130 		 * we have more space than we actually do.
8131 		 */
8132 		ret = exclude_super_stripes(cache);
8133 		if (ret) {
8134 			/*
8135 			 * We may have excluded something, so call this just in
8136 			 * case.
8137 			 */
8138 			free_excluded_extents(cache);
8139 			btrfs_put_block_group(cache);
8140 			goto error;
8141 		}
8142 
8143 		/*
8144 		 * check for two cases, either we are full, and therefore
8145 		 * don't need to bother with the caching work since we won't
8146 		 * find any space, or we are empty, and we can just add all
8147 		 * the space in and be done with it.  This saves us _a_lot_ of
8148 		 * time, particularly in the full case.
8149 		 */
8150 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8151 			cache->last_byte_to_unpin = (u64)-1;
8152 			cache->cached = BTRFS_CACHE_FINISHED;
8153 			free_excluded_extents(cache);
8154 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8155 			cache->last_byte_to_unpin = (u64)-1;
8156 			cache->cached = BTRFS_CACHE_FINISHED;
8157 			add_new_free_space(cache, found_key.objectid,
8158 					   found_key.objectid +
8159 					   found_key.offset);
8160 			free_excluded_extents(cache);
8161 		}
8162 
8163 		ret = btrfs_add_block_group_cache(info, cache);
8164 		if (ret) {
8165 			btrfs_remove_free_space_cache(cache);
8166 			btrfs_put_block_group(cache);
8167 			goto error;
8168 		}
8169 
8170 		trace_btrfs_add_block_group(info, cache, 0);
8171 		btrfs_update_space_info(info, cache->flags, found_key.offset,
8172 					btrfs_block_group_used(&cache->item),
8173 					cache->bytes_super, &space_info);
8174 
8175 		cache->space_info = space_info;
8176 
8177 		link_block_group(cache);
8178 
8179 		set_avail_alloc_bits(info, cache->flags);
8180 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
8181 			inc_block_group_ro(cache, 1);
8182 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8183 			ASSERT(list_empty(&cache->bg_list));
8184 			btrfs_mark_bg_unused(cache);
8185 		}
8186 	}
8187 
8188 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
8189 		if (!(get_alloc_profile(info, space_info->flags) &
8190 		      (BTRFS_BLOCK_GROUP_RAID10 |
8191 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
8192 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
8193 		       BTRFS_BLOCK_GROUP_DUP)))
8194 			continue;
8195 		/*
8196 		 * avoid allocating from un-mirrored block group if there are
8197 		 * mirrored block groups.
8198 		 */
8199 		list_for_each_entry(cache,
8200 				&space_info->block_groups[BTRFS_RAID_RAID0],
8201 				list)
8202 			inc_block_group_ro(cache, 1);
8203 		list_for_each_entry(cache,
8204 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8205 				list)
8206 			inc_block_group_ro(cache, 1);
8207 	}
8208 
8209 	btrfs_add_raid_kobjects(info);
8210 	btrfs_init_global_block_rsv(info);
8211 	ret = check_chunk_block_group_mappings(info);
8212 error:
8213 	btrfs_free_path(path);
8214 	return ret;
8215 }
8216 
8217 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
8218 {
8219 	struct btrfs_fs_info *fs_info = trans->fs_info;
8220 	struct btrfs_block_group_cache *block_group;
8221 	struct btrfs_root *extent_root = fs_info->extent_root;
8222 	struct btrfs_block_group_item item;
8223 	struct btrfs_key key;
8224 	int ret = 0;
8225 
8226 	if (!trans->can_flush_pending_bgs)
8227 		return;
8228 
8229 	while (!list_empty(&trans->new_bgs)) {
8230 		block_group = list_first_entry(&trans->new_bgs,
8231 					       struct btrfs_block_group_cache,
8232 					       bg_list);
8233 		if (ret)
8234 			goto next;
8235 
8236 		spin_lock(&block_group->lock);
8237 		memcpy(&item, &block_group->item, sizeof(item));
8238 		memcpy(&key, &block_group->key, sizeof(key));
8239 		spin_unlock(&block_group->lock);
8240 
8241 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8242 					sizeof(item));
8243 		if (ret)
8244 			btrfs_abort_transaction(trans, ret);
8245 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
8246 		if (ret)
8247 			btrfs_abort_transaction(trans, ret);
8248 		add_block_group_free_space(trans, block_group);
8249 		/* already aborted the transaction if it failed. */
8250 next:
8251 		btrfs_delayed_refs_rsv_release(fs_info, 1);
8252 		list_del_init(&block_group->bg_list);
8253 	}
8254 	btrfs_trans_release_chunk_metadata(trans);
8255 }
8256 
8257 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
8258 			   u64 type, u64 chunk_offset, u64 size)
8259 {
8260 	struct btrfs_fs_info *fs_info = trans->fs_info;
8261 	struct btrfs_block_group_cache *cache;
8262 	int ret;
8263 
8264 	btrfs_set_log_full_commit(trans);
8265 
8266 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
8267 	if (!cache)
8268 		return -ENOMEM;
8269 
8270 	btrfs_set_block_group_used(&cache->item, bytes_used);
8271 	btrfs_set_block_group_chunk_objectid(&cache->item,
8272 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
8273 	btrfs_set_block_group_flags(&cache->item, type);
8274 
8275 	cache->flags = type;
8276 	cache->last_byte_to_unpin = (u64)-1;
8277 	cache->cached = BTRFS_CACHE_FINISHED;
8278 	cache->needs_free_space = 1;
8279 	ret = exclude_super_stripes(cache);
8280 	if (ret) {
8281 		/*
8282 		 * We may have excluded something, so call this just in
8283 		 * case.
8284 		 */
8285 		free_excluded_extents(cache);
8286 		btrfs_put_block_group(cache);
8287 		return ret;
8288 	}
8289 
8290 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
8291 
8292 	free_excluded_extents(cache);
8293 
8294 #ifdef CONFIG_BTRFS_DEBUG
8295 	if (btrfs_should_fragment_free_space(cache)) {
8296 		u64 new_bytes_used = size - bytes_used;
8297 
8298 		bytes_used += new_bytes_used >> 1;
8299 		fragment_free_space(cache);
8300 	}
8301 #endif
8302 	/*
8303 	 * Ensure the corresponding space_info object is created and
8304 	 * assigned to our block group. We want our bg to be added to the rbtree
8305 	 * with its ->space_info set.
8306 	 */
8307 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
8308 	ASSERT(cache->space_info);
8309 
8310 	ret = btrfs_add_block_group_cache(fs_info, cache);
8311 	if (ret) {
8312 		btrfs_remove_free_space_cache(cache);
8313 		btrfs_put_block_group(cache);
8314 		return ret;
8315 	}
8316 
8317 	/*
8318 	 * Now that our block group has its ->space_info set and is inserted in
8319 	 * the rbtree, update the space info's counters.
8320 	 */
8321 	trace_btrfs_add_block_group(fs_info, cache, 1);
8322 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
8323 				cache->bytes_super, &cache->space_info);
8324 	btrfs_update_global_block_rsv(fs_info);
8325 
8326 	link_block_group(cache);
8327 
8328 	list_add_tail(&cache->bg_list, &trans->new_bgs);
8329 	trans->delayed_ref_updates++;
8330 	btrfs_update_delayed_refs_rsv(trans);
8331 
8332 	set_avail_alloc_bits(fs_info, type);
8333 	return 0;
8334 }
8335 
8336 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8337 {
8338 	u64 extra_flags = chunk_to_extended(flags) &
8339 				BTRFS_EXTENDED_PROFILE_MASK;
8340 
8341 	write_seqlock(&fs_info->profiles_lock);
8342 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8343 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8344 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8345 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8346 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8347 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8348 	write_sequnlock(&fs_info->profiles_lock);
8349 }
8350 
8351 /*
8352  * Clear incompat bits for the following feature(s):
8353  *
8354  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
8355  *            in the whole filesystem
8356  */
8357 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
8358 {
8359 	if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8360 		struct list_head *head = &fs_info->space_info;
8361 		struct btrfs_space_info *sinfo;
8362 
8363 		list_for_each_entry_rcu(sinfo, head, list) {
8364 			bool found = false;
8365 
8366 			down_read(&sinfo->groups_sem);
8367 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
8368 				found = true;
8369 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
8370 				found = true;
8371 			up_read(&sinfo->groups_sem);
8372 
8373 			if (found)
8374 				return;
8375 		}
8376 		btrfs_clear_fs_incompat(fs_info, RAID56);
8377 	}
8378 }
8379 
8380 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8381 			     u64 group_start, struct extent_map *em)
8382 {
8383 	struct btrfs_fs_info *fs_info = trans->fs_info;
8384 	struct btrfs_root *root = fs_info->extent_root;
8385 	struct btrfs_path *path;
8386 	struct btrfs_block_group_cache *block_group;
8387 	struct btrfs_free_cluster *cluster;
8388 	struct btrfs_root *tree_root = fs_info->tree_root;
8389 	struct btrfs_key key;
8390 	struct inode *inode;
8391 	struct kobject *kobj = NULL;
8392 	int ret;
8393 	int index;
8394 	int factor;
8395 	struct btrfs_caching_control *caching_ctl = NULL;
8396 	bool remove_em;
8397 	bool remove_rsv = false;
8398 
8399 	block_group = btrfs_lookup_block_group(fs_info, group_start);
8400 	BUG_ON(!block_group);
8401 	BUG_ON(!block_group->ro);
8402 
8403 	trace_btrfs_remove_block_group(block_group);
8404 	/*
8405 	 * Free the reserved super bytes from this block group before
8406 	 * remove it.
8407 	 */
8408 	free_excluded_extents(block_group);
8409 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
8410 				  block_group->key.offset);
8411 
8412 	memcpy(&key, &block_group->key, sizeof(key));
8413 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
8414 	factor = btrfs_bg_type_to_factor(block_group->flags);
8415 
8416 	/* make sure this block group isn't part of an allocation cluster */
8417 	cluster = &fs_info->data_alloc_cluster;
8418 	spin_lock(&cluster->refill_lock);
8419 	btrfs_return_cluster_to_free_space(block_group, cluster);
8420 	spin_unlock(&cluster->refill_lock);
8421 
8422 	/*
8423 	 * make sure this block group isn't part of a metadata
8424 	 * allocation cluster
8425 	 */
8426 	cluster = &fs_info->meta_alloc_cluster;
8427 	spin_lock(&cluster->refill_lock);
8428 	btrfs_return_cluster_to_free_space(block_group, cluster);
8429 	spin_unlock(&cluster->refill_lock);
8430 
8431 	path = btrfs_alloc_path();
8432 	if (!path) {
8433 		ret = -ENOMEM;
8434 		goto out;
8435 	}
8436 
8437 	/*
8438 	 * get the inode first so any iput calls done for the io_list
8439 	 * aren't the final iput (no unlinks allowed now)
8440 	 */
8441 	inode = lookup_free_space_inode(block_group, path);
8442 
8443 	mutex_lock(&trans->transaction->cache_write_mutex);
8444 	/*
8445 	 * Make sure our free space cache IO is done before removing the
8446 	 * free space inode
8447 	 */
8448 	spin_lock(&trans->transaction->dirty_bgs_lock);
8449 	if (!list_empty(&block_group->io_list)) {
8450 		list_del_init(&block_group->io_list);
8451 
8452 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
8453 
8454 		spin_unlock(&trans->transaction->dirty_bgs_lock);
8455 		btrfs_wait_cache_io(trans, block_group, path);
8456 		btrfs_put_block_group(block_group);
8457 		spin_lock(&trans->transaction->dirty_bgs_lock);
8458 	}
8459 
8460 	if (!list_empty(&block_group->dirty_list)) {
8461 		list_del_init(&block_group->dirty_list);
8462 		remove_rsv = true;
8463 		btrfs_put_block_group(block_group);
8464 	}
8465 	spin_unlock(&trans->transaction->dirty_bgs_lock);
8466 	mutex_unlock(&trans->transaction->cache_write_mutex);
8467 
8468 	if (!IS_ERR(inode)) {
8469 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
8470 		if (ret) {
8471 			btrfs_add_delayed_iput(inode);
8472 			goto out;
8473 		}
8474 		clear_nlink(inode);
8475 		/* One for the block groups ref */
8476 		spin_lock(&block_group->lock);
8477 		if (block_group->iref) {
8478 			block_group->iref = 0;
8479 			block_group->inode = NULL;
8480 			spin_unlock(&block_group->lock);
8481 			iput(inode);
8482 		} else {
8483 			spin_unlock(&block_group->lock);
8484 		}
8485 		/* One for our lookup ref */
8486 		btrfs_add_delayed_iput(inode);
8487 	}
8488 
8489 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8490 	key.offset = block_group->key.objectid;
8491 	key.type = 0;
8492 
8493 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8494 	if (ret < 0)
8495 		goto out;
8496 	if (ret > 0)
8497 		btrfs_release_path(path);
8498 	if (ret == 0) {
8499 		ret = btrfs_del_item(trans, tree_root, path);
8500 		if (ret)
8501 			goto out;
8502 		btrfs_release_path(path);
8503 	}
8504 
8505 	spin_lock(&fs_info->block_group_cache_lock);
8506 	rb_erase(&block_group->cache_node,
8507 		 &fs_info->block_group_cache_tree);
8508 	RB_CLEAR_NODE(&block_group->cache_node);
8509 
8510 	if (fs_info->first_logical_byte == block_group->key.objectid)
8511 		fs_info->first_logical_byte = (u64)-1;
8512 	spin_unlock(&fs_info->block_group_cache_lock);
8513 
8514 	down_write(&block_group->space_info->groups_sem);
8515 	/*
8516 	 * we must use list_del_init so people can check to see if they
8517 	 * are still on the list after taking the semaphore
8518 	 */
8519 	list_del_init(&block_group->list);
8520 	if (list_empty(&block_group->space_info->block_groups[index])) {
8521 		kobj = block_group->space_info->block_group_kobjs[index];
8522 		block_group->space_info->block_group_kobjs[index] = NULL;
8523 		clear_avail_alloc_bits(fs_info, block_group->flags);
8524 	}
8525 	up_write(&block_group->space_info->groups_sem);
8526 	clear_incompat_bg_bits(fs_info, block_group->flags);
8527 	if (kobj) {
8528 		kobject_del(kobj);
8529 		kobject_put(kobj);
8530 	}
8531 
8532 	if (block_group->has_caching_ctl)
8533 		caching_ctl = get_caching_control(block_group);
8534 	if (block_group->cached == BTRFS_CACHE_STARTED)
8535 		wait_block_group_cache_done(block_group);
8536 	if (block_group->has_caching_ctl) {
8537 		down_write(&fs_info->commit_root_sem);
8538 		if (!caching_ctl) {
8539 			struct btrfs_caching_control *ctl;
8540 
8541 			list_for_each_entry(ctl,
8542 				    &fs_info->caching_block_groups, list)
8543 				if (ctl->block_group == block_group) {
8544 					caching_ctl = ctl;
8545 					refcount_inc(&caching_ctl->count);
8546 					break;
8547 				}
8548 		}
8549 		if (caching_ctl)
8550 			list_del_init(&caching_ctl->list);
8551 		up_write(&fs_info->commit_root_sem);
8552 		if (caching_ctl) {
8553 			/* Once for the caching bgs list and once for us. */
8554 			put_caching_control(caching_ctl);
8555 			put_caching_control(caching_ctl);
8556 		}
8557 	}
8558 
8559 	spin_lock(&trans->transaction->dirty_bgs_lock);
8560 	WARN_ON(!list_empty(&block_group->dirty_list));
8561 	WARN_ON(!list_empty(&block_group->io_list));
8562 	spin_unlock(&trans->transaction->dirty_bgs_lock);
8563 
8564 	btrfs_remove_free_space_cache(block_group);
8565 
8566 	spin_lock(&block_group->space_info->lock);
8567 	list_del_init(&block_group->ro_list);
8568 
8569 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8570 		WARN_ON(block_group->space_info->total_bytes
8571 			< block_group->key.offset);
8572 		WARN_ON(block_group->space_info->bytes_readonly
8573 			< block_group->key.offset);
8574 		WARN_ON(block_group->space_info->disk_total
8575 			< block_group->key.offset * factor);
8576 	}
8577 	block_group->space_info->total_bytes -= block_group->key.offset;
8578 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8579 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8580 
8581 	spin_unlock(&block_group->space_info->lock);
8582 
8583 	memcpy(&key, &block_group->key, sizeof(key));
8584 
8585 	mutex_lock(&fs_info->chunk_mutex);
8586 	spin_lock(&block_group->lock);
8587 	block_group->removed = 1;
8588 	/*
8589 	 * At this point trimming can't start on this block group, because we
8590 	 * removed the block group from the tree fs_info->block_group_cache_tree
8591 	 * so no one can't find it anymore and even if someone already got this
8592 	 * block group before we removed it from the rbtree, they have already
8593 	 * incremented block_group->trimming - if they didn't, they won't find
8594 	 * any free space entries because we already removed them all when we
8595 	 * called btrfs_remove_free_space_cache().
8596 	 *
8597 	 * And we must not remove the extent map from the fs_info->mapping_tree
8598 	 * to prevent the same logical address range and physical device space
8599 	 * ranges from being reused for a new block group. This is because our
8600 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
8601 	 * completely transactionless, so while it is trimming a range the
8602 	 * currently running transaction might finish and a new one start,
8603 	 * allowing for new block groups to be created that can reuse the same
8604 	 * physical device locations unless we take this special care.
8605 	 *
8606 	 * There may also be an implicit trim operation if the file system
8607 	 * is mounted with -odiscard. The same protections must remain
8608 	 * in place until the extents have been discarded completely when
8609 	 * the transaction commit has completed.
8610 	 */
8611 	remove_em = (atomic_read(&block_group->trimming) == 0);
8612 	spin_unlock(&block_group->lock);
8613 
8614 	mutex_unlock(&fs_info->chunk_mutex);
8615 
8616 	ret = remove_block_group_free_space(trans, block_group);
8617 	if (ret)
8618 		goto out;
8619 
8620 	btrfs_put_block_group(block_group);
8621 	btrfs_put_block_group(block_group);
8622 
8623 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8624 	if (ret > 0)
8625 		ret = -EIO;
8626 	if (ret < 0)
8627 		goto out;
8628 
8629 	ret = btrfs_del_item(trans, root, path);
8630 	if (ret)
8631 		goto out;
8632 
8633 	if (remove_em) {
8634 		struct extent_map_tree *em_tree;
8635 
8636 		em_tree = &fs_info->mapping_tree;
8637 		write_lock(&em_tree->lock);
8638 		remove_extent_mapping(em_tree, em);
8639 		write_unlock(&em_tree->lock);
8640 		/* once for the tree */
8641 		free_extent_map(em);
8642 	}
8643 out:
8644 	if (remove_rsv)
8645 		btrfs_delayed_refs_rsv_release(fs_info, 1);
8646 	btrfs_free_path(path);
8647 	return ret;
8648 }
8649 
8650 struct btrfs_trans_handle *
8651 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
8652 				     const u64 chunk_offset)
8653 {
8654 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8655 	struct extent_map *em;
8656 	struct map_lookup *map;
8657 	unsigned int num_items;
8658 
8659 	read_lock(&em_tree->lock);
8660 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8661 	read_unlock(&em_tree->lock);
8662 	ASSERT(em && em->start == chunk_offset);
8663 
8664 	/*
8665 	 * We need to reserve 3 + N units from the metadata space info in order
8666 	 * to remove a block group (done at btrfs_remove_chunk() and at
8667 	 * btrfs_remove_block_group()), which are used for:
8668 	 *
8669 	 * 1 unit for adding the free space inode's orphan (located in the tree
8670 	 * of tree roots).
8671 	 * 1 unit for deleting the block group item (located in the extent
8672 	 * tree).
8673 	 * 1 unit for deleting the free space item (located in tree of tree
8674 	 * roots).
8675 	 * N units for deleting N device extent items corresponding to each
8676 	 * stripe (located in the device tree).
8677 	 *
8678 	 * In order to remove a block group we also need to reserve units in the
8679 	 * system space info in order to update the chunk tree (update one or
8680 	 * more device items and remove one chunk item), but this is done at
8681 	 * btrfs_remove_chunk() through a call to check_system_chunk().
8682 	 */
8683 	map = em->map_lookup;
8684 	num_items = 3 + map->num_stripes;
8685 	free_extent_map(em);
8686 
8687 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
8688 							   num_items, 1);
8689 }
8690 
8691 /*
8692  * Process the unused_bgs list and remove any that don't have any allocated
8693  * space inside of them.
8694  */
8695 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
8696 {
8697 	struct btrfs_block_group_cache *block_group;
8698 	struct btrfs_space_info *space_info;
8699 	struct btrfs_trans_handle *trans;
8700 	int ret = 0;
8701 
8702 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
8703 		return;
8704 
8705 	spin_lock(&fs_info->unused_bgs_lock);
8706 	while (!list_empty(&fs_info->unused_bgs)) {
8707 		u64 start, end;
8708 		int trimming;
8709 
8710 		block_group = list_first_entry(&fs_info->unused_bgs,
8711 					       struct btrfs_block_group_cache,
8712 					       bg_list);
8713 		list_del_init(&block_group->bg_list);
8714 
8715 		space_info = block_group->space_info;
8716 
8717 		if (ret || btrfs_mixed_space_info(space_info)) {
8718 			btrfs_put_block_group(block_group);
8719 			continue;
8720 		}
8721 		spin_unlock(&fs_info->unused_bgs_lock);
8722 
8723 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
8724 
8725 		/* Don't want to race with allocators so take the groups_sem */
8726 		down_write(&space_info->groups_sem);
8727 		spin_lock(&block_group->lock);
8728 		if (block_group->reserved || block_group->pinned ||
8729 		    btrfs_block_group_used(&block_group->item) ||
8730 		    block_group->ro ||
8731 		    list_is_singular(&block_group->list)) {
8732 			/*
8733 			 * We want to bail if we made new allocations or have
8734 			 * outstanding allocations in this block group.  We do
8735 			 * the ro check in case balance is currently acting on
8736 			 * this block group.
8737 			 */
8738 			trace_btrfs_skip_unused_block_group(block_group);
8739 			spin_unlock(&block_group->lock);
8740 			up_write(&space_info->groups_sem);
8741 			goto next;
8742 		}
8743 		spin_unlock(&block_group->lock);
8744 
8745 		/* We don't want to force the issue, only flip if it's ok. */
8746 		ret = inc_block_group_ro(block_group, 0);
8747 		up_write(&space_info->groups_sem);
8748 		if (ret < 0) {
8749 			ret = 0;
8750 			goto next;
8751 		}
8752 
8753 		/*
8754 		 * Want to do this before we do anything else so we can recover
8755 		 * properly if we fail to join the transaction.
8756 		 */
8757 		trans = btrfs_start_trans_remove_block_group(fs_info,
8758 						     block_group->key.objectid);
8759 		if (IS_ERR(trans)) {
8760 			btrfs_dec_block_group_ro(block_group);
8761 			ret = PTR_ERR(trans);
8762 			goto next;
8763 		}
8764 
8765 		/*
8766 		 * We could have pending pinned extents for this block group,
8767 		 * just delete them, we don't care about them anymore.
8768 		 */
8769 		start = block_group->key.objectid;
8770 		end = start + block_group->key.offset - 1;
8771 		/*
8772 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
8773 		 * btrfs_finish_extent_commit(). If we are at transaction N,
8774 		 * another task might be running finish_extent_commit() for the
8775 		 * previous transaction N - 1, and have seen a range belonging
8776 		 * to the block group in freed_extents[] before we were able to
8777 		 * clear the whole block group range from freed_extents[]. This
8778 		 * means that task can lookup for the block group after we
8779 		 * unpinned it from freed_extents[] and removed it, leading to
8780 		 * a BUG_ON() at btrfs_unpin_extent_range().
8781 		 */
8782 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
8783 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
8784 				  EXTENT_DIRTY);
8785 		if (ret) {
8786 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
8787 			btrfs_dec_block_group_ro(block_group);
8788 			goto end_trans;
8789 		}
8790 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
8791 				  EXTENT_DIRTY);
8792 		if (ret) {
8793 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
8794 			btrfs_dec_block_group_ro(block_group);
8795 			goto end_trans;
8796 		}
8797 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
8798 
8799 		/* Reset pinned so btrfs_put_block_group doesn't complain */
8800 		spin_lock(&space_info->lock);
8801 		spin_lock(&block_group->lock);
8802 
8803 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
8804 						     -block_group->pinned);
8805 		space_info->bytes_readonly += block_group->pinned;
8806 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
8807 				   -block_group->pinned,
8808 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
8809 		block_group->pinned = 0;
8810 
8811 		spin_unlock(&block_group->lock);
8812 		spin_unlock(&space_info->lock);
8813 
8814 		/* DISCARD can flip during remount */
8815 		trimming = btrfs_test_opt(fs_info, DISCARD);
8816 
8817 		/* Implicit trim during transaction commit. */
8818 		if (trimming)
8819 			btrfs_get_block_group_trimming(block_group);
8820 
8821 		/*
8822 		 * Btrfs_remove_chunk will abort the transaction if things go
8823 		 * horribly wrong.
8824 		 */
8825 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
8826 
8827 		if (ret) {
8828 			if (trimming)
8829 				btrfs_put_block_group_trimming(block_group);
8830 			goto end_trans;
8831 		}
8832 
8833 		/*
8834 		 * If we're not mounted with -odiscard, we can just forget
8835 		 * about this block group. Otherwise we'll need to wait
8836 		 * until transaction commit to do the actual discard.
8837 		 */
8838 		if (trimming) {
8839 			spin_lock(&fs_info->unused_bgs_lock);
8840 			/*
8841 			 * A concurrent scrub might have added us to the list
8842 			 * fs_info->unused_bgs, so use a list_move operation
8843 			 * to add the block group to the deleted_bgs list.
8844 			 */
8845 			list_move(&block_group->bg_list,
8846 				  &trans->transaction->deleted_bgs);
8847 			spin_unlock(&fs_info->unused_bgs_lock);
8848 			btrfs_get_block_group(block_group);
8849 		}
8850 end_trans:
8851 		btrfs_end_transaction(trans);
8852 next:
8853 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8854 		btrfs_put_block_group(block_group);
8855 		spin_lock(&fs_info->unused_bgs_lock);
8856 	}
8857 	spin_unlock(&fs_info->unused_bgs_lock);
8858 }
8859 
8860 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
8861 				   u64 start, u64 end)
8862 {
8863 	return unpin_extent_range(fs_info, start, end, false);
8864 }
8865 
8866 /*
8867  * It used to be that old block groups would be left around forever.
8868  * Iterating over them would be enough to trim unused space.  Since we
8869  * now automatically remove them, we also need to iterate over unallocated
8870  * space.
8871  *
8872  * We don't want a transaction for this since the discard may take a
8873  * substantial amount of time.  We don't require that a transaction be
8874  * running, but we do need to take a running transaction into account
8875  * to ensure that we're not discarding chunks that were released or
8876  * allocated in the current transaction.
8877  *
8878  * Holding the chunks lock will prevent other threads from allocating
8879  * or releasing chunks, but it won't prevent a running transaction
8880  * from committing and releasing the memory that the pending chunks
8881  * list head uses.  For that, we need to take a reference to the
8882  * transaction and hold the commit root sem.  We only need to hold
8883  * it while performing the free space search since we have already
8884  * held back allocations.
8885  */
8886 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
8887 {
8888 	u64 start = SZ_1M, len = 0, end = 0;
8889 	int ret;
8890 
8891 	*trimmed = 0;
8892 
8893 	/* Discard not supported = nothing to do. */
8894 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
8895 		return 0;
8896 
8897 	/* Not writable = nothing to do. */
8898 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
8899 		return 0;
8900 
8901 	/* No free space = nothing to do. */
8902 	if (device->total_bytes <= device->bytes_used)
8903 		return 0;
8904 
8905 	ret = 0;
8906 
8907 	while (1) {
8908 		struct btrfs_fs_info *fs_info = device->fs_info;
8909 		u64 bytes;
8910 
8911 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
8912 		if (ret)
8913 			break;
8914 
8915 		find_first_clear_extent_bit(&device->alloc_state, start,
8916 					    &start, &end,
8917 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
8918 
8919 		/* Ensure we skip the reserved area in the first 1M */
8920 		start = max_t(u64, start, SZ_1M);
8921 
8922 		/*
8923 		 * If find_first_clear_extent_bit find a range that spans the
8924 		 * end of the device it will set end to -1, in this case it's up
8925 		 * to the caller to trim the value to the size of the device.
8926 		 */
8927 		end = min(end, device->total_bytes - 1);
8928 
8929 		len = end - start + 1;
8930 
8931 		/* We didn't find any extents */
8932 		if (!len) {
8933 			mutex_unlock(&fs_info->chunk_mutex);
8934 			ret = 0;
8935 			break;
8936 		}
8937 
8938 		ret = btrfs_issue_discard(device->bdev, start, len,
8939 					  &bytes);
8940 		if (!ret)
8941 			set_extent_bits(&device->alloc_state, start,
8942 					start + bytes - 1,
8943 					CHUNK_TRIMMED);
8944 		mutex_unlock(&fs_info->chunk_mutex);
8945 
8946 		if (ret)
8947 			break;
8948 
8949 		start += len;
8950 		*trimmed += bytes;
8951 
8952 		if (fatal_signal_pending(current)) {
8953 			ret = -ERESTARTSYS;
8954 			break;
8955 		}
8956 
8957 		cond_resched();
8958 	}
8959 
8960 	return ret;
8961 }
8962 
8963 /*
8964  * Trim the whole filesystem by:
8965  * 1) trimming the free space in each block group
8966  * 2) trimming the unallocated space on each device
8967  *
8968  * This will also continue trimming even if a block group or device encounters
8969  * an error.  The return value will be the last error, or 0 if nothing bad
8970  * happens.
8971  */
8972 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
8973 {
8974 	struct btrfs_block_group_cache *cache = NULL;
8975 	struct btrfs_device *device;
8976 	struct list_head *devices;
8977 	u64 group_trimmed;
8978 	u64 start;
8979 	u64 end;
8980 	u64 trimmed = 0;
8981 	u64 bg_failed = 0;
8982 	u64 dev_failed = 0;
8983 	int bg_ret = 0;
8984 	int dev_ret = 0;
8985 	int ret = 0;
8986 
8987 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
8988 	for (; cache; cache = next_block_group(cache)) {
8989 		if (cache->key.objectid >= (range->start + range->len)) {
8990 			btrfs_put_block_group(cache);
8991 			break;
8992 		}
8993 
8994 		start = max(range->start, cache->key.objectid);
8995 		end = min(range->start + range->len,
8996 				cache->key.objectid + cache->key.offset);
8997 
8998 		if (end - start >= range->minlen) {
8999 			if (!block_group_cache_done(cache)) {
9000 				ret = cache_block_group(cache, 0);
9001 				if (ret) {
9002 					bg_failed++;
9003 					bg_ret = ret;
9004 					continue;
9005 				}
9006 				ret = wait_block_group_cache_done(cache);
9007 				if (ret) {
9008 					bg_failed++;
9009 					bg_ret = ret;
9010 					continue;
9011 				}
9012 			}
9013 			ret = btrfs_trim_block_group(cache,
9014 						     &group_trimmed,
9015 						     start,
9016 						     end,
9017 						     range->minlen);
9018 
9019 			trimmed += group_trimmed;
9020 			if (ret) {
9021 				bg_failed++;
9022 				bg_ret = ret;
9023 				continue;
9024 			}
9025 		}
9026 	}
9027 
9028 	if (bg_failed)
9029 		btrfs_warn(fs_info,
9030 			"failed to trim %llu block group(s), last error %d",
9031 			bg_failed, bg_ret);
9032 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
9033 	devices = &fs_info->fs_devices->devices;
9034 	list_for_each_entry(device, devices, dev_list) {
9035 		ret = btrfs_trim_free_extents(device, &group_trimmed);
9036 		if (ret) {
9037 			dev_failed++;
9038 			dev_ret = ret;
9039 			break;
9040 		}
9041 
9042 		trimmed += group_trimmed;
9043 	}
9044 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
9045 
9046 	if (dev_failed)
9047 		btrfs_warn(fs_info,
9048 			"failed to trim %llu device(s), last error %d",
9049 			dev_failed, dev_ret);
9050 	range->len = trimmed;
9051 	if (bg_ret)
9052 		return bg_ret;
9053 	return dev_ret;
9054 }
9055 
9056 /*
9057  * btrfs_{start,end}_write_no_snapshotting() are similar to
9058  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9059  * data into the page cache through nocow before the subvolume is snapshoted,
9060  * but flush the data into disk after the snapshot creation, or to prevent
9061  * operations while snapshotting is ongoing and that cause the snapshot to be
9062  * inconsistent (writes followed by expanding truncates for example).
9063  */
9064 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
9065 {
9066 	percpu_counter_dec(&root->subv_writers->counter);
9067 	cond_wake_up(&root->subv_writers->wait);
9068 }
9069 
9070 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
9071 {
9072 	if (atomic_read(&root->will_be_snapshotted))
9073 		return 0;
9074 
9075 	percpu_counter_inc(&root->subv_writers->counter);
9076 	/*
9077 	 * Make sure counter is updated before we check for snapshot creation.
9078 	 */
9079 	smp_mb();
9080 	if (atomic_read(&root->will_be_snapshotted)) {
9081 		btrfs_end_write_no_snapshotting(root);
9082 		return 0;
9083 	}
9084 	return 1;
9085 }
9086 
9087 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
9088 {
9089 	while (true) {
9090 		int ret;
9091 
9092 		ret = btrfs_start_write_no_snapshotting(root);
9093 		if (ret)
9094 			break;
9095 		wait_var_event(&root->will_be_snapshotted,
9096 			       !atomic_read(&root->will_be_snapshotted));
9097 	}
9098 }
9099 
9100 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
9101 {
9102 	struct btrfs_fs_info *fs_info = bg->fs_info;
9103 
9104 	spin_lock(&fs_info->unused_bgs_lock);
9105 	if (list_empty(&bg->bg_list)) {
9106 		btrfs_get_block_group(bg);
9107 		trace_btrfs_add_unused_block_group(bg);
9108 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
9109 	}
9110 	spin_unlock(&fs_info->unused_bgs_lock);
9111 }
9112