1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 struct btrfs_fs_info *info, u64 start, u64 end) 342 { 343 u64 extent_start, extent_end, size, total_added = 0; 344 int ret; 345 346 while (start < end) { 347 ret = find_first_extent_bit(info->pinned_extents, start, 348 &extent_start, &extent_end, 349 EXTENT_DIRTY | EXTENT_UPTODATE, 350 NULL); 351 if (ret) 352 break; 353 354 if (extent_start <= start) { 355 start = extent_end + 1; 356 } else if (extent_start > start && extent_start < end) { 357 size = extent_start - start; 358 total_added += size; 359 ret = btrfs_add_free_space(block_group, start, 360 size); 361 BUG_ON(ret); /* -ENOMEM or logic error */ 362 start = extent_end + 1; 363 } else { 364 break; 365 } 366 } 367 368 if (start < end) { 369 size = end - start; 370 total_added += size; 371 ret = btrfs_add_free_space(block_group, start, size); 372 BUG_ON(ret); /* -ENOMEM or logic error */ 373 } 374 375 return total_added; 376 } 377 378 static noinline void caching_thread(struct btrfs_work *work) 379 { 380 struct btrfs_block_group_cache *block_group; 381 struct btrfs_fs_info *fs_info; 382 struct btrfs_caching_control *caching_ctl; 383 struct btrfs_root *extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret = -ENOMEM; 391 392 caching_ctl = container_of(work, struct btrfs_caching_control, work); 393 block_group = caching_ctl->block_group; 394 fs_info = block_group->fs_info; 395 extent_root = fs_info->extent_root; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 goto out; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 /* 404 * We don't want to deadlock with somebody trying to allocate a new 405 * extent for the extent root while also trying to search the extent 406 * root to add free space. So we skip locking and search the commit 407 * root, since its read-only 408 */ 409 path->skip_locking = 1; 410 path->search_commit_root = 1; 411 path->reada = 1; 412 413 key.objectid = last; 414 key.offset = 0; 415 key.type = BTRFS_EXTENT_ITEM_KEY; 416 again: 417 mutex_lock(&caching_ctl->mutex); 418 /* need to make sure the commit_root doesn't disappear */ 419 down_read(&fs_info->commit_root_sem); 420 421 next: 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 423 if (ret < 0) 424 goto err; 425 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 429 while (1) { 430 if (btrfs_fs_closing(fs_info) > 1) { 431 last = (u64)-1; 432 break; 433 } 434 435 if (path->slots[0] < nritems) { 436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 437 } else { 438 ret = find_next_key(path, 0, &key); 439 if (ret) 440 break; 441 442 if (need_resched() || 443 rwsem_is_contended(&fs_info->commit_root_sem)) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->commit_root_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < last) { 463 key.objectid = last; 464 key.offset = 0; 465 key.type = BTRFS_EXTENT_ITEM_KEY; 466 467 caching_ctl->progress = last; 468 btrfs_release_path(path); 469 goto next; 470 } 471 472 if (key.objectid < block_group->key.objectid) { 473 path->slots[0]++; 474 continue; 475 } 476 477 if (key.objectid >= block_group->key.objectid + 478 block_group->key.offset) 479 break; 480 481 if (key.type == BTRFS_EXTENT_ITEM_KEY || 482 key.type == BTRFS_METADATA_ITEM_KEY) { 483 total_found += add_new_free_space(block_group, 484 fs_info, last, 485 key.objectid); 486 if (key.type == BTRFS_METADATA_ITEM_KEY) 487 last = key.objectid + 488 fs_info->tree_root->nodesize; 489 else 490 last = key.objectid + key.offset; 491 492 if (total_found > (1024 * 1024 * 2)) { 493 total_found = 0; 494 wake_up(&caching_ctl->wait); 495 } 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 501 total_found += add_new_free_space(block_group, fs_info, last, 502 block_group->key.objectid + 503 block_group->key.offset); 504 caching_ctl->progress = (u64)-1; 505 506 spin_lock(&block_group->lock); 507 block_group->caching_ctl = NULL; 508 block_group->cached = BTRFS_CACHE_FINISHED; 509 spin_unlock(&block_group->lock); 510 511 err: 512 btrfs_free_path(path); 513 up_read(&fs_info->commit_root_sem); 514 515 free_excluded_extents(extent_root, block_group); 516 517 mutex_unlock(&caching_ctl->mutex); 518 out: 519 if (ret) { 520 spin_lock(&block_group->lock); 521 block_group->caching_ctl = NULL; 522 block_group->cached = BTRFS_CACHE_ERROR; 523 spin_unlock(&block_group->lock); 524 } 525 wake_up(&caching_ctl->wait); 526 527 put_caching_control(caching_ctl); 528 btrfs_put_block_group(block_group); 529 } 530 531 static int cache_block_group(struct btrfs_block_group_cache *cache, 532 int load_cache_only) 533 { 534 DEFINE_WAIT(wait); 535 struct btrfs_fs_info *fs_info = cache->fs_info; 536 struct btrfs_caching_control *caching_ctl; 537 int ret = 0; 538 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 540 if (!caching_ctl) 541 return -ENOMEM; 542 543 INIT_LIST_HEAD(&caching_ctl->list); 544 mutex_init(&caching_ctl->mutex); 545 init_waitqueue_head(&caching_ctl->wait); 546 caching_ctl->block_group = cache; 547 caching_ctl->progress = cache->key.objectid; 548 atomic_set(&caching_ctl->count, 1); 549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 550 caching_thread, NULL, NULL); 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 mutex_lock(&caching_ctl->mutex); 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 caching_ctl->progress = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 cache->has_caching_ctl = 1; 607 } 608 } 609 spin_unlock(&cache->lock); 610 mutex_unlock(&caching_ctl->mutex); 611 612 wake_up(&caching_ctl->wait); 613 if (ret == 1) { 614 put_caching_control(caching_ctl); 615 free_excluded_extents(fs_info->extent_root, cache); 616 return 0; 617 } 618 } else { 619 /* 620 * We are not going to do the fast caching, set cached to the 621 * appropriate value and wakeup any waiters. 622 */ 623 spin_lock(&cache->lock); 624 if (load_cache_only) { 625 cache->caching_ctl = NULL; 626 cache->cached = BTRFS_CACHE_NO; 627 } else { 628 cache->cached = BTRFS_CACHE_STARTED; 629 cache->has_caching_ctl = 1; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1320 struct btrfs_extent_inline_ref *iref) 1321 { 1322 struct btrfs_key key; 1323 struct extent_buffer *leaf; 1324 struct btrfs_extent_data_ref *ref1; 1325 struct btrfs_shared_data_ref *ref2; 1326 u32 num_refs = 0; 1327 1328 leaf = path->nodes[0]; 1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1330 if (iref) { 1331 if (btrfs_extent_inline_ref_type(leaf, iref) == 1332 BTRFS_EXTENT_DATA_REF_KEY) { 1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1335 } else { 1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1338 } 1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1340 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1341 struct btrfs_extent_data_ref); 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1344 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1345 struct btrfs_shared_data_ref); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1349 struct btrfs_extent_ref_v0 *ref0; 1350 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_ref_v0); 1352 num_refs = btrfs_ref_count_v0(leaf, ref0); 1353 #endif 1354 } else { 1355 WARN_ON(1); 1356 } 1357 return num_refs; 1358 } 1359 1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1361 struct btrfs_root *root, 1362 struct btrfs_path *path, 1363 u64 bytenr, u64 parent, 1364 u64 root_objectid) 1365 { 1366 struct btrfs_key key; 1367 int ret; 1368 1369 key.objectid = bytenr; 1370 if (parent) { 1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1372 key.offset = parent; 1373 } else { 1374 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1375 key.offset = root_objectid; 1376 } 1377 1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1379 if (ret > 0) 1380 ret = -ENOENT; 1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1382 if (ret == -ENOENT && parent) { 1383 btrfs_release_path(path); 1384 key.type = BTRFS_EXTENT_REF_V0_KEY; 1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1386 if (ret > 0) 1387 ret = -ENOENT; 1388 } 1389 #endif 1390 return ret; 1391 } 1392 1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1394 struct btrfs_root *root, 1395 struct btrfs_path *path, 1396 u64 bytenr, u64 parent, 1397 u64 root_objectid) 1398 { 1399 struct btrfs_key key; 1400 int ret; 1401 1402 key.objectid = bytenr; 1403 if (parent) { 1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1405 key.offset = parent; 1406 } else { 1407 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1408 key.offset = root_objectid; 1409 } 1410 1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1412 btrfs_release_path(path); 1413 return ret; 1414 } 1415 1416 static inline int extent_ref_type(u64 parent, u64 owner) 1417 { 1418 int type; 1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1420 if (parent > 0) 1421 type = BTRFS_SHARED_BLOCK_REF_KEY; 1422 else 1423 type = BTRFS_TREE_BLOCK_REF_KEY; 1424 } else { 1425 if (parent > 0) 1426 type = BTRFS_SHARED_DATA_REF_KEY; 1427 else 1428 type = BTRFS_EXTENT_DATA_REF_KEY; 1429 } 1430 return type; 1431 } 1432 1433 static int find_next_key(struct btrfs_path *path, int level, 1434 struct btrfs_key *key) 1435 1436 { 1437 for (; level < BTRFS_MAX_LEVEL; level++) { 1438 if (!path->nodes[level]) 1439 break; 1440 if (path->slots[level] + 1 >= 1441 btrfs_header_nritems(path->nodes[level])) 1442 continue; 1443 if (level == 0) 1444 btrfs_item_key_to_cpu(path->nodes[level], key, 1445 path->slots[level] + 1); 1446 else 1447 btrfs_node_key_to_cpu(path->nodes[level], key, 1448 path->slots[level] + 1); 1449 return 0; 1450 } 1451 return 1; 1452 } 1453 1454 /* 1455 * look for inline back ref. if back ref is found, *ref_ret is set 1456 * to the address of inline back ref, and 0 is returned. 1457 * 1458 * if back ref isn't found, *ref_ret is set to the address where it 1459 * should be inserted, and -ENOENT is returned. 1460 * 1461 * if insert is true and there are too many inline back refs, the path 1462 * points to the extent item, and -EAGAIN is returned. 1463 * 1464 * NOTE: inline back refs are ordered in the same way that back ref 1465 * items in the tree are ordered. 1466 */ 1467 static noinline_for_stack 1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1469 struct btrfs_root *root, 1470 struct btrfs_path *path, 1471 struct btrfs_extent_inline_ref **ref_ret, 1472 u64 bytenr, u64 num_bytes, 1473 u64 parent, u64 root_objectid, 1474 u64 owner, u64 offset, int insert) 1475 { 1476 struct btrfs_key key; 1477 struct extent_buffer *leaf; 1478 struct btrfs_extent_item *ei; 1479 struct btrfs_extent_inline_ref *iref; 1480 u64 flags; 1481 u64 item_size; 1482 unsigned long ptr; 1483 unsigned long end; 1484 int extra_size; 1485 int type; 1486 int want; 1487 int ret; 1488 int err = 0; 1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1490 SKINNY_METADATA); 1491 1492 key.objectid = bytenr; 1493 key.type = BTRFS_EXTENT_ITEM_KEY; 1494 key.offset = num_bytes; 1495 1496 want = extent_ref_type(parent, owner); 1497 if (insert) { 1498 extra_size = btrfs_extent_inline_ref_size(want); 1499 path->keep_locks = 1; 1500 } else 1501 extra_size = -1; 1502 1503 /* 1504 * Owner is our parent level, so we can just add one to get the level 1505 * for the block we are interested in. 1506 */ 1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1508 key.type = BTRFS_METADATA_ITEM_KEY; 1509 key.offset = owner; 1510 } 1511 1512 again: 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1514 if (ret < 0) { 1515 err = ret; 1516 goto out; 1517 } 1518 1519 /* 1520 * We may be a newly converted file system which still has the old fat 1521 * extent entries for metadata, so try and see if we have one of those. 1522 */ 1523 if (ret > 0 && skinny_metadata) { 1524 skinny_metadata = false; 1525 if (path->slots[0]) { 1526 path->slots[0]--; 1527 btrfs_item_key_to_cpu(path->nodes[0], &key, 1528 path->slots[0]); 1529 if (key.objectid == bytenr && 1530 key.type == BTRFS_EXTENT_ITEM_KEY && 1531 key.offset == num_bytes) 1532 ret = 0; 1533 } 1534 if (ret) { 1535 key.objectid = bytenr; 1536 key.type = BTRFS_EXTENT_ITEM_KEY; 1537 key.offset = num_bytes; 1538 btrfs_release_path(path); 1539 goto again; 1540 } 1541 } 1542 1543 if (ret && !insert) { 1544 err = -ENOENT; 1545 goto out; 1546 } else if (WARN_ON(ret)) { 1547 err = -EIO; 1548 goto out; 1549 } 1550 1551 leaf = path->nodes[0]; 1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1554 if (item_size < sizeof(*ei)) { 1555 if (!insert) { 1556 err = -ENOENT; 1557 goto out; 1558 } 1559 ret = convert_extent_item_v0(trans, root, path, owner, 1560 extra_size); 1561 if (ret < 0) { 1562 err = ret; 1563 goto out; 1564 } 1565 leaf = path->nodes[0]; 1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1567 } 1568 #endif 1569 BUG_ON(item_size < sizeof(*ei)); 1570 1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1572 flags = btrfs_extent_flags(leaf, ei); 1573 1574 ptr = (unsigned long)(ei + 1); 1575 end = (unsigned long)ei + item_size; 1576 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1578 ptr += sizeof(struct btrfs_tree_block_info); 1579 BUG_ON(ptr > end); 1580 } 1581 1582 err = -ENOENT; 1583 while (1) { 1584 if (ptr >= end) { 1585 WARN_ON(ptr > end); 1586 break; 1587 } 1588 iref = (struct btrfs_extent_inline_ref *)ptr; 1589 type = btrfs_extent_inline_ref_type(leaf, iref); 1590 if (want < type) 1591 break; 1592 if (want > type) { 1593 ptr += btrfs_extent_inline_ref_size(type); 1594 continue; 1595 } 1596 1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1598 struct btrfs_extent_data_ref *dref; 1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1600 if (match_extent_data_ref(leaf, dref, root_objectid, 1601 owner, offset)) { 1602 err = 0; 1603 break; 1604 } 1605 if (hash_extent_data_ref_item(leaf, dref) < 1606 hash_extent_data_ref(root_objectid, owner, offset)) 1607 break; 1608 } else { 1609 u64 ref_offset; 1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1611 if (parent > 0) { 1612 if (parent == ref_offset) { 1613 err = 0; 1614 break; 1615 } 1616 if (ref_offset < parent) 1617 break; 1618 } else { 1619 if (root_objectid == ref_offset) { 1620 err = 0; 1621 break; 1622 } 1623 if (ref_offset < root_objectid) 1624 break; 1625 } 1626 } 1627 ptr += btrfs_extent_inline_ref_size(type); 1628 } 1629 if (err == -ENOENT && insert) { 1630 if (item_size + extra_size >= 1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1632 err = -EAGAIN; 1633 goto out; 1634 } 1635 /* 1636 * To add new inline back ref, we have to make sure 1637 * there is no corresponding back ref item. 1638 * For simplicity, we just do not add new inline back 1639 * ref if there is any kind of item for this block 1640 */ 1641 if (find_next_key(path, 0, &key) == 0 && 1642 key.objectid == bytenr && 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1644 err = -EAGAIN; 1645 goto out; 1646 } 1647 } 1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1649 out: 1650 if (insert) { 1651 path->keep_locks = 0; 1652 btrfs_unlock_up_safe(path, 1); 1653 } 1654 return err; 1655 } 1656 1657 /* 1658 * helper to add new inline back ref 1659 */ 1660 static noinline_for_stack 1661 void setup_inline_extent_backref(struct btrfs_root *root, 1662 struct btrfs_path *path, 1663 struct btrfs_extent_inline_ref *iref, 1664 u64 parent, u64 root_objectid, 1665 u64 owner, u64 offset, int refs_to_add, 1666 struct btrfs_delayed_extent_op *extent_op) 1667 { 1668 struct extent_buffer *leaf; 1669 struct btrfs_extent_item *ei; 1670 unsigned long ptr; 1671 unsigned long end; 1672 unsigned long item_offset; 1673 u64 refs; 1674 int size; 1675 int type; 1676 1677 leaf = path->nodes[0]; 1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1679 item_offset = (unsigned long)iref - (unsigned long)ei; 1680 1681 type = extent_ref_type(parent, owner); 1682 size = btrfs_extent_inline_ref_size(type); 1683 1684 btrfs_extend_item(root, path, size); 1685 1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1687 refs = btrfs_extent_refs(leaf, ei); 1688 refs += refs_to_add; 1689 btrfs_set_extent_refs(leaf, ei, refs); 1690 if (extent_op) 1691 __run_delayed_extent_op(extent_op, leaf, ei); 1692 1693 ptr = (unsigned long)ei + item_offset; 1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1695 if (ptr < end - size) 1696 memmove_extent_buffer(leaf, ptr + size, ptr, 1697 end - size - ptr); 1698 1699 iref = (struct btrfs_extent_inline_ref *)ptr; 1700 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1702 struct btrfs_extent_data_ref *dref; 1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1709 struct btrfs_shared_data_ref *sref; 1710 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1717 } 1718 btrfs_mark_buffer_dirty(leaf); 1719 } 1720 1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1722 struct btrfs_root *root, 1723 struct btrfs_path *path, 1724 struct btrfs_extent_inline_ref **ref_ret, 1725 u64 bytenr, u64 num_bytes, u64 parent, 1726 u64 root_objectid, u64 owner, u64 offset) 1727 { 1728 int ret; 1729 1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1731 bytenr, num_bytes, parent, 1732 root_objectid, owner, offset, 0); 1733 if (ret != -ENOENT) 1734 return ret; 1735 1736 btrfs_release_path(path); 1737 *ref_ret = NULL; 1738 1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1741 root_objectid); 1742 } else { 1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1744 root_objectid, owner, offset); 1745 } 1746 return ret; 1747 } 1748 1749 /* 1750 * helper to update/remove inline back ref 1751 */ 1752 static noinline_for_stack 1753 void update_inline_extent_backref(struct btrfs_root *root, 1754 struct btrfs_path *path, 1755 struct btrfs_extent_inline_ref *iref, 1756 int refs_to_mod, 1757 struct btrfs_delayed_extent_op *extent_op, 1758 int *last_ref) 1759 { 1760 struct extent_buffer *leaf; 1761 struct btrfs_extent_item *ei; 1762 struct btrfs_extent_data_ref *dref = NULL; 1763 struct btrfs_shared_data_ref *sref = NULL; 1764 unsigned long ptr; 1765 unsigned long end; 1766 u32 item_size; 1767 int size; 1768 int type; 1769 u64 refs; 1770 1771 leaf = path->nodes[0]; 1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1773 refs = btrfs_extent_refs(leaf, ei); 1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1775 refs += refs_to_mod; 1776 btrfs_set_extent_refs(leaf, ei, refs); 1777 if (extent_op) 1778 __run_delayed_extent_op(extent_op, leaf, ei); 1779 1780 type = btrfs_extent_inline_ref_type(leaf, iref); 1781 1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1784 refs = btrfs_extent_data_ref_count(leaf, dref); 1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1786 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1787 refs = btrfs_shared_data_ref_count(leaf, sref); 1788 } else { 1789 refs = 1; 1790 BUG_ON(refs_to_mod != -1); 1791 } 1792 1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1794 refs += refs_to_mod; 1795 1796 if (refs > 0) { 1797 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1798 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1799 else 1800 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1801 } else { 1802 *last_ref = 1; 1803 size = btrfs_extent_inline_ref_size(type); 1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1805 ptr = (unsigned long)iref; 1806 end = (unsigned long)ei + item_size; 1807 if (ptr + size < end) 1808 memmove_extent_buffer(leaf, ptr, ptr + size, 1809 end - ptr - size); 1810 item_size -= size; 1811 btrfs_truncate_item(root, path, item_size, 1); 1812 } 1813 btrfs_mark_buffer_dirty(leaf); 1814 } 1815 1816 static noinline_for_stack 1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1818 struct btrfs_root *root, 1819 struct btrfs_path *path, 1820 u64 bytenr, u64 num_bytes, u64 parent, 1821 u64 root_objectid, u64 owner, 1822 u64 offset, int refs_to_add, 1823 struct btrfs_delayed_extent_op *extent_op) 1824 { 1825 struct btrfs_extent_inline_ref *iref; 1826 int ret; 1827 1828 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1829 bytenr, num_bytes, parent, 1830 root_objectid, owner, offset, 1); 1831 if (ret == 0) { 1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1833 update_inline_extent_backref(root, path, iref, 1834 refs_to_add, extent_op, NULL); 1835 } else if (ret == -ENOENT) { 1836 setup_inline_extent_backref(root, path, iref, parent, 1837 root_objectid, owner, offset, 1838 refs_to_add, extent_op); 1839 ret = 0; 1840 } 1841 return ret; 1842 } 1843 1844 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1845 struct btrfs_root *root, 1846 struct btrfs_path *path, 1847 u64 bytenr, u64 parent, u64 root_objectid, 1848 u64 owner, u64 offset, int refs_to_add) 1849 { 1850 int ret; 1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1852 BUG_ON(refs_to_add != 1); 1853 ret = insert_tree_block_ref(trans, root, path, bytenr, 1854 parent, root_objectid); 1855 } else { 1856 ret = insert_extent_data_ref(trans, root, path, bytenr, 1857 parent, root_objectid, 1858 owner, offset, refs_to_add); 1859 } 1860 return ret; 1861 } 1862 1863 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1864 struct btrfs_root *root, 1865 struct btrfs_path *path, 1866 struct btrfs_extent_inline_ref *iref, 1867 int refs_to_drop, int is_data, int *last_ref) 1868 { 1869 int ret = 0; 1870 1871 BUG_ON(!is_data && refs_to_drop != 1); 1872 if (iref) { 1873 update_inline_extent_backref(root, path, iref, 1874 -refs_to_drop, NULL, last_ref); 1875 } else if (is_data) { 1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1877 last_ref); 1878 } else { 1879 *last_ref = 1; 1880 ret = btrfs_del_item(trans, root, path); 1881 } 1882 return ret; 1883 } 1884 1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1887 u64 *discarded_bytes) 1888 { 1889 int j, ret = 0; 1890 u64 bytes_left, end; 1891 u64 aligned_start = ALIGN(start, 1 << 9); 1892 1893 if (WARN_ON(start != aligned_start)) { 1894 len -= aligned_start - start; 1895 len = round_down(len, 1 << 9); 1896 start = aligned_start; 1897 } 1898 1899 *discarded_bytes = 0; 1900 1901 if (!len) 1902 return 0; 1903 1904 end = start + len; 1905 bytes_left = len; 1906 1907 /* Skip any superblocks on this device. */ 1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1909 u64 sb_start = btrfs_sb_offset(j); 1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1911 u64 size = sb_start - start; 1912 1913 if (!in_range(sb_start, start, bytes_left) && 1914 !in_range(sb_end, start, bytes_left) && 1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1916 continue; 1917 1918 /* 1919 * Superblock spans beginning of range. Adjust start and 1920 * try again. 1921 */ 1922 if (sb_start <= start) { 1923 start += sb_end - start; 1924 if (start > end) { 1925 bytes_left = 0; 1926 break; 1927 } 1928 bytes_left = end - start; 1929 continue; 1930 } 1931 1932 if (size) { 1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1934 GFP_NOFS, 0); 1935 if (!ret) 1936 *discarded_bytes += size; 1937 else if (ret != -EOPNOTSUPP) 1938 return ret; 1939 } 1940 1941 start = sb_end; 1942 if (start > end) { 1943 bytes_left = 0; 1944 break; 1945 } 1946 bytes_left = end - start; 1947 } 1948 1949 if (bytes_left) { 1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1951 GFP_NOFS, 0); 1952 if (!ret) 1953 *discarded_bytes += bytes_left; 1954 } 1955 return ret; 1956 } 1957 1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1959 u64 num_bytes, u64 *actual_bytes) 1960 { 1961 int ret; 1962 u64 discarded_bytes = 0; 1963 struct btrfs_bio *bbio = NULL; 1964 1965 1966 /* Tell the block device(s) that the sectors can be discarded */ 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1968 bytenr, &num_bytes, &bbio, 0); 1969 /* Error condition is -ENOMEM */ 1970 if (!ret) { 1971 struct btrfs_bio_stripe *stripe = bbio->stripes; 1972 int i; 1973 1974 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1976 u64 bytes; 1977 if (!stripe->dev->can_discard) 1978 continue; 1979 1980 ret = btrfs_issue_discard(stripe->dev->bdev, 1981 stripe->physical, 1982 stripe->length, 1983 &bytes); 1984 if (!ret) 1985 discarded_bytes += bytes; 1986 else if (ret != -EOPNOTSUPP) 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1988 1989 /* 1990 * Just in case we get back EOPNOTSUPP for some reason, 1991 * just ignore the return value so we don't screw up 1992 * people calling discard_extent. 1993 */ 1994 ret = 0; 1995 } 1996 btrfs_put_bbio(bbio); 1997 } 1998 1999 if (actual_bytes) 2000 *actual_bytes = discarded_bytes; 2001 2002 2003 if (ret == -EOPNOTSUPP) 2004 ret = 0; 2005 return ret; 2006 } 2007 2008 /* Can return -ENOMEM */ 2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 u64 bytenr, u64 num_bytes, u64 parent, 2012 u64 root_objectid, u64 owner, u64 offset, 2013 int no_quota) 2014 { 2015 int ret; 2016 struct btrfs_fs_info *fs_info = root->fs_info; 2017 2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2019 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2020 2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2023 num_bytes, 2024 parent, root_objectid, (int)owner, 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 2026 } else { 2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2028 num_bytes, 2029 parent, root_objectid, owner, offset, 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 2031 } 2032 return ret; 2033 } 2034 2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2036 struct btrfs_root *root, 2037 struct btrfs_delayed_ref_node *node, 2038 u64 parent, u64 root_objectid, 2039 u64 owner, u64 offset, int refs_to_add, 2040 struct btrfs_delayed_extent_op *extent_op) 2041 { 2042 struct btrfs_fs_info *fs_info = root->fs_info; 2043 struct btrfs_path *path; 2044 struct extent_buffer *leaf; 2045 struct btrfs_extent_item *item; 2046 struct btrfs_key key; 2047 u64 bytenr = node->bytenr; 2048 u64 num_bytes = node->num_bytes; 2049 u64 refs; 2050 int ret; 2051 int no_quota = node->no_quota; 2052 2053 path = btrfs_alloc_path(); 2054 if (!path) 2055 return -ENOMEM; 2056 2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 2058 no_quota = 1; 2059 2060 path->reada = 1; 2061 path->leave_spinning = 1; 2062 /* this will setup the path even if it fails to insert the back ref */ 2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2064 bytenr, num_bytes, parent, 2065 root_objectid, owner, offset, 2066 refs_to_add, extent_op); 2067 if ((ret < 0 && ret != -EAGAIN) || !ret) 2068 goto out; 2069 2070 /* 2071 * Ok we had -EAGAIN which means we didn't have space to insert and 2072 * inline extent ref, so just update the reference count and add a 2073 * normal backref. 2074 */ 2075 leaf = path->nodes[0]; 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2078 refs = btrfs_extent_refs(leaf, item); 2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2080 if (extent_op) 2081 __run_delayed_extent_op(extent_op, leaf, item); 2082 2083 btrfs_mark_buffer_dirty(leaf); 2084 btrfs_release_path(path); 2085 2086 path->reada = 1; 2087 path->leave_spinning = 1; 2088 /* now insert the actual backref */ 2089 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2090 path, bytenr, parent, root_objectid, 2091 owner, offset, refs_to_add); 2092 if (ret) 2093 btrfs_abort_transaction(trans, root, ret); 2094 out: 2095 btrfs_free_path(path); 2096 return ret; 2097 } 2098 2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2100 struct btrfs_root *root, 2101 struct btrfs_delayed_ref_node *node, 2102 struct btrfs_delayed_extent_op *extent_op, 2103 int insert_reserved) 2104 { 2105 int ret = 0; 2106 struct btrfs_delayed_data_ref *ref; 2107 struct btrfs_key ins; 2108 u64 parent = 0; 2109 u64 ref_root = 0; 2110 u64 flags = 0; 2111 2112 ins.objectid = node->bytenr; 2113 ins.offset = node->num_bytes; 2114 ins.type = BTRFS_EXTENT_ITEM_KEY; 2115 2116 ref = btrfs_delayed_node_to_data_ref(node); 2117 trace_run_delayed_data_ref(node, ref, node->action); 2118 2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2120 parent = ref->parent; 2121 ref_root = ref->root; 2122 2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2124 if (extent_op) 2125 flags |= extent_op->flags_to_set; 2126 ret = alloc_reserved_file_extent(trans, root, 2127 parent, ref_root, flags, 2128 ref->objectid, ref->offset, 2129 &ins, node->ref_mod); 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2132 ref_root, ref->objectid, 2133 ref->offset, node->ref_mod, 2134 extent_op); 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2136 ret = __btrfs_free_extent(trans, root, node, parent, 2137 ref_root, ref->objectid, 2138 ref->offset, node->ref_mod, 2139 extent_op); 2140 } else { 2141 BUG(); 2142 } 2143 return ret; 2144 } 2145 2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2147 struct extent_buffer *leaf, 2148 struct btrfs_extent_item *ei) 2149 { 2150 u64 flags = btrfs_extent_flags(leaf, ei); 2151 if (extent_op->update_flags) { 2152 flags |= extent_op->flags_to_set; 2153 btrfs_set_extent_flags(leaf, ei, flags); 2154 } 2155 2156 if (extent_op->update_key) { 2157 struct btrfs_tree_block_info *bi; 2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2159 bi = (struct btrfs_tree_block_info *)(ei + 1); 2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2161 } 2162 } 2163 2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2165 struct btrfs_root *root, 2166 struct btrfs_delayed_ref_node *node, 2167 struct btrfs_delayed_extent_op *extent_op) 2168 { 2169 struct btrfs_key key; 2170 struct btrfs_path *path; 2171 struct btrfs_extent_item *ei; 2172 struct extent_buffer *leaf; 2173 u32 item_size; 2174 int ret; 2175 int err = 0; 2176 int metadata = !extent_op->is_data; 2177 2178 if (trans->aborted) 2179 return 0; 2180 2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2182 metadata = 0; 2183 2184 path = btrfs_alloc_path(); 2185 if (!path) 2186 return -ENOMEM; 2187 2188 key.objectid = node->bytenr; 2189 2190 if (metadata) { 2191 key.type = BTRFS_METADATA_ITEM_KEY; 2192 key.offset = extent_op->level; 2193 } else { 2194 key.type = BTRFS_EXTENT_ITEM_KEY; 2195 key.offset = node->num_bytes; 2196 } 2197 2198 again: 2199 path->reada = 1; 2200 path->leave_spinning = 1; 2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2202 path, 0, 1); 2203 if (ret < 0) { 2204 err = ret; 2205 goto out; 2206 } 2207 if (ret > 0) { 2208 if (metadata) { 2209 if (path->slots[0] > 0) { 2210 path->slots[0]--; 2211 btrfs_item_key_to_cpu(path->nodes[0], &key, 2212 path->slots[0]); 2213 if (key.objectid == node->bytenr && 2214 key.type == BTRFS_EXTENT_ITEM_KEY && 2215 key.offset == node->num_bytes) 2216 ret = 0; 2217 } 2218 if (ret > 0) { 2219 btrfs_release_path(path); 2220 metadata = 0; 2221 2222 key.objectid = node->bytenr; 2223 key.offset = node->num_bytes; 2224 key.type = BTRFS_EXTENT_ITEM_KEY; 2225 goto again; 2226 } 2227 } else { 2228 err = -EIO; 2229 goto out; 2230 } 2231 } 2232 2233 leaf = path->nodes[0]; 2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2236 if (item_size < sizeof(*ei)) { 2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2238 path, (u64)-1, 0); 2239 if (ret < 0) { 2240 err = ret; 2241 goto out; 2242 } 2243 leaf = path->nodes[0]; 2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2245 } 2246 #endif 2247 BUG_ON(item_size < sizeof(*ei)); 2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2249 __run_delayed_extent_op(extent_op, leaf, ei); 2250 2251 btrfs_mark_buffer_dirty(leaf); 2252 out: 2253 btrfs_free_path(path); 2254 return err; 2255 } 2256 2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2258 struct btrfs_root *root, 2259 struct btrfs_delayed_ref_node *node, 2260 struct btrfs_delayed_extent_op *extent_op, 2261 int insert_reserved) 2262 { 2263 int ret = 0; 2264 struct btrfs_delayed_tree_ref *ref; 2265 struct btrfs_key ins; 2266 u64 parent = 0; 2267 u64 ref_root = 0; 2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2269 SKINNY_METADATA); 2270 2271 ref = btrfs_delayed_node_to_tree_ref(node); 2272 trace_run_delayed_tree_ref(node, ref, node->action); 2273 2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2275 parent = ref->parent; 2276 ref_root = ref->root; 2277 2278 ins.objectid = node->bytenr; 2279 if (skinny_metadata) { 2280 ins.offset = ref->level; 2281 ins.type = BTRFS_METADATA_ITEM_KEY; 2282 } else { 2283 ins.offset = node->num_bytes; 2284 ins.type = BTRFS_EXTENT_ITEM_KEY; 2285 } 2286 2287 BUG_ON(node->ref_mod != 1); 2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2289 BUG_ON(!extent_op || !extent_op->update_flags); 2290 ret = alloc_reserved_tree_block(trans, root, 2291 parent, ref_root, 2292 extent_op->flags_to_set, 2293 &extent_op->key, 2294 ref->level, &ins, 2295 node->no_quota); 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2297 ret = __btrfs_inc_extent_ref(trans, root, node, 2298 parent, ref_root, 2299 ref->level, 0, 1, 2300 extent_op); 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2302 ret = __btrfs_free_extent(trans, root, node, 2303 parent, ref_root, 2304 ref->level, 0, 1, extent_op); 2305 } else { 2306 BUG(); 2307 } 2308 return ret; 2309 } 2310 2311 /* helper function to actually process a single delayed ref entry */ 2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct btrfs_delayed_ref_node *node, 2315 struct btrfs_delayed_extent_op *extent_op, 2316 int insert_reserved) 2317 { 2318 int ret = 0; 2319 2320 if (trans->aborted) { 2321 if (insert_reserved) 2322 btrfs_pin_extent(root, node->bytenr, 2323 node->num_bytes, 1); 2324 return 0; 2325 } 2326 2327 if (btrfs_delayed_ref_is_head(node)) { 2328 struct btrfs_delayed_ref_head *head; 2329 /* 2330 * we've hit the end of the chain and we were supposed 2331 * to insert this extent into the tree. But, it got 2332 * deleted before we ever needed to insert it, so all 2333 * we have to do is clean up the accounting 2334 */ 2335 BUG_ON(extent_op); 2336 head = btrfs_delayed_node_to_head(node); 2337 trace_run_delayed_ref_head(node, head, node->action); 2338 2339 if (insert_reserved) { 2340 btrfs_pin_extent(root, node->bytenr, 2341 node->num_bytes, 1); 2342 if (head->is_data) { 2343 ret = btrfs_del_csums(trans, root, 2344 node->bytenr, 2345 node->num_bytes); 2346 } 2347 } 2348 return ret; 2349 } 2350 2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2353 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2354 insert_reserved); 2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2356 node->type == BTRFS_SHARED_DATA_REF_KEY) 2357 ret = run_delayed_data_ref(trans, root, node, extent_op, 2358 insert_reserved); 2359 else 2360 BUG(); 2361 return ret; 2362 } 2363 2364 static inline struct btrfs_delayed_ref_node * 2365 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2366 { 2367 struct btrfs_delayed_ref_node *ref; 2368 2369 if (list_empty(&head->ref_list)) 2370 return NULL; 2371 2372 /* 2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2374 * This is to prevent a ref count from going down to zero, which deletes 2375 * the extent item from the extent tree, when there still are references 2376 * to add, which would fail because they would not find the extent item. 2377 */ 2378 list_for_each_entry(ref, &head->ref_list, list) { 2379 if (ref->action == BTRFS_ADD_DELAYED_REF) 2380 return ref; 2381 } 2382 2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2384 list); 2385 } 2386 2387 /* 2388 * Returns 0 on success or if called with an already aborted transaction. 2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2390 */ 2391 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2392 struct btrfs_root *root, 2393 unsigned long nr) 2394 { 2395 struct btrfs_delayed_ref_root *delayed_refs; 2396 struct btrfs_delayed_ref_node *ref; 2397 struct btrfs_delayed_ref_head *locked_ref = NULL; 2398 struct btrfs_delayed_extent_op *extent_op; 2399 struct btrfs_fs_info *fs_info = root->fs_info; 2400 ktime_t start = ktime_get(); 2401 int ret; 2402 unsigned long count = 0; 2403 unsigned long actual_count = 0; 2404 int must_insert_reserved = 0; 2405 2406 delayed_refs = &trans->transaction->delayed_refs; 2407 while (1) { 2408 if (!locked_ref) { 2409 if (count >= nr) 2410 break; 2411 2412 spin_lock(&delayed_refs->lock); 2413 locked_ref = btrfs_select_ref_head(trans); 2414 if (!locked_ref) { 2415 spin_unlock(&delayed_refs->lock); 2416 break; 2417 } 2418 2419 /* grab the lock that says we are going to process 2420 * all the refs for this head */ 2421 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2422 spin_unlock(&delayed_refs->lock); 2423 /* 2424 * we may have dropped the spin lock to get the head 2425 * mutex lock, and that might have given someone else 2426 * time to free the head. If that's true, it has been 2427 * removed from our list and we can move on. 2428 */ 2429 if (ret == -EAGAIN) { 2430 locked_ref = NULL; 2431 count++; 2432 continue; 2433 } 2434 } 2435 2436 spin_lock(&locked_ref->lock); 2437 2438 /* 2439 * locked_ref is the head node, so we have to go one 2440 * node back for any delayed ref updates 2441 */ 2442 ref = select_delayed_ref(locked_ref); 2443 2444 if (ref && ref->seq && 2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2446 spin_unlock(&locked_ref->lock); 2447 btrfs_delayed_ref_unlock(locked_ref); 2448 spin_lock(&delayed_refs->lock); 2449 locked_ref->processing = 0; 2450 delayed_refs->num_heads_ready++; 2451 spin_unlock(&delayed_refs->lock); 2452 locked_ref = NULL; 2453 cond_resched(); 2454 count++; 2455 continue; 2456 } 2457 2458 /* 2459 * record the must insert reserved flag before we 2460 * drop the spin lock. 2461 */ 2462 must_insert_reserved = locked_ref->must_insert_reserved; 2463 locked_ref->must_insert_reserved = 0; 2464 2465 extent_op = locked_ref->extent_op; 2466 locked_ref->extent_op = NULL; 2467 2468 if (!ref) { 2469 2470 2471 /* All delayed refs have been processed, Go ahead 2472 * and send the head node to run_one_delayed_ref, 2473 * so that any accounting fixes can happen 2474 */ 2475 ref = &locked_ref->node; 2476 2477 if (extent_op && must_insert_reserved) { 2478 btrfs_free_delayed_extent_op(extent_op); 2479 extent_op = NULL; 2480 } 2481 2482 if (extent_op) { 2483 spin_unlock(&locked_ref->lock); 2484 ret = run_delayed_extent_op(trans, root, 2485 ref, extent_op); 2486 btrfs_free_delayed_extent_op(extent_op); 2487 2488 if (ret) { 2489 /* 2490 * Need to reset must_insert_reserved if 2491 * there was an error so the abort stuff 2492 * can cleanup the reserved space 2493 * properly. 2494 */ 2495 if (must_insert_reserved) 2496 locked_ref->must_insert_reserved = 1; 2497 locked_ref->processing = 0; 2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2499 btrfs_delayed_ref_unlock(locked_ref); 2500 return ret; 2501 } 2502 continue; 2503 } 2504 2505 /* 2506 * Need to drop our head ref lock and re-aqcuire the 2507 * delayed ref lock and then re-check to make sure 2508 * nobody got added. 2509 */ 2510 spin_unlock(&locked_ref->lock); 2511 spin_lock(&delayed_refs->lock); 2512 spin_lock(&locked_ref->lock); 2513 if (!list_empty(&locked_ref->ref_list) || 2514 locked_ref->extent_op) { 2515 spin_unlock(&locked_ref->lock); 2516 spin_unlock(&delayed_refs->lock); 2517 continue; 2518 } 2519 ref->in_tree = 0; 2520 delayed_refs->num_heads--; 2521 rb_erase(&locked_ref->href_node, 2522 &delayed_refs->href_root); 2523 spin_unlock(&delayed_refs->lock); 2524 } else { 2525 actual_count++; 2526 ref->in_tree = 0; 2527 list_del(&ref->list); 2528 } 2529 atomic_dec(&delayed_refs->num_entries); 2530 2531 if (!btrfs_delayed_ref_is_head(ref)) { 2532 /* 2533 * when we play the delayed ref, also correct the 2534 * ref_mod on head 2535 */ 2536 switch (ref->action) { 2537 case BTRFS_ADD_DELAYED_REF: 2538 case BTRFS_ADD_DELAYED_EXTENT: 2539 locked_ref->node.ref_mod -= ref->ref_mod; 2540 break; 2541 case BTRFS_DROP_DELAYED_REF: 2542 locked_ref->node.ref_mod += ref->ref_mod; 2543 break; 2544 default: 2545 WARN_ON(1); 2546 } 2547 } 2548 spin_unlock(&locked_ref->lock); 2549 2550 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2551 must_insert_reserved); 2552 2553 btrfs_free_delayed_extent_op(extent_op); 2554 if (ret) { 2555 locked_ref->processing = 0; 2556 btrfs_delayed_ref_unlock(locked_ref); 2557 btrfs_put_delayed_ref(ref); 2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2559 return ret; 2560 } 2561 2562 /* 2563 * If this node is a head, that means all the refs in this head 2564 * have been dealt with, and we will pick the next head to deal 2565 * with, so we must unlock the head and drop it from the cluster 2566 * list before we release it. 2567 */ 2568 if (btrfs_delayed_ref_is_head(ref)) { 2569 if (locked_ref->is_data && 2570 locked_ref->total_ref_mod < 0) { 2571 spin_lock(&delayed_refs->lock); 2572 delayed_refs->pending_csums -= ref->num_bytes; 2573 spin_unlock(&delayed_refs->lock); 2574 } 2575 btrfs_delayed_ref_unlock(locked_ref); 2576 locked_ref = NULL; 2577 } 2578 btrfs_put_delayed_ref(ref); 2579 count++; 2580 cond_resched(); 2581 } 2582 2583 /* 2584 * We don't want to include ref heads since we can have empty ref heads 2585 * and those will drastically skew our runtime down since we just do 2586 * accounting, no actual extent tree updates. 2587 */ 2588 if (actual_count > 0) { 2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2590 u64 avg; 2591 2592 /* 2593 * We weigh the current average higher than our current runtime 2594 * to avoid large swings in the average. 2595 */ 2596 spin_lock(&delayed_refs->lock); 2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2599 spin_unlock(&delayed_refs->lock); 2600 } 2601 return 0; 2602 } 2603 2604 #ifdef SCRAMBLE_DELAYED_REFS 2605 /* 2606 * Normally delayed refs get processed in ascending bytenr order. This 2607 * correlates in most cases to the order added. To expose dependencies on this 2608 * order, we start to process the tree in the middle instead of the beginning 2609 */ 2610 static u64 find_middle(struct rb_root *root) 2611 { 2612 struct rb_node *n = root->rb_node; 2613 struct btrfs_delayed_ref_node *entry; 2614 int alt = 1; 2615 u64 middle; 2616 u64 first = 0, last = 0; 2617 2618 n = rb_first(root); 2619 if (n) { 2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2621 first = entry->bytenr; 2622 } 2623 n = rb_last(root); 2624 if (n) { 2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2626 last = entry->bytenr; 2627 } 2628 n = root->rb_node; 2629 2630 while (n) { 2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2632 WARN_ON(!entry->in_tree); 2633 2634 middle = entry->bytenr; 2635 2636 if (alt) 2637 n = n->rb_left; 2638 else 2639 n = n->rb_right; 2640 2641 alt = 1 - alt; 2642 } 2643 return middle; 2644 } 2645 #endif 2646 2647 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2648 { 2649 u64 num_bytes; 2650 2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2652 sizeof(struct btrfs_extent_inline_ref)); 2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2655 2656 /* 2657 * We don't ever fill up leaves all the way so multiply by 2 just to be 2658 * closer to what we're really going to want to ouse. 2659 */ 2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2661 } 2662 2663 /* 2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2665 * would require to store the csums for that many bytes. 2666 */ 2667 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2668 { 2669 u64 csum_size; 2670 u64 num_csums_per_leaf; 2671 u64 num_csums; 2672 2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2674 num_csums_per_leaf = div64_u64(csum_size, 2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2676 num_csums = div64_u64(csum_bytes, root->sectorsize); 2677 num_csums += num_csums_per_leaf - 1; 2678 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2679 return num_csums; 2680 } 2681 2682 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2683 struct btrfs_root *root) 2684 { 2685 struct btrfs_block_rsv *global_rsv; 2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2689 u64 num_bytes, num_dirty_bgs_bytes; 2690 int ret = 0; 2691 2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2693 num_heads = heads_to_leaves(root, num_heads); 2694 if (num_heads > 1) 2695 num_bytes += (num_heads - 1) * root->nodesize; 2696 num_bytes <<= 1; 2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2699 num_dirty_bgs); 2700 global_rsv = &root->fs_info->global_block_rsv; 2701 2702 /* 2703 * If we can't allocate any more chunks lets make sure we have _lots_ of 2704 * wiggle room since running delayed refs can create more delayed refs. 2705 */ 2706 if (global_rsv->space_info->full) { 2707 num_dirty_bgs_bytes <<= 1; 2708 num_bytes <<= 1; 2709 } 2710 2711 spin_lock(&global_rsv->lock); 2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2713 ret = 1; 2714 spin_unlock(&global_rsv->lock); 2715 return ret; 2716 } 2717 2718 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2719 struct btrfs_root *root) 2720 { 2721 struct btrfs_fs_info *fs_info = root->fs_info; 2722 u64 num_entries = 2723 atomic_read(&trans->transaction->delayed_refs.num_entries); 2724 u64 avg_runtime; 2725 u64 val; 2726 2727 smp_mb(); 2728 avg_runtime = fs_info->avg_delayed_ref_runtime; 2729 val = num_entries * avg_runtime; 2730 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2731 return 1; 2732 if (val >= NSEC_PER_SEC / 2) 2733 return 2; 2734 2735 return btrfs_check_space_for_delayed_refs(trans, root); 2736 } 2737 2738 struct async_delayed_refs { 2739 struct btrfs_root *root; 2740 int count; 2741 int error; 2742 int sync; 2743 struct completion wait; 2744 struct btrfs_work work; 2745 }; 2746 2747 static void delayed_ref_async_start(struct btrfs_work *work) 2748 { 2749 struct async_delayed_refs *async; 2750 struct btrfs_trans_handle *trans; 2751 int ret; 2752 2753 async = container_of(work, struct async_delayed_refs, work); 2754 2755 trans = btrfs_join_transaction(async->root); 2756 if (IS_ERR(trans)) { 2757 async->error = PTR_ERR(trans); 2758 goto done; 2759 } 2760 2761 /* 2762 * trans->sync means that when we call end_transaciton, we won't 2763 * wait on delayed refs 2764 */ 2765 trans->sync = true; 2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2767 if (ret) 2768 async->error = ret; 2769 2770 ret = btrfs_end_transaction(trans, async->root); 2771 if (ret && !async->error) 2772 async->error = ret; 2773 done: 2774 if (async->sync) 2775 complete(&async->wait); 2776 else 2777 kfree(async); 2778 } 2779 2780 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2781 unsigned long count, int wait) 2782 { 2783 struct async_delayed_refs *async; 2784 int ret; 2785 2786 async = kmalloc(sizeof(*async), GFP_NOFS); 2787 if (!async) 2788 return -ENOMEM; 2789 2790 async->root = root->fs_info->tree_root; 2791 async->count = count; 2792 async->error = 0; 2793 if (wait) 2794 async->sync = 1; 2795 else 2796 async->sync = 0; 2797 init_completion(&async->wait); 2798 2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2800 delayed_ref_async_start, NULL, NULL); 2801 2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2803 2804 if (wait) { 2805 wait_for_completion(&async->wait); 2806 ret = async->error; 2807 kfree(async); 2808 return ret; 2809 } 2810 return 0; 2811 } 2812 2813 /* 2814 * this starts processing the delayed reference count updates and 2815 * extent insertions we have queued up so far. count can be 2816 * 0, which means to process everything in the tree at the start 2817 * of the run (but not newly added entries), or it can be some target 2818 * number you'd like to process. 2819 * 2820 * Returns 0 on success or if called with an aborted transaction 2821 * Returns <0 on error and aborts the transaction 2822 */ 2823 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2824 struct btrfs_root *root, unsigned long count) 2825 { 2826 struct rb_node *node; 2827 struct btrfs_delayed_ref_root *delayed_refs; 2828 struct btrfs_delayed_ref_head *head; 2829 int ret; 2830 int run_all = count == (unsigned long)-1; 2831 2832 /* We'll clean this up in btrfs_cleanup_transaction */ 2833 if (trans->aborted) 2834 return 0; 2835 2836 if (root == root->fs_info->extent_root) 2837 root = root->fs_info->tree_root; 2838 2839 delayed_refs = &trans->transaction->delayed_refs; 2840 if (count == 0) 2841 count = atomic_read(&delayed_refs->num_entries) * 2; 2842 2843 again: 2844 #ifdef SCRAMBLE_DELAYED_REFS 2845 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2846 #endif 2847 ret = __btrfs_run_delayed_refs(trans, root, count); 2848 if (ret < 0) { 2849 btrfs_abort_transaction(trans, root, ret); 2850 return ret; 2851 } 2852 2853 if (run_all) { 2854 if (!list_empty(&trans->new_bgs)) 2855 btrfs_create_pending_block_groups(trans, root); 2856 2857 spin_lock(&delayed_refs->lock); 2858 node = rb_first(&delayed_refs->href_root); 2859 if (!node) { 2860 spin_unlock(&delayed_refs->lock); 2861 goto out; 2862 } 2863 count = (unsigned long)-1; 2864 2865 while (node) { 2866 head = rb_entry(node, struct btrfs_delayed_ref_head, 2867 href_node); 2868 if (btrfs_delayed_ref_is_head(&head->node)) { 2869 struct btrfs_delayed_ref_node *ref; 2870 2871 ref = &head->node; 2872 atomic_inc(&ref->refs); 2873 2874 spin_unlock(&delayed_refs->lock); 2875 /* 2876 * Mutex was contended, block until it's 2877 * released and try again 2878 */ 2879 mutex_lock(&head->mutex); 2880 mutex_unlock(&head->mutex); 2881 2882 btrfs_put_delayed_ref(ref); 2883 cond_resched(); 2884 goto again; 2885 } else { 2886 WARN_ON(1); 2887 } 2888 node = rb_next(node); 2889 } 2890 spin_unlock(&delayed_refs->lock); 2891 cond_resched(); 2892 goto again; 2893 } 2894 out: 2895 assert_qgroups_uptodate(trans); 2896 return 0; 2897 } 2898 2899 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 u64 bytenr, u64 num_bytes, u64 flags, 2902 int level, int is_data) 2903 { 2904 struct btrfs_delayed_extent_op *extent_op; 2905 int ret; 2906 2907 extent_op = btrfs_alloc_delayed_extent_op(); 2908 if (!extent_op) 2909 return -ENOMEM; 2910 2911 extent_op->flags_to_set = flags; 2912 extent_op->update_flags = 1; 2913 extent_op->update_key = 0; 2914 extent_op->is_data = is_data ? 1 : 0; 2915 extent_op->level = level; 2916 2917 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2918 num_bytes, extent_op); 2919 if (ret) 2920 btrfs_free_delayed_extent_op(extent_op); 2921 return ret; 2922 } 2923 2924 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2925 struct btrfs_root *root, 2926 struct btrfs_path *path, 2927 u64 objectid, u64 offset, u64 bytenr) 2928 { 2929 struct btrfs_delayed_ref_head *head; 2930 struct btrfs_delayed_ref_node *ref; 2931 struct btrfs_delayed_data_ref *data_ref; 2932 struct btrfs_delayed_ref_root *delayed_refs; 2933 int ret = 0; 2934 2935 delayed_refs = &trans->transaction->delayed_refs; 2936 spin_lock(&delayed_refs->lock); 2937 head = btrfs_find_delayed_ref_head(trans, bytenr); 2938 if (!head) { 2939 spin_unlock(&delayed_refs->lock); 2940 return 0; 2941 } 2942 2943 if (!mutex_trylock(&head->mutex)) { 2944 atomic_inc(&head->node.refs); 2945 spin_unlock(&delayed_refs->lock); 2946 2947 btrfs_release_path(path); 2948 2949 /* 2950 * Mutex was contended, block until it's released and let 2951 * caller try again 2952 */ 2953 mutex_lock(&head->mutex); 2954 mutex_unlock(&head->mutex); 2955 btrfs_put_delayed_ref(&head->node); 2956 return -EAGAIN; 2957 } 2958 spin_unlock(&delayed_refs->lock); 2959 2960 spin_lock(&head->lock); 2961 list_for_each_entry(ref, &head->ref_list, list) { 2962 /* If it's a shared ref we know a cross reference exists */ 2963 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2964 ret = 1; 2965 break; 2966 } 2967 2968 data_ref = btrfs_delayed_node_to_data_ref(ref); 2969 2970 /* 2971 * If our ref doesn't match the one we're currently looking at 2972 * then we have a cross reference. 2973 */ 2974 if (data_ref->root != root->root_key.objectid || 2975 data_ref->objectid != objectid || 2976 data_ref->offset != offset) { 2977 ret = 1; 2978 break; 2979 } 2980 } 2981 spin_unlock(&head->lock); 2982 mutex_unlock(&head->mutex); 2983 return ret; 2984 } 2985 2986 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2987 struct btrfs_root *root, 2988 struct btrfs_path *path, 2989 u64 objectid, u64 offset, u64 bytenr) 2990 { 2991 struct btrfs_root *extent_root = root->fs_info->extent_root; 2992 struct extent_buffer *leaf; 2993 struct btrfs_extent_data_ref *ref; 2994 struct btrfs_extent_inline_ref *iref; 2995 struct btrfs_extent_item *ei; 2996 struct btrfs_key key; 2997 u32 item_size; 2998 int ret; 2999 3000 key.objectid = bytenr; 3001 key.offset = (u64)-1; 3002 key.type = BTRFS_EXTENT_ITEM_KEY; 3003 3004 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3005 if (ret < 0) 3006 goto out; 3007 BUG_ON(ret == 0); /* Corruption */ 3008 3009 ret = -ENOENT; 3010 if (path->slots[0] == 0) 3011 goto out; 3012 3013 path->slots[0]--; 3014 leaf = path->nodes[0]; 3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3016 3017 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3018 goto out; 3019 3020 ret = 1; 3021 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3022 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3023 if (item_size < sizeof(*ei)) { 3024 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3025 goto out; 3026 } 3027 #endif 3028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3029 3030 if (item_size != sizeof(*ei) + 3031 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3032 goto out; 3033 3034 if (btrfs_extent_generation(leaf, ei) <= 3035 btrfs_root_last_snapshot(&root->root_item)) 3036 goto out; 3037 3038 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3039 if (btrfs_extent_inline_ref_type(leaf, iref) != 3040 BTRFS_EXTENT_DATA_REF_KEY) 3041 goto out; 3042 3043 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3044 if (btrfs_extent_refs(leaf, ei) != 3045 btrfs_extent_data_ref_count(leaf, ref) || 3046 btrfs_extent_data_ref_root(leaf, ref) != 3047 root->root_key.objectid || 3048 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3049 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3050 goto out; 3051 3052 ret = 0; 3053 out: 3054 return ret; 3055 } 3056 3057 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3058 struct btrfs_root *root, 3059 u64 objectid, u64 offset, u64 bytenr) 3060 { 3061 struct btrfs_path *path; 3062 int ret; 3063 int ret2; 3064 3065 path = btrfs_alloc_path(); 3066 if (!path) 3067 return -ENOENT; 3068 3069 do { 3070 ret = check_committed_ref(trans, root, path, objectid, 3071 offset, bytenr); 3072 if (ret && ret != -ENOENT) 3073 goto out; 3074 3075 ret2 = check_delayed_ref(trans, root, path, objectid, 3076 offset, bytenr); 3077 } while (ret2 == -EAGAIN); 3078 3079 if (ret2 && ret2 != -ENOENT) { 3080 ret = ret2; 3081 goto out; 3082 } 3083 3084 if (ret != -ENOENT || ret2 != -ENOENT) 3085 ret = 0; 3086 out: 3087 btrfs_free_path(path); 3088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3089 WARN_ON(ret > 0); 3090 return ret; 3091 } 3092 3093 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3094 struct btrfs_root *root, 3095 struct extent_buffer *buf, 3096 int full_backref, int inc) 3097 { 3098 u64 bytenr; 3099 u64 num_bytes; 3100 u64 parent; 3101 u64 ref_root; 3102 u32 nritems; 3103 struct btrfs_key key; 3104 struct btrfs_file_extent_item *fi; 3105 int i; 3106 int level; 3107 int ret = 0; 3108 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3109 u64, u64, u64, u64, u64, u64, int); 3110 3111 3112 if (btrfs_test_is_dummy_root(root)) 3113 return 0; 3114 3115 ref_root = btrfs_header_owner(buf); 3116 nritems = btrfs_header_nritems(buf); 3117 level = btrfs_header_level(buf); 3118 3119 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3120 return 0; 3121 3122 if (inc) 3123 process_func = btrfs_inc_extent_ref; 3124 else 3125 process_func = btrfs_free_extent; 3126 3127 if (full_backref) 3128 parent = buf->start; 3129 else 3130 parent = 0; 3131 3132 for (i = 0; i < nritems; i++) { 3133 if (level == 0) { 3134 btrfs_item_key_to_cpu(buf, &key, i); 3135 if (key.type != BTRFS_EXTENT_DATA_KEY) 3136 continue; 3137 fi = btrfs_item_ptr(buf, i, 3138 struct btrfs_file_extent_item); 3139 if (btrfs_file_extent_type(buf, fi) == 3140 BTRFS_FILE_EXTENT_INLINE) 3141 continue; 3142 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3143 if (bytenr == 0) 3144 continue; 3145 3146 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3147 key.offset -= btrfs_file_extent_offset(buf, fi); 3148 ret = process_func(trans, root, bytenr, num_bytes, 3149 parent, ref_root, key.objectid, 3150 key.offset, 1); 3151 if (ret) 3152 goto fail; 3153 } else { 3154 bytenr = btrfs_node_blockptr(buf, i); 3155 num_bytes = root->nodesize; 3156 ret = process_func(trans, root, bytenr, num_bytes, 3157 parent, ref_root, level - 1, 0, 3158 1); 3159 if (ret) 3160 goto fail; 3161 } 3162 } 3163 return 0; 3164 fail: 3165 return ret; 3166 } 3167 3168 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3169 struct extent_buffer *buf, int full_backref) 3170 { 3171 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3172 } 3173 3174 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3175 struct extent_buffer *buf, int full_backref) 3176 { 3177 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3178 } 3179 3180 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3181 struct btrfs_root *root, 3182 struct btrfs_path *path, 3183 struct btrfs_block_group_cache *cache) 3184 { 3185 int ret; 3186 struct btrfs_root *extent_root = root->fs_info->extent_root; 3187 unsigned long bi; 3188 struct extent_buffer *leaf; 3189 3190 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3191 if (ret) { 3192 if (ret > 0) 3193 ret = -ENOENT; 3194 goto fail; 3195 } 3196 3197 leaf = path->nodes[0]; 3198 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3199 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3200 btrfs_mark_buffer_dirty(leaf); 3201 fail: 3202 btrfs_release_path(path); 3203 return ret; 3204 3205 } 3206 3207 static struct btrfs_block_group_cache * 3208 next_block_group(struct btrfs_root *root, 3209 struct btrfs_block_group_cache *cache) 3210 { 3211 struct rb_node *node; 3212 3213 spin_lock(&root->fs_info->block_group_cache_lock); 3214 3215 /* If our block group was removed, we need a full search. */ 3216 if (RB_EMPTY_NODE(&cache->cache_node)) { 3217 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3218 3219 spin_unlock(&root->fs_info->block_group_cache_lock); 3220 btrfs_put_block_group(cache); 3221 cache = btrfs_lookup_first_block_group(root->fs_info, 3222 next_bytenr); 3223 return cache; 3224 } 3225 node = rb_next(&cache->cache_node); 3226 btrfs_put_block_group(cache); 3227 if (node) { 3228 cache = rb_entry(node, struct btrfs_block_group_cache, 3229 cache_node); 3230 btrfs_get_block_group(cache); 3231 } else 3232 cache = NULL; 3233 spin_unlock(&root->fs_info->block_group_cache_lock); 3234 return cache; 3235 } 3236 3237 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3238 struct btrfs_trans_handle *trans, 3239 struct btrfs_path *path) 3240 { 3241 struct btrfs_root *root = block_group->fs_info->tree_root; 3242 struct inode *inode = NULL; 3243 u64 alloc_hint = 0; 3244 int dcs = BTRFS_DC_ERROR; 3245 u64 num_pages = 0; 3246 int retries = 0; 3247 int ret = 0; 3248 3249 /* 3250 * If this block group is smaller than 100 megs don't bother caching the 3251 * block group. 3252 */ 3253 if (block_group->key.offset < (100 * 1024 * 1024)) { 3254 spin_lock(&block_group->lock); 3255 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3256 spin_unlock(&block_group->lock); 3257 return 0; 3258 } 3259 3260 if (trans->aborted) 3261 return 0; 3262 again: 3263 inode = lookup_free_space_inode(root, block_group, path); 3264 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3265 ret = PTR_ERR(inode); 3266 btrfs_release_path(path); 3267 goto out; 3268 } 3269 3270 if (IS_ERR(inode)) { 3271 BUG_ON(retries); 3272 retries++; 3273 3274 if (block_group->ro) 3275 goto out_free; 3276 3277 ret = create_free_space_inode(root, trans, block_group, path); 3278 if (ret) 3279 goto out_free; 3280 goto again; 3281 } 3282 3283 /* We've already setup this transaction, go ahead and exit */ 3284 if (block_group->cache_generation == trans->transid && 3285 i_size_read(inode)) { 3286 dcs = BTRFS_DC_SETUP; 3287 goto out_put; 3288 } 3289 3290 /* 3291 * We want to set the generation to 0, that way if anything goes wrong 3292 * from here on out we know not to trust this cache when we load up next 3293 * time. 3294 */ 3295 BTRFS_I(inode)->generation = 0; 3296 ret = btrfs_update_inode(trans, root, inode); 3297 if (ret) { 3298 /* 3299 * So theoretically we could recover from this, simply set the 3300 * super cache generation to 0 so we know to invalidate the 3301 * cache, but then we'd have to keep track of the block groups 3302 * that fail this way so we know we _have_ to reset this cache 3303 * before the next commit or risk reading stale cache. So to 3304 * limit our exposure to horrible edge cases lets just abort the 3305 * transaction, this only happens in really bad situations 3306 * anyway. 3307 */ 3308 btrfs_abort_transaction(trans, root, ret); 3309 goto out_put; 3310 } 3311 WARN_ON(ret); 3312 3313 if (i_size_read(inode) > 0) { 3314 ret = btrfs_check_trunc_cache_free_space(root, 3315 &root->fs_info->global_block_rsv); 3316 if (ret) 3317 goto out_put; 3318 3319 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3320 if (ret) 3321 goto out_put; 3322 } 3323 3324 spin_lock(&block_group->lock); 3325 if (block_group->cached != BTRFS_CACHE_FINISHED || 3326 !btrfs_test_opt(root, SPACE_CACHE)) { 3327 /* 3328 * don't bother trying to write stuff out _if_ 3329 * a) we're not cached, 3330 * b) we're with nospace_cache mount option. 3331 */ 3332 dcs = BTRFS_DC_WRITTEN; 3333 spin_unlock(&block_group->lock); 3334 goto out_put; 3335 } 3336 spin_unlock(&block_group->lock); 3337 3338 /* 3339 * Try to preallocate enough space based on how big the block group is. 3340 * Keep in mind this has to include any pinned space which could end up 3341 * taking up quite a bit since it's not folded into the other space 3342 * cache. 3343 */ 3344 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3345 if (!num_pages) 3346 num_pages = 1; 3347 3348 num_pages *= 16; 3349 num_pages *= PAGE_CACHE_SIZE; 3350 3351 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3352 if (ret) 3353 goto out_put; 3354 3355 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3356 num_pages, num_pages, 3357 &alloc_hint); 3358 if (!ret) 3359 dcs = BTRFS_DC_SETUP; 3360 btrfs_free_reserved_data_space(inode, num_pages); 3361 3362 out_put: 3363 iput(inode); 3364 out_free: 3365 btrfs_release_path(path); 3366 out: 3367 spin_lock(&block_group->lock); 3368 if (!ret && dcs == BTRFS_DC_SETUP) 3369 block_group->cache_generation = trans->transid; 3370 block_group->disk_cache_state = dcs; 3371 spin_unlock(&block_group->lock); 3372 3373 return ret; 3374 } 3375 3376 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3377 struct btrfs_root *root) 3378 { 3379 struct btrfs_block_group_cache *cache, *tmp; 3380 struct btrfs_transaction *cur_trans = trans->transaction; 3381 struct btrfs_path *path; 3382 3383 if (list_empty(&cur_trans->dirty_bgs) || 3384 !btrfs_test_opt(root, SPACE_CACHE)) 3385 return 0; 3386 3387 path = btrfs_alloc_path(); 3388 if (!path) 3389 return -ENOMEM; 3390 3391 /* Could add new block groups, use _safe just in case */ 3392 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3393 dirty_list) { 3394 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3395 cache_save_setup(cache, trans, path); 3396 } 3397 3398 btrfs_free_path(path); 3399 return 0; 3400 } 3401 3402 /* 3403 * transaction commit does final block group cache writeback during a 3404 * critical section where nothing is allowed to change the FS. This is 3405 * required in order for the cache to actually match the block group, 3406 * but can introduce a lot of latency into the commit. 3407 * 3408 * So, btrfs_start_dirty_block_groups is here to kick off block group 3409 * cache IO. There's a chance we'll have to redo some of it if the 3410 * block group changes again during the commit, but it greatly reduces 3411 * the commit latency by getting rid of the easy block groups while 3412 * we're still allowing others to join the commit. 3413 */ 3414 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3415 struct btrfs_root *root) 3416 { 3417 struct btrfs_block_group_cache *cache; 3418 struct btrfs_transaction *cur_trans = trans->transaction; 3419 int ret = 0; 3420 int should_put; 3421 struct btrfs_path *path = NULL; 3422 LIST_HEAD(dirty); 3423 struct list_head *io = &cur_trans->io_bgs; 3424 int num_started = 0; 3425 int loops = 0; 3426 3427 spin_lock(&cur_trans->dirty_bgs_lock); 3428 if (list_empty(&cur_trans->dirty_bgs)) { 3429 spin_unlock(&cur_trans->dirty_bgs_lock); 3430 return 0; 3431 } 3432 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3433 spin_unlock(&cur_trans->dirty_bgs_lock); 3434 3435 again: 3436 /* 3437 * make sure all the block groups on our dirty list actually 3438 * exist 3439 */ 3440 btrfs_create_pending_block_groups(trans, root); 3441 3442 if (!path) { 3443 path = btrfs_alloc_path(); 3444 if (!path) 3445 return -ENOMEM; 3446 } 3447 3448 /* 3449 * cache_write_mutex is here only to save us from balance or automatic 3450 * removal of empty block groups deleting this block group while we are 3451 * writing out the cache 3452 */ 3453 mutex_lock(&trans->transaction->cache_write_mutex); 3454 while (!list_empty(&dirty)) { 3455 cache = list_first_entry(&dirty, 3456 struct btrfs_block_group_cache, 3457 dirty_list); 3458 /* 3459 * this can happen if something re-dirties a block 3460 * group that is already under IO. Just wait for it to 3461 * finish and then do it all again 3462 */ 3463 if (!list_empty(&cache->io_list)) { 3464 list_del_init(&cache->io_list); 3465 btrfs_wait_cache_io(root, trans, cache, 3466 &cache->io_ctl, path, 3467 cache->key.objectid); 3468 btrfs_put_block_group(cache); 3469 } 3470 3471 3472 /* 3473 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3474 * if it should update the cache_state. Don't delete 3475 * until after we wait. 3476 * 3477 * Since we're not running in the commit critical section 3478 * we need the dirty_bgs_lock to protect from update_block_group 3479 */ 3480 spin_lock(&cur_trans->dirty_bgs_lock); 3481 list_del_init(&cache->dirty_list); 3482 spin_unlock(&cur_trans->dirty_bgs_lock); 3483 3484 should_put = 1; 3485 3486 cache_save_setup(cache, trans, path); 3487 3488 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3489 cache->io_ctl.inode = NULL; 3490 ret = btrfs_write_out_cache(root, trans, cache, path); 3491 if (ret == 0 && cache->io_ctl.inode) { 3492 num_started++; 3493 should_put = 0; 3494 3495 /* 3496 * the cache_write_mutex is protecting 3497 * the io_list 3498 */ 3499 list_add_tail(&cache->io_list, io); 3500 } else { 3501 /* 3502 * if we failed to write the cache, the 3503 * generation will be bad and life goes on 3504 */ 3505 ret = 0; 3506 } 3507 } 3508 if (!ret) { 3509 ret = write_one_cache_group(trans, root, path, cache); 3510 /* 3511 * Our block group might still be attached to the list 3512 * of new block groups in the transaction handle of some 3513 * other task (struct btrfs_trans_handle->new_bgs). This 3514 * means its block group item isn't yet in the extent 3515 * tree. If this happens ignore the error, as we will 3516 * try again later in the critical section of the 3517 * transaction commit. 3518 */ 3519 if (ret == -ENOENT) { 3520 ret = 0; 3521 spin_lock(&cur_trans->dirty_bgs_lock); 3522 if (list_empty(&cache->dirty_list)) { 3523 list_add_tail(&cache->dirty_list, 3524 &cur_trans->dirty_bgs); 3525 btrfs_get_block_group(cache); 3526 } 3527 spin_unlock(&cur_trans->dirty_bgs_lock); 3528 } else if (ret) { 3529 btrfs_abort_transaction(trans, root, ret); 3530 } 3531 } 3532 3533 /* if its not on the io list, we need to put the block group */ 3534 if (should_put) 3535 btrfs_put_block_group(cache); 3536 3537 if (ret) 3538 break; 3539 3540 /* 3541 * Avoid blocking other tasks for too long. It might even save 3542 * us from writing caches for block groups that are going to be 3543 * removed. 3544 */ 3545 mutex_unlock(&trans->transaction->cache_write_mutex); 3546 mutex_lock(&trans->transaction->cache_write_mutex); 3547 } 3548 mutex_unlock(&trans->transaction->cache_write_mutex); 3549 3550 /* 3551 * go through delayed refs for all the stuff we've just kicked off 3552 * and then loop back (just once) 3553 */ 3554 ret = btrfs_run_delayed_refs(trans, root, 0); 3555 if (!ret && loops == 0) { 3556 loops++; 3557 spin_lock(&cur_trans->dirty_bgs_lock); 3558 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3559 /* 3560 * dirty_bgs_lock protects us from concurrent block group 3561 * deletes too (not just cache_write_mutex). 3562 */ 3563 if (!list_empty(&dirty)) { 3564 spin_unlock(&cur_trans->dirty_bgs_lock); 3565 goto again; 3566 } 3567 spin_unlock(&cur_trans->dirty_bgs_lock); 3568 } 3569 3570 btrfs_free_path(path); 3571 return ret; 3572 } 3573 3574 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3575 struct btrfs_root *root) 3576 { 3577 struct btrfs_block_group_cache *cache; 3578 struct btrfs_transaction *cur_trans = trans->transaction; 3579 int ret = 0; 3580 int should_put; 3581 struct btrfs_path *path; 3582 struct list_head *io = &cur_trans->io_bgs; 3583 int num_started = 0; 3584 3585 path = btrfs_alloc_path(); 3586 if (!path) 3587 return -ENOMEM; 3588 3589 /* 3590 * We don't need the lock here since we are protected by the transaction 3591 * commit. We want to do the cache_save_setup first and then run the 3592 * delayed refs to make sure we have the best chance at doing this all 3593 * in one shot. 3594 */ 3595 while (!list_empty(&cur_trans->dirty_bgs)) { 3596 cache = list_first_entry(&cur_trans->dirty_bgs, 3597 struct btrfs_block_group_cache, 3598 dirty_list); 3599 3600 /* 3601 * this can happen if cache_save_setup re-dirties a block 3602 * group that is already under IO. Just wait for it to 3603 * finish and then do it all again 3604 */ 3605 if (!list_empty(&cache->io_list)) { 3606 list_del_init(&cache->io_list); 3607 btrfs_wait_cache_io(root, trans, cache, 3608 &cache->io_ctl, path, 3609 cache->key.objectid); 3610 btrfs_put_block_group(cache); 3611 } 3612 3613 /* 3614 * don't remove from the dirty list until after we've waited 3615 * on any pending IO 3616 */ 3617 list_del_init(&cache->dirty_list); 3618 should_put = 1; 3619 3620 cache_save_setup(cache, trans, path); 3621 3622 if (!ret) 3623 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3624 3625 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3626 cache->io_ctl.inode = NULL; 3627 ret = btrfs_write_out_cache(root, trans, cache, path); 3628 if (ret == 0 && cache->io_ctl.inode) { 3629 num_started++; 3630 should_put = 0; 3631 list_add_tail(&cache->io_list, io); 3632 } else { 3633 /* 3634 * if we failed to write the cache, the 3635 * generation will be bad and life goes on 3636 */ 3637 ret = 0; 3638 } 3639 } 3640 if (!ret) { 3641 ret = write_one_cache_group(trans, root, path, cache); 3642 if (ret) 3643 btrfs_abort_transaction(trans, root, ret); 3644 } 3645 3646 /* if its not on the io list, we need to put the block group */ 3647 if (should_put) 3648 btrfs_put_block_group(cache); 3649 } 3650 3651 while (!list_empty(io)) { 3652 cache = list_first_entry(io, struct btrfs_block_group_cache, 3653 io_list); 3654 list_del_init(&cache->io_list); 3655 btrfs_wait_cache_io(root, trans, cache, 3656 &cache->io_ctl, path, cache->key.objectid); 3657 btrfs_put_block_group(cache); 3658 } 3659 3660 btrfs_free_path(path); 3661 return ret; 3662 } 3663 3664 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3665 { 3666 struct btrfs_block_group_cache *block_group; 3667 int readonly = 0; 3668 3669 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3670 if (!block_group || block_group->ro) 3671 readonly = 1; 3672 if (block_group) 3673 btrfs_put_block_group(block_group); 3674 return readonly; 3675 } 3676 3677 static const char *alloc_name(u64 flags) 3678 { 3679 switch (flags) { 3680 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3681 return "mixed"; 3682 case BTRFS_BLOCK_GROUP_METADATA: 3683 return "metadata"; 3684 case BTRFS_BLOCK_GROUP_DATA: 3685 return "data"; 3686 case BTRFS_BLOCK_GROUP_SYSTEM: 3687 return "system"; 3688 default: 3689 WARN_ON(1); 3690 return "invalid-combination"; 3691 }; 3692 } 3693 3694 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3695 u64 total_bytes, u64 bytes_used, 3696 struct btrfs_space_info **space_info) 3697 { 3698 struct btrfs_space_info *found; 3699 int i; 3700 int factor; 3701 int ret; 3702 3703 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3704 BTRFS_BLOCK_GROUP_RAID10)) 3705 factor = 2; 3706 else 3707 factor = 1; 3708 3709 found = __find_space_info(info, flags); 3710 if (found) { 3711 spin_lock(&found->lock); 3712 found->total_bytes += total_bytes; 3713 found->disk_total += total_bytes * factor; 3714 found->bytes_used += bytes_used; 3715 found->disk_used += bytes_used * factor; 3716 if (total_bytes > 0) 3717 found->full = 0; 3718 spin_unlock(&found->lock); 3719 *space_info = found; 3720 return 0; 3721 } 3722 found = kzalloc(sizeof(*found), GFP_NOFS); 3723 if (!found) 3724 return -ENOMEM; 3725 3726 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3727 if (ret) { 3728 kfree(found); 3729 return ret; 3730 } 3731 3732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3733 INIT_LIST_HEAD(&found->block_groups[i]); 3734 init_rwsem(&found->groups_sem); 3735 spin_lock_init(&found->lock); 3736 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3737 found->total_bytes = total_bytes; 3738 found->disk_total = total_bytes * factor; 3739 found->bytes_used = bytes_used; 3740 found->disk_used = bytes_used * factor; 3741 found->bytes_pinned = 0; 3742 found->bytes_reserved = 0; 3743 found->bytes_readonly = 0; 3744 found->bytes_may_use = 0; 3745 if (total_bytes > 0) 3746 found->full = 0; 3747 else 3748 found->full = 1; 3749 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3750 found->chunk_alloc = 0; 3751 found->flush = 0; 3752 init_waitqueue_head(&found->wait); 3753 INIT_LIST_HEAD(&found->ro_bgs); 3754 3755 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3756 info->space_info_kobj, "%s", 3757 alloc_name(found->flags)); 3758 if (ret) { 3759 kfree(found); 3760 return ret; 3761 } 3762 3763 *space_info = found; 3764 list_add_rcu(&found->list, &info->space_info); 3765 if (flags & BTRFS_BLOCK_GROUP_DATA) 3766 info->data_sinfo = found; 3767 3768 return ret; 3769 } 3770 3771 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3772 { 3773 u64 extra_flags = chunk_to_extended(flags) & 3774 BTRFS_EXTENDED_PROFILE_MASK; 3775 3776 write_seqlock(&fs_info->profiles_lock); 3777 if (flags & BTRFS_BLOCK_GROUP_DATA) 3778 fs_info->avail_data_alloc_bits |= extra_flags; 3779 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3780 fs_info->avail_metadata_alloc_bits |= extra_flags; 3781 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3782 fs_info->avail_system_alloc_bits |= extra_flags; 3783 write_sequnlock(&fs_info->profiles_lock); 3784 } 3785 3786 /* 3787 * returns target flags in extended format or 0 if restripe for this 3788 * chunk_type is not in progress 3789 * 3790 * should be called with either volume_mutex or balance_lock held 3791 */ 3792 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3793 { 3794 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3795 u64 target = 0; 3796 3797 if (!bctl) 3798 return 0; 3799 3800 if (flags & BTRFS_BLOCK_GROUP_DATA && 3801 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3802 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3803 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3804 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3805 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3806 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3807 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3808 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3809 } 3810 3811 return target; 3812 } 3813 3814 /* 3815 * @flags: available profiles in extended format (see ctree.h) 3816 * 3817 * Returns reduced profile in chunk format. If profile changing is in 3818 * progress (either running or paused) picks the target profile (if it's 3819 * already available), otherwise falls back to plain reducing. 3820 */ 3821 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3822 { 3823 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3824 u64 target; 3825 u64 tmp; 3826 3827 /* 3828 * see if restripe for this chunk_type is in progress, if so 3829 * try to reduce to the target profile 3830 */ 3831 spin_lock(&root->fs_info->balance_lock); 3832 target = get_restripe_target(root->fs_info, flags); 3833 if (target) { 3834 /* pick target profile only if it's already available */ 3835 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3836 spin_unlock(&root->fs_info->balance_lock); 3837 return extended_to_chunk(target); 3838 } 3839 } 3840 spin_unlock(&root->fs_info->balance_lock); 3841 3842 /* First, mask out the RAID levels which aren't possible */ 3843 if (num_devices == 1) 3844 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3845 BTRFS_BLOCK_GROUP_RAID5); 3846 if (num_devices < 3) 3847 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3848 if (num_devices < 4) 3849 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3850 3851 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3852 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3853 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3854 flags &= ~tmp; 3855 3856 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3857 tmp = BTRFS_BLOCK_GROUP_RAID6; 3858 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3859 tmp = BTRFS_BLOCK_GROUP_RAID5; 3860 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3861 tmp = BTRFS_BLOCK_GROUP_RAID10; 3862 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3863 tmp = BTRFS_BLOCK_GROUP_RAID1; 3864 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3865 tmp = BTRFS_BLOCK_GROUP_RAID0; 3866 3867 return extended_to_chunk(flags | tmp); 3868 } 3869 3870 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3871 { 3872 unsigned seq; 3873 u64 flags; 3874 3875 do { 3876 flags = orig_flags; 3877 seq = read_seqbegin(&root->fs_info->profiles_lock); 3878 3879 if (flags & BTRFS_BLOCK_GROUP_DATA) 3880 flags |= root->fs_info->avail_data_alloc_bits; 3881 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3882 flags |= root->fs_info->avail_system_alloc_bits; 3883 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3884 flags |= root->fs_info->avail_metadata_alloc_bits; 3885 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3886 3887 return btrfs_reduce_alloc_profile(root, flags); 3888 } 3889 3890 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3891 { 3892 u64 flags; 3893 u64 ret; 3894 3895 if (data) 3896 flags = BTRFS_BLOCK_GROUP_DATA; 3897 else if (root == root->fs_info->chunk_root) 3898 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3899 else 3900 flags = BTRFS_BLOCK_GROUP_METADATA; 3901 3902 ret = get_alloc_profile(root, flags); 3903 return ret; 3904 } 3905 3906 /* 3907 * This will check the space that the inode allocates from to make sure we have 3908 * enough space for bytes. 3909 */ 3910 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3911 { 3912 struct btrfs_space_info *data_sinfo; 3913 struct btrfs_root *root = BTRFS_I(inode)->root; 3914 struct btrfs_fs_info *fs_info = root->fs_info; 3915 u64 used; 3916 int ret = 0; 3917 int need_commit = 2; 3918 int have_pinned_space; 3919 3920 /* make sure bytes are sectorsize aligned */ 3921 bytes = ALIGN(bytes, root->sectorsize); 3922 3923 if (btrfs_is_free_space_inode(inode)) { 3924 need_commit = 0; 3925 ASSERT(current->journal_info); 3926 } 3927 3928 data_sinfo = fs_info->data_sinfo; 3929 if (!data_sinfo) 3930 goto alloc; 3931 3932 again: 3933 /* make sure we have enough space to handle the data first */ 3934 spin_lock(&data_sinfo->lock); 3935 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3936 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3937 data_sinfo->bytes_may_use; 3938 3939 if (used + bytes > data_sinfo->total_bytes) { 3940 struct btrfs_trans_handle *trans; 3941 3942 /* 3943 * if we don't have enough free bytes in this space then we need 3944 * to alloc a new chunk. 3945 */ 3946 if (!data_sinfo->full) { 3947 u64 alloc_target; 3948 3949 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3950 spin_unlock(&data_sinfo->lock); 3951 alloc: 3952 alloc_target = btrfs_get_alloc_profile(root, 1); 3953 /* 3954 * It is ugly that we don't call nolock join 3955 * transaction for the free space inode case here. 3956 * But it is safe because we only do the data space 3957 * reservation for the free space cache in the 3958 * transaction context, the common join transaction 3959 * just increase the counter of the current transaction 3960 * handler, doesn't try to acquire the trans_lock of 3961 * the fs. 3962 */ 3963 trans = btrfs_join_transaction(root); 3964 if (IS_ERR(trans)) 3965 return PTR_ERR(trans); 3966 3967 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3968 alloc_target, 3969 CHUNK_ALLOC_NO_FORCE); 3970 btrfs_end_transaction(trans, root); 3971 if (ret < 0) { 3972 if (ret != -ENOSPC) 3973 return ret; 3974 else { 3975 have_pinned_space = 1; 3976 goto commit_trans; 3977 } 3978 } 3979 3980 if (!data_sinfo) 3981 data_sinfo = fs_info->data_sinfo; 3982 3983 goto again; 3984 } 3985 3986 /* 3987 * If we don't have enough pinned space to deal with this 3988 * allocation, and no removed chunk in current transaction, 3989 * don't bother committing the transaction. 3990 */ 3991 have_pinned_space = percpu_counter_compare( 3992 &data_sinfo->total_bytes_pinned, 3993 used + bytes - data_sinfo->total_bytes); 3994 spin_unlock(&data_sinfo->lock); 3995 3996 /* commit the current transaction and try again */ 3997 commit_trans: 3998 if (need_commit && 3999 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4000 need_commit--; 4001 4002 if (need_commit > 0) 4003 btrfs_wait_ordered_roots(fs_info, -1); 4004 4005 trans = btrfs_join_transaction(root); 4006 if (IS_ERR(trans)) 4007 return PTR_ERR(trans); 4008 if (have_pinned_space >= 0 || 4009 trans->transaction->have_free_bgs || 4010 need_commit > 0) { 4011 ret = btrfs_commit_transaction(trans, root); 4012 if (ret) 4013 return ret; 4014 /* 4015 * make sure that all running delayed iput are 4016 * done 4017 */ 4018 down_write(&root->fs_info->delayed_iput_sem); 4019 up_write(&root->fs_info->delayed_iput_sem); 4020 goto again; 4021 } else { 4022 btrfs_end_transaction(trans, root); 4023 } 4024 } 4025 4026 trace_btrfs_space_reservation(root->fs_info, 4027 "space_info:enospc", 4028 data_sinfo->flags, bytes, 1); 4029 return -ENOSPC; 4030 } 4031 ret = btrfs_qgroup_reserve(root, write_bytes); 4032 if (ret) 4033 goto out; 4034 data_sinfo->bytes_may_use += bytes; 4035 trace_btrfs_space_reservation(root->fs_info, "space_info", 4036 data_sinfo->flags, bytes, 1); 4037 out: 4038 spin_unlock(&data_sinfo->lock); 4039 4040 return ret; 4041 } 4042 4043 /* 4044 * Called if we need to clear a data reservation for this inode. 4045 */ 4046 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 4047 { 4048 struct btrfs_root *root = BTRFS_I(inode)->root; 4049 struct btrfs_space_info *data_sinfo; 4050 4051 /* make sure bytes are sectorsize aligned */ 4052 bytes = ALIGN(bytes, root->sectorsize); 4053 4054 data_sinfo = root->fs_info->data_sinfo; 4055 spin_lock(&data_sinfo->lock); 4056 WARN_ON(data_sinfo->bytes_may_use < bytes); 4057 data_sinfo->bytes_may_use -= bytes; 4058 trace_btrfs_space_reservation(root->fs_info, "space_info", 4059 data_sinfo->flags, bytes, 0); 4060 spin_unlock(&data_sinfo->lock); 4061 } 4062 4063 static void force_metadata_allocation(struct btrfs_fs_info *info) 4064 { 4065 struct list_head *head = &info->space_info; 4066 struct btrfs_space_info *found; 4067 4068 rcu_read_lock(); 4069 list_for_each_entry_rcu(found, head, list) { 4070 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4071 found->force_alloc = CHUNK_ALLOC_FORCE; 4072 } 4073 rcu_read_unlock(); 4074 } 4075 4076 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4077 { 4078 return (global->size << 1); 4079 } 4080 4081 static int should_alloc_chunk(struct btrfs_root *root, 4082 struct btrfs_space_info *sinfo, int force) 4083 { 4084 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4085 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4086 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4087 u64 thresh; 4088 4089 if (force == CHUNK_ALLOC_FORCE) 4090 return 1; 4091 4092 /* 4093 * We need to take into account the global rsv because for all intents 4094 * and purposes it's used space. Don't worry about locking the 4095 * global_rsv, it doesn't change except when the transaction commits. 4096 */ 4097 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4098 num_allocated += calc_global_rsv_need_space(global_rsv); 4099 4100 /* 4101 * in limited mode, we want to have some free space up to 4102 * about 1% of the FS size. 4103 */ 4104 if (force == CHUNK_ALLOC_LIMITED) { 4105 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4106 thresh = max_t(u64, 64 * 1024 * 1024, 4107 div_factor_fine(thresh, 1)); 4108 4109 if (num_bytes - num_allocated < thresh) 4110 return 1; 4111 } 4112 4113 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4114 return 0; 4115 return 1; 4116 } 4117 4118 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4119 { 4120 u64 num_dev; 4121 4122 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4123 BTRFS_BLOCK_GROUP_RAID0 | 4124 BTRFS_BLOCK_GROUP_RAID5 | 4125 BTRFS_BLOCK_GROUP_RAID6)) 4126 num_dev = root->fs_info->fs_devices->rw_devices; 4127 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4128 num_dev = 2; 4129 else 4130 num_dev = 1; /* DUP or single */ 4131 4132 return num_dev; 4133 } 4134 4135 /* 4136 * If @is_allocation is true, reserve space in the system space info necessary 4137 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4138 * removing a chunk. 4139 */ 4140 void check_system_chunk(struct btrfs_trans_handle *trans, 4141 struct btrfs_root *root, 4142 u64 type) 4143 { 4144 struct btrfs_space_info *info; 4145 u64 left; 4146 u64 thresh; 4147 int ret = 0; 4148 u64 num_devs; 4149 4150 /* 4151 * Needed because we can end up allocating a system chunk and for an 4152 * atomic and race free space reservation in the chunk block reserve. 4153 */ 4154 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4155 4156 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4157 spin_lock(&info->lock); 4158 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4159 info->bytes_reserved - info->bytes_readonly - 4160 info->bytes_may_use; 4161 spin_unlock(&info->lock); 4162 4163 num_devs = get_profile_num_devs(root, type); 4164 4165 /* num_devs device items to update and 1 chunk item to add or remove */ 4166 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4167 btrfs_calc_trans_metadata_size(root, 1); 4168 4169 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4170 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4171 left, thresh, type); 4172 dump_space_info(info, 0, 0); 4173 } 4174 4175 if (left < thresh) { 4176 u64 flags; 4177 4178 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4179 /* 4180 * Ignore failure to create system chunk. We might end up not 4181 * needing it, as we might not need to COW all nodes/leafs from 4182 * the paths we visit in the chunk tree (they were already COWed 4183 * or created in the current transaction for example). 4184 */ 4185 ret = btrfs_alloc_chunk(trans, root, flags); 4186 } 4187 4188 if (!ret) { 4189 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4190 &root->fs_info->chunk_block_rsv, 4191 thresh, BTRFS_RESERVE_NO_FLUSH); 4192 if (!ret) 4193 trans->chunk_bytes_reserved += thresh; 4194 } 4195 } 4196 4197 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4198 struct btrfs_root *extent_root, u64 flags, int force) 4199 { 4200 struct btrfs_space_info *space_info; 4201 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4202 int wait_for_alloc = 0; 4203 int ret = 0; 4204 4205 /* Don't re-enter if we're already allocating a chunk */ 4206 if (trans->allocating_chunk) 4207 return -ENOSPC; 4208 4209 space_info = __find_space_info(extent_root->fs_info, flags); 4210 if (!space_info) { 4211 ret = update_space_info(extent_root->fs_info, flags, 4212 0, 0, &space_info); 4213 BUG_ON(ret); /* -ENOMEM */ 4214 } 4215 BUG_ON(!space_info); /* Logic error */ 4216 4217 again: 4218 spin_lock(&space_info->lock); 4219 if (force < space_info->force_alloc) 4220 force = space_info->force_alloc; 4221 if (space_info->full) { 4222 if (should_alloc_chunk(extent_root, space_info, force)) 4223 ret = -ENOSPC; 4224 else 4225 ret = 0; 4226 spin_unlock(&space_info->lock); 4227 return ret; 4228 } 4229 4230 if (!should_alloc_chunk(extent_root, space_info, force)) { 4231 spin_unlock(&space_info->lock); 4232 return 0; 4233 } else if (space_info->chunk_alloc) { 4234 wait_for_alloc = 1; 4235 } else { 4236 space_info->chunk_alloc = 1; 4237 } 4238 4239 spin_unlock(&space_info->lock); 4240 4241 mutex_lock(&fs_info->chunk_mutex); 4242 4243 /* 4244 * The chunk_mutex is held throughout the entirety of a chunk 4245 * allocation, so once we've acquired the chunk_mutex we know that the 4246 * other guy is done and we need to recheck and see if we should 4247 * allocate. 4248 */ 4249 if (wait_for_alloc) { 4250 mutex_unlock(&fs_info->chunk_mutex); 4251 wait_for_alloc = 0; 4252 goto again; 4253 } 4254 4255 trans->allocating_chunk = true; 4256 4257 /* 4258 * If we have mixed data/metadata chunks we want to make sure we keep 4259 * allocating mixed chunks instead of individual chunks. 4260 */ 4261 if (btrfs_mixed_space_info(space_info)) 4262 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4263 4264 /* 4265 * if we're doing a data chunk, go ahead and make sure that 4266 * we keep a reasonable number of metadata chunks allocated in the 4267 * FS as well. 4268 */ 4269 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4270 fs_info->data_chunk_allocations++; 4271 if (!(fs_info->data_chunk_allocations % 4272 fs_info->metadata_ratio)) 4273 force_metadata_allocation(fs_info); 4274 } 4275 4276 /* 4277 * Check if we have enough space in SYSTEM chunk because we may need 4278 * to update devices. 4279 */ 4280 check_system_chunk(trans, extent_root, flags); 4281 4282 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4283 trans->allocating_chunk = false; 4284 4285 spin_lock(&space_info->lock); 4286 if (ret < 0 && ret != -ENOSPC) 4287 goto out; 4288 if (ret) 4289 space_info->full = 1; 4290 else 4291 ret = 1; 4292 4293 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4294 out: 4295 space_info->chunk_alloc = 0; 4296 spin_unlock(&space_info->lock); 4297 mutex_unlock(&fs_info->chunk_mutex); 4298 /* 4299 * When we allocate a new chunk we reserve space in the chunk block 4300 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4301 * add new nodes/leafs to it if we end up needing to do it when 4302 * inserting the chunk item and updating device items as part of the 4303 * second phase of chunk allocation, performed by 4304 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4305 * large number of new block groups to create in our transaction 4306 * handle's new_bgs list to avoid exhausting the chunk block reserve 4307 * in extreme cases - like having a single transaction create many new 4308 * block groups when starting to write out the free space caches of all 4309 * the block groups that were made dirty during the lifetime of the 4310 * transaction. 4311 */ 4312 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) { 4313 btrfs_create_pending_block_groups(trans, trans->root); 4314 btrfs_trans_release_chunk_metadata(trans); 4315 } 4316 return ret; 4317 } 4318 4319 static int can_overcommit(struct btrfs_root *root, 4320 struct btrfs_space_info *space_info, u64 bytes, 4321 enum btrfs_reserve_flush_enum flush) 4322 { 4323 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4324 u64 profile = btrfs_get_alloc_profile(root, 0); 4325 u64 space_size; 4326 u64 avail; 4327 u64 used; 4328 4329 used = space_info->bytes_used + space_info->bytes_reserved + 4330 space_info->bytes_pinned + space_info->bytes_readonly; 4331 4332 /* 4333 * We only want to allow over committing if we have lots of actual space 4334 * free, but if we don't have enough space to handle the global reserve 4335 * space then we could end up having a real enospc problem when trying 4336 * to allocate a chunk or some other such important allocation. 4337 */ 4338 spin_lock(&global_rsv->lock); 4339 space_size = calc_global_rsv_need_space(global_rsv); 4340 spin_unlock(&global_rsv->lock); 4341 if (used + space_size >= space_info->total_bytes) 4342 return 0; 4343 4344 used += space_info->bytes_may_use; 4345 4346 spin_lock(&root->fs_info->free_chunk_lock); 4347 avail = root->fs_info->free_chunk_space; 4348 spin_unlock(&root->fs_info->free_chunk_lock); 4349 4350 /* 4351 * If we have dup, raid1 or raid10 then only half of the free 4352 * space is actually useable. For raid56, the space info used 4353 * doesn't include the parity drive, so we don't have to 4354 * change the math 4355 */ 4356 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4357 BTRFS_BLOCK_GROUP_RAID1 | 4358 BTRFS_BLOCK_GROUP_RAID10)) 4359 avail >>= 1; 4360 4361 /* 4362 * If we aren't flushing all things, let us overcommit up to 4363 * 1/2th of the space. If we can flush, don't let us overcommit 4364 * too much, let it overcommit up to 1/8 of the space. 4365 */ 4366 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4367 avail >>= 3; 4368 else 4369 avail >>= 1; 4370 4371 if (used + bytes < space_info->total_bytes + avail) 4372 return 1; 4373 return 0; 4374 } 4375 4376 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4377 unsigned long nr_pages, int nr_items) 4378 { 4379 struct super_block *sb = root->fs_info->sb; 4380 4381 if (down_read_trylock(&sb->s_umount)) { 4382 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4383 up_read(&sb->s_umount); 4384 } else { 4385 /* 4386 * We needn't worry the filesystem going from r/w to r/o though 4387 * we don't acquire ->s_umount mutex, because the filesystem 4388 * should guarantee the delalloc inodes list be empty after 4389 * the filesystem is readonly(all dirty pages are written to 4390 * the disk). 4391 */ 4392 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4393 if (!current->journal_info) 4394 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4395 } 4396 } 4397 4398 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4399 { 4400 u64 bytes; 4401 int nr; 4402 4403 bytes = btrfs_calc_trans_metadata_size(root, 1); 4404 nr = (int)div64_u64(to_reclaim, bytes); 4405 if (!nr) 4406 nr = 1; 4407 return nr; 4408 } 4409 4410 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4411 4412 /* 4413 * shrink metadata reservation for delalloc 4414 */ 4415 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4416 bool wait_ordered) 4417 { 4418 struct btrfs_block_rsv *block_rsv; 4419 struct btrfs_space_info *space_info; 4420 struct btrfs_trans_handle *trans; 4421 u64 delalloc_bytes; 4422 u64 max_reclaim; 4423 long time_left; 4424 unsigned long nr_pages; 4425 int loops; 4426 int items; 4427 enum btrfs_reserve_flush_enum flush; 4428 4429 /* Calc the number of the pages we need flush for space reservation */ 4430 items = calc_reclaim_items_nr(root, to_reclaim); 4431 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4432 4433 trans = (struct btrfs_trans_handle *)current->journal_info; 4434 block_rsv = &root->fs_info->delalloc_block_rsv; 4435 space_info = block_rsv->space_info; 4436 4437 delalloc_bytes = percpu_counter_sum_positive( 4438 &root->fs_info->delalloc_bytes); 4439 if (delalloc_bytes == 0) { 4440 if (trans) 4441 return; 4442 if (wait_ordered) 4443 btrfs_wait_ordered_roots(root->fs_info, items); 4444 return; 4445 } 4446 4447 loops = 0; 4448 while (delalloc_bytes && loops < 3) { 4449 max_reclaim = min(delalloc_bytes, to_reclaim); 4450 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4451 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4452 /* 4453 * We need to wait for the async pages to actually start before 4454 * we do anything. 4455 */ 4456 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4457 if (!max_reclaim) 4458 goto skip_async; 4459 4460 if (max_reclaim <= nr_pages) 4461 max_reclaim = 0; 4462 else 4463 max_reclaim -= nr_pages; 4464 4465 wait_event(root->fs_info->async_submit_wait, 4466 atomic_read(&root->fs_info->async_delalloc_pages) <= 4467 (int)max_reclaim); 4468 skip_async: 4469 if (!trans) 4470 flush = BTRFS_RESERVE_FLUSH_ALL; 4471 else 4472 flush = BTRFS_RESERVE_NO_FLUSH; 4473 spin_lock(&space_info->lock); 4474 if (can_overcommit(root, space_info, orig, flush)) { 4475 spin_unlock(&space_info->lock); 4476 break; 4477 } 4478 spin_unlock(&space_info->lock); 4479 4480 loops++; 4481 if (wait_ordered && !trans) { 4482 btrfs_wait_ordered_roots(root->fs_info, items); 4483 } else { 4484 time_left = schedule_timeout_killable(1); 4485 if (time_left) 4486 break; 4487 } 4488 delalloc_bytes = percpu_counter_sum_positive( 4489 &root->fs_info->delalloc_bytes); 4490 } 4491 } 4492 4493 /** 4494 * maybe_commit_transaction - possibly commit the transaction if its ok to 4495 * @root - the root we're allocating for 4496 * @bytes - the number of bytes we want to reserve 4497 * @force - force the commit 4498 * 4499 * This will check to make sure that committing the transaction will actually 4500 * get us somewhere and then commit the transaction if it does. Otherwise it 4501 * will return -ENOSPC. 4502 */ 4503 static int may_commit_transaction(struct btrfs_root *root, 4504 struct btrfs_space_info *space_info, 4505 u64 bytes, int force) 4506 { 4507 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4508 struct btrfs_trans_handle *trans; 4509 4510 trans = (struct btrfs_trans_handle *)current->journal_info; 4511 if (trans) 4512 return -EAGAIN; 4513 4514 if (force) 4515 goto commit; 4516 4517 /* See if there is enough pinned space to make this reservation */ 4518 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4519 bytes) >= 0) 4520 goto commit; 4521 4522 /* 4523 * See if there is some space in the delayed insertion reservation for 4524 * this reservation. 4525 */ 4526 if (space_info != delayed_rsv->space_info) 4527 return -ENOSPC; 4528 4529 spin_lock(&delayed_rsv->lock); 4530 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4531 bytes - delayed_rsv->size) >= 0) { 4532 spin_unlock(&delayed_rsv->lock); 4533 return -ENOSPC; 4534 } 4535 spin_unlock(&delayed_rsv->lock); 4536 4537 commit: 4538 trans = btrfs_join_transaction(root); 4539 if (IS_ERR(trans)) 4540 return -ENOSPC; 4541 4542 return btrfs_commit_transaction(trans, root); 4543 } 4544 4545 enum flush_state { 4546 FLUSH_DELAYED_ITEMS_NR = 1, 4547 FLUSH_DELAYED_ITEMS = 2, 4548 FLUSH_DELALLOC = 3, 4549 FLUSH_DELALLOC_WAIT = 4, 4550 ALLOC_CHUNK = 5, 4551 COMMIT_TRANS = 6, 4552 }; 4553 4554 static int flush_space(struct btrfs_root *root, 4555 struct btrfs_space_info *space_info, u64 num_bytes, 4556 u64 orig_bytes, int state) 4557 { 4558 struct btrfs_trans_handle *trans; 4559 int nr; 4560 int ret = 0; 4561 4562 switch (state) { 4563 case FLUSH_DELAYED_ITEMS_NR: 4564 case FLUSH_DELAYED_ITEMS: 4565 if (state == FLUSH_DELAYED_ITEMS_NR) 4566 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4567 else 4568 nr = -1; 4569 4570 trans = btrfs_join_transaction(root); 4571 if (IS_ERR(trans)) { 4572 ret = PTR_ERR(trans); 4573 break; 4574 } 4575 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4576 btrfs_end_transaction(trans, root); 4577 break; 4578 case FLUSH_DELALLOC: 4579 case FLUSH_DELALLOC_WAIT: 4580 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4581 state == FLUSH_DELALLOC_WAIT); 4582 break; 4583 case ALLOC_CHUNK: 4584 trans = btrfs_join_transaction(root); 4585 if (IS_ERR(trans)) { 4586 ret = PTR_ERR(trans); 4587 break; 4588 } 4589 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4590 btrfs_get_alloc_profile(root, 0), 4591 CHUNK_ALLOC_NO_FORCE); 4592 btrfs_end_transaction(trans, root); 4593 if (ret == -ENOSPC) 4594 ret = 0; 4595 break; 4596 case COMMIT_TRANS: 4597 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4598 break; 4599 default: 4600 ret = -ENOSPC; 4601 break; 4602 } 4603 4604 return ret; 4605 } 4606 4607 static inline u64 4608 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4609 struct btrfs_space_info *space_info) 4610 { 4611 u64 used; 4612 u64 expected; 4613 u64 to_reclaim; 4614 4615 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4616 16 * 1024 * 1024); 4617 spin_lock(&space_info->lock); 4618 if (can_overcommit(root, space_info, to_reclaim, 4619 BTRFS_RESERVE_FLUSH_ALL)) { 4620 to_reclaim = 0; 4621 goto out; 4622 } 4623 4624 used = space_info->bytes_used + space_info->bytes_reserved + 4625 space_info->bytes_pinned + space_info->bytes_readonly + 4626 space_info->bytes_may_use; 4627 if (can_overcommit(root, space_info, 1024 * 1024, 4628 BTRFS_RESERVE_FLUSH_ALL)) 4629 expected = div_factor_fine(space_info->total_bytes, 95); 4630 else 4631 expected = div_factor_fine(space_info->total_bytes, 90); 4632 4633 if (used > expected) 4634 to_reclaim = used - expected; 4635 else 4636 to_reclaim = 0; 4637 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4638 space_info->bytes_reserved); 4639 out: 4640 spin_unlock(&space_info->lock); 4641 4642 return to_reclaim; 4643 } 4644 4645 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4646 struct btrfs_fs_info *fs_info, u64 used) 4647 { 4648 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4649 4650 /* If we're just plain full then async reclaim just slows us down. */ 4651 if (space_info->bytes_used >= thresh) 4652 return 0; 4653 4654 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4655 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4656 } 4657 4658 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4659 struct btrfs_fs_info *fs_info, 4660 int flush_state) 4661 { 4662 u64 used; 4663 4664 spin_lock(&space_info->lock); 4665 /* 4666 * We run out of space and have not got any free space via flush_space, 4667 * so don't bother doing async reclaim. 4668 */ 4669 if (flush_state > COMMIT_TRANS && space_info->full) { 4670 spin_unlock(&space_info->lock); 4671 return 0; 4672 } 4673 4674 used = space_info->bytes_used + space_info->bytes_reserved + 4675 space_info->bytes_pinned + space_info->bytes_readonly + 4676 space_info->bytes_may_use; 4677 if (need_do_async_reclaim(space_info, fs_info, used)) { 4678 spin_unlock(&space_info->lock); 4679 return 1; 4680 } 4681 spin_unlock(&space_info->lock); 4682 4683 return 0; 4684 } 4685 4686 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4687 { 4688 struct btrfs_fs_info *fs_info; 4689 struct btrfs_space_info *space_info; 4690 u64 to_reclaim; 4691 int flush_state; 4692 4693 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4694 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4695 4696 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4697 space_info); 4698 if (!to_reclaim) 4699 return; 4700 4701 flush_state = FLUSH_DELAYED_ITEMS_NR; 4702 do { 4703 flush_space(fs_info->fs_root, space_info, to_reclaim, 4704 to_reclaim, flush_state); 4705 flush_state++; 4706 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4707 flush_state)) 4708 return; 4709 } while (flush_state < COMMIT_TRANS); 4710 } 4711 4712 void btrfs_init_async_reclaim_work(struct work_struct *work) 4713 { 4714 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4715 } 4716 4717 /** 4718 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4719 * @root - the root we're allocating for 4720 * @block_rsv - the block_rsv we're allocating for 4721 * @orig_bytes - the number of bytes we want 4722 * @flush - whether or not we can flush to make our reservation 4723 * 4724 * This will reserve orgi_bytes number of bytes from the space info associated 4725 * with the block_rsv. If there is not enough space it will make an attempt to 4726 * flush out space to make room. It will do this by flushing delalloc if 4727 * possible or committing the transaction. If flush is 0 then no attempts to 4728 * regain reservations will be made and this will fail if there is not enough 4729 * space already. 4730 */ 4731 static int reserve_metadata_bytes(struct btrfs_root *root, 4732 struct btrfs_block_rsv *block_rsv, 4733 u64 orig_bytes, 4734 enum btrfs_reserve_flush_enum flush) 4735 { 4736 struct btrfs_space_info *space_info = block_rsv->space_info; 4737 u64 used; 4738 u64 num_bytes = orig_bytes; 4739 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4740 int ret = 0; 4741 bool flushing = false; 4742 4743 again: 4744 ret = 0; 4745 spin_lock(&space_info->lock); 4746 /* 4747 * We only want to wait if somebody other than us is flushing and we 4748 * are actually allowed to flush all things. 4749 */ 4750 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4751 space_info->flush) { 4752 spin_unlock(&space_info->lock); 4753 /* 4754 * If we have a trans handle we can't wait because the flusher 4755 * may have to commit the transaction, which would mean we would 4756 * deadlock since we are waiting for the flusher to finish, but 4757 * hold the current transaction open. 4758 */ 4759 if (current->journal_info) 4760 return -EAGAIN; 4761 ret = wait_event_killable(space_info->wait, !space_info->flush); 4762 /* Must have been killed, return */ 4763 if (ret) 4764 return -EINTR; 4765 4766 spin_lock(&space_info->lock); 4767 } 4768 4769 ret = -ENOSPC; 4770 used = space_info->bytes_used + space_info->bytes_reserved + 4771 space_info->bytes_pinned + space_info->bytes_readonly + 4772 space_info->bytes_may_use; 4773 4774 /* 4775 * The idea here is that we've not already over-reserved the block group 4776 * then we can go ahead and save our reservation first and then start 4777 * flushing if we need to. Otherwise if we've already overcommitted 4778 * lets start flushing stuff first and then come back and try to make 4779 * our reservation. 4780 */ 4781 if (used <= space_info->total_bytes) { 4782 if (used + orig_bytes <= space_info->total_bytes) { 4783 space_info->bytes_may_use += orig_bytes; 4784 trace_btrfs_space_reservation(root->fs_info, 4785 "space_info", space_info->flags, orig_bytes, 1); 4786 ret = 0; 4787 } else { 4788 /* 4789 * Ok set num_bytes to orig_bytes since we aren't 4790 * overocmmitted, this way we only try and reclaim what 4791 * we need. 4792 */ 4793 num_bytes = orig_bytes; 4794 } 4795 } else { 4796 /* 4797 * Ok we're over committed, set num_bytes to the overcommitted 4798 * amount plus the amount of bytes that we need for this 4799 * reservation. 4800 */ 4801 num_bytes = used - space_info->total_bytes + 4802 (orig_bytes * 2); 4803 } 4804 4805 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4806 space_info->bytes_may_use += orig_bytes; 4807 trace_btrfs_space_reservation(root->fs_info, "space_info", 4808 space_info->flags, orig_bytes, 4809 1); 4810 ret = 0; 4811 } 4812 4813 /* 4814 * Couldn't make our reservation, save our place so while we're trying 4815 * to reclaim space we can actually use it instead of somebody else 4816 * stealing it from us. 4817 * 4818 * We make the other tasks wait for the flush only when we can flush 4819 * all things. 4820 */ 4821 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4822 flushing = true; 4823 space_info->flush = 1; 4824 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4825 used += orig_bytes; 4826 /* 4827 * We will do the space reservation dance during log replay, 4828 * which means we won't have fs_info->fs_root set, so don't do 4829 * the async reclaim as we will panic. 4830 */ 4831 if (!root->fs_info->log_root_recovering && 4832 need_do_async_reclaim(space_info, root->fs_info, used) && 4833 !work_busy(&root->fs_info->async_reclaim_work)) 4834 queue_work(system_unbound_wq, 4835 &root->fs_info->async_reclaim_work); 4836 } 4837 spin_unlock(&space_info->lock); 4838 4839 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4840 goto out; 4841 4842 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4843 flush_state); 4844 flush_state++; 4845 4846 /* 4847 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4848 * would happen. So skip delalloc flush. 4849 */ 4850 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4851 (flush_state == FLUSH_DELALLOC || 4852 flush_state == FLUSH_DELALLOC_WAIT)) 4853 flush_state = ALLOC_CHUNK; 4854 4855 if (!ret) 4856 goto again; 4857 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4858 flush_state < COMMIT_TRANS) 4859 goto again; 4860 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4861 flush_state <= COMMIT_TRANS) 4862 goto again; 4863 4864 out: 4865 if (ret == -ENOSPC && 4866 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4867 struct btrfs_block_rsv *global_rsv = 4868 &root->fs_info->global_block_rsv; 4869 4870 if (block_rsv != global_rsv && 4871 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4872 ret = 0; 4873 } 4874 if (ret == -ENOSPC) 4875 trace_btrfs_space_reservation(root->fs_info, 4876 "space_info:enospc", 4877 space_info->flags, orig_bytes, 1); 4878 if (flushing) { 4879 spin_lock(&space_info->lock); 4880 space_info->flush = 0; 4881 wake_up_all(&space_info->wait); 4882 spin_unlock(&space_info->lock); 4883 } 4884 return ret; 4885 } 4886 4887 static struct btrfs_block_rsv *get_block_rsv( 4888 const struct btrfs_trans_handle *trans, 4889 const struct btrfs_root *root) 4890 { 4891 struct btrfs_block_rsv *block_rsv = NULL; 4892 4893 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4894 block_rsv = trans->block_rsv; 4895 4896 if (root == root->fs_info->csum_root && trans->adding_csums) 4897 block_rsv = trans->block_rsv; 4898 4899 if (root == root->fs_info->uuid_root) 4900 block_rsv = trans->block_rsv; 4901 4902 if (!block_rsv) 4903 block_rsv = root->block_rsv; 4904 4905 if (!block_rsv) 4906 block_rsv = &root->fs_info->empty_block_rsv; 4907 4908 return block_rsv; 4909 } 4910 4911 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4912 u64 num_bytes) 4913 { 4914 int ret = -ENOSPC; 4915 spin_lock(&block_rsv->lock); 4916 if (block_rsv->reserved >= num_bytes) { 4917 block_rsv->reserved -= num_bytes; 4918 if (block_rsv->reserved < block_rsv->size) 4919 block_rsv->full = 0; 4920 ret = 0; 4921 } 4922 spin_unlock(&block_rsv->lock); 4923 return ret; 4924 } 4925 4926 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4927 u64 num_bytes, int update_size) 4928 { 4929 spin_lock(&block_rsv->lock); 4930 block_rsv->reserved += num_bytes; 4931 if (update_size) 4932 block_rsv->size += num_bytes; 4933 else if (block_rsv->reserved >= block_rsv->size) 4934 block_rsv->full = 1; 4935 spin_unlock(&block_rsv->lock); 4936 } 4937 4938 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4939 struct btrfs_block_rsv *dest, u64 num_bytes, 4940 int min_factor) 4941 { 4942 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4943 u64 min_bytes; 4944 4945 if (global_rsv->space_info != dest->space_info) 4946 return -ENOSPC; 4947 4948 spin_lock(&global_rsv->lock); 4949 min_bytes = div_factor(global_rsv->size, min_factor); 4950 if (global_rsv->reserved < min_bytes + num_bytes) { 4951 spin_unlock(&global_rsv->lock); 4952 return -ENOSPC; 4953 } 4954 global_rsv->reserved -= num_bytes; 4955 if (global_rsv->reserved < global_rsv->size) 4956 global_rsv->full = 0; 4957 spin_unlock(&global_rsv->lock); 4958 4959 block_rsv_add_bytes(dest, num_bytes, 1); 4960 return 0; 4961 } 4962 4963 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4964 struct btrfs_block_rsv *block_rsv, 4965 struct btrfs_block_rsv *dest, u64 num_bytes) 4966 { 4967 struct btrfs_space_info *space_info = block_rsv->space_info; 4968 4969 spin_lock(&block_rsv->lock); 4970 if (num_bytes == (u64)-1) 4971 num_bytes = block_rsv->size; 4972 block_rsv->size -= num_bytes; 4973 if (block_rsv->reserved >= block_rsv->size) { 4974 num_bytes = block_rsv->reserved - block_rsv->size; 4975 block_rsv->reserved = block_rsv->size; 4976 block_rsv->full = 1; 4977 } else { 4978 num_bytes = 0; 4979 } 4980 spin_unlock(&block_rsv->lock); 4981 4982 if (num_bytes > 0) { 4983 if (dest) { 4984 spin_lock(&dest->lock); 4985 if (!dest->full) { 4986 u64 bytes_to_add; 4987 4988 bytes_to_add = dest->size - dest->reserved; 4989 bytes_to_add = min(num_bytes, bytes_to_add); 4990 dest->reserved += bytes_to_add; 4991 if (dest->reserved >= dest->size) 4992 dest->full = 1; 4993 num_bytes -= bytes_to_add; 4994 } 4995 spin_unlock(&dest->lock); 4996 } 4997 if (num_bytes) { 4998 spin_lock(&space_info->lock); 4999 space_info->bytes_may_use -= num_bytes; 5000 trace_btrfs_space_reservation(fs_info, "space_info", 5001 space_info->flags, num_bytes, 0); 5002 spin_unlock(&space_info->lock); 5003 } 5004 } 5005 } 5006 5007 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5008 struct btrfs_block_rsv *dst, u64 num_bytes) 5009 { 5010 int ret; 5011 5012 ret = block_rsv_use_bytes(src, num_bytes); 5013 if (ret) 5014 return ret; 5015 5016 block_rsv_add_bytes(dst, num_bytes, 1); 5017 return 0; 5018 } 5019 5020 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5021 { 5022 memset(rsv, 0, sizeof(*rsv)); 5023 spin_lock_init(&rsv->lock); 5024 rsv->type = type; 5025 } 5026 5027 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5028 unsigned short type) 5029 { 5030 struct btrfs_block_rsv *block_rsv; 5031 struct btrfs_fs_info *fs_info = root->fs_info; 5032 5033 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5034 if (!block_rsv) 5035 return NULL; 5036 5037 btrfs_init_block_rsv(block_rsv, type); 5038 block_rsv->space_info = __find_space_info(fs_info, 5039 BTRFS_BLOCK_GROUP_METADATA); 5040 return block_rsv; 5041 } 5042 5043 void btrfs_free_block_rsv(struct btrfs_root *root, 5044 struct btrfs_block_rsv *rsv) 5045 { 5046 if (!rsv) 5047 return; 5048 btrfs_block_rsv_release(root, rsv, (u64)-1); 5049 kfree(rsv); 5050 } 5051 5052 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5053 { 5054 kfree(rsv); 5055 } 5056 5057 int btrfs_block_rsv_add(struct btrfs_root *root, 5058 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5059 enum btrfs_reserve_flush_enum flush) 5060 { 5061 int ret; 5062 5063 if (num_bytes == 0) 5064 return 0; 5065 5066 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5067 if (!ret) { 5068 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5069 return 0; 5070 } 5071 5072 return ret; 5073 } 5074 5075 int btrfs_block_rsv_check(struct btrfs_root *root, 5076 struct btrfs_block_rsv *block_rsv, int min_factor) 5077 { 5078 u64 num_bytes = 0; 5079 int ret = -ENOSPC; 5080 5081 if (!block_rsv) 5082 return 0; 5083 5084 spin_lock(&block_rsv->lock); 5085 num_bytes = div_factor(block_rsv->size, min_factor); 5086 if (block_rsv->reserved >= num_bytes) 5087 ret = 0; 5088 spin_unlock(&block_rsv->lock); 5089 5090 return ret; 5091 } 5092 5093 int btrfs_block_rsv_refill(struct btrfs_root *root, 5094 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5095 enum btrfs_reserve_flush_enum flush) 5096 { 5097 u64 num_bytes = 0; 5098 int ret = -ENOSPC; 5099 5100 if (!block_rsv) 5101 return 0; 5102 5103 spin_lock(&block_rsv->lock); 5104 num_bytes = min_reserved; 5105 if (block_rsv->reserved >= num_bytes) 5106 ret = 0; 5107 else 5108 num_bytes -= block_rsv->reserved; 5109 spin_unlock(&block_rsv->lock); 5110 5111 if (!ret) 5112 return 0; 5113 5114 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5115 if (!ret) { 5116 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5117 return 0; 5118 } 5119 5120 return ret; 5121 } 5122 5123 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5124 struct btrfs_block_rsv *dst_rsv, 5125 u64 num_bytes) 5126 { 5127 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5128 } 5129 5130 void btrfs_block_rsv_release(struct btrfs_root *root, 5131 struct btrfs_block_rsv *block_rsv, 5132 u64 num_bytes) 5133 { 5134 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5135 if (global_rsv == block_rsv || 5136 block_rsv->space_info != global_rsv->space_info) 5137 global_rsv = NULL; 5138 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5139 num_bytes); 5140 } 5141 5142 /* 5143 * helper to calculate size of global block reservation. 5144 * the desired value is sum of space used by extent tree, 5145 * checksum tree and root tree 5146 */ 5147 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5148 { 5149 struct btrfs_space_info *sinfo; 5150 u64 num_bytes; 5151 u64 meta_used; 5152 u64 data_used; 5153 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5154 5155 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5156 spin_lock(&sinfo->lock); 5157 data_used = sinfo->bytes_used; 5158 spin_unlock(&sinfo->lock); 5159 5160 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5161 spin_lock(&sinfo->lock); 5162 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5163 data_used = 0; 5164 meta_used = sinfo->bytes_used; 5165 spin_unlock(&sinfo->lock); 5166 5167 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5168 csum_size * 2; 5169 num_bytes += div_u64(data_used + meta_used, 50); 5170 5171 if (num_bytes * 3 > meta_used) 5172 num_bytes = div_u64(meta_used, 3); 5173 5174 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5175 } 5176 5177 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5178 { 5179 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5180 struct btrfs_space_info *sinfo = block_rsv->space_info; 5181 u64 num_bytes; 5182 5183 num_bytes = calc_global_metadata_size(fs_info); 5184 5185 spin_lock(&sinfo->lock); 5186 spin_lock(&block_rsv->lock); 5187 5188 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5189 5190 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5191 sinfo->bytes_reserved + sinfo->bytes_readonly + 5192 sinfo->bytes_may_use; 5193 5194 if (sinfo->total_bytes > num_bytes) { 5195 num_bytes = sinfo->total_bytes - num_bytes; 5196 block_rsv->reserved += num_bytes; 5197 sinfo->bytes_may_use += num_bytes; 5198 trace_btrfs_space_reservation(fs_info, "space_info", 5199 sinfo->flags, num_bytes, 1); 5200 } 5201 5202 if (block_rsv->reserved >= block_rsv->size) { 5203 num_bytes = block_rsv->reserved - block_rsv->size; 5204 sinfo->bytes_may_use -= num_bytes; 5205 trace_btrfs_space_reservation(fs_info, "space_info", 5206 sinfo->flags, num_bytes, 0); 5207 block_rsv->reserved = block_rsv->size; 5208 block_rsv->full = 1; 5209 } 5210 5211 spin_unlock(&block_rsv->lock); 5212 spin_unlock(&sinfo->lock); 5213 } 5214 5215 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5216 { 5217 struct btrfs_space_info *space_info; 5218 5219 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5220 fs_info->chunk_block_rsv.space_info = space_info; 5221 5222 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5223 fs_info->global_block_rsv.space_info = space_info; 5224 fs_info->delalloc_block_rsv.space_info = space_info; 5225 fs_info->trans_block_rsv.space_info = space_info; 5226 fs_info->empty_block_rsv.space_info = space_info; 5227 fs_info->delayed_block_rsv.space_info = space_info; 5228 5229 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5230 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5231 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5232 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5233 if (fs_info->quota_root) 5234 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5235 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5236 5237 update_global_block_rsv(fs_info); 5238 } 5239 5240 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5241 { 5242 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5243 (u64)-1); 5244 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5245 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5246 WARN_ON(fs_info->trans_block_rsv.size > 0); 5247 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5248 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5249 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5250 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5251 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5252 } 5253 5254 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5255 struct btrfs_root *root) 5256 { 5257 if (!trans->block_rsv) 5258 return; 5259 5260 if (!trans->bytes_reserved) 5261 return; 5262 5263 trace_btrfs_space_reservation(root->fs_info, "transaction", 5264 trans->transid, trans->bytes_reserved, 0); 5265 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5266 trans->bytes_reserved = 0; 5267 } 5268 5269 /* 5270 * To be called after all the new block groups attached to the transaction 5271 * handle have been created (btrfs_create_pending_block_groups()). 5272 */ 5273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5274 { 5275 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5276 5277 if (!trans->chunk_bytes_reserved) 5278 return; 5279 5280 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5281 5282 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5283 trans->chunk_bytes_reserved); 5284 trans->chunk_bytes_reserved = 0; 5285 } 5286 5287 /* Can only return 0 or -ENOSPC */ 5288 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5289 struct inode *inode) 5290 { 5291 struct btrfs_root *root = BTRFS_I(inode)->root; 5292 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5293 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5294 5295 /* 5296 * We need to hold space in order to delete our orphan item once we've 5297 * added it, so this takes the reservation so we can release it later 5298 * when we are truly done with the orphan item. 5299 */ 5300 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5301 trace_btrfs_space_reservation(root->fs_info, "orphan", 5302 btrfs_ino(inode), num_bytes, 1); 5303 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5304 } 5305 5306 void btrfs_orphan_release_metadata(struct inode *inode) 5307 { 5308 struct btrfs_root *root = BTRFS_I(inode)->root; 5309 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5310 trace_btrfs_space_reservation(root->fs_info, "orphan", 5311 btrfs_ino(inode), num_bytes, 0); 5312 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5313 } 5314 5315 /* 5316 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5317 * root: the root of the parent directory 5318 * rsv: block reservation 5319 * items: the number of items that we need do reservation 5320 * qgroup_reserved: used to return the reserved size in qgroup 5321 * 5322 * This function is used to reserve the space for snapshot/subvolume 5323 * creation and deletion. Those operations are different with the 5324 * common file/directory operations, they change two fs/file trees 5325 * and root tree, the number of items that the qgroup reserves is 5326 * different with the free space reservation. So we can not use 5327 * the space reseravtion mechanism in start_transaction(). 5328 */ 5329 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5330 struct btrfs_block_rsv *rsv, 5331 int items, 5332 u64 *qgroup_reserved, 5333 bool use_global_rsv) 5334 { 5335 u64 num_bytes; 5336 int ret; 5337 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5338 5339 if (root->fs_info->quota_enabled) { 5340 /* One for parent inode, two for dir entries */ 5341 num_bytes = 3 * root->nodesize; 5342 ret = btrfs_qgroup_reserve(root, num_bytes); 5343 if (ret) 5344 return ret; 5345 } else { 5346 num_bytes = 0; 5347 } 5348 5349 *qgroup_reserved = num_bytes; 5350 5351 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5352 rsv->space_info = __find_space_info(root->fs_info, 5353 BTRFS_BLOCK_GROUP_METADATA); 5354 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5355 BTRFS_RESERVE_FLUSH_ALL); 5356 5357 if (ret == -ENOSPC && use_global_rsv) 5358 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5359 5360 if (ret) { 5361 if (*qgroup_reserved) 5362 btrfs_qgroup_free(root, *qgroup_reserved); 5363 } 5364 5365 return ret; 5366 } 5367 5368 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5369 struct btrfs_block_rsv *rsv, 5370 u64 qgroup_reserved) 5371 { 5372 btrfs_block_rsv_release(root, rsv, (u64)-1); 5373 } 5374 5375 /** 5376 * drop_outstanding_extent - drop an outstanding extent 5377 * @inode: the inode we're dropping the extent for 5378 * @num_bytes: the number of bytes we're relaseing. 5379 * 5380 * This is called when we are freeing up an outstanding extent, either called 5381 * after an error or after an extent is written. This will return the number of 5382 * reserved extents that need to be freed. This must be called with 5383 * BTRFS_I(inode)->lock held. 5384 */ 5385 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5386 { 5387 unsigned drop_inode_space = 0; 5388 unsigned dropped_extents = 0; 5389 unsigned num_extents = 0; 5390 5391 num_extents = (unsigned)div64_u64(num_bytes + 5392 BTRFS_MAX_EXTENT_SIZE - 1, 5393 BTRFS_MAX_EXTENT_SIZE); 5394 ASSERT(num_extents); 5395 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5396 BTRFS_I(inode)->outstanding_extents -= num_extents; 5397 5398 if (BTRFS_I(inode)->outstanding_extents == 0 && 5399 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5400 &BTRFS_I(inode)->runtime_flags)) 5401 drop_inode_space = 1; 5402 5403 /* 5404 * If we have more or the same amount of outsanding extents than we have 5405 * reserved then we need to leave the reserved extents count alone. 5406 */ 5407 if (BTRFS_I(inode)->outstanding_extents >= 5408 BTRFS_I(inode)->reserved_extents) 5409 return drop_inode_space; 5410 5411 dropped_extents = BTRFS_I(inode)->reserved_extents - 5412 BTRFS_I(inode)->outstanding_extents; 5413 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5414 return dropped_extents + drop_inode_space; 5415 } 5416 5417 /** 5418 * calc_csum_metadata_size - return the amount of metada space that must be 5419 * reserved/free'd for the given bytes. 5420 * @inode: the inode we're manipulating 5421 * @num_bytes: the number of bytes in question 5422 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5423 * 5424 * This adjusts the number of csum_bytes in the inode and then returns the 5425 * correct amount of metadata that must either be reserved or freed. We 5426 * calculate how many checksums we can fit into one leaf and then divide the 5427 * number of bytes that will need to be checksumed by this value to figure out 5428 * how many checksums will be required. If we are adding bytes then the number 5429 * may go up and we will return the number of additional bytes that must be 5430 * reserved. If it is going down we will return the number of bytes that must 5431 * be freed. 5432 * 5433 * This must be called with BTRFS_I(inode)->lock held. 5434 */ 5435 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5436 int reserve) 5437 { 5438 struct btrfs_root *root = BTRFS_I(inode)->root; 5439 u64 old_csums, num_csums; 5440 5441 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5442 BTRFS_I(inode)->csum_bytes == 0) 5443 return 0; 5444 5445 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5446 if (reserve) 5447 BTRFS_I(inode)->csum_bytes += num_bytes; 5448 else 5449 BTRFS_I(inode)->csum_bytes -= num_bytes; 5450 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5451 5452 /* No change, no need to reserve more */ 5453 if (old_csums == num_csums) 5454 return 0; 5455 5456 if (reserve) 5457 return btrfs_calc_trans_metadata_size(root, 5458 num_csums - old_csums); 5459 5460 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5461 } 5462 5463 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5464 { 5465 struct btrfs_root *root = BTRFS_I(inode)->root; 5466 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5467 u64 to_reserve = 0; 5468 u64 csum_bytes; 5469 unsigned nr_extents = 0; 5470 int extra_reserve = 0; 5471 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5472 int ret = 0; 5473 bool delalloc_lock = true; 5474 u64 to_free = 0; 5475 unsigned dropped; 5476 5477 /* If we are a free space inode we need to not flush since we will be in 5478 * the middle of a transaction commit. We also don't need the delalloc 5479 * mutex since we won't race with anybody. We need this mostly to make 5480 * lockdep shut its filthy mouth. 5481 */ 5482 if (btrfs_is_free_space_inode(inode)) { 5483 flush = BTRFS_RESERVE_NO_FLUSH; 5484 delalloc_lock = false; 5485 } 5486 5487 if (flush != BTRFS_RESERVE_NO_FLUSH && 5488 btrfs_transaction_in_commit(root->fs_info)) 5489 schedule_timeout(1); 5490 5491 if (delalloc_lock) 5492 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5493 5494 num_bytes = ALIGN(num_bytes, root->sectorsize); 5495 5496 spin_lock(&BTRFS_I(inode)->lock); 5497 nr_extents = (unsigned)div64_u64(num_bytes + 5498 BTRFS_MAX_EXTENT_SIZE - 1, 5499 BTRFS_MAX_EXTENT_SIZE); 5500 BTRFS_I(inode)->outstanding_extents += nr_extents; 5501 nr_extents = 0; 5502 5503 if (BTRFS_I(inode)->outstanding_extents > 5504 BTRFS_I(inode)->reserved_extents) 5505 nr_extents = BTRFS_I(inode)->outstanding_extents - 5506 BTRFS_I(inode)->reserved_extents; 5507 5508 /* 5509 * Add an item to reserve for updating the inode when we complete the 5510 * delalloc io. 5511 */ 5512 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5513 &BTRFS_I(inode)->runtime_flags)) { 5514 nr_extents++; 5515 extra_reserve = 1; 5516 } 5517 5518 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5519 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5520 csum_bytes = BTRFS_I(inode)->csum_bytes; 5521 spin_unlock(&BTRFS_I(inode)->lock); 5522 5523 if (root->fs_info->quota_enabled) { 5524 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5525 if (ret) 5526 goto out_fail; 5527 } 5528 5529 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5530 if (unlikely(ret)) { 5531 if (root->fs_info->quota_enabled) 5532 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5533 goto out_fail; 5534 } 5535 5536 spin_lock(&BTRFS_I(inode)->lock); 5537 if (extra_reserve) { 5538 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5539 &BTRFS_I(inode)->runtime_flags); 5540 nr_extents--; 5541 } 5542 BTRFS_I(inode)->reserved_extents += nr_extents; 5543 spin_unlock(&BTRFS_I(inode)->lock); 5544 5545 if (delalloc_lock) 5546 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5547 5548 if (to_reserve) 5549 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5550 btrfs_ino(inode), to_reserve, 1); 5551 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5552 5553 return 0; 5554 5555 out_fail: 5556 spin_lock(&BTRFS_I(inode)->lock); 5557 dropped = drop_outstanding_extent(inode, num_bytes); 5558 /* 5559 * If the inodes csum_bytes is the same as the original 5560 * csum_bytes then we know we haven't raced with any free()ers 5561 * so we can just reduce our inodes csum bytes and carry on. 5562 */ 5563 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5564 calc_csum_metadata_size(inode, num_bytes, 0); 5565 } else { 5566 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5567 u64 bytes; 5568 5569 /* 5570 * This is tricky, but first we need to figure out how much we 5571 * free'd from any free-ers that occured during this 5572 * reservation, so we reset ->csum_bytes to the csum_bytes 5573 * before we dropped our lock, and then call the free for the 5574 * number of bytes that were freed while we were trying our 5575 * reservation. 5576 */ 5577 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5578 BTRFS_I(inode)->csum_bytes = csum_bytes; 5579 to_free = calc_csum_metadata_size(inode, bytes, 0); 5580 5581 5582 /* 5583 * Now we need to see how much we would have freed had we not 5584 * been making this reservation and our ->csum_bytes were not 5585 * artificially inflated. 5586 */ 5587 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5588 bytes = csum_bytes - orig_csum_bytes; 5589 bytes = calc_csum_metadata_size(inode, bytes, 0); 5590 5591 /* 5592 * Now reset ->csum_bytes to what it should be. If bytes is 5593 * more than to_free then we would have free'd more space had we 5594 * not had an artificially high ->csum_bytes, so we need to free 5595 * the remainder. If bytes is the same or less then we don't 5596 * need to do anything, the other free-ers did the correct 5597 * thing. 5598 */ 5599 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5600 if (bytes > to_free) 5601 to_free = bytes - to_free; 5602 else 5603 to_free = 0; 5604 } 5605 spin_unlock(&BTRFS_I(inode)->lock); 5606 if (dropped) 5607 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5608 5609 if (to_free) { 5610 btrfs_block_rsv_release(root, block_rsv, to_free); 5611 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5612 btrfs_ino(inode), to_free, 0); 5613 } 5614 if (delalloc_lock) 5615 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5616 return ret; 5617 } 5618 5619 /** 5620 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5621 * @inode: the inode to release the reservation for 5622 * @num_bytes: the number of bytes we're releasing 5623 * 5624 * This will release the metadata reservation for an inode. This can be called 5625 * once we complete IO for a given set of bytes to release their metadata 5626 * reservations. 5627 */ 5628 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5629 { 5630 struct btrfs_root *root = BTRFS_I(inode)->root; 5631 u64 to_free = 0; 5632 unsigned dropped; 5633 5634 num_bytes = ALIGN(num_bytes, root->sectorsize); 5635 spin_lock(&BTRFS_I(inode)->lock); 5636 dropped = drop_outstanding_extent(inode, num_bytes); 5637 5638 if (num_bytes) 5639 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5640 spin_unlock(&BTRFS_I(inode)->lock); 5641 if (dropped > 0) 5642 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5643 5644 if (btrfs_test_is_dummy_root(root)) 5645 return; 5646 5647 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5648 btrfs_ino(inode), to_free, 0); 5649 5650 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5651 to_free); 5652 } 5653 5654 /** 5655 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5656 * @inode: inode we're writing to 5657 * @num_bytes: the number of bytes we want to allocate 5658 * 5659 * This will do the following things 5660 * 5661 * o reserve space in the data space info for num_bytes 5662 * o reserve space in the metadata space info based on number of outstanding 5663 * extents and how much csums will be needed 5664 * o add to the inodes ->delalloc_bytes 5665 * o add it to the fs_info's delalloc inodes list. 5666 * 5667 * This will return 0 for success and -ENOSPC if there is no space left. 5668 */ 5669 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5670 { 5671 int ret; 5672 5673 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5674 if (ret) 5675 return ret; 5676 5677 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5678 if (ret) { 5679 btrfs_free_reserved_data_space(inode, num_bytes); 5680 return ret; 5681 } 5682 5683 return 0; 5684 } 5685 5686 /** 5687 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5688 * @inode: inode we're releasing space for 5689 * @num_bytes: the number of bytes we want to free up 5690 * 5691 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5692 * called in the case that we don't need the metadata AND data reservations 5693 * anymore. So if there is an error or we insert an inline extent. 5694 * 5695 * This function will release the metadata space that was not used and will 5696 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5697 * list if there are no delalloc bytes left. 5698 */ 5699 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5700 { 5701 btrfs_delalloc_release_metadata(inode, num_bytes); 5702 btrfs_free_reserved_data_space(inode, num_bytes); 5703 } 5704 5705 static int update_block_group(struct btrfs_trans_handle *trans, 5706 struct btrfs_root *root, u64 bytenr, 5707 u64 num_bytes, int alloc) 5708 { 5709 struct btrfs_block_group_cache *cache = NULL; 5710 struct btrfs_fs_info *info = root->fs_info; 5711 u64 total = num_bytes; 5712 u64 old_val; 5713 u64 byte_in_group; 5714 int factor; 5715 5716 /* block accounting for super block */ 5717 spin_lock(&info->delalloc_root_lock); 5718 old_val = btrfs_super_bytes_used(info->super_copy); 5719 if (alloc) 5720 old_val += num_bytes; 5721 else 5722 old_val -= num_bytes; 5723 btrfs_set_super_bytes_used(info->super_copy, old_val); 5724 spin_unlock(&info->delalloc_root_lock); 5725 5726 while (total) { 5727 cache = btrfs_lookup_block_group(info, bytenr); 5728 if (!cache) 5729 return -ENOENT; 5730 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5731 BTRFS_BLOCK_GROUP_RAID1 | 5732 BTRFS_BLOCK_GROUP_RAID10)) 5733 factor = 2; 5734 else 5735 factor = 1; 5736 /* 5737 * If this block group has free space cache written out, we 5738 * need to make sure to load it if we are removing space. This 5739 * is because we need the unpinning stage to actually add the 5740 * space back to the block group, otherwise we will leak space. 5741 */ 5742 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5743 cache_block_group(cache, 1); 5744 5745 byte_in_group = bytenr - cache->key.objectid; 5746 WARN_ON(byte_in_group > cache->key.offset); 5747 5748 spin_lock(&cache->space_info->lock); 5749 spin_lock(&cache->lock); 5750 5751 if (btrfs_test_opt(root, SPACE_CACHE) && 5752 cache->disk_cache_state < BTRFS_DC_CLEAR) 5753 cache->disk_cache_state = BTRFS_DC_CLEAR; 5754 5755 old_val = btrfs_block_group_used(&cache->item); 5756 num_bytes = min(total, cache->key.offset - byte_in_group); 5757 if (alloc) { 5758 old_val += num_bytes; 5759 btrfs_set_block_group_used(&cache->item, old_val); 5760 cache->reserved -= num_bytes; 5761 cache->space_info->bytes_reserved -= num_bytes; 5762 cache->space_info->bytes_used += num_bytes; 5763 cache->space_info->disk_used += num_bytes * factor; 5764 spin_unlock(&cache->lock); 5765 spin_unlock(&cache->space_info->lock); 5766 } else { 5767 old_val -= num_bytes; 5768 btrfs_set_block_group_used(&cache->item, old_val); 5769 cache->pinned += num_bytes; 5770 cache->space_info->bytes_pinned += num_bytes; 5771 cache->space_info->bytes_used -= num_bytes; 5772 cache->space_info->disk_used -= num_bytes * factor; 5773 spin_unlock(&cache->lock); 5774 spin_unlock(&cache->space_info->lock); 5775 5776 set_extent_dirty(info->pinned_extents, 5777 bytenr, bytenr + num_bytes - 1, 5778 GFP_NOFS | __GFP_NOFAIL); 5779 /* 5780 * No longer have used bytes in this block group, queue 5781 * it for deletion. 5782 */ 5783 if (old_val == 0) { 5784 spin_lock(&info->unused_bgs_lock); 5785 if (list_empty(&cache->bg_list)) { 5786 btrfs_get_block_group(cache); 5787 list_add_tail(&cache->bg_list, 5788 &info->unused_bgs); 5789 } 5790 spin_unlock(&info->unused_bgs_lock); 5791 } 5792 } 5793 5794 spin_lock(&trans->transaction->dirty_bgs_lock); 5795 if (list_empty(&cache->dirty_list)) { 5796 list_add_tail(&cache->dirty_list, 5797 &trans->transaction->dirty_bgs); 5798 trans->transaction->num_dirty_bgs++; 5799 btrfs_get_block_group(cache); 5800 } 5801 spin_unlock(&trans->transaction->dirty_bgs_lock); 5802 5803 btrfs_put_block_group(cache); 5804 total -= num_bytes; 5805 bytenr += num_bytes; 5806 } 5807 return 0; 5808 } 5809 5810 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5811 { 5812 struct btrfs_block_group_cache *cache; 5813 u64 bytenr; 5814 5815 spin_lock(&root->fs_info->block_group_cache_lock); 5816 bytenr = root->fs_info->first_logical_byte; 5817 spin_unlock(&root->fs_info->block_group_cache_lock); 5818 5819 if (bytenr < (u64)-1) 5820 return bytenr; 5821 5822 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5823 if (!cache) 5824 return 0; 5825 5826 bytenr = cache->key.objectid; 5827 btrfs_put_block_group(cache); 5828 5829 return bytenr; 5830 } 5831 5832 static int pin_down_extent(struct btrfs_root *root, 5833 struct btrfs_block_group_cache *cache, 5834 u64 bytenr, u64 num_bytes, int reserved) 5835 { 5836 spin_lock(&cache->space_info->lock); 5837 spin_lock(&cache->lock); 5838 cache->pinned += num_bytes; 5839 cache->space_info->bytes_pinned += num_bytes; 5840 if (reserved) { 5841 cache->reserved -= num_bytes; 5842 cache->space_info->bytes_reserved -= num_bytes; 5843 } 5844 spin_unlock(&cache->lock); 5845 spin_unlock(&cache->space_info->lock); 5846 5847 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5848 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5849 if (reserved) 5850 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5851 return 0; 5852 } 5853 5854 /* 5855 * this function must be called within transaction 5856 */ 5857 int btrfs_pin_extent(struct btrfs_root *root, 5858 u64 bytenr, u64 num_bytes, int reserved) 5859 { 5860 struct btrfs_block_group_cache *cache; 5861 5862 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5863 BUG_ON(!cache); /* Logic error */ 5864 5865 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5866 5867 btrfs_put_block_group(cache); 5868 return 0; 5869 } 5870 5871 /* 5872 * this function must be called within transaction 5873 */ 5874 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5875 u64 bytenr, u64 num_bytes) 5876 { 5877 struct btrfs_block_group_cache *cache; 5878 int ret; 5879 5880 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5881 if (!cache) 5882 return -EINVAL; 5883 5884 /* 5885 * pull in the free space cache (if any) so that our pin 5886 * removes the free space from the cache. We have load_only set 5887 * to one because the slow code to read in the free extents does check 5888 * the pinned extents. 5889 */ 5890 cache_block_group(cache, 1); 5891 5892 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5893 5894 /* remove us from the free space cache (if we're there at all) */ 5895 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5896 btrfs_put_block_group(cache); 5897 return ret; 5898 } 5899 5900 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5901 { 5902 int ret; 5903 struct btrfs_block_group_cache *block_group; 5904 struct btrfs_caching_control *caching_ctl; 5905 5906 block_group = btrfs_lookup_block_group(root->fs_info, start); 5907 if (!block_group) 5908 return -EINVAL; 5909 5910 cache_block_group(block_group, 0); 5911 caching_ctl = get_caching_control(block_group); 5912 5913 if (!caching_ctl) { 5914 /* Logic error */ 5915 BUG_ON(!block_group_cache_done(block_group)); 5916 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5917 } else { 5918 mutex_lock(&caching_ctl->mutex); 5919 5920 if (start >= caching_ctl->progress) { 5921 ret = add_excluded_extent(root, start, num_bytes); 5922 } else if (start + num_bytes <= caching_ctl->progress) { 5923 ret = btrfs_remove_free_space(block_group, 5924 start, num_bytes); 5925 } else { 5926 num_bytes = caching_ctl->progress - start; 5927 ret = btrfs_remove_free_space(block_group, 5928 start, num_bytes); 5929 if (ret) 5930 goto out_lock; 5931 5932 num_bytes = (start + num_bytes) - 5933 caching_ctl->progress; 5934 start = caching_ctl->progress; 5935 ret = add_excluded_extent(root, start, num_bytes); 5936 } 5937 out_lock: 5938 mutex_unlock(&caching_ctl->mutex); 5939 put_caching_control(caching_ctl); 5940 } 5941 btrfs_put_block_group(block_group); 5942 return ret; 5943 } 5944 5945 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5946 struct extent_buffer *eb) 5947 { 5948 struct btrfs_file_extent_item *item; 5949 struct btrfs_key key; 5950 int found_type; 5951 int i; 5952 5953 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5954 return 0; 5955 5956 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5957 btrfs_item_key_to_cpu(eb, &key, i); 5958 if (key.type != BTRFS_EXTENT_DATA_KEY) 5959 continue; 5960 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5961 found_type = btrfs_file_extent_type(eb, item); 5962 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5963 continue; 5964 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5965 continue; 5966 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5967 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5968 __exclude_logged_extent(log, key.objectid, key.offset); 5969 } 5970 5971 return 0; 5972 } 5973 5974 /** 5975 * btrfs_update_reserved_bytes - update the block_group and space info counters 5976 * @cache: The cache we are manipulating 5977 * @num_bytes: The number of bytes in question 5978 * @reserve: One of the reservation enums 5979 * @delalloc: The blocks are allocated for the delalloc write 5980 * 5981 * This is called by the allocator when it reserves space, or by somebody who is 5982 * freeing space that was never actually used on disk. For example if you 5983 * reserve some space for a new leaf in transaction A and before transaction A 5984 * commits you free that leaf, you call this with reserve set to 0 in order to 5985 * clear the reservation. 5986 * 5987 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5988 * ENOSPC accounting. For data we handle the reservation through clearing the 5989 * delalloc bits in the io_tree. We have to do this since we could end up 5990 * allocating less disk space for the amount of data we have reserved in the 5991 * case of compression. 5992 * 5993 * If this is a reservation and the block group has become read only we cannot 5994 * make the reservation and return -EAGAIN, otherwise this function always 5995 * succeeds. 5996 */ 5997 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5998 u64 num_bytes, int reserve, int delalloc) 5999 { 6000 struct btrfs_space_info *space_info = cache->space_info; 6001 int ret = 0; 6002 6003 spin_lock(&space_info->lock); 6004 spin_lock(&cache->lock); 6005 if (reserve != RESERVE_FREE) { 6006 if (cache->ro) { 6007 ret = -EAGAIN; 6008 } else { 6009 cache->reserved += num_bytes; 6010 space_info->bytes_reserved += num_bytes; 6011 if (reserve == RESERVE_ALLOC) { 6012 trace_btrfs_space_reservation(cache->fs_info, 6013 "space_info", space_info->flags, 6014 num_bytes, 0); 6015 space_info->bytes_may_use -= num_bytes; 6016 } 6017 6018 if (delalloc) 6019 cache->delalloc_bytes += num_bytes; 6020 } 6021 } else { 6022 if (cache->ro) 6023 space_info->bytes_readonly += num_bytes; 6024 cache->reserved -= num_bytes; 6025 space_info->bytes_reserved -= num_bytes; 6026 6027 if (delalloc) 6028 cache->delalloc_bytes -= num_bytes; 6029 } 6030 spin_unlock(&cache->lock); 6031 spin_unlock(&space_info->lock); 6032 return ret; 6033 } 6034 6035 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6036 struct btrfs_root *root) 6037 { 6038 struct btrfs_fs_info *fs_info = root->fs_info; 6039 struct btrfs_caching_control *next; 6040 struct btrfs_caching_control *caching_ctl; 6041 struct btrfs_block_group_cache *cache; 6042 6043 down_write(&fs_info->commit_root_sem); 6044 6045 list_for_each_entry_safe(caching_ctl, next, 6046 &fs_info->caching_block_groups, list) { 6047 cache = caching_ctl->block_group; 6048 if (block_group_cache_done(cache)) { 6049 cache->last_byte_to_unpin = (u64)-1; 6050 list_del_init(&caching_ctl->list); 6051 put_caching_control(caching_ctl); 6052 } else { 6053 cache->last_byte_to_unpin = caching_ctl->progress; 6054 } 6055 } 6056 6057 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6058 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6059 else 6060 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6061 6062 up_write(&fs_info->commit_root_sem); 6063 6064 update_global_block_rsv(fs_info); 6065 } 6066 6067 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6068 const bool return_free_space) 6069 { 6070 struct btrfs_fs_info *fs_info = root->fs_info; 6071 struct btrfs_block_group_cache *cache = NULL; 6072 struct btrfs_space_info *space_info; 6073 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6074 u64 len; 6075 bool readonly; 6076 6077 while (start <= end) { 6078 readonly = false; 6079 if (!cache || 6080 start >= cache->key.objectid + cache->key.offset) { 6081 if (cache) 6082 btrfs_put_block_group(cache); 6083 cache = btrfs_lookup_block_group(fs_info, start); 6084 BUG_ON(!cache); /* Logic error */ 6085 } 6086 6087 len = cache->key.objectid + cache->key.offset - start; 6088 len = min(len, end + 1 - start); 6089 6090 if (start < cache->last_byte_to_unpin) { 6091 len = min(len, cache->last_byte_to_unpin - start); 6092 if (return_free_space) 6093 btrfs_add_free_space(cache, start, len); 6094 } 6095 6096 start += len; 6097 space_info = cache->space_info; 6098 6099 spin_lock(&space_info->lock); 6100 spin_lock(&cache->lock); 6101 cache->pinned -= len; 6102 space_info->bytes_pinned -= len; 6103 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6104 if (cache->ro) { 6105 space_info->bytes_readonly += len; 6106 readonly = true; 6107 } 6108 spin_unlock(&cache->lock); 6109 if (!readonly && global_rsv->space_info == space_info) { 6110 spin_lock(&global_rsv->lock); 6111 if (!global_rsv->full) { 6112 len = min(len, global_rsv->size - 6113 global_rsv->reserved); 6114 global_rsv->reserved += len; 6115 space_info->bytes_may_use += len; 6116 if (global_rsv->reserved >= global_rsv->size) 6117 global_rsv->full = 1; 6118 } 6119 spin_unlock(&global_rsv->lock); 6120 } 6121 spin_unlock(&space_info->lock); 6122 } 6123 6124 if (cache) 6125 btrfs_put_block_group(cache); 6126 return 0; 6127 } 6128 6129 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6130 struct btrfs_root *root) 6131 { 6132 struct btrfs_fs_info *fs_info = root->fs_info; 6133 struct btrfs_block_group_cache *block_group, *tmp; 6134 struct list_head *deleted_bgs; 6135 struct extent_io_tree *unpin; 6136 u64 start; 6137 u64 end; 6138 int ret; 6139 6140 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6141 unpin = &fs_info->freed_extents[1]; 6142 else 6143 unpin = &fs_info->freed_extents[0]; 6144 6145 while (!trans->aborted) { 6146 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6147 ret = find_first_extent_bit(unpin, 0, &start, &end, 6148 EXTENT_DIRTY, NULL); 6149 if (ret) { 6150 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6151 break; 6152 } 6153 6154 if (btrfs_test_opt(root, DISCARD)) 6155 ret = btrfs_discard_extent(root, start, 6156 end + 1 - start, NULL); 6157 6158 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6159 unpin_extent_range(root, start, end, true); 6160 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6161 cond_resched(); 6162 } 6163 6164 /* 6165 * Transaction is finished. We don't need the lock anymore. We 6166 * do need to clean up the block groups in case of a transaction 6167 * abort. 6168 */ 6169 deleted_bgs = &trans->transaction->deleted_bgs; 6170 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6171 u64 trimmed = 0; 6172 6173 ret = -EROFS; 6174 if (!trans->aborted) 6175 ret = btrfs_discard_extent(root, 6176 block_group->key.objectid, 6177 block_group->key.offset, 6178 &trimmed); 6179 6180 list_del_init(&block_group->bg_list); 6181 btrfs_put_block_group_trimming(block_group); 6182 btrfs_put_block_group(block_group); 6183 6184 if (ret) { 6185 const char *errstr = btrfs_decode_error(ret); 6186 btrfs_warn(fs_info, 6187 "Discard failed while removing blockgroup: errno=%d %s\n", 6188 ret, errstr); 6189 } 6190 } 6191 6192 return 0; 6193 } 6194 6195 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6196 u64 owner, u64 root_objectid) 6197 { 6198 struct btrfs_space_info *space_info; 6199 u64 flags; 6200 6201 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6202 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6203 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6204 else 6205 flags = BTRFS_BLOCK_GROUP_METADATA; 6206 } else { 6207 flags = BTRFS_BLOCK_GROUP_DATA; 6208 } 6209 6210 space_info = __find_space_info(fs_info, flags); 6211 BUG_ON(!space_info); /* Logic bug */ 6212 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6213 } 6214 6215 6216 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6217 struct btrfs_root *root, 6218 struct btrfs_delayed_ref_node *node, u64 parent, 6219 u64 root_objectid, u64 owner_objectid, 6220 u64 owner_offset, int refs_to_drop, 6221 struct btrfs_delayed_extent_op *extent_op) 6222 { 6223 struct btrfs_key key; 6224 struct btrfs_path *path; 6225 struct btrfs_fs_info *info = root->fs_info; 6226 struct btrfs_root *extent_root = info->extent_root; 6227 struct extent_buffer *leaf; 6228 struct btrfs_extent_item *ei; 6229 struct btrfs_extent_inline_ref *iref; 6230 int ret; 6231 int is_data; 6232 int extent_slot = 0; 6233 int found_extent = 0; 6234 int num_to_del = 1; 6235 int no_quota = node->no_quota; 6236 u32 item_size; 6237 u64 refs; 6238 u64 bytenr = node->bytenr; 6239 u64 num_bytes = node->num_bytes; 6240 int last_ref = 0; 6241 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6242 SKINNY_METADATA); 6243 6244 if (!info->quota_enabled || !is_fstree(root_objectid)) 6245 no_quota = 1; 6246 6247 path = btrfs_alloc_path(); 6248 if (!path) 6249 return -ENOMEM; 6250 6251 path->reada = 1; 6252 path->leave_spinning = 1; 6253 6254 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6255 BUG_ON(!is_data && refs_to_drop != 1); 6256 6257 if (is_data) 6258 skinny_metadata = 0; 6259 6260 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6261 bytenr, num_bytes, parent, 6262 root_objectid, owner_objectid, 6263 owner_offset); 6264 if (ret == 0) { 6265 extent_slot = path->slots[0]; 6266 while (extent_slot >= 0) { 6267 btrfs_item_key_to_cpu(path->nodes[0], &key, 6268 extent_slot); 6269 if (key.objectid != bytenr) 6270 break; 6271 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6272 key.offset == num_bytes) { 6273 found_extent = 1; 6274 break; 6275 } 6276 if (key.type == BTRFS_METADATA_ITEM_KEY && 6277 key.offset == owner_objectid) { 6278 found_extent = 1; 6279 break; 6280 } 6281 if (path->slots[0] - extent_slot > 5) 6282 break; 6283 extent_slot--; 6284 } 6285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6286 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6287 if (found_extent && item_size < sizeof(*ei)) 6288 found_extent = 0; 6289 #endif 6290 if (!found_extent) { 6291 BUG_ON(iref); 6292 ret = remove_extent_backref(trans, extent_root, path, 6293 NULL, refs_to_drop, 6294 is_data, &last_ref); 6295 if (ret) { 6296 btrfs_abort_transaction(trans, extent_root, ret); 6297 goto out; 6298 } 6299 btrfs_release_path(path); 6300 path->leave_spinning = 1; 6301 6302 key.objectid = bytenr; 6303 key.type = BTRFS_EXTENT_ITEM_KEY; 6304 key.offset = num_bytes; 6305 6306 if (!is_data && skinny_metadata) { 6307 key.type = BTRFS_METADATA_ITEM_KEY; 6308 key.offset = owner_objectid; 6309 } 6310 6311 ret = btrfs_search_slot(trans, extent_root, 6312 &key, path, -1, 1); 6313 if (ret > 0 && skinny_metadata && path->slots[0]) { 6314 /* 6315 * Couldn't find our skinny metadata item, 6316 * see if we have ye olde extent item. 6317 */ 6318 path->slots[0]--; 6319 btrfs_item_key_to_cpu(path->nodes[0], &key, 6320 path->slots[0]); 6321 if (key.objectid == bytenr && 6322 key.type == BTRFS_EXTENT_ITEM_KEY && 6323 key.offset == num_bytes) 6324 ret = 0; 6325 } 6326 6327 if (ret > 0 && skinny_metadata) { 6328 skinny_metadata = false; 6329 key.objectid = bytenr; 6330 key.type = BTRFS_EXTENT_ITEM_KEY; 6331 key.offset = num_bytes; 6332 btrfs_release_path(path); 6333 ret = btrfs_search_slot(trans, extent_root, 6334 &key, path, -1, 1); 6335 } 6336 6337 if (ret) { 6338 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6339 ret, bytenr); 6340 if (ret > 0) 6341 btrfs_print_leaf(extent_root, 6342 path->nodes[0]); 6343 } 6344 if (ret < 0) { 6345 btrfs_abort_transaction(trans, extent_root, ret); 6346 goto out; 6347 } 6348 extent_slot = path->slots[0]; 6349 } 6350 } else if (WARN_ON(ret == -ENOENT)) { 6351 btrfs_print_leaf(extent_root, path->nodes[0]); 6352 btrfs_err(info, 6353 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6354 bytenr, parent, root_objectid, owner_objectid, 6355 owner_offset); 6356 btrfs_abort_transaction(trans, extent_root, ret); 6357 goto out; 6358 } else { 6359 btrfs_abort_transaction(trans, extent_root, ret); 6360 goto out; 6361 } 6362 6363 leaf = path->nodes[0]; 6364 item_size = btrfs_item_size_nr(leaf, extent_slot); 6365 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6366 if (item_size < sizeof(*ei)) { 6367 BUG_ON(found_extent || extent_slot != path->slots[0]); 6368 ret = convert_extent_item_v0(trans, extent_root, path, 6369 owner_objectid, 0); 6370 if (ret < 0) { 6371 btrfs_abort_transaction(trans, extent_root, ret); 6372 goto out; 6373 } 6374 6375 btrfs_release_path(path); 6376 path->leave_spinning = 1; 6377 6378 key.objectid = bytenr; 6379 key.type = BTRFS_EXTENT_ITEM_KEY; 6380 key.offset = num_bytes; 6381 6382 ret = btrfs_search_slot(trans, extent_root, &key, path, 6383 -1, 1); 6384 if (ret) { 6385 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6386 ret, bytenr); 6387 btrfs_print_leaf(extent_root, path->nodes[0]); 6388 } 6389 if (ret < 0) { 6390 btrfs_abort_transaction(trans, extent_root, ret); 6391 goto out; 6392 } 6393 6394 extent_slot = path->slots[0]; 6395 leaf = path->nodes[0]; 6396 item_size = btrfs_item_size_nr(leaf, extent_slot); 6397 } 6398 #endif 6399 BUG_ON(item_size < sizeof(*ei)); 6400 ei = btrfs_item_ptr(leaf, extent_slot, 6401 struct btrfs_extent_item); 6402 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6403 key.type == BTRFS_EXTENT_ITEM_KEY) { 6404 struct btrfs_tree_block_info *bi; 6405 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6406 bi = (struct btrfs_tree_block_info *)(ei + 1); 6407 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6408 } 6409 6410 refs = btrfs_extent_refs(leaf, ei); 6411 if (refs < refs_to_drop) { 6412 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6413 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6414 ret = -EINVAL; 6415 btrfs_abort_transaction(trans, extent_root, ret); 6416 goto out; 6417 } 6418 refs -= refs_to_drop; 6419 6420 if (refs > 0) { 6421 if (extent_op) 6422 __run_delayed_extent_op(extent_op, leaf, ei); 6423 /* 6424 * In the case of inline back ref, reference count will 6425 * be updated by remove_extent_backref 6426 */ 6427 if (iref) { 6428 BUG_ON(!found_extent); 6429 } else { 6430 btrfs_set_extent_refs(leaf, ei, refs); 6431 btrfs_mark_buffer_dirty(leaf); 6432 } 6433 if (found_extent) { 6434 ret = remove_extent_backref(trans, extent_root, path, 6435 iref, refs_to_drop, 6436 is_data, &last_ref); 6437 if (ret) { 6438 btrfs_abort_transaction(trans, extent_root, ret); 6439 goto out; 6440 } 6441 } 6442 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6443 root_objectid); 6444 } else { 6445 if (found_extent) { 6446 BUG_ON(is_data && refs_to_drop != 6447 extent_data_ref_count(path, iref)); 6448 if (iref) { 6449 BUG_ON(path->slots[0] != extent_slot); 6450 } else { 6451 BUG_ON(path->slots[0] != extent_slot + 1); 6452 path->slots[0] = extent_slot; 6453 num_to_del = 2; 6454 } 6455 } 6456 6457 last_ref = 1; 6458 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6459 num_to_del); 6460 if (ret) { 6461 btrfs_abort_transaction(trans, extent_root, ret); 6462 goto out; 6463 } 6464 btrfs_release_path(path); 6465 6466 if (is_data) { 6467 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6468 if (ret) { 6469 btrfs_abort_transaction(trans, extent_root, ret); 6470 goto out; 6471 } 6472 } 6473 6474 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6475 if (ret) { 6476 btrfs_abort_transaction(trans, extent_root, ret); 6477 goto out; 6478 } 6479 } 6480 btrfs_release_path(path); 6481 6482 out: 6483 btrfs_free_path(path); 6484 return ret; 6485 } 6486 6487 /* 6488 * when we free an block, it is possible (and likely) that we free the last 6489 * delayed ref for that extent as well. This searches the delayed ref tree for 6490 * a given extent, and if there are no other delayed refs to be processed, it 6491 * removes it from the tree. 6492 */ 6493 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6494 struct btrfs_root *root, u64 bytenr) 6495 { 6496 struct btrfs_delayed_ref_head *head; 6497 struct btrfs_delayed_ref_root *delayed_refs; 6498 int ret = 0; 6499 6500 delayed_refs = &trans->transaction->delayed_refs; 6501 spin_lock(&delayed_refs->lock); 6502 head = btrfs_find_delayed_ref_head(trans, bytenr); 6503 if (!head) 6504 goto out_delayed_unlock; 6505 6506 spin_lock(&head->lock); 6507 if (!list_empty(&head->ref_list)) 6508 goto out; 6509 6510 if (head->extent_op) { 6511 if (!head->must_insert_reserved) 6512 goto out; 6513 btrfs_free_delayed_extent_op(head->extent_op); 6514 head->extent_op = NULL; 6515 } 6516 6517 /* 6518 * waiting for the lock here would deadlock. If someone else has it 6519 * locked they are already in the process of dropping it anyway 6520 */ 6521 if (!mutex_trylock(&head->mutex)) 6522 goto out; 6523 6524 /* 6525 * at this point we have a head with no other entries. Go 6526 * ahead and process it. 6527 */ 6528 head->node.in_tree = 0; 6529 rb_erase(&head->href_node, &delayed_refs->href_root); 6530 6531 atomic_dec(&delayed_refs->num_entries); 6532 6533 /* 6534 * we don't take a ref on the node because we're removing it from the 6535 * tree, so we just steal the ref the tree was holding. 6536 */ 6537 delayed_refs->num_heads--; 6538 if (head->processing == 0) 6539 delayed_refs->num_heads_ready--; 6540 head->processing = 0; 6541 spin_unlock(&head->lock); 6542 spin_unlock(&delayed_refs->lock); 6543 6544 BUG_ON(head->extent_op); 6545 if (head->must_insert_reserved) 6546 ret = 1; 6547 6548 mutex_unlock(&head->mutex); 6549 btrfs_put_delayed_ref(&head->node); 6550 return ret; 6551 out: 6552 spin_unlock(&head->lock); 6553 6554 out_delayed_unlock: 6555 spin_unlock(&delayed_refs->lock); 6556 return 0; 6557 } 6558 6559 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6560 struct btrfs_root *root, 6561 struct extent_buffer *buf, 6562 u64 parent, int last_ref) 6563 { 6564 int pin = 1; 6565 int ret; 6566 6567 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6568 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6569 buf->start, buf->len, 6570 parent, root->root_key.objectid, 6571 btrfs_header_level(buf), 6572 BTRFS_DROP_DELAYED_REF, NULL, 0); 6573 BUG_ON(ret); /* -ENOMEM */ 6574 } 6575 6576 if (!last_ref) 6577 return; 6578 6579 if (btrfs_header_generation(buf) == trans->transid) { 6580 struct btrfs_block_group_cache *cache; 6581 6582 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6583 ret = check_ref_cleanup(trans, root, buf->start); 6584 if (!ret) 6585 goto out; 6586 } 6587 6588 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6589 6590 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6591 pin_down_extent(root, cache, buf->start, buf->len, 1); 6592 btrfs_put_block_group(cache); 6593 goto out; 6594 } 6595 6596 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6597 6598 btrfs_add_free_space(cache, buf->start, buf->len); 6599 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6600 btrfs_put_block_group(cache); 6601 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6602 pin = 0; 6603 } 6604 out: 6605 if (pin) 6606 add_pinned_bytes(root->fs_info, buf->len, 6607 btrfs_header_level(buf), 6608 root->root_key.objectid); 6609 6610 /* 6611 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6612 * anymore. 6613 */ 6614 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6615 } 6616 6617 /* Can return -ENOMEM */ 6618 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6619 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6620 u64 owner, u64 offset, int no_quota) 6621 { 6622 int ret; 6623 struct btrfs_fs_info *fs_info = root->fs_info; 6624 6625 if (btrfs_test_is_dummy_root(root)) 6626 return 0; 6627 6628 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6629 6630 /* 6631 * tree log blocks never actually go into the extent allocation 6632 * tree, just update pinning info and exit early. 6633 */ 6634 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6635 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6636 /* unlocks the pinned mutex */ 6637 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6638 ret = 0; 6639 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6640 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6641 num_bytes, 6642 parent, root_objectid, (int)owner, 6643 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6644 } else { 6645 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6646 num_bytes, 6647 parent, root_objectid, owner, 6648 offset, BTRFS_DROP_DELAYED_REF, 6649 NULL, no_quota); 6650 } 6651 return ret; 6652 } 6653 6654 /* 6655 * when we wait for progress in the block group caching, its because 6656 * our allocation attempt failed at least once. So, we must sleep 6657 * and let some progress happen before we try again. 6658 * 6659 * This function will sleep at least once waiting for new free space to 6660 * show up, and then it will check the block group free space numbers 6661 * for our min num_bytes. Another option is to have it go ahead 6662 * and look in the rbtree for a free extent of a given size, but this 6663 * is a good start. 6664 * 6665 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6666 * any of the information in this block group. 6667 */ 6668 static noinline void 6669 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6670 u64 num_bytes) 6671 { 6672 struct btrfs_caching_control *caching_ctl; 6673 6674 caching_ctl = get_caching_control(cache); 6675 if (!caching_ctl) 6676 return; 6677 6678 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6679 (cache->free_space_ctl->free_space >= num_bytes)); 6680 6681 put_caching_control(caching_ctl); 6682 } 6683 6684 static noinline int 6685 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6686 { 6687 struct btrfs_caching_control *caching_ctl; 6688 int ret = 0; 6689 6690 caching_ctl = get_caching_control(cache); 6691 if (!caching_ctl) 6692 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6693 6694 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6695 if (cache->cached == BTRFS_CACHE_ERROR) 6696 ret = -EIO; 6697 put_caching_control(caching_ctl); 6698 return ret; 6699 } 6700 6701 int __get_raid_index(u64 flags) 6702 { 6703 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6704 return BTRFS_RAID_RAID10; 6705 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6706 return BTRFS_RAID_RAID1; 6707 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6708 return BTRFS_RAID_DUP; 6709 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6710 return BTRFS_RAID_RAID0; 6711 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6712 return BTRFS_RAID_RAID5; 6713 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6714 return BTRFS_RAID_RAID6; 6715 6716 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6717 } 6718 6719 int get_block_group_index(struct btrfs_block_group_cache *cache) 6720 { 6721 return __get_raid_index(cache->flags); 6722 } 6723 6724 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6725 [BTRFS_RAID_RAID10] = "raid10", 6726 [BTRFS_RAID_RAID1] = "raid1", 6727 [BTRFS_RAID_DUP] = "dup", 6728 [BTRFS_RAID_RAID0] = "raid0", 6729 [BTRFS_RAID_SINGLE] = "single", 6730 [BTRFS_RAID_RAID5] = "raid5", 6731 [BTRFS_RAID_RAID6] = "raid6", 6732 }; 6733 6734 static const char *get_raid_name(enum btrfs_raid_types type) 6735 { 6736 if (type >= BTRFS_NR_RAID_TYPES) 6737 return NULL; 6738 6739 return btrfs_raid_type_names[type]; 6740 } 6741 6742 enum btrfs_loop_type { 6743 LOOP_CACHING_NOWAIT = 0, 6744 LOOP_CACHING_WAIT = 1, 6745 LOOP_ALLOC_CHUNK = 2, 6746 LOOP_NO_EMPTY_SIZE = 3, 6747 }; 6748 6749 static inline void 6750 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6751 int delalloc) 6752 { 6753 if (delalloc) 6754 down_read(&cache->data_rwsem); 6755 } 6756 6757 static inline void 6758 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6759 int delalloc) 6760 { 6761 btrfs_get_block_group(cache); 6762 if (delalloc) 6763 down_read(&cache->data_rwsem); 6764 } 6765 6766 static struct btrfs_block_group_cache * 6767 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6768 struct btrfs_free_cluster *cluster, 6769 int delalloc) 6770 { 6771 struct btrfs_block_group_cache *used_bg; 6772 bool locked = false; 6773 again: 6774 spin_lock(&cluster->refill_lock); 6775 if (locked) { 6776 if (used_bg == cluster->block_group) 6777 return used_bg; 6778 6779 up_read(&used_bg->data_rwsem); 6780 btrfs_put_block_group(used_bg); 6781 } 6782 6783 used_bg = cluster->block_group; 6784 if (!used_bg) 6785 return NULL; 6786 6787 if (used_bg == block_group) 6788 return used_bg; 6789 6790 btrfs_get_block_group(used_bg); 6791 6792 if (!delalloc) 6793 return used_bg; 6794 6795 if (down_read_trylock(&used_bg->data_rwsem)) 6796 return used_bg; 6797 6798 spin_unlock(&cluster->refill_lock); 6799 down_read(&used_bg->data_rwsem); 6800 locked = true; 6801 goto again; 6802 } 6803 6804 static inline void 6805 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6806 int delalloc) 6807 { 6808 if (delalloc) 6809 up_read(&cache->data_rwsem); 6810 btrfs_put_block_group(cache); 6811 } 6812 6813 /* 6814 * walks the btree of allocated extents and find a hole of a given size. 6815 * The key ins is changed to record the hole: 6816 * ins->objectid == start position 6817 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6818 * ins->offset == the size of the hole. 6819 * Any available blocks before search_start are skipped. 6820 * 6821 * If there is no suitable free space, we will record the max size of 6822 * the free space extent currently. 6823 */ 6824 static noinline int find_free_extent(struct btrfs_root *orig_root, 6825 u64 num_bytes, u64 empty_size, 6826 u64 hint_byte, struct btrfs_key *ins, 6827 u64 flags, int delalloc) 6828 { 6829 int ret = 0; 6830 struct btrfs_root *root = orig_root->fs_info->extent_root; 6831 struct btrfs_free_cluster *last_ptr = NULL; 6832 struct btrfs_block_group_cache *block_group = NULL; 6833 u64 search_start = 0; 6834 u64 max_extent_size = 0; 6835 int empty_cluster = 2 * 1024 * 1024; 6836 struct btrfs_space_info *space_info; 6837 int loop = 0; 6838 int index = __get_raid_index(flags); 6839 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6840 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6841 bool failed_cluster_refill = false; 6842 bool failed_alloc = false; 6843 bool use_cluster = true; 6844 bool have_caching_bg = false; 6845 6846 WARN_ON(num_bytes < root->sectorsize); 6847 ins->type = BTRFS_EXTENT_ITEM_KEY; 6848 ins->objectid = 0; 6849 ins->offset = 0; 6850 6851 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6852 6853 space_info = __find_space_info(root->fs_info, flags); 6854 if (!space_info) { 6855 btrfs_err(root->fs_info, "No space info for %llu", flags); 6856 return -ENOSPC; 6857 } 6858 6859 /* 6860 * If the space info is for both data and metadata it means we have a 6861 * small filesystem and we can't use the clustering stuff. 6862 */ 6863 if (btrfs_mixed_space_info(space_info)) 6864 use_cluster = false; 6865 6866 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6867 last_ptr = &root->fs_info->meta_alloc_cluster; 6868 if (!btrfs_test_opt(root, SSD)) 6869 empty_cluster = 64 * 1024; 6870 } 6871 6872 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6873 btrfs_test_opt(root, SSD)) { 6874 last_ptr = &root->fs_info->data_alloc_cluster; 6875 } 6876 6877 if (last_ptr) { 6878 spin_lock(&last_ptr->lock); 6879 if (last_ptr->block_group) 6880 hint_byte = last_ptr->window_start; 6881 spin_unlock(&last_ptr->lock); 6882 } 6883 6884 search_start = max(search_start, first_logical_byte(root, 0)); 6885 search_start = max(search_start, hint_byte); 6886 6887 if (!last_ptr) 6888 empty_cluster = 0; 6889 6890 if (search_start == hint_byte) { 6891 block_group = btrfs_lookup_block_group(root->fs_info, 6892 search_start); 6893 /* 6894 * we don't want to use the block group if it doesn't match our 6895 * allocation bits, or if its not cached. 6896 * 6897 * However if we are re-searching with an ideal block group 6898 * picked out then we don't care that the block group is cached. 6899 */ 6900 if (block_group && block_group_bits(block_group, flags) && 6901 block_group->cached != BTRFS_CACHE_NO) { 6902 down_read(&space_info->groups_sem); 6903 if (list_empty(&block_group->list) || 6904 block_group->ro) { 6905 /* 6906 * someone is removing this block group, 6907 * we can't jump into the have_block_group 6908 * target because our list pointers are not 6909 * valid 6910 */ 6911 btrfs_put_block_group(block_group); 6912 up_read(&space_info->groups_sem); 6913 } else { 6914 index = get_block_group_index(block_group); 6915 btrfs_lock_block_group(block_group, delalloc); 6916 goto have_block_group; 6917 } 6918 } else if (block_group) { 6919 btrfs_put_block_group(block_group); 6920 } 6921 } 6922 search: 6923 have_caching_bg = false; 6924 down_read(&space_info->groups_sem); 6925 list_for_each_entry(block_group, &space_info->block_groups[index], 6926 list) { 6927 u64 offset; 6928 int cached; 6929 6930 btrfs_grab_block_group(block_group, delalloc); 6931 search_start = block_group->key.objectid; 6932 6933 /* 6934 * this can happen if we end up cycling through all the 6935 * raid types, but we want to make sure we only allocate 6936 * for the proper type. 6937 */ 6938 if (!block_group_bits(block_group, flags)) { 6939 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6940 BTRFS_BLOCK_GROUP_RAID1 | 6941 BTRFS_BLOCK_GROUP_RAID5 | 6942 BTRFS_BLOCK_GROUP_RAID6 | 6943 BTRFS_BLOCK_GROUP_RAID10; 6944 6945 /* 6946 * if they asked for extra copies and this block group 6947 * doesn't provide them, bail. This does allow us to 6948 * fill raid0 from raid1. 6949 */ 6950 if ((flags & extra) && !(block_group->flags & extra)) 6951 goto loop; 6952 } 6953 6954 have_block_group: 6955 cached = block_group_cache_done(block_group); 6956 if (unlikely(!cached)) { 6957 ret = cache_block_group(block_group, 0); 6958 BUG_ON(ret < 0); 6959 ret = 0; 6960 } 6961 6962 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6963 goto loop; 6964 if (unlikely(block_group->ro)) 6965 goto loop; 6966 6967 /* 6968 * Ok we want to try and use the cluster allocator, so 6969 * lets look there 6970 */ 6971 if (last_ptr) { 6972 struct btrfs_block_group_cache *used_block_group; 6973 unsigned long aligned_cluster; 6974 /* 6975 * the refill lock keeps out other 6976 * people trying to start a new cluster 6977 */ 6978 used_block_group = btrfs_lock_cluster(block_group, 6979 last_ptr, 6980 delalloc); 6981 if (!used_block_group) 6982 goto refill_cluster; 6983 6984 if (used_block_group != block_group && 6985 (used_block_group->ro || 6986 !block_group_bits(used_block_group, flags))) 6987 goto release_cluster; 6988 6989 offset = btrfs_alloc_from_cluster(used_block_group, 6990 last_ptr, 6991 num_bytes, 6992 used_block_group->key.objectid, 6993 &max_extent_size); 6994 if (offset) { 6995 /* we have a block, we're done */ 6996 spin_unlock(&last_ptr->refill_lock); 6997 trace_btrfs_reserve_extent_cluster(root, 6998 used_block_group, 6999 search_start, num_bytes); 7000 if (used_block_group != block_group) { 7001 btrfs_release_block_group(block_group, 7002 delalloc); 7003 block_group = used_block_group; 7004 } 7005 goto checks; 7006 } 7007 7008 WARN_ON(last_ptr->block_group != used_block_group); 7009 release_cluster: 7010 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7011 * set up a new clusters, so lets just skip it 7012 * and let the allocator find whatever block 7013 * it can find. If we reach this point, we 7014 * will have tried the cluster allocator 7015 * plenty of times and not have found 7016 * anything, so we are likely way too 7017 * fragmented for the clustering stuff to find 7018 * anything. 7019 * 7020 * However, if the cluster is taken from the 7021 * current block group, release the cluster 7022 * first, so that we stand a better chance of 7023 * succeeding in the unclustered 7024 * allocation. */ 7025 if (loop >= LOOP_NO_EMPTY_SIZE && 7026 used_block_group != block_group) { 7027 spin_unlock(&last_ptr->refill_lock); 7028 btrfs_release_block_group(used_block_group, 7029 delalloc); 7030 goto unclustered_alloc; 7031 } 7032 7033 /* 7034 * this cluster didn't work out, free it and 7035 * start over 7036 */ 7037 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7038 7039 if (used_block_group != block_group) 7040 btrfs_release_block_group(used_block_group, 7041 delalloc); 7042 refill_cluster: 7043 if (loop >= LOOP_NO_EMPTY_SIZE) { 7044 spin_unlock(&last_ptr->refill_lock); 7045 goto unclustered_alloc; 7046 } 7047 7048 aligned_cluster = max_t(unsigned long, 7049 empty_cluster + empty_size, 7050 block_group->full_stripe_len); 7051 7052 /* allocate a cluster in this block group */ 7053 ret = btrfs_find_space_cluster(root, block_group, 7054 last_ptr, search_start, 7055 num_bytes, 7056 aligned_cluster); 7057 if (ret == 0) { 7058 /* 7059 * now pull our allocation out of this 7060 * cluster 7061 */ 7062 offset = btrfs_alloc_from_cluster(block_group, 7063 last_ptr, 7064 num_bytes, 7065 search_start, 7066 &max_extent_size); 7067 if (offset) { 7068 /* we found one, proceed */ 7069 spin_unlock(&last_ptr->refill_lock); 7070 trace_btrfs_reserve_extent_cluster(root, 7071 block_group, search_start, 7072 num_bytes); 7073 goto checks; 7074 } 7075 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7076 && !failed_cluster_refill) { 7077 spin_unlock(&last_ptr->refill_lock); 7078 7079 failed_cluster_refill = true; 7080 wait_block_group_cache_progress(block_group, 7081 num_bytes + empty_cluster + empty_size); 7082 goto have_block_group; 7083 } 7084 7085 /* 7086 * at this point we either didn't find a cluster 7087 * or we weren't able to allocate a block from our 7088 * cluster. Free the cluster we've been trying 7089 * to use, and go to the next block group 7090 */ 7091 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7092 spin_unlock(&last_ptr->refill_lock); 7093 goto loop; 7094 } 7095 7096 unclustered_alloc: 7097 spin_lock(&block_group->free_space_ctl->tree_lock); 7098 if (cached && 7099 block_group->free_space_ctl->free_space < 7100 num_bytes + empty_cluster + empty_size) { 7101 if (block_group->free_space_ctl->free_space > 7102 max_extent_size) 7103 max_extent_size = 7104 block_group->free_space_ctl->free_space; 7105 spin_unlock(&block_group->free_space_ctl->tree_lock); 7106 goto loop; 7107 } 7108 spin_unlock(&block_group->free_space_ctl->tree_lock); 7109 7110 offset = btrfs_find_space_for_alloc(block_group, search_start, 7111 num_bytes, empty_size, 7112 &max_extent_size); 7113 /* 7114 * If we didn't find a chunk, and we haven't failed on this 7115 * block group before, and this block group is in the middle of 7116 * caching and we are ok with waiting, then go ahead and wait 7117 * for progress to be made, and set failed_alloc to true. 7118 * 7119 * If failed_alloc is true then we've already waited on this 7120 * block group once and should move on to the next block group. 7121 */ 7122 if (!offset && !failed_alloc && !cached && 7123 loop > LOOP_CACHING_NOWAIT) { 7124 wait_block_group_cache_progress(block_group, 7125 num_bytes + empty_size); 7126 failed_alloc = true; 7127 goto have_block_group; 7128 } else if (!offset) { 7129 if (!cached) 7130 have_caching_bg = true; 7131 goto loop; 7132 } 7133 checks: 7134 search_start = ALIGN(offset, root->stripesize); 7135 7136 /* move on to the next group */ 7137 if (search_start + num_bytes > 7138 block_group->key.objectid + block_group->key.offset) { 7139 btrfs_add_free_space(block_group, offset, num_bytes); 7140 goto loop; 7141 } 7142 7143 if (offset < search_start) 7144 btrfs_add_free_space(block_group, offset, 7145 search_start - offset); 7146 BUG_ON(offset > search_start); 7147 7148 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7149 alloc_type, delalloc); 7150 if (ret == -EAGAIN) { 7151 btrfs_add_free_space(block_group, offset, num_bytes); 7152 goto loop; 7153 } 7154 7155 /* we are all good, lets return */ 7156 ins->objectid = search_start; 7157 ins->offset = num_bytes; 7158 7159 trace_btrfs_reserve_extent(orig_root, block_group, 7160 search_start, num_bytes); 7161 btrfs_release_block_group(block_group, delalloc); 7162 break; 7163 loop: 7164 failed_cluster_refill = false; 7165 failed_alloc = false; 7166 BUG_ON(index != get_block_group_index(block_group)); 7167 btrfs_release_block_group(block_group, delalloc); 7168 } 7169 up_read(&space_info->groups_sem); 7170 7171 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7172 goto search; 7173 7174 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7175 goto search; 7176 7177 /* 7178 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7179 * caching kthreads as we move along 7180 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7181 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7182 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7183 * again 7184 */ 7185 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7186 index = 0; 7187 loop++; 7188 if (loop == LOOP_ALLOC_CHUNK) { 7189 struct btrfs_trans_handle *trans; 7190 int exist = 0; 7191 7192 trans = current->journal_info; 7193 if (trans) 7194 exist = 1; 7195 else 7196 trans = btrfs_join_transaction(root); 7197 7198 if (IS_ERR(trans)) { 7199 ret = PTR_ERR(trans); 7200 goto out; 7201 } 7202 7203 ret = do_chunk_alloc(trans, root, flags, 7204 CHUNK_ALLOC_FORCE); 7205 /* 7206 * Do not bail out on ENOSPC since we 7207 * can do more things. 7208 */ 7209 if (ret < 0 && ret != -ENOSPC) 7210 btrfs_abort_transaction(trans, 7211 root, ret); 7212 else 7213 ret = 0; 7214 if (!exist) 7215 btrfs_end_transaction(trans, root); 7216 if (ret) 7217 goto out; 7218 } 7219 7220 if (loop == LOOP_NO_EMPTY_SIZE) { 7221 empty_size = 0; 7222 empty_cluster = 0; 7223 } 7224 7225 goto search; 7226 } else if (!ins->objectid) { 7227 ret = -ENOSPC; 7228 } else if (ins->objectid) { 7229 ret = 0; 7230 } 7231 out: 7232 if (ret == -ENOSPC) 7233 ins->offset = max_extent_size; 7234 return ret; 7235 } 7236 7237 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7238 int dump_block_groups) 7239 { 7240 struct btrfs_block_group_cache *cache; 7241 int index = 0; 7242 7243 spin_lock(&info->lock); 7244 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7245 info->flags, 7246 info->total_bytes - info->bytes_used - info->bytes_pinned - 7247 info->bytes_reserved - info->bytes_readonly, 7248 (info->full) ? "" : "not "); 7249 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7250 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7251 info->total_bytes, info->bytes_used, info->bytes_pinned, 7252 info->bytes_reserved, info->bytes_may_use, 7253 info->bytes_readonly); 7254 spin_unlock(&info->lock); 7255 7256 if (!dump_block_groups) 7257 return; 7258 7259 down_read(&info->groups_sem); 7260 again: 7261 list_for_each_entry(cache, &info->block_groups[index], list) { 7262 spin_lock(&cache->lock); 7263 printk(KERN_INFO "BTRFS: " 7264 "block group %llu has %llu bytes, " 7265 "%llu used %llu pinned %llu reserved %s\n", 7266 cache->key.objectid, cache->key.offset, 7267 btrfs_block_group_used(&cache->item), cache->pinned, 7268 cache->reserved, cache->ro ? "[readonly]" : ""); 7269 btrfs_dump_free_space(cache, bytes); 7270 spin_unlock(&cache->lock); 7271 } 7272 if (++index < BTRFS_NR_RAID_TYPES) 7273 goto again; 7274 up_read(&info->groups_sem); 7275 } 7276 7277 int btrfs_reserve_extent(struct btrfs_root *root, 7278 u64 num_bytes, u64 min_alloc_size, 7279 u64 empty_size, u64 hint_byte, 7280 struct btrfs_key *ins, int is_data, int delalloc) 7281 { 7282 bool final_tried = false; 7283 u64 flags; 7284 int ret; 7285 7286 flags = btrfs_get_alloc_profile(root, is_data); 7287 again: 7288 WARN_ON(num_bytes < root->sectorsize); 7289 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7290 flags, delalloc); 7291 7292 if (ret == -ENOSPC) { 7293 if (!final_tried && ins->offset) { 7294 num_bytes = min(num_bytes >> 1, ins->offset); 7295 num_bytes = round_down(num_bytes, root->sectorsize); 7296 num_bytes = max(num_bytes, min_alloc_size); 7297 if (num_bytes == min_alloc_size) 7298 final_tried = true; 7299 goto again; 7300 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7301 struct btrfs_space_info *sinfo; 7302 7303 sinfo = __find_space_info(root->fs_info, flags); 7304 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7305 flags, num_bytes); 7306 if (sinfo) 7307 dump_space_info(sinfo, num_bytes, 1); 7308 } 7309 } 7310 7311 return ret; 7312 } 7313 7314 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7315 u64 start, u64 len, 7316 int pin, int delalloc) 7317 { 7318 struct btrfs_block_group_cache *cache; 7319 int ret = 0; 7320 7321 cache = btrfs_lookup_block_group(root->fs_info, start); 7322 if (!cache) { 7323 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7324 start); 7325 return -ENOSPC; 7326 } 7327 7328 if (pin) 7329 pin_down_extent(root, cache, start, len, 1); 7330 else { 7331 if (btrfs_test_opt(root, DISCARD)) 7332 ret = btrfs_discard_extent(root, start, len, NULL); 7333 btrfs_add_free_space(cache, start, len); 7334 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7335 } 7336 7337 btrfs_put_block_group(cache); 7338 7339 trace_btrfs_reserved_extent_free(root, start, len); 7340 7341 return ret; 7342 } 7343 7344 int btrfs_free_reserved_extent(struct btrfs_root *root, 7345 u64 start, u64 len, int delalloc) 7346 { 7347 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7348 } 7349 7350 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7351 u64 start, u64 len) 7352 { 7353 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7354 } 7355 7356 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7357 struct btrfs_root *root, 7358 u64 parent, u64 root_objectid, 7359 u64 flags, u64 owner, u64 offset, 7360 struct btrfs_key *ins, int ref_mod) 7361 { 7362 int ret; 7363 struct btrfs_fs_info *fs_info = root->fs_info; 7364 struct btrfs_extent_item *extent_item; 7365 struct btrfs_extent_inline_ref *iref; 7366 struct btrfs_path *path; 7367 struct extent_buffer *leaf; 7368 int type; 7369 u32 size; 7370 7371 if (parent > 0) 7372 type = BTRFS_SHARED_DATA_REF_KEY; 7373 else 7374 type = BTRFS_EXTENT_DATA_REF_KEY; 7375 7376 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7377 7378 path = btrfs_alloc_path(); 7379 if (!path) 7380 return -ENOMEM; 7381 7382 path->leave_spinning = 1; 7383 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7384 ins, size); 7385 if (ret) { 7386 btrfs_free_path(path); 7387 return ret; 7388 } 7389 7390 leaf = path->nodes[0]; 7391 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7392 struct btrfs_extent_item); 7393 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7394 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7395 btrfs_set_extent_flags(leaf, extent_item, 7396 flags | BTRFS_EXTENT_FLAG_DATA); 7397 7398 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7399 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7400 if (parent > 0) { 7401 struct btrfs_shared_data_ref *ref; 7402 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7403 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7404 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7405 } else { 7406 struct btrfs_extent_data_ref *ref; 7407 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7408 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7409 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7410 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7411 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7412 } 7413 7414 btrfs_mark_buffer_dirty(path->nodes[0]); 7415 btrfs_free_path(path); 7416 7417 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7418 if (ret) { /* -ENOENT, logic error */ 7419 btrfs_err(fs_info, "update block group failed for %llu %llu", 7420 ins->objectid, ins->offset); 7421 BUG(); 7422 } 7423 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7424 return ret; 7425 } 7426 7427 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7428 struct btrfs_root *root, 7429 u64 parent, u64 root_objectid, 7430 u64 flags, struct btrfs_disk_key *key, 7431 int level, struct btrfs_key *ins, 7432 int no_quota) 7433 { 7434 int ret; 7435 struct btrfs_fs_info *fs_info = root->fs_info; 7436 struct btrfs_extent_item *extent_item; 7437 struct btrfs_tree_block_info *block_info; 7438 struct btrfs_extent_inline_ref *iref; 7439 struct btrfs_path *path; 7440 struct extent_buffer *leaf; 7441 u32 size = sizeof(*extent_item) + sizeof(*iref); 7442 u64 num_bytes = ins->offset; 7443 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7444 SKINNY_METADATA); 7445 7446 if (!skinny_metadata) 7447 size += sizeof(*block_info); 7448 7449 path = btrfs_alloc_path(); 7450 if (!path) { 7451 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7452 root->nodesize); 7453 return -ENOMEM; 7454 } 7455 7456 path->leave_spinning = 1; 7457 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7458 ins, size); 7459 if (ret) { 7460 btrfs_free_path(path); 7461 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7462 root->nodesize); 7463 return ret; 7464 } 7465 7466 leaf = path->nodes[0]; 7467 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7468 struct btrfs_extent_item); 7469 btrfs_set_extent_refs(leaf, extent_item, 1); 7470 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7471 btrfs_set_extent_flags(leaf, extent_item, 7472 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7473 7474 if (skinny_metadata) { 7475 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7476 num_bytes = root->nodesize; 7477 } else { 7478 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7479 btrfs_set_tree_block_key(leaf, block_info, key); 7480 btrfs_set_tree_block_level(leaf, block_info, level); 7481 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7482 } 7483 7484 if (parent > 0) { 7485 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7486 btrfs_set_extent_inline_ref_type(leaf, iref, 7487 BTRFS_SHARED_BLOCK_REF_KEY); 7488 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7489 } else { 7490 btrfs_set_extent_inline_ref_type(leaf, iref, 7491 BTRFS_TREE_BLOCK_REF_KEY); 7492 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7493 } 7494 7495 btrfs_mark_buffer_dirty(leaf); 7496 btrfs_free_path(path); 7497 7498 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7499 1); 7500 if (ret) { /* -ENOENT, logic error */ 7501 btrfs_err(fs_info, "update block group failed for %llu %llu", 7502 ins->objectid, ins->offset); 7503 BUG(); 7504 } 7505 7506 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7507 return ret; 7508 } 7509 7510 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7511 struct btrfs_root *root, 7512 u64 root_objectid, u64 owner, 7513 u64 offset, struct btrfs_key *ins) 7514 { 7515 int ret; 7516 7517 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7518 7519 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7520 ins->offset, 0, 7521 root_objectid, owner, offset, 7522 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7523 return ret; 7524 } 7525 7526 /* 7527 * this is used by the tree logging recovery code. It records that 7528 * an extent has been allocated and makes sure to clear the free 7529 * space cache bits as well 7530 */ 7531 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7532 struct btrfs_root *root, 7533 u64 root_objectid, u64 owner, u64 offset, 7534 struct btrfs_key *ins) 7535 { 7536 int ret; 7537 struct btrfs_block_group_cache *block_group; 7538 7539 /* 7540 * Mixed block groups will exclude before processing the log so we only 7541 * need to do the exlude dance if this fs isn't mixed. 7542 */ 7543 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7544 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7545 if (ret) 7546 return ret; 7547 } 7548 7549 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7550 if (!block_group) 7551 return -EINVAL; 7552 7553 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7554 RESERVE_ALLOC_NO_ACCOUNT, 0); 7555 BUG_ON(ret); /* logic error */ 7556 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7557 0, owner, offset, ins, 1); 7558 btrfs_put_block_group(block_group); 7559 return ret; 7560 } 7561 7562 static struct extent_buffer * 7563 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7564 u64 bytenr, int level) 7565 { 7566 struct extent_buffer *buf; 7567 7568 buf = btrfs_find_create_tree_block(root, bytenr); 7569 if (!buf) 7570 return ERR_PTR(-ENOMEM); 7571 btrfs_set_header_generation(buf, trans->transid); 7572 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7573 btrfs_tree_lock(buf); 7574 clean_tree_block(trans, root->fs_info, buf); 7575 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7576 7577 btrfs_set_lock_blocking(buf); 7578 btrfs_set_buffer_uptodate(buf); 7579 7580 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7581 buf->log_index = root->log_transid % 2; 7582 /* 7583 * we allow two log transactions at a time, use different 7584 * EXENT bit to differentiate dirty pages. 7585 */ 7586 if (buf->log_index == 0) 7587 set_extent_dirty(&root->dirty_log_pages, buf->start, 7588 buf->start + buf->len - 1, GFP_NOFS); 7589 else 7590 set_extent_new(&root->dirty_log_pages, buf->start, 7591 buf->start + buf->len - 1, GFP_NOFS); 7592 } else { 7593 buf->log_index = -1; 7594 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7595 buf->start + buf->len - 1, GFP_NOFS); 7596 } 7597 trans->blocks_used++; 7598 /* this returns a buffer locked for blocking */ 7599 return buf; 7600 } 7601 7602 static struct btrfs_block_rsv * 7603 use_block_rsv(struct btrfs_trans_handle *trans, 7604 struct btrfs_root *root, u32 blocksize) 7605 { 7606 struct btrfs_block_rsv *block_rsv; 7607 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7608 int ret; 7609 bool global_updated = false; 7610 7611 block_rsv = get_block_rsv(trans, root); 7612 7613 if (unlikely(block_rsv->size == 0)) 7614 goto try_reserve; 7615 again: 7616 ret = block_rsv_use_bytes(block_rsv, blocksize); 7617 if (!ret) 7618 return block_rsv; 7619 7620 if (block_rsv->failfast) 7621 return ERR_PTR(ret); 7622 7623 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7624 global_updated = true; 7625 update_global_block_rsv(root->fs_info); 7626 goto again; 7627 } 7628 7629 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7630 static DEFINE_RATELIMIT_STATE(_rs, 7631 DEFAULT_RATELIMIT_INTERVAL * 10, 7632 /*DEFAULT_RATELIMIT_BURST*/ 1); 7633 if (__ratelimit(&_rs)) 7634 WARN(1, KERN_DEBUG 7635 "BTRFS: block rsv returned %d\n", ret); 7636 } 7637 try_reserve: 7638 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7639 BTRFS_RESERVE_NO_FLUSH); 7640 if (!ret) 7641 return block_rsv; 7642 /* 7643 * If we couldn't reserve metadata bytes try and use some from 7644 * the global reserve if its space type is the same as the global 7645 * reservation. 7646 */ 7647 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7648 block_rsv->space_info == global_rsv->space_info) { 7649 ret = block_rsv_use_bytes(global_rsv, blocksize); 7650 if (!ret) 7651 return global_rsv; 7652 } 7653 return ERR_PTR(ret); 7654 } 7655 7656 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7657 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7658 { 7659 block_rsv_add_bytes(block_rsv, blocksize, 0); 7660 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7661 } 7662 7663 /* 7664 * finds a free extent and does all the dirty work required for allocation 7665 * returns the tree buffer or an ERR_PTR on error. 7666 */ 7667 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7668 struct btrfs_root *root, 7669 u64 parent, u64 root_objectid, 7670 struct btrfs_disk_key *key, int level, 7671 u64 hint, u64 empty_size) 7672 { 7673 struct btrfs_key ins; 7674 struct btrfs_block_rsv *block_rsv; 7675 struct extent_buffer *buf; 7676 struct btrfs_delayed_extent_op *extent_op; 7677 u64 flags = 0; 7678 int ret; 7679 u32 blocksize = root->nodesize; 7680 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7681 SKINNY_METADATA); 7682 7683 if (btrfs_test_is_dummy_root(root)) { 7684 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7685 level); 7686 if (!IS_ERR(buf)) 7687 root->alloc_bytenr += blocksize; 7688 return buf; 7689 } 7690 7691 block_rsv = use_block_rsv(trans, root, blocksize); 7692 if (IS_ERR(block_rsv)) 7693 return ERR_CAST(block_rsv); 7694 7695 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7696 empty_size, hint, &ins, 0, 0); 7697 if (ret) 7698 goto out_unuse; 7699 7700 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7701 if (IS_ERR(buf)) { 7702 ret = PTR_ERR(buf); 7703 goto out_free_reserved; 7704 } 7705 7706 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7707 if (parent == 0) 7708 parent = ins.objectid; 7709 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7710 } else 7711 BUG_ON(parent > 0); 7712 7713 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7714 extent_op = btrfs_alloc_delayed_extent_op(); 7715 if (!extent_op) { 7716 ret = -ENOMEM; 7717 goto out_free_buf; 7718 } 7719 if (key) 7720 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7721 else 7722 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7723 extent_op->flags_to_set = flags; 7724 if (skinny_metadata) 7725 extent_op->update_key = 0; 7726 else 7727 extent_op->update_key = 1; 7728 extent_op->update_flags = 1; 7729 extent_op->is_data = 0; 7730 extent_op->level = level; 7731 7732 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7733 ins.objectid, ins.offset, 7734 parent, root_objectid, level, 7735 BTRFS_ADD_DELAYED_EXTENT, 7736 extent_op, 0); 7737 if (ret) 7738 goto out_free_delayed; 7739 } 7740 return buf; 7741 7742 out_free_delayed: 7743 btrfs_free_delayed_extent_op(extent_op); 7744 out_free_buf: 7745 free_extent_buffer(buf); 7746 out_free_reserved: 7747 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7748 out_unuse: 7749 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7750 return ERR_PTR(ret); 7751 } 7752 7753 struct walk_control { 7754 u64 refs[BTRFS_MAX_LEVEL]; 7755 u64 flags[BTRFS_MAX_LEVEL]; 7756 struct btrfs_key update_progress; 7757 int stage; 7758 int level; 7759 int shared_level; 7760 int update_ref; 7761 int keep_locks; 7762 int reada_slot; 7763 int reada_count; 7764 int for_reloc; 7765 }; 7766 7767 #define DROP_REFERENCE 1 7768 #define UPDATE_BACKREF 2 7769 7770 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7771 struct btrfs_root *root, 7772 struct walk_control *wc, 7773 struct btrfs_path *path) 7774 { 7775 u64 bytenr; 7776 u64 generation; 7777 u64 refs; 7778 u64 flags; 7779 u32 nritems; 7780 u32 blocksize; 7781 struct btrfs_key key; 7782 struct extent_buffer *eb; 7783 int ret; 7784 int slot; 7785 int nread = 0; 7786 7787 if (path->slots[wc->level] < wc->reada_slot) { 7788 wc->reada_count = wc->reada_count * 2 / 3; 7789 wc->reada_count = max(wc->reada_count, 2); 7790 } else { 7791 wc->reada_count = wc->reada_count * 3 / 2; 7792 wc->reada_count = min_t(int, wc->reada_count, 7793 BTRFS_NODEPTRS_PER_BLOCK(root)); 7794 } 7795 7796 eb = path->nodes[wc->level]; 7797 nritems = btrfs_header_nritems(eb); 7798 blocksize = root->nodesize; 7799 7800 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7801 if (nread >= wc->reada_count) 7802 break; 7803 7804 cond_resched(); 7805 bytenr = btrfs_node_blockptr(eb, slot); 7806 generation = btrfs_node_ptr_generation(eb, slot); 7807 7808 if (slot == path->slots[wc->level]) 7809 goto reada; 7810 7811 if (wc->stage == UPDATE_BACKREF && 7812 generation <= root->root_key.offset) 7813 continue; 7814 7815 /* We don't lock the tree block, it's OK to be racy here */ 7816 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7817 wc->level - 1, 1, &refs, 7818 &flags); 7819 /* We don't care about errors in readahead. */ 7820 if (ret < 0) 7821 continue; 7822 BUG_ON(refs == 0); 7823 7824 if (wc->stage == DROP_REFERENCE) { 7825 if (refs == 1) 7826 goto reada; 7827 7828 if (wc->level == 1 && 7829 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7830 continue; 7831 if (!wc->update_ref || 7832 generation <= root->root_key.offset) 7833 continue; 7834 btrfs_node_key_to_cpu(eb, &key, slot); 7835 ret = btrfs_comp_cpu_keys(&key, 7836 &wc->update_progress); 7837 if (ret < 0) 7838 continue; 7839 } else { 7840 if (wc->level == 1 && 7841 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7842 continue; 7843 } 7844 reada: 7845 readahead_tree_block(root, bytenr); 7846 nread++; 7847 } 7848 wc->reada_slot = slot; 7849 } 7850 7851 /* 7852 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 7853 * for later qgroup accounting. 7854 * 7855 * Current, this function does nothing. 7856 */ 7857 static int account_leaf_items(struct btrfs_trans_handle *trans, 7858 struct btrfs_root *root, 7859 struct extent_buffer *eb) 7860 { 7861 int nr = btrfs_header_nritems(eb); 7862 int i, extent_type; 7863 struct btrfs_key key; 7864 struct btrfs_file_extent_item *fi; 7865 u64 bytenr, num_bytes; 7866 7867 for (i = 0; i < nr; i++) { 7868 btrfs_item_key_to_cpu(eb, &key, i); 7869 7870 if (key.type != BTRFS_EXTENT_DATA_KEY) 7871 continue; 7872 7873 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7874 /* filter out non qgroup-accountable extents */ 7875 extent_type = btrfs_file_extent_type(eb, fi); 7876 7877 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7878 continue; 7879 7880 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7881 if (!bytenr) 7882 continue; 7883 7884 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7885 } 7886 return 0; 7887 } 7888 7889 /* 7890 * Walk up the tree from the bottom, freeing leaves and any interior 7891 * nodes which have had all slots visited. If a node (leaf or 7892 * interior) is freed, the node above it will have it's slot 7893 * incremented. The root node will never be freed. 7894 * 7895 * At the end of this function, we should have a path which has all 7896 * slots incremented to the next position for a search. If we need to 7897 * read a new node it will be NULL and the node above it will have the 7898 * correct slot selected for a later read. 7899 * 7900 * If we increment the root nodes slot counter past the number of 7901 * elements, 1 is returned to signal completion of the search. 7902 */ 7903 static int adjust_slots_upwards(struct btrfs_root *root, 7904 struct btrfs_path *path, int root_level) 7905 { 7906 int level = 0; 7907 int nr, slot; 7908 struct extent_buffer *eb; 7909 7910 if (root_level == 0) 7911 return 1; 7912 7913 while (level <= root_level) { 7914 eb = path->nodes[level]; 7915 nr = btrfs_header_nritems(eb); 7916 path->slots[level]++; 7917 slot = path->slots[level]; 7918 if (slot >= nr || level == 0) { 7919 /* 7920 * Don't free the root - we will detect this 7921 * condition after our loop and return a 7922 * positive value for caller to stop walking the tree. 7923 */ 7924 if (level != root_level) { 7925 btrfs_tree_unlock_rw(eb, path->locks[level]); 7926 path->locks[level] = 0; 7927 7928 free_extent_buffer(eb); 7929 path->nodes[level] = NULL; 7930 path->slots[level] = 0; 7931 } 7932 } else { 7933 /* 7934 * We have a valid slot to walk back down 7935 * from. Stop here so caller can process these 7936 * new nodes. 7937 */ 7938 break; 7939 } 7940 7941 level++; 7942 } 7943 7944 eb = path->nodes[root_level]; 7945 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7946 return 1; 7947 7948 return 0; 7949 } 7950 7951 /* 7952 * root_eb is the subtree root and is locked before this function is called. 7953 * TODO: Modify this function to mark all (including complete shared node) 7954 * to dirty_extent_root to allow it get accounted in qgroup. 7955 */ 7956 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7957 struct btrfs_root *root, 7958 struct extent_buffer *root_eb, 7959 u64 root_gen, 7960 int root_level) 7961 { 7962 int ret = 0; 7963 int level; 7964 struct extent_buffer *eb = root_eb; 7965 struct btrfs_path *path = NULL; 7966 7967 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7968 BUG_ON(root_eb == NULL); 7969 7970 if (!root->fs_info->quota_enabled) 7971 return 0; 7972 7973 if (!extent_buffer_uptodate(root_eb)) { 7974 ret = btrfs_read_buffer(root_eb, root_gen); 7975 if (ret) 7976 goto out; 7977 } 7978 7979 if (root_level == 0) { 7980 ret = account_leaf_items(trans, root, root_eb); 7981 goto out; 7982 } 7983 7984 path = btrfs_alloc_path(); 7985 if (!path) 7986 return -ENOMEM; 7987 7988 /* 7989 * Walk down the tree. Missing extent blocks are filled in as 7990 * we go. Metadata is accounted every time we read a new 7991 * extent block. 7992 * 7993 * When we reach a leaf, we account for file extent items in it, 7994 * walk back up the tree (adjusting slot pointers as we go) 7995 * and restart the search process. 7996 */ 7997 extent_buffer_get(root_eb); /* For path */ 7998 path->nodes[root_level] = root_eb; 7999 path->slots[root_level] = 0; 8000 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8001 walk_down: 8002 level = root_level; 8003 while (level >= 0) { 8004 if (path->nodes[level] == NULL) { 8005 int parent_slot; 8006 u64 child_gen; 8007 u64 child_bytenr; 8008 8009 /* We need to get child blockptr/gen from 8010 * parent before we can read it. */ 8011 eb = path->nodes[level + 1]; 8012 parent_slot = path->slots[level + 1]; 8013 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8014 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8015 8016 eb = read_tree_block(root, child_bytenr, child_gen); 8017 if (IS_ERR(eb)) { 8018 ret = PTR_ERR(eb); 8019 goto out; 8020 } else if (!extent_buffer_uptodate(eb)) { 8021 free_extent_buffer(eb); 8022 ret = -EIO; 8023 goto out; 8024 } 8025 8026 path->nodes[level] = eb; 8027 path->slots[level] = 0; 8028 8029 btrfs_tree_read_lock(eb); 8030 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8031 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8032 } 8033 8034 if (level == 0) { 8035 ret = account_leaf_items(trans, root, path->nodes[level]); 8036 if (ret) 8037 goto out; 8038 8039 /* Nonzero return here means we completed our search */ 8040 ret = adjust_slots_upwards(root, path, root_level); 8041 if (ret) 8042 break; 8043 8044 /* Restart search with new slots */ 8045 goto walk_down; 8046 } 8047 8048 level--; 8049 } 8050 8051 ret = 0; 8052 out: 8053 btrfs_free_path(path); 8054 8055 return ret; 8056 } 8057 8058 /* 8059 * helper to process tree block while walking down the tree. 8060 * 8061 * when wc->stage == UPDATE_BACKREF, this function updates 8062 * back refs for pointers in the block. 8063 * 8064 * NOTE: return value 1 means we should stop walking down. 8065 */ 8066 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8067 struct btrfs_root *root, 8068 struct btrfs_path *path, 8069 struct walk_control *wc, int lookup_info) 8070 { 8071 int level = wc->level; 8072 struct extent_buffer *eb = path->nodes[level]; 8073 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8074 int ret; 8075 8076 if (wc->stage == UPDATE_BACKREF && 8077 btrfs_header_owner(eb) != root->root_key.objectid) 8078 return 1; 8079 8080 /* 8081 * when reference count of tree block is 1, it won't increase 8082 * again. once full backref flag is set, we never clear it. 8083 */ 8084 if (lookup_info && 8085 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8086 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8087 BUG_ON(!path->locks[level]); 8088 ret = btrfs_lookup_extent_info(trans, root, 8089 eb->start, level, 1, 8090 &wc->refs[level], 8091 &wc->flags[level]); 8092 BUG_ON(ret == -ENOMEM); 8093 if (ret) 8094 return ret; 8095 BUG_ON(wc->refs[level] == 0); 8096 } 8097 8098 if (wc->stage == DROP_REFERENCE) { 8099 if (wc->refs[level] > 1) 8100 return 1; 8101 8102 if (path->locks[level] && !wc->keep_locks) { 8103 btrfs_tree_unlock_rw(eb, path->locks[level]); 8104 path->locks[level] = 0; 8105 } 8106 return 0; 8107 } 8108 8109 /* wc->stage == UPDATE_BACKREF */ 8110 if (!(wc->flags[level] & flag)) { 8111 BUG_ON(!path->locks[level]); 8112 ret = btrfs_inc_ref(trans, root, eb, 1); 8113 BUG_ON(ret); /* -ENOMEM */ 8114 ret = btrfs_dec_ref(trans, root, eb, 0); 8115 BUG_ON(ret); /* -ENOMEM */ 8116 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8117 eb->len, flag, 8118 btrfs_header_level(eb), 0); 8119 BUG_ON(ret); /* -ENOMEM */ 8120 wc->flags[level] |= flag; 8121 } 8122 8123 /* 8124 * the block is shared by multiple trees, so it's not good to 8125 * keep the tree lock 8126 */ 8127 if (path->locks[level] && level > 0) { 8128 btrfs_tree_unlock_rw(eb, path->locks[level]); 8129 path->locks[level] = 0; 8130 } 8131 return 0; 8132 } 8133 8134 /* 8135 * helper to process tree block pointer. 8136 * 8137 * when wc->stage == DROP_REFERENCE, this function checks 8138 * reference count of the block pointed to. if the block 8139 * is shared and we need update back refs for the subtree 8140 * rooted at the block, this function changes wc->stage to 8141 * UPDATE_BACKREF. if the block is shared and there is no 8142 * need to update back, this function drops the reference 8143 * to the block. 8144 * 8145 * NOTE: return value 1 means we should stop walking down. 8146 */ 8147 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8148 struct btrfs_root *root, 8149 struct btrfs_path *path, 8150 struct walk_control *wc, int *lookup_info) 8151 { 8152 u64 bytenr; 8153 u64 generation; 8154 u64 parent; 8155 u32 blocksize; 8156 struct btrfs_key key; 8157 struct extent_buffer *next; 8158 int level = wc->level; 8159 int reada = 0; 8160 int ret = 0; 8161 bool need_account = false; 8162 8163 generation = btrfs_node_ptr_generation(path->nodes[level], 8164 path->slots[level]); 8165 /* 8166 * if the lower level block was created before the snapshot 8167 * was created, we know there is no need to update back refs 8168 * for the subtree 8169 */ 8170 if (wc->stage == UPDATE_BACKREF && 8171 generation <= root->root_key.offset) { 8172 *lookup_info = 1; 8173 return 1; 8174 } 8175 8176 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8177 blocksize = root->nodesize; 8178 8179 next = btrfs_find_tree_block(root->fs_info, bytenr); 8180 if (!next) { 8181 next = btrfs_find_create_tree_block(root, bytenr); 8182 if (!next) 8183 return -ENOMEM; 8184 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8185 level - 1); 8186 reada = 1; 8187 } 8188 btrfs_tree_lock(next); 8189 btrfs_set_lock_blocking(next); 8190 8191 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8192 &wc->refs[level - 1], 8193 &wc->flags[level - 1]); 8194 if (ret < 0) { 8195 btrfs_tree_unlock(next); 8196 return ret; 8197 } 8198 8199 if (unlikely(wc->refs[level - 1] == 0)) { 8200 btrfs_err(root->fs_info, "Missing references."); 8201 BUG(); 8202 } 8203 *lookup_info = 0; 8204 8205 if (wc->stage == DROP_REFERENCE) { 8206 if (wc->refs[level - 1] > 1) { 8207 need_account = true; 8208 if (level == 1 && 8209 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8210 goto skip; 8211 8212 if (!wc->update_ref || 8213 generation <= root->root_key.offset) 8214 goto skip; 8215 8216 btrfs_node_key_to_cpu(path->nodes[level], &key, 8217 path->slots[level]); 8218 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8219 if (ret < 0) 8220 goto skip; 8221 8222 wc->stage = UPDATE_BACKREF; 8223 wc->shared_level = level - 1; 8224 } 8225 } else { 8226 if (level == 1 && 8227 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8228 goto skip; 8229 } 8230 8231 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8232 btrfs_tree_unlock(next); 8233 free_extent_buffer(next); 8234 next = NULL; 8235 *lookup_info = 1; 8236 } 8237 8238 if (!next) { 8239 if (reada && level == 1) 8240 reada_walk_down(trans, root, wc, path); 8241 next = read_tree_block(root, bytenr, generation); 8242 if (IS_ERR(next)) { 8243 return PTR_ERR(next); 8244 } else if (!extent_buffer_uptodate(next)) { 8245 free_extent_buffer(next); 8246 return -EIO; 8247 } 8248 btrfs_tree_lock(next); 8249 btrfs_set_lock_blocking(next); 8250 } 8251 8252 level--; 8253 BUG_ON(level != btrfs_header_level(next)); 8254 path->nodes[level] = next; 8255 path->slots[level] = 0; 8256 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8257 wc->level = level; 8258 if (wc->level == 1) 8259 wc->reada_slot = 0; 8260 return 0; 8261 skip: 8262 wc->refs[level - 1] = 0; 8263 wc->flags[level - 1] = 0; 8264 if (wc->stage == DROP_REFERENCE) { 8265 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8266 parent = path->nodes[level]->start; 8267 } else { 8268 BUG_ON(root->root_key.objectid != 8269 btrfs_header_owner(path->nodes[level])); 8270 parent = 0; 8271 } 8272 8273 if (need_account) { 8274 ret = account_shared_subtree(trans, root, next, 8275 generation, level - 1); 8276 if (ret) { 8277 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8278 "%d accounting shared subtree. Quota " 8279 "is out of sync, rescan required.\n", 8280 root->fs_info->sb->s_id, ret); 8281 } 8282 } 8283 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8284 root->root_key.objectid, level - 1, 0, 0); 8285 BUG_ON(ret); /* -ENOMEM */ 8286 } 8287 btrfs_tree_unlock(next); 8288 free_extent_buffer(next); 8289 *lookup_info = 1; 8290 return 1; 8291 } 8292 8293 /* 8294 * helper to process tree block while walking up the tree. 8295 * 8296 * when wc->stage == DROP_REFERENCE, this function drops 8297 * reference count on the block. 8298 * 8299 * when wc->stage == UPDATE_BACKREF, this function changes 8300 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8301 * to UPDATE_BACKREF previously while processing the block. 8302 * 8303 * NOTE: return value 1 means we should stop walking up. 8304 */ 8305 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8306 struct btrfs_root *root, 8307 struct btrfs_path *path, 8308 struct walk_control *wc) 8309 { 8310 int ret; 8311 int level = wc->level; 8312 struct extent_buffer *eb = path->nodes[level]; 8313 u64 parent = 0; 8314 8315 if (wc->stage == UPDATE_BACKREF) { 8316 BUG_ON(wc->shared_level < level); 8317 if (level < wc->shared_level) 8318 goto out; 8319 8320 ret = find_next_key(path, level + 1, &wc->update_progress); 8321 if (ret > 0) 8322 wc->update_ref = 0; 8323 8324 wc->stage = DROP_REFERENCE; 8325 wc->shared_level = -1; 8326 path->slots[level] = 0; 8327 8328 /* 8329 * check reference count again if the block isn't locked. 8330 * we should start walking down the tree again if reference 8331 * count is one. 8332 */ 8333 if (!path->locks[level]) { 8334 BUG_ON(level == 0); 8335 btrfs_tree_lock(eb); 8336 btrfs_set_lock_blocking(eb); 8337 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8338 8339 ret = btrfs_lookup_extent_info(trans, root, 8340 eb->start, level, 1, 8341 &wc->refs[level], 8342 &wc->flags[level]); 8343 if (ret < 0) { 8344 btrfs_tree_unlock_rw(eb, path->locks[level]); 8345 path->locks[level] = 0; 8346 return ret; 8347 } 8348 BUG_ON(wc->refs[level] == 0); 8349 if (wc->refs[level] == 1) { 8350 btrfs_tree_unlock_rw(eb, path->locks[level]); 8351 path->locks[level] = 0; 8352 return 1; 8353 } 8354 } 8355 } 8356 8357 /* wc->stage == DROP_REFERENCE */ 8358 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8359 8360 if (wc->refs[level] == 1) { 8361 if (level == 0) { 8362 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8363 ret = btrfs_dec_ref(trans, root, eb, 1); 8364 else 8365 ret = btrfs_dec_ref(trans, root, eb, 0); 8366 BUG_ON(ret); /* -ENOMEM */ 8367 ret = account_leaf_items(trans, root, eb); 8368 if (ret) { 8369 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8370 "%d accounting leaf items. Quota " 8371 "is out of sync, rescan required.\n", 8372 root->fs_info->sb->s_id, ret); 8373 } 8374 } 8375 /* make block locked assertion in clean_tree_block happy */ 8376 if (!path->locks[level] && 8377 btrfs_header_generation(eb) == trans->transid) { 8378 btrfs_tree_lock(eb); 8379 btrfs_set_lock_blocking(eb); 8380 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8381 } 8382 clean_tree_block(trans, root->fs_info, eb); 8383 } 8384 8385 if (eb == root->node) { 8386 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8387 parent = eb->start; 8388 else 8389 BUG_ON(root->root_key.objectid != 8390 btrfs_header_owner(eb)); 8391 } else { 8392 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8393 parent = path->nodes[level + 1]->start; 8394 else 8395 BUG_ON(root->root_key.objectid != 8396 btrfs_header_owner(path->nodes[level + 1])); 8397 } 8398 8399 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8400 out: 8401 wc->refs[level] = 0; 8402 wc->flags[level] = 0; 8403 return 0; 8404 } 8405 8406 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8407 struct btrfs_root *root, 8408 struct btrfs_path *path, 8409 struct walk_control *wc) 8410 { 8411 int level = wc->level; 8412 int lookup_info = 1; 8413 int ret; 8414 8415 while (level >= 0) { 8416 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8417 if (ret > 0) 8418 break; 8419 8420 if (level == 0) 8421 break; 8422 8423 if (path->slots[level] >= 8424 btrfs_header_nritems(path->nodes[level])) 8425 break; 8426 8427 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8428 if (ret > 0) { 8429 path->slots[level]++; 8430 continue; 8431 } else if (ret < 0) 8432 return ret; 8433 level = wc->level; 8434 } 8435 return 0; 8436 } 8437 8438 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8439 struct btrfs_root *root, 8440 struct btrfs_path *path, 8441 struct walk_control *wc, int max_level) 8442 { 8443 int level = wc->level; 8444 int ret; 8445 8446 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8447 while (level < max_level && path->nodes[level]) { 8448 wc->level = level; 8449 if (path->slots[level] + 1 < 8450 btrfs_header_nritems(path->nodes[level])) { 8451 path->slots[level]++; 8452 return 0; 8453 } else { 8454 ret = walk_up_proc(trans, root, path, wc); 8455 if (ret > 0) 8456 return 0; 8457 8458 if (path->locks[level]) { 8459 btrfs_tree_unlock_rw(path->nodes[level], 8460 path->locks[level]); 8461 path->locks[level] = 0; 8462 } 8463 free_extent_buffer(path->nodes[level]); 8464 path->nodes[level] = NULL; 8465 level++; 8466 } 8467 } 8468 return 1; 8469 } 8470 8471 /* 8472 * drop a subvolume tree. 8473 * 8474 * this function traverses the tree freeing any blocks that only 8475 * referenced by the tree. 8476 * 8477 * when a shared tree block is found. this function decreases its 8478 * reference count by one. if update_ref is true, this function 8479 * also make sure backrefs for the shared block and all lower level 8480 * blocks are properly updated. 8481 * 8482 * If called with for_reloc == 0, may exit early with -EAGAIN 8483 */ 8484 int btrfs_drop_snapshot(struct btrfs_root *root, 8485 struct btrfs_block_rsv *block_rsv, int update_ref, 8486 int for_reloc) 8487 { 8488 struct btrfs_path *path; 8489 struct btrfs_trans_handle *trans; 8490 struct btrfs_root *tree_root = root->fs_info->tree_root; 8491 struct btrfs_root_item *root_item = &root->root_item; 8492 struct walk_control *wc; 8493 struct btrfs_key key; 8494 int err = 0; 8495 int ret; 8496 int level; 8497 bool root_dropped = false; 8498 8499 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8500 8501 path = btrfs_alloc_path(); 8502 if (!path) { 8503 err = -ENOMEM; 8504 goto out; 8505 } 8506 8507 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8508 if (!wc) { 8509 btrfs_free_path(path); 8510 err = -ENOMEM; 8511 goto out; 8512 } 8513 8514 trans = btrfs_start_transaction(tree_root, 0); 8515 if (IS_ERR(trans)) { 8516 err = PTR_ERR(trans); 8517 goto out_free; 8518 } 8519 8520 if (block_rsv) 8521 trans->block_rsv = block_rsv; 8522 8523 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8524 level = btrfs_header_level(root->node); 8525 path->nodes[level] = btrfs_lock_root_node(root); 8526 btrfs_set_lock_blocking(path->nodes[level]); 8527 path->slots[level] = 0; 8528 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8529 memset(&wc->update_progress, 0, 8530 sizeof(wc->update_progress)); 8531 } else { 8532 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8533 memcpy(&wc->update_progress, &key, 8534 sizeof(wc->update_progress)); 8535 8536 level = root_item->drop_level; 8537 BUG_ON(level == 0); 8538 path->lowest_level = level; 8539 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8540 path->lowest_level = 0; 8541 if (ret < 0) { 8542 err = ret; 8543 goto out_end_trans; 8544 } 8545 WARN_ON(ret > 0); 8546 8547 /* 8548 * unlock our path, this is safe because only this 8549 * function is allowed to delete this snapshot 8550 */ 8551 btrfs_unlock_up_safe(path, 0); 8552 8553 level = btrfs_header_level(root->node); 8554 while (1) { 8555 btrfs_tree_lock(path->nodes[level]); 8556 btrfs_set_lock_blocking(path->nodes[level]); 8557 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8558 8559 ret = btrfs_lookup_extent_info(trans, root, 8560 path->nodes[level]->start, 8561 level, 1, &wc->refs[level], 8562 &wc->flags[level]); 8563 if (ret < 0) { 8564 err = ret; 8565 goto out_end_trans; 8566 } 8567 BUG_ON(wc->refs[level] == 0); 8568 8569 if (level == root_item->drop_level) 8570 break; 8571 8572 btrfs_tree_unlock(path->nodes[level]); 8573 path->locks[level] = 0; 8574 WARN_ON(wc->refs[level] != 1); 8575 level--; 8576 } 8577 } 8578 8579 wc->level = level; 8580 wc->shared_level = -1; 8581 wc->stage = DROP_REFERENCE; 8582 wc->update_ref = update_ref; 8583 wc->keep_locks = 0; 8584 wc->for_reloc = for_reloc; 8585 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8586 8587 while (1) { 8588 8589 ret = walk_down_tree(trans, root, path, wc); 8590 if (ret < 0) { 8591 err = ret; 8592 break; 8593 } 8594 8595 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8596 if (ret < 0) { 8597 err = ret; 8598 break; 8599 } 8600 8601 if (ret > 0) { 8602 BUG_ON(wc->stage != DROP_REFERENCE); 8603 break; 8604 } 8605 8606 if (wc->stage == DROP_REFERENCE) { 8607 level = wc->level; 8608 btrfs_node_key(path->nodes[level], 8609 &root_item->drop_progress, 8610 path->slots[level]); 8611 root_item->drop_level = level; 8612 } 8613 8614 BUG_ON(wc->level == 0); 8615 if (btrfs_should_end_transaction(trans, tree_root) || 8616 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8617 ret = btrfs_update_root(trans, tree_root, 8618 &root->root_key, 8619 root_item); 8620 if (ret) { 8621 btrfs_abort_transaction(trans, tree_root, ret); 8622 err = ret; 8623 goto out_end_trans; 8624 } 8625 8626 btrfs_end_transaction_throttle(trans, tree_root); 8627 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8628 pr_debug("BTRFS: drop snapshot early exit\n"); 8629 err = -EAGAIN; 8630 goto out_free; 8631 } 8632 8633 trans = btrfs_start_transaction(tree_root, 0); 8634 if (IS_ERR(trans)) { 8635 err = PTR_ERR(trans); 8636 goto out_free; 8637 } 8638 if (block_rsv) 8639 trans->block_rsv = block_rsv; 8640 } 8641 } 8642 btrfs_release_path(path); 8643 if (err) 8644 goto out_end_trans; 8645 8646 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8647 if (ret) { 8648 btrfs_abort_transaction(trans, tree_root, ret); 8649 goto out_end_trans; 8650 } 8651 8652 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8653 ret = btrfs_find_root(tree_root, &root->root_key, path, 8654 NULL, NULL); 8655 if (ret < 0) { 8656 btrfs_abort_transaction(trans, tree_root, ret); 8657 err = ret; 8658 goto out_end_trans; 8659 } else if (ret > 0) { 8660 /* if we fail to delete the orphan item this time 8661 * around, it'll get picked up the next time. 8662 * 8663 * The most common failure here is just -ENOENT. 8664 */ 8665 btrfs_del_orphan_item(trans, tree_root, 8666 root->root_key.objectid); 8667 } 8668 } 8669 8670 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8671 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8672 } else { 8673 free_extent_buffer(root->node); 8674 free_extent_buffer(root->commit_root); 8675 btrfs_put_fs_root(root); 8676 } 8677 root_dropped = true; 8678 out_end_trans: 8679 btrfs_end_transaction_throttle(trans, tree_root); 8680 out_free: 8681 kfree(wc); 8682 btrfs_free_path(path); 8683 out: 8684 /* 8685 * So if we need to stop dropping the snapshot for whatever reason we 8686 * need to make sure to add it back to the dead root list so that we 8687 * keep trying to do the work later. This also cleans up roots if we 8688 * don't have it in the radix (like when we recover after a power fail 8689 * or unmount) so we don't leak memory. 8690 */ 8691 if (!for_reloc && root_dropped == false) 8692 btrfs_add_dead_root(root); 8693 if (err && err != -EAGAIN) 8694 btrfs_std_error(root->fs_info, err); 8695 return err; 8696 } 8697 8698 /* 8699 * drop subtree rooted at tree block 'node'. 8700 * 8701 * NOTE: this function will unlock and release tree block 'node' 8702 * only used by relocation code 8703 */ 8704 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8705 struct btrfs_root *root, 8706 struct extent_buffer *node, 8707 struct extent_buffer *parent) 8708 { 8709 struct btrfs_path *path; 8710 struct walk_control *wc; 8711 int level; 8712 int parent_level; 8713 int ret = 0; 8714 int wret; 8715 8716 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8717 8718 path = btrfs_alloc_path(); 8719 if (!path) 8720 return -ENOMEM; 8721 8722 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8723 if (!wc) { 8724 btrfs_free_path(path); 8725 return -ENOMEM; 8726 } 8727 8728 btrfs_assert_tree_locked(parent); 8729 parent_level = btrfs_header_level(parent); 8730 extent_buffer_get(parent); 8731 path->nodes[parent_level] = parent; 8732 path->slots[parent_level] = btrfs_header_nritems(parent); 8733 8734 btrfs_assert_tree_locked(node); 8735 level = btrfs_header_level(node); 8736 path->nodes[level] = node; 8737 path->slots[level] = 0; 8738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8739 8740 wc->refs[parent_level] = 1; 8741 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8742 wc->level = level; 8743 wc->shared_level = -1; 8744 wc->stage = DROP_REFERENCE; 8745 wc->update_ref = 0; 8746 wc->keep_locks = 1; 8747 wc->for_reloc = 1; 8748 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8749 8750 while (1) { 8751 wret = walk_down_tree(trans, root, path, wc); 8752 if (wret < 0) { 8753 ret = wret; 8754 break; 8755 } 8756 8757 wret = walk_up_tree(trans, root, path, wc, parent_level); 8758 if (wret < 0) 8759 ret = wret; 8760 if (wret != 0) 8761 break; 8762 } 8763 8764 kfree(wc); 8765 btrfs_free_path(path); 8766 return ret; 8767 } 8768 8769 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8770 { 8771 u64 num_devices; 8772 u64 stripped; 8773 8774 /* 8775 * if restripe for this chunk_type is on pick target profile and 8776 * return, otherwise do the usual balance 8777 */ 8778 stripped = get_restripe_target(root->fs_info, flags); 8779 if (stripped) 8780 return extended_to_chunk(stripped); 8781 8782 num_devices = root->fs_info->fs_devices->rw_devices; 8783 8784 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8785 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8786 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8787 8788 if (num_devices == 1) { 8789 stripped |= BTRFS_BLOCK_GROUP_DUP; 8790 stripped = flags & ~stripped; 8791 8792 /* turn raid0 into single device chunks */ 8793 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8794 return stripped; 8795 8796 /* turn mirroring into duplication */ 8797 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8798 BTRFS_BLOCK_GROUP_RAID10)) 8799 return stripped | BTRFS_BLOCK_GROUP_DUP; 8800 } else { 8801 /* they already had raid on here, just return */ 8802 if (flags & stripped) 8803 return flags; 8804 8805 stripped |= BTRFS_BLOCK_GROUP_DUP; 8806 stripped = flags & ~stripped; 8807 8808 /* switch duplicated blocks with raid1 */ 8809 if (flags & BTRFS_BLOCK_GROUP_DUP) 8810 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8811 8812 /* this is drive concat, leave it alone */ 8813 } 8814 8815 return flags; 8816 } 8817 8818 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8819 { 8820 struct btrfs_space_info *sinfo = cache->space_info; 8821 u64 num_bytes; 8822 u64 min_allocable_bytes; 8823 int ret = -ENOSPC; 8824 8825 /* 8826 * We need some metadata space and system metadata space for 8827 * allocating chunks in some corner cases until we force to set 8828 * it to be readonly. 8829 */ 8830 if ((sinfo->flags & 8831 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8832 !force) 8833 min_allocable_bytes = 1 * 1024 * 1024; 8834 else 8835 min_allocable_bytes = 0; 8836 8837 spin_lock(&sinfo->lock); 8838 spin_lock(&cache->lock); 8839 8840 if (cache->ro) { 8841 cache->ro++; 8842 ret = 0; 8843 goto out; 8844 } 8845 8846 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8847 cache->bytes_super - btrfs_block_group_used(&cache->item); 8848 8849 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8850 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8851 min_allocable_bytes <= sinfo->total_bytes) { 8852 sinfo->bytes_readonly += num_bytes; 8853 cache->ro++; 8854 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8855 ret = 0; 8856 } 8857 out: 8858 spin_unlock(&cache->lock); 8859 spin_unlock(&sinfo->lock); 8860 return ret; 8861 } 8862 8863 int btrfs_inc_block_group_ro(struct btrfs_root *root, 8864 struct btrfs_block_group_cache *cache) 8865 8866 { 8867 struct btrfs_trans_handle *trans; 8868 u64 alloc_flags; 8869 int ret; 8870 8871 again: 8872 trans = btrfs_join_transaction(root); 8873 if (IS_ERR(trans)) 8874 return PTR_ERR(trans); 8875 8876 /* 8877 * we're not allowed to set block groups readonly after the dirty 8878 * block groups cache has started writing. If it already started, 8879 * back off and let this transaction commit 8880 */ 8881 mutex_lock(&root->fs_info->ro_block_group_mutex); 8882 if (trans->transaction->dirty_bg_run) { 8883 u64 transid = trans->transid; 8884 8885 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8886 btrfs_end_transaction(trans, root); 8887 8888 ret = btrfs_wait_for_commit(root, transid); 8889 if (ret) 8890 return ret; 8891 goto again; 8892 } 8893 8894 /* 8895 * if we are changing raid levels, try to allocate a corresponding 8896 * block group with the new raid level. 8897 */ 8898 alloc_flags = update_block_group_flags(root, cache->flags); 8899 if (alloc_flags != cache->flags) { 8900 ret = do_chunk_alloc(trans, root, alloc_flags, 8901 CHUNK_ALLOC_FORCE); 8902 /* 8903 * ENOSPC is allowed here, we may have enough space 8904 * already allocated at the new raid level to 8905 * carry on 8906 */ 8907 if (ret == -ENOSPC) 8908 ret = 0; 8909 if (ret < 0) 8910 goto out; 8911 } 8912 8913 ret = inc_block_group_ro(cache, 0); 8914 if (!ret) 8915 goto out; 8916 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8917 ret = do_chunk_alloc(trans, root, alloc_flags, 8918 CHUNK_ALLOC_FORCE); 8919 if (ret < 0) 8920 goto out; 8921 ret = inc_block_group_ro(cache, 0); 8922 out: 8923 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8924 alloc_flags = update_block_group_flags(root, cache->flags); 8925 lock_chunks(root->fs_info->chunk_root); 8926 check_system_chunk(trans, root, alloc_flags); 8927 unlock_chunks(root->fs_info->chunk_root); 8928 } 8929 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8930 8931 btrfs_end_transaction(trans, root); 8932 return ret; 8933 } 8934 8935 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8936 struct btrfs_root *root, u64 type) 8937 { 8938 u64 alloc_flags = get_alloc_profile(root, type); 8939 return do_chunk_alloc(trans, root, alloc_flags, 8940 CHUNK_ALLOC_FORCE); 8941 } 8942 8943 /* 8944 * helper to account the unused space of all the readonly block group in the 8945 * space_info. takes mirrors into account. 8946 */ 8947 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8948 { 8949 struct btrfs_block_group_cache *block_group; 8950 u64 free_bytes = 0; 8951 int factor; 8952 8953 /* It's df, we don't care if it's racey */ 8954 if (list_empty(&sinfo->ro_bgs)) 8955 return 0; 8956 8957 spin_lock(&sinfo->lock); 8958 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8959 spin_lock(&block_group->lock); 8960 8961 if (!block_group->ro) { 8962 spin_unlock(&block_group->lock); 8963 continue; 8964 } 8965 8966 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8967 BTRFS_BLOCK_GROUP_RAID10 | 8968 BTRFS_BLOCK_GROUP_DUP)) 8969 factor = 2; 8970 else 8971 factor = 1; 8972 8973 free_bytes += (block_group->key.offset - 8974 btrfs_block_group_used(&block_group->item)) * 8975 factor; 8976 8977 spin_unlock(&block_group->lock); 8978 } 8979 spin_unlock(&sinfo->lock); 8980 8981 return free_bytes; 8982 } 8983 8984 void btrfs_dec_block_group_ro(struct btrfs_root *root, 8985 struct btrfs_block_group_cache *cache) 8986 { 8987 struct btrfs_space_info *sinfo = cache->space_info; 8988 u64 num_bytes; 8989 8990 BUG_ON(!cache->ro); 8991 8992 spin_lock(&sinfo->lock); 8993 spin_lock(&cache->lock); 8994 if (!--cache->ro) { 8995 num_bytes = cache->key.offset - cache->reserved - 8996 cache->pinned - cache->bytes_super - 8997 btrfs_block_group_used(&cache->item); 8998 sinfo->bytes_readonly -= num_bytes; 8999 list_del_init(&cache->ro_list); 9000 } 9001 spin_unlock(&cache->lock); 9002 spin_unlock(&sinfo->lock); 9003 } 9004 9005 /* 9006 * checks to see if its even possible to relocate this block group. 9007 * 9008 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9009 * ok to go ahead and try. 9010 */ 9011 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9012 { 9013 struct btrfs_block_group_cache *block_group; 9014 struct btrfs_space_info *space_info; 9015 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9016 struct btrfs_device *device; 9017 struct btrfs_trans_handle *trans; 9018 u64 min_free; 9019 u64 dev_min = 1; 9020 u64 dev_nr = 0; 9021 u64 target; 9022 int index; 9023 int full = 0; 9024 int ret = 0; 9025 9026 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9027 9028 /* odd, couldn't find the block group, leave it alone */ 9029 if (!block_group) 9030 return -1; 9031 9032 min_free = btrfs_block_group_used(&block_group->item); 9033 9034 /* no bytes used, we're good */ 9035 if (!min_free) 9036 goto out; 9037 9038 space_info = block_group->space_info; 9039 spin_lock(&space_info->lock); 9040 9041 full = space_info->full; 9042 9043 /* 9044 * if this is the last block group we have in this space, we can't 9045 * relocate it unless we're able to allocate a new chunk below. 9046 * 9047 * Otherwise, we need to make sure we have room in the space to handle 9048 * all of the extents from this block group. If we can, we're good 9049 */ 9050 if ((space_info->total_bytes != block_group->key.offset) && 9051 (space_info->bytes_used + space_info->bytes_reserved + 9052 space_info->bytes_pinned + space_info->bytes_readonly + 9053 min_free < space_info->total_bytes)) { 9054 spin_unlock(&space_info->lock); 9055 goto out; 9056 } 9057 spin_unlock(&space_info->lock); 9058 9059 /* 9060 * ok we don't have enough space, but maybe we have free space on our 9061 * devices to allocate new chunks for relocation, so loop through our 9062 * alloc devices and guess if we have enough space. if this block 9063 * group is going to be restriped, run checks against the target 9064 * profile instead of the current one. 9065 */ 9066 ret = -1; 9067 9068 /* 9069 * index: 9070 * 0: raid10 9071 * 1: raid1 9072 * 2: dup 9073 * 3: raid0 9074 * 4: single 9075 */ 9076 target = get_restripe_target(root->fs_info, block_group->flags); 9077 if (target) { 9078 index = __get_raid_index(extended_to_chunk(target)); 9079 } else { 9080 /* 9081 * this is just a balance, so if we were marked as full 9082 * we know there is no space for a new chunk 9083 */ 9084 if (full) 9085 goto out; 9086 9087 index = get_block_group_index(block_group); 9088 } 9089 9090 if (index == BTRFS_RAID_RAID10) { 9091 dev_min = 4; 9092 /* Divide by 2 */ 9093 min_free >>= 1; 9094 } else if (index == BTRFS_RAID_RAID1) { 9095 dev_min = 2; 9096 } else if (index == BTRFS_RAID_DUP) { 9097 /* Multiply by 2 */ 9098 min_free <<= 1; 9099 } else if (index == BTRFS_RAID_RAID0) { 9100 dev_min = fs_devices->rw_devices; 9101 min_free = div64_u64(min_free, dev_min); 9102 } 9103 9104 /* We need to do this so that we can look at pending chunks */ 9105 trans = btrfs_join_transaction(root); 9106 if (IS_ERR(trans)) { 9107 ret = PTR_ERR(trans); 9108 goto out; 9109 } 9110 9111 mutex_lock(&root->fs_info->chunk_mutex); 9112 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9113 u64 dev_offset; 9114 9115 /* 9116 * check to make sure we can actually find a chunk with enough 9117 * space to fit our block group in. 9118 */ 9119 if (device->total_bytes > device->bytes_used + min_free && 9120 !device->is_tgtdev_for_dev_replace) { 9121 ret = find_free_dev_extent(trans, device, min_free, 9122 &dev_offset, NULL); 9123 if (!ret) 9124 dev_nr++; 9125 9126 if (dev_nr >= dev_min) 9127 break; 9128 9129 ret = -1; 9130 } 9131 } 9132 mutex_unlock(&root->fs_info->chunk_mutex); 9133 btrfs_end_transaction(trans, root); 9134 out: 9135 btrfs_put_block_group(block_group); 9136 return ret; 9137 } 9138 9139 static int find_first_block_group(struct btrfs_root *root, 9140 struct btrfs_path *path, struct btrfs_key *key) 9141 { 9142 int ret = 0; 9143 struct btrfs_key found_key; 9144 struct extent_buffer *leaf; 9145 int slot; 9146 9147 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9148 if (ret < 0) 9149 goto out; 9150 9151 while (1) { 9152 slot = path->slots[0]; 9153 leaf = path->nodes[0]; 9154 if (slot >= btrfs_header_nritems(leaf)) { 9155 ret = btrfs_next_leaf(root, path); 9156 if (ret == 0) 9157 continue; 9158 if (ret < 0) 9159 goto out; 9160 break; 9161 } 9162 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9163 9164 if (found_key.objectid >= key->objectid && 9165 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9166 ret = 0; 9167 goto out; 9168 } 9169 path->slots[0]++; 9170 } 9171 out: 9172 return ret; 9173 } 9174 9175 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9176 { 9177 struct btrfs_block_group_cache *block_group; 9178 u64 last = 0; 9179 9180 while (1) { 9181 struct inode *inode; 9182 9183 block_group = btrfs_lookup_first_block_group(info, last); 9184 while (block_group) { 9185 spin_lock(&block_group->lock); 9186 if (block_group->iref) 9187 break; 9188 spin_unlock(&block_group->lock); 9189 block_group = next_block_group(info->tree_root, 9190 block_group); 9191 } 9192 if (!block_group) { 9193 if (last == 0) 9194 break; 9195 last = 0; 9196 continue; 9197 } 9198 9199 inode = block_group->inode; 9200 block_group->iref = 0; 9201 block_group->inode = NULL; 9202 spin_unlock(&block_group->lock); 9203 iput(inode); 9204 last = block_group->key.objectid + block_group->key.offset; 9205 btrfs_put_block_group(block_group); 9206 } 9207 } 9208 9209 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9210 { 9211 struct btrfs_block_group_cache *block_group; 9212 struct btrfs_space_info *space_info; 9213 struct btrfs_caching_control *caching_ctl; 9214 struct rb_node *n; 9215 9216 down_write(&info->commit_root_sem); 9217 while (!list_empty(&info->caching_block_groups)) { 9218 caching_ctl = list_entry(info->caching_block_groups.next, 9219 struct btrfs_caching_control, list); 9220 list_del(&caching_ctl->list); 9221 put_caching_control(caching_ctl); 9222 } 9223 up_write(&info->commit_root_sem); 9224 9225 spin_lock(&info->unused_bgs_lock); 9226 while (!list_empty(&info->unused_bgs)) { 9227 block_group = list_first_entry(&info->unused_bgs, 9228 struct btrfs_block_group_cache, 9229 bg_list); 9230 list_del_init(&block_group->bg_list); 9231 btrfs_put_block_group(block_group); 9232 } 9233 spin_unlock(&info->unused_bgs_lock); 9234 9235 spin_lock(&info->block_group_cache_lock); 9236 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9237 block_group = rb_entry(n, struct btrfs_block_group_cache, 9238 cache_node); 9239 rb_erase(&block_group->cache_node, 9240 &info->block_group_cache_tree); 9241 RB_CLEAR_NODE(&block_group->cache_node); 9242 spin_unlock(&info->block_group_cache_lock); 9243 9244 down_write(&block_group->space_info->groups_sem); 9245 list_del(&block_group->list); 9246 up_write(&block_group->space_info->groups_sem); 9247 9248 if (block_group->cached == BTRFS_CACHE_STARTED) 9249 wait_block_group_cache_done(block_group); 9250 9251 /* 9252 * We haven't cached this block group, which means we could 9253 * possibly have excluded extents on this block group. 9254 */ 9255 if (block_group->cached == BTRFS_CACHE_NO || 9256 block_group->cached == BTRFS_CACHE_ERROR) 9257 free_excluded_extents(info->extent_root, block_group); 9258 9259 btrfs_remove_free_space_cache(block_group); 9260 btrfs_put_block_group(block_group); 9261 9262 spin_lock(&info->block_group_cache_lock); 9263 } 9264 spin_unlock(&info->block_group_cache_lock); 9265 9266 /* now that all the block groups are freed, go through and 9267 * free all the space_info structs. This is only called during 9268 * the final stages of unmount, and so we know nobody is 9269 * using them. We call synchronize_rcu() once before we start, 9270 * just to be on the safe side. 9271 */ 9272 synchronize_rcu(); 9273 9274 release_global_block_rsv(info); 9275 9276 while (!list_empty(&info->space_info)) { 9277 int i; 9278 9279 space_info = list_entry(info->space_info.next, 9280 struct btrfs_space_info, 9281 list); 9282 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9283 if (WARN_ON(space_info->bytes_pinned > 0 || 9284 space_info->bytes_reserved > 0 || 9285 space_info->bytes_may_use > 0)) { 9286 dump_space_info(space_info, 0, 0); 9287 } 9288 } 9289 list_del(&space_info->list); 9290 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9291 struct kobject *kobj; 9292 kobj = space_info->block_group_kobjs[i]; 9293 space_info->block_group_kobjs[i] = NULL; 9294 if (kobj) { 9295 kobject_del(kobj); 9296 kobject_put(kobj); 9297 } 9298 } 9299 kobject_del(&space_info->kobj); 9300 kobject_put(&space_info->kobj); 9301 } 9302 return 0; 9303 } 9304 9305 static void __link_block_group(struct btrfs_space_info *space_info, 9306 struct btrfs_block_group_cache *cache) 9307 { 9308 int index = get_block_group_index(cache); 9309 bool first = false; 9310 9311 down_write(&space_info->groups_sem); 9312 if (list_empty(&space_info->block_groups[index])) 9313 first = true; 9314 list_add_tail(&cache->list, &space_info->block_groups[index]); 9315 up_write(&space_info->groups_sem); 9316 9317 if (first) { 9318 struct raid_kobject *rkobj; 9319 int ret; 9320 9321 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9322 if (!rkobj) 9323 goto out_err; 9324 rkobj->raid_type = index; 9325 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9326 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9327 "%s", get_raid_name(index)); 9328 if (ret) { 9329 kobject_put(&rkobj->kobj); 9330 goto out_err; 9331 } 9332 space_info->block_group_kobjs[index] = &rkobj->kobj; 9333 } 9334 9335 return; 9336 out_err: 9337 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9338 } 9339 9340 static struct btrfs_block_group_cache * 9341 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9342 { 9343 struct btrfs_block_group_cache *cache; 9344 9345 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9346 if (!cache) 9347 return NULL; 9348 9349 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9350 GFP_NOFS); 9351 if (!cache->free_space_ctl) { 9352 kfree(cache); 9353 return NULL; 9354 } 9355 9356 cache->key.objectid = start; 9357 cache->key.offset = size; 9358 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9359 9360 cache->sectorsize = root->sectorsize; 9361 cache->fs_info = root->fs_info; 9362 cache->full_stripe_len = btrfs_full_stripe_len(root, 9363 &root->fs_info->mapping_tree, 9364 start); 9365 atomic_set(&cache->count, 1); 9366 spin_lock_init(&cache->lock); 9367 init_rwsem(&cache->data_rwsem); 9368 INIT_LIST_HEAD(&cache->list); 9369 INIT_LIST_HEAD(&cache->cluster_list); 9370 INIT_LIST_HEAD(&cache->bg_list); 9371 INIT_LIST_HEAD(&cache->ro_list); 9372 INIT_LIST_HEAD(&cache->dirty_list); 9373 INIT_LIST_HEAD(&cache->io_list); 9374 btrfs_init_free_space_ctl(cache); 9375 atomic_set(&cache->trimming, 0); 9376 9377 return cache; 9378 } 9379 9380 int btrfs_read_block_groups(struct btrfs_root *root) 9381 { 9382 struct btrfs_path *path; 9383 int ret; 9384 struct btrfs_block_group_cache *cache; 9385 struct btrfs_fs_info *info = root->fs_info; 9386 struct btrfs_space_info *space_info; 9387 struct btrfs_key key; 9388 struct btrfs_key found_key; 9389 struct extent_buffer *leaf; 9390 int need_clear = 0; 9391 u64 cache_gen; 9392 9393 root = info->extent_root; 9394 key.objectid = 0; 9395 key.offset = 0; 9396 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9397 path = btrfs_alloc_path(); 9398 if (!path) 9399 return -ENOMEM; 9400 path->reada = 1; 9401 9402 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9403 if (btrfs_test_opt(root, SPACE_CACHE) && 9404 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9405 need_clear = 1; 9406 if (btrfs_test_opt(root, CLEAR_CACHE)) 9407 need_clear = 1; 9408 9409 while (1) { 9410 ret = find_first_block_group(root, path, &key); 9411 if (ret > 0) 9412 break; 9413 if (ret != 0) 9414 goto error; 9415 9416 leaf = path->nodes[0]; 9417 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9418 9419 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9420 found_key.offset); 9421 if (!cache) { 9422 ret = -ENOMEM; 9423 goto error; 9424 } 9425 9426 if (need_clear) { 9427 /* 9428 * When we mount with old space cache, we need to 9429 * set BTRFS_DC_CLEAR and set dirty flag. 9430 * 9431 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9432 * truncate the old free space cache inode and 9433 * setup a new one. 9434 * b) Setting 'dirty flag' makes sure that we flush 9435 * the new space cache info onto disk. 9436 */ 9437 if (btrfs_test_opt(root, SPACE_CACHE)) 9438 cache->disk_cache_state = BTRFS_DC_CLEAR; 9439 } 9440 9441 read_extent_buffer(leaf, &cache->item, 9442 btrfs_item_ptr_offset(leaf, path->slots[0]), 9443 sizeof(cache->item)); 9444 cache->flags = btrfs_block_group_flags(&cache->item); 9445 9446 key.objectid = found_key.objectid + found_key.offset; 9447 btrfs_release_path(path); 9448 9449 /* 9450 * We need to exclude the super stripes now so that the space 9451 * info has super bytes accounted for, otherwise we'll think 9452 * we have more space than we actually do. 9453 */ 9454 ret = exclude_super_stripes(root, cache); 9455 if (ret) { 9456 /* 9457 * We may have excluded something, so call this just in 9458 * case. 9459 */ 9460 free_excluded_extents(root, cache); 9461 btrfs_put_block_group(cache); 9462 goto error; 9463 } 9464 9465 /* 9466 * check for two cases, either we are full, and therefore 9467 * don't need to bother with the caching work since we won't 9468 * find any space, or we are empty, and we can just add all 9469 * the space in and be done with it. This saves us _alot_ of 9470 * time, particularly in the full case. 9471 */ 9472 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9473 cache->last_byte_to_unpin = (u64)-1; 9474 cache->cached = BTRFS_CACHE_FINISHED; 9475 free_excluded_extents(root, cache); 9476 } else if (btrfs_block_group_used(&cache->item) == 0) { 9477 cache->last_byte_to_unpin = (u64)-1; 9478 cache->cached = BTRFS_CACHE_FINISHED; 9479 add_new_free_space(cache, root->fs_info, 9480 found_key.objectid, 9481 found_key.objectid + 9482 found_key.offset); 9483 free_excluded_extents(root, cache); 9484 } 9485 9486 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9487 if (ret) { 9488 btrfs_remove_free_space_cache(cache); 9489 btrfs_put_block_group(cache); 9490 goto error; 9491 } 9492 9493 ret = update_space_info(info, cache->flags, found_key.offset, 9494 btrfs_block_group_used(&cache->item), 9495 &space_info); 9496 if (ret) { 9497 btrfs_remove_free_space_cache(cache); 9498 spin_lock(&info->block_group_cache_lock); 9499 rb_erase(&cache->cache_node, 9500 &info->block_group_cache_tree); 9501 RB_CLEAR_NODE(&cache->cache_node); 9502 spin_unlock(&info->block_group_cache_lock); 9503 btrfs_put_block_group(cache); 9504 goto error; 9505 } 9506 9507 cache->space_info = space_info; 9508 spin_lock(&cache->space_info->lock); 9509 cache->space_info->bytes_readonly += cache->bytes_super; 9510 spin_unlock(&cache->space_info->lock); 9511 9512 __link_block_group(space_info, cache); 9513 9514 set_avail_alloc_bits(root->fs_info, cache->flags); 9515 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9516 inc_block_group_ro(cache, 1); 9517 } else if (btrfs_block_group_used(&cache->item) == 0) { 9518 spin_lock(&info->unused_bgs_lock); 9519 /* Should always be true but just in case. */ 9520 if (list_empty(&cache->bg_list)) { 9521 btrfs_get_block_group(cache); 9522 list_add_tail(&cache->bg_list, 9523 &info->unused_bgs); 9524 } 9525 spin_unlock(&info->unused_bgs_lock); 9526 } 9527 } 9528 9529 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9530 if (!(get_alloc_profile(root, space_info->flags) & 9531 (BTRFS_BLOCK_GROUP_RAID10 | 9532 BTRFS_BLOCK_GROUP_RAID1 | 9533 BTRFS_BLOCK_GROUP_RAID5 | 9534 BTRFS_BLOCK_GROUP_RAID6 | 9535 BTRFS_BLOCK_GROUP_DUP))) 9536 continue; 9537 /* 9538 * avoid allocating from un-mirrored block group if there are 9539 * mirrored block groups. 9540 */ 9541 list_for_each_entry(cache, 9542 &space_info->block_groups[BTRFS_RAID_RAID0], 9543 list) 9544 inc_block_group_ro(cache, 1); 9545 list_for_each_entry(cache, 9546 &space_info->block_groups[BTRFS_RAID_SINGLE], 9547 list) 9548 inc_block_group_ro(cache, 1); 9549 } 9550 9551 init_global_block_rsv(info); 9552 ret = 0; 9553 error: 9554 btrfs_free_path(path); 9555 return ret; 9556 } 9557 9558 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9559 struct btrfs_root *root) 9560 { 9561 struct btrfs_block_group_cache *block_group, *tmp; 9562 struct btrfs_root *extent_root = root->fs_info->extent_root; 9563 struct btrfs_block_group_item item; 9564 struct btrfs_key key; 9565 int ret = 0; 9566 9567 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9568 if (ret) 9569 goto next; 9570 9571 spin_lock(&block_group->lock); 9572 memcpy(&item, &block_group->item, sizeof(item)); 9573 memcpy(&key, &block_group->key, sizeof(key)); 9574 spin_unlock(&block_group->lock); 9575 9576 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9577 sizeof(item)); 9578 if (ret) 9579 btrfs_abort_transaction(trans, extent_root, ret); 9580 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9581 key.objectid, key.offset); 9582 if (ret) 9583 btrfs_abort_transaction(trans, extent_root, ret); 9584 next: 9585 list_del_init(&block_group->bg_list); 9586 } 9587 } 9588 9589 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9590 struct btrfs_root *root, u64 bytes_used, 9591 u64 type, u64 chunk_objectid, u64 chunk_offset, 9592 u64 size) 9593 { 9594 int ret; 9595 struct btrfs_root *extent_root; 9596 struct btrfs_block_group_cache *cache; 9597 9598 extent_root = root->fs_info->extent_root; 9599 9600 btrfs_set_log_full_commit(root->fs_info, trans); 9601 9602 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9603 if (!cache) 9604 return -ENOMEM; 9605 9606 btrfs_set_block_group_used(&cache->item, bytes_used); 9607 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9608 btrfs_set_block_group_flags(&cache->item, type); 9609 9610 cache->flags = type; 9611 cache->last_byte_to_unpin = (u64)-1; 9612 cache->cached = BTRFS_CACHE_FINISHED; 9613 ret = exclude_super_stripes(root, cache); 9614 if (ret) { 9615 /* 9616 * We may have excluded something, so call this just in 9617 * case. 9618 */ 9619 free_excluded_extents(root, cache); 9620 btrfs_put_block_group(cache); 9621 return ret; 9622 } 9623 9624 add_new_free_space(cache, root->fs_info, chunk_offset, 9625 chunk_offset + size); 9626 9627 free_excluded_extents(root, cache); 9628 9629 /* 9630 * Call to ensure the corresponding space_info object is created and 9631 * assigned to our block group, but don't update its counters just yet. 9632 * We want our bg to be added to the rbtree with its ->space_info set. 9633 */ 9634 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9635 &cache->space_info); 9636 if (ret) { 9637 btrfs_remove_free_space_cache(cache); 9638 btrfs_put_block_group(cache); 9639 return ret; 9640 } 9641 9642 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9643 if (ret) { 9644 btrfs_remove_free_space_cache(cache); 9645 btrfs_put_block_group(cache); 9646 return ret; 9647 } 9648 9649 /* 9650 * Now that our block group has its ->space_info set and is inserted in 9651 * the rbtree, update the space info's counters. 9652 */ 9653 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9654 &cache->space_info); 9655 if (ret) { 9656 btrfs_remove_free_space_cache(cache); 9657 spin_lock(&root->fs_info->block_group_cache_lock); 9658 rb_erase(&cache->cache_node, 9659 &root->fs_info->block_group_cache_tree); 9660 RB_CLEAR_NODE(&cache->cache_node); 9661 spin_unlock(&root->fs_info->block_group_cache_lock); 9662 btrfs_put_block_group(cache); 9663 return ret; 9664 } 9665 update_global_block_rsv(root->fs_info); 9666 9667 spin_lock(&cache->space_info->lock); 9668 cache->space_info->bytes_readonly += cache->bytes_super; 9669 spin_unlock(&cache->space_info->lock); 9670 9671 __link_block_group(cache->space_info, cache); 9672 9673 list_add_tail(&cache->bg_list, &trans->new_bgs); 9674 9675 set_avail_alloc_bits(extent_root->fs_info, type); 9676 9677 return 0; 9678 } 9679 9680 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9681 { 9682 u64 extra_flags = chunk_to_extended(flags) & 9683 BTRFS_EXTENDED_PROFILE_MASK; 9684 9685 write_seqlock(&fs_info->profiles_lock); 9686 if (flags & BTRFS_BLOCK_GROUP_DATA) 9687 fs_info->avail_data_alloc_bits &= ~extra_flags; 9688 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9689 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9690 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9691 fs_info->avail_system_alloc_bits &= ~extra_flags; 9692 write_sequnlock(&fs_info->profiles_lock); 9693 } 9694 9695 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9696 struct btrfs_root *root, u64 group_start, 9697 struct extent_map *em) 9698 { 9699 struct btrfs_path *path; 9700 struct btrfs_block_group_cache *block_group; 9701 struct btrfs_free_cluster *cluster; 9702 struct btrfs_root *tree_root = root->fs_info->tree_root; 9703 struct btrfs_key key; 9704 struct inode *inode; 9705 struct kobject *kobj = NULL; 9706 int ret; 9707 int index; 9708 int factor; 9709 struct btrfs_caching_control *caching_ctl = NULL; 9710 bool remove_em; 9711 9712 root = root->fs_info->extent_root; 9713 9714 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9715 BUG_ON(!block_group); 9716 BUG_ON(!block_group->ro); 9717 9718 /* 9719 * Free the reserved super bytes from this block group before 9720 * remove it. 9721 */ 9722 free_excluded_extents(root, block_group); 9723 9724 memcpy(&key, &block_group->key, sizeof(key)); 9725 index = get_block_group_index(block_group); 9726 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9727 BTRFS_BLOCK_GROUP_RAID1 | 9728 BTRFS_BLOCK_GROUP_RAID10)) 9729 factor = 2; 9730 else 9731 factor = 1; 9732 9733 /* make sure this block group isn't part of an allocation cluster */ 9734 cluster = &root->fs_info->data_alloc_cluster; 9735 spin_lock(&cluster->refill_lock); 9736 btrfs_return_cluster_to_free_space(block_group, cluster); 9737 spin_unlock(&cluster->refill_lock); 9738 9739 /* 9740 * make sure this block group isn't part of a metadata 9741 * allocation cluster 9742 */ 9743 cluster = &root->fs_info->meta_alloc_cluster; 9744 spin_lock(&cluster->refill_lock); 9745 btrfs_return_cluster_to_free_space(block_group, cluster); 9746 spin_unlock(&cluster->refill_lock); 9747 9748 path = btrfs_alloc_path(); 9749 if (!path) { 9750 ret = -ENOMEM; 9751 goto out; 9752 } 9753 9754 /* 9755 * get the inode first so any iput calls done for the io_list 9756 * aren't the final iput (no unlinks allowed now) 9757 */ 9758 inode = lookup_free_space_inode(tree_root, block_group, path); 9759 9760 mutex_lock(&trans->transaction->cache_write_mutex); 9761 /* 9762 * make sure our free spache cache IO is done before remove the 9763 * free space inode 9764 */ 9765 spin_lock(&trans->transaction->dirty_bgs_lock); 9766 if (!list_empty(&block_group->io_list)) { 9767 list_del_init(&block_group->io_list); 9768 9769 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9770 9771 spin_unlock(&trans->transaction->dirty_bgs_lock); 9772 btrfs_wait_cache_io(root, trans, block_group, 9773 &block_group->io_ctl, path, 9774 block_group->key.objectid); 9775 btrfs_put_block_group(block_group); 9776 spin_lock(&trans->transaction->dirty_bgs_lock); 9777 } 9778 9779 if (!list_empty(&block_group->dirty_list)) { 9780 list_del_init(&block_group->dirty_list); 9781 btrfs_put_block_group(block_group); 9782 } 9783 spin_unlock(&trans->transaction->dirty_bgs_lock); 9784 mutex_unlock(&trans->transaction->cache_write_mutex); 9785 9786 if (!IS_ERR(inode)) { 9787 ret = btrfs_orphan_add(trans, inode); 9788 if (ret) { 9789 btrfs_add_delayed_iput(inode); 9790 goto out; 9791 } 9792 clear_nlink(inode); 9793 /* One for the block groups ref */ 9794 spin_lock(&block_group->lock); 9795 if (block_group->iref) { 9796 block_group->iref = 0; 9797 block_group->inode = NULL; 9798 spin_unlock(&block_group->lock); 9799 iput(inode); 9800 } else { 9801 spin_unlock(&block_group->lock); 9802 } 9803 /* One for our lookup ref */ 9804 btrfs_add_delayed_iput(inode); 9805 } 9806 9807 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9808 key.offset = block_group->key.objectid; 9809 key.type = 0; 9810 9811 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9812 if (ret < 0) 9813 goto out; 9814 if (ret > 0) 9815 btrfs_release_path(path); 9816 if (ret == 0) { 9817 ret = btrfs_del_item(trans, tree_root, path); 9818 if (ret) 9819 goto out; 9820 btrfs_release_path(path); 9821 } 9822 9823 spin_lock(&root->fs_info->block_group_cache_lock); 9824 rb_erase(&block_group->cache_node, 9825 &root->fs_info->block_group_cache_tree); 9826 RB_CLEAR_NODE(&block_group->cache_node); 9827 9828 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9829 root->fs_info->first_logical_byte = (u64)-1; 9830 spin_unlock(&root->fs_info->block_group_cache_lock); 9831 9832 down_write(&block_group->space_info->groups_sem); 9833 /* 9834 * we must use list_del_init so people can check to see if they 9835 * are still on the list after taking the semaphore 9836 */ 9837 list_del_init(&block_group->list); 9838 if (list_empty(&block_group->space_info->block_groups[index])) { 9839 kobj = block_group->space_info->block_group_kobjs[index]; 9840 block_group->space_info->block_group_kobjs[index] = NULL; 9841 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9842 } 9843 up_write(&block_group->space_info->groups_sem); 9844 if (kobj) { 9845 kobject_del(kobj); 9846 kobject_put(kobj); 9847 } 9848 9849 if (block_group->has_caching_ctl) 9850 caching_ctl = get_caching_control(block_group); 9851 if (block_group->cached == BTRFS_CACHE_STARTED) 9852 wait_block_group_cache_done(block_group); 9853 if (block_group->has_caching_ctl) { 9854 down_write(&root->fs_info->commit_root_sem); 9855 if (!caching_ctl) { 9856 struct btrfs_caching_control *ctl; 9857 9858 list_for_each_entry(ctl, 9859 &root->fs_info->caching_block_groups, list) 9860 if (ctl->block_group == block_group) { 9861 caching_ctl = ctl; 9862 atomic_inc(&caching_ctl->count); 9863 break; 9864 } 9865 } 9866 if (caching_ctl) 9867 list_del_init(&caching_ctl->list); 9868 up_write(&root->fs_info->commit_root_sem); 9869 if (caching_ctl) { 9870 /* Once for the caching bgs list and once for us. */ 9871 put_caching_control(caching_ctl); 9872 put_caching_control(caching_ctl); 9873 } 9874 } 9875 9876 spin_lock(&trans->transaction->dirty_bgs_lock); 9877 if (!list_empty(&block_group->dirty_list)) { 9878 WARN_ON(1); 9879 } 9880 if (!list_empty(&block_group->io_list)) { 9881 WARN_ON(1); 9882 } 9883 spin_unlock(&trans->transaction->dirty_bgs_lock); 9884 btrfs_remove_free_space_cache(block_group); 9885 9886 spin_lock(&block_group->space_info->lock); 9887 list_del_init(&block_group->ro_list); 9888 9889 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9890 WARN_ON(block_group->space_info->total_bytes 9891 < block_group->key.offset); 9892 WARN_ON(block_group->space_info->bytes_readonly 9893 < block_group->key.offset); 9894 WARN_ON(block_group->space_info->disk_total 9895 < block_group->key.offset * factor); 9896 } 9897 block_group->space_info->total_bytes -= block_group->key.offset; 9898 block_group->space_info->bytes_readonly -= block_group->key.offset; 9899 block_group->space_info->disk_total -= block_group->key.offset * factor; 9900 9901 spin_unlock(&block_group->space_info->lock); 9902 9903 memcpy(&key, &block_group->key, sizeof(key)); 9904 9905 lock_chunks(root); 9906 if (!list_empty(&em->list)) { 9907 /* We're in the transaction->pending_chunks list. */ 9908 free_extent_map(em); 9909 } 9910 spin_lock(&block_group->lock); 9911 block_group->removed = 1; 9912 /* 9913 * At this point trimming can't start on this block group, because we 9914 * removed the block group from the tree fs_info->block_group_cache_tree 9915 * so no one can't find it anymore and even if someone already got this 9916 * block group before we removed it from the rbtree, they have already 9917 * incremented block_group->trimming - if they didn't, they won't find 9918 * any free space entries because we already removed them all when we 9919 * called btrfs_remove_free_space_cache(). 9920 * 9921 * And we must not remove the extent map from the fs_info->mapping_tree 9922 * to prevent the same logical address range and physical device space 9923 * ranges from being reused for a new block group. This is because our 9924 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9925 * completely transactionless, so while it is trimming a range the 9926 * currently running transaction might finish and a new one start, 9927 * allowing for new block groups to be created that can reuse the same 9928 * physical device locations unless we take this special care. 9929 * 9930 * There may also be an implicit trim operation if the file system 9931 * is mounted with -odiscard. The same protections must remain 9932 * in place until the extents have been discarded completely when 9933 * the transaction commit has completed. 9934 */ 9935 remove_em = (atomic_read(&block_group->trimming) == 0); 9936 /* 9937 * Make sure a trimmer task always sees the em in the pinned_chunks list 9938 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9939 * before checking block_group->removed). 9940 */ 9941 if (!remove_em) { 9942 /* 9943 * Our em might be in trans->transaction->pending_chunks which 9944 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9945 * and so is the fs_info->pinned_chunks list. 9946 * 9947 * So at this point we must be holding the chunk_mutex to avoid 9948 * any races with chunk allocation (more specifically at 9949 * volumes.c:contains_pending_extent()), to ensure it always 9950 * sees the em, either in the pending_chunks list or in the 9951 * pinned_chunks list. 9952 */ 9953 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9954 } 9955 spin_unlock(&block_group->lock); 9956 9957 if (remove_em) { 9958 struct extent_map_tree *em_tree; 9959 9960 em_tree = &root->fs_info->mapping_tree.map_tree; 9961 write_lock(&em_tree->lock); 9962 /* 9963 * The em might be in the pending_chunks list, so make sure the 9964 * chunk mutex is locked, since remove_extent_mapping() will 9965 * delete us from that list. 9966 */ 9967 remove_extent_mapping(em_tree, em); 9968 write_unlock(&em_tree->lock); 9969 /* once for the tree */ 9970 free_extent_map(em); 9971 } 9972 9973 unlock_chunks(root); 9974 9975 btrfs_put_block_group(block_group); 9976 btrfs_put_block_group(block_group); 9977 9978 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9979 if (ret > 0) 9980 ret = -EIO; 9981 if (ret < 0) 9982 goto out; 9983 9984 ret = btrfs_del_item(trans, root, path); 9985 out: 9986 btrfs_free_path(path); 9987 return ret; 9988 } 9989 9990 /* 9991 * Process the unused_bgs list and remove any that don't have any allocated 9992 * space inside of them. 9993 */ 9994 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9995 { 9996 struct btrfs_block_group_cache *block_group; 9997 struct btrfs_space_info *space_info; 9998 struct btrfs_root *root = fs_info->extent_root; 9999 struct btrfs_trans_handle *trans; 10000 int ret = 0; 10001 10002 if (!fs_info->open) 10003 return; 10004 10005 spin_lock(&fs_info->unused_bgs_lock); 10006 while (!list_empty(&fs_info->unused_bgs)) { 10007 u64 start, end; 10008 int trimming; 10009 10010 block_group = list_first_entry(&fs_info->unused_bgs, 10011 struct btrfs_block_group_cache, 10012 bg_list); 10013 space_info = block_group->space_info; 10014 list_del_init(&block_group->bg_list); 10015 if (ret || btrfs_mixed_space_info(space_info)) { 10016 btrfs_put_block_group(block_group); 10017 continue; 10018 } 10019 spin_unlock(&fs_info->unused_bgs_lock); 10020 10021 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 10022 10023 /* Don't want to race with allocators so take the groups_sem */ 10024 down_write(&space_info->groups_sem); 10025 spin_lock(&block_group->lock); 10026 if (block_group->reserved || 10027 btrfs_block_group_used(&block_group->item) || 10028 block_group->ro) { 10029 /* 10030 * We want to bail if we made new allocations or have 10031 * outstanding allocations in this block group. We do 10032 * the ro check in case balance is currently acting on 10033 * this block group. 10034 */ 10035 spin_unlock(&block_group->lock); 10036 up_write(&space_info->groups_sem); 10037 goto next; 10038 } 10039 spin_unlock(&block_group->lock); 10040 10041 /* We don't want to force the issue, only flip if it's ok. */ 10042 ret = inc_block_group_ro(block_group, 0); 10043 up_write(&space_info->groups_sem); 10044 if (ret < 0) { 10045 ret = 0; 10046 goto next; 10047 } 10048 10049 /* 10050 * Want to do this before we do anything else so we can recover 10051 * properly if we fail to join the transaction. 10052 */ 10053 /* 1 for btrfs_orphan_reserve_metadata() */ 10054 trans = btrfs_start_transaction(root, 1); 10055 if (IS_ERR(trans)) { 10056 btrfs_dec_block_group_ro(root, block_group); 10057 ret = PTR_ERR(trans); 10058 goto next; 10059 } 10060 10061 /* 10062 * We could have pending pinned extents for this block group, 10063 * just delete them, we don't care about them anymore. 10064 */ 10065 start = block_group->key.objectid; 10066 end = start + block_group->key.offset - 1; 10067 /* 10068 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10069 * btrfs_finish_extent_commit(). If we are at transaction N, 10070 * another task might be running finish_extent_commit() for the 10071 * previous transaction N - 1, and have seen a range belonging 10072 * to the block group in freed_extents[] before we were able to 10073 * clear the whole block group range from freed_extents[]. This 10074 * means that task can lookup for the block group after we 10075 * unpinned it from freed_extents[] and removed it, leading to 10076 * a BUG_ON() at btrfs_unpin_extent_range(). 10077 */ 10078 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10079 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10080 EXTENT_DIRTY, GFP_NOFS); 10081 if (ret) { 10082 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10083 btrfs_dec_block_group_ro(root, block_group); 10084 goto end_trans; 10085 } 10086 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10087 EXTENT_DIRTY, GFP_NOFS); 10088 if (ret) { 10089 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10090 btrfs_dec_block_group_ro(root, block_group); 10091 goto end_trans; 10092 } 10093 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10094 10095 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10096 spin_lock(&space_info->lock); 10097 spin_lock(&block_group->lock); 10098 10099 space_info->bytes_pinned -= block_group->pinned; 10100 space_info->bytes_readonly += block_group->pinned; 10101 percpu_counter_add(&space_info->total_bytes_pinned, 10102 -block_group->pinned); 10103 block_group->pinned = 0; 10104 10105 spin_unlock(&block_group->lock); 10106 spin_unlock(&space_info->lock); 10107 10108 /* DISCARD can flip during remount */ 10109 trimming = btrfs_test_opt(root, DISCARD); 10110 10111 /* Implicit trim during transaction commit. */ 10112 if (trimming) 10113 btrfs_get_block_group_trimming(block_group); 10114 10115 /* 10116 * Btrfs_remove_chunk will abort the transaction if things go 10117 * horribly wrong. 10118 */ 10119 ret = btrfs_remove_chunk(trans, root, 10120 block_group->key.objectid); 10121 10122 if (ret) { 10123 if (trimming) 10124 btrfs_put_block_group_trimming(block_group); 10125 goto end_trans; 10126 } 10127 10128 /* 10129 * If we're not mounted with -odiscard, we can just forget 10130 * about this block group. Otherwise we'll need to wait 10131 * until transaction commit to do the actual discard. 10132 */ 10133 if (trimming) { 10134 WARN_ON(!list_empty(&block_group->bg_list)); 10135 spin_lock(&trans->transaction->deleted_bgs_lock); 10136 list_move(&block_group->bg_list, 10137 &trans->transaction->deleted_bgs); 10138 spin_unlock(&trans->transaction->deleted_bgs_lock); 10139 btrfs_get_block_group(block_group); 10140 } 10141 end_trans: 10142 btrfs_end_transaction(trans, root); 10143 next: 10144 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 10145 btrfs_put_block_group(block_group); 10146 spin_lock(&fs_info->unused_bgs_lock); 10147 } 10148 spin_unlock(&fs_info->unused_bgs_lock); 10149 } 10150 10151 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10152 { 10153 struct btrfs_space_info *space_info; 10154 struct btrfs_super_block *disk_super; 10155 u64 features; 10156 u64 flags; 10157 int mixed = 0; 10158 int ret; 10159 10160 disk_super = fs_info->super_copy; 10161 if (!btrfs_super_root(disk_super)) 10162 return 1; 10163 10164 features = btrfs_super_incompat_flags(disk_super); 10165 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10166 mixed = 1; 10167 10168 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10169 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10170 if (ret) 10171 goto out; 10172 10173 if (mixed) { 10174 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10175 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10176 } else { 10177 flags = BTRFS_BLOCK_GROUP_METADATA; 10178 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10179 if (ret) 10180 goto out; 10181 10182 flags = BTRFS_BLOCK_GROUP_DATA; 10183 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10184 } 10185 out: 10186 return ret; 10187 } 10188 10189 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10190 { 10191 return unpin_extent_range(root, start, end, false); 10192 } 10193 10194 /* 10195 * It used to be that old block groups would be left around forever. 10196 * Iterating over them would be enough to trim unused space. Since we 10197 * now automatically remove them, we also need to iterate over unallocated 10198 * space. 10199 * 10200 * We don't want a transaction for this since the discard may take a 10201 * substantial amount of time. We don't require that a transaction be 10202 * running, but we do need to take a running transaction into account 10203 * to ensure that we're not discarding chunks that were released in 10204 * the current transaction. 10205 * 10206 * Holding the chunks lock will prevent other threads from allocating 10207 * or releasing chunks, but it won't prevent a running transaction 10208 * from committing and releasing the memory that the pending chunks 10209 * list head uses. For that, we need to take a reference to the 10210 * transaction. 10211 */ 10212 static int btrfs_trim_free_extents(struct btrfs_device *device, 10213 u64 minlen, u64 *trimmed) 10214 { 10215 u64 start = 0, len = 0; 10216 int ret; 10217 10218 *trimmed = 0; 10219 10220 /* Not writeable = nothing to do. */ 10221 if (!device->writeable) 10222 return 0; 10223 10224 /* No free space = nothing to do. */ 10225 if (device->total_bytes <= device->bytes_used) 10226 return 0; 10227 10228 ret = 0; 10229 10230 while (1) { 10231 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10232 struct btrfs_transaction *trans; 10233 u64 bytes; 10234 10235 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10236 if (ret) 10237 return ret; 10238 10239 down_read(&fs_info->commit_root_sem); 10240 10241 spin_lock(&fs_info->trans_lock); 10242 trans = fs_info->running_transaction; 10243 if (trans) 10244 atomic_inc(&trans->use_count); 10245 spin_unlock(&fs_info->trans_lock); 10246 10247 ret = find_free_dev_extent_start(trans, device, minlen, start, 10248 &start, &len); 10249 if (trans) 10250 btrfs_put_transaction(trans); 10251 10252 if (ret) { 10253 up_read(&fs_info->commit_root_sem); 10254 mutex_unlock(&fs_info->chunk_mutex); 10255 if (ret == -ENOSPC) 10256 ret = 0; 10257 break; 10258 } 10259 10260 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10261 up_read(&fs_info->commit_root_sem); 10262 mutex_unlock(&fs_info->chunk_mutex); 10263 10264 if (ret) 10265 break; 10266 10267 start += len; 10268 *trimmed += bytes; 10269 10270 if (fatal_signal_pending(current)) { 10271 ret = -ERESTARTSYS; 10272 break; 10273 } 10274 10275 cond_resched(); 10276 } 10277 10278 return ret; 10279 } 10280 10281 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10282 { 10283 struct btrfs_fs_info *fs_info = root->fs_info; 10284 struct btrfs_block_group_cache *cache = NULL; 10285 struct btrfs_device *device; 10286 struct list_head *devices; 10287 u64 group_trimmed; 10288 u64 start; 10289 u64 end; 10290 u64 trimmed = 0; 10291 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10292 int ret = 0; 10293 10294 /* 10295 * try to trim all FS space, our block group may start from non-zero. 10296 */ 10297 if (range->len == total_bytes) 10298 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10299 else 10300 cache = btrfs_lookup_block_group(fs_info, range->start); 10301 10302 while (cache) { 10303 if (cache->key.objectid >= (range->start + range->len)) { 10304 btrfs_put_block_group(cache); 10305 break; 10306 } 10307 10308 start = max(range->start, cache->key.objectid); 10309 end = min(range->start + range->len, 10310 cache->key.objectid + cache->key.offset); 10311 10312 if (end - start >= range->minlen) { 10313 if (!block_group_cache_done(cache)) { 10314 ret = cache_block_group(cache, 0); 10315 if (ret) { 10316 btrfs_put_block_group(cache); 10317 break; 10318 } 10319 ret = wait_block_group_cache_done(cache); 10320 if (ret) { 10321 btrfs_put_block_group(cache); 10322 break; 10323 } 10324 } 10325 ret = btrfs_trim_block_group(cache, 10326 &group_trimmed, 10327 start, 10328 end, 10329 range->minlen); 10330 10331 trimmed += group_trimmed; 10332 if (ret) { 10333 btrfs_put_block_group(cache); 10334 break; 10335 } 10336 } 10337 10338 cache = next_block_group(fs_info->tree_root, cache); 10339 } 10340 10341 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10342 devices = &root->fs_info->fs_devices->alloc_list; 10343 list_for_each_entry(device, devices, dev_alloc_list) { 10344 ret = btrfs_trim_free_extents(device, range->minlen, 10345 &group_trimmed); 10346 if (ret) 10347 break; 10348 10349 trimmed += group_trimmed; 10350 } 10351 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10352 10353 range->len = trimmed; 10354 return ret; 10355 } 10356 10357 /* 10358 * btrfs_{start,end}_write_no_snapshoting() are similar to 10359 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10360 * data into the page cache through nocow before the subvolume is snapshoted, 10361 * but flush the data into disk after the snapshot creation, or to prevent 10362 * operations while snapshoting is ongoing and that cause the snapshot to be 10363 * inconsistent (writes followed by expanding truncates for example). 10364 */ 10365 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10366 { 10367 percpu_counter_dec(&root->subv_writers->counter); 10368 /* 10369 * Make sure counter is updated before we wake up 10370 * waiters. 10371 */ 10372 smp_mb(); 10373 if (waitqueue_active(&root->subv_writers->wait)) 10374 wake_up(&root->subv_writers->wait); 10375 } 10376 10377 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10378 { 10379 if (atomic_read(&root->will_be_snapshoted)) 10380 return 0; 10381 10382 percpu_counter_inc(&root->subv_writers->counter); 10383 /* 10384 * Make sure counter is updated before we check for snapshot creation. 10385 */ 10386 smp_mb(); 10387 if (atomic_read(&root->will_be_snapshoted)) { 10388 btrfs_end_write_no_snapshoting(root); 10389 return 0; 10390 } 10391 return 1; 10392 } 10393