1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 46 #undef SCRAMBLE_DELAYED_REFS 47 48 49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 50 struct btrfs_delayed_ref_node *node, u64 parent, 51 u64 root_objectid, u64 owner_objectid, 52 u64 owner_offset, int refs_to_drop, 53 struct btrfs_delayed_extent_op *extra_op); 54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 55 struct extent_buffer *leaf, 56 struct btrfs_extent_item *ei); 57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 58 u64 parent, u64 root_objectid, 59 u64 flags, u64 owner, u64 offset, 60 struct btrfs_key *ins, int ref_mod); 61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 62 struct btrfs_delayed_ref_node *node, 63 struct btrfs_delayed_extent_op *extent_op); 64 static int find_next_key(struct btrfs_path *path, int level, 65 struct btrfs_key *key); 66 67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 68 { 69 return (cache->flags & bits) == bits; 70 } 71 72 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 73 u64 start, u64 num_bytes) 74 { 75 u64 end = start + num_bytes - 1; 76 set_extent_bits(&fs_info->excluded_extents, start, end, 77 EXTENT_UPTODATE); 78 return 0; 79 } 80 81 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 82 { 83 struct btrfs_fs_info *fs_info = cache->fs_info; 84 u64 start, end; 85 86 start = cache->start; 87 end = start + cache->length - 1; 88 89 clear_extent_bits(&fs_info->excluded_extents, start, end, 90 EXTENT_UPTODATE); 91 } 92 93 /* simple helper to search for an existing data extent at a given offset */ 94 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 95 { 96 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 97 int ret; 98 struct btrfs_key key; 99 struct btrfs_path *path; 100 101 path = btrfs_alloc_path(); 102 if (!path) 103 return -ENOMEM; 104 105 key.objectid = start; 106 key.offset = len; 107 key.type = BTRFS_EXTENT_ITEM_KEY; 108 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 109 btrfs_free_path(path); 110 return ret; 111 } 112 113 /* 114 * helper function to lookup reference count and flags of a tree block. 115 * 116 * the head node for delayed ref is used to store the sum of all the 117 * reference count modifications queued up in the rbtree. the head 118 * node may also store the extent flags to set. This way you can check 119 * to see what the reference count and extent flags would be if all of 120 * the delayed refs are not processed. 121 */ 122 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 123 struct btrfs_fs_info *fs_info, u64 bytenr, 124 u64 offset, int metadata, u64 *refs, u64 *flags) 125 { 126 struct btrfs_root *extent_root; 127 struct btrfs_delayed_ref_head *head; 128 struct btrfs_delayed_ref_root *delayed_refs; 129 struct btrfs_path *path; 130 struct btrfs_extent_item *ei; 131 struct extent_buffer *leaf; 132 struct btrfs_key key; 133 u32 item_size; 134 u64 num_refs; 135 u64 extent_flags; 136 int ret; 137 138 /* 139 * If we don't have skinny metadata, don't bother doing anything 140 * different 141 */ 142 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 143 offset = fs_info->nodesize; 144 metadata = 0; 145 } 146 147 path = btrfs_alloc_path(); 148 if (!path) 149 return -ENOMEM; 150 151 if (!trans) { 152 path->skip_locking = 1; 153 path->search_commit_root = 1; 154 } 155 156 search_again: 157 key.objectid = bytenr; 158 key.offset = offset; 159 if (metadata) 160 key.type = BTRFS_METADATA_ITEM_KEY; 161 else 162 key.type = BTRFS_EXTENT_ITEM_KEY; 163 164 extent_root = btrfs_extent_root(fs_info, bytenr); 165 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 166 if (ret < 0) 167 goto out_free; 168 169 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 170 if (path->slots[0]) { 171 path->slots[0]--; 172 btrfs_item_key_to_cpu(path->nodes[0], &key, 173 path->slots[0]); 174 if (key.objectid == bytenr && 175 key.type == BTRFS_EXTENT_ITEM_KEY && 176 key.offset == fs_info->nodesize) 177 ret = 0; 178 } 179 } 180 181 if (ret == 0) { 182 leaf = path->nodes[0]; 183 item_size = btrfs_item_size(leaf, path->slots[0]); 184 if (item_size >= sizeof(*ei)) { 185 ei = btrfs_item_ptr(leaf, path->slots[0], 186 struct btrfs_extent_item); 187 num_refs = btrfs_extent_refs(leaf, ei); 188 extent_flags = btrfs_extent_flags(leaf, ei); 189 } else { 190 ret = -EINVAL; 191 btrfs_print_v0_err(fs_info); 192 if (trans) 193 btrfs_abort_transaction(trans, ret); 194 else 195 btrfs_handle_fs_error(fs_info, ret, NULL); 196 197 goto out_free; 198 } 199 200 BUG_ON(num_refs == 0); 201 } else { 202 num_refs = 0; 203 extent_flags = 0; 204 ret = 0; 205 } 206 207 if (!trans) 208 goto out; 209 210 delayed_refs = &trans->transaction->delayed_refs; 211 spin_lock(&delayed_refs->lock); 212 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 213 if (head) { 214 if (!mutex_trylock(&head->mutex)) { 215 refcount_inc(&head->refs); 216 spin_unlock(&delayed_refs->lock); 217 218 btrfs_release_path(path); 219 220 /* 221 * Mutex was contended, block until it's released and try 222 * again 223 */ 224 mutex_lock(&head->mutex); 225 mutex_unlock(&head->mutex); 226 btrfs_put_delayed_ref_head(head); 227 goto search_again; 228 } 229 spin_lock(&head->lock); 230 if (head->extent_op && head->extent_op->update_flags) 231 extent_flags |= head->extent_op->flags_to_set; 232 else 233 BUG_ON(num_refs == 0); 234 235 num_refs += head->ref_mod; 236 spin_unlock(&head->lock); 237 mutex_unlock(&head->mutex); 238 } 239 spin_unlock(&delayed_refs->lock); 240 out: 241 WARN_ON(num_refs == 0); 242 if (refs) 243 *refs = num_refs; 244 if (flags) 245 *flags = extent_flags; 246 out_free: 247 btrfs_free_path(path); 248 return ret; 249 } 250 251 /* 252 * Back reference rules. Back refs have three main goals: 253 * 254 * 1) differentiate between all holders of references to an extent so that 255 * when a reference is dropped we can make sure it was a valid reference 256 * before freeing the extent. 257 * 258 * 2) Provide enough information to quickly find the holders of an extent 259 * if we notice a given block is corrupted or bad. 260 * 261 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 262 * maintenance. This is actually the same as #2, but with a slightly 263 * different use case. 264 * 265 * There are two kinds of back refs. The implicit back refs is optimized 266 * for pointers in non-shared tree blocks. For a given pointer in a block, 267 * back refs of this kind provide information about the block's owner tree 268 * and the pointer's key. These information allow us to find the block by 269 * b-tree searching. The full back refs is for pointers in tree blocks not 270 * referenced by their owner trees. The location of tree block is recorded 271 * in the back refs. Actually the full back refs is generic, and can be 272 * used in all cases the implicit back refs is used. The major shortcoming 273 * of the full back refs is its overhead. Every time a tree block gets 274 * COWed, we have to update back refs entry for all pointers in it. 275 * 276 * For a newly allocated tree block, we use implicit back refs for 277 * pointers in it. This means most tree related operations only involve 278 * implicit back refs. For a tree block created in old transaction, the 279 * only way to drop a reference to it is COW it. So we can detect the 280 * event that tree block loses its owner tree's reference and do the 281 * back refs conversion. 282 * 283 * When a tree block is COWed through a tree, there are four cases: 284 * 285 * The reference count of the block is one and the tree is the block's 286 * owner tree. Nothing to do in this case. 287 * 288 * The reference count of the block is one and the tree is not the 289 * block's owner tree. In this case, full back refs is used for pointers 290 * in the block. Remove these full back refs, add implicit back refs for 291 * every pointers in the new block. 292 * 293 * The reference count of the block is greater than one and the tree is 294 * the block's owner tree. In this case, implicit back refs is used for 295 * pointers in the block. Add full back refs for every pointers in the 296 * block, increase lower level extents' reference counts. The original 297 * implicit back refs are entailed to the new block. 298 * 299 * The reference count of the block is greater than one and the tree is 300 * not the block's owner tree. Add implicit back refs for every pointer in 301 * the new block, increase lower level extents' reference count. 302 * 303 * Back Reference Key composing: 304 * 305 * The key objectid corresponds to the first byte in the extent, 306 * The key type is used to differentiate between types of back refs. 307 * There are different meanings of the key offset for different types 308 * of back refs. 309 * 310 * File extents can be referenced by: 311 * 312 * - multiple snapshots, subvolumes, or different generations in one subvol 313 * - different files inside a single subvolume 314 * - different offsets inside a file (bookend extents in file.c) 315 * 316 * The extent ref structure for the implicit back refs has fields for: 317 * 318 * - Objectid of the subvolume root 319 * - objectid of the file holding the reference 320 * - original offset in the file 321 * - how many bookend extents 322 * 323 * The key offset for the implicit back refs is hash of the first 324 * three fields. 325 * 326 * The extent ref structure for the full back refs has field for: 327 * 328 * - number of pointers in the tree leaf 329 * 330 * The key offset for the implicit back refs is the first byte of 331 * the tree leaf 332 * 333 * When a file extent is allocated, The implicit back refs is used. 334 * the fields are filled in: 335 * 336 * (root_key.objectid, inode objectid, offset in file, 1) 337 * 338 * When a file extent is removed file truncation, we find the 339 * corresponding implicit back refs and check the following fields: 340 * 341 * (btrfs_header_owner(leaf), inode objectid, offset in file) 342 * 343 * Btree extents can be referenced by: 344 * 345 * - Different subvolumes 346 * 347 * Both the implicit back refs and the full back refs for tree blocks 348 * only consist of key. The key offset for the implicit back refs is 349 * objectid of block's owner tree. The key offset for the full back refs 350 * is the first byte of parent block. 351 * 352 * When implicit back refs is used, information about the lowest key and 353 * level of the tree block are required. These information are stored in 354 * tree block info structure. 355 */ 356 357 /* 358 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 359 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 360 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 361 */ 362 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 363 struct btrfs_extent_inline_ref *iref, 364 enum btrfs_inline_ref_type is_data) 365 { 366 int type = btrfs_extent_inline_ref_type(eb, iref); 367 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 368 369 if (type == BTRFS_TREE_BLOCK_REF_KEY || 370 type == BTRFS_SHARED_BLOCK_REF_KEY || 371 type == BTRFS_SHARED_DATA_REF_KEY || 372 type == BTRFS_EXTENT_DATA_REF_KEY) { 373 if (is_data == BTRFS_REF_TYPE_BLOCK) { 374 if (type == BTRFS_TREE_BLOCK_REF_KEY) 375 return type; 376 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 377 ASSERT(eb->fs_info); 378 /* 379 * Every shared one has parent tree block, 380 * which must be aligned to sector size. 381 */ 382 if (offset && 383 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 384 return type; 385 } 386 } else if (is_data == BTRFS_REF_TYPE_DATA) { 387 if (type == BTRFS_EXTENT_DATA_REF_KEY) 388 return type; 389 if (type == BTRFS_SHARED_DATA_REF_KEY) { 390 ASSERT(eb->fs_info); 391 /* 392 * Every shared one has parent tree block, 393 * which must be aligned to sector size. 394 */ 395 if (offset && 396 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 397 return type; 398 } 399 } else { 400 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 401 return type; 402 } 403 } 404 405 btrfs_print_leaf((struct extent_buffer *)eb); 406 btrfs_err(eb->fs_info, 407 "eb %llu iref 0x%lx invalid extent inline ref type %d", 408 eb->start, (unsigned long)iref, type); 409 WARN_ON(1); 410 411 return BTRFS_REF_TYPE_INVALID; 412 } 413 414 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 415 { 416 u32 high_crc = ~(u32)0; 417 u32 low_crc = ~(u32)0; 418 __le64 lenum; 419 420 lenum = cpu_to_le64(root_objectid); 421 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 422 lenum = cpu_to_le64(owner); 423 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 424 lenum = cpu_to_le64(offset); 425 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 426 427 return ((u64)high_crc << 31) ^ (u64)low_crc; 428 } 429 430 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 431 struct btrfs_extent_data_ref *ref) 432 { 433 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 434 btrfs_extent_data_ref_objectid(leaf, ref), 435 btrfs_extent_data_ref_offset(leaf, ref)); 436 } 437 438 static int match_extent_data_ref(struct extent_buffer *leaf, 439 struct btrfs_extent_data_ref *ref, 440 u64 root_objectid, u64 owner, u64 offset) 441 { 442 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 443 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 444 btrfs_extent_data_ref_offset(leaf, ref) != offset) 445 return 0; 446 return 1; 447 } 448 449 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 450 struct btrfs_path *path, 451 u64 bytenr, u64 parent, 452 u64 root_objectid, 453 u64 owner, u64 offset) 454 { 455 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 456 struct btrfs_key key; 457 struct btrfs_extent_data_ref *ref; 458 struct extent_buffer *leaf; 459 u32 nritems; 460 int ret; 461 int recow; 462 int err = -ENOENT; 463 464 key.objectid = bytenr; 465 if (parent) { 466 key.type = BTRFS_SHARED_DATA_REF_KEY; 467 key.offset = parent; 468 } else { 469 key.type = BTRFS_EXTENT_DATA_REF_KEY; 470 key.offset = hash_extent_data_ref(root_objectid, 471 owner, offset); 472 } 473 again: 474 recow = 0; 475 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 476 if (ret < 0) { 477 err = ret; 478 goto fail; 479 } 480 481 if (parent) { 482 if (!ret) 483 return 0; 484 goto fail; 485 } 486 487 leaf = path->nodes[0]; 488 nritems = btrfs_header_nritems(leaf); 489 while (1) { 490 if (path->slots[0] >= nritems) { 491 ret = btrfs_next_leaf(root, path); 492 if (ret < 0) 493 err = ret; 494 if (ret) 495 goto fail; 496 497 leaf = path->nodes[0]; 498 nritems = btrfs_header_nritems(leaf); 499 recow = 1; 500 } 501 502 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 503 if (key.objectid != bytenr || 504 key.type != BTRFS_EXTENT_DATA_REF_KEY) 505 goto fail; 506 507 ref = btrfs_item_ptr(leaf, path->slots[0], 508 struct btrfs_extent_data_ref); 509 510 if (match_extent_data_ref(leaf, ref, root_objectid, 511 owner, offset)) { 512 if (recow) { 513 btrfs_release_path(path); 514 goto again; 515 } 516 err = 0; 517 break; 518 } 519 path->slots[0]++; 520 } 521 fail: 522 return err; 523 } 524 525 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 526 struct btrfs_path *path, 527 u64 bytenr, u64 parent, 528 u64 root_objectid, u64 owner, 529 u64 offset, int refs_to_add) 530 { 531 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 532 struct btrfs_key key; 533 struct extent_buffer *leaf; 534 u32 size; 535 u32 num_refs; 536 int ret; 537 538 key.objectid = bytenr; 539 if (parent) { 540 key.type = BTRFS_SHARED_DATA_REF_KEY; 541 key.offset = parent; 542 size = sizeof(struct btrfs_shared_data_ref); 543 } else { 544 key.type = BTRFS_EXTENT_DATA_REF_KEY; 545 key.offset = hash_extent_data_ref(root_objectid, 546 owner, offset); 547 size = sizeof(struct btrfs_extent_data_ref); 548 } 549 550 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 551 if (ret && ret != -EEXIST) 552 goto fail; 553 554 leaf = path->nodes[0]; 555 if (parent) { 556 struct btrfs_shared_data_ref *ref; 557 ref = btrfs_item_ptr(leaf, path->slots[0], 558 struct btrfs_shared_data_ref); 559 if (ret == 0) { 560 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 561 } else { 562 num_refs = btrfs_shared_data_ref_count(leaf, ref); 563 num_refs += refs_to_add; 564 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 565 } 566 } else { 567 struct btrfs_extent_data_ref *ref; 568 while (ret == -EEXIST) { 569 ref = btrfs_item_ptr(leaf, path->slots[0], 570 struct btrfs_extent_data_ref); 571 if (match_extent_data_ref(leaf, ref, root_objectid, 572 owner, offset)) 573 break; 574 btrfs_release_path(path); 575 key.offset++; 576 ret = btrfs_insert_empty_item(trans, root, path, &key, 577 size); 578 if (ret && ret != -EEXIST) 579 goto fail; 580 581 leaf = path->nodes[0]; 582 } 583 ref = btrfs_item_ptr(leaf, path->slots[0], 584 struct btrfs_extent_data_ref); 585 if (ret == 0) { 586 btrfs_set_extent_data_ref_root(leaf, ref, 587 root_objectid); 588 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 589 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 590 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 591 } else { 592 num_refs = btrfs_extent_data_ref_count(leaf, ref); 593 num_refs += refs_to_add; 594 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 595 } 596 } 597 btrfs_mark_buffer_dirty(leaf); 598 ret = 0; 599 fail: 600 btrfs_release_path(path); 601 return ret; 602 } 603 604 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 605 struct btrfs_root *root, 606 struct btrfs_path *path, 607 int refs_to_drop) 608 { 609 struct btrfs_key key; 610 struct btrfs_extent_data_ref *ref1 = NULL; 611 struct btrfs_shared_data_ref *ref2 = NULL; 612 struct extent_buffer *leaf; 613 u32 num_refs = 0; 614 int ret = 0; 615 616 leaf = path->nodes[0]; 617 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 618 619 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 620 ref1 = btrfs_item_ptr(leaf, path->slots[0], 621 struct btrfs_extent_data_ref); 622 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 623 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 624 ref2 = btrfs_item_ptr(leaf, path->slots[0], 625 struct btrfs_shared_data_ref); 626 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 627 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 628 btrfs_print_v0_err(trans->fs_info); 629 btrfs_abort_transaction(trans, -EINVAL); 630 return -EINVAL; 631 } else { 632 BUG(); 633 } 634 635 BUG_ON(num_refs < refs_to_drop); 636 num_refs -= refs_to_drop; 637 638 if (num_refs == 0) { 639 ret = btrfs_del_item(trans, root, path); 640 } else { 641 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 642 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 643 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 644 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 645 btrfs_mark_buffer_dirty(leaf); 646 } 647 return ret; 648 } 649 650 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 651 struct btrfs_extent_inline_ref *iref) 652 { 653 struct btrfs_key key; 654 struct extent_buffer *leaf; 655 struct btrfs_extent_data_ref *ref1; 656 struct btrfs_shared_data_ref *ref2; 657 u32 num_refs = 0; 658 int type; 659 660 leaf = path->nodes[0]; 661 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 662 663 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 664 if (iref) { 665 /* 666 * If type is invalid, we should have bailed out earlier than 667 * this call. 668 */ 669 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 670 ASSERT(type != BTRFS_REF_TYPE_INVALID); 671 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 672 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 673 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 674 } else { 675 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 676 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 677 } 678 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 679 ref1 = btrfs_item_ptr(leaf, path->slots[0], 680 struct btrfs_extent_data_ref); 681 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 682 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 683 ref2 = btrfs_item_ptr(leaf, path->slots[0], 684 struct btrfs_shared_data_ref); 685 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 686 } else { 687 WARN_ON(1); 688 } 689 return num_refs; 690 } 691 692 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 693 struct btrfs_path *path, 694 u64 bytenr, u64 parent, 695 u64 root_objectid) 696 { 697 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 698 struct btrfs_key key; 699 int ret; 700 701 key.objectid = bytenr; 702 if (parent) { 703 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 704 key.offset = parent; 705 } else { 706 key.type = BTRFS_TREE_BLOCK_REF_KEY; 707 key.offset = root_objectid; 708 } 709 710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 711 if (ret > 0) 712 ret = -ENOENT; 713 return ret; 714 } 715 716 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 735 btrfs_release_path(path); 736 return ret; 737 } 738 739 static inline int extent_ref_type(u64 parent, u64 owner) 740 { 741 int type; 742 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 743 if (parent > 0) 744 type = BTRFS_SHARED_BLOCK_REF_KEY; 745 else 746 type = BTRFS_TREE_BLOCK_REF_KEY; 747 } else { 748 if (parent > 0) 749 type = BTRFS_SHARED_DATA_REF_KEY; 750 else 751 type = BTRFS_EXTENT_DATA_REF_KEY; 752 } 753 return type; 754 } 755 756 static int find_next_key(struct btrfs_path *path, int level, 757 struct btrfs_key *key) 758 759 { 760 for (; level < BTRFS_MAX_LEVEL; level++) { 761 if (!path->nodes[level]) 762 break; 763 if (path->slots[level] + 1 >= 764 btrfs_header_nritems(path->nodes[level])) 765 continue; 766 if (level == 0) 767 btrfs_item_key_to_cpu(path->nodes[level], key, 768 path->slots[level] + 1); 769 else 770 btrfs_node_key_to_cpu(path->nodes[level], key, 771 path->slots[level] + 1); 772 return 0; 773 } 774 return 1; 775 } 776 777 /* 778 * look for inline back ref. if back ref is found, *ref_ret is set 779 * to the address of inline back ref, and 0 is returned. 780 * 781 * if back ref isn't found, *ref_ret is set to the address where it 782 * should be inserted, and -ENOENT is returned. 783 * 784 * if insert is true and there are too many inline back refs, the path 785 * points to the extent item, and -EAGAIN is returned. 786 * 787 * NOTE: inline back refs are ordered in the same way that back ref 788 * items in the tree are ordered. 789 */ 790 static noinline_for_stack 791 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 792 struct btrfs_path *path, 793 struct btrfs_extent_inline_ref **ref_ret, 794 u64 bytenr, u64 num_bytes, 795 u64 parent, u64 root_objectid, 796 u64 owner, u64 offset, int insert) 797 { 798 struct btrfs_fs_info *fs_info = trans->fs_info; 799 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 800 struct btrfs_key key; 801 struct extent_buffer *leaf; 802 struct btrfs_extent_item *ei; 803 struct btrfs_extent_inline_ref *iref; 804 u64 flags; 805 u64 item_size; 806 unsigned long ptr; 807 unsigned long end; 808 int extra_size; 809 int type; 810 int want; 811 int ret; 812 int err = 0; 813 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 814 int needed; 815 816 key.objectid = bytenr; 817 key.type = BTRFS_EXTENT_ITEM_KEY; 818 key.offset = num_bytes; 819 820 want = extent_ref_type(parent, owner); 821 if (insert) { 822 extra_size = btrfs_extent_inline_ref_size(want); 823 path->search_for_extension = 1; 824 path->keep_locks = 1; 825 } else 826 extra_size = -1; 827 828 /* 829 * Owner is our level, so we can just add one to get the level for the 830 * block we are interested in. 831 */ 832 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 833 key.type = BTRFS_METADATA_ITEM_KEY; 834 key.offset = owner; 835 } 836 837 again: 838 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 839 if (ret < 0) { 840 err = ret; 841 goto out; 842 } 843 844 /* 845 * We may be a newly converted file system which still has the old fat 846 * extent entries for metadata, so try and see if we have one of those. 847 */ 848 if (ret > 0 && skinny_metadata) { 849 skinny_metadata = false; 850 if (path->slots[0]) { 851 path->slots[0]--; 852 btrfs_item_key_to_cpu(path->nodes[0], &key, 853 path->slots[0]); 854 if (key.objectid == bytenr && 855 key.type == BTRFS_EXTENT_ITEM_KEY && 856 key.offset == num_bytes) 857 ret = 0; 858 } 859 if (ret) { 860 key.objectid = bytenr; 861 key.type = BTRFS_EXTENT_ITEM_KEY; 862 key.offset = num_bytes; 863 btrfs_release_path(path); 864 goto again; 865 } 866 } 867 868 if (ret && !insert) { 869 err = -ENOENT; 870 goto out; 871 } else if (WARN_ON(ret)) { 872 err = -EIO; 873 goto out; 874 } 875 876 leaf = path->nodes[0]; 877 item_size = btrfs_item_size(leaf, path->slots[0]); 878 if (unlikely(item_size < sizeof(*ei))) { 879 err = -EINVAL; 880 btrfs_print_v0_err(fs_info); 881 btrfs_abort_transaction(trans, err); 882 goto out; 883 } 884 885 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 886 flags = btrfs_extent_flags(leaf, ei); 887 888 ptr = (unsigned long)(ei + 1); 889 end = (unsigned long)ei + item_size; 890 891 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 892 ptr += sizeof(struct btrfs_tree_block_info); 893 BUG_ON(ptr > end); 894 } 895 896 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 897 needed = BTRFS_REF_TYPE_DATA; 898 else 899 needed = BTRFS_REF_TYPE_BLOCK; 900 901 err = -ENOENT; 902 while (1) { 903 if (ptr >= end) { 904 if (ptr > end) { 905 err = -EUCLEAN; 906 btrfs_print_leaf(path->nodes[0]); 907 btrfs_crit(fs_info, 908 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 909 path->slots[0], root_objectid, owner, offset, parent); 910 } 911 break; 912 } 913 iref = (struct btrfs_extent_inline_ref *)ptr; 914 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 915 if (type == BTRFS_REF_TYPE_INVALID) { 916 err = -EUCLEAN; 917 goto out; 918 } 919 920 if (want < type) 921 break; 922 if (want > type) { 923 ptr += btrfs_extent_inline_ref_size(type); 924 continue; 925 } 926 927 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 928 struct btrfs_extent_data_ref *dref; 929 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 930 if (match_extent_data_ref(leaf, dref, root_objectid, 931 owner, offset)) { 932 err = 0; 933 break; 934 } 935 if (hash_extent_data_ref_item(leaf, dref) < 936 hash_extent_data_ref(root_objectid, owner, offset)) 937 break; 938 } else { 939 u64 ref_offset; 940 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 941 if (parent > 0) { 942 if (parent == ref_offset) { 943 err = 0; 944 break; 945 } 946 if (ref_offset < parent) 947 break; 948 } else { 949 if (root_objectid == ref_offset) { 950 err = 0; 951 break; 952 } 953 if (ref_offset < root_objectid) 954 break; 955 } 956 } 957 ptr += btrfs_extent_inline_ref_size(type); 958 } 959 if (err == -ENOENT && insert) { 960 if (item_size + extra_size >= 961 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 962 err = -EAGAIN; 963 goto out; 964 } 965 /* 966 * To add new inline back ref, we have to make sure 967 * there is no corresponding back ref item. 968 * For simplicity, we just do not add new inline back 969 * ref if there is any kind of item for this block 970 */ 971 if (find_next_key(path, 0, &key) == 0 && 972 key.objectid == bytenr && 973 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 974 err = -EAGAIN; 975 goto out; 976 } 977 } 978 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 979 out: 980 if (insert) { 981 path->keep_locks = 0; 982 path->search_for_extension = 0; 983 btrfs_unlock_up_safe(path, 1); 984 } 985 return err; 986 } 987 988 /* 989 * helper to add new inline back ref 990 */ 991 static noinline_for_stack 992 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 993 struct btrfs_path *path, 994 struct btrfs_extent_inline_ref *iref, 995 u64 parent, u64 root_objectid, 996 u64 owner, u64 offset, int refs_to_add, 997 struct btrfs_delayed_extent_op *extent_op) 998 { 999 struct extent_buffer *leaf; 1000 struct btrfs_extent_item *ei; 1001 unsigned long ptr; 1002 unsigned long end; 1003 unsigned long item_offset; 1004 u64 refs; 1005 int size; 1006 int type; 1007 1008 leaf = path->nodes[0]; 1009 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1010 item_offset = (unsigned long)iref - (unsigned long)ei; 1011 1012 type = extent_ref_type(parent, owner); 1013 size = btrfs_extent_inline_ref_size(type); 1014 1015 btrfs_extend_item(path, size); 1016 1017 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1018 refs = btrfs_extent_refs(leaf, ei); 1019 refs += refs_to_add; 1020 btrfs_set_extent_refs(leaf, ei, refs); 1021 if (extent_op) 1022 __run_delayed_extent_op(extent_op, leaf, ei); 1023 1024 ptr = (unsigned long)ei + item_offset; 1025 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1026 if (ptr < end - size) 1027 memmove_extent_buffer(leaf, ptr + size, ptr, 1028 end - size - ptr); 1029 1030 iref = (struct btrfs_extent_inline_ref *)ptr; 1031 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1032 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1033 struct btrfs_extent_data_ref *dref; 1034 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1035 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1036 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1037 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1038 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1039 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1040 struct btrfs_shared_data_ref *sref; 1041 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1042 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1043 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1044 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1046 } else { 1047 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1048 } 1049 btrfs_mark_buffer_dirty(leaf); 1050 } 1051 1052 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1053 struct btrfs_path *path, 1054 struct btrfs_extent_inline_ref **ref_ret, 1055 u64 bytenr, u64 num_bytes, u64 parent, 1056 u64 root_objectid, u64 owner, u64 offset) 1057 { 1058 int ret; 1059 1060 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1061 num_bytes, parent, root_objectid, 1062 owner, offset, 0); 1063 if (ret != -ENOENT) 1064 return ret; 1065 1066 btrfs_release_path(path); 1067 *ref_ret = NULL; 1068 1069 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1070 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1071 root_objectid); 1072 } else { 1073 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1074 root_objectid, owner, offset); 1075 } 1076 return ret; 1077 } 1078 1079 /* 1080 * helper to update/remove inline back ref 1081 */ 1082 static noinline_for_stack 1083 void update_inline_extent_backref(struct btrfs_path *path, 1084 struct btrfs_extent_inline_ref *iref, 1085 int refs_to_mod, 1086 struct btrfs_delayed_extent_op *extent_op) 1087 { 1088 struct extent_buffer *leaf = path->nodes[0]; 1089 struct btrfs_extent_item *ei; 1090 struct btrfs_extent_data_ref *dref = NULL; 1091 struct btrfs_shared_data_ref *sref = NULL; 1092 unsigned long ptr; 1093 unsigned long end; 1094 u32 item_size; 1095 int size; 1096 int type; 1097 u64 refs; 1098 1099 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1100 refs = btrfs_extent_refs(leaf, ei); 1101 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1102 refs += refs_to_mod; 1103 btrfs_set_extent_refs(leaf, ei, refs); 1104 if (extent_op) 1105 __run_delayed_extent_op(extent_op, leaf, ei); 1106 1107 /* 1108 * If type is invalid, we should have bailed out after 1109 * lookup_inline_extent_backref(). 1110 */ 1111 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1112 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1113 1114 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1115 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1116 refs = btrfs_extent_data_ref_count(leaf, dref); 1117 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1118 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1119 refs = btrfs_shared_data_ref_count(leaf, sref); 1120 } else { 1121 refs = 1; 1122 BUG_ON(refs_to_mod != -1); 1123 } 1124 1125 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1126 refs += refs_to_mod; 1127 1128 if (refs > 0) { 1129 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1130 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1131 else 1132 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1133 } else { 1134 size = btrfs_extent_inline_ref_size(type); 1135 item_size = btrfs_item_size(leaf, path->slots[0]); 1136 ptr = (unsigned long)iref; 1137 end = (unsigned long)ei + item_size; 1138 if (ptr + size < end) 1139 memmove_extent_buffer(leaf, ptr, ptr + size, 1140 end - ptr - size); 1141 item_size -= size; 1142 btrfs_truncate_item(path, item_size, 1); 1143 } 1144 btrfs_mark_buffer_dirty(leaf); 1145 } 1146 1147 static noinline_for_stack 1148 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1149 struct btrfs_path *path, 1150 u64 bytenr, u64 num_bytes, u64 parent, 1151 u64 root_objectid, u64 owner, 1152 u64 offset, int refs_to_add, 1153 struct btrfs_delayed_extent_op *extent_op) 1154 { 1155 struct btrfs_extent_inline_ref *iref; 1156 int ret; 1157 1158 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1159 num_bytes, parent, root_objectid, 1160 owner, offset, 1); 1161 if (ret == 0) { 1162 /* 1163 * We're adding refs to a tree block we already own, this 1164 * should not happen at all. 1165 */ 1166 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1167 btrfs_crit(trans->fs_info, 1168 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1169 bytenr, num_bytes, root_objectid); 1170 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1171 WARN_ON(1); 1172 btrfs_crit(trans->fs_info, 1173 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1174 btrfs_print_leaf(path->nodes[0]); 1175 } 1176 return -EUCLEAN; 1177 } 1178 update_inline_extent_backref(path, iref, refs_to_add, extent_op); 1179 } else if (ret == -ENOENT) { 1180 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1181 root_objectid, owner, offset, 1182 refs_to_add, extent_op); 1183 ret = 0; 1184 } 1185 return ret; 1186 } 1187 1188 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1189 struct btrfs_root *root, 1190 struct btrfs_path *path, 1191 struct btrfs_extent_inline_ref *iref, 1192 int refs_to_drop, int is_data) 1193 { 1194 int ret = 0; 1195 1196 BUG_ON(!is_data && refs_to_drop != 1); 1197 if (iref) 1198 update_inline_extent_backref(path, iref, -refs_to_drop, NULL); 1199 else if (is_data) 1200 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1201 else 1202 ret = btrfs_del_item(trans, root, path); 1203 return ret; 1204 } 1205 1206 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1207 u64 *discarded_bytes) 1208 { 1209 int j, ret = 0; 1210 u64 bytes_left, end; 1211 u64 aligned_start = ALIGN(start, 1 << 9); 1212 1213 if (WARN_ON(start != aligned_start)) { 1214 len -= aligned_start - start; 1215 len = round_down(len, 1 << 9); 1216 start = aligned_start; 1217 } 1218 1219 *discarded_bytes = 0; 1220 1221 if (!len) 1222 return 0; 1223 1224 end = start + len; 1225 bytes_left = len; 1226 1227 /* Skip any superblocks on this device. */ 1228 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1229 u64 sb_start = btrfs_sb_offset(j); 1230 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1231 u64 size = sb_start - start; 1232 1233 if (!in_range(sb_start, start, bytes_left) && 1234 !in_range(sb_end, start, bytes_left) && 1235 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1236 continue; 1237 1238 /* 1239 * Superblock spans beginning of range. Adjust start and 1240 * try again. 1241 */ 1242 if (sb_start <= start) { 1243 start += sb_end - start; 1244 if (start > end) { 1245 bytes_left = 0; 1246 break; 1247 } 1248 bytes_left = end - start; 1249 continue; 1250 } 1251 1252 if (size) { 1253 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1254 GFP_NOFS); 1255 if (!ret) 1256 *discarded_bytes += size; 1257 else if (ret != -EOPNOTSUPP) 1258 return ret; 1259 } 1260 1261 start = sb_end; 1262 if (start > end) { 1263 bytes_left = 0; 1264 break; 1265 } 1266 bytes_left = end - start; 1267 } 1268 1269 if (bytes_left) { 1270 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1271 GFP_NOFS); 1272 if (!ret) 1273 *discarded_bytes += bytes_left; 1274 } 1275 return ret; 1276 } 1277 1278 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1279 { 1280 struct btrfs_device *dev = stripe->dev; 1281 struct btrfs_fs_info *fs_info = dev->fs_info; 1282 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1283 u64 phys = stripe->physical; 1284 u64 len = stripe->length; 1285 u64 discarded = 0; 1286 int ret = 0; 1287 1288 /* Zone reset on a zoned filesystem */ 1289 if (btrfs_can_zone_reset(dev, phys, len)) { 1290 u64 src_disc; 1291 1292 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1293 if (ret) 1294 goto out; 1295 1296 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1297 dev != dev_replace->srcdev) 1298 goto out; 1299 1300 src_disc = discarded; 1301 1302 /* Send to replace target as well */ 1303 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1304 &discarded); 1305 discarded += src_disc; 1306 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1307 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1308 } else { 1309 ret = 0; 1310 *bytes = 0; 1311 } 1312 1313 out: 1314 *bytes = discarded; 1315 return ret; 1316 } 1317 1318 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1319 u64 num_bytes, u64 *actual_bytes) 1320 { 1321 int ret = 0; 1322 u64 discarded_bytes = 0; 1323 u64 end = bytenr + num_bytes; 1324 u64 cur = bytenr; 1325 1326 /* 1327 * Avoid races with device replace and make sure the devices in the 1328 * stripes don't go away while we are discarding. 1329 */ 1330 btrfs_bio_counter_inc_blocked(fs_info); 1331 while (cur < end) { 1332 struct btrfs_discard_stripe *stripes; 1333 unsigned int num_stripes; 1334 int i; 1335 1336 num_bytes = end - cur; 1337 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1338 if (IS_ERR(stripes)) { 1339 ret = PTR_ERR(stripes); 1340 if (ret == -EOPNOTSUPP) 1341 ret = 0; 1342 break; 1343 } 1344 1345 for (i = 0; i < num_stripes; i++) { 1346 struct btrfs_discard_stripe *stripe = stripes + i; 1347 u64 bytes; 1348 1349 if (!stripe->dev->bdev) { 1350 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1351 continue; 1352 } 1353 1354 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1355 &stripe->dev->dev_state)) 1356 continue; 1357 1358 ret = do_discard_extent(stripe, &bytes); 1359 if (ret) { 1360 /* 1361 * Keep going if discard is not supported by the 1362 * device. 1363 */ 1364 if (ret != -EOPNOTSUPP) 1365 break; 1366 ret = 0; 1367 } else { 1368 discarded_bytes += bytes; 1369 } 1370 } 1371 kfree(stripes); 1372 if (ret) 1373 break; 1374 cur += num_bytes; 1375 } 1376 btrfs_bio_counter_dec(fs_info); 1377 if (actual_bytes) 1378 *actual_bytes = discarded_bytes; 1379 return ret; 1380 } 1381 1382 /* Can return -ENOMEM */ 1383 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1384 struct btrfs_ref *generic_ref) 1385 { 1386 struct btrfs_fs_info *fs_info = trans->fs_info; 1387 int ret; 1388 1389 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1390 generic_ref->action); 1391 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1392 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1393 1394 if (generic_ref->type == BTRFS_REF_METADATA) 1395 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1396 else 1397 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1398 1399 btrfs_ref_tree_mod(fs_info, generic_ref); 1400 1401 return ret; 1402 } 1403 1404 /* 1405 * __btrfs_inc_extent_ref - insert backreference for a given extent 1406 * 1407 * The counterpart is in __btrfs_free_extent(), with examples and more details 1408 * how it works. 1409 * 1410 * @trans: Handle of transaction 1411 * 1412 * @node: The delayed ref node used to get the bytenr/length for 1413 * extent whose references are incremented. 1414 * 1415 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1416 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1417 * bytenr of the parent block. Since new extents are always 1418 * created with indirect references, this will only be the case 1419 * when relocating a shared extent. In that case, root_objectid 1420 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1421 * be 0 1422 * 1423 * @root_objectid: The id of the root where this modification has originated, 1424 * this can be either one of the well-known metadata trees or 1425 * the subvolume id which references this extent. 1426 * 1427 * @owner: For data extents it is the inode number of the owning file. 1428 * For metadata extents this parameter holds the level in the 1429 * tree of the extent. 1430 * 1431 * @offset: For metadata extents the offset is ignored and is currently 1432 * always passed as 0. For data extents it is the fileoffset 1433 * this extent belongs to. 1434 * 1435 * @refs_to_add Number of references to add 1436 * 1437 * @extent_op Pointer to a structure, holding information necessary when 1438 * updating a tree block's flags 1439 * 1440 */ 1441 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1442 struct btrfs_delayed_ref_node *node, 1443 u64 parent, u64 root_objectid, 1444 u64 owner, u64 offset, int refs_to_add, 1445 struct btrfs_delayed_extent_op *extent_op) 1446 { 1447 struct btrfs_path *path; 1448 struct extent_buffer *leaf; 1449 struct btrfs_extent_item *item; 1450 struct btrfs_key key; 1451 u64 bytenr = node->bytenr; 1452 u64 num_bytes = node->num_bytes; 1453 u64 refs; 1454 int ret; 1455 1456 path = btrfs_alloc_path(); 1457 if (!path) 1458 return -ENOMEM; 1459 1460 /* this will setup the path even if it fails to insert the back ref */ 1461 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1462 parent, root_objectid, owner, 1463 offset, refs_to_add, extent_op); 1464 if ((ret < 0 && ret != -EAGAIN) || !ret) 1465 goto out; 1466 1467 /* 1468 * Ok we had -EAGAIN which means we didn't have space to insert and 1469 * inline extent ref, so just update the reference count and add a 1470 * normal backref. 1471 */ 1472 leaf = path->nodes[0]; 1473 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1474 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1475 refs = btrfs_extent_refs(leaf, item); 1476 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1477 if (extent_op) 1478 __run_delayed_extent_op(extent_op, leaf, item); 1479 1480 btrfs_mark_buffer_dirty(leaf); 1481 btrfs_release_path(path); 1482 1483 /* now insert the actual backref */ 1484 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1485 BUG_ON(refs_to_add != 1); 1486 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1487 root_objectid); 1488 } else { 1489 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1490 root_objectid, owner, offset, 1491 refs_to_add); 1492 } 1493 if (ret) 1494 btrfs_abort_transaction(trans, ret); 1495 out: 1496 btrfs_free_path(path); 1497 return ret; 1498 } 1499 1500 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1501 struct btrfs_delayed_ref_node *node, 1502 struct btrfs_delayed_extent_op *extent_op, 1503 int insert_reserved) 1504 { 1505 int ret = 0; 1506 struct btrfs_delayed_data_ref *ref; 1507 struct btrfs_key ins; 1508 u64 parent = 0; 1509 u64 ref_root = 0; 1510 u64 flags = 0; 1511 1512 ins.objectid = node->bytenr; 1513 ins.offset = node->num_bytes; 1514 ins.type = BTRFS_EXTENT_ITEM_KEY; 1515 1516 ref = btrfs_delayed_node_to_data_ref(node); 1517 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1518 1519 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1520 parent = ref->parent; 1521 ref_root = ref->root; 1522 1523 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1524 if (extent_op) 1525 flags |= extent_op->flags_to_set; 1526 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1527 flags, ref->objectid, 1528 ref->offset, &ins, 1529 node->ref_mod); 1530 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1531 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1532 ref->objectid, ref->offset, 1533 node->ref_mod, extent_op); 1534 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1535 ret = __btrfs_free_extent(trans, node, parent, 1536 ref_root, ref->objectid, 1537 ref->offset, node->ref_mod, 1538 extent_op); 1539 } else { 1540 BUG(); 1541 } 1542 return ret; 1543 } 1544 1545 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1546 struct extent_buffer *leaf, 1547 struct btrfs_extent_item *ei) 1548 { 1549 u64 flags = btrfs_extent_flags(leaf, ei); 1550 if (extent_op->update_flags) { 1551 flags |= extent_op->flags_to_set; 1552 btrfs_set_extent_flags(leaf, ei, flags); 1553 } 1554 1555 if (extent_op->update_key) { 1556 struct btrfs_tree_block_info *bi; 1557 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1558 bi = (struct btrfs_tree_block_info *)(ei + 1); 1559 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1560 } 1561 } 1562 1563 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1564 struct btrfs_delayed_ref_head *head, 1565 struct btrfs_delayed_extent_op *extent_op) 1566 { 1567 struct btrfs_fs_info *fs_info = trans->fs_info; 1568 struct btrfs_root *root; 1569 struct btrfs_key key; 1570 struct btrfs_path *path; 1571 struct btrfs_extent_item *ei; 1572 struct extent_buffer *leaf; 1573 u32 item_size; 1574 int ret; 1575 int err = 0; 1576 int metadata = 1; 1577 1578 if (TRANS_ABORTED(trans)) 1579 return 0; 1580 1581 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1582 metadata = 0; 1583 1584 path = btrfs_alloc_path(); 1585 if (!path) 1586 return -ENOMEM; 1587 1588 key.objectid = head->bytenr; 1589 1590 if (metadata) { 1591 key.type = BTRFS_METADATA_ITEM_KEY; 1592 key.offset = extent_op->level; 1593 } else { 1594 key.type = BTRFS_EXTENT_ITEM_KEY; 1595 key.offset = head->num_bytes; 1596 } 1597 1598 root = btrfs_extent_root(fs_info, key.objectid); 1599 again: 1600 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1601 if (ret < 0) { 1602 err = ret; 1603 goto out; 1604 } 1605 if (ret > 0) { 1606 if (metadata) { 1607 if (path->slots[0] > 0) { 1608 path->slots[0]--; 1609 btrfs_item_key_to_cpu(path->nodes[0], &key, 1610 path->slots[0]); 1611 if (key.objectid == head->bytenr && 1612 key.type == BTRFS_EXTENT_ITEM_KEY && 1613 key.offset == head->num_bytes) 1614 ret = 0; 1615 } 1616 if (ret > 0) { 1617 btrfs_release_path(path); 1618 metadata = 0; 1619 1620 key.objectid = head->bytenr; 1621 key.offset = head->num_bytes; 1622 key.type = BTRFS_EXTENT_ITEM_KEY; 1623 goto again; 1624 } 1625 } else { 1626 err = -EIO; 1627 goto out; 1628 } 1629 } 1630 1631 leaf = path->nodes[0]; 1632 item_size = btrfs_item_size(leaf, path->slots[0]); 1633 1634 if (unlikely(item_size < sizeof(*ei))) { 1635 err = -EINVAL; 1636 btrfs_print_v0_err(fs_info); 1637 btrfs_abort_transaction(trans, err); 1638 goto out; 1639 } 1640 1641 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1642 __run_delayed_extent_op(extent_op, leaf, ei); 1643 1644 btrfs_mark_buffer_dirty(leaf); 1645 out: 1646 btrfs_free_path(path); 1647 return err; 1648 } 1649 1650 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1651 struct btrfs_delayed_ref_node *node, 1652 struct btrfs_delayed_extent_op *extent_op, 1653 int insert_reserved) 1654 { 1655 int ret = 0; 1656 struct btrfs_delayed_tree_ref *ref; 1657 u64 parent = 0; 1658 u64 ref_root = 0; 1659 1660 ref = btrfs_delayed_node_to_tree_ref(node); 1661 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1662 1663 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1664 parent = ref->parent; 1665 ref_root = ref->root; 1666 1667 if (node->ref_mod != 1) { 1668 btrfs_err(trans->fs_info, 1669 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1670 node->bytenr, node->ref_mod, node->action, ref_root, 1671 parent); 1672 return -EIO; 1673 } 1674 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1675 BUG_ON(!extent_op || !extent_op->update_flags); 1676 ret = alloc_reserved_tree_block(trans, node, extent_op); 1677 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1678 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1679 ref->level, 0, 1, extent_op); 1680 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1681 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1682 ref->level, 0, 1, extent_op); 1683 } else { 1684 BUG(); 1685 } 1686 return ret; 1687 } 1688 1689 /* helper function to actually process a single delayed ref entry */ 1690 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1691 struct btrfs_delayed_ref_node *node, 1692 struct btrfs_delayed_extent_op *extent_op, 1693 int insert_reserved) 1694 { 1695 int ret = 0; 1696 1697 if (TRANS_ABORTED(trans)) { 1698 if (insert_reserved) 1699 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1700 return 0; 1701 } 1702 1703 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1704 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1705 ret = run_delayed_tree_ref(trans, node, extent_op, 1706 insert_reserved); 1707 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1708 node->type == BTRFS_SHARED_DATA_REF_KEY) 1709 ret = run_delayed_data_ref(trans, node, extent_op, 1710 insert_reserved); 1711 else 1712 BUG(); 1713 if (ret && insert_reserved) 1714 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1715 if (ret < 0) 1716 btrfs_err(trans->fs_info, 1717 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1718 node->bytenr, node->num_bytes, node->type, 1719 node->action, node->ref_mod, ret); 1720 return ret; 1721 } 1722 1723 static inline struct btrfs_delayed_ref_node * 1724 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1725 { 1726 struct btrfs_delayed_ref_node *ref; 1727 1728 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1729 return NULL; 1730 1731 /* 1732 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1733 * This is to prevent a ref count from going down to zero, which deletes 1734 * the extent item from the extent tree, when there still are references 1735 * to add, which would fail because they would not find the extent item. 1736 */ 1737 if (!list_empty(&head->ref_add_list)) 1738 return list_first_entry(&head->ref_add_list, 1739 struct btrfs_delayed_ref_node, add_list); 1740 1741 ref = rb_entry(rb_first_cached(&head->ref_tree), 1742 struct btrfs_delayed_ref_node, ref_node); 1743 ASSERT(list_empty(&ref->add_list)); 1744 return ref; 1745 } 1746 1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1748 struct btrfs_delayed_ref_head *head) 1749 { 1750 spin_lock(&delayed_refs->lock); 1751 head->processing = 0; 1752 delayed_refs->num_heads_ready++; 1753 spin_unlock(&delayed_refs->lock); 1754 btrfs_delayed_ref_unlock(head); 1755 } 1756 1757 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1758 struct btrfs_delayed_ref_head *head) 1759 { 1760 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1761 1762 if (!extent_op) 1763 return NULL; 1764 1765 if (head->must_insert_reserved) { 1766 head->extent_op = NULL; 1767 btrfs_free_delayed_extent_op(extent_op); 1768 return NULL; 1769 } 1770 return extent_op; 1771 } 1772 1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1774 struct btrfs_delayed_ref_head *head) 1775 { 1776 struct btrfs_delayed_extent_op *extent_op; 1777 int ret; 1778 1779 extent_op = cleanup_extent_op(head); 1780 if (!extent_op) 1781 return 0; 1782 head->extent_op = NULL; 1783 spin_unlock(&head->lock); 1784 ret = run_delayed_extent_op(trans, head, extent_op); 1785 btrfs_free_delayed_extent_op(extent_op); 1786 return ret ? ret : 1; 1787 } 1788 1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1790 struct btrfs_delayed_ref_root *delayed_refs, 1791 struct btrfs_delayed_ref_head *head) 1792 { 1793 int nr_items = 1; /* Dropping this ref head update. */ 1794 1795 /* 1796 * We had csum deletions accounted for in our delayed refs rsv, we need 1797 * to drop the csum leaves for this update from our delayed_refs_rsv. 1798 */ 1799 if (head->total_ref_mod < 0 && head->is_data) { 1800 spin_lock(&delayed_refs->lock); 1801 delayed_refs->pending_csums -= head->num_bytes; 1802 spin_unlock(&delayed_refs->lock); 1803 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1804 } 1805 1806 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1807 } 1808 1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1810 struct btrfs_delayed_ref_head *head) 1811 { 1812 1813 struct btrfs_fs_info *fs_info = trans->fs_info; 1814 struct btrfs_delayed_ref_root *delayed_refs; 1815 int ret; 1816 1817 delayed_refs = &trans->transaction->delayed_refs; 1818 1819 ret = run_and_cleanup_extent_op(trans, head); 1820 if (ret < 0) { 1821 unselect_delayed_ref_head(delayed_refs, head); 1822 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1823 return ret; 1824 } else if (ret) { 1825 return ret; 1826 } 1827 1828 /* 1829 * Need to drop our head ref lock and re-acquire the delayed ref lock 1830 * and then re-check to make sure nobody got added. 1831 */ 1832 spin_unlock(&head->lock); 1833 spin_lock(&delayed_refs->lock); 1834 spin_lock(&head->lock); 1835 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1836 spin_unlock(&head->lock); 1837 spin_unlock(&delayed_refs->lock); 1838 return 1; 1839 } 1840 btrfs_delete_ref_head(delayed_refs, head); 1841 spin_unlock(&head->lock); 1842 spin_unlock(&delayed_refs->lock); 1843 1844 if (head->must_insert_reserved) { 1845 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1846 if (head->is_data) { 1847 struct btrfs_root *csum_root; 1848 1849 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1850 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1851 head->num_bytes); 1852 } 1853 } 1854 1855 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1856 1857 trace_run_delayed_ref_head(fs_info, head, 0); 1858 btrfs_delayed_ref_unlock(head); 1859 btrfs_put_delayed_ref_head(head); 1860 return ret; 1861 } 1862 1863 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1864 struct btrfs_trans_handle *trans) 1865 { 1866 struct btrfs_delayed_ref_root *delayed_refs = 1867 &trans->transaction->delayed_refs; 1868 struct btrfs_delayed_ref_head *head = NULL; 1869 int ret; 1870 1871 spin_lock(&delayed_refs->lock); 1872 head = btrfs_select_ref_head(delayed_refs); 1873 if (!head) { 1874 spin_unlock(&delayed_refs->lock); 1875 return head; 1876 } 1877 1878 /* 1879 * Grab the lock that says we are going to process all the refs for 1880 * this head 1881 */ 1882 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1883 spin_unlock(&delayed_refs->lock); 1884 1885 /* 1886 * We may have dropped the spin lock to get the head mutex lock, and 1887 * that might have given someone else time to free the head. If that's 1888 * true, it has been removed from our list and we can move on. 1889 */ 1890 if (ret == -EAGAIN) 1891 head = ERR_PTR(-EAGAIN); 1892 1893 return head; 1894 } 1895 1896 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1897 struct btrfs_delayed_ref_head *locked_ref) 1898 { 1899 struct btrfs_fs_info *fs_info = trans->fs_info; 1900 struct btrfs_delayed_ref_root *delayed_refs; 1901 struct btrfs_delayed_extent_op *extent_op; 1902 struct btrfs_delayed_ref_node *ref; 1903 int must_insert_reserved = 0; 1904 int ret; 1905 1906 delayed_refs = &trans->transaction->delayed_refs; 1907 1908 lockdep_assert_held(&locked_ref->mutex); 1909 lockdep_assert_held(&locked_ref->lock); 1910 1911 while ((ref = select_delayed_ref(locked_ref))) { 1912 if (ref->seq && 1913 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1914 spin_unlock(&locked_ref->lock); 1915 unselect_delayed_ref_head(delayed_refs, locked_ref); 1916 return -EAGAIN; 1917 } 1918 1919 ref->in_tree = 0; 1920 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1921 RB_CLEAR_NODE(&ref->ref_node); 1922 if (!list_empty(&ref->add_list)) 1923 list_del(&ref->add_list); 1924 /* 1925 * When we play the delayed ref, also correct the ref_mod on 1926 * head 1927 */ 1928 switch (ref->action) { 1929 case BTRFS_ADD_DELAYED_REF: 1930 case BTRFS_ADD_DELAYED_EXTENT: 1931 locked_ref->ref_mod -= ref->ref_mod; 1932 break; 1933 case BTRFS_DROP_DELAYED_REF: 1934 locked_ref->ref_mod += ref->ref_mod; 1935 break; 1936 default: 1937 WARN_ON(1); 1938 } 1939 atomic_dec(&delayed_refs->num_entries); 1940 1941 /* 1942 * Record the must_insert_reserved flag before we drop the 1943 * spin lock. 1944 */ 1945 must_insert_reserved = locked_ref->must_insert_reserved; 1946 locked_ref->must_insert_reserved = 0; 1947 1948 extent_op = locked_ref->extent_op; 1949 locked_ref->extent_op = NULL; 1950 spin_unlock(&locked_ref->lock); 1951 1952 ret = run_one_delayed_ref(trans, ref, extent_op, 1953 must_insert_reserved); 1954 1955 btrfs_free_delayed_extent_op(extent_op); 1956 if (ret) { 1957 unselect_delayed_ref_head(delayed_refs, locked_ref); 1958 btrfs_put_delayed_ref(ref); 1959 return ret; 1960 } 1961 1962 btrfs_put_delayed_ref(ref); 1963 cond_resched(); 1964 1965 spin_lock(&locked_ref->lock); 1966 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 1967 } 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Returns 0 on success or if called with an already aborted transaction. 1974 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1975 */ 1976 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1977 unsigned long nr) 1978 { 1979 struct btrfs_fs_info *fs_info = trans->fs_info; 1980 struct btrfs_delayed_ref_root *delayed_refs; 1981 struct btrfs_delayed_ref_head *locked_ref = NULL; 1982 int ret; 1983 unsigned long count = 0; 1984 1985 delayed_refs = &trans->transaction->delayed_refs; 1986 do { 1987 if (!locked_ref) { 1988 locked_ref = btrfs_obtain_ref_head(trans); 1989 if (IS_ERR_OR_NULL(locked_ref)) { 1990 if (PTR_ERR(locked_ref) == -EAGAIN) { 1991 continue; 1992 } else { 1993 break; 1994 } 1995 } 1996 count++; 1997 } 1998 /* 1999 * We need to try and merge add/drops of the same ref since we 2000 * can run into issues with relocate dropping the implicit ref 2001 * and then it being added back again before the drop can 2002 * finish. If we merged anything we need to re-loop so we can 2003 * get a good ref. 2004 * Or we can get node references of the same type that weren't 2005 * merged when created due to bumps in the tree mod seq, and 2006 * we need to merge them to prevent adding an inline extent 2007 * backref before dropping it (triggering a BUG_ON at 2008 * insert_inline_extent_backref()). 2009 */ 2010 spin_lock(&locked_ref->lock); 2011 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2012 2013 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref); 2014 if (ret < 0 && ret != -EAGAIN) { 2015 /* 2016 * Error, btrfs_run_delayed_refs_for_head already 2017 * unlocked everything so just bail out 2018 */ 2019 return ret; 2020 } else if (!ret) { 2021 /* 2022 * Success, perform the usual cleanup of a processed 2023 * head 2024 */ 2025 ret = cleanup_ref_head(trans, locked_ref); 2026 if (ret > 0 ) { 2027 /* We dropped our lock, we need to loop. */ 2028 ret = 0; 2029 continue; 2030 } else if (ret) { 2031 return ret; 2032 } 2033 } 2034 2035 /* 2036 * Either success case or btrfs_run_delayed_refs_for_head 2037 * returned -EAGAIN, meaning we need to select another head 2038 */ 2039 2040 locked_ref = NULL; 2041 cond_resched(); 2042 } while ((nr != -1 && count < nr) || locked_ref); 2043 2044 return 0; 2045 } 2046 2047 #ifdef SCRAMBLE_DELAYED_REFS 2048 /* 2049 * Normally delayed refs get processed in ascending bytenr order. This 2050 * correlates in most cases to the order added. To expose dependencies on this 2051 * order, we start to process the tree in the middle instead of the beginning 2052 */ 2053 static u64 find_middle(struct rb_root *root) 2054 { 2055 struct rb_node *n = root->rb_node; 2056 struct btrfs_delayed_ref_node *entry; 2057 int alt = 1; 2058 u64 middle; 2059 u64 first = 0, last = 0; 2060 2061 n = rb_first(root); 2062 if (n) { 2063 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2064 first = entry->bytenr; 2065 } 2066 n = rb_last(root); 2067 if (n) { 2068 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2069 last = entry->bytenr; 2070 } 2071 n = root->rb_node; 2072 2073 while (n) { 2074 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2075 WARN_ON(!entry->in_tree); 2076 2077 middle = entry->bytenr; 2078 2079 if (alt) 2080 n = n->rb_left; 2081 else 2082 n = n->rb_right; 2083 2084 alt = 1 - alt; 2085 } 2086 return middle; 2087 } 2088 #endif 2089 2090 /* 2091 * this starts processing the delayed reference count updates and 2092 * extent insertions we have queued up so far. count can be 2093 * 0, which means to process everything in the tree at the start 2094 * of the run (but not newly added entries), or it can be some target 2095 * number you'd like to process. 2096 * 2097 * Returns 0 on success or if called with an aborted transaction 2098 * Returns <0 on error and aborts the transaction 2099 */ 2100 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2101 unsigned long count) 2102 { 2103 struct btrfs_fs_info *fs_info = trans->fs_info; 2104 struct rb_node *node; 2105 struct btrfs_delayed_ref_root *delayed_refs; 2106 struct btrfs_delayed_ref_head *head; 2107 int ret; 2108 int run_all = count == (unsigned long)-1; 2109 2110 /* We'll clean this up in btrfs_cleanup_transaction */ 2111 if (TRANS_ABORTED(trans)) 2112 return 0; 2113 2114 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2115 return 0; 2116 2117 delayed_refs = &trans->transaction->delayed_refs; 2118 if (count == 0) 2119 count = delayed_refs->num_heads_ready; 2120 2121 again: 2122 #ifdef SCRAMBLE_DELAYED_REFS 2123 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2124 #endif 2125 ret = __btrfs_run_delayed_refs(trans, count); 2126 if (ret < 0) { 2127 btrfs_abort_transaction(trans, ret); 2128 return ret; 2129 } 2130 2131 if (run_all) { 2132 btrfs_create_pending_block_groups(trans); 2133 2134 spin_lock(&delayed_refs->lock); 2135 node = rb_first_cached(&delayed_refs->href_root); 2136 if (!node) { 2137 spin_unlock(&delayed_refs->lock); 2138 goto out; 2139 } 2140 head = rb_entry(node, struct btrfs_delayed_ref_head, 2141 href_node); 2142 refcount_inc(&head->refs); 2143 spin_unlock(&delayed_refs->lock); 2144 2145 /* Mutex was contended, block until it's released and retry. */ 2146 mutex_lock(&head->mutex); 2147 mutex_unlock(&head->mutex); 2148 2149 btrfs_put_delayed_ref_head(head); 2150 cond_resched(); 2151 goto again; 2152 } 2153 out: 2154 return 0; 2155 } 2156 2157 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2158 struct extent_buffer *eb, u64 flags, 2159 int level) 2160 { 2161 struct btrfs_delayed_extent_op *extent_op; 2162 int ret; 2163 2164 extent_op = btrfs_alloc_delayed_extent_op(); 2165 if (!extent_op) 2166 return -ENOMEM; 2167 2168 extent_op->flags_to_set = flags; 2169 extent_op->update_flags = true; 2170 extent_op->update_key = false; 2171 extent_op->level = level; 2172 2173 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2174 if (ret) 2175 btrfs_free_delayed_extent_op(extent_op); 2176 return ret; 2177 } 2178 2179 static noinline int check_delayed_ref(struct btrfs_root *root, 2180 struct btrfs_path *path, 2181 u64 objectid, u64 offset, u64 bytenr) 2182 { 2183 struct btrfs_delayed_ref_head *head; 2184 struct btrfs_delayed_ref_node *ref; 2185 struct btrfs_delayed_data_ref *data_ref; 2186 struct btrfs_delayed_ref_root *delayed_refs; 2187 struct btrfs_transaction *cur_trans; 2188 struct rb_node *node; 2189 int ret = 0; 2190 2191 spin_lock(&root->fs_info->trans_lock); 2192 cur_trans = root->fs_info->running_transaction; 2193 if (cur_trans) 2194 refcount_inc(&cur_trans->use_count); 2195 spin_unlock(&root->fs_info->trans_lock); 2196 if (!cur_trans) 2197 return 0; 2198 2199 delayed_refs = &cur_trans->delayed_refs; 2200 spin_lock(&delayed_refs->lock); 2201 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2202 if (!head) { 2203 spin_unlock(&delayed_refs->lock); 2204 btrfs_put_transaction(cur_trans); 2205 return 0; 2206 } 2207 2208 if (!mutex_trylock(&head->mutex)) { 2209 if (path->nowait) { 2210 spin_unlock(&delayed_refs->lock); 2211 btrfs_put_transaction(cur_trans); 2212 return -EAGAIN; 2213 } 2214 2215 refcount_inc(&head->refs); 2216 spin_unlock(&delayed_refs->lock); 2217 2218 btrfs_release_path(path); 2219 2220 /* 2221 * Mutex was contended, block until it's released and let 2222 * caller try again 2223 */ 2224 mutex_lock(&head->mutex); 2225 mutex_unlock(&head->mutex); 2226 btrfs_put_delayed_ref_head(head); 2227 btrfs_put_transaction(cur_trans); 2228 return -EAGAIN; 2229 } 2230 spin_unlock(&delayed_refs->lock); 2231 2232 spin_lock(&head->lock); 2233 /* 2234 * XXX: We should replace this with a proper search function in the 2235 * future. 2236 */ 2237 for (node = rb_first_cached(&head->ref_tree); node; 2238 node = rb_next(node)) { 2239 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2240 /* If it's a shared ref we know a cross reference exists */ 2241 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2242 ret = 1; 2243 break; 2244 } 2245 2246 data_ref = btrfs_delayed_node_to_data_ref(ref); 2247 2248 /* 2249 * If our ref doesn't match the one we're currently looking at 2250 * then we have a cross reference. 2251 */ 2252 if (data_ref->root != root->root_key.objectid || 2253 data_ref->objectid != objectid || 2254 data_ref->offset != offset) { 2255 ret = 1; 2256 break; 2257 } 2258 } 2259 spin_unlock(&head->lock); 2260 mutex_unlock(&head->mutex); 2261 btrfs_put_transaction(cur_trans); 2262 return ret; 2263 } 2264 2265 static noinline int check_committed_ref(struct btrfs_root *root, 2266 struct btrfs_path *path, 2267 u64 objectid, u64 offset, u64 bytenr, 2268 bool strict) 2269 { 2270 struct btrfs_fs_info *fs_info = root->fs_info; 2271 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2272 struct extent_buffer *leaf; 2273 struct btrfs_extent_data_ref *ref; 2274 struct btrfs_extent_inline_ref *iref; 2275 struct btrfs_extent_item *ei; 2276 struct btrfs_key key; 2277 u32 item_size; 2278 int type; 2279 int ret; 2280 2281 key.objectid = bytenr; 2282 key.offset = (u64)-1; 2283 key.type = BTRFS_EXTENT_ITEM_KEY; 2284 2285 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2286 if (ret < 0) 2287 goto out; 2288 BUG_ON(ret == 0); /* Corruption */ 2289 2290 ret = -ENOENT; 2291 if (path->slots[0] == 0) 2292 goto out; 2293 2294 path->slots[0]--; 2295 leaf = path->nodes[0]; 2296 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2297 2298 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2299 goto out; 2300 2301 ret = 1; 2302 item_size = btrfs_item_size(leaf, path->slots[0]); 2303 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2304 2305 /* If extent item has more than 1 inline ref then it's shared */ 2306 if (item_size != sizeof(*ei) + 2307 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2308 goto out; 2309 2310 /* 2311 * If extent created before last snapshot => it's shared unless the 2312 * snapshot has been deleted. Use the heuristic if strict is false. 2313 */ 2314 if (!strict && 2315 (btrfs_extent_generation(leaf, ei) <= 2316 btrfs_root_last_snapshot(&root->root_item))) 2317 goto out; 2318 2319 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2320 2321 /* If this extent has SHARED_DATA_REF then it's shared */ 2322 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2323 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2324 goto out; 2325 2326 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2327 if (btrfs_extent_refs(leaf, ei) != 2328 btrfs_extent_data_ref_count(leaf, ref) || 2329 btrfs_extent_data_ref_root(leaf, ref) != 2330 root->root_key.objectid || 2331 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2332 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2333 goto out; 2334 2335 ret = 0; 2336 out: 2337 return ret; 2338 } 2339 2340 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2341 u64 bytenr, bool strict, struct btrfs_path *path) 2342 { 2343 int ret; 2344 2345 do { 2346 ret = check_committed_ref(root, path, objectid, 2347 offset, bytenr, strict); 2348 if (ret && ret != -ENOENT) 2349 goto out; 2350 2351 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2352 } while (ret == -EAGAIN); 2353 2354 out: 2355 btrfs_release_path(path); 2356 if (btrfs_is_data_reloc_root(root)) 2357 WARN_ON(ret > 0); 2358 return ret; 2359 } 2360 2361 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2362 struct btrfs_root *root, 2363 struct extent_buffer *buf, 2364 int full_backref, int inc) 2365 { 2366 struct btrfs_fs_info *fs_info = root->fs_info; 2367 u64 bytenr; 2368 u64 num_bytes; 2369 u64 parent; 2370 u64 ref_root; 2371 u32 nritems; 2372 struct btrfs_key key; 2373 struct btrfs_file_extent_item *fi; 2374 struct btrfs_ref generic_ref = { 0 }; 2375 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2376 int i; 2377 int action; 2378 int level; 2379 int ret = 0; 2380 2381 if (btrfs_is_testing(fs_info)) 2382 return 0; 2383 2384 ref_root = btrfs_header_owner(buf); 2385 nritems = btrfs_header_nritems(buf); 2386 level = btrfs_header_level(buf); 2387 2388 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2389 return 0; 2390 2391 if (full_backref) 2392 parent = buf->start; 2393 else 2394 parent = 0; 2395 if (inc) 2396 action = BTRFS_ADD_DELAYED_REF; 2397 else 2398 action = BTRFS_DROP_DELAYED_REF; 2399 2400 for (i = 0; i < nritems; i++) { 2401 if (level == 0) { 2402 btrfs_item_key_to_cpu(buf, &key, i); 2403 if (key.type != BTRFS_EXTENT_DATA_KEY) 2404 continue; 2405 fi = btrfs_item_ptr(buf, i, 2406 struct btrfs_file_extent_item); 2407 if (btrfs_file_extent_type(buf, fi) == 2408 BTRFS_FILE_EXTENT_INLINE) 2409 continue; 2410 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2411 if (bytenr == 0) 2412 continue; 2413 2414 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2415 key.offset -= btrfs_file_extent_offset(buf, fi); 2416 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2417 num_bytes, parent); 2418 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2419 key.offset, root->root_key.objectid, 2420 for_reloc); 2421 if (inc) 2422 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2423 else 2424 ret = btrfs_free_extent(trans, &generic_ref); 2425 if (ret) 2426 goto fail; 2427 } else { 2428 bytenr = btrfs_node_blockptr(buf, i); 2429 num_bytes = fs_info->nodesize; 2430 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2431 num_bytes, parent); 2432 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2433 root->root_key.objectid, for_reloc); 2434 if (inc) 2435 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2436 else 2437 ret = btrfs_free_extent(trans, &generic_ref); 2438 if (ret) 2439 goto fail; 2440 } 2441 } 2442 return 0; 2443 fail: 2444 return ret; 2445 } 2446 2447 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2448 struct extent_buffer *buf, int full_backref) 2449 { 2450 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2451 } 2452 2453 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2454 struct extent_buffer *buf, int full_backref) 2455 { 2456 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2457 } 2458 2459 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2460 { 2461 struct btrfs_fs_info *fs_info = root->fs_info; 2462 u64 flags; 2463 u64 ret; 2464 2465 if (data) 2466 flags = BTRFS_BLOCK_GROUP_DATA; 2467 else if (root == fs_info->chunk_root) 2468 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2469 else 2470 flags = BTRFS_BLOCK_GROUP_METADATA; 2471 2472 ret = btrfs_get_alloc_profile(fs_info, flags); 2473 return ret; 2474 } 2475 2476 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2477 { 2478 struct rb_node *leftmost; 2479 u64 bytenr = 0; 2480 2481 read_lock(&fs_info->block_group_cache_lock); 2482 /* Get the block group with the lowest logical start address. */ 2483 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2484 if (leftmost) { 2485 struct btrfs_block_group *bg; 2486 2487 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2488 bytenr = bg->start; 2489 } 2490 read_unlock(&fs_info->block_group_cache_lock); 2491 2492 return bytenr; 2493 } 2494 2495 static int pin_down_extent(struct btrfs_trans_handle *trans, 2496 struct btrfs_block_group *cache, 2497 u64 bytenr, u64 num_bytes, int reserved) 2498 { 2499 struct btrfs_fs_info *fs_info = cache->fs_info; 2500 2501 spin_lock(&cache->space_info->lock); 2502 spin_lock(&cache->lock); 2503 cache->pinned += num_bytes; 2504 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2505 num_bytes); 2506 if (reserved) { 2507 cache->reserved -= num_bytes; 2508 cache->space_info->bytes_reserved -= num_bytes; 2509 } 2510 spin_unlock(&cache->lock); 2511 spin_unlock(&cache->space_info->lock); 2512 2513 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2514 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2515 return 0; 2516 } 2517 2518 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2519 u64 bytenr, u64 num_bytes, int reserved) 2520 { 2521 struct btrfs_block_group *cache; 2522 2523 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2524 BUG_ON(!cache); /* Logic error */ 2525 2526 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2527 2528 btrfs_put_block_group(cache); 2529 return 0; 2530 } 2531 2532 /* 2533 * this function must be called within transaction 2534 */ 2535 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2536 u64 bytenr, u64 num_bytes) 2537 { 2538 struct btrfs_block_group *cache; 2539 int ret; 2540 2541 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2542 if (!cache) 2543 return -EINVAL; 2544 2545 /* 2546 * Fully cache the free space first so that our pin removes the free space 2547 * from the cache. 2548 */ 2549 ret = btrfs_cache_block_group(cache, true); 2550 if (ret) 2551 goto out; 2552 2553 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2554 2555 /* remove us from the free space cache (if we're there at all) */ 2556 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2557 out: 2558 btrfs_put_block_group(cache); 2559 return ret; 2560 } 2561 2562 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2563 u64 start, u64 num_bytes) 2564 { 2565 int ret; 2566 struct btrfs_block_group *block_group; 2567 2568 block_group = btrfs_lookup_block_group(fs_info, start); 2569 if (!block_group) 2570 return -EINVAL; 2571 2572 ret = btrfs_cache_block_group(block_group, true); 2573 if (ret) 2574 goto out; 2575 2576 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2577 out: 2578 btrfs_put_block_group(block_group); 2579 return ret; 2580 } 2581 2582 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2583 { 2584 struct btrfs_fs_info *fs_info = eb->fs_info; 2585 struct btrfs_file_extent_item *item; 2586 struct btrfs_key key; 2587 int found_type; 2588 int i; 2589 int ret = 0; 2590 2591 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2592 return 0; 2593 2594 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2595 btrfs_item_key_to_cpu(eb, &key, i); 2596 if (key.type != BTRFS_EXTENT_DATA_KEY) 2597 continue; 2598 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2599 found_type = btrfs_file_extent_type(eb, item); 2600 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2601 continue; 2602 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2603 continue; 2604 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2605 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2606 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2607 if (ret) 2608 break; 2609 } 2610 2611 return ret; 2612 } 2613 2614 static void 2615 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2616 { 2617 atomic_inc(&bg->reservations); 2618 } 2619 2620 /* 2621 * Returns the free cluster for the given space info and sets empty_cluster to 2622 * what it should be based on the mount options. 2623 */ 2624 static struct btrfs_free_cluster * 2625 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2626 struct btrfs_space_info *space_info, u64 *empty_cluster) 2627 { 2628 struct btrfs_free_cluster *ret = NULL; 2629 2630 *empty_cluster = 0; 2631 if (btrfs_mixed_space_info(space_info)) 2632 return ret; 2633 2634 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2635 ret = &fs_info->meta_alloc_cluster; 2636 if (btrfs_test_opt(fs_info, SSD)) 2637 *empty_cluster = SZ_2M; 2638 else 2639 *empty_cluster = SZ_64K; 2640 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2641 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2642 *empty_cluster = SZ_2M; 2643 ret = &fs_info->data_alloc_cluster; 2644 } 2645 2646 return ret; 2647 } 2648 2649 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2650 u64 start, u64 end, 2651 const bool return_free_space) 2652 { 2653 struct btrfs_block_group *cache = NULL; 2654 struct btrfs_space_info *space_info; 2655 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2656 struct btrfs_free_cluster *cluster = NULL; 2657 u64 len; 2658 u64 total_unpinned = 0; 2659 u64 empty_cluster = 0; 2660 bool readonly; 2661 2662 while (start <= end) { 2663 readonly = false; 2664 if (!cache || 2665 start >= cache->start + cache->length) { 2666 if (cache) 2667 btrfs_put_block_group(cache); 2668 total_unpinned = 0; 2669 cache = btrfs_lookup_block_group(fs_info, start); 2670 BUG_ON(!cache); /* Logic error */ 2671 2672 cluster = fetch_cluster_info(fs_info, 2673 cache->space_info, 2674 &empty_cluster); 2675 empty_cluster <<= 1; 2676 } 2677 2678 len = cache->start + cache->length - start; 2679 len = min(len, end + 1 - start); 2680 2681 if (return_free_space) 2682 btrfs_add_free_space(cache, start, len); 2683 2684 start += len; 2685 total_unpinned += len; 2686 space_info = cache->space_info; 2687 2688 /* 2689 * If this space cluster has been marked as fragmented and we've 2690 * unpinned enough in this block group to potentially allow a 2691 * cluster to be created inside of it go ahead and clear the 2692 * fragmented check. 2693 */ 2694 if (cluster && cluster->fragmented && 2695 total_unpinned > empty_cluster) { 2696 spin_lock(&cluster->lock); 2697 cluster->fragmented = 0; 2698 spin_unlock(&cluster->lock); 2699 } 2700 2701 spin_lock(&space_info->lock); 2702 spin_lock(&cache->lock); 2703 cache->pinned -= len; 2704 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2705 space_info->max_extent_size = 0; 2706 if (cache->ro) { 2707 space_info->bytes_readonly += len; 2708 readonly = true; 2709 } else if (btrfs_is_zoned(fs_info)) { 2710 /* Need reset before reusing in a zoned block group */ 2711 space_info->bytes_zone_unusable += len; 2712 readonly = true; 2713 } 2714 spin_unlock(&cache->lock); 2715 if (!readonly && return_free_space && 2716 global_rsv->space_info == space_info) { 2717 spin_lock(&global_rsv->lock); 2718 if (!global_rsv->full) { 2719 u64 to_add = min(len, global_rsv->size - 2720 global_rsv->reserved); 2721 2722 global_rsv->reserved += to_add; 2723 btrfs_space_info_update_bytes_may_use(fs_info, 2724 space_info, to_add); 2725 if (global_rsv->reserved >= global_rsv->size) 2726 global_rsv->full = 1; 2727 len -= to_add; 2728 } 2729 spin_unlock(&global_rsv->lock); 2730 } 2731 /* Add to any tickets we may have */ 2732 if (!readonly && return_free_space && len) 2733 btrfs_try_granting_tickets(fs_info, space_info); 2734 spin_unlock(&space_info->lock); 2735 } 2736 2737 if (cache) 2738 btrfs_put_block_group(cache); 2739 return 0; 2740 } 2741 2742 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2743 { 2744 struct btrfs_fs_info *fs_info = trans->fs_info; 2745 struct btrfs_block_group *block_group, *tmp; 2746 struct list_head *deleted_bgs; 2747 struct extent_io_tree *unpin; 2748 u64 start; 2749 u64 end; 2750 int ret; 2751 2752 unpin = &trans->transaction->pinned_extents; 2753 2754 while (!TRANS_ABORTED(trans)) { 2755 struct extent_state *cached_state = NULL; 2756 2757 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2758 ret = find_first_extent_bit(unpin, 0, &start, &end, 2759 EXTENT_DIRTY, &cached_state); 2760 if (ret) { 2761 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2762 break; 2763 } 2764 2765 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2766 ret = btrfs_discard_extent(fs_info, start, 2767 end + 1 - start, NULL); 2768 2769 clear_extent_dirty(unpin, start, end, &cached_state); 2770 unpin_extent_range(fs_info, start, end, true); 2771 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2772 free_extent_state(cached_state); 2773 cond_resched(); 2774 } 2775 2776 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2777 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2778 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2779 } 2780 2781 /* 2782 * Transaction is finished. We don't need the lock anymore. We 2783 * do need to clean up the block groups in case of a transaction 2784 * abort. 2785 */ 2786 deleted_bgs = &trans->transaction->deleted_bgs; 2787 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2788 u64 trimmed = 0; 2789 2790 ret = -EROFS; 2791 if (!TRANS_ABORTED(trans)) 2792 ret = btrfs_discard_extent(fs_info, 2793 block_group->start, 2794 block_group->length, 2795 &trimmed); 2796 2797 list_del_init(&block_group->bg_list); 2798 btrfs_unfreeze_block_group(block_group); 2799 btrfs_put_block_group(block_group); 2800 2801 if (ret) { 2802 const char *errstr = btrfs_decode_error(ret); 2803 btrfs_warn(fs_info, 2804 "discard failed while removing blockgroup: errno=%d %s", 2805 ret, errstr); 2806 } 2807 } 2808 2809 return 0; 2810 } 2811 2812 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2813 u64 bytenr, u64 num_bytes, bool is_data) 2814 { 2815 int ret; 2816 2817 if (is_data) { 2818 struct btrfs_root *csum_root; 2819 2820 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2821 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2822 if (ret) { 2823 btrfs_abort_transaction(trans, ret); 2824 return ret; 2825 } 2826 } 2827 2828 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2829 if (ret) { 2830 btrfs_abort_transaction(trans, ret); 2831 return ret; 2832 } 2833 2834 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2835 if (ret) 2836 btrfs_abort_transaction(trans, ret); 2837 2838 return ret; 2839 } 2840 2841 /* 2842 * Drop one or more refs of @node. 2843 * 2844 * 1. Locate the extent refs. 2845 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2846 * Locate it, then reduce the refs number or remove the ref line completely. 2847 * 2848 * 2. Update the refs count in EXTENT/METADATA_ITEM 2849 * 2850 * Inline backref case: 2851 * 2852 * in extent tree we have: 2853 * 2854 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2855 * refs 2 gen 6 flags DATA 2856 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2857 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2858 * 2859 * This function gets called with: 2860 * 2861 * node->bytenr = 13631488 2862 * node->num_bytes = 1048576 2863 * root_objectid = FS_TREE 2864 * owner_objectid = 257 2865 * owner_offset = 0 2866 * refs_to_drop = 1 2867 * 2868 * Then we should get some like: 2869 * 2870 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2871 * refs 1 gen 6 flags DATA 2872 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2873 * 2874 * Keyed backref case: 2875 * 2876 * in extent tree we have: 2877 * 2878 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2879 * refs 754 gen 6 flags DATA 2880 * [...] 2881 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2882 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2883 * 2884 * This function get called with: 2885 * 2886 * node->bytenr = 13631488 2887 * node->num_bytes = 1048576 2888 * root_objectid = FS_TREE 2889 * owner_objectid = 866 2890 * owner_offset = 0 2891 * refs_to_drop = 1 2892 * 2893 * Then we should get some like: 2894 * 2895 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2896 * refs 753 gen 6 flags DATA 2897 * 2898 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2899 */ 2900 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2901 struct btrfs_delayed_ref_node *node, u64 parent, 2902 u64 root_objectid, u64 owner_objectid, 2903 u64 owner_offset, int refs_to_drop, 2904 struct btrfs_delayed_extent_op *extent_op) 2905 { 2906 struct btrfs_fs_info *info = trans->fs_info; 2907 struct btrfs_key key; 2908 struct btrfs_path *path; 2909 struct btrfs_root *extent_root; 2910 struct extent_buffer *leaf; 2911 struct btrfs_extent_item *ei; 2912 struct btrfs_extent_inline_ref *iref; 2913 int ret; 2914 int is_data; 2915 int extent_slot = 0; 2916 int found_extent = 0; 2917 int num_to_del = 1; 2918 u32 item_size; 2919 u64 refs; 2920 u64 bytenr = node->bytenr; 2921 u64 num_bytes = node->num_bytes; 2922 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2923 2924 extent_root = btrfs_extent_root(info, bytenr); 2925 ASSERT(extent_root); 2926 2927 path = btrfs_alloc_path(); 2928 if (!path) 2929 return -ENOMEM; 2930 2931 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2932 2933 if (!is_data && refs_to_drop != 1) { 2934 btrfs_crit(info, 2935 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2936 node->bytenr, refs_to_drop); 2937 ret = -EINVAL; 2938 btrfs_abort_transaction(trans, ret); 2939 goto out; 2940 } 2941 2942 if (is_data) 2943 skinny_metadata = false; 2944 2945 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2946 parent, root_objectid, owner_objectid, 2947 owner_offset); 2948 if (ret == 0) { 2949 /* 2950 * Either the inline backref or the SHARED_DATA_REF/ 2951 * SHARED_BLOCK_REF is found 2952 * 2953 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2954 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2955 */ 2956 extent_slot = path->slots[0]; 2957 while (extent_slot >= 0) { 2958 btrfs_item_key_to_cpu(path->nodes[0], &key, 2959 extent_slot); 2960 if (key.objectid != bytenr) 2961 break; 2962 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2963 key.offset == num_bytes) { 2964 found_extent = 1; 2965 break; 2966 } 2967 if (key.type == BTRFS_METADATA_ITEM_KEY && 2968 key.offset == owner_objectid) { 2969 found_extent = 1; 2970 break; 2971 } 2972 2973 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2974 if (path->slots[0] - extent_slot > 5) 2975 break; 2976 extent_slot--; 2977 } 2978 2979 if (!found_extent) { 2980 if (iref) { 2981 btrfs_crit(info, 2982 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 2983 btrfs_abort_transaction(trans, -EUCLEAN); 2984 goto err_dump; 2985 } 2986 /* Must be SHARED_* item, remove the backref first */ 2987 ret = remove_extent_backref(trans, extent_root, path, 2988 NULL, refs_to_drop, is_data); 2989 if (ret) { 2990 btrfs_abort_transaction(trans, ret); 2991 goto out; 2992 } 2993 btrfs_release_path(path); 2994 2995 /* Slow path to locate EXTENT/METADATA_ITEM */ 2996 key.objectid = bytenr; 2997 key.type = BTRFS_EXTENT_ITEM_KEY; 2998 key.offset = num_bytes; 2999 3000 if (!is_data && skinny_metadata) { 3001 key.type = BTRFS_METADATA_ITEM_KEY; 3002 key.offset = owner_objectid; 3003 } 3004 3005 ret = btrfs_search_slot(trans, extent_root, 3006 &key, path, -1, 1); 3007 if (ret > 0 && skinny_metadata && path->slots[0]) { 3008 /* 3009 * Couldn't find our skinny metadata item, 3010 * see if we have ye olde extent item. 3011 */ 3012 path->slots[0]--; 3013 btrfs_item_key_to_cpu(path->nodes[0], &key, 3014 path->slots[0]); 3015 if (key.objectid == bytenr && 3016 key.type == BTRFS_EXTENT_ITEM_KEY && 3017 key.offset == num_bytes) 3018 ret = 0; 3019 } 3020 3021 if (ret > 0 && skinny_metadata) { 3022 skinny_metadata = false; 3023 key.objectid = bytenr; 3024 key.type = BTRFS_EXTENT_ITEM_KEY; 3025 key.offset = num_bytes; 3026 btrfs_release_path(path); 3027 ret = btrfs_search_slot(trans, extent_root, 3028 &key, path, -1, 1); 3029 } 3030 3031 if (ret) { 3032 btrfs_err(info, 3033 "umm, got %d back from search, was looking for %llu", 3034 ret, bytenr); 3035 if (ret > 0) 3036 btrfs_print_leaf(path->nodes[0]); 3037 } 3038 if (ret < 0) { 3039 btrfs_abort_transaction(trans, ret); 3040 goto out; 3041 } 3042 extent_slot = path->slots[0]; 3043 } 3044 } else if (WARN_ON(ret == -ENOENT)) { 3045 btrfs_print_leaf(path->nodes[0]); 3046 btrfs_err(info, 3047 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3048 bytenr, parent, root_objectid, owner_objectid, 3049 owner_offset); 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } else { 3053 btrfs_abort_transaction(trans, ret); 3054 goto out; 3055 } 3056 3057 leaf = path->nodes[0]; 3058 item_size = btrfs_item_size(leaf, extent_slot); 3059 if (unlikely(item_size < sizeof(*ei))) { 3060 ret = -EINVAL; 3061 btrfs_print_v0_err(info); 3062 btrfs_abort_transaction(trans, ret); 3063 goto out; 3064 } 3065 ei = btrfs_item_ptr(leaf, extent_slot, 3066 struct btrfs_extent_item); 3067 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3068 key.type == BTRFS_EXTENT_ITEM_KEY) { 3069 struct btrfs_tree_block_info *bi; 3070 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3071 btrfs_crit(info, 3072 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3073 key.objectid, key.type, key.offset, 3074 owner_objectid, item_size, 3075 sizeof(*ei) + sizeof(*bi)); 3076 btrfs_abort_transaction(trans, -EUCLEAN); 3077 goto err_dump; 3078 } 3079 bi = (struct btrfs_tree_block_info *)(ei + 1); 3080 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3081 } 3082 3083 refs = btrfs_extent_refs(leaf, ei); 3084 if (refs < refs_to_drop) { 3085 btrfs_crit(info, 3086 "trying to drop %d refs but we only have %llu for bytenr %llu", 3087 refs_to_drop, refs, bytenr); 3088 btrfs_abort_transaction(trans, -EUCLEAN); 3089 goto err_dump; 3090 } 3091 refs -= refs_to_drop; 3092 3093 if (refs > 0) { 3094 if (extent_op) 3095 __run_delayed_extent_op(extent_op, leaf, ei); 3096 /* 3097 * In the case of inline back ref, reference count will 3098 * be updated by remove_extent_backref 3099 */ 3100 if (iref) { 3101 if (!found_extent) { 3102 btrfs_crit(info, 3103 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3104 btrfs_abort_transaction(trans, -EUCLEAN); 3105 goto err_dump; 3106 } 3107 } else { 3108 btrfs_set_extent_refs(leaf, ei, refs); 3109 btrfs_mark_buffer_dirty(leaf); 3110 } 3111 if (found_extent) { 3112 ret = remove_extent_backref(trans, extent_root, path, 3113 iref, refs_to_drop, is_data); 3114 if (ret) { 3115 btrfs_abort_transaction(trans, ret); 3116 goto out; 3117 } 3118 } 3119 } else { 3120 /* In this branch refs == 1 */ 3121 if (found_extent) { 3122 if (is_data && refs_to_drop != 3123 extent_data_ref_count(path, iref)) { 3124 btrfs_crit(info, 3125 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3126 extent_data_ref_count(path, iref), 3127 refs_to_drop); 3128 btrfs_abort_transaction(trans, -EUCLEAN); 3129 goto err_dump; 3130 } 3131 if (iref) { 3132 if (path->slots[0] != extent_slot) { 3133 btrfs_crit(info, 3134 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3135 key.objectid, key.type, 3136 key.offset); 3137 btrfs_abort_transaction(trans, -EUCLEAN); 3138 goto err_dump; 3139 } 3140 } else { 3141 /* 3142 * No inline ref, we must be at SHARED_* item, 3143 * And it's single ref, it must be: 3144 * | extent_slot ||extent_slot + 1| 3145 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3146 */ 3147 if (path->slots[0] != extent_slot + 1) { 3148 btrfs_crit(info, 3149 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3150 btrfs_abort_transaction(trans, -EUCLEAN); 3151 goto err_dump; 3152 } 3153 path->slots[0] = extent_slot; 3154 num_to_del = 2; 3155 } 3156 } 3157 3158 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3159 num_to_del); 3160 if (ret) { 3161 btrfs_abort_transaction(trans, ret); 3162 goto out; 3163 } 3164 btrfs_release_path(path); 3165 3166 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3167 } 3168 btrfs_release_path(path); 3169 3170 out: 3171 btrfs_free_path(path); 3172 return ret; 3173 err_dump: 3174 /* 3175 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3176 * dump for debug build. 3177 */ 3178 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3179 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3180 path->slots[0], extent_slot); 3181 btrfs_print_leaf(path->nodes[0]); 3182 } 3183 3184 btrfs_free_path(path); 3185 return -EUCLEAN; 3186 } 3187 3188 /* 3189 * when we free an block, it is possible (and likely) that we free the last 3190 * delayed ref for that extent as well. This searches the delayed ref tree for 3191 * a given extent, and if there are no other delayed refs to be processed, it 3192 * removes it from the tree. 3193 */ 3194 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3195 u64 bytenr) 3196 { 3197 struct btrfs_delayed_ref_head *head; 3198 struct btrfs_delayed_ref_root *delayed_refs; 3199 int ret = 0; 3200 3201 delayed_refs = &trans->transaction->delayed_refs; 3202 spin_lock(&delayed_refs->lock); 3203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3204 if (!head) 3205 goto out_delayed_unlock; 3206 3207 spin_lock(&head->lock); 3208 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3209 goto out; 3210 3211 if (cleanup_extent_op(head) != NULL) 3212 goto out; 3213 3214 /* 3215 * waiting for the lock here would deadlock. If someone else has it 3216 * locked they are already in the process of dropping it anyway 3217 */ 3218 if (!mutex_trylock(&head->mutex)) 3219 goto out; 3220 3221 btrfs_delete_ref_head(delayed_refs, head); 3222 head->processing = 0; 3223 3224 spin_unlock(&head->lock); 3225 spin_unlock(&delayed_refs->lock); 3226 3227 BUG_ON(head->extent_op); 3228 if (head->must_insert_reserved) 3229 ret = 1; 3230 3231 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3232 mutex_unlock(&head->mutex); 3233 btrfs_put_delayed_ref_head(head); 3234 return ret; 3235 out: 3236 spin_unlock(&head->lock); 3237 3238 out_delayed_unlock: 3239 spin_unlock(&delayed_refs->lock); 3240 return 0; 3241 } 3242 3243 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3244 u64 root_id, 3245 struct extent_buffer *buf, 3246 u64 parent, int last_ref) 3247 { 3248 struct btrfs_fs_info *fs_info = trans->fs_info; 3249 struct btrfs_ref generic_ref = { 0 }; 3250 int ret; 3251 3252 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3253 buf->start, buf->len, parent); 3254 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3255 root_id, 0, false); 3256 3257 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3258 btrfs_ref_tree_mod(fs_info, &generic_ref); 3259 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3260 BUG_ON(ret); /* -ENOMEM */ 3261 } 3262 3263 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3264 struct btrfs_block_group *cache; 3265 bool must_pin = false; 3266 3267 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3268 ret = check_ref_cleanup(trans, buf->start); 3269 if (!ret) { 3270 btrfs_redirty_list_add(trans->transaction, buf); 3271 goto out; 3272 } 3273 } 3274 3275 cache = btrfs_lookup_block_group(fs_info, buf->start); 3276 3277 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3278 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3279 btrfs_put_block_group(cache); 3280 goto out; 3281 } 3282 3283 /* 3284 * If there are tree mod log users we may have recorded mod log 3285 * operations for this node. If we re-allocate this node we 3286 * could replay operations on this node that happened when it 3287 * existed in a completely different root. For example if it 3288 * was part of root A, then was reallocated to root B, and we 3289 * are doing a btrfs_old_search_slot(root b), we could replay 3290 * operations that happened when the block was part of root A, 3291 * giving us an inconsistent view of the btree. 3292 * 3293 * We are safe from races here because at this point no other 3294 * node or root points to this extent buffer, so if after this 3295 * check a new tree mod log user joins we will not have an 3296 * existing log of operations on this node that we have to 3297 * contend with. 3298 */ 3299 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3300 must_pin = true; 3301 3302 if (must_pin || btrfs_is_zoned(fs_info)) { 3303 btrfs_redirty_list_add(trans->transaction, buf); 3304 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3305 btrfs_put_block_group(cache); 3306 goto out; 3307 } 3308 3309 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3310 3311 btrfs_add_free_space(cache, buf->start, buf->len); 3312 btrfs_free_reserved_bytes(cache, buf->len, 0); 3313 btrfs_put_block_group(cache); 3314 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3315 } 3316 out: 3317 if (last_ref) { 3318 /* 3319 * Deleting the buffer, clear the corrupt flag since it doesn't 3320 * matter anymore. 3321 */ 3322 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3323 } 3324 } 3325 3326 /* Can return -ENOMEM */ 3327 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3328 { 3329 struct btrfs_fs_info *fs_info = trans->fs_info; 3330 int ret; 3331 3332 if (btrfs_is_testing(fs_info)) 3333 return 0; 3334 3335 /* 3336 * tree log blocks never actually go into the extent allocation 3337 * tree, just update pinning info and exit early. 3338 */ 3339 if ((ref->type == BTRFS_REF_METADATA && 3340 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3341 (ref->type == BTRFS_REF_DATA && 3342 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3343 /* unlocks the pinned mutex */ 3344 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3345 ret = 0; 3346 } else if (ref->type == BTRFS_REF_METADATA) { 3347 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3348 } else { 3349 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3350 } 3351 3352 if (!((ref->type == BTRFS_REF_METADATA && 3353 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3354 (ref->type == BTRFS_REF_DATA && 3355 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3356 btrfs_ref_tree_mod(fs_info, ref); 3357 3358 return ret; 3359 } 3360 3361 enum btrfs_loop_type { 3362 LOOP_CACHING_NOWAIT, 3363 LOOP_CACHING_WAIT, 3364 LOOP_UNSET_SIZE_CLASS, 3365 LOOP_ALLOC_CHUNK, 3366 LOOP_WRONG_SIZE_CLASS, 3367 LOOP_NO_EMPTY_SIZE, 3368 }; 3369 3370 static inline void 3371 btrfs_lock_block_group(struct btrfs_block_group *cache, 3372 int delalloc) 3373 { 3374 if (delalloc) 3375 down_read(&cache->data_rwsem); 3376 } 3377 3378 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3379 int delalloc) 3380 { 3381 btrfs_get_block_group(cache); 3382 if (delalloc) 3383 down_read(&cache->data_rwsem); 3384 } 3385 3386 static struct btrfs_block_group *btrfs_lock_cluster( 3387 struct btrfs_block_group *block_group, 3388 struct btrfs_free_cluster *cluster, 3389 int delalloc) 3390 __acquires(&cluster->refill_lock) 3391 { 3392 struct btrfs_block_group *used_bg = NULL; 3393 3394 spin_lock(&cluster->refill_lock); 3395 while (1) { 3396 used_bg = cluster->block_group; 3397 if (!used_bg) 3398 return NULL; 3399 3400 if (used_bg == block_group) 3401 return used_bg; 3402 3403 btrfs_get_block_group(used_bg); 3404 3405 if (!delalloc) 3406 return used_bg; 3407 3408 if (down_read_trylock(&used_bg->data_rwsem)) 3409 return used_bg; 3410 3411 spin_unlock(&cluster->refill_lock); 3412 3413 /* We should only have one-level nested. */ 3414 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3415 3416 spin_lock(&cluster->refill_lock); 3417 if (used_bg == cluster->block_group) 3418 return used_bg; 3419 3420 up_read(&used_bg->data_rwsem); 3421 btrfs_put_block_group(used_bg); 3422 } 3423 } 3424 3425 static inline void 3426 btrfs_release_block_group(struct btrfs_block_group *cache, 3427 int delalloc) 3428 { 3429 if (delalloc) 3430 up_read(&cache->data_rwsem); 3431 btrfs_put_block_group(cache); 3432 } 3433 3434 /* 3435 * Helper function for find_free_extent(). 3436 * 3437 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3438 * Return -EAGAIN to inform caller that we need to re-search this block group 3439 * Return >0 to inform caller that we find nothing 3440 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3441 */ 3442 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3443 struct find_free_extent_ctl *ffe_ctl, 3444 struct btrfs_block_group **cluster_bg_ret) 3445 { 3446 struct btrfs_block_group *cluster_bg; 3447 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3448 u64 aligned_cluster; 3449 u64 offset; 3450 int ret; 3451 3452 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3453 if (!cluster_bg) 3454 goto refill_cluster; 3455 if (cluster_bg != bg && (cluster_bg->ro || 3456 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3457 goto release_cluster; 3458 3459 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3460 ffe_ctl->num_bytes, cluster_bg->start, 3461 &ffe_ctl->max_extent_size); 3462 if (offset) { 3463 /* We have a block, we're done */ 3464 spin_unlock(&last_ptr->refill_lock); 3465 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3466 *cluster_bg_ret = cluster_bg; 3467 ffe_ctl->found_offset = offset; 3468 return 0; 3469 } 3470 WARN_ON(last_ptr->block_group != cluster_bg); 3471 3472 release_cluster: 3473 /* 3474 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3475 * lets just skip it and let the allocator find whatever block it can 3476 * find. If we reach this point, we will have tried the cluster 3477 * allocator plenty of times and not have found anything, so we are 3478 * likely way too fragmented for the clustering stuff to find anything. 3479 * 3480 * However, if the cluster is taken from the current block group, 3481 * release the cluster first, so that we stand a better chance of 3482 * succeeding in the unclustered allocation. 3483 */ 3484 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3485 spin_unlock(&last_ptr->refill_lock); 3486 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3487 return -ENOENT; 3488 } 3489 3490 /* This cluster didn't work out, free it and start over */ 3491 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3492 3493 if (cluster_bg != bg) 3494 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3495 3496 refill_cluster: 3497 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3498 spin_unlock(&last_ptr->refill_lock); 3499 return -ENOENT; 3500 } 3501 3502 aligned_cluster = max_t(u64, 3503 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3504 bg->full_stripe_len); 3505 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3506 ffe_ctl->num_bytes, aligned_cluster); 3507 if (ret == 0) { 3508 /* Now pull our allocation out of this cluster */ 3509 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3510 ffe_ctl->num_bytes, ffe_ctl->search_start, 3511 &ffe_ctl->max_extent_size); 3512 if (offset) { 3513 /* We found one, proceed */ 3514 spin_unlock(&last_ptr->refill_lock); 3515 ffe_ctl->found_offset = offset; 3516 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3517 return 0; 3518 } 3519 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3520 !ffe_ctl->retry_clustered) { 3521 spin_unlock(&last_ptr->refill_lock); 3522 3523 ffe_ctl->retry_clustered = true; 3524 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3525 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3526 return -EAGAIN; 3527 } 3528 /* 3529 * At this point we either didn't find a cluster or we weren't able to 3530 * allocate a block from our cluster. Free the cluster we've been 3531 * trying to use, and go to the next block group. 3532 */ 3533 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3534 spin_unlock(&last_ptr->refill_lock); 3535 return 1; 3536 } 3537 3538 /* 3539 * Return >0 to inform caller that we find nothing 3540 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3541 * Return -EAGAIN to inform caller that we need to re-search this block group 3542 */ 3543 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3544 struct find_free_extent_ctl *ffe_ctl) 3545 { 3546 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3547 u64 offset; 3548 3549 /* 3550 * We are doing an unclustered allocation, set the fragmented flag so 3551 * we don't bother trying to setup a cluster again until we get more 3552 * space. 3553 */ 3554 if (unlikely(last_ptr)) { 3555 spin_lock(&last_ptr->lock); 3556 last_ptr->fragmented = 1; 3557 spin_unlock(&last_ptr->lock); 3558 } 3559 if (ffe_ctl->cached) { 3560 struct btrfs_free_space_ctl *free_space_ctl; 3561 3562 free_space_ctl = bg->free_space_ctl; 3563 spin_lock(&free_space_ctl->tree_lock); 3564 if (free_space_ctl->free_space < 3565 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3566 ffe_ctl->empty_size) { 3567 ffe_ctl->total_free_space = max_t(u64, 3568 ffe_ctl->total_free_space, 3569 free_space_ctl->free_space); 3570 spin_unlock(&free_space_ctl->tree_lock); 3571 return 1; 3572 } 3573 spin_unlock(&free_space_ctl->tree_lock); 3574 } 3575 3576 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3577 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3578 &ffe_ctl->max_extent_size); 3579 3580 /* 3581 * If we didn't find a chunk, and we haven't failed on this block group 3582 * before, and this block group is in the middle of caching and we are 3583 * ok with waiting, then go ahead and wait for progress to be made, and 3584 * set @retry_unclustered to true. 3585 * 3586 * If @retry_unclustered is true then we've already waited on this 3587 * block group once and should move on to the next block group. 3588 */ 3589 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3590 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3591 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3592 ffe_ctl->empty_size); 3593 ffe_ctl->retry_unclustered = true; 3594 return -EAGAIN; 3595 } else if (!offset) { 3596 return 1; 3597 } 3598 ffe_ctl->found_offset = offset; 3599 return 0; 3600 } 3601 3602 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3603 struct find_free_extent_ctl *ffe_ctl, 3604 struct btrfs_block_group **bg_ret) 3605 { 3606 int ret; 3607 3608 /* We want to try and use the cluster allocator, so lets look there */ 3609 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3610 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3611 if (ret >= 0 || ret == -EAGAIN) 3612 return ret; 3613 /* ret == -ENOENT case falls through */ 3614 } 3615 3616 return find_free_extent_unclustered(block_group, ffe_ctl); 3617 } 3618 3619 /* 3620 * Tree-log block group locking 3621 * ============================ 3622 * 3623 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3624 * indicates the starting address of a block group, which is reserved only 3625 * for tree-log metadata. 3626 * 3627 * Lock nesting 3628 * ============ 3629 * 3630 * space_info::lock 3631 * block_group::lock 3632 * fs_info::treelog_bg_lock 3633 */ 3634 3635 /* 3636 * Simple allocator for sequential-only block group. It only allows sequential 3637 * allocation. No need to play with trees. This function also reserves the 3638 * bytes as in btrfs_add_reserved_bytes. 3639 */ 3640 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3641 struct find_free_extent_ctl *ffe_ctl, 3642 struct btrfs_block_group **bg_ret) 3643 { 3644 struct btrfs_fs_info *fs_info = block_group->fs_info; 3645 struct btrfs_space_info *space_info = block_group->space_info; 3646 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3647 u64 start = block_group->start; 3648 u64 num_bytes = ffe_ctl->num_bytes; 3649 u64 avail; 3650 u64 bytenr = block_group->start; 3651 u64 log_bytenr; 3652 u64 data_reloc_bytenr; 3653 int ret = 0; 3654 bool skip = false; 3655 3656 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3657 3658 /* 3659 * Do not allow non-tree-log blocks in the dedicated tree-log block 3660 * group, and vice versa. 3661 */ 3662 spin_lock(&fs_info->treelog_bg_lock); 3663 log_bytenr = fs_info->treelog_bg; 3664 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3665 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3666 skip = true; 3667 spin_unlock(&fs_info->treelog_bg_lock); 3668 if (skip) 3669 return 1; 3670 3671 /* 3672 * Do not allow non-relocation blocks in the dedicated relocation block 3673 * group, and vice versa. 3674 */ 3675 spin_lock(&fs_info->relocation_bg_lock); 3676 data_reloc_bytenr = fs_info->data_reloc_bg; 3677 if (data_reloc_bytenr && 3678 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3679 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3680 skip = true; 3681 spin_unlock(&fs_info->relocation_bg_lock); 3682 if (skip) 3683 return 1; 3684 3685 /* Check RO and no space case before trying to activate it */ 3686 spin_lock(&block_group->lock); 3687 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3688 ret = 1; 3689 /* 3690 * May need to clear fs_info->{treelog,data_reloc}_bg. 3691 * Return the error after taking the locks. 3692 */ 3693 } 3694 spin_unlock(&block_group->lock); 3695 3696 if (!ret && !btrfs_zone_activate(block_group)) { 3697 ret = 1; 3698 /* 3699 * May need to clear fs_info->{treelog,data_reloc}_bg. 3700 * Return the error after taking the locks. 3701 */ 3702 } 3703 3704 spin_lock(&space_info->lock); 3705 spin_lock(&block_group->lock); 3706 spin_lock(&fs_info->treelog_bg_lock); 3707 spin_lock(&fs_info->relocation_bg_lock); 3708 3709 if (ret) 3710 goto out; 3711 3712 ASSERT(!ffe_ctl->for_treelog || 3713 block_group->start == fs_info->treelog_bg || 3714 fs_info->treelog_bg == 0); 3715 ASSERT(!ffe_ctl->for_data_reloc || 3716 block_group->start == fs_info->data_reloc_bg || 3717 fs_info->data_reloc_bg == 0); 3718 3719 if (block_group->ro || 3720 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 3721 ret = 1; 3722 goto out; 3723 } 3724 3725 /* 3726 * Do not allow currently using block group to be tree-log dedicated 3727 * block group. 3728 */ 3729 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3730 (block_group->used || block_group->reserved)) { 3731 ret = 1; 3732 goto out; 3733 } 3734 3735 /* 3736 * Do not allow currently used block group to be the data relocation 3737 * dedicated block group. 3738 */ 3739 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3740 (block_group->used || block_group->reserved)) { 3741 ret = 1; 3742 goto out; 3743 } 3744 3745 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3746 avail = block_group->zone_capacity - block_group->alloc_offset; 3747 if (avail < num_bytes) { 3748 if (ffe_ctl->max_extent_size < avail) { 3749 /* 3750 * With sequential allocator, free space is always 3751 * contiguous 3752 */ 3753 ffe_ctl->max_extent_size = avail; 3754 ffe_ctl->total_free_space = avail; 3755 } 3756 ret = 1; 3757 goto out; 3758 } 3759 3760 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3761 fs_info->treelog_bg = block_group->start; 3762 3763 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3764 fs_info->data_reloc_bg = block_group->start; 3765 3766 ffe_ctl->found_offset = start + block_group->alloc_offset; 3767 block_group->alloc_offset += num_bytes; 3768 spin_lock(&ctl->tree_lock); 3769 ctl->free_space -= num_bytes; 3770 spin_unlock(&ctl->tree_lock); 3771 3772 /* 3773 * We do not check if found_offset is aligned to stripesize. The 3774 * address is anyway rewritten when using zone append writing. 3775 */ 3776 3777 ffe_ctl->search_start = ffe_ctl->found_offset; 3778 3779 out: 3780 if (ret && ffe_ctl->for_treelog) 3781 fs_info->treelog_bg = 0; 3782 if (ret && ffe_ctl->for_data_reloc && 3783 fs_info->data_reloc_bg == block_group->start) { 3784 /* 3785 * Do not allow further allocations from this block group. 3786 * Compared to increasing the ->ro, setting the 3787 * ->zoned_data_reloc_ongoing flag still allows nocow 3788 * writers to come in. See btrfs_inc_nocow_writers(). 3789 * 3790 * We need to disable an allocation to avoid an allocation of 3791 * regular (non-relocation data) extent. With mix of relocation 3792 * extents and regular extents, we can dispatch WRITE commands 3793 * (for relocation extents) and ZONE APPEND commands (for 3794 * regular extents) at the same time to the same zone, which 3795 * easily break the write pointer. 3796 */ 3797 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3798 fs_info->data_reloc_bg = 0; 3799 } 3800 spin_unlock(&fs_info->relocation_bg_lock); 3801 spin_unlock(&fs_info->treelog_bg_lock); 3802 spin_unlock(&block_group->lock); 3803 spin_unlock(&space_info->lock); 3804 return ret; 3805 } 3806 3807 static int do_allocation(struct btrfs_block_group *block_group, 3808 struct find_free_extent_ctl *ffe_ctl, 3809 struct btrfs_block_group **bg_ret) 3810 { 3811 switch (ffe_ctl->policy) { 3812 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3813 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3814 case BTRFS_EXTENT_ALLOC_ZONED: 3815 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3816 default: 3817 BUG(); 3818 } 3819 } 3820 3821 static void release_block_group(struct btrfs_block_group *block_group, 3822 struct find_free_extent_ctl *ffe_ctl, 3823 int delalloc) 3824 { 3825 switch (ffe_ctl->policy) { 3826 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3827 ffe_ctl->retry_clustered = false; 3828 ffe_ctl->retry_unclustered = false; 3829 break; 3830 case BTRFS_EXTENT_ALLOC_ZONED: 3831 /* Nothing to do */ 3832 break; 3833 default: 3834 BUG(); 3835 } 3836 3837 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3838 ffe_ctl->index); 3839 btrfs_release_block_group(block_group, delalloc); 3840 } 3841 3842 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3843 struct btrfs_key *ins) 3844 { 3845 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3846 3847 if (!ffe_ctl->use_cluster && last_ptr) { 3848 spin_lock(&last_ptr->lock); 3849 last_ptr->window_start = ins->objectid; 3850 spin_unlock(&last_ptr->lock); 3851 } 3852 } 3853 3854 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3855 struct btrfs_key *ins) 3856 { 3857 switch (ffe_ctl->policy) { 3858 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3859 found_extent_clustered(ffe_ctl, ins); 3860 break; 3861 case BTRFS_EXTENT_ALLOC_ZONED: 3862 /* Nothing to do */ 3863 break; 3864 default: 3865 BUG(); 3866 } 3867 } 3868 3869 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3870 struct find_free_extent_ctl *ffe_ctl) 3871 { 3872 /* If we can activate new zone, just allocate a chunk and use it */ 3873 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3874 return 0; 3875 3876 /* 3877 * We already reached the max active zones. Try to finish one block 3878 * group to make a room for a new block group. This is only possible 3879 * for a data block group because btrfs_zone_finish() may need to wait 3880 * for a running transaction which can cause a deadlock for metadata 3881 * allocation. 3882 */ 3883 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3884 int ret = btrfs_zone_finish_one_bg(fs_info); 3885 3886 if (ret == 1) 3887 return 0; 3888 else if (ret < 0) 3889 return ret; 3890 } 3891 3892 /* 3893 * If we have enough free space left in an already active block group 3894 * and we can't activate any other zone now, do not allow allocating a 3895 * new chunk and let find_free_extent() retry with a smaller size. 3896 */ 3897 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3898 return -ENOSPC; 3899 3900 /* 3901 * Even min_alloc_size is not left in any block groups. Since we cannot 3902 * activate a new block group, allocating it may not help. Let's tell a 3903 * caller to try again and hope it progress something by writing some 3904 * parts of the region. That is only possible for data block groups, 3905 * where a part of the region can be written. 3906 */ 3907 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3908 return -EAGAIN; 3909 3910 /* 3911 * We cannot activate a new block group and no enough space left in any 3912 * block groups. So, allocating a new block group may not help. But, 3913 * there is nothing to do anyway, so let's go with it. 3914 */ 3915 return 0; 3916 } 3917 3918 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 3919 struct find_free_extent_ctl *ffe_ctl) 3920 { 3921 switch (ffe_ctl->policy) { 3922 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3923 return 0; 3924 case BTRFS_EXTENT_ALLOC_ZONED: 3925 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 3926 default: 3927 BUG(); 3928 } 3929 } 3930 3931 /* 3932 * Return >0 means caller needs to re-search for free extent 3933 * Return 0 means we have the needed free extent. 3934 * Return <0 means we failed to locate any free extent. 3935 */ 3936 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3937 struct btrfs_key *ins, 3938 struct find_free_extent_ctl *ffe_ctl, 3939 bool full_search) 3940 { 3941 struct btrfs_root *root = fs_info->chunk_root; 3942 int ret; 3943 3944 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3945 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3946 ffe_ctl->orig_have_caching_bg = true; 3947 3948 if (ins->objectid) { 3949 found_extent(ffe_ctl, ins); 3950 return 0; 3951 } 3952 3953 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 3954 return 1; 3955 3956 ffe_ctl->index++; 3957 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 3958 return 1; 3959 3960 /* 3961 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3962 * caching kthreads as we move along 3963 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3964 * LOOP_UNSET_SIZE_CLASS, allow unset size class 3965 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3966 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3967 * again 3968 */ 3969 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3970 ffe_ctl->index = 0; 3971 /* 3972 * We want to skip the LOOP_CACHING_WAIT step if we don't have 3973 * any uncached bgs and we've already done a full search 3974 * through. 3975 */ 3976 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 3977 (!ffe_ctl->orig_have_caching_bg && full_search)) 3978 ffe_ctl->loop++; 3979 ffe_ctl->loop++; 3980 3981 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3982 struct btrfs_trans_handle *trans; 3983 int exist = 0; 3984 3985 /* Check if allocation policy allows to create a new chunk */ 3986 ret = can_allocate_chunk(fs_info, ffe_ctl); 3987 if (ret) 3988 return ret; 3989 3990 trans = current->journal_info; 3991 if (trans) 3992 exist = 1; 3993 else 3994 trans = btrfs_join_transaction(root); 3995 3996 if (IS_ERR(trans)) { 3997 ret = PTR_ERR(trans); 3998 return ret; 3999 } 4000 4001 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4002 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4003 4004 /* Do not bail out on ENOSPC since we can do more. */ 4005 if (ret == -ENOSPC) { 4006 ret = 0; 4007 ffe_ctl->loop++; 4008 } 4009 else if (ret < 0) 4010 btrfs_abort_transaction(trans, ret); 4011 else 4012 ret = 0; 4013 if (!exist) 4014 btrfs_end_transaction(trans); 4015 if (ret) 4016 return ret; 4017 } 4018 4019 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4020 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4021 return -ENOSPC; 4022 4023 /* 4024 * Don't loop again if we already have no empty_size and 4025 * no empty_cluster. 4026 */ 4027 if (ffe_ctl->empty_size == 0 && 4028 ffe_ctl->empty_cluster == 0) 4029 return -ENOSPC; 4030 ffe_ctl->empty_size = 0; 4031 ffe_ctl->empty_cluster = 0; 4032 } 4033 return 1; 4034 } 4035 return -ENOSPC; 4036 } 4037 4038 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4039 struct btrfs_block_group *bg) 4040 { 4041 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4042 return true; 4043 if (!btrfs_block_group_should_use_size_class(bg)) 4044 return true; 4045 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4046 return true; 4047 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4048 bg->size_class == BTRFS_BG_SZ_NONE) 4049 return true; 4050 return ffe_ctl->size_class == bg->size_class; 4051 } 4052 4053 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4054 struct find_free_extent_ctl *ffe_ctl, 4055 struct btrfs_space_info *space_info, 4056 struct btrfs_key *ins) 4057 { 4058 /* 4059 * If our free space is heavily fragmented we may not be able to make 4060 * big contiguous allocations, so instead of doing the expensive search 4061 * for free space, simply return ENOSPC with our max_extent_size so we 4062 * can go ahead and search for a more manageable chunk. 4063 * 4064 * If our max_extent_size is large enough for our allocation simply 4065 * disable clustering since we will likely not be able to find enough 4066 * space to create a cluster and induce latency trying. 4067 */ 4068 if (space_info->max_extent_size) { 4069 spin_lock(&space_info->lock); 4070 if (space_info->max_extent_size && 4071 ffe_ctl->num_bytes > space_info->max_extent_size) { 4072 ins->offset = space_info->max_extent_size; 4073 spin_unlock(&space_info->lock); 4074 return -ENOSPC; 4075 } else if (space_info->max_extent_size) { 4076 ffe_ctl->use_cluster = false; 4077 } 4078 spin_unlock(&space_info->lock); 4079 } 4080 4081 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4082 &ffe_ctl->empty_cluster); 4083 if (ffe_ctl->last_ptr) { 4084 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4085 4086 spin_lock(&last_ptr->lock); 4087 if (last_ptr->block_group) 4088 ffe_ctl->hint_byte = last_ptr->window_start; 4089 if (last_ptr->fragmented) { 4090 /* 4091 * We still set window_start so we can keep track of the 4092 * last place we found an allocation to try and save 4093 * some time. 4094 */ 4095 ffe_ctl->hint_byte = last_ptr->window_start; 4096 ffe_ctl->use_cluster = false; 4097 } 4098 spin_unlock(&last_ptr->lock); 4099 } 4100 4101 return 0; 4102 } 4103 4104 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4105 struct find_free_extent_ctl *ffe_ctl, 4106 struct btrfs_space_info *space_info, 4107 struct btrfs_key *ins) 4108 { 4109 switch (ffe_ctl->policy) { 4110 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4111 return prepare_allocation_clustered(fs_info, ffe_ctl, 4112 space_info, ins); 4113 case BTRFS_EXTENT_ALLOC_ZONED: 4114 if (ffe_ctl->for_treelog) { 4115 spin_lock(&fs_info->treelog_bg_lock); 4116 if (fs_info->treelog_bg) 4117 ffe_ctl->hint_byte = fs_info->treelog_bg; 4118 spin_unlock(&fs_info->treelog_bg_lock); 4119 } 4120 if (ffe_ctl->for_data_reloc) { 4121 spin_lock(&fs_info->relocation_bg_lock); 4122 if (fs_info->data_reloc_bg) 4123 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4124 spin_unlock(&fs_info->relocation_bg_lock); 4125 } 4126 return 0; 4127 default: 4128 BUG(); 4129 } 4130 } 4131 4132 /* 4133 * walks the btree of allocated extents and find a hole of a given size. 4134 * The key ins is changed to record the hole: 4135 * ins->objectid == start position 4136 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4137 * ins->offset == the size of the hole. 4138 * Any available blocks before search_start are skipped. 4139 * 4140 * If there is no suitable free space, we will record the max size of 4141 * the free space extent currently. 4142 * 4143 * The overall logic and call chain: 4144 * 4145 * find_free_extent() 4146 * |- Iterate through all block groups 4147 * | |- Get a valid block group 4148 * | |- Try to do clustered allocation in that block group 4149 * | |- Try to do unclustered allocation in that block group 4150 * | |- Check if the result is valid 4151 * | | |- If valid, then exit 4152 * | |- Jump to next block group 4153 * | 4154 * |- Push harder to find free extents 4155 * |- If not found, re-iterate all block groups 4156 */ 4157 static noinline int find_free_extent(struct btrfs_root *root, 4158 struct btrfs_key *ins, 4159 struct find_free_extent_ctl *ffe_ctl) 4160 { 4161 struct btrfs_fs_info *fs_info = root->fs_info; 4162 int ret = 0; 4163 int cache_block_group_error = 0; 4164 struct btrfs_block_group *block_group = NULL; 4165 struct btrfs_space_info *space_info; 4166 bool full_search = false; 4167 4168 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4169 4170 ffe_ctl->search_start = 0; 4171 /* For clustered allocation */ 4172 ffe_ctl->empty_cluster = 0; 4173 ffe_ctl->last_ptr = NULL; 4174 ffe_ctl->use_cluster = true; 4175 ffe_ctl->have_caching_bg = false; 4176 ffe_ctl->orig_have_caching_bg = false; 4177 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4178 ffe_ctl->loop = 0; 4179 /* For clustered allocation */ 4180 ffe_ctl->retry_clustered = false; 4181 ffe_ctl->retry_unclustered = false; 4182 ffe_ctl->cached = 0; 4183 ffe_ctl->max_extent_size = 0; 4184 ffe_ctl->total_free_space = 0; 4185 ffe_ctl->found_offset = 0; 4186 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4187 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4188 4189 if (btrfs_is_zoned(fs_info)) 4190 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4191 4192 ins->type = BTRFS_EXTENT_ITEM_KEY; 4193 ins->objectid = 0; 4194 ins->offset = 0; 4195 4196 trace_find_free_extent(root, ffe_ctl); 4197 4198 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4199 if (!space_info) { 4200 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4201 return -ENOSPC; 4202 } 4203 4204 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4205 if (ret < 0) 4206 return ret; 4207 4208 ffe_ctl->search_start = max(ffe_ctl->search_start, 4209 first_logical_byte(fs_info)); 4210 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4211 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4212 block_group = btrfs_lookup_block_group(fs_info, 4213 ffe_ctl->search_start); 4214 /* 4215 * we don't want to use the block group if it doesn't match our 4216 * allocation bits, or if its not cached. 4217 * 4218 * However if we are re-searching with an ideal block group 4219 * picked out then we don't care that the block group is cached. 4220 */ 4221 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4222 block_group->cached != BTRFS_CACHE_NO) { 4223 down_read(&space_info->groups_sem); 4224 if (list_empty(&block_group->list) || 4225 block_group->ro) { 4226 /* 4227 * someone is removing this block group, 4228 * we can't jump into the have_block_group 4229 * target because our list pointers are not 4230 * valid 4231 */ 4232 btrfs_put_block_group(block_group); 4233 up_read(&space_info->groups_sem); 4234 } else { 4235 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4236 block_group->flags); 4237 btrfs_lock_block_group(block_group, 4238 ffe_ctl->delalloc); 4239 ffe_ctl->hinted = true; 4240 goto have_block_group; 4241 } 4242 } else if (block_group) { 4243 btrfs_put_block_group(block_group); 4244 } 4245 } 4246 search: 4247 trace_find_free_extent_search_loop(root, ffe_ctl); 4248 ffe_ctl->have_caching_bg = false; 4249 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4250 ffe_ctl->index == 0) 4251 full_search = true; 4252 down_read(&space_info->groups_sem); 4253 list_for_each_entry(block_group, 4254 &space_info->block_groups[ffe_ctl->index], list) { 4255 struct btrfs_block_group *bg_ret; 4256 4257 ffe_ctl->hinted = false; 4258 /* If the block group is read-only, we can skip it entirely. */ 4259 if (unlikely(block_group->ro)) { 4260 if (ffe_ctl->for_treelog) 4261 btrfs_clear_treelog_bg(block_group); 4262 if (ffe_ctl->for_data_reloc) 4263 btrfs_clear_data_reloc_bg(block_group); 4264 continue; 4265 } 4266 4267 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4268 ffe_ctl->search_start = block_group->start; 4269 4270 /* 4271 * this can happen if we end up cycling through all the 4272 * raid types, but we want to make sure we only allocate 4273 * for the proper type. 4274 */ 4275 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4276 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4277 BTRFS_BLOCK_GROUP_RAID1_MASK | 4278 BTRFS_BLOCK_GROUP_RAID56_MASK | 4279 BTRFS_BLOCK_GROUP_RAID10; 4280 4281 /* 4282 * if they asked for extra copies and this block group 4283 * doesn't provide them, bail. This does allow us to 4284 * fill raid0 from raid1. 4285 */ 4286 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4287 goto loop; 4288 4289 /* 4290 * This block group has different flags than we want. 4291 * It's possible that we have MIXED_GROUP flag but no 4292 * block group is mixed. Just skip such block group. 4293 */ 4294 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4295 continue; 4296 } 4297 4298 have_block_group: 4299 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4300 ffe_ctl->cached = btrfs_block_group_done(block_group); 4301 if (unlikely(!ffe_ctl->cached)) { 4302 ffe_ctl->have_caching_bg = true; 4303 ret = btrfs_cache_block_group(block_group, false); 4304 4305 /* 4306 * If we get ENOMEM here or something else we want to 4307 * try other block groups, because it may not be fatal. 4308 * However if we can't find anything else we need to 4309 * save our return here so that we return the actual 4310 * error that caused problems, not ENOSPC. 4311 */ 4312 if (ret < 0) { 4313 if (!cache_block_group_error) 4314 cache_block_group_error = ret; 4315 ret = 0; 4316 goto loop; 4317 } 4318 ret = 0; 4319 } 4320 4321 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4322 goto loop; 4323 4324 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4325 goto loop; 4326 4327 bg_ret = NULL; 4328 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4329 if (ret == 0) { 4330 if (bg_ret && bg_ret != block_group) { 4331 btrfs_release_block_group(block_group, 4332 ffe_ctl->delalloc); 4333 block_group = bg_ret; 4334 } 4335 } else if (ret == -EAGAIN) { 4336 goto have_block_group; 4337 } else if (ret > 0) { 4338 goto loop; 4339 } 4340 4341 /* Checks */ 4342 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4343 fs_info->stripesize); 4344 4345 /* move on to the next group */ 4346 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4347 block_group->start + block_group->length) { 4348 btrfs_add_free_space_unused(block_group, 4349 ffe_ctl->found_offset, 4350 ffe_ctl->num_bytes); 4351 goto loop; 4352 } 4353 4354 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4355 btrfs_add_free_space_unused(block_group, 4356 ffe_ctl->found_offset, 4357 ffe_ctl->search_start - ffe_ctl->found_offset); 4358 4359 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4360 ffe_ctl->num_bytes, 4361 ffe_ctl->delalloc, 4362 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4363 if (ret == -EAGAIN) { 4364 btrfs_add_free_space_unused(block_group, 4365 ffe_ctl->found_offset, 4366 ffe_ctl->num_bytes); 4367 goto loop; 4368 } 4369 btrfs_inc_block_group_reservations(block_group); 4370 4371 /* we are all good, lets return */ 4372 ins->objectid = ffe_ctl->search_start; 4373 ins->offset = ffe_ctl->num_bytes; 4374 4375 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4376 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4377 break; 4378 loop: 4379 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4380 cond_resched(); 4381 } 4382 up_read(&space_info->groups_sem); 4383 4384 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4385 if (ret > 0) 4386 goto search; 4387 4388 if (ret == -ENOSPC && !cache_block_group_error) { 4389 /* 4390 * Use ffe_ctl->total_free_space as fallback if we can't find 4391 * any contiguous hole. 4392 */ 4393 if (!ffe_ctl->max_extent_size) 4394 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4395 spin_lock(&space_info->lock); 4396 space_info->max_extent_size = ffe_ctl->max_extent_size; 4397 spin_unlock(&space_info->lock); 4398 ins->offset = ffe_ctl->max_extent_size; 4399 } else if (ret == -ENOSPC) { 4400 ret = cache_block_group_error; 4401 } 4402 return ret; 4403 } 4404 4405 /* 4406 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4407 * hole that is at least as big as @num_bytes. 4408 * 4409 * @root - The root that will contain this extent 4410 * 4411 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4412 * is used for accounting purposes. This value differs 4413 * from @num_bytes only in the case of compressed extents. 4414 * 4415 * @num_bytes - Number of bytes to allocate on-disk. 4416 * 4417 * @min_alloc_size - Indicates the minimum amount of space that the 4418 * allocator should try to satisfy. In some cases 4419 * @num_bytes may be larger than what is required and if 4420 * the filesystem is fragmented then allocation fails. 4421 * However, the presence of @min_alloc_size gives a 4422 * chance to try and satisfy the smaller allocation. 4423 * 4424 * @empty_size - A hint that you plan on doing more COW. This is the 4425 * size in bytes the allocator should try to find free 4426 * next to the block it returns. This is just a hint and 4427 * may be ignored by the allocator. 4428 * 4429 * @hint_byte - Hint to the allocator to start searching above the byte 4430 * address passed. It might be ignored. 4431 * 4432 * @ins - This key is modified to record the found hole. It will 4433 * have the following values: 4434 * ins->objectid == start position 4435 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4436 * ins->offset == the size of the hole. 4437 * 4438 * @is_data - Boolean flag indicating whether an extent is 4439 * allocated for data (true) or metadata (false) 4440 * 4441 * @delalloc - Boolean flag indicating whether this allocation is for 4442 * delalloc or not. If 'true' data_rwsem of block groups 4443 * is going to be acquired. 4444 * 4445 * 4446 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4447 * case -ENOSPC is returned then @ins->offset will contain the size of the 4448 * largest available hole the allocator managed to find. 4449 */ 4450 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4451 u64 num_bytes, u64 min_alloc_size, 4452 u64 empty_size, u64 hint_byte, 4453 struct btrfs_key *ins, int is_data, int delalloc) 4454 { 4455 struct btrfs_fs_info *fs_info = root->fs_info; 4456 struct find_free_extent_ctl ffe_ctl = {}; 4457 bool final_tried = num_bytes == min_alloc_size; 4458 u64 flags; 4459 int ret; 4460 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4461 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4462 4463 flags = get_alloc_profile_by_root(root, is_data); 4464 again: 4465 WARN_ON(num_bytes < fs_info->sectorsize); 4466 4467 ffe_ctl.ram_bytes = ram_bytes; 4468 ffe_ctl.num_bytes = num_bytes; 4469 ffe_ctl.min_alloc_size = min_alloc_size; 4470 ffe_ctl.empty_size = empty_size; 4471 ffe_ctl.flags = flags; 4472 ffe_ctl.delalloc = delalloc; 4473 ffe_ctl.hint_byte = hint_byte; 4474 ffe_ctl.for_treelog = for_treelog; 4475 ffe_ctl.for_data_reloc = for_data_reloc; 4476 4477 ret = find_free_extent(root, ins, &ffe_ctl); 4478 if (!ret && !is_data) { 4479 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4480 } else if (ret == -ENOSPC) { 4481 if (!final_tried && ins->offset) { 4482 num_bytes = min(num_bytes >> 1, ins->offset); 4483 num_bytes = round_down(num_bytes, 4484 fs_info->sectorsize); 4485 num_bytes = max(num_bytes, min_alloc_size); 4486 ram_bytes = num_bytes; 4487 if (num_bytes == min_alloc_size) 4488 final_tried = true; 4489 goto again; 4490 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4491 struct btrfs_space_info *sinfo; 4492 4493 sinfo = btrfs_find_space_info(fs_info, flags); 4494 btrfs_err(fs_info, 4495 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4496 flags, num_bytes, for_treelog, for_data_reloc); 4497 if (sinfo) 4498 btrfs_dump_space_info(fs_info, sinfo, 4499 num_bytes, 1); 4500 } 4501 } 4502 4503 return ret; 4504 } 4505 4506 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4507 u64 start, u64 len, int delalloc) 4508 { 4509 struct btrfs_block_group *cache; 4510 4511 cache = btrfs_lookup_block_group(fs_info, start); 4512 if (!cache) { 4513 btrfs_err(fs_info, "Unable to find block group for %llu", 4514 start); 4515 return -ENOSPC; 4516 } 4517 4518 btrfs_add_free_space(cache, start, len); 4519 btrfs_free_reserved_bytes(cache, len, delalloc); 4520 trace_btrfs_reserved_extent_free(fs_info, start, len); 4521 4522 btrfs_put_block_group(cache); 4523 return 0; 4524 } 4525 4526 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4527 u64 len) 4528 { 4529 struct btrfs_block_group *cache; 4530 int ret = 0; 4531 4532 cache = btrfs_lookup_block_group(trans->fs_info, start); 4533 if (!cache) { 4534 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4535 start); 4536 return -ENOSPC; 4537 } 4538 4539 ret = pin_down_extent(trans, cache, start, len, 1); 4540 btrfs_put_block_group(cache); 4541 return ret; 4542 } 4543 4544 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4545 u64 num_bytes) 4546 { 4547 struct btrfs_fs_info *fs_info = trans->fs_info; 4548 int ret; 4549 4550 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4551 if (ret) 4552 return ret; 4553 4554 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4555 if (ret) { 4556 ASSERT(!ret); 4557 btrfs_err(fs_info, "update block group failed for %llu %llu", 4558 bytenr, num_bytes); 4559 return ret; 4560 } 4561 4562 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4563 return 0; 4564 } 4565 4566 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4567 u64 parent, u64 root_objectid, 4568 u64 flags, u64 owner, u64 offset, 4569 struct btrfs_key *ins, int ref_mod) 4570 { 4571 struct btrfs_fs_info *fs_info = trans->fs_info; 4572 struct btrfs_root *extent_root; 4573 int ret; 4574 struct btrfs_extent_item *extent_item; 4575 struct btrfs_extent_inline_ref *iref; 4576 struct btrfs_path *path; 4577 struct extent_buffer *leaf; 4578 int type; 4579 u32 size; 4580 4581 if (parent > 0) 4582 type = BTRFS_SHARED_DATA_REF_KEY; 4583 else 4584 type = BTRFS_EXTENT_DATA_REF_KEY; 4585 4586 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4587 4588 path = btrfs_alloc_path(); 4589 if (!path) 4590 return -ENOMEM; 4591 4592 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4593 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4594 if (ret) { 4595 btrfs_free_path(path); 4596 return ret; 4597 } 4598 4599 leaf = path->nodes[0]; 4600 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4601 struct btrfs_extent_item); 4602 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4603 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4604 btrfs_set_extent_flags(leaf, extent_item, 4605 flags | BTRFS_EXTENT_FLAG_DATA); 4606 4607 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4608 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4609 if (parent > 0) { 4610 struct btrfs_shared_data_ref *ref; 4611 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4612 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4613 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4614 } else { 4615 struct btrfs_extent_data_ref *ref; 4616 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4617 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4618 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4619 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4620 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4621 } 4622 4623 btrfs_mark_buffer_dirty(path->nodes[0]); 4624 btrfs_free_path(path); 4625 4626 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4627 } 4628 4629 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4630 struct btrfs_delayed_ref_node *node, 4631 struct btrfs_delayed_extent_op *extent_op) 4632 { 4633 struct btrfs_fs_info *fs_info = trans->fs_info; 4634 struct btrfs_root *extent_root; 4635 int ret; 4636 struct btrfs_extent_item *extent_item; 4637 struct btrfs_key extent_key; 4638 struct btrfs_tree_block_info *block_info; 4639 struct btrfs_extent_inline_ref *iref; 4640 struct btrfs_path *path; 4641 struct extent_buffer *leaf; 4642 struct btrfs_delayed_tree_ref *ref; 4643 u32 size = sizeof(*extent_item) + sizeof(*iref); 4644 u64 flags = extent_op->flags_to_set; 4645 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4646 4647 ref = btrfs_delayed_node_to_tree_ref(node); 4648 4649 extent_key.objectid = node->bytenr; 4650 if (skinny_metadata) { 4651 extent_key.offset = ref->level; 4652 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4653 } else { 4654 extent_key.offset = node->num_bytes; 4655 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4656 size += sizeof(*block_info); 4657 } 4658 4659 path = btrfs_alloc_path(); 4660 if (!path) 4661 return -ENOMEM; 4662 4663 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4664 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4665 size); 4666 if (ret) { 4667 btrfs_free_path(path); 4668 return ret; 4669 } 4670 4671 leaf = path->nodes[0]; 4672 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4673 struct btrfs_extent_item); 4674 btrfs_set_extent_refs(leaf, extent_item, 1); 4675 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4676 btrfs_set_extent_flags(leaf, extent_item, 4677 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4678 4679 if (skinny_metadata) { 4680 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4681 } else { 4682 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4683 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4684 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4685 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4686 } 4687 4688 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4689 btrfs_set_extent_inline_ref_type(leaf, iref, 4690 BTRFS_SHARED_BLOCK_REF_KEY); 4691 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4692 } else { 4693 btrfs_set_extent_inline_ref_type(leaf, iref, 4694 BTRFS_TREE_BLOCK_REF_KEY); 4695 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4696 } 4697 4698 btrfs_mark_buffer_dirty(leaf); 4699 btrfs_free_path(path); 4700 4701 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4702 } 4703 4704 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4705 struct btrfs_root *root, u64 owner, 4706 u64 offset, u64 ram_bytes, 4707 struct btrfs_key *ins) 4708 { 4709 struct btrfs_ref generic_ref = { 0 }; 4710 4711 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4712 4713 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4714 ins->objectid, ins->offset, 0); 4715 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4716 offset, 0, false); 4717 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4718 4719 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4720 } 4721 4722 /* 4723 * this is used by the tree logging recovery code. It records that 4724 * an extent has been allocated and makes sure to clear the free 4725 * space cache bits as well 4726 */ 4727 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4728 u64 root_objectid, u64 owner, u64 offset, 4729 struct btrfs_key *ins) 4730 { 4731 struct btrfs_fs_info *fs_info = trans->fs_info; 4732 int ret; 4733 struct btrfs_block_group *block_group; 4734 struct btrfs_space_info *space_info; 4735 4736 /* 4737 * Mixed block groups will exclude before processing the log so we only 4738 * need to do the exclude dance if this fs isn't mixed. 4739 */ 4740 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4741 ret = __exclude_logged_extent(fs_info, ins->objectid, 4742 ins->offset); 4743 if (ret) 4744 return ret; 4745 } 4746 4747 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4748 if (!block_group) 4749 return -EINVAL; 4750 4751 space_info = block_group->space_info; 4752 spin_lock(&space_info->lock); 4753 spin_lock(&block_group->lock); 4754 space_info->bytes_reserved += ins->offset; 4755 block_group->reserved += ins->offset; 4756 spin_unlock(&block_group->lock); 4757 spin_unlock(&space_info->lock); 4758 4759 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4760 offset, ins, 1); 4761 if (ret) 4762 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4763 btrfs_put_block_group(block_group); 4764 return ret; 4765 } 4766 4767 static struct extent_buffer * 4768 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4769 u64 bytenr, int level, u64 owner, 4770 enum btrfs_lock_nesting nest) 4771 { 4772 struct btrfs_fs_info *fs_info = root->fs_info; 4773 struct extent_buffer *buf; 4774 u64 lockdep_owner = owner; 4775 4776 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4777 if (IS_ERR(buf)) 4778 return buf; 4779 4780 /* 4781 * Extra safety check in case the extent tree is corrupted and extent 4782 * allocator chooses to use a tree block which is already used and 4783 * locked. 4784 */ 4785 if (buf->lock_owner == current->pid) { 4786 btrfs_err_rl(fs_info, 4787 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4788 buf->start, btrfs_header_owner(buf), current->pid); 4789 free_extent_buffer(buf); 4790 return ERR_PTR(-EUCLEAN); 4791 } 4792 4793 /* 4794 * The reloc trees are just snapshots, so we need them to appear to be 4795 * just like any other fs tree WRT lockdep. 4796 * 4797 * The exception however is in replace_path() in relocation, where we 4798 * hold the lock on the original fs root and then search for the reloc 4799 * root. At that point we need to make sure any reloc root buffers are 4800 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4801 * lockdep happy. 4802 */ 4803 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4804 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4805 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4806 4807 /* btrfs_clean_tree_block() accesses generation field. */ 4808 btrfs_set_header_generation(buf, trans->transid); 4809 4810 /* 4811 * This needs to stay, because we could allocate a freed block from an 4812 * old tree into a new tree, so we need to make sure this new block is 4813 * set to the appropriate level and owner. 4814 */ 4815 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4816 4817 __btrfs_tree_lock(buf, nest); 4818 btrfs_clear_buffer_dirty(trans, buf); 4819 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4820 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4821 4822 set_extent_buffer_uptodate(buf); 4823 4824 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4825 btrfs_set_header_level(buf, level); 4826 btrfs_set_header_bytenr(buf, buf->start); 4827 btrfs_set_header_generation(buf, trans->transid); 4828 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4829 btrfs_set_header_owner(buf, owner); 4830 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4831 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4832 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4833 buf->log_index = root->log_transid % 2; 4834 /* 4835 * we allow two log transactions at a time, use different 4836 * EXTENT bit to differentiate dirty pages. 4837 */ 4838 if (buf->log_index == 0) 4839 set_extent_dirty(&root->dirty_log_pages, buf->start, 4840 buf->start + buf->len - 1, GFP_NOFS); 4841 else 4842 set_extent_new(&root->dirty_log_pages, buf->start, 4843 buf->start + buf->len - 1); 4844 } else { 4845 buf->log_index = -1; 4846 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4847 buf->start + buf->len - 1, GFP_NOFS); 4848 } 4849 /* this returns a buffer locked for blocking */ 4850 return buf; 4851 } 4852 4853 /* 4854 * finds a free extent and does all the dirty work required for allocation 4855 * returns the tree buffer or an ERR_PTR on error. 4856 */ 4857 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4858 struct btrfs_root *root, 4859 u64 parent, u64 root_objectid, 4860 const struct btrfs_disk_key *key, 4861 int level, u64 hint, 4862 u64 empty_size, 4863 enum btrfs_lock_nesting nest) 4864 { 4865 struct btrfs_fs_info *fs_info = root->fs_info; 4866 struct btrfs_key ins; 4867 struct btrfs_block_rsv *block_rsv; 4868 struct extent_buffer *buf; 4869 struct btrfs_delayed_extent_op *extent_op; 4870 struct btrfs_ref generic_ref = { 0 }; 4871 u64 flags = 0; 4872 int ret; 4873 u32 blocksize = fs_info->nodesize; 4874 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4875 4876 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4877 if (btrfs_is_testing(fs_info)) { 4878 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4879 level, root_objectid, nest); 4880 if (!IS_ERR(buf)) 4881 root->alloc_bytenr += blocksize; 4882 return buf; 4883 } 4884 #endif 4885 4886 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4887 if (IS_ERR(block_rsv)) 4888 return ERR_CAST(block_rsv); 4889 4890 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4891 empty_size, hint, &ins, 0, 0); 4892 if (ret) 4893 goto out_unuse; 4894 4895 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4896 root_objectid, nest); 4897 if (IS_ERR(buf)) { 4898 ret = PTR_ERR(buf); 4899 goto out_free_reserved; 4900 } 4901 4902 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4903 if (parent == 0) 4904 parent = ins.objectid; 4905 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4906 } else 4907 BUG_ON(parent > 0); 4908 4909 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4910 extent_op = btrfs_alloc_delayed_extent_op(); 4911 if (!extent_op) { 4912 ret = -ENOMEM; 4913 goto out_free_buf; 4914 } 4915 if (key) 4916 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4917 else 4918 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4919 extent_op->flags_to_set = flags; 4920 extent_op->update_key = skinny_metadata ? false : true; 4921 extent_op->update_flags = true; 4922 extent_op->level = level; 4923 4924 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4925 ins.objectid, ins.offset, parent); 4926 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 4927 root->root_key.objectid, false); 4928 btrfs_ref_tree_mod(fs_info, &generic_ref); 4929 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4930 if (ret) 4931 goto out_free_delayed; 4932 } 4933 return buf; 4934 4935 out_free_delayed: 4936 btrfs_free_delayed_extent_op(extent_op); 4937 out_free_buf: 4938 btrfs_tree_unlock(buf); 4939 free_extent_buffer(buf); 4940 out_free_reserved: 4941 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4942 out_unuse: 4943 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4944 return ERR_PTR(ret); 4945 } 4946 4947 struct walk_control { 4948 u64 refs[BTRFS_MAX_LEVEL]; 4949 u64 flags[BTRFS_MAX_LEVEL]; 4950 struct btrfs_key update_progress; 4951 struct btrfs_key drop_progress; 4952 int drop_level; 4953 int stage; 4954 int level; 4955 int shared_level; 4956 int update_ref; 4957 int keep_locks; 4958 int reada_slot; 4959 int reada_count; 4960 int restarted; 4961 }; 4962 4963 #define DROP_REFERENCE 1 4964 #define UPDATE_BACKREF 2 4965 4966 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4967 struct btrfs_root *root, 4968 struct walk_control *wc, 4969 struct btrfs_path *path) 4970 { 4971 struct btrfs_fs_info *fs_info = root->fs_info; 4972 u64 bytenr; 4973 u64 generation; 4974 u64 refs; 4975 u64 flags; 4976 u32 nritems; 4977 struct btrfs_key key; 4978 struct extent_buffer *eb; 4979 int ret; 4980 int slot; 4981 int nread = 0; 4982 4983 if (path->slots[wc->level] < wc->reada_slot) { 4984 wc->reada_count = wc->reada_count * 2 / 3; 4985 wc->reada_count = max(wc->reada_count, 2); 4986 } else { 4987 wc->reada_count = wc->reada_count * 3 / 2; 4988 wc->reada_count = min_t(int, wc->reada_count, 4989 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4990 } 4991 4992 eb = path->nodes[wc->level]; 4993 nritems = btrfs_header_nritems(eb); 4994 4995 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4996 if (nread >= wc->reada_count) 4997 break; 4998 4999 cond_resched(); 5000 bytenr = btrfs_node_blockptr(eb, slot); 5001 generation = btrfs_node_ptr_generation(eb, slot); 5002 5003 if (slot == path->slots[wc->level]) 5004 goto reada; 5005 5006 if (wc->stage == UPDATE_BACKREF && 5007 generation <= root->root_key.offset) 5008 continue; 5009 5010 /* We don't lock the tree block, it's OK to be racy here */ 5011 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5012 wc->level - 1, 1, &refs, 5013 &flags); 5014 /* We don't care about errors in readahead. */ 5015 if (ret < 0) 5016 continue; 5017 BUG_ON(refs == 0); 5018 5019 if (wc->stage == DROP_REFERENCE) { 5020 if (refs == 1) 5021 goto reada; 5022 5023 if (wc->level == 1 && 5024 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5025 continue; 5026 if (!wc->update_ref || 5027 generation <= root->root_key.offset) 5028 continue; 5029 btrfs_node_key_to_cpu(eb, &key, slot); 5030 ret = btrfs_comp_cpu_keys(&key, 5031 &wc->update_progress); 5032 if (ret < 0) 5033 continue; 5034 } else { 5035 if (wc->level == 1 && 5036 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5037 continue; 5038 } 5039 reada: 5040 btrfs_readahead_node_child(eb, slot); 5041 nread++; 5042 } 5043 wc->reada_slot = slot; 5044 } 5045 5046 /* 5047 * helper to process tree block while walking down the tree. 5048 * 5049 * when wc->stage == UPDATE_BACKREF, this function updates 5050 * back refs for pointers in the block. 5051 * 5052 * NOTE: return value 1 means we should stop walking down. 5053 */ 5054 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5055 struct btrfs_root *root, 5056 struct btrfs_path *path, 5057 struct walk_control *wc, int lookup_info) 5058 { 5059 struct btrfs_fs_info *fs_info = root->fs_info; 5060 int level = wc->level; 5061 struct extent_buffer *eb = path->nodes[level]; 5062 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5063 int ret; 5064 5065 if (wc->stage == UPDATE_BACKREF && 5066 btrfs_header_owner(eb) != root->root_key.objectid) 5067 return 1; 5068 5069 /* 5070 * when reference count of tree block is 1, it won't increase 5071 * again. once full backref flag is set, we never clear it. 5072 */ 5073 if (lookup_info && 5074 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5075 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5076 BUG_ON(!path->locks[level]); 5077 ret = btrfs_lookup_extent_info(trans, fs_info, 5078 eb->start, level, 1, 5079 &wc->refs[level], 5080 &wc->flags[level]); 5081 BUG_ON(ret == -ENOMEM); 5082 if (ret) 5083 return ret; 5084 BUG_ON(wc->refs[level] == 0); 5085 } 5086 5087 if (wc->stage == DROP_REFERENCE) { 5088 if (wc->refs[level] > 1) 5089 return 1; 5090 5091 if (path->locks[level] && !wc->keep_locks) { 5092 btrfs_tree_unlock_rw(eb, path->locks[level]); 5093 path->locks[level] = 0; 5094 } 5095 return 0; 5096 } 5097 5098 /* wc->stage == UPDATE_BACKREF */ 5099 if (!(wc->flags[level] & flag)) { 5100 BUG_ON(!path->locks[level]); 5101 ret = btrfs_inc_ref(trans, root, eb, 1); 5102 BUG_ON(ret); /* -ENOMEM */ 5103 ret = btrfs_dec_ref(trans, root, eb, 0); 5104 BUG_ON(ret); /* -ENOMEM */ 5105 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5106 btrfs_header_level(eb)); 5107 BUG_ON(ret); /* -ENOMEM */ 5108 wc->flags[level] |= flag; 5109 } 5110 5111 /* 5112 * the block is shared by multiple trees, so it's not good to 5113 * keep the tree lock 5114 */ 5115 if (path->locks[level] && level > 0) { 5116 btrfs_tree_unlock_rw(eb, path->locks[level]); 5117 path->locks[level] = 0; 5118 } 5119 return 0; 5120 } 5121 5122 /* 5123 * This is used to verify a ref exists for this root to deal with a bug where we 5124 * would have a drop_progress key that hadn't been updated properly. 5125 */ 5126 static int check_ref_exists(struct btrfs_trans_handle *trans, 5127 struct btrfs_root *root, u64 bytenr, u64 parent, 5128 int level) 5129 { 5130 struct btrfs_path *path; 5131 struct btrfs_extent_inline_ref *iref; 5132 int ret; 5133 5134 path = btrfs_alloc_path(); 5135 if (!path) 5136 return -ENOMEM; 5137 5138 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5139 root->fs_info->nodesize, parent, 5140 root->root_key.objectid, level, 0); 5141 btrfs_free_path(path); 5142 if (ret == -ENOENT) 5143 return 0; 5144 if (ret < 0) 5145 return ret; 5146 return 1; 5147 } 5148 5149 /* 5150 * helper to process tree block pointer. 5151 * 5152 * when wc->stage == DROP_REFERENCE, this function checks 5153 * reference count of the block pointed to. if the block 5154 * is shared and we need update back refs for the subtree 5155 * rooted at the block, this function changes wc->stage to 5156 * UPDATE_BACKREF. if the block is shared and there is no 5157 * need to update back, this function drops the reference 5158 * to the block. 5159 * 5160 * NOTE: return value 1 means we should stop walking down. 5161 */ 5162 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5163 struct btrfs_root *root, 5164 struct btrfs_path *path, 5165 struct walk_control *wc, int *lookup_info) 5166 { 5167 struct btrfs_fs_info *fs_info = root->fs_info; 5168 u64 bytenr; 5169 u64 generation; 5170 u64 parent; 5171 struct btrfs_tree_parent_check check = { 0 }; 5172 struct btrfs_key key; 5173 struct btrfs_ref ref = { 0 }; 5174 struct extent_buffer *next; 5175 int level = wc->level; 5176 int reada = 0; 5177 int ret = 0; 5178 bool need_account = false; 5179 5180 generation = btrfs_node_ptr_generation(path->nodes[level], 5181 path->slots[level]); 5182 /* 5183 * if the lower level block was created before the snapshot 5184 * was created, we know there is no need to update back refs 5185 * for the subtree 5186 */ 5187 if (wc->stage == UPDATE_BACKREF && 5188 generation <= root->root_key.offset) { 5189 *lookup_info = 1; 5190 return 1; 5191 } 5192 5193 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5194 5195 check.level = level - 1; 5196 check.transid = generation; 5197 check.owner_root = root->root_key.objectid; 5198 check.has_first_key = true; 5199 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5200 path->slots[level]); 5201 5202 next = find_extent_buffer(fs_info, bytenr); 5203 if (!next) { 5204 next = btrfs_find_create_tree_block(fs_info, bytenr, 5205 root->root_key.objectid, level - 1); 5206 if (IS_ERR(next)) 5207 return PTR_ERR(next); 5208 reada = 1; 5209 } 5210 btrfs_tree_lock(next); 5211 5212 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5213 &wc->refs[level - 1], 5214 &wc->flags[level - 1]); 5215 if (ret < 0) 5216 goto out_unlock; 5217 5218 if (unlikely(wc->refs[level - 1] == 0)) { 5219 btrfs_err(fs_info, "Missing references."); 5220 ret = -EIO; 5221 goto out_unlock; 5222 } 5223 *lookup_info = 0; 5224 5225 if (wc->stage == DROP_REFERENCE) { 5226 if (wc->refs[level - 1] > 1) { 5227 need_account = true; 5228 if (level == 1 && 5229 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5230 goto skip; 5231 5232 if (!wc->update_ref || 5233 generation <= root->root_key.offset) 5234 goto skip; 5235 5236 btrfs_node_key_to_cpu(path->nodes[level], &key, 5237 path->slots[level]); 5238 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5239 if (ret < 0) 5240 goto skip; 5241 5242 wc->stage = UPDATE_BACKREF; 5243 wc->shared_level = level - 1; 5244 } 5245 } else { 5246 if (level == 1 && 5247 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5248 goto skip; 5249 } 5250 5251 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5252 btrfs_tree_unlock(next); 5253 free_extent_buffer(next); 5254 next = NULL; 5255 *lookup_info = 1; 5256 } 5257 5258 if (!next) { 5259 if (reada && level == 1) 5260 reada_walk_down(trans, root, wc, path); 5261 next = read_tree_block(fs_info, bytenr, &check); 5262 if (IS_ERR(next)) { 5263 return PTR_ERR(next); 5264 } else if (!extent_buffer_uptodate(next)) { 5265 free_extent_buffer(next); 5266 return -EIO; 5267 } 5268 btrfs_tree_lock(next); 5269 } 5270 5271 level--; 5272 ASSERT(level == btrfs_header_level(next)); 5273 if (level != btrfs_header_level(next)) { 5274 btrfs_err(root->fs_info, "mismatched level"); 5275 ret = -EIO; 5276 goto out_unlock; 5277 } 5278 path->nodes[level] = next; 5279 path->slots[level] = 0; 5280 path->locks[level] = BTRFS_WRITE_LOCK; 5281 wc->level = level; 5282 if (wc->level == 1) 5283 wc->reada_slot = 0; 5284 return 0; 5285 skip: 5286 wc->refs[level - 1] = 0; 5287 wc->flags[level - 1] = 0; 5288 if (wc->stage == DROP_REFERENCE) { 5289 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5290 parent = path->nodes[level]->start; 5291 } else { 5292 ASSERT(root->root_key.objectid == 5293 btrfs_header_owner(path->nodes[level])); 5294 if (root->root_key.objectid != 5295 btrfs_header_owner(path->nodes[level])) { 5296 btrfs_err(root->fs_info, 5297 "mismatched block owner"); 5298 ret = -EIO; 5299 goto out_unlock; 5300 } 5301 parent = 0; 5302 } 5303 5304 /* 5305 * If we had a drop_progress we need to verify the refs are set 5306 * as expected. If we find our ref then we know that from here 5307 * on out everything should be correct, and we can clear the 5308 * ->restarted flag. 5309 */ 5310 if (wc->restarted) { 5311 ret = check_ref_exists(trans, root, bytenr, parent, 5312 level - 1); 5313 if (ret < 0) 5314 goto out_unlock; 5315 if (ret == 0) 5316 goto no_delete; 5317 ret = 0; 5318 wc->restarted = 0; 5319 } 5320 5321 /* 5322 * Reloc tree doesn't contribute to qgroup numbers, and we have 5323 * already accounted them at merge time (replace_path), 5324 * thus we could skip expensive subtree trace here. 5325 */ 5326 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5327 need_account) { 5328 ret = btrfs_qgroup_trace_subtree(trans, next, 5329 generation, level - 1); 5330 if (ret) { 5331 btrfs_err_rl(fs_info, 5332 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5333 ret); 5334 } 5335 } 5336 5337 /* 5338 * We need to update the next key in our walk control so we can 5339 * update the drop_progress key accordingly. We don't care if 5340 * find_next_key doesn't find a key because that means we're at 5341 * the end and are going to clean up now. 5342 */ 5343 wc->drop_level = level; 5344 find_next_key(path, level, &wc->drop_progress); 5345 5346 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5347 fs_info->nodesize, parent); 5348 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5349 0, false); 5350 ret = btrfs_free_extent(trans, &ref); 5351 if (ret) 5352 goto out_unlock; 5353 } 5354 no_delete: 5355 *lookup_info = 1; 5356 ret = 1; 5357 5358 out_unlock: 5359 btrfs_tree_unlock(next); 5360 free_extent_buffer(next); 5361 5362 return ret; 5363 } 5364 5365 /* 5366 * helper to process tree block while walking up the tree. 5367 * 5368 * when wc->stage == DROP_REFERENCE, this function drops 5369 * reference count on the block. 5370 * 5371 * when wc->stage == UPDATE_BACKREF, this function changes 5372 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5373 * to UPDATE_BACKREF previously while processing the block. 5374 * 5375 * NOTE: return value 1 means we should stop walking up. 5376 */ 5377 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5378 struct btrfs_root *root, 5379 struct btrfs_path *path, 5380 struct walk_control *wc) 5381 { 5382 struct btrfs_fs_info *fs_info = root->fs_info; 5383 int ret; 5384 int level = wc->level; 5385 struct extent_buffer *eb = path->nodes[level]; 5386 u64 parent = 0; 5387 5388 if (wc->stage == UPDATE_BACKREF) { 5389 BUG_ON(wc->shared_level < level); 5390 if (level < wc->shared_level) 5391 goto out; 5392 5393 ret = find_next_key(path, level + 1, &wc->update_progress); 5394 if (ret > 0) 5395 wc->update_ref = 0; 5396 5397 wc->stage = DROP_REFERENCE; 5398 wc->shared_level = -1; 5399 path->slots[level] = 0; 5400 5401 /* 5402 * check reference count again if the block isn't locked. 5403 * we should start walking down the tree again if reference 5404 * count is one. 5405 */ 5406 if (!path->locks[level]) { 5407 BUG_ON(level == 0); 5408 btrfs_tree_lock(eb); 5409 path->locks[level] = BTRFS_WRITE_LOCK; 5410 5411 ret = btrfs_lookup_extent_info(trans, fs_info, 5412 eb->start, level, 1, 5413 &wc->refs[level], 5414 &wc->flags[level]); 5415 if (ret < 0) { 5416 btrfs_tree_unlock_rw(eb, path->locks[level]); 5417 path->locks[level] = 0; 5418 return ret; 5419 } 5420 BUG_ON(wc->refs[level] == 0); 5421 if (wc->refs[level] == 1) { 5422 btrfs_tree_unlock_rw(eb, path->locks[level]); 5423 path->locks[level] = 0; 5424 return 1; 5425 } 5426 } 5427 } 5428 5429 /* wc->stage == DROP_REFERENCE */ 5430 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5431 5432 if (wc->refs[level] == 1) { 5433 if (level == 0) { 5434 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5435 ret = btrfs_dec_ref(trans, root, eb, 1); 5436 else 5437 ret = btrfs_dec_ref(trans, root, eb, 0); 5438 BUG_ON(ret); /* -ENOMEM */ 5439 if (is_fstree(root->root_key.objectid)) { 5440 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5441 if (ret) { 5442 btrfs_err_rl(fs_info, 5443 "error %d accounting leaf items, quota is out of sync, rescan required", 5444 ret); 5445 } 5446 } 5447 } 5448 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5449 if (!path->locks[level]) { 5450 btrfs_tree_lock(eb); 5451 path->locks[level] = BTRFS_WRITE_LOCK; 5452 } 5453 btrfs_clear_buffer_dirty(trans, eb); 5454 } 5455 5456 if (eb == root->node) { 5457 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5458 parent = eb->start; 5459 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5460 goto owner_mismatch; 5461 } else { 5462 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5463 parent = path->nodes[level + 1]->start; 5464 else if (root->root_key.objectid != 5465 btrfs_header_owner(path->nodes[level + 1])) 5466 goto owner_mismatch; 5467 } 5468 5469 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5470 wc->refs[level] == 1); 5471 out: 5472 wc->refs[level] = 0; 5473 wc->flags[level] = 0; 5474 return 0; 5475 5476 owner_mismatch: 5477 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5478 btrfs_header_owner(eb), root->root_key.objectid); 5479 return -EUCLEAN; 5480 } 5481 5482 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5483 struct btrfs_root *root, 5484 struct btrfs_path *path, 5485 struct walk_control *wc) 5486 { 5487 int level = wc->level; 5488 int lookup_info = 1; 5489 int ret = 0; 5490 5491 while (level >= 0) { 5492 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5493 if (ret) 5494 break; 5495 5496 if (level == 0) 5497 break; 5498 5499 if (path->slots[level] >= 5500 btrfs_header_nritems(path->nodes[level])) 5501 break; 5502 5503 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5504 if (ret > 0) { 5505 path->slots[level]++; 5506 continue; 5507 } else if (ret < 0) 5508 break; 5509 level = wc->level; 5510 } 5511 return (ret == 1) ? 0 : ret; 5512 } 5513 5514 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5515 struct btrfs_root *root, 5516 struct btrfs_path *path, 5517 struct walk_control *wc, int max_level) 5518 { 5519 int level = wc->level; 5520 int ret; 5521 5522 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5523 while (level < max_level && path->nodes[level]) { 5524 wc->level = level; 5525 if (path->slots[level] + 1 < 5526 btrfs_header_nritems(path->nodes[level])) { 5527 path->slots[level]++; 5528 return 0; 5529 } else { 5530 ret = walk_up_proc(trans, root, path, wc); 5531 if (ret > 0) 5532 return 0; 5533 if (ret < 0) 5534 return ret; 5535 5536 if (path->locks[level]) { 5537 btrfs_tree_unlock_rw(path->nodes[level], 5538 path->locks[level]); 5539 path->locks[level] = 0; 5540 } 5541 free_extent_buffer(path->nodes[level]); 5542 path->nodes[level] = NULL; 5543 level++; 5544 } 5545 } 5546 return 1; 5547 } 5548 5549 /* 5550 * drop a subvolume tree. 5551 * 5552 * this function traverses the tree freeing any blocks that only 5553 * referenced by the tree. 5554 * 5555 * when a shared tree block is found. this function decreases its 5556 * reference count by one. if update_ref is true, this function 5557 * also make sure backrefs for the shared block and all lower level 5558 * blocks are properly updated. 5559 * 5560 * If called with for_reloc == 0, may exit early with -EAGAIN 5561 */ 5562 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5563 { 5564 const bool is_reloc_root = (root->root_key.objectid == 5565 BTRFS_TREE_RELOC_OBJECTID); 5566 struct btrfs_fs_info *fs_info = root->fs_info; 5567 struct btrfs_path *path; 5568 struct btrfs_trans_handle *trans; 5569 struct btrfs_root *tree_root = fs_info->tree_root; 5570 struct btrfs_root_item *root_item = &root->root_item; 5571 struct walk_control *wc; 5572 struct btrfs_key key; 5573 int err = 0; 5574 int ret; 5575 int level; 5576 bool root_dropped = false; 5577 bool unfinished_drop = false; 5578 5579 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5580 5581 path = btrfs_alloc_path(); 5582 if (!path) { 5583 err = -ENOMEM; 5584 goto out; 5585 } 5586 5587 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5588 if (!wc) { 5589 btrfs_free_path(path); 5590 err = -ENOMEM; 5591 goto out; 5592 } 5593 5594 /* 5595 * Use join to avoid potential EINTR from transaction start. See 5596 * wait_reserve_ticket and the whole reservation callchain. 5597 */ 5598 if (for_reloc) 5599 trans = btrfs_join_transaction(tree_root); 5600 else 5601 trans = btrfs_start_transaction(tree_root, 0); 5602 if (IS_ERR(trans)) { 5603 err = PTR_ERR(trans); 5604 goto out_free; 5605 } 5606 5607 err = btrfs_run_delayed_items(trans); 5608 if (err) 5609 goto out_end_trans; 5610 5611 /* 5612 * This will help us catch people modifying the fs tree while we're 5613 * dropping it. It is unsafe to mess with the fs tree while it's being 5614 * dropped as we unlock the root node and parent nodes as we walk down 5615 * the tree, assuming nothing will change. If something does change 5616 * then we'll have stale information and drop references to blocks we've 5617 * already dropped. 5618 */ 5619 set_bit(BTRFS_ROOT_DELETING, &root->state); 5620 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5621 5622 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5623 level = btrfs_header_level(root->node); 5624 path->nodes[level] = btrfs_lock_root_node(root); 5625 path->slots[level] = 0; 5626 path->locks[level] = BTRFS_WRITE_LOCK; 5627 memset(&wc->update_progress, 0, 5628 sizeof(wc->update_progress)); 5629 } else { 5630 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5631 memcpy(&wc->update_progress, &key, 5632 sizeof(wc->update_progress)); 5633 5634 level = btrfs_root_drop_level(root_item); 5635 BUG_ON(level == 0); 5636 path->lowest_level = level; 5637 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5638 path->lowest_level = 0; 5639 if (ret < 0) { 5640 err = ret; 5641 goto out_end_trans; 5642 } 5643 WARN_ON(ret > 0); 5644 5645 /* 5646 * unlock our path, this is safe because only this 5647 * function is allowed to delete this snapshot 5648 */ 5649 btrfs_unlock_up_safe(path, 0); 5650 5651 level = btrfs_header_level(root->node); 5652 while (1) { 5653 btrfs_tree_lock(path->nodes[level]); 5654 path->locks[level] = BTRFS_WRITE_LOCK; 5655 5656 ret = btrfs_lookup_extent_info(trans, fs_info, 5657 path->nodes[level]->start, 5658 level, 1, &wc->refs[level], 5659 &wc->flags[level]); 5660 if (ret < 0) { 5661 err = ret; 5662 goto out_end_trans; 5663 } 5664 BUG_ON(wc->refs[level] == 0); 5665 5666 if (level == btrfs_root_drop_level(root_item)) 5667 break; 5668 5669 btrfs_tree_unlock(path->nodes[level]); 5670 path->locks[level] = 0; 5671 WARN_ON(wc->refs[level] != 1); 5672 level--; 5673 } 5674 } 5675 5676 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5677 wc->level = level; 5678 wc->shared_level = -1; 5679 wc->stage = DROP_REFERENCE; 5680 wc->update_ref = update_ref; 5681 wc->keep_locks = 0; 5682 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5683 5684 while (1) { 5685 5686 ret = walk_down_tree(trans, root, path, wc); 5687 if (ret < 0) { 5688 btrfs_abort_transaction(trans, ret); 5689 err = ret; 5690 break; 5691 } 5692 5693 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5694 if (ret < 0) { 5695 btrfs_abort_transaction(trans, ret); 5696 err = ret; 5697 break; 5698 } 5699 5700 if (ret > 0) { 5701 BUG_ON(wc->stage != DROP_REFERENCE); 5702 break; 5703 } 5704 5705 if (wc->stage == DROP_REFERENCE) { 5706 wc->drop_level = wc->level; 5707 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5708 &wc->drop_progress, 5709 path->slots[wc->drop_level]); 5710 } 5711 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5712 &wc->drop_progress); 5713 btrfs_set_root_drop_level(root_item, wc->drop_level); 5714 5715 BUG_ON(wc->level == 0); 5716 if (btrfs_should_end_transaction(trans) || 5717 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5718 ret = btrfs_update_root(trans, tree_root, 5719 &root->root_key, 5720 root_item); 5721 if (ret) { 5722 btrfs_abort_transaction(trans, ret); 5723 err = ret; 5724 goto out_end_trans; 5725 } 5726 5727 if (!is_reloc_root) 5728 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5729 5730 btrfs_end_transaction_throttle(trans); 5731 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5732 btrfs_debug(fs_info, 5733 "drop snapshot early exit"); 5734 err = -EAGAIN; 5735 goto out_free; 5736 } 5737 5738 /* 5739 * Use join to avoid potential EINTR from transaction 5740 * start. See wait_reserve_ticket and the whole 5741 * reservation callchain. 5742 */ 5743 if (for_reloc) 5744 trans = btrfs_join_transaction(tree_root); 5745 else 5746 trans = btrfs_start_transaction(tree_root, 0); 5747 if (IS_ERR(trans)) { 5748 err = PTR_ERR(trans); 5749 goto out_free; 5750 } 5751 } 5752 } 5753 btrfs_release_path(path); 5754 if (err) 5755 goto out_end_trans; 5756 5757 ret = btrfs_del_root(trans, &root->root_key); 5758 if (ret) { 5759 btrfs_abort_transaction(trans, ret); 5760 err = ret; 5761 goto out_end_trans; 5762 } 5763 5764 if (!is_reloc_root) { 5765 ret = btrfs_find_root(tree_root, &root->root_key, path, 5766 NULL, NULL); 5767 if (ret < 0) { 5768 btrfs_abort_transaction(trans, ret); 5769 err = ret; 5770 goto out_end_trans; 5771 } else if (ret > 0) { 5772 /* if we fail to delete the orphan item this time 5773 * around, it'll get picked up the next time. 5774 * 5775 * The most common failure here is just -ENOENT. 5776 */ 5777 btrfs_del_orphan_item(trans, tree_root, 5778 root->root_key.objectid); 5779 } 5780 } 5781 5782 /* 5783 * This subvolume is going to be completely dropped, and won't be 5784 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5785 * commit transaction time. So free it here manually. 5786 */ 5787 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5788 btrfs_qgroup_free_meta_all_pertrans(root); 5789 5790 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5791 btrfs_add_dropped_root(trans, root); 5792 else 5793 btrfs_put_root(root); 5794 root_dropped = true; 5795 out_end_trans: 5796 if (!is_reloc_root) 5797 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5798 5799 btrfs_end_transaction_throttle(trans); 5800 out_free: 5801 kfree(wc); 5802 btrfs_free_path(path); 5803 out: 5804 /* 5805 * We were an unfinished drop root, check to see if there are any 5806 * pending, and if not clear and wake up any waiters. 5807 */ 5808 if (!err && unfinished_drop) 5809 btrfs_maybe_wake_unfinished_drop(fs_info); 5810 5811 /* 5812 * So if we need to stop dropping the snapshot for whatever reason we 5813 * need to make sure to add it back to the dead root list so that we 5814 * keep trying to do the work later. This also cleans up roots if we 5815 * don't have it in the radix (like when we recover after a power fail 5816 * or unmount) so we don't leak memory. 5817 */ 5818 if (!for_reloc && !root_dropped) 5819 btrfs_add_dead_root(root); 5820 return err; 5821 } 5822 5823 /* 5824 * drop subtree rooted at tree block 'node'. 5825 * 5826 * NOTE: this function will unlock and release tree block 'node' 5827 * only used by relocation code 5828 */ 5829 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5830 struct btrfs_root *root, 5831 struct extent_buffer *node, 5832 struct extent_buffer *parent) 5833 { 5834 struct btrfs_fs_info *fs_info = root->fs_info; 5835 struct btrfs_path *path; 5836 struct walk_control *wc; 5837 int level; 5838 int parent_level; 5839 int ret = 0; 5840 int wret; 5841 5842 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5843 5844 path = btrfs_alloc_path(); 5845 if (!path) 5846 return -ENOMEM; 5847 5848 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5849 if (!wc) { 5850 btrfs_free_path(path); 5851 return -ENOMEM; 5852 } 5853 5854 btrfs_assert_tree_write_locked(parent); 5855 parent_level = btrfs_header_level(parent); 5856 atomic_inc(&parent->refs); 5857 path->nodes[parent_level] = parent; 5858 path->slots[parent_level] = btrfs_header_nritems(parent); 5859 5860 btrfs_assert_tree_write_locked(node); 5861 level = btrfs_header_level(node); 5862 path->nodes[level] = node; 5863 path->slots[level] = 0; 5864 path->locks[level] = BTRFS_WRITE_LOCK; 5865 5866 wc->refs[parent_level] = 1; 5867 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5868 wc->level = level; 5869 wc->shared_level = -1; 5870 wc->stage = DROP_REFERENCE; 5871 wc->update_ref = 0; 5872 wc->keep_locks = 1; 5873 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5874 5875 while (1) { 5876 wret = walk_down_tree(trans, root, path, wc); 5877 if (wret < 0) { 5878 ret = wret; 5879 break; 5880 } 5881 5882 wret = walk_up_tree(trans, root, path, wc, parent_level); 5883 if (wret < 0) 5884 ret = wret; 5885 if (wret != 0) 5886 break; 5887 } 5888 5889 kfree(wc); 5890 btrfs_free_path(path); 5891 return ret; 5892 } 5893 5894 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5895 u64 start, u64 end) 5896 { 5897 return unpin_extent_range(fs_info, start, end, false); 5898 } 5899 5900 /* 5901 * It used to be that old block groups would be left around forever. 5902 * Iterating over them would be enough to trim unused space. Since we 5903 * now automatically remove them, we also need to iterate over unallocated 5904 * space. 5905 * 5906 * We don't want a transaction for this since the discard may take a 5907 * substantial amount of time. We don't require that a transaction be 5908 * running, but we do need to take a running transaction into account 5909 * to ensure that we're not discarding chunks that were released or 5910 * allocated in the current transaction. 5911 * 5912 * Holding the chunks lock will prevent other threads from allocating 5913 * or releasing chunks, but it won't prevent a running transaction 5914 * from committing and releasing the memory that the pending chunks 5915 * list head uses. For that, we need to take a reference to the 5916 * transaction and hold the commit root sem. We only need to hold 5917 * it while performing the free space search since we have already 5918 * held back allocations. 5919 */ 5920 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5921 { 5922 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 5923 int ret; 5924 5925 *trimmed = 0; 5926 5927 /* Discard not supported = nothing to do. */ 5928 if (!bdev_max_discard_sectors(device->bdev)) 5929 return 0; 5930 5931 /* Not writable = nothing to do. */ 5932 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5933 return 0; 5934 5935 /* No free space = nothing to do. */ 5936 if (device->total_bytes <= device->bytes_used) 5937 return 0; 5938 5939 ret = 0; 5940 5941 while (1) { 5942 struct btrfs_fs_info *fs_info = device->fs_info; 5943 u64 bytes; 5944 5945 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5946 if (ret) 5947 break; 5948 5949 find_first_clear_extent_bit(&device->alloc_state, start, 5950 &start, &end, 5951 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5952 5953 /* Check if there are any CHUNK_* bits left */ 5954 if (start > device->total_bytes) { 5955 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5956 btrfs_warn_in_rcu(fs_info, 5957 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5958 start, end - start + 1, 5959 btrfs_dev_name(device), 5960 device->total_bytes); 5961 mutex_unlock(&fs_info->chunk_mutex); 5962 ret = 0; 5963 break; 5964 } 5965 5966 /* Ensure we skip the reserved space on each device. */ 5967 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 5968 5969 /* 5970 * If find_first_clear_extent_bit find a range that spans the 5971 * end of the device it will set end to -1, in this case it's up 5972 * to the caller to trim the value to the size of the device. 5973 */ 5974 end = min(end, device->total_bytes - 1); 5975 5976 len = end - start + 1; 5977 5978 /* We didn't find any extents */ 5979 if (!len) { 5980 mutex_unlock(&fs_info->chunk_mutex); 5981 ret = 0; 5982 break; 5983 } 5984 5985 ret = btrfs_issue_discard(device->bdev, start, len, 5986 &bytes); 5987 if (!ret) 5988 set_extent_bits(&device->alloc_state, start, 5989 start + bytes - 1, 5990 CHUNK_TRIMMED); 5991 mutex_unlock(&fs_info->chunk_mutex); 5992 5993 if (ret) 5994 break; 5995 5996 start += len; 5997 *trimmed += bytes; 5998 5999 if (fatal_signal_pending(current)) { 6000 ret = -ERESTARTSYS; 6001 break; 6002 } 6003 6004 cond_resched(); 6005 } 6006 6007 return ret; 6008 } 6009 6010 /* 6011 * Trim the whole filesystem by: 6012 * 1) trimming the free space in each block group 6013 * 2) trimming the unallocated space on each device 6014 * 6015 * This will also continue trimming even if a block group or device encounters 6016 * an error. The return value will be the last error, or 0 if nothing bad 6017 * happens. 6018 */ 6019 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6020 { 6021 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6022 struct btrfs_block_group *cache = NULL; 6023 struct btrfs_device *device; 6024 u64 group_trimmed; 6025 u64 range_end = U64_MAX; 6026 u64 start; 6027 u64 end; 6028 u64 trimmed = 0; 6029 u64 bg_failed = 0; 6030 u64 dev_failed = 0; 6031 int bg_ret = 0; 6032 int dev_ret = 0; 6033 int ret = 0; 6034 6035 if (range->start == U64_MAX) 6036 return -EINVAL; 6037 6038 /* 6039 * Check range overflow if range->len is set. 6040 * The default range->len is U64_MAX. 6041 */ 6042 if (range->len != U64_MAX && 6043 check_add_overflow(range->start, range->len, &range_end)) 6044 return -EINVAL; 6045 6046 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6047 for (; cache; cache = btrfs_next_block_group(cache)) { 6048 if (cache->start >= range_end) { 6049 btrfs_put_block_group(cache); 6050 break; 6051 } 6052 6053 start = max(range->start, cache->start); 6054 end = min(range_end, cache->start + cache->length); 6055 6056 if (end - start >= range->minlen) { 6057 if (!btrfs_block_group_done(cache)) { 6058 ret = btrfs_cache_block_group(cache, true); 6059 if (ret) { 6060 bg_failed++; 6061 bg_ret = ret; 6062 continue; 6063 } 6064 } 6065 ret = btrfs_trim_block_group(cache, 6066 &group_trimmed, 6067 start, 6068 end, 6069 range->minlen); 6070 6071 trimmed += group_trimmed; 6072 if (ret) { 6073 bg_failed++; 6074 bg_ret = ret; 6075 continue; 6076 } 6077 } 6078 } 6079 6080 if (bg_failed) 6081 btrfs_warn(fs_info, 6082 "failed to trim %llu block group(s), last error %d", 6083 bg_failed, bg_ret); 6084 6085 mutex_lock(&fs_devices->device_list_mutex); 6086 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6087 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6088 continue; 6089 6090 ret = btrfs_trim_free_extents(device, &group_trimmed); 6091 if (ret) { 6092 dev_failed++; 6093 dev_ret = ret; 6094 break; 6095 } 6096 6097 trimmed += group_trimmed; 6098 } 6099 mutex_unlock(&fs_devices->device_list_mutex); 6100 6101 if (dev_failed) 6102 btrfs_warn(fs_info, 6103 "failed to trim %llu device(s), last error %d", 6104 dev_failed, dev_ret); 6105 range->len = trimmed; 6106 if (bg_ret) 6107 return bg_ret; 6108 return dev_ret; 6109 } 6110