1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 static int update_block_group(struct btrfs_trans_handle *trans, 64 struct btrfs_fs_info *fs_info, u64 bytenr, 65 u64 num_bytes, int alloc); 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_fs_info *fs_info, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_fs_info *fs_info, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_fs_info *fs_info, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_fs_info *fs_info, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 94 u64 ram_bytes, u64 num_bytes, int delalloc); 95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 96 u64 num_bytes, int delalloc); 97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 98 u64 num_bytes); 99 static int __reserve_metadata_bytes(struct btrfs_root *root, 100 struct btrfs_space_info *space_info, 101 u64 orig_bytes, 102 enum btrfs_reserve_flush_enum flush); 103 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 104 struct btrfs_space_info *space_info, 105 u64 num_bytes); 106 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 107 struct btrfs_space_info *space_info, 108 u64 num_bytes); 109 110 static noinline int 111 block_group_cache_done(struct btrfs_block_group_cache *cache) 112 { 113 smp_mb(); 114 return cache->cached == BTRFS_CACHE_FINISHED || 115 cache->cached == BTRFS_CACHE_ERROR; 116 } 117 118 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 119 { 120 return (cache->flags & bits) == bits; 121 } 122 123 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 124 { 125 atomic_inc(&cache->count); 126 } 127 128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 129 { 130 if (atomic_dec_and_test(&cache->count)) { 131 WARN_ON(cache->pinned > 0); 132 WARN_ON(cache->reserved > 0); 133 kfree(cache->free_space_ctl); 134 kfree(cache); 135 } 136 } 137 138 /* 139 * this adds the block group to the fs_info rb tree for the block group 140 * cache 141 */ 142 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 143 struct btrfs_block_group_cache *block_group) 144 { 145 struct rb_node **p; 146 struct rb_node *parent = NULL; 147 struct btrfs_block_group_cache *cache; 148 149 spin_lock(&info->block_group_cache_lock); 150 p = &info->block_group_cache_tree.rb_node; 151 152 while (*p) { 153 parent = *p; 154 cache = rb_entry(parent, struct btrfs_block_group_cache, 155 cache_node); 156 if (block_group->key.objectid < cache->key.objectid) { 157 p = &(*p)->rb_left; 158 } else if (block_group->key.objectid > cache->key.objectid) { 159 p = &(*p)->rb_right; 160 } else { 161 spin_unlock(&info->block_group_cache_lock); 162 return -EEXIST; 163 } 164 } 165 166 rb_link_node(&block_group->cache_node, parent, p); 167 rb_insert_color(&block_group->cache_node, 168 &info->block_group_cache_tree); 169 170 if (info->first_logical_byte > block_group->key.objectid) 171 info->first_logical_byte = block_group->key.objectid; 172 173 spin_unlock(&info->block_group_cache_lock); 174 175 return 0; 176 } 177 178 /* 179 * This will return the block group at or after bytenr if contains is 0, else 180 * it will return the block group that contains the bytenr 181 */ 182 static struct btrfs_block_group_cache * 183 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 184 int contains) 185 { 186 struct btrfs_block_group_cache *cache, *ret = NULL; 187 struct rb_node *n; 188 u64 end, start; 189 190 spin_lock(&info->block_group_cache_lock); 191 n = info->block_group_cache_tree.rb_node; 192 193 while (n) { 194 cache = rb_entry(n, struct btrfs_block_group_cache, 195 cache_node); 196 end = cache->key.objectid + cache->key.offset - 1; 197 start = cache->key.objectid; 198 199 if (bytenr < start) { 200 if (!contains && (!ret || start < ret->key.objectid)) 201 ret = cache; 202 n = n->rb_left; 203 } else if (bytenr > start) { 204 if (contains && bytenr <= end) { 205 ret = cache; 206 break; 207 } 208 n = n->rb_right; 209 } else { 210 ret = cache; 211 break; 212 } 213 } 214 if (ret) { 215 btrfs_get_block_group(ret); 216 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 217 info->first_logical_byte = ret->key.objectid; 218 } 219 spin_unlock(&info->block_group_cache_lock); 220 221 return ret; 222 } 223 224 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 225 u64 start, u64 num_bytes) 226 { 227 u64 end = start + num_bytes - 1; 228 set_extent_bits(&fs_info->freed_extents[0], 229 start, end, EXTENT_UPTODATE); 230 set_extent_bits(&fs_info->freed_extents[1], 231 start, end, EXTENT_UPTODATE); 232 return 0; 233 } 234 235 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 236 struct btrfs_block_group_cache *cache) 237 { 238 u64 start, end; 239 240 start = cache->key.objectid; 241 end = start + cache->key.offset - 1; 242 243 clear_extent_bits(&fs_info->freed_extents[0], 244 start, end, EXTENT_UPTODATE); 245 clear_extent_bits(&fs_info->freed_extents[1], 246 start, end, EXTENT_UPTODATE); 247 } 248 249 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 250 struct btrfs_block_group_cache *cache) 251 { 252 u64 bytenr; 253 u64 *logical; 254 int stripe_len; 255 int i, nr, ret; 256 257 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 258 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 259 cache->bytes_super += stripe_len; 260 ret = add_excluded_extent(fs_info, cache->key.objectid, 261 stripe_len); 262 if (ret) 263 return ret; 264 } 265 266 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 267 bytenr = btrfs_sb_offset(i); 268 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 269 bytenr, 0, &logical, &nr, &stripe_len); 270 if (ret) 271 return ret; 272 273 while (nr--) { 274 u64 start, len; 275 276 if (logical[nr] > cache->key.objectid + 277 cache->key.offset) 278 continue; 279 280 if (logical[nr] + stripe_len <= cache->key.objectid) 281 continue; 282 283 start = logical[nr]; 284 if (start < cache->key.objectid) { 285 start = cache->key.objectid; 286 len = (logical[nr] + stripe_len) - start; 287 } else { 288 len = min_t(u64, stripe_len, 289 cache->key.objectid + 290 cache->key.offset - start); 291 } 292 293 cache->bytes_super += len; 294 ret = add_excluded_extent(fs_info, start, len); 295 if (ret) { 296 kfree(logical); 297 return ret; 298 } 299 } 300 301 kfree(logical); 302 } 303 return 0; 304 } 305 306 static struct btrfs_caching_control * 307 get_caching_control(struct btrfs_block_group_cache *cache) 308 { 309 struct btrfs_caching_control *ctl; 310 311 spin_lock(&cache->lock); 312 if (!cache->caching_ctl) { 313 spin_unlock(&cache->lock); 314 return NULL; 315 } 316 317 ctl = cache->caching_ctl; 318 atomic_inc(&ctl->count); 319 spin_unlock(&cache->lock); 320 return ctl; 321 } 322 323 static void put_caching_control(struct btrfs_caching_control *ctl) 324 { 325 if (atomic_dec_and_test(&ctl->count)) 326 kfree(ctl); 327 } 328 329 #ifdef CONFIG_BTRFS_DEBUG 330 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 331 { 332 struct btrfs_fs_info *fs_info = block_group->fs_info; 333 u64 start = block_group->key.objectid; 334 u64 len = block_group->key.offset; 335 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 336 fs_info->nodesize : fs_info->sectorsize; 337 u64 step = chunk << 1; 338 339 while (len > chunk) { 340 btrfs_remove_free_space(block_group, start, chunk); 341 start += step; 342 if (len < step) 343 len = 0; 344 else 345 len -= step; 346 } 347 } 348 #endif 349 350 /* 351 * this is only called by cache_block_group, since we could have freed extents 352 * we need to check the pinned_extents for any extents that can't be used yet 353 * since their free space will be released as soon as the transaction commits. 354 */ 355 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 356 struct btrfs_fs_info *info, u64 start, u64 end) 357 { 358 u64 extent_start, extent_end, size, total_added = 0; 359 int ret; 360 361 while (start < end) { 362 ret = find_first_extent_bit(info->pinned_extents, start, 363 &extent_start, &extent_end, 364 EXTENT_DIRTY | EXTENT_UPTODATE, 365 NULL); 366 if (ret) 367 break; 368 369 if (extent_start <= start) { 370 start = extent_end + 1; 371 } else if (extent_start > start && extent_start < end) { 372 size = extent_start - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, 375 size); 376 BUG_ON(ret); /* -ENOMEM or logic error */ 377 start = extent_end + 1; 378 } else { 379 break; 380 } 381 } 382 383 if (start < end) { 384 size = end - start; 385 total_added += size; 386 ret = btrfs_add_free_space(block_group, start, size); 387 BUG_ON(ret); /* -ENOMEM or logic error */ 388 } 389 390 return total_added; 391 } 392 393 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 394 { 395 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 396 struct btrfs_fs_info *fs_info = block_group->fs_info; 397 struct btrfs_root *extent_root = fs_info->extent_root; 398 struct btrfs_path *path; 399 struct extent_buffer *leaf; 400 struct btrfs_key key; 401 u64 total_found = 0; 402 u64 last = 0; 403 u32 nritems; 404 int ret; 405 bool wakeup = true; 406 407 path = btrfs_alloc_path(); 408 if (!path) 409 return -ENOMEM; 410 411 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 412 413 #ifdef CONFIG_BTRFS_DEBUG 414 /* 415 * If we're fragmenting we don't want to make anybody think we can 416 * allocate from this block group until we've had a chance to fragment 417 * the free space. 418 */ 419 if (btrfs_should_fragment_free_space(block_group)) 420 wakeup = false; 421 #endif 422 /* 423 * We don't want to deadlock with somebody trying to allocate a new 424 * extent for the extent root while also trying to search the extent 425 * root to add free space. So we skip locking and search the commit 426 * root, since its read-only 427 */ 428 path->skip_locking = 1; 429 path->search_commit_root = 1; 430 path->reada = READA_FORWARD; 431 432 key.objectid = last; 433 key.offset = 0; 434 key.type = BTRFS_EXTENT_ITEM_KEY; 435 436 next: 437 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 438 if (ret < 0) 439 goto out; 440 441 leaf = path->nodes[0]; 442 nritems = btrfs_header_nritems(leaf); 443 444 while (1) { 445 if (btrfs_fs_closing(fs_info) > 1) { 446 last = (u64)-1; 447 break; 448 } 449 450 if (path->slots[0] < nritems) { 451 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 452 } else { 453 ret = find_next_key(path, 0, &key); 454 if (ret) 455 break; 456 457 if (need_resched() || 458 rwsem_is_contended(&fs_info->commit_root_sem)) { 459 if (wakeup) 460 caching_ctl->progress = last; 461 btrfs_release_path(path); 462 up_read(&fs_info->commit_root_sem); 463 mutex_unlock(&caching_ctl->mutex); 464 cond_resched(); 465 mutex_lock(&caching_ctl->mutex); 466 down_read(&fs_info->commit_root_sem); 467 goto next; 468 } 469 470 ret = btrfs_next_leaf(extent_root, path); 471 if (ret < 0) 472 goto out; 473 if (ret) 474 break; 475 leaf = path->nodes[0]; 476 nritems = btrfs_header_nritems(leaf); 477 continue; 478 } 479 480 if (key.objectid < last) { 481 key.objectid = last; 482 key.offset = 0; 483 key.type = BTRFS_EXTENT_ITEM_KEY; 484 485 if (wakeup) 486 caching_ctl->progress = last; 487 btrfs_release_path(path); 488 goto next; 489 } 490 491 if (key.objectid < block_group->key.objectid) { 492 path->slots[0]++; 493 continue; 494 } 495 496 if (key.objectid >= block_group->key.objectid + 497 block_group->key.offset) 498 break; 499 500 if (key.type == BTRFS_EXTENT_ITEM_KEY || 501 key.type == BTRFS_METADATA_ITEM_KEY) { 502 total_found += add_new_free_space(block_group, 503 fs_info, last, 504 key.objectid); 505 if (key.type == BTRFS_METADATA_ITEM_KEY) 506 last = key.objectid + 507 fs_info->nodesize; 508 else 509 last = key.objectid + key.offset; 510 511 if (total_found > CACHING_CTL_WAKE_UP) { 512 total_found = 0; 513 if (wakeup) 514 wake_up(&caching_ctl->wait); 515 } 516 } 517 path->slots[0]++; 518 } 519 ret = 0; 520 521 total_found += add_new_free_space(block_group, fs_info, last, 522 block_group->key.objectid + 523 block_group->key.offset); 524 caching_ctl->progress = (u64)-1; 525 526 out: 527 btrfs_free_path(path); 528 return ret; 529 } 530 531 static noinline void caching_thread(struct btrfs_work *work) 532 { 533 struct btrfs_block_group_cache *block_group; 534 struct btrfs_fs_info *fs_info; 535 struct btrfs_caching_control *caching_ctl; 536 struct btrfs_root *extent_root; 537 int ret; 538 539 caching_ctl = container_of(work, struct btrfs_caching_control, work); 540 block_group = caching_ctl->block_group; 541 fs_info = block_group->fs_info; 542 extent_root = fs_info->extent_root; 543 544 mutex_lock(&caching_ctl->mutex); 545 down_read(&fs_info->commit_root_sem); 546 547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 548 ret = load_free_space_tree(caching_ctl); 549 else 550 ret = load_extent_tree_free(caching_ctl); 551 552 spin_lock(&block_group->lock); 553 block_group->caching_ctl = NULL; 554 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 555 spin_unlock(&block_group->lock); 556 557 #ifdef CONFIG_BTRFS_DEBUG 558 if (btrfs_should_fragment_free_space(block_group)) { 559 u64 bytes_used; 560 561 spin_lock(&block_group->space_info->lock); 562 spin_lock(&block_group->lock); 563 bytes_used = block_group->key.offset - 564 btrfs_block_group_used(&block_group->item); 565 block_group->space_info->bytes_used += bytes_used >> 1; 566 spin_unlock(&block_group->lock); 567 spin_unlock(&block_group->space_info->lock); 568 fragment_free_space(block_group); 569 } 570 #endif 571 572 caching_ctl->progress = (u64)-1; 573 574 up_read(&fs_info->commit_root_sem); 575 free_excluded_extents(fs_info, block_group); 576 mutex_unlock(&caching_ctl->mutex); 577 578 wake_up(&caching_ctl->wait); 579 580 put_caching_control(caching_ctl); 581 btrfs_put_block_group(block_group); 582 } 583 584 static int cache_block_group(struct btrfs_block_group_cache *cache, 585 int load_cache_only) 586 { 587 DEFINE_WAIT(wait); 588 struct btrfs_fs_info *fs_info = cache->fs_info; 589 struct btrfs_caching_control *caching_ctl; 590 int ret = 0; 591 592 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 593 if (!caching_ctl) 594 return -ENOMEM; 595 596 INIT_LIST_HEAD(&caching_ctl->list); 597 mutex_init(&caching_ctl->mutex); 598 init_waitqueue_head(&caching_ctl->wait); 599 caching_ctl->block_group = cache; 600 caching_ctl->progress = cache->key.objectid; 601 atomic_set(&caching_ctl->count, 1); 602 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 603 caching_thread, NULL, NULL); 604 605 spin_lock(&cache->lock); 606 /* 607 * This should be a rare occasion, but this could happen I think in the 608 * case where one thread starts to load the space cache info, and then 609 * some other thread starts a transaction commit which tries to do an 610 * allocation while the other thread is still loading the space cache 611 * info. The previous loop should have kept us from choosing this block 612 * group, but if we've moved to the state where we will wait on caching 613 * block groups we need to first check if we're doing a fast load here, 614 * so we can wait for it to finish, otherwise we could end up allocating 615 * from a block group who's cache gets evicted for one reason or 616 * another. 617 */ 618 while (cache->cached == BTRFS_CACHE_FAST) { 619 struct btrfs_caching_control *ctl; 620 621 ctl = cache->caching_ctl; 622 atomic_inc(&ctl->count); 623 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 624 spin_unlock(&cache->lock); 625 626 schedule(); 627 628 finish_wait(&ctl->wait, &wait); 629 put_caching_control(ctl); 630 spin_lock(&cache->lock); 631 } 632 633 if (cache->cached != BTRFS_CACHE_NO) { 634 spin_unlock(&cache->lock); 635 kfree(caching_ctl); 636 return 0; 637 } 638 WARN_ON(cache->caching_ctl); 639 cache->caching_ctl = caching_ctl; 640 cache->cached = BTRFS_CACHE_FAST; 641 spin_unlock(&cache->lock); 642 643 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 644 mutex_lock(&caching_ctl->mutex); 645 ret = load_free_space_cache(fs_info, cache); 646 647 spin_lock(&cache->lock); 648 if (ret == 1) { 649 cache->caching_ctl = NULL; 650 cache->cached = BTRFS_CACHE_FINISHED; 651 cache->last_byte_to_unpin = (u64)-1; 652 caching_ctl->progress = (u64)-1; 653 } else { 654 if (load_cache_only) { 655 cache->caching_ctl = NULL; 656 cache->cached = BTRFS_CACHE_NO; 657 } else { 658 cache->cached = BTRFS_CACHE_STARTED; 659 cache->has_caching_ctl = 1; 660 } 661 } 662 spin_unlock(&cache->lock); 663 #ifdef CONFIG_BTRFS_DEBUG 664 if (ret == 1 && 665 btrfs_should_fragment_free_space(cache)) { 666 u64 bytes_used; 667 668 spin_lock(&cache->space_info->lock); 669 spin_lock(&cache->lock); 670 bytes_used = cache->key.offset - 671 btrfs_block_group_used(&cache->item); 672 cache->space_info->bytes_used += bytes_used >> 1; 673 spin_unlock(&cache->lock); 674 spin_unlock(&cache->space_info->lock); 675 fragment_free_space(cache); 676 } 677 #endif 678 mutex_unlock(&caching_ctl->mutex); 679 680 wake_up(&caching_ctl->wait); 681 if (ret == 1) { 682 put_caching_control(caching_ctl); 683 free_excluded_extents(fs_info, cache); 684 return 0; 685 } 686 } else { 687 /* 688 * We're either using the free space tree or no caching at all. 689 * Set cached to the appropriate value and wakeup any waiters. 690 */ 691 spin_lock(&cache->lock); 692 if (load_cache_only) { 693 cache->caching_ctl = NULL; 694 cache->cached = BTRFS_CACHE_NO; 695 } else { 696 cache->cached = BTRFS_CACHE_STARTED; 697 cache->has_caching_ctl = 1; 698 } 699 spin_unlock(&cache->lock); 700 wake_up(&caching_ctl->wait); 701 } 702 703 if (load_cache_only) { 704 put_caching_control(caching_ctl); 705 return 0; 706 } 707 708 down_write(&fs_info->commit_root_sem); 709 atomic_inc(&caching_ctl->count); 710 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 711 up_write(&fs_info->commit_root_sem); 712 713 btrfs_get_block_group(cache); 714 715 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 716 717 return ret; 718 } 719 720 /* 721 * return the block group that starts at or after bytenr 722 */ 723 static struct btrfs_block_group_cache * 724 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 725 { 726 return block_group_cache_tree_search(info, bytenr, 0); 727 } 728 729 /* 730 * return the block group that contains the given bytenr 731 */ 732 struct btrfs_block_group_cache *btrfs_lookup_block_group( 733 struct btrfs_fs_info *info, 734 u64 bytenr) 735 { 736 return block_group_cache_tree_search(info, bytenr, 1); 737 } 738 739 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 740 u64 flags) 741 { 742 struct list_head *head = &info->space_info; 743 struct btrfs_space_info *found; 744 745 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 746 747 rcu_read_lock(); 748 list_for_each_entry_rcu(found, head, list) { 749 if (found->flags & flags) { 750 rcu_read_unlock(); 751 return found; 752 } 753 } 754 rcu_read_unlock(); 755 return NULL; 756 } 757 758 /* 759 * after adding space to the filesystem, we need to clear the full flags 760 * on all the space infos. 761 */ 762 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 763 { 764 struct list_head *head = &info->space_info; 765 struct btrfs_space_info *found; 766 767 rcu_read_lock(); 768 list_for_each_entry_rcu(found, head, list) 769 found->full = 0; 770 rcu_read_unlock(); 771 } 772 773 /* simple helper to search for an existing data extent at a given offset */ 774 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 775 { 776 int ret; 777 struct btrfs_key key; 778 struct btrfs_path *path; 779 780 path = btrfs_alloc_path(); 781 if (!path) 782 return -ENOMEM; 783 784 key.objectid = start; 785 key.offset = len; 786 key.type = BTRFS_EXTENT_ITEM_KEY; 787 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 788 btrfs_free_path(path); 789 return ret; 790 } 791 792 /* 793 * helper function to lookup reference count and flags of a tree block. 794 * 795 * the head node for delayed ref is used to store the sum of all the 796 * reference count modifications queued up in the rbtree. the head 797 * node may also store the extent flags to set. This way you can check 798 * to see what the reference count and extent flags would be if all of 799 * the delayed refs are not processed. 800 */ 801 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 802 struct btrfs_fs_info *fs_info, u64 bytenr, 803 u64 offset, int metadata, u64 *refs, u64 *flags) 804 { 805 struct btrfs_delayed_ref_head *head; 806 struct btrfs_delayed_ref_root *delayed_refs; 807 struct btrfs_path *path; 808 struct btrfs_extent_item *ei; 809 struct extent_buffer *leaf; 810 struct btrfs_key key; 811 u32 item_size; 812 u64 num_refs; 813 u64 extent_flags; 814 int ret; 815 816 /* 817 * If we don't have skinny metadata, don't bother doing anything 818 * different 819 */ 820 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 821 offset = fs_info->nodesize; 822 metadata = 0; 823 } 824 825 path = btrfs_alloc_path(); 826 if (!path) 827 return -ENOMEM; 828 829 if (!trans) { 830 path->skip_locking = 1; 831 path->search_commit_root = 1; 832 } 833 834 search_again: 835 key.objectid = bytenr; 836 key.offset = offset; 837 if (metadata) 838 key.type = BTRFS_METADATA_ITEM_KEY; 839 else 840 key.type = BTRFS_EXTENT_ITEM_KEY; 841 842 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 843 if (ret < 0) 844 goto out_free; 845 846 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 847 if (path->slots[0]) { 848 path->slots[0]--; 849 btrfs_item_key_to_cpu(path->nodes[0], &key, 850 path->slots[0]); 851 if (key.objectid == bytenr && 852 key.type == BTRFS_EXTENT_ITEM_KEY && 853 key.offset == fs_info->nodesize) 854 ret = 0; 855 } 856 } 857 858 if (ret == 0) { 859 leaf = path->nodes[0]; 860 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 861 if (item_size >= sizeof(*ei)) { 862 ei = btrfs_item_ptr(leaf, path->slots[0], 863 struct btrfs_extent_item); 864 num_refs = btrfs_extent_refs(leaf, ei); 865 extent_flags = btrfs_extent_flags(leaf, ei); 866 } else { 867 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 868 struct btrfs_extent_item_v0 *ei0; 869 BUG_ON(item_size != sizeof(*ei0)); 870 ei0 = btrfs_item_ptr(leaf, path->slots[0], 871 struct btrfs_extent_item_v0); 872 num_refs = btrfs_extent_refs_v0(leaf, ei0); 873 /* FIXME: this isn't correct for data */ 874 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 875 #else 876 BUG(); 877 #endif 878 } 879 BUG_ON(num_refs == 0); 880 } else { 881 num_refs = 0; 882 extent_flags = 0; 883 ret = 0; 884 } 885 886 if (!trans) 887 goto out; 888 889 delayed_refs = &trans->transaction->delayed_refs; 890 spin_lock(&delayed_refs->lock); 891 head = btrfs_find_delayed_ref_head(trans, bytenr); 892 if (head) { 893 if (!mutex_trylock(&head->mutex)) { 894 atomic_inc(&head->node.refs); 895 spin_unlock(&delayed_refs->lock); 896 897 btrfs_release_path(path); 898 899 /* 900 * Mutex was contended, block until it's released and try 901 * again 902 */ 903 mutex_lock(&head->mutex); 904 mutex_unlock(&head->mutex); 905 btrfs_put_delayed_ref(&head->node); 906 goto search_again; 907 } 908 spin_lock(&head->lock); 909 if (head->extent_op && head->extent_op->update_flags) 910 extent_flags |= head->extent_op->flags_to_set; 911 else 912 BUG_ON(num_refs == 0); 913 914 num_refs += head->node.ref_mod; 915 spin_unlock(&head->lock); 916 mutex_unlock(&head->mutex); 917 } 918 spin_unlock(&delayed_refs->lock); 919 out: 920 WARN_ON(num_refs == 0); 921 if (refs) 922 *refs = num_refs; 923 if (flags) 924 *flags = extent_flags; 925 out_free: 926 btrfs_free_path(path); 927 return ret; 928 } 929 930 /* 931 * Back reference rules. Back refs have three main goals: 932 * 933 * 1) differentiate between all holders of references to an extent so that 934 * when a reference is dropped we can make sure it was a valid reference 935 * before freeing the extent. 936 * 937 * 2) Provide enough information to quickly find the holders of an extent 938 * if we notice a given block is corrupted or bad. 939 * 940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 941 * maintenance. This is actually the same as #2, but with a slightly 942 * different use case. 943 * 944 * There are two kinds of back refs. The implicit back refs is optimized 945 * for pointers in non-shared tree blocks. For a given pointer in a block, 946 * back refs of this kind provide information about the block's owner tree 947 * and the pointer's key. These information allow us to find the block by 948 * b-tree searching. The full back refs is for pointers in tree blocks not 949 * referenced by their owner trees. The location of tree block is recorded 950 * in the back refs. Actually the full back refs is generic, and can be 951 * used in all cases the implicit back refs is used. The major shortcoming 952 * of the full back refs is its overhead. Every time a tree block gets 953 * COWed, we have to update back refs entry for all pointers in it. 954 * 955 * For a newly allocated tree block, we use implicit back refs for 956 * pointers in it. This means most tree related operations only involve 957 * implicit back refs. For a tree block created in old transaction, the 958 * only way to drop a reference to it is COW it. So we can detect the 959 * event that tree block loses its owner tree's reference and do the 960 * back refs conversion. 961 * 962 * When a tree block is COWed through a tree, there are four cases: 963 * 964 * The reference count of the block is one and the tree is the block's 965 * owner tree. Nothing to do in this case. 966 * 967 * The reference count of the block is one and the tree is not the 968 * block's owner tree. In this case, full back refs is used for pointers 969 * in the block. Remove these full back refs, add implicit back refs for 970 * every pointers in the new block. 971 * 972 * The reference count of the block is greater than one and the tree is 973 * the block's owner tree. In this case, implicit back refs is used for 974 * pointers in the block. Add full back refs for every pointers in the 975 * block, increase lower level extents' reference counts. The original 976 * implicit back refs are entailed to the new block. 977 * 978 * The reference count of the block is greater than one and the tree is 979 * not the block's owner tree. Add implicit back refs for every pointer in 980 * the new block, increase lower level extents' reference count. 981 * 982 * Back Reference Key composing: 983 * 984 * The key objectid corresponds to the first byte in the extent, 985 * The key type is used to differentiate between types of back refs. 986 * There are different meanings of the key offset for different types 987 * of back refs. 988 * 989 * File extents can be referenced by: 990 * 991 * - multiple snapshots, subvolumes, or different generations in one subvol 992 * - different files inside a single subvolume 993 * - different offsets inside a file (bookend extents in file.c) 994 * 995 * The extent ref structure for the implicit back refs has fields for: 996 * 997 * - Objectid of the subvolume root 998 * - objectid of the file holding the reference 999 * - original offset in the file 1000 * - how many bookend extents 1001 * 1002 * The key offset for the implicit back refs is hash of the first 1003 * three fields. 1004 * 1005 * The extent ref structure for the full back refs has field for: 1006 * 1007 * - number of pointers in the tree leaf 1008 * 1009 * The key offset for the implicit back refs is the first byte of 1010 * the tree leaf 1011 * 1012 * When a file extent is allocated, The implicit back refs is used. 1013 * the fields are filled in: 1014 * 1015 * (root_key.objectid, inode objectid, offset in file, 1) 1016 * 1017 * When a file extent is removed file truncation, we find the 1018 * corresponding implicit back refs and check the following fields: 1019 * 1020 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1021 * 1022 * Btree extents can be referenced by: 1023 * 1024 * - Different subvolumes 1025 * 1026 * Both the implicit back refs and the full back refs for tree blocks 1027 * only consist of key. The key offset for the implicit back refs is 1028 * objectid of block's owner tree. The key offset for the full back refs 1029 * is the first byte of parent block. 1030 * 1031 * When implicit back refs is used, information about the lowest key and 1032 * level of the tree block are required. These information are stored in 1033 * tree block info structure. 1034 */ 1035 1036 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1037 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1038 struct btrfs_root *root, 1039 struct btrfs_path *path, 1040 u64 owner, u32 extra_size) 1041 { 1042 struct btrfs_extent_item *item; 1043 struct btrfs_extent_item_v0 *ei0; 1044 struct btrfs_extent_ref_v0 *ref0; 1045 struct btrfs_tree_block_info *bi; 1046 struct extent_buffer *leaf; 1047 struct btrfs_key key; 1048 struct btrfs_key found_key; 1049 u32 new_size = sizeof(*item); 1050 u64 refs; 1051 int ret; 1052 1053 leaf = path->nodes[0]; 1054 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1055 1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1057 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1058 struct btrfs_extent_item_v0); 1059 refs = btrfs_extent_refs_v0(leaf, ei0); 1060 1061 if (owner == (u64)-1) { 1062 while (1) { 1063 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1064 ret = btrfs_next_leaf(root, path); 1065 if (ret < 0) 1066 return ret; 1067 BUG_ON(ret > 0); /* Corruption */ 1068 leaf = path->nodes[0]; 1069 } 1070 btrfs_item_key_to_cpu(leaf, &found_key, 1071 path->slots[0]); 1072 BUG_ON(key.objectid != found_key.objectid); 1073 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1074 path->slots[0]++; 1075 continue; 1076 } 1077 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1078 struct btrfs_extent_ref_v0); 1079 owner = btrfs_ref_objectid_v0(leaf, ref0); 1080 break; 1081 } 1082 } 1083 btrfs_release_path(path); 1084 1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1086 new_size += sizeof(*bi); 1087 1088 new_size -= sizeof(*ei0); 1089 ret = btrfs_search_slot(trans, root, &key, path, 1090 new_size + extra_size, 1); 1091 if (ret < 0) 1092 return ret; 1093 BUG_ON(ret); /* Corruption */ 1094 1095 btrfs_extend_item(root->fs_info, path, new_size); 1096 1097 leaf = path->nodes[0]; 1098 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1099 btrfs_set_extent_refs(leaf, item, refs); 1100 /* FIXME: get real generation */ 1101 btrfs_set_extent_generation(leaf, item, 0); 1102 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1103 btrfs_set_extent_flags(leaf, item, 1104 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1105 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1106 bi = (struct btrfs_tree_block_info *)(item + 1); 1107 /* FIXME: get first key of the block */ 1108 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1109 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1110 } else { 1111 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1112 } 1113 btrfs_mark_buffer_dirty(leaf); 1114 return 0; 1115 } 1116 #endif 1117 1118 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1119 { 1120 u32 high_crc = ~(u32)0; 1121 u32 low_crc = ~(u32)0; 1122 __le64 lenum; 1123 1124 lenum = cpu_to_le64(root_objectid); 1125 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1126 lenum = cpu_to_le64(owner); 1127 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1128 lenum = cpu_to_le64(offset); 1129 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1130 1131 return ((u64)high_crc << 31) ^ (u64)low_crc; 1132 } 1133 1134 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1135 struct btrfs_extent_data_ref *ref) 1136 { 1137 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1138 btrfs_extent_data_ref_objectid(leaf, ref), 1139 btrfs_extent_data_ref_offset(leaf, ref)); 1140 } 1141 1142 static int match_extent_data_ref(struct extent_buffer *leaf, 1143 struct btrfs_extent_data_ref *ref, 1144 u64 root_objectid, u64 owner, u64 offset) 1145 { 1146 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1147 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1148 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1149 return 0; 1150 return 1; 1151 } 1152 1153 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1154 struct btrfs_root *root, 1155 struct btrfs_path *path, 1156 u64 bytenr, u64 parent, 1157 u64 root_objectid, 1158 u64 owner, u64 offset) 1159 { 1160 struct btrfs_key key; 1161 struct btrfs_extent_data_ref *ref; 1162 struct extent_buffer *leaf; 1163 u32 nritems; 1164 int ret; 1165 int recow; 1166 int err = -ENOENT; 1167 1168 key.objectid = bytenr; 1169 if (parent) { 1170 key.type = BTRFS_SHARED_DATA_REF_KEY; 1171 key.offset = parent; 1172 } else { 1173 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1174 key.offset = hash_extent_data_ref(root_objectid, 1175 owner, offset); 1176 } 1177 again: 1178 recow = 0; 1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1180 if (ret < 0) { 1181 err = ret; 1182 goto fail; 1183 } 1184 1185 if (parent) { 1186 if (!ret) 1187 return 0; 1188 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1189 key.type = BTRFS_EXTENT_REF_V0_KEY; 1190 btrfs_release_path(path); 1191 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1192 if (ret < 0) { 1193 err = ret; 1194 goto fail; 1195 } 1196 if (!ret) 1197 return 0; 1198 #endif 1199 goto fail; 1200 } 1201 1202 leaf = path->nodes[0]; 1203 nritems = btrfs_header_nritems(leaf); 1204 while (1) { 1205 if (path->slots[0] >= nritems) { 1206 ret = btrfs_next_leaf(root, path); 1207 if (ret < 0) 1208 err = ret; 1209 if (ret) 1210 goto fail; 1211 1212 leaf = path->nodes[0]; 1213 nritems = btrfs_header_nritems(leaf); 1214 recow = 1; 1215 } 1216 1217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1218 if (key.objectid != bytenr || 1219 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1220 goto fail; 1221 1222 ref = btrfs_item_ptr(leaf, path->slots[0], 1223 struct btrfs_extent_data_ref); 1224 1225 if (match_extent_data_ref(leaf, ref, root_objectid, 1226 owner, offset)) { 1227 if (recow) { 1228 btrfs_release_path(path); 1229 goto again; 1230 } 1231 err = 0; 1232 break; 1233 } 1234 path->slots[0]++; 1235 } 1236 fail: 1237 return err; 1238 } 1239 1240 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1241 struct btrfs_root *root, 1242 struct btrfs_path *path, 1243 u64 bytenr, u64 parent, 1244 u64 root_objectid, u64 owner, 1245 u64 offset, int refs_to_add) 1246 { 1247 struct btrfs_key key; 1248 struct extent_buffer *leaf; 1249 u32 size; 1250 u32 num_refs; 1251 int ret; 1252 1253 key.objectid = bytenr; 1254 if (parent) { 1255 key.type = BTRFS_SHARED_DATA_REF_KEY; 1256 key.offset = parent; 1257 size = sizeof(struct btrfs_shared_data_ref); 1258 } else { 1259 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1260 key.offset = hash_extent_data_ref(root_objectid, 1261 owner, offset); 1262 size = sizeof(struct btrfs_extent_data_ref); 1263 } 1264 1265 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1266 if (ret && ret != -EEXIST) 1267 goto fail; 1268 1269 leaf = path->nodes[0]; 1270 if (parent) { 1271 struct btrfs_shared_data_ref *ref; 1272 ref = btrfs_item_ptr(leaf, path->slots[0], 1273 struct btrfs_shared_data_ref); 1274 if (ret == 0) { 1275 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1276 } else { 1277 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1278 num_refs += refs_to_add; 1279 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1280 } 1281 } else { 1282 struct btrfs_extent_data_ref *ref; 1283 while (ret == -EEXIST) { 1284 ref = btrfs_item_ptr(leaf, path->slots[0], 1285 struct btrfs_extent_data_ref); 1286 if (match_extent_data_ref(leaf, ref, root_objectid, 1287 owner, offset)) 1288 break; 1289 btrfs_release_path(path); 1290 key.offset++; 1291 ret = btrfs_insert_empty_item(trans, root, path, &key, 1292 size); 1293 if (ret && ret != -EEXIST) 1294 goto fail; 1295 1296 leaf = path->nodes[0]; 1297 } 1298 ref = btrfs_item_ptr(leaf, path->slots[0], 1299 struct btrfs_extent_data_ref); 1300 if (ret == 0) { 1301 btrfs_set_extent_data_ref_root(leaf, ref, 1302 root_objectid); 1303 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1304 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1305 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1306 } else { 1307 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1308 num_refs += refs_to_add; 1309 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1310 } 1311 } 1312 btrfs_mark_buffer_dirty(leaf); 1313 ret = 0; 1314 fail: 1315 btrfs_release_path(path); 1316 return ret; 1317 } 1318 1319 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1320 struct btrfs_root *root, 1321 struct btrfs_path *path, 1322 int refs_to_drop, int *last_ref) 1323 { 1324 struct btrfs_key key; 1325 struct btrfs_extent_data_ref *ref1 = NULL; 1326 struct btrfs_shared_data_ref *ref2 = NULL; 1327 struct extent_buffer *leaf; 1328 u32 num_refs = 0; 1329 int ret = 0; 1330 1331 leaf = path->nodes[0]; 1332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1333 1334 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1335 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1336 struct btrfs_extent_data_ref); 1337 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1338 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1339 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1340 struct btrfs_shared_data_ref); 1341 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1343 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1344 struct btrfs_extent_ref_v0 *ref0; 1345 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1346 struct btrfs_extent_ref_v0); 1347 num_refs = btrfs_ref_count_v0(leaf, ref0); 1348 #endif 1349 } else { 1350 BUG(); 1351 } 1352 1353 BUG_ON(num_refs < refs_to_drop); 1354 num_refs -= refs_to_drop; 1355 1356 if (num_refs == 0) { 1357 ret = btrfs_del_item(trans, root, path); 1358 *last_ref = 1; 1359 } else { 1360 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1361 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1362 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1363 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1364 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1365 else { 1366 struct btrfs_extent_ref_v0 *ref0; 1367 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_ref_v0); 1369 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1370 } 1371 #endif 1372 btrfs_mark_buffer_dirty(leaf); 1373 } 1374 return ret; 1375 } 1376 1377 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1378 struct btrfs_extent_inline_ref *iref) 1379 { 1380 struct btrfs_key key; 1381 struct extent_buffer *leaf; 1382 struct btrfs_extent_data_ref *ref1; 1383 struct btrfs_shared_data_ref *ref2; 1384 u32 num_refs = 0; 1385 1386 leaf = path->nodes[0]; 1387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1388 if (iref) { 1389 if (btrfs_extent_inline_ref_type(leaf, iref) == 1390 BTRFS_EXTENT_DATA_REF_KEY) { 1391 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1392 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1393 } else { 1394 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1395 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1396 } 1397 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1398 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1399 struct btrfs_extent_data_ref); 1400 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1401 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1402 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1403 struct btrfs_shared_data_ref); 1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1406 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1407 struct btrfs_extent_ref_v0 *ref0; 1408 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1409 struct btrfs_extent_ref_v0); 1410 num_refs = btrfs_ref_count_v0(leaf, ref0); 1411 #endif 1412 } else { 1413 WARN_ON(1); 1414 } 1415 return num_refs; 1416 } 1417 1418 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1419 struct btrfs_root *root, 1420 struct btrfs_path *path, 1421 u64 bytenr, u64 parent, 1422 u64 root_objectid) 1423 { 1424 struct btrfs_key key; 1425 int ret; 1426 1427 key.objectid = bytenr; 1428 if (parent) { 1429 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1430 key.offset = parent; 1431 } else { 1432 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1433 key.offset = root_objectid; 1434 } 1435 1436 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1437 if (ret > 0) 1438 ret = -ENOENT; 1439 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1440 if (ret == -ENOENT && parent) { 1441 btrfs_release_path(path); 1442 key.type = BTRFS_EXTENT_REF_V0_KEY; 1443 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1444 if (ret > 0) 1445 ret = -ENOENT; 1446 } 1447 #endif 1448 return ret; 1449 } 1450 1451 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1452 struct btrfs_root *root, 1453 struct btrfs_path *path, 1454 u64 bytenr, u64 parent, 1455 u64 root_objectid) 1456 { 1457 struct btrfs_key key; 1458 int ret; 1459 1460 key.objectid = bytenr; 1461 if (parent) { 1462 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1463 key.offset = parent; 1464 } else { 1465 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1466 key.offset = root_objectid; 1467 } 1468 1469 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1470 btrfs_release_path(path); 1471 return ret; 1472 } 1473 1474 static inline int extent_ref_type(u64 parent, u64 owner) 1475 { 1476 int type; 1477 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1478 if (parent > 0) 1479 type = BTRFS_SHARED_BLOCK_REF_KEY; 1480 else 1481 type = BTRFS_TREE_BLOCK_REF_KEY; 1482 } else { 1483 if (parent > 0) 1484 type = BTRFS_SHARED_DATA_REF_KEY; 1485 else 1486 type = BTRFS_EXTENT_DATA_REF_KEY; 1487 } 1488 return type; 1489 } 1490 1491 static int find_next_key(struct btrfs_path *path, int level, 1492 struct btrfs_key *key) 1493 1494 { 1495 for (; level < BTRFS_MAX_LEVEL; level++) { 1496 if (!path->nodes[level]) 1497 break; 1498 if (path->slots[level] + 1 >= 1499 btrfs_header_nritems(path->nodes[level])) 1500 continue; 1501 if (level == 0) 1502 btrfs_item_key_to_cpu(path->nodes[level], key, 1503 path->slots[level] + 1); 1504 else 1505 btrfs_node_key_to_cpu(path->nodes[level], key, 1506 path->slots[level] + 1); 1507 return 0; 1508 } 1509 return 1; 1510 } 1511 1512 /* 1513 * look for inline back ref. if back ref is found, *ref_ret is set 1514 * to the address of inline back ref, and 0 is returned. 1515 * 1516 * if back ref isn't found, *ref_ret is set to the address where it 1517 * should be inserted, and -ENOENT is returned. 1518 * 1519 * if insert is true and there are too many inline back refs, the path 1520 * points to the extent item, and -EAGAIN is returned. 1521 * 1522 * NOTE: inline back refs are ordered in the same way that back ref 1523 * items in the tree are ordered. 1524 */ 1525 static noinline_for_stack 1526 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1527 struct btrfs_root *root, 1528 struct btrfs_path *path, 1529 struct btrfs_extent_inline_ref **ref_ret, 1530 u64 bytenr, u64 num_bytes, 1531 u64 parent, u64 root_objectid, 1532 u64 owner, u64 offset, int insert) 1533 { 1534 struct btrfs_fs_info *fs_info = root->fs_info; 1535 struct btrfs_key key; 1536 struct extent_buffer *leaf; 1537 struct btrfs_extent_item *ei; 1538 struct btrfs_extent_inline_ref *iref; 1539 u64 flags; 1540 u64 item_size; 1541 unsigned long ptr; 1542 unsigned long end; 1543 int extra_size; 1544 int type; 1545 int want; 1546 int ret; 1547 int err = 0; 1548 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1549 1550 key.objectid = bytenr; 1551 key.type = BTRFS_EXTENT_ITEM_KEY; 1552 key.offset = num_bytes; 1553 1554 want = extent_ref_type(parent, owner); 1555 if (insert) { 1556 extra_size = btrfs_extent_inline_ref_size(want); 1557 path->keep_locks = 1; 1558 } else 1559 extra_size = -1; 1560 1561 /* 1562 * Owner is our parent level, so we can just add one to get the level 1563 * for the block we are interested in. 1564 */ 1565 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1566 key.type = BTRFS_METADATA_ITEM_KEY; 1567 key.offset = owner; 1568 } 1569 1570 again: 1571 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1572 if (ret < 0) { 1573 err = ret; 1574 goto out; 1575 } 1576 1577 /* 1578 * We may be a newly converted file system which still has the old fat 1579 * extent entries for metadata, so try and see if we have one of those. 1580 */ 1581 if (ret > 0 && skinny_metadata) { 1582 skinny_metadata = false; 1583 if (path->slots[0]) { 1584 path->slots[0]--; 1585 btrfs_item_key_to_cpu(path->nodes[0], &key, 1586 path->slots[0]); 1587 if (key.objectid == bytenr && 1588 key.type == BTRFS_EXTENT_ITEM_KEY && 1589 key.offset == num_bytes) 1590 ret = 0; 1591 } 1592 if (ret) { 1593 key.objectid = bytenr; 1594 key.type = BTRFS_EXTENT_ITEM_KEY; 1595 key.offset = num_bytes; 1596 btrfs_release_path(path); 1597 goto again; 1598 } 1599 } 1600 1601 if (ret && !insert) { 1602 err = -ENOENT; 1603 goto out; 1604 } else if (WARN_ON(ret)) { 1605 err = -EIO; 1606 goto out; 1607 } 1608 1609 leaf = path->nodes[0]; 1610 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1611 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1612 if (item_size < sizeof(*ei)) { 1613 if (!insert) { 1614 err = -ENOENT; 1615 goto out; 1616 } 1617 ret = convert_extent_item_v0(trans, root, path, owner, 1618 extra_size); 1619 if (ret < 0) { 1620 err = ret; 1621 goto out; 1622 } 1623 leaf = path->nodes[0]; 1624 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1625 } 1626 #endif 1627 BUG_ON(item_size < sizeof(*ei)); 1628 1629 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1630 flags = btrfs_extent_flags(leaf, ei); 1631 1632 ptr = (unsigned long)(ei + 1); 1633 end = (unsigned long)ei + item_size; 1634 1635 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1636 ptr += sizeof(struct btrfs_tree_block_info); 1637 BUG_ON(ptr > end); 1638 } 1639 1640 err = -ENOENT; 1641 while (1) { 1642 if (ptr >= end) { 1643 WARN_ON(ptr > end); 1644 break; 1645 } 1646 iref = (struct btrfs_extent_inline_ref *)ptr; 1647 type = btrfs_extent_inline_ref_type(leaf, iref); 1648 if (want < type) 1649 break; 1650 if (want > type) { 1651 ptr += btrfs_extent_inline_ref_size(type); 1652 continue; 1653 } 1654 1655 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1656 struct btrfs_extent_data_ref *dref; 1657 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1658 if (match_extent_data_ref(leaf, dref, root_objectid, 1659 owner, offset)) { 1660 err = 0; 1661 break; 1662 } 1663 if (hash_extent_data_ref_item(leaf, dref) < 1664 hash_extent_data_ref(root_objectid, owner, offset)) 1665 break; 1666 } else { 1667 u64 ref_offset; 1668 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1669 if (parent > 0) { 1670 if (parent == ref_offset) { 1671 err = 0; 1672 break; 1673 } 1674 if (ref_offset < parent) 1675 break; 1676 } else { 1677 if (root_objectid == ref_offset) { 1678 err = 0; 1679 break; 1680 } 1681 if (ref_offset < root_objectid) 1682 break; 1683 } 1684 } 1685 ptr += btrfs_extent_inline_ref_size(type); 1686 } 1687 if (err == -ENOENT && insert) { 1688 if (item_size + extra_size >= 1689 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1690 err = -EAGAIN; 1691 goto out; 1692 } 1693 /* 1694 * To add new inline back ref, we have to make sure 1695 * there is no corresponding back ref item. 1696 * For simplicity, we just do not add new inline back 1697 * ref if there is any kind of item for this block 1698 */ 1699 if (find_next_key(path, 0, &key) == 0 && 1700 key.objectid == bytenr && 1701 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1702 err = -EAGAIN; 1703 goto out; 1704 } 1705 } 1706 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1707 out: 1708 if (insert) { 1709 path->keep_locks = 0; 1710 btrfs_unlock_up_safe(path, 1); 1711 } 1712 return err; 1713 } 1714 1715 /* 1716 * helper to add new inline back ref 1717 */ 1718 static noinline_for_stack 1719 void setup_inline_extent_backref(struct btrfs_root *root, 1720 struct btrfs_path *path, 1721 struct btrfs_extent_inline_ref *iref, 1722 u64 parent, u64 root_objectid, 1723 u64 owner, u64 offset, int refs_to_add, 1724 struct btrfs_delayed_extent_op *extent_op) 1725 { 1726 struct extent_buffer *leaf; 1727 struct btrfs_extent_item *ei; 1728 unsigned long ptr; 1729 unsigned long end; 1730 unsigned long item_offset; 1731 u64 refs; 1732 int size; 1733 int type; 1734 1735 leaf = path->nodes[0]; 1736 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1737 item_offset = (unsigned long)iref - (unsigned long)ei; 1738 1739 type = extent_ref_type(parent, owner); 1740 size = btrfs_extent_inline_ref_size(type); 1741 1742 btrfs_extend_item(root->fs_info, path, size); 1743 1744 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1745 refs = btrfs_extent_refs(leaf, ei); 1746 refs += refs_to_add; 1747 btrfs_set_extent_refs(leaf, ei, refs); 1748 if (extent_op) 1749 __run_delayed_extent_op(extent_op, leaf, ei); 1750 1751 ptr = (unsigned long)ei + item_offset; 1752 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1753 if (ptr < end - size) 1754 memmove_extent_buffer(leaf, ptr + size, ptr, 1755 end - size - ptr); 1756 1757 iref = (struct btrfs_extent_inline_ref *)ptr; 1758 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1759 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1760 struct btrfs_extent_data_ref *dref; 1761 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1762 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1763 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1764 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1765 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1766 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1767 struct btrfs_shared_data_ref *sref; 1768 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1769 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1770 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1771 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1772 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1773 } else { 1774 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1775 } 1776 btrfs_mark_buffer_dirty(leaf); 1777 } 1778 1779 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1780 struct btrfs_root *root, 1781 struct btrfs_path *path, 1782 struct btrfs_extent_inline_ref **ref_ret, 1783 u64 bytenr, u64 num_bytes, u64 parent, 1784 u64 root_objectid, u64 owner, u64 offset) 1785 { 1786 int ret; 1787 1788 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1789 bytenr, num_bytes, parent, 1790 root_objectid, owner, offset, 0); 1791 if (ret != -ENOENT) 1792 return ret; 1793 1794 btrfs_release_path(path); 1795 *ref_ret = NULL; 1796 1797 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1798 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1799 root_objectid); 1800 } else { 1801 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1802 root_objectid, owner, offset); 1803 } 1804 return ret; 1805 } 1806 1807 /* 1808 * helper to update/remove inline back ref 1809 */ 1810 static noinline_for_stack 1811 void update_inline_extent_backref(struct btrfs_root *root, 1812 struct btrfs_path *path, 1813 struct btrfs_extent_inline_ref *iref, 1814 int refs_to_mod, 1815 struct btrfs_delayed_extent_op *extent_op, 1816 int *last_ref) 1817 { 1818 struct extent_buffer *leaf; 1819 struct btrfs_extent_item *ei; 1820 struct btrfs_extent_data_ref *dref = NULL; 1821 struct btrfs_shared_data_ref *sref = NULL; 1822 unsigned long ptr; 1823 unsigned long end; 1824 u32 item_size; 1825 int size; 1826 int type; 1827 u64 refs; 1828 1829 leaf = path->nodes[0]; 1830 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1831 refs = btrfs_extent_refs(leaf, ei); 1832 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1833 refs += refs_to_mod; 1834 btrfs_set_extent_refs(leaf, ei, refs); 1835 if (extent_op) 1836 __run_delayed_extent_op(extent_op, leaf, ei); 1837 1838 type = btrfs_extent_inline_ref_type(leaf, iref); 1839 1840 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1841 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1842 refs = btrfs_extent_data_ref_count(leaf, dref); 1843 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1844 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1845 refs = btrfs_shared_data_ref_count(leaf, sref); 1846 } else { 1847 refs = 1; 1848 BUG_ON(refs_to_mod != -1); 1849 } 1850 1851 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1852 refs += refs_to_mod; 1853 1854 if (refs > 0) { 1855 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1856 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1857 else 1858 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1859 } else { 1860 *last_ref = 1; 1861 size = btrfs_extent_inline_ref_size(type); 1862 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1863 ptr = (unsigned long)iref; 1864 end = (unsigned long)ei + item_size; 1865 if (ptr + size < end) 1866 memmove_extent_buffer(leaf, ptr, ptr + size, 1867 end - ptr - size); 1868 item_size -= size; 1869 btrfs_truncate_item(root->fs_info, path, item_size, 1); 1870 } 1871 btrfs_mark_buffer_dirty(leaf); 1872 } 1873 1874 static noinline_for_stack 1875 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1876 struct btrfs_root *root, 1877 struct btrfs_path *path, 1878 u64 bytenr, u64 num_bytes, u64 parent, 1879 u64 root_objectid, u64 owner, 1880 u64 offset, int refs_to_add, 1881 struct btrfs_delayed_extent_op *extent_op) 1882 { 1883 struct btrfs_extent_inline_ref *iref; 1884 int ret; 1885 1886 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1887 bytenr, num_bytes, parent, 1888 root_objectid, owner, offset, 1); 1889 if (ret == 0) { 1890 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1891 update_inline_extent_backref(root, path, iref, 1892 refs_to_add, extent_op, NULL); 1893 } else if (ret == -ENOENT) { 1894 setup_inline_extent_backref(root, path, iref, parent, 1895 root_objectid, owner, offset, 1896 refs_to_add, extent_op); 1897 ret = 0; 1898 } 1899 return ret; 1900 } 1901 1902 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1903 struct btrfs_root *root, 1904 struct btrfs_path *path, 1905 u64 bytenr, u64 parent, u64 root_objectid, 1906 u64 owner, u64 offset, int refs_to_add) 1907 { 1908 int ret; 1909 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1910 BUG_ON(refs_to_add != 1); 1911 ret = insert_tree_block_ref(trans, root, path, bytenr, 1912 parent, root_objectid); 1913 } else { 1914 ret = insert_extent_data_ref(trans, root, path, bytenr, 1915 parent, root_objectid, 1916 owner, offset, refs_to_add); 1917 } 1918 return ret; 1919 } 1920 1921 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1922 struct btrfs_root *root, 1923 struct btrfs_path *path, 1924 struct btrfs_extent_inline_ref *iref, 1925 int refs_to_drop, int is_data, int *last_ref) 1926 { 1927 int ret = 0; 1928 1929 BUG_ON(!is_data && refs_to_drop != 1); 1930 if (iref) { 1931 update_inline_extent_backref(root, path, iref, 1932 -refs_to_drop, NULL, last_ref); 1933 } else if (is_data) { 1934 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1935 last_ref); 1936 } else { 1937 *last_ref = 1; 1938 ret = btrfs_del_item(trans, root, path); 1939 } 1940 return ret; 1941 } 1942 1943 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1944 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1945 u64 *discarded_bytes) 1946 { 1947 int j, ret = 0; 1948 u64 bytes_left, end; 1949 u64 aligned_start = ALIGN(start, 1 << 9); 1950 1951 if (WARN_ON(start != aligned_start)) { 1952 len -= aligned_start - start; 1953 len = round_down(len, 1 << 9); 1954 start = aligned_start; 1955 } 1956 1957 *discarded_bytes = 0; 1958 1959 if (!len) 1960 return 0; 1961 1962 end = start + len; 1963 bytes_left = len; 1964 1965 /* Skip any superblocks on this device. */ 1966 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1967 u64 sb_start = btrfs_sb_offset(j); 1968 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1969 u64 size = sb_start - start; 1970 1971 if (!in_range(sb_start, start, bytes_left) && 1972 !in_range(sb_end, start, bytes_left) && 1973 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1974 continue; 1975 1976 /* 1977 * Superblock spans beginning of range. Adjust start and 1978 * try again. 1979 */ 1980 if (sb_start <= start) { 1981 start += sb_end - start; 1982 if (start > end) { 1983 bytes_left = 0; 1984 break; 1985 } 1986 bytes_left = end - start; 1987 continue; 1988 } 1989 1990 if (size) { 1991 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1992 GFP_NOFS, 0); 1993 if (!ret) 1994 *discarded_bytes += size; 1995 else if (ret != -EOPNOTSUPP) 1996 return ret; 1997 } 1998 1999 start = sb_end; 2000 if (start > end) { 2001 bytes_left = 0; 2002 break; 2003 } 2004 bytes_left = end - start; 2005 } 2006 2007 if (bytes_left) { 2008 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2009 GFP_NOFS, 0); 2010 if (!ret) 2011 *discarded_bytes += bytes_left; 2012 } 2013 return ret; 2014 } 2015 2016 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2017 u64 num_bytes, u64 *actual_bytes) 2018 { 2019 int ret; 2020 u64 discarded_bytes = 0; 2021 struct btrfs_bio *bbio = NULL; 2022 2023 2024 /* 2025 * Avoid races with device replace and make sure our bbio has devices 2026 * associated to its stripes that don't go away while we are discarding. 2027 */ 2028 btrfs_bio_counter_inc_blocked(fs_info); 2029 /* Tell the block device(s) that the sectors can be discarded */ 2030 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2031 &bbio, 0); 2032 /* Error condition is -ENOMEM */ 2033 if (!ret) { 2034 struct btrfs_bio_stripe *stripe = bbio->stripes; 2035 int i; 2036 2037 2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2039 u64 bytes; 2040 if (!stripe->dev->can_discard) 2041 continue; 2042 2043 ret = btrfs_issue_discard(stripe->dev->bdev, 2044 stripe->physical, 2045 stripe->length, 2046 &bytes); 2047 if (!ret) 2048 discarded_bytes += bytes; 2049 else if (ret != -EOPNOTSUPP) 2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2051 2052 /* 2053 * Just in case we get back EOPNOTSUPP for some reason, 2054 * just ignore the return value so we don't screw up 2055 * people calling discard_extent. 2056 */ 2057 ret = 0; 2058 } 2059 btrfs_put_bbio(bbio); 2060 } 2061 btrfs_bio_counter_dec(fs_info); 2062 2063 if (actual_bytes) 2064 *actual_bytes = discarded_bytes; 2065 2066 2067 if (ret == -EOPNOTSUPP) 2068 ret = 0; 2069 return ret; 2070 } 2071 2072 /* Can return -ENOMEM */ 2073 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2074 struct btrfs_fs_info *fs_info, 2075 u64 bytenr, u64 num_bytes, u64 parent, 2076 u64 root_objectid, u64 owner, u64 offset) 2077 { 2078 int ret; 2079 2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2081 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2082 2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2085 num_bytes, 2086 parent, root_objectid, (int)owner, 2087 BTRFS_ADD_DELAYED_REF, NULL); 2088 } else { 2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2090 num_bytes, parent, root_objectid, 2091 owner, offset, 0, 2092 BTRFS_ADD_DELAYED_REF, NULL); 2093 } 2094 return ret; 2095 } 2096 2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2098 struct btrfs_fs_info *fs_info, 2099 struct btrfs_delayed_ref_node *node, 2100 u64 parent, u64 root_objectid, 2101 u64 owner, u64 offset, int refs_to_add, 2102 struct btrfs_delayed_extent_op *extent_op) 2103 { 2104 struct btrfs_path *path; 2105 struct extent_buffer *leaf; 2106 struct btrfs_extent_item *item; 2107 struct btrfs_key key; 2108 u64 bytenr = node->bytenr; 2109 u64 num_bytes = node->num_bytes; 2110 u64 refs; 2111 int ret; 2112 2113 path = btrfs_alloc_path(); 2114 if (!path) 2115 return -ENOMEM; 2116 2117 path->reada = READA_FORWARD; 2118 path->leave_spinning = 1; 2119 /* this will setup the path even if it fails to insert the back ref */ 2120 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2121 bytenr, num_bytes, parent, 2122 root_objectid, owner, offset, 2123 refs_to_add, extent_op); 2124 if ((ret < 0 && ret != -EAGAIN) || !ret) 2125 goto out; 2126 2127 /* 2128 * Ok we had -EAGAIN which means we didn't have space to insert and 2129 * inline extent ref, so just update the reference count and add a 2130 * normal backref. 2131 */ 2132 leaf = path->nodes[0]; 2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2135 refs = btrfs_extent_refs(leaf, item); 2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2137 if (extent_op) 2138 __run_delayed_extent_op(extent_op, leaf, item); 2139 2140 btrfs_mark_buffer_dirty(leaf); 2141 btrfs_release_path(path); 2142 2143 path->reada = READA_FORWARD; 2144 path->leave_spinning = 1; 2145 /* now insert the actual backref */ 2146 ret = insert_extent_backref(trans, fs_info->extent_root, 2147 path, bytenr, parent, root_objectid, 2148 owner, offset, refs_to_add); 2149 if (ret) 2150 btrfs_abort_transaction(trans, ret); 2151 out: 2152 btrfs_free_path(path); 2153 return ret; 2154 } 2155 2156 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2157 struct btrfs_fs_info *fs_info, 2158 struct btrfs_delayed_ref_node *node, 2159 struct btrfs_delayed_extent_op *extent_op, 2160 int insert_reserved) 2161 { 2162 int ret = 0; 2163 struct btrfs_delayed_data_ref *ref; 2164 struct btrfs_key ins; 2165 u64 parent = 0; 2166 u64 ref_root = 0; 2167 u64 flags = 0; 2168 2169 ins.objectid = node->bytenr; 2170 ins.offset = node->num_bytes; 2171 ins.type = BTRFS_EXTENT_ITEM_KEY; 2172 2173 ref = btrfs_delayed_node_to_data_ref(node); 2174 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2175 2176 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2177 parent = ref->parent; 2178 ref_root = ref->root; 2179 2180 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2181 if (extent_op) 2182 flags |= extent_op->flags_to_set; 2183 ret = alloc_reserved_file_extent(trans, fs_info, 2184 parent, ref_root, flags, 2185 ref->objectid, ref->offset, 2186 &ins, node->ref_mod); 2187 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2188 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2189 ref_root, ref->objectid, 2190 ref->offset, node->ref_mod, 2191 extent_op); 2192 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2193 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2194 ref_root, ref->objectid, 2195 ref->offset, node->ref_mod, 2196 extent_op); 2197 } else { 2198 BUG(); 2199 } 2200 return ret; 2201 } 2202 2203 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2204 struct extent_buffer *leaf, 2205 struct btrfs_extent_item *ei) 2206 { 2207 u64 flags = btrfs_extent_flags(leaf, ei); 2208 if (extent_op->update_flags) { 2209 flags |= extent_op->flags_to_set; 2210 btrfs_set_extent_flags(leaf, ei, flags); 2211 } 2212 2213 if (extent_op->update_key) { 2214 struct btrfs_tree_block_info *bi; 2215 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2216 bi = (struct btrfs_tree_block_info *)(ei + 1); 2217 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2218 } 2219 } 2220 2221 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2222 struct btrfs_fs_info *fs_info, 2223 struct btrfs_delayed_ref_node *node, 2224 struct btrfs_delayed_extent_op *extent_op) 2225 { 2226 struct btrfs_key key; 2227 struct btrfs_path *path; 2228 struct btrfs_extent_item *ei; 2229 struct extent_buffer *leaf; 2230 u32 item_size; 2231 int ret; 2232 int err = 0; 2233 int metadata = !extent_op->is_data; 2234 2235 if (trans->aborted) 2236 return 0; 2237 2238 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2239 metadata = 0; 2240 2241 path = btrfs_alloc_path(); 2242 if (!path) 2243 return -ENOMEM; 2244 2245 key.objectid = node->bytenr; 2246 2247 if (metadata) { 2248 key.type = BTRFS_METADATA_ITEM_KEY; 2249 key.offset = extent_op->level; 2250 } else { 2251 key.type = BTRFS_EXTENT_ITEM_KEY; 2252 key.offset = node->num_bytes; 2253 } 2254 2255 again: 2256 path->reada = READA_FORWARD; 2257 path->leave_spinning = 1; 2258 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2259 if (ret < 0) { 2260 err = ret; 2261 goto out; 2262 } 2263 if (ret > 0) { 2264 if (metadata) { 2265 if (path->slots[0] > 0) { 2266 path->slots[0]--; 2267 btrfs_item_key_to_cpu(path->nodes[0], &key, 2268 path->slots[0]); 2269 if (key.objectid == node->bytenr && 2270 key.type == BTRFS_EXTENT_ITEM_KEY && 2271 key.offset == node->num_bytes) 2272 ret = 0; 2273 } 2274 if (ret > 0) { 2275 btrfs_release_path(path); 2276 metadata = 0; 2277 2278 key.objectid = node->bytenr; 2279 key.offset = node->num_bytes; 2280 key.type = BTRFS_EXTENT_ITEM_KEY; 2281 goto again; 2282 } 2283 } else { 2284 err = -EIO; 2285 goto out; 2286 } 2287 } 2288 2289 leaf = path->nodes[0]; 2290 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2291 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2292 if (item_size < sizeof(*ei)) { 2293 ret = convert_extent_item_v0(trans, fs_info->extent_root, 2294 path, (u64)-1, 0); 2295 if (ret < 0) { 2296 err = ret; 2297 goto out; 2298 } 2299 leaf = path->nodes[0]; 2300 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2301 } 2302 #endif 2303 BUG_ON(item_size < sizeof(*ei)); 2304 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2305 __run_delayed_extent_op(extent_op, leaf, ei); 2306 2307 btrfs_mark_buffer_dirty(leaf); 2308 out: 2309 btrfs_free_path(path); 2310 return err; 2311 } 2312 2313 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2314 struct btrfs_fs_info *fs_info, 2315 struct btrfs_delayed_ref_node *node, 2316 struct btrfs_delayed_extent_op *extent_op, 2317 int insert_reserved) 2318 { 2319 int ret = 0; 2320 struct btrfs_delayed_tree_ref *ref; 2321 struct btrfs_key ins; 2322 u64 parent = 0; 2323 u64 ref_root = 0; 2324 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2325 2326 ref = btrfs_delayed_node_to_tree_ref(node); 2327 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2328 2329 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2330 parent = ref->parent; 2331 ref_root = ref->root; 2332 2333 ins.objectid = node->bytenr; 2334 if (skinny_metadata) { 2335 ins.offset = ref->level; 2336 ins.type = BTRFS_METADATA_ITEM_KEY; 2337 } else { 2338 ins.offset = node->num_bytes; 2339 ins.type = BTRFS_EXTENT_ITEM_KEY; 2340 } 2341 2342 if (node->ref_mod != 1) { 2343 btrfs_err(fs_info, 2344 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2345 node->bytenr, node->ref_mod, node->action, ref_root, 2346 parent); 2347 return -EIO; 2348 } 2349 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2350 BUG_ON(!extent_op || !extent_op->update_flags); 2351 ret = alloc_reserved_tree_block(trans, fs_info, 2352 parent, ref_root, 2353 extent_op->flags_to_set, 2354 &extent_op->key, 2355 ref->level, &ins); 2356 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2357 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2358 parent, ref_root, 2359 ref->level, 0, 1, 2360 extent_op); 2361 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2362 ret = __btrfs_free_extent(trans, fs_info, node, 2363 parent, ref_root, 2364 ref->level, 0, 1, extent_op); 2365 } else { 2366 BUG(); 2367 } 2368 return ret; 2369 } 2370 2371 /* helper function to actually process a single delayed ref entry */ 2372 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2373 struct btrfs_fs_info *fs_info, 2374 struct btrfs_delayed_ref_node *node, 2375 struct btrfs_delayed_extent_op *extent_op, 2376 int insert_reserved) 2377 { 2378 int ret = 0; 2379 2380 if (trans->aborted) { 2381 if (insert_reserved) 2382 btrfs_pin_extent(fs_info, node->bytenr, 2383 node->num_bytes, 1); 2384 return 0; 2385 } 2386 2387 if (btrfs_delayed_ref_is_head(node)) { 2388 struct btrfs_delayed_ref_head *head; 2389 /* 2390 * we've hit the end of the chain and we were supposed 2391 * to insert this extent into the tree. But, it got 2392 * deleted before we ever needed to insert it, so all 2393 * we have to do is clean up the accounting 2394 */ 2395 BUG_ON(extent_op); 2396 head = btrfs_delayed_node_to_head(node); 2397 trace_run_delayed_ref_head(fs_info, node, head, node->action); 2398 2399 if (insert_reserved) { 2400 btrfs_pin_extent(fs_info, node->bytenr, 2401 node->num_bytes, 1); 2402 if (head->is_data) { 2403 ret = btrfs_del_csums(trans, fs_info, 2404 node->bytenr, 2405 node->num_bytes); 2406 } 2407 } 2408 2409 /* Also free its reserved qgroup space */ 2410 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2411 head->qgroup_reserved); 2412 return ret; 2413 } 2414 2415 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2416 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2417 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2418 insert_reserved); 2419 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2420 node->type == BTRFS_SHARED_DATA_REF_KEY) 2421 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2422 insert_reserved); 2423 else 2424 BUG(); 2425 return ret; 2426 } 2427 2428 static inline struct btrfs_delayed_ref_node * 2429 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2430 { 2431 struct btrfs_delayed_ref_node *ref; 2432 2433 if (list_empty(&head->ref_list)) 2434 return NULL; 2435 2436 /* 2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2438 * This is to prevent a ref count from going down to zero, which deletes 2439 * the extent item from the extent tree, when there still are references 2440 * to add, which would fail because they would not find the extent item. 2441 */ 2442 if (!list_empty(&head->ref_add_list)) 2443 return list_first_entry(&head->ref_add_list, 2444 struct btrfs_delayed_ref_node, add_list); 2445 2446 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, 2447 list); 2448 ASSERT(list_empty(&ref->add_list)); 2449 return ref; 2450 } 2451 2452 /* 2453 * Returns 0 on success or if called with an already aborted transaction. 2454 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2455 */ 2456 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2457 struct btrfs_fs_info *fs_info, 2458 unsigned long nr) 2459 { 2460 struct btrfs_delayed_ref_root *delayed_refs; 2461 struct btrfs_delayed_ref_node *ref; 2462 struct btrfs_delayed_ref_head *locked_ref = NULL; 2463 struct btrfs_delayed_extent_op *extent_op; 2464 ktime_t start = ktime_get(); 2465 int ret; 2466 unsigned long count = 0; 2467 unsigned long actual_count = 0; 2468 int must_insert_reserved = 0; 2469 2470 delayed_refs = &trans->transaction->delayed_refs; 2471 while (1) { 2472 if (!locked_ref) { 2473 if (count >= nr) 2474 break; 2475 2476 spin_lock(&delayed_refs->lock); 2477 locked_ref = btrfs_select_ref_head(trans); 2478 if (!locked_ref) { 2479 spin_unlock(&delayed_refs->lock); 2480 break; 2481 } 2482 2483 /* grab the lock that says we are going to process 2484 * all the refs for this head */ 2485 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2486 spin_unlock(&delayed_refs->lock); 2487 /* 2488 * we may have dropped the spin lock to get the head 2489 * mutex lock, and that might have given someone else 2490 * time to free the head. If that's true, it has been 2491 * removed from our list and we can move on. 2492 */ 2493 if (ret == -EAGAIN) { 2494 locked_ref = NULL; 2495 count++; 2496 continue; 2497 } 2498 } 2499 2500 /* 2501 * We need to try and merge add/drops of the same ref since we 2502 * can run into issues with relocate dropping the implicit ref 2503 * and then it being added back again before the drop can 2504 * finish. If we merged anything we need to re-loop so we can 2505 * get a good ref. 2506 * Or we can get node references of the same type that weren't 2507 * merged when created due to bumps in the tree mod seq, and 2508 * we need to merge them to prevent adding an inline extent 2509 * backref before dropping it (triggering a BUG_ON at 2510 * insert_inline_extent_backref()). 2511 */ 2512 spin_lock(&locked_ref->lock); 2513 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2514 locked_ref); 2515 2516 /* 2517 * locked_ref is the head node, so we have to go one 2518 * node back for any delayed ref updates 2519 */ 2520 ref = select_delayed_ref(locked_ref); 2521 2522 if (ref && ref->seq && 2523 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2524 spin_unlock(&locked_ref->lock); 2525 spin_lock(&delayed_refs->lock); 2526 locked_ref->processing = 0; 2527 delayed_refs->num_heads_ready++; 2528 spin_unlock(&delayed_refs->lock); 2529 btrfs_delayed_ref_unlock(locked_ref); 2530 locked_ref = NULL; 2531 cond_resched(); 2532 count++; 2533 continue; 2534 } 2535 2536 /* 2537 * record the must insert reserved flag before we 2538 * drop the spin lock. 2539 */ 2540 must_insert_reserved = locked_ref->must_insert_reserved; 2541 locked_ref->must_insert_reserved = 0; 2542 2543 extent_op = locked_ref->extent_op; 2544 locked_ref->extent_op = NULL; 2545 2546 if (!ref) { 2547 2548 2549 /* All delayed refs have been processed, Go ahead 2550 * and send the head node to run_one_delayed_ref, 2551 * so that any accounting fixes can happen 2552 */ 2553 ref = &locked_ref->node; 2554 2555 if (extent_op && must_insert_reserved) { 2556 btrfs_free_delayed_extent_op(extent_op); 2557 extent_op = NULL; 2558 } 2559 2560 if (extent_op) { 2561 spin_unlock(&locked_ref->lock); 2562 ret = run_delayed_extent_op(trans, fs_info, 2563 ref, extent_op); 2564 btrfs_free_delayed_extent_op(extent_op); 2565 2566 if (ret) { 2567 /* 2568 * Need to reset must_insert_reserved if 2569 * there was an error so the abort stuff 2570 * can cleanup the reserved space 2571 * properly. 2572 */ 2573 if (must_insert_reserved) 2574 locked_ref->must_insert_reserved = 1; 2575 spin_lock(&delayed_refs->lock); 2576 locked_ref->processing = 0; 2577 delayed_refs->num_heads_ready++; 2578 spin_unlock(&delayed_refs->lock); 2579 btrfs_debug(fs_info, 2580 "run_delayed_extent_op returned %d", 2581 ret); 2582 btrfs_delayed_ref_unlock(locked_ref); 2583 return ret; 2584 } 2585 continue; 2586 } 2587 2588 /* 2589 * Need to drop our head ref lock and re-acquire the 2590 * delayed ref lock and then re-check to make sure 2591 * nobody got added. 2592 */ 2593 spin_unlock(&locked_ref->lock); 2594 spin_lock(&delayed_refs->lock); 2595 spin_lock(&locked_ref->lock); 2596 if (!list_empty(&locked_ref->ref_list) || 2597 locked_ref->extent_op) { 2598 spin_unlock(&locked_ref->lock); 2599 spin_unlock(&delayed_refs->lock); 2600 continue; 2601 } 2602 ref->in_tree = 0; 2603 delayed_refs->num_heads--; 2604 rb_erase(&locked_ref->href_node, 2605 &delayed_refs->href_root); 2606 spin_unlock(&delayed_refs->lock); 2607 } else { 2608 actual_count++; 2609 ref->in_tree = 0; 2610 list_del(&ref->list); 2611 if (!list_empty(&ref->add_list)) 2612 list_del(&ref->add_list); 2613 } 2614 atomic_dec(&delayed_refs->num_entries); 2615 2616 if (!btrfs_delayed_ref_is_head(ref)) { 2617 /* 2618 * when we play the delayed ref, also correct the 2619 * ref_mod on head 2620 */ 2621 switch (ref->action) { 2622 case BTRFS_ADD_DELAYED_REF: 2623 case BTRFS_ADD_DELAYED_EXTENT: 2624 locked_ref->node.ref_mod -= ref->ref_mod; 2625 break; 2626 case BTRFS_DROP_DELAYED_REF: 2627 locked_ref->node.ref_mod += ref->ref_mod; 2628 break; 2629 default: 2630 WARN_ON(1); 2631 } 2632 } 2633 spin_unlock(&locked_ref->lock); 2634 2635 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2636 must_insert_reserved); 2637 2638 btrfs_free_delayed_extent_op(extent_op); 2639 if (ret) { 2640 spin_lock(&delayed_refs->lock); 2641 locked_ref->processing = 0; 2642 delayed_refs->num_heads_ready++; 2643 spin_unlock(&delayed_refs->lock); 2644 btrfs_delayed_ref_unlock(locked_ref); 2645 btrfs_put_delayed_ref(ref); 2646 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2647 ret); 2648 return ret; 2649 } 2650 2651 /* 2652 * If this node is a head, that means all the refs in this head 2653 * have been dealt with, and we will pick the next head to deal 2654 * with, so we must unlock the head and drop it from the cluster 2655 * list before we release it. 2656 */ 2657 if (btrfs_delayed_ref_is_head(ref)) { 2658 if (locked_ref->is_data && 2659 locked_ref->total_ref_mod < 0) { 2660 spin_lock(&delayed_refs->lock); 2661 delayed_refs->pending_csums -= ref->num_bytes; 2662 spin_unlock(&delayed_refs->lock); 2663 } 2664 btrfs_delayed_ref_unlock(locked_ref); 2665 locked_ref = NULL; 2666 } 2667 btrfs_put_delayed_ref(ref); 2668 count++; 2669 cond_resched(); 2670 } 2671 2672 /* 2673 * We don't want to include ref heads since we can have empty ref heads 2674 * and those will drastically skew our runtime down since we just do 2675 * accounting, no actual extent tree updates. 2676 */ 2677 if (actual_count > 0) { 2678 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2679 u64 avg; 2680 2681 /* 2682 * We weigh the current average higher than our current runtime 2683 * to avoid large swings in the average. 2684 */ 2685 spin_lock(&delayed_refs->lock); 2686 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2687 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2688 spin_unlock(&delayed_refs->lock); 2689 } 2690 return 0; 2691 } 2692 2693 #ifdef SCRAMBLE_DELAYED_REFS 2694 /* 2695 * Normally delayed refs get processed in ascending bytenr order. This 2696 * correlates in most cases to the order added. To expose dependencies on this 2697 * order, we start to process the tree in the middle instead of the beginning 2698 */ 2699 static u64 find_middle(struct rb_root *root) 2700 { 2701 struct rb_node *n = root->rb_node; 2702 struct btrfs_delayed_ref_node *entry; 2703 int alt = 1; 2704 u64 middle; 2705 u64 first = 0, last = 0; 2706 2707 n = rb_first(root); 2708 if (n) { 2709 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2710 first = entry->bytenr; 2711 } 2712 n = rb_last(root); 2713 if (n) { 2714 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2715 last = entry->bytenr; 2716 } 2717 n = root->rb_node; 2718 2719 while (n) { 2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2721 WARN_ON(!entry->in_tree); 2722 2723 middle = entry->bytenr; 2724 2725 if (alt) 2726 n = n->rb_left; 2727 else 2728 n = n->rb_right; 2729 2730 alt = 1 - alt; 2731 } 2732 return middle; 2733 } 2734 #endif 2735 2736 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2737 { 2738 u64 num_bytes; 2739 2740 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2741 sizeof(struct btrfs_extent_inline_ref)); 2742 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2743 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2744 2745 /* 2746 * We don't ever fill up leaves all the way so multiply by 2 just to be 2747 * closer to what we're really going to want to use. 2748 */ 2749 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2750 } 2751 2752 /* 2753 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2754 * would require to store the csums for that many bytes. 2755 */ 2756 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2757 { 2758 u64 csum_size; 2759 u64 num_csums_per_leaf; 2760 u64 num_csums; 2761 2762 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2763 num_csums_per_leaf = div64_u64(csum_size, 2764 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2765 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2766 num_csums += num_csums_per_leaf - 1; 2767 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2768 return num_csums; 2769 } 2770 2771 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2772 struct btrfs_fs_info *fs_info) 2773 { 2774 struct btrfs_block_rsv *global_rsv; 2775 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2776 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2777 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2778 u64 num_bytes, num_dirty_bgs_bytes; 2779 int ret = 0; 2780 2781 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2782 num_heads = heads_to_leaves(fs_info, num_heads); 2783 if (num_heads > 1) 2784 num_bytes += (num_heads - 1) * fs_info->nodesize; 2785 num_bytes <<= 1; 2786 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2787 fs_info->nodesize; 2788 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2789 num_dirty_bgs); 2790 global_rsv = &fs_info->global_block_rsv; 2791 2792 /* 2793 * If we can't allocate any more chunks lets make sure we have _lots_ of 2794 * wiggle room since running delayed refs can create more delayed refs. 2795 */ 2796 if (global_rsv->space_info->full) { 2797 num_dirty_bgs_bytes <<= 1; 2798 num_bytes <<= 1; 2799 } 2800 2801 spin_lock(&global_rsv->lock); 2802 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2803 ret = 1; 2804 spin_unlock(&global_rsv->lock); 2805 return ret; 2806 } 2807 2808 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2809 struct btrfs_fs_info *fs_info) 2810 { 2811 u64 num_entries = 2812 atomic_read(&trans->transaction->delayed_refs.num_entries); 2813 u64 avg_runtime; 2814 u64 val; 2815 2816 smp_mb(); 2817 avg_runtime = fs_info->avg_delayed_ref_runtime; 2818 val = num_entries * avg_runtime; 2819 if (val >= NSEC_PER_SEC) 2820 return 1; 2821 if (val >= NSEC_PER_SEC / 2) 2822 return 2; 2823 2824 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2825 } 2826 2827 struct async_delayed_refs { 2828 struct btrfs_root *root; 2829 u64 transid; 2830 int count; 2831 int error; 2832 int sync; 2833 struct completion wait; 2834 struct btrfs_work work; 2835 }; 2836 2837 static inline struct async_delayed_refs * 2838 to_async_delayed_refs(struct btrfs_work *work) 2839 { 2840 return container_of(work, struct async_delayed_refs, work); 2841 } 2842 2843 static void delayed_ref_async_start(struct btrfs_work *work) 2844 { 2845 struct async_delayed_refs *async = to_async_delayed_refs(work); 2846 struct btrfs_trans_handle *trans; 2847 struct btrfs_fs_info *fs_info = async->root->fs_info; 2848 int ret; 2849 2850 /* if the commit is already started, we don't need to wait here */ 2851 if (btrfs_transaction_blocked(fs_info)) 2852 goto done; 2853 2854 trans = btrfs_join_transaction(async->root); 2855 if (IS_ERR(trans)) { 2856 async->error = PTR_ERR(trans); 2857 goto done; 2858 } 2859 2860 /* 2861 * trans->sync means that when we call end_transaction, we won't 2862 * wait on delayed refs 2863 */ 2864 trans->sync = true; 2865 2866 /* Don't bother flushing if we got into a different transaction */ 2867 if (trans->transid > async->transid) 2868 goto end; 2869 2870 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 2871 if (ret) 2872 async->error = ret; 2873 end: 2874 ret = btrfs_end_transaction(trans); 2875 if (ret && !async->error) 2876 async->error = ret; 2877 done: 2878 if (async->sync) 2879 complete(&async->wait); 2880 else 2881 kfree(async); 2882 } 2883 2884 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 2885 unsigned long count, u64 transid, int wait) 2886 { 2887 struct async_delayed_refs *async; 2888 int ret; 2889 2890 async = kmalloc(sizeof(*async), GFP_NOFS); 2891 if (!async) 2892 return -ENOMEM; 2893 2894 async->root = fs_info->tree_root; 2895 async->count = count; 2896 async->error = 0; 2897 async->transid = transid; 2898 if (wait) 2899 async->sync = 1; 2900 else 2901 async->sync = 0; 2902 init_completion(&async->wait); 2903 2904 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2905 delayed_ref_async_start, NULL, NULL); 2906 2907 btrfs_queue_work(fs_info->extent_workers, &async->work); 2908 2909 if (wait) { 2910 wait_for_completion(&async->wait); 2911 ret = async->error; 2912 kfree(async); 2913 return ret; 2914 } 2915 return 0; 2916 } 2917 2918 /* 2919 * this starts processing the delayed reference count updates and 2920 * extent insertions we have queued up so far. count can be 2921 * 0, which means to process everything in the tree at the start 2922 * of the run (but not newly added entries), or it can be some target 2923 * number you'd like to process. 2924 * 2925 * Returns 0 on success or if called with an aborted transaction 2926 * Returns <0 on error and aborts the transaction 2927 */ 2928 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2929 struct btrfs_fs_info *fs_info, unsigned long count) 2930 { 2931 struct rb_node *node; 2932 struct btrfs_delayed_ref_root *delayed_refs; 2933 struct btrfs_delayed_ref_head *head; 2934 int ret; 2935 int run_all = count == (unsigned long)-1; 2936 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2937 2938 /* We'll clean this up in btrfs_cleanup_transaction */ 2939 if (trans->aborted) 2940 return 0; 2941 2942 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2943 return 0; 2944 2945 delayed_refs = &trans->transaction->delayed_refs; 2946 if (count == 0) 2947 count = atomic_read(&delayed_refs->num_entries) * 2; 2948 2949 again: 2950 #ifdef SCRAMBLE_DELAYED_REFS 2951 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2952 #endif 2953 trans->can_flush_pending_bgs = false; 2954 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 2955 if (ret < 0) { 2956 btrfs_abort_transaction(trans, ret); 2957 return ret; 2958 } 2959 2960 if (run_all) { 2961 if (!list_empty(&trans->new_bgs)) 2962 btrfs_create_pending_block_groups(trans, fs_info); 2963 2964 spin_lock(&delayed_refs->lock); 2965 node = rb_first(&delayed_refs->href_root); 2966 if (!node) { 2967 spin_unlock(&delayed_refs->lock); 2968 goto out; 2969 } 2970 2971 while (node) { 2972 head = rb_entry(node, struct btrfs_delayed_ref_head, 2973 href_node); 2974 if (btrfs_delayed_ref_is_head(&head->node)) { 2975 struct btrfs_delayed_ref_node *ref; 2976 2977 ref = &head->node; 2978 atomic_inc(&ref->refs); 2979 2980 spin_unlock(&delayed_refs->lock); 2981 /* 2982 * Mutex was contended, block until it's 2983 * released and try again 2984 */ 2985 mutex_lock(&head->mutex); 2986 mutex_unlock(&head->mutex); 2987 2988 btrfs_put_delayed_ref(ref); 2989 cond_resched(); 2990 goto again; 2991 } else { 2992 WARN_ON(1); 2993 } 2994 node = rb_next(node); 2995 } 2996 spin_unlock(&delayed_refs->lock); 2997 cond_resched(); 2998 goto again; 2999 } 3000 out: 3001 assert_qgroups_uptodate(trans); 3002 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3003 return 0; 3004 } 3005 3006 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3007 struct btrfs_fs_info *fs_info, 3008 u64 bytenr, u64 num_bytes, u64 flags, 3009 int level, int is_data) 3010 { 3011 struct btrfs_delayed_extent_op *extent_op; 3012 int ret; 3013 3014 extent_op = btrfs_alloc_delayed_extent_op(); 3015 if (!extent_op) 3016 return -ENOMEM; 3017 3018 extent_op->flags_to_set = flags; 3019 extent_op->update_flags = true; 3020 extent_op->update_key = false; 3021 extent_op->is_data = is_data ? true : false; 3022 extent_op->level = level; 3023 3024 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3025 num_bytes, extent_op); 3026 if (ret) 3027 btrfs_free_delayed_extent_op(extent_op); 3028 return ret; 3029 } 3030 3031 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3032 struct btrfs_root *root, 3033 struct btrfs_path *path, 3034 u64 objectid, u64 offset, u64 bytenr) 3035 { 3036 struct btrfs_delayed_ref_head *head; 3037 struct btrfs_delayed_ref_node *ref; 3038 struct btrfs_delayed_data_ref *data_ref; 3039 struct btrfs_delayed_ref_root *delayed_refs; 3040 int ret = 0; 3041 3042 delayed_refs = &trans->transaction->delayed_refs; 3043 spin_lock(&delayed_refs->lock); 3044 head = btrfs_find_delayed_ref_head(trans, bytenr); 3045 if (!head) { 3046 spin_unlock(&delayed_refs->lock); 3047 return 0; 3048 } 3049 3050 if (!mutex_trylock(&head->mutex)) { 3051 atomic_inc(&head->node.refs); 3052 spin_unlock(&delayed_refs->lock); 3053 3054 btrfs_release_path(path); 3055 3056 /* 3057 * Mutex was contended, block until it's released and let 3058 * caller try again 3059 */ 3060 mutex_lock(&head->mutex); 3061 mutex_unlock(&head->mutex); 3062 btrfs_put_delayed_ref(&head->node); 3063 return -EAGAIN; 3064 } 3065 spin_unlock(&delayed_refs->lock); 3066 3067 spin_lock(&head->lock); 3068 list_for_each_entry(ref, &head->ref_list, list) { 3069 /* If it's a shared ref we know a cross reference exists */ 3070 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3071 ret = 1; 3072 break; 3073 } 3074 3075 data_ref = btrfs_delayed_node_to_data_ref(ref); 3076 3077 /* 3078 * If our ref doesn't match the one we're currently looking at 3079 * then we have a cross reference. 3080 */ 3081 if (data_ref->root != root->root_key.objectid || 3082 data_ref->objectid != objectid || 3083 data_ref->offset != offset) { 3084 ret = 1; 3085 break; 3086 } 3087 } 3088 spin_unlock(&head->lock); 3089 mutex_unlock(&head->mutex); 3090 return ret; 3091 } 3092 3093 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3094 struct btrfs_root *root, 3095 struct btrfs_path *path, 3096 u64 objectid, u64 offset, u64 bytenr) 3097 { 3098 struct btrfs_fs_info *fs_info = root->fs_info; 3099 struct btrfs_root *extent_root = fs_info->extent_root; 3100 struct extent_buffer *leaf; 3101 struct btrfs_extent_data_ref *ref; 3102 struct btrfs_extent_inline_ref *iref; 3103 struct btrfs_extent_item *ei; 3104 struct btrfs_key key; 3105 u32 item_size; 3106 int ret; 3107 3108 key.objectid = bytenr; 3109 key.offset = (u64)-1; 3110 key.type = BTRFS_EXTENT_ITEM_KEY; 3111 3112 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3113 if (ret < 0) 3114 goto out; 3115 BUG_ON(ret == 0); /* Corruption */ 3116 3117 ret = -ENOENT; 3118 if (path->slots[0] == 0) 3119 goto out; 3120 3121 path->slots[0]--; 3122 leaf = path->nodes[0]; 3123 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3124 3125 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3126 goto out; 3127 3128 ret = 1; 3129 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3131 if (item_size < sizeof(*ei)) { 3132 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3133 goto out; 3134 } 3135 #endif 3136 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3137 3138 if (item_size != sizeof(*ei) + 3139 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3140 goto out; 3141 3142 if (btrfs_extent_generation(leaf, ei) <= 3143 btrfs_root_last_snapshot(&root->root_item)) 3144 goto out; 3145 3146 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3147 if (btrfs_extent_inline_ref_type(leaf, iref) != 3148 BTRFS_EXTENT_DATA_REF_KEY) 3149 goto out; 3150 3151 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3152 if (btrfs_extent_refs(leaf, ei) != 3153 btrfs_extent_data_ref_count(leaf, ref) || 3154 btrfs_extent_data_ref_root(leaf, ref) != 3155 root->root_key.objectid || 3156 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3157 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3158 goto out; 3159 3160 ret = 0; 3161 out: 3162 return ret; 3163 } 3164 3165 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3166 struct btrfs_root *root, 3167 u64 objectid, u64 offset, u64 bytenr) 3168 { 3169 struct btrfs_path *path; 3170 int ret; 3171 int ret2; 3172 3173 path = btrfs_alloc_path(); 3174 if (!path) 3175 return -ENOENT; 3176 3177 do { 3178 ret = check_committed_ref(trans, root, path, objectid, 3179 offset, bytenr); 3180 if (ret && ret != -ENOENT) 3181 goto out; 3182 3183 ret2 = check_delayed_ref(trans, root, path, objectid, 3184 offset, bytenr); 3185 } while (ret2 == -EAGAIN); 3186 3187 if (ret2 && ret2 != -ENOENT) { 3188 ret = ret2; 3189 goto out; 3190 } 3191 3192 if (ret != -ENOENT || ret2 != -ENOENT) 3193 ret = 0; 3194 out: 3195 btrfs_free_path(path); 3196 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3197 WARN_ON(ret > 0); 3198 return ret; 3199 } 3200 3201 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3202 struct btrfs_root *root, 3203 struct extent_buffer *buf, 3204 int full_backref, int inc) 3205 { 3206 struct btrfs_fs_info *fs_info = root->fs_info; 3207 u64 bytenr; 3208 u64 num_bytes; 3209 u64 parent; 3210 u64 ref_root; 3211 u32 nritems; 3212 struct btrfs_key key; 3213 struct btrfs_file_extent_item *fi; 3214 int i; 3215 int level; 3216 int ret = 0; 3217 int (*process_func)(struct btrfs_trans_handle *, 3218 struct btrfs_fs_info *, 3219 u64, u64, u64, u64, u64, u64); 3220 3221 3222 if (btrfs_is_testing(fs_info)) 3223 return 0; 3224 3225 ref_root = btrfs_header_owner(buf); 3226 nritems = btrfs_header_nritems(buf); 3227 level = btrfs_header_level(buf); 3228 3229 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3230 return 0; 3231 3232 if (inc) 3233 process_func = btrfs_inc_extent_ref; 3234 else 3235 process_func = btrfs_free_extent; 3236 3237 if (full_backref) 3238 parent = buf->start; 3239 else 3240 parent = 0; 3241 3242 for (i = 0; i < nritems; i++) { 3243 if (level == 0) { 3244 btrfs_item_key_to_cpu(buf, &key, i); 3245 if (key.type != BTRFS_EXTENT_DATA_KEY) 3246 continue; 3247 fi = btrfs_item_ptr(buf, i, 3248 struct btrfs_file_extent_item); 3249 if (btrfs_file_extent_type(buf, fi) == 3250 BTRFS_FILE_EXTENT_INLINE) 3251 continue; 3252 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3253 if (bytenr == 0) 3254 continue; 3255 3256 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3257 key.offset -= btrfs_file_extent_offset(buf, fi); 3258 ret = process_func(trans, fs_info, bytenr, num_bytes, 3259 parent, ref_root, key.objectid, 3260 key.offset); 3261 if (ret) 3262 goto fail; 3263 } else { 3264 bytenr = btrfs_node_blockptr(buf, i); 3265 num_bytes = fs_info->nodesize; 3266 ret = process_func(trans, fs_info, bytenr, num_bytes, 3267 parent, ref_root, level - 1, 0); 3268 if (ret) 3269 goto fail; 3270 } 3271 } 3272 return 0; 3273 fail: 3274 return ret; 3275 } 3276 3277 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3278 struct extent_buffer *buf, int full_backref) 3279 { 3280 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3281 } 3282 3283 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3284 struct extent_buffer *buf, int full_backref) 3285 { 3286 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3287 } 3288 3289 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3290 struct btrfs_fs_info *fs_info, 3291 struct btrfs_path *path, 3292 struct btrfs_block_group_cache *cache) 3293 { 3294 int ret; 3295 struct btrfs_root *extent_root = fs_info->extent_root; 3296 unsigned long bi; 3297 struct extent_buffer *leaf; 3298 3299 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3300 if (ret) { 3301 if (ret > 0) 3302 ret = -ENOENT; 3303 goto fail; 3304 } 3305 3306 leaf = path->nodes[0]; 3307 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3308 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3309 btrfs_mark_buffer_dirty(leaf); 3310 fail: 3311 btrfs_release_path(path); 3312 return ret; 3313 3314 } 3315 3316 static struct btrfs_block_group_cache * 3317 next_block_group(struct btrfs_fs_info *fs_info, 3318 struct btrfs_block_group_cache *cache) 3319 { 3320 struct rb_node *node; 3321 3322 spin_lock(&fs_info->block_group_cache_lock); 3323 3324 /* If our block group was removed, we need a full search. */ 3325 if (RB_EMPTY_NODE(&cache->cache_node)) { 3326 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3327 3328 spin_unlock(&fs_info->block_group_cache_lock); 3329 btrfs_put_block_group(cache); 3330 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3331 } 3332 node = rb_next(&cache->cache_node); 3333 btrfs_put_block_group(cache); 3334 if (node) { 3335 cache = rb_entry(node, struct btrfs_block_group_cache, 3336 cache_node); 3337 btrfs_get_block_group(cache); 3338 } else 3339 cache = NULL; 3340 spin_unlock(&fs_info->block_group_cache_lock); 3341 return cache; 3342 } 3343 3344 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3345 struct btrfs_trans_handle *trans, 3346 struct btrfs_path *path) 3347 { 3348 struct btrfs_fs_info *fs_info = block_group->fs_info; 3349 struct btrfs_root *root = fs_info->tree_root; 3350 struct inode *inode = NULL; 3351 u64 alloc_hint = 0; 3352 int dcs = BTRFS_DC_ERROR; 3353 u64 num_pages = 0; 3354 int retries = 0; 3355 int ret = 0; 3356 3357 /* 3358 * If this block group is smaller than 100 megs don't bother caching the 3359 * block group. 3360 */ 3361 if (block_group->key.offset < (100 * SZ_1M)) { 3362 spin_lock(&block_group->lock); 3363 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3364 spin_unlock(&block_group->lock); 3365 return 0; 3366 } 3367 3368 if (trans->aborted) 3369 return 0; 3370 again: 3371 inode = lookup_free_space_inode(root, block_group, path); 3372 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3373 ret = PTR_ERR(inode); 3374 btrfs_release_path(path); 3375 goto out; 3376 } 3377 3378 if (IS_ERR(inode)) { 3379 BUG_ON(retries); 3380 retries++; 3381 3382 if (block_group->ro) 3383 goto out_free; 3384 3385 ret = create_free_space_inode(root, trans, block_group, path); 3386 if (ret) 3387 goto out_free; 3388 goto again; 3389 } 3390 3391 /* We've already setup this transaction, go ahead and exit */ 3392 if (block_group->cache_generation == trans->transid && 3393 i_size_read(inode)) { 3394 dcs = BTRFS_DC_SETUP; 3395 goto out_put; 3396 } 3397 3398 /* 3399 * We want to set the generation to 0, that way if anything goes wrong 3400 * from here on out we know not to trust this cache when we load up next 3401 * time. 3402 */ 3403 BTRFS_I(inode)->generation = 0; 3404 ret = btrfs_update_inode(trans, root, inode); 3405 if (ret) { 3406 /* 3407 * So theoretically we could recover from this, simply set the 3408 * super cache generation to 0 so we know to invalidate the 3409 * cache, but then we'd have to keep track of the block groups 3410 * that fail this way so we know we _have_ to reset this cache 3411 * before the next commit or risk reading stale cache. So to 3412 * limit our exposure to horrible edge cases lets just abort the 3413 * transaction, this only happens in really bad situations 3414 * anyway. 3415 */ 3416 btrfs_abort_transaction(trans, ret); 3417 goto out_put; 3418 } 3419 WARN_ON(ret); 3420 3421 if (i_size_read(inode) > 0) { 3422 ret = btrfs_check_trunc_cache_free_space(fs_info, 3423 &fs_info->global_block_rsv); 3424 if (ret) 3425 goto out_put; 3426 3427 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3428 if (ret) 3429 goto out_put; 3430 } 3431 3432 spin_lock(&block_group->lock); 3433 if (block_group->cached != BTRFS_CACHE_FINISHED || 3434 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3435 /* 3436 * don't bother trying to write stuff out _if_ 3437 * a) we're not cached, 3438 * b) we're with nospace_cache mount option. 3439 */ 3440 dcs = BTRFS_DC_WRITTEN; 3441 spin_unlock(&block_group->lock); 3442 goto out_put; 3443 } 3444 spin_unlock(&block_group->lock); 3445 3446 /* 3447 * We hit an ENOSPC when setting up the cache in this transaction, just 3448 * skip doing the setup, we've already cleared the cache so we're safe. 3449 */ 3450 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3451 ret = -ENOSPC; 3452 goto out_put; 3453 } 3454 3455 /* 3456 * Try to preallocate enough space based on how big the block group is. 3457 * Keep in mind this has to include any pinned space which could end up 3458 * taking up quite a bit since it's not folded into the other space 3459 * cache. 3460 */ 3461 num_pages = div_u64(block_group->key.offset, SZ_256M); 3462 if (!num_pages) 3463 num_pages = 1; 3464 3465 num_pages *= 16; 3466 num_pages *= PAGE_SIZE; 3467 3468 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3469 if (ret) 3470 goto out_put; 3471 3472 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3473 num_pages, num_pages, 3474 &alloc_hint); 3475 /* 3476 * Our cache requires contiguous chunks so that we don't modify a bunch 3477 * of metadata or split extents when writing the cache out, which means 3478 * we can enospc if we are heavily fragmented in addition to just normal 3479 * out of space conditions. So if we hit this just skip setting up any 3480 * other block groups for this transaction, maybe we'll unpin enough 3481 * space the next time around. 3482 */ 3483 if (!ret) 3484 dcs = BTRFS_DC_SETUP; 3485 else if (ret == -ENOSPC) 3486 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3487 3488 out_put: 3489 iput(inode); 3490 out_free: 3491 btrfs_release_path(path); 3492 out: 3493 spin_lock(&block_group->lock); 3494 if (!ret && dcs == BTRFS_DC_SETUP) 3495 block_group->cache_generation = trans->transid; 3496 block_group->disk_cache_state = dcs; 3497 spin_unlock(&block_group->lock); 3498 3499 return ret; 3500 } 3501 3502 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3503 struct btrfs_fs_info *fs_info) 3504 { 3505 struct btrfs_block_group_cache *cache, *tmp; 3506 struct btrfs_transaction *cur_trans = trans->transaction; 3507 struct btrfs_path *path; 3508 3509 if (list_empty(&cur_trans->dirty_bgs) || 3510 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3511 return 0; 3512 3513 path = btrfs_alloc_path(); 3514 if (!path) 3515 return -ENOMEM; 3516 3517 /* Could add new block groups, use _safe just in case */ 3518 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3519 dirty_list) { 3520 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3521 cache_save_setup(cache, trans, path); 3522 } 3523 3524 btrfs_free_path(path); 3525 return 0; 3526 } 3527 3528 /* 3529 * transaction commit does final block group cache writeback during a 3530 * critical section where nothing is allowed to change the FS. This is 3531 * required in order for the cache to actually match the block group, 3532 * but can introduce a lot of latency into the commit. 3533 * 3534 * So, btrfs_start_dirty_block_groups is here to kick off block group 3535 * cache IO. There's a chance we'll have to redo some of it if the 3536 * block group changes again during the commit, but it greatly reduces 3537 * the commit latency by getting rid of the easy block groups while 3538 * we're still allowing others to join the commit. 3539 */ 3540 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3541 struct btrfs_fs_info *fs_info) 3542 { 3543 struct btrfs_block_group_cache *cache; 3544 struct btrfs_transaction *cur_trans = trans->transaction; 3545 int ret = 0; 3546 int should_put; 3547 struct btrfs_path *path = NULL; 3548 LIST_HEAD(dirty); 3549 struct list_head *io = &cur_trans->io_bgs; 3550 int num_started = 0; 3551 int loops = 0; 3552 3553 spin_lock(&cur_trans->dirty_bgs_lock); 3554 if (list_empty(&cur_trans->dirty_bgs)) { 3555 spin_unlock(&cur_trans->dirty_bgs_lock); 3556 return 0; 3557 } 3558 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3559 spin_unlock(&cur_trans->dirty_bgs_lock); 3560 3561 again: 3562 /* 3563 * make sure all the block groups on our dirty list actually 3564 * exist 3565 */ 3566 btrfs_create_pending_block_groups(trans, fs_info); 3567 3568 if (!path) { 3569 path = btrfs_alloc_path(); 3570 if (!path) 3571 return -ENOMEM; 3572 } 3573 3574 /* 3575 * cache_write_mutex is here only to save us from balance or automatic 3576 * removal of empty block groups deleting this block group while we are 3577 * writing out the cache 3578 */ 3579 mutex_lock(&trans->transaction->cache_write_mutex); 3580 while (!list_empty(&dirty)) { 3581 cache = list_first_entry(&dirty, 3582 struct btrfs_block_group_cache, 3583 dirty_list); 3584 /* 3585 * this can happen if something re-dirties a block 3586 * group that is already under IO. Just wait for it to 3587 * finish and then do it all again 3588 */ 3589 if (!list_empty(&cache->io_list)) { 3590 list_del_init(&cache->io_list); 3591 btrfs_wait_cache_io(trans, cache, path); 3592 btrfs_put_block_group(cache); 3593 } 3594 3595 3596 /* 3597 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3598 * if it should update the cache_state. Don't delete 3599 * until after we wait. 3600 * 3601 * Since we're not running in the commit critical section 3602 * we need the dirty_bgs_lock to protect from update_block_group 3603 */ 3604 spin_lock(&cur_trans->dirty_bgs_lock); 3605 list_del_init(&cache->dirty_list); 3606 spin_unlock(&cur_trans->dirty_bgs_lock); 3607 3608 should_put = 1; 3609 3610 cache_save_setup(cache, trans, path); 3611 3612 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3613 cache->io_ctl.inode = NULL; 3614 ret = btrfs_write_out_cache(fs_info, trans, 3615 cache, path); 3616 if (ret == 0 && cache->io_ctl.inode) { 3617 num_started++; 3618 should_put = 0; 3619 3620 /* 3621 * the cache_write_mutex is protecting 3622 * the io_list 3623 */ 3624 list_add_tail(&cache->io_list, io); 3625 } else { 3626 /* 3627 * if we failed to write the cache, the 3628 * generation will be bad and life goes on 3629 */ 3630 ret = 0; 3631 } 3632 } 3633 if (!ret) { 3634 ret = write_one_cache_group(trans, fs_info, 3635 path, cache); 3636 /* 3637 * Our block group might still be attached to the list 3638 * of new block groups in the transaction handle of some 3639 * other task (struct btrfs_trans_handle->new_bgs). This 3640 * means its block group item isn't yet in the extent 3641 * tree. If this happens ignore the error, as we will 3642 * try again later in the critical section of the 3643 * transaction commit. 3644 */ 3645 if (ret == -ENOENT) { 3646 ret = 0; 3647 spin_lock(&cur_trans->dirty_bgs_lock); 3648 if (list_empty(&cache->dirty_list)) { 3649 list_add_tail(&cache->dirty_list, 3650 &cur_trans->dirty_bgs); 3651 btrfs_get_block_group(cache); 3652 } 3653 spin_unlock(&cur_trans->dirty_bgs_lock); 3654 } else if (ret) { 3655 btrfs_abort_transaction(trans, ret); 3656 } 3657 } 3658 3659 /* if its not on the io list, we need to put the block group */ 3660 if (should_put) 3661 btrfs_put_block_group(cache); 3662 3663 if (ret) 3664 break; 3665 3666 /* 3667 * Avoid blocking other tasks for too long. It might even save 3668 * us from writing caches for block groups that are going to be 3669 * removed. 3670 */ 3671 mutex_unlock(&trans->transaction->cache_write_mutex); 3672 mutex_lock(&trans->transaction->cache_write_mutex); 3673 } 3674 mutex_unlock(&trans->transaction->cache_write_mutex); 3675 3676 /* 3677 * go through delayed refs for all the stuff we've just kicked off 3678 * and then loop back (just once) 3679 */ 3680 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3681 if (!ret && loops == 0) { 3682 loops++; 3683 spin_lock(&cur_trans->dirty_bgs_lock); 3684 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3685 /* 3686 * dirty_bgs_lock protects us from concurrent block group 3687 * deletes too (not just cache_write_mutex). 3688 */ 3689 if (!list_empty(&dirty)) { 3690 spin_unlock(&cur_trans->dirty_bgs_lock); 3691 goto again; 3692 } 3693 spin_unlock(&cur_trans->dirty_bgs_lock); 3694 } else if (ret < 0) { 3695 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3696 } 3697 3698 btrfs_free_path(path); 3699 return ret; 3700 } 3701 3702 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3703 struct btrfs_fs_info *fs_info) 3704 { 3705 struct btrfs_block_group_cache *cache; 3706 struct btrfs_transaction *cur_trans = trans->transaction; 3707 int ret = 0; 3708 int should_put; 3709 struct btrfs_path *path; 3710 struct list_head *io = &cur_trans->io_bgs; 3711 int num_started = 0; 3712 3713 path = btrfs_alloc_path(); 3714 if (!path) 3715 return -ENOMEM; 3716 3717 /* 3718 * Even though we are in the critical section of the transaction commit, 3719 * we can still have concurrent tasks adding elements to this 3720 * transaction's list of dirty block groups. These tasks correspond to 3721 * endio free space workers started when writeback finishes for a 3722 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3723 * allocate new block groups as a result of COWing nodes of the root 3724 * tree when updating the free space inode. The writeback for the space 3725 * caches is triggered by an earlier call to 3726 * btrfs_start_dirty_block_groups() and iterations of the following 3727 * loop. 3728 * Also we want to do the cache_save_setup first and then run the 3729 * delayed refs to make sure we have the best chance at doing this all 3730 * in one shot. 3731 */ 3732 spin_lock(&cur_trans->dirty_bgs_lock); 3733 while (!list_empty(&cur_trans->dirty_bgs)) { 3734 cache = list_first_entry(&cur_trans->dirty_bgs, 3735 struct btrfs_block_group_cache, 3736 dirty_list); 3737 3738 /* 3739 * this can happen if cache_save_setup re-dirties a block 3740 * group that is already under IO. Just wait for it to 3741 * finish and then do it all again 3742 */ 3743 if (!list_empty(&cache->io_list)) { 3744 spin_unlock(&cur_trans->dirty_bgs_lock); 3745 list_del_init(&cache->io_list); 3746 btrfs_wait_cache_io(trans, cache, path); 3747 btrfs_put_block_group(cache); 3748 spin_lock(&cur_trans->dirty_bgs_lock); 3749 } 3750 3751 /* 3752 * don't remove from the dirty list until after we've waited 3753 * on any pending IO 3754 */ 3755 list_del_init(&cache->dirty_list); 3756 spin_unlock(&cur_trans->dirty_bgs_lock); 3757 should_put = 1; 3758 3759 cache_save_setup(cache, trans, path); 3760 3761 if (!ret) 3762 ret = btrfs_run_delayed_refs(trans, fs_info, 3763 (unsigned long) -1); 3764 3765 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3766 cache->io_ctl.inode = NULL; 3767 ret = btrfs_write_out_cache(fs_info, trans, 3768 cache, path); 3769 if (ret == 0 && cache->io_ctl.inode) { 3770 num_started++; 3771 should_put = 0; 3772 list_add_tail(&cache->io_list, io); 3773 } else { 3774 /* 3775 * if we failed to write the cache, the 3776 * generation will be bad and life goes on 3777 */ 3778 ret = 0; 3779 } 3780 } 3781 if (!ret) { 3782 ret = write_one_cache_group(trans, fs_info, 3783 path, cache); 3784 /* 3785 * One of the free space endio workers might have 3786 * created a new block group while updating a free space 3787 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3788 * and hasn't released its transaction handle yet, in 3789 * which case the new block group is still attached to 3790 * its transaction handle and its creation has not 3791 * finished yet (no block group item in the extent tree 3792 * yet, etc). If this is the case, wait for all free 3793 * space endio workers to finish and retry. This is a 3794 * a very rare case so no need for a more efficient and 3795 * complex approach. 3796 */ 3797 if (ret == -ENOENT) { 3798 wait_event(cur_trans->writer_wait, 3799 atomic_read(&cur_trans->num_writers) == 1); 3800 ret = write_one_cache_group(trans, fs_info, 3801 path, cache); 3802 } 3803 if (ret) 3804 btrfs_abort_transaction(trans, ret); 3805 } 3806 3807 /* if its not on the io list, we need to put the block group */ 3808 if (should_put) 3809 btrfs_put_block_group(cache); 3810 spin_lock(&cur_trans->dirty_bgs_lock); 3811 } 3812 spin_unlock(&cur_trans->dirty_bgs_lock); 3813 3814 while (!list_empty(io)) { 3815 cache = list_first_entry(io, struct btrfs_block_group_cache, 3816 io_list); 3817 list_del_init(&cache->io_list); 3818 btrfs_wait_cache_io(trans, cache, path); 3819 btrfs_put_block_group(cache); 3820 } 3821 3822 btrfs_free_path(path); 3823 return ret; 3824 } 3825 3826 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3827 { 3828 struct btrfs_block_group_cache *block_group; 3829 int readonly = 0; 3830 3831 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3832 if (!block_group || block_group->ro) 3833 readonly = 1; 3834 if (block_group) 3835 btrfs_put_block_group(block_group); 3836 return readonly; 3837 } 3838 3839 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3840 { 3841 struct btrfs_block_group_cache *bg; 3842 bool ret = true; 3843 3844 bg = btrfs_lookup_block_group(fs_info, bytenr); 3845 if (!bg) 3846 return false; 3847 3848 spin_lock(&bg->lock); 3849 if (bg->ro) 3850 ret = false; 3851 else 3852 atomic_inc(&bg->nocow_writers); 3853 spin_unlock(&bg->lock); 3854 3855 /* no put on block group, done by btrfs_dec_nocow_writers */ 3856 if (!ret) 3857 btrfs_put_block_group(bg); 3858 3859 return ret; 3860 3861 } 3862 3863 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3864 { 3865 struct btrfs_block_group_cache *bg; 3866 3867 bg = btrfs_lookup_block_group(fs_info, bytenr); 3868 ASSERT(bg); 3869 if (atomic_dec_and_test(&bg->nocow_writers)) 3870 wake_up_atomic_t(&bg->nocow_writers); 3871 /* 3872 * Once for our lookup and once for the lookup done by a previous call 3873 * to btrfs_inc_nocow_writers() 3874 */ 3875 btrfs_put_block_group(bg); 3876 btrfs_put_block_group(bg); 3877 } 3878 3879 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3880 { 3881 schedule(); 3882 return 0; 3883 } 3884 3885 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3886 { 3887 wait_on_atomic_t(&bg->nocow_writers, 3888 btrfs_wait_nocow_writers_atomic_t, 3889 TASK_UNINTERRUPTIBLE); 3890 } 3891 3892 static const char *alloc_name(u64 flags) 3893 { 3894 switch (flags) { 3895 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3896 return "mixed"; 3897 case BTRFS_BLOCK_GROUP_METADATA: 3898 return "metadata"; 3899 case BTRFS_BLOCK_GROUP_DATA: 3900 return "data"; 3901 case BTRFS_BLOCK_GROUP_SYSTEM: 3902 return "system"; 3903 default: 3904 WARN_ON(1); 3905 return "invalid-combination"; 3906 }; 3907 } 3908 3909 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3910 u64 total_bytes, u64 bytes_used, 3911 u64 bytes_readonly, 3912 struct btrfs_space_info **space_info) 3913 { 3914 struct btrfs_space_info *found; 3915 int i; 3916 int factor; 3917 int ret; 3918 3919 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3920 BTRFS_BLOCK_GROUP_RAID10)) 3921 factor = 2; 3922 else 3923 factor = 1; 3924 3925 found = __find_space_info(info, flags); 3926 if (found) { 3927 spin_lock(&found->lock); 3928 found->total_bytes += total_bytes; 3929 found->disk_total += total_bytes * factor; 3930 found->bytes_used += bytes_used; 3931 found->disk_used += bytes_used * factor; 3932 found->bytes_readonly += bytes_readonly; 3933 if (total_bytes > 0) 3934 found->full = 0; 3935 space_info_add_new_bytes(info, found, total_bytes - 3936 bytes_used - bytes_readonly); 3937 spin_unlock(&found->lock); 3938 *space_info = found; 3939 return 0; 3940 } 3941 found = kzalloc(sizeof(*found), GFP_NOFS); 3942 if (!found) 3943 return -ENOMEM; 3944 3945 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3946 if (ret) { 3947 kfree(found); 3948 return ret; 3949 } 3950 3951 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3952 INIT_LIST_HEAD(&found->block_groups[i]); 3953 init_rwsem(&found->groups_sem); 3954 spin_lock_init(&found->lock); 3955 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3956 found->total_bytes = total_bytes; 3957 found->disk_total = total_bytes * factor; 3958 found->bytes_used = bytes_used; 3959 found->disk_used = bytes_used * factor; 3960 found->bytes_pinned = 0; 3961 found->bytes_reserved = 0; 3962 found->bytes_readonly = bytes_readonly; 3963 found->bytes_may_use = 0; 3964 found->full = 0; 3965 found->max_extent_size = 0; 3966 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3967 found->chunk_alloc = 0; 3968 found->flush = 0; 3969 init_waitqueue_head(&found->wait); 3970 INIT_LIST_HEAD(&found->ro_bgs); 3971 INIT_LIST_HEAD(&found->tickets); 3972 INIT_LIST_HEAD(&found->priority_tickets); 3973 3974 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3975 info->space_info_kobj, "%s", 3976 alloc_name(found->flags)); 3977 if (ret) { 3978 kfree(found); 3979 return ret; 3980 } 3981 3982 *space_info = found; 3983 list_add_rcu(&found->list, &info->space_info); 3984 if (flags & BTRFS_BLOCK_GROUP_DATA) 3985 info->data_sinfo = found; 3986 3987 return ret; 3988 } 3989 3990 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3991 { 3992 u64 extra_flags = chunk_to_extended(flags) & 3993 BTRFS_EXTENDED_PROFILE_MASK; 3994 3995 write_seqlock(&fs_info->profiles_lock); 3996 if (flags & BTRFS_BLOCK_GROUP_DATA) 3997 fs_info->avail_data_alloc_bits |= extra_flags; 3998 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3999 fs_info->avail_metadata_alloc_bits |= extra_flags; 4000 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4001 fs_info->avail_system_alloc_bits |= extra_flags; 4002 write_sequnlock(&fs_info->profiles_lock); 4003 } 4004 4005 /* 4006 * returns target flags in extended format or 0 if restripe for this 4007 * chunk_type is not in progress 4008 * 4009 * should be called with either volume_mutex or balance_lock held 4010 */ 4011 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4012 { 4013 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4014 u64 target = 0; 4015 4016 if (!bctl) 4017 return 0; 4018 4019 if (flags & BTRFS_BLOCK_GROUP_DATA && 4020 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4021 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4022 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4023 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4024 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4025 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4026 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4027 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4028 } 4029 4030 return target; 4031 } 4032 4033 /* 4034 * @flags: available profiles in extended format (see ctree.h) 4035 * 4036 * Returns reduced profile in chunk format. If profile changing is in 4037 * progress (either running or paused) picks the target profile (if it's 4038 * already available), otherwise falls back to plain reducing. 4039 */ 4040 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4041 { 4042 u64 num_devices = fs_info->fs_devices->rw_devices; 4043 u64 target; 4044 u64 raid_type; 4045 u64 allowed = 0; 4046 4047 /* 4048 * see if restripe for this chunk_type is in progress, if so 4049 * try to reduce to the target profile 4050 */ 4051 spin_lock(&fs_info->balance_lock); 4052 target = get_restripe_target(fs_info, flags); 4053 if (target) { 4054 /* pick target profile only if it's already available */ 4055 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4056 spin_unlock(&fs_info->balance_lock); 4057 return extended_to_chunk(target); 4058 } 4059 } 4060 spin_unlock(&fs_info->balance_lock); 4061 4062 /* First, mask out the RAID levels which aren't possible */ 4063 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4064 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4065 allowed |= btrfs_raid_group[raid_type]; 4066 } 4067 allowed &= flags; 4068 4069 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4070 allowed = BTRFS_BLOCK_GROUP_RAID6; 4071 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4072 allowed = BTRFS_BLOCK_GROUP_RAID5; 4073 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4074 allowed = BTRFS_BLOCK_GROUP_RAID10; 4075 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4076 allowed = BTRFS_BLOCK_GROUP_RAID1; 4077 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4078 allowed = BTRFS_BLOCK_GROUP_RAID0; 4079 4080 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4081 4082 return extended_to_chunk(flags | allowed); 4083 } 4084 4085 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4086 { 4087 unsigned seq; 4088 u64 flags; 4089 4090 do { 4091 flags = orig_flags; 4092 seq = read_seqbegin(&fs_info->profiles_lock); 4093 4094 if (flags & BTRFS_BLOCK_GROUP_DATA) 4095 flags |= fs_info->avail_data_alloc_bits; 4096 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4097 flags |= fs_info->avail_system_alloc_bits; 4098 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4099 flags |= fs_info->avail_metadata_alloc_bits; 4100 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4101 4102 return btrfs_reduce_alloc_profile(fs_info, flags); 4103 } 4104 4105 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4106 { 4107 struct btrfs_fs_info *fs_info = root->fs_info; 4108 u64 flags; 4109 u64 ret; 4110 4111 if (data) 4112 flags = BTRFS_BLOCK_GROUP_DATA; 4113 else if (root == fs_info->chunk_root) 4114 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4115 else 4116 flags = BTRFS_BLOCK_GROUP_METADATA; 4117 4118 ret = get_alloc_profile(fs_info, flags); 4119 return ret; 4120 } 4121 4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4123 { 4124 struct btrfs_space_info *data_sinfo; 4125 struct btrfs_root *root = BTRFS_I(inode)->root; 4126 struct btrfs_fs_info *fs_info = root->fs_info; 4127 u64 used; 4128 int ret = 0; 4129 int need_commit = 2; 4130 int have_pinned_space; 4131 4132 /* make sure bytes are sectorsize aligned */ 4133 bytes = ALIGN(bytes, fs_info->sectorsize); 4134 4135 if (btrfs_is_free_space_inode(inode)) { 4136 need_commit = 0; 4137 ASSERT(current->journal_info); 4138 } 4139 4140 data_sinfo = fs_info->data_sinfo; 4141 if (!data_sinfo) 4142 goto alloc; 4143 4144 again: 4145 /* make sure we have enough space to handle the data first */ 4146 spin_lock(&data_sinfo->lock); 4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4149 data_sinfo->bytes_may_use; 4150 4151 if (used + bytes > data_sinfo->total_bytes) { 4152 struct btrfs_trans_handle *trans; 4153 4154 /* 4155 * if we don't have enough free bytes in this space then we need 4156 * to alloc a new chunk. 4157 */ 4158 if (!data_sinfo->full) { 4159 u64 alloc_target; 4160 4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4162 spin_unlock(&data_sinfo->lock); 4163 alloc: 4164 alloc_target = btrfs_get_alloc_profile(root, 1); 4165 /* 4166 * It is ugly that we don't call nolock join 4167 * transaction for the free space inode case here. 4168 * But it is safe because we only do the data space 4169 * reservation for the free space cache in the 4170 * transaction context, the common join transaction 4171 * just increase the counter of the current transaction 4172 * handler, doesn't try to acquire the trans_lock of 4173 * the fs. 4174 */ 4175 trans = btrfs_join_transaction(root); 4176 if (IS_ERR(trans)) 4177 return PTR_ERR(trans); 4178 4179 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4180 CHUNK_ALLOC_NO_FORCE); 4181 btrfs_end_transaction(trans); 4182 if (ret < 0) { 4183 if (ret != -ENOSPC) 4184 return ret; 4185 else { 4186 have_pinned_space = 1; 4187 goto commit_trans; 4188 } 4189 } 4190 4191 if (!data_sinfo) 4192 data_sinfo = fs_info->data_sinfo; 4193 4194 goto again; 4195 } 4196 4197 /* 4198 * If we don't have enough pinned space to deal with this 4199 * allocation, and no removed chunk in current transaction, 4200 * don't bother committing the transaction. 4201 */ 4202 have_pinned_space = percpu_counter_compare( 4203 &data_sinfo->total_bytes_pinned, 4204 used + bytes - data_sinfo->total_bytes); 4205 spin_unlock(&data_sinfo->lock); 4206 4207 /* commit the current transaction and try again */ 4208 commit_trans: 4209 if (need_commit && 4210 !atomic_read(&fs_info->open_ioctl_trans)) { 4211 need_commit--; 4212 4213 if (need_commit > 0) { 4214 btrfs_start_delalloc_roots(fs_info, 0, -1); 4215 btrfs_wait_ordered_roots(fs_info, -1, 0, 4216 (u64)-1); 4217 } 4218 4219 trans = btrfs_join_transaction(root); 4220 if (IS_ERR(trans)) 4221 return PTR_ERR(trans); 4222 if (have_pinned_space >= 0 || 4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4224 &trans->transaction->flags) || 4225 need_commit > 0) { 4226 ret = btrfs_commit_transaction(trans); 4227 if (ret) 4228 return ret; 4229 /* 4230 * The cleaner kthread might still be doing iput 4231 * operations. Wait for it to finish so that 4232 * more space is released. 4233 */ 4234 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4235 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4236 goto again; 4237 } else { 4238 btrfs_end_transaction(trans); 4239 } 4240 } 4241 4242 trace_btrfs_space_reservation(fs_info, 4243 "space_info:enospc", 4244 data_sinfo->flags, bytes, 1); 4245 return -ENOSPC; 4246 } 4247 data_sinfo->bytes_may_use += bytes; 4248 trace_btrfs_space_reservation(fs_info, "space_info", 4249 data_sinfo->flags, bytes, 1); 4250 spin_unlock(&data_sinfo->lock); 4251 4252 return ret; 4253 } 4254 4255 /* 4256 * New check_data_free_space() with ability for precious data reservation 4257 * Will replace old btrfs_check_data_free_space(), but for patch split, 4258 * add a new function first and then replace it. 4259 */ 4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4261 { 4262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4263 int ret; 4264 4265 /* align the range */ 4266 len = round_up(start + len, fs_info->sectorsize) - 4267 round_down(start, fs_info->sectorsize); 4268 start = round_down(start, fs_info->sectorsize); 4269 4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4271 if (ret < 0) 4272 return ret; 4273 4274 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4275 ret = btrfs_qgroup_reserve_data(inode, start, len); 4276 if (ret) 4277 btrfs_free_reserved_data_space_noquota(inode, start, len); 4278 return ret; 4279 } 4280 4281 /* 4282 * Called if we need to clear a data reservation for this inode 4283 * Normally in a error case. 4284 * 4285 * This one will *NOT* use accurate qgroup reserved space API, just for case 4286 * which we can't sleep and is sure it won't affect qgroup reserved space. 4287 * Like clear_bit_hook(). 4288 */ 4289 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4290 u64 len) 4291 { 4292 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4293 struct btrfs_space_info *data_sinfo; 4294 4295 /* Make sure the range is aligned to sectorsize */ 4296 len = round_up(start + len, fs_info->sectorsize) - 4297 round_down(start, fs_info->sectorsize); 4298 start = round_down(start, fs_info->sectorsize); 4299 4300 data_sinfo = fs_info->data_sinfo; 4301 spin_lock(&data_sinfo->lock); 4302 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4303 data_sinfo->bytes_may_use = 0; 4304 else 4305 data_sinfo->bytes_may_use -= len; 4306 trace_btrfs_space_reservation(fs_info, "space_info", 4307 data_sinfo->flags, len, 0); 4308 spin_unlock(&data_sinfo->lock); 4309 } 4310 4311 /* 4312 * Called if we need to clear a data reservation for this inode 4313 * Normally in a error case. 4314 * 4315 * This one will handle the per-inode data rsv map for accurate reserved 4316 * space framework. 4317 */ 4318 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4319 { 4320 struct btrfs_root *root = BTRFS_I(inode)->root; 4321 4322 /* Make sure the range is aligned to sectorsize */ 4323 len = round_up(start + len, root->fs_info->sectorsize) - 4324 round_down(start, root->fs_info->sectorsize); 4325 start = round_down(start, root->fs_info->sectorsize); 4326 4327 btrfs_free_reserved_data_space_noquota(inode, start, len); 4328 btrfs_qgroup_free_data(inode, start, len); 4329 } 4330 4331 static void force_metadata_allocation(struct btrfs_fs_info *info) 4332 { 4333 struct list_head *head = &info->space_info; 4334 struct btrfs_space_info *found; 4335 4336 rcu_read_lock(); 4337 list_for_each_entry_rcu(found, head, list) { 4338 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4339 found->force_alloc = CHUNK_ALLOC_FORCE; 4340 } 4341 rcu_read_unlock(); 4342 } 4343 4344 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4345 { 4346 return (global->size << 1); 4347 } 4348 4349 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4350 struct btrfs_space_info *sinfo, int force) 4351 { 4352 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4353 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4354 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4355 u64 thresh; 4356 4357 if (force == CHUNK_ALLOC_FORCE) 4358 return 1; 4359 4360 /* 4361 * We need to take into account the global rsv because for all intents 4362 * and purposes it's used space. Don't worry about locking the 4363 * global_rsv, it doesn't change except when the transaction commits. 4364 */ 4365 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4366 num_allocated += calc_global_rsv_need_space(global_rsv); 4367 4368 /* 4369 * in limited mode, we want to have some free space up to 4370 * about 1% of the FS size. 4371 */ 4372 if (force == CHUNK_ALLOC_LIMITED) { 4373 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4374 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4375 4376 if (num_bytes - num_allocated < thresh) 4377 return 1; 4378 } 4379 4380 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4381 return 0; 4382 return 1; 4383 } 4384 4385 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4386 { 4387 u64 num_dev; 4388 4389 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4390 BTRFS_BLOCK_GROUP_RAID0 | 4391 BTRFS_BLOCK_GROUP_RAID5 | 4392 BTRFS_BLOCK_GROUP_RAID6)) 4393 num_dev = fs_info->fs_devices->rw_devices; 4394 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4395 num_dev = 2; 4396 else 4397 num_dev = 1; /* DUP or single */ 4398 4399 return num_dev; 4400 } 4401 4402 /* 4403 * If @is_allocation is true, reserve space in the system space info necessary 4404 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4405 * removing a chunk. 4406 */ 4407 void check_system_chunk(struct btrfs_trans_handle *trans, 4408 struct btrfs_fs_info *fs_info, u64 type) 4409 { 4410 struct btrfs_space_info *info; 4411 u64 left; 4412 u64 thresh; 4413 int ret = 0; 4414 u64 num_devs; 4415 4416 /* 4417 * Needed because we can end up allocating a system chunk and for an 4418 * atomic and race free space reservation in the chunk block reserve. 4419 */ 4420 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4421 4422 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4423 spin_lock(&info->lock); 4424 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4425 info->bytes_reserved - info->bytes_readonly - 4426 info->bytes_may_use; 4427 spin_unlock(&info->lock); 4428 4429 num_devs = get_profile_num_devs(fs_info, type); 4430 4431 /* num_devs device items to update and 1 chunk item to add or remove */ 4432 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4433 btrfs_calc_trans_metadata_size(fs_info, 1); 4434 4435 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4436 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4437 left, thresh, type); 4438 dump_space_info(fs_info, info, 0, 0); 4439 } 4440 4441 if (left < thresh) { 4442 u64 flags; 4443 4444 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4445 /* 4446 * Ignore failure to create system chunk. We might end up not 4447 * needing it, as we might not need to COW all nodes/leafs from 4448 * the paths we visit in the chunk tree (they were already COWed 4449 * or created in the current transaction for example). 4450 */ 4451 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4452 } 4453 4454 if (!ret) { 4455 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4456 &fs_info->chunk_block_rsv, 4457 thresh, BTRFS_RESERVE_NO_FLUSH); 4458 if (!ret) 4459 trans->chunk_bytes_reserved += thresh; 4460 } 4461 } 4462 4463 /* 4464 * If force is CHUNK_ALLOC_FORCE: 4465 * - return 1 if it successfully allocates a chunk, 4466 * - return errors including -ENOSPC otherwise. 4467 * If force is NOT CHUNK_ALLOC_FORCE: 4468 * - return 0 if it doesn't need to allocate a new chunk, 4469 * - return 1 if it successfully allocates a chunk, 4470 * - return errors including -ENOSPC otherwise. 4471 */ 4472 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4473 struct btrfs_fs_info *fs_info, u64 flags, int force) 4474 { 4475 struct btrfs_space_info *space_info; 4476 int wait_for_alloc = 0; 4477 int ret = 0; 4478 4479 /* Don't re-enter if we're already allocating a chunk */ 4480 if (trans->allocating_chunk) 4481 return -ENOSPC; 4482 4483 space_info = __find_space_info(fs_info, flags); 4484 if (!space_info) { 4485 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 4486 BUG_ON(ret); /* -ENOMEM */ 4487 } 4488 BUG_ON(!space_info); /* Logic error */ 4489 4490 again: 4491 spin_lock(&space_info->lock); 4492 if (force < space_info->force_alloc) 4493 force = space_info->force_alloc; 4494 if (space_info->full) { 4495 if (should_alloc_chunk(fs_info, space_info, force)) 4496 ret = -ENOSPC; 4497 else 4498 ret = 0; 4499 spin_unlock(&space_info->lock); 4500 return ret; 4501 } 4502 4503 if (!should_alloc_chunk(fs_info, space_info, force)) { 4504 spin_unlock(&space_info->lock); 4505 return 0; 4506 } else if (space_info->chunk_alloc) { 4507 wait_for_alloc = 1; 4508 } else { 4509 space_info->chunk_alloc = 1; 4510 } 4511 4512 spin_unlock(&space_info->lock); 4513 4514 mutex_lock(&fs_info->chunk_mutex); 4515 4516 /* 4517 * The chunk_mutex is held throughout the entirety of a chunk 4518 * allocation, so once we've acquired the chunk_mutex we know that the 4519 * other guy is done and we need to recheck and see if we should 4520 * allocate. 4521 */ 4522 if (wait_for_alloc) { 4523 mutex_unlock(&fs_info->chunk_mutex); 4524 wait_for_alloc = 0; 4525 goto again; 4526 } 4527 4528 trans->allocating_chunk = true; 4529 4530 /* 4531 * If we have mixed data/metadata chunks we want to make sure we keep 4532 * allocating mixed chunks instead of individual chunks. 4533 */ 4534 if (btrfs_mixed_space_info(space_info)) 4535 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4536 4537 /* 4538 * if we're doing a data chunk, go ahead and make sure that 4539 * we keep a reasonable number of metadata chunks allocated in the 4540 * FS as well. 4541 */ 4542 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4543 fs_info->data_chunk_allocations++; 4544 if (!(fs_info->data_chunk_allocations % 4545 fs_info->metadata_ratio)) 4546 force_metadata_allocation(fs_info); 4547 } 4548 4549 /* 4550 * Check if we have enough space in SYSTEM chunk because we may need 4551 * to update devices. 4552 */ 4553 check_system_chunk(trans, fs_info, flags); 4554 4555 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4556 trans->allocating_chunk = false; 4557 4558 spin_lock(&space_info->lock); 4559 if (ret < 0 && ret != -ENOSPC) 4560 goto out; 4561 if (ret) 4562 space_info->full = 1; 4563 else 4564 ret = 1; 4565 4566 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4567 out: 4568 space_info->chunk_alloc = 0; 4569 spin_unlock(&space_info->lock); 4570 mutex_unlock(&fs_info->chunk_mutex); 4571 /* 4572 * When we allocate a new chunk we reserve space in the chunk block 4573 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4574 * add new nodes/leafs to it if we end up needing to do it when 4575 * inserting the chunk item and updating device items as part of the 4576 * second phase of chunk allocation, performed by 4577 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4578 * large number of new block groups to create in our transaction 4579 * handle's new_bgs list to avoid exhausting the chunk block reserve 4580 * in extreme cases - like having a single transaction create many new 4581 * block groups when starting to write out the free space caches of all 4582 * the block groups that were made dirty during the lifetime of the 4583 * transaction. 4584 */ 4585 if (trans->can_flush_pending_bgs && 4586 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4587 btrfs_create_pending_block_groups(trans, fs_info); 4588 btrfs_trans_release_chunk_metadata(trans); 4589 } 4590 return ret; 4591 } 4592 4593 static int can_overcommit(struct btrfs_root *root, 4594 struct btrfs_space_info *space_info, u64 bytes, 4595 enum btrfs_reserve_flush_enum flush) 4596 { 4597 struct btrfs_fs_info *fs_info = root->fs_info; 4598 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4599 u64 profile; 4600 u64 space_size; 4601 u64 avail; 4602 u64 used; 4603 4604 /* Don't overcommit when in mixed mode. */ 4605 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4606 return 0; 4607 4608 profile = btrfs_get_alloc_profile(root, 0); 4609 used = space_info->bytes_used + space_info->bytes_reserved + 4610 space_info->bytes_pinned + space_info->bytes_readonly; 4611 4612 /* 4613 * We only want to allow over committing if we have lots of actual space 4614 * free, but if we don't have enough space to handle the global reserve 4615 * space then we could end up having a real enospc problem when trying 4616 * to allocate a chunk or some other such important allocation. 4617 */ 4618 spin_lock(&global_rsv->lock); 4619 space_size = calc_global_rsv_need_space(global_rsv); 4620 spin_unlock(&global_rsv->lock); 4621 if (used + space_size >= space_info->total_bytes) 4622 return 0; 4623 4624 used += space_info->bytes_may_use; 4625 4626 spin_lock(&fs_info->free_chunk_lock); 4627 avail = fs_info->free_chunk_space; 4628 spin_unlock(&fs_info->free_chunk_lock); 4629 4630 /* 4631 * If we have dup, raid1 or raid10 then only half of the free 4632 * space is actually useable. For raid56, the space info used 4633 * doesn't include the parity drive, so we don't have to 4634 * change the math 4635 */ 4636 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4637 BTRFS_BLOCK_GROUP_RAID1 | 4638 BTRFS_BLOCK_GROUP_RAID10)) 4639 avail >>= 1; 4640 4641 /* 4642 * If we aren't flushing all things, let us overcommit up to 4643 * 1/2th of the space. If we can flush, don't let us overcommit 4644 * too much, let it overcommit up to 1/8 of the space. 4645 */ 4646 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4647 avail >>= 3; 4648 else 4649 avail >>= 1; 4650 4651 if (used + bytes < space_info->total_bytes + avail) 4652 return 1; 4653 return 0; 4654 } 4655 4656 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4657 unsigned long nr_pages, int nr_items) 4658 { 4659 struct super_block *sb = fs_info->sb; 4660 4661 if (down_read_trylock(&sb->s_umount)) { 4662 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4663 up_read(&sb->s_umount); 4664 } else { 4665 /* 4666 * We needn't worry the filesystem going from r/w to r/o though 4667 * we don't acquire ->s_umount mutex, because the filesystem 4668 * should guarantee the delalloc inodes list be empty after 4669 * the filesystem is readonly(all dirty pages are written to 4670 * the disk). 4671 */ 4672 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4673 if (!current->journal_info) 4674 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4675 } 4676 } 4677 4678 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4679 u64 to_reclaim) 4680 { 4681 u64 bytes; 4682 int nr; 4683 4684 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4685 nr = (int)div64_u64(to_reclaim, bytes); 4686 if (!nr) 4687 nr = 1; 4688 return nr; 4689 } 4690 4691 #define EXTENT_SIZE_PER_ITEM SZ_256K 4692 4693 /* 4694 * shrink metadata reservation for delalloc 4695 */ 4696 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4697 bool wait_ordered) 4698 { 4699 struct btrfs_fs_info *fs_info = root->fs_info; 4700 struct btrfs_block_rsv *block_rsv; 4701 struct btrfs_space_info *space_info; 4702 struct btrfs_trans_handle *trans; 4703 u64 delalloc_bytes; 4704 u64 max_reclaim; 4705 long time_left; 4706 unsigned long nr_pages; 4707 int loops; 4708 int items; 4709 enum btrfs_reserve_flush_enum flush; 4710 4711 /* Calc the number of the pages we need flush for space reservation */ 4712 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4713 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4714 4715 trans = (struct btrfs_trans_handle *)current->journal_info; 4716 block_rsv = &fs_info->delalloc_block_rsv; 4717 space_info = block_rsv->space_info; 4718 4719 delalloc_bytes = percpu_counter_sum_positive( 4720 &fs_info->delalloc_bytes); 4721 if (delalloc_bytes == 0) { 4722 if (trans) 4723 return; 4724 if (wait_ordered) 4725 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4726 return; 4727 } 4728 4729 loops = 0; 4730 while (delalloc_bytes && loops < 3) { 4731 max_reclaim = min(delalloc_bytes, to_reclaim); 4732 nr_pages = max_reclaim >> PAGE_SHIFT; 4733 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4734 /* 4735 * We need to wait for the async pages to actually start before 4736 * we do anything. 4737 */ 4738 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4739 if (!max_reclaim) 4740 goto skip_async; 4741 4742 if (max_reclaim <= nr_pages) 4743 max_reclaim = 0; 4744 else 4745 max_reclaim -= nr_pages; 4746 4747 wait_event(fs_info->async_submit_wait, 4748 atomic_read(&fs_info->async_delalloc_pages) <= 4749 (int)max_reclaim); 4750 skip_async: 4751 if (!trans) 4752 flush = BTRFS_RESERVE_FLUSH_ALL; 4753 else 4754 flush = BTRFS_RESERVE_NO_FLUSH; 4755 spin_lock(&space_info->lock); 4756 if (can_overcommit(root, space_info, orig, flush)) { 4757 spin_unlock(&space_info->lock); 4758 break; 4759 } 4760 if (list_empty(&space_info->tickets) && 4761 list_empty(&space_info->priority_tickets)) { 4762 spin_unlock(&space_info->lock); 4763 break; 4764 } 4765 spin_unlock(&space_info->lock); 4766 4767 loops++; 4768 if (wait_ordered && !trans) { 4769 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4770 } else { 4771 time_left = schedule_timeout_killable(1); 4772 if (time_left) 4773 break; 4774 } 4775 delalloc_bytes = percpu_counter_sum_positive( 4776 &fs_info->delalloc_bytes); 4777 } 4778 } 4779 4780 /** 4781 * maybe_commit_transaction - possibly commit the transaction if its ok to 4782 * @root - the root we're allocating for 4783 * @bytes - the number of bytes we want to reserve 4784 * @force - force the commit 4785 * 4786 * This will check to make sure that committing the transaction will actually 4787 * get us somewhere and then commit the transaction if it does. Otherwise it 4788 * will return -ENOSPC. 4789 */ 4790 static int may_commit_transaction(struct btrfs_root *root, 4791 struct btrfs_space_info *space_info, 4792 u64 bytes, int force) 4793 { 4794 struct btrfs_fs_info *fs_info = root->fs_info; 4795 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4796 struct btrfs_trans_handle *trans; 4797 4798 trans = (struct btrfs_trans_handle *)current->journal_info; 4799 if (trans) 4800 return -EAGAIN; 4801 4802 if (force) 4803 goto commit; 4804 4805 /* See if there is enough pinned space to make this reservation */ 4806 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4807 bytes) >= 0) 4808 goto commit; 4809 4810 /* 4811 * See if there is some space in the delayed insertion reservation for 4812 * this reservation. 4813 */ 4814 if (space_info != delayed_rsv->space_info) 4815 return -ENOSPC; 4816 4817 spin_lock(&delayed_rsv->lock); 4818 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4819 bytes - delayed_rsv->size) >= 0) { 4820 spin_unlock(&delayed_rsv->lock); 4821 return -ENOSPC; 4822 } 4823 spin_unlock(&delayed_rsv->lock); 4824 4825 commit: 4826 trans = btrfs_join_transaction(root); 4827 if (IS_ERR(trans)) 4828 return -ENOSPC; 4829 4830 return btrfs_commit_transaction(trans); 4831 } 4832 4833 struct reserve_ticket { 4834 u64 bytes; 4835 int error; 4836 struct list_head list; 4837 wait_queue_head_t wait; 4838 }; 4839 4840 static int flush_space(struct btrfs_root *root, 4841 struct btrfs_space_info *space_info, u64 num_bytes, 4842 u64 orig_bytes, int state) 4843 { 4844 struct btrfs_fs_info *fs_info = root->fs_info; 4845 struct btrfs_trans_handle *trans; 4846 int nr; 4847 int ret = 0; 4848 4849 switch (state) { 4850 case FLUSH_DELAYED_ITEMS_NR: 4851 case FLUSH_DELAYED_ITEMS: 4852 if (state == FLUSH_DELAYED_ITEMS_NR) 4853 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4854 else 4855 nr = -1; 4856 4857 trans = btrfs_join_transaction(root); 4858 if (IS_ERR(trans)) { 4859 ret = PTR_ERR(trans); 4860 break; 4861 } 4862 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 4863 btrfs_end_transaction(trans); 4864 break; 4865 case FLUSH_DELALLOC: 4866 case FLUSH_DELALLOC_WAIT: 4867 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4868 state == FLUSH_DELALLOC_WAIT); 4869 break; 4870 case ALLOC_CHUNK: 4871 trans = btrfs_join_transaction(root); 4872 if (IS_ERR(trans)) { 4873 ret = PTR_ERR(trans); 4874 break; 4875 } 4876 ret = do_chunk_alloc(trans, fs_info, 4877 btrfs_get_alloc_profile(root, 0), 4878 CHUNK_ALLOC_NO_FORCE); 4879 btrfs_end_transaction(trans); 4880 if (ret > 0 || ret == -ENOSPC) 4881 ret = 0; 4882 break; 4883 case COMMIT_TRANS: 4884 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4885 break; 4886 default: 4887 ret = -ENOSPC; 4888 break; 4889 } 4890 4891 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, 4892 orig_bytes, state, ret); 4893 return ret; 4894 } 4895 4896 static inline u64 4897 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4898 struct btrfs_space_info *space_info) 4899 { 4900 struct reserve_ticket *ticket; 4901 u64 used; 4902 u64 expected; 4903 u64 to_reclaim = 0; 4904 4905 list_for_each_entry(ticket, &space_info->tickets, list) 4906 to_reclaim += ticket->bytes; 4907 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4908 to_reclaim += ticket->bytes; 4909 if (to_reclaim) 4910 return to_reclaim; 4911 4912 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4913 if (can_overcommit(root, space_info, to_reclaim, 4914 BTRFS_RESERVE_FLUSH_ALL)) 4915 return 0; 4916 4917 used = space_info->bytes_used + space_info->bytes_reserved + 4918 space_info->bytes_pinned + space_info->bytes_readonly + 4919 space_info->bytes_may_use; 4920 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4921 expected = div_factor_fine(space_info->total_bytes, 95); 4922 else 4923 expected = div_factor_fine(space_info->total_bytes, 90); 4924 4925 if (used > expected) 4926 to_reclaim = used - expected; 4927 else 4928 to_reclaim = 0; 4929 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4930 space_info->bytes_reserved); 4931 return to_reclaim; 4932 } 4933 4934 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4935 struct btrfs_root *root, u64 used) 4936 { 4937 struct btrfs_fs_info *fs_info = root->fs_info; 4938 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4939 4940 /* If we're just plain full then async reclaim just slows us down. */ 4941 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4942 return 0; 4943 4944 if (!btrfs_calc_reclaim_metadata_size(root, space_info)) 4945 return 0; 4946 4947 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4948 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4949 } 4950 4951 static void wake_all_tickets(struct list_head *head) 4952 { 4953 struct reserve_ticket *ticket; 4954 4955 while (!list_empty(head)) { 4956 ticket = list_first_entry(head, struct reserve_ticket, list); 4957 list_del_init(&ticket->list); 4958 ticket->error = -ENOSPC; 4959 wake_up(&ticket->wait); 4960 } 4961 } 4962 4963 /* 4964 * This is for normal flushers, we can wait all goddamned day if we want to. We 4965 * will loop and continuously try to flush as long as we are making progress. 4966 * We count progress as clearing off tickets each time we have to loop. 4967 */ 4968 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4969 { 4970 struct btrfs_fs_info *fs_info; 4971 struct btrfs_space_info *space_info; 4972 u64 to_reclaim; 4973 int flush_state; 4974 int commit_cycles = 0; 4975 u64 last_tickets_id; 4976 4977 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4978 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4979 4980 spin_lock(&space_info->lock); 4981 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4982 space_info); 4983 if (!to_reclaim) { 4984 space_info->flush = 0; 4985 spin_unlock(&space_info->lock); 4986 return; 4987 } 4988 last_tickets_id = space_info->tickets_id; 4989 spin_unlock(&space_info->lock); 4990 4991 flush_state = FLUSH_DELAYED_ITEMS_NR; 4992 do { 4993 struct reserve_ticket *ticket; 4994 int ret; 4995 4996 ret = flush_space(fs_info->fs_root, space_info, to_reclaim, 4997 to_reclaim, flush_state); 4998 spin_lock(&space_info->lock); 4999 if (list_empty(&space_info->tickets)) { 5000 space_info->flush = 0; 5001 spin_unlock(&space_info->lock); 5002 return; 5003 } 5004 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5005 space_info); 5006 ticket = list_first_entry(&space_info->tickets, 5007 struct reserve_ticket, list); 5008 if (last_tickets_id == space_info->tickets_id) { 5009 flush_state++; 5010 } else { 5011 last_tickets_id = space_info->tickets_id; 5012 flush_state = FLUSH_DELAYED_ITEMS_NR; 5013 if (commit_cycles) 5014 commit_cycles--; 5015 } 5016 5017 if (flush_state > COMMIT_TRANS) { 5018 commit_cycles++; 5019 if (commit_cycles > 2) { 5020 wake_all_tickets(&space_info->tickets); 5021 space_info->flush = 0; 5022 } else { 5023 flush_state = FLUSH_DELAYED_ITEMS_NR; 5024 } 5025 } 5026 spin_unlock(&space_info->lock); 5027 } while (flush_state <= COMMIT_TRANS); 5028 } 5029 5030 void btrfs_init_async_reclaim_work(struct work_struct *work) 5031 { 5032 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5033 } 5034 5035 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5036 struct btrfs_space_info *space_info, 5037 struct reserve_ticket *ticket) 5038 { 5039 u64 to_reclaim; 5040 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5041 5042 spin_lock(&space_info->lock); 5043 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5044 space_info); 5045 if (!to_reclaim) { 5046 spin_unlock(&space_info->lock); 5047 return; 5048 } 5049 spin_unlock(&space_info->lock); 5050 5051 do { 5052 flush_space(fs_info->fs_root, space_info, to_reclaim, 5053 to_reclaim, flush_state); 5054 flush_state++; 5055 spin_lock(&space_info->lock); 5056 if (ticket->bytes == 0) { 5057 spin_unlock(&space_info->lock); 5058 return; 5059 } 5060 spin_unlock(&space_info->lock); 5061 5062 /* 5063 * Priority flushers can't wait on delalloc without 5064 * deadlocking. 5065 */ 5066 if (flush_state == FLUSH_DELALLOC || 5067 flush_state == FLUSH_DELALLOC_WAIT) 5068 flush_state = ALLOC_CHUNK; 5069 } while (flush_state < COMMIT_TRANS); 5070 } 5071 5072 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5073 struct btrfs_space_info *space_info, 5074 struct reserve_ticket *ticket, u64 orig_bytes) 5075 5076 { 5077 DEFINE_WAIT(wait); 5078 int ret = 0; 5079 5080 spin_lock(&space_info->lock); 5081 while (ticket->bytes > 0 && ticket->error == 0) { 5082 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5083 if (ret) { 5084 ret = -EINTR; 5085 break; 5086 } 5087 spin_unlock(&space_info->lock); 5088 5089 schedule(); 5090 5091 finish_wait(&ticket->wait, &wait); 5092 spin_lock(&space_info->lock); 5093 } 5094 if (!ret) 5095 ret = ticket->error; 5096 if (!list_empty(&ticket->list)) 5097 list_del_init(&ticket->list); 5098 if (ticket->bytes && ticket->bytes < orig_bytes) { 5099 u64 num_bytes = orig_bytes - ticket->bytes; 5100 space_info->bytes_may_use -= num_bytes; 5101 trace_btrfs_space_reservation(fs_info, "space_info", 5102 space_info->flags, num_bytes, 0); 5103 } 5104 spin_unlock(&space_info->lock); 5105 5106 return ret; 5107 } 5108 5109 /** 5110 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5111 * @root - the root we're allocating for 5112 * @space_info - the space info we want to allocate from 5113 * @orig_bytes - the number of bytes we want 5114 * @flush - whether or not we can flush to make our reservation 5115 * 5116 * This will reserve orig_bytes number of bytes from the space info associated 5117 * with the block_rsv. If there is not enough space it will make an attempt to 5118 * flush out space to make room. It will do this by flushing delalloc if 5119 * possible or committing the transaction. If flush is 0 then no attempts to 5120 * regain reservations will be made and this will fail if there is not enough 5121 * space already. 5122 */ 5123 static int __reserve_metadata_bytes(struct btrfs_root *root, 5124 struct btrfs_space_info *space_info, 5125 u64 orig_bytes, 5126 enum btrfs_reserve_flush_enum flush) 5127 { 5128 struct btrfs_fs_info *fs_info = root->fs_info; 5129 struct reserve_ticket ticket; 5130 u64 used; 5131 int ret = 0; 5132 5133 ASSERT(orig_bytes); 5134 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5135 5136 spin_lock(&space_info->lock); 5137 ret = -ENOSPC; 5138 used = space_info->bytes_used + space_info->bytes_reserved + 5139 space_info->bytes_pinned + space_info->bytes_readonly + 5140 space_info->bytes_may_use; 5141 5142 /* 5143 * If we have enough space then hooray, make our reservation and carry 5144 * on. If not see if we can overcommit, and if we can, hooray carry on. 5145 * If not things get more complicated. 5146 */ 5147 if (used + orig_bytes <= space_info->total_bytes) { 5148 space_info->bytes_may_use += orig_bytes; 5149 trace_btrfs_space_reservation(fs_info, "space_info", 5150 space_info->flags, orig_bytes, 1); 5151 ret = 0; 5152 } else if (can_overcommit(root, space_info, orig_bytes, flush)) { 5153 space_info->bytes_may_use += orig_bytes; 5154 trace_btrfs_space_reservation(fs_info, "space_info", 5155 space_info->flags, orig_bytes, 1); 5156 ret = 0; 5157 } 5158 5159 /* 5160 * If we couldn't make a reservation then setup our reservation ticket 5161 * and kick the async worker if it's not already running. 5162 * 5163 * If we are a priority flusher then we just need to add our ticket to 5164 * the list and we will do our own flushing further down. 5165 */ 5166 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5167 ticket.bytes = orig_bytes; 5168 ticket.error = 0; 5169 init_waitqueue_head(&ticket.wait); 5170 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5171 list_add_tail(&ticket.list, &space_info->tickets); 5172 if (!space_info->flush) { 5173 space_info->flush = 1; 5174 trace_btrfs_trigger_flush(fs_info, 5175 space_info->flags, 5176 orig_bytes, flush, 5177 "enospc"); 5178 queue_work(system_unbound_wq, 5179 &root->fs_info->async_reclaim_work); 5180 } 5181 } else { 5182 list_add_tail(&ticket.list, 5183 &space_info->priority_tickets); 5184 } 5185 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5186 used += orig_bytes; 5187 /* 5188 * We will do the space reservation dance during log replay, 5189 * which means we won't have fs_info->fs_root set, so don't do 5190 * the async reclaim as we will panic. 5191 */ 5192 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5193 need_do_async_reclaim(space_info, root, used) && 5194 !work_busy(&fs_info->async_reclaim_work)) { 5195 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5196 orig_bytes, flush, "preempt"); 5197 queue_work(system_unbound_wq, 5198 &fs_info->async_reclaim_work); 5199 } 5200 } 5201 spin_unlock(&space_info->lock); 5202 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5203 return ret; 5204 5205 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5206 return wait_reserve_ticket(fs_info, space_info, &ticket, 5207 orig_bytes); 5208 5209 ret = 0; 5210 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5211 spin_lock(&space_info->lock); 5212 if (ticket.bytes) { 5213 if (ticket.bytes < orig_bytes) { 5214 u64 num_bytes = orig_bytes - ticket.bytes; 5215 space_info->bytes_may_use -= num_bytes; 5216 trace_btrfs_space_reservation(fs_info, "space_info", 5217 space_info->flags, 5218 num_bytes, 0); 5219 5220 } 5221 list_del_init(&ticket.list); 5222 ret = -ENOSPC; 5223 } 5224 spin_unlock(&space_info->lock); 5225 ASSERT(list_empty(&ticket.list)); 5226 return ret; 5227 } 5228 5229 /** 5230 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5231 * @root - the root we're allocating for 5232 * @block_rsv - the block_rsv we're allocating for 5233 * @orig_bytes - the number of bytes we want 5234 * @flush - whether or not we can flush to make our reservation 5235 * 5236 * This will reserve orgi_bytes number of bytes from the space info associated 5237 * with the block_rsv. If there is not enough space it will make an attempt to 5238 * flush out space to make room. It will do this by flushing delalloc if 5239 * possible or committing the transaction. If flush is 0 then no attempts to 5240 * regain reservations will be made and this will fail if there is not enough 5241 * space already. 5242 */ 5243 static int reserve_metadata_bytes(struct btrfs_root *root, 5244 struct btrfs_block_rsv *block_rsv, 5245 u64 orig_bytes, 5246 enum btrfs_reserve_flush_enum flush) 5247 { 5248 struct btrfs_fs_info *fs_info = root->fs_info; 5249 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5250 int ret; 5251 5252 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes, 5253 flush); 5254 if (ret == -ENOSPC && 5255 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5256 if (block_rsv != global_rsv && 5257 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5258 ret = 0; 5259 } 5260 if (ret == -ENOSPC) 5261 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5262 block_rsv->space_info->flags, 5263 orig_bytes, 1); 5264 return ret; 5265 } 5266 5267 static struct btrfs_block_rsv *get_block_rsv( 5268 const struct btrfs_trans_handle *trans, 5269 const struct btrfs_root *root) 5270 { 5271 struct btrfs_fs_info *fs_info = root->fs_info; 5272 struct btrfs_block_rsv *block_rsv = NULL; 5273 5274 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5275 (root == fs_info->csum_root && trans->adding_csums) || 5276 (root == fs_info->uuid_root)) 5277 block_rsv = trans->block_rsv; 5278 5279 if (!block_rsv) 5280 block_rsv = root->block_rsv; 5281 5282 if (!block_rsv) 5283 block_rsv = &fs_info->empty_block_rsv; 5284 5285 return block_rsv; 5286 } 5287 5288 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5289 u64 num_bytes) 5290 { 5291 int ret = -ENOSPC; 5292 spin_lock(&block_rsv->lock); 5293 if (block_rsv->reserved >= num_bytes) { 5294 block_rsv->reserved -= num_bytes; 5295 if (block_rsv->reserved < block_rsv->size) 5296 block_rsv->full = 0; 5297 ret = 0; 5298 } 5299 spin_unlock(&block_rsv->lock); 5300 return ret; 5301 } 5302 5303 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5304 u64 num_bytes, int update_size) 5305 { 5306 spin_lock(&block_rsv->lock); 5307 block_rsv->reserved += num_bytes; 5308 if (update_size) 5309 block_rsv->size += num_bytes; 5310 else if (block_rsv->reserved >= block_rsv->size) 5311 block_rsv->full = 1; 5312 spin_unlock(&block_rsv->lock); 5313 } 5314 5315 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5316 struct btrfs_block_rsv *dest, u64 num_bytes, 5317 int min_factor) 5318 { 5319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5320 u64 min_bytes; 5321 5322 if (global_rsv->space_info != dest->space_info) 5323 return -ENOSPC; 5324 5325 spin_lock(&global_rsv->lock); 5326 min_bytes = div_factor(global_rsv->size, min_factor); 5327 if (global_rsv->reserved < min_bytes + num_bytes) { 5328 spin_unlock(&global_rsv->lock); 5329 return -ENOSPC; 5330 } 5331 global_rsv->reserved -= num_bytes; 5332 if (global_rsv->reserved < global_rsv->size) 5333 global_rsv->full = 0; 5334 spin_unlock(&global_rsv->lock); 5335 5336 block_rsv_add_bytes(dest, num_bytes, 1); 5337 return 0; 5338 } 5339 5340 /* 5341 * This is for space we already have accounted in space_info->bytes_may_use, so 5342 * basically when we're returning space from block_rsv's. 5343 */ 5344 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5345 struct btrfs_space_info *space_info, 5346 u64 num_bytes) 5347 { 5348 struct reserve_ticket *ticket; 5349 struct list_head *head; 5350 u64 used; 5351 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5352 bool check_overcommit = false; 5353 5354 spin_lock(&space_info->lock); 5355 head = &space_info->priority_tickets; 5356 5357 /* 5358 * If we are over our limit then we need to check and see if we can 5359 * overcommit, and if we can't then we just need to free up our space 5360 * and not satisfy any requests. 5361 */ 5362 used = space_info->bytes_used + space_info->bytes_reserved + 5363 space_info->bytes_pinned + space_info->bytes_readonly + 5364 space_info->bytes_may_use; 5365 if (used - num_bytes >= space_info->total_bytes) 5366 check_overcommit = true; 5367 again: 5368 while (!list_empty(head) && num_bytes) { 5369 ticket = list_first_entry(head, struct reserve_ticket, 5370 list); 5371 /* 5372 * We use 0 bytes because this space is already reserved, so 5373 * adding the ticket space would be a double count. 5374 */ 5375 if (check_overcommit && 5376 !can_overcommit(fs_info->extent_root, space_info, 0, 5377 flush)) 5378 break; 5379 if (num_bytes >= ticket->bytes) { 5380 list_del_init(&ticket->list); 5381 num_bytes -= ticket->bytes; 5382 ticket->bytes = 0; 5383 space_info->tickets_id++; 5384 wake_up(&ticket->wait); 5385 } else { 5386 ticket->bytes -= num_bytes; 5387 num_bytes = 0; 5388 } 5389 } 5390 5391 if (num_bytes && head == &space_info->priority_tickets) { 5392 head = &space_info->tickets; 5393 flush = BTRFS_RESERVE_FLUSH_ALL; 5394 goto again; 5395 } 5396 space_info->bytes_may_use -= num_bytes; 5397 trace_btrfs_space_reservation(fs_info, "space_info", 5398 space_info->flags, num_bytes, 0); 5399 spin_unlock(&space_info->lock); 5400 } 5401 5402 /* 5403 * This is for newly allocated space that isn't accounted in 5404 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5405 * we use this helper. 5406 */ 5407 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5408 struct btrfs_space_info *space_info, 5409 u64 num_bytes) 5410 { 5411 struct reserve_ticket *ticket; 5412 struct list_head *head = &space_info->priority_tickets; 5413 5414 again: 5415 while (!list_empty(head) && num_bytes) { 5416 ticket = list_first_entry(head, struct reserve_ticket, 5417 list); 5418 if (num_bytes >= ticket->bytes) { 5419 trace_btrfs_space_reservation(fs_info, "space_info", 5420 space_info->flags, 5421 ticket->bytes, 1); 5422 list_del_init(&ticket->list); 5423 num_bytes -= ticket->bytes; 5424 space_info->bytes_may_use += ticket->bytes; 5425 ticket->bytes = 0; 5426 space_info->tickets_id++; 5427 wake_up(&ticket->wait); 5428 } else { 5429 trace_btrfs_space_reservation(fs_info, "space_info", 5430 space_info->flags, 5431 num_bytes, 1); 5432 space_info->bytes_may_use += num_bytes; 5433 ticket->bytes -= num_bytes; 5434 num_bytes = 0; 5435 } 5436 } 5437 5438 if (num_bytes && head == &space_info->priority_tickets) { 5439 head = &space_info->tickets; 5440 goto again; 5441 } 5442 } 5443 5444 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5445 struct btrfs_block_rsv *block_rsv, 5446 struct btrfs_block_rsv *dest, u64 num_bytes) 5447 { 5448 struct btrfs_space_info *space_info = block_rsv->space_info; 5449 5450 spin_lock(&block_rsv->lock); 5451 if (num_bytes == (u64)-1) 5452 num_bytes = block_rsv->size; 5453 block_rsv->size -= num_bytes; 5454 if (block_rsv->reserved >= block_rsv->size) { 5455 num_bytes = block_rsv->reserved - block_rsv->size; 5456 block_rsv->reserved = block_rsv->size; 5457 block_rsv->full = 1; 5458 } else { 5459 num_bytes = 0; 5460 } 5461 spin_unlock(&block_rsv->lock); 5462 5463 if (num_bytes > 0) { 5464 if (dest) { 5465 spin_lock(&dest->lock); 5466 if (!dest->full) { 5467 u64 bytes_to_add; 5468 5469 bytes_to_add = dest->size - dest->reserved; 5470 bytes_to_add = min(num_bytes, bytes_to_add); 5471 dest->reserved += bytes_to_add; 5472 if (dest->reserved >= dest->size) 5473 dest->full = 1; 5474 num_bytes -= bytes_to_add; 5475 } 5476 spin_unlock(&dest->lock); 5477 } 5478 if (num_bytes) 5479 space_info_add_old_bytes(fs_info, space_info, 5480 num_bytes); 5481 } 5482 } 5483 5484 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5485 struct btrfs_block_rsv *dst, u64 num_bytes, 5486 int update_size) 5487 { 5488 int ret; 5489 5490 ret = block_rsv_use_bytes(src, num_bytes); 5491 if (ret) 5492 return ret; 5493 5494 block_rsv_add_bytes(dst, num_bytes, update_size); 5495 return 0; 5496 } 5497 5498 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5499 { 5500 memset(rsv, 0, sizeof(*rsv)); 5501 spin_lock_init(&rsv->lock); 5502 rsv->type = type; 5503 } 5504 5505 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5506 unsigned short type) 5507 { 5508 struct btrfs_block_rsv *block_rsv; 5509 5510 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5511 if (!block_rsv) 5512 return NULL; 5513 5514 btrfs_init_block_rsv(block_rsv, type); 5515 block_rsv->space_info = __find_space_info(fs_info, 5516 BTRFS_BLOCK_GROUP_METADATA); 5517 return block_rsv; 5518 } 5519 5520 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5521 struct btrfs_block_rsv *rsv) 5522 { 5523 if (!rsv) 5524 return; 5525 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5526 kfree(rsv); 5527 } 5528 5529 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5530 { 5531 kfree(rsv); 5532 } 5533 5534 int btrfs_block_rsv_add(struct btrfs_root *root, 5535 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5536 enum btrfs_reserve_flush_enum flush) 5537 { 5538 int ret; 5539 5540 if (num_bytes == 0) 5541 return 0; 5542 5543 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5544 if (!ret) { 5545 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5546 return 0; 5547 } 5548 5549 return ret; 5550 } 5551 5552 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5553 { 5554 u64 num_bytes = 0; 5555 int ret = -ENOSPC; 5556 5557 if (!block_rsv) 5558 return 0; 5559 5560 spin_lock(&block_rsv->lock); 5561 num_bytes = div_factor(block_rsv->size, min_factor); 5562 if (block_rsv->reserved >= num_bytes) 5563 ret = 0; 5564 spin_unlock(&block_rsv->lock); 5565 5566 return ret; 5567 } 5568 5569 int btrfs_block_rsv_refill(struct btrfs_root *root, 5570 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5571 enum btrfs_reserve_flush_enum flush) 5572 { 5573 u64 num_bytes = 0; 5574 int ret = -ENOSPC; 5575 5576 if (!block_rsv) 5577 return 0; 5578 5579 spin_lock(&block_rsv->lock); 5580 num_bytes = min_reserved; 5581 if (block_rsv->reserved >= num_bytes) 5582 ret = 0; 5583 else 5584 num_bytes -= block_rsv->reserved; 5585 spin_unlock(&block_rsv->lock); 5586 5587 if (!ret) 5588 return 0; 5589 5590 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5591 if (!ret) { 5592 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5593 return 0; 5594 } 5595 5596 return ret; 5597 } 5598 5599 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5600 struct btrfs_block_rsv *block_rsv, 5601 u64 num_bytes) 5602 { 5603 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5604 5605 if (global_rsv == block_rsv || 5606 block_rsv->space_info != global_rsv->space_info) 5607 global_rsv = NULL; 5608 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5609 } 5610 5611 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5612 { 5613 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5614 struct btrfs_space_info *sinfo = block_rsv->space_info; 5615 u64 num_bytes; 5616 5617 /* 5618 * The global block rsv is based on the size of the extent tree, the 5619 * checksum tree and the root tree. If the fs is empty we want to set 5620 * it to a minimal amount for safety. 5621 */ 5622 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5623 btrfs_root_used(&fs_info->csum_root->root_item) + 5624 btrfs_root_used(&fs_info->tree_root->root_item); 5625 num_bytes = max_t(u64, num_bytes, SZ_16M); 5626 5627 spin_lock(&sinfo->lock); 5628 spin_lock(&block_rsv->lock); 5629 5630 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5631 5632 if (block_rsv->reserved < block_rsv->size) { 5633 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5634 sinfo->bytes_reserved + sinfo->bytes_readonly + 5635 sinfo->bytes_may_use; 5636 if (sinfo->total_bytes > num_bytes) { 5637 num_bytes = sinfo->total_bytes - num_bytes; 5638 num_bytes = min(num_bytes, 5639 block_rsv->size - block_rsv->reserved); 5640 block_rsv->reserved += num_bytes; 5641 sinfo->bytes_may_use += num_bytes; 5642 trace_btrfs_space_reservation(fs_info, "space_info", 5643 sinfo->flags, num_bytes, 5644 1); 5645 } 5646 } else if (block_rsv->reserved > block_rsv->size) { 5647 num_bytes = block_rsv->reserved - block_rsv->size; 5648 sinfo->bytes_may_use -= num_bytes; 5649 trace_btrfs_space_reservation(fs_info, "space_info", 5650 sinfo->flags, num_bytes, 0); 5651 block_rsv->reserved = block_rsv->size; 5652 } 5653 5654 if (block_rsv->reserved == block_rsv->size) 5655 block_rsv->full = 1; 5656 else 5657 block_rsv->full = 0; 5658 5659 spin_unlock(&block_rsv->lock); 5660 spin_unlock(&sinfo->lock); 5661 } 5662 5663 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5664 { 5665 struct btrfs_space_info *space_info; 5666 5667 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5668 fs_info->chunk_block_rsv.space_info = space_info; 5669 5670 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5671 fs_info->global_block_rsv.space_info = space_info; 5672 fs_info->delalloc_block_rsv.space_info = space_info; 5673 fs_info->trans_block_rsv.space_info = space_info; 5674 fs_info->empty_block_rsv.space_info = space_info; 5675 fs_info->delayed_block_rsv.space_info = space_info; 5676 5677 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5678 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5679 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5680 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5681 if (fs_info->quota_root) 5682 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5683 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5684 5685 update_global_block_rsv(fs_info); 5686 } 5687 5688 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5689 { 5690 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5691 (u64)-1); 5692 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5693 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5694 WARN_ON(fs_info->trans_block_rsv.size > 0); 5695 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5696 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5697 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5698 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5699 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5700 } 5701 5702 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5703 struct btrfs_fs_info *fs_info) 5704 { 5705 if (!trans->block_rsv) 5706 return; 5707 5708 if (!trans->bytes_reserved) 5709 return; 5710 5711 trace_btrfs_space_reservation(fs_info, "transaction", 5712 trans->transid, trans->bytes_reserved, 0); 5713 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5714 trans->bytes_reserved); 5715 trans->bytes_reserved = 0; 5716 } 5717 5718 /* 5719 * To be called after all the new block groups attached to the transaction 5720 * handle have been created (btrfs_create_pending_block_groups()). 5721 */ 5722 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5723 { 5724 struct btrfs_fs_info *fs_info = trans->fs_info; 5725 5726 if (!trans->chunk_bytes_reserved) 5727 return; 5728 5729 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5730 5731 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5732 trans->chunk_bytes_reserved); 5733 trans->chunk_bytes_reserved = 0; 5734 } 5735 5736 /* Can only return 0 or -ENOSPC */ 5737 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5738 struct inode *inode) 5739 { 5740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5741 struct btrfs_root *root = BTRFS_I(inode)->root; 5742 /* 5743 * We always use trans->block_rsv here as we will have reserved space 5744 * for our orphan when starting the transaction, using get_block_rsv() 5745 * here will sometimes make us choose the wrong block rsv as we could be 5746 * doing a reloc inode for a non refcounted root. 5747 */ 5748 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5750 5751 /* 5752 * We need to hold space in order to delete our orphan item once we've 5753 * added it, so this takes the reservation so we can release it later 5754 * when we are truly done with the orphan item. 5755 */ 5756 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5757 5758 trace_btrfs_space_reservation(fs_info, "orphan", 5759 btrfs_ino(inode), num_bytes, 1); 5760 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5761 } 5762 5763 void btrfs_orphan_release_metadata(struct inode *inode) 5764 { 5765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5766 struct btrfs_root *root = BTRFS_I(inode)->root; 5767 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5768 5769 trace_btrfs_space_reservation(fs_info, "orphan", 5770 btrfs_ino(inode), num_bytes, 0); 5771 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5772 } 5773 5774 /* 5775 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5776 * root: the root of the parent directory 5777 * rsv: block reservation 5778 * items: the number of items that we need do reservation 5779 * qgroup_reserved: used to return the reserved size in qgroup 5780 * 5781 * This function is used to reserve the space for snapshot/subvolume 5782 * creation and deletion. Those operations are different with the 5783 * common file/directory operations, they change two fs/file trees 5784 * and root tree, the number of items that the qgroup reserves is 5785 * different with the free space reservation. So we can not use 5786 * the space reservation mechanism in start_transaction(). 5787 */ 5788 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5789 struct btrfs_block_rsv *rsv, 5790 int items, 5791 u64 *qgroup_reserved, 5792 bool use_global_rsv) 5793 { 5794 u64 num_bytes; 5795 int ret; 5796 struct btrfs_fs_info *fs_info = root->fs_info; 5797 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5798 5799 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5800 /* One for parent inode, two for dir entries */ 5801 num_bytes = 3 * fs_info->nodesize; 5802 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5803 if (ret) 5804 return ret; 5805 } else { 5806 num_bytes = 0; 5807 } 5808 5809 *qgroup_reserved = num_bytes; 5810 5811 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5812 rsv->space_info = __find_space_info(fs_info, 5813 BTRFS_BLOCK_GROUP_METADATA); 5814 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5815 BTRFS_RESERVE_FLUSH_ALL); 5816 5817 if (ret == -ENOSPC && use_global_rsv) 5818 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5819 5820 if (ret && *qgroup_reserved) 5821 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5822 5823 return ret; 5824 } 5825 5826 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 5827 struct btrfs_block_rsv *rsv, 5828 u64 qgroup_reserved) 5829 { 5830 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5831 } 5832 5833 /** 5834 * drop_outstanding_extent - drop an outstanding extent 5835 * @inode: the inode we're dropping the extent for 5836 * @num_bytes: the number of bytes we're releasing. 5837 * 5838 * This is called when we are freeing up an outstanding extent, either called 5839 * after an error or after an extent is written. This will return the number of 5840 * reserved extents that need to be freed. This must be called with 5841 * BTRFS_I(inode)->lock held. 5842 */ 5843 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5844 { 5845 unsigned drop_inode_space = 0; 5846 unsigned dropped_extents = 0; 5847 unsigned num_extents = 0; 5848 5849 num_extents = (unsigned)div64_u64(num_bytes + 5850 BTRFS_MAX_EXTENT_SIZE - 1, 5851 BTRFS_MAX_EXTENT_SIZE); 5852 ASSERT(num_extents); 5853 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5854 BTRFS_I(inode)->outstanding_extents -= num_extents; 5855 5856 if (BTRFS_I(inode)->outstanding_extents == 0 && 5857 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5858 &BTRFS_I(inode)->runtime_flags)) 5859 drop_inode_space = 1; 5860 5861 /* 5862 * If we have more or the same amount of outstanding extents than we have 5863 * reserved then we need to leave the reserved extents count alone. 5864 */ 5865 if (BTRFS_I(inode)->outstanding_extents >= 5866 BTRFS_I(inode)->reserved_extents) 5867 return drop_inode_space; 5868 5869 dropped_extents = BTRFS_I(inode)->reserved_extents - 5870 BTRFS_I(inode)->outstanding_extents; 5871 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5872 return dropped_extents + drop_inode_space; 5873 } 5874 5875 /** 5876 * calc_csum_metadata_size - return the amount of metadata space that must be 5877 * reserved/freed for the given bytes. 5878 * @inode: the inode we're manipulating 5879 * @num_bytes: the number of bytes in question 5880 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5881 * 5882 * This adjusts the number of csum_bytes in the inode and then returns the 5883 * correct amount of metadata that must either be reserved or freed. We 5884 * calculate how many checksums we can fit into one leaf and then divide the 5885 * number of bytes that will need to be checksumed by this value to figure out 5886 * how many checksums will be required. If we are adding bytes then the number 5887 * may go up and we will return the number of additional bytes that must be 5888 * reserved. If it is going down we will return the number of bytes that must 5889 * be freed. 5890 * 5891 * This must be called with BTRFS_I(inode)->lock held. 5892 */ 5893 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5894 int reserve) 5895 { 5896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5897 u64 old_csums, num_csums; 5898 5899 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5900 BTRFS_I(inode)->csum_bytes == 0) 5901 return 0; 5902 5903 old_csums = btrfs_csum_bytes_to_leaves(fs_info, 5904 BTRFS_I(inode)->csum_bytes); 5905 if (reserve) 5906 BTRFS_I(inode)->csum_bytes += num_bytes; 5907 else 5908 BTRFS_I(inode)->csum_bytes -= num_bytes; 5909 num_csums = btrfs_csum_bytes_to_leaves(fs_info, 5910 BTRFS_I(inode)->csum_bytes); 5911 5912 /* No change, no need to reserve more */ 5913 if (old_csums == num_csums) 5914 return 0; 5915 5916 if (reserve) 5917 return btrfs_calc_trans_metadata_size(fs_info, 5918 num_csums - old_csums); 5919 5920 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums); 5921 } 5922 5923 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5924 { 5925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5926 struct btrfs_root *root = BTRFS_I(inode)->root; 5927 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv; 5928 u64 to_reserve = 0; 5929 u64 csum_bytes; 5930 unsigned nr_extents = 0; 5931 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5932 int ret = 0; 5933 bool delalloc_lock = true; 5934 u64 to_free = 0; 5935 unsigned dropped; 5936 bool release_extra = false; 5937 5938 /* If we are a free space inode we need to not flush since we will be in 5939 * the middle of a transaction commit. We also don't need the delalloc 5940 * mutex since we won't race with anybody. We need this mostly to make 5941 * lockdep shut its filthy mouth. 5942 * 5943 * If we have a transaction open (can happen if we call truncate_block 5944 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 5945 */ 5946 if (btrfs_is_free_space_inode(inode)) { 5947 flush = BTRFS_RESERVE_NO_FLUSH; 5948 delalloc_lock = false; 5949 } else if (current->journal_info) { 5950 flush = BTRFS_RESERVE_FLUSH_LIMIT; 5951 } 5952 5953 if (flush != BTRFS_RESERVE_NO_FLUSH && 5954 btrfs_transaction_in_commit(fs_info)) 5955 schedule_timeout(1); 5956 5957 if (delalloc_lock) 5958 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5959 5960 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 5961 5962 spin_lock(&BTRFS_I(inode)->lock); 5963 nr_extents = (unsigned)div64_u64(num_bytes + 5964 BTRFS_MAX_EXTENT_SIZE - 1, 5965 BTRFS_MAX_EXTENT_SIZE); 5966 BTRFS_I(inode)->outstanding_extents += nr_extents; 5967 5968 nr_extents = 0; 5969 if (BTRFS_I(inode)->outstanding_extents > 5970 BTRFS_I(inode)->reserved_extents) 5971 nr_extents += BTRFS_I(inode)->outstanding_extents - 5972 BTRFS_I(inode)->reserved_extents; 5973 5974 /* We always want to reserve a slot for updating the inode. */ 5975 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1); 5976 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5977 csum_bytes = BTRFS_I(inode)->csum_bytes; 5978 spin_unlock(&BTRFS_I(inode)->lock); 5979 5980 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5981 ret = btrfs_qgroup_reserve_meta(root, 5982 nr_extents * fs_info->nodesize); 5983 if (ret) 5984 goto out_fail; 5985 } 5986 5987 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 5988 if (unlikely(ret)) { 5989 btrfs_qgroup_free_meta(root, 5990 nr_extents * fs_info->nodesize); 5991 goto out_fail; 5992 } 5993 5994 spin_lock(&BTRFS_I(inode)->lock); 5995 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5996 &BTRFS_I(inode)->runtime_flags)) { 5997 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1); 5998 release_extra = true; 5999 } 6000 BTRFS_I(inode)->reserved_extents += nr_extents; 6001 spin_unlock(&BTRFS_I(inode)->lock); 6002 6003 if (delalloc_lock) 6004 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6005 6006 if (to_reserve) 6007 trace_btrfs_space_reservation(fs_info, "delalloc", 6008 btrfs_ino(inode), to_reserve, 1); 6009 if (release_extra) 6010 btrfs_block_rsv_release(fs_info, block_rsv, 6011 btrfs_calc_trans_metadata_size(fs_info, 1)); 6012 return 0; 6013 6014 out_fail: 6015 spin_lock(&BTRFS_I(inode)->lock); 6016 dropped = drop_outstanding_extent(inode, num_bytes); 6017 /* 6018 * If the inodes csum_bytes is the same as the original 6019 * csum_bytes then we know we haven't raced with any free()ers 6020 * so we can just reduce our inodes csum bytes and carry on. 6021 */ 6022 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 6023 calc_csum_metadata_size(inode, num_bytes, 0); 6024 } else { 6025 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 6026 u64 bytes; 6027 6028 /* 6029 * This is tricky, but first we need to figure out how much we 6030 * freed from any free-ers that occurred during this 6031 * reservation, so we reset ->csum_bytes to the csum_bytes 6032 * before we dropped our lock, and then call the free for the 6033 * number of bytes that were freed while we were trying our 6034 * reservation. 6035 */ 6036 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 6037 BTRFS_I(inode)->csum_bytes = csum_bytes; 6038 to_free = calc_csum_metadata_size(inode, bytes, 0); 6039 6040 6041 /* 6042 * Now we need to see how much we would have freed had we not 6043 * been making this reservation and our ->csum_bytes were not 6044 * artificially inflated. 6045 */ 6046 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 6047 bytes = csum_bytes - orig_csum_bytes; 6048 bytes = calc_csum_metadata_size(inode, bytes, 0); 6049 6050 /* 6051 * Now reset ->csum_bytes to what it should be. If bytes is 6052 * more than to_free then we would have freed more space had we 6053 * not had an artificially high ->csum_bytes, so we need to free 6054 * the remainder. If bytes is the same or less then we don't 6055 * need to do anything, the other free-ers did the correct 6056 * thing. 6057 */ 6058 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 6059 if (bytes > to_free) 6060 to_free = bytes - to_free; 6061 else 6062 to_free = 0; 6063 } 6064 spin_unlock(&BTRFS_I(inode)->lock); 6065 if (dropped) 6066 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6067 6068 if (to_free) { 6069 btrfs_block_rsv_release(fs_info, block_rsv, to_free); 6070 trace_btrfs_space_reservation(fs_info, "delalloc", 6071 btrfs_ino(inode), to_free, 0); 6072 } 6073 if (delalloc_lock) 6074 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6075 return ret; 6076 } 6077 6078 /** 6079 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6080 * @inode: the inode to release the reservation for 6081 * @num_bytes: the number of bytes we're releasing 6082 * 6083 * This will release the metadata reservation for an inode. This can be called 6084 * once we complete IO for a given set of bytes to release their metadata 6085 * reservations. 6086 */ 6087 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 6088 { 6089 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6090 u64 to_free = 0; 6091 unsigned dropped; 6092 6093 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6094 spin_lock(&BTRFS_I(inode)->lock); 6095 dropped = drop_outstanding_extent(inode, num_bytes); 6096 6097 if (num_bytes) 6098 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6099 spin_unlock(&BTRFS_I(inode)->lock); 6100 if (dropped > 0) 6101 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6102 6103 if (btrfs_is_testing(fs_info)) 6104 return; 6105 6106 trace_btrfs_space_reservation(fs_info, "delalloc", 6107 btrfs_ino(inode), to_free, 0); 6108 6109 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free); 6110 } 6111 6112 /** 6113 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6114 * delalloc 6115 * @inode: inode we're writing to 6116 * @start: start range we are writing to 6117 * @len: how long the range we are writing to 6118 * 6119 * This will do the following things 6120 * 6121 * o reserve space in data space info for num bytes 6122 * and reserve precious corresponding qgroup space 6123 * (Done in check_data_free_space) 6124 * 6125 * o reserve space for metadata space, based on the number of outstanding 6126 * extents and how much csums will be needed 6127 * also reserve metadata space in a per root over-reserve method. 6128 * o add to the inodes->delalloc_bytes 6129 * o add it to the fs_info's delalloc inodes list. 6130 * (Above 3 all done in delalloc_reserve_metadata) 6131 * 6132 * Return 0 for success 6133 * Return <0 for error(-ENOSPC or -EQUOT) 6134 */ 6135 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 6136 { 6137 int ret; 6138 6139 ret = btrfs_check_data_free_space(inode, start, len); 6140 if (ret < 0) 6141 return ret; 6142 ret = btrfs_delalloc_reserve_metadata(inode, len); 6143 if (ret < 0) 6144 btrfs_free_reserved_data_space(inode, start, len); 6145 return ret; 6146 } 6147 6148 /** 6149 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6150 * @inode: inode we're releasing space for 6151 * @start: start position of the space already reserved 6152 * @len: the len of the space already reserved 6153 * 6154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6155 * called in the case that we don't need the metadata AND data reservations 6156 * anymore. So if there is an error or we insert an inline extent. 6157 * 6158 * This function will release the metadata space that was not used and will 6159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6160 * list if there are no delalloc bytes left. 6161 * Also it will handle the qgroup reserved space. 6162 */ 6163 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 6164 { 6165 btrfs_delalloc_release_metadata(inode, len); 6166 btrfs_free_reserved_data_space(inode, start, len); 6167 } 6168 6169 static int update_block_group(struct btrfs_trans_handle *trans, 6170 struct btrfs_fs_info *info, u64 bytenr, 6171 u64 num_bytes, int alloc) 6172 { 6173 struct btrfs_block_group_cache *cache = NULL; 6174 u64 total = num_bytes; 6175 u64 old_val; 6176 u64 byte_in_group; 6177 int factor; 6178 6179 /* block accounting for super block */ 6180 spin_lock(&info->delalloc_root_lock); 6181 old_val = btrfs_super_bytes_used(info->super_copy); 6182 if (alloc) 6183 old_val += num_bytes; 6184 else 6185 old_val -= num_bytes; 6186 btrfs_set_super_bytes_used(info->super_copy, old_val); 6187 spin_unlock(&info->delalloc_root_lock); 6188 6189 while (total) { 6190 cache = btrfs_lookup_block_group(info, bytenr); 6191 if (!cache) 6192 return -ENOENT; 6193 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6194 BTRFS_BLOCK_GROUP_RAID1 | 6195 BTRFS_BLOCK_GROUP_RAID10)) 6196 factor = 2; 6197 else 6198 factor = 1; 6199 /* 6200 * If this block group has free space cache written out, we 6201 * need to make sure to load it if we are removing space. This 6202 * is because we need the unpinning stage to actually add the 6203 * space back to the block group, otherwise we will leak space. 6204 */ 6205 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6206 cache_block_group(cache, 1); 6207 6208 byte_in_group = bytenr - cache->key.objectid; 6209 WARN_ON(byte_in_group > cache->key.offset); 6210 6211 spin_lock(&cache->space_info->lock); 6212 spin_lock(&cache->lock); 6213 6214 if (btrfs_test_opt(info, SPACE_CACHE) && 6215 cache->disk_cache_state < BTRFS_DC_CLEAR) 6216 cache->disk_cache_state = BTRFS_DC_CLEAR; 6217 6218 old_val = btrfs_block_group_used(&cache->item); 6219 num_bytes = min(total, cache->key.offset - byte_in_group); 6220 if (alloc) { 6221 old_val += num_bytes; 6222 btrfs_set_block_group_used(&cache->item, old_val); 6223 cache->reserved -= num_bytes; 6224 cache->space_info->bytes_reserved -= num_bytes; 6225 cache->space_info->bytes_used += num_bytes; 6226 cache->space_info->disk_used += num_bytes * factor; 6227 spin_unlock(&cache->lock); 6228 spin_unlock(&cache->space_info->lock); 6229 } else { 6230 old_val -= num_bytes; 6231 btrfs_set_block_group_used(&cache->item, old_val); 6232 cache->pinned += num_bytes; 6233 cache->space_info->bytes_pinned += num_bytes; 6234 cache->space_info->bytes_used -= num_bytes; 6235 cache->space_info->disk_used -= num_bytes * factor; 6236 spin_unlock(&cache->lock); 6237 spin_unlock(&cache->space_info->lock); 6238 6239 trace_btrfs_space_reservation(info, "pinned", 6240 cache->space_info->flags, 6241 num_bytes, 1); 6242 set_extent_dirty(info->pinned_extents, 6243 bytenr, bytenr + num_bytes - 1, 6244 GFP_NOFS | __GFP_NOFAIL); 6245 } 6246 6247 spin_lock(&trans->transaction->dirty_bgs_lock); 6248 if (list_empty(&cache->dirty_list)) { 6249 list_add_tail(&cache->dirty_list, 6250 &trans->transaction->dirty_bgs); 6251 trans->transaction->num_dirty_bgs++; 6252 btrfs_get_block_group(cache); 6253 } 6254 spin_unlock(&trans->transaction->dirty_bgs_lock); 6255 6256 /* 6257 * No longer have used bytes in this block group, queue it for 6258 * deletion. We do this after adding the block group to the 6259 * dirty list to avoid races between cleaner kthread and space 6260 * cache writeout. 6261 */ 6262 if (!alloc && old_val == 0) { 6263 spin_lock(&info->unused_bgs_lock); 6264 if (list_empty(&cache->bg_list)) { 6265 btrfs_get_block_group(cache); 6266 list_add_tail(&cache->bg_list, 6267 &info->unused_bgs); 6268 } 6269 spin_unlock(&info->unused_bgs_lock); 6270 } 6271 6272 btrfs_put_block_group(cache); 6273 total -= num_bytes; 6274 bytenr += num_bytes; 6275 } 6276 return 0; 6277 } 6278 6279 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6280 { 6281 struct btrfs_block_group_cache *cache; 6282 u64 bytenr; 6283 6284 spin_lock(&fs_info->block_group_cache_lock); 6285 bytenr = fs_info->first_logical_byte; 6286 spin_unlock(&fs_info->block_group_cache_lock); 6287 6288 if (bytenr < (u64)-1) 6289 return bytenr; 6290 6291 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6292 if (!cache) 6293 return 0; 6294 6295 bytenr = cache->key.objectid; 6296 btrfs_put_block_group(cache); 6297 6298 return bytenr; 6299 } 6300 6301 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6302 struct btrfs_block_group_cache *cache, 6303 u64 bytenr, u64 num_bytes, int reserved) 6304 { 6305 spin_lock(&cache->space_info->lock); 6306 spin_lock(&cache->lock); 6307 cache->pinned += num_bytes; 6308 cache->space_info->bytes_pinned += num_bytes; 6309 if (reserved) { 6310 cache->reserved -= num_bytes; 6311 cache->space_info->bytes_reserved -= num_bytes; 6312 } 6313 spin_unlock(&cache->lock); 6314 spin_unlock(&cache->space_info->lock); 6315 6316 trace_btrfs_space_reservation(fs_info, "pinned", 6317 cache->space_info->flags, num_bytes, 1); 6318 set_extent_dirty(fs_info->pinned_extents, bytenr, 6319 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6320 return 0; 6321 } 6322 6323 /* 6324 * this function must be called within transaction 6325 */ 6326 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6327 u64 bytenr, u64 num_bytes, int reserved) 6328 { 6329 struct btrfs_block_group_cache *cache; 6330 6331 cache = btrfs_lookup_block_group(fs_info, bytenr); 6332 BUG_ON(!cache); /* Logic error */ 6333 6334 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6335 6336 btrfs_put_block_group(cache); 6337 return 0; 6338 } 6339 6340 /* 6341 * this function must be called within transaction 6342 */ 6343 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6344 u64 bytenr, u64 num_bytes) 6345 { 6346 struct btrfs_block_group_cache *cache; 6347 int ret; 6348 6349 cache = btrfs_lookup_block_group(fs_info, bytenr); 6350 if (!cache) 6351 return -EINVAL; 6352 6353 /* 6354 * pull in the free space cache (if any) so that our pin 6355 * removes the free space from the cache. We have load_only set 6356 * to one because the slow code to read in the free extents does check 6357 * the pinned extents. 6358 */ 6359 cache_block_group(cache, 1); 6360 6361 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6362 6363 /* remove us from the free space cache (if we're there at all) */ 6364 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6365 btrfs_put_block_group(cache); 6366 return ret; 6367 } 6368 6369 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6370 u64 start, u64 num_bytes) 6371 { 6372 int ret; 6373 struct btrfs_block_group_cache *block_group; 6374 struct btrfs_caching_control *caching_ctl; 6375 6376 block_group = btrfs_lookup_block_group(fs_info, start); 6377 if (!block_group) 6378 return -EINVAL; 6379 6380 cache_block_group(block_group, 0); 6381 caching_ctl = get_caching_control(block_group); 6382 6383 if (!caching_ctl) { 6384 /* Logic error */ 6385 BUG_ON(!block_group_cache_done(block_group)); 6386 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6387 } else { 6388 mutex_lock(&caching_ctl->mutex); 6389 6390 if (start >= caching_ctl->progress) { 6391 ret = add_excluded_extent(fs_info, start, num_bytes); 6392 } else if (start + num_bytes <= caching_ctl->progress) { 6393 ret = btrfs_remove_free_space(block_group, 6394 start, num_bytes); 6395 } else { 6396 num_bytes = caching_ctl->progress - start; 6397 ret = btrfs_remove_free_space(block_group, 6398 start, num_bytes); 6399 if (ret) 6400 goto out_lock; 6401 6402 num_bytes = (start + num_bytes) - 6403 caching_ctl->progress; 6404 start = caching_ctl->progress; 6405 ret = add_excluded_extent(fs_info, start, num_bytes); 6406 } 6407 out_lock: 6408 mutex_unlock(&caching_ctl->mutex); 6409 put_caching_control(caching_ctl); 6410 } 6411 btrfs_put_block_group(block_group); 6412 return ret; 6413 } 6414 6415 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6416 struct extent_buffer *eb) 6417 { 6418 struct btrfs_file_extent_item *item; 6419 struct btrfs_key key; 6420 int found_type; 6421 int i; 6422 6423 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6424 return 0; 6425 6426 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6427 btrfs_item_key_to_cpu(eb, &key, i); 6428 if (key.type != BTRFS_EXTENT_DATA_KEY) 6429 continue; 6430 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6431 found_type = btrfs_file_extent_type(eb, item); 6432 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6433 continue; 6434 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6435 continue; 6436 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6437 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6438 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6439 } 6440 6441 return 0; 6442 } 6443 6444 static void 6445 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6446 { 6447 atomic_inc(&bg->reservations); 6448 } 6449 6450 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6451 const u64 start) 6452 { 6453 struct btrfs_block_group_cache *bg; 6454 6455 bg = btrfs_lookup_block_group(fs_info, start); 6456 ASSERT(bg); 6457 if (atomic_dec_and_test(&bg->reservations)) 6458 wake_up_atomic_t(&bg->reservations); 6459 btrfs_put_block_group(bg); 6460 } 6461 6462 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6463 { 6464 schedule(); 6465 return 0; 6466 } 6467 6468 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6469 { 6470 struct btrfs_space_info *space_info = bg->space_info; 6471 6472 ASSERT(bg->ro); 6473 6474 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6475 return; 6476 6477 /* 6478 * Our block group is read only but before we set it to read only, 6479 * some task might have had allocated an extent from it already, but it 6480 * has not yet created a respective ordered extent (and added it to a 6481 * root's list of ordered extents). 6482 * Therefore wait for any task currently allocating extents, since the 6483 * block group's reservations counter is incremented while a read lock 6484 * on the groups' semaphore is held and decremented after releasing 6485 * the read access on that semaphore and creating the ordered extent. 6486 */ 6487 down_write(&space_info->groups_sem); 6488 up_write(&space_info->groups_sem); 6489 6490 wait_on_atomic_t(&bg->reservations, 6491 btrfs_wait_bg_reservations_atomic_t, 6492 TASK_UNINTERRUPTIBLE); 6493 } 6494 6495 /** 6496 * btrfs_add_reserved_bytes - update the block_group and space info counters 6497 * @cache: The cache we are manipulating 6498 * @ram_bytes: The number of bytes of file content, and will be same to 6499 * @num_bytes except for the compress path. 6500 * @num_bytes: The number of bytes in question 6501 * @delalloc: The blocks are allocated for the delalloc write 6502 * 6503 * This is called by the allocator when it reserves space. If this is a 6504 * reservation and the block group has become read only we cannot make the 6505 * reservation and return -EAGAIN, otherwise this function always succeeds. 6506 */ 6507 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6508 u64 ram_bytes, u64 num_bytes, int delalloc) 6509 { 6510 struct btrfs_space_info *space_info = cache->space_info; 6511 int ret = 0; 6512 6513 spin_lock(&space_info->lock); 6514 spin_lock(&cache->lock); 6515 if (cache->ro) { 6516 ret = -EAGAIN; 6517 } else { 6518 cache->reserved += num_bytes; 6519 space_info->bytes_reserved += num_bytes; 6520 6521 trace_btrfs_space_reservation(cache->fs_info, 6522 "space_info", space_info->flags, 6523 ram_bytes, 0); 6524 space_info->bytes_may_use -= ram_bytes; 6525 if (delalloc) 6526 cache->delalloc_bytes += num_bytes; 6527 } 6528 spin_unlock(&cache->lock); 6529 spin_unlock(&space_info->lock); 6530 return ret; 6531 } 6532 6533 /** 6534 * btrfs_free_reserved_bytes - update the block_group and space info counters 6535 * @cache: The cache we are manipulating 6536 * @num_bytes: The number of bytes in question 6537 * @delalloc: The blocks are allocated for the delalloc write 6538 * 6539 * This is called by somebody who is freeing space that was never actually used 6540 * on disk. For example if you reserve some space for a new leaf in transaction 6541 * A and before transaction A commits you free that leaf, you call this with 6542 * reserve set to 0 in order to clear the reservation. 6543 */ 6544 6545 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6546 u64 num_bytes, int delalloc) 6547 { 6548 struct btrfs_space_info *space_info = cache->space_info; 6549 int ret = 0; 6550 6551 spin_lock(&space_info->lock); 6552 spin_lock(&cache->lock); 6553 if (cache->ro) 6554 space_info->bytes_readonly += num_bytes; 6555 cache->reserved -= num_bytes; 6556 space_info->bytes_reserved -= num_bytes; 6557 6558 if (delalloc) 6559 cache->delalloc_bytes -= num_bytes; 6560 spin_unlock(&cache->lock); 6561 spin_unlock(&space_info->lock); 6562 return ret; 6563 } 6564 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6565 struct btrfs_fs_info *fs_info) 6566 { 6567 struct btrfs_caching_control *next; 6568 struct btrfs_caching_control *caching_ctl; 6569 struct btrfs_block_group_cache *cache; 6570 6571 down_write(&fs_info->commit_root_sem); 6572 6573 list_for_each_entry_safe(caching_ctl, next, 6574 &fs_info->caching_block_groups, list) { 6575 cache = caching_ctl->block_group; 6576 if (block_group_cache_done(cache)) { 6577 cache->last_byte_to_unpin = (u64)-1; 6578 list_del_init(&caching_ctl->list); 6579 put_caching_control(caching_ctl); 6580 } else { 6581 cache->last_byte_to_unpin = caching_ctl->progress; 6582 } 6583 } 6584 6585 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6586 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6587 else 6588 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6589 6590 up_write(&fs_info->commit_root_sem); 6591 6592 update_global_block_rsv(fs_info); 6593 } 6594 6595 /* 6596 * Returns the free cluster for the given space info and sets empty_cluster to 6597 * what it should be based on the mount options. 6598 */ 6599 static struct btrfs_free_cluster * 6600 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6601 struct btrfs_space_info *space_info, u64 *empty_cluster) 6602 { 6603 struct btrfs_free_cluster *ret = NULL; 6604 bool ssd = btrfs_test_opt(fs_info, SSD); 6605 6606 *empty_cluster = 0; 6607 if (btrfs_mixed_space_info(space_info)) 6608 return ret; 6609 6610 if (ssd) 6611 *empty_cluster = SZ_2M; 6612 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6613 ret = &fs_info->meta_alloc_cluster; 6614 if (!ssd) 6615 *empty_cluster = SZ_64K; 6616 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6617 ret = &fs_info->data_alloc_cluster; 6618 } 6619 6620 return ret; 6621 } 6622 6623 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6624 u64 start, u64 end, 6625 const bool return_free_space) 6626 { 6627 struct btrfs_block_group_cache *cache = NULL; 6628 struct btrfs_space_info *space_info; 6629 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6630 struct btrfs_free_cluster *cluster = NULL; 6631 u64 len; 6632 u64 total_unpinned = 0; 6633 u64 empty_cluster = 0; 6634 bool readonly; 6635 6636 while (start <= end) { 6637 readonly = false; 6638 if (!cache || 6639 start >= cache->key.objectid + cache->key.offset) { 6640 if (cache) 6641 btrfs_put_block_group(cache); 6642 total_unpinned = 0; 6643 cache = btrfs_lookup_block_group(fs_info, start); 6644 BUG_ON(!cache); /* Logic error */ 6645 6646 cluster = fetch_cluster_info(fs_info, 6647 cache->space_info, 6648 &empty_cluster); 6649 empty_cluster <<= 1; 6650 } 6651 6652 len = cache->key.objectid + cache->key.offset - start; 6653 len = min(len, end + 1 - start); 6654 6655 if (start < cache->last_byte_to_unpin) { 6656 len = min(len, cache->last_byte_to_unpin - start); 6657 if (return_free_space) 6658 btrfs_add_free_space(cache, start, len); 6659 } 6660 6661 start += len; 6662 total_unpinned += len; 6663 space_info = cache->space_info; 6664 6665 /* 6666 * If this space cluster has been marked as fragmented and we've 6667 * unpinned enough in this block group to potentially allow a 6668 * cluster to be created inside of it go ahead and clear the 6669 * fragmented check. 6670 */ 6671 if (cluster && cluster->fragmented && 6672 total_unpinned > empty_cluster) { 6673 spin_lock(&cluster->lock); 6674 cluster->fragmented = 0; 6675 spin_unlock(&cluster->lock); 6676 } 6677 6678 spin_lock(&space_info->lock); 6679 spin_lock(&cache->lock); 6680 cache->pinned -= len; 6681 space_info->bytes_pinned -= len; 6682 6683 trace_btrfs_space_reservation(fs_info, "pinned", 6684 space_info->flags, len, 0); 6685 space_info->max_extent_size = 0; 6686 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6687 if (cache->ro) { 6688 space_info->bytes_readonly += len; 6689 readonly = true; 6690 } 6691 spin_unlock(&cache->lock); 6692 if (!readonly && return_free_space && 6693 global_rsv->space_info == space_info) { 6694 u64 to_add = len; 6695 WARN_ON(!return_free_space); 6696 spin_lock(&global_rsv->lock); 6697 if (!global_rsv->full) { 6698 to_add = min(len, global_rsv->size - 6699 global_rsv->reserved); 6700 global_rsv->reserved += to_add; 6701 space_info->bytes_may_use += to_add; 6702 if (global_rsv->reserved >= global_rsv->size) 6703 global_rsv->full = 1; 6704 trace_btrfs_space_reservation(fs_info, 6705 "space_info", 6706 space_info->flags, 6707 to_add, 1); 6708 len -= to_add; 6709 } 6710 spin_unlock(&global_rsv->lock); 6711 /* Add to any tickets we may have */ 6712 if (len) 6713 space_info_add_new_bytes(fs_info, space_info, 6714 len); 6715 } 6716 spin_unlock(&space_info->lock); 6717 } 6718 6719 if (cache) 6720 btrfs_put_block_group(cache); 6721 return 0; 6722 } 6723 6724 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6725 struct btrfs_fs_info *fs_info) 6726 { 6727 struct btrfs_block_group_cache *block_group, *tmp; 6728 struct list_head *deleted_bgs; 6729 struct extent_io_tree *unpin; 6730 u64 start; 6731 u64 end; 6732 int ret; 6733 6734 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6735 unpin = &fs_info->freed_extents[1]; 6736 else 6737 unpin = &fs_info->freed_extents[0]; 6738 6739 while (!trans->aborted) { 6740 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6741 ret = find_first_extent_bit(unpin, 0, &start, &end, 6742 EXTENT_DIRTY, NULL); 6743 if (ret) { 6744 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6745 break; 6746 } 6747 6748 if (btrfs_test_opt(fs_info, DISCARD)) 6749 ret = btrfs_discard_extent(fs_info, start, 6750 end + 1 - start, NULL); 6751 6752 clear_extent_dirty(unpin, start, end); 6753 unpin_extent_range(fs_info, start, end, true); 6754 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6755 cond_resched(); 6756 } 6757 6758 /* 6759 * Transaction is finished. We don't need the lock anymore. We 6760 * do need to clean up the block groups in case of a transaction 6761 * abort. 6762 */ 6763 deleted_bgs = &trans->transaction->deleted_bgs; 6764 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6765 u64 trimmed = 0; 6766 6767 ret = -EROFS; 6768 if (!trans->aborted) 6769 ret = btrfs_discard_extent(fs_info, 6770 block_group->key.objectid, 6771 block_group->key.offset, 6772 &trimmed); 6773 6774 list_del_init(&block_group->bg_list); 6775 btrfs_put_block_group_trimming(block_group); 6776 btrfs_put_block_group(block_group); 6777 6778 if (ret) { 6779 const char *errstr = btrfs_decode_error(ret); 6780 btrfs_warn(fs_info, 6781 "Discard failed while removing blockgroup: errno=%d %s\n", 6782 ret, errstr); 6783 } 6784 } 6785 6786 return 0; 6787 } 6788 6789 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6790 u64 owner, u64 root_objectid) 6791 { 6792 struct btrfs_space_info *space_info; 6793 u64 flags; 6794 6795 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6796 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6797 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6798 else 6799 flags = BTRFS_BLOCK_GROUP_METADATA; 6800 } else { 6801 flags = BTRFS_BLOCK_GROUP_DATA; 6802 } 6803 6804 space_info = __find_space_info(fs_info, flags); 6805 BUG_ON(!space_info); /* Logic bug */ 6806 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6807 } 6808 6809 6810 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6811 struct btrfs_fs_info *info, 6812 struct btrfs_delayed_ref_node *node, u64 parent, 6813 u64 root_objectid, u64 owner_objectid, 6814 u64 owner_offset, int refs_to_drop, 6815 struct btrfs_delayed_extent_op *extent_op) 6816 { 6817 struct btrfs_key key; 6818 struct btrfs_path *path; 6819 struct btrfs_root *extent_root = info->extent_root; 6820 struct extent_buffer *leaf; 6821 struct btrfs_extent_item *ei; 6822 struct btrfs_extent_inline_ref *iref; 6823 int ret; 6824 int is_data; 6825 int extent_slot = 0; 6826 int found_extent = 0; 6827 int num_to_del = 1; 6828 u32 item_size; 6829 u64 refs; 6830 u64 bytenr = node->bytenr; 6831 u64 num_bytes = node->num_bytes; 6832 int last_ref = 0; 6833 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6834 6835 path = btrfs_alloc_path(); 6836 if (!path) 6837 return -ENOMEM; 6838 6839 path->reada = READA_FORWARD; 6840 path->leave_spinning = 1; 6841 6842 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6843 BUG_ON(!is_data && refs_to_drop != 1); 6844 6845 if (is_data) 6846 skinny_metadata = 0; 6847 6848 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6849 bytenr, num_bytes, parent, 6850 root_objectid, owner_objectid, 6851 owner_offset); 6852 if (ret == 0) { 6853 extent_slot = path->slots[0]; 6854 while (extent_slot >= 0) { 6855 btrfs_item_key_to_cpu(path->nodes[0], &key, 6856 extent_slot); 6857 if (key.objectid != bytenr) 6858 break; 6859 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6860 key.offset == num_bytes) { 6861 found_extent = 1; 6862 break; 6863 } 6864 if (key.type == BTRFS_METADATA_ITEM_KEY && 6865 key.offset == owner_objectid) { 6866 found_extent = 1; 6867 break; 6868 } 6869 if (path->slots[0] - extent_slot > 5) 6870 break; 6871 extent_slot--; 6872 } 6873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6874 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6875 if (found_extent && item_size < sizeof(*ei)) 6876 found_extent = 0; 6877 #endif 6878 if (!found_extent) { 6879 BUG_ON(iref); 6880 ret = remove_extent_backref(trans, extent_root, path, 6881 NULL, refs_to_drop, 6882 is_data, &last_ref); 6883 if (ret) { 6884 btrfs_abort_transaction(trans, ret); 6885 goto out; 6886 } 6887 btrfs_release_path(path); 6888 path->leave_spinning = 1; 6889 6890 key.objectid = bytenr; 6891 key.type = BTRFS_EXTENT_ITEM_KEY; 6892 key.offset = num_bytes; 6893 6894 if (!is_data && skinny_metadata) { 6895 key.type = BTRFS_METADATA_ITEM_KEY; 6896 key.offset = owner_objectid; 6897 } 6898 6899 ret = btrfs_search_slot(trans, extent_root, 6900 &key, path, -1, 1); 6901 if (ret > 0 && skinny_metadata && path->slots[0]) { 6902 /* 6903 * Couldn't find our skinny metadata item, 6904 * see if we have ye olde extent item. 6905 */ 6906 path->slots[0]--; 6907 btrfs_item_key_to_cpu(path->nodes[0], &key, 6908 path->slots[0]); 6909 if (key.objectid == bytenr && 6910 key.type == BTRFS_EXTENT_ITEM_KEY && 6911 key.offset == num_bytes) 6912 ret = 0; 6913 } 6914 6915 if (ret > 0 && skinny_metadata) { 6916 skinny_metadata = false; 6917 key.objectid = bytenr; 6918 key.type = BTRFS_EXTENT_ITEM_KEY; 6919 key.offset = num_bytes; 6920 btrfs_release_path(path); 6921 ret = btrfs_search_slot(trans, extent_root, 6922 &key, path, -1, 1); 6923 } 6924 6925 if (ret) { 6926 btrfs_err(info, 6927 "umm, got %d back from search, was looking for %llu", 6928 ret, bytenr); 6929 if (ret > 0) 6930 btrfs_print_leaf(info, path->nodes[0]); 6931 } 6932 if (ret < 0) { 6933 btrfs_abort_transaction(trans, ret); 6934 goto out; 6935 } 6936 extent_slot = path->slots[0]; 6937 } 6938 } else if (WARN_ON(ret == -ENOENT)) { 6939 btrfs_print_leaf(info, path->nodes[0]); 6940 btrfs_err(info, 6941 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6942 bytenr, parent, root_objectid, owner_objectid, 6943 owner_offset); 6944 btrfs_abort_transaction(trans, ret); 6945 goto out; 6946 } else { 6947 btrfs_abort_transaction(trans, ret); 6948 goto out; 6949 } 6950 6951 leaf = path->nodes[0]; 6952 item_size = btrfs_item_size_nr(leaf, extent_slot); 6953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6954 if (item_size < sizeof(*ei)) { 6955 BUG_ON(found_extent || extent_slot != path->slots[0]); 6956 ret = convert_extent_item_v0(trans, extent_root, path, 6957 owner_objectid, 0); 6958 if (ret < 0) { 6959 btrfs_abort_transaction(trans, ret); 6960 goto out; 6961 } 6962 6963 btrfs_release_path(path); 6964 path->leave_spinning = 1; 6965 6966 key.objectid = bytenr; 6967 key.type = BTRFS_EXTENT_ITEM_KEY; 6968 key.offset = num_bytes; 6969 6970 ret = btrfs_search_slot(trans, extent_root, &key, path, 6971 -1, 1); 6972 if (ret) { 6973 btrfs_err(info, 6974 "umm, got %d back from search, was looking for %llu", 6975 ret, bytenr); 6976 btrfs_print_leaf(info, path->nodes[0]); 6977 } 6978 if (ret < 0) { 6979 btrfs_abort_transaction(trans, ret); 6980 goto out; 6981 } 6982 6983 extent_slot = path->slots[0]; 6984 leaf = path->nodes[0]; 6985 item_size = btrfs_item_size_nr(leaf, extent_slot); 6986 } 6987 #endif 6988 BUG_ON(item_size < sizeof(*ei)); 6989 ei = btrfs_item_ptr(leaf, extent_slot, 6990 struct btrfs_extent_item); 6991 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6992 key.type == BTRFS_EXTENT_ITEM_KEY) { 6993 struct btrfs_tree_block_info *bi; 6994 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6995 bi = (struct btrfs_tree_block_info *)(ei + 1); 6996 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6997 } 6998 6999 refs = btrfs_extent_refs(leaf, ei); 7000 if (refs < refs_to_drop) { 7001 btrfs_err(info, 7002 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7003 refs_to_drop, refs, bytenr); 7004 ret = -EINVAL; 7005 btrfs_abort_transaction(trans, ret); 7006 goto out; 7007 } 7008 refs -= refs_to_drop; 7009 7010 if (refs > 0) { 7011 if (extent_op) 7012 __run_delayed_extent_op(extent_op, leaf, ei); 7013 /* 7014 * In the case of inline back ref, reference count will 7015 * be updated by remove_extent_backref 7016 */ 7017 if (iref) { 7018 BUG_ON(!found_extent); 7019 } else { 7020 btrfs_set_extent_refs(leaf, ei, refs); 7021 btrfs_mark_buffer_dirty(leaf); 7022 } 7023 if (found_extent) { 7024 ret = remove_extent_backref(trans, extent_root, path, 7025 iref, refs_to_drop, 7026 is_data, &last_ref); 7027 if (ret) { 7028 btrfs_abort_transaction(trans, ret); 7029 goto out; 7030 } 7031 } 7032 add_pinned_bytes(info, -num_bytes, owner_objectid, 7033 root_objectid); 7034 } else { 7035 if (found_extent) { 7036 BUG_ON(is_data && refs_to_drop != 7037 extent_data_ref_count(path, iref)); 7038 if (iref) { 7039 BUG_ON(path->slots[0] != extent_slot); 7040 } else { 7041 BUG_ON(path->slots[0] != extent_slot + 1); 7042 path->slots[0] = extent_slot; 7043 num_to_del = 2; 7044 } 7045 } 7046 7047 last_ref = 1; 7048 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7049 num_to_del); 7050 if (ret) { 7051 btrfs_abort_transaction(trans, ret); 7052 goto out; 7053 } 7054 btrfs_release_path(path); 7055 7056 if (is_data) { 7057 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7058 if (ret) { 7059 btrfs_abort_transaction(trans, ret); 7060 goto out; 7061 } 7062 } 7063 7064 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7065 if (ret) { 7066 btrfs_abort_transaction(trans, ret); 7067 goto out; 7068 } 7069 7070 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7071 if (ret) { 7072 btrfs_abort_transaction(trans, ret); 7073 goto out; 7074 } 7075 } 7076 btrfs_release_path(path); 7077 7078 out: 7079 btrfs_free_path(path); 7080 return ret; 7081 } 7082 7083 /* 7084 * when we free an block, it is possible (and likely) that we free the last 7085 * delayed ref for that extent as well. This searches the delayed ref tree for 7086 * a given extent, and if there are no other delayed refs to be processed, it 7087 * removes it from the tree. 7088 */ 7089 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7090 u64 bytenr) 7091 { 7092 struct btrfs_delayed_ref_head *head; 7093 struct btrfs_delayed_ref_root *delayed_refs; 7094 int ret = 0; 7095 7096 delayed_refs = &trans->transaction->delayed_refs; 7097 spin_lock(&delayed_refs->lock); 7098 head = btrfs_find_delayed_ref_head(trans, bytenr); 7099 if (!head) 7100 goto out_delayed_unlock; 7101 7102 spin_lock(&head->lock); 7103 if (!list_empty(&head->ref_list)) 7104 goto out; 7105 7106 if (head->extent_op) { 7107 if (!head->must_insert_reserved) 7108 goto out; 7109 btrfs_free_delayed_extent_op(head->extent_op); 7110 head->extent_op = NULL; 7111 } 7112 7113 /* 7114 * waiting for the lock here would deadlock. If someone else has it 7115 * locked they are already in the process of dropping it anyway 7116 */ 7117 if (!mutex_trylock(&head->mutex)) 7118 goto out; 7119 7120 /* 7121 * at this point we have a head with no other entries. Go 7122 * ahead and process it. 7123 */ 7124 head->node.in_tree = 0; 7125 rb_erase(&head->href_node, &delayed_refs->href_root); 7126 7127 atomic_dec(&delayed_refs->num_entries); 7128 7129 /* 7130 * we don't take a ref on the node because we're removing it from the 7131 * tree, so we just steal the ref the tree was holding. 7132 */ 7133 delayed_refs->num_heads--; 7134 if (head->processing == 0) 7135 delayed_refs->num_heads_ready--; 7136 head->processing = 0; 7137 spin_unlock(&head->lock); 7138 spin_unlock(&delayed_refs->lock); 7139 7140 BUG_ON(head->extent_op); 7141 if (head->must_insert_reserved) 7142 ret = 1; 7143 7144 mutex_unlock(&head->mutex); 7145 btrfs_put_delayed_ref(&head->node); 7146 return ret; 7147 out: 7148 spin_unlock(&head->lock); 7149 7150 out_delayed_unlock: 7151 spin_unlock(&delayed_refs->lock); 7152 return 0; 7153 } 7154 7155 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7156 struct btrfs_root *root, 7157 struct extent_buffer *buf, 7158 u64 parent, int last_ref) 7159 { 7160 struct btrfs_fs_info *fs_info = root->fs_info; 7161 int pin = 1; 7162 int ret; 7163 7164 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7165 ret = btrfs_add_delayed_tree_ref(fs_info, trans, 7166 buf->start, buf->len, 7167 parent, 7168 root->root_key.objectid, 7169 btrfs_header_level(buf), 7170 BTRFS_DROP_DELAYED_REF, NULL); 7171 BUG_ON(ret); /* -ENOMEM */ 7172 } 7173 7174 if (!last_ref) 7175 return; 7176 7177 if (btrfs_header_generation(buf) == trans->transid) { 7178 struct btrfs_block_group_cache *cache; 7179 7180 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7181 ret = check_ref_cleanup(trans, buf->start); 7182 if (!ret) 7183 goto out; 7184 } 7185 7186 cache = btrfs_lookup_block_group(fs_info, buf->start); 7187 7188 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7189 pin_down_extent(fs_info, cache, buf->start, 7190 buf->len, 1); 7191 btrfs_put_block_group(cache); 7192 goto out; 7193 } 7194 7195 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7196 7197 btrfs_add_free_space(cache, buf->start, buf->len); 7198 btrfs_free_reserved_bytes(cache, buf->len, 0); 7199 btrfs_put_block_group(cache); 7200 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7201 pin = 0; 7202 } 7203 out: 7204 if (pin) 7205 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7206 root->root_key.objectid); 7207 7208 /* 7209 * Deleting the buffer, clear the corrupt flag since it doesn't matter 7210 * anymore. 7211 */ 7212 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7213 } 7214 7215 /* Can return -ENOMEM */ 7216 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7217 struct btrfs_fs_info *fs_info, 7218 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7219 u64 owner, u64 offset) 7220 { 7221 int ret; 7222 7223 if (btrfs_is_testing(fs_info)) 7224 return 0; 7225 7226 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7227 7228 /* 7229 * tree log blocks never actually go into the extent allocation 7230 * tree, just update pinning info and exit early. 7231 */ 7232 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7233 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7234 /* unlocks the pinned mutex */ 7235 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7236 ret = 0; 7237 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7238 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7239 num_bytes, 7240 parent, root_objectid, (int)owner, 7241 BTRFS_DROP_DELAYED_REF, NULL); 7242 } else { 7243 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7244 num_bytes, 7245 parent, root_objectid, owner, 7246 offset, 0, 7247 BTRFS_DROP_DELAYED_REF, NULL); 7248 } 7249 return ret; 7250 } 7251 7252 /* 7253 * when we wait for progress in the block group caching, its because 7254 * our allocation attempt failed at least once. So, we must sleep 7255 * and let some progress happen before we try again. 7256 * 7257 * This function will sleep at least once waiting for new free space to 7258 * show up, and then it will check the block group free space numbers 7259 * for our min num_bytes. Another option is to have it go ahead 7260 * and look in the rbtree for a free extent of a given size, but this 7261 * is a good start. 7262 * 7263 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7264 * any of the information in this block group. 7265 */ 7266 static noinline void 7267 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7268 u64 num_bytes) 7269 { 7270 struct btrfs_caching_control *caching_ctl; 7271 7272 caching_ctl = get_caching_control(cache); 7273 if (!caching_ctl) 7274 return; 7275 7276 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7277 (cache->free_space_ctl->free_space >= num_bytes)); 7278 7279 put_caching_control(caching_ctl); 7280 } 7281 7282 static noinline int 7283 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7284 { 7285 struct btrfs_caching_control *caching_ctl; 7286 int ret = 0; 7287 7288 caching_ctl = get_caching_control(cache); 7289 if (!caching_ctl) 7290 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7291 7292 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7293 if (cache->cached == BTRFS_CACHE_ERROR) 7294 ret = -EIO; 7295 put_caching_control(caching_ctl); 7296 return ret; 7297 } 7298 7299 int __get_raid_index(u64 flags) 7300 { 7301 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7302 return BTRFS_RAID_RAID10; 7303 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7304 return BTRFS_RAID_RAID1; 7305 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7306 return BTRFS_RAID_DUP; 7307 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7308 return BTRFS_RAID_RAID0; 7309 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7310 return BTRFS_RAID_RAID5; 7311 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7312 return BTRFS_RAID_RAID6; 7313 7314 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7315 } 7316 7317 int get_block_group_index(struct btrfs_block_group_cache *cache) 7318 { 7319 return __get_raid_index(cache->flags); 7320 } 7321 7322 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7323 [BTRFS_RAID_RAID10] = "raid10", 7324 [BTRFS_RAID_RAID1] = "raid1", 7325 [BTRFS_RAID_DUP] = "dup", 7326 [BTRFS_RAID_RAID0] = "raid0", 7327 [BTRFS_RAID_SINGLE] = "single", 7328 [BTRFS_RAID_RAID5] = "raid5", 7329 [BTRFS_RAID_RAID6] = "raid6", 7330 }; 7331 7332 static const char *get_raid_name(enum btrfs_raid_types type) 7333 { 7334 if (type >= BTRFS_NR_RAID_TYPES) 7335 return NULL; 7336 7337 return btrfs_raid_type_names[type]; 7338 } 7339 7340 enum btrfs_loop_type { 7341 LOOP_CACHING_NOWAIT = 0, 7342 LOOP_CACHING_WAIT = 1, 7343 LOOP_ALLOC_CHUNK = 2, 7344 LOOP_NO_EMPTY_SIZE = 3, 7345 }; 7346 7347 static inline void 7348 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7349 int delalloc) 7350 { 7351 if (delalloc) 7352 down_read(&cache->data_rwsem); 7353 } 7354 7355 static inline void 7356 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7357 int delalloc) 7358 { 7359 btrfs_get_block_group(cache); 7360 if (delalloc) 7361 down_read(&cache->data_rwsem); 7362 } 7363 7364 static struct btrfs_block_group_cache * 7365 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7366 struct btrfs_free_cluster *cluster, 7367 int delalloc) 7368 { 7369 struct btrfs_block_group_cache *used_bg = NULL; 7370 7371 spin_lock(&cluster->refill_lock); 7372 while (1) { 7373 used_bg = cluster->block_group; 7374 if (!used_bg) 7375 return NULL; 7376 7377 if (used_bg == block_group) 7378 return used_bg; 7379 7380 btrfs_get_block_group(used_bg); 7381 7382 if (!delalloc) 7383 return used_bg; 7384 7385 if (down_read_trylock(&used_bg->data_rwsem)) 7386 return used_bg; 7387 7388 spin_unlock(&cluster->refill_lock); 7389 7390 /* We should only have one-level nested. */ 7391 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7392 7393 spin_lock(&cluster->refill_lock); 7394 if (used_bg == cluster->block_group) 7395 return used_bg; 7396 7397 up_read(&used_bg->data_rwsem); 7398 btrfs_put_block_group(used_bg); 7399 } 7400 } 7401 7402 static inline void 7403 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7404 int delalloc) 7405 { 7406 if (delalloc) 7407 up_read(&cache->data_rwsem); 7408 btrfs_put_block_group(cache); 7409 } 7410 7411 /* 7412 * walks the btree of allocated extents and find a hole of a given size. 7413 * The key ins is changed to record the hole: 7414 * ins->objectid == start position 7415 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7416 * ins->offset == the size of the hole. 7417 * Any available blocks before search_start are skipped. 7418 * 7419 * If there is no suitable free space, we will record the max size of 7420 * the free space extent currently. 7421 */ 7422 static noinline int find_free_extent(struct btrfs_root *orig_root, 7423 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7424 u64 hint_byte, struct btrfs_key *ins, 7425 u64 flags, int delalloc) 7426 { 7427 struct btrfs_fs_info *fs_info = orig_root->fs_info; 7428 int ret = 0; 7429 struct btrfs_root *root = fs_info->extent_root; 7430 struct btrfs_free_cluster *last_ptr = NULL; 7431 struct btrfs_block_group_cache *block_group = NULL; 7432 u64 search_start = 0; 7433 u64 max_extent_size = 0; 7434 u64 empty_cluster = 0; 7435 struct btrfs_space_info *space_info; 7436 int loop = 0; 7437 int index = __get_raid_index(flags); 7438 bool failed_cluster_refill = false; 7439 bool failed_alloc = false; 7440 bool use_cluster = true; 7441 bool have_caching_bg = false; 7442 bool orig_have_caching_bg = false; 7443 bool full_search = false; 7444 7445 WARN_ON(num_bytes < fs_info->sectorsize); 7446 ins->type = BTRFS_EXTENT_ITEM_KEY; 7447 ins->objectid = 0; 7448 ins->offset = 0; 7449 7450 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7451 7452 space_info = __find_space_info(fs_info, flags); 7453 if (!space_info) { 7454 btrfs_err(fs_info, "No space info for %llu", flags); 7455 return -ENOSPC; 7456 } 7457 7458 /* 7459 * If our free space is heavily fragmented we may not be able to make 7460 * big contiguous allocations, so instead of doing the expensive search 7461 * for free space, simply return ENOSPC with our max_extent_size so we 7462 * can go ahead and search for a more manageable chunk. 7463 * 7464 * If our max_extent_size is large enough for our allocation simply 7465 * disable clustering since we will likely not be able to find enough 7466 * space to create a cluster and induce latency trying. 7467 */ 7468 if (unlikely(space_info->max_extent_size)) { 7469 spin_lock(&space_info->lock); 7470 if (space_info->max_extent_size && 7471 num_bytes > space_info->max_extent_size) { 7472 ins->offset = space_info->max_extent_size; 7473 spin_unlock(&space_info->lock); 7474 return -ENOSPC; 7475 } else if (space_info->max_extent_size) { 7476 use_cluster = false; 7477 } 7478 spin_unlock(&space_info->lock); 7479 } 7480 7481 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7482 if (last_ptr) { 7483 spin_lock(&last_ptr->lock); 7484 if (last_ptr->block_group) 7485 hint_byte = last_ptr->window_start; 7486 if (last_ptr->fragmented) { 7487 /* 7488 * We still set window_start so we can keep track of the 7489 * last place we found an allocation to try and save 7490 * some time. 7491 */ 7492 hint_byte = last_ptr->window_start; 7493 use_cluster = false; 7494 } 7495 spin_unlock(&last_ptr->lock); 7496 } 7497 7498 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7499 search_start = max(search_start, hint_byte); 7500 if (search_start == hint_byte) { 7501 block_group = btrfs_lookup_block_group(fs_info, search_start); 7502 /* 7503 * we don't want to use the block group if it doesn't match our 7504 * allocation bits, or if its not cached. 7505 * 7506 * However if we are re-searching with an ideal block group 7507 * picked out then we don't care that the block group is cached. 7508 */ 7509 if (block_group && block_group_bits(block_group, flags) && 7510 block_group->cached != BTRFS_CACHE_NO) { 7511 down_read(&space_info->groups_sem); 7512 if (list_empty(&block_group->list) || 7513 block_group->ro) { 7514 /* 7515 * someone is removing this block group, 7516 * we can't jump into the have_block_group 7517 * target because our list pointers are not 7518 * valid 7519 */ 7520 btrfs_put_block_group(block_group); 7521 up_read(&space_info->groups_sem); 7522 } else { 7523 index = get_block_group_index(block_group); 7524 btrfs_lock_block_group(block_group, delalloc); 7525 goto have_block_group; 7526 } 7527 } else if (block_group) { 7528 btrfs_put_block_group(block_group); 7529 } 7530 } 7531 search: 7532 have_caching_bg = false; 7533 if (index == 0 || index == __get_raid_index(flags)) 7534 full_search = true; 7535 down_read(&space_info->groups_sem); 7536 list_for_each_entry(block_group, &space_info->block_groups[index], 7537 list) { 7538 u64 offset; 7539 int cached; 7540 7541 btrfs_grab_block_group(block_group, delalloc); 7542 search_start = block_group->key.objectid; 7543 7544 /* 7545 * this can happen if we end up cycling through all the 7546 * raid types, but we want to make sure we only allocate 7547 * for the proper type. 7548 */ 7549 if (!block_group_bits(block_group, flags)) { 7550 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7551 BTRFS_BLOCK_GROUP_RAID1 | 7552 BTRFS_BLOCK_GROUP_RAID5 | 7553 BTRFS_BLOCK_GROUP_RAID6 | 7554 BTRFS_BLOCK_GROUP_RAID10; 7555 7556 /* 7557 * if they asked for extra copies and this block group 7558 * doesn't provide them, bail. This does allow us to 7559 * fill raid0 from raid1. 7560 */ 7561 if ((flags & extra) && !(block_group->flags & extra)) 7562 goto loop; 7563 } 7564 7565 have_block_group: 7566 cached = block_group_cache_done(block_group); 7567 if (unlikely(!cached)) { 7568 have_caching_bg = true; 7569 ret = cache_block_group(block_group, 0); 7570 BUG_ON(ret < 0); 7571 ret = 0; 7572 } 7573 7574 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7575 goto loop; 7576 if (unlikely(block_group->ro)) 7577 goto loop; 7578 7579 /* 7580 * Ok we want to try and use the cluster allocator, so 7581 * lets look there 7582 */ 7583 if (last_ptr && use_cluster) { 7584 struct btrfs_block_group_cache *used_block_group; 7585 unsigned long aligned_cluster; 7586 /* 7587 * the refill lock keeps out other 7588 * people trying to start a new cluster 7589 */ 7590 used_block_group = btrfs_lock_cluster(block_group, 7591 last_ptr, 7592 delalloc); 7593 if (!used_block_group) 7594 goto refill_cluster; 7595 7596 if (used_block_group != block_group && 7597 (used_block_group->ro || 7598 !block_group_bits(used_block_group, flags))) 7599 goto release_cluster; 7600 7601 offset = btrfs_alloc_from_cluster(used_block_group, 7602 last_ptr, 7603 num_bytes, 7604 used_block_group->key.objectid, 7605 &max_extent_size); 7606 if (offset) { 7607 /* we have a block, we're done */ 7608 spin_unlock(&last_ptr->refill_lock); 7609 trace_btrfs_reserve_extent_cluster(fs_info, 7610 used_block_group, 7611 search_start, num_bytes); 7612 if (used_block_group != block_group) { 7613 btrfs_release_block_group(block_group, 7614 delalloc); 7615 block_group = used_block_group; 7616 } 7617 goto checks; 7618 } 7619 7620 WARN_ON(last_ptr->block_group != used_block_group); 7621 release_cluster: 7622 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7623 * set up a new clusters, so lets just skip it 7624 * and let the allocator find whatever block 7625 * it can find. If we reach this point, we 7626 * will have tried the cluster allocator 7627 * plenty of times and not have found 7628 * anything, so we are likely way too 7629 * fragmented for the clustering stuff to find 7630 * anything. 7631 * 7632 * However, if the cluster is taken from the 7633 * current block group, release the cluster 7634 * first, so that we stand a better chance of 7635 * succeeding in the unclustered 7636 * allocation. */ 7637 if (loop >= LOOP_NO_EMPTY_SIZE && 7638 used_block_group != block_group) { 7639 spin_unlock(&last_ptr->refill_lock); 7640 btrfs_release_block_group(used_block_group, 7641 delalloc); 7642 goto unclustered_alloc; 7643 } 7644 7645 /* 7646 * this cluster didn't work out, free it and 7647 * start over 7648 */ 7649 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7650 7651 if (used_block_group != block_group) 7652 btrfs_release_block_group(used_block_group, 7653 delalloc); 7654 refill_cluster: 7655 if (loop >= LOOP_NO_EMPTY_SIZE) { 7656 spin_unlock(&last_ptr->refill_lock); 7657 goto unclustered_alloc; 7658 } 7659 7660 aligned_cluster = max_t(unsigned long, 7661 empty_cluster + empty_size, 7662 block_group->full_stripe_len); 7663 7664 /* allocate a cluster in this block group */ 7665 ret = btrfs_find_space_cluster(fs_info, block_group, 7666 last_ptr, search_start, 7667 num_bytes, 7668 aligned_cluster); 7669 if (ret == 0) { 7670 /* 7671 * now pull our allocation out of this 7672 * cluster 7673 */ 7674 offset = btrfs_alloc_from_cluster(block_group, 7675 last_ptr, 7676 num_bytes, 7677 search_start, 7678 &max_extent_size); 7679 if (offset) { 7680 /* we found one, proceed */ 7681 spin_unlock(&last_ptr->refill_lock); 7682 trace_btrfs_reserve_extent_cluster(fs_info, 7683 block_group, search_start, 7684 num_bytes); 7685 goto checks; 7686 } 7687 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7688 && !failed_cluster_refill) { 7689 spin_unlock(&last_ptr->refill_lock); 7690 7691 failed_cluster_refill = true; 7692 wait_block_group_cache_progress(block_group, 7693 num_bytes + empty_cluster + empty_size); 7694 goto have_block_group; 7695 } 7696 7697 /* 7698 * at this point we either didn't find a cluster 7699 * or we weren't able to allocate a block from our 7700 * cluster. Free the cluster we've been trying 7701 * to use, and go to the next block group 7702 */ 7703 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7704 spin_unlock(&last_ptr->refill_lock); 7705 goto loop; 7706 } 7707 7708 unclustered_alloc: 7709 /* 7710 * We are doing an unclustered alloc, set the fragmented flag so 7711 * we don't bother trying to setup a cluster again until we get 7712 * more space. 7713 */ 7714 if (unlikely(last_ptr)) { 7715 spin_lock(&last_ptr->lock); 7716 last_ptr->fragmented = 1; 7717 spin_unlock(&last_ptr->lock); 7718 } 7719 spin_lock(&block_group->free_space_ctl->tree_lock); 7720 if (cached && 7721 block_group->free_space_ctl->free_space < 7722 num_bytes + empty_cluster + empty_size) { 7723 if (block_group->free_space_ctl->free_space > 7724 max_extent_size) 7725 max_extent_size = 7726 block_group->free_space_ctl->free_space; 7727 spin_unlock(&block_group->free_space_ctl->tree_lock); 7728 goto loop; 7729 } 7730 spin_unlock(&block_group->free_space_ctl->tree_lock); 7731 7732 offset = btrfs_find_space_for_alloc(block_group, search_start, 7733 num_bytes, empty_size, 7734 &max_extent_size); 7735 /* 7736 * If we didn't find a chunk, and we haven't failed on this 7737 * block group before, and this block group is in the middle of 7738 * caching and we are ok with waiting, then go ahead and wait 7739 * for progress to be made, and set failed_alloc to true. 7740 * 7741 * If failed_alloc is true then we've already waited on this 7742 * block group once and should move on to the next block group. 7743 */ 7744 if (!offset && !failed_alloc && !cached && 7745 loop > LOOP_CACHING_NOWAIT) { 7746 wait_block_group_cache_progress(block_group, 7747 num_bytes + empty_size); 7748 failed_alloc = true; 7749 goto have_block_group; 7750 } else if (!offset) { 7751 goto loop; 7752 } 7753 checks: 7754 search_start = ALIGN(offset, fs_info->stripesize); 7755 7756 /* move on to the next group */ 7757 if (search_start + num_bytes > 7758 block_group->key.objectid + block_group->key.offset) { 7759 btrfs_add_free_space(block_group, offset, num_bytes); 7760 goto loop; 7761 } 7762 7763 if (offset < search_start) 7764 btrfs_add_free_space(block_group, offset, 7765 search_start - offset); 7766 BUG_ON(offset > search_start); 7767 7768 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7769 num_bytes, delalloc); 7770 if (ret == -EAGAIN) { 7771 btrfs_add_free_space(block_group, offset, num_bytes); 7772 goto loop; 7773 } 7774 btrfs_inc_block_group_reservations(block_group); 7775 7776 /* we are all good, lets return */ 7777 ins->objectid = search_start; 7778 ins->offset = num_bytes; 7779 7780 trace_btrfs_reserve_extent(fs_info, block_group, 7781 search_start, num_bytes); 7782 btrfs_release_block_group(block_group, delalloc); 7783 break; 7784 loop: 7785 failed_cluster_refill = false; 7786 failed_alloc = false; 7787 BUG_ON(index != get_block_group_index(block_group)); 7788 btrfs_release_block_group(block_group, delalloc); 7789 } 7790 up_read(&space_info->groups_sem); 7791 7792 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7793 && !orig_have_caching_bg) 7794 orig_have_caching_bg = true; 7795 7796 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7797 goto search; 7798 7799 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7800 goto search; 7801 7802 /* 7803 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7804 * caching kthreads as we move along 7805 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7806 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7807 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7808 * again 7809 */ 7810 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7811 index = 0; 7812 if (loop == LOOP_CACHING_NOWAIT) { 7813 /* 7814 * We want to skip the LOOP_CACHING_WAIT step if we 7815 * don't have any uncached bgs and we've already done a 7816 * full search through. 7817 */ 7818 if (orig_have_caching_bg || !full_search) 7819 loop = LOOP_CACHING_WAIT; 7820 else 7821 loop = LOOP_ALLOC_CHUNK; 7822 } else { 7823 loop++; 7824 } 7825 7826 if (loop == LOOP_ALLOC_CHUNK) { 7827 struct btrfs_trans_handle *trans; 7828 int exist = 0; 7829 7830 trans = current->journal_info; 7831 if (trans) 7832 exist = 1; 7833 else 7834 trans = btrfs_join_transaction(root); 7835 7836 if (IS_ERR(trans)) { 7837 ret = PTR_ERR(trans); 7838 goto out; 7839 } 7840 7841 ret = do_chunk_alloc(trans, fs_info, flags, 7842 CHUNK_ALLOC_FORCE); 7843 7844 /* 7845 * If we can't allocate a new chunk we've already looped 7846 * through at least once, move on to the NO_EMPTY_SIZE 7847 * case. 7848 */ 7849 if (ret == -ENOSPC) 7850 loop = LOOP_NO_EMPTY_SIZE; 7851 7852 /* 7853 * Do not bail out on ENOSPC since we 7854 * can do more things. 7855 */ 7856 if (ret < 0 && ret != -ENOSPC) 7857 btrfs_abort_transaction(trans, ret); 7858 else 7859 ret = 0; 7860 if (!exist) 7861 btrfs_end_transaction(trans); 7862 if (ret) 7863 goto out; 7864 } 7865 7866 if (loop == LOOP_NO_EMPTY_SIZE) { 7867 /* 7868 * Don't loop again if we already have no empty_size and 7869 * no empty_cluster. 7870 */ 7871 if (empty_size == 0 && 7872 empty_cluster == 0) { 7873 ret = -ENOSPC; 7874 goto out; 7875 } 7876 empty_size = 0; 7877 empty_cluster = 0; 7878 } 7879 7880 goto search; 7881 } else if (!ins->objectid) { 7882 ret = -ENOSPC; 7883 } else if (ins->objectid) { 7884 if (!use_cluster && last_ptr) { 7885 spin_lock(&last_ptr->lock); 7886 last_ptr->window_start = ins->objectid; 7887 spin_unlock(&last_ptr->lock); 7888 } 7889 ret = 0; 7890 } 7891 out: 7892 if (ret == -ENOSPC) { 7893 spin_lock(&space_info->lock); 7894 space_info->max_extent_size = max_extent_size; 7895 spin_unlock(&space_info->lock); 7896 ins->offset = max_extent_size; 7897 } 7898 return ret; 7899 } 7900 7901 static void dump_space_info(struct btrfs_fs_info *fs_info, 7902 struct btrfs_space_info *info, u64 bytes, 7903 int dump_block_groups) 7904 { 7905 struct btrfs_block_group_cache *cache; 7906 int index = 0; 7907 7908 spin_lock(&info->lock); 7909 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7910 info->flags, 7911 info->total_bytes - info->bytes_used - info->bytes_pinned - 7912 info->bytes_reserved - info->bytes_readonly - 7913 info->bytes_may_use, (info->full) ? "" : "not "); 7914 btrfs_info(fs_info, 7915 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7916 info->total_bytes, info->bytes_used, info->bytes_pinned, 7917 info->bytes_reserved, info->bytes_may_use, 7918 info->bytes_readonly); 7919 spin_unlock(&info->lock); 7920 7921 if (!dump_block_groups) 7922 return; 7923 7924 down_read(&info->groups_sem); 7925 again: 7926 list_for_each_entry(cache, &info->block_groups[index], list) { 7927 spin_lock(&cache->lock); 7928 btrfs_info(fs_info, 7929 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7930 cache->key.objectid, cache->key.offset, 7931 btrfs_block_group_used(&cache->item), cache->pinned, 7932 cache->reserved, cache->ro ? "[readonly]" : ""); 7933 btrfs_dump_free_space(cache, bytes); 7934 spin_unlock(&cache->lock); 7935 } 7936 if (++index < BTRFS_NR_RAID_TYPES) 7937 goto again; 7938 up_read(&info->groups_sem); 7939 } 7940 7941 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7942 u64 num_bytes, u64 min_alloc_size, 7943 u64 empty_size, u64 hint_byte, 7944 struct btrfs_key *ins, int is_data, int delalloc) 7945 { 7946 struct btrfs_fs_info *fs_info = root->fs_info; 7947 bool final_tried = num_bytes == min_alloc_size; 7948 u64 flags; 7949 int ret; 7950 7951 flags = btrfs_get_alloc_profile(root, is_data); 7952 again: 7953 WARN_ON(num_bytes < fs_info->sectorsize); 7954 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 7955 hint_byte, ins, flags, delalloc); 7956 if (!ret && !is_data) { 7957 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 7958 } else if (ret == -ENOSPC) { 7959 if (!final_tried && ins->offset) { 7960 num_bytes = min(num_bytes >> 1, ins->offset); 7961 num_bytes = round_down(num_bytes, 7962 fs_info->sectorsize); 7963 num_bytes = max(num_bytes, min_alloc_size); 7964 ram_bytes = num_bytes; 7965 if (num_bytes == min_alloc_size) 7966 final_tried = true; 7967 goto again; 7968 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 7969 struct btrfs_space_info *sinfo; 7970 7971 sinfo = __find_space_info(fs_info, flags); 7972 btrfs_err(fs_info, 7973 "allocation failed flags %llu, wanted %llu", 7974 flags, num_bytes); 7975 if (sinfo) 7976 dump_space_info(fs_info, sinfo, num_bytes, 1); 7977 } 7978 } 7979 7980 return ret; 7981 } 7982 7983 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 7984 u64 start, u64 len, 7985 int pin, int delalloc) 7986 { 7987 struct btrfs_block_group_cache *cache; 7988 int ret = 0; 7989 7990 cache = btrfs_lookup_block_group(fs_info, start); 7991 if (!cache) { 7992 btrfs_err(fs_info, "Unable to find block group for %llu", 7993 start); 7994 return -ENOSPC; 7995 } 7996 7997 if (pin) 7998 pin_down_extent(fs_info, cache, start, len, 1); 7999 else { 8000 if (btrfs_test_opt(fs_info, DISCARD)) 8001 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8002 btrfs_add_free_space(cache, start, len); 8003 btrfs_free_reserved_bytes(cache, len, delalloc); 8004 trace_btrfs_reserved_extent_free(fs_info, start, len); 8005 } 8006 8007 btrfs_put_block_group(cache); 8008 return ret; 8009 } 8010 8011 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8012 u64 start, u64 len, int delalloc) 8013 { 8014 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8015 } 8016 8017 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8018 u64 start, u64 len) 8019 { 8020 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8021 } 8022 8023 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8024 struct btrfs_fs_info *fs_info, 8025 u64 parent, u64 root_objectid, 8026 u64 flags, u64 owner, u64 offset, 8027 struct btrfs_key *ins, int ref_mod) 8028 { 8029 int ret; 8030 struct btrfs_extent_item *extent_item; 8031 struct btrfs_extent_inline_ref *iref; 8032 struct btrfs_path *path; 8033 struct extent_buffer *leaf; 8034 int type; 8035 u32 size; 8036 8037 if (parent > 0) 8038 type = BTRFS_SHARED_DATA_REF_KEY; 8039 else 8040 type = BTRFS_EXTENT_DATA_REF_KEY; 8041 8042 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8043 8044 path = btrfs_alloc_path(); 8045 if (!path) 8046 return -ENOMEM; 8047 8048 path->leave_spinning = 1; 8049 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8050 ins, size); 8051 if (ret) { 8052 btrfs_free_path(path); 8053 return ret; 8054 } 8055 8056 leaf = path->nodes[0]; 8057 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8058 struct btrfs_extent_item); 8059 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8060 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8061 btrfs_set_extent_flags(leaf, extent_item, 8062 flags | BTRFS_EXTENT_FLAG_DATA); 8063 8064 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8065 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8066 if (parent > 0) { 8067 struct btrfs_shared_data_ref *ref; 8068 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8069 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8070 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8071 } else { 8072 struct btrfs_extent_data_ref *ref; 8073 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8074 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8075 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8076 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8077 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8078 } 8079 8080 btrfs_mark_buffer_dirty(path->nodes[0]); 8081 btrfs_free_path(path); 8082 8083 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8084 ins->offset); 8085 if (ret) 8086 return ret; 8087 8088 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8089 if (ret) { /* -ENOENT, logic error */ 8090 btrfs_err(fs_info, "update block group failed for %llu %llu", 8091 ins->objectid, ins->offset); 8092 BUG(); 8093 } 8094 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8095 return ret; 8096 } 8097 8098 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8099 struct btrfs_fs_info *fs_info, 8100 u64 parent, u64 root_objectid, 8101 u64 flags, struct btrfs_disk_key *key, 8102 int level, struct btrfs_key *ins) 8103 { 8104 int ret; 8105 struct btrfs_extent_item *extent_item; 8106 struct btrfs_tree_block_info *block_info; 8107 struct btrfs_extent_inline_ref *iref; 8108 struct btrfs_path *path; 8109 struct extent_buffer *leaf; 8110 u32 size = sizeof(*extent_item) + sizeof(*iref); 8111 u64 num_bytes = ins->offset; 8112 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8113 8114 if (!skinny_metadata) 8115 size += sizeof(*block_info); 8116 8117 path = btrfs_alloc_path(); 8118 if (!path) { 8119 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8120 fs_info->nodesize); 8121 return -ENOMEM; 8122 } 8123 8124 path->leave_spinning = 1; 8125 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8126 ins, size); 8127 if (ret) { 8128 btrfs_free_path(path); 8129 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8130 fs_info->nodesize); 8131 return ret; 8132 } 8133 8134 leaf = path->nodes[0]; 8135 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8136 struct btrfs_extent_item); 8137 btrfs_set_extent_refs(leaf, extent_item, 1); 8138 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8139 btrfs_set_extent_flags(leaf, extent_item, 8140 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8141 8142 if (skinny_metadata) { 8143 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8144 num_bytes = fs_info->nodesize; 8145 } else { 8146 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8147 btrfs_set_tree_block_key(leaf, block_info, key); 8148 btrfs_set_tree_block_level(leaf, block_info, level); 8149 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8150 } 8151 8152 if (parent > 0) { 8153 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8154 btrfs_set_extent_inline_ref_type(leaf, iref, 8155 BTRFS_SHARED_BLOCK_REF_KEY); 8156 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8157 } else { 8158 btrfs_set_extent_inline_ref_type(leaf, iref, 8159 BTRFS_TREE_BLOCK_REF_KEY); 8160 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8161 } 8162 8163 btrfs_mark_buffer_dirty(leaf); 8164 btrfs_free_path(path); 8165 8166 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8167 num_bytes); 8168 if (ret) 8169 return ret; 8170 8171 ret = update_block_group(trans, fs_info, ins->objectid, 8172 fs_info->nodesize, 1); 8173 if (ret) { /* -ENOENT, logic error */ 8174 btrfs_err(fs_info, "update block group failed for %llu %llu", 8175 ins->objectid, ins->offset); 8176 BUG(); 8177 } 8178 8179 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8180 fs_info->nodesize); 8181 return ret; 8182 } 8183 8184 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8185 u64 root_objectid, u64 owner, 8186 u64 offset, u64 ram_bytes, 8187 struct btrfs_key *ins) 8188 { 8189 struct btrfs_fs_info *fs_info = trans->fs_info; 8190 int ret; 8191 8192 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8193 8194 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8195 ins->offset, 0, 8196 root_objectid, owner, offset, 8197 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 8198 NULL); 8199 return ret; 8200 } 8201 8202 /* 8203 * this is used by the tree logging recovery code. It records that 8204 * an extent has been allocated and makes sure to clear the free 8205 * space cache bits as well 8206 */ 8207 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8208 struct btrfs_fs_info *fs_info, 8209 u64 root_objectid, u64 owner, u64 offset, 8210 struct btrfs_key *ins) 8211 { 8212 int ret; 8213 struct btrfs_block_group_cache *block_group; 8214 struct btrfs_space_info *space_info; 8215 8216 /* 8217 * Mixed block groups will exclude before processing the log so we only 8218 * need to do the exclude dance if this fs isn't mixed. 8219 */ 8220 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8221 ret = __exclude_logged_extent(fs_info, ins->objectid, 8222 ins->offset); 8223 if (ret) 8224 return ret; 8225 } 8226 8227 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8228 if (!block_group) 8229 return -EINVAL; 8230 8231 space_info = block_group->space_info; 8232 spin_lock(&space_info->lock); 8233 spin_lock(&block_group->lock); 8234 space_info->bytes_reserved += ins->offset; 8235 block_group->reserved += ins->offset; 8236 spin_unlock(&block_group->lock); 8237 spin_unlock(&space_info->lock); 8238 8239 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8240 0, owner, offset, ins, 1); 8241 btrfs_put_block_group(block_group); 8242 return ret; 8243 } 8244 8245 static struct extent_buffer * 8246 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8247 u64 bytenr, int level) 8248 { 8249 struct btrfs_fs_info *fs_info = root->fs_info; 8250 struct extent_buffer *buf; 8251 8252 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8253 if (IS_ERR(buf)) 8254 return buf; 8255 8256 btrfs_set_header_generation(buf, trans->transid); 8257 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8258 btrfs_tree_lock(buf); 8259 clean_tree_block(trans, fs_info, buf); 8260 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8261 8262 btrfs_set_lock_blocking(buf); 8263 set_extent_buffer_uptodate(buf); 8264 8265 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8266 buf->log_index = root->log_transid % 2; 8267 /* 8268 * we allow two log transactions at a time, use different 8269 * EXENT bit to differentiate dirty pages. 8270 */ 8271 if (buf->log_index == 0) 8272 set_extent_dirty(&root->dirty_log_pages, buf->start, 8273 buf->start + buf->len - 1, GFP_NOFS); 8274 else 8275 set_extent_new(&root->dirty_log_pages, buf->start, 8276 buf->start + buf->len - 1); 8277 } else { 8278 buf->log_index = -1; 8279 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8280 buf->start + buf->len - 1, GFP_NOFS); 8281 } 8282 trans->dirty = true; 8283 /* this returns a buffer locked for blocking */ 8284 return buf; 8285 } 8286 8287 static struct btrfs_block_rsv * 8288 use_block_rsv(struct btrfs_trans_handle *trans, 8289 struct btrfs_root *root, u32 blocksize) 8290 { 8291 struct btrfs_fs_info *fs_info = root->fs_info; 8292 struct btrfs_block_rsv *block_rsv; 8293 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8294 int ret; 8295 bool global_updated = false; 8296 8297 block_rsv = get_block_rsv(trans, root); 8298 8299 if (unlikely(block_rsv->size == 0)) 8300 goto try_reserve; 8301 again: 8302 ret = block_rsv_use_bytes(block_rsv, blocksize); 8303 if (!ret) 8304 return block_rsv; 8305 8306 if (block_rsv->failfast) 8307 return ERR_PTR(ret); 8308 8309 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8310 global_updated = true; 8311 update_global_block_rsv(fs_info); 8312 goto again; 8313 } 8314 8315 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8316 static DEFINE_RATELIMIT_STATE(_rs, 8317 DEFAULT_RATELIMIT_INTERVAL * 10, 8318 /*DEFAULT_RATELIMIT_BURST*/ 1); 8319 if (__ratelimit(&_rs)) 8320 WARN(1, KERN_DEBUG 8321 "BTRFS: block rsv returned %d\n", ret); 8322 } 8323 try_reserve: 8324 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8325 BTRFS_RESERVE_NO_FLUSH); 8326 if (!ret) 8327 return block_rsv; 8328 /* 8329 * If we couldn't reserve metadata bytes try and use some from 8330 * the global reserve if its space type is the same as the global 8331 * reservation. 8332 */ 8333 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8334 block_rsv->space_info == global_rsv->space_info) { 8335 ret = block_rsv_use_bytes(global_rsv, blocksize); 8336 if (!ret) 8337 return global_rsv; 8338 } 8339 return ERR_PTR(ret); 8340 } 8341 8342 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8343 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8344 { 8345 block_rsv_add_bytes(block_rsv, blocksize, 0); 8346 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8347 } 8348 8349 /* 8350 * finds a free extent and does all the dirty work required for allocation 8351 * returns the tree buffer or an ERR_PTR on error. 8352 */ 8353 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8354 struct btrfs_root *root, 8355 u64 parent, u64 root_objectid, 8356 struct btrfs_disk_key *key, int level, 8357 u64 hint, u64 empty_size) 8358 { 8359 struct btrfs_fs_info *fs_info = root->fs_info; 8360 struct btrfs_key ins; 8361 struct btrfs_block_rsv *block_rsv; 8362 struct extent_buffer *buf; 8363 struct btrfs_delayed_extent_op *extent_op; 8364 u64 flags = 0; 8365 int ret; 8366 u32 blocksize = fs_info->nodesize; 8367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8368 8369 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8370 if (btrfs_is_testing(fs_info)) { 8371 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8372 level); 8373 if (!IS_ERR(buf)) 8374 root->alloc_bytenr += blocksize; 8375 return buf; 8376 } 8377 #endif 8378 8379 block_rsv = use_block_rsv(trans, root, blocksize); 8380 if (IS_ERR(block_rsv)) 8381 return ERR_CAST(block_rsv); 8382 8383 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8384 empty_size, hint, &ins, 0, 0); 8385 if (ret) 8386 goto out_unuse; 8387 8388 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8389 if (IS_ERR(buf)) { 8390 ret = PTR_ERR(buf); 8391 goto out_free_reserved; 8392 } 8393 8394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8395 if (parent == 0) 8396 parent = ins.objectid; 8397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8398 } else 8399 BUG_ON(parent > 0); 8400 8401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8402 extent_op = btrfs_alloc_delayed_extent_op(); 8403 if (!extent_op) { 8404 ret = -ENOMEM; 8405 goto out_free_buf; 8406 } 8407 if (key) 8408 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8409 else 8410 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8411 extent_op->flags_to_set = flags; 8412 extent_op->update_key = skinny_metadata ? false : true; 8413 extent_op->update_flags = true; 8414 extent_op->is_data = false; 8415 extent_op->level = level; 8416 8417 ret = btrfs_add_delayed_tree_ref(fs_info, trans, 8418 ins.objectid, ins.offset, 8419 parent, root_objectid, level, 8420 BTRFS_ADD_DELAYED_EXTENT, 8421 extent_op); 8422 if (ret) 8423 goto out_free_delayed; 8424 } 8425 return buf; 8426 8427 out_free_delayed: 8428 btrfs_free_delayed_extent_op(extent_op); 8429 out_free_buf: 8430 free_extent_buffer(buf); 8431 out_free_reserved: 8432 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8433 out_unuse: 8434 unuse_block_rsv(fs_info, block_rsv, blocksize); 8435 return ERR_PTR(ret); 8436 } 8437 8438 struct walk_control { 8439 u64 refs[BTRFS_MAX_LEVEL]; 8440 u64 flags[BTRFS_MAX_LEVEL]; 8441 struct btrfs_key update_progress; 8442 int stage; 8443 int level; 8444 int shared_level; 8445 int update_ref; 8446 int keep_locks; 8447 int reada_slot; 8448 int reada_count; 8449 int for_reloc; 8450 }; 8451 8452 #define DROP_REFERENCE 1 8453 #define UPDATE_BACKREF 2 8454 8455 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8456 struct btrfs_root *root, 8457 struct walk_control *wc, 8458 struct btrfs_path *path) 8459 { 8460 struct btrfs_fs_info *fs_info = root->fs_info; 8461 u64 bytenr; 8462 u64 generation; 8463 u64 refs; 8464 u64 flags; 8465 u32 nritems; 8466 struct btrfs_key key; 8467 struct extent_buffer *eb; 8468 int ret; 8469 int slot; 8470 int nread = 0; 8471 8472 if (path->slots[wc->level] < wc->reada_slot) { 8473 wc->reada_count = wc->reada_count * 2 / 3; 8474 wc->reada_count = max(wc->reada_count, 2); 8475 } else { 8476 wc->reada_count = wc->reada_count * 3 / 2; 8477 wc->reada_count = min_t(int, wc->reada_count, 8478 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8479 } 8480 8481 eb = path->nodes[wc->level]; 8482 nritems = btrfs_header_nritems(eb); 8483 8484 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8485 if (nread >= wc->reada_count) 8486 break; 8487 8488 cond_resched(); 8489 bytenr = btrfs_node_blockptr(eb, slot); 8490 generation = btrfs_node_ptr_generation(eb, slot); 8491 8492 if (slot == path->slots[wc->level]) 8493 goto reada; 8494 8495 if (wc->stage == UPDATE_BACKREF && 8496 generation <= root->root_key.offset) 8497 continue; 8498 8499 /* We don't lock the tree block, it's OK to be racy here */ 8500 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8501 wc->level - 1, 1, &refs, 8502 &flags); 8503 /* We don't care about errors in readahead. */ 8504 if (ret < 0) 8505 continue; 8506 BUG_ON(refs == 0); 8507 8508 if (wc->stage == DROP_REFERENCE) { 8509 if (refs == 1) 8510 goto reada; 8511 8512 if (wc->level == 1 && 8513 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8514 continue; 8515 if (!wc->update_ref || 8516 generation <= root->root_key.offset) 8517 continue; 8518 btrfs_node_key_to_cpu(eb, &key, slot); 8519 ret = btrfs_comp_cpu_keys(&key, 8520 &wc->update_progress); 8521 if (ret < 0) 8522 continue; 8523 } else { 8524 if (wc->level == 1 && 8525 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8526 continue; 8527 } 8528 reada: 8529 readahead_tree_block(fs_info, bytenr); 8530 nread++; 8531 } 8532 wc->reada_slot = slot; 8533 } 8534 8535 /* 8536 * helper to process tree block while walking down the tree. 8537 * 8538 * when wc->stage == UPDATE_BACKREF, this function updates 8539 * back refs for pointers in the block. 8540 * 8541 * NOTE: return value 1 means we should stop walking down. 8542 */ 8543 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8544 struct btrfs_root *root, 8545 struct btrfs_path *path, 8546 struct walk_control *wc, int lookup_info) 8547 { 8548 struct btrfs_fs_info *fs_info = root->fs_info; 8549 int level = wc->level; 8550 struct extent_buffer *eb = path->nodes[level]; 8551 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8552 int ret; 8553 8554 if (wc->stage == UPDATE_BACKREF && 8555 btrfs_header_owner(eb) != root->root_key.objectid) 8556 return 1; 8557 8558 /* 8559 * when reference count of tree block is 1, it won't increase 8560 * again. once full backref flag is set, we never clear it. 8561 */ 8562 if (lookup_info && 8563 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8564 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8565 BUG_ON(!path->locks[level]); 8566 ret = btrfs_lookup_extent_info(trans, fs_info, 8567 eb->start, level, 1, 8568 &wc->refs[level], 8569 &wc->flags[level]); 8570 BUG_ON(ret == -ENOMEM); 8571 if (ret) 8572 return ret; 8573 BUG_ON(wc->refs[level] == 0); 8574 } 8575 8576 if (wc->stage == DROP_REFERENCE) { 8577 if (wc->refs[level] > 1) 8578 return 1; 8579 8580 if (path->locks[level] && !wc->keep_locks) { 8581 btrfs_tree_unlock_rw(eb, path->locks[level]); 8582 path->locks[level] = 0; 8583 } 8584 return 0; 8585 } 8586 8587 /* wc->stage == UPDATE_BACKREF */ 8588 if (!(wc->flags[level] & flag)) { 8589 BUG_ON(!path->locks[level]); 8590 ret = btrfs_inc_ref(trans, root, eb, 1); 8591 BUG_ON(ret); /* -ENOMEM */ 8592 ret = btrfs_dec_ref(trans, root, eb, 0); 8593 BUG_ON(ret); /* -ENOMEM */ 8594 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8595 eb->len, flag, 8596 btrfs_header_level(eb), 0); 8597 BUG_ON(ret); /* -ENOMEM */ 8598 wc->flags[level] |= flag; 8599 } 8600 8601 /* 8602 * the block is shared by multiple trees, so it's not good to 8603 * keep the tree lock 8604 */ 8605 if (path->locks[level] && level > 0) { 8606 btrfs_tree_unlock_rw(eb, path->locks[level]); 8607 path->locks[level] = 0; 8608 } 8609 return 0; 8610 } 8611 8612 /* 8613 * helper to process tree block pointer. 8614 * 8615 * when wc->stage == DROP_REFERENCE, this function checks 8616 * reference count of the block pointed to. if the block 8617 * is shared and we need update back refs for the subtree 8618 * rooted at the block, this function changes wc->stage to 8619 * UPDATE_BACKREF. if the block is shared and there is no 8620 * need to update back, this function drops the reference 8621 * to the block. 8622 * 8623 * NOTE: return value 1 means we should stop walking down. 8624 */ 8625 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8626 struct btrfs_root *root, 8627 struct btrfs_path *path, 8628 struct walk_control *wc, int *lookup_info) 8629 { 8630 struct btrfs_fs_info *fs_info = root->fs_info; 8631 u64 bytenr; 8632 u64 generation; 8633 u64 parent; 8634 u32 blocksize; 8635 struct btrfs_key key; 8636 struct extent_buffer *next; 8637 int level = wc->level; 8638 int reada = 0; 8639 int ret = 0; 8640 bool need_account = false; 8641 8642 generation = btrfs_node_ptr_generation(path->nodes[level], 8643 path->slots[level]); 8644 /* 8645 * if the lower level block was created before the snapshot 8646 * was created, we know there is no need to update back refs 8647 * for the subtree 8648 */ 8649 if (wc->stage == UPDATE_BACKREF && 8650 generation <= root->root_key.offset) { 8651 *lookup_info = 1; 8652 return 1; 8653 } 8654 8655 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8656 blocksize = fs_info->nodesize; 8657 8658 next = find_extent_buffer(fs_info, bytenr); 8659 if (!next) { 8660 next = btrfs_find_create_tree_block(fs_info, bytenr); 8661 if (IS_ERR(next)) 8662 return PTR_ERR(next); 8663 8664 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8665 level - 1); 8666 reada = 1; 8667 } 8668 btrfs_tree_lock(next); 8669 btrfs_set_lock_blocking(next); 8670 8671 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8672 &wc->refs[level - 1], 8673 &wc->flags[level - 1]); 8674 if (ret < 0) 8675 goto out_unlock; 8676 8677 if (unlikely(wc->refs[level - 1] == 0)) { 8678 btrfs_err(fs_info, "Missing references."); 8679 ret = -EIO; 8680 goto out_unlock; 8681 } 8682 *lookup_info = 0; 8683 8684 if (wc->stage == DROP_REFERENCE) { 8685 if (wc->refs[level - 1] > 1) { 8686 need_account = true; 8687 if (level == 1 && 8688 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8689 goto skip; 8690 8691 if (!wc->update_ref || 8692 generation <= root->root_key.offset) 8693 goto skip; 8694 8695 btrfs_node_key_to_cpu(path->nodes[level], &key, 8696 path->slots[level]); 8697 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8698 if (ret < 0) 8699 goto skip; 8700 8701 wc->stage = UPDATE_BACKREF; 8702 wc->shared_level = level - 1; 8703 } 8704 } else { 8705 if (level == 1 && 8706 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8707 goto skip; 8708 } 8709 8710 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8711 btrfs_tree_unlock(next); 8712 free_extent_buffer(next); 8713 next = NULL; 8714 *lookup_info = 1; 8715 } 8716 8717 if (!next) { 8718 if (reada && level == 1) 8719 reada_walk_down(trans, root, wc, path); 8720 next = read_tree_block(fs_info, bytenr, generation); 8721 if (IS_ERR(next)) { 8722 return PTR_ERR(next); 8723 } else if (!extent_buffer_uptodate(next)) { 8724 free_extent_buffer(next); 8725 return -EIO; 8726 } 8727 btrfs_tree_lock(next); 8728 btrfs_set_lock_blocking(next); 8729 } 8730 8731 level--; 8732 ASSERT(level == btrfs_header_level(next)); 8733 if (level != btrfs_header_level(next)) { 8734 btrfs_err(root->fs_info, "mismatched level"); 8735 ret = -EIO; 8736 goto out_unlock; 8737 } 8738 path->nodes[level] = next; 8739 path->slots[level] = 0; 8740 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8741 wc->level = level; 8742 if (wc->level == 1) 8743 wc->reada_slot = 0; 8744 return 0; 8745 skip: 8746 wc->refs[level - 1] = 0; 8747 wc->flags[level - 1] = 0; 8748 if (wc->stage == DROP_REFERENCE) { 8749 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8750 parent = path->nodes[level]->start; 8751 } else { 8752 ASSERT(root->root_key.objectid == 8753 btrfs_header_owner(path->nodes[level])); 8754 if (root->root_key.objectid != 8755 btrfs_header_owner(path->nodes[level])) { 8756 btrfs_err(root->fs_info, 8757 "mismatched block owner"); 8758 ret = -EIO; 8759 goto out_unlock; 8760 } 8761 parent = 0; 8762 } 8763 8764 if (need_account) { 8765 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8766 generation, level - 1); 8767 if (ret) { 8768 btrfs_err_rl(fs_info, 8769 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8770 ret); 8771 } 8772 } 8773 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize, 8774 parent, root->root_key.objectid, 8775 level - 1, 0); 8776 if (ret) 8777 goto out_unlock; 8778 } 8779 8780 *lookup_info = 1; 8781 ret = 1; 8782 8783 out_unlock: 8784 btrfs_tree_unlock(next); 8785 free_extent_buffer(next); 8786 8787 return ret; 8788 } 8789 8790 /* 8791 * helper to process tree block while walking up the tree. 8792 * 8793 * when wc->stage == DROP_REFERENCE, this function drops 8794 * reference count on the block. 8795 * 8796 * when wc->stage == UPDATE_BACKREF, this function changes 8797 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8798 * to UPDATE_BACKREF previously while processing the block. 8799 * 8800 * NOTE: return value 1 means we should stop walking up. 8801 */ 8802 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8803 struct btrfs_root *root, 8804 struct btrfs_path *path, 8805 struct walk_control *wc) 8806 { 8807 struct btrfs_fs_info *fs_info = root->fs_info; 8808 int ret; 8809 int level = wc->level; 8810 struct extent_buffer *eb = path->nodes[level]; 8811 u64 parent = 0; 8812 8813 if (wc->stage == UPDATE_BACKREF) { 8814 BUG_ON(wc->shared_level < level); 8815 if (level < wc->shared_level) 8816 goto out; 8817 8818 ret = find_next_key(path, level + 1, &wc->update_progress); 8819 if (ret > 0) 8820 wc->update_ref = 0; 8821 8822 wc->stage = DROP_REFERENCE; 8823 wc->shared_level = -1; 8824 path->slots[level] = 0; 8825 8826 /* 8827 * check reference count again if the block isn't locked. 8828 * we should start walking down the tree again if reference 8829 * count is one. 8830 */ 8831 if (!path->locks[level]) { 8832 BUG_ON(level == 0); 8833 btrfs_tree_lock(eb); 8834 btrfs_set_lock_blocking(eb); 8835 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8836 8837 ret = btrfs_lookup_extent_info(trans, fs_info, 8838 eb->start, level, 1, 8839 &wc->refs[level], 8840 &wc->flags[level]); 8841 if (ret < 0) { 8842 btrfs_tree_unlock_rw(eb, path->locks[level]); 8843 path->locks[level] = 0; 8844 return ret; 8845 } 8846 BUG_ON(wc->refs[level] == 0); 8847 if (wc->refs[level] == 1) { 8848 btrfs_tree_unlock_rw(eb, path->locks[level]); 8849 path->locks[level] = 0; 8850 return 1; 8851 } 8852 } 8853 } 8854 8855 /* wc->stage == DROP_REFERENCE */ 8856 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8857 8858 if (wc->refs[level] == 1) { 8859 if (level == 0) { 8860 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8861 ret = btrfs_dec_ref(trans, root, eb, 1); 8862 else 8863 ret = btrfs_dec_ref(trans, root, eb, 0); 8864 BUG_ON(ret); /* -ENOMEM */ 8865 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8866 if (ret) { 8867 btrfs_err_rl(fs_info, 8868 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8869 ret); 8870 } 8871 } 8872 /* make block locked assertion in clean_tree_block happy */ 8873 if (!path->locks[level] && 8874 btrfs_header_generation(eb) == trans->transid) { 8875 btrfs_tree_lock(eb); 8876 btrfs_set_lock_blocking(eb); 8877 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8878 } 8879 clean_tree_block(trans, fs_info, eb); 8880 } 8881 8882 if (eb == root->node) { 8883 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8884 parent = eb->start; 8885 else 8886 BUG_ON(root->root_key.objectid != 8887 btrfs_header_owner(eb)); 8888 } else { 8889 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8890 parent = path->nodes[level + 1]->start; 8891 else 8892 BUG_ON(root->root_key.objectid != 8893 btrfs_header_owner(path->nodes[level + 1])); 8894 } 8895 8896 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8897 out: 8898 wc->refs[level] = 0; 8899 wc->flags[level] = 0; 8900 return 0; 8901 } 8902 8903 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8904 struct btrfs_root *root, 8905 struct btrfs_path *path, 8906 struct walk_control *wc) 8907 { 8908 int level = wc->level; 8909 int lookup_info = 1; 8910 int ret; 8911 8912 while (level >= 0) { 8913 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8914 if (ret > 0) 8915 break; 8916 8917 if (level == 0) 8918 break; 8919 8920 if (path->slots[level] >= 8921 btrfs_header_nritems(path->nodes[level])) 8922 break; 8923 8924 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8925 if (ret > 0) { 8926 path->slots[level]++; 8927 continue; 8928 } else if (ret < 0) 8929 return ret; 8930 level = wc->level; 8931 } 8932 return 0; 8933 } 8934 8935 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8936 struct btrfs_root *root, 8937 struct btrfs_path *path, 8938 struct walk_control *wc, int max_level) 8939 { 8940 int level = wc->level; 8941 int ret; 8942 8943 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8944 while (level < max_level && path->nodes[level]) { 8945 wc->level = level; 8946 if (path->slots[level] + 1 < 8947 btrfs_header_nritems(path->nodes[level])) { 8948 path->slots[level]++; 8949 return 0; 8950 } else { 8951 ret = walk_up_proc(trans, root, path, wc); 8952 if (ret > 0) 8953 return 0; 8954 8955 if (path->locks[level]) { 8956 btrfs_tree_unlock_rw(path->nodes[level], 8957 path->locks[level]); 8958 path->locks[level] = 0; 8959 } 8960 free_extent_buffer(path->nodes[level]); 8961 path->nodes[level] = NULL; 8962 level++; 8963 } 8964 } 8965 return 1; 8966 } 8967 8968 /* 8969 * drop a subvolume tree. 8970 * 8971 * this function traverses the tree freeing any blocks that only 8972 * referenced by the tree. 8973 * 8974 * when a shared tree block is found. this function decreases its 8975 * reference count by one. if update_ref is true, this function 8976 * also make sure backrefs for the shared block and all lower level 8977 * blocks are properly updated. 8978 * 8979 * If called with for_reloc == 0, may exit early with -EAGAIN 8980 */ 8981 int btrfs_drop_snapshot(struct btrfs_root *root, 8982 struct btrfs_block_rsv *block_rsv, int update_ref, 8983 int for_reloc) 8984 { 8985 struct btrfs_fs_info *fs_info = root->fs_info; 8986 struct btrfs_path *path; 8987 struct btrfs_trans_handle *trans; 8988 struct btrfs_root *tree_root = fs_info->tree_root; 8989 struct btrfs_root_item *root_item = &root->root_item; 8990 struct walk_control *wc; 8991 struct btrfs_key key; 8992 int err = 0; 8993 int ret; 8994 int level; 8995 bool root_dropped = false; 8996 8997 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 8998 8999 path = btrfs_alloc_path(); 9000 if (!path) { 9001 err = -ENOMEM; 9002 goto out; 9003 } 9004 9005 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9006 if (!wc) { 9007 btrfs_free_path(path); 9008 err = -ENOMEM; 9009 goto out; 9010 } 9011 9012 trans = btrfs_start_transaction(tree_root, 0); 9013 if (IS_ERR(trans)) { 9014 err = PTR_ERR(trans); 9015 goto out_free; 9016 } 9017 9018 if (block_rsv) 9019 trans->block_rsv = block_rsv; 9020 9021 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9022 level = btrfs_header_level(root->node); 9023 path->nodes[level] = btrfs_lock_root_node(root); 9024 btrfs_set_lock_blocking(path->nodes[level]); 9025 path->slots[level] = 0; 9026 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9027 memset(&wc->update_progress, 0, 9028 sizeof(wc->update_progress)); 9029 } else { 9030 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9031 memcpy(&wc->update_progress, &key, 9032 sizeof(wc->update_progress)); 9033 9034 level = root_item->drop_level; 9035 BUG_ON(level == 0); 9036 path->lowest_level = level; 9037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9038 path->lowest_level = 0; 9039 if (ret < 0) { 9040 err = ret; 9041 goto out_end_trans; 9042 } 9043 WARN_ON(ret > 0); 9044 9045 /* 9046 * unlock our path, this is safe because only this 9047 * function is allowed to delete this snapshot 9048 */ 9049 btrfs_unlock_up_safe(path, 0); 9050 9051 level = btrfs_header_level(root->node); 9052 while (1) { 9053 btrfs_tree_lock(path->nodes[level]); 9054 btrfs_set_lock_blocking(path->nodes[level]); 9055 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9056 9057 ret = btrfs_lookup_extent_info(trans, fs_info, 9058 path->nodes[level]->start, 9059 level, 1, &wc->refs[level], 9060 &wc->flags[level]); 9061 if (ret < 0) { 9062 err = ret; 9063 goto out_end_trans; 9064 } 9065 BUG_ON(wc->refs[level] == 0); 9066 9067 if (level == root_item->drop_level) 9068 break; 9069 9070 btrfs_tree_unlock(path->nodes[level]); 9071 path->locks[level] = 0; 9072 WARN_ON(wc->refs[level] != 1); 9073 level--; 9074 } 9075 } 9076 9077 wc->level = level; 9078 wc->shared_level = -1; 9079 wc->stage = DROP_REFERENCE; 9080 wc->update_ref = update_ref; 9081 wc->keep_locks = 0; 9082 wc->for_reloc = for_reloc; 9083 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9084 9085 while (1) { 9086 9087 ret = walk_down_tree(trans, root, path, wc); 9088 if (ret < 0) { 9089 err = ret; 9090 break; 9091 } 9092 9093 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9094 if (ret < 0) { 9095 err = ret; 9096 break; 9097 } 9098 9099 if (ret > 0) { 9100 BUG_ON(wc->stage != DROP_REFERENCE); 9101 break; 9102 } 9103 9104 if (wc->stage == DROP_REFERENCE) { 9105 level = wc->level; 9106 btrfs_node_key(path->nodes[level], 9107 &root_item->drop_progress, 9108 path->slots[level]); 9109 root_item->drop_level = level; 9110 } 9111 9112 BUG_ON(wc->level == 0); 9113 if (btrfs_should_end_transaction(trans) || 9114 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9115 ret = btrfs_update_root(trans, tree_root, 9116 &root->root_key, 9117 root_item); 9118 if (ret) { 9119 btrfs_abort_transaction(trans, ret); 9120 err = ret; 9121 goto out_end_trans; 9122 } 9123 9124 btrfs_end_transaction_throttle(trans); 9125 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9126 btrfs_debug(fs_info, 9127 "drop snapshot early exit"); 9128 err = -EAGAIN; 9129 goto out_free; 9130 } 9131 9132 trans = btrfs_start_transaction(tree_root, 0); 9133 if (IS_ERR(trans)) { 9134 err = PTR_ERR(trans); 9135 goto out_free; 9136 } 9137 if (block_rsv) 9138 trans->block_rsv = block_rsv; 9139 } 9140 } 9141 btrfs_release_path(path); 9142 if (err) 9143 goto out_end_trans; 9144 9145 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9146 if (ret) { 9147 btrfs_abort_transaction(trans, ret); 9148 goto out_end_trans; 9149 } 9150 9151 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9152 ret = btrfs_find_root(tree_root, &root->root_key, path, 9153 NULL, NULL); 9154 if (ret < 0) { 9155 btrfs_abort_transaction(trans, ret); 9156 err = ret; 9157 goto out_end_trans; 9158 } else if (ret > 0) { 9159 /* if we fail to delete the orphan item this time 9160 * around, it'll get picked up the next time. 9161 * 9162 * The most common failure here is just -ENOENT. 9163 */ 9164 btrfs_del_orphan_item(trans, tree_root, 9165 root->root_key.objectid); 9166 } 9167 } 9168 9169 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9170 btrfs_add_dropped_root(trans, root); 9171 } else { 9172 free_extent_buffer(root->node); 9173 free_extent_buffer(root->commit_root); 9174 btrfs_put_fs_root(root); 9175 } 9176 root_dropped = true; 9177 out_end_trans: 9178 btrfs_end_transaction_throttle(trans); 9179 out_free: 9180 kfree(wc); 9181 btrfs_free_path(path); 9182 out: 9183 /* 9184 * So if we need to stop dropping the snapshot for whatever reason we 9185 * need to make sure to add it back to the dead root list so that we 9186 * keep trying to do the work later. This also cleans up roots if we 9187 * don't have it in the radix (like when we recover after a power fail 9188 * or unmount) so we don't leak memory. 9189 */ 9190 if (!for_reloc && root_dropped == false) 9191 btrfs_add_dead_root(root); 9192 if (err && err != -EAGAIN) 9193 btrfs_handle_fs_error(fs_info, err, NULL); 9194 return err; 9195 } 9196 9197 /* 9198 * drop subtree rooted at tree block 'node'. 9199 * 9200 * NOTE: this function will unlock and release tree block 'node' 9201 * only used by relocation code 9202 */ 9203 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9204 struct btrfs_root *root, 9205 struct extent_buffer *node, 9206 struct extent_buffer *parent) 9207 { 9208 struct btrfs_fs_info *fs_info = root->fs_info; 9209 struct btrfs_path *path; 9210 struct walk_control *wc; 9211 int level; 9212 int parent_level; 9213 int ret = 0; 9214 int wret; 9215 9216 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9217 9218 path = btrfs_alloc_path(); 9219 if (!path) 9220 return -ENOMEM; 9221 9222 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9223 if (!wc) { 9224 btrfs_free_path(path); 9225 return -ENOMEM; 9226 } 9227 9228 btrfs_assert_tree_locked(parent); 9229 parent_level = btrfs_header_level(parent); 9230 extent_buffer_get(parent); 9231 path->nodes[parent_level] = parent; 9232 path->slots[parent_level] = btrfs_header_nritems(parent); 9233 9234 btrfs_assert_tree_locked(node); 9235 level = btrfs_header_level(node); 9236 path->nodes[level] = node; 9237 path->slots[level] = 0; 9238 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9239 9240 wc->refs[parent_level] = 1; 9241 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9242 wc->level = level; 9243 wc->shared_level = -1; 9244 wc->stage = DROP_REFERENCE; 9245 wc->update_ref = 0; 9246 wc->keep_locks = 1; 9247 wc->for_reloc = 1; 9248 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9249 9250 while (1) { 9251 wret = walk_down_tree(trans, root, path, wc); 9252 if (wret < 0) { 9253 ret = wret; 9254 break; 9255 } 9256 9257 wret = walk_up_tree(trans, root, path, wc, parent_level); 9258 if (wret < 0) 9259 ret = wret; 9260 if (wret != 0) 9261 break; 9262 } 9263 9264 kfree(wc); 9265 btrfs_free_path(path); 9266 return ret; 9267 } 9268 9269 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9270 { 9271 u64 num_devices; 9272 u64 stripped; 9273 9274 /* 9275 * if restripe for this chunk_type is on pick target profile and 9276 * return, otherwise do the usual balance 9277 */ 9278 stripped = get_restripe_target(fs_info, flags); 9279 if (stripped) 9280 return extended_to_chunk(stripped); 9281 9282 num_devices = fs_info->fs_devices->rw_devices; 9283 9284 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9285 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9286 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9287 9288 if (num_devices == 1) { 9289 stripped |= BTRFS_BLOCK_GROUP_DUP; 9290 stripped = flags & ~stripped; 9291 9292 /* turn raid0 into single device chunks */ 9293 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9294 return stripped; 9295 9296 /* turn mirroring into duplication */ 9297 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9298 BTRFS_BLOCK_GROUP_RAID10)) 9299 return stripped | BTRFS_BLOCK_GROUP_DUP; 9300 } else { 9301 /* they already had raid on here, just return */ 9302 if (flags & stripped) 9303 return flags; 9304 9305 stripped |= BTRFS_BLOCK_GROUP_DUP; 9306 stripped = flags & ~stripped; 9307 9308 /* switch duplicated blocks with raid1 */ 9309 if (flags & BTRFS_BLOCK_GROUP_DUP) 9310 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9311 9312 /* this is drive concat, leave it alone */ 9313 } 9314 9315 return flags; 9316 } 9317 9318 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9319 { 9320 struct btrfs_space_info *sinfo = cache->space_info; 9321 u64 num_bytes; 9322 u64 min_allocable_bytes; 9323 int ret = -ENOSPC; 9324 9325 /* 9326 * We need some metadata space and system metadata space for 9327 * allocating chunks in some corner cases until we force to set 9328 * it to be readonly. 9329 */ 9330 if ((sinfo->flags & 9331 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9332 !force) 9333 min_allocable_bytes = SZ_1M; 9334 else 9335 min_allocable_bytes = 0; 9336 9337 spin_lock(&sinfo->lock); 9338 spin_lock(&cache->lock); 9339 9340 if (cache->ro) { 9341 cache->ro++; 9342 ret = 0; 9343 goto out; 9344 } 9345 9346 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9347 cache->bytes_super - btrfs_block_group_used(&cache->item); 9348 9349 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9350 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9351 min_allocable_bytes <= sinfo->total_bytes) { 9352 sinfo->bytes_readonly += num_bytes; 9353 cache->ro++; 9354 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9355 ret = 0; 9356 } 9357 out: 9358 spin_unlock(&cache->lock); 9359 spin_unlock(&sinfo->lock); 9360 return ret; 9361 } 9362 9363 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9364 struct btrfs_block_group_cache *cache) 9365 9366 { 9367 struct btrfs_fs_info *fs_info = root->fs_info; 9368 struct btrfs_trans_handle *trans; 9369 u64 alloc_flags; 9370 int ret; 9371 9372 again: 9373 trans = btrfs_join_transaction(root); 9374 if (IS_ERR(trans)) 9375 return PTR_ERR(trans); 9376 9377 /* 9378 * we're not allowed to set block groups readonly after the dirty 9379 * block groups cache has started writing. If it already started, 9380 * back off and let this transaction commit 9381 */ 9382 mutex_lock(&fs_info->ro_block_group_mutex); 9383 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9384 u64 transid = trans->transid; 9385 9386 mutex_unlock(&fs_info->ro_block_group_mutex); 9387 btrfs_end_transaction(trans); 9388 9389 ret = btrfs_wait_for_commit(fs_info, transid); 9390 if (ret) 9391 return ret; 9392 goto again; 9393 } 9394 9395 /* 9396 * if we are changing raid levels, try to allocate a corresponding 9397 * block group with the new raid level. 9398 */ 9399 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9400 if (alloc_flags != cache->flags) { 9401 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9402 CHUNK_ALLOC_FORCE); 9403 /* 9404 * ENOSPC is allowed here, we may have enough space 9405 * already allocated at the new raid level to 9406 * carry on 9407 */ 9408 if (ret == -ENOSPC) 9409 ret = 0; 9410 if (ret < 0) 9411 goto out; 9412 } 9413 9414 ret = inc_block_group_ro(cache, 0); 9415 if (!ret) 9416 goto out; 9417 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9418 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9419 CHUNK_ALLOC_FORCE); 9420 if (ret < 0) 9421 goto out; 9422 ret = inc_block_group_ro(cache, 0); 9423 out: 9424 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9425 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9426 mutex_lock(&fs_info->chunk_mutex); 9427 check_system_chunk(trans, fs_info, alloc_flags); 9428 mutex_unlock(&fs_info->chunk_mutex); 9429 } 9430 mutex_unlock(&fs_info->ro_block_group_mutex); 9431 9432 btrfs_end_transaction(trans); 9433 return ret; 9434 } 9435 9436 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9437 struct btrfs_fs_info *fs_info, u64 type) 9438 { 9439 u64 alloc_flags = get_alloc_profile(fs_info, type); 9440 9441 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9442 } 9443 9444 /* 9445 * helper to account the unused space of all the readonly block group in the 9446 * space_info. takes mirrors into account. 9447 */ 9448 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9449 { 9450 struct btrfs_block_group_cache *block_group; 9451 u64 free_bytes = 0; 9452 int factor; 9453 9454 /* It's df, we don't care if it's racy */ 9455 if (list_empty(&sinfo->ro_bgs)) 9456 return 0; 9457 9458 spin_lock(&sinfo->lock); 9459 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9460 spin_lock(&block_group->lock); 9461 9462 if (!block_group->ro) { 9463 spin_unlock(&block_group->lock); 9464 continue; 9465 } 9466 9467 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9468 BTRFS_BLOCK_GROUP_RAID10 | 9469 BTRFS_BLOCK_GROUP_DUP)) 9470 factor = 2; 9471 else 9472 factor = 1; 9473 9474 free_bytes += (block_group->key.offset - 9475 btrfs_block_group_used(&block_group->item)) * 9476 factor; 9477 9478 spin_unlock(&block_group->lock); 9479 } 9480 spin_unlock(&sinfo->lock); 9481 9482 return free_bytes; 9483 } 9484 9485 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9486 { 9487 struct btrfs_space_info *sinfo = cache->space_info; 9488 u64 num_bytes; 9489 9490 BUG_ON(!cache->ro); 9491 9492 spin_lock(&sinfo->lock); 9493 spin_lock(&cache->lock); 9494 if (!--cache->ro) { 9495 num_bytes = cache->key.offset - cache->reserved - 9496 cache->pinned - cache->bytes_super - 9497 btrfs_block_group_used(&cache->item); 9498 sinfo->bytes_readonly -= num_bytes; 9499 list_del_init(&cache->ro_list); 9500 } 9501 spin_unlock(&cache->lock); 9502 spin_unlock(&sinfo->lock); 9503 } 9504 9505 /* 9506 * checks to see if its even possible to relocate this block group. 9507 * 9508 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9509 * ok to go ahead and try. 9510 */ 9511 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9512 { 9513 struct btrfs_root *root = fs_info->extent_root; 9514 struct btrfs_block_group_cache *block_group; 9515 struct btrfs_space_info *space_info; 9516 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9517 struct btrfs_device *device; 9518 struct btrfs_trans_handle *trans; 9519 u64 min_free; 9520 u64 dev_min = 1; 9521 u64 dev_nr = 0; 9522 u64 target; 9523 int debug; 9524 int index; 9525 int full = 0; 9526 int ret = 0; 9527 9528 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9529 9530 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9531 9532 /* odd, couldn't find the block group, leave it alone */ 9533 if (!block_group) { 9534 if (debug) 9535 btrfs_warn(fs_info, 9536 "can't find block group for bytenr %llu", 9537 bytenr); 9538 return -1; 9539 } 9540 9541 min_free = btrfs_block_group_used(&block_group->item); 9542 9543 /* no bytes used, we're good */ 9544 if (!min_free) 9545 goto out; 9546 9547 space_info = block_group->space_info; 9548 spin_lock(&space_info->lock); 9549 9550 full = space_info->full; 9551 9552 /* 9553 * if this is the last block group we have in this space, we can't 9554 * relocate it unless we're able to allocate a new chunk below. 9555 * 9556 * Otherwise, we need to make sure we have room in the space to handle 9557 * all of the extents from this block group. If we can, we're good 9558 */ 9559 if ((space_info->total_bytes != block_group->key.offset) && 9560 (space_info->bytes_used + space_info->bytes_reserved + 9561 space_info->bytes_pinned + space_info->bytes_readonly + 9562 min_free < space_info->total_bytes)) { 9563 spin_unlock(&space_info->lock); 9564 goto out; 9565 } 9566 spin_unlock(&space_info->lock); 9567 9568 /* 9569 * ok we don't have enough space, but maybe we have free space on our 9570 * devices to allocate new chunks for relocation, so loop through our 9571 * alloc devices and guess if we have enough space. if this block 9572 * group is going to be restriped, run checks against the target 9573 * profile instead of the current one. 9574 */ 9575 ret = -1; 9576 9577 /* 9578 * index: 9579 * 0: raid10 9580 * 1: raid1 9581 * 2: dup 9582 * 3: raid0 9583 * 4: single 9584 */ 9585 target = get_restripe_target(fs_info, block_group->flags); 9586 if (target) { 9587 index = __get_raid_index(extended_to_chunk(target)); 9588 } else { 9589 /* 9590 * this is just a balance, so if we were marked as full 9591 * we know there is no space for a new chunk 9592 */ 9593 if (full) { 9594 if (debug) 9595 btrfs_warn(fs_info, 9596 "no space to alloc new chunk for block group %llu", 9597 block_group->key.objectid); 9598 goto out; 9599 } 9600 9601 index = get_block_group_index(block_group); 9602 } 9603 9604 if (index == BTRFS_RAID_RAID10) { 9605 dev_min = 4; 9606 /* Divide by 2 */ 9607 min_free >>= 1; 9608 } else if (index == BTRFS_RAID_RAID1) { 9609 dev_min = 2; 9610 } else if (index == BTRFS_RAID_DUP) { 9611 /* Multiply by 2 */ 9612 min_free <<= 1; 9613 } else if (index == BTRFS_RAID_RAID0) { 9614 dev_min = fs_devices->rw_devices; 9615 min_free = div64_u64(min_free, dev_min); 9616 } 9617 9618 /* We need to do this so that we can look at pending chunks */ 9619 trans = btrfs_join_transaction(root); 9620 if (IS_ERR(trans)) { 9621 ret = PTR_ERR(trans); 9622 goto out; 9623 } 9624 9625 mutex_lock(&fs_info->chunk_mutex); 9626 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9627 u64 dev_offset; 9628 9629 /* 9630 * check to make sure we can actually find a chunk with enough 9631 * space to fit our block group in. 9632 */ 9633 if (device->total_bytes > device->bytes_used + min_free && 9634 !device->is_tgtdev_for_dev_replace) { 9635 ret = find_free_dev_extent(trans, device, min_free, 9636 &dev_offset, NULL); 9637 if (!ret) 9638 dev_nr++; 9639 9640 if (dev_nr >= dev_min) 9641 break; 9642 9643 ret = -1; 9644 } 9645 } 9646 if (debug && ret == -1) 9647 btrfs_warn(fs_info, 9648 "no space to allocate a new chunk for block group %llu", 9649 block_group->key.objectid); 9650 mutex_unlock(&fs_info->chunk_mutex); 9651 btrfs_end_transaction(trans); 9652 out: 9653 btrfs_put_block_group(block_group); 9654 return ret; 9655 } 9656 9657 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9658 struct btrfs_path *path, 9659 struct btrfs_key *key) 9660 { 9661 struct btrfs_root *root = fs_info->extent_root; 9662 int ret = 0; 9663 struct btrfs_key found_key; 9664 struct extent_buffer *leaf; 9665 int slot; 9666 9667 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9668 if (ret < 0) 9669 goto out; 9670 9671 while (1) { 9672 slot = path->slots[0]; 9673 leaf = path->nodes[0]; 9674 if (slot >= btrfs_header_nritems(leaf)) { 9675 ret = btrfs_next_leaf(root, path); 9676 if (ret == 0) 9677 continue; 9678 if (ret < 0) 9679 goto out; 9680 break; 9681 } 9682 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9683 9684 if (found_key.objectid >= key->objectid && 9685 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9686 struct extent_map_tree *em_tree; 9687 struct extent_map *em; 9688 9689 em_tree = &root->fs_info->mapping_tree.map_tree; 9690 read_lock(&em_tree->lock); 9691 em = lookup_extent_mapping(em_tree, found_key.objectid, 9692 found_key.offset); 9693 read_unlock(&em_tree->lock); 9694 if (!em) { 9695 btrfs_err(fs_info, 9696 "logical %llu len %llu found bg but no related chunk", 9697 found_key.objectid, found_key.offset); 9698 ret = -ENOENT; 9699 } else { 9700 ret = 0; 9701 } 9702 free_extent_map(em); 9703 goto out; 9704 } 9705 path->slots[0]++; 9706 } 9707 out: 9708 return ret; 9709 } 9710 9711 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9712 { 9713 struct btrfs_block_group_cache *block_group; 9714 u64 last = 0; 9715 9716 while (1) { 9717 struct inode *inode; 9718 9719 block_group = btrfs_lookup_first_block_group(info, last); 9720 while (block_group) { 9721 spin_lock(&block_group->lock); 9722 if (block_group->iref) 9723 break; 9724 spin_unlock(&block_group->lock); 9725 block_group = next_block_group(info, block_group); 9726 } 9727 if (!block_group) { 9728 if (last == 0) 9729 break; 9730 last = 0; 9731 continue; 9732 } 9733 9734 inode = block_group->inode; 9735 block_group->iref = 0; 9736 block_group->inode = NULL; 9737 spin_unlock(&block_group->lock); 9738 ASSERT(block_group->io_ctl.inode == NULL); 9739 iput(inode); 9740 last = block_group->key.objectid + block_group->key.offset; 9741 btrfs_put_block_group(block_group); 9742 } 9743 } 9744 9745 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9746 { 9747 struct btrfs_block_group_cache *block_group; 9748 struct btrfs_space_info *space_info; 9749 struct btrfs_caching_control *caching_ctl; 9750 struct rb_node *n; 9751 9752 down_write(&info->commit_root_sem); 9753 while (!list_empty(&info->caching_block_groups)) { 9754 caching_ctl = list_entry(info->caching_block_groups.next, 9755 struct btrfs_caching_control, list); 9756 list_del(&caching_ctl->list); 9757 put_caching_control(caching_ctl); 9758 } 9759 up_write(&info->commit_root_sem); 9760 9761 spin_lock(&info->unused_bgs_lock); 9762 while (!list_empty(&info->unused_bgs)) { 9763 block_group = list_first_entry(&info->unused_bgs, 9764 struct btrfs_block_group_cache, 9765 bg_list); 9766 list_del_init(&block_group->bg_list); 9767 btrfs_put_block_group(block_group); 9768 } 9769 spin_unlock(&info->unused_bgs_lock); 9770 9771 spin_lock(&info->block_group_cache_lock); 9772 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9773 block_group = rb_entry(n, struct btrfs_block_group_cache, 9774 cache_node); 9775 rb_erase(&block_group->cache_node, 9776 &info->block_group_cache_tree); 9777 RB_CLEAR_NODE(&block_group->cache_node); 9778 spin_unlock(&info->block_group_cache_lock); 9779 9780 down_write(&block_group->space_info->groups_sem); 9781 list_del(&block_group->list); 9782 up_write(&block_group->space_info->groups_sem); 9783 9784 if (block_group->cached == BTRFS_CACHE_STARTED) 9785 wait_block_group_cache_done(block_group); 9786 9787 /* 9788 * We haven't cached this block group, which means we could 9789 * possibly have excluded extents on this block group. 9790 */ 9791 if (block_group->cached == BTRFS_CACHE_NO || 9792 block_group->cached == BTRFS_CACHE_ERROR) 9793 free_excluded_extents(info, block_group); 9794 9795 btrfs_remove_free_space_cache(block_group); 9796 ASSERT(list_empty(&block_group->dirty_list)); 9797 ASSERT(list_empty(&block_group->io_list)); 9798 ASSERT(list_empty(&block_group->bg_list)); 9799 ASSERT(atomic_read(&block_group->count) == 1); 9800 btrfs_put_block_group(block_group); 9801 9802 spin_lock(&info->block_group_cache_lock); 9803 } 9804 spin_unlock(&info->block_group_cache_lock); 9805 9806 /* now that all the block groups are freed, go through and 9807 * free all the space_info structs. This is only called during 9808 * the final stages of unmount, and so we know nobody is 9809 * using them. We call synchronize_rcu() once before we start, 9810 * just to be on the safe side. 9811 */ 9812 synchronize_rcu(); 9813 9814 release_global_block_rsv(info); 9815 9816 while (!list_empty(&info->space_info)) { 9817 int i; 9818 9819 space_info = list_entry(info->space_info.next, 9820 struct btrfs_space_info, 9821 list); 9822 9823 /* 9824 * Do not hide this behind enospc_debug, this is actually 9825 * important and indicates a real bug if this happens. 9826 */ 9827 if (WARN_ON(space_info->bytes_pinned > 0 || 9828 space_info->bytes_reserved > 0 || 9829 space_info->bytes_may_use > 0)) 9830 dump_space_info(info, space_info, 0, 0); 9831 list_del(&space_info->list); 9832 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9833 struct kobject *kobj; 9834 kobj = space_info->block_group_kobjs[i]; 9835 space_info->block_group_kobjs[i] = NULL; 9836 if (kobj) { 9837 kobject_del(kobj); 9838 kobject_put(kobj); 9839 } 9840 } 9841 kobject_del(&space_info->kobj); 9842 kobject_put(&space_info->kobj); 9843 } 9844 return 0; 9845 } 9846 9847 static void __link_block_group(struct btrfs_space_info *space_info, 9848 struct btrfs_block_group_cache *cache) 9849 { 9850 int index = get_block_group_index(cache); 9851 bool first = false; 9852 9853 down_write(&space_info->groups_sem); 9854 if (list_empty(&space_info->block_groups[index])) 9855 first = true; 9856 list_add_tail(&cache->list, &space_info->block_groups[index]); 9857 up_write(&space_info->groups_sem); 9858 9859 if (first) { 9860 struct raid_kobject *rkobj; 9861 int ret; 9862 9863 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9864 if (!rkobj) 9865 goto out_err; 9866 rkobj->raid_type = index; 9867 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9868 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9869 "%s", get_raid_name(index)); 9870 if (ret) { 9871 kobject_put(&rkobj->kobj); 9872 goto out_err; 9873 } 9874 space_info->block_group_kobjs[index] = &rkobj->kobj; 9875 } 9876 9877 return; 9878 out_err: 9879 btrfs_warn(cache->fs_info, 9880 "failed to add kobject for block cache, ignoring"); 9881 } 9882 9883 static struct btrfs_block_group_cache * 9884 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9885 u64 start, u64 size) 9886 { 9887 struct btrfs_block_group_cache *cache; 9888 9889 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9890 if (!cache) 9891 return NULL; 9892 9893 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9894 GFP_NOFS); 9895 if (!cache->free_space_ctl) { 9896 kfree(cache); 9897 return NULL; 9898 } 9899 9900 cache->key.objectid = start; 9901 cache->key.offset = size; 9902 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9903 9904 cache->sectorsize = fs_info->sectorsize; 9905 cache->fs_info = fs_info; 9906 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, 9907 &fs_info->mapping_tree, 9908 start); 9909 set_free_space_tree_thresholds(cache); 9910 9911 atomic_set(&cache->count, 1); 9912 spin_lock_init(&cache->lock); 9913 init_rwsem(&cache->data_rwsem); 9914 INIT_LIST_HEAD(&cache->list); 9915 INIT_LIST_HEAD(&cache->cluster_list); 9916 INIT_LIST_HEAD(&cache->bg_list); 9917 INIT_LIST_HEAD(&cache->ro_list); 9918 INIT_LIST_HEAD(&cache->dirty_list); 9919 INIT_LIST_HEAD(&cache->io_list); 9920 btrfs_init_free_space_ctl(cache); 9921 atomic_set(&cache->trimming, 0); 9922 mutex_init(&cache->free_space_lock); 9923 9924 return cache; 9925 } 9926 9927 int btrfs_read_block_groups(struct btrfs_fs_info *info) 9928 { 9929 struct btrfs_path *path; 9930 int ret; 9931 struct btrfs_block_group_cache *cache; 9932 struct btrfs_space_info *space_info; 9933 struct btrfs_key key; 9934 struct btrfs_key found_key; 9935 struct extent_buffer *leaf; 9936 int need_clear = 0; 9937 u64 cache_gen; 9938 u64 feature; 9939 int mixed; 9940 9941 feature = btrfs_super_incompat_flags(info->super_copy); 9942 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 9943 9944 key.objectid = 0; 9945 key.offset = 0; 9946 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9947 path = btrfs_alloc_path(); 9948 if (!path) 9949 return -ENOMEM; 9950 path->reada = READA_FORWARD; 9951 9952 cache_gen = btrfs_super_cache_generation(info->super_copy); 9953 if (btrfs_test_opt(info, SPACE_CACHE) && 9954 btrfs_super_generation(info->super_copy) != cache_gen) 9955 need_clear = 1; 9956 if (btrfs_test_opt(info, CLEAR_CACHE)) 9957 need_clear = 1; 9958 9959 while (1) { 9960 ret = find_first_block_group(info, path, &key); 9961 if (ret > 0) 9962 break; 9963 if (ret != 0) 9964 goto error; 9965 9966 leaf = path->nodes[0]; 9967 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9968 9969 cache = btrfs_create_block_group_cache(info, found_key.objectid, 9970 found_key.offset); 9971 if (!cache) { 9972 ret = -ENOMEM; 9973 goto error; 9974 } 9975 9976 if (need_clear) { 9977 /* 9978 * When we mount with old space cache, we need to 9979 * set BTRFS_DC_CLEAR and set dirty flag. 9980 * 9981 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9982 * truncate the old free space cache inode and 9983 * setup a new one. 9984 * b) Setting 'dirty flag' makes sure that we flush 9985 * the new space cache info onto disk. 9986 */ 9987 if (btrfs_test_opt(info, SPACE_CACHE)) 9988 cache->disk_cache_state = BTRFS_DC_CLEAR; 9989 } 9990 9991 read_extent_buffer(leaf, &cache->item, 9992 btrfs_item_ptr_offset(leaf, path->slots[0]), 9993 sizeof(cache->item)); 9994 cache->flags = btrfs_block_group_flags(&cache->item); 9995 if (!mixed && 9996 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 9997 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 9998 btrfs_err(info, 9999 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10000 cache->key.objectid); 10001 ret = -EINVAL; 10002 goto error; 10003 } 10004 10005 key.objectid = found_key.objectid + found_key.offset; 10006 btrfs_release_path(path); 10007 10008 /* 10009 * We need to exclude the super stripes now so that the space 10010 * info has super bytes accounted for, otherwise we'll think 10011 * we have more space than we actually do. 10012 */ 10013 ret = exclude_super_stripes(info, cache); 10014 if (ret) { 10015 /* 10016 * We may have excluded something, so call this just in 10017 * case. 10018 */ 10019 free_excluded_extents(info, cache); 10020 btrfs_put_block_group(cache); 10021 goto error; 10022 } 10023 10024 /* 10025 * check for two cases, either we are full, and therefore 10026 * don't need to bother with the caching work since we won't 10027 * find any space, or we are empty, and we can just add all 10028 * the space in and be done with it. This saves us _alot_ of 10029 * time, particularly in the full case. 10030 */ 10031 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10032 cache->last_byte_to_unpin = (u64)-1; 10033 cache->cached = BTRFS_CACHE_FINISHED; 10034 free_excluded_extents(info, cache); 10035 } else if (btrfs_block_group_used(&cache->item) == 0) { 10036 cache->last_byte_to_unpin = (u64)-1; 10037 cache->cached = BTRFS_CACHE_FINISHED; 10038 add_new_free_space(cache, info, 10039 found_key.objectid, 10040 found_key.objectid + 10041 found_key.offset); 10042 free_excluded_extents(info, cache); 10043 } 10044 10045 ret = btrfs_add_block_group_cache(info, cache); 10046 if (ret) { 10047 btrfs_remove_free_space_cache(cache); 10048 btrfs_put_block_group(cache); 10049 goto error; 10050 } 10051 10052 trace_btrfs_add_block_group(info, cache, 0); 10053 ret = update_space_info(info, cache->flags, found_key.offset, 10054 btrfs_block_group_used(&cache->item), 10055 cache->bytes_super, &space_info); 10056 if (ret) { 10057 btrfs_remove_free_space_cache(cache); 10058 spin_lock(&info->block_group_cache_lock); 10059 rb_erase(&cache->cache_node, 10060 &info->block_group_cache_tree); 10061 RB_CLEAR_NODE(&cache->cache_node); 10062 spin_unlock(&info->block_group_cache_lock); 10063 btrfs_put_block_group(cache); 10064 goto error; 10065 } 10066 10067 cache->space_info = space_info; 10068 10069 __link_block_group(space_info, cache); 10070 10071 set_avail_alloc_bits(info, cache->flags); 10072 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10073 inc_block_group_ro(cache, 1); 10074 } else if (btrfs_block_group_used(&cache->item) == 0) { 10075 spin_lock(&info->unused_bgs_lock); 10076 /* Should always be true but just in case. */ 10077 if (list_empty(&cache->bg_list)) { 10078 btrfs_get_block_group(cache); 10079 list_add_tail(&cache->bg_list, 10080 &info->unused_bgs); 10081 } 10082 spin_unlock(&info->unused_bgs_lock); 10083 } 10084 } 10085 10086 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10087 if (!(get_alloc_profile(info, space_info->flags) & 10088 (BTRFS_BLOCK_GROUP_RAID10 | 10089 BTRFS_BLOCK_GROUP_RAID1 | 10090 BTRFS_BLOCK_GROUP_RAID5 | 10091 BTRFS_BLOCK_GROUP_RAID6 | 10092 BTRFS_BLOCK_GROUP_DUP))) 10093 continue; 10094 /* 10095 * avoid allocating from un-mirrored block group if there are 10096 * mirrored block groups. 10097 */ 10098 list_for_each_entry(cache, 10099 &space_info->block_groups[BTRFS_RAID_RAID0], 10100 list) 10101 inc_block_group_ro(cache, 1); 10102 list_for_each_entry(cache, 10103 &space_info->block_groups[BTRFS_RAID_SINGLE], 10104 list) 10105 inc_block_group_ro(cache, 1); 10106 } 10107 10108 init_global_block_rsv(info); 10109 ret = 0; 10110 error: 10111 btrfs_free_path(path); 10112 return ret; 10113 } 10114 10115 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10116 struct btrfs_fs_info *fs_info) 10117 { 10118 struct btrfs_block_group_cache *block_group, *tmp; 10119 struct btrfs_root *extent_root = fs_info->extent_root; 10120 struct btrfs_block_group_item item; 10121 struct btrfs_key key; 10122 int ret = 0; 10123 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10124 10125 trans->can_flush_pending_bgs = false; 10126 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10127 if (ret) 10128 goto next; 10129 10130 spin_lock(&block_group->lock); 10131 memcpy(&item, &block_group->item, sizeof(item)); 10132 memcpy(&key, &block_group->key, sizeof(key)); 10133 spin_unlock(&block_group->lock); 10134 10135 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10136 sizeof(item)); 10137 if (ret) 10138 btrfs_abort_transaction(trans, ret); 10139 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10140 key.offset); 10141 if (ret) 10142 btrfs_abort_transaction(trans, ret); 10143 add_block_group_free_space(trans, fs_info, block_group); 10144 /* already aborted the transaction if it failed. */ 10145 next: 10146 list_del_init(&block_group->bg_list); 10147 } 10148 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10149 } 10150 10151 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10152 struct btrfs_fs_info *fs_info, u64 bytes_used, 10153 u64 type, u64 chunk_objectid, u64 chunk_offset, 10154 u64 size) 10155 { 10156 struct btrfs_block_group_cache *cache; 10157 int ret; 10158 10159 btrfs_set_log_full_commit(fs_info, trans); 10160 10161 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10162 if (!cache) 10163 return -ENOMEM; 10164 10165 btrfs_set_block_group_used(&cache->item, bytes_used); 10166 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10167 btrfs_set_block_group_flags(&cache->item, type); 10168 10169 cache->flags = type; 10170 cache->last_byte_to_unpin = (u64)-1; 10171 cache->cached = BTRFS_CACHE_FINISHED; 10172 cache->needs_free_space = 1; 10173 ret = exclude_super_stripes(fs_info, cache); 10174 if (ret) { 10175 /* 10176 * We may have excluded something, so call this just in 10177 * case. 10178 */ 10179 free_excluded_extents(fs_info, cache); 10180 btrfs_put_block_group(cache); 10181 return ret; 10182 } 10183 10184 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10185 10186 free_excluded_extents(fs_info, cache); 10187 10188 #ifdef CONFIG_BTRFS_DEBUG 10189 if (btrfs_should_fragment_free_space(cache)) { 10190 u64 new_bytes_used = size - bytes_used; 10191 10192 bytes_used += new_bytes_used >> 1; 10193 fragment_free_space(cache); 10194 } 10195 #endif 10196 /* 10197 * Call to ensure the corresponding space_info object is created and 10198 * assigned to our block group, but don't update its counters just yet. 10199 * We want our bg to be added to the rbtree with its ->space_info set. 10200 */ 10201 ret = update_space_info(fs_info, cache->flags, 0, 0, 0, 10202 &cache->space_info); 10203 if (ret) { 10204 btrfs_remove_free_space_cache(cache); 10205 btrfs_put_block_group(cache); 10206 return ret; 10207 } 10208 10209 ret = btrfs_add_block_group_cache(fs_info, cache); 10210 if (ret) { 10211 btrfs_remove_free_space_cache(cache); 10212 btrfs_put_block_group(cache); 10213 return ret; 10214 } 10215 10216 /* 10217 * Now that our block group has its ->space_info set and is inserted in 10218 * the rbtree, update the space info's counters. 10219 */ 10220 trace_btrfs_add_block_group(fs_info, cache, 1); 10221 ret = update_space_info(fs_info, cache->flags, size, bytes_used, 10222 cache->bytes_super, &cache->space_info); 10223 if (ret) { 10224 btrfs_remove_free_space_cache(cache); 10225 spin_lock(&fs_info->block_group_cache_lock); 10226 rb_erase(&cache->cache_node, 10227 &fs_info->block_group_cache_tree); 10228 RB_CLEAR_NODE(&cache->cache_node); 10229 spin_unlock(&fs_info->block_group_cache_lock); 10230 btrfs_put_block_group(cache); 10231 return ret; 10232 } 10233 update_global_block_rsv(fs_info); 10234 10235 __link_block_group(cache->space_info, cache); 10236 10237 list_add_tail(&cache->bg_list, &trans->new_bgs); 10238 10239 set_avail_alloc_bits(fs_info, type); 10240 return 0; 10241 } 10242 10243 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10244 { 10245 u64 extra_flags = chunk_to_extended(flags) & 10246 BTRFS_EXTENDED_PROFILE_MASK; 10247 10248 write_seqlock(&fs_info->profiles_lock); 10249 if (flags & BTRFS_BLOCK_GROUP_DATA) 10250 fs_info->avail_data_alloc_bits &= ~extra_flags; 10251 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10252 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10253 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10254 fs_info->avail_system_alloc_bits &= ~extra_flags; 10255 write_sequnlock(&fs_info->profiles_lock); 10256 } 10257 10258 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10259 struct btrfs_fs_info *fs_info, u64 group_start, 10260 struct extent_map *em) 10261 { 10262 struct btrfs_root *root = fs_info->extent_root; 10263 struct btrfs_path *path; 10264 struct btrfs_block_group_cache *block_group; 10265 struct btrfs_free_cluster *cluster; 10266 struct btrfs_root *tree_root = fs_info->tree_root; 10267 struct btrfs_key key; 10268 struct inode *inode; 10269 struct kobject *kobj = NULL; 10270 int ret; 10271 int index; 10272 int factor; 10273 struct btrfs_caching_control *caching_ctl = NULL; 10274 bool remove_em; 10275 10276 block_group = btrfs_lookup_block_group(fs_info, group_start); 10277 BUG_ON(!block_group); 10278 BUG_ON(!block_group->ro); 10279 10280 /* 10281 * Free the reserved super bytes from this block group before 10282 * remove it. 10283 */ 10284 free_excluded_extents(fs_info, block_group); 10285 10286 memcpy(&key, &block_group->key, sizeof(key)); 10287 index = get_block_group_index(block_group); 10288 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10289 BTRFS_BLOCK_GROUP_RAID1 | 10290 BTRFS_BLOCK_GROUP_RAID10)) 10291 factor = 2; 10292 else 10293 factor = 1; 10294 10295 /* make sure this block group isn't part of an allocation cluster */ 10296 cluster = &fs_info->data_alloc_cluster; 10297 spin_lock(&cluster->refill_lock); 10298 btrfs_return_cluster_to_free_space(block_group, cluster); 10299 spin_unlock(&cluster->refill_lock); 10300 10301 /* 10302 * make sure this block group isn't part of a metadata 10303 * allocation cluster 10304 */ 10305 cluster = &fs_info->meta_alloc_cluster; 10306 spin_lock(&cluster->refill_lock); 10307 btrfs_return_cluster_to_free_space(block_group, cluster); 10308 spin_unlock(&cluster->refill_lock); 10309 10310 path = btrfs_alloc_path(); 10311 if (!path) { 10312 ret = -ENOMEM; 10313 goto out; 10314 } 10315 10316 /* 10317 * get the inode first so any iput calls done for the io_list 10318 * aren't the final iput (no unlinks allowed now) 10319 */ 10320 inode = lookup_free_space_inode(tree_root, block_group, path); 10321 10322 mutex_lock(&trans->transaction->cache_write_mutex); 10323 /* 10324 * make sure our free spache cache IO is done before remove the 10325 * free space inode 10326 */ 10327 spin_lock(&trans->transaction->dirty_bgs_lock); 10328 if (!list_empty(&block_group->io_list)) { 10329 list_del_init(&block_group->io_list); 10330 10331 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10332 10333 spin_unlock(&trans->transaction->dirty_bgs_lock); 10334 btrfs_wait_cache_io(trans, block_group, path); 10335 btrfs_put_block_group(block_group); 10336 spin_lock(&trans->transaction->dirty_bgs_lock); 10337 } 10338 10339 if (!list_empty(&block_group->dirty_list)) { 10340 list_del_init(&block_group->dirty_list); 10341 btrfs_put_block_group(block_group); 10342 } 10343 spin_unlock(&trans->transaction->dirty_bgs_lock); 10344 mutex_unlock(&trans->transaction->cache_write_mutex); 10345 10346 if (!IS_ERR(inode)) { 10347 ret = btrfs_orphan_add(trans, inode); 10348 if (ret) { 10349 btrfs_add_delayed_iput(inode); 10350 goto out; 10351 } 10352 clear_nlink(inode); 10353 /* One for the block groups ref */ 10354 spin_lock(&block_group->lock); 10355 if (block_group->iref) { 10356 block_group->iref = 0; 10357 block_group->inode = NULL; 10358 spin_unlock(&block_group->lock); 10359 iput(inode); 10360 } else { 10361 spin_unlock(&block_group->lock); 10362 } 10363 /* One for our lookup ref */ 10364 btrfs_add_delayed_iput(inode); 10365 } 10366 10367 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10368 key.offset = block_group->key.objectid; 10369 key.type = 0; 10370 10371 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10372 if (ret < 0) 10373 goto out; 10374 if (ret > 0) 10375 btrfs_release_path(path); 10376 if (ret == 0) { 10377 ret = btrfs_del_item(trans, tree_root, path); 10378 if (ret) 10379 goto out; 10380 btrfs_release_path(path); 10381 } 10382 10383 spin_lock(&fs_info->block_group_cache_lock); 10384 rb_erase(&block_group->cache_node, 10385 &fs_info->block_group_cache_tree); 10386 RB_CLEAR_NODE(&block_group->cache_node); 10387 10388 if (fs_info->first_logical_byte == block_group->key.objectid) 10389 fs_info->first_logical_byte = (u64)-1; 10390 spin_unlock(&fs_info->block_group_cache_lock); 10391 10392 down_write(&block_group->space_info->groups_sem); 10393 /* 10394 * we must use list_del_init so people can check to see if they 10395 * are still on the list after taking the semaphore 10396 */ 10397 list_del_init(&block_group->list); 10398 if (list_empty(&block_group->space_info->block_groups[index])) { 10399 kobj = block_group->space_info->block_group_kobjs[index]; 10400 block_group->space_info->block_group_kobjs[index] = NULL; 10401 clear_avail_alloc_bits(fs_info, block_group->flags); 10402 } 10403 up_write(&block_group->space_info->groups_sem); 10404 if (kobj) { 10405 kobject_del(kobj); 10406 kobject_put(kobj); 10407 } 10408 10409 if (block_group->has_caching_ctl) 10410 caching_ctl = get_caching_control(block_group); 10411 if (block_group->cached == BTRFS_CACHE_STARTED) 10412 wait_block_group_cache_done(block_group); 10413 if (block_group->has_caching_ctl) { 10414 down_write(&fs_info->commit_root_sem); 10415 if (!caching_ctl) { 10416 struct btrfs_caching_control *ctl; 10417 10418 list_for_each_entry(ctl, 10419 &fs_info->caching_block_groups, list) 10420 if (ctl->block_group == block_group) { 10421 caching_ctl = ctl; 10422 atomic_inc(&caching_ctl->count); 10423 break; 10424 } 10425 } 10426 if (caching_ctl) 10427 list_del_init(&caching_ctl->list); 10428 up_write(&fs_info->commit_root_sem); 10429 if (caching_ctl) { 10430 /* Once for the caching bgs list and once for us. */ 10431 put_caching_control(caching_ctl); 10432 put_caching_control(caching_ctl); 10433 } 10434 } 10435 10436 spin_lock(&trans->transaction->dirty_bgs_lock); 10437 if (!list_empty(&block_group->dirty_list)) { 10438 WARN_ON(1); 10439 } 10440 if (!list_empty(&block_group->io_list)) { 10441 WARN_ON(1); 10442 } 10443 spin_unlock(&trans->transaction->dirty_bgs_lock); 10444 btrfs_remove_free_space_cache(block_group); 10445 10446 spin_lock(&block_group->space_info->lock); 10447 list_del_init(&block_group->ro_list); 10448 10449 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10450 WARN_ON(block_group->space_info->total_bytes 10451 < block_group->key.offset); 10452 WARN_ON(block_group->space_info->bytes_readonly 10453 < block_group->key.offset); 10454 WARN_ON(block_group->space_info->disk_total 10455 < block_group->key.offset * factor); 10456 } 10457 block_group->space_info->total_bytes -= block_group->key.offset; 10458 block_group->space_info->bytes_readonly -= block_group->key.offset; 10459 block_group->space_info->disk_total -= block_group->key.offset * factor; 10460 10461 spin_unlock(&block_group->space_info->lock); 10462 10463 memcpy(&key, &block_group->key, sizeof(key)); 10464 10465 mutex_lock(&fs_info->chunk_mutex); 10466 if (!list_empty(&em->list)) { 10467 /* We're in the transaction->pending_chunks list. */ 10468 free_extent_map(em); 10469 } 10470 spin_lock(&block_group->lock); 10471 block_group->removed = 1; 10472 /* 10473 * At this point trimming can't start on this block group, because we 10474 * removed the block group from the tree fs_info->block_group_cache_tree 10475 * so no one can't find it anymore and even if someone already got this 10476 * block group before we removed it from the rbtree, they have already 10477 * incremented block_group->trimming - if they didn't, they won't find 10478 * any free space entries because we already removed them all when we 10479 * called btrfs_remove_free_space_cache(). 10480 * 10481 * And we must not remove the extent map from the fs_info->mapping_tree 10482 * to prevent the same logical address range and physical device space 10483 * ranges from being reused for a new block group. This is because our 10484 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10485 * completely transactionless, so while it is trimming a range the 10486 * currently running transaction might finish and a new one start, 10487 * allowing for new block groups to be created that can reuse the same 10488 * physical device locations unless we take this special care. 10489 * 10490 * There may also be an implicit trim operation if the file system 10491 * is mounted with -odiscard. The same protections must remain 10492 * in place until the extents have been discarded completely when 10493 * the transaction commit has completed. 10494 */ 10495 remove_em = (atomic_read(&block_group->trimming) == 0); 10496 /* 10497 * Make sure a trimmer task always sees the em in the pinned_chunks list 10498 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10499 * before checking block_group->removed). 10500 */ 10501 if (!remove_em) { 10502 /* 10503 * Our em might be in trans->transaction->pending_chunks which 10504 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10505 * and so is the fs_info->pinned_chunks list. 10506 * 10507 * So at this point we must be holding the chunk_mutex to avoid 10508 * any races with chunk allocation (more specifically at 10509 * volumes.c:contains_pending_extent()), to ensure it always 10510 * sees the em, either in the pending_chunks list or in the 10511 * pinned_chunks list. 10512 */ 10513 list_move_tail(&em->list, &fs_info->pinned_chunks); 10514 } 10515 spin_unlock(&block_group->lock); 10516 10517 if (remove_em) { 10518 struct extent_map_tree *em_tree; 10519 10520 em_tree = &fs_info->mapping_tree.map_tree; 10521 write_lock(&em_tree->lock); 10522 /* 10523 * The em might be in the pending_chunks list, so make sure the 10524 * chunk mutex is locked, since remove_extent_mapping() will 10525 * delete us from that list. 10526 */ 10527 remove_extent_mapping(em_tree, em); 10528 write_unlock(&em_tree->lock); 10529 /* once for the tree */ 10530 free_extent_map(em); 10531 } 10532 10533 mutex_unlock(&fs_info->chunk_mutex); 10534 10535 ret = remove_block_group_free_space(trans, fs_info, block_group); 10536 if (ret) 10537 goto out; 10538 10539 btrfs_put_block_group(block_group); 10540 btrfs_put_block_group(block_group); 10541 10542 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10543 if (ret > 0) 10544 ret = -EIO; 10545 if (ret < 0) 10546 goto out; 10547 10548 ret = btrfs_del_item(trans, root, path); 10549 out: 10550 btrfs_free_path(path); 10551 return ret; 10552 } 10553 10554 struct btrfs_trans_handle * 10555 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10556 const u64 chunk_offset) 10557 { 10558 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10559 struct extent_map *em; 10560 struct map_lookup *map; 10561 unsigned int num_items; 10562 10563 read_lock(&em_tree->lock); 10564 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10565 read_unlock(&em_tree->lock); 10566 ASSERT(em && em->start == chunk_offset); 10567 10568 /* 10569 * We need to reserve 3 + N units from the metadata space info in order 10570 * to remove a block group (done at btrfs_remove_chunk() and at 10571 * btrfs_remove_block_group()), which are used for: 10572 * 10573 * 1 unit for adding the free space inode's orphan (located in the tree 10574 * of tree roots). 10575 * 1 unit for deleting the block group item (located in the extent 10576 * tree). 10577 * 1 unit for deleting the free space item (located in tree of tree 10578 * roots). 10579 * N units for deleting N device extent items corresponding to each 10580 * stripe (located in the device tree). 10581 * 10582 * In order to remove a block group we also need to reserve units in the 10583 * system space info in order to update the chunk tree (update one or 10584 * more device items and remove one chunk item), but this is done at 10585 * btrfs_remove_chunk() through a call to check_system_chunk(). 10586 */ 10587 map = em->map_lookup; 10588 num_items = 3 + map->num_stripes; 10589 free_extent_map(em); 10590 10591 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10592 num_items, 1); 10593 } 10594 10595 /* 10596 * Process the unused_bgs list and remove any that don't have any allocated 10597 * space inside of them. 10598 */ 10599 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10600 { 10601 struct btrfs_block_group_cache *block_group; 10602 struct btrfs_space_info *space_info; 10603 struct btrfs_trans_handle *trans; 10604 int ret = 0; 10605 10606 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10607 return; 10608 10609 spin_lock(&fs_info->unused_bgs_lock); 10610 while (!list_empty(&fs_info->unused_bgs)) { 10611 u64 start, end; 10612 int trimming; 10613 10614 block_group = list_first_entry(&fs_info->unused_bgs, 10615 struct btrfs_block_group_cache, 10616 bg_list); 10617 list_del_init(&block_group->bg_list); 10618 10619 space_info = block_group->space_info; 10620 10621 if (ret || btrfs_mixed_space_info(space_info)) { 10622 btrfs_put_block_group(block_group); 10623 continue; 10624 } 10625 spin_unlock(&fs_info->unused_bgs_lock); 10626 10627 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10628 10629 /* Don't want to race with allocators so take the groups_sem */ 10630 down_write(&space_info->groups_sem); 10631 spin_lock(&block_group->lock); 10632 if (block_group->reserved || 10633 btrfs_block_group_used(&block_group->item) || 10634 block_group->ro || 10635 list_is_singular(&block_group->list)) { 10636 /* 10637 * We want to bail if we made new allocations or have 10638 * outstanding allocations in this block group. We do 10639 * the ro check in case balance is currently acting on 10640 * this block group. 10641 */ 10642 spin_unlock(&block_group->lock); 10643 up_write(&space_info->groups_sem); 10644 goto next; 10645 } 10646 spin_unlock(&block_group->lock); 10647 10648 /* We don't want to force the issue, only flip if it's ok. */ 10649 ret = inc_block_group_ro(block_group, 0); 10650 up_write(&space_info->groups_sem); 10651 if (ret < 0) { 10652 ret = 0; 10653 goto next; 10654 } 10655 10656 /* 10657 * Want to do this before we do anything else so we can recover 10658 * properly if we fail to join the transaction. 10659 */ 10660 trans = btrfs_start_trans_remove_block_group(fs_info, 10661 block_group->key.objectid); 10662 if (IS_ERR(trans)) { 10663 btrfs_dec_block_group_ro(block_group); 10664 ret = PTR_ERR(trans); 10665 goto next; 10666 } 10667 10668 /* 10669 * We could have pending pinned extents for this block group, 10670 * just delete them, we don't care about them anymore. 10671 */ 10672 start = block_group->key.objectid; 10673 end = start + block_group->key.offset - 1; 10674 /* 10675 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10676 * btrfs_finish_extent_commit(). If we are at transaction N, 10677 * another task might be running finish_extent_commit() for the 10678 * previous transaction N - 1, and have seen a range belonging 10679 * to the block group in freed_extents[] before we were able to 10680 * clear the whole block group range from freed_extents[]. This 10681 * means that task can lookup for the block group after we 10682 * unpinned it from freed_extents[] and removed it, leading to 10683 * a BUG_ON() at btrfs_unpin_extent_range(). 10684 */ 10685 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10686 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10687 EXTENT_DIRTY); 10688 if (ret) { 10689 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10690 btrfs_dec_block_group_ro(block_group); 10691 goto end_trans; 10692 } 10693 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10694 EXTENT_DIRTY); 10695 if (ret) { 10696 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10697 btrfs_dec_block_group_ro(block_group); 10698 goto end_trans; 10699 } 10700 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10701 10702 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10703 spin_lock(&space_info->lock); 10704 spin_lock(&block_group->lock); 10705 10706 space_info->bytes_pinned -= block_group->pinned; 10707 space_info->bytes_readonly += block_group->pinned; 10708 percpu_counter_add(&space_info->total_bytes_pinned, 10709 -block_group->pinned); 10710 block_group->pinned = 0; 10711 10712 spin_unlock(&block_group->lock); 10713 spin_unlock(&space_info->lock); 10714 10715 /* DISCARD can flip during remount */ 10716 trimming = btrfs_test_opt(fs_info, DISCARD); 10717 10718 /* Implicit trim during transaction commit. */ 10719 if (trimming) 10720 btrfs_get_block_group_trimming(block_group); 10721 10722 /* 10723 * Btrfs_remove_chunk will abort the transaction if things go 10724 * horribly wrong. 10725 */ 10726 ret = btrfs_remove_chunk(trans, fs_info, 10727 block_group->key.objectid); 10728 10729 if (ret) { 10730 if (trimming) 10731 btrfs_put_block_group_trimming(block_group); 10732 goto end_trans; 10733 } 10734 10735 /* 10736 * If we're not mounted with -odiscard, we can just forget 10737 * about this block group. Otherwise we'll need to wait 10738 * until transaction commit to do the actual discard. 10739 */ 10740 if (trimming) { 10741 spin_lock(&fs_info->unused_bgs_lock); 10742 /* 10743 * A concurrent scrub might have added us to the list 10744 * fs_info->unused_bgs, so use a list_move operation 10745 * to add the block group to the deleted_bgs list. 10746 */ 10747 list_move(&block_group->bg_list, 10748 &trans->transaction->deleted_bgs); 10749 spin_unlock(&fs_info->unused_bgs_lock); 10750 btrfs_get_block_group(block_group); 10751 } 10752 end_trans: 10753 btrfs_end_transaction(trans); 10754 next: 10755 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10756 btrfs_put_block_group(block_group); 10757 spin_lock(&fs_info->unused_bgs_lock); 10758 } 10759 spin_unlock(&fs_info->unused_bgs_lock); 10760 } 10761 10762 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10763 { 10764 struct btrfs_space_info *space_info; 10765 struct btrfs_super_block *disk_super; 10766 u64 features; 10767 u64 flags; 10768 int mixed = 0; 10769 int ret; 10770 10771 disk_super = fs_info->super_copy; 10772 if (!btrfs_super_root(disk_super)) 10773 return -EINVAL; 10774 10775 features = btrfs_super_incompat_flags(disk_super); 10776 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10777 mixed = 1; 10778 10779 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10780 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10781 if (ret) 10782 goto out; 10783 10784 if (mixed) { 10785 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10786 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10787 } else { 10788 flags = BTRFS_BLOCK_GROUP_METADATA; 10789 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10790 if (ret) 10791 goto out; 10792 10793 flags = BTRFS_BLOCK_GROUP_DATA; 10794 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10795 } 10796 out: 10797 return ret; 10798 } 10799 10800 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10801 u64 start, u64 end) 10802 { 10803 return unpin_extent_range(fs_info, start, end, false); 10804 } 10805 10806 /* 10807 * It used to be that old block groups would be left around forever. 10808 * Iterating over them would be enough to trim unused space. Since we 10809 * now automatically remove them, we also need to iterate over unallocated 10810 * space. 10811 * 10812 * We don't want a transaction for this since the discard may take a 10813 * substantial amount of time. We don't require that a transaction be 10814 * running, but we do need to take a running transaction into account 10815 * to ensure that we're not discarding chunks that were released in 10816 * the current transaction. 10817 * 10818 * Holding the chunks lock will prevent other threads from allocating 10819 * or releasing chunks, but it won't prevent a running transaction 10820 * from committing and releasing the memory that the pending chunks 10821 * list head uses. For that, we need to take a reference to the 10822 * transaction. 10823 */ 10824 static int btrfs_trim_free_extents(struct btrfs_device *device, 10825 u64 minlen, u64 *trimmed) 10826 { 10827 u64 start = 0, len = 0; 10828 int ret; 10829 10830 *trimmed = 0; 10831 10832 /* Not writeable = nothing to do. */ 10833 if (!device->writeable) 10834 return 0; 10835 10836 /* No free space = nothing to do. */ 10837 if (device->total_bytes <= device->bytes_used) 10838 return 0; 10839 10840 ret = 0; 10841 10842 while (1) { 10843 struct btrfs_fs_info *fs_info = device->fs_info; 10844 struct btrfs_transaction *trans; 10845 u64 bytes; 10846 10847 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10848 if (ret) 10849 return ret; 10850 10851 down_read(&fs_info->commit_root_sem); 10852 10853 spin_lock(&fs_info->trans_lock); 10854 trans = fs_info->running_transaction; 10855 if (trans) 10856 atomic_inc(&trans->use_count); 10857 spin_unlock(&fs_info->trans_lock); 10858 10859 ret = find_free_dev_extent_start(trans, device, minlen, start, 10860 &start, &len); 10861 if (trans) 10862 btrfs_put_transaction(trans); 10863 10864 if (ret) { 10865 up_read(&fs_info->commit_root_sem); 10866 mutex_unlock(&fs_info->chunk_mutex); 10867 if (ret == -ENOSPC) 10868 ret = 0; 10869 break; 10870 } 10871 10872 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10873 up_read(&fs_info->commit_root_sem); 10874 mutex_unlock(&fs_info->chunk_mutex); 10875 10876 if (ret) 10877 break; 10878 10879 start += len; 10880 *trimmed += bytes; 10881 10882 if (fatal_signal_pending(current)) { 10883 ret = -ERESTARTSYS; 10884 break; 10885 } 10886 10887 cond_resched(); 10888 } 10889 10890 return ret; 10891 } 10892 10893 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10894 { 10895 struct btrfs_block_group_cache *cache = NULL; 10896 struct btrfs_device *device; 10897 struct list_head *devices; 10898 u64 group_trimmed; 10899 u64 start; 10900 u64 end; 10901 u64 trimmed = 0; 10902 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10903 int ret = 0; 10904 10905 /* 10906 * try to trim all FS space, our block group may start from non-zero. 10907 */ 10908 if (range->len == total_bytes) 10909 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10910 else 10911 cache = btrfs_lookup_block_group(fs_info, range->start); 10912 10913 while (cache) { 10914 if (cache->key.objectid >= (range->start + range->len)) { 10915 btrfs_put_block_group(cache); 10916 break; 10917 } 10918 10919 start = max(range->start, cache->key.objectid); 10920 end = min(range->start + range->len, 10921 cache->key.objectid + cache->key.offset); 10922 10923 if (end - start >= range->minlen) { 10924 if (!block_group_cache_done(cache)) { 10925 ret = cache_block_group(cache, 0); 10926 if (ret) { 10927 btrfs_put_block_group(cache); 10928 break; 10929 } 10930 ret = wait_block_group_cache_done(cache); 10931 if (ret) { 10932 btrfs_put_block_group(cache); 10933 break; 10934 } 10935 } 10936 ret = btrfs_trim_block_group(cache, 10937 &group_trimmed, 10938 start, 10939 end, 10940 range->minlen); 10941 10942 trimmed += group_trimmed; 10943 if (ret) { 10944 btrfs_put_block_group(cache); 10945 break; 10946 } 10947 } 10948 10949 cache = next_block_group(fs_info, cache); 10950 } 10951 10952 mutex_lock(&fs_info->fs_devices->device_list_mutex); 10953 devices = &fs_info->fs_devices->alloc_list; 10954 list_for_each_entry(device, devices, dev_alloc_list) { 10955 ret = btrfs_trim_free_extents(device, range->minlen, 10956 &group_trimmed); 10957 if (ret) 10958 break; 10959 10960 trimmed += group_trimmed; 10961 } 10962 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 10963 10964 range->len = trimmed; 10965 return ret; 10966 } 10967 10968 /* 10969 * btrfs_{start,end}_write_no_snapshoting() are similar to 10970 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10971 * data into the page cache through nocow before the subvolume is snapshoted, 10972 * but flush the data into disk after the snapshot creation, or to prevent 10973 * operations while snapshoting is ongoing and that cause the snapshot to be 10974 * inconsistent (writes followed by expanding truncates for example). 10975 */ 10976 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10977 { 10978 percpu_counter_dec(&root->subv_writers->counter); 10979 /* 10980 * Make sure counter is updated before we wake up waiters. 10981 */ 10982 smp_mb(); 10983 if (waitqueue_active(&root->subv_writers->wait)) 10984 wake_up(&root->subv_writers->wait); 10985 } 10986 10987 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10988 { 10989 if (atomic_read(&root->will_be_snapshoted)) 10990 return 0; 10991 10992 percpu_counter_inc(&root->subv_writers->counter); 10993 /* 10994 * Make sure counter is updated before we check for snapshot creation. 10995 */ 10996 smp_mb(); 10997 if (atomic_read(&root->will_be_snapshoted)) { 10998 btrfs_end_write_no_snapshoting(root); 10999 return 0; 11000 } 11001 return 1; 11002 } 11003 11004 static int wait_snapshoting_atomic_t(atomic_t *a) 11005 { 11006 schedule(); 11007 return 0; 11008 } 11009 11010 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11011 { 11012 while (true) { 11013 int ret; 11014 11015 ret = btrfs_start_write_no_snapshoting(root); 11016 if (ret) 11017 break; 11018 wait_on_atomic_t(&root->will_be_snapshoted, 11019 wait_snapshoting_atomic_t, 11020 TASK_UNINTERRUPTIBLE); 11021 } 11022 } 11023