1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "math.h" 38 #include "sysfs.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->commit_root_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched() || 446 rwsem_is_contended(&fs_info->commit_root_sem)) { 447 caching_ctl->progress = last; 448 btrfs_release_path(path); 449 up_read(&fs_info->commit_root_sem); 450 mutex_unlock(&caching_ctl->mutex); 451 cond_resched(); 452 goto again; 453 } 454 455 ret = btrfs_next_leaf(extent_root, path); 456 if (ret < 0) 457 goto err; 458 if (ret) 459 break; 460 leaf = path->nodes[0]; 461 nritems = btrfs_header_nritems(leaf); 462 continue; 463 } 464 465 if (key.objectid < last) { 466 key.objectid = last; 467 key.offset = 0; 468 key.type = BTRFS_EXTENT_ITEM_KEY; 469 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 goto next; 473 } 474 475 if (key.objectid < block_group->key.objectid) { 476 path->slots[0]++; 477 continue; 478 } 479 480 if (key.objectid >= block_group->key.objectid + 481 block_group->key.offset) 482 break; 483 484 if (key.type == BTRFS_EXTENT_ITEM_KEY || 485 key.type == BTRFS_METADATA_ITEM_KEY) { 486 total_found += add_new_free_space(block_group, 487 fs_info, last, 488 key.objectid); 489 if (key.type == BTRFS_METADATA_ITEM_KEY) 490 last = key.objectid + 491 fs_info->tree_root->leafsize; 492 else 493 last = key.objectid + key.offset; 494 495 if (total_found > (1024 * 1024 * 2)) { 496 total_found = 0; 497 wake_up(&caching_ctl->wait); 498 } 499 } 500 path->slots[0]++; 501 } 502 ret = 0; 503 504 total_found += add_new_free_space(block_group, fs_info, last, 505 block_group->key.objectid + 506 block_group->key.offset); 507 caching_ctl->progress = (u64)-1; 508 509 spin_lock(&block_group->lock); 510 block_group->caching_ctl = NULL; 511 block_group->cached = BTRFS_CACHE_FINISHED; 512 spin_unlock(&block_group->lock); 513 514 err: 515 btrfs_free_path(path); 516 up_read(&fs_info->commit_root_sem); 517 518 free_excluded_extents(extent_root, block_group); 519 520 mutex_unlock(&caching_ctl->mutex); 521 out: 522 if (ret) { 523 spin_lock(&block_group->lock); 524 block_group->caching_ctl = NULL; 525 block_group->cached = BTRFS_CACHE_ERROR; 526 spin_unlock(&block_group->lock); 527 } 528 wake_up(&caching_ctl->wait); 529 530 put_caching_control(caching_ctl); 531 btrfs_put_block_group(block_group); 532 } 533 534 static int cache_block_group(struct btrfs_block_group_cache *cache, 535 int load_cache_only) 536 { 537 DEFINE_WAIT(wait); 538 struct btrfs_fs_info *fs_info = cache->fs_info; 539 struct btrfs_caching_control *caching_ctl; 540 int ret = 0; 541 542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 543 if (!caching_ctl) 544 return -ENOMEM; 545 546 INIT_LIST_HEAD(&caching_ctl->list); 547 mutex_init(&caching_ctl->mutex); 548 init_waitqueue_head(&caching_ctl->wait); 549 caching_ctl->block_group = cache; 550 caching_ctl->progress = cache->key.objectid; 551 atomic_set(&caching_ctl->count, 1); 552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 553 554 spin_lock(&cache->lock); 555 /* 556 * This should be a rare occasion, but this could happen I think in the 557 * case where one thread starts to load the space cache info, and then 558 * some other thread starts a transaction commit which tries to do an 559 * allocation while the other thread is still loading the space cache 560 * info. The previous loop should have kept us from choosing this block 561 * group, but if we've moved to the state where we will wait on caching 562 * block groups we need to first check if we're doing a fast load here, 563 * so we can wait for it to finish, otherwise we could end up allocating 564 * from a block group who's cache gets evicted for one reason or 565 * another. 566 */ 567 while (cache->cached == BTRFS_CACHE_FAST) { 568 struct btrfs_caching_control *ctl; 569 570 ctl = cache->caching_ctl; 571 atomic_inc(&ctl->count); 572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 573 spin_unlock(&cache->lock); 574 575 schedule(); 576 577 finish_wait(&ctl->wait, &wait); 578 put_caching_control(ctl); 579 spin_lock(&cache->lock); 580 } 581 582 if (cache->cached != BTRFS_CACHE_NO) { 583 spin_unlock(&cache->lock); 584 kfree(caching_ctl); 585 return 0; 586 } 587 WARN_ON(cache->caching_ctl); 588 cache->caching_ctl = caching_ctl; 589 cache->cached = BTRFS_CACHE_FAST; 590 spin_unlock(&cache->lock); 591 592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 } 607 } 608 spin_unlock(&cache->lock); 609 wake_up(&caching_ctl->wait); 610 if (ret == 1) { 611 put_caching_control(caching_ctl); 612 free_excluded_extents(fs_info->extent_root, cache); 613 return 0; 614 } 615 } else { 616 /* 617 * We are not going to do the fast caching, set cached to the 618 * appropriate value and wakeup any waiters. 619 */ 620 spin_lock(&cache->lock); 621 if (load_cache_only) { 622 cache->caching_ctl = NULL; 623 cache->cached = BTRFS_CACHE_NO; 624 } else { 625 cache->cached = BTRFS_CACHE_STARTED; 626 } 627 spin_unlock(&cache->lock); 628 wake_up(&caching_ctl->wait); 629 } 630 631 if (load_cache_only) { 632 put_caching_control(caching_ctl); 633 return 0; 634 } 635 636 down_write(&fs_info->commit_root_sem); 637 atomic_inc(&caching_ctl->count); 638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 639 up_write(&fs_info->commit_root_sem); 640 641 btrfs_get_block_group(cache); 642 643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 644 645 return ret; 646 } 647 648 /* 649 * return the block group that starts at or after bytenr 650 */ 651 static struct btrfs_block_group_cache * 652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 653 { 654 struct btrfs_block_group_cache *cache; 655 656 cache = block_group_cache_tree_search(info, bytenr, 0); 657 658 return cache; 659 } 660 661 /* 662 * return the block group that contains the given bytenr 663 */ 664 struct btrfs_block_group_cache *btrfs_lookup_block_group( 665 struct btrfs_fs_info *info, 666 u64 bytenr) 667 { 668 struct btrfs_block_group_cache *cache; 669 670 cache = block_group_cache_tree_search(info, bytenr, 1); 671 672 return cache; 673 } 674 675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 676 u64 flags) 677 { 678 struct list_head *head = &info->space_info; 679 struct btrfs_space_info *found; 680 681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 682 683 rcu_read_lock(); 684 list_for_each_entry_rcu(found, head, list) { 685 if (found->flags & flags) { 686 rcu_read_unlock(); 687 return found; 688 } 689 } 690 rcu_read_unlock(); 691 return NULL; 692 } 693 694 /* 695 * after adding space to the filesystem, we need to clear the full flags 696 * on all the space infos. 697 */ 698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 699 { 700 struct list_head *head = &info->space_info; 701 struct btrfs_space_info *found; 702 703 rcu_read_lock(); 704 list_for_each_entry_rcu(found, head, list) 705 found->full = 0; 706 rcu_read_unlock(); 707 } 708 709 /* simple helper to search for an existing extent at a given offset */ 710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 711 { 712 int ret; 713 struct btrfs_key key; 714 struct btrfs_path *path; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 key.objectid = start; 721 key.offset = len; 722 key.type = BTRFS_EXTENT_ITEM_KEY; 723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 724 0, 0); 725 if (ret > 0) { 726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 727 if (key.objectid == start && 728 key.type == BTRFS_METADATA_ITEM_KEY) 729 ret = 0; 730 } 731 btrfs_free_path(path); 732 return ret; 733 } 734 735 /* 736 * helper function to lookup reference count and flags of a tree block. 737 * 738 * the head node for delayed ref is used to store the sum of all the 739 * reference count modifications queued up in the rbtree. the head 740 * node may also store the extent flags to set. This way you can check 741 * to see what the reference count and extent flags would be if all of 742 * the delayed refs are not processed. 743 */ 744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 745 struct btrfs_root *root, u64 bytenr, 746 u64 offset, int metadata, u64 *refs, u64 *flags) 747 { 748 struct btrfs_delayed_ref_head *head; 749 struct btrfs_delayed_ref_root *delayed_refs; 750 struct btrfs_path *path; 751 struct btrfs_extent_item *ei; 752 struct extent_buffer *leaf; 753 struct btrfs_key key; 754 u32 item_size; 755 u64 num_refs; 756 u64 extent_flags; 757 int ret; 758 759 /* 760 * If we don't have skinny metadata, don't bother doing anything 761 * different 762 */ 763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 764 offset = root->leafsize; 765 metadata = 0; 766 } 767 768 path = btrfs_alloc_path(); 769 if (!path) 770 return -ENOMEM; 771 772 if (!trans) { 773 path->skip_locking = 1; 774 path->search_commit_root = 1; 775 } 776 777 search_again: 778 key.objectid = bytenr; 779 key.offset = offset; 780 if (metadata) 781 key.type = BTRFS_METADATA_ITEM_KEY; 782 else 783 key.type = BTRFS_EXTENT_ITEM_KEY; 784 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 if (path->slots[0]) { 793 path->slots[0]--; 794 btrfs_item_key_to_cpu(path->nodes[0], &key, 795 path->slots[0]); 796 if (key.objectid == bytenr && 797 key.type == BTRFS_EXTENT_ITEM_KEY && 798 key.offset == root->leafsize) 799 ret = 0; 800 } 801 if (ret) { 802 key.objectid = bytenr; 803 key.type = BTRFS_EXTENT_ITEM_KEY; 804 key.offset = root->leafsize; 805 btrfs_release_path(path); 806 goto again; 807 } 808 } 809 810 if (ret == 0) { 811 leaf = path->nodes[0]; 812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 813 if (item_size >= sizeof(*ei)) { 814 ei = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_extent_item); 816 num_refs = btrfs_extent_refs(leaf, ei); 817 extent_flags = btrfs_extent_flags(leaf, ei); 818 } else { 819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 820 struct btrfs_extent_item_v0 *ei0; 821 BUG_ON(item_size != sizeof(*ei0)); 822 ei0 = btrfs_item_ptr(leaf, path->slots[0], 823 struct btrfs_extent_item_v0); 824 num_refs = btrfs_extent_refs_v0(leaf, ei0); 825 /* FIXME: this isn't correct for data */ 826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 827 #else 828 BUG(); 829 #endif 830 } 831 BUG_ON(num_refs == 0); 832 } else { 833 num_refs = 0; 834 extent_flags = 0; 835 ret = 0; 836 } 837 838 if (!trans) 839 goto out; 840 841 delayed_refs = &trans->transaction->delayed_refs; 842 spin_lock(&delayed_refs->lock); 843 head = btrfs_find_delayed_ref_head(trans, bytenr); 844 if (head) { 845 if (!mutex_trylock(&head->mutex)) { 846 atomic_inc(&head->node.refs); 847 spin_unlock(&delayed_refs->lock); 848 849 btrfs_release_path(path); 850 851 /* 852 * Mutex was contended, block until it's released and try 853 * again 854 */ 855 mutex_lock(&head->mutex); 856 mutex_unlock(&head->mutex); 857 btrfs_put_delayed_ref(&head->node); 858 goto search_again; 859 } 860 spin_lock(&head->lock); 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 spin_unlock(&head->lock); 868 mutex_unlock(&head->mutex); 869 } 870 spin_unlock(&delayed_refs->lock); 871 out: 872 WARN_ON(num_refs == 0); 873 if (refs) 874 *refs = num_refs; 875 if (flags) 876 *flags = extent_flags; 877 out_free: 878 btrfs_free_path(path); 879 return ret; 880 } 881 882 /* 883 * Back reference rules. Back refs have three main goals: 884 * 885 * 1) differentiate between all holders of references to an extent so that 886 * when a reference is dropped we can make sure it was a valid reference 887 * before freeing the extent. 888 * 889 * 2) Provide enough information to quickly find the holders of an extent 890 * if we notice a given block is corrupted or bad. 891 * 892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 893 * maintenance. This is actually the same as #2, but with a slightly 894 * different use case. 895 * 896 * There are two kinds of back refs. The implicit back refs is optimized 897 * for pointers in non-shared tree blocks. For a given pointer in a block, 898 * back refs of this kind provide information about the block's owner tree 899 * and the pointer's key. These information allow us to find the block by 900 * b-tree searching. The full back refs is for pointers in tree blocks not 901 * referenced by their owner trees. The location of tree block is recorded 902 * in the back refs. Actually the full back refs is generic, and can be 903 * used in all cases the implicit back refs is used. The major shortcoming 904 * of the full back refs is its overhead. Every time a tree block gets 905 * COWed, we have to update back refs entry for all pointers in it. 906 * 907 * For a newly allocated tree block, we use implicit back refs for 908 * pointers in it. This means most tree related operations only involve 909 * implicit back refs. For a tree block created in old transaction, the 910 * only way to drop a reference to it is COW it. So we can detect the 911 * event that tree block loses its owner tree's reference and do the 912 * back refs conversion. 913 * 914 * When a tree block is COW'd through a tree, there are four cases: 915 * 916 * The reference count of the block is one and the tree is the block's 917 * owner tree. Nothing to do in this case. 918 * 919 * The reference count of the block is one and the tree is not the 920 * block's owner tree. In this case, full back refs is used for pointers 921 * in the block. Remove these full back refs, add implicit back refs for 922 * every pointers in the new block. 923 * 924 * The reference count of the block is greater than one and the tree is 925 * the block's owner tree. In this case, implicit back refs is used for 926 * pointers in the block. Add full back refs for every pointers in the 927 * block, increase lower level extents' reference counts. The original 928 * implicit back refs are entailed to the new block. 929 * 930 * The reference count of the block is greater than one and the tree is 931 * not the block's owner tree. Add implicit back refs for every pointer in 932 * the new block, increase lower level extents' reference count. 933 * 934 * Back Reference Key composing: 935 * 936 * The key objectid corresponds to the first byte in the extent, 937 * The key type is used to differentiate between types of back refs. 938 * There are different meanings of the key offset for different types 939 * of back refs. 940 * 941 * File extents can be referenced by: 942 * 943 * - multiple snapshots, subvolumes, or different generations in one subvol 944 * - different files inside a single subvolume 945 * - different offsets inside a file (bookend extents in file.c) 946 * 947 * The extent ref structure for the implicit back refs has fields for: 948 * 949 * - Objectid of the subvolume root 950 * - objectid of the file holding the reference 951 * - original offset in the file 952 * - how many bookend extents 953 * 954 * The key offset for the implicit back refs is hash of the first 955 * three fields. 956 * 957 * The extent ref structure for the full back refs has field for: 958 * 959 * - number of pointers in the tree leaf 960 * 961 * The key offset for the implicit back refs is the first byte of 962 * the tree leaf 963 * 964 * When a file extent is allocated, The implicit back refs is used. 965 * the fields are filled in: 966 * 967 * (root_key.objectid, inode objectid, offset in file, 1) 968 * 969 * When a file extent is removed file truncation, we find the 970 * corresponding implicit back refs and check the following fields: 971 * 972 * (btrfs_header_owner(leaf), inode objectid, offset in file) 973 * 974 * Btree extents can be referenced by: 975 * 976 * - Different subvolumes 977 * 978 * Both the implicit back refs and the full back refs for tree blocks 979 * only consist of key. The key offset for the implicit back refs is 980 * objectid of block's owner tree. The key offset for the full back refs 981 * is the first byte of parent block. 982 * 983 * When implicit back refs is used, information about the lowest key and 984 * level of the tree block are required. These information are stored in 985 * tree block info structure. 986 */ 987 988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 990 struct btrfs_root *root, 991 struct btrfs_path *path, 992 u64 owner, u32 extra_size) 993 { 994 struct btrfs_extent_item *item; 995 struct btrfs_extent_item_v0 *ei0; 996 struct btrfs_extent_ref_v0 *ref0; 997 struct btrfs_tree_block_info *bi; 998 struct extent_buffer *leaf; 999 struct btrfs_key key; 1000 struct btrfs_key found_key; 1001 u32 new_size = sizeof(*item); 1002 u64 refs; 1003 int ret; 1004 1005 leaf = path->nodes[0]; 1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1007 1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1009 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1010 struct btrfs_extent_item_v0); 1011 refs = btrfs_extent_refs_v0(leaf, ei0); 1012 1013 if (owner == (u64)-1) { 1014 while (1) { 1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1016 ret = btrfs_next_leaf(root, path); 1017 if (ret < 0) 1018 return ret; 1019 BUG_ON(ret > 0); /* Corruption */ 1020 leaf = path->nodes[0]; 1021 } 1022 btrfs_item_key_to_cpu(leaf, &found_key, 1023 path->slots[0]); 1024 BUG_ON(key.objectid != found_key.objectid); 1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1026 path->slots[0]++; 1027 continue; 1028 } 1029 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_extent_ref_v0); 1031 owner = btrfs_ref_objectid_v0(leaf, ref0); 1032 break; 1033 } 1034 } 1035 btrfs_release_path(path); 1036 1037 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1038 new_size += sizeof(*bi); 1039 1040 new_size -= sizeof(*ei0); 1041 ret = btrfs_search_slot(trans, root, &key, path, 1042 new_size + extra_size, 1); 1043 if (ret < 0) 1044 return ret; 1045 BUG_ON(ret); /* Corruption */ 1046 1047 btrfs_extend_item(root, path, new_size); 1048 1049 leaf = path->nodes[0]; 1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1051 btrfs_set_extent_refs(leaf, item, refs); 1052 /* FIXME: get real generation */ 1053 btrfs_set_extent_generation(leaf, item, 0); 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 btrfs_set_extent_flags(leaf, item, 1056 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1057 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1058 bi = (struct btrfs_tree_block_info *)(item + 1); 1059 /* FIXME: get first key of the block */ 1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1061 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1062 } else { 1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 return 0; 1067 } 1068 #endif 1069 1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1071 { 1072 u32 high_crc = ~(u32)0; 1073 u32 low_crc = ~(u32)0; 1074 __le64 lenum; 1075 1076 lenum = cpu_to_le64(root_objectid); 1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1078 lenum = cpu_to_le64(owner); 1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1080 lenum = cpu_to_le64(offset); 1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1082 1083 return ((u64)high_crc << 31) ^ (u64)low_crc; 1084 } 1085 1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1087 struct btrfs_extent_data_ref *ref) 1088 { 1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1090 btrfs_extent_data_ref_objectid(leaf, ref), 1091 btrfs_extent_data_ref_offset(leaf, ref)); 1092 } 1093 1094 static int match_extent_data_ref(struct extent_buffer *leaf, 1095 struct btrfs_extent_data_ref *ref, 1096 u64 root_objectid, u64 owner, u64 offset) 1097 { 1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1100 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1101 return 0; 1102 return 1; 1103 } 1104 1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root, 1107 struct btrfs_path *path, 1108 u64 bytenr, u64 parent, 1109 u64 root_objectid, 1110 u64 owner, u64 offset) 1111 { 1112 struct btrfs_key key; 1113 struct btrfs_extent_data_ref *ref; 1114 struct extent_buffer *leaf; 1115 u32 nritems; 1116 int ret; 1117 int recow; 1118 int err = -ENOENT; 1119 1120 key.objectid = bytenr; 1121 if (parent) { 1122 key.type = BTRFS_SHARED_DATA_REF_KEY; 1123 key.offset = parent; 1124 } else { 1125 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1126 key.offset = hash_extent_data_ref(root_objectid, 1127 owner, offset); 1128 } 1129 again: 1130 recow = 0; 1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1132 if (ret < 0) { 1133 err = ret; 1134 goto fail; 1135 } 1136 1137 if (parent) { 1138 if (!ret) 1139 return 0; 1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1141 key.type = BTRFS_EXTENT_REF_V0_KEY; 1142 btrfs_release_path(path); 1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1144 if (ret < 0) { 1145 err = ret; 1146 goto fail; 1147 } 1148 if (!ret) 1149 return 0; 1150 #endif 1151 goto fail; 1152 } 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 while (1) { 1157 if (path->slots[0] >= nritems) { 1158 ret = btrfs_next_leaf(root, path); 1159 if (ret < 0) 1160 err = ret; 1161 if (ret) 1162 goto fail; 1163 1164 leaf = path->nodes[0]; 1165 nritems = btrfs_header_nritems(leaf); 1166 recow = 1; 1167 } 1168 1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1170 if (key.objectid != bytenr || 1171 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1172 goto fail; 1173 1174 ref = btrfs_item_ptr(leaf, path->slots[0], 1175 struct btrfs_extent_data_ref); 1176 1177 if (match_extent_data_ref(leaf, ref, root_objectid, 1178 owner, offset)) { 1179 if (recow) { 1180 btrfs_release_path(path); 1181 goto again; 1182 } 1183 err = 0; 1184 break; 1185 } 1186 path->slots[0]++; 1187 } 1188 fail: 1189 return err; 1190 } 1191 1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1193 struct btrfs_root *root, 1194 struct btrfs_path *path, 1195 u64 bytenr, u64 parent, 1196 u64 root_objectid, u64 owner, 1197 u64 offset, int refs_to_add) 1198 { 1199 struct btrfs_key key; 1200 struct extent_buffer *leaf; 1201 u32 size; 1202 u32 num_refs; 1203 int ret; 1204 1205 key.objectid = bytenr; 1206 if (parent) { 1207 key.type = BTRFS_SHARED_DATA_REF_KEY; 1208 key.offset = parent; 1209 size = sizeof(struct btrfs_shared_data_ref); 1210 } else { 1211 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1212 key.offset = hash_extent_data_ref(root_objectid, 1213 owner, offset); 1214 size = sizeof(struct btrfs_extent_data_ref); 1215 } 1216 1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1218 if (ret && ret != -EEXIST) 1219 goto fail; 1220 1221 leaf = path->nodes[0]; 1222 if (parent) { 1223 struct btrfs_shared_data_ref *ref; 1224 ref = btrfs_item_ptr(leaf, path->slots[0], 1225 struct btrfs_shared_data_ref); 1226 if (ret == 0) { 1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1228 } else { 1229 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1230 num_refs += refs_to_add; 1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1232 } 1233 } else { 1234 struct btrfs_extent_data_ref *ref; 1235 while (ret == -EEXIST) { 1236 ref = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_extent_data_ref); 1238 if (match_extent_data_ref(leaf, ref, root_objectid, 1239 owner, offset)) 1240 break; 1241 btrfs_release_path(path); 1242 key.offset++; 1243 ret = btrfs_insert_empty_item(trans, root, path, &key, 1244 size); 1245 if (ret && ret != -EEXIST) 1246 goto fail; 1247 1248 leaf = path->nodes[0]; 1249 } 1250 ref = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_extent_data_ref); 1252 if (ret == 0) { 1253 btrfs_set_extent_data_ref_root(leaf, ref, 1254 root_objectid); 1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1258 } else { 1259 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1260 num_refs += refs_to_add; 1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1262 } 1263 } 1264 btrfs_mark_buffer_dirty(leaf); 1265 ret = 0; 1266 fail: 1267 btrfs_release_path(path); 1268 return ret; 1269 } 1270 1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1272 struct btrfs_root *root, 1273 struct btrfs_path *path, 1274 int refs_to_drop) 1275 { 1276 struct btrfs_key key; 1277 struct btrfs_extent_data_ref *ref1 = NULL; 1278 struct btrfs_shared_data_ref *ref2 = NULL; 1279 struct extent_buffer *leaf; 1280 u32 num_refs = 0; 1281 int ret = 0; 1282 1283 leaf = path->nodes[0]; 1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1285 1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1287 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_data_ref); 1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1291 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1292 struct btrfs_shared_data_ref); 1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1296 struct btrfs_extent_ref_v0 *ref0; 1297 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1298 struct btrfs_extent_ref_v0); 1299 num_refs = btrfs_ref_count_v0(leaf, ref0); 1300 #endif 1301 } else { 1302 BUG(); 1303 } 1304 1305 BUG_ON(num_refs < refs_to_drop); 1306 num_refs -= refs_to_drop; 1307 1308 if (num_refs == 0) { 1309 ret = btrfs_del_item(trans, root, path); 1310 } else { 1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1316 else { 1317 struct btrfs_extent_ref_v0 *ref0; 1318 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_extent_ref_v0); 1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1321 } 1322 #endif 1323 btrfs_mark_buffer_dirty(leaf); 1324 } 1325 return ret; 1326 } 1327 1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1329 struct btrfs_path *path, 1330 struct btrfs_extent_inline_ref *iref) 1331 { 1332 struct btrfs_key key; 1333 struct extent_buffer *leaf; 1334 struct btrfs_extent_data_ref *ref1; 1335 struct btrfs_shared_data_ref *ref2; 1336 u32 num_refs = 0; 1337 1338 leaf = path->nodes[0]; 1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1340 if (iref) { 1341 if (btrfs_extent_inline_ref_type(leaf, iref) == 1342 BTRFS_EXTENT_DATA_REF_KEY) { 1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else { 1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 } 1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1350 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_data_ref); 1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1354 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_shared_data_ref); 1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1359 struct btrfs_extent_ref_v0 *ref0; 1360 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_extent_ref_v0); 1362 num_refs = btrfs_ref_count_v0(leaf, ref0); 1363 #endif 1364 } else { 1365 WARN_ON(1); 1366 } 1367 return num_refs; 1368 } 1369 1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1389 if (ret > 0) 1390 ret = -ENOENT; 1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1392 if (ret == -ENOENT && parent) { 1393 btrfs_release_path(path); 1394 key.type = BTRFS_EXTENT_REF_V0_KEY; 1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1396 if (ret > 0) 1397 ret = -ENOENT; 1398 } 1399 #endif 1400 return ret; 1401 } 1402 1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1404 struct btrfs_root *root, 1405 struct btrfs_path *path, 1406 u64 bytenr, u64 parent, 1407 u64 root_objectid) 1408 { 1409 struct btrfs_key key; 1410 int ret; 1411 1412 key.objectid = bytenr; 1413 if (parent) { 1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1415 key.offset = parent; 1416 } else { 1417 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1418 key.offset = root_objectid; 1419 } 1420 1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1422 btrfs_release_path(path); 1423 return ret; 1424 } 1425 1426 static inline int extent_ref_type(u64 parent, u64 owner) 1427 { 1428 int type; 1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1430 if (parent > 0) 1431 type = BTRFS_SHARED_BLOCK_REF_KEY; 1432 else 1433 type = BTRFS_TREE_BLOCK_REF_KEY; 1434 } else { 1435 if (parent > 0) 1436 type = BTRFS_SHARED_DATA_REF_KEY; 1437 else 1438 type = BTRFS_EXTENT_DATA_REF_KEY; 1439 } 1440 return type; 1441 } 1442 1443 static int find_next_key(struct btrfs_path *path, int level, 1444 struct btrfs_key *key) 1445 1446 { 1447 for (; level < BTRFS_MAX_LEVEL; level++) { 1448 if (!path->nodes[level]) 1449 break; 1450 if (path->slots[level] + 1 >= 1451 btrfs_header_nritems(path->nodes[level])) 1452 continue; 1453 if (level == 0) 1454 btrfs_item_key_to_cpu(path->nodes[level], key, 1455 path->slots[level] + 1); 1456 else 1457 btrfs_node_key_to_cpu(path->nodes[level], key, 1458 path->slots[level] + 1); 1459 return 0; 1460 } 1461 return 1; 1462 } 1463 1464 /* 1465 * look for inline back ref. if back ref is found, *ref_ret is set 1466 * to the address of inline back ref, and 0 is returned. 1467 * 1468 * if back ref isn't found, *ref_ret is set to the address where it 1469 * should be inserted, and -ENOENT is returned. 1470 * 1471 * if insert is true and there are too many inline back refs, the path 1472 * points to the extent item, and -EAGAIN is returned. 1473 * 1474 * NOTE: inline back refs are ordered in the same way that back ref 1475 * items in the tree are ordered. 1476 */ 1477 static noinline_for_stack 1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root, 1480 struct btrfs_path *path, 1481 struct btrfs_extent_inline_ref **ref_ret, 1482 u64 bytenr, u64 num_bytes, 1483 u64 parent, u64 root_objectid, 1484 u64 owner, u64 offset, int insert) 1485 { 1486 struct btrfs_key key; 1487 struct extent_buffer *leaf; 1488 struct btrfs_extent_item *ei; 1489 struct btrfs_extent_inline_ref *iref; 1490 u64 flags; 1491 u64 item_size; 1492 unsigned long ptr; 1493 unsigned long end; 1494 int extra_size; 1495 int type; 1496 int want; 1497 int ret; 1498 int err = 0; 1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1500 SKINNY_METADATA); 1501 1502 key.objectid = bytenr; 1503 key.type = BTRFS_EXTENT_ITEM_KEY; 1504 key.offset = num_bytes; 1505 1506 want = extent_ref_type(parent, owner); 1507 if (insert) { 1508 extra_size = btrfs_extent_inline_ref_size(want); 1509 path->keep_locks = 1; 1510 } else 1511 extra_size = -1; 1512 1513 /* 1514 * Owner is our parent level, so we can just add one to get the level 1515 * for the block we are interested in. 1516 */ 1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1518 key.type = BTRFS_METADATA_ITEM_KEY; 1519 key.offset = owner; 1520 } 1521 1522 again: 1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1524 if (ret < 0) { 1525 err = ret; 1526 goto out; 1527 } 1528 1529 /* 1530 * We may be a newly converted file system which still has the old fat 1531 * extent entries for metadata, so try and see if we have one of those. 1532 */ 1533 if (ret > 0 && skinny_metadata) { 1534 skinny_metadata = false; 1535 if (path->slots[0]) { 1536 path->slots[0]--; 1537 btrfs_item_key_to_cpu(path->nodes[0], &key, 1538 path->slots[0]); 1539 if (key.objectid == bytenr && 1540 key.type == BTRFS_EXTENT_ITEM_KEY && 1541 key.offset == num_bytes) 1542 ret = 0; 1543 } 1544 if (ret) { 1545 key.objectid = bytenr; 1546 key.type = BTRFS_EXTENT_ITEM_KEY; 1547 key.offset = num_bytes; 1548 btrfs_release_path(path); 1549 goto again; 1550 } 1551 } 1552 1553 if (ret && !insert) { 1554 err = -ENOENT; 1555 goto out; 1556 } else if (WARN_ON(ret)) { 1557 err = -EIO; 1558 goto out; 1559 } 1560 1561 leaf = path->nodes[0]; 1562 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1563 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1564 if (item_size < sizeof(*ei)) { 1565 if (!insert) { 1566 err = -ENOENT; 1567 goto out; 1568 } 1569 ret = convert_extent_item_v0(trans, root, path, owner, 1570 extra_size); 1571 if (ret < 0) { 1572 err = ret; 1573 goto out; 1574 } 1575 leaf = path->nodes[0]; 1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1577 } 1578 #endif 1579 BUG_ON(item_size < sizeof(*ei)); 1580 1581 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1582 flags = btrfs_extent_flags(leaf, ei); 1583 1584 ptr = (unsigned long)(ei + 1); 1585 end = (unsigned long)ei + item_size; 1586 1587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1588 ptr += sizeof(struct btrfs_tree_block_info); 1589 BUG_ON(ptr > end); 1590 } 1591 1592 err = -ENOENT; 1593 while (1) { 1594 if (ptr >= end) { 1595 WARN_ON(ptr > end); 1596 break; 1597 } 1598 iref = (struct btrfs_extent_inline_ref *)ptr; 1599 type = btrfs_extent_inline_ref_type(leaf, iref); 1600 if (want < type) 1601 break; 1602 if (want > type) { 1603 ptr += btrfs_extent_inline_ref_size(type); 1604 continue; 1605 } 1606 1607 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1608 struct btrfs_extent_data_ref *dref; 1609 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1610 if (match_extent_data_ref(leaf, dref, root_objectid, 1611 owner, offset)) { 1612 err = 0; 1613 break; 1614 } 1615 if (hash_extent_data_ref_item(leaf, dref) < 1616 hash_extent_data_ref(root_objectid, owner, offset)) 1617 break; 1618 } else { 1619 u64 ref_offset; 1620 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1621 if (parent > 0) { 1622 if (parent == ref_offset) { 1623 err = 0; 1624 break; 1625 } 1626 if (ref_offset < parent) 1627 break; 1628 } else { 1629 if (root_objectid == ref_offset) { 1630 err = 0; 1631 break; 1632 } 1633 if (ref_offset < root_objectid) 1634 break; 1635 } 1636 } 1637 ptr += btrfs_extent_inline_ref_size(type); 1638 } 1639 if (err == -ENOENT && insert) { 1640 if (item_size + extra_size >= 1641 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1642 err = -EAGAIN; 1643 goto out; 1644 } 1645 /* 1646 * To add new inline back ref, we have to make sure 1647 * there is no corresponding back ref item. 1648 * For simplicity, we just do not add new inline back 1649 * ref if there is any kind of item for this block 1650 */ 1651 if (find_next_key(path, 0, &key) == 0 && 1652 key.objectid == bytenr && 1653 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1654 err = -EAGAIN; 1655 goto out; 1656 } 1657 } 1658 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1659 out: 1660 if (insert) { 1661 path->keep_locks = 0; 1662 btrfs_unlock_up_safe(path, 1); 1663 } 1664 return err; 1665 } 1666 1667 /* 1668 * helper to add new inline back ref 1669 */ 1670 static noinline_for_stack 1671 void setup_inline_extent_backref(struct btrfs_root *root, 1672 struct btrfs_path *path, 1673 struct btrfs_extent_inline_ref *iref, 1674 u64 parent, u64 root_objectid, 1675 u64 owner, u64 offset, int refs_to_add, 1676 struct btrfs_delayed_extent_op *extent_op) 1677 { 1678 struct extent_buffer *leaf; 1679 struct btrfs_extent_item *ei; 1680 unsigned long ptr; 1681 unsigned long end; 1682 unsigned long item_offset; 1683 u64 refs; 1684 int size; 1685 int type; 1686 1687 leaf = path->nodes[0]; 1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1689 item_offset = (unsigned long)iref - (unsigned long)ei; 1690 1691 type = extent_ref_type(parent, owner); 1692 size = btrfs_extent_inline_ref_size(type); 1693 1694 btrfs_extend_item(root, path, size); 1695 1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1697 refs = btrfs_extent_refs(leaf, ei); 1698 refs += refs_to_add; 1699 btrfs_set_extent_refs(leaf, ei, refs); 1700 if (extent_op) 1701 __run_delayed_extent_op(extent_op, leaf, ei); 1702 1703 ptr = (unsigned long)ei + item_offset; 1704 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1705 if (ptr < end - size) 1706 memmove_extent_buffer(leaf, ptr + size, ptr, 1707 end - size - ptr); 1708 1709 iref = (struct btrfs_extent_inline_ref *)ptr; 1710 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1711 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1712 struct btrfs_extent_data_ref *dref; 1713 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1714 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1715 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1716 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1717 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1718 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1719 struct btrfs_shared_data_ref *sref; 1720 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1721 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1723 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1724 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1725 } else { 1726 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1727 } 1728 btrfs_mark_buffer_dirty(leaf); 1729 } 1730 1731 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1732 struct btrfs_root *root, 1733 struct btrfs_path *path, 1734 struct btrfs_extent_inline_ref **ref_ret, 1735 u64 bytenr, u64 num_bytes, u64 parent, 1736 u64 root_objectid, u64 owner, u64 offset) 1737 { 1738 int ret; 1739 1740 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1741 bytenr, num_bytes, parent, 1742 root_objectid, owner, offset, 0); 1743 if (ret != -ENOENT) 1744 return ret; 1745 1746 btrfs_release_path(path); 1747 *ref_ret = NULL; 1748 1749 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1750 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1751 root_objectid); 1752 } else { 1753 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1754 root_objectid, owner, offset); 1755 } 1756 return ret; 1757 } 1758 1759 /* 1760 * helper to update/remove inline back ref 1761 */ 1762 static noinline_for_stack 1763 void update_inline_extent_backref(struct btrfs_root *root, 1764 struct btrfs_path *path, 1765 struct btrfs_extent_inline_ref *iref, 1766 int refs_to_mod, 1767 struct btrfs_delayed_extent_op *extent_op) 1768 { 1769 struct extent_buffer *leaf; 1770 struct btrfs_extent_item *ei; 1771 struct btrfs_extent_data_ref *dref = NULL; 1772 struct btrfs_shared_data_ref *sref = NULL; 1773 unsigned long ptr; 1774 unsigned long end; 1775 u32 item_size; 1776 int size; 1777 int type; 1778 u64 refs; 1779 1780 leaf = path->nodes[0]; 1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1782 refs = btrfs_extent_refs(leaf, ei); 1783 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1784 refs += refs_to_mod; 1785 btrfs_set_extent_refs(leaf, ei, refs); 1786 if (extent_op) 1787 __run_delayed_extent_op(extent_op, leaf, ei); 1788 1789 type = btrfs_extent_inline_ref_type(leaf, iref); 1790 1791 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1793 refs = btrfs_extent_data_ref_count(leaf, dref); 1794 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1795 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1796 refs = btrfs_shared_data_ref_count(leaf, sref); 1797 } else { 1798 refs = 1; 1799 BUG_ON(refs_to_mod != -1); 1800 } 1801 1802 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1803 refs += refs_to_mod; 1804 1805 if (refs > 0) { 1806 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1807 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1808 else 1809 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1810 } else { 1811 size = btrfs_extent_inline_ref_size(type); 1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1813 ptr = (unsigned long)iref; 1814 end = (unsigned long)ei + item_size; 1815 if (ptr + size < end) 1816 memmove_extent_buffer(leaf, ptr, ptr + size, 1817 end - ptr - size); 1818 item_size -= size; 1819 btrfs_truncate_item(root, path, item_size, 1); 1820 } 1821 btrfs_mark_buffer_dirty(leaf); 1822 } 1823 1824 static noinline_for_stack 1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1826 struct btrfs_root *root, 1827 struct btrfs_path *path, 1828 u64 bytenr, u64 num_bytes, u64 parent, 1829 u64 root_objectid, u64 owner, 1830 u64 offset, int refs_to_add, 1831 struct btrfs_delayed_extent_op *extent_op) 1832 { 1833 struct btrfs_extent_inline_ref *iref; 1834 int ret; 1835 1836 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1837 bytenr, num_bytes, parent, 1838 root_objectid, owner, offset, 1); 1839 if (ret == 0) { 1840 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1841 update_inline_extent_backref(root, path, iref, 1842 refs_to_add, extent_op); 1843 } else if (ret == -ENOENT) { 1844 setup_inline_extent_backref(root, path, iref, parent, 1845 root_objectid, owner, offset, 1846 refs_to_add, extent_op); 1847 ret = 0; 1848 } 1849 return ret; 1850 } 1851 1852 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1853 struct btrfs_root *root, 1854 struct btrfs_path *path, 1855 u64 bytenr, u64 parent, u64 root_objectid, 1856 u64 owner, u64 offset, int refs_to_add) 1857 { 1858 int ret; 1859 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1860 BUG_ON(refs_to_add != 1); 1861 ret = insert_tree_block_ref(trans, root, path, bytenr, 1862 parent, root_objectid); 1863 } else { 1864 ret = insert_extent_data_ref(trans, root, path, bytenr, 1865 parent, root_objectid, 1866 owner, offset, refs_to_add); 1867 } 1868 return ret; 1869 } 1870 1871 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1872 struct btrfs_root *root, 1873 struct btrfs_path *path, 1874 struct btrfs_extent_inline_ref *iref, 1875 int refs_to_drop, int is_data) 1876 { 1877 int ret = 0; 1878 1879 BUG_ON(!is_data && refs_to_drop != 1); 1880 if (iref) { 1881 update_inline_extent_backref(root, path, iref, 1882 -refs_to_drop, NULL); 1883 } else if (is_data) { 1884 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1885 } else { 1886 ret = btrfs_del_item(trans, root, path); 1887 } 1888 return ret; 1889 } 1890 1891 static int btrfs_issue_discard(struct block_device *bdev, 1892 u64 start, u64 len) 1893 { 1894 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1895 } 1896 1897 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1898 u64 num_bytes, u64 *actual_bytes) 1899 { 1900 int ret; 1901 u64 discarded_bytes = 0; 1902 struct btrfs_bio *bbio = NULL; 1903 1904 1905 /* Tell the block device(s) that the sectors can be discarded */ 1906 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1907 bytenr, &num_bytes, &bbio, 0); 1908 /* Error condition is -ENOMEM */ 1909 if (!ret) { 1910 struct btrfs_bio_stripe *stripe = bbio->stripes; 1911 int i; 1912 1913 1914 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1915 if (!stripe->dev->can_discard) 1916 continue; 1917 1918 ret = btrfs_issue_discard(stripe->dev->bdev, 1919 stripe->physical, 1920 stripe->length); 1921 if (!ret) 1922 discarded_bytes += stripe->length; 1923 else if (ret != -EOPNOTSUPP) 1924 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1925 1926 /* 1927 * Just in case we get back EOPNOTSUPP for some reason, 1928 * just ignore the return value so we don't screw up 1929 * people calling discard_extent. 1930 */ 1931 ret = 0; 1932 } 1933 kfree(bbio); 1934 } 1935 1936 if (actual_bytes) 1937 *actual_bytes = discarded_bytes; 1938 1939 1940 if (ret == -EOPNOTSUPP) 1941 ret = 0; 1942 return ret; 1943 } 1944 1945 /* Can return -ENOMEM */ 1946 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1947 struct btrfs_root *root, 1948 u64 bytenr, u64 num_bytes, u64 parent, 1949 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1950 { 1951 int ret; 1952 struct btrfs_fs_info *fs_info = root->fs_info; 1953 1954 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1955 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1956 1957 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1958 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1959 num_bytes, 1960 parent, root_objectid, (int)owner, 1961 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1962 } else { 1963 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1964 num_bytes, 1965 parent, root_objectid, owner, offset, 1966 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1967 } 1968 return ret; 1969 } 1970 1971 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1972 struct btrfs_root *root, 1973 u64 bytenr, u64 num_bytes, 1974 u64 parent, u64 root_objectid, 1975 u64 owner, u64 offset, int refs_to_add, 1976 struct btrfs_delayed_extent_op *extent_op) 1977 { 1978 struct btrfs_path *path; 1979 struct extent_buffer *leaf; 1980 struct btrfs_extent_item *item; 1981 u64 refs; 1982 int ret; 1983 1984 path = btrfs_alloc_path(); 1985 if (!path) 1986 return -ENOMEM; 1987 1988 path->reada = 1; 1989 path->leave_spinning = 1; 1990 /* this will setup the path even if it fails to insert the back ref */ 1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1992 path, bytenr, num_bytes, parent, 1993 root_objectid, owner, offset, 1994 refs_to_add, extent_op); 1995 if (ret != -EAGAIN) 1996 goto out; 1997 1998 leaf = path->nodes[0]; 1999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2000 refs = btrfs_extent_refs(leaf, item); 2001 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2002 if (extent_op) 2003 __run_delayed_extent_op(extent_op, leaf, item); 2004 2005 btrfs_mark_buffer_dirty(leaf); 2006 btrfs_release_path(path); 2007 2008 path->reada = 1; 2009 path->leave_spinning = 1; 2010 2011 /* now insert the actual backref */ 2012 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2013 path, bytenr, parent, root_objectid, 2014 owner, offset, refs_to_add); 2015 if (ret) 2016 btrfs_abort_transaction(trans, root, ret); 2017 out: 2018 btrfs_free_path(path); 2019 return ret; 2020 } 2021 2022 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2023 struct btrfs_root *root, 2024 struct btrfs_delayed_ref_node *node, 2025 struct btrfs_delayed_extent_op *extent_op, 2026 int insert_reserved) 2027 { 2028 int ret = 0; 2029 struct btrfs_delayed_data_ref *ref; 2030 struct btrfs_key ins; 2031 u64 parent = 0; 2032 u64 ref_root = 0; 2033 u64 flags = 0; 2034 2035 ins.objectid = node->bytenr; 2036 ins.offset = node->num_bytes; 2037 ins.type = BTRFS_EXTENT_ITEM_KEY; 2038 2039 ref = btrfs_delayed_node_to_data_ref(node); 2040 trace_run_delayed_data_ref(node, ref, node->action); 2041 2042 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2043 parent = ref->parent; 2044 else 2045 ref_root = ref->root; 2046 2047 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2048 if (extent_op) 2049 flags |= extent_op->flags_to_set; 2050 ret = alloc_reserved_file_extent(trans, root, 2051 parent, ref_root, flags, 2052 ref->objectid, ref->offset, 2053 &ins, node->ref_mod); 2054 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2055 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2056 node->num_bytes, parent, 2057 ref_root, ref->objectid, 2058 ref->offset, node->ref_mod, 2059 extent_op); 2060 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2061 ret = __btrfs_free_extent(trans, root, node->bytenr, 2062 node->num_bytes, parent, 2063 ref_root, ref->objectid, 2064 ref->offset, node->ref_mod, 2065 extent_op); 2066 } else { 2067 BUG(); 2068 } 2069 return ret; 2070 } 2071 2072 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2073 struct extent_buffer *leaf, 2074 struct btrfs_extent_item *ei) 2075 { 2076 u64 flags = btrfs_extent_flags(leaf, ei); 2077 if (extent_op->update_flags) { 2078 flags |= extent_op->flags_to_set; 2079 btrfs_set_extent_flags(leaf, ei, flags); 2080 } 2081 2082 if (extent_op->update_key) { 2083 struct btrfs_tree_block_info *bi; 2084 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2085 bi = (struct btrfs_tree_block_info *)(ei + 1); 2086 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2087 } 2088 } 2089 2090 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2091 struct btrfs_root *root, 2092 struct btrfs_delayed_ref_node *node, 2093 struct btrfs_delayed_extent_op *extent_op) 2094 { 2095 struct btrfs_key key; 2096 struct btrfs_path *path; 2097 struct btrfs_extent_item *ei; 2098 struct extent_buffer *leaf; 2099 u32 item_size; 2100 int ret; 2101 int err = 0; 2102 int metadata = !extent_op->is_data; 2103 2104 if (trans->aborted) 2105 return 0; 2106 2107 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2108 metadata = 0; 2109 2110 path = btrfs_alloc_path(); 2111 if (!path) 2112 return -ENOMEM; 2113 2114 key.objectid = node->bytenr; 2115 2116 if (metadata) { 2117 key.type = BTRFS_METADATA_ITEM_KEY; 2118 key.offset = extent_op->level; 2119 } else { 2120 key.type = BTRFS_EXTENT_ITEM_KEY; 2121 key.offset = node->num_bytes; 2122 } 2123 2124 again: 2125 path->reada = 1; 2126 path->leave_spinning = 1; 2127 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2128 path, 0, 1); 2129 if (ret < 0) { 2130 err = ret; 2131 goto out; 2132 } 2133 if (ret > 0) { 2134 if (metadata) { 2135 if (path->slots[0] > 0) { 2136 path->slots[0]--; 2137 btrfs_item_key_to_cpu(path->nodes[0], &key, 2138 path->slots[0]); 2139 if (key.objectid == node->bytenr && 2140 key.type == BTRFS_EXTENT_ITEM_KEY && 2141 key.offset == node->num_bytes) 2142 ret = 0; 2143 } 2144 if (ret > 0) { 2145 btrfs_release_path(path); 2146 metadata = 0; 2147 2148 key.objectid = node->bytenr; 2149 key.offset = node->num_bytes; 2150 key.type = BTRFS_EXTENT_ITEM_KEY; 2151 goto again; 2152 } 2153 } else { 2154 err = -EIO; 2155 goto out; 2156 } 2157 } 2158 2159 leaf = path->nodes[0]; 2160 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2161 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2162 if (item_size < sizeof(*ei)) { 2163 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2164 path, (u64)-1, 0); 2165 if (ret < 0) { 2166 err = ret; 2167 goto out; 2168 } 2169 leaf = path->nodes[0]; 2170 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2171 } 2172 #endif 2173 BUG_ON(item_size < sizeof(*ei)); 2174 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2175 __run_delayed_extent_op(extent_op, leaf, ei); 2176 2177 btrfs_mark_buffer_dirty(leaf); 2178 out: 2179 btrfs_free_path(path); 2180 return err; 2181 } 2182 2183 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2184 struct btrfs_root *root, 2185 struct btrfs_delayed_ref_node *node, 2186 struct btrfs_delayed_extent_op *extent_op, 2187 int insert_reserved) 2188 { 2189 int ret = 0; 2190 struct btrfs_delayed_tree_ref *ref; 2191 struct btrfs_key ins; 2192 u64 parent = 0; 2193 u64 ref_root = 0; 2194 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2195 SKINNY_METADATA); 2196 2197 ref = btrfs_delayed_node_to_tree_ref(node); 2198 trace_run_delayed_tree_ref(node, ref, node->action); 2199 2200 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2201 parent = ref->parent; 2202 else 2203 ref_root = ref->root; 2204 2205 ins.objectid = node->bytenr; 2206 if (skinny_metadata) { 2207 ins.offset = ref->level; 2208 ins.type = BTRFS_METADATA_ITEM_KEY; 2209 } else { 2210 ins.offset = node->num_bytes; 2211 ins.type = BTRFS_EXTENT_ITEM_KEY; 2212 } 2213 2214 BUG_ON(node->ref_mod != 1); 2215 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2216 BUG_ON(!extent_op || !extent_op->update_flags); 2217 ret = alloc_reserved_tree_block(trans, root, 2218 parent, ref_root, 2219 extent_op->flags_to_set, 2220 &extent_op->key, 2221 ref->level, &ins); 2222 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2223 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2224 node->num_bytes, parent, ref_root, 2225 ref->level, 0, 1, extent_op); 2226 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2227 ret = __btrfs_free_extent(trans, root, node->bytenr, 2228 node->num_bytes, parent, ref_root, 2229 ref->level, 0, 1, extent_op); 2230 } else { 2231 BUG(); 2232 } 2233 return ret; 2234 } 2235 2236 /* helper function to actually process a single delayed ref entry */ 2237 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2238 struct btrfs_root *root, 2239 struct btrfs_delayed_ref_node *node, 2240 struct btrfs_delayed_extent_op *extent_op, 2241 int insert_reserved) 2242 { 2243 int ret = 0; 2244 2245 if (trans->aborted) { 2246 if (insert_reserved) 2247 btrfs_pin_extent(root, node->bytenr, 2248 node->num_bytes, 1); 2249 return 0; 2250 } 2251 2252 if (btrfs_delayed_ref_is_head(node)) { 2253 struct btrfs_delayed_ref_head *head; 2254 /* 2255 * we've hit the end of the chain and we were supposed 2256 * to insert this extent into the tree. But, it got 2257 * deleted before we ever needed to insert it, so all 2258 * we have to do is clean up the accounting 2259 */ 2260 BUG_ON(extent_op); 2261 head = btrfs_delayed_node_to_head(node); 2262 trace_run_delayed_ref_head(node, head, node->action); 2263 2264 if (insert_reserved) { 2265 btrfs_pin_extent(root, node->bytenr, 2266 node->num_bytes, 1); 2267 if (head->is_data) { 2268 ret = btrfs_del_csums(trans, root, 2269 node->bytenr, 2270 node->num_bytes); 2271 } 2272 } 2273 return ret; 2274 } 2275 2276 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2277 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2278 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2279 insert_reserved); 2280 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2281 node->type == BTRFS_SHARED_DATA_REF_KEY) 2282 ret = run_delayed_data_ref(trans, root, node, extent_op, 2283 insert_reserved); 2284 else 2285 BUG(); 2286 return ret; 2287 } 2288 2289 static noinline struct btrfs_delayed_ref_node * 2290 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2291 { 2292 struct rb_node *node; 2293 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2294 2295 /* 2296 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2297 * this prevents ref count from going down to zero when 2298 * there still are pending delayed ref. 2299 */ 2300 node = rb_first(&head->ref_root); 2301 while (node) { 2302 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2303 rb_node); 2304 if (ref->action == BTRFS_ADD_DELAYED_REF) 2305 return ref; 2306 else if (last == NULL) 2307 last = ref; 2308 node = rb_next(node); 2309 } 2310 return last; 2311 } 2312 2313 /* 2314 * Returns 0 on success or if called with an already aborted transaction. 2315 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2316 */ 2317 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2318 struct btrfs_root *root, 2319 unsigned long nr) 2320 { 2321 struct btrfs_delayed_ref_root *delayed_refs; 2322 struct btrfs_delayed_ref_node *ref; 2323 struct btrfs_delayed_ref_head *locked_ref = NULL; 2324 struct btrfs_delayed_extent_op *extent_op; 2325 struct btrfs_fs_info *fs_info = root->fs_info; 2326 ktime_t start = ktime_get(); 2327 int ret; 2328 unsigned long count = 0; 2329 unsigned long actual_count = 0; 2330 int must_insert_reserved = 0; 2331 2332 delayed_refs = &trans->transaction->delayed_refs; 2333 while (1) { 2334 if (!locked_ref) { 2335 if (count >= nr) 2336 break; 2337 2338 spin_lock(&delayed_refs->lock); 2339 locked_ref = btrfs_select_ref_head(trans); 2340 if (!locked_ref) { 2341 spin_unlock(&delayed_refs->lock); 2342 break; 2343 } 2344 2345 /* grab the lock that says we are going to process 2346 * all the refs for this head */ 2347 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2348 spin_unlock(&delayed_refs->lock); 2349 /* 2350 * we may have dropped the spin lock to get the head 2351 * mutex lock, and that might have given someone else 2352 * time to free the head. If that's true, it has been 2353 * removed from our list and we can move on. 2354 */ 2355 if (ret == -EAGAIN) { 2356 locked_ref = NULL; 2357 count++; 2358 continue; 2359 } 2360 } 2361 2362 /* 2363 * We need to try and merge add/drops of the same ref since we 2364 * can run into issues with relocate dropping the implicit ref 2365 * and then it being added back again before the drop can 2366 * finish. If we merged anything we need to re-loop so we can 2367 * get a good ref. 2368 */ 2369 spin_lock(&locked_ref->lock); 2370 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2371 locked_ref); 2372 2373 /* 2374 * locked_ref is the head node, so we have to go one 2375 * node back for any delayed ref updates 2376 */ 2377 ref = select_delayed_ref(locked_ref); 2378 2379 if (ref && ref->seq && 2380 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2381 spin_unlock(&locked_ref->lock); 2382 btrfs_delayed_ref_unlock(locked_ref); 2383 spin_lock(&delayed_refs->lock); 2384 locked_ref->processing = 0; 2385 delayed_refs->num_heads_ready++; 2386 spin_unlock(&delayed_refs->lock); 2387 locked_ref = NULL; 2388 cond_resched(); 2389 count++; 2390 continue; 2391 } 2392 2393 /* 2394 * record the must insert reserved flag before we 2395 * drop the spin lock. 2396 */ 2397 must_insert_reserved = locked_ref->must_insert_reserved; 2398 locked_ref->must_insert_reserved = 0; 2399 2400 extent_op = locked_ref->extent_op; 2401 locked_ref->extent_op = NULL; 2402 2403 if (!ref) { 2404 2405 2406 /* All delayed refs have been processed, Go ahead 2407 * and send the head node to run_one_delayed_ref, 2408 * so that any accounting fixes can happen 2409 */ 2410 ref = &locked_ref->node; 2411 2412 if (extent_op && must_insert_reserved) { 2413 btrfs_free_delayed_extent_op(extent_op); 2414 extent_op = NULL; 2415 } 2416 2417 if (extent_op) { 2418 spin_unlock(&locked_ref->lock); 2419 ret = run_delayed_extent_op(trans, root, 2420 ref, extent_op); 2421 btrfs_free_delayed_extent_op(extent_op); 2422 2423 if (ret) { 2424 /* 2425 * Need to reset must_insert_reserved if 2426 * there was an error so the abort stuff 2427 * can cleanup the reserved space 2428 * properly. 2429 */ 2430 if (must_insert_reserved) 2431 locked_ref->must_insert_reserved = 1; 2432 locked_ref->processing = 0; 2433 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2434 btrfs_delayed_ref_unlock(locked_ref); 2435 return ret; 2436 } 2437 continue; 2438 } 2439 2440 /* 2441 * Need to drop our head ref lock and re-aqcuire the 2442 * delayed ref lock and then re-check to make sure 2443 * nobody got added. 2444 */ 2445 spin_unlock(&locked_ref->lock); 2446 spin_lock(&delayed_refs->lock); 2447 spin_lock(&locked_ref->lock); 2448 if (rb_first(&locked_ref->ref_root) || 2449 locked_ref->extent_op) { 2450 spin_unlock(&locked_ref->lock); 2451 spin_unlock(&delayed_refs->lock); 2452 continue; 2453 } 2454 ref->in_tree = 0; 2455 delayed_refs->num_heads--; 2456 rb_erase(&locked_ref->href_node, 2457 &delayed_refs->href_root); 2458 spin_unlock(&delayed_refs->lock); 2459 } else { 2460 actual_count++; 2461 ref->in_tree = 0; 2462 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2463 } 2464 atomic_dec(&delayed_refs->num_entries); 2465 2466 if (!btrfs_delayed_ref_is_head(ref)) { 2467 /* 2468 * when we play the delayed ref, also correct the 2469 * ref_mod on head 2470 */ 2471 switch (ref->action) { 2472 case BTRFS_ADD_DELAYED_REF: 2473 case BTRFS_ADD_DELAYED_EXTENT: 2474 locked_ref->node.ref_mod -= ref->ref_mod; 2475 break; 2476 case BTRFS_DROP_DELAYED_REF: 2477 locked_ref->node.ref_mod += ref->ref_mod; 2478 break; 2479 default: 2480 WARN_ON(1); 2481 } 2482 } 2483 spin_unlock(&locked_ref->lock); 2484 2485 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2486 must_insert_reserved); 2487 2488 btrfs_free_delayed_extent_op(extent_op); 2489 if (ret) { 2490 locked_ref->processing = 0; 2491 btrfs_delayed_ref_unlock(locked_ref); 2492 btrfs_put_delayed_ref(ref); 2493 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2494 return ret; 2495 } 2496 2497 /* 2498 * If this node is a head, that means all the refs in this head 2499 * have been dealt with, and we will pick the next head to deal 2500 * with, so we must unlock the head and drop it from the cluster 2501 * list before we release it. 2502 */ 2503 if (btrfs_delayed_ref_is_head(ref)) { 2504 btrfs_delayed_ref_unlock(locked_ref); 2505 locked_ref = NULL; 2506 } 2507 btrfs_put_delayed_ref(ref); 2508 count++; 2509 cond_resched(); 2510 } 2511 2512 /* 2513 * We don't want to include ref heads since we can have empty ref heads 2514 * and those will drastically skew our runtime down since we just do 2515 * accounting, no actual extent tree updates. 2516 */ 2517 if (actual_count > 0) { 2518 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2519 u64 avg; 2520 2521 /* 2522 * We weigh the current average higher than our current runtime 2523 * to avoid large swings in the average. 2524 */ 2525 spin_lock(&delayed_refs->lock); 2526 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2527 avg = div64_u64(avg, 4); 2528 fs_info->avg_delayed_ref_runtime = avg; 2529 spin_unlock(&delayed_refs->lock); 2530 } 2531 return 0; 2532 } 2533 2534 #ifdef SCRAMBLE_DELAYED_REFS 2535 /* 2536 * Normally delayed refs get processed in ascending bytenr order. This 2537 * correlates in most cases to the order added. To expose dependencies on this 2538 * order, we start to process the tree in the middle instead of the beginning 2539 */ 2540 static u64 find_middle(struct rb_root *root) 2541 { 2542 struct rb_node *n = root->rb_node; 2543 struct btrfs_delayed_ref_node *entry; 2544 int alt = 1; 2545 u64 middle; 2546 u64 first = 0, last = 0; 2547 2548 n = rb_first(root); 2549 if (n) { 2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2551 first = entry->bytenr; 2552 } 2553 n = rb_last(root); 2554 if (n) { 2555 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2556 last = entry->bytenr; 2557 } 2558 n = root->rb_node; 2559 2560 while (n) { 2561 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2562 WARN_ON(!entry->in_tree); 2563 2564 middle = entry->bytenr; 2565 2566 if (alt) 2567 n = n->rb_left; 2568 else 2569 n = n->rb_right; 2570 2571 alt = 1 - alt; 2572 } 2573 return middle; 2574 } 2575 #endif 2576 2577 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2578 struct btrfs_fs_info *fs_info) 2579 { 2580 struct qgroup_update *qgroup_update; 2581 int ret = 0; 2582 2583 if (list_empty(&trans->qgroup_ref_list) != 2584 !trans->delayed_ref_elem.seq) { 2585 /* list without seq or seq without list */ 2586 btrfs_err(fs_info, 2587 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2588 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2589 (u32)(trans->delayed_ref_elem.seq >> 32), 2590 (u32)trans->delayed_ref_elem.seq); 2591 BUG(); 2592 } 2593 2594 if (!trans->delayed_ref_elem.seq) 2595 return 0; 2596 2597 while (!list_empty(&trans->qgroup_ref_list)) { 2598 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2599 struct qgroup_update, list); 2600 list_del(&qgroup_update->list); 2601 if (!ret) 2602 ret = btrfs_qgroup_account_ref( 2603 trans, fs_info, qgroup_update->node, 2604 qgroup_update->extent_op); 2605 kfree(qgroup_update); 2606 } 2607 2608 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2609 2610 return ret; 2611 } 2612 2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2614 { 2615 u64 num_bytes; 2616 2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2618 sizeof(struct btrfs_extent_inline_ref)); 2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2621 2622 /* 2623 * We don't ever fill up leaves all the way so multiply by 2 just to be 2624 * closer to what we're really going to want to ouse. 2625 */ 2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2627 } 2628 2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2630 struct btrfs_root *root) 2631 { 2632 struct btrfs_block_rsv *global_rsv; 2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2634 u64 num_bytes; 2635 int ret = 0; 2636 2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2638 num_heads = heads_to_leaves(root, num_heads); 2639 if (num_heads > 1) 2640 num_bytes += (num_heads - 1) * root->leafsize; 2641 num_bytes <<= 1; 2642 global_rsv = &root->fs_info->global_block_rsv; 2643 2644 /* 2645 * If we can't allocate any more chunks lets make sure we have _lots_ of 2646 * wiggle room since running delayed refs can create more delayed refs. 2647 */ 2648 if (global_rsv->space_info->full) 2649 num_bytes <<= 1; 2650 2651 spin_lock(&global_rsv->lock); 2652 if (global_rsv->reserved <= num_bytes) 2653 ret = 1; 2654 spin_unlock(&global_rsv->lock); 2655 return ret; 2656 } 2657 2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2659 struct btrfs_root *root) 2660 { 2661 struct btrfs_fs_info *fs_info = root->fs_info; 2662 u64 num_entries = 2663 atomic_read(&trans->transaction->delayed_refs.num_entries); 2664 u64 avg_runtime; 2665 2666 smp_mb(); 2667 avg_runtime = fs_info->avg_delayed_ref_runtime; 2668 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2669 return 1; 2670 2671 return btrfs_check_space_for_delayed_refs(trans, root); 2672 } 2673 2674 /* 2675 * this starts processing the delayed reference count updates and 2676 * extent insertions we have queued up so far. count can be 2677 * 0, which means to process everything in the tree at the start 2678 * of the run (but not newly added entries), or it can be some target 2679 * number you'd like to process. 2680 * 2681 * Returns 0 on success or if called with an aborted transaction 2682 * Returns <0 on error and aborts the transaction 2683 */ 2684 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2685 struct btrfs_root *root, unsigned long count) 2686 { 2687 struct rb_node *node; 2688 struct btrfs_delayed_ref_root *delayed_refs; 2689 struct btrfs_delayed_ref_head *head; 2690 int ret; 2691 int run_all = count == (unsigned long)-1; 2692 int run_most = 0; 2693 2694 /* We'll clean this up in btrfs_cleanup_transaction */ 2695 if (trans->aborted) 2696 return 0; 2697 2698 if (root == root->fs_info->extent_root) 2699 root = root->fs_info->tree_root; 2700 2701 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2702 2703 delayed_refs = &trans->transaction->delayed_refs; 2704 if (count == 0) { 2705 count = atomic_read(&delayed_refs->num_entries) * 2; 2706 run_most = 1; 2707 } 2708 2709 again: 2710 #ifdef SCRAMBLE_DELAYED_REFS 2711 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2712 #endif 2713 ret = __btrfs_run_delayed_refs(trans, root, count); 2714 if (ret < 0) { 2715 btrfs_abort_transaction(trans, root, ret); 2716 return ret; 2717 } 2718 2719 if (run_all) { 2720 if (!list_empty(&trans->new_bgs)) 2721 btrfs_create_pending_block_groups(trans, root); 2722 2723 spin_lock(&delayed_refs->lock); 2724 node = rb_first(&delayed_refs->href_root); 2725 if (!node) { 2726 spin_unlock(&delayed_refs->lock); 2727 goto out; 2728 } 2729 count = (unsigned long)-1; 2730 2731 while (node) { 2732 head = rb_entry(node, struct btrfs_delayed_ref_head, 2733 href_node); 2734 if (btrfs_delayed_ref_is_head(&head->node)) { 2735 struct btrfs_delayed_ref_node *ref; 2736 2737 ref = &head->node; 2738 atomic_inc(&ref->refs); 2739 2740 spin_unlock(&delayed_refs->lock); 2741 /* 2742 * Mutex was contended, block until it's 2743 * released and try again 2744 */ 2745 mutex_lock(&head->mutex); 2746 mutex_unlock(&head->mutex); 2747 2748 btrfs_put_delayed_ref(ref); 2749 cond_resched(); 2750 goto again; 2751 } else { 2752 WARN_ON(1); 2753 } 2754 node = rb_next(node); 2755 } 2756 spin_unlock(&delayed_refs->lock); 2757 cond_resched(); 2758 goto again; 2759 } 2760 out: 2761 assert_qgroups_uptodate(trans); 2762 return 0; 2763 } 2764 2765 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2766 struct btrfs_root *root, 2767 u64 bytenr, u64 num_bytes, u64 flags, 2768 int level, int is_data) 2769 { 2770 struct btrfs_delayed_extent_op *extent_op; 2771 int ret; 2772 2773 extent_op = btrfs_alloc_delayed_extent_op(); 2774 if (!extent_op) 2775 return -ENOMEM; 2776 2777 extent_op->flags_to_set = flags; 2778 extent_op->update_flags = 1; 2779 extent_op->update_key = 0; 2780 extent_op->is_data = is_data ? 1 : 0; 2781 extent_op->level = level; 2782 2783 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2784 num_bytes, extent_op); 2785 if (ret) 2786 btrfs_free_delayed_extent_op(extent_op); 2787 return ret; 2788 } 2789 2790 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2791 struct btrfs_root *root, 2792 struct btrfs_path *path, 2793 u64 objectid, u64 offset, u64 bytenr) 2794 { 2795 struct btrfs_delayed_ref_head *head; 2796 struct btrfs_delayed_ref_node *ref; 2797 struct btrfs_delayed_data_ref *data_ref; 2798 struct btrfs_delayed_ref_root *delayed_refs; 2799 struct rb_node *node; 2800 int ret = 0; 2801 2802 delayed_refs = &trans->transaction->delayed_refs; 2803 spin_lock(&delayed_refs->lock); 2804 head = btrfs_find_delayed_ref_head(trans, bytenr); 2805 if (!head) { 2806 spin_unlock(&delayed_refs->lock); 2807 return 0; 2808 } 2809 2810 if (!mutex_trylock(&head->mutex)) { 2811 atomic_inc(&head->node.refs); 2812 spin_unlock(&delayed_refs->lock); 2813 2814 btrfs_release_path(path); 2815 2816 /* 2817 * Mutex was contended, block until it's released and let 2818 * caller try again 2819 */ 2820 mutex_lock(&head->mutex); 2821 mutex_unlock(&head->mutex); 2822 btrfs_put_delayed_ref(&head->node); 2823 return -EAGAIN; 2824 } 2825 spin_unlock(&delayed_refs->lock); 2826 2827 spin_lock(&head->lock); 2828 node = rb_first(&head->ref_root); 2829 while (node) { 2830 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2831 node = rb_next(node); 2832 2833 /* If it's a shared ref we know a cross reference exists */ 2834 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2835 ret = 1; 2836 break; 2837 } 2838 2839 data_ref = btrfs_delayed_node_to_data_ref(ref); 2840 2841 /* 2842 * If our ref doesn't match the one we're currently looking at 2843 * then we have a cross reference. 2844 */ 2845 if (data_ref->root != root->root_key.objectid || 2846 data_ref->objectid != objectid || 2847 data_ref->offset != offset) { 2848 ret = 1; 2849 break; 2850 } 2851 } 2852 spin_unlock(&head->lock); 2853 mutex_unlock(&head->mutex); 2854 return ret; 2855 } 2856 2857 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2858 struct btrfs_root *root, 2859 struct btrfs_path *path, 2860 u64 objectid, u64 offset, u64 bytenr) 2861 { 2862 struct btrfs_root *extent_root = root->fs_info->extent_root; 2863 struct extent_buffer *leaf; 2864 struct btrfs_extent_data_ref *ref; 2865 struct btrfs_extent_inline_ref *iref; 2866 struct btrfs_extent_item *ei; 2867 struct btrfs_key key; 2868 u32 item_size; 2869 int ret; 2870 2871 key.objectid = bytenr; 2872 key.offset = (u64)-1; 2873 key.type = BTRFS_EXTENT_ITEM_KEY; 2874 2875 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2876 if (ret < 0) 2877 goto out; 2878 BUG_ON(ret == 0); /* Corruption */ 2879 2880 ret = -ENOENT; 2881 if (path->slots[0] == 0) 2882 goto out; 2883 2884 path->slots[0]--; 2885 leaf = path->nodes[0]; 2886 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2887 2888 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2889 goto out; 2890 2891 ret = 1; 2892 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2893 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2894 if (item_size < sizeof(*ei)) { 2895 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2896 goto out; 2897 } 2898 #endif 2899 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2900 2901 if (item_size != sizeof(*ei) + 2902 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2903 goto out; 2904 2905 if (btrfs_extent_generation(leaf, ei) <= 2906 btrfs_root_last_snapshot(&root->root_item)) 2907 goto out; 2908 2909 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2910 if (btrfs_extent_inline_ref_type(leaf, iref) != 2911 BTRFS_EXTENT_DATA_REF_KEY) 2912 goto out; 2913 2914 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2915 if (btrfs_extent_refs(leaf, ei) != 2916 btrfs_extent_data_ref_count(leaf, ref) || 2917 btrfs_extent_data_ref_root(leaf, ref) != 2918 root->root_key.objectid || 2919 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2920 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2921 goto out; 2922 2923 ret = 0; 2924 out: 2925 return ret; 2926 } 2927 2928 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2929 struct btrfs_root *root, 2930 u64 objectid, u64 offset, u64 bytenr) 2931 { 2932 struct btrfs_path *path; 2933 int ret; 2934 int ret2; 2935 2936 path = btrfs_alloc_path(); 2937 if (!path) 2938 return -ENOENT; 2939 2940 do { 2941 ret = check_committed_ref(trans, root, path, objectid, 2942 offset, bytenr); 2943 if (ret && ret != -ENOENT) 2944 goto out; 2945 2946 ret2 = check_delayed_ref(trans, root, path, objectid, 2947 offset, bytenr); 2948 } while (ret2 == -EAGAIN); 2949 2950 if (ret2 && ret2 != -ENOENT) { 2951 ret = ret2; 2952 goto out; 2953 } 2954 2955 if (ret != -ENOENT || ret2 != -ENOENT) 2956 ret = 0; 2957 out: 2958 btrfs_free_path(path); 2959 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2960 WARN_ON(ret > 0); 2961 return ret; 2962 } 2963 2964 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2965 struct btrfs_root *root, 2966 struct extent_buffer *buf, 2967 int full_backref, int inc, int for_cow) 2968 { 2969 u64 bytenr; 2970 u64 num_bytes; 2971 u64 parent; 2972 u64 ref_root; 2973 u32 nritems; 2974 struct btrfs_key key; 2975 struct btrfs_file_extent_item *fi; 2976 int i; 2977 int level; 2978 int ret = 0; 2979 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2980 u64, u64, u64, u64, u64, u64, int); 2981 2982 ref_root = btrfs_header_owner(buf); 2983 nritems = btrfs_header_nritems(buf); 2984 level = btrfs_header_level(buf); 2985 2986 if (!root->ref_cows && level == 0) 2987 return 0; 2988 2989 if (inc) 2990 process_func = btrfs_inc_extent_ref; 2991 else 2992 process_func = btrfs_free_extent; 2993 2994 if (full_backref) 2995 parent = buf->start; 2996 else 2997 parent = 0; 2998 2999 for (i = 0; i < nritems; i++) { 3000 if (level == 0) { 3001 btrfs_item_key_to_cpu(buf, &key, i); 3002 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3003 continue; 3004 fi = btrfs_item_ptr(buf, i, 3005 struct btrfs_file_extent_item); 3006 if (btrfs_file_extent_type(buf, fi) == 3007 BTRFS_FILE_EXTENT_INLINE) 3008 continue; 3009 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3010 if (bytenr == 0) 3011 continue; 3012 3013 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3014 key.offset -= btrfs_file_extent_offset(buf, fi); 3015 ret = process_func(trans, root, bytenr, num_bytes, 3016 parent, ref_root, key.objectid, 3017 key.offset, for_cow); 3018 if (ret) 3019 goto fail; 3020 } else { 3021 bytenr = btrfs_node_blockptr(buf, i); 3022 num_bytes = btrfs_level_size(root, level - 1); 3023 ret = process_func(trans, root, bytenr, num_bytes, 3024 parent, ref_root, level - 1, 0, 3025 for_cow); 3026 if (ret) 3027 goto fail; 3028 } 3029 } 3030 return 0; 3031 fail: 3032 return ret; 3033 } 3034 3035 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3036 struct extent_buffer *buf, int full_backref, int for_cow) 3037 { 3038 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3039 } 3040 3041 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3042 struct extent_buffer *buf, int full_backref, int for_cow) 3043 { 3044 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3045 } 3046 3047 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3048 struct btrfs_root *root, 3049 struct btrfs_path *path, 3050 struct btrfs_block_group_cache *cache) 3051 { 3052 int ret; 3053 struct btrfs_root *extent_root = root->fs_info->extent_root; 3054 unsigned long bi; 3055 struct extent_buffer *leaf; 3056 3057 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3058 if (ret < 0) 3059 goto fail; 3060 BUG_ON(ret); /* Corruption */ 3061 3062 leaf = path->nodes[0]; 3063 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3064 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3065 btrfs_mark_buffer_dirty(leaf); 3066 btrfs_release_path(path); 3067 fail: 3068 if (ret) { 3069 btrfs_abort_transaction(trans, root, ret); 3070 return ret; 3071 } 3072 return 0; 3073 3074 } 3075 3076 static struct btrfs_block_group_cache * 3077 next_block_group(struct btrfs_root *root, 3078 struct btrfs_block_group_cache *cache) 3079 { 3080 struct rb_node *node; 3081 spin_lock(&root->fs_info->block_group_cache_lock); 3082 node = rb_next(&cache->cache_node); 3083 btrfs_put_block_group(cache); 3084 if (node) { 3085 cache = rb_entry(node, struct btrfs_block_group_cache, 3086 cache_node); 3087 btrfs_get_block_group(cache); 3088 } else 3089 cache = NULL; 3090 spin_unlock(&root->fs_info->block_group_cache_lock); 3091 return cache; 3092 } 3093 3094 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3095 struct btrfs_trans_handle *trans, 3096 struct btrfs_path *path) 3097 { 3098 struct btrfs_root *root = block_group->fs_info->tree_root; 3099 struct inode *inode = NULL; 3100 u64 alloc_hint = 0; 3101 int dcs = BTRFS_DC_ERROR; 3102 int num_pages = 0; 3103 int retries = 0; 3104 int ret = 0; 3105 3106 /* 3107 * If this block group is smaller than 100 megs don't bother caching the 3108 * block group. 3109 */ 3110 if (block_group->key.offset < (100 * 1024 * 1024)) { 3111 spin_lock(&block_group->lock); 3112 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3113 spin_unlock(&block_group->lock); 3114 return 0; 3115 } 3116 3117 again: 3118 inode = lookup_free_space_inode(root, block_group, path); 3119 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3120 ret = PTR_ERR(inode); 3121 btrfs_release_path(path); 3122 goto out; 3123 } 3124 3125 if (IS_ERR(inode)) { 3126 BUG_ON(retries); 3127 retries++; 3128 3129 if (block_group->ro) 3130 goto out_free; 3131 3132 ret = create_free_space_inode(root, trans, block_group, path); 3133 if (ret) 3134 goto out_free; 3135 goto again; 3136 } 3137 3138 /* We've already setup this transaction, go ahead and exit */ 3139 if (block_group->cache_generation == trans->transid && 3140 i_size_read(inode)) { 3141 dcs = BTRFS_DC_SETUP; 3142 goto out_put; 3143 } 3144 3145 /* 3146 * We want to set the generation to 0, that way if anything goes wrong 3147 * from here on out we know not to trust this cache when we load up next 3148 * time. 3149 */ 3150 BTRFS_I(inode)->generation = 0; 3151 ret = btrfs_update_inode(trans, root, inode); 3152 WARN_ON(ret); 3153 3154 if (i_size_read(inode) > 0) { 3155 ret = btrfs_check_trunc_cache_free_space(root, 3156 &root->fs_info->global_block_rsv); 3157 if (ret) 3158 goto out_put; 3159 3160 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3161 if (ret) 3162 goto out_put; 3163 } 3164 3165 spin_lock(&block_group->lock); 3166 if (block_group->cached != BTRFS_CACHE_FINISHED || 3167 !btrfs_test_opt(root, SPACE_CACHE)) { 3168 /* 3169 * don't bother trying to write stuff out _if_ 3170 * a) we're not cached, 3171 * b) we're with nospace_cache mount option. 3172 */ 3173 dcs = BTRFS_DC_WRITTEN; 3174 spin_unlock(&block_group->lock); 3175 goto out_put; 3176 } 3177 spin_unlock(&block_group->lock); 3178 3179 /* 3180 * Try to preallocate enough space based on how big the block group is. 3181 * Keep in mind this has to include any pinned space which could end up 3182 * taking up quite a bit since it's not folded into the other space 3183 * cache. 3184 */ 3185 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3186 if (!num_pages) 3187 num_pages = 1; 3188 3189 num_pages *= 16; 3190 num_pages *= PAGE_CACHE_SIZE; 3191 3192 ret = btrfs_check_data_free_space(inode, num_pages); 3193 if (ret) 3194 goto out_put; 3195 3196 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3197 num_pages, num_pages, 3198 &alloc_hint); 3199 if (!ret) 3200 dcs = BTRFS_DC_SETUP; 3201 btrfs_free_reserved_data_space(inode, num_pages); 3202 3203 out_put: 3204 iput(inode); 3205 out_free: 3206 btrfs_release_path(path); 3207 out: 3208 spin_lock(&block_group->lock); 3209 if (!ret && dcs == BTRFS_DC_SETUP) 3210 block_group->cache_generation = trans->transid; 3211 block_group->disk_cache_state = dcs; 3212 spin_unlock(&block_group->lock); 3213 3214 return ret; 3215 } 3216 3217 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3218 struct btrfs_root *root) 3219 { 3220 struct btrfs_block_group_cache *cache; 3221 int err = 0; 3222 struct btrfs_path *path; 3223 u64 last = 0; 3224 3225 path = btrfs_alloc_path(); 3226 if (!path) 3227 return -ENOMEM; 3228 3229 again: 3230 while (1) { 3231 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3232 while (cache) { 3233 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3234 break; 3235 cache = next_block_group(root, cache); 3236 } 3237 if (!cache) { 3238 if (last == 0) 3239 break; 3240 last = 0; 3241 continue; 3242 } 3243 err = cache_save_setup(cache, trans, path); 3244 last = cache->key.objectid + cache->key.offset; 3245 btrfs_put_block_group(cache); 3246 } 3247 3248 while (1) { 3249 if (last == 0) { 3250 err = btrfs_run_delayed_refs(trans, root, 3251 (unsigned long)-1); 3252 if (err) /* File system offline */ 3253 goto out; 3254 } 3255 3256 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3257 while (cache) { 3258 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3259 btrfs_put_block_group(cache); 3260 goto again; 3261 } 3262 3263 if (cache->dirty) 3264 break; 3265 cache = next_block_group(root, cache); 3266 } 3267 if (!cache) { 3268 if (last == 0) 3269 break; 3270 last = 0; 3271 continue; 3272 } 3273 3274 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3275 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3276 cache->dirty = 0; 3277 last = cache->key.objectid + cache->key.offset; 3278 3279 err = write_one_cache_group(trans, root, path, cache); 3280 btrfs_put_block_group(cache); 3281 if (err) /* File system offline */ 3282 goto out; 3283 } 3284 3285 while (1) { 3286 /* 3287 * I don't think this is needed since we're just marking our 3288 * preallocated extent as written, but just in case it can't 3289 * hurt. 3290 */ 3291 if (last == 0) { 3292 err = btrfs_run_delayed_refs(trans, root, 3293 (unsigned long)-1); 3294 if (err) /* File system offline */ 3295 goto out; 3296 } 3297 3298 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3299 while (cache) { 3300 /* 3301 * Really this shouldn't happen, but it could if we 3302 * couldn't write the entire preallocated extent and 3303 * splitting the extent resulted in a new block. 3304 */ 3305 if (cache->dirty) { 3306 btrfs_put_block_group(cache); 3307 goto again; 3308 } 3309 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3310 break; 3311 cache = next_block_group(root, cache); 3312 } 3313 if (!cache) { 3314 if (last == 0) 3315 break; 3316 last = 0; 3317 continue; 3318 } 3319 3320 err = btrfs_write_out_cache(root, trans, cache, path); 3321 3322 /* 3323 * If we didn't have an error then the cache state is still 3324 * NEED_WRITE, so we can set it to WRITTEN. 3325 */ 3326 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3327 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3328 last = cache->key.objectid + cache->key.offset; 3329 btrfs_put_block_group(cache); 3330 } 3331 out: 3332 3333 btrfs_free_path(path); 3334 return err; 3335 } 3336 3337 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3338 { 3339 struct btrfs_block_group_cache *block_group; 3340 int readonly = 0; 3341 3342 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3343 if (!block_group || block_group->ro) 3344 readonly = 1; 3345 if (block_group) 3346 btrfs_put_block_group(block_group); 3347 return readonly; 3348 } 3349 3350 static const char *alloc_name(u64 flags) 3351 { 3352 switch (flags) { 3353 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3354 return "mixed"; 3355 case BTRFS_BLOCK_GROUP_METADATA: 3356 return "metadata"; 3357 case BTRFS_BLOCK_GROUP_DATA: 3358 return "data"; 3359 case BTRFS_BLOCK_GROUP_SYSTEM: 3360 return "system"; 3361 default: 3362 WARN_ON(1); 3363 return "invalid-combination"; 3364 }; 3365 } 3366 3367 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3368 u64 total_bytes, u64 bytes_used, 3369 struct btrfs_space_info **space_info) 3370 { 3371 struct btrfs_space_info *found; 3372 int i; 3373 int factor; 3374 int ret; 3375 3376 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3377 BTRFS_BLOCK_GROUP_RAID10)) 3378 factor = 2; 3379 else 3380 factor = 1; 3381 3382 found = __find_space_info(info, flags); 3383 if (found) { 3384 spin_lock(&found->lock); 3385 found->total_bytes += total_bytes; 3386 found->disk_total += total_bytes * factor; 3387 found->bytes_used += bytes_used; 3388 found->disk_used += bytes_used * factor; 3389 found->full = 0; 3390 spin_unlock(&found->lock); 3391 *space_info = found; 3392 return 0; 3393 } 3394 found = kzalloc(sizeof(*found), GFP_NOFS); 3395 if (!found) 3396 return -ENOMEM; 3397 3398 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3399 if (ret) { 3400 kfree(found); 3401 return ret; 3402 } 3403 3404 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 3405 INIT_LIST_HEAD(&found->block_groups[i]); 3406 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype); 3407 } 3408 init_rwsem(&found->groups_sem); 3409 spin_lock_init(&found->lock); 3410 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3411 found->total_bytes = total_bytes; 3412 found->disk_total = total_bytes * factor; 3413 found->bytes_used = bytes_used; 3414 found->disk_used = bytes_used * factor; 3415 found->bytes_pinned = 0; 3416 found->bytes_reserved = 0; 3417 found->bytes_readonly = 0; 3418 found->bytes_may_use = 0; 3419 found->full = 0; 3420 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3421 found->chunk_alloc = 0; 3422 found->flush = 0; 3423 init_waitqueue_head(&found->wait); 3424 3425 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3426 info->space_info_kobj, "%s", 3427 alloc_name(found->flags)); 3428 if (ret) { 3429 kfree(found); 3430 return ret; 3431 } 3432 3433 *space_info = found; 3434 list_add_rcu(&found->list, &info->space_info); 3435 if (flags & BTRFS_BLOCK_GROUP_DATA) 3436 info->data_sinfo = found; 3437 3438 return ret; 3439 } 3440 3441 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3442 { 3443 u64 extra_flags = chunk_to_extended(flags) & 3444 BTRFS_EXTENDED_PROFILE_MASK; 3445 3446 write_seqlock(&fs_info->profiles_lock); 3447 if (flags & BTRFS_BLOCK_GROUP_DATA) 3448 fs_info->avail_data_alloc_bits |= extra_flags; 3449 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3450 fs_info->avail_metadata_alloc_bits |= extra_flags; 3451 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3452 fs_info->avail_system_alloc_bits |= extra_flags; 3453 write_sequnlock(&fs_info->profiles_lock); 3454 } 3455 3456 /* 3457 * returns target flags in extended format or 0 if restripe for this 3458 * chunk_type is not in progress 3459 * 3460 * should be called with either volume_mutex or balance_lock held 3461 */ 3462 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3463 { 3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3465 u64 target = 0; 3466 3467 if (!bctl) 3468 return 0; 3469 3470 if (flags & BTRFS_BLOCK_GROUP_DATA && 3471 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3472 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3473 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3474 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3475 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3476 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3477 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3478 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3479 } 3480 3481 return target; 3482 } 3483 3484 /* 3485 * @flags: available profiles in extended format (see ctree.h) 3486 * 3487 * Returns reduced profile in chunk format. If profile changing is in 3488 * progress (either running or paused) picks the target profile (if it's 3489 * already available), otherwise falls back to plain reducing. 3490 */ 3491 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3492 { 3493 /* 3494 * we add in the count of missing devices because we want 3495 * to make sure that any RAID levels on a degraded FS 3496 * continue to be honored. 3497 */ 3498 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3499 root->fs_info->fs_devices->missing_devices; 3500 u64 target; 3501 u64 tmp; 3502 3503 /* 3504 * see if restripe for this chunk_type is in progress, if so 3505 * try to reduce to the target profile 3506 */ 3507 spin_lock(&root->fs_info->balance_lock); 3508 target = get_restripe_target(root->fs_info, flags); 3509 if (target) { 3510 /* pick target profile only if it's already available */ 3511 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3512 spin_unlock(&root->fs_info->balance_lock); 3513 return extended_to_chunk(target); 3514 } 3515 } 3516 spin_unlock(&root->fs_info->balance_lock); 3517 3518 /* First, mask out the RAID levels which aren't possible */ 3519 if (num_devices == 1) 3520 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3521 BTRFS_BLOCK_GROUP_RAID5); 3522 if (num_devices < 3) 3523 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3524 if (num_devices < 4) 3525 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3526 3527 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3528 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3529 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3530 flags &= ~tmp; 3531 3532 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3533 tmp = BTRFS_BLOCK_GROUP_RAID6; 3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3535 tmp = BTRFS_BLOCK_GROUP_RAID5; 3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3537 tmp = BTRFS_BLOCK_GROUP_RAID10; 3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3539 tmp = BTRFS_BLOCK_GROUP_RAID1; 3540 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3541 tmp = BTRFS_BLOCK_GROUP_RAID0; 3542 3543 return extended_to_chunk(flags | tmp); 3544 } 3545 3546 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3547 { 3548 unsigned seq; 3549 u64 flags; 3550 3551 do { 3552 flags = orig_flags; 3553 seq = read_seqbegin(&root->fs_info->profiles_lock); 3554 3555 if (flags & BTRFS_BLOCK_GROUP_DATA) 3556 flags |= root->fs_info->avail_data_alloc_bits; 3557 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3558 flags |= root->fs_info->avail_system_alloc_bits; 3559 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3560 flags |= root->fs_info->avail_metadata_alloc_bits; 3561 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3562 3563 return btrfs_reduce_alloc_profile(root, flags); 3564 } 3565 3566 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3567 { 3568 u64 flags; 3569 u64 ret; 3570 3571 if (data) 3572 flags = BTRFS_BLOCK_GROUP_DATA; 3573 else if (root == root->fs_info->chunk_root) 3574 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3575 else 3576 flags = BTRFS_BLOCK_GROUP_METADATA; 3577 3578 ret = get_alloc_profile(root, flags); 3579 return ret; 3580 } 3581 3582 /* 3583 * This will check the space that the inode allocates from to make sure we have 3584 * enough space for bytes. 3585 */ 3586 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3587 { 3588 struct btrfs_space_info *data_sinfo; 3589 struct btrfs_root *root = BTRFS_I(inode)->root; 3590 struct btrfs_fs_info *fs_info = root->fs_info; 3591 u64 used; 3592 int ret = 0, committed = 0, alloc_chunk = 1; 3593 3594 /* make sure bytes are sectorsize aligned */ 3595 bytes = ALIGN(bytes, root->sectorsize); 3596 3597 if (btrfs_is_free_space_inode(inode)) { 3598 committed = 1; 3599 ASSERT(current->journal_info); 3600 } 3601 3602 data_sinfo = fs_info->data_sinfo; 3603 if (!data_sinfo) 3604 goto alloc; 3605 3606 again: 3607 /* make sure we have enough space to handle the data first */ 3608 spin_lock(&data_sinfo->lock); 3609 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3610 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3611 data_sinfo->bytes_may_use; 3612 3613 if (used + bytes > data_sinfo->total_bytes) { 3614 struct btrfs_trans_handle *trans; 3615 3616 /* 3617 * if we don't have enough free bytes in this space then we need 3618 * to alloc a new chunk. 3619 */ 3620 if (!data_sinfo->full && alloc_chunk) { 3621 u64 alloc_target; 3622 3623 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3624 spin_unlock(&data_sinfo->lock); 3625 alloc: 3626 alloc_target = btrfs_get_alloc_profile(root, 1); 3627 /* 3628 * It is ugly that we don't call nolock join 3629 * transaction for the free space inode case here. 3630 * But it is safe because we only do the data space 3631 * reservation for the free space cache in the 3632 * transaction context, the common join transaction 3633 * just increase the counter of the current transaction 3634 * handler, doesn't try to acquire the trans_lock of 3635 * the fs. 3636 */ 3637 trans = btrfs_join_transaction(root); 3638 if (IS_ERR(trans)) 3639 return PTR_ERR(trans); 3640 3641 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3642 alloc_target, 3643 CHUNK_ALLOC_NO_FORCE); 3644 btrfs_end_transaction(trans, root); 3645 if (ret < 0) { 3646 if (ret != -ENOSPC) 3647 return ret; 3648 else 3649 goto commit_trans; 3650 } 3651 3652 if (!data_sinfo) 3653 data_sinfo = fs_info->data_sinfo; 3654 3655 goto again; 3656 } 3657 3658 /* 3659 * If we don't have enough pinned space to deal with this 3660 * allocation don't bother committing the transaction. 3661 */ 3662 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3663 bytes) < 0) 3664 committed = 1; 3665 spin_unlock(&data_sinfo->lock); 3666 3667 /* commit the current transaction and try again */ 3668 commit_trans: 3669 if (!committed && 3670 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3671 committed = 1; 3672 3673 trans = btrfs_join_transaction(root); 3674 if (IS_ERR(trans)) 3675 return PTR_ERR(trans); 3676 ret = btrfs_commit_transaction(trans, root); 3677 if (ret) 3678 return ret; 3679 goto again; 3680 } 3681 3682 trace_btrfs_space_reservation(root->fs_info, 3683 "space_info:enospc", 3684 data_sinfo->flags, bytes, 1); 3685 return -ENOSPC; 3686 } 3687 data_sinfo->bytes_may_use += bytes; 3688 trace_btrfs_space_reservation(root->fs_info, "space_info", 3689 data_sinfo->flags, bytes, 1); 3690 spin_unlock(&data_sinfo->lock); 3691 3692 return 0; 3693 } 3694 3695 /* 3696 * Called if we need to clear a data reservation for this inode. 3697 */ 3698 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3699 { 3700 struct btrfs_root *root = BTRFS_I(inode)->root; 3701 struct btrfs_space_info *data_sinfo; 3702 3703 /* make sure bytes are sectorsize aligned */ 3704 bytes = ALIGN(bytes, root->sectorsize); 3705 3706 data_sinfo = root->fs_info->data_sinfo; 3707 spin_lock(&data_sinfo->lock); 3708 WARN_ON(data_sinfo->bytes_may_use < bytes); 3709 data_sinfo->bytes_may_use -= bytes; 3710 trace_btrfs_space_reservation(root->fs_info, "space_info", 3711 data_sinfo->flags, bytes, 0); 3712 spin_unlock(&data_sinfo->lock); 3713 } 3714 3715 static void force_metadata_allocation(struct btrfs_fs_info *info) 3716 { 3717 struct list_head *head = &info->space_info; 3718 struct btrfs_space_info *found; 3719 3720 rcu_read_lock(); 3721 list_for_each_entry_rcu(found, head, list) { 3722 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3723 found->force_alloc = CHUNK_ALLOC_FORCE; 3724 } 3725 rcu_read_unlock(); 3726 } 3727 3728 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3729 { 3730 return (global->size << 1); 3731 } 3732 3733 static int should_alloc_chunk(struct btrfs_root *root, 3734 struct btrfs_space_info *sinfo, int force) 3735 { 3736 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3737 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3738 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3739 u64 thresh; 3740 3741 if (force == CHUNK_ALLOC_FORCE) 3742 return 1; 3743 3744 /* 3745 * We need to take into account the global rsv because for all intents 3746 * and purposes it's used space. Don't worry about locking the 3747 * global_rsv, it doesn't change except when the transaction commits. 3748 */ 3749 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3750 num_allocated += calc_global_rsv_need_space(global_rsv); 3751 3752 /* 3753 * in limited mode, we want to have some free space up to 3754 * about 1% of the FS size. 3755 */ 3756 if (force == CHUNK_ALLOC_LIMITED) { 3757 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3758 thresh = max_t(u64, 64 * 1024 * 1024, 3759 div_factor_fine(thresh, 1)); 3760 3761 if (num_bytes - num_allocated < thresh) 3762 return 1; 3763 } 3764 3765 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3766 return 0; 3767 return 1; 3768 } 3769 3770 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3771 { 3772 u64 num_dev; 3773 3774 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3775 BTRFS_BLOCK_GROUP_RAID0 | 3776 BTRFS_BLOCK_GROUP_RAID5 | 3777 BTRFS_BLOCK_GROUP_RAID6)) 3778 num_dev = root->fs_info->fs_devices->rw_devices; 3779 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3780 num_dev = 2; 3781 else 3782 num_dev = 1; /* DUP or single */ 3783 3784 /* metadata for updaing devices and chunk tree */ 3785 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3786 } 3787 3788 static void check_system_chunk(struct btrfs_trans_handle *trans, 3789 struct btrfs_root *root, u64 type) 3790 { 3791 struct btrfs_space_info *info; 3792 u64 left; 3793 u64 thresh; 3794 3795 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3796 spin_lock(&info->lock); 3797 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3798 info->bytes_reserved - info->bytes_readonly; 3799 spin_unlock(&info->lock); 3800 3801 thresh = get_system_chunk_thresh(root, type); 3802 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3803 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3804 left, thresh, type); 3805 dump_space_info(info, 0, 0); 3806 } 3807 3808 if (left < thresh) { 3809 u64 flags; 3810 3811 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3812 btrfs_alloc_chunk(trans, root, flags); 3813 } 3814 } 3815 3816 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3817 struct btrfs_root *extent_root, u64 flags, int force) 3818 { 3819 struct btrfs_space_info *space_info; 3820 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3821 int wait_for_alloc = 0; 3822 int ret = 0; 3823 3824 /* Don't re-enter if we're already allocating a chunk */ 3825 if (trans->allocating_chunk) 3826 return -ENOSPC; 3827 3828 space_info = __find_space_info(extent_root->fs_info, flags); 3829 if (!space_info) { 3830 ret = update_space_info(extent_root->fs_info, flags, 3831 0, 0, &space_info); 3832 BUG_ON(ret); /* -ENOMEM */ 3833 } 3834 BUG_ON(!space_info); /* Logic error */ 3835 3836 again: 3837 spin_lock(&space_info->lock); 3838 if (force < space_info->force_alloc) 3839 force = space_info->force_alloc; 3840 if (space_info->full) { 3841 if (should_alloc_chunk(extent_root, space_info, force)) 3842 ret = -ENOSPC; 3843 else 3844 ret = 0; 3845 spin_unlock(&space_info->lock); 3846 return ret; 3847 } 3848 3849 if (!should_alloc_chunk(extent_root, space_info, force)) { 3850 spin_unlock(&space_info->lock); 3851 return 0; 3852 } else if (space_info->chunk_alloc) { 3853 wait_for_alloc = 1; 3854 } else { 3855 space_info->chunk_alloc = 1; 3856 } 3857 3858 spin_unlock(&space_info->lock); 3859 3860 mutex_lock(&fs_info->chunk_mutex); 3861 3862 /* 3863 * The chunk_mutex is held throughout the entirety of a chunk 3864 * allocation, so once we've acquired the chunk_mutex we know that the 3865 * other guy is done and we need to recheck and see if we should 3866 * allocate. 3867 */ 3868 if (wait_for_alloc) { 3869 mutex_unlock(&fs_info->chunk_mutex); 3870 wait_for_alloc = 0; 3871 goto again; 3872 } 3873 3874 trans->allocating_chunk = true; 3875 3876 /* 3877 * If we have mixed data/metadata chunks we want to make sure we keep 3878 * allocating mixed chunks instead of individual chunks. 3879 */ 3880 if (btrfs_mixed_space_info(space_info)) 3881 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3882 3883 /* 3884 * if we're doing a data chunk, go ahead and make sure that 3885 * we keep a reasonable number of metadata chunks allocated in the 3886 * FS as well. 3887 */ 3888 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3889 fs_info->data_chunk_allocations++; 3890 if (!(fs_info->data_chunk_allocations % 3891 fs_info->metadata_ratio)) 3892 force_metadata_allocation(fs_info); 3893 } 3894 3895 /* 3896 * Check if we have enough space in SYSTEM chunk because we may need 3897 * to update devices. 3898 */ 3899 check_system_chunk(trans, extent_root, flags); 3900 3901 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3902 trans->allocating_chunk = false; 3903 3904 spin_lock(&space_info->lock); 3905 if (ret < 0 && ret != -ENOSPC) 3906 goto out; 3907 if (ret) 3908 space_info->full = 1; 3909 else 3910 ret = 1; 3911 3912 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3913 out: 3914 space_info->chunk_alloc = 0; 3915 spin_unlock(&space_info->lock); 3916 mutex_unlock(&fs_info->chunk_mutex); 3917 return ret; 3918 } 3919 3920 static int can_overcommit(struct btrfs_root *root, 3921 struct btrfs_space_info *space_info, u64 bytes, 3922 enum btrfs_reserve_flush_enum flush) 3923 { 3924 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3925 u64 profile = btrfs_get_alloc_profile(root, 0); 3926 u64 space_size; 3927 u64 avail; 3928 u64 used; 3929 3930 used = space_info->bytes_used + space_info->bytes_reserved + 3931 space_info->bytes_pinned + space_info->bytes_readonly; 3932 3933 /* 3934 * We only want to allow over committing if we have lots of actual space 3935 * free, but if we don't have enough space to handle the global reserve 3936 * space then we could end up having a real enospc problem when trying 3937 * to allocate a chunk or some other such important allocation. 3938 */ 3939 spin_lock(&global_rsv->lock); 3940 space_size = calc_global_rsv_need_space(global_rsv); 3941 spin_unlock(&global_rsv->lock); 3942 if (used + space_size >= space_info->total_bytes) 3943 return 0; 3944 3945 used += space_info->bytes_may_use; 3946 3947 spin_lock(&root->fs_info->free_chunk_lock); 3948 avail = root->fs_info->free_chunk_space; 3949 spin_unlock(&root->fs_info->free_chunk_lock); 3950 3951 /* 3952 * If we have dup, raid1 or raid10 then only half of the free 3953 * space is actually useable. For raid56, the space info used 3954 * doesn't include the parity drive, so we don't have to 3955 * change the math 3956 */ 3957 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3958 BTRFS_BLOCK_GROUP_RAID1 | 3959 BTRFS_BLOCK_GROUP_RAID10)) 3960 avail >>= 1; 3961 3962 /* 3963 * If we aren't flushing all things, let us overcommit up to 3964 * 1/2th of the space. If we can flush, don't let us overcommit 3965 * too much, let it overcommit up to 1/8 of the space. 3966 */ 3967 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3968 avail >>= 3; 3969 else 3970 avail >>= 1; 3971 3972 if (used + bytes < space_info->total_bytes + avail) 3973 return 1; 3974 return 0; 3975 } 3976 3977 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3978 unsigned long nr_pages, int nr_items) 3979 { 3980 struct super_block *sb = root->fs_info->sb; 3981 3982 if (down_read_trylock(&sb->s_umount)) { 3983 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3984 up_read(&sb->s_umount); 3985 } else { 3986 /* 3987 * We needn't worry the filesystem going from r/w to r/o though 3988 * we don't acquire ->s_umount mutex, because the filesystem 3989 * should guarantee the delalloc inodes list be empty after 3990 * the filesystem is readonly(all dirty pages are written to 3991 * the disk). 3992 */ 3993 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 3994 if (!current->journal_info) 3995 btrfs_wait_ordered_roots(root->fs_info, nr_items); 3996 } 3997 } 3998 3999 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4000 { 4001 u64 bytes; 4002 int nr; 4003 4004 bytes = btrfs_calc_trans_metadata_size(root, 1); 4005 nr = (int)div64_u64(to_reclaim, bytes); 4006 if (!nr) 4007 nr = 1; 4008 return nr; 4009 } 4010 4011 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4012 4013 /* 4014 * shrink metadata reservation for delalloc 4015 */ 4016 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4017 bool wait_ordered) 4018 { 4019 struct btrfs_block_rsv *block_rsv; 4020 struct btrfs_space_info *space_info; 4021 struct btrfs_trans_handle *trans; 4022 u64 delalloc_bytes; 4023 u64 max_reclaim; 4024 long time_left; 4025 unsigned long nr_pages; 4026 int loops; 4027 int items; 4028 enum btrfs_reserve_flush_enum flush; 4029 4030 /* Calc the number of the pages we need flush for space reservation */ 4031 items = calc_reclaim_items_nr(root, to_reclaim); 4032 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4033 4034 trans = (struct btrfs_trans_handle *)current->journal_info; 4035 block_rsv = &root->fs_info->delalloc_block_rsv; 4036 space_info = block_rsv->space_info; 4037 4038 delalloc_bytes = percpu_counter_sum_positive( 4039 &root->fs_info->delalloc_bytes); 4040 if (delalloc_bytes == 0) { 4041 if (trans) 4042 return; 4043 if (wait_ordered) 4044 btrfs_wait_ordered_roots(root->fs_info, items); 4045 return; 4046 } 4047 4048 loops = 0; 4049 while (delalloc_bytes && loops < 3) { 4050 max_reclaim = min(delalloc_bytes, to_reclaim); 4051 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4052 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4053 /* 4054 * We need to wait for the async pages to actually start before 4055 * we do anything. 4056 */ 4057 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4058 if (!max_reclaim) 4059 goto skip_async; 4060 4061 if (max_reclaim <= nr_pages) 4062 max_reclaim = 0; 4063 else 4064 max_reclaim -= nr_pages; 4065 4066 wait_event(root->fs_info->async_submit_wait, 4067 atomic_read(&root->fs_info->async_delalloc_pages) <= 4068 (int)max_reclaim); 4069 skip_async: 4070 if (!trans) 4071 flush = BTRFS_RESERVE_FLUSH_ALL; 4072 else 4073 flush = BTRFS_RESERVE_NO_FLUSH; 4074 spin_lock(&space_info->lock); 4075 if (can_overcommit(root, space_info, orig, flush)) { 4076 spin_unlock(&space_info->lock); 4077 break; 4078 } 4079 spin_unlock(&space_info->lock); 4080 4081 loops++; 4082 if (wait_ordered && !trans) { 4083 btrfs_wait_ordered_roots(root->fs_info, items); 4084 } else { 4085 time_left = schedule_timeout_killable(1); 4086 if (time_left) 4087 break; 4088 } 4089 delalloc_bytes = percpu_counter_sum_positive( 4090 &root->fs_info->delalloc_bytes); 4091 } 4092 } 4093 4094 /** 4095 * maybe_commit_transaction - possibly commit the transaction if its ok to 4096 * @root - the root we're allocating for 4097 * @bytes - the number of bytes we want to reserve 4098 * @force - force the commit 4099 * 4100 * This will check to make sure that committing the transaction will actually 4101 * get us somewhere and then commit the transaction if it does. Otherwise it 4102 * will return -ENOSPC. 4103 */ 4104 static int may_commit_transaction(struct btrfs_root *root, 4105 struct btrfs_space_info *space_info, 4106 u64 bytes, int force) 4107 { 4108 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4109 struct btrfs_trans_handle *trans; 4110 4111 trans = (struct btrfs_trans_handle *)current->journal_info; 4112 if (trans) 4113 return -EAGAIN; 4114 4115 if (force) 4116 goto commit; 4117 4118 /* See if there is enough pinned space to make this reservation */ 4119 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4120 bytes) >= 0) 4121 goto commit; 4122 4123 /* 4124 * See if there is some space in the delayed insertion reservation for 4125 * this reservation. 4126 */ 4127 if (space_info != delayed_rsv->space_info) 4128 return -ENOSPC; 4129 4130 spin_lock(&delayed_rsv->lock); 4131 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4132 bytes - delayed_rsv->size) >= 0) { 4133 spin_unlock(&delayed_rsv->lock); 4134 return -ENOSPC; 4135 } 4136 spin_unlock(&delayed_rsv->lock); 4137 4138 commit: 4139 trans = btrfs_join_transaction(root); 4140 if (IS_ERR(trans)) 4141 return -ENOSPC; 4142 4143 return btrfs_commit_transaction(trans, root); 4144 } 4145 4146 enum flush_state { 4147 FLUSH_DELAYED_ITEMS_NR = 1, 4148 FLUSH_DELAYED_ITEMS = 2, 4149 FLUSH_DELALLOC = 3, 4150 FLUSH_DELALLOC_WAIT = 4, 4151 ALLOC_CHUNK = 5, 4152 COMMIT_TRANS = 6, 4153 }; 4154 4155 static int flush_space(struct btrfs_root *root, 4156 struct btrfs_space_info *space_info, u64 num_bytes, 4157 u64 orig_bytes, int state) 4158 { 4159 struct btrfs_trans_handle *trans; 4160 int nr; 4161 int ret = 0; 4162 4163 switch (state) { 4164 case FLUSH_DELAYED_ITEMS_NR: 4165 case FLUSH_DELAYED_ITEMS: 4166 if (state == FLUSH_DELAYED_ITEMS_NR) 4167 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4168 else 4169 nr = -1; 4170 4171 trans = btrfs_join_transaction(root); 4172 if (IS_ERR(trans)) { 4173 ret = PTR_ERR(trans); 4174 break; 4175 } 4176 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4177 btrfs_end_transaction(trans, root); 4178 break; 4179 case FLUSH_DELALLOC: 4180 case FLUSH_DELALLOC_WAIT: 4181 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4182 state == FLUSH_DELALLOC_WAIT); 4183 break; 4184 case ALLOC_CHUNK: 4185 trans = btrfs_join_transaction(root); 4186 if (IS_ERR(trans)) { 4187 ret = PTR_ERR(trans); 4188 break; 4189 } 4190 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4191 btrfs_get_alloc_profile(root, 0), 4192 CHUNK_ALLOC_NO_FORCE); 4193 btrfs_end_transaction(trans, root); 4194 if (ret == -ENOSPC) 4195 ret = 0; 4196 break; 4197 case COMMIT_TRANS: 4198 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4199 break; 4200 default: 4201 ret = -ENOSPC; 4202 break; 4203 } 4204 4205 return ret; 4206 } 4207 /** 4208 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4209 * @root - the root we're allocating for 4210 * @block_rsv - the block_rsv we're allocating for 4211 * @orig_bytes - the number of bytes we want 4212 * @flush - whether or not we can flush to make our reservation 4213 * 4214 * This will reserve orgi_bytes number of bytes from the space info associated 4215 * with the block_rsv. If there is not enough space it will make an attempt to 4216 * flush out space to make room. It will do this by flushing delalloc if 4217 * possible or committing the transaction. If flush is 0 then no attempts to 4218 * regain reservations will be made and this will fail if there is not enough 4219 * space already. 4220 */ 4221 static int reserve_metadata_bytes(struct btrfs_root *root, 4222 struct btrfs_block_rsv *block_rsv, 4223 u64 orig_bytes, 4224 enum btrfs_reserve_flush_enum flush) 4225 { 4226 struct btrfs_space_info *space_info = block_rsv->space_info; 4227 u64 used; 4228 u64 num_bytes = orig_bytes; 4229 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4230 int ret = 0; 4231 bool flushing = false; 4232 4233 again: 4234 ret = 0; 4235 spin_lock(&space_info->lock); 4236 /* 4237 * We only want to wait if somebody other than us is flushing and we 4238 * are actually allowed to flush all things. 4239 */ 4240 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4241 space_info->flush) { 4242 spin_unlock(&space_info->lock); 4243 /* 4244 * If we have a trans handle we can't wait because the flusher 4245 * may have to commit the transaction, which would mean we would 4246 * deadlock since we are waiting for the flusher to finish, but 4247 * hold the current transaction open. 4248 */ 4249 if (current->journal_info) 4250 return -EAGAIN; 4251 ret = wait_event_killable(space_info->wait, !space_info->flush); 4252 /* Must have been killed, return */ 4253 if (ret) 4254 return -EINTR; 4255 4256 spin_lock(&space_info->lock); 4257 } 4258 4259 ret = -ENOSPC; 4260 used = space_info->bytes_used + space_info->bytes_reserved + 4261 space_info->bytes_pinned + space_info->bytes_readonly + 4262 space_info->bytes_may_use; 4263 4264 /* 4265 * The idea here is that we've not already over-reserved the block group 4266 * then we can go ahead and save our reservation first and then start 4267 * flushing if we need to. Otherwise if we've already overcommitted 4268 * lets start flushing stuff first and then come back and try to make 4269 * our reservation. 4270 */ 4271 if (used <= space_info->total_bytes) { 4272 if (used + orig_bytes <= space_info->total_bytes) { 4273 space_info->bytes_may_use += orig_bytes; 4274 trace_btrfs_space_reservation(root->fs_info, 4275 "space_info", space_info->flags, orig_bytes, 1); 4276 ret = 0; 4277 } else { 4278 /* 4279 * Ok set num_bytes to orig_bytes since we aren't 4280 * overocmmitted, this way we only try and reclaim what 4281 * we need. 4282 */ 4283 num_bytes = orig_bytes; 4284 } 4285 } else { 4286 /* 4287 * Ok we're over committed, set num_bytes to the overcommitted 4288 * amount plus the amount of bytes that we need for this 4289 * reservation. 4290 */ 4291 num_bytes = used - space_info->total_bytes + 4292 (orig_bytes * 2); 4293 } 4294 4295 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4296 space_info->bytes_may_use += orig_bytes; 4297 trace_btrfs_space_reservation(root->fs_info, "space_info", 4298 space_info->flags, orig_bytes, 4299 1); 4300 ret = 0; 4301 } 4302 4303 /* 4304 * Couldn't make our reservation, save our place so while we're trying 4305 * to reclaim space we can actually use it instead of somebody else 4306 * stealing it from us. 4307 * 4308 * We make the other tasks wait for the flush only when we can flush 4309 * all things. 4310 */ 4311 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4312 flushing = true; 4313 space_info->flush = 1; 4314 } 4315 4316 spin_unlock(&space_info->lock); 4317 4318 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4319 goto out; 4320 4321 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4322 flush_state); 4323 flush_state++; 4324 4325 /* 4326 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4327 * would happen. So skip delalloc flush. 4328 */ 4329 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4330 (flush_state == FLUSH_DELALLOC || 4331 flush_state == FLUSH_DELALLOC_WAIT)) 4332 flush_state = ALLOC_CHUNK; 4333 4334 if (!ret) 4335 goto again; 4336 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4337 flush_state < COMMIT_TRANS) 4338 goto again; 4339 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4340 flush_state <= COMMIT_TRANS) 4341 goto again; 4342 4343 out: 4344 if (ret == -ENOSPC && 4345 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4346 struct btrfs_block_rsv *global_rsv = 4347 &root->fs_info->global_block_rsv; 4348 4349 if (block_rsv != global_rsv && 4350 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4351 ret = 0; 4352 } 4353 if (ret == -ENOSPC) 4354 trace_btrfs_space_reservation(root->fs_info, 4355 "space_info:enospc", 4356 space_info->flags, orig_bytes, 1); 4357 if (flushing) { 4358 spin_lock(&space_info->lock); 4359 space_info->flush = 0; 4360 wake_up_all(&space_info->wait); 4361 spin_unlock(&space_info->lock); 4362 } 4363 return ret; 4364 } 4365 4366 static struct btrfs_block_rsv *get_block_rsv( 4367 const struct btrfs_trans_handle *trans, 4368 const struct btrfs_root *root) 4369 { 4370 struct btrfs_block_rsv *block_rsv = NULL; 4371 4372 if (root->ref_cows) 4373 block_rsv = trans->block_rsv; 4374 4375 if (root == root->fs_info->csum_root && trans->adding_csums) 4376 block_rsv = trans->block_rsv; 4377 4378 if (root == root->fs_info->uuid_root) 4379 block_rsv = trans->block_rsv; 4380 4381 if (!block_rsv) 4382 block_rsv = root->block_rsv; 4383 4384 if (!block_rsv) 4385 block_rsv = &root->fs_info->empty_block_rsv; 4386 4387 return block_rsv; 4388 } 4389 4390 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4391 u64 num_bytes) 4392 { 4393 int ret = -ENOSPC; 4394 spin_lock(&block_rsv->lock); 4395 if (block_rsv->reserved >= num_bytes) { 4396 block_rsv->reserved -= num_bytes; 4397 if (block_rsv->reserved < block_rsv->size) 4398 block_rsv->full = 0; 4399 ret = 0; 4400 } 4401 spin_unlock(&block_rsv->lock); 4402 return ret; 4403 } 4404 4405 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4406 u64 num_bytes, int update_size) 4407 { 4408 spin_lock(&block_rsv->lock); 4409 block_rsv->reserved += num_bytes; 4410 if (update_size) 4411 block_rsv->size += num_bytes; 4412 else if (block_rsv->reserved >= block_rsv->size) 4413 block_rsv->full = 1; 4414 spin_unlock(&block_rsv->lock); 4415 } 4416 4417 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4418 struct btrfs_block_rsv *dest, u64 num_bytes, 4419 int min_factor) 4420 { 4421 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4422 u64 min_bytes; 4423 4424 if (global_rsv->space_info != dest->space_info) 4425 return -ENOSPC; 4426 4427 spin_lock(&global_rsv->lock); 4428 min_bytes = div_factor(global_rsv->size, min_factor); 4429 if (global_rsv->reserved < min_bytes + num_bytes) { 4430 spin_unlock(&global_rsv->lock); 4431 return -ENOSPC; 4432 } 4433 global_rsv->reserved -= num_bytes; 4434 if (global_rsv->reserved < global_rsv->size) 4435 global_rsv->full = 0; 4436 spin_unlock(&global_rsv->lock); 4437 4438 block_rsv_add_bytes(dest, num_bytes, 1); 4439 return 0; 4440 } 4441 4442 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4443 struct btrfs_block_rsv *block_rsv, 4444 struct btrfs_block_rsv *dest, u64 num_bytes) 4445 { 4446 struct btrfs_space_info *space_info = block_rsv->space_info; 4447 4448 spin_lock(&block_rsv->lock); 4449 if (num_bytes == (u64)-1) 4450 num_bytes = block_rsv->size; 4451 block_rsv->size -= num_bytes; 4452 if (block_rsv->reserved >= block_rsv->size) { 4453 num_bytes = block_rsv->reserved - block_rsv->size; 4454 block_rsv->reserved = block_rsv->size; 4455 block_rsv->full = 1; 4456 } else { 4457 num_bytes = 0; 4458 } 4459 spin_unlock(&block_rsv->lock); 4460 4461 if (num_bytes > 0) { 4462 if (dest) { 4463 spin_lock(&dest->lock); 4464 if (!dest->full) { 4465 u64 bytes_to_add; 4466 4467 bytes_to_add = dest->size - dest->reserved; 4468 bytes_to_add = min(num_bytes, bytes_to_add); 4469 dest->reserved += bytes_to_add; 4470 if (dest->reserved >= dest->size) 4471 dest->full = 1; 4472 num_bytes -= bytes_to_add; 4473 } 4474 spin_unlock(&dest->lock); 4475 } 4476 if (num_bytes) { 4477 spin_lock(&space_info->lock); 4478 space_info->bytes_may_use -= num_bytes; 4479 trace_btrfs_space_reservation(fs_info, "space_info", 4480 space_info->flags, num_bytes, 0); 4481 spin_unlock(&space_info->lock); 4482 } 4483 } 4484 } 4485 4486 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4487 struct btrfs_block_rsv *dst, u64 num_bytes) 4488 { 4489 int ret; 4490 4491 ret = block_rsv_use_bytes(src, num_bytes); 4492 if (ret) 4493 return ret; 4494 4495 block_rsv_add_bytes(dst, num_bytes, 1); 4496 return 0; 4497 } 4498 4499 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4500 { 4501 memset(rsv, 0, sizeof(*rsv)); 4502 spin_lock_init(&rsv->lock); 4503 rsv->type = type; 4504 } 4505 4506 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4507 unsigned short type) 4508 { 4509 struct btrfs_block_rsv *block_rsv; 4510 struct btrfs_fs_info *fs_info = root->fs_info; 4511 4512 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4513 if (!block_rsv) 4514 return NULL; 4515 4516 btrfs_init_block_rsv(block_rsv, type); 4517 block_rsv->space_info = __find_space_info(fs_info, 4518 BTRFS_BLOCK_GROUP_METADATA); 4519 return block_rsv; 4520 } 4521 4522 void btrfs_free_block_rsv(struct btrfs_root *root, 4523 struct btrfs_block_rsv *rsv) 4524 { 4525 if (!rsv) 4526 return; 4527 btrfs_block_rsv_release(root, rsv, (u64)-1); 4528 kfree(rsv); 4529 } 4530 4531 int btrfs_block_rsv_add(struct btrfs_root *root, 4532 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4533 enum btrfs_reserve_flush_enum flush) 4534 { 4535 int ret; 4536 4537 if (num_bytes == 0) 4538 return 0; 4539 4540 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4541 if (!ret) { 4542 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4543 return 0; 4544 } 4545 4546 return ret; 4547 } 4548 4549 int btrfs_block_rsv_check(struct btrfs_root *root, 4550 struct btrfs_block_rsv *block_rsv, int min_factor) 4551 { 4552 u64 num_bytes = 0; 4553 int ret = -ENOSPC; 4554 4555 if (!block_rsv) 4556 return 0; 4557 4558 spin_lock(&block_rsv->lock); 4559 num_bytes = div_factor(block_rsv->size, min_factor); 4560 if (block_rsv->reserved >= num_bytes) 4561 ret = 0; 4562 spin_unlock(&block_rsv->lock); 4563 4564 return ret; 4565 } 4566 4567 int btrfs_block_rsv_refill(struct btrfs_root *root, 4568 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4569 enum btrfs_reserve_flush_enum flush) 4570 { 4571 u64 num_bytes = 0; 4572 int ret = -ENOSPC; 4573 4574 if (!block_rsv) 4575 return 0; 4576 4577 spin_lock(&block_rsv->lock); 4578 num_bytes = min_reserved; 4579 if (block_rsv->reserved >= num_bytes) 4580 ret = 0; 4581 else 4582 num_bytes -= block_rsv->reserved; 4583 spin_unlock(&block_rsv->lock); 4584 4585 if (!ret) 4586 return 0; 4587 4588 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4589 if (!ret) { 4590 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4591 return 0; 4592 } 4593 4594 return ret; 4595 } 4596 4597 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4598 struct btrfs_block_rsv *dst_rsv, 4599 u64 num_bytes) 4600 { 4601 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4602 } 4603 4604 void btrfs_block_rsv_release(struct btrfs_root *root, 4605 struct btrfs_block_rsv *block_rsv, 4606 u64 num_bytes) 4607 { 4608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4609 if (global_rsv == block_rsv || 4610 block_rsv->space_info != global_rsv->space_info) 4611 global_rsv = NULL; 4612 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4613 num_bytes); 4614 } 4615 4616 /* 4617 * helper to calculate size of global block reservation. 4618 * the desired value is sum of space used by extent tree, 4619 * checksum tree and root tree 4620 */ 4621 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4622 { 4623 struct btrfs_space_info *sinfo; 4624 u64 num_bytes; 4625 u64 meta_used; 4626 u64 data_used; 4627 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4628 4629 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4630 spin_lock(&sinfo->lock); 4631 data_used = sinfo->bytes_used; 4632 spin_unlock(&sinfo->lock); 4633 4634 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4635 spin_lock(&sinfo->lock); 4636 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4637 data_used = 0; 4638 meta_used = sinfo->bytes_used; 4639 spin_unlock(&sinfo->lock); 4640 4641 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4642 csum_size * 2; 4643 num_bytes += div64_u64(data_used + meta_used, 50); 4644 4645 if (num_bytes * 3 > meta_used) 4646 num_bytes = div64_u64(meta_used, 3); 4647 4648 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4649 } 4650 4651 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4652 { 4653 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4654 struct btrfs_space_info *sinfo = block_rsv->space_info; 4655 u64 num_bytes; 4656 4657 num_bytes = calc_global_metadata_size(fs_info); 4658 4659 spin_lock(&sinfo->lock); 4660 spin_lock(&block_rsv->lock); 4661 4662 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4663 4664 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4665 sinfo->bytes_reserved + sinfo->bytes_readonly + 4666 sinfo->bytes_may_use; 4667 4668 if (sinfo->total_bytes > num_bytes) { 4669 num_bytes = sinfo->total_bytes - num_bytes; 4670 block_rsv->reserved += num_bytes; 4671 sinfo->bytes_may_use += num_bytes; 4672 trace_btrfs_space_reservation(fs_info, "space_info", 4673 sinfo->flags, num_bytes, 1); 4674 } 4675 4676 if (block_rsv->reserved >= block_rsv->size) { 4677 num_bytes = block_rsv->reserved - block_rsv->size; 4678 sinfo->bytes_may_use -= num_bytes; 4679 trace_btrfs_space_reservation(fs_info, "space_info", 4680 sinfo->flags, num_bytes, 0); 4681 block_rsv->reserved = block_rsv->size; 4682 block_rsv->full = 1; 4683 } 4684 4685 spin_unlock(&block_rsv->lock); 4686 spin_unlock(&sinfo->lock); 4687 } 4688 4689 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4690 { 4691 struct btrfs_space_info *space_info; 4692 4693 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4694 fs_info->chunk_block_rsv.space_info = space_info; 4695 4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4697 fs_info->global_block_rsv.space_info = space_info; 4698 fs_info->delalloc_block_rsv.space_info = space_info; 4699 fs_info->trans_block_rsv.space_info = space_info; 4700 fs_info->empty_block_rsv.space_info = space_info; 4701 fs_info->delayed_block_rsv.space_info = space_info; 4702 4703 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4704 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4705 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4706 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4707 if (fs_info->quota_root) 4708 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4709 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4710 4711 update_global_block_rsv(fs_info); 4712 } 4713 4714 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4715 { 4716 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4717 (u64)-1); 4718 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4719 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4720 WARN_ON(fs_info->trans_block_rsv.size > 0); 4721 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4722 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4723 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4724 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4725 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4726 } 4727 4728 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4729 struct btrfs_root *root) 4730 { 4731 if (!trans->block_rsv) 4732 return; 4733 4734 if (!trans->bytes_reserved) 4735 return; 4736 4737 trace_btrfs_space_reservation(root->fs_info, "transaction", 4738 trans->transid, trans->bytes_reserved, 0); 4739 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4740 trans->bytes_reserved = 0; 4741 } 4742 4743 /* Can only return 0 or -ENOSPC */ 4744 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4745 struct inode *inode) 4746 { 4747 struct btrfs_root *root = BTRFS_I(inode)->root; 4748 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4750 4751 /* 4752 * We need to hold space in order to delete our orphan item once we've 4753 * added it, so this takes the reservation so we can release it later 4754 * when we are truly done with the orphan item. 4755 */ 4756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4757 trace_btrfs_space_reservation(root->fs_info, "orphan", 4758 btrfs_ino(inode), num_bytes, 1); 4759 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4760 } 4761 4762 void btrfs_orphan_release_metadata(struct inode *inode) 4763 { 4764 struct btrfs_root *root = BTRFS_I(inode)->root; 4765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4766 trace_btrfs_space_reservation(root->fs_info, "orphan", 4767 btrfs_ino(inode), num_bytes, 0); 4768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4769 } 4770 4771 /* 4772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4773 * root: the root of the parent directory 4774 * rsv: block reservation 4775 * items: the number of items that we need do reservation 4776 * qgroup_reserved: used to return the reserved size in qgroup 4777 * 4778 * This function is used to reserve the space for snapshot/subvolume 4779 * creation and deletion. Those operations are different with the 4780 * common file/directory operations, they change two fs/file trees 4781 * and root tree, the number of items that the qgroup reserves is 4782 * different with the free space reservation. So we can not use 4783 * the space reseravtion mechanism in start_transaction(). 4784 */ 4785 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4786 struct btrfs_block_rsv *rsv, 4787 int items, 4788 u64 *qgroup_reserved, 4789 bool use_global_rsv) 4790 { 4791 u64 num_bytes; 4792 int ret; 4793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4794 4795 if (root->fs_info->quota_enabled) { 4796 /* One for parent inode, two for dir entries */ 4797 num_bytes = 3 * root->leafsize; 4798 ret = btrfs_qgroup_reserve(root, num_bytes); 4799 if (ret) 4800 return ret; 4801 } else { 4802 num_bytes = 0; 4803 } 4804 4805 *qgroup_reserved = num_bytes; 4806 4807 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4808 rsv->space_info = __find_space_info(root->fs_info, 4809 BTRFS_BLOCK_GROUP_METADATA); 4810 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4811 BTRFS_RESERVE_FLUSH_ALL); 4812 4813 if (ret == -ENOSPC && use_global_rsv) 4814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4815 4816 if (ret) { 4817 if (*qgroup_reserved) 4818 btrfs_qgroup_free(root, *qgroup_reserved); 4819 } 4820 4821 return ret; 4822 } 4823 4824 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4825 struct btrfs_block_rsv *rsv, 4826 u64 qgroup_reserved) 4827 { 4828 btrfs_block_rsv_release(root, rsv, (u64)-1); 4829 if (qgroup_reserved) 4830 btrfs_qgroup_free(root, qgroup_reserved); 4831 } 4832 4833 /** 4834 * drop_outstanding_extent - drop an outstanding extent 4835 * @inode: the inode we're dropping the extent for 4836 * 4837 * This is called when we are freeing up an outstanding extent, either called 4838 * after an error or after an extent is written. This will return the number of 4839 * reserved extents that need to be freed. This must be called with 4840 * BTRFS_I(inode)->lock held. 4841 */ 4842 static unsigned drop_outstanding_extent(struct inode *inode) 4843 { 4844 unsigned drop_inode_space = 0; 4845 unsigned dropped_extents = 0; 4846 4847 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4848 BTRFS_I(inode)->outstanding_extents--; 4849 4850 if (BTRFS_I(inode)->outstanding_extents == 0 && 4851 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4852 &BTRFS_I(inode)->runtime_flags)) 4853 drop_inode_space = 1; 4854 4855 /* 4856 * If we have more or the same amount of outsanding extents than we have 4857 * reserved then we need to leave the reserved extents count alone. 4858 */ 4859 if (BTRFS_I(inode)->outstanding_extents >= 4860 BTRFS_I(inode)->reserved_extents) 4861 return drop_inode_space; 4862 4863 dropped_extents = BTRFS_I(inode)->reserved_extents - 4864 BTRFS_I(inode)->outstanding_extents; 4865 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4866 return dropped_extents + drop_inode_space; 4867 } 4868 4869 /** 4870 * calc_csum_metadata_size - return the amount of metada space that must be 4871 * reserved/free'd for the given bytes. 4872 * @inode: the inode we're manipulating 4873 * @num_bytes: the number of bytes in question 4874 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4875 * 4876 * This adjusts the number of csum_bytes in the inode and then returns the 4877 * correct amount of metadata that must either be reserved or freed. We 4878 * calculate how many checksums we can fit into one leaf and then divide the 4879 * number of bytes that will need to be checksumed by this value to figure out 4880 * how many checksums will be required. If we are adding bytes then the number 4881 * may go up and we will return the number of additional bytes that must be 4882 * reserved. If it is going down we will return the number of bytes that must 4883 * be freed. 4884 * 4885 * This must be called with BTRFS_I(inode)->lock held. 4886 */ 4887 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4888 int reserve) 4889 { 4890 struct btrfs_root *root = BTRFS_I(inode)->root; 4891 u64 csum_size; 4892 int num_csums_per_leaf; 4893 int num_csums; 4894 int old_csums; 4895 4896 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4897 BTRFS_I(inode)->csum_bytes == 0) 4898 return 0; 4899 4900 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4901 if (reserve) 4902 BTRFS_I(inode)->csum_bytes += num_bytes; 4903 else 4904 BTRFS_I(inode)->csum_bytes -= num_bytes; 4905 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4906 num_csums_per_leaf = (int)div64_u64(csum_size, 4907 sizeof(struct btrfs_csum_item) + 4908 sizeof(struct btrfs_disk_key)); 4909 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4910 num_csums = num_csums + num_csums_per_leaf - 1; 4911 num_csums = num_csums / num_csums_per_leaf; 4912 4913 old_csums = old_csums + num_csums_per_leaf - 1; 4914 old_csums = old_csums / num_csums_per_leaf; 4915 4916 /* No change, no need to reserve more */ 4917 if (old_csums == num_csums) 4918 return 0; 4919 4920 if (reserve) 4921 return btrfs_calc_trans_metadata_size(root, 4922 num_csums - old_csums); 4923 4924 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4925 } 4926 4927 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4928 { 4929 struct btrfs_root *root = BTRFS_I(inode)->root; 4930 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4931 u64 to_reserve = 0; 4932 u64 csum_bytes; 4933 unsigned nr_extents = 0; 4934 int extra_reserve = 0; 4935 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4936 int ret = 0; 4937 bool delalloc_lock = true; 4938 u64 to_free = 0; 4939 unsigned dropped; 4940 4941 /* If we are a free space inode we need to not flush since we will be in 4942 * the middle of a transaction commit. We also don't need the delalloc 4943 * mutex since we won't race with anybody. We need this mostly to make 4944 * lockdep shut its filthy mouth. 4945 */ 4946 if (btrfs_is_free_space_inode(inode)) { 4947 flush = BTRFS_RESERVE_NO_FLUSH; 4948 delalloc_lock = false; 4949 } 4950 4951 if (flush != BTRFS_RESERVE_NO_FLUSH && 4952 btrfs_transaction_in_commit(root->fs_info)) 4953 schedule_timeout(1); 4954 4955 if (delalloc_lock) 4956 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4957 4958 num_bytes = ALIGN(num_bytes, root->sectorsize); 4959 4960 spin_lock(&BTRFS_I(inode)->lock); 4961 BTRFS_I(inode)->outstanding_extents++; 4962 4963 if (BTRFS_I(inode)->outstanding_extents > 4964 BTRFS_I(inode)->reserved_extents) 4965 nr_extents = BTRFS_I(inode)->outstanding_extents - 4966 BTRFS_I(inode)->reserved_extents; 4967 4968 /* 4969 * Add an item to reserve for updating the inode when we complete the 4970 * delalloc io. 4971 */ 4972 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4973 &BTRFS_I(inode)->runtime_flags)) { 4974 nr_extents++; 4975 extra_reserve = 1; 4976 } 4977 4978 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4979 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4980 csum_bytes = BTRFS_I(inode)->csum_bytes; 4981 spin_unlock(&BTRFS_I(inode)->lock); 4982 4983 if (root->fs_info->quota_enabled) { 4984 ret = btrfs_qgroup_reserve(root, num_bytes + 4985 nr_extents * root->leafsize); 4986 if (ret) 4987 goto out_fail; 4988 } 4989 4990 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4991 if (unlikely(ret)) { 4992 if (root->fs_info->quota_enabled) 4993 btrfs_qgroup_free(root, num_bytes + 4994 nr_extents * root->leafsize); 4995 goto out_fail; 4996 } 4997 4998 spin_lock(&BTRFS_I(inode)->lock); 4999 if (extra_reserve) { 5000 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5001 &BTRFS_I(inode)->runtime_flags); 5002 nr_extents--; 5003 } 5004 BTRFS_I(inode)->reserved_extents += nr_extents; 5005 spin_unlock(&BTRFS_I(inode)->lock); 5006 5007 if (delalloc_lock) 5008 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5009 5010 if (to_reserve) 5011 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5012 btrfs_ino(inode), to_reserve, 1); 5013 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5014 5015 return 0; 5016 5017 out_fail: 5018 spin_lock(&BTRFS_I(inode)->lock); 5019 dropped = drop_outstanding_extent(inode); 5020 /* 5021 * If the inodes csum_bytes is the same as the original 5022 * csum_bytes then we know we haven't raced with any free()ers 5023 * so we can just reduce our inodes csum bytes and carry on. 5024 */ 5025 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5026 calc_csum_metadata_size(inode, num_bytes, 0); 5027 } else { 5028 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5029 u64 bytes; 5030 5031 /* 5032 * This is tricky, but first we need to figure out how much we 5033 * free'd from any free-ers that occured during this 5034 * reservation, so we reset ->csum_bytes to the csum_bytes 5035 * before we dropped our lock, and then call the free for the 5036 * number of bytes that were freed while we were trying our 5037 * reservation. 5038 */ 5039 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5040 BTRFS_I(inode)->csum_bytes = csum_bytes; 5041 to_free = calc_csum_metadata_size(inode, bytes, 0); 5042 5043 5044 /* 5045 * Now we need to see how much we would have freed had we not 5046 * been making this reservation and our ->csum_bytes were not 5047 * artificially inflated. 5048 */ 5049 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5050 bytes = csum_bytes - orig_csum_bytes; 5051 bytes = calc_csum_metadata_size(inode, bytes, 0); 5052 5053 /* 5054 * Now reset ->csum_bytes to what it should be. If bytes is 5055 * more than to_free then we would have free'd more space had we 5056 * not had an artificially high ->csum_bytes, so we need to free 5057 * the remainder. If bytes is the same or less then we don't 5058 * need to do anything, the other free-ers did the correct 5059 * thing. 5060 */ 5061 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5062 if (bytes > to_free) 5063 to_free = bytes - to_free; 5064 else 5065 to_free = 0; 5066 } 5067 spin_unlock(&BTRFS_I(inode)->lock); 5068 if (dropped) 5069 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5070 5071 if (to_free) { 5072 btrfs_block_rsv_release(root, block_rsv, to_free); 5073 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5074 btrfs_ino(inode), to_free, 0); 5075 } 5076 if (delalloc_lock) 5077 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5078 return ret; 5079 } 5080 5081 /** 5082 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5083 * @inode: the inode to release the reservation for 5084 * @num_bytes: the number of bytes we're releasing 5085 * 5086 * This will release the metadata reservation for an inode. This can be called 5087 * once we complete IO for a given set of bytes to release their metadata 5088 * reservations. 5089 */ 5090 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5091 { 5092 struct btrfs_root *root = BTRFS_I(inode)->root; 5093 u64 to_free = 0; 5094 unsigned dropped; 5095 5096 num_bytes = ALIGN(num_bytes, root->sectorsize); 5097 spin_lock(&BTRFS_I(inode)->lock); 5098 dropped = drop_outstanding_extent(inode); 5099 5100 if (num_bytes) 5101 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5102 spin_unlock(&BTRFS_I(inode)->lock); 5103 if (dropped > 0) 5104 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5105 5106 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5107 btrfs_ino(inode), to_free, 0); 5108 if (root->fs_info->quota_enabled) { 5109 btrfs_qgroup_free(root, num_bytes + 5110 dropped * root->leafsize); 5111 } 5112 5113 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5114 to_free); 5115 } 5116 5117 /** 5118 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5119 * @inode: inode we're writing to 5120 * @num_bytes: the number of bytes we want to allocate 5121 * 5122 * This will do the following things 5123 * 5124 * o reserve space in the data space info for num_bytes 5125 * o reserve space in the metadata space info based on number of outstanding 5126 * extents and how much csums will be needed 5127 * o add to the inodes ->delalloc_bytes 5128 * o add it to the fs_info's delalloc inodes list. 5129 * 5130 * This will return 0 for success and -ENOSPC if there is no space left. 5131 */ 5132 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5133 { 5134 int ret; 5135 5136 ret = btrfs_check_data_free_space(inode, num_bytes); 5137 if (ret) 5138 return ret; 5139 5140 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5141 if (ret) { 5142 btrfs_free_reserved_data_space(inode, num_bytes); 5143 return ret; 5144 } 5145 5146 return 0; 5147 } 5148 5149 /** 5150 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5151 * @inode: inode we're releasing space for 5152 * @num_bytes: the number of bytes we want to free up 5153 * 5154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5155 * called in the case that we don't need the metadata AND data reservations 5156 * anymore. So if there is an error or we insert an inline extent. 5157 * 5158 * This function will release the metadata space that was not used and will 5159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5160 * list if there are no delalloc bytes left. 5161 */ 5162 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5163 { 5164 btrfs_delalloc_release_metadata(inode, num_bytes); 5165 btrfs_free_reserved_data_space(inode, num_bytes); 5166 } 5167 5168 static int update_block_group(struct btrfs_root *root, 5169 u64 bytenr, u64 num_bytes, int alloc) 5170 { 5171 struct btrfs_block_group_cache *cache = NULL; 5172 struct btrfs_fs_info *info = root->fs_info; 5173 u64 total = num_bytes; 5174 u64 old_val; 5175 u64 byte_in_group; 5176 int factor; 5177 5178 /* block accounting for super block */ 5179 spin_lock(&info->delalloc_root_lock); 5180 old_val = btrfs_super_bytes_used(info->super_copy); 5181 if (alloc) 5182 old_val += num_bytes; 5183 else 5184 old_val -= num_bytes; 5185 btrfs_set_super_bytes_used(info->super_copy, old_val); 5186 spin_unlock(&info->delalloc_root_lock); 5187 5188 while (total) { 5189 cache = btrfs_lookup_block_group(info, bytenr); 5190 if (!cache) 5191 return -ENOENT; 5192 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5193 BTRFS_BLOCK_GROUP_RAID1 | 5194 BTRFS_BLOCK_GROUP_RAID10)) 5195 factor = 2; 5196 else 5197 factor = 1; 5198 /* 5199 * If this block group has free space cache written out, we 5200 * need to make sure to load it if we are removing space. This 5201 * is because we need the unpinning stage to actually add the 5202 * space back to the block group, otherwise we will leak space. 5203 */ 5204 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5205 cache_block_group(cache, 1); 5206 5207 byte_in_group = bytenr - cache->key.objectid; 5208 WARN_ON(byte_in_group > cache->key.offset); 5209 5210 spin_lock(&cache->space_info->lock); 5211 spin_lock(&cache->lock); 5212 5213 if (btrfs_test_opt(root, SPACE_CACHE) && 5214 cache->disk_cache_state < BTRFS_DC_CLEAR) 5215 cache->disk_cache_state = BTRFS_DC_CLEAR; 5216 5217 cache->dirty = 1; 5218 old_val = btrfs_block_group_used(&cache->item); 5219 num_bytes = min(total, cache->key.offset - byte_in_group); 5220 if (alloc) { 5221 old_val += num_bytes; 5222 btrfs_set_block_group_used(&cache->item, old_val); 5223 cache->reserved -= num_bytes; 5224 cache->space_info->bytes_reserved -= num_bytes; 5225 cache->space_info->bytes_used += num_bytes; 5226 cache->space_info->disk_used += num_bytes * factor; 5227 spin_unlock(&cache->lock); 5228 spin_unlock(&cache->space_info->lock); 5229 } else { 5230 old_val -= num_bytes; 5231 btrfs_set_block_group_used(&cache->item, old_val); 5232 cache->pinned += num_bytes; 5233 cache->space_info->bytes_pinned += num_bytes; 5234 cache->space_info->bytes_used -= num_bytes; 5235 cache->space_info->disk_used -= num_bytes * factor; 5236 spin_unlock(&cache->lock); 5237 spin_unlock(&cache->space_info->lock); 5238 5239 set_extent_dirty(info->pinned_extents, 5240 bytenr, bytenr + num_bytes - 1, 5241 GFP_NOFS | __GFP_NOFAIL); 5242 } 5243 btrfs_put_block_group(cache); 5244 total -= num_bytes; 5245 bytenr += num_bytes; 5246 } 5247 return 0; 5248 } 5249 5250 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5251 { 5252 struct btrfs_block_group_cache *cache; 5253 u64 bytenr; 5254 5255 spin_lock(&root->fs_info->block_group_cache_lock); 5256 bytenr = root->fs_info->first_logical_byte; 5257 spin_unlock(&root->fs_info->block_group_cache_lock); 5258 5259 if (bytenr < (u64)-1) 5260 return bytenr; 5261 5262 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5263 if (!cache) 5264 return 0; 5265 5266 bytenr = cache->key.objectid; 5267 btrfs_put_block_group(cache); 5268 5269 return bytenr; 5270 } 5271 5272 static int pin_down_extent(struct btrfs_root *root, 5273 struct btrfs_block_group_cache *cache, 5274 u64 bytenr, u64 num_bytes, int reserved) 5275 { 5276 spin_lock(&cache->space_info->lock); 5277 spin_lock(&cache->lock); 5278 cache->pinned += num_bytes; 5279 cache->space_info->bytes_pinned += num_bytes; 5280 if (reserved) { 5281 cache->reserved -= num_bytes; 5282 cache->space_info->bytes_reserved -= num_bytes; 5283 } 5284 spin_unlock(&cache->lock); 5285 spin_unlock(&cache->space_info->lock); 5286 5287 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5288 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5289 if (reserved) 5290 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5291 return 0; 5292 } 5293 5294 /* 5295 * this function must be called within transaction 5296 */ 5297 int btrfs_pin_extent(struct btrfs_root *root, 5298 u64 bytenr, u64 num_bytes, int reserved) 5299 { 5300 struct btrfs_block_group_cache *cache; 5301 5302 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5303 BUG_ON(!cache); /* Logic error */ 5304 5305 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5306 5307 btrfs_put_block_group(cache); 5308 return 0; 5309 } 5310 5311 /* 5312 * this function must be called within transaction 5313 */ 5314 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5315 u64 bytenr, u64 num_bytes) 5316 { 5317 struct btrfs_block_group_cache *cache; 5318 int ret; 5319 5320 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5321 if (!cache) 5322 return -EINVAL; 5323 5324 /* 5325 * pull in the free space cache (if any) so that our pin 5326 * removes the free space from the cache. We have load_only set 5327 * to one because the slow code to read in the free extents does check 5328 * the pinned extents. 5329 */ 5330 cache_block_group(cache, 1); 5331 5332 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5333 5334 /* remove us from the free space cache (if we're there at all) */ 5335 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5336 btrfs_put_block_group(cache); 5337 return ret; 5338 } 5339 5340 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5341 { 5342 int ret; 5343 struct btrfs_block_group_cache *block_group; 5344 struct btrfs_caching_control *caching_ctl; 5345 5346 block_group = btrfs_lookup_block_group(root->fs_info, start); 5347 if (!block_group) 5348 return -EINVAL; 5349 5350 cache_block_group(block_group, 0); 5351 caching_ctl = get_caching_control(block_group); 5352 5353 if (!caching_ctl) { 5354 /* Logic error */ 5355 BUG_ON(!block_group_cache_done(block_group)); 5356 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5357 } else { 5358 mutex_lock(&caching_ctl->mutex); 5359 5360 if (start >= caching_ctl->progress) { 5361 ret = add_excluded_extent(root, start, num_bytes); 5362 } else if (start + num_bytes <= caching_ctl->progress) { 5363 ret = btrfs_remove_free_space(block_group, 5364 start, num_bytes); 5365 } else { 5366 num_bytes = caching_ctl->progress - start; 5367 ret = btrfs_remove_free_space(block_group, 5368 start, num_bytes); 5369 if (ret) 5370 goto out_lock; 5371 5372 num_bytes = (start + num_bytes) - 5373 caching_ctl->progress; 5374 start = caching_ctl->progress; 5375 ret = add_excluded_extent(root, start, num_bytes); 5376 } 5377 out_lock: 5378 mutex_unlock(&caching_ctl->mutex); 5379 put_caching_control(caching_ctl); 5380 } 5381 btrfs_put_block_group(block_group); 5382 return ret; 5383 } 5384 5385 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5386 struct extent_buffer *eb) 5387 { 5388 struct btrfs_file_extent_item *item; 5389 struct btrfs_key key; 5390 int found_type; 5391 int i; 5392 5393 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5394 return 0; 5395 5396 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5397 btrfs_item_key_to_cpu(eb, &key, i); 5398 if (key.type != BTRFS_EXTENT_DATA_KEY) 5399 continue; 5400 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5401 found_type = btrfs_file_extent_type(eb, item); 5402 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5403 continue; 5404 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5405 continue; 5406 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5407 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5408 __exclude_logged_extent(log, key.objectid, key.offset); 5409 } 5410 5411 return 0; 5412 } 5413 5414 /** 5415 * btrfs_update_reserved_bytes - update the block_group and space info counters 5416 * @cache: The cache we are manipulating 5417 * @num_bytes: The number of bytes in question 5418 * @reserve: One of the reservation enums 5419 * 5420 * This is called by the allocator when it reserves space, or by somebody who is 5421 * freeing space that was never actually used on disk. For example if you 5422 * reserve some space for a new leaf in transaction A and before transaction A 5423 * commits you free that leaf, you call this with reserve set to 0 in order to 5424 * clear the reservation. 5425 * 5426 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5427 * ENOSPC accounting. For data we handle the reservation through clearing the 5428 * delalloc bits in the io_tree. We have to do this since we could end up 5429 * allocating less disk space for the amount of data we have reserved in the 5430 * case of compression. 5431 * 5432 * If this is a reservation and the block group has become read only we cannot 5433 * make the reservation and return -EAGAIN, otherwise this function always 5434 * succeeds. 5435 */ 5436 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5437 u64 num_bytes, int reserve) 5438 { 5439 struct btrfs_space_info *space_info = cache->space_info; 5440 int ret = 0; 5441 5442 spin_lock(&space_info->lock); 5443 spin_lock(&cache->lock); 5444 if (reserve != RESERVE_FREE) { 5445 if (cache->ro) { 5446 ret = -EAGAIN; 5447 } else { 5448 cache->reserved += num_bytes; 5449 space_info->bytes_reserved += num_bytes; 5450 if (reserve == RESERVE_ALLOC) { 5451 trace_btrfs_space_reservation(cache->fs_info, 5452 "space_info", space_info->flags, 5453 num_bytes, 0); 5454 space_info->bytes_may_use -= num_bytes; 5455 } 5456 } 5457 } else { 5458 if (cache->ro) 5459 space_info->bytes_readonly += num_bytes; 5460 cache->reserved -= num_bytes; 5461 space_info->bytes_reserved -= num_bytes; 5462 } 5463 spin_unlock(&cache->lock); 5464 spin_unlock(&space_info->lock); 5465 return ret; 5466 } 5467 5468 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5469 struct btrfs_root *root) 5470 { 5471 struct btrfs_fs_info *fs_info = root->fs_info; 5472 struct btrfs_caching_control *next; 5473 struct btrfs_caching_control *caching_ctl; 5474 struct btrfs_block_group_cache *cache; 5475 struct btrfs_space_info *space_info; 5476 5477 down_write(&fs_info->commit_root_sem); 5478 5479 list_for_each_entry_safe(caching_ctl, next, 5480 &fs_info->caching_block_groups, list) { 5481 cache = caching_ctl->block_group; 5482 if (block_group_cache_done(cache)) { 5483 cache->last_byte_to_unpin = (u64)-1; 5484 list_del_init(&caching_ctl->list); 5485 put_caching_control(caching_ctl); 5486 } else { 5487 cache->last_byte_to_unpin = caching_ctl->progress; 5488 } 5489 } 5490 5491 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5492 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5493 else 5494 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5495 5496 up_write(&fs_info->commit_root_sem); 5497 5498 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5499 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5500 5501 update_global_block_rsv(fs_info); 5502 } 5503 5504 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5505 { 5506 struct btrfs_fs_info *fs_info = root->fs_info; 5507 struct btrfs_block_group_cache *cache = NULL; 5508 struct btrfs_space_info *space_info; 5509 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5510 u64 len; 5511 bool readonly; 5512 5513 while (start <= end) { 5514 readonly = false; 5515 if (!cache || 5516 start >= cache->key.objectid + cache->key.offset) { 5517 if (cache) 5518 btrfs_put_block_group(cache); 5519 cache = btrfs_lookup_block_group(fs_info, start); 5520 BUG_ON(!cache); /* Logic error */ 5521 } 5522 5523 len = cache->key.objectid + cache->key.offset - start; 5524 len = min(len, end + 1 - start); 5525 5526 if (start < cache->last_byte_to_unpin) { 5527 len = min(len, cache->last_byte_to_unpin - start); 5528 btrfs_add_free_space(cache, start, len); 5529 } 5530 5531 start += len; 5532 space_info = cache->space_info; 5533 5534 spin_lock(&space_info->lock); 5535 spin_lock(&cache->lock); 5536 cache->pinned -= len; 5537 space_info->bytes_pinned -= len; 5538 if (cache->ro) { 5539 space_info->bytes_readonly += len; 5540 readonly = true; 5541 } 5542 spin_unlock(&cache->lock); 5543 if (!readonly && global_rsv->space_info == space_info) { 5544 spin_lock(&global_rsv->lock); 5545 if (!global_rsv->full) { 5546 len = min(len, global_rsv->size - 5547 global_rsv->reserved); 5548 global_rsv->reserved += len; 5549 space_info->bytes_may_use += len; 5550 if (global_rsv->reserved >= global_rsv->size) 5551 global_rsv->full = 1; 5552 } 5553 spin_unlock(&global_rsv->lock); 5554 } 5555 spin_unlock(&space_info->lock); 5556 } 5557 5558 if (cache) 5559 btrfs_put_block_group(cache); 5560 return 0; 5561 } 5562 5563 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5564 struct btrfs_root *root) 5565 { 5566 struct btrfs_fs_info *fs_info = root->fs_info; 5567 struct extent_io_tree *unpin; 5568 u64 start; 5569 u64 end; 5570 int ret; 5571 5572 if (trans->aborted) 5573 return 0; 5574 5575 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5576 unpin = &fs_info->freed_extents[1]; 5577 else 5578 unpin = &fs_info->freed_extents[0]; 5579 5580 while (1) { 5581 ret = find_first_extent_bit(unpin, 0, &start, &end, 5582 EXTENT_DIRTY, NULL); 5583 if (ret) 5584 break; 5585 5586 if (btrfs_test_opt(root, DISCARD)) 5587 ret = btrfs_discard_extent(root, start, 5588 end + 1 - start, NULL); 5589 5590 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5591 unpin_extent_range(root, start, end); 5592 cond_resched(); 5593 } 5594 5595 return 0; 5596 } 5597 5598 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5599 u64 owner, u64 root_objectid) 5600 { 5601 struct btrfs_space_info *space_info; 5602 u64 flags; 5603 5604 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5605 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5606 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5607 else 5608 flags = BTRFS_BLOCK_GROUP_METADATA; 5609 } else { 5610 flags = BTRFS_BLOCK_GROUP_DATA; 5611 } 5612 5613 space_info = __find_space_info(fs_info, flags); 5614 BUG_ON(!space_info); /* Logic bug */ 5615 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5616 } 5617 5618 5619 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5620 struct btrfs_root *root, 5621 u64 bytenr, u64 num_bytes, u64 parent, 5622 u64 root_objectid, u64 owner_objectid, 5623 u64 owner_offset, int refs_to_drop, 5624 struct btrfs_delayed_extent_op *extent_op) 5625 { 5626 struct btrfs_key key; 5627 struct btrfs_path *path; 5628 struct btrfs_fs_info *info = root->fs_info; 5629 struct btrfs_root *extent_root = info->extent_root; 5630 struct extent_buffer *leaf; 5631 struct btrfs_extent_item *ei; 5632 struct btrfs_extent_inline_ref *iref; 5633 int ret; 5634 int is_data; 5635 int extent_slot = 0; 5636 int found_extent = 0; 5637 int num_to_del = 1; 5638 u32 item_size; 5639 u64 refs; 5640 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5641 SKINNY_METADATA); 5642 5643 path = btrfs_alloc_path(); 5644 if (!path) 5645 return -ENOMEM; 5646 5647 path->reada = 1; 5648 path->leave_spinning = 1; 5649 5650 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5651 BUG_ON(!is_data && refs_to_drop != 1); 5652 5653 if (is_data) 5654 skinny_metadata = 0; 5655 5656 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5657 bytenr, num_bytes, parent, 5658 root_objectid, owner_objectid, 5659 owner_offset); 5660 if (ret == 0) { 5661 extent_slot = path->slots[0]; 5662 while (extent_slot >= 0) { 5663 btrfs_item_key_to_cpu(path->nodes[0], &key, 5664 extent_slot); 5665 if (key.objectid != bytenr) 5666 break; 5667 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5668 key.offset == num_bytes) { 5669 found_extent = 1; 5670 break; 5671 } 5672 if (key.type == BTRFS_METADATA_ITEM_KEY && 5673 key.offset == owner_objectid) { 5674 found_extent = 1; 5675 break; 5676 } 5677 if (path->slots[0] - extent_slot > 5) 5678 break; 5679 extent_slot--; 5680 } 5681 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5682 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5683 if (found_extent && item_size < sizeof(*ei)) 5684 found_extent = 0; 5685 #endif 5686 if (!found_extent) { 5687 BUG_ON(iref); 5688 ret = remove_extent_backref(trans, extent_root, path, 5689 NULL, refs_to_drop, 5690 is_data); 5691 if (ret) { 5692 btrfs_abort_transaction(trans, extent_root, ret); 5693 goto out; 5694 } 5695 btrfs_release_path(path); 5696 path->leave_spinning = 1; 5697 5698 key.objectid = bytenr; 5699 key.type = BTRFS_EXTENT_ITEM_KEY; 5700 key.offset = num_bytes; 5701 5702 if (!is_data && skinny_metadata) { 5703 key.type = BTRFS_METADATA_ITEM_KEY; 5704 key.offset = owner_objectid; 5705 } 5706 5707 ret = btrfs_search_slot(trans, extent_root, 5708 &key, path, -1, 1); 5709 if (ret > 0 && skinny_metadata && path->slots[0]) { 5710 /* 5711 * Couldn't find our skinny metadata item, 5712 * see if we have ye olde extent item. 5713 */ 5714 path->slots[0]--; 5715 btrfs_item_key_to_cpu(path->nodes[0], &key, 5716 path->slots[0]); 5717 if (key.objectid == bytenr && 5718 key.type == BTRFS_EXTENT_ITEM_KEY && 5719 key.offset == num_bytes) 5720 ret = 0; 5721 } 5722 5723 if (ret > 0 && skinny_metadata) { 5724 skinny_metadata = false; 5725 key.objectid = bytenr; 5726 key.type = BTRFS_EXTENT_ITEM_KEY; 5727 key.offset = num_bytes; 5728 btrfs_release_path(path); 5729 ret = btrfs_search_slot(trans, extent_root, 5730 &key, path, -1, 1); 5731 } 5732 5733 if (ret) { 5734 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5735 ret, bytenr); 5736 if (ret > 0) 5737 btrfs_print_leaf(extent_root, 5738 path->nodes[0]); 5739 } 5740 if (ret < 0) { 5741 btrfs_abort_transaction(trans, extent_root, ret); 5742 goto out; 5743 } 5744 extent_slot = path->slots[0]; 5745 } 5746 } else if (WARN_ON(ret == -ENOENT)) { 5747 btrfs_print_leaf(extent_root, path->nodes[0]); 5748 btrfs_err(info, 5749 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5750 bytenr, parent, root_objectid, owner_objectid, 5751 owner_offset); 5752 btrfs_abort_transaction(trans, extent_root, ret); 5753 goto out; 5754 } else { 5755 btrfs_abort_transaction(trans, extent_root, ret); 5756 goto out; 5757 } 5758 5759 leaf = path->nodes[0]; 5760 item_size = btrfs_item_size_nr(leaf, extent_slot); 5761 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5762 if (item_size < sizeof(*ei)) { 5763 BUG_ON(found_extent || extent_slot != path->slots[0]); 5764 ret = convert_extent_item_v0(trans, extent_root, path, 5765 owner_objectid, 0); 5766 if (ret < 0) { 5767 btrfs_abort_transaction(trans, extent_root, ret); 5768 goto out; 5769 } 5770 5771 btrfs_release_path(path); 5772 path->leave_spinning = 1; 5773 5774 key.objectid = bytenr; 5775 key.type = BTRFS_EXTENT_ITEM_KEY; 5776 key.offset = num_bytes; 5777 5778 ret = btrfs_search_slot(trans, extent_root, &key, path, 5779 -1, 1); 5780 if (ret) { 5781 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5782 ret, bytenr); 5783 btrfs_print_leaf(extent_root, path->nodes[0]); 5784 } 5785 if (ret < 0) { 5786 btrfs_abort_transaction(trans, extent_root, ret); 5787 goto out; 5788 } 5789 5790 extent_slot = path->slots[0]; 5791 leaf = path->nodes[0]; 5792 item_size = btrfs_item_size_nr(leaf, extent_slot); 5793 } 5794 #endif 5795 BUG_ON(item_size < sizeof(*ei)); 5796 ei = btrfs_item_ptr(leaf, extent_slot, 5797 struct btrfs_extent_item); 5798 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5799 key.type == BTRFS_EXTENT_ITEM_KEY) { 5800 struct btrfs_tree_block_info *bi; 5801 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5802 bi = (struct btrfs_tree_block_info *)(ei + 1); 5803 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5804 } 5805 5806 refs = btrfs_extent_refs(leaf, ei); 5807 if (refs < refs_to_drop) { 5808 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5809 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5810 ret = -EINVAL; 5811 btrfs_abort_transaction(trans, extent_root, ret); 5812 goto out; 5813 } 5814 refs -= refs_to_drop; 5815 5816 if (refs > 0) { 5817 if (extent_op) 5818 __run_delayed_extent_op(extent_op, leaf, ei); 5819 /* 5820 * In the case of inline back ref, reference count will 5821 * be updated by remove_extent_backref 5822 */ 5823 if (iref) { 5824 BUG_ON(!found_extent); 5825 } else { 5826 btrfs_set_extent_refs(leaf, ei, refs); 5827 btrfs_mark_buffer_dirty(leaf); 5828 } 5829 if (found_extent) { 5830 ret = remove_extent_backref(trans, extent_root, path, 5831 iref, refs_to_drop, 5832 is_data); 5833 if (ret) { 5834 btrfs_abort_transaction(trans, extent_root, ret); 5835 goto out; 5836 } 5837 } 5838 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5839 root_objectid); 5840 } else { 5841 if (found_extent) { 5842 BUG_ON(is_data && refs_to_drop != 5843 extent_data_ref_count(root, path, iref)); 5844 if (iref) { 5845 BUG_ON(path->slots[0] != extent_slot); 5846 } else { 5847 BUG_ON(path->slots[0] != extent_slot + 1); 5848 path->slots[0] = extent_slot; 5849 num_to_del = 2; 5850 } 5851 } 5852 5853 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5854 num_to_del); 5855 if (ret) { 5856 btrfs_abort_transaction(trans, extent_root, ret); 5857 goto out; 5858 } 5859 btrfs_release_path(path); 5860 5861 if (is_data) { 5862 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5863 if (ret) { 5864 btrfs_abort_transaction(trans, extent_root, ret); 5865 goto out; 5866 } 5867 } 5868 5869 ret = update_block_group(root, bytenr, num_bytes, 0); 5870 if (ret) { 5871 btrfs_abort_transaction(trans, extent_root, ret); 5872 goto out; 5873 } 5874 } 5875 out: 5876 btrfs_free_path(path); 5877 return ret; 5878 } 5879 5880 /* 5881 * when we free an block, it is possible (and likely) that we free the last 5882 * delayed ref for that extent as well. This searches the delayed ref tree for 5883 * a given extent, and if there are no other delayed refs to be processed, it 5884 * removes it from the tree. 5885 */ 5886 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5887 struct btrfs_root *root, u64 bytenr) 5888 { 5889 struct btrfs_delayed_ref_head *head; 5890 struct btrfs_delayed_ref_root *delayed_refs; 5891 int ret = 0; 5892 5893 delayed_refs = &trans->transaction->delayed_refs; 5894 spin_lock(&delayed_refs->lock); 5895 head = btrfs_find_delayed_ref_head(trans, bytenr); 5896 if (!head) 5897 goto out_delayed_unlock; 5898 5899 spin_lock(&head->lock); 5900 if (rb_first(&head->ref_root)) 5901 goto out; 5902 5903 if (head->extent_op) { 5904 if (!head->must_insert_reserved) 5905 goto out; 5906 btrfs_free_delayed_extent_op(head->extent_op); 5907 head->extent_op = NULL; 5908 } 5909 5910 /* 5911 * waiting for the lock here would deadlock. If someone else has it 5912 * locked they are already in the process of dropping it anyway 5913 */ 5914 if (!mutex_trylock(&head->mutex)) 5915 goto out; 5916 5917 /* 5918 * at this point we have a head with no other entries. Go 5919 * ahead and process it. 5920 */ 5921 head->node.in_tree = 0; 5922 rb_erase(&head->href_node, &delayed_refs->href_root); 5923 5924 atomic_dec(&delayed_refs->num_entries); 5925 5926 /* 5927 * we don't take a ref on the node because we're removing it from the 5928 * tree, so we just steal the ref the tree was holding. 5929 */ 5930 delayed_refs->num_heads--; 5931 if (head->processing == 0) 5932 delayed_refs->num_heads_ready--; 5933 head->processing = 0; 5934 spin_unlock(&head->lock); 5935 spin_unlock(&delayed_refs->lock); 5936 5937 BUG_ON(head->extent_op); 5938 if (head->must_insert_reserved) 5939 ret = 1; 5940 5941 mutex_unlock(&head->mutex); 5942 btrfs_put_delayed_ref(&head->node); 5943 return ret; 5944 out: 5945 spin_unlock(&head->lock); 5946 5947 out_delayed_unlock: 5948 spin_unlock(&delayed_refs->lock); 5949 return 0; 5950 } 5951 5952 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5953 struct btrfs_root *root, 5954 struct extent_buffer *buf, 5955 u64 parent, int last_ref) 5956 { 5957 struct btrfs_block_group_cache *cache = NULL; 5958 int pin = 1; 5959 int ret; 5960 5961 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5962 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5963 buf->start, buf->len, 5964 parent, root->root_key.objectid, 5965 btrfs_header_level(buf), 5966 BTRFS_DROP_DELAYED_REF, NULL, 0); 5967 BUG_ON(ret); /* -ENOMEM */ 5968 } 5969 5970 if (!last_ref) 5971 return; 5972 5973 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5974 5975 if (btrfs_header_generation(buf) == trans->transid) { 5976 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5977 ret = check_ref_cleanup(trans, root, buf->start); 5978 if (!ret) 5979 goto out; 5980 } 5981 5982 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5983 pin_down_extent(root, cache, buf->start, buf->len, 1); 5984 goto out; 5985 } 5986 5987 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5988 5989 btrfs_add_free_space(cache, buf->start, buf->len); 5990 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5991 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 5992 pin = 0; 5993 } 5994 out: 5995 if (pin) 5996 add_pinned_bytes(root->fs_info, buf->len, 5997 btrfs_header_level(buf), 5998 root->root_key.objectid); 5999 6000 /* 6001 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6002 * anymore. 6003 */ 6004 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6005 btrfs_put_block_group(cache); 6006 } 6007 6008 /* Can return -ENOMEM */ 6009 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6010 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6011 u64 owner, u64 offset, int for_cow) 6012 { 6013 int ret; 6014 struct btrfs_fs_info *fs_info = root->fs_info; 6015 6016 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6017 6018 /* 6019 * tree log blocks never actually go into the extent allocation 6020 * tree, just update pinning info and exit early. 6021 */ 6022 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6023 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6024 /* unlocks the pinned mutex */ 6025 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6026 ret = 0; 6027 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6028 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6029 num_bytes, 6030 parent, root_objectid, (int)owner, 6031 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6032 } else { 6033 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6034 num_bytes, 6035 parent, root_objectid, owner, 6036 offset, BTRFS_DROP_DELAYED_REF, 6037 NULL, for_cow); 6038 } 6039 return ret; 6040 } 6041 6042 static u64 stripe_align(struct btrfs_root *root, 6043 struct btrfs_block_group_cache *cache, 6044 u64 val, u64 num_bytes) 6045 { 6046 u64 ret = ALIGN(val, root->stripesize); 6047 return ret; 6048 } 6049 6050 /* 6051 * when we wait for progress in the block group caching, its because 6052 * our allocation attempt failed at least once. So, we must sleep 6053 * and let some progress happen before we try again. 6054 * 6055 * This function will sleep at least once waiting for new free space to 6056 * show up, and then it will check the block group free space numbers 6057 * for our min num_bytes. Another option is to have it go ahead 6058 * and look in the rbtree for a free extent of a given size, but this 6059 * is a good start. 6060 * 6061 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6062 * any of the information in this block group. 6063 */ 6064 static noinline void 6065 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6066 u64 num_bytes) 6067 { 6068 struct btrfs_caching_control *caching_ctl; 6069 6070 caching_ctl = get_caching_control(cache); 6071 if (!caching_ctl) 6072 return; 6073 6074 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6075 (cache->free_space_ctl->free_space >= num_bytes)); 6076 6077 put_caching_control(caching_ctl); 6078 } 6079 6080 static noinline int 6081 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6082 { 6083 struct btrfs_caching_control *caching_ctl; 6084 int ret = 0; 6085 6086 caching_ctl = get_caching_control(cache); 6087 if (!caching_ctl) 6088 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6089 6090 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6091 if (cache->cached == BTRFS_CACHE_ERROR) 6092 ret = -EIO; 6093 put_caching_control(caching_ctl); 6094 return ret; 6095 } 6096 6097 int __get_raid_index(u64 flags) 6098 { 6099 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6100 return BTRFS_RAID_RAID10; 6101 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6102 return BTRFS_RAID_RAID1; 6103 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6104 return BTRFS_RAID_DUP; 6105 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6106 return BTRFS_RAID_RAID0; 6107 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6108 return BTRFS_RAID_RAID5; 6109 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6110 return BTRFS_RAID_RAID6; 6111 6112 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6113 } 6114 6115 int get_block_group_index(struct btrfs_block_group_cache *cache) 6116 { 6117 return __get_raid_index(cache->flags); 6118 } 6119 6120 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6121 [BTRFS_RAID_RAID10] = "raid10", 6122 [BTRFS_RAID_RAID1] = "raid1", 6123 [BTRFS_RAID_DUP] = "dup", 6124 [BTRFS_RAID_RAID0] = "raid0", 6125 [BTRFS_RAID_SINGLE] = "single", 6126 [BTRFS_RAID_RAID5] = "raid5", 6127 [BTRFS_RAID_RAID6] = "raid6", 6128 }; 6129 6130 static const char *get_raid_name(enum btrfs_raid_types type) 6131 { 6132 if (type >= BTRFS_NR_RAID_TYPES) 6133 return NULL; 6134 6135 return btrfs_raid_type_names[type]; 6136 } 6137 6138 enum btrfs_loop_type { 6139 LOOP_CACHING_NOWAIT = 0, 6140 LOOP_CACHING_WAIT = 1, 6141 LOOP_ALLOC_CHUNK = 2, 6142 LOOP_NO_EMPTY_SIZE = 3, 6143 }; 6144 6145 /* 6146 * walks the btree of allocated extents and find a hole of a given size. 6147 * The key ins is changed to record the hole: 6148 * ins->objectid == start position 6149 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6150 * ins->offset == the size of the hole. 6151 * Any available blocks before search_start are skipped. 6152 * 6153 * If there is no suitable free space, we will record the max size of 6154 * the free space extent currently. 6155 */ 6156 static noinline int find_free_extent(struct btrfs_root *orig_root, 6157 u64 num_bytes, u64 empty_size, 6158 u64 hint_byte, struct btrfs_key *ins, 6159 u64 flags) 6160 { 6161 int ret = 0; 6162 struct btrfs_root *root = orig_root->fs_info->extent_root; 6163 struct btrfs_free_cluster *last_ptr = NULL; 6164 struct btrfs_block_group_cache *block_group = NULL; 6165 u64 search_start = 0; 6166 u64 max_extent_size = 0; 6167 int empty_cluster = 2 * 1024 * 1024; 6168 struct btrfs_space_info *space_info; 6169 int loop = 0; 6170 int index = __get_raid_index(flags); 6171 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6172 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6173 bool failed_cluster_refill = false; 6174 bool failed_alloc = false; 6175 bool use_cluster = true; 6176 bool have_caching_bg = false; 6177 6178 WARN_ON(num_bytes < root->sectorsize); 6179 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6180 ins->objectid = 0; 6181 ins->offset = 0; 6182 6183 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6184 6185 space_info = __find_space_info(root->fs_info, flags); 6186 if (!space_info) { 6187 btrfs_err(root->fs_info, "No space info for %llu", flags); 6188 return -ENOSPC; 6189 } 6190 6191 /* 6192 * If the space info is for both data and metadata it means we have a 6193 * small filesystem and we can't use the clustering stuff. 6194 */ 6195 if (btrfs_mixed_space_info(space_info)) 6196 use_cluster = false; 6197 6198 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6199 last_ptr = &root->fs_info->meta_alloc_cluster; 6200 if (!btrfs_test_opt(root, SSD)) 6201 empty_cluster = 64 * 1024; 6202 } 6203 6204 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6205 btrfs_test_opt(root, SSD)) { 6206 last_ptr = &root->fs_info->data_alloc_cluster; 6207 } 6208 6209 if (last_ptr) { 6210 spin_lock(&last_ptr->lock); 6211 if (last_ptr->block_group) 6212 hint_byte = last_ptr->window_start; 6213 spin_unlock(&last_ptr->lock); 6214 } 6215 6216 search_start = max(search_start, first_logical_byte(root, 0)); 6217 search_start = max(search_start, hint_byte); 6218 6219 if (!last_ptr) 6220 empty_cluster = 0; 6221 6222 if (search_start == hint_byte) { 6223 block_group = btrfs_lookup_block_group(root->fs_info, 6224 search_start); 6225 /* 6226 * we don't want to use the block group if it doesn't match our 6227 * allocation bits, or if its not cached. 6228 * 6229 * However if we are re-searching with an ideal block group 6230 * picked out then we don't care that the block group is cached. 6231 */ 6232 if (block_group && block_group_bits(block_group, flags) && 6233 block_group->cached != BTRFS_CACHE_NO) { 6234 down_read(&space_info->groups_sem); 6235 if (list_empty(&block_group->list) || 6236 block_group->ro) { 6237 /* 6238 * someone is removing this block group, 6239 * we can't jump into the have_block_group 6240 * target because our list pointers are not 6241 * valid 6242 */ 6243 btrfs_put_block_group(block_group); 6244 up_read(&space_info->groups_sem); 6245 } else { 6246 index = get_block_group_index(block_group); 6247 goto have_block_group; 6248 } 6249 } else if (block_group) { 6250 btrfs_put_block_group(block_group); 6251 } 6252 } 6253 search: 6254 have_caching_bg = false; 6255 down_read(&space_info->groups_sem); 6256 list_for_each_entry(block_group, &space_info->block_groups[index], 6257 list) { 6258 u64 offset; 6259 int cached; 6260 6261 btrfs_get_block_group(block_group); 6262 search_start = block_group->key.objectid; 6263 6264 /* 6265 * this can happen if we end up cycling through all the 6266 * raid types, but we want to make sure we only allocate 6267 * for the proper type. 6268 */ 6269 if (!block_group_bits(block_group, flags)) { 6270 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6271 BTRFS_BLOCK_GROUP_RAID1 | 6272 BTRFS_BLOCK_GROUP_RAID5 | 6273 BTRFS_BLOCK_GROUP_RAID6 | 6274 BTRFS_BLOCK_GROUP_RAID10; 6275 6276 /* 6277 * if they asked for extra copies and this block group 6278 * doesn't provide them, bail. This does allow us to 6279 * fill raid0 from raid1. 6280 */ 6281 if ((flags & extra) && !(block_group->flags & extra)) 6282 goto loop; 6283 } 6284 6285 have_block_group: 6286 cached = block_group_cache_done(block_group); 6287 if (unlikely(!cached)) { 6288 ret = cache_block_group(block_group, 0); 6289 BUG_ON(ret < 0); 6290 ret = 0; 6291 } 6292 6293 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6294 goto loop; 6295 if (unlikely(block_group->ro)) 6296 goto loop; 6297 6298 /* 6299 * Ok we want to try and use the cluster allocator, so 6300 * lets look there 6301 */ 6302 if (last_ptr) { 6303 struct btrfs_block_group_cache *used_block_group; 6304 unsigned long aligned_cluster; 6305 /* 6306 * the refill lock keeps out other 6307 * people trying to start a new cluster 6308 */ 6309 spin_lock(&last_ptr->refill_lock); 6310 used_block_group = last_ptr->block_group; 6311 if (used_block_group != block_group && 6312 (!used_block_group || 6313 used_block_group->ro || 6314 !block_group_bits(used_block_group, flags))) 6315 goto refill_cluster; 6316 6317 if (used_block_group != block_group) 6318 btrfs_get_block_group(used_block_group); 6319 6320 offset = btrfs_alloc_from_cluster(used_block_group, 6321 last_ptr, 6322 num_bytes, 6323 used_block_group->key.objectid, 6324 &max_extent_size); 6325 if (offset) { 6326 /* we have a block, we're done */ 6327 spin_unlock(&last_ptr->refill_lock); 6328 trace_btrfs_reserve_extent_cluster(root, 6329 used_block_group, 6330 search_start, num_bytes); 6331 if (used_block_group != block_group) { 6332 btrfs_put_block_group(block_group); 6333 block_group = used_block_group; 6334 } 6335 goto checks; 6336 } 6337 6338 WARN_ON(last_ptr->block_group != used_block_group); 6339 if (used_block_group != block_group) 6340 btrfs_put_block_group(used_block_group); 6341 refill_cluster: 6342 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6343 * set up a new clusters, so lets just skip it 6344 * and let the allocator find whatever block 6345 * it can find. If we reach this point, we 6346 * will have tried the cluster allocator 6347 * plenty of times and not have found 6348 * anything, so we are likely way too 6349 * fragmented for the clustering stuff to find 6350 * anything. 6351 * 6352 * However, if the cluster is taken from the 6353 * current block group, release the cluster 6354 * first, so that we stand a better chance of 6355 * succeeding in the unclustered 6356 * allocation. */ 6357 if (loop >= LOOP_NO_EMPTY_SIZE && 6358 last_ptr->block_group != block_group) { 6359 spin_unlock(&last_ptr->refill_lock); 6360 goto unclustered_alloc; 6361 } 6362 6363 /* 6364 * this cluster didn't work out, free it and 6365 * start over 6366 */ 6367 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6368 6369 if (loop >= LOOP_NO_EMPTY_SIZE) { 6370 spin_unlock(&last_ptr->refill_lock); 6371 goto unclustered_alloc; 6372 } 6373 6374 aligned_cluster = max_t(unsigned long, 6375 empty_cluster + empty_size, 6376 block_group->full_stripe_len); 6377 6378 /* allocate a cluster in this block group */ 6379 ret = btrfs_find_space_cluster(root, block_group, 6380 last_ptr, search_start, 6381 num_bytes, 6382 aligned_cluster); 6383 if (ret == 0) { 6384 /* 6385 * now pull our allocation out of this 6386 * cluster 6387 */ 6388 offset = btrfs_alloc_from_cluster(block_group, 6389 last_ptr, 6390 num_bytes, 6391 search_start, 6392 &max_extent_size); 6393 if (offset) { 6394 /* we found one, proceed */ 6395 spin_unlock(&last_ptr->refill_lock); 6396 trace_btrfs_reserve_extent_cluster(root, 6397 block_group, search_start, 6398 num_bytes); 6399 goto checks; 6400 } 6401 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6402 && !failed_cluster_refill) { 6403 spin_unlock(&last_ptr->refill_lock); 6404 6405 failed_cluster_refill = true; 6406 wait_block_group_cache_progress(block_group, 6407 num_bytes + empty_cluster + empty_size); 6408 goto have_block_group; 6409 } 6410 6411 /* 6412 * at this point we either didn't find a cluster 6413 * or we weren't able to allocate a block from our 6414 * cluster. Free the cluster we've been trying 6415 * to use, and go to the next block group 6416 */ 6417 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6418 spin_unlock(&last_ptr->refill_lock); 6419 goto loop; 6420 } 6421 6422 unclustered_alloc: 6423 spin_lock(&block_group->free_space_ctl->tree_lock); 6424 if (cached && 6425 block_group->free_space_ctl->free_space < 6426 num_bytes + empty_cluster + empty_size) { 6427 if (block_group->free_space_ctl->free_space > 6428 max_extent_size) 6429 max_extent_size = 6430 block_group->free_space_ctl->free_space; 6431 spin_unlock(&block_group->free_space_ctl->tree_lock); 6432 goto loop; 6433 } 6434 spin_unlock(&block_group->free_space_ctl->tree_lock); 6435 6436 offset = btrfs_find_space_for_alloc(block_group, search_start, 6437 num_bytes, empty_size, 6438 &max_extent_size); 6439 /* 6440 * If we didn't find a chunk, and we haven't failed on this 6441 * block group before, and this block group is in the middle of 6442 * caching and we are ok with waiting, then go ahead and wait 6443 * for progress to be made, and set failed_alloc to true. 6444 * 6445 * If failed_alloc is true then we've already waited on this 6446 * block group once and should move on to the next block group. 6447 */ 6448 if (!offset && !failed_alloc && !cached && 6449 loop > LOOP_CACHING_NOWAIT) { 6450 wait_block_group_cache_progress(block_group, 6451 num_bytes + empty_size); 6452 failed_alloc = true; 6453 goto have_block_group; 6454 } else if (!offset) { 6455 if (!cached) 6456 have_caching_bg = true; 6457 goto loop; 6458 } 6459 checks: 6460 search_start = stripe_align(root, block_group, 6461 offset, num_bytes); 6462 6463 /* move on to the next group */ 6464 if (search_start + num_bytes > 6465 block_group->key.objectid + block_group->key.offset) { 6466 btrfs_add_free_space(block_group, offset, num_bytes); 6467 goto loop; 6468 } 6469 6470 if (offset < search_start) 6471 btrfs_add_free_space(block_group, offset, 6472 search_start - offset); 6473 BUG_ON(offset > search_start); 6474 6475 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 6476 alloc_type); 6477 if (ret == -EAGAIN) { 6478 btrfs_add_free_space(block_group, offset, num_bytes); 6479 goto loop; 6480 } 6481 6482 /* we are all good, lets return */ 6483 ins->objectid = search_start; 6484 ins->offset = num_bytes; 6485 6486 trace_btrfs_reserve_extent(orig_root, block_group, 6487 search_start, num_bytes); 6488 btrfs_put_block_group(block_group); 6489 break; 6490 loop: 6491 failed_cluster_refill = false; 6492 failed_alloc = false; 6493 BUG_ON(index != get_block_group_index(block_group)); 6494 btrfs_put_block_group(block_group); 6495 } 6496 up_read(&space_info->groups_sem); 6497 6498 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6499 goto search; 6500 6501 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6502 goto search; 6503 6504 /* 6505 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6506 * caching kthreads as we move along 6507 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6508 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6509 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6510 * again 6511 */ 6512 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6513 index = 0; 6514 loop++; 6515 if (loop == LOOP_ALLOC_CHUNK) { 6516 struct btrfs_trans_handle *trans; 6517 6518 trans = btrfs_join_transaction(root); 6519 if (IS_ERR(trans)) { 6520 ret = PTR_ERR(trans); 6521 goto out; 6522 } 6523 6524 ret = do_chunk_alloc(trans, root, flags, 6525 CHUNK_ALLOC_FORCE); 6526 /* 6527 * Do not bail out on ENOSPC since we 6528 * can do more things. 6529 */ 6530 if (ret < 0 && ret != -ENOSPC) 6531 btrfs_abort_transaction(trans, 6532 root, ret); 6533 else 6534 ret = 0; 6535 btrfs_end_transaction(trans, root); 6536 if (ret) 6537 goto out; 6538 } 6539 6540 if (loop == LOOP_NO_EMPTY_SIZE) { 6541 empty_size = 0; 6542 empty_cluster = 0; 6543 } 6544 6545 goto search; 6546 } else if (!ins->objectid) { 6547 ret = -ENOSPC; 6548 } else if (ins->objectid) { 6549 ret = 0; 6550 } 6551 out: 6552 if (ret == -ENOSPC) 6553 ins->offset = max_extent_size; 6554 return ret; 6555 } 6556 6557 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6558 int dump_block_groups) 6559 { 6560 struct btrfs_block_group_cache *cache; 6561 int index = 0; 6562 6563 spin_lock(&info->lock); 6564 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 6565 info->flags, 6566 info->total_bytes - info->bytes_used - info->bytes_pinned - 6567 info->bytes_reserved - info->bytes_readonly, 6568 (info->full) ? "" : "not "); 6569 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 6570 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6571 info->total_bytes, info->bytes_used, info->bytes_pinned, 6572 info->bytes_reserved, info->bytes_may_use, 6573 info->bytes_readonly); 6574 spin_unlock(&info->lock); 6575 6576 if (!dump_block_groups) 6577 return; 6578 6579 down_read(&info->groups_sem); 6580 again: 6581 list_for_each_entry(cache, &info->block_groups[index], list) { 6582 spin_lock(&cache->lock); 6583 printk(KERN_INFO "BTRFS: " 6584 "block group %llu has %llu bytes, " 6585 "%llu used %llu pinned %llu reserved %s\n", 6586 cache->key.objectid, cache->key.offset, 6587 btrfs_block_group_used(&cache->item), cache->pinned, 6588 cache->reserved, cache->ro ? "[readonly]" : ""); 6589 btrfs_dump_free_space(cache, bytes); 6590 spin_unlock(&cache->lock); 6591 } 6592 if (++index < BTRFS_NR_RAID_TYPES) 6593 goto again; 6594 up_read(&info->groups_sem); 6595 } 6596 6597 int btrfs_reserve_extent(struct btrfs_root *root, 6598 u64 num_bytes, u64 min_alloc_size, 6599 u64 empty_size, u64 hint_byte, 6600 struct btrfs_key *ins, int is_data) 6601 { 6602 bool final_tried = false; 6603 u64 flags; 6604 int ret; 6605 6606 flags = btrfs_get_alloc_profile(root, is_data); 6607 again: 6608 WARN_ON(num_bytes < root->sectorsize); 6609 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6610 flags); 6611 6612 if (ret == -ENOSPC) { 6613 if (!final_tried && ins->offset) { 6614 num_bytes = min(num_bytes >> 1, ins->offset); 6615 num_bytes = round_down(num_bytes, root->sectorsize); 6616 num_bytes = max(num_bytes, min_alloc_size); 6617 if (num_bytes == min_alloc_size) 6618 final_tried = true; 6619 goto again; 6620 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6621 struct btrfs_space_info *sinfo; 6622 6623 sinfo = __find_space_info(root->fs_info, flags); 6624 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6625 flags, num_bytes); 6626 if (sinfo) 6627 dump_space_info(sinfo, num_bytes, 1); 6628 } 6629 } 6630 6631 return ret; 6632 } 6633 6634 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6635 u64 start, u64 len, int pin) 6636 { 6637 struct btrfs_block_group_cache *cache; 6638 int ret = 0; 6639 6640 cache = btrfs_lookup_block_group(root->fs_info, start); 6641 if (!cache) { 6642 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6643 start); 6644 return -ENOSPC; 6645 } 6646 6647 if (btrfs_test_opt(root, DISCARD)) 6648 ret = btrfs_discard_extent(root, start, len, NULL); 6649 6650 if (pin) 6651 pin_down_extent(root, cache, start, len, 1); 6652 else { 6653 btrfs_add_free_space(cache, start, len); 6654 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6655 } 6656 btrfs_put_block_group(cache); 6657 6658 trace_btrfs_reserved_extent_free(root, start, len); 6659 6660 return ret; 6661 } 6662 6663 int btrfs_free_reserved_extent(struct btrfs_root *root, 6664 u64 start, u64 len) 6665 { 6666 return __btrfs_free_reserved_extent(root, start, len, 0); 6667 } 6668 6669 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6670 u64 start, u64 len) 6671 { 6672 return __btrfs_free_reserved_extent(root, start, len, 1); 6673 } 6674 6675 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6676 struct btrfs_root *root, 6677 u64 parent, u64 root_objectid, 6678 u64 flags, u64 owner, u64 offset, 6679 struct btrfs_key *ins, int ref_mod) 6680 { 6681 int ret; 6682 struct btrfs_fs_info *fs_info = root->fs_info; 6683 struct btrfs_extent_item *extent_item; 6684 struct btrfs_extent_inline_ref *iref; 6685 struct btrfs_path *path; 6686 struct extent_buffer *leaf; 6687 int type; 6688 u32 size; 6689 6690 if (parent > 0) 6691 type = BTRFS_SHARED_DATA_REF_KEY; 6692 else 6693 type = BTRFS_EXTENT_DATA_REF_KEY; 6694 6695 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6696 6697 path = btrfs_alloc_path(); 6698 if (!path) 6699 return -ENOMEM; 6700 6701 path->leave_spinning = 1; 6702 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6703 ins, size); 6704 if (ret) { 6705 btrfs_free_path(path); 6706 return ret; 6707 } 6708 6709 leaf = path->nodes[0]; 6710 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6711 struct btrfs_extent_item); 6712 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6713 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6714 btrfs_set_extent_flags(leaf, extent_item, 6715 flags | BTRFS_EXTENT_FLAG_DATA); 6716 6717 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6718 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6719 if (parent > 0) { 6720 struct btrfs_shared_data_ref *ref; 6721 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6722 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6723 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6724 } else { 6725 struct btrfs_extent_data_ref *ref; 6726 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6727 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6728 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6729 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6730 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6731 } 6732 6733 btrfs_mark_buffer_dirty(path->nodes[0]); 6734 btrfs_free_path(path); 6735 6736 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6737 if (ret) { /* -ENOENT, logic error */ 6738 btrfs_err(fs_info, "update block group failed for %llu %llu", 6739 ins->objectid, ins->offset); 6740 BUG(); 6741 } 6742 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6743 return ret; 6744 } 6745 6746 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6747 struct btrfs_root *root, 6748 u64 parent, u64 root_objectid, 6749 u64 flags, struct btrfs_disk_key *key, 6750 int level, struct btrfs_key *ins) 6751 { 6752 int ret; 6753 struct btrfs_fs_info *fs_info = root->fs_info; 6754 struct btrfs_extent_item *extent_item; 6755 struct btrfs_tree_block_info *block_info; 6756 struct btrfs_extent_inline_ref *iref; 6757 struct btrfs_path *path; 6758 struct extent_buffer *leaf; 6759 u32 size = sizeof(*extent_item) + sizeof(*iref); 6760 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6761 SKINNY_METADATA); 6762 6763 if (!skinny_metadata) 6764 size += sizeof(*block_info); 6765 6766 path = btrfs_alloc_path(); 6767 if (!path) { 6768 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6769 root->leafsize); 6770 return -ENOMEM; 6771 } 6772 6773 path->leave_spinning = 1; 6774 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6775 ins, size); 6776 if (ret) { 6777 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6778 root->leafsize); 6779 btrfs_free_path(path); 6780 return ret; 6781 } 6782 6783 leaf = path->nodes[0]; 6784 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6785 struct btrfs_extent_item); 6786 btrfs_set_extent_refs(leaf, extent_item, 1); 6787 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6788 btrfs_set_extent_flags(leaf, extent_item, 6789 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6790 6791 if (skinny_metadata) { 6792 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6793 } else { 6794 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6795 btrfs_set_tree_block_key(leaf, block_info, key); 6796 btrfs_set_tree_block_level(leaf, block_info, level); 6797 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6798 } 6799 6800 if (parent > 0) { 6801 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6802 btrfs_set_extent_inline_ref_type(leaf, iref, 6803 BTRFS_SHARED_BLOCK_REF_KEY); 6804 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6805 } else { 6806 btrfs_set_extent_inline_ref_type(leaf, iref, 6807 BTRFS_TREE_BLOCK_REF_KEY); 6808 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6809 } 6810 6811 btrfs_mark_buffer_dirty(leaf); 6812 btrfs_free_path(path); 6813 6814 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6815 if (ret) { /* -ENOENT, logic error */ 6816 btrfs_err(fs_info, "update block group failed for %llu %llu", 6817 ins->objectid, ins->offset); 6818 BUG(); 6819 } 6820 6821 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize); 6822 return ret; 6823 } 6824 6825 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6826 struct btrfs_root *root, 6827 u64 root_objectid, u64 owner, 6828 u64 offset, struct btrfs_key *ins) 6829 { 6830 int ret; 6831 6832 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6833 6834 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6835 ins->offset, 0, 6836 root_objectid, owner, offset, 6837 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6838 return ret; 6839 } 6840 6841 /* 6842 * this is used by the tree logging recovery code. It records that 6843 * an extent has been allocated and makes sure to clear the free 6844 * space cache bits as well 6845 */ 6846 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6847 struct btrfs_root *root, 6848 u64 root_objectid, u64 owner, u64 offset, 6849 struct btrfs_key *ins) 6850 { 6851 int ret; 6852 struct btrfs_block_group_cache *block_group; 6853 6854 /* 6855 * Mixed block groups will exclude before processing the log so we only 6856 * need to do the exlude dance if this fs isn't mixed. 6857 */ 6858 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6859 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6860 if (ret) 6861 return ret; 6862 } 6863 6864 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6865 if (!block_group) 6866 return -EINVAL; 6867 6868 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6869 RESERVE_ALLOC_NO_ACCOUNT); 6870 BUG_ON(ret); /* logic error */ 6871 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6872 0, owner, offset, ins, 1); 6873 btrfs_put_block_group(block_group); 6874 return ret; 6875 } 6876 6877 static struct extent_buffer * 6878 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6879 u64 bytenr, u32 blocksize, int level) 6880 { 6881 struct extent_buffer *buf; 6882 6883 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6884 if (!buf) 6885 return ERR_PTR(-ENOMEM); 6886 btrfs_set_header_generation(buf, trans->transid); 6887 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6888 btrfs_tree_lock(buf); 6889 clean_tree_block(trans, root, buf); 6890 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6891 6892 btrfs_set_lock_blocking(buf); 6893 btrfs_set_buffer_uptodate(buf); 6894 6895 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6896 /* 6897 * we allow two log transactions at a time, use different 6898 * EXENT bit to differentiate dirty pages. 6899 */ 6900 if (root->log_transid % 2 == 0) 6901 set_extent_dirty(&root->dirty_log_pages, buf->start, 6902 buf->start + buf->len - 1, GFP_NOFS); 6903 else 6904 set_extent_new(&root->dirty_log_pages, buf->start, 6905 buf->start + buf->len - 1, GFP_NOFS); 6906 } else { 6907 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6908 buf->start + buf->len - 1, GFP_NOFS); 6909 } 6910 trans->blocks_used++; 6911 /* this returns a buffer locked for blocking */ 6912 return buf; 6913 } 6914 6915 static struct btrfs_block_rsv * 6916 use_block_rsv(struct btrfs_trans_handle *trans, 6917 struct btrfs_root *root, u32 blocksize) 6918 { 6919 struct btrfs_block_rsv *block_rsv; 6920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6921 int ret; 6922 bool global_updated = false; 6923 6924 block_rsv = get_block_rsv(trans, root); 6925 6926 if (unlikely(block_rsv->size == 0)) 6927 goto try_reserve; 6928 again: 6929 ret = block_rsv_use_bytes(block_rsv, blocksize); 6930 if (!ret) 6931 return block_rsv; 6932 6933 if (block_rsv->failfast) 6934 return ERR_PTR(ret); 6935 6936 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6937 global_updated = true; 6938 update_global_block_rsv(root->fs_info); 6939 goto again; 6940 } 6941 6942 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6943 static DEFINE_RATELIMIT_STATE(_rs, 6944 DEFAULT_RATELIMIT_INTERVAL * 10, 6945 /*DEFAULT_RATELIMIT_BURST*/ 1); 6946 if (__ratelimit(&_rs)) 6947 WARN(1, KERN_DEBUG 6948 "BTRFS: block rsv returned %d\n", ret); 6949 } 6950 try_reserve: 6951 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6952 BTRFS_RESERVE_NO_FLUSH); 6953 if (!ret) 6954 return block_rsv; 6955 /* 6956 * If we couldn't reserve metadata bytes try and use some from 6957 * the global reserve if its space type is the same as the global 6958 * reservation. 6959 */ 6960 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6961 block_rsv->space_info == global_rsv->space_info) { 6962 ret = block_rsv_use_bytes(global_rsv, blocksize); 6963 if (!ret) 6964 return global_rsv; 6965 } 6966 return ERR_PTR(ret); 6967 } 6968 6969 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6970 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6971 { 6972 block_rsv_add_bytes(block_rsv, blocksize, 0); 6973 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6974 } 6975 6976 /* 6977 * finds a free extent and does all the dirty work required for allocation 6978 * returns the key for the extent through ins, and a tree buffer for 6979 * the first block of the extent through buf. 6980 * 6981 * returns the tree buffer or NULL. 6982 */ 6983 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6984 struct btrfs_root *root, u32 blocksize, 6985 u64 parent, u64 root_objectid, 6986 struct btrfs_disk_key *key, int level, 6987 u64 hint, u64 empty_size) 6988 { 6989 struct btrfs_key ins; 6990 struct btrfs_block_rsv *block_rsv; 6991 struct extent_buffer *buf; 6992 u64 flags = 0; 6993 int ret; 6994 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6995 SKINNY_METADATA); 6996 6997 block_rsv = use_block_rsv(trans, root, blocksize); 6998 if (IS_ERR(block_rsv)) 6999 return ERR_CAST(block_rsv); 7000 7001 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7002 empty_size, hint, &ins, 0); 7003 if (ret) { 7004 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7005 return ERR_PTR(ret); 7006 } 7007 7008 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7009 blocksize, level); 7010 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7011 7012 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7013 if (parent == 0) 7014 parent = ins.objectid; 7015 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7016 } else 7017 BUG_ON(parent > 0); 7018 7019 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7020 struct btrfs_delayed_extent_op *extent_op; 7021 extent_op = btrfs_alloc_delayed_extent_op(); 7022 BUG_ON(!extent_op); /* -ENOMEM */ 7023 if (key) 7024 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7025 else 7026 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7027 extent_op->flags_to_set = flags; 7028 if (skinny_metadata) 7029 extent_op->update_key = 0; 7030 else 7031 extent_op->update_key = 1; 7032 extent_op->update_flags = 1; 7033 extent_op->is_data = 0; 7034 extent_op->level = level; 7035 7036 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7037 ins.objectid, 7038 ins.offset, parent, root_objectid, 7039 level, BTRFS_ADD_DELAYED_EXTENT, 7040 extent_op, 0); 7041 BUG_ON(ret); /* -ENOMEM */ 7042 } 7043 return buf; 7044 } 7045 7046 struct walk_control { 7047 u64 refs[BTRFS_MAX_LEVEL]; 7048 u64 flags[BTRFS_MAX_LEVEL]; 7049 struct btrfs_key update_progress; 7050 int stage; 7051 int level; 7052 int shared_level; 7053 int update_ref; 7054 int keep_locks; 7055 int reada_slot; 7056 int reada_count; 7057 int for_reloc; 7058 }; 7059 7060 #define DROP_REFERENCE 1 7061 #define UPDATE_BACKREF 2 7062 7063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7064 struct btrfs_root *root, 7065 struct walk_control *wc, 7066 struct btrfs_path *path) 7067 { 7068 u64 bytenr; 7069 u64 generation; 7070 u64 refs; 7071 u64 flags; 7072 u32 nritems; 7073 u32 blocksize; 7074 struct btrfs_key key; 7075 struct extent_buffer *eb; 7076 int ret; 7077 int slot; 7078 int nread = 0; 7079 7080 if (path->slots[wc->level] < wc->reada_slot) { 7081 wc->reada_count = wc->reada_count * 2 / 3; 7082 wc->reada_count = max(wc->reada_count, 2); 7083 } else { 7084 wc->reada_count = wc->reada_count * 3 / 2; 7085 wc->reada_count = min_t(int, wc->reada_count, 7086 BTRFS_NODEPTRS_PER_BLOCK(root)); 7087 } 7088 7089 eb = path->nodes[wc->level]; 7090 nritems = btrfs_header_nritems(eb); 7091 blocksize = btrfs_level_size(root, wc->level - 1); 7092 7093 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7094 if (nread >= wc->reada_count) 7095 break; 7096 7097 cond_resched(); 7098 bytenr = btrfs_node_blockptr(eb, slot); 7099 generation = btrfs_node_ptr_generation(eb, slot); 7100 7101 if (slot == path->slots[wc->level]) 7102 goto reada; 7103 7104 if (wc->stage == UPDATE_BACKREF && 7105 generation <= root->root_key.offset) 7106 continue; 7107 7108 /* We don't lock the tree block, it's OK to be racy here */ 7109 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7110 wc->level - 1, 1, &refs, 7111 &flags); 7112 /* We don't care about errors in readahead. */ 7113 if (ret < 0) 7114 continue; 7115 BUG_ON(refs == 0); 7116 7117 if (wc->stage == DROP_REFERENCE) { 7118 if (refs == 1) 7119 goto reada; 7120 7121 if (wc->level == 1 && 7122 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7123 continue; 7124 if (!wc->update_ref || 7125 generation <= root->root_key.offset) 7126 continue; 7127 btrfs_node_key_to_cpu(eb, &key, slot); 7128 ret = btrfs_comp_cpu_keys(&key, 7129 &wc->update_progress); 7130 if (ret < 0) 7131 continue; 7132 } else { 7133 if (wc->level == 1 && 7134 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7135 continue; 7136 } 7137 reada: 7138 ret = readahead_tree_block(root, bytenr, blocksize, 7139 generation); 7140 if (ret) 7141 break; 7142 nread++; 7143 } 7144 wc->reada_slot = slot; 7145 } 7146 7147 /* 7148 * helper to process tree block while walking down the tree. 7149 * 7150 * when wc->stage == UPDATE_BACKREF, this function updates 7151 * back refs for pointers in the block. 7152 * 7153 * NOTE: return value 1 means we should stop walking down. 7154 */ 7155 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7156 struct btrfs_root *root, 7157 struct btrfs_path *path, 7158 struct walk_control *wc, int lookup_info) 7159 { 7160 int level = wc->level; 7161 struct extent_buffer *eb = path->nodes[level]; 7162 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7163 int ret; 7164 7165 if (wc->stage == UPDATE_BACKREF && 7166 btrfs_header_owner(eb) != root->root_key.objectid) 7167 return 1; 7168 7169 /* 7170 * when reference count of tree block is 1, it won't increase 7171 * again. once full backref flag is set, we never clear it. 7172 */ 7173 if (lookup_info && 7174 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7175 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7176 BUG_ON(!path->locks[level]); 7177 ret = btrfs_lookup_extent_info(trans, root, 7178 eb->start, level, 1, 7179 &wc->refs[level], 7180 &wc->flags[level]); 7181 BUG_ON(ret == -ENOMEM); 7182 if (ret) 7183 return ret; 7184 BUG_ON(wc->refs[level] == 0); 7185 } 7186 7187 if (wc->stage == DROP_REFERENCE) { 7188 if (wc->refs[level] > 1) 7189 return 1; 7190 7191 if (path->locks[level] && !wc->keep_locks) { 7192 btrfs_tree_unlock_rw(eb, path->locks[level]); 7193 path->locks[level] = 0; 7194 } 7195 return 0; 7196 } 7197 7198 /* wc->stage == UPDATE_BACKREF */ 7199 if (!(wc->flags[level] & flag)) { 7200 BUG_ON(!path->locks[level]); 7201 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7202 BUG_ON(ret); /* -ENOMEM */ 7203 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7204 BUG_ON(ret); /* -ENOMEM */ 7205 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7206 eb->len, flag, 7207 btrfs_header_level(eb), 0); 7208 BUG_ON(ret); /* -ENOMEM */ 7209 wc->flags[level] |= flag; 7210 } 7211 7212 /* 7213 * the block is shared by multiple trees, so it's not good to 7214 * keep the tree lock 7215 */ 7216 if (path->locks[level] && level > 0) { 7217 btrfs_tree_unlock_rw(eb, path->locks[level]); 7218 path->locks[level] = 0; 7219 } 7220 return 0; 7221 } 7222 7223 /* 7224 * helper to process tree block pointer. 7225 * 7226 * when wc->stage == DROP_REFERENCE, this function checks 7227 * reference count of the block pointed to. if the block 7228 * is shared and we need update back refs for the subtree 7229 * rooted at the block, this function changes wc->stage to 7230 * UPDATE_BACKREF. if the block is shared and there is no 7231 * need to update back, this function drops the reference 7232 * to the block. 7233 * 7234 * NOTE: return value 1 means we should stop walking down. 7235 */ 7236 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7237 struct btrfs_root *root, 7238 struct btrfs_path *path, 7239 struct walk_control *wc, int *lookup_info) 7240 { 7241 u64 bytenr; 7242 u64 generation; 7243 u64 parent; 7244 u32 blocksize; 7245 struct btrfs_key key; 7246 struct extent_buffer *next; 7247 int level = wc->level; 7248 int reada = 0; 7249 int ret = 0; 7250 7251 generation = btrfs_node_ptr_generation(path->nodes[level], 7252 path->slots[level]); 7253 /* 7254 * if the lower level block was created before the snapshot 7255 * was created, we know there is no need to update back refs 7256 * for the subtree 7257 */ 7258 if (wc->stage == UPDATE_BACKREF && 7259 generation <= root->root_key.offset) { 7260 *lookup_info = 1; 7261 return 1; 7262 } 7263 7264 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7265 blocksize = btrfs_level_size(root, level - 1); 7266 7267 next = btrfs_find_tree_block(root, bytenr, blocksize); 7268 if (!next) { 7269 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7270 if (!next) 7271 return -ENOMEM; 7272 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7273 level - 1); 7274 reada = 1; 7275 } 7276 btrfs_tree_lock(next); 7277 btrfs_set_lock_blocking(next); 7278 7279 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7280 &wc->refs[level - 1], 7281 &wc->flags[level - 1]); 7282 if (ret < 0) { 7283 btrfs_tree_unlock(next); 7284 return ret; 7285 } 7286 7287 if (unlikely(wc->refs[level - 1] == 0)) { 7288 btrfs_err(root->fs_info, "Missing references."); 7289 BUG(); 7290 } 7291 *lookup_info = 0; 7292 7293 if (wc->stage == DROP_REFERENCE) { 7294 if (wc->refs[level - 1] > 1) { 7295 if (level == 1 && 7296 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7297 goto skip; 7298 7299 if (!wc->update_ref || 7300 generation <= root->root_key.offset) 7301 goto skip; 7302 7303 btrfs_node_key_to_cpu(path->nodes[level], &key, 7304 path->slots[level]); 7305 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7306 if (ret < 0) 7307 goto skip; 7308 7309 wc->stage = UPDATE_BACKREF; 7310 wc->shared_level = level - 1; 7311 } 7312 } else { 7313 if (level == 1 && 7314 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7315 goto skip; 7316 } 7317 7318 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7319 btrfs_tree_unlock(next); 7320 free_extent_buffer(next); 7321 next = NULL; 7322 *lookup_info = 1; 7323 } 7324 7325 if (!next) { 7326 if (reada && level == 1) 7327 reada_walk_down(trans, root, wc, path); 7328 next = read_tree_block(root, bytenr, blocksize, generation); 7329 if (!next || !extent_buffer_uptodate(next)) { 7330 free_extent_buffer(next); 7331 return -EIO; 7332 } 7333 btrfs_tree_lock(next); 7334 btrfs_set_lock_blocking(next); 7335 } 7336 7337 level--; 7338 BUG_ON(level != btrfs_header_level(next)); 7339 path->nodes[level] = next; 7340 path->slots[level] = 0; 7341 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7342 wc->level = level; 7343 if (wc->level == 1) 7344 wc->reada_slot = 0; 7345 return 0; 7346 skip: 7347 wc->refs[level - 1] = 0; 7348 wc->flags[level - 1] = 0; 7349 if (wc->stage == DROP_REFERENCE) { 7350 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7351 parent = path->nodes[level]->start; 7352 } else { 7353 BUG_ON(root->root_key.objectid != 7354 btrfs_header_owner(path->nodes[level])); 7355 parent = 0; 7356 } 7357 7358 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7359 root->root_key.objectid, level - 1, 0, 0); 7360 BUG_ON(ret); /* -ENOMEM */ 7361 } 7362 btrfs_tree_unlock(next); 7363 free_extent_buffer(next); 7364 *lookup_info = 1; 7365 return 1; 7366 } 7367 7368 /* 7369 * helper to process tree block while walking up the tree. 7370 * 7371 * when wc->stage == DROP_REFERENCE, this function drops 7372 * reference count on the block. 7373 * 7374 * when wc->stage == UPDATE_BACKREF, this function changes 7375 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7376 * to UPDATE_BACKREF previously while processing the block. 7377 * 7378 * NOTE: return value 1 means we should stop walking up. 7379 */ 7380 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7381 struct btrfs_root *root, 7382 struct btrfs_path *path, 7383 struct walk_control *wc) 7384 { 7385 int ret; 7386 int level = wc->level; 7387 struct extent_buffer *eb = path->nodes[level]; 7388 u64 parent = 0; 7389 7390 if (wc->stage == UPDATE_BACKREF) { 7391 BUG_ON(wc->shared_level < level); 7392 if (level < wc->shared_level) 7393 goto out; 7394 7395 ret = find_next_key(path, level + 1, &wc->update_progress); 7396 if (ret > 0) 7397 wc->update_ref = 0; 7398 7399 wc->stage = DROP_REFERENCE; 7400 wc->shared_level = -1; 7401 path->slots[level] = 0; 7402 7403 /* 7404 * check reference count again if the block isn't locked. 7405 * we should start walking down the tree again if reference 7406 * count is one. 7407 */ 7408 if (!path->locks[level]) { 7409 BUG_ON(level == 0); 7410 btrfs_tree_lock(eb); 7411 btrfs_set_lock_blocking(eb); 7412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7413 7414 ret = btrfs_lookup_extent_info(trans, root, 7415 eb->start, level, 1, 7416 &wc->refs[level], 7417 &wc->flags[level]); 7418 if (ret < 0) { 7419 btrfs_tree_unlock_rw(eb, path->locks[level]); 7420 path->locks[level] = 0; 7421 return ret; 7422 } 7423 BUG_ON(wc->refs[level] == 0); 7424 if (wc->refs[level] == 1) { 7425 btrfs_tree_unlock_rw(eb, path->locks[level]); 7426 path->locks[level] = 0; 7427 return 1; 7428 } 7429 } 7430 } 7431 7432 /* wc->stage == DROP_REFERENCE */ 7433 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7434 7435 if (wc->refs[level] == 1) { 7436 if (level == 0) { 7437 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7438 ret = btrfs_dec_ref(trans, root, eb, 1, 7439 wc->for_reloc); 7440 else 7441 ret = btrfs_dec_ref(trans, root, eb, 0, 7442 wc->for_reloc); 7443 BUG_ON(ret); /* -ENOMEM */ 7444 } 7445 /* make block locked assertion in clean_tree_block happy */ 7446 if (!path->locks[level] && 7447 btrfs_header_generation(eb) == trans->transid) { 7448 btrfs_tree_lock(eb); 7449 btrfs_set_lock_blocking(eb); 7450 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7451 } 7452 clean_tree_block(trans, root, eb); 7453 } 7454 7455 if (eb == root->node) { 7456 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7457 parent = eb->start; 7458 else 7459 BUG_ON(root->root_key.objectid != 7460 btrfs_header_owner(eb)); 7461 } else { 7462 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7463 parent = path->nodes[level + 1]->start; 7464 else 7465 BUG_ON(root->root_key.objectid != 7466 btrfs_header_owner(path->nodes[level + 1])); 7467 } 7468 7469 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7470 out: 7471 wc->refs[level] = 0; 7472 wc->flags[level] = 0; 7473 return 0; 7474 } 7475 7476 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7477 struct btrfs_root *root, 7478 struct btrfs_path *path, 7479 struct walk_control *wc) 7480 { 7481 int level = wc->level; 7482 int lookup_info = 1; 7483 int ret; 7484 7485 while (level >= 0) { 7486 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7487 if (ret > 0) 7488 break; 7489 7490 if (level == 0) 7491 break; 7492 7493 if (path->slots[level] >= 7494 btrfs_header_nritems(path->nodes[level])) 7495 break; 7496 7497 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7498 if (ret > 0) { 7499 path->slots[level]++; 7500 continue; 7501 } else if (ret < 0) 7502 return ret; 7503 level = wc->level; 7504 } 7505 return 0; 7506 } 7507 7508 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7509 struct btrfs_root *root, 7510 struct btrfs_path *path, 7511 struct walk_control *wc, int max_level) 7512 { 7513 int level = wc->level; 7514 int ret; 7515 7516 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7517 while (level < max_level && path->nodes[level]) { 7518 wc->level = level; 7519 if (path->slots[level] + 1 < 7520 btrfs_header_nritems(path->nodes[level])) { 7521 path->slots[level]++; 7522 return 0; 7523 } else { 7524 ret = walk_up_proc(trans, root, path, wc); 7525 if (ret > 0) 7526 return 0; 7527 7528 if (path->locks[level]) { 7529 btrfs_tree_unlock_rw(path->nodes[level], 7530 path->locks[level]); 7531 path->locks[level] = 0; 7532 } 7533 free_extent_buffer(path->nodes[level]); 7534 path->nodes[level] = NULL; 7535 level++; 7536 } 7537 } 7538 return 1; 7539 } 7540 7541 /* 7542 * drop a subvolume tree. 7543 * 7544 * this function traverses the tree freeing any blocks that only 7545 * referenced by the tree. 7546 * 7547 * when a shared tree block is found. this function decreases its 7548 * reference count by one. if update_ref is true, this function 7549 * also make sure backrefs for the shared block and all lower level 7550 * blocks are properly updated. 7551 * 7552 * If called with for_reloc == 0, may exit early with -EAGAIN 7553 */ 7554 int btrfs_drop_snapshot(struct btrfs_root *root, 7555 struct btrfs_block_rsv *block_rsv, int update_ref, 7556 int for_reloc) 7557 { 7558 struct btrfs_path *path; 7559 struct btrfs_trans_handle *trans; 7560 struct btrfs_root *tree_root = root->fs_info->tree_root; 7561 struct btrfs_root_item *root_item = &root->root_item; 7562 struct walk_control *wc; 7563 struct btrfs_key key; 7564 int err = 0; 7565 int ret; 7566 int level; 7567 bool root_dropped = false; 7568 7569 path = btrfs_alloc_path(); 7570 if (!path) { 7571 err = -ENOMEM; 7572 goto out; 7573 } 7574 7575 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7576 if (!wc) { 7577 btrfs_free_path(path); 7578 err = -ENOMEM; 7579 goto out; 7580 } 7581 7582 trans = btrfs_start_transaction(tree_root, 0); 7583 if (IS_ERR(trans)) { 7584 err = PTR_ERR(trans); 7585 goto out_free; 7586 } 7587 7588 if (block_rsv) 7589 trans->block_rsv = block_rsv; 7590 7591 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7592 level = btrfs_header_level(root->node); 7593 path->nodes[level] = btrfs_lock_root_node(root); 7594 btrfs_set_lock_blocking(path->nodes[level]); 7595 path->slots[level] = 0; 7596 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7597 memset(&wc->update_progress, 0, 7598 sizeof(wc->update_progress)); 7599 } else { 7600 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7601 memcpy(&wc->update_progress, &key, 7602 sizeof(wc->update_progress)); 7603 7604 level = root_item->drop_level; 7605 BUG_ON(level == 0); 7606 path->lowest_level = level; 7607 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7608 path->lowest_level = 0; 7609 if (ret < 0) { 7610 err = ret; 7611 goto out_end_trans; 7612 } 7613 WARN_ON(ret > 0); 7614 7615 /* 7616 * unlock our path, this is safe because only this 7617 * function is allowed to delete this snapshot 7618 */ 7619 btrfs_unlock_up_safe(path, 0); 7620 7621 level = btrfs_header_level(root->node); 7622 while (1) { 7623 btrfs_tree_lock(path->nodes[level]); 7624 btrfs_set_lock_blocking(path->nodes[level]); 7625 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7626 7627 ret = btrfs_lookup_extent_info(trans, root, 7628 path->nodes[level]->start, 7629 level, 1, &wc->refs[level], 7630 &wc->flags[level]); 7631 if (ret < 0) { 7632 err = ret; 7633 goto out_end_trans; 7634 } 7635 BUG_ON(wc->refs[level] == 0); 7636 7637 if (level == root_item->drop_level) 7638 break; 7639 7640 btrfs_tree_unlock(path->nodes[level]); 7641 path->locks[level] = 0; 7642 WARN_ON(wc->refs[level] != 1); 7643 level--; 7644 } 7645 } 7646 7647 wc->level = level; 7648 wc->shared_level = -1; 7649 wc->stage = DROP_REFERENCE; 7650 wc->update_ref = update_ref; 7651 wc->keep_locks = 0; 7652 wc->for_reloc = for_reloc; 7653 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7654 7655 while (1) { 7656 7657 ret = walk_down_tree(trans, root, path, wc); 7658 if (ret < 0) { 7659 err = ret; 7660 break; 7661 } 7662 7663 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7664 if (ret < 0) { 7665 err = ret; 7666 break; 7667 } 7668 7669 if (ret > 0) { 7670 BUG_ON(wc->stage != DROP_REFERENCE); 7671 break; 7672 } 7673 7674 if (wc->stage == DROP_REFERENCE) { 7675 level = wc->level; 7676 btrfs_node_key(path->nodes[level], 7677 &root_item->drop_progress, 7678 path->slots[level]); 7679 root_item->drop_level = level; 7680 } 7681 7682 BUG_ON(wc->level == 0); 7683 if (btrfs_should_end_transaction(trans, tree_root) || 7684 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7685 ret = btrfs_update_root(trans, tree_root, 7686 &root->root_key, 7687 root_item); 7688 if (ret) { 7689 btrfs_abort_transaction(trans, tree_root, ret); 7690 err = ret; 7691 goto out_end_trans; 7692 } 7693 7694 btrfs_end_transaction_throttle(trans, tree_root); 7695 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7696 pr_debug("BTRFS: drop snapshot early exit\n"); 7697 err = -EAGAIN; 7698 goto out_free; 7699 } 7700 7701 trans = btrfs_start_transaction(tree_root, 0); 7702 if (IS_ERR(trans)) { 7703 err = PTR_ERR(trans); 7704 goto out_free; 7705 } 7706 if (block_rsv) 7707 trans->block_rsv = block_rsv; 7708 } 7709 } 7710 btrfs_release_path(path); 7711 if (err) 7712 goto out_end_trans; 7713 7714 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7715 if (ret) { 7716 btrfs_abort_transaction(trans, tree_root, ret); 7717 goto out_end_trans; 7718 } 7719 7720 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7721 ret = btrfs_find_root(tree_root, &root->root_key, path, 7722 NULL, NULL); 7723 if (ret < 0) { 7724 btrfs_abort_transaction(trans, tree_root, ret); 7725 err = ret; 7726 goto out_end_trans; 7727 } else if (ret > 0) { 7728 /* if we fail to delete the orphan item this time 7729 * around, it'll get picked up the next time. 7730 * 7731 * The most common failure here is just -ENOENT. 7732 */ 7733 btrfs_del_orphan_item(trans, tree_root, 7734 root->root_key.objectid); 7735 } 7736 } 7737 7738 if (root->in_radix) { 7739 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7740 } else { 7741 free_extent_buffer(root->node); 7742 free_extent_buffer(root->commit_root); 7743 btrfs_put_fs_root(root); 7744 } 7745 root_dropped = true; 7746 out_end_trans: 7747 btrfs_end_transaction_throttle(trans, tree_root); 7748 out_free: 7749 kfree(wc); 7750 btrfs_free_path(path); 7751 out: 7752 /* 7753 * So if we need to stop dropping the snapshot for whatever reason we 7754 * need to make sure to add it back to the dead root list so that we 7755 * keep trying to do the work later. This also cleans up roots if we 7756 * don't have it in the radix (like when we recover after a power fail 7757 * or unmount) so we don't leak memory. 7758 */ 7759 if (!for_reloc && root_dropped == false) 7760 btrfs_add_dead_root(root); 7761 if (err && err != -EAGAIN) 7762 btrfs_std_error(root->fs_info, err); 7763 return err; 7764 } 7765 7766 /* 7767 * drop subtree rooted at tree block 'node'. 7768 * 7769 * NOTE: this function will unlock and release tree block 'node' 7770 * only used by relocation code 7771 */ 7772 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7773 struct btrfs_root *root, 7774 struct extent_buffer *node, 7775 struct extent_buffer *parent) 7776 { 7777 struct btrfs_path *path; 7778 struct walk_control *wc; 7779 int level; 7780 int parent_level; 7781 int ret = 0; 7782 int wret; 7783 7784 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7785 7786 path = btrfs_alloc_path(); 7787 if (!path) 7788 return -ENOMEM; 7789 7790 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7791 if (!wc) { 7792 btrfs_free_path(path); 7793 return -ENOMEM; 7794 } 7795 7796 btrfs_assert_tree_locked(parent); 7797 parent_level = btrfs_header_level(parent); 7798 extent_buffer_get(parent); 7799 path->nodes[parent_level] = parent; 7800 path->slots[parent_level] = btrfs_header_nritems(parent); 7801 7802 btrfs_assert_tree_locked(node); 7803 level = btrfs_header_level(node); 7804 path->nodes[level] = node; 7805 path->slots[level] = 0; 7806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7807 7808 wc->refs[parent_level] = 1; 7809 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7810 wc->level = level; 7811 wc->shared_level = -1; 7812 wc->stage = DROP_REFERENCE; 7813 wc->update_ref = 0; 7814 wc->keep_locks = 1; 7815 wc->for_reloc = 1; 7816 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7817 7818 while (1) { 7819 wret = walk_down_tree(trans, root, path, wc); 7820 if (wret < 0) { 7821 ret = wret; 7822 break; 7823 } 7824 7825 wret = walk_up_tree(trans, root, path, wc, parent_level); 7826 if (wret < 0) 7827 ret = wret; 7828 if (wret != 0) 7829 break; 7830 } 7831 7832 kfree(wc); 7833 btrfs_free_path(path); 7834 return ret; 7835 } 7836 7837 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7838 { 7839 u64 num_devices; 7840 u64 stripped; 7841 7842 /* 7843 * if restripe for this chunk_type is on pick target profile and 7844 * return, otherwise do the usual balance 7845 */ 7846 stripped = get_restripe_target(root->fs_info, flags); 7847 if (stripped) 7848 return extended_to_chunk(stripped); 7849 7850 /* 7851 * we add in the count of missing devices because we want 7852 * to make sure that any RAID levels on a degraded FS 7853 * continue to be honored. 7854 */ 7855 num_devices = root->fs_info->fs_devices->rw_devices + 7856 root->fs_info->fs_devices->missing_devices; 7857 7858 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7859 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7860 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7861 7862 if (num_devices == 1) { 7863 stripped |= BTRFS_BLOCK_GROUP_DUP; 7864 stripped = flags & ~stripped; 7865 7866 /* turn raid0 into single device chunks */ 7867 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7868 return stripped; 7869 7870 /* turn mirroring into duplication */ 7871 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7872 BTRFS_BLOCK_GROUP_RAID10)) 7873 return stripped | BTRFS_BLOCK_GROUP_DUP; 7874 } else { 7875 /* they already had raid on here, just return */ 7876 if (flags & stripped) 7877 return flags; 7878 7879 stripped |= BTRFS_BLOCK_GROUP_DUP; 7880 stripped = flags & ~stripped; 7881 7882 /* switch duplicated blocks with raid1 */ 7883 if (flags & BTRFS_BLOCK_GROUP_DUP) 7884 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7885 7886 /* this is drive concat, leave it alone */ 7887 } 7888 7889 return flags; 7890 } 7891 7892 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7893 { 7894 struct btrfs_space_info *sinfo = cache->space_info; 7895 u64 num_bytes; 7896 u64 min_allocable_bytes; 7897 int ret = -ENOSPC; 7898 7899 7900 /* 7901 * We need some metadata space and system metadata space for 7902 * allocating chunks in some corner cases until we force to set 7903 * it to be readonly. 7904 */ 7905 if ((sinfo->flags & 7906 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7907 !force) 7908 min_allocable_bytes = 1 * 1024 * 1024; 7909 else 7910 min_allocable_bytes = 0; 7911 7912 spin_lock(&sinfo->lock); 7913 spin_lock(&cache->lock); 7914 7915 if (cache->ro) { 7916 ret = 0; 7917 goto out; 7918 } 7919 7920 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7921 cache->bytes_super - btrfs_block_group_used(&cache->item); 7922 7923 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7924 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7925 min_allocable_bytes <= sinfo->total_bytes) { 7926 sinfo->bytes_readonly += num_bytes; 7927 cache->ro = 1; 7928 ret = 0; 7929 } 7930 out: 7931 spin_unlock(&cache->lock); 7932 spin_unlock(&sinfo->lock); 7933 return ret; 7934 } 7935 7936 int btrfs_set_block_group_ro(struct btrfs_root *root, 7937 struct btrfs_block_group_cache *cache) 7938 7939 { 7940 struct btrfs_trans_handle *trans; 7941 u64 alloc_flags; 7942 int ret; 7943 7944 BUG_ON(cache->ro); 7945 7946 trans = btrfs_join_transaction(root); 7947 if (IS_ERR(trans)) 7948 return PTR_ERR(trans); 7949 7950 alloc_flags = update_block_group_flags(root, cache->flags); 7951 if (alloc_flags != cache->flags) { 7952 ret = do_chunk_alloc(trans, root, alloc_flags, 7953 CHUNK_ALLOC_FORCE); 7954 if (ret < 0) 7955 goto out; 7956 } 7957 7958 ret = set_block_group_ro(cache, 0); 7959 if (!ret) 7960 goto out; 7961 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7962 ret = do_chunk_alloc(trans, root, alloc_flags, 7963 CHUNK_ALLOC_FORCE); 7964 if (ret < 0) 7965 goto out; 7966 ret = set_block_group_ro(cache, 0); 7967 out: 7968 btrfs_end_transaction(trans, root); 7969 return ret; 7970 } 7971 7972 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7973 struct btrfs_root *root, u64 type) 7974 { 7975 u64 alloc_flags = get_alloc_profile(root, type); 7976 return do_chunk_alloc(trans, root, alloc_flags, 7977 CHUNK_ALLOC_FORCE); 7978 } 7979 7980 /* 7981 * helper to account the unused space of all the readonly block group in the 7982 * list. takes mirrors into account. 7983 */ 7984 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7985 { 7986 struct btrfs_block_group_cache *block_group; 7987 u64 free_bytes = 0; 7988 int factor; 7989 7990 list_for_each_entry(block_group, groups_list, list) { 7991 spin_lock(&block_group->lock); 7992 7993 if (!block_group->ro) { 7994 spin_unlock(&block_group->lock); 7995 continue; 7996 } 7997 7998 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7999 BTRFS_BLOCK_GROUP_RAID10 | 8000 BTRFS_BLOCK_GROUP_DUP)) 8001 factor = 2; 8002 else 8003 factor = 1; 8004 8005 free_bytes += (block_group->key.offset - 8006 btrfs_block_group_used(&block_group->item)) * 8007 factor; 8008 8009 spin_unlock(&block_group->lock); 8010 } 8011 8012 return free_bytes; 8013 } 8014 8015 /* 8016 * helper to account the unused space of all the readonly block group in the 8017 * space_info. takes mirrors into account. 8018 */ 8019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8020 { 8021 int i; 8022 u64 free_bytes = 0; 8023 8024 spin_lock(&sinfo->lock); 8025 8026 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8027 if (!list_empty(&sinfo->block_groups[i])) 8028 free_bytes += __btrfs_get_ro_block_group_free_space( 8029 &sinfo->block_groups[i]); 8030 8031 spin_unlock(&sinfo->lock); 8032 8033 return free_bytes; 8034 } 8035 8036 void btrfs_set_block_group_rw(struct btrfs_root *root, 8037 struct btrfs_block_group_cache *cache) 8038 { 8039 struct btrfs_space_info *sinfo = cache->space_info; 8040 u64 num_bytes; 8041 8042 BUG_ON(!cache->ro); 8043 8044 spin_lock(&sinfo->lock); 8045 spin_lock(&cache->lock); 8046 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8047 cache->bytes_super - btrfs_block_group_used(&cache->item); 8048 sinfo->bytes_readonly -= num_bytes; 8049 cache->ro = 0; 8050 spin_unlock(&cache->lock); 8051 spin_unlock(&sinfo->lock); 8052 } 8053 8054 /* 8055 * checks to see if its even possible to relocate this block group. 8056 * 8057 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8058 * ok to go ahead and try. 8059 */ 8060 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8061 { 8062 struct btrfs_block_group_cache *block_group; 8063 struct btrfs_space_info *space_info; 8064 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8065 struct btrfs_device *device; 8066 struct btrfs_trans_handle *trans; 8067 u64 min_free; 8068 u64 dev_min = 1; 8069 u64 dev_nr = 0; 8070 u64 target; 8071 int index; 8072 int full = 0; 8073 int ret = 0; 8074 8075 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8076 8077 /* odd, couldn't find the block group, leave it alone */ 8078 if (!block_group) 8079 return -1; 8080 8081 min_free = btrfs_block_group_used(&block_group->item); 8082 8083 /* no bytes used, we're good */ 8084 if (!min_free) 8085 goto out; 8086 8087 space_info = block_group->space_info; 8088 spin_lock(&space_info->lock); 8089 8090 full = space_info->full; 8091 8092 /* 8093 * if this is the last block group we have in this space, we can't 8094 * relocate it unless we're able to allocate a new chunk below. 8095 * 8096 * Otherwise, we need to make sure we have room in the space to handle 8097 * all of the extents from this block group. If we can, we're good 8098 */ 8099 if ((space_info->total_bytes != block_group->key.offset) && 8100 (space_info->bytes_used + space_info->bytes_reserved + 8101 space_info->bytes_pinned + space_info->bytes_readonly + 8102 min_free < space_info->total_bytes)) { 8103 spin_unlock(&space_info->lock); 8104 goto out; 8105 } 8106 spin_unlock(&space_info->lock); 8107 8108 /* 8109 * ok we don't have enough space, but maybe we have free space on our 8110 * devices to allocate new chunks for relocation, so loop through our 8111 * alloc devices and guess if we have enough space. if this block 8112 * group is going to be restriped, run checks against the target 8113 * profile instead of the current one. 8114 */ 8115 ret = -1; 8116 8117 /* 8118 * index: 8119 * 0: raid10 8120 * 1: raid1 8121 * 2: dup 8122 * 3: raid0 8123 * 4: single 8124 */ 8125 target = get_restripe_target(root->fs_info, block_group->flags); 8126 if (target) { 8127 index = __get_raid_index(extended_to_chunk(target)); 8128 } else { 8129 /* 8130 * this is just a balance, so if we were marked as full 8131 * we know there is no space for a new chunk 8132 */ 8133 if (full) 8134 goto out; 8135 8136 index = get_block_group_index(block_group); 8137 } 8138 8139 if (index == BTRFS_RAID_RAID10) { 8140 dev_min = 4; 8141 /* Divide by 2 */ 8142 min_free >>= 1; 8143 } else if (index == BTRFS_RAID_RAID1) { 8144 dev_min = 2; 8145 } else if (index == BTRFS_RAID_DUP) { 8146 /* Multiply by 2 */ 8147 min_free <<= 1; 8148 } else if (index == BTRFS_RAID_RAID0) { 8149 dev_min = fs_devices->rw_devices; 8150 do_div(min_free, dev_min); 8151 } 8152 8153 /* We need to do this so that we can look at pending chunks */ 8154 trans = btrfs_join_transaction(root); 8155 if (IS_ERR(trans)) { 8156 ret = PTR_ERR(trans); 8157 goto out; 8158 } 8159 8160 mutex_lock(&root->fs_info->chunk_mutex); 8161 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8162 u64 dev_offset; 8163 8164 /* 8165 * check to make sure we can actually find a chunk with enough 8166 * space to fit our block group in. 8167 */ 8168 if (device->total_bytes > device->bytes_used + min_free && 8169 !device->is_tgtdev_for_dev_replace) { 8170 ret = find_free_dev_extent(trans, device, min_free, 8171 &dev_offset, NULL); 8172 if (!ret) 8173 dev_nr++; 8174 8175 if (dev_nr >= dev_min) 8176 break; 8177 8178 ret = -1; 8179 } 8180 } 8181 mutex_unlock(&root->fs_info->chunk_mutex); 8182 btrfs_end_transaction(trans, root); 8183 out: 8184 btrfs_put_block_group(block_group); 8185 return ret; 8186 } 8187 8188 static int find_first_block_group(struct btrfs_root *root, 8189 struct btrfs_path *path, struct btrfs_key *key) 8190 { 8191 int ret = 0; 8192 struct btrfs_key found_key; 8193 struct extent_buffer *leaf; 8194 int slot; 8195 8196 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8197 if (ret < 0) 8198 goto out; 8199 8200 while (1) { 8201 slot = path->slots[0]; 8202 leaf = path->nodes[0]; 8203 if (slot >= btrfs_header_nritems(leaf)) { 8204 ret = btrfs_next_leaf(root, path); 8205 if (ret == 0) 8206 continue; 8207 if (ret < 0) 8208 goto out; 8209 break; 8210 } 8211 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8212 8213 if (found_key.objectid >= key->objectid && 8214 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8215 ret = 0; 8216 goto out; 8217 } 8218 path->slots[0]++; 8219 } 8220 out: 8221 return ret; 8222 } 8223 8224 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8225 { 8226 struct btrfs_block_group_cache *block_group; 8227 u64 last = 0; 8228 8229 while (1) { 8230 struct inode *inode; 8231 8232 block_group = btrfs_lookup_first_block_group(info, last); 8233 while (block_group) { 8234 spin_lock(&block_group->lock); 8235 if (block_group->iref) 8236 break; 8237 spin_unlock(&block_group->lock); 8238 block_group = next_block_group(info->tree_root, 8239 block_group); 8240 } 8241 if (!block_group) { 8242 if (last == 0) 8243 break; 8244 last = 0; 8245 continue; 8246 } 8247 8248 inode = block_group->inode; 8249 block_group->iref = 0; 8250 block_group->inode = NULL; 8251 spin_unlock(&block_group->lock); 8252 iput(inode); 8253 last = block_group->key.objectid + block_group->key.offset; 8254 btrfs_put_block_group(block_group); 8255 } 8256 } 8257 8258 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8259 { 8260 struct btrfs_block_group_cache *block_group; 8261 struct btrfs_space_info *space_info; 8262 struct btrfs_caching_control *caching_ctl; 8263 struct rb_node *n; 8264 8265 down_write(&info->commit_root_sem); 8266 while (!list_empty(&info->caching_block_groups)) { 8267 caching_ctl = list_entry(info->caching_block_groups.next, 8268 struct btrfs_caching_control, list); 8269 list_del(&caching_ctl->list); 8270 put_caching_control(caching_ctl); 8271 } 8272 up_write(&info->commit_root_sem); 8273 8274 spin_lock(&info->block_group_cache_lock); 8275 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8276 block_group = rb_entry(n, struct btrfs_block_group_cache, 8277 cache_node); 8278 rb_erase(&block_group->cache_node, 8279 &info->block_group_cache_tree); 8280 spin_unlock(&info->block_group_cache_lock); 8281 8282 down_write(&block_group->space_info->groups_sem); 8283 list_del(&block_group->list); 8284 up_write(&block_group->space_info->groups_sem); 8285 8286 if (block_group->cached == BTRFS_CACHE_STARTED) 8287 wait_block_group_cache_done(block_group); 8288 8289 /* 8290 * We haven't cached this block group, which means we could 8291 * possibly have excluded extents on this block group. 8292 */ 8293 if (block_group->cached == BTRFS_CACHE_NO || 8294 block_group->cached == BTRFS_CACHE_ERROR) 8295 free_excluded_extents(info->extent_root, block_group); 8296 8297 btrfs_remove_free_space_cache(block_group); 8298 btrfs_put_block_group(block_group); 8299 8300 spin_lock(&info->block_group_cache_lock); 8301 } 8302 spin_unlock(&info->block_group_cache_lock); 8303 8304 /* now that all the block groups are freed, go through and 8305 * free all the space_info structs. This is only called during 8306 * the final stages of unmount, and so we know nobody is 8307 * using them. We call synchronize_rcu() once before we start, 8308 * just to be on the safe side. 8309 */ 8310 synchronize_rcu(); 8311 8312 release_global_block_rsv(info); 8313 8314 while (!list_empty(&info->space_info)) { 8315 int i; 8316 8317 space_info = list_entry(info->space_info.next, 8318 struct btrfs_space_info, 8319 list); 8320 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8321 if (WARN_ON(space_info->bytes_pinned > 0 || 8322 space_info->bytes_reserved > 0 || 8323 space_info->bytes_may_use > 0)) { 8324 dump_space_info(space_info, 0, 0); 8325 } 8326 } 8327 list_del(&space_info->list); 8328 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 8329 struct kobject *kobj; 8330 kobj = &space_info->block_group_kobjs[i]; 8331 if (kobj->parent) { 8332 kobject_del(kobj); 8333 kobject_put(kobj); 8334 } 8335 } 8336 kobject_del(&space_info->kobj); 8337 kobject_put(&space_info->kobj); 8338 } 8339 return 0; 8340 } 8341 8342 static void __link_block_group(struct btrfs_space_info *space_info, 8343 struct btrfs_block_group_cache *cache) 8344 { 8345 int index = get_block_group_index(cache); 8346 bool first = false; 8347 8348 down_write(&space_info->groups_sem); 8349 if (list_empty(&space_info->block_groups[index])) 8350 first = true; 8351 list_add_tail(&cache->list, &space_info->block_groups[index]); 8352 up_write(&space_info->groups_sem); 8353 8354 if (first) { 8355 struct kobject *kobj = &space_info->block_group_kobjs[index]; 8356 int ret; 8357 8358 kobject_get(&space_info->kobj); /* put in release */ 8359 ret = kobject_add(kobj, &space_info->kobj, "%s", 8360 get_raid_name(index)); 8361 if (ret) { 8362 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 8363 kobject_put(&space_info->kobj); 8364 } 8365 } 8366 } 8367 8368 static struct btrfs_block_group_cache * 8369 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 8370 { 8371 struct btrfs_block_group_cache *cache; 8372 8373 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8374 if (!cache) 8375 return NULL; 8376 8377 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8378 GFP_NOFS); 8379 if (!cache->free_space_ctl) { 8380 kfree(cache); 8381 return NULL; 8382 } 8383 8384 cache->key.objectid = start; 8385 cache->key.offset = size; 8386 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8387 8388 cache->sectorsize = root->sectorsize; 8389 cache->fs_info = root->fs_info; 8390 cache->full_stripe_len = btrfs_full_stripe_len(root, 8391 &root->fs_info->mapping_tree, 8392 start); 8393 atomic_set(&cache->count, 1); 8394 spin_lock_init(&cache->lock); 8395 INIT_LIST_HEAD(&cache->list); 8396 INIT_LIST_HEAD(&cache->cluster_list); 8397 INIT_LIST_HEAD(&cache->new_bg_list); 8398 btrfs_init_free_space_ctl(cache); 8399 8400 return cache; 8401 } 8402 8403 int btrfs_read_block_groups(struct btrfs_root *root) 8404 { 8405 struct btrfs_path *path; 8406 int ret; 8407 struct btrfs_block_group_cache *cache; 8408 struct btrfs_fs_info *info = root->fs_info; 8409 struct btrfs_space_info *space_info; 8410 struct btrfs_key key; 8411 struct btrfs_key found_key; 8412 struct extent_buffer *leaf; 8413 int need_clear = 0; 8414 u64 cache_gen; 8415 8416 root = info->extent_root; 8417 key.objectid = 0; 8418 key.offset = 0; 8419 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8420 path = btrfs_alloc_path(); 8421 if (!path) 8422 return -ENOMEM; 8423 path->reada = 1; 8424 8425 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8426 if (btrfs_test_opt(root, SPACE_CACHE) && 8427 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8428 need_clear = 1; 8429 if (btrfs_test_opt(root, CLEAR_CACHE)) 8430 need_clear = 1; 8431 8432 while (1) { 8433 ret = find_first_block_group(root, path, &key); 8434 if (ret > 0) 8435 break; 8436 if (ret != 0) 8437 goto error; 8438 8439 leaf = path->nodes[0]; 8440 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8441 8442 cache = btrfs_create_block_group_cache(root, found_key.objectid, 8443 found_key.offset); 8444 if (!cache) { 8445 ret = -ENOMEM; 8446 goto error; 8447 } 8448 8449 if (need_clear) { 8450 /* 8451 * When we mount with old space cache, we need to 8452 * set BTRFS_DC_CLEAR and set dirty flag. 8453 * 8454 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8455 * truncate the old free space cache inode and 8456 * setup a new one. 8457 * b) Setting 'dirty flag' makes sure that we flush 8458 * the new space cache info onto disk. 8459 */ 8460 cache->disk_cache_state = BTRFS_DC_CLEAR; 8461 if (btrfs_test_opt(root, SPACE_CACHE)) 8462 cache->dirty = 1; 8463 } 8464 8465 read_extent_buffer(leaf, &cache->item, 8466 btrfs_item_ptr_offset(leaf, path->slots[0]), 8467 sizeof(cache->item)); 8468 cache->flags = btrfs_block_group_flags(&cache->item); 8469 8470 key.objectid = found_key.objectid + found_key.offset; 8471 btrfs_release_path(path); 8472 8473 /* 8474 * We need to exclude the super stripes now so that the space 8475 * info has super bytes accounted for, otherwise we'll think 8476 * we have more space than we actually do. 8477 */ 8478 ret = exclude_super_stripes(root, cache); 8479 if (ret) { 8480 /* 8481 * We may have excluded something, so call this just in 8482 * case. 8483 */ 8484 free_excluded_extents(root, cache); 8485 btrfs_put_block_group(cache); 8486 goto error; 8487 } 8488 8489 /* 8490 * check for two cases, either we are full, and therefore 8491 * don't need to bother with the caching work since we won't 8492 * find any space, or we are empty, and we can just add all 8493 * the space in and be done with it. This saves us _alot_ of 8494 * time, particularly in the full case. 8495 */ 8496 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8497 cache->last_byte_to_unpin = (u64)-1; 8498 cache->cached = BTRFS_CACHE_FINISHED; 8499 free_excluded_extents(root, cache); 8500 } else if (btrfs_block_group_used(&cache->item) == 0) { 8501 cache->last_byte_to_unpin = (u64)-1; 8502 cache->cached = BTRFS_CACHE_FINISHED; 8503 add_new_free_space(cache, root->fs_info, 8504 found_key.objectid, 8505 found_key.objectid + 8506 found_key.offset); 8507 free_excluded_extents(root, cache); 8508 } 8509 8510 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8511 if (ret) { 8512 btrfs_remove_free_space_cache(cache); 8513 btrfs_put_block_group(cache); 8514 goto error; 8515 } 8516 8517 ret = update_space_info(info, cache->flags, found_key.offset, 8518 btrfs_block_group_used(&cache->item), 8519 &space_info); 8520 if (ret) { 8521 btrfs_remove_free_space_cache(cache); 8522 spin_lock(&info->block_group_cache_lock); 8523 rb_erase(&cache->cache_node, 8524 &info->block_group_cache_tree); 8525 spin_unlock(&info->block_group_cache_lock); 8526 btrfs_put_block_group(cache); 8527 goto error; 8528 } 8529 8530 cache->space_info = space_info; 8531 spin_lock(&cache->space_info->lock); 8532 cache->space_info->bytes_readonly += cache->bytes_super; 8533 spin_unlock(&cache->space_info->lock); 8534 8535 __link_block_group(space_info, cache); 8536 8537 set_avail_alloc_bits(root->fs_info, cache->flags); 8538 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8539 set_block_group_ro(cache, 1); 8540 } 8541 8542 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8543 if (!(get_alloc_profile(root, space_info->flags) & 8544 (BTRFS_BLOCK_GROUP_RAID10 | 8545 BTRFS_BLOCK_GROUP_RAID1 | 8546 BTRFS_BLOCK_GROUP_RAID5 | 8547 BTRFS_BLOCK_GROUP_RAID6 | 8548 BTRFS_BLOCK_GROUP_DUP))) 8549 continue; 8550 /* 8551 * avoid allocating from un-mirrored block group if there are 8552 * mirrored block groups. 8553 */ 8554 list_for_each_entry(cache, 8555 &space_info->block_groups[BTRFS_RAID_RAID0], 8556 list) 8557 set_block_group_ro(cache, 1); 8558 list_for_each_entry(cache, 8559 &space_info->block_groups[BTRFS_RAID_SINGLE], 8560 list) 8561 set_block_group_ro(cache, 1); 8562 } 8563 8564 init_global_block_rsv(info); 8565 ret = 0; 8566 error: 8567 btrfs_free_path(path); 8568 return ret; 8569 } 8570 8571 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8572 struct btrfs_root *root) 8573 { 8574 struct btrfs_block_group_cache *block_group, *tmp; 8575 struct btrfs_root *extent_root = root->fs_info->extent_root; 8576 struct btrfs_block_group_item item; 8577 struct btrfs_key key; 8578 int ret = 0; 8579 8580 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8581 new_bg_list) { 8582 list_del_init(&block_group->new_bg_list); 8583 8584 if (ret) 8585 continue; 8586 8587 spin_lock(&block_group->lock); 8588 memcpy(&item, &block_group->item, sizeof(item)); 8589 memcpy(&key, &block_group->key, sizeof(key)); 8590 spin_unlock(&block_group->lock); 8591 8592 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8593 sizeof(item)); 8594 if (ret) 8595 btrfs_abort_transaction(trans, extent_root, ret); 8596 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8597 key.objectid, key.offset); 8598 if (ret) 8599 btrfs_abort_transaction(trans, extent_root, ret); 8600 } 8601 } 8602 8603 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8604 struct btrfs_root *root, u64 bytes_used, 8605 u64 type, u64 chunk_objectid, u64 chunk_offset, 8606 u64 size) 8607 { 8608 int ret; 8609 struct btrfs_root *extent_root; 8610 struct btrfs_block_group_cache *cache; 8611 8612 extent_root = root->fs_info->extent_root; 8613 8614 root->fs_info->last_trans_log_full_commit = trans->transid; 8615 8616 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 8617 if (!cache) 8618 return -ENOMEM; 8619 8620 btrfs_set_block_group_used(&cache->item, bytes_used); 8621 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8622 btrfs_set_block_group_flags(&cache->item, type); 8623 8624 cache->flags = type; 8625 cache->last_byte_to_unpin = (u64)-1; 8626 cache->cached = BTRFS_CACHE_FINISHED; 8627 ret = exclude_super_stripes(root, cache); 8628 if (ret) { 8629 /* 8630 * We may have excluded something, so call this just in 8631 * case. 8632 */ 8633 free_excluded_extents(root, cache); 8634 btrfs_put_block_group(cache); 8635 return ret; 8636 } 8637 8638 add_new_free_space(cache, root->fs_info, chunk_offset, 8639 chunk_offset + size); 8640 8641 free_excluded_extents(root, cache); 8642 8643 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8644 if (ret) { 8645 btrfs_remove_free_space_cache(cache); 8646 btrfs_put_block_group(cache); 8647 return ret; 8648 } 8649 8650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8651 &cache->space_info); 8652 if (ret) { 8653 btrfs_remove_free_space_cache(cache); 8654 spin_lock(&root->fs_info->block_group_cache_lock); 8655 rb_erase(&cache->cache_node, 8656 &root->fs_info->block_group_cache_tree); 8657 spin_unlock(&root->fs_info->block_group_cache_lock); 8658 btrfs_put_block_group(cache); 8659 return ret; 8660 } 8661 update_global_block_rsv(root->fs_info); 8662 8663 spin_lock(&cache->space_info->lock); 8664 cache->space_info->bytes_readonly += cache->bytes_super; 8665 spin_unlock(&cache->space_info->lock); 8666 8667 __link_block_group(cache->space_info, cache); 8668 8669 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8670 8671 set_avail_alloc_bits(extent_root->fs_info, type); 8672 8673 return 0; 8674 } 8675 8676 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8677 { 8678 u64 extra_flags = chunk_to_extended(flags) & 8679 BTRFS_EXTENDED_PROFILE_MASK; 8680 8681 write_seqlock(&fs_info->profiles_lock); 8682 if (flags & BTRFS_BLOCK_GROUP_DATA) 8683 fs_info->avail_data_alloc_bits &= ~extra_flags; 8684 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8685 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8686 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8687 fs_info->avail_system_alloc_bits &= ~extra_flags; 8688 write_sequnlock(&fs_info->profiles_lock); 8689 } 8690 8691 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8692 struct btrfs_root *root, u64 group_start) 8693 { 8694 struct btrfs_path *path; 8695 struct btrfs_block_group_cache *block_group; 8696 struct btrfs_free_cluster *cluster; 8697 struct btrfs_root *tree_root = root->fs_info->tree_root; 8698 struct btrfs_key key; 8699 struct inode *inode; 8700 int ret; 8701 int index; 8702 int factor; 8703 8704 root = root->fs_info->extent_root; 8705 8706 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8707 BUG_ON(!block_group); 8708 BUG_ON(!block_group->ro); 8709 8710 /* 8711 * Free the reserved super bytes from this block group before 8712 * remove it. 8713 */ 8714 free_excluded_extents(root, block_group); 8715 8716 memcpy(&key, &block_group->key, sizeof(key)); 8717 index = get_block_group_index(block_group); 8718 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8719 BTRFS_BLOCK_GROUP_RAID1 | 8720 BTRFS_BLOCK_GROUP_RAID10)) 8721 factor = 2; 8722 else 8723 factor = 1; 8724 8725 /* make sure this block group isn't part of an allocation cluster */ 8726 cluster = &root->fs_info->data_alloc_cluster; 8727 spin_lock(&cluster->refill_lock); 8728 btrfs_return_cluster_to_free_space(block_group, cluster); 8729 spin_unlock(&cluster->refill_lock); 8730 8731 /* 8732 * make sure this block group isn't part of a metadata 8733 * allocation cluster 8734 */ 8735 cluster = &root->fs_info->meta_alloc_cluster; 8736 spin_lock(&cluster->refill_lock); 8737 btrfs_return_cluster_to_free_space(block_group, cluster); 8738 spin_unlock(&cluster->refill_lock); 8739 8740 path = btrfs_alloc_path(); 8741 if (!path) { 8742 ret = -ENOMEM; 8743 goto out; 8744 } 8745 8746 inode = lookup_free_space_inode(tree_root, block_group, path); 8747 if (!IS_ERR(inode)) { 8748 ret = btrfs_orphan_add(trans, inode); 8749 if (ret) { 8750 btrfs_add_delayed_iput(inode); 8751 goto out; 8752 } 8753 clear_nlink(inode); 8754 /* One for the block groups ref */ 8755 spin_lock(&block_group->lock); 8756 if (block_group->iref) { 8757 block_group->iref = 0; 8758 block_group->inode = NULL; 8759 spin_unlock(&block_group->lock); 8760 iput(inode); 8761 } else { 8762 spin_unlock(&block_group->lock); 8763 } 8764 /* One for our lookup ref */ 8765 btrfs_add_delayed_iput(inode); 8766 } 8767 8768 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8769 key.offset = block_group->key.objectid; 8770 key.type = 0; 8771 8772 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8773 if (ret < 0) 8774 goto out; 8775 if (ret > 0) 8776 btrfs_release_path(path); 8777 if (ret == 0) { 8778 ret = btrfs_del_item(trans, tree_root, path); 8779 if (ret) 8780 goto out; 8781 btrfs_release_path(path); 8782 } 8783 8784 spin_lock(&root->fs_info->block_group_cache_lock); 8785 rb_erase(&block_group->cache_node, 8786 &root->fs_info->block_group_cache_tree); 8787 8788 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8789 root->fs_info->first_logical_byte = (u64)-1; 8790 spin_unlock(&root->fs_info->block_group_cache_lock); 8791 8792 down_write(&block_group->space_info->groups_sem); 8793 /* 8794 * we must use list_del_init so people can check to see if they 8795 * are still on the list after taking the semaphore 8796 */ 8797 list_del_init(&block_group->list); 8798 if (list_empty(&block_group->space_info->block_groups[index])) { 8799 kobject_del(&block_group->space_info->block_group_kobjs[index]); 8800 kobject_put(&block_group->space_info->block_group_kobjs[index]); 8801 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8802 } 8803 up_write(&block_group->space_info->groups_sem); 8804 8805 if (block_group->cached == BTRFS_CACHE_STARTED) 8806 wait_block_group_cache_done(block_group); 8807 8808 btrfs_remove_free_space_cache(block_group); 8809 8810 spin_lock(&block_group->space_info->lock); 8811 block_group->space_info->total_bytes -= block_group->key.offset; 8812 block_group->space_info->bytes_readonly -= block_group->key.offset; 8813 block_group->space_info->disk_total -= block_group->key.offset * factor; 8814 spin_unlock(&block_group->space_info->lock); 8815 8816 memcpy(&key, &block_group->key, sizeof(key)); 8817 8818 btrfs_clear_space_info_full(root->fs_info); 8819 8820 btrfs_put_block_group(block_group); 8821 btrfs_put_block_group(block_group); 8822 8823 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8824 if (ret > 0) 8825 ret = -EIO; 8826 if (ret < 0) 8827 goto out; 8828 8829 ret = btrfs_del_item(trans, root, path); 8830 out: 8831 btrfs_free_path(path); 8832 return ret; 8833 } 8834 8835 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8836 { 8837 struct btrfs_space_info *space_info; 8838 struct btrfs_super_block *disk_super; 8839 u64 features; 8840 u64 flags; 8841 int mixed = 0; 8842 int ret; 8843 8844 disk_super = fs_info->super_copy; 8845 if (!btrfs_super_root(disk_super)) 8846 return 1; 8847 8848 features = btrfs_super_incompat_flags(disk_super); 8849 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8850 mixed = 1; 8851 8852 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8853 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8854 if (ret) 8855 goto out; 8856 8857 if (mixed) { 8858 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8859 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8860 } else { 8861 flags = BTRFS_BLOCK_GROUP_METADATA; 8862 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8863 if (ret) 8864 goto out; 8865 8866 flags = BTRFS_BLOCK_GROUP_DATA; 8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8868 } 8869 out: 8870 return ret; 8871 } 8872 8873 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8874 { 8875 return unpin_extent_range(root, start, end); 8876 } 8877 8878 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8879 u64 num_bytes, u64 *actual_bytes) 8880 { 8881 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8882 } 8883 8884 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8885 { 8886 struct btrfs_fs_info *fs_info = root->fs_info; 8887 struct btrfs_block_group_cache *cache = NULL; 8888 u64 group_trimmed; 8889 u64 start; 8890 u64 end; 8891 u64 trimmed = 0; 8892 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8893 int ret = 0; 8894 8895 /* 8896 * try to trim all FS space, our block group may start from non-zero. 8897 */ 8898 if (range->len == total_bytes) 8899 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8900 else 8901 cache = btrfs_lookup_block_group(fs_info, range->start); 8902 8903 while (cache) { 8904 if (cache->key.objectid >= (range->start + range->len)) { 8905 btrfs_put_block_group(cache); 8906 break; 8907 } 8908 8909 start = max(range->start, cache->key.objectid); 8910 end = min(range->start + range->len, 8911 cache->key.objectid + cache->key.offset); 8912 8913 if (end - start >= range->minlen) { 8914 if (!block_group_cache_done(cache)) { 8915 ret = cache_block_group(cache, 0); 8916 if (ret) { 8917 btrfs_put_block_group(cache); 8918 break; 8919 } 8920 ret = wait_block_group_cache_done(cache); 8921 if (ret) { 8922 btrfs_put_block_group(cache); 8923 break; 8924 } 8925 } 8926 ret = btrfs_trim_block_group(cache, 8927 &group_trimmed, 8928 start, 8929 end, 8930 range->minlen); 8931 8932 trimmed += group_trimmed; 8933 if (ret) { 8934 btrfs_put_block_group(cache); 8935 break; 8936 } 8937 } 8938 8939 cache = next_block_group(fs_info->tree_root, cache); 8940 } 8941 8942 range->len = trimmed; 8943 return ret; 8944 } 8945 8946 /* 8947 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(), 8948 * they are used to prevent the some tasks writing data into the page cache 8949 * by nocow before the subvolume is snapshoted, but flush the data into 8950 * the disk after the snapshot creation. 8951 */ 8952 void btrfs_end_nocow_write(struct btrfs_root *root) 8953 { 8954 percpu_counter_dec(&root->subv_writers->counter); 8955 /* 8956 * Make sure counter is updated before we wake up 8957 * waiters. 8958 */ 8959 smp_mb(); 8960 if (waitqueue_active(&root->subv_writers->wait)) 8961 wake_up(&root->subv_writers->wait); 8962 } 8963 8964 int btrfs_start_nocow_write(struct btrfs_root *root) 8965 { 8966 if (unlikely(atomic_read(&root->will_be_snapshoted))) 8967 return 0; 8968 8969 percpu_counter_inc(&root->subv_writers->counter); 8970 /* 8971 * Make sure counter is updated before we check for snapshot creation. 8972 */ 8973 smp_mb(); 8974 if (unlikely(atomic_read(&root->will_be_snapshoted))) { 8975 btrfs_end_nocow_write(root); 8976 return 0; 8977 } 8978 return 1; 8979 } 8980