xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 84d517f3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 				    struct extent_buffer *leaf,
87 				    struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 				      struct btrfs_root *root,
90 				      u64 parent, u64 root_objectid,
91 				      u64 flags, u64 owner, u64 offset,
92 				      struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 				     struct btrfs_root *root,
95 				     u64 parent, u64 root_objectid,
96 				     u64 flags, struct btrfs_disk_key *key,
97 				     int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 			  struct btrfs_root *extent_root, u64 flags,
100 			  int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 			 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 			    int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 				       u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 			       u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 		     u64 bytenr, u64 num_bytes, int reserved);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 				       cache->key.objectid, bytenr,
272 				       0, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(root, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (cache->cached != BTRFS_CACHE_STARTED) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	/* We're loading it the fast way, so we don't have a caching_ctl. */
321 	if (!cache->caching_ctl) {
322 		spin_unlock(&cache->lock);
323 		return NULL;
324 	}
325 
326 	ctl = cache->caching_ctl;
327 	atomic_inc(&ctl->count);
328 	spin_unlock(&cache->lock);
329 	return ctl;
330 }
331 
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 	if (atomic_dec_and_test(&ctl->count))
335 		kfree(ctl);
336 }
337 
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 			      struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 	u64 extent_start, extent_end, size, total_added = 0;
347 	int ret;
348 
349 	while (start < end) {
350 		ret = find_first_extent_bit(info->pinned_extents, start,
351 					    &extent_start, &extent_end,
352 					    EXTENT_DIRTY | EXTENT_UPTODATE,
353 					    NULL);
354 		if (ret)
355 			break;
356 
357 		if (extent_start <= start) {
358 			start = extent_end + 1;
359 		} else if (extent_start > start && extent_start < end) {
360 			size = extent_start - start;
361 			total_added += size;
362 			ret = btrfs_add_free_space(block_group, start,
363 						   size);
364 			BUG_ON(ret); /* -ENOMEM or logic error */
365 			start = extent_end + 1;
366 		} else {
367 			break;
368 		}
369 	}
370 
371 	if (start < end) {
372 		size = end - start;
373 		total_added += size;
374 		ret = btrfs_add_free_space(block_group, start, size);
375 		BUG_ON(ret); /* -ENOMEM or logic error */
376 	}
377 
378 	return total_added;
379 }
380 
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 	struct btrfs_block_group_cache *block_group;
384 	struct btrfs_fs_info *fs_info;
385 	struct btrfs_caching_control *caching_ctl;
386 	struct btrfs_root *extent_root;
387 	struct btrfs_path *path;
388 	struct extent_buffer *leaf;
389 	struct btrfs_key key;
390 	u64 total_found = 0;
391 	u64 last = 0;
392 	u32 nritems;
393 	int ret = -ENOMEM;
394 
395 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 	block_group = caching_ctl->block_group;
397 	fs_info = block_group->fs_info;
398 	extent_root = fs_info->extent_root;
399 
400 	path = btrfs_alloc_path();
401 	if (!path)
402 		goto out;
403 
404 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 
406 	/*
407 	 * We don't want to deadlock with somebody trying to allocate a new
408 	 * extent for the extent root while also trying to search the extent
409 	 * root to add free space.  So we skip locking and search the commit
410 	 * root, since its read-only
411 	 */
412 	path->skip_locking = 1;
413 	path->search_commit_root = 1;
414 	path->reada = 1;
415 
416 	key.objectid = last;
417 	key.offset = 0;
418 	key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 	mutex_lock(&caching_ctl->mutex);
421 	/* need to make sure the commit_root doesn't disappear */
422 	down_read(&fs_info->commit_root_sem);
423 
424 next:
425 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 	if (ret < 0)
427 		goto err;
428 
429 	leaf = path->nodes[0];
430 	nritems = btrfs_header_nritems(leaf);
431 
432 	while (1) {
433 		if (btrfs_fs_closing(fs_info) > 1) {
434 			last = (u64)-1;
435 			break;
436 		}
437 
438 		if (path->slots[0] < nritems) {
439 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 		} else {
441 			ret = find_next_key(path, 0, &key);
442 			if (ret)
443 				break;
444 
445 			if (need_resched() ||
446 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
447 				caching_ctl->progress = last;
448 				btrfs_release_path(path);
449 				up_read(&fs_info->commit_root_sem);
450 				mutex_unlock(&caching_ctl->mutex);
451 				cond_resched();
452 				goto again;
453 			}
454 
455 			ret = btrfs_next_leaf(extent_root, path);
456 			if (ret < 0)
457 				goto err;
458 			if (ret)
459 				break;
460 			leaf = path->nodes[0];
461 			nritems = btrfs_header_nritems(leaf);
462 			continue;
463 		}
464 
465 		if (key.objectid < last) {
466 			key.objectid = last;
467 			key.offset = 0;
468 			key.type = BTRFS_EXTENT_ITEM_KEY;
469 
470 			caching_ctl->progress = last;
471 			btrfs_release_path(path);
472 			goto next;
473 		}
474 
475 		if (key.objectid < block_group->key.objectid) {
476 			path->slots[0]++;
477 			continue;
478 		}
479 
480 		if (key.objectid >= block_group->key.objectid +
481 		    block_group->key.offset)
482 			break;
483 
484 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 		    key.type == BTRFS_METADATA_ITEM_KEY) {
486 			total_found += add_new_free_space(block_group,
487 							  fs_info, last,
488 							  key.objectid);
489 			if (key.type == BTRFS_METADATA_ITEM_KEY)
490 				last = key.objectid +
491 					fs_info->tree_root->leafsize;
492 			else
493 				last = key.objectid + key.offset;
494 
495 			if (total_found > (1024 * 1024 * 2)) {
496 				total_found = 0;
497 				wake_up(&caching_ctl->wait);
498 			}
499 		}
500 		path->slots[0]++;
501 	}
502 	ret = 0;
503 
504 	total_found += add_new_free_space(block_group, fs_info, last,
505 					  block_group->key.objectid +
506 					  block_group->key.offset);
507 	caching_ctl->progress = (u64)-1;
508 
509 	spin_lock(&block_group->lock);
510 	block_group->caching_ctl = NULL;
511 	block_group->cached = BTRFS_CACHE_FINISHED;
512 	spin_unlock(&block_group->lock);
513 
514 err:
515 	btrfs_free_path(path);
516 	up_read(&fs_info->commit_root_sem);
517 
518 	free_excluded_extents(extent_root, block_group);
519 
520 	mutex_unlock(&caching_ctl->mutex);
521 out:
522 	if (ret) {
523 		spin_lock(&block_group->lock);
524 		block_group->caching_ctl = NULL;
525 		block_group->cached = BTRFS_CACHE_ERROR;
526 		spin_unlock(&block_group->lock);
527 	}
528 	wake_up(&caching_ctl->wait);
529 
530 	put_caching_control(caching_ctl);
531 	btrfs_put_block_group(block_group);
532 }
533 
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 			     int load_cache_only)
536 {
537 	DEFINE_WAIT(wait);
538 	struct btrfs_fs_info *fs_info = cache->fs_info;
539 	struct btrfs_caching_control *caching_ctl;
540 	int ret = 0;
541 
542 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 	if (!caching_ctl)
544 		return -ENOMEM;
545 
546 	INIT_LIST_HEAD(&caching_ctl->list);
547 	mutex_init(&caching_ctl->mutex);
548 	init_waitqueue_head(&caching_ctl->wait);
549 	caching_ctl->block_group = cache;
550 	caching_ctl->progress = cache->key.objectid;
551 	atomic_set(&caching_ctl->count, 1);
552 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
553 
554 	spin_lock(&cache->lock);
555 	/*
556 	 * This should be a rare occasion, but this could happen I think in the
557 	 * case where one thread starts to load the space cache info, and then
558 	 * some other thread starts a transaction commit which tries to do an
559 	 * allocation while the other thread is still loading the space cache
560 	 * info.  The previous loop should have kept us from choosing this block
561 	 * group, but if we've moved to the state where we will wait on caching
562 	 * block groups we need to first check if we're doing a fast load here,
563 	 * so we can wait for it to finish, otherwise we could end up allocating
564 	 * from a block group who's cache gets evicted for one reason or
565 	 * another.
566 	 */
567 	while (cache->cached == BTRFS_CACHE_FAST) {
568 		struct btrfs_caching_control *ctl;
569 
570 		ctl = cache->caching_ctl;
571 		atomic_inc(&ctl->count);
572 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 		spin_unlock(&cache->lock);
574 
575 		schedule();
576 
577 		finish_wait(&ctl->wait, &wait);
578 		put_caching_control(ctl);
579 		spin_lock(&cache->lock);
580 	}
581 
582 	if (cache->cached != BTRFS_CACHE_NO) {
583 		spin_unlock(&cache->lock);
584 		kfree(caching_ctl);
585 		return 0;
586 	}
587 	WARN_ON(cache->caching_ctl);
588 	cache->caching_ctl = caching_ctl;
589 	cache->cached = BTRFS_CACHE_FAST;
590 	spin_unlock(&cache->lock);
591 
592 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 			}
607 		}
608 		spin_unlock(&cache->lock);
609 		wake_up(&caching_ctl->wait);
610 		if (ret == 1) {
611 			put_caching_control(caching_ctl);
612 			free_excluded_extents(fs_info->extent_root, cache);
613 			return 0;
614 		}
615 	} else {
616 		/*
617 		 * We are not going to do the fast caching, set cached to the
618 		 * appropriate value and wakeup any waiters.
619 		 */
620 		spin_lock(&cache->lock);
621 		if (load_cache_only) {
622 			cache->caching_ctl = NULL;
623 			cache->cached = BTRFS_CACHE_NO;
624 		} else {
625 			cache->cached = BTRFS_CACHE_STARTED;
626 		}
627 		spin_unlock(&cache->lock);
628 		wake_up(&caching_ctl->wait);
629 	}
630 
631 	if (load_cache_only) {
632 		put_caching_control(caching_ctl);
633 		return 0;
634 	}
635 
636 	down_write(&fs_info->commit_root_sem);
637 	atomic_inc(&caching_ctl->count);
638 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 	up_write(&fs_info->commit_root_sem);
640 
641 	btrfs_get_block_group(cache);
642 
643 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
644 
645 	return ret;
646 }
647 
648 /*
649  * return the block group that starts at or after bytenr
650  */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 	struct btrfs_block_group_cache *cache;
655 
656 	cache = block_group_cache_tree_search(info, bytenr, 0);
657 
658 	return cache;
659 }
660 
661 /*
662  * return the block group that contains the given bytenr
663  */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 						 struct btrfs_fs_info *info,
666 						 u64 bytenr)
667 {
668 	struct btrfs_block_group_cache *cache;
669 
670 	cache = block_group_cache_tree_search(info, bytenr, 1);
671 
672 	return cache;
673 }
674 
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 						  u64 flags)
677 {
678 	struct list_head *head = &info->space_info;
679 	struct btrfs_space_info *found;
680 
681 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682 
683 	rcu_read_lock();
684 	list_for_each_entry_rcu(found, head, list) {
685 		if (found->flags & flags) {
686 			rcu_read_unlock();
687 			return found;
688 		}
689 	}
690 	rcu_read_unlock();
691 	return NULL;
692 }
693 
694 /*
695  * after adding space to the filesystem, we need to clear the full flags
696  * on all the space infos.
697  */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 	struct list_head *head = &info->space_info;
701 	struct btrfs_space_info *found;
702 
703 	rcu_read_lock();
704 	list_for_each_entry_rcu(found, head, list)
705 		found->full = 0;
706 	rcu_read_unlock();
707 }
708 
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 	int ret;
713 	struct btrfs_key key;
714 	struct btrfs_path *path;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	key.objectid = start;
721 	key.offset = len;
722 	key.type = BTRFS_EXTENT_ITEM_KEY;
723 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 				0, 0);
725 	if (ret > 0) {
726 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 		if (key.objectid == start &&
728 		    key.type == BTRFS_METADATA_ITEM_KEY)
729 			ret = 0;
730 	}
731 	btrfs_free_path(path);
732 	return ret;
733 }
734 
735 /*
736  * helper function to lookup reference count and flags of a tree block.
737  *
738  * the head node for delayed ref is used to store the sum of all the
739  * reference count modifications queued up in the rbtree. the head
740  * node may also store the extent flags to set. This way you can check
741  * to see what the reference count and extent flags would be if all of
742  * the delayed refs are not processed.
743  */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 			     struct btrfs_root *root, u64 bytenr,
746 			     u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 	struct btrfs_delayed_ref_head *head;
749 	struct btrfs_delayed_ref_root *delayed_refs;
750 	struct btrfs_path *path;
751 	struct btrfs_extent_item *ei;
752 	struct extent_buffer *leaf;
753 	struct btrfs_key key;
754 	u32 item_size;
755 	u64 num_refs;
756 	u64 extent_flags;
757 	int ret;
758 
759 	/*
760 	 * If we don't have skinny metadata, don't bother doing anything
761 	 * different
762 	 */
763 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 		offset = root->leafsize;
765 		metadata = 0;
766 	}
767 
768 	path = btrfs_alloc_path();
769 	if (!path)
770 		return -ENOMEM;
771 
772 	if (!trans) {
773 		path->skip_locking = 1;
774 		path->search_commit_root = 1;
775 	}
776 
777 search_again:
778 	key.objectid = bytenr;
779 	key.offset = offset;
780 	if (metadata)
781 		key.type = BTRFS_METADATA_ITEM_KEY;
782 	else
783 		key.type = BTRFS_EXTENT_ITEM_KEY;
784 
785 again:
786 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 				&key, path, 0, 0);
788 	if (ret < 0)
789 		goto out_free;
790 
791 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 		if (path->slots[0]) {
793 			path->slots[0]--;
794 			btrfs_item_key_to_cpu(path->nodes[0], &key,
795 					      path->slots[0]);
796 			if (key.objectid == bytenr &&
797 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
798 			    key.offset == root->leafsize)
799 				ret = 0;
800 		}
801 		if (ret) {
802 			key.objectid = bytenr;
803 			key.type = BTRFS_EXTENT_ITEM_KEY;
804 			key.offset = root->leafsize;
805 			btrfs_release_path(path);
806 			goto again;
807 		}
808 	}
809 
810 	if (ret == 0) {
811 		leaf = path->nodes[0];
812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 		if (item_size >= sizeof(*ei)) {
814 			ei = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_extent_item);
816 			num_refs = btrfs_extent_refs(leaf, ei);
817 			extent_flags = btrfs_extent_flags(leaf, ei);
818 		} else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 			struct btrfs_extent_item_v0 *ei0;
821 			BUG_ON(item_size != sizeof(*ei0));
822 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 					     struct btrfs_extent_item_v0);
824 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 			/* FIXME: this isn't correct for data */
826 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 			BUG();
829 #endif
830 		}
831 		BUG_ON(num_refs == 0);
832 	} else {
833 		num_refs = 0;
834 		extent_flags = 0;
835 		ret = 0;
836 	}
837 
838 	if (!trans)
839 		goto out;
840 
841 	delayed_refs = &trans->transaction->delayed_refs;
842 	spin_lock(&delayed_refs->lock);
843 	head = btrfs_find_delayed_ref_head(trans, bytenr);
844 	if (head) {
845 		if (!mutex_trylock(&head->mutex)) {
846 			atomic_inc(&head->node.refs);
847 			spin_unlock(&delayed_refs->lock);
848 
849 			btrfs_release_path(path);
850 
851 			/*
852 			 * Mutex was contended, block until it's released and try
853 			 * again
854 			 */
855 			mutex_lock(&head->mutex);
856 			mutex_unlock(&head->mutex);
857 			btrfs_put_delayed_ref(&head->node);
858 			goto search_again;
859 		}
860 		spin_lock(&head->lock);
861 		if (head->extent_op && head->extent_op->update_flags)
862 			extent_flags |= head->extent_op->flags_to_set;
863 		else
864 			BUG_ON(num_refs == 0);
865 
866 		num_refs += head->node.ref_mod;
867 		spin_unlock(&head->lock);
868 		mutex_unlock(&head->mutex);
869 	}
870 	spin_unlock(&delayed_refs->lock);
871 out:
872 	WARN_ON(num_refs == 0);
873 	if (refs)
874 		*refs = num_refs;
875 	if (flags)
876 		*flags = extent_flags;
877 out_free:
878 	btrfs_free_path(path);
879 	return ret;
880 }
881 
882 /*
883  * Back reference rules.  Back refs have three main goals:
884  *
885  * 1) differentiate between all holders of references to an extent so that
886  *    when a reference is dropped we can make sure it was a valid reference
887  *    before freeing the extent.
888  *
889  * 2) Provide enough information to quickly find the holders of an extent
890  *    if we notice a given block is corrupted or bad.
891  *
892  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893  *    maintenance.  This is actually the same as #2, but with a slightly
894  *    different use case.
895  *
896  * There are two kinds of back refs. The implicit back refs is optimized
897  * for pointers in non-shared tree blocks. For a given pointer in a block,
898  * back refs of this kind provide information about the block's owner tree
899  * and the pointer's key. These information allow us to find the block by
900  * b-tree searching. The full back refs is for pointers in tree blocks not
901  * referenced by their owner trees. The location of tree block is recorded
902  * in the back refs. Actually the full back refs is generic, and can be
903  * used in all cases the implicit back refs is used. The major shortcoming
904  * of the full back refs is its overhead. Every time a tree block gets
905  * COWed, we have to update back refs entry for all pointers in it.
906  *
907  * For a newly allocated tree block, we use implicit back refs for
908  * pointers in it. This means most tree related operations only involve
909  * implicit back refs. For a tree block created in old transaction, the
910  * only way to drop a reference to it is COW it. So we can detect the
911  * event that tree block loses its owner tree's reference and do the
912  * back refs conversion.
913  *
914  * When a tree block is COW'd through a tree, there are four cases:
915  *
916  * The reference count of the block is one and the tree is the block's
917  * owner tree. Nothing to do in this case.
918  *
919  * The reference count of the block is one and the tree is not the
920  * block's owner tree. In this case, full back refs is used for pointers
921  * in the block. Remove these full back refs, add implicit back refs for
922  * every pointers in the new block.
923  *
924  * The reference count of the block is greater than one and the tree is
925  * the block's owner tree. In this case, implicit back refs is used for
926  * pointers in the block. Add full back refs for every pointers in the
927  * block, increase lower level extents' reference counts. The original
928  * implicit back refs are entailed to the new block.
929  *
930  * The reference count of the block is greater than one and the tree is
931  * not the block's owner tree. Add implicit back refs for every pointer in
932  * the new block, increase lower level extents' reference count.
933  *
934  * Back Reference Key composing:
935  *
936  * The key objectid corresponds to the first byte in the extent,
937  * The key type is used to differentiate between types of back refs.
938  * There are different meanings of the key offset for different types
939  * of back refs.
940  *
941  * File extents can be referenced by:
942  *
943  * - multiple snapshots, subvolumes, or different generations in one subvol
944  * - different files inside a single subvolume
945  * - different offsets inside a file (bookend extents in file.c)
946  *
947  * The extent ref structure for the implicit back refs has fields for:
948  *
949  * - Objectid of the subvolume root
950  * - objectid of the file holding the reference
951  * - original offset in the file
952  * - how many bookend extents
953  *
954  * The key offset for the implicit back refs is hash of the first
955  * three fields.
956  *
957  * The extent ref structure for the full back refs has field for:
958  *
959  * - number of pointers in the tree leaf
960  *
961  * The key offset for the implicit back refs is the first byte of
962  * the tree leaf
963  *
964  * When a file extent is allocated, The implicit back refs is used.
965  * the fields are filled in:
966  *
967  *     (root_key.objectid, inode objectid, offset in file, 1)
968  *
969  * When a file extent is removed file truncation, we find the
970  * corresponding implicit back refs and check the following fields:
971  *
972  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
973  *
974  * Btree extents can be referenced by:
975  *
976  * - Different subvolumes
977  *
978  * Both the implicit back refs and the full back refs for tree blocks
979  * only consist of key. The key offset for the implicit back refs is
980  * objectid of block's owner tree. The key offset for the full back refs
981  * is the first byte of parent block.
982  *
983  * When implicit back refs is used, information about the lowest key and
984  * level of the tree block are required. These information are stored in
985  * tree block info structure.
986  */
987 
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 				  struct btrfs_root *root,
991 				  struct btrfs_path *path,
992 				  u64 owner, u32 extra_size)
993 {
994 	struct btrfs_extent_item *item;
995 	struct btrfs_extent_item_v0 *ei0;
996 	struct btrfs_extent_ref_v0 *ref0;
997 	struct btrfs_tree_block_info *bi;
998 	struct extent_buffer *leaf;
999 	struct btrfs_key key;
1000 	struct btrfs_key found_key;
1001 	u32 new_size = sizeof(*item);
1002 	u64 refs;
1003 	int ret;
1004 
1005 	leaf = path->nodes[0];
1006 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007 
1008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 			     struct btrfs_extent_item_v0);
1011 	refs = btrfs_extent_refs_v0(leaf, ei0);
1012 
1013 	if (owner == (u64)-1) {
1014 		while (1) {
1015 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 				ret = btrfs_next_leaf(root, path);
1017 				if (ret < 0)
1018 					return ret;
1019 				BUG_ON(ret > 0); /* Corruption */
1020 				leaf = path->nodes[0];
1021 			}
1022 			btrfs_item_key_to_cpu(leaf, &found_key,
1023 					      path->slots[0]);
1024 			BUG_ON(key.objectid != found_key.objectid);
1025 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 				path->slots[0]++;
1027 				continue;
1028 			}
1029 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 					      struct btrfs_extent_ref_v0);
1031 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 			break;
1033 		}
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 		new_size += sizeof(*bi);
1039 
1040 	new_size -= sizeof(*ei0);
1041 	ret = btrfs_search_slot(trans, root, &key, path,
1042 				new_size + extra_size, 1);
1043 	if (ret < 0)
1044 		return ret;
1045 	BUG_ON(ret); /* Corruption */
1046 
1047 	btrfs_extend_item(root, path, new_size);
1048 
1049 	leaf = path->nodes[0];
1050 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 	btrfs_set_extent_refs(leaf, item, refs);
1052 	/* FIXME: get real generation */
1053 	btrfs_set_extent_generation(leaf, item, 0);
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		btrfs_set_extent_flags(leaf, item,
1056 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 		bi = (struct btrfs_tree_block_info *)(item + 1);
1059 		/* FIXME: get first key of the block */
1060 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 	} else {
1063 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 	return 0;
1067 }
1068 #endif
1069 
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071 {
1072 	u32 high_crc = ~(u32)0;
1073 	u32 low_crc = ~(u32)0;
1074 	__le64 lenum;
1075 
1076 	lenum = cpu_to_le64(root_objectid);
1077 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 	lenum = cpu_to_le64(owner);
1079 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 	lenum = cpu_to_le64(offset);
1081 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082 
1083 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 }
1085 
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 				     struct btrfs_extent_data_ref *ref)
1088 {
1089 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 				    btrfs_extent_data_ref_objectid(leaf, ref),
1091 				    btrfs_extent_data_ref_offset(leaf, ref));
1092 }
1093 
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 				 struct btrfs_extent_data_ref *ref,
1096 				 u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 					   struct btrfs_root *root,
1107 					   struct btrfs_path *path,
1108 					   u64 bytenr, u64 parent,
1109 					   u64 root_objectid,
1110 					   u64 owner, u64 offset)
1111 {
1112 	struct btrfs_key key;
1113 	struct btrfs_extent_data_ref *ref;
1114 	struct extent_buffer *leaf;
1115 	u32 nritems;
1116 	int ret;
1117 	int recow;
1118 	int err = -ENOENT;
1119 
1120 	key.objectid = bytenr;
1121 	if (parent) {
1122 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 		key.offset = parent;
1124 	} else {
1125 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 		key.offset = hash_extent_data_ref(root_objectid,
1127 						  owner, offset);
1128 	}
1129 again:
1130 	recow = 0;
1131 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 	if (ret < 0) {
1133 		err = ret;
1134 		goto fail;
1135 	}
1136 
1137 	if (parent) {
1138 		if (!ret)
1139 			return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 		btrfs_release_path(path);
1143 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 		if (ret < 0) {
1145 			err = ret;
1146 			goto fail;
1147 		}
1148 		if (!ret)
1149 			return 0;
1150 #endif
1151 		goto fail;
1152 	}
1153 
1154 	leaf = path->nodes[0];
1155 	nritems = btrfs_header_nritems(leaf);
1156 	while (1) {
1157 		if (path->slots[0] >= nritems) {
1158 			ret = btrfs_next_leaf(root, path);
1159 			if (ret < 0)
1160 				err = ret;
1161 			if (ret)
1162 				goto fail;
1163 
1164 			leaf = path->nodes[0];
1165 			nritems = btrfs_header_nritems(leaf);
1166 			recow = 1;
1167 		}
1168 
1169 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 		if (key.objectid != bytenr ||
1171 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 			goto fail;
1173 
1174 		ref = btrfs_item_ptr(leaf, path->slots[0],
1175 				     struct btrfs_extent_data_ref);
1176 
1177 		if (match_extent_data_ref(leaf, ref, root_objectid,
1178 					  owner, offset)) {
1179 			if (recow) {
1180 				btrfs_release_path(path);
1181 				goto again;
1182 			}
1183 			err = 0;
1184 			break;
1185 		}
1186 		path->slots[0]++;
1187 	}
1188 fail:
1189 	return err;
1190 }
1191 
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 					   struct btrfs_root *root,
1194 					   struct btrfs_path *path,
1195 					   u64 bytenr, u64 parent,
1196 					   u64 root_objectid, u64 owner,
1197 					   u64 offset, int refs_to_add)
1198 {
1199 	struct btrfs_key key;
1200 	struct extent_buffer *leaf;
1201 	u32 size;
1202 	u32 num_refs;
1203 	int ret;
1204 
1205 	key.objectid = bytenr;
1206 	if (parent) {
1207 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 		key.offset = parent;
1209 		size = sizeof(struct btrfs_shared_data_ref);
1210 	} else {
1211 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 		key.offset = hash_extent_data_ref(root_objectid,
1213 						  owner, offset);
1214 		size = sizeof(struct btrfs_extent_data_ref);
1215 	}
1216 
1217 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 	if (ret && ret != -EEXIST)
1219 		goto fail;
1220 
1221 	leaf = path->nodes[0];
1222 	if (parent) {
1223 		struct btrfs_shared_data_ref *ref;
1224 		ref = btrfs_item_ptr(leaf, path->slots[0],
1225 				     struct btrfs_shared_data_ref);
1226 		if (ret == 0) {
1227 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 		} else {
1229 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 			num_refs += refs_to_add;
1231 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 		}
1233 	} else {
1234 		struct btrfs_extent_data_ref *ref;
1235 		while (ret == -EEXIST) {
1236 			ref = btrfs_item_ptr(leaf, path->slots[0],
1237 					     struct btrfs_extent_data_ref);
1238 			if (match_extent_data_ref(leaf, ref, root_objectid,
1239 						  owner, offset))
1240 				break;
1241 			btrfs_release_path(path);
1242 			key.offset++;
1243 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 						      size);
1245 			if (ret && ret != -EEXIST)
1246 				goto fail;
1247 
1248 			leaf = path->nodes[0];
1249 		}
1250 		ref = btrfs_item_ptr(leaf, path->slots[0],
1251 				     struct btrfs_extent_data_ref);
1252 		if (ret == 0) {
1253 			btrfs_set_extent_data_ref_root(leaf, ref,
1254 						       root_objectid);
1255 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 		} else {
1259 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 			num_refs += refs_to_add;
1261 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 		}
1263 	}
1264 	btrfs_mark_buffer_dirty(leaf);
1265 	ret = 0;
1266 fail:
1267 	btrfs_release_path(path);
1268 	return ret;
1269 }
1270 
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 					   struct btrfs_root *root,
1273 					   struct btrfs_path *path,
1274 					   int refs_to_drop)
1275 {
1276 	struct btrfs_key key;
1277 	struct btrfs_extent_data_ref *ref1 = NULL;
1278 	struct btrfs_shared_data_ref *ref2 = NULL;
1279 	struct extent_buffer *leaf;
1280 	u32 num_refs = 0;
1281 	int ret = 0;
1282 
1283 	leaf = path->nodes[0];
1284 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285 
1286 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_data_ref);
1289 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 				      struct btrfs_shared_data_ref);
1293 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 		struct btrfs_extent_ref_v0 *ref0;
1297 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 				      struct btrfs_extent_ref_v0);
1299 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 	} else {
1302 		BUG();
1303 	}
1304 
1305 	BUG_ON(num_refs < refs_to_drop);
1306 	num_refs -= refs_to_drop;
1307 
1308 	if (num_refs == 0) {
1309 		ret = btrfs_del_item(trans, root, path);
1310 	} else {
1311 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 		else {
1317 			struct btrfs_extent_ref_v0 *ref0;
1318 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 					struct btrfs_extent_ref_v0);
1320 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 		}
1322 #endif
1323 		btrfs_mark_buffer_dirty(leaf);
1324 	}
1325 	return ret;
1326 }
1327 
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 					  struct btrfs_path *path,
1330 					  struct btrfs_extent_inline_ref *iref)
1331 {
1332 	struct btrfs_key key;
1333 	struct extent_buffer *leaf;
1334 	struct btrfs_extent_data_ref *ref1;
1335 	struct btrfs_shared_data_ref *ref2;
1336 	u32 num_refs = 0;
1337 
1338 	leaf = path->nodes[0];
1339 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 	if (iref) {
1341 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 		    BTRFS_EXTENT_DATA_REF_KEY) {
1343 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 		} else {
1346 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 		}
1349 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_data_ref);
1352 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_shared_data_ref);
1356 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 		struct btrfs_extent_ref_v0 *ref0;
1360 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_extent_ref_v0);
1362 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 	} else {
1365 		WARN_ON(1);
1366 	}
1367 	return num_refs;
1368 }
1369 
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 					  struct btrfs_root *root,
1372 					  struct btrfs_path *path,
1373 					  u64 bytenr, u64 parent,
1374 					  u64 root_objectid)
1375 {
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	if (parent) {
1381 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 		key.offset = parent;
1383 	} else {
1384 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 		key.offset = root_objectid;
1386 	}
1387 
1388 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 	if (ret > 0)
1390 		ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 	if (ret == -ENOENT && parent) {
1393 		btrfs_release_path(path);
1394 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 		if (ret > 0)
1397 			ret = -ENOENT;
1398 	}
1399 #endif
1400 	return ret;
1401 }
1402 
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 					  struct btrfs_root *root,
1405 					  struct btrfs_path *path,
1406 					  u64 bytenr, u64 parent,
1407 					  u64 root_objectid)
1408 {
1409 	struct btrfs_key key;
1410 	int ret;
1411 
1412 	key.objectid = bytenr;
1413 	if (parent) {
1414 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 		key.offset = parent;
1416 	} else {
1417 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 		key.offset = root_objectid;
1419 	}
1420 
1421 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 	btrfs_release_path(path);
1423 	return ret;
1424 }
1425 
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1427 {
1428 	int type;
1429 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 		if (parent > 0)
1431 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 		else
1433 			type = BTRFS_TREE_BLOCK_REF_KEY;
1434 	} else {
1435 		if (parent > 0)
1436 			type = BTRFS_SHARED_DATA_REF_KEY;
1437 		else
1438 			type = BTRFS_EXTENT_DATA_REF_KEY;
1439 	}
1440 	return type;
1441 }
1442 
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 			 struct btrfs_key *key)
1445 
1446 {
1447 	for (; level < BTRFS_MAX_LEVEL; level++) {
1448 		if (!path->nodes[level])
1449 			break;
1450 		if (path->slots[level] + 1 >=
1451 		    btrfs_header_nritems(path->nodes[level]))
1452 			continue;
1453 		if (level == 0)
1454 			btrfs_item_key_to_cpu(path->nodes[level], key,
1455 					      path->slots[level] + 1);
1456 		else
1457 			btrfs_node_key_to_cpu(path->nodes[level], key,
1458 					      path->slots[level] + 1);
1459 		return 0;
1460 	}
1461 	return 1;
1462 }
1463 
1464 /*
1465  * look for inline back ref. if back ref is found, *ref_ret is set
1466  * to the address of inline back ref, and 0 is returned.
1467  *
1468  * if back ref isn't found, *ref_ret is set to the address where it
1469  * should be inserted, and -ENOENT is returned.
1470  *
1471  * if insert is true and there are too many inline back refs, the path
1472  * points to the extent item, and -EAGAIN is returned.
1473  *
1474  * NOTE: inline back refs are ordered in the same way that back ref
1475  *	 items in the tree are ordered.
1476  */
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 				 struct btrfs_root *root,
1480 				 struct btrfs_path *path,
1481 				 struct btrfs_extent_inline_ref **ref_ret,
1482 				 u64 bytenr, u64 num_bytes,
1483 				 u64 parent, u64 root_objectid,
1484 				 u64 owner, u64 offset, int insert)
1485 {
1486 	struct btrfs_key key;
1487 	struct extent_buffer *leaf;
1488 	struct btrfs_extent_item *ei;
1489 	struct btrfs_extent_inline_ref *iref;
1490 	u64 flags;
1491 	u64 item_size;
1492 	unsigned long ptr;
1493 	unsigned long end;
1494 	int extra_size;
1495 	int type;
1496 	int want;
1497 	int ret;
1498 	int err = 0;
1499 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 						 SKINNY_METADATA);
1501 
1502 	key.objectid = bytenr;
1503 	key.type = BTRFS_EXTENT_ITEM_KEY;
1504 	key.offset = num_bytes;
1505 
1506 	want = extent_ref_type(parent, owner);
1507 	if (insert) {
1508 		extra_size = btrfs_extent_inline_ref_size(want);
1509 		path->keep_locks = 1;
1510 	} else
1511 		extra_size = -1;
1512 
1513 	/*
1514 	 * Owner is our parent level, so we can just add one to get the level
1515 	 * for the block we are interested in.
1516 	 */
1517 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 		key.type = BTRFS_METADATA_ITEM_KEY;
1519 		key.offset = owner;
1520 	}
1521 
1522 again:
1523 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 	if (ret < 0) {
1525 		err = ret;
1526 		goto out;
1527 	}
1528 
1529 	/*
1530 	 * We may be a newly converted file system which still has the old fat
1531 	 * extent entries for metadata, so try and see if we have one of those.
1532 	 */
1533 	if (ret > 0 && skinny_metadata) {
1534 		skinny_metadata = false;
1535 		if (path->slots[0]) {
1536 			path->slots[0]--;
1537 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 					      path->slots[0]);
1539 			if (key.objectid == bytenr &&
1540 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 			    key.offset == num_bytes)
1542 				ret = 0;
1543 		}
1544 		if (ret) {
1545 			key.objectid = bytenr;
1546 			key.type = BTRFS_EXTENT_ITEM_KEY;
1547 			key.offset = num_bytes;
1548 			btrfs_release_path(path);
1549 			goto again;
1550 		}
1551 	}
1552 
1553 	if (ret && !insert) {
1554 		err = -ENOENT;
1555 		goto out;
1556 	} else if (WARN_ON(ret)) {
1557 		err = -EIO;
1558 		goto out;
1559 	}
1560 
1561 	leaf = path->nodes[0];
1562 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1563 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1564 	if (item_size < sizeof(*ei)) {
1565 		if (!insert) {
1566 			err = -ENOENT;
1567 			goto out;
1568 		}
1569 		ret = convert_extent_item_v0(trans, root, path, owner,
1570 					     extra_size);
1571 		if (ret < 0) {
1572 			err = ret;
1573 			goto out;
1574 		}
1575 		leaf = path->nodes[0];
1576 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 	}
1578 #endif
1579 	BUG_ON(item_size < sizeof(*ei));
1580 
1581 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1582 	flags = btrfs_extent_flags(leaf, ei);
1583 
1584 	ptr = (unsigned long)(ei + 1);
1585 	end = (unsigned long)ei + item_size;
1586 
1587 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1588 		ptr += sizeof(struct btrfs_tree_block_info);
1589 		BUG_ON(ptr > end);
1590 	}
1591 
1592 	err = -ENOENT;
1593 	while (1) {
1594 		if (ptr >= end) {
1595 			WARN_ON(ptr > end);
1596 			break;
1597 		}
1598 		iref = (struct btrfs_extent_inline_ref *)ptr;
1599 		type = btrfs_extent_inline_ref_type(leaf, iref);
1600 		if (want < type)
1601 			break;
1602 		if (want > type) {
1603 			ptr += btrfs_extent_inline_ref_size(type);
1604 			continue;
1605 		}
1606 
1607 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1608 			struct btrfs_extent_data_ref *dref;
1609 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1610 			if (match_extent_data_ref(leaf, dref, root_objectid,
1611 						  owner, offset)) {
1612 				err = 0;
1613 				break;
1614 			}
1615 			if (hash_extent_data_ref_item(leaf, dref) <
1616 			    hash_extent_data_ref(root_objectid, owner, offset))
1617 				break;
1618 		} else {
1619 			u64 ref_offset;
1620 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1621 			if (parent > 0) {
1622 				if (parent == ref_offset) {
1623 					err = 0;
1624 					break;
1625 				}
1626 				if (ref_offset < parent)
1627 					break;
1628 			} else {
1629 				if (root_objectid == ref_offset) {
1630 					err = 0;
1631 					break;
1632 				}
1633 				if (ref_offset < root_objectid)
1634 					break;
1635 			}
1636 		}
1637 		ptr += btrfs_extent_inline_ref_size(type);
1638 	}
1639 	if (err == -ENOENT && insert) {
1640 		if (item_size + extra_size >=
1641 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1642 			err = -EAGAIN;
1643 			goto out;
1644 		}
1645 		/*
1646 		 * To add new inline back ref, we have to make sure
1647 		 * there is no corresponding back ref item.
1648 		 * For simplicity, we just do not add new inline back
1649 		 * ref if there is any kind of item for this block
1650 		 */
1651 		if (find_next_key(path, 0, &key) == 0 &&
1652 		    key.objectid == bytenr &&
1653 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1654 			err = -EAGAIN;
1655 			goto out;
1656 		}
1657 	}
1658 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1659 out:
1660 	if (insert) {
1661 		path->keep_locks = 0;
1662 		btrfs_unlock_up_safe(path, 1);
1663 	}
1664 	return err;
1665 }
1666 
1667 /*
1668  * helper to add new inline back ref
1669  */
1670 static noinline_for_stack
1671 void setup_inline_extent_backref(struct btrfs_root *root,
1672 				 struct btrfs_path *path,
1673 				 struct btrfs_extent_inline_ref *iref,
1674 				 u64 parent, u64 root_objectid,
1675 				 u64 owner, u64 offset, int refs_to_add,
1676 				 struct btrfs_delayed_extent_op *extent_op)
1677 {
1678 	struct extent_buffer *leaf;
1679 	struct btrfs_extent_item *ei;
1680 	unsigned long ptr;
1681 	unsigned long end;
1682 	unsigned long item_offset;
1683 	u64 refs;
1684 	int size;
1685 	int type;
1686 
1687 	leaf = path->nodes[0];
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	item_offset = (unsigned long)iref - (unsigned long)ei;
1690 
1691 	type = extent_ref_type(parent, owner);
1692 	size = btrfs_extent_inline_ref_size(type);
1693 
1694 	btrfs_extend_item(root, path, size);
1695 
1696 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 	refs = btrfs_extent_refs(leaf, ei);
1698 	refs += refs_to_add;
1699 	btrfs_set_extent_refs(leaf, ei, refs);
1700 	if (extent_op)
1701 		__run_delayed_extent_op(extent_op, leaf, ei);
1702 
1703 	ptr = (unsigned long)ei + item_offset;
1704 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1705 	if (ptr < end - size)
1706 		memmove_extent_buffer(leaf, ptr + size, ptr,
1707 				      end - size - ptr);
1708 
1709 	iref = (struct btrfs_extent_inline_ref *)ptr;
1710 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1711 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1712 		struct btrfs_extent_data_ref *dref;
1713 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1714 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1715 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1716 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1717 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1718 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1719 		struct btrfs_shared_data_ref *sref;
1720 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1721 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1722 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1723 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1724 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1725 	} else {
1726 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1727 	}
1728 	btrfs_mark_buffer_dirty(leaf);
1729 }
1730 
1731 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1732 				 struct btrfs_root *root,
1733 				 struct btrfs_path *path,
1734 				 struct btrfs_extent_inline_ref **ref_ret,
1735 				 u64 bytenr, u64 num_bytes, u64 parent,
1736 				 u64 root_objectid, u64 owner, u64 offset)
1737 {
1738 	int ret;
1739 
1740 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1741 					   bytenr, num_bytes, parent,
1742 					   root_objectid, owner, offset, 0);
1743 	if (ret != -ENOENT)
1744 		return ret;
1745 
1746 	btrfs_release_path(path);
1747 	*ref_ret = NULL;
1748 
1749 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1750 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1751 					    root_objectid);
1752 	} else {
1753 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1754 					     root_objectid, owner, offset);
1755 	}
1756 	return ret;
1757 }
1758 
1759 /*
1760  * helper to update/remove inline back ref
1761  */
1762 static noinline_for_stack
1763 void update_inline_extent_backref(struct btrfs_root *root,
1764 				  struct btrfs_path *path,
1765 				  struct btrfs_extent_inline_ref *iref,
1766 				  int refs_to_mod,
1767 				  struct btrfs_delayed_extent_op *extent_op)
1768 {
1769 	struct extent_buffer *leaf;
1770 	struct btrfs_extent_item *ei;
1771 	struct btrfs_extent_data_ref *dref = NULL;
1772 	struct btrfs_shared_data_ref *sref = NULL;
1773 	unsigned long ptr;
1774 	unsigned long end;
1775 	u32 item_size;
1776 	int size;
1777 	int type;
1778 	u64 refs;
1779 
1780 	leaf = path->nodes[0];
1781 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 	refs = btrfs_extent_refs(leaf, ei);
1783 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1784 	refs += refs_to_mod;
1785 	btrfs_set_extent_refs(leaf, ei, refs);
1786 	if (extent_op)
1787 		__run_delayed_extent_op(extent_op, leaf, ei);
1788 
1789 	type = btrfs_extent_inline_ref_type(leaf, iref);
1790 
1791 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1792 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 		refs = btrfs_extent_data_ref_count(leaf, dref);
1794 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1795 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1796 		refs = btrfs_shared_data_ref_count(leaf, sref);
1797 	} else {
1798 		refs = 1;
1799 		BUG_ON(refs_to_mod != -1);
1800 	}
1801 
1802 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1803 	refs += refs_to_mod;
1804 
1805 	if (refs > 0) {
1806 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1807 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1808 		else
1809 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1810 	} else {
1811 		size =  btrfs_extent_inline_ref_size(type);
1812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 		ptr = (unsigned long)iref;
1814 		end = (unsigned long)ei + item_size;
1815 		if (ptr + size < end)
1816 			memmove_extent_buffer(leaf, ptr, ptr + size,
1817 					      end - ptr - size);
1818 		item_size -= size;
1819 		btrfs_truncate_item(root, path, item_size, 1);
1820 	}
1821 	btrfs_mark_buffer_dirty(leaf);
1822 }
1823 
1824 static noinline_for_stack
1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1826 				 struct btrfs_root *root,
1827 				 struct btrfs_path *path,
1828 				 u64 bytenr, u64 num_bytes, u64 parent,
1829 				 u64 root_objectid, u64 owner,
1830 				 u64 offset, int refs_to_add,
1831 				 struct btrfs_delayed_extent_op *extent_op)
1832 {
1833 	struct btrfs_extent_inline_ref *iref;
1834 	int ret;
1835 
1836 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1837 					   bytenr, num_bytes, parent,
1838 					   root_objectid, owner, offset, 1);
1839 	if (ret == 0) {
1840 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1841 		update_inline_extent_backref(root, path, iref,
1842 					     refs_to_add, extent_op);
1843 	} else if (ret == -ENOENT) {
1844 		setup_inline_extent_backref(root, path, iref, parent,
1845 					    root_objectid, owner, offset,
1846 					    refs_to_add, extent_op);
1847 		ret = 0;
1848 	}
1849 	return ret;
1850 }
1851 
1852 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1853 				 struct btrfs_root *root,
1854 				 struct btrfs_path *path,
1855 				 u64 bytenr, u64 parent, u64 root_objectid,
1856 				 u64 owner, u64 offset, int refs_to_add)
1857 {
1858 	int ret;
1859 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1860 		BUG_ON(refs_to_add != 1);
1861 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1862 					    parent, root_objectid);
1863 	} else {
1864 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1865 					     parent, root_objectid,
1866 					     owner, offset, refs_to_add);
1867 	}
1868 	return ret;
1869 }
1870 
1871 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1872 				 struct btrfs_root *root,
1873 				 struct btrfs_path *path,
1874 				 struct btrfs_extent_inline_ref *iref,
1875 				 int refs_to_drop, int is_data)
1876 {
1877 	int ret = 0;
1878 
1879 	BUG_ON(!is_data && refs_to_drop != 1);
1880 	if (iref) {
1881 		update_inline_extent_backref(root, path, iref,
1882 					     -refs_to_drop, NULL);
1883 	} else if (is_data) {
1884 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1885 	} else {
1886 		ret = btrfs_del_item(trans, root, path);
1887 	}
1888 	return ret;
1889 }
1890 
1891 static int btrfs_issue_discard(struct block_device *bdev,
1892 				u64 start, u64 len)
1893 {
1894 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1895 }
1896 
1897 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1898 				u64 num_bytes, u64 *actual_bytes)
1899 {
1900 	int ret;
1901 	u64 discarded_bytes = 0;
1902 	struct btrfs_bio *bbio = NULL;
1903 
1904 
1905 	/* Tell the block device(s) that the sectors can be discarded */
1906 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1907 			      bytenr, &num_bytes, &bbio, 0);
1908 	/* Error condition is -ENOMEM */
1909 	if (!ret) {
1910 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1911 		int i;
1912 
1913 
1914 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1915 			if (!stripe->dev->can_discard)
1916 				continue;
1917 
1918 			ret = btrfs_issue_discard(stripe->dev->bdev,
1919 						  stripe->physical,
1920 						  stripe->length);
1921 			if (!ret)
1922 				discarded_bytes += stripe->length;
1923 			else if (ret != -EOPNOTSUPP)
1924 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1925 
1926 			/*
1927 			 * Just in case we get back EOPNOTSUPP for some reason,
1928 			 * just ignore the return value so we don't screw up
1929 			 * people calling discard_extent.
1930 			 */
1931 			ret = 0;
1932 		}
1933 		kfree(bbio);
1934 	}
1935 
1936 	if (actual_bytes)
1937 		*actual_bytes = discarded_bytes;
1938 
1939 
1940 	if (ret == -EOPNOTSUPP)
1941 		ret = 0;
1942 	return ret;
1943 }
1944 
1945 /* Can return -ENOMEM */
1946 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1947 			 struct btrfs_root *root,
1948 			 u64 bytenr, u64 num_bytes, u64 parent,
1949 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1950 {
1951 	int ret;
1952 	struct btrfs_fs_info *fs_info = root->fs_info;
1953 
1954 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1955 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1956 
1957 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1958 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1959 					num_bytes,
1960 					parent, root_objectid, (int)owner,
1961 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1962 	} else {
1963 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1964 					num_bytes,
1965 					parent, root_objectid, owner, offset,
1966 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1967 	}
1968 	return ret;
1969 }
1970 
1971 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1972 				  struct btrfs_root *root,
1973 				  u64 bytenr, u64 num_bytes,
1974 				  u64 parent, u64 root_objectid,
1975 				  u64 owner, u64 offset, int refs_to_add,
1976 				  struct btrfs_delayed_extent_op *extent_op)
1977 {
1978 	struct btrfs_path *path;
1979 	struct extent_buffer *leaf;
1980 	struct btrfs_extent_item *item;
1981 	u64 refs;
1982 	int ret;
1983 
1984 	path = btrfs_alloc_path();
1985 	if (!path)
1986 		return -ENOMEM;
1987 
1988 	path->reada = 1;
1989 	path->leave_spinning = 1;
1990 	/* this will setup the path even if it fails to insert the back ref */
1991 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 					   path, bytenr, num_bytes, parent,
1993 					   root_objectid, owner, offset,
1994 					   refs_to_add, extent_op);
1995 	if (ret != -EAGAIN)
1996 		goto out;
1997 
1998 	leaf = path->nodes[0];
1999 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2000 	refs = btrfs_extent_refs(leaf, item);
2001 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2002 	if (extent_op)
2003 		__run_delayed_extent_op(extent_op, leaf, item);
2004 
2005 	btrfs_mark_buffer_dirty(leaf);
2006 	btrfs_release_path(path);
2007 
2008 	path->reada = 1;
2009 	path->leave_spinning = 1;
2010 
2011 	/* now insert the actual backref */
2012 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2013 				    path, bytenr, parent, root_objectid,
2014 				    owner, offset, refs_to_add);
2015 	if (ret)
2016 		btrfs_abort_transaction(trans, root, ret);
2017 out:
2018 	btrfs_free_path(path);
2019 	return ret;
2020 }
2021 
2022 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2023 				struct btrfs_root *root,
2024 				struct btrfs_delayed_ref_node *node,
2025 				struct btrfs_delayed_extent_op *extent_op,
2026 				int insert_reserved)
2027 {
2028 	int ret = 0;
2029 	struct btrfs_delayed_data_ref *ref;
2030 	struct btrfs_key ins;
2031 	u64 parent = 0;
2032 	u64 ref_root = 0;
2033 	u64 flags = 0;
2034 
2035 	ins.objectid = node->bytenr;
2036 	ins.offset = node->num_bytes;
2037 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2038 
2039 	ref = btrfs_delayed_node_to_data_ref(node);
2040 	trace_run_delayed_data_ref(node, ref, node->action);
2041 
2042 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2043 		parent = ref->parent;
2044 	else
2045 		ref_root = ref->root;
2046 
2047 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2048 		if (extent_op)
2049 			flags |= extent_op->flags_to_set;
2050 		ret = alloc_reserved_file_extent(trans, root,
2051 						 parent, ref_root, flags,
2052 						 ref->objectid, ref->offset,
2053 						 &ins, node->ref_mod);
2054 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2055 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2056 					     node->num_bytes, parent,
2057 					     ref_root, ref->objectid,
2058 					     ref->offset, node->ref_mod,
2059 					     extent_op);
2060 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2061 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2062 					  node->num_bytes, parent,
2063 					  ref_root, ref->objectid,
2064 					  ref->offset, node->ref_mod,
2065 					  extent_op);
2066 	} else {
2067 		BUG();
2068 	}
2069 	return ret;
2070 }
2071 
2072 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2073 				    struct extent_buffer *leaf,
2074 				    struct btrfs_extent_item *ei)
2075 {
2076 	u64 flags = btrfs_extent_flags(leaf, ei);
2077 	if (extent_op->update_flags) {
2078 		flags |= extent_op->flags_to_set;
2079 		btrfs_set_extent_flags(leaf, ei, flags);
2080 	}
2081 
2082 	if (extent_op->update_key) {
2083 		struct btrfs_tree_block_info *bi;
2084 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2085 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2086 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2087 	}
2088 }
2089 
2090 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2091 				 struct btrfs_root *root,
2092 				 struct btrfs_delayed_ref_node *node,
2093 				 struct btrfs_delayed_extent_op *extent_op)
2094 {
2095 	struct btrfs_key key;
2096 	struct btrfs_path *path;
2097 	struct btrfs_extent_item *ei;
2098 	struct extent_buffer *leaf;
2099 	u32 item_size;
2100 	int ret;
2101 	int err = 0;
2102 	int metadata = !extent_op->is_data;
2103 
2104 	if (trans->aborted)
2105 		return 0;
2106 
2107 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2108 		metadata = 0;
2109 
2110 	path = btrfs_alloc_path();
2111 	if (!path)
2112 		return -ENOMEM;
2113 
2114 	key.objectid = node->bytenr;
2115 
2116 	if (metadata) {
2117 		key.type = BTRFS_METADATA_ITEM_KEY;
2118 		key.offset = extent_op->level;
2119 	} else {
2120 		key.type = BTRFS_EXTENT_ITEM_KEY;
2121 		key.offset = node->num_bytes;
2122 	}
2123 
2124 again:
2125 	path->reada = 1;
2126 	path->leave_spinning = 1;
2127 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2128 				path, 0, 1);
2129 	if (ret < 0) {
2130 		err = ret;
2131 		goto out;
2132 	}
2133 	if (ret > 0) {
2134 		if (metadata) {
2135 			if (path->slots[0] > 0) {
2136 				path->slots[0]--;
2137 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2138 						      path->slots[0]);
2139 				if (key.objectid == node->bytenr &&
2140 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2141 				    key.offset == node->num_bytes)
2142 					ret = 0;
2143 			}
2144 			if (ret > 0) {
2145 				btrfs_release_path(path);
2146 				metadata = 0;
2147 
2148 				key.objectid = node->bytenr;
2149 				key.offset = node->num_bytes;
2150 				key.type = BTRFS_EXTENT_ITEM_KEY;
2151 				goto again;
2152 			}
2153 		} else {
2154 			err = -EIO;
2155 			goto out;
2156 		}
2157 	}
2158 
2159 	leaf = path->nodes[0];
2160 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2161 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2162 	if (item_size < sizeof(*ei)) {
2163 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2164 					     path, (u64)-1, 0);
2165 		if (ret < 0) {
2166 			err = ret;
2167 			goto out;
2168 		}
2169 		leaf = path->nodes[0];
2170 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2171 	}
2172 #endif
2173 	BUG_ON(item_size < sizeof(*ei));
2174 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2175 	__run_delayed_extent_op(extent_op, leaf, ei);
2176 
2177 	btrfs_mark_buffer_dirty(leaf);
2178 out:
2179 	btrfs_free_path(path);
2180 	return err;
2181 }
2182 
2183 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2184 				struct btrfs_root *root,
2185 				struct btrfs_delayed_ref_node *node,
2186 				struct btrfs_delayed_extent_op *extent_op,
2187 				int insert_reserved)
2188 {
2189 	int ret = 0;
2190 	struct btrfs_delayed_tree_ref *ref;
2191 	struct btrfs_key ins;
2192 	u64 parent = 0;
2193 	u64 ref_root = 0;
2194 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2195 						 SKINNY_METADATA);
2196 
2197 	ref = btrfs_delayed_node_to_tree_ref(node);
2198 	trace_run_delayed_tree_ref(node, ref, node->action);
2199 
2200 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2201 		parent = ref->parent;
2202 	else
2203 		ref_root = ref->root;
2204 
2205 	ins.objectid = node->bytenr;
2206 	if (skinny_metadata) {
2207 		ins.offset = ref->level;
2208 		ins.type = BTRFS_METADATA_ITEM_KEY;
2209 	} else {
2210 		ins.offset = node->num_bytes;
2211 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2212 	}
2213 
2214 	BUG_ON(node->ref_mod != 1);
2215 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2216 		BUG_ON(!extent_op || !extent_op->update_flags);
2217 		ret = alloc_reserved_tree_block(trans, root,
2218 						parent, ref_root,
2219 						extent_op->flags_to_set,
2220 						&extent_op->key,
2221 						ref->level, &ins);
2222 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2223 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2224 					     node->num_bytes, parent, ref_root,
2225 					     ref->level, 0, 1, extent_op);
2226 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2227 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2228 					  node->num_bytes, parent, ref_root,
2229 					  ref->level, 0, 1, extent_op);
2230 	} else {
2231 		BUG();
2232 	}
2233 	return ret;
2234 }
2235 
2236 /* helper function to actually process a single delayed ref entry */
2237 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2238 			       struct btrfs_root *root,
2239 			       struct btrfs_delayed_ref_node *node,
2240 			       struct btrfs_delayed_extent_op *extent_op,
2241 			       int insert_reserved)
2242 {
2243 	int ret = 0;
2244 
2245 	if (trans->aborted) {
2246 		if (insert_reserved)
2247 			btrfs_pin_extent(root, node->bytenr,
2248 					 node->num_bytes, 1);
2249 		return 0;
2250 	}
2251 
2252 	if (btrfs_delayed_ref_is_head(node)) {
2253 		struct btrfs_delayed_ref_head *head;
2254 		/*
2255 		 * we've hit the end of the chain and we were supposed
2256 		 * to insert this extent into the tree.  But, it got
2257 		 * deleted before we ever needed to insert it, so all
2258 		 * we have to do is clean up the accounting
2259 		 */
2260 		BUG_ON(extent_op);
2261 		head = btrfs_delayed_node_to_head(node);
2262 		trace_run_delayed_ref_head(node, head, node->action);
2263 
2264 		if (insert_reserved) {
2265 			btrfs_pin_extent(root, node->bytenr,
2266 					 node->num_bytes, 1);
2267 			if (head->is_data) {
2268 				ret = btrfs_del_csums(trans, root,
2269 						      node->bytenr,
2270 						      node->num_bytes);
2271 			}
2272 		}
2273 		return ret;
2274 	}
2275 
2276 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2277 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2278 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2279 					   insert_reserved);
2280 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2281 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2282 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2283 					   insert_reserved);
2284 	else
2285 		BUG();
2286 	return ret;
2287 }
2288 
2289 static noinline struct btrfs_delayed_ref_node *
2290 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2291 {
2292 	struct rb_node *node;
2293 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2294 
2295 	/*
2296 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2297 	 * this prevents ref count from going down to zero when
2298 	 * there still are pending delayed ref.
2299 	 */
2300 	node = rb_first(&head->ref_root);
2301 	while (node) {
2302 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 				rb_node);
2304 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2305 			return ref;
2306 		else if (last == NULL)
2307 			last = ref;
2308 		node = rb_next(node);
2309 	}
2310 	return last;
2311 }
2312 
2313 /*
2314  * Returns 0 on success or if called with an already aborted transaction.
2315  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2316  */
2317 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2318 					     struct btrfs_root *root,
2319 					     unsigned long nr)
2320 {
2321 	struct btrfs_delayed_ref_root *delayed_refs;
2322 	struct btrfs_delayed_ref_node *ref;
2323 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2324 	struct btrfs_delayed_extent_op *extent_op;
2325 	struct btrfs_fs_info *fs_info = root->fs_info;
2326 	ktime_t start = ktime_get();
2327 	int ret;
2328 	unsigned long count = 0;
2329 	unsigned long actual_count = 0;
2330 	int must_insert_reserved = 0;
2331 
2332 	delayed_refs = &trans->transaction->delayed_refs;
2333 	while (1) {
2334 		if (!locked_ref) {
2335 			if (count >= nr)
2336 				break;
2337 
2338 			spin_lock(&delayed_refs->lock);
2339 			locked_ref = btrfs_select_ref_head(trans);
2340 			if (!locked_ref) {
2341 				spin_unlock(&delayed_refs->lock);
2342 				break;
2343 			}
2344 
2345 			/* grab the lock that says we are going to process
2346 			 * all the refs for this head */
2347 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2348 			spin_unlock(&delayed_refs->lock);
2349 			/*
2350 			 * we may have dropped the spin lock to get the head
2351 			 * mutex lock, and that might have given someone else
2352 			 * time to free the head.  If that's true, it has been
2353 			 * removed from our list and we can move on.
2354 			 */
2355 			if (ret == -EAGAIN) {
2356 				locked_ref = NULL;
2357 				count++;
2358 				continue;
2359 			}
2360 		}
2361 
2362 		/*
2363 		 * We need to try and merge add/drops of the same ref since we
2364 		 * can run into issues with relocate dropping the implicit ref
2365 		 * and then it being added back again before the drop can
2366 		 * finish.  If we merged anything we need to re-loop so we can
2367 		 * get a good ref.
2368 		 */
2369 		spin_lock(&locked_ref->lock);
2370 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2371 					 locked_ref);
2372 
2373 		/*
2374 		 * locked_ref is the head node, so we have to go one
2375 		 * node back for any delayed ref updates
2376 		 */
2377 		ref = select_delayed_ref(locked_ref);
2378 
2379 		if (ref && ref->seq &&
2380 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2381 			spin_unlock(&locked_ref->lock);
2382 			btrfs_delayed_ref_unlock(locked_ref);
2383 			spin_lock(&delayed_refs->lock);
2384 			locked_ref->processing = 0;
2385 			delayed_refs->num_heads_ready++;
2386 			spin_unlock(&delayed_refs->lock);
2387 			locked_ref = NULL;
2388 			cond_resched();
2389 			count++;
2390 			continue;
2391 		}
2392 
2393 		/*
2394 		 * record the must insert reserved flag before we
2395 		 * drop the spin lock.
2396 		 */
2397 		must_insert_reserved = locked_ref->must_insert_reserved;
2398 		locked_ref->must_insert_reserved = 0;
2399 
2400 		extent_op = locked_ref->extent_op;
2401 		locked_ref->extent_op = NULL;
2402 
2403 		if (!ref) {
2404 
2405 
2406 			/* All delayed refs have been processed, Go ahead
2407 			 * and send the head node to run_one_delayed_ref,
2408 			 * so that any accounting fixes can happen
2409 			 */
2410 			ref = &locked_ref->node;
2411 
2412 			if (extent_op && must_insert_reserved) {
2413 				btrfs_free_delayed_extent_op(extent_op);
2414 				extent_op = NULL;
2415 			}
2416 
2417 			if (extent_op) {
2418 				spin_unlock(&locked_ref->lock);
2419 				ret = run_delayed_extent_op(trans, root,
2420 							    ref, extent_op);
2421 				btrfs_free_delayed_extent_op(extent_op);
2422 
2423 				if (ret) {
2424 					/*
2425 					 * Need to reset must_insert_reserved if
2426 					 * there was an error so the abort stuff
2427 					 * can cleanup the reserved space
2428 					 * properly.
2429 					 */
2430 					if (must_insert_reserved)
2431 						locked_ref->must_insert_reserved = 1;
2432 					locked_ref->processing = 0;
2433 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2434 					btrfs_delayed_ref_unlock(locked_ref);
2435 					return ret;
2436 				}
2437 				continue;
2438 			}
2439 
2440 			/*
2441 			 * Need to drop our head ref lock and re-aqcuire the
2442 			 * delayed ref lock and then re-check to make sure
2443 			 * nobody got added.
2444 			 */
2445 			spin_unlock(&locked_ref->lock);
2446 			spin_lock(&delayed_refs->lock);
2447 			spin_lock(&locked_ref->lock);
2448 			if (rb_first(&locked_ref->ref_root) ||
2449 			    locked_ref->extent_op) {
2450 				spin_unlock(&locked_ref->lock);
2451 				spin_unlock(&delayed_refs->lock);
2452 				continue;
2453 			}
2454 			ref->in_tree = 0;
2455 			delayed_refs->num_heads--;
2456 			rb_erase(&locked_ref->href_node,
2457 				 &delayed_refs->href_root);
2458 			spin_unlock(&delayed_refs->lock);
2459 		} else {
2460 			actual_count++;
2461 			ref->in_tree = 0;
2462 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2463 		}
2464 		atomic_dec(&delayed_refs->num_entries);
2465 
2466 		if (!btrfs_delayed_ref_is_head(ref)) {
2467 			/*
2468 			 * when we play the delayed ref, also correct the
2469 			 * ref_mod on head
2470 			 */
2471 			switch (ref->action) {
2472 			case BTRFS_ADD_DELAYED_REF:
2473 			case BTRFS_ADD_DELAYED_EXTENT:
2474 				locked_ref->node.ref_mod -= ref->ref_mod;
2475 				break;
2476 			case BTRFS_DROP_DELAYED_REF:
2477 				locked_ref->node.ref_mod += ref->ref_mod;
2478 				break;
2479 			default:
2480 				WARN_ON(1);
2481 			}
2482 		}
2483 		spin_unlock(&locked_ref->lock);
2484 
2485 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2486 					  must_insert_reserved);
2487 
2488 		btrfs_free_delayed_extent_op(extent_op);
2489 		if (ret) {
2490 			locked_ref->processing = 0;
2491 			btrfs_delayed_ref_unlock(locked_ref);
2492 			btrfs_put_delayed_ref(ref);
2493 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2494 			return ret;
2495 		}
2496 
2497 		/*
2498 		 * If this node is a head, that means all the refs in this head
2499 		 * have been dealt with, and we will pick the next head to deal
2500 		 * with, so we must unlock the head and drop it from the cluster
2501 		 * list before we release it.
2502 		 */
2503 		if (btrfs_delayed_ref_is_head(ref)) {
2504 			btrfs_delayed_ref_unlock(locked_ref);
2505 			locked_ref = NULL;
2506 		}
2507 		btrfs_put_delayed_ref(ref);
2508 		count++;
2509 		cond_resched();
2510 	}
2511 
2512 	/*
2513 	 * We don't want to include ref heads since we can have empty ref heads
2514 	 * and those will drastically skew our runtime down since we just do
2515 	 * accounting, no actual extent tree updates.
2516 	 */
2517 	if (actual_count > 0) {
2518 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2519 		u64 avg;
2520 
2521 		/*
2522 		 * We weigh the current average higher than our current runtime
2523 		 * to avoid large swings in the average.
2524 		 */
2525 		spin_lock(&delayed_refs->lock);
2526 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2527 		avg = div64_u64(avg, 4);
2528 		fs_info->avg_delayed_ref_runtime = avg;
2529 		spin_unlock(&delayed_refs->lock);
2530 	}
2531 	return 0;
2532 }
2533 
2534 #ifdef SCRAMBLE_DELAYED_REFS
2535 /*
2536  * Normally delayed refs get processed in ascending bytenr order. This
2537  * correlates in most cases to the order added. To expose dependencies on this
2538  * order, we start to process the tree in the middle instead of the beginning
2539  */
2540 static u64 find_middle(struct rb_root *root)
2541 {
2542 	struct rb_node *n = root->rb_node;
2543 	struct btrfs_delayed_ref_node *entry;
2544 	int alt = 1;
2545 	u64 middle;
2546 	u64 first = 0, last = 0;
2547 
2548 	n = rb_first(root);
2549 	if (n) {
2550 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 		first = entry->bytenr;
2552 	}
2553 	n = rb_last(root);
2554 	if (n) {
2555 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2556 		last = entry->bytenr;
2557 	}
2558 	n = root->rb_node;
2559 
2560 	while (n) {
2561 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2562 		WARN_ON(!entry->in_tree);
2563 
2564 		middle = entry->bytenr;
2565 
2566 		if (alt)
2567 			n = n->rb_left;
2568 		else
2569 			n = n->rb_right;
2570 
2571 		alt = 1 - alt;
2572 	}
2573 	return middle;
2574 }
2575 #endif
2576 
2577 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2578 					 struct btrfs_fs_info *fs_info)
2579 {
2580 	struct qgroup_update *qgroup_update;
2581 	int ret = 0;
2582 
2583 	if (list_empty(&trans->qgroup_ref_list) !=
2584 	    !trans->delayed_ref_elem.seq) {
2585 		/* list without seq or seq without list */
2586 		btrfs_err(fs_info,
2587 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2588 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2589 			(u32)(trans->delayed_ref_elem.seq >> 32),
2590 			(u32)trans->delayed_ref_elem.seq);
2591 		BUG();
2592 	}
2593 
2594 	if (!trans->delayed_ref_elem.seq)
2595 		return 0;
2596 
2597 	while (!list_empty(&trans->qgroup_ref_list)) {
2598 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2599 						 struct qgroup_update, list);
2600 		list_del(&qgroup_update->list);
2601 		if (!ret)
2602 			ret = btrfs_qgroup_account_ref(
2603 					trans, fs_info, qgroup_update->node,
2604 					qgroup_update->extent_op);
2605 		kfree(qgroup_update);
2606 	}
2607 
2608 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2609 
2610 	return ret;
2611 }
2612 
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614 {
2615 	u64 num_bytes;
2616 
2617 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 			     sizeof(struct btrfs_extent_inline_ref));
2619 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621 
2622 	/*
2623 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 	 * closer to what we're really going to want to ouse.
2625 	 */
2626 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627 }
2628 
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 				       struct btrfs_root *root)
2631 {
2632 	struct btrfs_block_rsv *global_rsv;
2633 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 	u64 num_bytes;
2635 	int ret = 0;
2636 
2637 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 	num_heads = heads_to_leaves(root, num_heads);
2639 	if (num_heads > 1)
2640 		num_bytes += (num_heads - 1) * root->leafsize;
2641 	num_bytes <<= 1;
2642 	global_rsv = &root->fs_info->global_block_rsv;
2643 
2644 	/*
2645 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 	 * wiggle room since running delayed refs can create more delayed refs.
2647 	 */
2648 	if (global_rsv->space_info->full)
2649 		num_bytes <<= 1;
2650 
2651 	spin_lock(&global_rsv->lock);
2652 	if (global_rsv->reserved <= num_bytes)
2653 		ret = 1;
2654 	spin_unlock(&global_rsv->lock);
2655 	return ret;
2656 }
2657 
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 				       struct btrfs_root *root)
2660 {
2661 	struct btrfs_fs_info *fs_info = root->fs_info;
2662 	u64 num_entries =
2663 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 	u64 avg_runtime;
2665 
2666 	smp_mb();
2667 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2668 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2669 		return 1;
2670 
2671 	return btrfs_check_space_for_delayed_refs(trans, root);
2672 }
2673 
2674 /*
2675  * this starts processing the delayed reference count updates and
2676  * extent insertions we have queued up so far.  count can be
2677  * 0, which means to process everything in the tree at the start
2678  * of the run (but not newly added entries), or it can be some target
2679  * number you'd like to process.
2680  *
2681  * Returns 0 on success or if called with an aborted transaction
2682  * Returns <0 on error and aborts the transaction
2683  */
2684 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2685 			   struct btrfs_root *root, unsigned long count)
2686 {
2687 	struct rb_node *node;
2688 	struct btrfs_delayed_ref_root *delayed_refs;
2689 	struct btrfs_delayed_ref_head *head;
2690 	int ret;
2691 	int run_all = count == (unsigned long)-1;
2692 	int run_most = 0;
2693 
2694 	/* We'll clean this up in btrfs_cleanup_transaction */
2695 	if (trans->aborted)
2696 		return 0;
2697 
2698 	if (root == root->fs_info->extent_root)
2699 		root = root->fs_info->tree_root;
2700 
2701 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2702 
2703 	delayed_refs = &trans->transaction->delayed_refs;
2704 	if (count == 0) {
2705 		count = atomic_read(&delayed_refs->num_entries) * 2;
2706 		run_most = 1;
2707 	}
2708 
2709 again:
2710 #ifdef SCRAMBLE_DELAYED_REFS
2711 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2712 #endif
2713 	ret = __btrfs_run_delayed_refs(trans, root, count);
2714 	if (ret < 0) {
2715 		btrfs_abort_transaction(trans, root, ret);
2716 		return ret;
2717 	}
2718 
2719 	if (run_all) {
2720 		if (!list_empty(&trans->new_bgs))
2721 			btrfs_create_pending_block_groups(trans, root);
2722 
2723 		spin_lock(&delayed_refs->lock);
2724 		node = rb_first(&delayed_refs->href_root);
2725 		if (!node) {
2726 			spin_unlock(&delayed_refs->lock);
2727 			goto out;
2728 		}
2729 		count = (unsigned long)-1;
2730 
2731 		while (node) {
2732 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2733 					href_node);
2734 			if (btrfs_delayed_ref_is_head(&head->node)) {
2735 				struct btrfs_delayed_ref_node *ref;
2736 
2737 				ref = &head->node;
2738 				atomic_inc(&ref->refs);
2739 
2740 				spin_unlock(&delayed_refs->lock);
2741 				/*
2742 				 * Mutex was contended, block until it's
2743 				 * released and try again
2744 				 */
2745 				mutex_lock(&head->mutex);
2746 				mutex_unlock(&head->mutex);
2747 
2748 				btrfs_put_delayed_ref(ref);
2749 				cond_resched();
2750 				goto again;
2751 			} else {
2752 				WARN_ON(1);
2753 			}
2754 			node = rb_next(node);
2755 		}
2756 		spin_unlock(&delayed_refs->lock);
2757 		cond_resched();
2758 		goto again;
2759 	}
2760 out:
2761 	assert_qgroups_uptodate(trans);
2762 	return 0;
2763 }
2764 
2765 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2766 				struct btrfs_root *root,
2767 				u64 bytenr, u64 num_bytes, u64 flags,
2768 				int level, int is_data)
2769 {
2770 	struct btrfs_delayed_extent_op *extent_op;
2771 	int ret;
2772 
2773 	extent_op = btrfs_alloc_delayed_extent_op();
2774 	if (!extent_op)
2775 		return -ENOMEM;
2776 
2777 	extent_op->flags_to_set = flags;
2778 	extent_op->update_flags = 1;
2779 	extent_op->update_key = 0;
2780 	extent_op->is_data = is_data ? 1 : 0;
2781 	extent_op->level = level;
2782 
2783 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2784 					  num_bytes, extent_op);
2785 	if (ret)
2786 		btrfs_free_delayed_extent_op(extent_op);
2787 	return ret;
2788 }
2789 
2790 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2791 				      struct btrfs_root *root,
2792 				      struct btrfs_path *path,
2793 				      u64 objectid, u64 offset, u64 bytenr)
2794 {
2795 	struct btrfs_delayed_ref_head *head;
2796 	struct btrfs_delayed_ref_node *ref;
2797 	struct btrfs_delayed_data_ref *data_ref;
2798 	struct btrfs_delayed_ref_root *delayed_refs;
2799 	struct rb_node *node;
2800 	int ret = 0;
2801 
2802 	delayed_refs = &trans->transaction->delayed_refs;
2803 	spin_lock(&delayed_refs->lock);
2804 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2805 	if (!head) {
2806 		spin_unlock(&delayed_refs->lock);
2807 		return 0;
2808 	}
2809 
2810 	if (!mutex_trylock(&head->mutex)) {
2811 		atomic_inc(&head->node.refs);
2812 		spin_unlock(&delayed_refs->lock);
2813 
2814 		btrfs_release_path(path);
2815 
2816 		/*
2817 		 * Mutex was contended, block until it's released and let
2818 		 * caller try again
2819 		 */
2820 		mutex_lock(&head->mutex);
2821 		mutex_unlock(&head->mutex);
2822 		btrfs_put_delayed_ref(&head->node);
2823 		return -EAGAIN;
2824 	}
2825 	spin_unlock(&delayed_refs->lock);
2826 
2827 	spin_lock(&head->lock);
2828 	node = rb_first(&head->ref_root);
2829 	while (node) {
2830 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2831 		node = rb_next(node);
2832 
2833 		/* If it's a shared ref we know a cross reference exists */
2834 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2835 			ret = 1;
2836 			break;
2837 		}
2838 
2839 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2840 
2841 		/*
2842 		 * If our ref doesn't match the one we're currently looking at
2843 		 * then we have a cross reference.
2844 		 */
2845 		if (data_ref->root != root->root_key.objectid ||
2846 		    data_ref->objectid != objectid ||
2847 		    data_ref->offset != offset) {
2848 			ret = 1;
2849 			break;
2850 		}
2851 	}
2852 	spin_unlock(&head->lock);
2853 	mutex_unlock(&head->mutex);
2854 	return ret;
2855 }
2856 
2857 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2858 					struct btrfs_root *root,
2859 					struct btrfs_path *path,
2860 					u64 objectid, u64 offset, u64 bytenr)
2861 {
2862 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2863 	struct extent_buffer *leaf;
2864 	struct btrfs_extent_data_ref *ref;
2865 	struct btrfs_extent_inline_ref *iref;
2866 	struct btrfs_extent_item *ei;
2867 	struct btrfs_key key;
2868 	u32 item_size;
2869 	int ret;
2870 
2871 	key.objectid = bytenr;
2872 	key.offset = (u64)-1;
2873 	key.type = BTRFS_EXTENT_ITEM_KEY;
2874 
2875 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2876 	if (ret < 0)
2877 		goto out;
2878 	BUG_ON(ret == 0); /* Corruption */
2879 
2880 	ret = -ENOENT;
2881 	if (path->slots[0] == 0)
2882 		goto out;
2883 
2884 	path->slots[0]--;
2885 	leaf = path->nodes[0];
2886 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2887 
2888 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2889 		goto out;
2890 
2891 	ret = 1;
2892 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2893 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2894 	if (item_size < sizeof(*ei)) {
2895 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2896 		goto out;
2897 	}
2898 #endif
2899 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2900 
2901 	if (item_size != sizeof(*ei) +
2902 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2903 		goto out;
2904 
2905 	if (btrfs_extent_generation(leaf, ei) <=
2906 	    btrfs_root_last_snapshot(&root->root_item))
2907 		goto out;
2908 
2909 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2910 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2911 	    BTRFS_EXTENT_DATA_REF_KEY)
2912 		goto out;
2913 
2914 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2915 	if (btrfs_extent_refs(leaf, ei) !=
2916 	    btrfs_extent_data_ref_count(leaf, ref) ||
2917 	    btrfs_extent_data_ref_root(leaf, ref) !=
2918 	    root->root_key.objectid ||
2919 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2920 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2921 		goto out;
2922 
2923 	ret = 0;
2924 out:
2925 	return ret;
2926 }
2927 
2928 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2929 			  struct btrfs_root *root,
2930 			  u64 objectid, u64 offset, u64 bytenr)
2931 {
2932 	struct btrfs_path *path;
2933 	int ret;
2934 	int ret2;
2935 
2936 	path = btrfs_alloc_path();
2937 	if (!path)
2938 		return -ENOENT;
2939 
2940 	do {
2941 		ret = check_committed_ref(trans, root, path, objectid,
2942 					  offset, bytenr);
2943 		if (ret && ret != -ENOENT)
2944 			goto out;
2945 
2946 		ret2 = check_delayed_ref(trans, root, path, objectid,
2947 					 offset, bytenr);
2948 	} while (ret2 == -EAGAIN);
2949 
2950 	if (ret2 && ret2 != -ENOENT) {
2951 		ret = ret2;
2952 		goto out;
2953 	}
2954 
2955 	if (ret != -ENOENT || ret2 != -ENOENT)
2956 		ret = 0;
2957 out:
2958 	btrfs_free_path(path);
2959 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2960 		WARN_ON(ret > 0);
2961 	return ret;
2962 }
2963 
2964 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2965 			   struct btrfs_root *root,
2966 			   struct extent_buffer *buf,
2967 			   int full_backref, int inc, int for_cow)
2968 {
2969 	u64 bytenr;
2970 	u64 num_bytes;
2971 	u64 parent;
2972 	u64 ref_root;
2973 	u32 nritems;
2974 	struct btrfs_key key;
2975 	struct btrfs_file_extent_item *fi;
2976 	int i;
2977 	int level;
2978 	int ret = 0;
2979 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2980 			    u64, u64, u64, u64, u64, u64, int);
2981 
2982 	ref_root = btrfs_header_owner(buf);
2983 	nritems = btrfs_header_nritems(buf);
2984 	level = btrfs_header_level(buf);
2985 
2986 	if (!root->ref_cows && level == 0)
2987 		return 0;
2988 
2989 	if (inc)
2990 		process_func = btrfs_inc_extent_ref;
2991 	else
2992 		process_func = btrfs_free_extent;
2993 
2994 	if (full_backref)
2995 		parent = buf->start;
2996 	else
2997 		parent = 0;
2998 
2999 	for (i = 0; i < nritems; i++) {
3000 		if (level == 0) {
3001 			btrfs_item_key_to_cpu(buf, &key, i);
3002 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3003 				continue;
3004 			fi = btrfs_item_ptr(buf, i,
3005 					    struct btrfs_file_extent_item);
3006 			if (btrfs_file_extent_type(buf, fi) ==
3007 			    BTRFS_FILE_EXTENT_INLINE)
3008 				continue;
3009 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3010 			if (bytenr == 0)
3011 				continue;
3012 
3013 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3014 			key.offset -= btrfs_file_extent_offset(buf, fi);
3015 			ret = process_func(trans, root, bytenr, num_bytes,
3016 					   parent, ref_root, key.objectid,
3017 					   key.offset, for_cow);
3018 			if (ret)
3019 				goto fail;
3020 		} else {
3021 			bytenr = btrfs_node_blockptr(buf, i);
3022 			num_bytes = btrfs_level_size(root, level - 1);
3023 			ret = process_func(trans, root, bytenr, num_bytes,
3024 					   parent, ref_root, level - 1, 0,
3025 					   for_cow);
3026 			if (ret)
3027 				goto fail;
3028 		}
3029 	}
3030 	return 0;
3031 fail:
3032 	return ret;
3033 }
3034 
3035 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3036 		  struct extent_buffer *buf, int full_backref, int for_cow)
3037 {
3038 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3039 }
3040 
3041 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3042 		  struct extent_buffer *buf, int full_backref, int for_cow)
3043 {
3044 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3045 }
3046 
3047 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3048 				 struct btrfs_root *root,
3049 				 struct btrfs_path *path,
3050 				 struct btrfs_block_group_cache *cache)
3051 {
3052 	int ret;
3053 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3054 	unsigned long bi;
3055 	struct extent_buffer *leaf;
3056 
3057 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3058 	if (ret < 0)
3059 		goto fail;
3060 	BUG_ON(ret); /* Corruption */
3061 
3062 	leaf = path->nodes[0];
3063 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3064 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3065 	btrfs_mark_buffer_dirty(leaf);
3066 	btrfs_release_path(path);
3067 fail:
3068 	if (ret) {
3069 		btrfs_abort_transaction(trans, root, ret);
3070 		return ret;
3071 	}
3072 	return 0;
3073 
3074 }
3075 
3076 static struct btrfs_block_group_cache *
3077 next_block_group(struct btrfs_root *root,
3078 		 struct btrfs_block_group_cache *cache)
3079 {
3080 	struct rb_node *node;
3081 	spin_lock(&root->fs_info->block_group_cache_lock);
3082 	node = rb_next(&cache->cache_node);
3083 	btrfs_put_block_group(cache);
3084 	if (node) {
3085 		cache = rb_entry(node, struct btrfs_block_group_cache,
3086 				 cache_node);
3087 		btrfs_get_block_group(cache);
3088 	} else
3089 		cache = NULL;
3090 	spin_unlock(&root->fs_info->block_group_cache_lock);
3091 	return cache;
3092 }
3093 
3094 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3095 			    struct btrfs_trans_handle *trans,
3096 			    struct btrfs_path *path)
3097 {
3098 	struct btrfs_root *root = block_group->fs_info->tree_root;
3099 	struct inode *inode = NULL;
3100 	u64 alloc_hint = 0;
3101 	int dcs = BTRFS_DC_ERROR;
3102 	int num_pages = 0;
3103 	int retries = 0;
3104 	int ret = 0;
3105 
3106 	/*
3107 	 * If this block group is smaller than 100 megs don't bother caching the
3108 	 * block group.
3109 	 */
3110 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3111 		spin_lock(&block_group->lock);
3112 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3113 		spin_unlock(&block_group->lock);
3114 		return 0;
3115 	}
3116 
3117 again:
3118 	inode = lookup_free_space_inode(root, block_group, path);
3119 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3120 		ret = PTR_ERR(inode);
3121 		btrfs_release_path(path);
3122 		goto out;
3123 	}
3124 
3125 	if (IS_ERR(inode)) {
3126 		BUG_ON(retries);
3127 		retries++;
3128 
3129 		if (block_group->ro)
3130 			goto out_free;
3131 
3132 		ret = create_free_space_inode(root, trans, block_group, path);
3133 		if (ret)
3134 			goto out_free;
3135 		goto again;
3136 	}
3137 
3138 	/* We've already setup this transaction, go ahead and exit */
3139 	if (block_group->cache_generation == trans->transid &&
3140 	    i_size_read(inode)) {
3141 		dcs = BTRFS_DC_SETUP;
3142 		goto out_put;
3143 	}
3144 
3145 	/*
3146 	 * We want to set the generation to 0, that way if anything goes wrong
3147 	 * from here on out we know not to trust this cache when we load up next
3148 	 * time.
3149 	 */
3150 	BTRFS_I(inode)->generation = 0;
3151 	ret = btrfs_update_inode(trans, root, inode);
3152 	WARN_ON(ret);
3153 
3154 	if (i_size_read(inode) > 0) {
3155 		ret = btrfs_check_trunc_cache_free_space(root,
3156 					&root->fs_info->global_block_rsv);
3157 		if (ret)
3158 			goto out_put;
3159 
3160 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3161 		if (ret)
3162 			goto out_put;
3163 	}
3164 
3165 	spin_lock(&block_group->lock);
3166 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3167 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3168 		/*
3169 		 * don't bother trying to write stuff out _if_
3170 		 * a) we're not cached,
3171 		 * b) we're with nospace_cache mount option.
3172 		 */
3173 		dcs = BTRFS_DC_WRITTEN;
3174 		spin_unlock(&block_group->lock);
3175 		goto out_put;
3176 	}
3177 	spin_unlock(&block_group->lock);
3178 
3179 	/*
3180 	 * Try to preallocate enough space based on how big the block group is.
3181 	 * Keep in mind this has to include any pinned space which could end up
3182 	 * taking up quite a bit since it's not folded into the other space
3183 	 * cache.
3184 	 */
3185 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3186 	if (!num_pages)
3187 		num_pages = 1;
3188 
3189 	num_pages *= 16;
3190 	num_pages *= PAGE_CACHE_SIZE;
3191 
3192 	ret = btrfs_check_data_free_space(inode, num_pages);
3193 	if (ret)
3194 		goto out_put;
3195 
3196 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3197 					      num_pages, num_pages,
3198 					      &alloc_hint);
3199 	if (!ret)
3200 		dcs = BTRFS_DC_SETUP;
3201 	btrfs_free_reserved_data_space(inode, num_pages);
3202 
3203 out_put:
3204 	iput(inode);
3205 out_free:
3206 	btrfs_release_path(path);
3207 out:
3208 	spin_lock(&block_group->lock);
3209 	if (!ret && dcs == BTRFS_DC_SETUP)
3210 		block_group->cache_generation = trans->transid;
3211 	block_group->disk_cache_state = dcs;
3212 	spin_unlock(&block_group->lock);
3213 
3214 	return ret;
3215 }
3216 
3217 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3218 				   struct btrfs_root *root)
3219 {
3220 	struct btrfs_block_group_cache *cache;
3221 	int err = 0;
3222 	struct btrfs_path *path;
3223 	u64 last = 0;
3224 
3225 	path = btrfs_alloc_path();
3226 	if (!path)
3227 		return -ENOMEM;
3228 
3229 again:
3230 	while (1) {
3231 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3232 		while (cache) {
3233 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3234 				break;
3235 			cache = next_block_group(root, cache);
3236 		}
3237 		if (!cache) {
3238 			if (last == 0)
3239 				break;
3240 			last = 0;
3241 			continue;
3242 		}
3243 		err = cache_save_setup(cache, trans, path);
3244 		last = cache->key.objectid + cache->key.offset;
3245 		btrfs_put_block_group(cache);
3246 	}
3247 
3248 	while (1) {
3249 		if (last == 0) {
3250 			err = btrfs_run_delayed_refs(trans, root,
3251 						     (unsigned long)-1);
3252 			if (err) /* File system offline */
3253 				goto out;
3254 		}
3255 
3256 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3257 		while (cache) {
3258 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3259 				btrfs_put_block_group(cache);
3260 				goto again;
3261 			}
3262 
3263 			if (cache->dirty)
3264 				break;
3265 			cache = next_block_group(root, cache);
3266 		}
3267 		if (!cache) {
3268 			if (last == 0)
3269 				break;
3270 			last = 0;
3271 			continue;
3272 		}
3273 
3274 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3275 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3276 		cache->dirty = 0;
3277 		last = cache->key.objectid + cache->key.offset;
3278 
3279 		err = write_one_cache_group(trans, root, path, cache);
3280 		btrfs_put_block_group(cache);
3281 		if (err) /* File system offline */
3282 			goto out;
3283 	}
3284 
3285 	while (1) {
3286 		/*
3287 		 * I don't think this is needed since we're just marking our
3288 		 * preallocated extent as written, but just in case it can't
3289 		 * hurt.
3290 		 */
3291 		if (last == 0) {
3292 			err = btrfs_run_delayed_refs(trans, root,
3293 						     (unsigned long)-1);
3294 			if (err) /* File system offline */
3295 				goto out;
3296 		}
3297 
3298 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3299 		while (cache) {
3300 			/*
3301 			 * Really this shouldn't happen, but it could if we
3302 			 * couldn't write the entire preallocated extent and
3303 			 * splitting the extent resulted in a new block.
3304 			 */
3305 			if (cache->dirty) {
3306 				btrfs_put_block_group(cache);
3307 				goto again;
3308 			}
3309 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3310 				break;
3311 			cache = next_block_group(root, cache);
3312 		}
3313 		if (!cache) {
3314 			if (last == 0)
3315 				break;
3316 			last = 0;
3317 			continue;
3318 		}
3319 
3320 		err = btrfs_write_out_cache(root, trans, cache, path);
3321 
3322 		/*
3323 		 * If we didn't have an error then the cache state is still
3324 		 * NEED_WRITE, so we can set it to WRITTEN.
3325 		 */
3326 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3327 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3328 		last = cache->key.objectid + cache->key.offset;
3329 		btrfs_put_block_group(cache);
3330 	}
3331 out:
3332 
3333 	btrfs_free_path(path);
3334 	return err;
3335 }
3336 
3337 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3338 {
3339 	struct btrfs_block_group_cache *block_group;
3340 	int readonly = 0;
3341 
3342 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3343 	if (!block_group || block_group->ro)
3344 		readonly = 1;
3345 	if (block_group)
3346 		btrfs_put_block_group(block_group);
3347 	return readonly;
3348 }
3349 
3350 static const char *alloc_name(u64 flags)
3351 {
3352 	switch (flags) {
3353 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3354 		return "mixed";
3355 	case BTRFS_BLOCK_GROUP_METADATA:
3356 		return "metadata";
3357 	case BTRFS_BLOCK_GROUP_DATA:
3358 		return "data";
3359 	case BTRFS_BLOCK_GROUP_SYSTEM:
3360 		return "system";
3361 	default:
3362 		WARN_ON(1);
3363 		return "invalid-combination";
3364 	};
3365 }
3366 
3367 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3368 			     u64 total_bytes, u64 bytes_used,
3369 			     struct btrfs_space_info **space_info)
3370 {
3371 	struct btrfs_space_info *found;
3372 	int i;
3373 	int factor;
3374 	int ret;
3375 
3376 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3377 		     BTRFS_BLOCK_GROUP_RAID10))
3378 		factor = 2;
3379 	else
3380 		factor = 1;
3381 
3382 	found = __find_space_info(info, flags);
3383 	if (found) {
3384 		spin_lock(&found->lock);
3385 		found->total_bytes += total_bytes;
3386 		found->disk_total += total_bytes * factor;
3387 		found->bytes_used += bytes_used;
3388 		found->disk_used += bytes_used * factor;
3389 		found->full = 0;
3390 		spin_unlock(&found->lock);
3391 		*space_info = found;
3392 		return 0;
3393 	}
3394 	found = kzalloc(sizeof(*found), GFP_NOFS);
3395 	if (!found)
3396 		return -ENOMEM;
3397 
3398 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3399 	if (ret) {
3400 		kfree(found);
3401 		return ret;
3402 	}
3403 
3404 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3405 		INIT_LIST_HEAD(&found->block_groups[i]);
3406 		kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3407 	}
3408 	init_rwsem(&found->groups_sem);
3409 	spin_lock_init(&found->lock);
3410 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3411 	found->total_bytes = total_bytes;
3412 	found->disk_total = total_bytes * factor;
3413 	found->bytes_used = bytes_used;
3414 	found->disk_used = bytes_used * factor;
3415 	found->bytes_pinned = 0;
3416 	found->bytes_reserved = 0;
3417 	found->bytes_readonly = 0;
3418 	found->bytes_may_use = 0;
3419 	found->full = 0;
3420 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3421 	found->chunk_alloc = 0;
3422 	found->flush = 0;
3423 	init_waitqueue_head(&found->wait);
3424 
3425 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3426 				    info->space_info_kobj, "%s",
3427 				    alloc_name(found->flags));
3428 	if (ret) {
3429 		kfree(found);
3430 		return ret;
3431 	}
3432 
3433 	*space_info = found;
3434 	list_add_rcu(&found->list, &info->space_info);
3435 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3436 		info->data_sinfo = found;
3437 
3438 	return ret;
3439 }
3440 
3441 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3442 {
3443 	u64 extra_flags = chunk_to_extended(flags) &
3444 				BTRFS_EXTENDED_PROFILE_MASK;
3445 
3446 	write_seqlock(&fs_info->profiles_lock);
3447 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3448 		fs_info->avail_data_alloc_bits |= extra_flags;
3449 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3450 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3451 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3452 		fs_info->avail_system_alloc_bits |= extra_flags;
3453 	write_sequnlock(&fs_info->profiles_lock);
3454 }
3455 
3456 /*
3457  * returns target flags in extended format or 0 if restripe for this
3458  * chunk_type is not in progress
3459  *
3460  * should be called with either volume_mutex or balance_lock held
3461  */
3462 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3463 {
3464 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 	u64 target = 0;
3466 
3467 	if (!bctl)
3468 		return 0;
3469 
3470 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3471 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3472 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3473 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3474 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3475 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3476 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3477 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3478 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3479 	}
3480 
3481 	return target;
3482 }
3483 
3484 /*
3485  * @flags: available profiles in extended format (see ctree.h)
3486  *
3487  * Returns reduced profile in chunk format.  If profile changing is in
3488  * progress (either running or paused) picks the target profile (if it's
3489  * already available), otherwise falls back to plain reducing.
3490  */
3491 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3492 {
3493 	/*
3494 	 * we add in the count of missing devices because we want
3495 	 * to make sure that any RAID levels on a degraded FS
3496 	 * continue to be honored.
3497 	 */
3498 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3499 		root->fs_info->fs_devices->missing_devices;
3500 	u64 target;
3501 	u64 tmp;
3502 
3503 	/*
3504 	 * see if restripe for this chunk_type is in progress, if so
3505 	 * try to reduce to the target profile
3506 	 */
3507 	spin_lock(&root->fs_info->balance_lock);
3508 	target = get_restripe_target(root->fs_info, flags);
3509 	if (target) {
3510 		/* pick target profile only if it's already available */
3511 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3512 			spin_unlock(&root->fs_info->balance_lock);
3513 			return extended_to_chunk(target);
3514 		}
3515 	}
3516 	spin_unlock(&root->fs_info->balance_lock);
3517 
3518 	/* First, mask out the RAID levels which aren't possible */
3519 	if (num_devices == 1)
3520 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3521 			   BTRFS_BLOCK_GROUP_RAID5);
3522 	if (num_devices < 3)
3523 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3524 	if (num_devices < 4)
3525 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3526 
3527 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3528 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3529 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3530 	flags &= ~tmp;
3531 
3532 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3533 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3534 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3535 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3536 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3537 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3538 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3539 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3540 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3541 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3542 
3543 	return extended_to_chunk(flags | tmp);
3544 }
3545 
3546 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3547 {
3548 	unsigned seq;
3549 	u64 flags;
3550 
3551 	do {
3552 		flags = orig_flags;
3553 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3554 
3555 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3556 			flags |= root->fs_info->avail_data_alloc_bits;
3557 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3558 			flags |= root->fs_info->avail_system_alloc_bits;
3559 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3560 			flags |= root->fs_info->avail_metadata_alloc_bits;
3561 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3562 
3563 	return btrfs_reduce_alloc_profile(root, flags);
3564 }
3565 
3566 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3567 {
3568 	u64 flags;
3569 	u64 ret;
3570 
3571 	if (data)
3572 		flags = BTRFS_BLOCK_GROUP_DATA;
3573 	else if (root == root->fs_info->chunk_root)
3574 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3575 	else
3576 		flags = BTRFS_BLOCK_GROUP_METADATA;
3577 
3578 	ret = get_alloc_profile(root, flags);
3579 	return ret;
3580 }
3581 
3582 /*
3583  * This will check the space that the inode allocates from to make sure we have
3584  * enough space for bytes.
3585  */
3586 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3587 {
3588 	struct btrfs_space_info *data_sinfo;
3589 	struct btrfs_root *root = BTRFS_I(inode)->root;
3590 	struct btrfs_fs_info *fs_info = root->fs_info;
3591 	u64 used;
3592 	int ret = 0, committed = 0, alloc_chunk = 1;
3593 
3594 	/* make sure bytes are sectorsize aligned */
3595 	bytes = ALIGN(bytes, root->sectorsize);
3596 
3597 	if (btrfs_is_free_space_inode(inode)) {
3598 		committed = 1;
3599 		ASSERT(current->journal_info);
3600 	}
3601 
3602 	data_sinfo = fs_info->data_sinfo;
3603 	if (!data_sinfo)
3604 		goto alloc;
3605 
3606 again:
3607 	/* make sure we have enough space to handle the data first */
3608 	spin_lock(&data_sinfo->lock);
3609 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3610 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3611 		data_sinfo->bytes_may_use;
3612 
3613 	if (used + bytes > data_sinfo->total_bytes) {
3614 		struct btrfs_trans_handle *trans;
3615 
3616 		/*
3617 		 * if we don't have enough free bytes in this space then we need
3618 		 * to alloc a new chunk.
3619 		 */
3620 		if (!data_sinfo->full && alloc_chunk) {
3621 			u64 alloc_target;
3622 
3623 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3624 			spin_unlock(&data_sinfo->lock);
3625 alloc:
3626 			alloc_target = btrfs_get_alloc_profile(root, 1);
3627 			/*
3628 			 * It is ugly that we don't call nolock join
3629 			 * transaction for the free space inode case here.
3630 			 * But it is safe because we only do the data space
3631 			 * reservation for the free space cache in the
3632 			 * transaction context, the common join transaction
3633 			 * just increase the counter of the current transaction
3634 			 * handler, doesn't try to acquire the trans_lock of
3635 			 * the fs.
3636 			 */
3637 			trans = btrfs_join_transaction(root);
3638 			if (IS_ERR(trans))
3639 				return PTR_ERR(trans);
3640 
3641 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3642 					     alloc_target,
3643 					     CHUNK_ALLOC_NO_FORCE);
3644 			btrfs_end_transaction(trans, root);
3645 			if (ret < 0) {
3646 				if (ret != -ENOSPC)
3647 					return ret;
3648 				else
3649 					goto commit_trans;
3650 			}
3651 
3652 			if (!data_sinfo)
3653 				data_sinfo = fs_info->data_sinfo;
3654 
3655 			goto again;
3656 		}
3657 
3658 		/*
3659 		 * If we don't have enough pinned space to deal with this
3660 		 * allocation don't bother committing the transaction.
3661 		 */
3662 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3663 					   bytes) < 0)
3664 			committed = 1;
3665 		spin_unlock(&data_sinfo->lock);
3666 
3667 		/* commit the current transaction and try again */
3668 commit_trans:
3669 		if (!committed &&
3670 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3671 			committed = 1;
3672 
3673 			trans = btrfs_join_transaction(root);
3674 			if (IS_ERR(trans))
3675 				return PTR_ERR(trans);
3676 			ret = btrfs_commit_transaction(trans, root);
3677 			if (ret)
3678 				return ret;
3679 			goto again;
3680 		}
3681 
3682 		trace_btrfs_space_reservation(root->fs_info,
3683 					      "space_info:enospc",
3684 					      data_sinfo->flags, bytes, 1);
3685 		return -ENOSPC;
3686 	}
3687 	data_sinfo->bytes_may_use += bytes;
3688 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3689 				      data_sinfo->flags, bytes, 1);
3690 	spin_unlock(&data_sinfo->lock);
3691 
3692 	return 0;
3693 }
3694 
3695 /*
3696  * Called if we need to clear a data reservation for this inode.
3697  */
3698 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3699 {
3700 	struct btrfs_root *root = BTRFS_I(inode)->root;
3701 	struct btrfs_space_info *data_sinfo;
3702 
3703 	/* make sure bytes are sectorsize aligned */
3704 	bytes = ALIGN(bytes, root->sectorsize);
3705 
3706 	data_sinfo = root->fs_info->data_sinfo;
3707 	spin_lock(&data_sinfo->lock);
3708 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3709 	data_sinfo->bytes_may_use -= bytes;
3710 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3711 				      data_sinfo->flags, bytes, 0);
3712 	spin_unlock(&data_sinfo->lock);
3713 }
3714 
3715 static void force_metadata_allocation(struct btrfs_fs_info *info)
3716 {
3717 	struct list_head *head = &info->space_info;
3718 	struct btrfs_space_info *found;
3719 
3720 	rcu_read_lock();
3721 	list_for_each_entry_rcu(found, head, list) {
3722 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3723 			found->force_alloc = CHUNK_ALLOC_FORCE;
3724 	}
3725 	rcu_read_unlock();
3726 }
3727 
3728 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3729 {
3730 	return (global->size << 1);
3731 }
3732 
3733 static int should_alloc_chunk(struct btrfs_root *root,
3734 			      struct btrfs_space_info *sinfo, int force)
3735 {
3736 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3737 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3738 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3739 	u64 thresh;
3740 
3741 	if (force == CHUNK_ALLOC_FORCE)
3742 		return 1;
3743 
3744 	/*
3745 	 * We need to take into account the global rsv because for all intents
3746 	 * and purposes it's used space.  Don't worry about locking the
3747 	 * global_rsv, it doesn't change except when the transaction commits.
3748 	 */
3749 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3750 		num_allocated += calc_global_rsv_need_space(global_rsv);
3751 
3752 	/*
3753 	 * in limited mode, we want to have some free space up to
3754 	 * about 1% of the FS size.
3755 	 */
3756 	if (force == CHUNK_ALLOC_LIMITED) {
3757 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3758 		thresh = max_t(u64, 64 * 1024 * 1024,
3759 			       div_factor_fine(thresh, 1));
3760 
3761 		if (num_bytes - num_allocated < thresh)
3762 			return 1;
3763 	}
3764 
3765 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3766 		return 0;
3767 	return 1;
3768 }
3769 
3770 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3771 {
3772 	u64 num_dev;
3773 
3774 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3775 		    BTRFS_BLOCK_GROUP_RAID0 |
3776 		    BTRFS_BLOCK_GROUP_RAID5 |
3777 		    BTRFS_BLOCK_GROUP_RAID6))
3778 		num_dev = root->fs_info->fs_devices->rw_devices;
3779 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3780 		num_dev = 2;
3781 	else
3782 		num_dev = 1;	/* DUP or single */
3783 
3784 	/* metadata for updaing devices and chunk tree */
3785 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3786 }
3787 
3788 static void check_system_chunk(struct btrfs_trans_handle *trans,
3789 			       struct btrfs_root *root, u64 type)
3790 {
3791 	struct btrfs_space_info *info;
3792 	u64 left;
3793 	u64 thresh;
3794 
3795 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3796 	spin_lock(&info->lock);
3797 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3798 		info->bytes_reserved - info->bytes_readonly;
3799 	spin_unlock(&info->lock);
3800 
3801 	thresh = get_system_chunk_thresh(root, type);
3802 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3803 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3804 			left, thresh, type);
3805 		dump_space_info(info, 0, 0);
3806 	}
3807 
3808 	if (left < thresh) {
3809 		u64 flags;
3810 
3811 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3812 		btrfs_alloc_chunk(trans, root, flags);
3813 	}
3814 }
3815 
3816 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3817 			  struct btrfs_root *extent_root, u64 flags, int force)
3818 {
3819 	struct btrfs_space_info *space_info;
3820 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3821 	int wait_for_alloc = 0;
3822 	int ret = 0;
3823 
3824 	/* Don't re-enter if we're already allocating a chunk */
3825 	if (trans->allocating_chunk)
3826 		return -ENOSPC;
3827 
3828 	space_info = __find_space_info(extent_root->fs_info, flags);
3829 	if (!space_info) {
3830 		ret = update_space_info(extent_root->fs_info, flags,
3831 					0, 0, &space_info);
3832 		BUG_ON(ret); /* -ENOMEM */
3833 	}
3834 	BUG_ON(!space_info); /* Logic error */
3835 
3836 again:
3837 	spin_lock(&space_info->lock);
3838 	if (force < space_info->force_alloc)
3839 		force = space_info->force_alloc;
3840 	if (space_info->full) {
3841 		if (should_alloc_chunk(extent_root, space_info, force))
3842 			ret = -ENOSPC;
3843 		else
3844 			ret = 0;
3845 		spin_unlock(&space_info->lock);
3846 		return ret;
3847 	}
3848 
3849 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3850 		spin_unlock(&space_info->lock);
3851 		return 0;
3852 	} else if (space_info->chunk_alloc) {
3853 		wait_for_alloc = 1;
3854 	} else {
3855 		space_info->chunk_alloc = 1;
3856 	}
3857 
3858 	spin_unlock(&space_info->lock);
3859 
3860 	mutex_lock(&fs_info->chunk_mutex);
3861 
3862 	/*
3863 	 * The chunk_mutex is held throughout the entirety of a chunk
3864 	 * allocation, so once we've acquired the chunk_mutex we know that the
3865 	 * other guy is done and we need to recheck and see if we should
3866 	 * allocate.
3867 	 */
3868 	if (wait_for_alloc) {
3869 		mutex_unlock(&fs_info->chunk_mutex);
3870 		wait_for_alloc = 0;
3871 		goto again;
3872 	}
3873 
3874 	trans->allocating_chunk = true;
3875 
3876 	/*
3877 	 * If we have mixed data/metadata chunks we want to make sure we keep
3878 	 * allocating mixed chunks instead of individual chunks.
3879 	 */
3880 	if (btrfs_mixed_space_info(space_info))
3881 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3882 
3883 	/*
3884 	 * if we're doing a data chunk, go ahead and make sure that
3885 	 * we keep a reasonable number of metadata chunks allocated in the
3886 	 * FS as well.
3887 	 */
3888 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3889 		fs_info->data_chunk_allocations++;
3890 		if (!(fs_info->data_chunk_allocations %
3891 		      fs_info->metadata_ratio))
3892 			force_metadata_allocation(fs_info);
3893 	}
3894 
3895 	/*
3896 	 * Check if we have enough space in SYSTEM chunk because we may need
3897 	 * to update devices.
3898 	 */
3899 	check_system_chunk(trans, extent_root, flags);
3900 
3901 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3902 	trans->allocating_chunk = false;
3903 
3904 	spin_lock(&space_info->lock);
3905 	if (ret < 0 && ret != -ENOSPC)
3906 		goto out;
3907 	if (ret)
3908 		space_info->full = 1;
3909 	else
3910 		ret = 1;
3911 
3912 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3913 out:
3914 	space_info->chunk_alloc = 0;
3915 	spin_unlock(&space_info->lock);
3916 	mutex_unlock(&fs_info->chunk_mutex);
3917 	return ret;
3918 }
3919 
3920 static int can_overcommit(struct btrfs_root *root,
3921 			  struct btrfs_space_info *space_info, u64 bytes,
3922 			  enum btrfs_reserve_flush_enum flush)
3923 {
3924 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3925 	u64 profile = btrfs_get_alloc_profile(root, 0);
3926 	u64 space_size;
3927 	u64 avail;
3928 	u64 used;
3929 
3930 	used = space_info->bytes_used + space_info->bytes_reserved +
3931 		space_info->bytes_pinned + space_info->bytes_readonly;
3932 
3933 	/*
3934 	 * We only want to allow over committing if we have lots of actual space
3935 	 * free, but if we don't have enough space to handle the global reserve
3936 	 * space then we could end up having a real enospc problem when trying
3937 	 * to allocate a chunk or some other such important allocation.
3938 	 */
3939 	spin_lock(&global_rsv->lock);
3940 	space_size = calc_global_rsv_need_space(global_rsv);
3941 	spin_unlock(&global_rsv->lock);
3942 	if (used + space_size >= space_info->total_bytes)
3943 		return 0;
3944 
3945 	used += space_info->bytes_may_use;
3946 
3947 	spin_lock(&root->fs_info->free_chunk_lock);
3948 	avail = root->fs_info->free_chunk_space;
3949 	spin_unlock(&root->fs_info->free_chunk_lock);
3950 
3951 	/*
3952 	 * If we have dup, raid1 or raid10 then only half of the free
3953 	 * space is actually useable.  For raid56, the space info used
3954 	 * doesn't include the parity drive, so we don't have to
3955 	 * change the math
3956 	 */
3957 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3958 		       BTRFS_BLOCK_GROUP_RAID1 |
3959 		       BTRFS_BLOCK_GROUP_RAID10))
3960 		avail >>= 1;
3961 
3962 	/*
3963 	 * If we aren't flushing all things, let us overcommit up to
3964 	 * 1/2th of the space. If we can flush, don't let us overcommit
3965 	 * too much, let it overcommit up to 1/8 of the space.
3966 	 */
3967 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3968 		avail >>= 3;
3969 	else
3970 		avail >>= 1;
3971 
3972 	if (used + bytes < space_info->total_bytes + avail)
3973 		return 1;
3974 	return 0;
3975 }
3976 
3977 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3978 					 unsigned long nr_pages, int nr_items)
3979 {
3980 	struct super_block *sb = root->fs_info->sb;
3981 
3982 	if (down_read_trylock(&sb->s_umount)) {
3983 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3984 		up_read(&sb->s_umount);
3985 	} else {
3986 		/*
3987 		 * We needn't worry the filesystem going from r/w to r/o though
3988 		 * we don't acquire ->s_umount mutex, because the filesystem
3989 		 * should guarantee the delalloc inodes list be empty after
3990 		 * the filesystem is readonly(all dirty pages are written to
3991 		 * the disk).
3992 		 */
3993 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
3994 		if (!current->journal_info)
3995 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
3996 	}
3997 }
3998 
3999 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4000 {
4001 	u64 bytes;
4002 	int nr;
4003 
4004 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4005 	nr = (int)div64_u64(to_reclaim, bytes);
4006 	if (!nr)
4007 		nr = 1;
4008 	return nr;
4009 }
4010 
4011 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4012 
4013 /*
4014  * shrink metadata reservation for delalloc
4015  */
4016 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4017 			    bool wait_ordered)
4018 {
4019 	struct btrfs_block_rsv *block_rsv;
4020 	struct btrfs_space_info *space_info;
4021 	struct btrfs_trans_handle *trans;
4022 	u64 delalloc_bytes;
4023 	u64 max_reclaim;
4024 	long time_left;
4025 	unsigned long nr_pages;
4026 	int loops;
4027 	int items;
4028 	enum btrfs_reserve_flush_enum flush;
4029 
4030 	/* Calc the number of the pages we need flush for space reservation */
4031 	items = calc_reclaim_items_nr(root, to_reclaim);
4032 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4033 
4034 	trans = (struct btrfs_trans_handle *)current->journal_info;
4035 	block_rsv = &root->fs_info->delalloc_block_rsv;
4036 	space_info = block_rsv->space_info;
4037 
4038 	delalloc_bytes = percpu_counter_sum_positive(
4039 						&root->fs_info->delalloc_bytes);
4040 	if (delalloc_bytes == 0) {
4041 		if (trans)
4042 			return;
4043 		if (wait_ordered)
4044 			btrfs_wait_ordered_roots(root->fs_info, items);
4045 		return;
4046 	}
4047 
4048 	loops = 0;
4049 	while (delalloc_bytes && loops < 3) {
4050 		max_reclaim = min(delalloc_bytes, to_reclaim);
4051 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4052 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4053 		/*
4054 		 * We need to wait for the async pages to actually start before
4055 		 * we do anything.
4056 		 */
4057 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4058 		if (!max_reclaim)
4059 			goto skip_async;
4060 
4061 		if (max_reclaim <= nr_pages)
4062 			max_reclaim = 0;
4063 		else
4064 			max_reclaim -= nr_pages;
4065 
4066 		wait_event(root->fs_info->async_submit_wait,
4067 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4068 			   (int)max_reclaim);
4069 skip_async:
4070 		if (!trans)
4071 			flush = BTRFS_RESERVE_FLUSH_ALL;
4072 		else
4073 			flush = BTRFS_RESERVE_NO_FLUSH;
4074 		spin_lock(&space_info->lock);
4075 		if (can_overcommit(root, space_info, orig, flush)) {
4076 			spin_unlock(&space_info->lock);
4077 			break;
4078 		}
4079 		spin_unlock(&space_info->lock);
4080 
4081 		loops++;
4082 		if (wait_ordered && !trans) {
4083 			btrfs_wait_ordered_roots(root->fs_info, items);
4084 		} else {
4085 			time_left = schedule_timeout_killable(1);
4086 			if (time_left)
4087 				break;
4088 		}
4089 		delalloc_bytes = percpu_counter_sum_positive(
4090 						&root->fs_info->delalloc_bytes);
4091 	}
4092 }
4093 
4094 /**
4095  * maybe_commit_transaction - possibly commit the transaction if its ok to
4096  * @root - the root we're allocating for
4097  * @bytes - the number of bytes we want to reserve
4098  * @force - force the commit
4099  *
4100  * This will check to make sure that committing the transaction will actually
4101  * get us somewhere and then commit the transaction if it does.  Otherwise it
4102  * will return -ENOSPC.
4103  */
4104 static int may_commit_transaction(struct btrfs_root *root,
4105 				  struct btrfs_space_info *space_info,
4106 				  u64 bytes, int force)
4107 {
4108 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4109 	struct btrfs_trans_handle *trans;
4110 
4111 	trans = (struct btrfs_trans_handle *)current->journal_info;
4112 	if (trans)
4113 		return -EAGAIN;
4114 
4115 	if (force)
4116 		goto commit;
4117 
4118 	/* See if there is enough pinned space to make this reservation */
4119 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4120 				   bytes) >= 0)
4121 		goto commit;
4122 
4123 	/*
4124 	 * See if there is some space in the delayed insertion reservation for
4125 	 * this reservation.
4126 	 */
4127 	if (space_info != delayed_rsv->space_info)
4128 		return -ENOSPC;
4129 
4130 	spin_lock(&delayed_rsv->lock);
4131 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4132 				   bytes - delayed_rsv->size) >= 0) {
4133 		spin_unlock(&delayed_rsv->lock);
4134 		return -ENOSPC;
4135 	}
4136 	spin_unlock(&delayed_rsv->lock);
4137 
4138 commit:
4139 	trans = btrfs_join_transaction(root);
4140 	if (IS_ERR(trans))
4141 		return -ENOSPC;
4142 
4143 	return btrfs_commit_transaction(trans, root);
4144 }
4145 
4146 enum flush_state {
4147 	FLUSH_DELAYED_ITEMS_NR	=	1,
4148 	FLUSH_DELAYED_ITEMS	=	2,
4149 	FLUSH_DELALLOC		=	3,
4150 	FLUSH_DELALLOC_WAIT	=	4,
4151 	ALLOC_CHUNK		=	5,
4152 	COMMIT_TRANS		=	6,
4153 };
4154 
4155 static int flush_space(struct btrfs_root *root,
4156 		       struct btrfs_space_info *space_info, u64 num_bytes,
4157 		       u64 orig_bytes, int state)
4158 {
4159 	struct btrfs_trans_handle *trans;
4160 	int nr;
4161 	int ret = 0;
4162 
4163 	switch (state) {
4164 	case FLUSH_DELAYED_ITEMS_NR:
4165 	case FLUSH_DELAYED_ITEMS:
4166 		if (state == FLUSH_DELAYED_ITEMS_NR)
4167 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4168 		else
4169 			nr = -1;
4170 
4171 		trans = btrfs_join_transaction(root);
4172 		if (IS_ERR(trans)) {
4173 			ret = PTR_ERR(trans);
4174 			break;
4175 		}
4176 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4177 		btrfs_end_transaction(trans, root);
4178 		break;
4179 	case FLUSH_DELALLOC:
4180 	case FLUSH_DELALLOC_WAIT:
4181 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4182 				state == FLUSH_DELALLOC_WAIT);
4183 		break;
4184 	case ALLOC_CHUNK:
4185 		trans = btrfs_join_transaction(root);
4186 		if (IS_ERR(trans)) {
4187 			ret = PTR_ERR(trans);
4188 			break;
4189 		}
4190 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4191 				     btrfs_get_alloc_profile(root, 0),
4192 				     CHUNK_ALLOC_NO_FORCE);
4193 		btrfs_end_transaction(trans, root);
4194 		if (ret == -ENOSPC)
4195 			ret = 0;
4196 		break;
4197 	case COMMIT_TRANS:
4198 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4199 		break;
4200 	default:
4201 		ret = -ENOSPC;
4202 		break;
4203 	}
4204 
4205 	return ret;
4206 }
4207 /**
4208  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4209  * @root - the root we're allocating for
4210  * @block_rsv - the block_rsv we're allocating for
4211  * @orig_bytes - the number of bytes we want
4212  * @flush - whether or not we can flush to make our reservation
4213  *
4214  * This will reserve orgi_bytes number of bytes from the space info associated
4215  * with the block_rsv.  If there is not enough space it will make an attempt to
4216  * flush out space to make room.  It will do this by flushing delalloc if
4217  * possible or committing the transaction.  If flush is 0 then no attempts to
4218  * regain reservations will be made and this will fail if there is not enough
4219  * space already.
4220  */
4221 static int reserve_metadata_bytes(struct btrfs_root *root,
4222 				  struct btrfs_block_rsv *block_rsv,
4223 				  u64 orig_bytes,
4224 				  enum btrfs_reserve_flush_enum flush)
4225 {
4226 	struct btrfs_space_info *space_info = block_rsv->space_info;
4227 	u64 used;
4228 	u64 num_bytes = orig_bytes;
4229 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4230 	int ret = 0;
4231 	bool flushing = false;
4232 
4233 again:
4234 	ret = 0;
4235 	spin_lock(&space_info->lock);
4236 	/*
4237 	 * We only want to wait if somebody other than us is flushing and we
4238 	 * are actually allowed to flush all things.
4239 	 */
4240 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4241 	       space_info->flush) {
4242 		spin_unlock(&space_info->lock);
4243 		/*
4244 		 * If we have a trans handle we can't wait because the flusher
4245 		 * may have to commit the transaction, which would mean we would
4246 		 * deadlock since we are waiting for the flusher to finish, but
4247 		 * hold the current transaction open.
4248 		 */
4249 		if (current->journal_info)
4250 			return -EAGAIN;
4251 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4252 		/* Must have been killed, return */
4253 		if (ret)
4254 			return -EINTR;
4255 
4256 		spin_lock(&space_info->lock);
4257 	}
4258 
4259 	ret = -ENOSPC;
4260 	used = space_info->bytes_used + space_info->bytes_reserved +
4261 		space_info->bytes_pinned + space_info->bytes_readonly +
4262 		space_info->bytes_may_use;
4263 
4264 	/*
4265 	 * The idea here is that we've not already over-reserved the block group
4266 	 * then we can go ahead and save our reservation first and then start
4267 	 * flushing if we need to.  Otherwise if we've already overcommitted
4268 	 * lets start flushing stuff first and then come back and try to make
4269 	 * our reservation.
4270 	 */
4271 	if (used <= space_info->total_bytes) {
4272 		if (used + orig_bytes <= space_info->total_bytes) {
4273 			space_info->bytes_may_use += orig_bytes;
4274 			trace_btrfs_space_reservation(root->fs_info,
4275 				"space_info", space_info->flags, orig_bytes, 1);
4276 			ret = 0;
4277 		} else {
4278 			/*
4279 			 * Ok set num_bytes to orig_bytes since we aren't
4280 			 * overocmmitted, this way we only try and reclaim what
4281 			 * we need.
4282 			 */
4283 			num_bytes = orig_bytes;
4284 		}
4285 	} else {
4286 		/*
4287 		 * Ok we're over committed, set num_bytes to the overcommitted
4288 		 * amount plus the amount of bytes that we need for this
4289 		 * reservation.
4290 		 */
4291 		num_bytes = used - space_info->total_bytes +
4292 			(orig_bytes * 2);
4293 	}
4294 
4295 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4296 		space_info->bytes_may_use += orig_bytes;
4297 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4298 					      space_info->flags, orig_bytes,
4299 					      1);
4300 		ret = 0;
4301 	}
4302 
4303 	/*
4304 	 * Couldn't make our reservation, save our place so while we're trying
4305 	 * to reclaim space we can actually use it instead of somebody else
4306 	 * stealing it from us.
4307 	 *
4308 	 * We make the other tasks wait for the flush only when we can flush
4309 	 * all things.
4310 	 */
4311 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4312 		flushing = true;
4313 		space_info->flush = 1;
4314 	}
4315 
4316 	spin_unlock(&space_info->lock);
4317 
4318 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4319 		goto out;
4320 
4321 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4322 			  flush_state);
4323 	flush_state++;
4324 
4325 	/*
4326 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4327 	 * would happen. So skip delalloc flush.
4328 	 */
4329 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4330 	    (flush_state == FLUSH_DELALLOC ||
4331 	     flush_state == FLUSH_DELALLOC_WAIT))
4332 		flush_state = ALLOC_CHUNK;
4333 
4334 	if (!ret)
4335 		goto again;
4336 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4337 		 flush_state < COMMIT_TRANS)
4338 		goto again;
4339 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4340 		 flush_state <= COMMIT_TRANS)
4341 		goto again;
4342 
4343 out:
4344 	if (ret == -ENOSPC &&
4345 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4346 		struct btrfs_block_rsv *global_rsv =
4347 			&root->fs_info->global_block_rsv;
4348 
4349 		if (block_rsv != global_rsv &&
4350 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4351 			ret = 0;
4352 	}
4353 	if (ret == -ENOSPC)
4354 		trace_btrfs_space_reservation(root->fs_info,
4355 					      "space_info:enospc",
4356 					      space_info->flags, orig_bytes, 1);
4357 	if (flushing) {
4358 		spin_lock(&space_info->lock);
4359 		space_info->flush = 0;
4360 		wake_up_all(&space_info->wait);
4361 		spin_unlock(&space_info->lock);
4362 	}
4363 	return ret;
4364 }
4365 
4366 static struct btrfs_block_rsv *get_block_rsv(
4367 					const struct btrfs_trans_handle *trans,
4368 					const struct btrfs_root *root)
4369 {
4370 	struct btrfs_block_rsv *block_rsv = NULL;
4371 
4372 	if (root->ref_cows)
4373 		block_rsv = trans->block_rsv;
4374 
4375 	if (root == root->fs_info->csum_root && trans->adding_csums)
4376 		block_rsv = trans->block_rsv;
4377 
4378 	if (root == root->fs_info->uuid_root)
4379 		block_rsv = trans->block_rsv;
4380 
4381 	if (!block_rsv)
4382 		block_rsv = root->block_rsv;
4383 
4384 	if (!block_rsv)
4385 		block_rsv = &root->fs_info->empty_block_rsv;
4386 
4387 	return block_rsv;
4388 }
4389 
4390 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4391 			       u64 num_bytes)
4392 {
4393 	int ret = -ENOSPC;
4394 	spin_lock(&block_rsv->lock);
4395 	if (block_rsv->reserved >= num_bytes) {
4396 		block_rsv->reserved -= num_bytes;
4397 		if (block_rsv->reserved < block_rsv->size)
4398 			block_rsv->full = 0;
4399 		ret = 0;
4400 	}
4401 	spin_unlock(&block_rsv->lock);
4402 	return ret;
4403 }
4404 
4405 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4406 				u64 num_bytes, int update_size)
4407 {
4408 	spin_lock(&block_rsv->lock);
4409 	block_rsv->reserved += num_bytes;
4410 	if (update_size)
4411 		block_rsv->size += num_bytes;
4412 	else if (block_rsv->reserved >= block_rsv->size)
4413 		block_rsv->full = 1;
4414 	spin_unlock(&block_rsv->lock);
4415 }
4416 
4417 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4418 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4419 			     int min_factor)
4420 {
4421 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4422 	u64 min_bytes;
4423 
4424 	if (global_rsv->space_info != dest->space_info)
4425 		return -ENOSPC;
4426 
4427 	spin_lock(&global_rsv->lock);
4428 	min_bytes = div_factor(global_rsv->size, min_factor);
4429 	if (global_rsv->reserved < min_bytes + num_bytes) {
4430 		spin_unlock(&global_rsv->lock);
4431 		return -ENOSPC;
4432 	}
4433 	global_rsv->reserved -= num_bytes;
4434 	if (global_rsv->reserved < global_rsv->size)
4435 		global_rsv->full = 0;
4436 	spin_unlock(&global_rsv->lock);
4437 
4438 	block_rsv_add_bytes(dest, num_bytes, 1);
4439 	return 0;
4440 }
4441 
4442 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4443 				    struct btrfs_block_rsv *block_rsv,
4444 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4445 {
4446 	struct btrfs_space_info *space_info = block_rsv->space_info;
4447 
4448 	spin_lock(&block_rsv->lock);
4449 	if (num_bytes == (u64)-1)
4450 		num_bytes = block_rsv->size;
4451 	block_rsv->size -= num_bytes;
4452 	if (block_rsv->reserved >= block_rsv->size) {
4453 		num_bytes = block_rsv->reserved - block_rsv->size;
4454 		block_rsv->reserved = block_rsv->size;
4455 		block_rsv->full = 1;
4456 	} else {
4457 		num_bytes = 0;
4458 	}
4459 	spin_unlock(&block_rsv->lock);
4460 
4461 	if (num_bytes > 0) {
4462 		if (dest) {
4463 			spin_lock(&dest->lock);
4464 			if (!dest->full) {
4465 				u64 bytes_to_add;
4466 
4467 				bytes_to_add = dest->size - dest->reserved;
4468 				bytes_to_add = min(num_bytes, bytes_to_add);
4469 				dest->reserved += bytes_to_add;
4470 				if (dest->reserved >= dest->size)
4471 					dest->full = 1;
4472 				num_bytes -= bytes_to_add;
4473 			}
4474 			spin_unlock(&dest->lock);
4475 		}
4476 		if (num_bytes) {
4477 			spin_lock(&space_info->lock);
4478 			space_info->bytes_may_use -= num_bytes;
4479 			trace_btrfs_space_reservation(fs_info, "space_info",
4480 					space_info->flags, num_bytes, 0);
4481 			spin_unlock(&space_info->lock);
4482 		}
4483 	}
4484 }
4485 
4486 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4487 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4488 {
4489 	int ret;
4490 
4491 	ret = block_rsv_use_bytes(src, num_bytes);
4492 	if (ret)
4493 		return ret;
4494 
4495 	block_rsv_add_bytes(dst, num_bytes, 1);
4496 	return 0;
4497 }
4498 
4499 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4500 {
4501 	memset(rsv, 0, sizeof(*rsv));
4502 	spin_lock_init(&rsv->lock);
4503 	rsv->type = type;
4504 }
4505 
4506 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4507 					      unsigned short type)
4508 {
4509 	struct btrfs_block_rsv *block_rsv;
4510 	struct btrfs_fs_info *fs_info = root->fs_info;
4511 
4512 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4513 	if (!block_rsv)
4514 		return NULL;
4515 
4516 	btrfs_init_block_rsv(block_rsv, type);
4517 	block_rsv->space_info = __find_space_info(fs_info,
4518 						  BTRFS_BLOCK_GROUP_METADATA);
4519 	return block_rsv;
4520 }
4521 
4522 void btrfs_free_block_rsv(struct btrfs_root *root,
4523 			  struct btrfs_block_rsv *rsv)
4524 {
4525 	if (!rsv)
4526 		return;
4527 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4528 	kfree(rsv);
4529 }
4530 
4531 int btrfs_block_rsv_add(struct btrfs_root *root,
4532 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4533 			enum btrfs_reserve_flush_enum flush)
4534 {
4535 	int ret;
4536 
4537 	if (num_bytes == 0)
4538 		return 0;
4539 
4540 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4541 	if (!ret) {
4542 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4543 		return 0;
4544 	}
4545 
4546 	return ret;
4547 }
4548 
4549 int btrfs_block_rsv_check(struct btrfs_root *root,
4550 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4551 {
4552 	u64 num_bytes = 0;
4553 	int ret = -ENOSPC;
4554 
4555 	if (!block_rsv)
4556 		return 0;
4557 
4558 	spin_lock(&block_rsv->lock);
4559 	num_bytes = div_factor(block_rsv->size, min_factor);
4560 	if (block_rsv->reserved >= num_bytes)
4561 		ret = 0;
4562 	spin_unlock(&block_rsv->lock);
4563 
4564 	return ret;
4565 }
4566 
4567 int btrfs_block_rsv_refill(struct btrfs_root *root,
4568 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4569 			   enum btrfs_reserve_flush_enum flush)
4570 {
4571 	u64 num_bytes = 0;
4572 	int ret = -ENOSPC;
4573 
4574 	if (!block_rsv)
4575 		return 0;
4576 
4577 	spin_lock(&block_rsv->lock);
4578 	num_bytes = min_reserved;
4579 	if (block_rsv->reserved >= num_bytes)
4580 		ret = 0;
4581 	else
4582 		num_bytes -= block_rsv->reserved;
4583 	spin_unlock(&block_rsv->lock);
4584 
4585 	if (!ret)
4586 		return 0;
4587 
4588 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4589 	if (!ret) {
4590 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4591 		return 0;
4592 	}
4593 
4594 	return ret;
4595 }
4596 
4597 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4598 			    struct btrfs_block_rsv *dst_rsv,
4599 			    u64 num_bytes)
4600 {
4601 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4602 }
4603 
4604 void btrfs_block_rsv_release(struct btrfs_root *root,
4605 			     struct btrfs_block_rsv *block_rsv,
4606 			     u64 num_bytes)
4607 {
4608 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4609 	if (global_rsv == block_rsv ||
4610 	    block_rsv->space_info != global_rsv->space_info)
4611 		global_rsv = NULL;
4612 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4613 				num_bytes);
4614 }
4615 
4616 /*
4617  * helper to calculate size of global block reservation.
4618  * the desired value is sum of space used by extent tree,
4619  * checksum tree and root tree
4620  */
4621 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4622 {
4623 	struct btrfs_space_info *sinfo;
4624 	u64 num_bytes;
4625 	u64 meta_used;
4626 	u64 data_used;
4627 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4628 
4629 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4630 	spin_lock(&sinfo->lock);
4631 	data_used = sinfo->bytes_used;
4632 	spin_unlock(&sinfo->lock);
4633 
4634 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4635 	spin_lock(&sinfo->lock);
4636 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4637 		data_used = 0;
4638 	meta_used = sinfo->bytes_used;
4639 	spin_unlock(&sinfo->lock);
4640 
4641 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4642 		    csum_size * 2;
4643 	num_bytes += div64_u64(data_used + meta_used, 50);
4644 
4645 	if (num_bytes * 3 > meta_used)
4646 		num_bytes = div64_u64(meta_used, 3);
4647 
4648 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4649 }
4650 
4651 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4652 {
4653 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4654 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4655 	u64 num_bytes;
4656 
4657 	num_bytes = calc_global_metadata_size(fs_info);
4658 
4659 	spin_lock(&sinfo->lock);
4660 	spin_lock(&block_rsv->lock);
4661 
4662 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4663 
4664 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4665 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4666 		    sinfo->bytes_may_use;
4667 
4668 	if (sinfo->total_bytes > num_bytes) {
4669 		num_bytes = sinfo->total_bytes - num_bytes;
4670 		block_rsv->reserved += num_bytes;
4671 		sinfo->bytes_may_use += num_bytes;
4672 		trace_btrfs_space_reservation(fs_info, "space_info",
4673 				      sinfo->flags, num_bytes, 1);
4674 	}
4675 
4676 	if (block_rsv->reserved >= block_rsv->size) {
4677 		num_bytes = block_rsv->reserved - block_rsv->size;
4678 		sinfo->bytes_may_use -= num_bytes;
4679 		trace_btrfs_space_reservation(fs_info, "space_info",
4680 				      sinfo->flags, num_bytes, 0);
4681 		block_rsv->reserved = block_rsv->size;
4682 		block_rsv->full = 1;
4683 	}
4684 
4685 	spin_unlock(&block_rsv->lock);
4686 	spin_unlock(&sinfo->lock);
4687 }
4688 
4689 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4690 {
4691 	struct btrfs_space_info *space_info;
4692 
4693 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4694 	fs_info->chunk_block_rsv.space_info = space_info;
4695 
4696 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697 	fs_info->global_block_rsv.space_info = space_info;
4698 	fs_info->delalloc_block_rsv.space_info = space_info;
4699 	fs_info->trans_block_rsv.space_info = space_info;
4700 	fs_info->empty_block_rsv.space_info = space_info;
4701 	fs_info->delayed_block_rsv.space_info = space_info;
4702 
4703 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4704 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4705 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4706 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4707 	if (fs_info->quota_root)
4708 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4709 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4710 
4711 	update_global_block_rsv(fs_info);
4712 }
4713 
4714 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4715 {
4716 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4717 				(u64)-1);
4718 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4719 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4720 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4721 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4722 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4723 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4724 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4725 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4726 }
4727 
4728 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4729 				  struct btrfs_root *root)
4730 {
4731 	if (!trans->block_rsv)
4732 		return;
4733 
4734 	if (!trans->bytes_reserved)
4735 		return;
4736 
4737 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4738 				      trans->transid, trans->bytes_reserved, 0);
4739 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4740 	trans->bytes_reserved = 0;
4741 }
4742 
4743 /* Can only return 0 or -ENOSPC */
4744 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4745 				  struct inode *inode)
4746 {
4747 	struct btrfs_root *root = BTRFS_I(inode)->root;
4748 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4749 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4750 
4751 	/*
4752 	 * We need to hold space in order to delete our orphan item once we've
4753 	 * added it, so this takes the reservation so we can release it later
4754 	 * when we are truly done with the orphan item.
4755 	 */
4756 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4757 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4758 				      btrfs_ino(inode), num_bytes, 1);
4759 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4760 }
4761 
4762 void btrfs_orphan_release_metadata(struct inode *inode)
4763 {
4764 	struct btrfs_root *root = BTRFS_I(inode)->root;
4765 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4766 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4767 				      btrfs_ino(inode), num_bytes, 0);
4768 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4769 }
4770 
4771 /*
4772  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4773  * root: the root of the parent directory
4774  * rsv: block reservation
4775  * items: the number of items that we need do reservation
4776  * qgroup_reserved: used to return the reserved size in qgroup
4777  *
4778  * This function is used to reserve the space for snapshot/subvolume
4779  * creation and deletion. Those operations are different with the
4780  * common file/directory operations, they change two fs/file trees
4781  * and root tree, the number of items that the qgroup reserves is
4782  * different with the free space reservation. So we can not use
4783  * the space reseravtion mechanism in start_transaction().
4784  */
4785 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4786 				     struct btrfs_block_rsv *rsv,
4787 				     int items,
4788 				     u64 *qgroup_reserved,
4789 				     bool use_global_rsv)
4790 {
4791 	u64 num_bytes;
4792 	int ret;
4793 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4794 
4795 	if (root->fs_info->quota_enabled) {
4796 		/* One for parent inode, two for dir entries */
4797 		num_bytes = 3 * root->leafsize;
4798 		ret = btrfs_qgroup_reserve(root, num_bytes);
4799 		if (ret)
4800 			return ret;
4801 	} else {
4802 		num_bytes = 0;
4803 	}
4804 
4805 	*qgroup_reserved = num_bytes;
4806 
4807 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4808 	rsv->space_info = __find_space_info(root->fs_info,
4809 					    BTRFS_BLOCK_GROUP_METADATA);
4810 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4811 				  BTRFS_RESERVE_FLUSH_ALL);
4812 
4813 	if (ret == -ENOSPC && use_global_rsv)
4814 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4815 
4816 	if (ret) {
4817 		if (*qgroup_reserved)
4818 			btrfs_qgroup_free(root, *qgroup_reserved);
4819 	}
4820 
4821 	return ret;
4822 }
4823 
4824 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4825 				      struct btrfs_block_rsv *rsv,
4826 				      u64 qgroup_reserved)
4827 {
4828 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4829 	if (qgroup_reserved)
4830 		btrfs_qgroup_free(root, qgroup_reserved);
4831 }
4832 
4833 /**
4834  * drop_outstanding_extent - drop an outstanding extent
4835  * @inode: the inode we're dropping the extent for
4836  *
4837  * This is called when we are freeing up an outstanding extent, either called
4838  * after an error or after an extent is written.  This will return the number of
4839  * reserved extents that need to be freed.  This must be called with
4840  * BTRFS_I(inode)->lock held.
4841  */
4842 static unsigned drop_outstanding_extent(struct inode *inode)
4843 {
4844 	unsigned drop_inode_space = 0;
4845 	unsigned dropped_extents = 0;
4846 
4847 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4848 	BTRFS_I(inode)->outstanding_extents--;
4849 
4850 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4851 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4852 			       &BTRFS_I(inode)->runtime_flags))
4853 		drop_inode_space = 1;
4854 
4855 	/*
4856 	 * If we have more or the same amount of outsanding extents than we have
4857 	 * reserved then we need to leave the reserved extents count alone.
4858 	 */
4859 	if (BTRFS_I(inode)->outstanding_extents >=
4860 	    BTRFS_I(inode)->reserved_extents)
4861 		return drop_inode_space;
4862 
4863 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4864 		BTRFS_I(inode)->outstanding_extents;
4865 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4866 	return dropped_extents + drop_inode_space;
4867 }
4868 
4869 /**
4870  * calc_csum_metadata_size - return the amount of metada space that must be
4871  *	reserved/free'd for the given bytes.
4872  * @inode: the inode we're manipulating
4873  * @num_bytes: the number of bytes in question
4874  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4875  *
4876  * This adjusts the number of csum_bytes in the inode and then returns the
4877  * correct amount of metadata that must either be reserved or freed.  We
4878  * calculate how many checksums we can fit into one leaf and then divide the
4879  * number of bytes that will need to be checksumed by this value to figure out
4880  * how many checksums will be required.  If we are adding bytes then the number
4881  * may go up and we will return the number of additional bytes that must be
4882  * reserved.  If it is going down we will return the number of bytes that must
4883  * be freed.
4884  *
4885  * This must be called with BTRFS_I(inode)->lock held.
4886  */
4887 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4888 				   int reserve)
4889 {
4890 	struct btrfs_root *root = BTRFS_I(inode)->root;
4891 	u64 csum_size;
4892 	int num_csums_per_leaf;
4893 	int num_csums;
4894 	int old_csums;
4895 
4896 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4897 	    BTRFS_I(inode)->csum_bytes == 0)
4898 		return 0;
4899 
4900 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4901 	if (reserve)
4902 		BTRFS_I(inode)->csum_bytes += num_bytes;
4903 	else
4904 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4905 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4906 	num_csums_per_leaf = (int)div64_u64(csum_size,
4907 					    sizeof(struct btrfs_csum_item) +
4908 					    sizeof(struct btrfs_disk_key));
4909 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4910 	num_csums = num_csums + num_csums_per_leaf - 1;
4911 	num_csums = num_csums / num_csums_per_leaf;
4912 
4913 	old_csums = old_csums + num_csums_per_leaf - 1;
4914 	old_csums = old_csums / num_csums_per_leaf;
4915 
4916 	/* No change, no need to reserve more */
4917 	if (old_csums == num_csums)
4918 		return 0;
4919 
4920 	if (reserve)
4921 		return btrfs_calc_trans_metadata_size(root,
4922 						      num_csums - old_csums);
4923 
4924 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4925 }
4926 
4927 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4928 {
4929 	struct btrfs_root *root = BTRFS_I(inode)->root;
4930 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4931 	u64 to_reserve = 0;
4932 	u64 csum_bytes;
4933 	unsigned nr_extents = 0;
4934 	int extra_reserve = 0;
4935 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4936 	int ret = 0;
4937 	bool delalloc_lock = true;
4938 	u64 to_free = 0;
4939 	unsigned dropped;
4940 
4941 	/* If we are a free space inode we need to not flush since we will be in
4942 	 * the middle of a transaction commit.  We also don't need the delalloc
4943 	 * mutex since we won't race with anybody.  We need this mostly to make
4944 	 * lockdep shut its filthy mouth.
4945 	 */
4946 	if (btrfs_is_free_space_inode(inode)) {
4947 		flush = BTRFS_RESERVE_NO_FLUSH;
4948 		delalloc_lock = false;
4949 	}
4950 
4951 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4952 	    btrfs_transaction_in_commit(root->fs_info))
4953 		schedule_timeout(1);
4954 
4955 	if (delalloc_lock)
4956 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4957 
4958 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4959 
4960 	spin_lock(&BTRFS_I(inode)->lock);
4961 	BTRFS_I(inode)->outstanding_extents++;
4962 
4963 	if (BTRFS_I(inode)->outstanding_extents >
4964 	    BTRFS_I(inode)->reserved_extents)
4965 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4966 			BTRFS_I(inode)->reserved_extents;
4967 
4968 	/*
4969 	 * Add an item to reserve for updating the inode when we complete the
4970 	 * delalloc io.
4971 	 */
4972 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4973 		      &BTRFS_I(inode)->runtime_flags)) {
4974 		nr_extents++;
4975 		extra_reserve = 1;
4976 	}
4977 
4978 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4979 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4980 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4981 	spin_unlock(&BTRFS_I(inode)->lock);
4982 
4983 	if (root->fs_info->quota_enabled) {
4984 		ret = btrfs_qgroup_reserve(root, num_bytes +
4985 					   nr_extents * root->leafsize);
4986 		if (ret)
4987 			goto out_fail;
4988 	}
4989 
4990 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4991 	if (unlikely(ret)) {
4992 		if (root->fs_info->quota_enabled)
4993 			btrfs_qgroup_free(root, num_bytes +
4994 						nr_extents * root->leafsize);
4995 		goto out_fail;
4996 	}
4997 
4998 	spin_lock(&BTRFS_I(inode)->lock);
4999 	if (extra_reserve) {
5000 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5001 			&BTRFS_I(inode)->runtime_flags);
5002 		nr_extents--;
5003 	}
5004 	BTRFS_I(inode)->reserved_extents += nr_extents;
5005 	spin_unlock(&BTRFS_I(inode)->lock);
5006 
5007 	if (delalloc_lock)
5008 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5009 
5010 	if (to_reserve)
5011 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5012 					      btrfs_ino(inode), to_reserve, 1);
5013 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5014 
5015 	return 0;
5016 
5017 out_fail:
5018 	spin_lock(&BTRFS_I(inode)->lock);
5019 	dropped = drop_outstanding_extent(inode);
5020 	/*
5021 	 * If the inodes csum_bytes is the same as the original
5022 	 * csum_bytes then we know we haven't raced with any free()ers
5023 	 * so we can just reduce our inodes csum bytes and carry on.
5024 	 */
5025 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5026 		calc_csum_metadata_size(inode, num_bytes, 0);
5027 	} else {
5028 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5029 		u64 bytes;
5030 
5031 		/*
5032 		 * This is tricky, but first we need to figure out how much we
5033 		 * free'd from any free-ers that occured during this
5034 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5035 		 * before we dropped our lock, and then call the free for the
5036 		 * number of bytes that were freed while we were trying our
5037 		 * reservation.
5038 		 */
5039 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5040 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5041 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5042 
5043 
5044 		/*
5045 		 * Now we need to see how much we would have freed had we not
5046 		 * been making this reservation and our ->csum_bytes were not
5047 		 * artificially inflated.
5048 		 */
5049 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5050 		bytes = csum_bytes - orig_csum_bytes;
5051 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5052 
5053 		/*
5054 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5055 		 * more than to_free then we would have free'd more space had we
5056 		 * not had an artificially high ->csum_bytes, so we need to free
5057 		 * the remainder.  If bytes is the same or less then we don't
5058 		 * need to do anything, the other free-ers did the correct
5059 		 * thing.
5060 		 */
5061 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5062 		if (bytes > to_free)
5063 			to_free = bytes - to_free;
5064 		else
5065 			to_free = 0;
5066 	}
5067 	spin_unlock(&BTRFS_I(inode)->lock);
5068 	if (dropped)
5069 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5070 
5071 	if (to_free) {
5072 		btrfs_block_rsv_release(root, block_rsv, to_free);
5073 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5074 					      btrfs_ino(inode), to_free, 0);
5075 	}
5076 	if (delalloc_lock)
5077 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5078 	return ret;
5079 }
5080 
5081 /**
5082  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5083  * @inode: the inode to release the reservation for
5084  * @num_bytes: the number of bytes we're releasing
5085  *
5086  * This will release the metadata reservation for an inode.  This can be called
5087  * once we complete IO for a given set of bytes to release their metadata
5088  * reservations.
5089  */
5090 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5091 {
5092 	struct btrfs_root *root = BTRFS_I(inode)->root;
5093 	u64 to_free = 0;
5094 	unsigned dropped;
5095 
5096 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5097 	spin_lock(&BTRFS_I(inode)->lock);
5098 	dropped = drop_outstanding_extent(inode);
5099 
5100 	if (num_bytes)
5101 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5102 	spin_unlock(&BTRFS_I(inode)->lock);
5103 	if (dropped > 0)
5104 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5105 
5106 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5107 				      btrfs_ino(inode), to_free, 0);
5108 	if (root->fs_info->quota_enabled) {
5109 		btrfs_qgroup_free(root, num_bytes +
5110 					dropped * root->leafsize);
5111 	}
5112 
5113 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5114 				to_free);
5115 }
5116 
5117 /**
5118  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5119  * @inode: inode we're writing to
5120  * @num_bytes: the number of bytes we want to allocate
5121  *
5122  * This will do the following things
5123  *
5124  * o reserve space in the data space info for num_bytes
5125  * o reserve space in the metadata space info based on number of outstanding
5126  *   extents and how much csums will be needed
5127  * o add to the inodes ->delalloc_bytes
5128  * o add it to the fs_info's delalloc inodes list.
5129  *
5130  * This will return 0 for success and -ENOSPC if there is no space left.
5131  */
5132 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5133 {
5134 	int ret;
5135 
5136 	ret = btrfs_check_data_free_space(inode, num_bytes);
5137 	if (ret)
5138 		return ret;
5139 
5140 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5141 	if (ret) {
5142 		btrfs_free_reserved_data_space(inode, num_bytes);
5143 		return ret;
5144 	}
5145 
5146 	return 0;
5147 }
5148 
5149 /**
5150  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5151  * @inode: inode we're releasing space for
5152  * @num_bytes: the number of bytes we want to free up
5153  *
5154  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5155  * called in the case that we don't need the metadata AND data reservations
5156  * anymore.  So if there is an error or we insert an inline extent.
5157  *
5158  * This function will release the metadata space that was not used and will
5159  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5160  * list if there are no delalloc bytes left.
5161  */
5162 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5163 {
5164 	btrfs_delalloc_release_metadata(inode, num_bytes);
5165 	btrfs_free_reserved_data_space(inode, num_bytes);
5166 }
5167 
5168 static int update_block_group(struct btrfs_root *root,
5169 			      u64 bytenr, u64 num_bytes, int alloc)
5170 {
5171 	struct btrfs_block_group_cache *cache = NULL;
5172 	struct btrfs_fs_info *info = root->fs_info;
5173 	u64 total = num_bytes;
5174 	u64 old_val;
5175 	u64 byte_in_group;
5176 	int factor;
5177 
5178 	/* block accounting for super block */
5179 	spin_lock(&info->delalloc_root_lock);
5180 	old_val = btrfs_super_bytes_used(info->super_copy);
5181 	if (alloc)
5182 		old_val += num_bytes;
5183 	else
5184 		old_val -= num_bytes;
5185 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5186 	spin_unlock(&info->delalloc_root_lock);
5187 
5188 	while (total) {
5189 		cache = btrfs_lookup_block_group(info, bytenr);
5190 		if (!cache)
5191 			return -ENOENT;
5192 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5193 				    BTRFS_BLOCK_GROUP_RAID1 |
5194 				    BTRFS_BLOCK_GROUP_RAID10))
5195 			factor = 2;
5196 		else
5197 			factor = 1;
5198 		/*
5199 		 * If this block group has free space cache written out, we
5200 		 * need to make sure to load it if we are removing space.  This
5201 		 * is because we need the unpinning stage to actually add the
5202 		 * space back to the block group, otherwise we will leak space.
5203 		 */
5204 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5205 			cache_block_group(cache, 1);
5206 
5207 		byte_in_group = bytenr - cache->key.objectid;
5208 		WARN_ON(byte_in_group > cache->key.offset);
5209 
5210 		spin_lock(&cache->space_info->lock);
5211 		spin_lock(&cache->lock);
5212 
5213 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5214 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5215 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5216 
5217 		cache->dirty = 1;
5218 		old_val = btrfs_block_group_used(&cache->item);
5219 		num_bytes = min(total, cache->key.offset - byte_in_group);
5220 		if (alloc) {
5221 			old_val += num_bytes;
5222 			btrfs_set_block_group_used(&cache->item, old_val);
5223 			cache->reserved -= num_bytes;
5224 			cache->space_info->bytes_reserved -= num_bytes;
5225 			cache->space_info->bytes_used += num_bytes;
5226 			cache->space_info->disk_used += num_bytes * factor;
5227 			spin_unlock(&cache->lock);
5228 			spin_unlock(&cache->space_info->lock);
5229 		} else {
5230 			old_val -= num_bytes;
5231 			btrfs_set_block_group_used(&cache->item, old_val);
5232 			cache->pinned += num_bytes;
5233 			cache->space_info->bytes_pinned += num_bytes;
5234 			cache->space_info->bytes_used -= num_bytes;
5235 			cache->space_info->disk_used -= num_bytes * factor;
5236 			spin_unlock(&cache->lock);
5237 			spin_unlock(&cache->space_info->lock);
5238 
5239 			set_extent_dirty(info->pinned_extents,
5240 					 bytenr, bytenr + num_bytes - 1,
5241 					 GFP_NOFS | __GFP_NOFAIL);
5242 		}
5243 		btrfs_put_block_group(cache);
5244 		total -= num_bytes;
5245 		bytenr += num_bytes;
5246 	}
5247 	return 0;
5248 }
5249 
5250 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5251 {
5252 	struct btrfs_block_group_cache *cache;
5253 	u64 bytenr;
5254 
5255 	spin_lock(&root->fs_info->block_group_cache_lock);
5256 	bytenr = root->fs_info->first_logical_byte;
5257 	spin_unlock(&root->fs_info->block_group_cache_lock);
5258 
5259 	if (bytenr < (u64)-1)
5260 		return bytenr;
5261 
5262 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5263 	if (!cache)
5264 		return 0;
5265 
5266 	bytenr = cache->key.objectid;
5267 	btrfs_put_block_group(cache);
5268 
5269 	return bytenr;
5270 }
5271 
5272 static int pin_down_extent(struct btrfs_root *root,
5273 			   struct btrfs_block_group_cache *cache,
5274 			   u64 bytenr, u64 num_bytes, int reserved)
5275 {
5276 	spin_lock(&cache->space_info->lock);
5277 	spin_lock(&cache->lock);
5278 	cache->pinned += num_bytes;
5279 	cache->space_info->bytes_pinned += num_bytes;
5280 	if (reserved) {
5281 		cache->reserved -= num_bytes;
5282 		cache->space_info->bytes_reserved -= num_bytes;
5283 	}
5284 	spin_unlock(&cache->lock);
5285 	spin_unlock(&cache->space_info->lock);
5286 
5287 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5288 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5289 	if (reserved)
5290 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5291 	return 0;
5292 }
5293 
5294 /*
5295  * this function must be called within transaction
5296  */
5297 int btrfs_pin_extent(struct btrfs_root *root,
5298 		     u64 bytenr, u64 num_bytes, int reserved)
5299 {
5300 	struct btrfs_block_group_cache *cache;
5301 
5302 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5303 	BUG_ON(!cache); /* Logic error */
5304 
5305 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5306 
5307 	btrfs_put_block_group(cache);
5308 	return 0;
5309 }
5310 
5311 /*
5312  * this function must be called within transaction
5313  */
5314 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5315 				    u64 bytenr, u64 num_bytes)
5316 {
5317 	struct btrfs_block_group_cache *cache;
5318 	int ret;
5319 
5320 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5321 	if (!cache)
5322 		return -EINVAL;
5323 
5324 	/*
5325 	 * pull in the free space cache (if any) so that our pin
5326 	 * removes the free space from the cache.  We have load_only set
5327 	 * to one because the slow code to read in the free extents does check
5328 	 * the pinned extents.
5329 	 */
5330 	cache_block_group(cache, 1);
5331 
5332 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5333 
5334 	/* remove us from the free space cache (if we're there at all) */
5335 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5336 	btrfs_put_block_group(cache);
5337 	return ret;
5338 }
5339 
5340 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5341 {
5342 	int ret;
5343 	struct btrfs_block_group_cache *block_group;
5344 	struct btrfs_caching_control *caching_ctl;
5345 
5346 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5347 	if (!block_group)
5348 		return -EINVAL;
5349 
5350 	cache_block_group(block_group, 0);
5351 	caching_ctl = get_caching_control(block_group);
5352 
5353 	if (!caching_ctl) {
5354 		/* Logic error */
5355 		BUG_ON(!block_group_cache_done(block_group));
5356 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5357 	} else {
5358 		mutex_lock(&caching_ctl->mutex);
5359 
5360 		if (start >= caching_ctl->progress) {
5361 			ret = add_excluded_extent(root, start, num_bytes);
5362 		} else if (start + num_bytes <= caching_ctl->progress) {
5363 			ret = btrfs_remove_free_space(block_group,
5364 						      start, num_bytes);
5365 		} else {
5366 			num_bytes = caching_ctl->progress - start;
5367 			ret = btrfs_remove_free_space(block_group,
5368 						      start, num_bytes);
5369 			if (ret)
5370 				goto out_lock;
5371 
5372 			num_bytes = (start + num_bytes) -
5373 				caching_ctl->progress;
5374 			start = caching_ctl->progress;
5375 			ret = add_excluded_extent(root, start, num_bytes);
5376 		}
5377 out_lock:
5378 		mutex_unlock(&caching_ctl->mutex);
5379 		put_caching_control(caching_ctl);
5380 	}
5381 	btrfs_put_block_group(block_group);
5382 	return ret;
5383 }
5384 
5385 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5386 				 struct extent_buffer *eb)
5387 {
5388 	struct btrfs_file_extent_item *item;
5389 	struct btrfs_key key;
5390 	int found_type;
5391 	int i;
5392 
5393 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5394 		return 0;
5395 
5396 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5397 		btrfs_item_key_to_cpu(eb, &key, i);
5398 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5399 			continue;
5400 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5401 		found_type = btrfs_file_extent_type(eb, item);
5402 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5403 			continue;
5404 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5405 			continue;
5406 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5407 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5408 		__exclude_logged_extent(log, key.objectid, key.offset);
5409 	}
5410 
5411 	return 0;
5412 }
5413 
5414 /**
5415  * btrfs_update_reserved_bytes - update the block_group and space info counters
5416  * @cache:	The cache we are manipulating
5417  * @num_bytes:	The number of bytes in question
5418  * @reserve:	One of the reservation enums
5419  *
5420  * This is called by the allocator when it reserves space, or by somebody who is
5421  * freeing space that was never actually used on disk.  For example if you
5422  * reserve some space for a new leaf in transaction A and before transaction A
5423  * commits you free that leaf, you call this with reserve set to 0 in order to
5424  * clear the reservation.
5425  *
5426  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5427  * ENOSPC accounting.  For data we handle the reservation through clearing the
5428  * delalloc bits in the io_tree.  We have to do this since we could end up
5429  * allocating less disk space for the amount of data we have reserved in the
5430  * case of compression.
5431  *
5432  * If this is a reservation and the block group has become read only we cannot
5433  * make the reservation and return -EAGAIN, otherwise this function always
5434  * succeeds.
5435  */
5436 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5437 				       u64 num_bytes, int reserve)
5438 {
5439 	struct btrfs_space_info *space_info = cache->space_info;
5440 	int ret = 0;
5441 
5442 	spin_lock(&space_info->lock);
5443 	spin_lock(&cache->lock);
5444 	if (reserve != RESERVE_FREE) {
5445 		if (cache->ro) {
5446 			ret = -EAGAIN;
5447 		} else {
5448 			cache->reserved += num_bytes;
5449 			space_info->bytes_reserved += num_bytes;
5450 			if (reserve == RESERVE_ALLOC) {
5451 				trace_btrfs_space_reservation(cache->fs_info,
5452 						"space_info", space_info->flags,
5453 						num_bytes, 0);
5454 				space_info->bytes_may_use -= num_bytes;
5455 			}
5456 		}
5457 	} else {
5458 		if (cache->ro)
5459 			space_info->bytes_readonly += num_bytes;
5460 		cache->reserved -= num_bytes;
5461 		space_info->bytes_reserved -= num_bytes;
5462 	}
5463 	spin_unlock(&cache->lock);
5464 	spin_unlock(&space_info->lock);
5465 	return ret;
5466 }
5467 
5468 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5469 				struct btrfs_root *root)
5470 {
5471 	struct btrfs_fs_info *fs_info = root->fs_info;
5472 	struct btrfs_caching_control *next;
5473 	struct btrfs_caching_control *caching_ctl;
5474 	struct btrfs_block_group_cache *cache;
5475 	struct btrfs_space_info *space_info;
5476 
5477 	down_write(&fs_info->commit_root_sem);
5478 
5479 	list_for_each_entry_safe(caching_ctl, next,
5480 				 &fs_info->caching_block_groups, list) {
5481 		cache = caching_ctl->block_group;
5482 		if (block_group_cache_done(cache)) {
5483 			cache->last_byte_to_unpin = (u64)-1;
5484 			list_del_init(&caching_ctl->list);
5485 			put_caching_control(caching_ctl);
5486 		} else {
5487 			cache->last_byte_to_unpin = caching_ctl->progress;
5488 		}
5489 	}
5490 
5491 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5492 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5493 	else
5494 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5495 
5496 	up_write(&fs_info->commit_root_sem);
5497 
5498 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5499 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5500 
5501 	update_global_block_rsv(fs_info);
5502 }
5503 
5504 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5505 {
5506 	struct btrfs_fs_info *fs_info = root->fs_info;
5507 	struct btrfs_block_group_cache *cache = NULL;
5508 	struct btrfs_space_info *space_info;
5509 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5510 	u64 len;
5511 	bool readonly;
5512 
5513 	while (start <= end) {
5514 		readonly = false;
5515 		if (!cache ||
5516 		    start >= cache->key.objectid + cache->key.offset) {
5517 			if (cache)
5518 				btrfs_put_block_group(cache);
5519 			cache = btrfs_lookup_block_group(fs_info, start);
5520 			BUG_ON(!cache); /* Logic error */
5521 		}
5522 
5523 		len = cache->key.objectid + cache->key.offset - start;
5524 		len = min(len, end + 1 - start);
5525 
5526 		if (start < cache->last_byte_to_unpin) {
5527 			len = min(len, cache->last_byte_to_unpin - start);
5528 			btrfs_add_free_space(cache, start, len);
5529 		}
5530 
5531 		start += len;
5532 		space_info = cache->space_info;
5533 
5534 		spin_lock(&space_info->lock);
5535 		spin_lock(&cache->lock);
5536 		cache->pinned -= len;
5537 		space_info->bytes_pinned -= len;
5538 		if (cache->ro) {
5539 			space_info->bytes_readonly += len;
5540 			readonly = true;
5541 		}
5542 		spin_unlock(&cache->lock);
5543 		if (!readonly && global_rsv->space_info == space_info) {
5544 			spin_lock(&global_rsv->lock);
5545 			if (!global_rsv->full) {
5546 				len = min(len, global_rsv->size -
5547 					  global_rsv->reserved);
5548 				global_rsv->reserved += len;
5549 				space_info->bytes_may_use += len;
5550 				if (global_rsv->reserved >= global_rsv->size)
5551 					global_rsv->full = 1;
5552 			}
5553 			spin_unlock(&global_rsv->lock);
5554 		}
5555 		spin_unlock(&space_info->lock);
5556 	}
5557 
5558 	if (cache)
5559 		btrfs_put_block_group(cache);
5560 	return 0;
5561 }
5562 
5563 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5564 			       struct btrfs_root *root)
5565 {
5566 	struct btrfs_fs_info *fs_info = root->fs_info;
5567 	struct extent_io_tree *unpin;
5568 	u64 start;
5569 	u64 end;
5570 	int ret;
5571 
5572 	if (trans->aborted)
5573 		return 0;
5574 
5575 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5576 		unpin = &fs_info->freed_extents[1];
5577 	else
5578 		unpin = &fs_info->freed_extents[0];
5579 
5580 	while (1) {
5581 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5582 					    EXTENT_DIRTY, NULL);
5583 		if (ret)
5584 			break;
5585 
5586 		if (btrfs_test_opt(root, DISCARD))
5587 			ret = btrfs_discard_extent(root, start,
5588 						   end + 1 - start, NULL);
5589 
5590 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5591 		unpin_extent_range(root, start, end);
5592 		cond_resched();
5593 	}
5594 
5595 	return 0;
5596 }
5597 
5598 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5599 			     u64 owner, u64 root_objectid)
5600 {
5601 	struct btrfs_space_info *space_info;
5602 	u64 flags;
5603 
5604 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5605 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5606 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5607 		else
5608 			flags = BTRFS_BLOCK_GROUP_METADATA;
5609 	} else {
5610 		flags = BTRFS_BLOCK_GROUP_DATA;
5611 	}
5612 
5613 	space_info = __find_space_info(fs_info, flags);
5614 	BUG_ON(!space_info); /* Logic bug */
5615 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5616 }
5617 
5618 
5619 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5620 				struct btrfs_root *root,
5621 				u64 bytenr, u64 num_bytes, u64 parent,
5622 				u64 root_objectid, u64 owner_objectid,
5623 				u64 owner_offset, int refs_to_drop,
5624 				struct btrfs_delayed_extent_op *extent_op)
5625 {
5626 	struct btrfs_key key;
5627 	struct btrfs_path *path;
5628 	struct btrfs_fs_info *info = root->fs_info;
5629 	struct btrfs_root *extent_root = info->extent_root;
5630 	struct extent_buffer *leaf;
5631 	struct btrfs_extent_item *ei;
5632 	struct btrfs_extent_inline_ref *iref;
5633 	int ret;
5634 	int is_data;
5635 	int extent_slot = 0;
5636 	int found_extent = 0;
5637 	int num_to_del = 1;
5638 	u32 item_size;
5639 	u64 refs;
5640 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5641 						 SKINNY_METADATA);
5642 
5643 	path = btrfs_alloc_path();
5644 	if (!path)
5645 		return -ENOMEM;
5646 
5647 	path->reada = 1;
5648 	path->leave_spinning = 1;
5649 
5650 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5651 	BUG_ON(!is_data && refs_to_drop != 1);
5652 
5653 	if (is_data)
5654 		skinny_metadata = 0;
5655 
5656 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5657 				    bytenr, num_bytes, parent,
5658 				    root_objectid, owner_objectid,
5659 				    owner_offset);
5660 	if (ret == 0) {
5661 		extent_slot = path->slots[0];
5662 		while (extent_slot >= 0) {
5663 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5664 					      extent_slot);
5665 			if (key.objectid != bytenr)
5666 				break;
5667 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5668 			    key.offset == num_bytes) {
5669 				found_extent = 1;
5670 				break;
5671 			}
5672 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5673 			    key.offset == owner_objectid) {
5674 				found_extent = 1;
5675 				break;
5676 			}
5677 			if (path->slots[0] - extent_slot > 5)
5678 				break;
5679 			extent_slot--;
5680 		}
5681 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5682 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5683 		if (found_extent && item_size < sizeof(*ei))
5684 			found_extent = 0;
5685 #endif
5686 		if (!found_extent) {
5687 			BUG_ON(iref);
5688 			ret = remove_extent_backref(trans, extent_root, path,
5689 						    NULL, refs_to_drop,
5690 						    is_data);
5691 			if (ret) {
5692 				btrfs_abort_transaction(trans, extent_root, ret);
5693 				goto out;
5694 			}
5695 			btrfs_release_path(path);
5696 			path->leave_spinning = 1;
5697 
5698 			key.objectid = bytenr;
5699 			key.type = BTRFS_EXTENT_ITEM_KEY;
5700 			key.offset = num_bytes;
5701 
5702 			if (!is_data && skinny_metadata) {
5703 				key.type = BTRFS_METADATA_ITEM_KEY;
5704 				key.offset = owner_objectid;
5705 			}
5706 
5707 			ret = btrfs_search_slot(trans, extent_root,
5708 						&key, path, -1, 1);
5709 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5710 				/*
5711 				 * Couldn't find our skinny metadata item,
5712 				 * see if we have ye olde extent item.
5713 				 */
5714 				path->slots[0]--;
5715 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5716 						      path->slots[0]);
5717 				if (key.objectid == bytenr &&
5718 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5719 				    key.offset == num_bytes)
5720 					ret = 0;
5721 			}
5722 
5723 			if (ret > 0 && skinny_metadata) {
5724 				skinny_metadata = false;
5725 				key.objectid = bytenr;
5726 				key.type = BTRFS_EXTENT_ITEM_KEY;
5727 				key.offset = num_bytes;
5728 				btrfs_release_path(path);
5729 				ret = btrfs_search_slot(trans, extent_root,
5730 							&key, path, -1, 1);
5731 			}
5732 
5733 			if (ret) {
5734 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5735 					ret, bytenr);
5736 				if (ret > 0)
5737 					btrfs_print_leaf(extent_root,
5738 							 path->nodes[0]);
5739 			}
5740 			if (ret < 0) {
5741 				btrfs_abort_transaction(trans, extent_root, ret);
5742 				goto out;
5743 			}
5744 			extent_slot = path->slots[0];
5745 		}
5746 	} else if (WARN_ON(ret == -ENOENT)) {
5747 		btrfs_print_leaf(extent_root, path->nodes[0]);
5748 		btrfs_err(info,
5749 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5750 			bytenr, parent, root_objectid, owner_objectid,
5751 			owner_offset);
5752 		btrfs_abort_transaction(trans, extent_root, ret);
5753 		goto out;
5754 	} else {
5755 		btrfs_abort_transaction(trans, extent_root, ret);
5756 		goto out;
5757 	}
5758 
5759 	leaf = path->nodes[0];
5760 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5761 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5762 	if (item_size < sizeof(*ei)) {
5763 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5764 		ret = convert_extent_item_v0(trans, extent_root, path,
5765 					     owner_objectid, 0);
5766 		if (ret < 0) {
5767 			btrfs_abort_transaction(trans, extent_root, ret);
5768 			goto out;
5769 		}
5770 
5771 		btrfs_release_path(path);
5772 		path->leave_spinning = 1;
5773 
5774 		key.objectid = bytenr;
5775 		key.type = BTRFS_EXTENT_ITEM_KEY;
5776 		key.offset = num_bytes;
5777 
5778 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5779 					-1, 1);
5780 		if (ret) {
5781 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5782 				ret, bytenr);
5783 			btrfs_print_leaf(extent_root, path->nodes[0]);
5784 		}
5785 		if (ret < 0) {
5786 			btrfs_abort_transaction(trans, extent_root, ret);
5787 			goto out;
5788 		}
5789 
5790 		extent_slot = path->slots[0];
5791 		leaf = path->nodes[0];
5792 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5793 	}
5794 #endif
5795 	BUG_ON(item_size < sizeof(*ei));
5796 	ei = btrfs_item_ptr(leaf, extent_slot,
5797 			    struct btrfs_extent_item);
5798 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5799 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5800 		struct btrfs_tree_block_info *bi;
5801 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5802 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5803 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5804 	}
5805 
5806 	refs = btrfs_extent_refs(leaf, ei);
5807 	if (refs < refs_to_drop) {
5808 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5809 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5810 		ret = -EINVAL;
5811 		btrfs_abort_transaction(trans, extent_root, ret);
5812 		goto out;
5813 	}
5814 	refs -= refs_to_drop;
5815 
5816 	if (refs > 0) {
5817 		if (extent_op)
5818 			__run_delayed_extent_op(extent_op, leaf, ei);
5819 		/*
5820 		 * In the case of inline back ref, reference count will
5821 		 * be updated by remove_extent_backref
5822 		 */
5823 		if (iref) {
5824 			BUG_ON(!found_extent);
5825 		} else {
5826 			btrfs_set_extent_refs(leaf, ei, refs);
5827 			btrfs_mark_buffer_dirty(leaf);
5828 		}
5829 		if (found_extent) {
5830 			ret = remove_extent_backref(trans, extent_root, path,
5831 						    iref, refs_to_drop,
5832 						    is_data);
5833 			if (ret) {
5834 				btrfs_abort_transaction(trans, extent_root, ret);
5835 				goto out;
5836 			}
5837 		}
5838 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5839 				 root_objectid);
5840 	} else {
5841 		if (found_extent) {
5842 			BUG_ON(is_data && refs_to_drop !=
5843 			       extent_data_ref_count(root, path, iref));
5844 			if (iref) {
5845 				BUG_ON(path->slots[0] != extent_slot);
5846 			} else {
5847 				BUG_ON(path->slots[0] != extent_slot + 1);
5848 				path->slots[0] = extent_slot;
5849 				num_to_del = 2;
5850 			}
5851 		}
5852 
5853 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5854 				      num_to_del);
5855 		if (ret) {
5856 			btrfs_abort_transaction(trans, extent_root, ret);
5857 			goto out;
5858 		}
5859 		btrfs_release_path(path);
5860 
5861 		if (is_data) {
5862 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5863 			if (ret) {
5864 				btrfs_abort_transaction(trans, extent_root, ret);
5865 				goto out;
5866 			}
5867 		}
5868 
5869 		ret = update_block_group(root, bytenr, num_bytes, 0);
5870 		if (ret) {
5871 			btrfs_abort_transaction(trans, extent_root, ret);
5872 			goto out;
5873 		}
5874 	}
5875 out:
5876 	btrfs_free_path(path);
5877 	return ret;
5878 }
5879 
5880 /*
5881  * when we free an block, it is possible (and likely) that we free the last
5882  * delayed ref for that extent as well.  This searches the delayed ref tree for
5883  * a given extent, and if there are no other delayed refs to be processed, it
5884  * removes it from the tree.
5885  */
5886 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5887 				      struct btrfs_root *root, u64 bytenr)
5888 {
5889 	struct btrfs_delayed_ref_head *head;
5890 	struct btrfs_delayed_ref_root *delayed_refs;
5891 	int ret = 0;
5892 
5893 	delayed_refs = &trans->transaction->delayed_refs;
5894 	spin_lock(&delayed_refs->lock);
5895 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5896 	if (!head)
5897 		goto out_delayed_unlock;
5898 
5899 	spin_lock(&head->lock);
5900 	if (rb_first(&head->ref_root))
5901 		goto out;
5902 
5903 	if (head->extent_op) {
5904 		if (!head->must_insert_reserved)
5905 			goto out;
5906 		btrfs_free_delayed_extent_op(head->extent_op);
5907 		head->extent_op = NULL;
5908 	}
5909 
5910 	/*
5911 	 * waiting for the lock here would deadlock.  If someone else has it
5912 	 * locked they are already in the process of dropping it anyway
5913 	 */
5914 	if (!mutex_trylock(&head->mutex))
5915 		goto out;
5916 
5917 	/*
5918 	 * at this point we have a head with no other entries.  Go
5919 	 * ahead and process it.
5920 	 */
5921 	head->node.in_tree = 0;
5922 	rb_erase(&head->href_node, &delayed_refs->href_root);
5923 
5924 	atomic_dec(&delayed_refs->num_entries);
5925 
5926 	/*
5927 	 * we don't take a ref on the node because we're removing it from the
5928 	 * tree, so we just steal the ref the tree was holding.
5929 	 */
5930 	delayed_refs->num_heads--;
5931 	if (head->processing == 0)
5932 		delayed_refs->num_heads_ready--;
5933 	head->processing = 0;
5934 	spin_unlock(&head->lock);
5935 	spin_unlock(&delayed_refs->lock);
5936 
5937 	BUG_ON(head->extent_op);
5938 	if (head->must_insert_reserved)
5939 		ret = 1;
5940 
5941 	mutex_unlock(&head->mutex);
5942 	btrfs_put_delayed_ref(&head->node);
5943 	return ret;
5944 out:
5945 	spin_unlock(&head->lock);
5946 
5947 out_delayed_unlock:
5948 	spin_unlock(&delayed_refs->lock);
5949 	return 0;
5950 }
5951 
5952 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5953 			   struct btrfs_root *root,
5954 			   struct extent_buffer *buf,
5955 			   u64 parent, int last_ref)
5956 {
5957 	struct btrfs_block_group_cache *cache = NULL;
5958 	int pin = 1;
5959 	int ret;
5960 
5961 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5962 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5963 					buf->start, buf->len,
5964 					parent, root->root_key.objectid,
5965 					btrfs_header_level(buf),
5966 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5967 		BUG_ON(ret); /* -ENOMEM */
5968 	}
5969 
5970 	if (!last_ref)
5971 		return;
5972 
5973 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5974 
5975 	if (btrfs_header_generation(buf) == trans->transid) {
5976 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5977 			ret = check_ref_cleanup(trans, root, buf->start);
5978 			if (!ret)
5979 				goto out;
5980 		}
5981 
5982 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5983 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5984 			goto out;
5985 		}
5986 
5987 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5988 
5989 		btrfs_add_free_space(cache, buf->start, buf->len);
5990 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5991 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5992 		pin = 0;
5993 	}
5994 out:
5995 	if (pin)
5996 		add_pinned_bytes(root->fs_info, buf->len,
5997 				 btrfs_header_level(buf),
5998 				 root->root_key.objectid);
5999 
6000 	/*
6001 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6002 	 * anymore.
6003 	 */
6004 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6005 	btrfs_put_block_group(cache);
6006 }
6007 
6008 /* Can return -ENOMEM */
6009 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6010 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6011 		      u64 owner, u64 offset, int for_cow)
6012 {
6013 	int ret;
6014 	struct btrfs_fs_info *fs_info = root->fs_info;
6015 
6016 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6017 
6018 	/*
6019 	 * tree log blocks never actually go into the extent allocation
6020 	 * tree, just update pinning info and exit early.
6021 	 */
6022 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6023 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6024 		/* unlocks the pinned mutex */
6025 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6026 		ret = 0;
6027 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6028 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6029 					num_bytes,
6030 					parent, root_objectid, (int)owner,
6031 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6032 	} else {
6033 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6034 						num_bytes,
6035 						parent, root_objectid, owner,
6036 						offset, BTRFS_DROP_DELAYED_REF,
6037 						NULL, for_cow);
6038 	}
6039 	return ret;
6040 }
6041 
6042 static u64 stripe_align(struct btrfs_root *root,
6043 			struct btrfs_block_group_cache *cache,
6044 			u64 val, u64 num_bytes)
6045 {
6046 	u64 ret = ALIGN(val, root->stripesize);
6047 	return ret;
6048 }
6049 
6050 /*
6051  * when we wait for progress in the block group caching, its because
6052  * our allocation attempt failed at least once.  So, we must sleep
6053  * and let some progress happen before we try again.
6054  *
6055  * This function will sleep at least once waiting for new free space to
6056  * show up, and then it will check the block group free space numbers
6057  * for our min num_bytes.  Another option is to have it go ahead
6058  * and look in the rbtree for a free extent of a given size, but this
6059  * is a good start.
6060  *
6061  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6062  * any of the information in this block group.
6063  */
6064 static noinline void
6065 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6066 				u64 num_bytes)
6067 {
6068 	struct btrfs_caching_control *caching_ctl;
6069 
6070 	caching_ctl = get_caching_control(cache);
6071 	if (!caching_ctl)
6072 		return;
6073 
6074 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6075 		   (cache->free_space_ctl->free_space >= num_bytes));
6076 
6077 	put_caching_control(caching_ctl);
6078 }
6079 
6080 static noinline int
6081 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6082 {
6083 	struct btrfs_caching_control *caching_ctl;
6084 	int ret = 0;
6085 
6086 	caching_ctl = get_caching_control(cache);
6087 	if (!caching_ctl)
6088 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6089 
6090 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6091 	if (cache->cached == BTRFS_CACHE_ERROR)
6092 		ret = -EIO;
6093 	put_caching_control(caching_ctl);
6094 	return ret;
6095 }
6096 
6097 int __get_raid_index(u64 flags)
6098 {
6099 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6100 		return BTRFS_RAID_RAID10;
6101 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6102 		return BTRFS_RAID_RAID1;
6103 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6104 		return BTRFS_RAID_DUP;
6105 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6106 		return BTRFS_RAID_RAID0;
6107 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6108 		return BTRFS_RAID_RAID5;
6109 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6110 		return BTRFS_RAID_RAID6;
6111 
6112 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6113 }
6114 
6115 int get_block_group_index(struct btrfs_block_group_cache *cache)
6116 {
6117 	return __get_raid_index(cache->flags);
6118 }
6119 
6120 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6121 	[BTRFS_RAID_RAID10]	= "raid10",
6122 	[BTRFS_RAID_RAID1]	= "raid1",
6123 	[BTRFS_RAID_DUP]	= "dup",
6124 	[BTRFS_RAID_RAID0]	= "raid0",
6125 	[BTRFS_RAID_SINGLE]	= "single",
6126 	[BTRFS_RAID_RAID5]	= "raid5",
6127 	[BTRFS_RAID_RAID6]	= "raid6",
6128 };
6129 
6130 static const char *get_raid_name(enum btrfs_raid_types type)
6131 {
6132 	if (type >= BTRFS_NR_RAID_TYPES)
6133 		return NULL;
6134 
6135 	return btrfs_raid_type_names[type];
6136 }
6137 
6138 enum btrfs_loop_type {
6139 	LOOP_CACHING_NOWAIT = 0,
6140 	LOOP_CACHING_WAIT = 1,
6141 	LOOP_ALLOC_CHUNK = 2,
6142 	LOOP_NO_EMPTY_SIZE = 3,
6143 };
6144 
6145 /*
6146  * walks the btree of allocated extents and find a hole of a given size.
6147  * The key ins is changed to record the hole:
6148  * ins->objectid == start position
6149  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6150  * ins->offset == the size of the hole.
6151  * Any available blocks before search_start are skipped.
6152  *
6153  * If there is no suitable free space, we will record the max size of
6154  * the free space extent currently.
6155  */
6156 static noinline int find_free_extent(struct btrfs_root *orig_root,
6157 				     u64 num_bytes, u64 empty_size,
6158 				     u64 hint_byte, struct btrfs_key *ins,
6159 				     u64 flags)
6160 {
6161 	int ret = 0;
6162 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6163 	struct btrfs_free_cluster *last_ptr = NULL;
6164 	struct btrfs_block_group_cache *block_group = NULL;
6165 	u64 search_start = 0;
6166 	u64 max_extent_size = 0;
6167 	int empty_cluster = 2 * 1024 * 1024;
6168 	struct btrfs_space_info *space_info;
6169 	int loop = 0;
6170 	int index = __get_raid_index(flags);
6171 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6172 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6173 	bool failed_cluster_refill = false;
6174 	bool failed_alloc = false;
6175 	bool use_cluster = true;
6176 	bool have_caching_bg = false;
6177 
6178 	WARN_ON(num_bytes < root->sectorsize);
6179 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6180 	ins->objectid = 0;
6181 	ins->offset = 0;
6182 
6183 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6184 
6185 	space_info = __find_space_info(root->fs_info, flags);
6186 	if (!space_info) {
6187 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6188 		return -ENOSPC;
6189 	}
6190 
6191 	/*
6192 	 * If the space info is for both data and metadata it means we have a
6193 	 * small filesystem and we can't use the clustering stuff.
6194 	 */
6195 	if (btrfs_mixed_space_info(space_info))
6196 		use_cluster = false;
6197 
6198 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6199 		last_ptr = &root->fs_info->meta_alloc_cluster;
6200 		if (!btrfs_test_opt(root, SSD))
6201 			empty_cluster = 64 * 1024;
6202 	}
6203 
6204 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6205 	    btrfs_test_opt(root, SSD)) {
6206 		last_ptr = &root->fs_info->data_alloc_cluster;
6207 	}
6208 
6209 	if (last_ptr) {
6210 		spin_lock(&last_ptr->lock);
6211 		if (last_ptr->block_group)
6212 			hint_byte = last_ptr->window_start;
6213 		spin_unlock(&last_ptr->lock);
6214 	}
6215 
6216 	search_start = max(search_start, first_logical_byte(root, 0));
6217 	search_start = max(search_start, hint_byte);
6218 
6219 	if (!last_ptr)
6220 		empty_cluster = 0;
6221 
6222 	if (search_start == hint_byte) {
6223 		block_group = btrfs_lookup_block_group(root->fs_info,
6224 						       search_start);
6225 		/*
6226 		 * we don't want to use the block group if it doesn't match our
6227 		 * allocation bits, or if its not cached.
6228 		 *
6229 		 * However if we are re-searching with an ideal block group
6230 		 * picked out then we don't care that the block group is cached.
6231 		 */
6232 		if (block_group && block_group_bits(block_group, flags) &&
6233 		    block_group->cached != BTRFS_CACHE_NO) {
6234 			down_read(&space_info->groups_sem);
6235 			if (list_empty(&block_group->list) ||
6236 			    block_group->ro) {
6237 				/*
6238 				 * someone is removing this block group,
6239 				 * we can't jump into the have_block_group
6240 				 * target because our list pointers are not
6241 				 * valid
6242 				 */
6243 				btrfs_put_block_group(block_group);
6244 				up_read(&space_info->groups_sem);
6245 			} else {
6246 				index = get_block_group_index(block_group);
6247 				goto have_block_group;
6248 			}
6249 		} else if (block_group) {
6250 			btrfs_put_block_group(block_group);
6251 		}
6252 	}
6253 search:
6254 	have_caching_bg = false;
6255 	down_read(&space_info->groups_sem);
6256 	list_for_each_entry(block_group, &space_info->block_groups[index],
6257 			    list) {
6258 		u64 offset;
6259 		int cached;
6260 
6261 		btrfs_get_block_group(block_group);
6262 		search_start = block_group->key.objectid;
6263 
6264 		/*
6265 		 * this can happen if we end up cycling through all the
6266 		 * raid types, but we want to make sure we only allocate
6267 		 * for the proper type.
6268 		 */
6269 		if (!block_group_bits(block_group, flags)) {
6270 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6271 				BTRFS_BLOCK_GROUP_RAID1 |
6272 				BTRFS_BLOCK_GROUP_RAID5 |
6273 				BTRFS_BLOCK_GROUP_RAID6 |
6274 				BTRFS_BLOCK_GROUP_RAID10;
6275 
6276 			/*
6277 			 * if they asked for extra copies and this block group
6278 			 * doesn't provide them, bail.  This does allow us to
6279 			 * fill raid0 from raid1.
6280 			 */
6281 			if ((flags & extra) && !(block_group->flags & extra))
6282 				goto loop;
6283 		}
6284 
6285 have_block_group:
6286 		cached = block_group_cache_done(block_group);
6287 		if (unlikely(!cached)) {
6288 			ret = cache_block_group(block_group, 0);
6289 			BUG_ON(ret < 0);
6290 			ret = 0;
6291 		}
6292 
6293 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6294 			goto loop;
6295 		if (unlikely(block_group->ro))
6296 			goto loop;
6297 
6298 		/*
6299 		 * Ok we want to try and use the cluster allocator, so
6300 		 * lets look there
6301 		 */
6302 		if (last_ptr) {
6303 			struct btrfs_block_group_cache *used_block_group;
6304 			unsigned long aligned_cluster;
6305 			/*
6306 			 * the refill lock keeps out other
6307 			 * people trying to start a new cluster
6308 			 */
6309 			spin_lock(&last_ptr->refill_lock);
6310 			used_block_group = last_ptr->block_group;
6311 			if (used_block_group != block_group &&
6312 			    (!used_block_group ||
6313 			     used_block_group->ro ||
6314 			     !block_group_bits(used_block_group, flags)))
6315 				goto refill_cluster;
6316 
6317 			if (used_block_group != block_group)
6318 				btrfs_get_block_group(used_block_group);
6319 
6320 			offset = btrfs_alloc_from_cluster(used_block_group,
6321 						last_ptr,
6322 						num_bytes,
6323 						used_block_group->key.objectid,
6324 						&max_extent_size);
6325 			if (offset) {
6326 				/* we have a block, we're done */
6327 				spin_unlock(&last_ptr->refill_lock);
6328 				trace_btrfs_reserve_extent_cluster(root,
6329 						used_block_group,
6330 						search_start, num_bytes);
6331 				if (used_block_group != block_group) {
6332 					btrfs_put_block_group(block_group);
6333 					block_group = used_block_group;
6334 				}
6335 				goto checks;
6336 			}
6337 
6338 			WARN_ON(last_ptr->block_group != used_block_group);
6339 			if (used_block_group != block_group)
6340 				btrfs_put_block_group(used_block_group);
6341 refill_cluster:
6342 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6343 			 * set up a new clusters, so lets just skip it
6344 			 * and let the allocator find whatever block
6345 			 * it can find.  If we reach this point, we
6346 			 * will have tried the cluster allocator
6347 			 * plenty of times and not have found
6348 			 * anything, so we are likely way too
6349 			 * fragmented for the clustering stuff to find
6350 			 * anything.
6351 			 *
6352 			 * However, if the cluster is taken from the
6353 			 * current block group, release the cluster
6354 			 * first, so that we stand a better chance of
6355 			 * succeeding in the unclustered
6356 			 * allocation.  */
6357 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6358 			    last_ptr->block_group != block_group) {
6359 				spin_unlock(&last_ptr->refill_lock);
6360 				goto unclustered_alloc;
6361 			}
6362 
6363 			/*
6364 			 * this cluster didn't work out, free it and
6365 			 * start over
6366 			 */
6367 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6368 
6369 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6370 				spin_unlock(&last_ptr->refill_lock);
6371 				goto unclustered_alloc;
6372 			}
6373 
6374 			aligned_cluster = max_t(unsigned long,
6375 						empty_cluster + empty_size,
6376 					      block_group->full_stripe_len);
6377 
6378 			/* allocate a cluster in this block group */
6379 			ret = btrfs_find_space_cluster(root, block_group,
6380 						       last_ptr, search_start,
6381 						       num_bytes,
6382 						       aligned_cluster);
6383 			if (ret == 0) {
6384 				/*
6385 				 * now pull our allocation out of this
6386 				 * cluster
6387 				 */
6388 				offset = btrfs_alloc_from_cluster(block_group,
6389 							last_ptr,
6390 							num_bytes,
6391 							search_start,
6392 							&max_extent_size);
6393 				if (offset) {
6394 					/* we found one, proceed */
6395 					spin_unlock(&last_ptr->refill_lock);
6396 					trace_btrfs_reserve_extent_cluster(root,
6397 						block_group, search_start,
6398 						num_bytes);
6399 					goto checks;
6400 				}
6401 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6402 				   && !failed_cluster_refill) {
6403 				spin_unlock(&last_ptr->refill_lock);
6404 
6405 				failed_cluster_refill = true;
6406 				wait_block_group_cache_progress(block_group,
6407 				       num_bytes + empty_cluster + empty_size);
6408 				goto have_block_group;
6409 			}
6410 
6411 			/*
6412 			 * at this point we either didn't find a cluster
6413 			 * or we weren't able to allocate a block from our
6414 			 * cluster.  Free the cluster we've been trying
6415 			 * to use, and go to the next block group
6416 			 */
6417 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6418 			spin_unlock(&last_ptr->refill_lock);
6419 			goto loop;
6420 		}
6421 
6422 unclustered_alloc:
6423 		spin_lock(&block_group->free_space_ctl->tree_lock);
6424 		if (cached &&
6425 		    block_group->free_space_ctl->free_space <
6426 		    num_bytes + empty_cluster + empty_size) {
6427 			if (block_group->free_space_ctl->free_space >
6428 			    max_extent_size)
6429 				max_extent_size =
6430 					block_group->free_space_ctl->free_space;
6431 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6432 			goto loop;
6433 		}
6434 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6435 
6436 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6437 						    num_bytes, empty_size,
6438 						    &max_extent_size);
6439 		/*
6440 		 * If we didn't find a chunk, and we haven't failed on this
6441 		 * block group before, and this block group is in the middle of
6442 		 * caching and we are ok with waiting, then go ahead and wait
6443 		 * for progress to be made, and set failed_alloc to true.
6444 		 *
6445 		 * If failed_alloc is true then we've already waited on this
6446 		 * block group once and should move on to the next block group.
6447 		 */
6448 		if (!offset && !failed_alloc && !cached &&
6449 		    loop > LOOP_CACHING_NOWAIT) {
6450 			wait_block_group_cache_progress(block_group,
6451 						num_bytes + empty_size);
6452 			failed_alloc = true;
6453 			goto have_block_group;
6454 		} else if (!offset) {
6455 			if (!cached)
6456 				have_caching_bg = true;
6457 			goto loop;
6458 		}
6459 checks:
6460 		search_start = stripe_align(root, block_group,
6461 					    offset, num_bytes);
6462 
6463 		/* move on to the next group */
6464 		if (search_start + num_bytes >
6465 		    block_group->key.objectid + block_group->key.offset) {
6466 			btrfs_add_free_space(block_group, offset, num_bytes);
6467 			goto loop;
6468 		}
6469 
6470 		if (offset < search_start)
6471 			btrfs_add_free_space(block_group, offset,
6472 					     search_start - offset);
6473 		BUG_ON(offset > search_start);
6474 
6475 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6476 						  alloc_type);
6477 		if (ret == -EAGAIN) {
6478 			btrfs_add_free_space(block_group, offset, num_bytes);
6479 			goto loop;
6480 		}
6481 
6482 		/* we are all good, lets return */
6483 		ins->objectid = search_start;
6484 		ins->offset = num_bytes;
6485 
6486 		trace_btrfs_reserve_extent(orig_root, block_group,
6487 					   search_start, num_bytes);
6488 		btrfs_put_block_group(block_group);
6489 		break;
6490 loop:
6491 		failed_cluster_refill = false;
6492 		failed_alloc = false;
6493 		BUG_ON(index != get_block_group_index(block_group));
6494 		btrfs_put_block_group(block_group);
6495 	}
6496 	up_read(&space_info->groups_sem);
6497 
6498 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6499 		goto search;
6500 
6501 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6502 		goto search;
6503 
6504 	/*
6505 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6506 	 *			caching kthreads as we move along
6507 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6508 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6509 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6510 	 *			again
6511 	 */
6512 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6513 		index = 0;
6514 		loop++;
6515 		if (loop == LOOP_ALLOC_CHUNK) {
6516 			struct btrfs_trans_handle *trans;
6517 
6518 			trans = btrfs_join_transaction(root);
6519 			if (IS_ERR(trans)) {
6520 				ret = PTR_ERR(trans);
6521 				goto out;
6522 			}
6523 
6524 			ret = do_chunk_alloc(trans, root, flags,
6525 					     CHUNK_ALLOC_FORCE);
6526 			/*
6527 			 * Do not bail out on ENOSPC since we
6528 			 * can do more things.
6529 			 */
6530 			if (ret < 0 && ret != -ENOSPC)
6531 				btrfs_abort_transaction(trans,
6532 							root, ret);
6533 			else
6534 				ret = 0;
6535 			btrfs_end_transaction(trans, root);
6536 			if (ret)
6537 				goto out;
6538 		}
6539 
6540 		if (loop == LOOP_NO_EMPTY_SIZE) {
6541 			empty_size = 0;
6542 			empty_cluster = 0;
6543 		}
6544 
6545 		goto search;
6546 	} else if (!ins->objectid) {
6547 		ret = -ENOSPC;
6548 	} else if (ins->objectid) {
6549 		ret = 0;
6550 	}
6551 out:
6552 	if (ret == -ENOSPC)
6553 		ins->offset = max_extent_size;
6554 	return ret;
6555 }
6556 
6557 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6558 			    int dump_block_groups)
6559 {
6560 	struct btrfs_block_group_cache *cache;
6561 	int index = 0;
6562 
6563 	spin_lock(&info->lock);
6564 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6565 	       info->flags,
6566 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6567 	       info->bytes_reserved - info->bytes_readonly,
6568 	       (info->full) ? "" : "not ");
6569 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6570 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6571 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6572 	       info->bytes_reserved, info->bytes_may_use,
6573 	       info->bytes_readonly);
6574 	spin_unlock(&info->lock);
6575 
6576 	if (!dump_block_groups)
6577 		return;
6578 
6579 	down_read(&info->groups_sem);
6580 again:
6581 	list_for_each_entry(cache, &info->block_groups[index], list) {
6582 		spin_lock(&cache->lock);
6583 		printk(KERN_INFO "BTRFS: "
6584 			   "block group %llu has %llu bytes, "
6585 			   "%llu used %llu pinned %llu reserved %s\n",
6586 		       cache->key.objectid, cache->key.offset,
6587 		       btrfs_block_group_used(&cache->item), cache->pinned,
6588 		       cache->reserved, cache->ro ? "[readonly]" : "");
6589 		btrfs_dump_free_space(cache, bytes);
6590 		spin_unlock(&cache->lock);
6591 	}
6592 	if (++index < BTRFS_NR_RAID_TYPES)
6593 		goto again;
6594 	up_read(&info->groups_sem);
6595 }
6596 
6597 int btrfs_reserve_extent(struct btrfs_root *root,
6598 			 u64 num_bytes, u64 min_alloc_size,
6599 			 u64 empty_size, u64 hint_byte,
6600 			 struct btrfs_key *ins, int is_data)
6601 {
6602 	bool final_tried = false;
6603 	u64 flags;
6604 	int ret;
6605 
6606 	flags = btrfs_get_alloc_profile(root, is_data);
6607 again:
6608 	WARN_ON(num_bytes < root->sectorsize);
6609 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6610 			       flags);
6611 
6612 	if (ret == -ENOSPC) {
6613 		if (!final_tried && ins->offset) {
6614 			num_bytes = min(num_bytes >> 1, ins->offset);
6615 			num_bytes = round_down(num_bytes, root->sectorsize);
6616 			num_bytes = max(num_bytes, min_alloc_size);
6617 			if (num_bytes == min_alloc_size)
6618 				final_tried = true;
6619 			goto again;
6620 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6621 			struct btrfs_space_info *sinfo;
6622 
6623 			sinfo = __find_space_info(root->fs_info, flags);
6624 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6625 				flags, num_bytes);
6626 			if (sinfo)
6627 				dump_space_info(sinfo, num_bytes, 1);
6628 		}
6629 	}
6630 
6631 	return ret;
6632 }
6633 
6634 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6635 					u64 start, u64 len, int pin)
6636 {
6637 	struct btrfs_block_group_cache *cache;
6638 	int ret = 0;
6639 
6640 	cache = btrfs_lookup_block_group(root->fs_info, start);
6641 	if (!cache) {
6642 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6643 			start);
6644 		return -ENOSPC;
6645 	}
6646 
6647 	if (btrfs_test_opt(root, DISCARD))
6648 		ret = btrfs_discard_extent(root, start, len, NULL);
6649 
6650 	if (pin)
6651 		pin_down_extent(root, cache, start, len, 1);
6652 	else {
6653 		btrfs_add_free_space(cache, start, len);
6654 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6655 	}
6656 	btrfs_put_block_group(cache);
6657 
6658 	trace_btrfs_reserved_extent_free(root, start, len);
6659 
6660 	return ret;
6661 }
6662 
6663 int btrfs_free_reserved_extent(struct btrfs_root *root,
6664 					u64 start, u64 len)
6665 {
6666 	return __btrfs_free_reserved_extent(root, start, len, 0);
6667 }
6668 
6669 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6670 				       u64 start, u64 len)
6671 {
6672 	return __btrfs_free_reserved_extent(root, start, len, 1);
6673 }
6674 
6675 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6676 				      struct btrfs_root *root,
6677 				      u64 parent, u64 root_objectid,
6678 				      u64 flags, u64 owner, u64 offset,
6679 				      struct btrfs_key *ins, int ref_mod)
6680 {
6681 	int ret;
6682 	struct btrfs_fs_info *fs_info = root->fs_info;
6683 	struct btrfs_extent_item *extent_item;
6684 	struct btrfs_extent_inline_ref *iref;
6685 	struct btrfs_path *path;
6686 	struct extent_buffer *leaf;
6687 	int type;
6688 	u32 size;
6689 
6690 	if (parent > 0)
6691 		type = BTRFS_SHARED_DATA_REF_KEY;
6692 	else
6693 		type = BTRFS_EXTENT_DATA_REF_KEY;
6694 
6695 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6696 
6697 	path = btrfs_alloc_path();
6698 	if (!path)
6699 		return -ENOMEM;
6700 
6701 	path->leave_spinning = 1;
6702 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6703 				      ins, size);
6704 	if (ret) {
6705 		btrfs_free_path(path);
6706 		return ret;
6707 	}
6708 
6709 	leaf = path->nodes[0];
6710 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6711 				     struct btrfs_extent_item);
6712 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6713 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6714 	btrfs_set_extent_flags(leaf, extent_item,
6715 			       flags | BTRFS_EXTENT_FLAG_DATA);
6716 
6717 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6718 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6719 	if (parent > 0) {
6720 		struct btrfs_shared_data_ref *ref;
6721 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6722 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6723 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6724 	} else {
6725 		struct btrfs_extent_data_ref *ref;
6726 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6727 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6728 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6729 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6730 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6731 	}
6732 
6733 	btrfs_mark_buffer_dirty(path->nodes[0]);
6734 	btrfs_free_path(path);
6735 
6736 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6737 	if (ret) { /* -ENOENT, logic error */
6738 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6739 			ins->objectid, ins->offset);
6740 		BUG();
6741 	}
6742 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6743 	return ret;
6744 }
6745 
6746 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6747 				     struct btrfs_root *root,
6748 				     u64 parent, u64 root_objectid,
6749 				     u64 flags, struct btrfs_disk_key *key,
6750 				     int level, struct btrfs_key *ins)
6751 {
6752 	int ret;
6753 	struct btrfs_fs_info *fs_info = root->fs_info;
6754 	struct btrfs_extent_item *extent_item;
6755 	struct btrfs_tree_block_info *block_info;
6756 	struct btrfs_extent_inline_ref *iref;
6757 	struct btrfs_path *path;
6758 	struct extent_buffer *leaf;
6759 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6760 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6761 						 SKINNY_METADATA);
6762 
6763 	if (!skinny_metadata)
6764 		size += sizeof(*block_info);
6765 
6766 	path = btrfs_alloc_path();
6767 	if (!path) {
6768 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6769 						   root->leafsize);
6770 		return -ENOMEM;
6771 	}
6772 
6773 	path->leave_spinning = 1;
6774 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6775 				      ins, size);
6776 	if (ret) {
6777 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6778 						   root->leafsize);
6779 		btrfs_free_path(path);
6780 		return ret;
6781 	}
6782 
6783 	leaf = path->nodes[0];
6784 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6785 				     struct btrfs_extent_item);
6786 	btrfs_set_extent_refs(leaf, extent_item, 1);
6787 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6788 	btrfs_set_extent_flags(leaf, extent_item,
6789 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6790 
6791 	if (skinny_metadata) {
6792 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6793 	} else {
6794 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6795 		btrfs_set_tree_block_key(leaf, block_info, key);
6796 		btrfs_set_tree_block_level(leaf, block_info, level);
6797 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6798 	}
6799 
6800 	if (parent > 0) {
6801 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6802 		btrfs_set_extent_inline_ref_type(leaf, iref,
6803 						 BTRFS_SHARED_BLOCK_REF_KEY);
6804 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6805 	} else {
6806 		btrfs_set_extent_inline_ref_type(leaf, iref,
6807 						 BTRFS_TREE_BLOCK_REF_KEY);
6808 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6809 	}
6810 
6811 	btrfs_mark_buffer_dirty(leaf);
6812 	btrfs_free_path(path);
6813 
6814 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6815 	if (ret) { /* -ENOENT, logic error */
6816 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6817 			ins->objectid, ins->offset);
6818 		BUG();
6819 	}
6820 
6821 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6822 	return ret;
6823 }
6824 
6825 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6826 				     struct btrfs_root *root,
6827 				     u64 root_objectid, u64 owner,
6828 				     u64 offset, struct btrfs_key *ins)
6829 {
6830 	int ret;
6831 
6832 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6833 
6834 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6835 					 ins->offset, 0,
6836 					 root_objectid, owner, offset,
6837 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6838 	return ret;
6839 }
6840 
6841 /*
6842  * this is used by the tree logging recovery code.  It records that
6843  * an extent has been allocated and makes sure to clear the free
6844  * space cache bits as well
6845  */
6846 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6847 				   struct btrfs_root *root,
6848 				   u64 root_objectid, u64 owner, u64 offset,
6849 				   struct btrfs_key *ins)
6850 {
6851 	int ret;
6852 	struct btrfs_block_group_cache *block_group;
6853 
6854 	/*
6855 	 * Mixed block groups will exclude before processing the log so we only
6856 	 * need to do the exlude dance if this fs isn't mixed.
6857 	 */
6858 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6859 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6860 		if (ret)
6861 			return ret;
6862 	}
6863 
6864 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6865 	if (!block_group)
6866 		return -EINVAL;
6867 
6868 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6869 					  RESERVE_ALLOC_NO_ACCOUNT);
6870 	BUG_ON(ret); /* logic error */
6871 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6872 					 0, owner, offset, ins, 1);
6873 	btrfs_put_block_group(block_group);
6874 	return ret;
6875 }
6876 
6877 static struct extent_buffer *
6878 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6879 		      u64 bytenr, u32 blocksize, int level)
6880 {
6881 	struct extent_buffer *buf;
6882 
6883 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6884 	if (!buf)
6885 		return ERR_PTR(-ENOMEM);
6886 	btrfs_set_header_generation(buf, trans->transid);
6887 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6888 	btrfs_tree_lock(buf);
6889 	clean_tree_block(trans, root, buf);
6890 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6891 
6892 	btrfs_set_lock_blocking(buf);
6893 	btrfs_set_buffer_uptodate(buf);
6894 
6895 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6896 		/*
6897 		 * we allow two log transactions at a time, use different
6898 		 * EXENT bit to differentiate dirty pages.
6899 		 */
6900 		if (root->log_transid % 2 == 0)
6901 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6902 					buf->start + buf->len - 1, GFP_NOFS);
6903 		else
6904 			set_extent_new(&root->dirty_log_pages, buf->start,
6905 					buf->start + buf->len - 1, GFP_NOFS);
6906 	} else {
6907 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6908 			 buf->start + buf->len - 1, GFP_NOFS);
6909 	}
6910 	trans->blocks_used++;
6911 	/* this returns a buffer locked for blocking */
6912 	return buf;
6913 }
6914 
6915 static struct btrfs_block_rsv *
6916 use_block_rsv(struct btrfs_trans_handle *trans,
6917 	      struct btrfs_root *root, u32 blocksize)
6918 {
6919 	struct btrfs_block_rsv *block_rsv;
6920 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6921 	int ret;
6922 	bool global_updated = false;
6923 
6924 	block_rsv = get_block_rsv(trans, root);
6925 
6926 	if (unlikely(block_rsv->size == 0))
6927 		goto try_reserve;
6928 again:
6929 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6930 	if (!ret)
6931 		return block_rsv;
6932 
6933 	if (block_rsv->failfast)
6934 		return ERR_PTR(ret);
6935 
6936 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6937 		global_updated = true;
6938 		update_global_block_rsv(root->fs_info);
6939 		goto again;
6940 	}
6941 
6942 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 		static DEFINE_RATELIMIT_STATE(_rs,
6944 				DEFAULT_RATELIMIT_INTERVAL * 10,
6945 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6946 		if (__ratelimit(&_rs))
6947 			WARN(1, KERN_DEBUG
6948 				"BTRFS: block rsv returned %d\n", ret);
6949 	}
6950 try_reserve:
6951 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6952 				     BTRFS_RESERVE_NO_FLUSH);
6953 	if (!ret)
6954 		return block_rsv;
6955 	/*
6956 	 * If we couldn't reserve metadata bytes try and use some from
6957 	 * the global reserve if its space type is the same as the global
6958 	 * reservation.
6959 	 */
6960 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6961 	    block_rsv->space_info == global_rsv->space_info) {
6962 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6963 		if (!ret)
6964 			return global_rsv;
6965 	}
6966 	return ERR_PTR(ret);
6967 }
6968 
6969 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6970 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6971 {
6972 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6973 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6974 }
6975 
6976 /*
6977  * finds a free extent and does all the dirty work required for allocation
6978  * returns the key for the extent through ins, and a tree buffer for
6979  * the first block of the extent through buf.
6980  *
6981  * returns the tree buffer or NULL.
6982  */
6983 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6984 					struct btrfs_root *root, u32 blocksize,
6985 					u64 parent, u64 root_objectid,
6986 					struct btrfs_disk_key *key, int level,
6987 					u64 hint, u64 empty_size)
6988 {
6989 	struct btrfs_key ins;
6990 	struct btrfs_block_rsv *block_rsv;
6991 	struct extent_buffer *buf;
6992 	u64 flags = 0;
6993 	int ret;
6994 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6995 						 SKINNY_METADATA);
6996 
6997 	block_rsv = use_block_rsv(trans, root, blocksize);
6998 	if (IS_ERR(block_rsv))
6999 		return ERR_CAST(block_rsv);
7000 
7001 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7002 				   empty_size, hint, &ins, 0);
7003 	if (ret) {
7004 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7005 		return ERR_PTR(ret);
7006 	}
7007 
7008 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7009 				    blocksize, level);
7010 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7011 
7012 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7013 		if (parent == 0)
7014 			parent = ins.objectid;
7015 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7016 	} else
7017 		BUG_ON(parent > 0);
7018 
7019 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7020 		struct btrfs_delayed_extent_op *extent_op;
7021 		extent_op = btrfs_alloc_delayed_extent_op();
7022 		BUG_ON(!extent_op); /* -ENOMEM */
7023 		if (key)
7024 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7025 		else
7026 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7027 		extent_op->flags_to_set = flags;
7028 		if (skinny_metadata)
7029 			extent_op->update_key = 0;
7030 		else
7031 			extent_op->update_key = 1;
7032 		extent_op->update_flags = 1;
7033 		extent_op->is_data = 0;
7034 		extent_op->level = level;
7035 
7036 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7037 					ins.objectid,
7038 					ins.offset, parent, root_objectid,
7039 					level, BTRFS_ADD_DELAYED_EXTENT,
7040 					extent_op, 0);
7041 		BUG_ON(ret); /* -ENOMEM */
7042 	}
7043 	return buf;
7044 }
7045 
7046 struct walk_control {
7047 	u64 refs[BTRFS_MAX_LEVEL];
7048 	u64 flags[BTRFS_MAX_LEVEL];
7049 	struct btrfs_key update_progress;
7050 	int stage;
7051 	int level;
7052 	int shared_level;
7053 	int update_ref;
7054 	int keep_locks;
7055 	int reada_slot;
7056 	int reada_count;
7057 	int for_reloc;
7058 };
7059 
7060 #define DROP_REFERENCE	1
7061 #define UPDATE_BACKREF	2
7062 
7063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7064 				     struct btrfs_root *root,
7065 				     struct walk_control *wc,
7066 				     struct btrfs_path *path)
7067 {
7068 	u64 bytenr;
7069 	u64 generation;
7070 	u64 refs;
7071 	u64 flags;
7072 	u32 nritems;
7073 	u32 blocksize;
7074 	struct btrfs_key key;
7075 	struct extent_buffer *eb;
7076 	int ret;
7077 	int slot;
7078 	int nread = 0;
7079 
7080 	if (path->slots[wc->level] < wc->reada_slot) {
7081 		wc->reada_count = wc->reada_count * 2 / 3;
7082 		wc->reada_count = max(wc->reada_count, 2);
7083 	} else {
7084 		wc->reada_count = wc->reada_count * 3 / 2;
7085 		wc->reada_count = min_t(int, wc->reada_count,
7086 					BTRFS_NODEPTRS_PER_BLOCK(root));
7087 	}
7088 
7089 	eb = path->nodes[wc->level];
7090 	nritems = btrfs_header_nritems(eb);
7091 	blocksize = btrfs_level_size(root, wc->level - 1);
7092 
7093 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7094 		if (nread >= wc->reada_count)
7095 			break;
7096 
7097 		cond_resched();
7098 		bytenr = btrfs_node_blockptr(eb, slot);
7099 		generation = btrfs_node_ptr_generation(eb, slot);
7100 
7101 		if (slot == path->slots[wc->level])
7102 			goto reada;
7103 
7104 		if (wc->stage == UPDATE_BACKREF &&
7105 		    generation <= root->root_key.offset)
7106 			continue;
7107 
7108 		/* We don't lock the tree block, it's OK to be racy here */
7109 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7110 					       wc->level - 1, 1, &refs,
7111 					       &flags);
7112 		/* We don't care about errors in readahead. */
7113 		if (ret < 0)
7114 			continue;
7115 		BUG_ON(refs == 0);
7116 
7117 		if (wc->stage == DROP_REFERENCE) {
7118 			if (refs == 1)
7119 				goto reada;
7120 
7121 			if (wc->level == 1 &&
7122 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7123 				continue;
7124 			if (!wc->update_ref ||
7125 			    generation <= root->root_key.offset)
7126 				continue;
7127 			btrfs_node_key_to_cpu(eb, &key, slot);
7128 			ret = btrfs_comp_cpu_keys(&key,
7129 						  &wc->update_progress);
7130 			if (ret < 0)
7131 				continue;
7132 		} else {
7133 			if (wc->level == 1 &&
7134 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7135 				continue;
7136 		}
7137 reada:
7138 		ret = readahead_tree_block(root, bytenr, blocksize,
7139 					   generation);
7140 		if (ret)
7141 			break;
7142 		nread++;
7143 	}
7144 	wc->reada_slot = slot;
7145 }
7146 
7147 /*
7148  * helper to process tree block while walking down the tree.
7149  *
7150  * when wc->stage == UPDATE_BACKREF, this function updates
7151  * back refs for pointers in the block.
7152  *
7153  * NOTE: return value 1 means we should stop walking down.
7154  */
7155 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7156 				   struct btrfs_root *root,
7157 				   struct btrfs_path *path,
7158 				   struct walk_control *wc, int lookup_info)
7159 {
7160 	int level = wc->level;
7161 	struct extent_buffer *eb = path->nodes[level];
7162 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7163 	int ret;
7164 
7165 	if (wc->stage == UPDATE_BACKREF &&
7166 	    btrfs_header_owner(eb) != root->root_key.objectid)
7167 		return 1;
7168 
7169 	/*
7170 	 * when reference count of tree block is 1, it won't increase
7171 	 * again. once full backref flag is set, we never clear it.
7172 	 */
7173 	if (lookup_info &&
7174 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7175 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7176 		BUG_ON(!path->locks[level]);
7177 		ret = btrfs_lookup_extent_info(trans, root,
7178 					       eb->start, level, 1,
7179 					       &wc->refs[level],
7180 					       &wc->flags[level]);
7181 		BUG_ON(ret == -ENOMEM);
7182 		if (ret)
7183 			return ret;
7184 		BUG_ON(wc->refs[level] == 0);
7185 	}
7186 
7187 	if (wc->stage == DROP_REFERENCE) {
7188 		if (wc->refs[level] > 1)
7189 			return 1;
7190 
7191 		if (path->locks[level] && !wc->keep_locks) {
7192 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7193 			path->locks[level] = 0;
7194 		}
7195 		return 0;
7196 	}
7197 
7198 	/* wc->stage == UPDATE_BACKREF */
7199 	if (!(wc->flags[level] & flag)) {
7200 		BUG_ON(!path->locks[level]);
7201 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7202 		BUG_ON(ret); /* -ENOMEM */
7203 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7204 		BUG_ON(ret); /* -ENOMEM */
7205 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7206 						  eb->len, flag,
7207 						  btrfs_header_level(eb), 0);
7208 		BUG_ON(ret); /* -ENOMEM */
7209 		wc->flags[level] |= flag;
7210 	}
7211 
7212 	/*
7213 	 * the block is shared by multiple trees, so it's not good to
7214 	 * keep the tree lock
7215 	 */
7216 	if (path->locks[level] && level > 0) {
7217 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7218 		path->locks[level] = 0;
7219 	}
7220 	return 0;
7221 }
7222 
7223 /*
7224  * helper to process tree block pointer.
7225  *
7226  * when wc->stage == DROP_REFERENCE, this function checks
7227  * reference count of the block pointed to. if the block
7228  * is shared and we need update back refs for the subtree
7229  * rooted at the block, this function changes wc->stage to
7230  * UPDATE_BACKREF. if the block is shared and there is no
7231  * need to update back, this function drops the reference
7232  * to the block.
7233  *
7234  * NOTE: return value 1 means we should stop walking down.
7235  */
7236 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7237 				 struct btrfs_root *root,
7238 				 struct btrfs_path *path,
7239 				 struct walk_control *wc, int *lookup_info)
7240 {
7241 	u64 bytenr;
7242 	u64 generation;
7243 	u64 parent;
7244 	u32 blocksize;
7245 	struct btrfs_key key;
7246 	struct extent_buffer *next;
7247 	int level = wc->level;
7248 	int reada = 0;
7249 	int ret = 0;
7250 
7251 	generation = btrfs_node_ptr_generation(path->nodes[level],
7252 					       path->slots[level]);
7253 	/*
7254 	 * if the lower level block was created before the snapshot
7255 	 * was created, we know there is no need to update back refs
7256 	 * for the subtree
7257 	 */
7258 	if (wc->stage == UPDATE_BACKREF &&
7259 	    generation <= root->root_key.offset) {
7260 		*lookup_info = 1;
7261 		return 1;
7262 	}
7263 
7264 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7265 	blocksize = btrfs_level_size(root, level - 1);
7266 
7267 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7268 	if (!next) {
7269 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7270 		if (!next)
7271 			return -ENOMEM;
7272 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7273 					       level - 1);
7274 		reada = 1;
7275 	}
7276 	btrfs_tree_lock(next);
7277 	btrfs_set_lock_blocking(next);
7278 
7279 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7280 				       &wc->refs[level - 1],
7281 				       &wc->flags[level - 1]);
7282 	if (ret < 0) {
7283 		btrfs_tree_unlock(next);
7284 		return ret;
7285 	}
7286 
7287 	if (unlikely(wc->refs[level - 1] == 0)) {
7288 		btrfs_err(root->fs_info, "Missing references.");
7289 		BUG();
7290 	}
7291 	*lookup_info = 0;
7292 
7293 	if (wc->stage == DROP_REFERENCE) {
7294 		if (wc->refs[level - 1] > 1) {
7295 			if (level == 1 &&
7296 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7297 				goto skip;
7298 
7299 			if (!wc->update_ref ||
7300 			    generation <= root->root_key.offset)
7301 				goto skip;
7302 
7303 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7304 					      path->slots[level]);
7305 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7306 			if (ret < 0)
7307 				goto skip;
7308 
7309 			wc->stage = UPDATE_BACKREF;
7310 			wc->shared_level = level - 1;
7311 		}
7312 	} else {
7313 		if (level == 1 &&
7314 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7315 			goto skip;
7316 	}
7317 
7318 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7319 		btrfs_tree_unlock(next);
7320 		free_extent_buffer(next);
7321 		next = NULL;
7322 		*lookup_info = 1;
7323 	}
7324 
7325 	if (!next) {
7326 		if (reada && level == 1)
7327 			reada_walk_down(trans, root, wc, path);
7328 		next = read_tree_block(root, bytenr, blocksize, generation);
7329 		if (!next || !extent_buffer_uptodate(next)) {
7330 			free_extent_buffer(next);
7331 			return -EIO;
7332 		}
7333 		btrfs_tree_lock(next);
7334 		btrfs_set_lock_blocking(next);
7335 	}
7336 
7337 	level--;
7338 	BUG_ON(level != btrfs_header_level(next));
7339 	path->nodes[level] = next;
7340 	path->slots[level] = 0;
7341 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7342 	wc->level = level;
7343 	if (wc->level == 1)
7344 		wc->reada_slot = 0;
7345 	return 0;
7346 skip:
7347 	wc->refs[level - 1] = 0;
7348 	wc->flags[level - 1] = 0;
7349 	if (wc->stage == DROP_REFERENCE) {
7350 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7351 			parent = path->nodes[level]->start;
7352 		} else {
7353 			BUG_ON(root->root_key.objectid !=
7354 			       btrfs_header_owner(path->nodes[level]));
7355 			parent = 0;
7356 		}
7357 
7358 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7359 				root->root_key.objectid, level - 1, 0, 0);
7360 		BUG_ON(ret); /* -ENOMEM */
7361 	}
7362 	btrfs_tree_unlock(next);
7363 	free_extent_buffer(next);
7364 	*lookup_info = 1;
7365 	return 1;
7366 }
7367 
7368 /*
7369  * helper to process tree block while walking up the tree.
7370  *
7371  * when wc->stage == DROP_REFERENCE, this function drops
7372  * reference count on the block.
7373  *
7374  * when wc->stage == UPDATE_BACKREF, this function changes
7375  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7376  * to UPDATE_BACKREF previously while processing the block.
7377  *
7378  * NOTE: return value 1 means we should stop walking up.
7379  */
7380 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7381 				 struct btrfs_root *root,
7382 				 struct btrfs_path *path,
7383 				 struct walk_control *wc)
7384 {
7385 	int ret;
7386 	int level = wc->level;
7387 	struct extent_buffer *eb = path->nodes[level];
7388 	u64 parent = 0;
7389 
7390 	if (wc->stage == UPDATE_BACKREF) {
7391 		BUG_ON(wc->shared_level < level);
7392 		if (level < wc->shared_level)
7393 			goto out;
7394 
7395 		ret = find_next_key(path, level + 1, &wc->update_progress);
7396 		if (ret > 0)
7397 			wc->update_ref = 0;
7398 
7399 		wc->stage = DROP_REFERENCE;
7400 		wc->shared_level = -1;
7401 		path->slots[level] = 0;
7402 
7403 		/*
7404 		 * check reference count again if the block isn't locked.
7405 		 * we should start walking down the tree again if reference
7406 		 * count is one.
7407 		 */
7408 		if (!path->locks[level]) {
7409 			BUG_ON(level == 0);
7410 			btrfs_tree_lock(eb);
7411 			btrfs_set_lock_blocking(eb);
7412 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7413 
7414 			ret = btrfs_lookup_extent_info(trans, root,
7415 						       eb->start, level, 1,
7416 						       &wc->refs[level],
7417 						       &wc->flags[level]);
7418 			if (ret < 0) {
7419 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7420 				path->locks[level] = 0;
7421 				return ret;
7422 			}
7423 			BUG_ON(wc->refs[level] == 0);
7424 			if (wc->refs[level] == 1) {
7425 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7426 				path->locks[level] = 0;
7427 				return 1;
7428 			}
7429 		}
7430 	}
7431 
7432 	/* wc->stage == DROP_REFERENCE */
7433 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7434 
7435 	if (wc->refs[level] == 1) {
7436 		if (level == 0) {
7437 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7438 				ret = btrfs_dec_ref(trans, root, eb, 1,
7439 						    wc->for_reloc);
7440 			else
7441 				ret = btrfs_dec_ref(trans, root, eb, 0,
7442 						    wc->for_reloc);
7443 			BUG_ON(ret); /* -ENOMEM */
7444 		}
7445 		/* make block locked assertion in clean_tree_block happy */
7446 		if (!path->locks[level] &&
7447 		    btrfs_header_generation(eb) == trans->transid) {
7448 			btrfs_tree_lock(eb);
7449 			btrfs_set_lock_blocking(eb);
7450 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7451 		}
7452 		clean_tree_block(trans, root, eb);
7453 	}
7454 
7455 	if (eb == root->node) {
7456 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7457 			parent = eb->start;
7458 		else
7459 			BUG_ON(root->root_key.objectid !=
7460 			       btrfs_header_owner(eb));
7461 	} else {
7462 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7463 			parent = path->nodes[level + 1]->start;
7464 		else
7465 			BUG_ON(root->root_key.objectid !=
7466 			       btrfs_header_owner(path->nodes[level + 1]));
7467 	}
7468 
7469 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7470 out:
7471 	wc->refs[level] = 0;
7472 	wc->flags[level] = 0;
7473 	return 0;
7474 }
7475 
7476 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7477 				   struct btrfs_root *root,
7478 				   struct btrfs_path *path,
7479 				   struct walk_control *wc)
7480 {
7481 	int level = wc->level;
7482 	int lookup_info = 1;
7483 	int ret;
7484 
7485 	while (level >= 0) {
7486 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7487 		if (ret > 0)
7488 			break;
7489 
7490 		if (level == 0)
7491 			break;
7492 
7493 		if (path->slots[level] >=
7494 		    btrfs_header_nritems(path->nodes[level]))
7495 			break;
7496 
7497 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7498 		if (ret > 0) {
7499 			path->slots[level]++;
7500 			continue;
7501 		} else if (ret < 0)
7502 			return ret;
7503 		level = wc->level;
7504 	}
7505 	return 0;
7506 }
7507 
7508 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7509 				 struct btrfs_root *root,
7510 				 struct btrfs_path *path,
7511 				 struct walk_control *wc, int max_level)
7512 {
7513 	int level = wc->level;
7514 	int ret;
7515 
7516 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7517 	while (level < max_level && path->nodes[level]) {
7518 		wc->level = level;
7519 		if (path->slots[level] + 1 <
7520 		    btrfs_header_nritems(path->nodes[level])) {
7521 			path->slots[level]++;
7522 			return 0;
7523 		} else {
7524 			ret = walk_up_proc(trans, root, path, wc);
7525 			if (ret > 0)
7526 				return 0;
7527 
7528 			if (path->locks[level]) {
7529 				btrfs_tree_unlock_rw(path->nodes[level],
7530 						     path->locks[level]);
7531 				path->locks[level] = 0;
7532 			}
7533 			free_extent_buffer(path->nodes[level]);
7534 			path->nodes[level] = NULL;
7535 			level++;
7536 		}
7537 	}
7538 	return 1;
7539 }
7540 
7541 /*
7542  * drop a subvolume tree.
7543  *
7544  * this function traverses the tree freeing any blocks that only
7545  * referenced by the tree.
7546  *
7547  * when a shared tree block is found. this function decreases its
7548  * reference count by one. if update_ref is true, this function
7549  * also make sure backrefs for the shared block and all lower level
7550  * blocks are properly updated.
7551  *
7552  * If called with for_reloc == 0, may exit early with -EAGAIN
7553  */
7554 int btrfs_drop_snapshot(struct btrfs_root *root,
7555 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7556 			 int for_reloc)
7557 {
7558 	struct btrfs_path *path;
7559 	struct btrfs_trans_handle *trans;
7560 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7561 	struct btrfs_root_item *root_item = &root->root_item;
7562 	struct walk_control *wc;
7563 	struct btrfs_key key;
7564 	int err = 0;
7565 	int ret;
7566 	int level;
7567 	bool root_dropped = false;
7568 
7569 	path = btrfs_alloc_path();
7570 	if (!path) {
7571 		err = -ENOMEM;
7572 		goto out;
7573 	}
7574 
7575 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7576 	if (!wc) {
7577 		btrfs_free_path(path);
7578 		err = -ENOMEM;
7579 		goto out;
7580 	}
7581 
7582 	trans = btrfs_start_transaction(tree_root, 0);
7583 	if (IS_ERR(trans)) {
7584 		err = PTR_ERR(trans);
7585 		goto out_free;
7586 	}
7587 
7588 	if (block_rsv)
7589 		trans->block_rsv = block_rsv;
7590 
7591 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7592 		level = btrfs_header_level(root->node);
7593 		path->nodes[level] = btrfs_lock_root_node(root);
7594 		btrfs_set_lock_blocking(path->nodes[level]);
7595 		path->slots[level] = 0;
7596 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7597 		memset(&wc->update_progress, 0,
7598 		       sizeof(wc->update_progress));
7599 	} else {
7600 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7601 		memcpy(&wc->update_progress, &key,
7602 		       sizeof(wc->update_progress));
7603 
7604 		level = root_item->drop_level;
7605 		BUG_ON(level == 0);
7606 		path->lowest_level = level;
7607 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7608 		path->lowest_level = 0;
7609 		if (ret < 0) {
7610 			err = ret;
7611 			goto out_end_trans;
7612 		}
7613 		WARN_ON(ret > 0);
7614 
7615 		/*
7616 		 * unlock our path, this is safe because only this
7617 		 * function is allowed to delete this snapshot
7618 		 */
7619 		btrfs_unlock_up_safe(path, 0);
7620 
7621 		level = btrfs_header_level(root->node);
7622 		while (1) {
7623 			btrfs_tree_lock(path->nodes[level]);
7624 			btrfs_set_lock_blocking(path->nodes[level]);
7625 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7626 
7627 			ret = btrfs_lookup_extent_info(trans, root,
7628 						path->nodes[level]->start,
7629 						level, 1, &wc->refs[level],
7630 						&wc->flags[level]);
7631 			if (ret < 0) {
7632 				err = ret;
7633 				goto out_end_trans;
7634 			}
7635 			BUG_ON(wc->refs[level] == 0);
7636 
7637 			if (level == root_item->drop_level)
7638 				break;
7639 
7640 			btrfs_tree_unlock(path->nodes[level]);
7641 			path->locks[level] = 0;
7642 			WARN_ON(wc->refs[level] != 1);
7643 			level--;
7644 		}
7645 	}
7646 
7647 	wc->level = level;
7648 	wc->shared_level = -1;
7649 	wc->stage = DROP_REFERENCE;
7650 	wc->update_ref = update_ref;
7651 	wc->keep_locks = 0;
7652 	wc->for_reloc = for_reloc;
7653 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7654 
7655 	while (1) {
7656 
7657 		ret = walk_down_tree(trans, root, path, wc);
7658 		if (ret < 0) {
7659 			err = ret;
7660 			break;
7661 		}
7662 
7663 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7664 		if (ret < 0) {
7665 			err = ret;
7666 			break;
7667 		}
7668 
7669 		if (ret > 0) {
7670 			BUG_ON(wc->stage != DROP_REFERENCE);
7671 			break;
7672 		}
7673 
7674 		if (wc->stage == DROP_REFERENCE) {
7675 			level = wc->level;
7676 			btrfs_node_key(path->nodes[level],
7677 				       &root_item->drop_progress,
7678 				       path->slots[level]);
7679 			root_item->drop_level = level;
7680 		}
7681 
7682 		BUG_ON(wc->level == 0);
7683 		if (btrfs_should_end_transaction(trans, tree_root) ||
7684 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7685 			ret = btrfs_update_root(trans, tree_root,
7686 						&root->root_key,
7687 						root_item);
7688 			if (ret) {
7689 				btrfs_abort_transaction(trans, tree_root, ret);
7690 				err = ret;
7691 				goto out_end_trans;
7692 			}
7693 
7694 			btrfs_end_transaction_throttle(trans, tree_root);
7695 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7696 				pr_debug("BTRFS: drop snapshot early exit\n");
7697 				err = -EAGAIN;
7698 				goto out_free;
7699 			}
7700 
7701 			trans = btrfs_start_transaction(tree_root, 0);
7702 			if (IS_ERR(trans)) {
7703 				err = PTR_ERR(trans);
7704 				goto out_free;
7705 			}
7706 			if (block_rsv)
7707 				trans->block_rsv = block_rsv;
7708 		}
7709 	}
7710 	btrfs_release_path(path);
7711 	if (err)
7712 		goto out_end_trans;
7713 
7714 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7715 	if (ret) {
7716 		btrfs_abort_transaction(trans, tree_root, ret);
7717 		goto out_end_trans;
7718 	}
7719 
7720 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7721 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7722 				      NULL, NULL);
7723 		if (ret < 0) {
7724 			btrfs_abort_transaction(trans, tree_root, ret);
7725 			err = ret;
7726 			goto out_end_trans;
7727 		} else if (ret > 0) {
7728 			/* if we fail to delete the orphan item this time
7729 			 * around, it'll get picked up the next time.
7730 			 *
7731 			 * The most common failure here is just -ENOENT.
7732 			 */
7733 			btrfs_del_orphan_item(trans, tree_root,
7734 					      root->root_key.objectid);
7735 		}
7736 	}
7737 
7738 	if (root->in_radix) {
7739 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7740 	} else {
7741 		free_extent_buffer(root->node);
7742 		free_extent_buffer(root->commit_root);
7743 		btrfs_put_fs_root(root);
7744 	}
7745 	root_dropped = true;
7746 out_end_trans:
7747 	btrfs_end_transaction_throttle(trans, tree_root);
7748 out_free:
7749 	kfree(wc);
7750 	btrfs_free_path(path);
7751 out:
7752 	/*
7753 	 * So if we need to stop dropping the snapshot for whatever reason we
7754 	 * need to make sure to add it back to the dead root list so that we
7755 	 * keep trying to do the work later.  This also cleans up roots if we
7756 	 * don't have it in the radix (like when we recover after a power fail
7757 	 * or unmount) so we don't leak memory.
7758 	 */
7759 	if (!for_reloc && root_dropped == false)
7760 		btrfs_add_dead_root(root);
7761 	if (err && err != -EAGAIN)
7762 		btrfs_std_error(root->fs_info, err);
7763 	return err;
7764 }
7765 
7766 /*
7767  * drop subtree rooted at tree block 'node'.
7768  *
7769  * NOTE: this function will unlock and release tree block 'node'
7770  * only used by relocation code
7771  */
7772 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7773 			struct btrfs_root *root,
7774 			struct extent_buffer *node,
7775 			struct extent_buffer *parent)
7776 {
7777 	struct btrfs_path *path;
7778 	struct walk_control *wc;
7779 	int level;
7780 	int parent_level;
7781 	int ret = 0;
7782 	int wret;
7783 
7784 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7785 
7786 	path = btrfs_alloc_path();
7787 	if (!path)
7788 		return -ENOMEM;
7789 
7790 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7791 	if (!wc) {
7792 		btrfs_free_path(path);
7793 		return -ENOMEM;
7794 	}
7795 
7796 	btrfs_assert_tree_locked(parent);
7797 	parent_level = btrfs_header_level(parent);
7798 	extent_buffer_get(parent);
7799 	path->nodes[parent_level] = parent;
7800 	path->slots[parent_level] = btrfs_header_nritems(parent);
7801 
7802 	btrfs_assert_tree_locked(node);
7803 	level = btrfs_header_level(node);
7804 	path->nodes[level] = node;
7805 	path->slots[level] = 0;
7806 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7807 
7808 	wc->refs[parent_level] = 1;
7809 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7810 	wc->level = level;
7811 	wc->shared_level = -1;
7812 	wc->stage = DROP_REFERENCE;
7813 	wc->update_ref = 0;
7814 	wc->keep_locks = 1;
7815 	wc->for_reloc = 1;
7816 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7817 
7818 	while (1) {
7819 		wret = walk_down_tree(trans, root, path, wc);
7820 		if (wret < 0) {
7821 			ret = wret;
7822 			break;
7823 		}
7824 
7825 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7826 		if (wret < 0)
7827 			ret = wret;
7828 		if (wret != 0)
7829 			break;
7830 	}
7831 
7832 	kfree(wc);
7833 	btrfs_free_path(path);
7834 	return ret;
7835 }
7836 
7837 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7838 {
7839 	u64 num_devices;
7840 	u64 stripped;
7841 
7842 	/*
7843 	 * if restripe for this chunk_type is on pick target profile and
7844 	 * return, otherwise do the usual balance
7845 	 */
7846 	stripped = get_restripe_target(root->fs_info, flags);
7847 	if (stripped)
7848 		return extended_to_chunk(stripped);
7849 
7850 	/*
7851 	 * we add in the count of missing devices because we want
7852 	 * to make sure that any RAID levels on a degraded FS
7853 	 * continue to be honored.
7854 	 */
7855 	num_devices = root->fs_info->fs_devices->rw_devices +
7856 		root->fs_info->fs_devices->missing_devices;
7857 
7858 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7859 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7860 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7861 
7862 	if (num_devices == 1) {
7863 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7864 		stripped = flags & ~stripped;
7865 
7866 		/* turn raid0 into single device chunks */
7867 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7868 			return stripped;
7869 
7870 		/* turn mirroring into duplication */
7871 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7872 			     BTRFS_BLOCK_GROUP_RAID10))
7873 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7874 	} else {
7875 		/* they already had raid on here, just return */
7876 		if (flags & stripped)
7877 			return flags;
7878 
7879 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7880 		stripped = flags & ~stripped;
7881 
7882 		/* switch duplicated blocks with raid1 */
7883 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7884 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7885 
7886 		/* this is drive concat, leave it alone */
7887 	}
7888 
7889 	return flags;
7890 }
7891 
7892 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7893 {
7894 	struct btrfs_space_info *sinfo = cache->space_info;
7895 	u64 num_bytes;
7896 	u64 min_allocable_bytes;
7897 	int ret = -ENOSPC;
7898 
7899 
7900 	/*
7901 	 * We need some metadata space and system metadata space for
7902 	 * allocating chunks in some corner cases until we force to set
7903 	 * it to be readonly.
7904 	 */
7905 	if ((sinfo->flags &
7906 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7907 	    !force)
7908 		min_allocable_bytes = 1 * 1024 * 1024;
7909 	else
7910 		min_allocable_bytes = 0;
7911 
7912 	spin_lock(&sinfo->lock);
7913 	spin_lock(&cache->lock);
7914 
7915 	if (cache->ro) {
7916 		ret = 0;
7917 		goto out;
7918 	}
7919 
7920 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7921 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7922 
7923 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7924 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7925 	    min_allocable_bytes <= sinfo->total_bytes) {
7926 		sinfo->bytes_readonly += num_bytes;
7927 		cache->ro = 1;
7928 		ret = 0;
7929 	}
7930 out:
7931 	spin_unlock(&cache->lock);
7932 	spin_unlock(&sinfo->lock);
7933 	return ret;
7934 }
7935 
7936 int btrfs_set_block_group_ro(struct btrfs_root *root,
7937 			     struct btrfs_block_group_cache *cache)
7938 
7939 {
7940 	struct btrfs_trans_handle *trans;
7941 	u64 alloc_flags;
7942 	int ret;
7943 
7944 	BUG_ON(cache->ro);
7945 
7946 	trans = btrfs_join_transaction(root);
7947 	if (IS_ERR(trans))
7948 		return PTR_ERR(trans);
7949 
7950 	alloc_flags = update_block_group_flags(root, cache->flags);
7951 	if (alloc_flags != cache->flags) {
7952 		ret = do_chunk_alloc(trans, root, alloc_flags,
7953 				     CHUNK_ALLOC_FORCE);
7954 		if (ret < 0)
7955 			goto out;
7956 	}
7957 
7958 	ret = set_block_group_ro(cache, 0);
7959 	if (!ret)
7960 		goto out;
7961 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7962 	ret = do_chunk_alloc(trans, root, alloc_flags,
7963 			     CHUNK_ALLOC_FORCE);
7964 	if (ret < 0)
7965 		goto out;
7966 	ret = set_block_group_ro(cache, 0);
7967 out:
7968 	btrfs_end_transaction(trans, root);
7969 	return ret;
7970 }
7971 
7972 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7973 			    struct btrfs_root *root, u64 type)
7974 {
7975 	u64 alloc_flags = get_alloc_profile(root, type);
7976 	return do_chunk_alloc(trans, root, alloc_flags,
7977 			      CHUNK_ALLOC_FORCE);
7978 }
7979 
7980 /*
7981  * helper to account the unused space of all the readonly block group in the
7982  * list. takes mirrors into account.
7983  */
7984 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7985 {
7986 	struct btrfs_block_group_cache *block_group;
7987 	u64 free_bytes = 0;
7988 	int factor;
7989 
7990 	list_for_each_entry(block_group, groups_list, list) {
7991 		spin_lock(&block_group->lock);
7992 
7993 		if (!block_group->ro) {
7994 			spin_unlock(&block_group->lock);
7995 			continue;
7996 		}
7997 
7998 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 					  BTRFS_BLOCK_GROUP_RAID10 |
8000 					  BTRFS_BLOCK_GROUP_DUP))
8001 			factor = 2;
8002 		else
8003 			factor = 1;
8004 
8005 		free_bytes += (block_group->key.offset -
8006 			       btrfs_block_group_used(&block_group->item)) *
8007 			       factor;
8008 
8009 		spin_unlock(&block_group->lock);
8010 	}
8011 
8012 	return free_bytes;
8013 }
8014 
8015 /*
8016  * helper to account the unused space of all the readonly block group in the
8017  * space_info. takes mirrors into account.
8018  */
8019 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8020 {
8021 	int i;
8022 	u64 free_bytes = 0;
8023 
8024 	spin_lock(&sinfo->lock);
8025 
8026 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8027 		if (!list_empty(&sinfo->block_groups[i]))
8028 			free_bytes += __btrfs_get_ro_block_group_free_space(
8029 						&sinfo->block_groups[i]);
8030 
8031 	spin_unlock(&sinfo->lock);
8032 
8033 	return free_bytes;
8034 }
8035 
8036 void btrfs_set_block_group_rw(struct btrfs_root *root,
8037 			      struct btrfs_block_group_cache *cache)
8038 {
8039 	struct btrfs_space_info *sinfo = cache->space_info;
8040 	u64 num_bytes;
8041 
8042 	BUG_ON(!cache->ro);
8043 
8044 	spin_lock(&sinfo->lock);
8045 	spin_lock(&cache->lock);
8046 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8047 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8048 	sinfo->bytes_readonly -= num_bytes;
8049 	cache->ro = 0;
8050 	spin_unlock(&cache->lock);
8051 	spin_unlock(&sinfo->lock);
8052 }
8053 
8054 /*
8055  * checks to see if its even possible to relocate this block group.
8056  *
8057  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8058  * ok to go ahead and try.
8059  */
8060 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8061 {
8062 	struct btrfs_block_group_cache *block_group;
8063 	struct btrfs_space_info *space_info;
8064 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8065 	struct btrfs_device *device;
8066 	struct btrfs_trans_handle *trans;
8067 	u64 min_free;
8068 	u64 dev_min = 1;
8069 	u64 dev_nr = 0;
8070 	u64 target;
8071 	int index;
8072 	int full = 0;
8073 	int ret = 0;
8074 
8075 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8076 
8077 	/* odd, couldn't find the block group, leave it alone */
8078 	if (!block_group)
8079 		return -1;
8080 
8081 	min_free = btrfs_block_group_used(&block_group->item);
8082 
8083 	/* no bytes used, we're good */
8084 	if (!min_free)
8085 		goto out;
8086 
8087 	space_info = block_group->space_info;
8088 	spin_lock(&space_info->lock);
8089 
8090 	full = space_info->full;
8091 
8092 	/*
8093 	 * if this is the last block group we have in this space, we can't
8094 	 * relocate it unless we're able to allocate a new chunk below.
8095 	 *
8096 	 * Otherwise, we need to make sure we have room in the space to handle
8097 	 * all of the extents from this block group.  If we can, we're good
8098 	 */
8099 	if ((space_info->total_bytes != block_group->key.offset) &&
8100 	    (space_info->bytes_used + space_info->bytes_reserved +
8101 	     space_info->bytes_pinned + space_info->bytes_readonly +
8102 	     min_free < space_info->total_bytes)) {
8103 		spin_unlock(&space_info->lock);
8104 		goto out;
8105 	}
8106 	spin_unlock(&space_info->lock);
8107 
8108 	/*
8109 	 * ok we don't have enough space, but maybe we have free space on our
8110 	 * devices to allocate new chunks for relocation, so loop through our
8111 	 * alloc devices and guess if we have enough space.  if this block
8112 	 * group is going to be restriped, run checks against the target
8113 	 * profile instead of the current one.
8114 	 */
8115 	ret = -1;
8116 
8117 	/*
8118 	 * index:
8119 	 *      0: raid10
8120 	 *      1: raid1
8121 	 *      2: dup
8122 	 *      3: raid0
8123 	 *      4: single
8124 	 */
8125 	target = get_restripe_target(root->fs_info, block_group->flags);
8126 	if (target) {
8127 		index = __get_raid_index(extended_to_chunk(target));
8128 	} else {
8129 		/*
8130 		 * this is just a balance, so if we were marked as full
8131 		 * we know there is no space for a new chunk
8132 		 */
8133 		if (full)
8134 			goto out;
8135 
8136 		index = get_block_group_index(block_group);
8137 	}
8138 
8139 	if (index == BTRFS_RAID_RAID10) {
8140 		dev_min = 4;
8141 		/* Divide by 2 */
8142 		min_free >>= 1;
8143 	} else if (index == BTRFS_RAID_RAID1) {
8144 		dev_min = 2;
8145 	} else if (index == BTRFS_RAID_DUP) {
8146 		/* Multiply by 2 */
8147 		min_free <<= 1;
8148 	} else if (index == BTRFS_RAID_RAID0) {
8149 		dev_min = fs_devices->rw_devices;
8150 		do_div(min_free, dev_min);
8151 	}
8152 
8153 	/* We need to do this so that we can look at pending chunks */
8154 	trans = btrfs_join_transaction(root);
8155 	if (IS_ERR(trans)) {
8156 		ret = PTR_ERR(trans);
8157 		goto out;
8158 	}
8159 
8160 	mutex_lock(&root->fs_info->chunk_mutex);
8161 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8162 		u64 dev_offset;
8163 
8164 		/*
8165 		 * check to make sure we can actually find a chunk with enough
8166 		 * space to fit our block group in.
8167 		 */
8168 		if (device->total_bytes > device->bytes_used + min_free &&
8169 		    !device->is_tgtdev_for_dev_replace) {
8170 			ret = find_free_dev_extent(trans, device, min_free,
8171 						   &dev_offset, NULL);
8172 			if (!ret)
8173 				dev_nr++;
8174 
8175 			if (dev_nr >= dev_min)
8176 				break;
8177 
8178 			ret = -1;
8179 		}
8180 	}
8181 	mutex_unlock(&root->fs_info->chunk_mutex);
8182 	btrfs_end_transaction(trans, root);
8183 out:
8184 	btrfs_put_block_group(block_group);
8185 	return ret;
8186 }
8187 
8188 static int find_first_block_group(struct btrfs_root *root,
8189 		struct btrfs_path *path, struct btrfs_key *key)
8190 {
8191 	int ret = 0;
8192 	struct btrfs_key found_key;
8193 	struct extent_buffer *leaf;
8194 	int slot;
8195 
8196 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8197 	if (ret < 0)
8198 		goto out;
8199 
8200 	while (1) {
8201 		slot = path->slots[0];
8202 		leaf = path->nodes[0];
8203 		if (slot >= btrfs_header_nritems(leaf)) {
8204 			ret = btrfs_next_leaf(root, path);
8205 			if (ret == 0)
8206 				continue;
8207 			if (ret < 0)
8208 				goto out;
8209 			break;
8210 		}
8211 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8212 
8213 		if (found_key.objectid >= key->objectid &&
8214 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8215 			ret = 0;
8216 			goto out;
8217 		}
8218 		path->slots[0]++;
8219 	}
8220 out:
8221 	return ret;
8222 }
8223 
8224 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8225 {
8226 	struct btrfs_block_group_cache *block_group;
8227 	u64 last = 0;
8228 
8229 	while (1) {
8230 		struct inode *inode;
8231 
8232 		block_group = btrfs_lookup_first_block_group(info, last);
8233 		while (block_group) {
8234 			spin_lock(&block_group->lock);
8235 			if (block_group->iref)
8236 				break;
8237 			spin_unlock(&block_group->lock);
8238 			block_group = next_block_group(info->tree_root,
8239 						       block_group);
8240 		}
8241 		if (!block_group) {
8242 			if (last == 0)
8243 				break;
8244 			last = 0;
8245 			continue;
8246 		}
8247 
8248 		inode = block_group->inode;
8249 		block_group->iref = 0;
8250 		block_group->inode = NULL;
8251 		spin_unlock(&block_group->lock);
8252 		iput(inode);
8253 		last = block_group->key.objectid + block_group->key.offset;
8254 		btrfs_put_block_group(block_group);
8255 	}
8256 }
8257 
8258 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8259 {
8260 	struct btrfs_block_group_cache *block_group;
8261 	struct btrfs_space_info *space_info;
8262 	struct btrfs_caching_control *caching_ctl;
8263 	struct rb_node *n;
8264 
8265 	down_write(&info->commit_root_sem);
8266 	while (!list_empty(&info->caching_block_groups)) {
8267 		caching_ctl = list_entry(info->caching_block_groups.next,
8268 					 struct btrfs_caching_control, list);
8269 		list_del(&caching_ctl->list);
8270 		put_caching_control(caching_ctl);
8271 	}
8272 	up_write(&info->commit_root_sem);
8273 
8274 	spin_lock(&info->block_group_cache_lock);
8275 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8276 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8277 				       cache_node);
8278 		rb_erase(&block_group->cache_node,
8279 			 &info->block_group_cache_tree);
8280 		spin_unlock(&info->block_group_cache_lock);
8281 
8282 		down_write(&block_group->space_info->groups_sem);
8283 		list_del(&block_group->list);
8284 		up_write(&block_group->space_info->groups_sem);
8285 
8286 		if (block_group->cached == BTRFS_CACHE_STARTED)
8287 			wait_block_group_cache_done(block_group);
8288 
8289 		/*
8290 		 * We haven't cached this block group, which means we could
8291 		 * possibly have excluded extents on this block group.
8292 		 */
8293 		if (block_group->cached == BTRFS_CACHE_NO ||
8294 		    block_group->cached == BTRFS_CACHE_ERROR)
8295 			free_excluded_extents(info->extent_root, block_group);
8296 
8297 		btrfs_remove_free_space_cache(block_group);
8298 		btrfs_put_block_group(block_group);
8299 
8300 		spin_lock(&info->block_group_cache_lock);
8301 	}
8302 	spin_unlock(&info->block_group_cache_lock);
8303 
8304 	/* now that all the block groups are freed, go through and
8305 	 * free all the space_info structs.  This is only called during
8306 	 * the final stages of unmount, and so we know nobody is
8307 	 * using them.  We call synchronize_rcu() once before we start,
8308 	 * just to be on the safe side.
8309 	 */
8310 	synchronize_rcu();
8311 
8312 	release_global_block_rsv(info);
8313 
8314 	while (!list_empty(&info->space_info)) {
8315 		int i;
8316 
8317 		space_info = list_entry(info->space_info.next,
8318 					struct btrfs_space_info,
8319 					list);
8320 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8321 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8322 			    space_info->bytes_reserved > 0 ||
8323 			    space_info->bytes_may_use > 0)) {
8324 				dump_space_info(space_info, 0, 0);
8325 			}
8326 		}
8327 		list_del(&space_info->list);
8328 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8329 			struct kobject *kobj;
8330 			kobj = &space_info->block_group_kobjs[i];
8331 			if (kobj->parent) {
8332 				kobject_del(kobj);
8333 				kobject_put(kobj);
8334 			}
8335 		}
8336 		kobject_del(&space_info->kobj);
8337 		kobject_put(&space_info->kobj);
8338 	}
8339 	return 0;
8340 }
8341 
8342 static void __link_block_group(struct btrfs_space_info *space_info,
8343 			       struct btrfs_block_group_cache *cache)
8344 {
8345 	int index = get_block_group_index(cache);
8346 	bool first = false;
8347 
8348 	down_write(&space_info->groups_sem);
8349 	if (list_empty(&space_info->block_groups[index]))
8350 		first = true;
8351 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8352 	up_write(&space_info->groups_sem);
8353 
8354 	if (first) {
8355 		struct kobject *kobj = &space_info->block_group_kobjs[index];
8356 		int ret;
8357 
8358 		kobject_get(&space_info->kobj); /* put in release */
8359 		ret = kobject_add(kobj, &space_info->kobj, "%s",
8360 				  get_raid_name(index));
8361 		if (ret) {
8362 			pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8363 			kobject_put(&space_info->kobj);
8364 		}
8365 	}
8366 }
8367 
8368 static struct btrfs_block_group_cache *
8369 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8370 {
8371 	struct btrfs_block_group_cache *cache;
8372 
8373 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8374 	if (!cache)
8375 		return NULL;
8376 
8377 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8378 					GFP_NOFS);
8379 	if (!cache->free_space_ctl) {
8380 		kfree(cache);
8381 		return NULL;
8382 	}
8383 
8384 	cache->key.objectid = start;
8385 	cache->key.offset = size;
8386 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8387 
8388 	cache->sectorsize = root->sectorsize;
8389 	cache->fs_info = root->fs_info;
8390 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8391 					       &root->fs_info->mapping_tree,
8392 					       start);
8393 	atomic_set(&cache->count, 1);
8394 	spin_lock_init(&cache->lock);
8395 	INIT_LIST_HEAD(&cache->list);
8396 	INIT_LIST_HEAD(&cache->cluster_list);
8397 	INIT_LIST_HEAD(&cache->new_bg_list);
8398 	btrfs_init_free_space_ctl(cache);
8399 
8400 	return cache;
8401 }
8402 
8403 int btrfs_read_block_groups(struct btrfs_root *root)
8404 {
8405 	struct btrfs_path *path;
8406 	int ret;
8407 	struct btrfs_block_group_cache *cache;
8408 	struct btrfs_fs_info *info = root->fs_info;
8409 	struct btrfs_space_info *space_info;
8410 	struct btrfs_key key;
8411 	struct btrfs_key found_key;
8412 	struct extent_buffer *leaf;
8413 	int need_clear = 0;
8414 	u64 cache_gen;
8415 
8416 	root = info->extent_root;
8417 	key.objectid = 0;
8418 	key.offset = 0;
8419 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8420 	path = btrfs_alloc_path();
8421 	if (!path)
8422 		return -ENOMEM;
8423 	path->reada = 1;
8424 
8425 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8426 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8427 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8428 		need_clear = 1;
8429 	if (btrfs_test_opt(root, CLEAR_CACHE))
8430 		need_clear = 1;
8431 
8432 	while (1) {
8433 		ret = find_first_block_group(root, path, &key);
8434 		if (ret > 0)
8435 			break;
8436 		if (ret != 0)
8437 			goto error;
8438 
8439 		leaf = path->nodes[0];
8440 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8441 
8442 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8443 						       found_key.offset);
8444 		if (!cache) {
8445 			ret = -ENOMEM;
8446 			goto error;
8447 		}
8448 
8449 		if (need_clear) {
8450 			/*
8451 			 * When we mount with old space cache, we need to
8452 			 * set BTRFS_DC_CLEAR and set dirty flag.
8453 			 *
8454 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8455 			 *    truncate the old free space cache inode and
8456 			 *    setup a new one.
8457 			 * b) Setting 'dirty flag' makes sure that we flush
8458 			 *    the new space cache info onto disk.
8459 			 */
8460 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8461 			if (btrfs_test_opt(root, SPACE_CACHE))
8462 				cache->dirty = 1;
8463 		}
8464 
8465 		read_extent_buffer(leaf, &cache->item,
8466 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8467 				   sizeof(cache->item));
8468 		cache->flags = btrfs_block_group_flags(&cache->item);
8469 
8470 		key.objectid = found_key.objectid + found_key.offset;
8471 		btrfs_release_path(path);
8472 
8473 		/*
8474 		 * We need to exclude the super stripes now so that the space
8475 		 * info has super bytes accounted for, otherwise we'll think
8476 		 * we have more space than we actually do.
8477 		 */
8478 		ret = exclude_super_stripes(root, cache);
8479 		if (ret) {
8480 			/*
8481 			 * We may have excluded something, so call this just in
8482 			 * case.
8483 			 */
8484 			free_excluded_extents(root, cache);
8485 			btrfs_put_block_group(cache);
8486 			goto error;
8487 		}
8488 
8489 		/*
8490 		 * check for two cases, either we are full, and therefore
8491 		 * don't need to bother with the caching work since we won't
8492 		 * find any space, or we are empty, and we can just add all
8493 		 * the space in and be done with it.  This saves us _alot_ of
8494 		 * time, particularly in the full case.
8495 		 */
8496 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8497 			cache->last_byte_to_unpin = (u64)-1;
8498 			cache->cached = BTRFS_CACHE_FINISHED;
8499 			free_excluded_extents(root, cache);
8500 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8501 			cache->last_byte_to_unpin = (u64)-1;
8502 			cache->cached = BTRFS_CACHE_FINISHED;
8503 			add_new_free_space(cache, root->fs_info,
8504 					   found_key.objectid,
8505 					   found_key.objectid +
8506 					   found_key.offset);
8507 			free_excluded_extents(root, cache);
8508 		}
8509 
8510 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8511 		if (ret) {
8512 			btrfs_remove_free_space_cache(cache);
8513 			btrfs_put_block_group(cache);
8514 			goto error;
8515 		}
8516 
8517 		ret = update_space_info(info, cache->flags, found_key.offset,
8518 					btrfs_block_group_used(&cache->item),
8519 					&space_info);
8520 		if (ret) {
8521 			btrfs_remove_free_space_cache(cache);
8522 			spin_lock(&info->block_group_cache_lock);
8523 			rb_erase(&cache->cache_node,
8524 				 &info->block_group_cache_tree);
8525 			spin_unlock(&info->block_group_cache_lock);
8526 			btrfs_put_block_group(cache);
8527 			goto error;
8528 		}
8529 
8530 		cache->space_info = space_info;
8531 		spin_lock(&cache->space_info->lock);
8532 		cache->space_info->bytes_readonly += cache->bytes_super;
8533 		spin_unlock(&cache->space_info->lock);
8534 
8535 		__link_block_group(space_info, cache);
8536 
8537 		set_avail_alloc_bits(root->fs_info, cache->flags);
8538 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8539 			set_block_group_ro(cache, 1);
8540 	}
8541 
8542 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8543 		if (!(get_alloc_profile(root, space_info->flags) &
8544 		      (BTRFS_BLOCK_GROUP_RAID10 |
8545 		       BTRFS_BLOCK_GROUP_RAID1 |
8546 		       BTRFS_BLOCK_GROUP_RAID5 |
8547 		       BTRFS_BLOCK_GROUP_RAID6 |
8548 		       BTRFS_BLOCK_GROUP_DUP)))
8549 			continue;
8550 		/*
8551 		 * avoid allocating from un-mirrored block group if there are
8552 		 * mirrored block groups.
8553 		 */
8554 		list_for_each_entry(cache,
8555 				&space_info->block_groups[BTRFS_RAID_RAID0],
8556 				list)
8557 			set_block_group_ro(cache, 1);
8558 		list_for_each_entry(cache,
8559 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8560 				list)
8561 			set_block_group_ro(cache, 1);
8562 	}
8563 
8564 	init_global_block_rsv(info);
8565 	ret = 0;
8566 error:
8567 	btrfs_free_path(path);
8568 	return ret;
8569 }
8570 
8571 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8572 				       struct btrfs_root *root)
8573 {
8574 	struct btrfs_block_group_cache *block_group, *tmp;
8575 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8576 	struct btrfs_block_group_item item;
8577 	struct btrfs_key key;
8578 	int ret = 0;
8579 
8580 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8581 				 new_bg_list) {
8582 		list_del_init(&block_group->new_bg_list);
8583 
8584 		if (ret)
8585 			continue;
8586 
8587 		spin_lock(&block_group->lock);
8588 		memcpy(&item, &block_group->item, sizeof(item));
8589 		memcpy(&key, &block_group->key, sizeof(key));
8590 		spin_unlock(&block_group->lock);
8591 
8592 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8593 					sizeof(item));
8594 		if (ret)
8595 			btrfs_abort_transaction(trans, extent_root, ret);
8596 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8597 					       key.objectid, key.offset);
8598 		if (ret)
8599 			btrfs_abort_transaction(trans, extent_root, ret);
8600 	}
8601 }
8602 
8603 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8604 			   struct btrfs_root *root, u64 bytes_used,
8605 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8606 			   u64 size)
8607 {
8608 	int ret;
8609 	struct btrfs_root *extent_root;
8610 	struct btrfs_block_group_cache *cache;
8611 
8612 	extent_root = root->fs_info->extent_root;
8613 
8614 	root->fs_info->last_trans_log_full_commit = trans->transid;
8615 
8616 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8617 	if (!cache)
8618 		return -ENOMEM;
8619 
8620 	btrfs_set_block_group_used(&cache->item, bytes_used);
8621 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8622 	btrfs_set_block_group_flags(&cache->item, type);
8623 
8624 	cache->flags = type;
8625 	cache->last_byte_to_unpin = (u64)-1;
8626 	cache->cached = BTRFS_CACHE_FINISHED;
8627 	ret = exclude_super_stripes(root, cache);
8628 	if (ret) {
8629 		/*
8630 		 * We may have excluded something, so call this just in
8631 		 * case.
8632 		 */
8633 		free_excluded_extents(root, cache);
8634 		btrfs_put_block_group(cache);
8635 		return ret;
8636 	}
8637 
8638 	add_new_free_space(cache, root->fs_info, chunk_offset,
8639 			   chunk_offset + size);
8640 
8641 	free_excluded_extents(root, cache);
8642 
8643 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8644 	if (ret) {
8645 		btrfs_remove_free_space_cache(cache);
8646 		btrfs_put_block_group(cache);
8647 		return ret;
8648 	}
8649 
8650 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8651 				&cache->space_info);
8652 	if (ret) {
8653 		btrfs_remove_free_space_cache(cache);
8654 		spin_lock(&root->fs_info->block_group_cache_lock);
8655 		rb_erase(&cache->cache_node,
8656 			 &root->fs_info->block_group_cache_tree);
8657 		spin_unlock(&root->fs_info->block_group_cache_lock);
8658 		btrfs_put_block_group(cache);
8659 		return ret;
8660 	}
8661 	update_global_block_rsv(root->fs_info);
8662 
8663 	spin_lock(&cache->space_info->lock);
8664 	cache->space_info->bytes_readonly += cache->bytes_super;
8665 	spin_unlock(&cache->space_info->lock);
8666 
8667 	__link_block_group(cache->space_info, cache);
8668 
8669 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8670 
8671 	set_avail_alloc_bits(extent_root->fs_info, type);
8672 
8673 	return 0;
8674 }
8675 
8676 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8677 {
8678 	u64 extra_flags = chunk_to_extended(flags) &
8679 				BTRFS_EXTENDED_PROFILE_MASK;
8680 
8681 	write_seqlock(&fs_info->profiles_lock);
8682 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8683 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8684 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8685 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8686 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8687 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8688 	write_sequnlock(&fs_info->profiles_lock);
8689 }
8690 
8691 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8692 			     struct btrfs_root *root, u64 group_start)
8693 {
8694 	struct btrfs_path *path;
8695 	struct btrfs_block_group_cache *block_group;
8696 	struct btrfs_free_cluster *cluster;
8697 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8698 	struct btrfs_key key;
8699 	struct inode *inode;
8700 	int ret;
8701 	int index;
8702 	int factor;
8703 
8704 	root = root->fs_info->extent_root;
8705 
8706 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8707 	BUG_ON(!block_group);
8708 	BUG_ON(!block_group->ro);
8709 
8710 	/*
8711 	 * Free the reserved super bytes from this block group before
8712 	 * remove it.
8713 	 */
8714 	free_excluded_extents(root, block_group);
8715 
8716 	memcpy(&key, &block_group->key, sizeof(key));
8717 	index = get_block_group_index(block_group);
8718 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8719 				  BTRFS_BLOCK_GROUP_RAID1 |
8720 				  BTRFS_BLOCK_GROUP_RAID10))
8721 		factor = 2;
8722 	else
8723 		factor = 1;
8724 
8725 	/* make sure this block group isn't part of an allocation cluster */
8726 	cluster = &root->fs_info->data_alloc_cluster;
8727 	spin_lock(&cluster->refill_lock);
8728 	btrfs_return_cluster_to_free_space(block_group, cluster);
8729 	spin_unlock(&cluster->refill_lock);
8730 
8731 	/*
8732 	 * make sure this block group isn't part of a metadata
8733 	 * allocation cluster
8734 	 */
8735 	cluster = &root->fs_info->meta_alloc_cluster;
8736 	spin_lock(&cluster->refill_lock);
8737 	btrfs_return_cluster_to_free_space(block_group, cluster);
8738 	spin_unlock(&cluster->refill_lock);
8739 
8740 	path = btrfs_alloc_path();
8741 	if (!path) {
8742 		ret = -ENOMEM;
8743 		goto out;
8744 	}
8745 
8746 	inode = lookup_free_space_inode(tree_root, block_group, path);
8747 	if (!IS_ERR(inode)) {
8748 		ret = btrfs_orphan_add(trans, inode);
8749 		if (ret) {
8750 			btrfs_add_delayed_iput(inode);
8751 			goto out;
8752 		}
8753 		clear_nlink(inode);
8754 		/* One for the block groups ref */
8755 		spin_lock(&block_group->lock);
8756 		if (block_group->iref) {
8757 			block_group->iref = 0;
8758 			block_group->inode = NULL;
8759 			spin_unlock(&block_group->lock);
8760 			iput(inode);
8761 		} else {
8762 			spin_unlock(&block_group->lock);
8763 		}
8764 		/* One for our lookup ref */
8765 		btrfs_add_delayed_iput(inode);
8766 	}
8767 
8768 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8769 	key.offset = block_group->key.objectid;
8770 	key.type = 0;
8771 
8772 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8773 	if (ret < 0)
8774 		goto out;
8775 	if (ret > 0)
8776 		btrfs_release_path(path);
8777 	if (ret == 0) {
8778 		ret = btrfs_del_item(trans, tree_root, path);
8779 		if (ret)
8780 			goto out;
8781 		btrfs_release_path(path);
8782 	}
8783 
8784 	spin_lock(&root->fs_info->block_group_cache_lock);
8785 	rb_erase(&block_group->cache_node,
8786 		 &root->fs_info->block_group_cache_tree);
8787 
8788 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8789 		root->fs_info->first_logical_byte = (u64)-1;
8790 	spin_unlock(&root->fs_info->block_group_cache_lock);
8791 
8792 	down_write(&block_group->space_info->groups_sem);
8793 	/*
8794 	 * we must use list_del_init so people can check to see if they
8795 	 * are still on the list after taking the semaphore
8796 	 */
8797 	list_del_init(&block_group->list);
8798 	if (list_empty(&block_group->space_info->block_groups[index])) {
8799 		kobject_del(&block_group->space_info->block_group_kobjs[index]);
8800 		kobject_put(&block_group->space_info->block_group_kobjs[index]);
8801 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8802 	}
8803 	up_write(&block_group->space_info->groups_sem);
8804 
8805 	if (block_group->cached == BTRFS_CACHE_STARTED)
8806 		wait_block_group_cache_done(block_group);
8807 
8808 	btrfs_remove_free_space_cache(block_group);
8809 
8810 	spin_lock(&block_group->space_info->lock);
8811 	block_group->space_info->total_bytes -= block_group->key.offset;
8812 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8813 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8814 	spin_unlock(&block_group->space_info->lock);
8815 
8816 	memcpy(&key, &block_group->key, sizeof(key));
8817 
8818 	btrfs_clear_space_info_full(root->fs_info);
8819 
8820 	btrfs_put_block_group(block_group);
8821 	btrfs_put_block_group(block_group);
8822 
8823 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8824 	if (ret > 0)
8825 		ret = -EIO;
8826 	if (ret < 0)
8827 		goto out;
8828 
8829 	ret = btrfs_del_item(trans, root, path);
8830 out:
8831 	btrfs_free_path(path);
8832 	return ret;
8833 }
8834 
8835 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8836 {
8837 	struct btrfs_space_info *space_info;
8838 	struct btrfs_super_block *disk_super;
8839 	u64 features;
8840 	u64 flags;
8841 	int mixed = 0;
8842 	int ret;
8843 
8844 	disk_super = fs_info->super_copy;
8845 	if (!btrfs_super_root(disk_super))
8846 		return 1;
8847 
8848 	features = btrfs_super_incompat_flags(disk_super);
8849 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8850 		mixed = 1;
8851 
8852 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8853 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8854 	if (ret)
8855 		goto out;
8856 
8857 	if (mixed) {
8858 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8859 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8860 	} else {
8861 		flags = BTRFS_BLOCK_GROUP_METADATA;
8862 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 		if (ret)
8864 			goto out;
8865 
8866 		flags = BTRFS_BLOCK_GROUP_DATA;
8867 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8868 	}
8869 out:
8870 	return ret;
8871 }
8872 
8873 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8874 {
8875 	return unpin_extent_range(root, start, end);
8876 }
8877 
8878 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8879 			       u64 num_bytes, u64 *actual_bytes)
8880 {
8881 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8882 }
8883 
8884 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8885 {
8886 	struct btrfs_fs_info *fs_info = root->fs_info;
8887 	struct btrfs_block_group_cache *cache = NULL;
8888 	u64 group_trimmed;
8889 	u64 start;
8890 	u64 end;
8891 	u64 trimmed = 0;
8892 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8893 	int ret = 0;
8894 
8895 	/*
8896 	 * try to trim all FS space, our block group may start from non-zero.
8897 	 */
8898 	if (range->len == total_bytes)
8899 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8900 	else
8901 		cache = btrfs_lookup_block_group(fs_info, range->start);
8902 
8903 	while (cache) {
8904 		if (cache->key.objectid >= (range->start + range->len)) {
8905 			btrfs_put_block_group(cache);
8906 			break;
8907 		}
8908 
8909 		start = max(range->start, cache->key.objectid);
8910 		end = min(range->start + range->len,
8911 				cache->key.objectid + cache->key.offset);
8912 
8913 		if (end - start >= range->minlen) {
8914 			if (!block_group_cache_done(cache)) {
8915 				ret = cache_block_group(cache, 0);
8916 				if (ret) {
8917 					btrfs_put_block_group(cache);
8918 					break;
8919 				}
8920 				ret = wait_block_group_cache_done(cache);
8921 				if (ret) {
8922 					btrfs_put_block_group(cache);
8923 					break;
8924 				}
8925 			}
8926 			ret = btrfs_trim_block_group(cache,
8927 						     &group_trimmed,
8928 						     start,
8929 						     end,
8930 						     range->minlen);
8931 
8932 			trimmed += group_trimmed;
8933 			if (ret) {
8934 				btrfs_put_block_group(cache);
8935 				break;
8936 			}
8937 		}
8938 
8939 		cache = next_block_group(fs_info->tree_root, cache);
8940 	}
8941 
8942 	range->len = trimmed;
8943 	return ret;
8944 }
8945 
8946 /*
8947  * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
8948  * they are used to prevent the some tasks writing data into the page cache
8949  * by nocow before the subvolume is snapshoted, but flush the data into
8950  * the disk after the snapshot creation.
8951  */
8952 void btrfs_end_nocow_write(struct btrfs_root *root)
8953 {
8954 	percpu_counter_dec(&root->subv_writers->counter);
8955 	/*
8956 	 * Make sure counter is updated before we wake up
8957 	 * waiters.
8958 	 */
8959 	smp_mb();
8960 	if (waitqueue_active(&root->subv_writers->wait))
8961 		wake_up(&root->subv_writers->wait);
8962 }
8963 
8964 int btrfs_start_nocow_write(struct btrfs_root *root)
8965 {
8966 	if (unlikely(atomic_read(&root->will_be_snapshoted)))
8967 		return 0;
8968 
8969 	percpu_counter_inc(&root->subv_writers->counter);
8970 	/*
8971 	 * Make sure counter is updated before we check for snapshot creation.
8972 	 */
8973 	smp_mb();
8974 	if (unlikely(atomic_read(&root->will_be_snapshoted))) {
8975 		btrfs_end_nocow_write(root);
8976 		return 0;
8977 	}
8978 	return 1;
8979 }
8980