1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "math.h" 38 39 #undef SCRAMBLE_DELAYED_REFS 40 41 /* 42 * control flags for do_chunk_alloc's force field 43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 44 * if we really need one. 45 * 46 * CHUNK_ALLOC_LIMITED means to only try and allocate one 47 * if we have very few chunks already allocated. This is 48 * used as part of the clustering code to help make sure 49 * we have a good pool of storage to cluster in, without 50 * filling the FS with empty chunks 51 * 52 * CHUNK_ALLOC_FORCE means it must try to allocate one 53 * 54 */ 55 enum { 56 CHUNK_ALLOC_NO_FORCE = 0, 57 CHUNK_ALLOC_LIMITED = 1, 58 CHUNK_ALLOC_FORCE = 2, 59 }; 60 61 /* 62 * Control how reservations are dealt with. 63 * 64 * RESERVE_FREE - freeing a reservation. 65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 66 * ENOSPC accounting 67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 68 * bytes_may_use as the ENOSPC accounting is done elsewhere 69 */ 70 enum { 71 RESERVE_FREE = 0, 72 RESERVE_ALLOC = 1, 73 RESERVE_ALLOC_NO_ACCOUNT = 2, 74 }; 75 76 static int update_block_group(struct btrfs_root *root, 77 u64 bytenr, u64 num_bytes, int alloc); 78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, 80 u64 bytenr, u64 num_bytes, u64 parent, 81 u64 root_objectid, u64 owner_objectid, 82 u64 owner_offset, int refs_to_drop, 83 struct btrfs_delayed_extent_op *extra_op); 84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 85 struct extent_buffer *leaf, 86 struct btrfs_extent_item *ei); 87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 88 struct btrfs_root *root, 89 u64 parent, u64 root_objectid, 90 u64 flags, u64 owner, u64 offset, 91 struct btrfs_key *ins, int ref_mod); 92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 93 struct btrfs_root *root, 94 u64 parent, u64 root_objectid, 95 u64 flags, struct btrfs_disk_key *key, 96 int level, struct btrfs_key *ins); 97 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 98 struct btrfs_root *extent_root, u64 flags, 99 int force); 100 static int find_next_key(struct btrfs_path *path, int level, 101 struct btrfs_key *key); 102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 103 int dump_block_groups); 104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 105 u64 num_bytes, int reserve); 106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 107 u64 num_bytes); 108 109 static noinline int 110 block_group_cache_done(struct btrfs_block_group_cache *cache) 111 { 112 smp_mb(); 113 return cache->cached == BTRFS_CACHE_FINISHED; 114 } 115 116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 117 { 118 return (cache->flags & bits) == bits; 119 } 120 121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 122 { 123 atomic_inc(&cache->count); 124 } 125 126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 127 { 128 if (atomic_dec_and_test(&cache->count)) { 129 WARN_ON(cache->pinned > 0); 130 WARN_ON(cache->reserved > 0); 131 kfree(cache->free_space_ctl); 132 kfree(cache); 133 } 134 } 135 136 /* 137 * this adds the block group to the fs_info rb tree for the block group 138 * cache 139 */ 140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 141 struct btrfs_block_group_cache *block_group) 142 { 143 struct rb_node **p; 144 struct rb_node *parent = NULL; 145 struct btrfs_block_group_cache *cache; 146 147 spin_lock(&info->block_group_cache_lock); 148 p = &info->block_group_cache_tree.rb_node; 149 150 while (*p) { 151 parent = *p; 152 cache = rb_entry(parent, struct btrfs_block_group_cache, 153 cache_node); 154 if (block_group->key.objectid < cache->key.objectid) { 155 p = &(*p)->rb_left; 156 } else if (block_group->key.objectid > cache->key.objectid) { 157 p = &(*p)->rb_right; 158 } else { 159 spin_unlock(&info->block_group_cache_lock); 160 return -EEXIST; 161 } 162 } 163 164 rb_link_node(&block_group->cache_node, parent, p); 165 rb_insert_color(&block_group->cache_node, 166 &info->block_group_cache_tree); 167 168 if (info->first_logical_byte > block_group->key.objectid) 169 info->first_logical_byte = block_group->key.objectid; 170 171 spin_unlock(&info->block_group_cache_lock); 172 173 return 0; 174 } 175 176 /* 177 * This will return the block group at or after bytenr if contains is 0, else 178 * it will return the block group that contains the bytenr 179 */ 180 static struct btrfs_block_group_cache * 181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 182 int contains) 183 { 184 struct btrfs_block_group_cache *cache, *ret = NULL; 185 struct rb_node *n; 186 u64 end, start; 187 188 spin_lock(&info->block_group_cache_lock); 189 n = info->block_group_cache_tree.rb_node; 190 191 while (n) { 192 cache = rb_entry(n, struct btrfs_block_group_cache, 193 cache_node); 194 end = cache->key.objectid + cache->key.offset - 1; 195 start = cache->key.objectid; 196 197 if (bytenr < start) { 198 if (!contains && (!ret || start < ret->key.objectid)) 199 ret = cache; 200 n = n->rb_left; 201 } else if (bytenr > start) { 202 if (contains && bytenr <= end) { 203 ret = cache; 204 break; 205 } 206 n = n->rb_right; 207 } else { 208 ret = cache; 209 break; 210 } 211 } 212 if (ret) { 213 btrfs_get_block_group(ret); 214 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 215 info->first_logical_byte = ret->key.objectid; 216 } 217 spin_unlock(&info->block_group_cache_lock); 218 219 return ret; 220 } 221 222 static int add_excluded_extent(struct btrfs_root *root, 223 u64 start, u64 num_bytes) 224 { 225 u64 end = start + num_bytes - 1; 226 set_extent_bits(&root->fs_info->freed_extents[0], 227 start, end, EXTENT_UPTODATE, GFP_NOFS); 228 set_extent_bits(&root->fs_info->freed_extents[1], 229 start, end, EXTENT_UPTODATE, GFP_NOFS); 230 return 0; 231 } 232 233 static void free_excluded_extents(struct btrfs_root *root, 234 struct btrfs_block_group_cache *cache) 235 { 236 u64 start, end; 237 238 start = cache->key.objectid; 239 end = start + cache->key.offset - 1; 240 241 clear_extent_bits(&root->fs_info->freed_extents[0], 242 start, end, EXTENT_UPTODATE, GFP_NOFS); 243 clear_extent_bits(&root->fs_info->freed_extents[1], 244 start, end, EXTENT_UPTODATE, GFP_NOFS); 245 } 246 247 static int exclude_super_stripes(struct btrfs_root *root, 248 struct btrfs_block_group_cache *cache) 249 { 250 u64 bytenr; 251 u64 *logical; 252 int stripe_len; 253 int i, nr, ret; 254 255 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 256 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 257 cache->bytes_super += stripe_len; 258 ret = add_excluded_extent(root, cache->key.objectid, 259 stripe_len); 260 BUG_ON(ret); /* -ENOMEM */ 261 } 262 263 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 264 bytenr = btrfs_sb_offset(i); 265 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 266 cache->key.objectid, bytenr, 267 0, &logical, &nr, &stripe_len); 268 BUG_ON(ret); /* -ENOMEM */ 269 270 while (nr--) { 271 cache->bytes_super += stripe_len; 272 ret = add_excluded_extent(root, logical[nr], 273 stripe_len); 274 BUG_ON(ret); /* -ENOMEM */ 275 } 276 277 kfree(logical); 278 } 279 return 0; 280 } 281 282 static struct btrfs_caching_control * 283 get_caching_control(struct btrfs_block_group_cache *cache) 284 { 285 struct btrfs_caching_control *ctl; 286 287 spin_lock(&cache->lock); 288 if (cache->cached != BTRFS_CACHE_STARTED) { 289 spin_unlock(&cache->lock); 290 return NULL; 291 } 292 293 /* We're loading it the fast way, so we don't have a caching_ctl. */ 294 if (!cache->caching_ctl) { 295 spin_unlock(&cache->lock); 296 return NULL; 297 } 298 299 ctl = cache->caching_ctl; 300 atomic_inc(&ctl->count); 301 spin_unlock(&cache->lock); 302 return ctl; 303 } 304 305 static void put_caching_control(struct btrfs_caching_control *ctl) 306 { 307 if (atomic_dec_and_test(&ctl->count)) 308 kfree(ctl); 309 } 310 311 /* 312 * this is only called by cache_block_group, since we could have freed extents 313 * we need to check the pinned_extents for any extents that can't be used yet 314 * since their free space will be released as soon as the transaction commits. 315 */ 316 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 317 struct btrfs_fs_info *info, u64 start, u64 end) 318 { 319 u64 extent_start, extent_end, size, total_added = 0; 320 int ret; 321 322 while (start < end) { 323 ret = find_first_extent_bit(info->pinned_extents, start, 324 &extent_start, &extent_end, 325 EXTENT_DIRTY | EXTENT_UPTODATE, 326 NULL); 327 if (ret) 328 break; 329 330 if (extent_start <= start) { 331 start = extent_end + 1; 332 } else if (extent_start > start && extent_start < end) { 333 size = extent_start - start; 334 total_added += size; 335 ret = btrfs_add_free_space(block_group, start, 336 size); 337 BUG_ON(ret); /* -ENOMEM or logic error */ 338 start = extent_end + 1; 339 } else { 340 break; 341 } 342 } 343 344 if (start < end) { 345 size = end - start; 346 total_added += size; 347 ret = btrfs_add_free_space(block_group, start, size); 348 BUG_ON(ret); /* -ENOMEM or logic error */ 349 } 350 351 return total_added; 352 } 353 354 static noinline void caching_thread(struct btrfs_work *work) 355 { 356 struct btrfs_block_group_cache *block_group; 357 struct btrfs_fs_info *fs_info; 358 struct btrfs_caching_control *caching_ctl; 359 struct btrfs_root *extent_root; 360 struct btrfs_path *path; 361 struct extent_buffer *leaf; 362 struct btrfs_key key; 363 u64 total_found = 0; 364 u64 last = 0; 365 u32 nritems; 366 int ret = 0; 367 368 caching_ctl = container_of(work, struct btrfs_caching_control, work); 369 block_group = caching_ctl->block_group; 370 fs_info = block_group->fs_info; 371 extent_root = fs_info->extent_root; 372 373 path = btrfs_alloc_path(); 374 if (!path) 375 goto out; 376 377 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 378 379 /* 380 * We don't want to deadlock with somebody trying to allocate a new 381 * extent for the extent root while also trying to search the extent 382 * root to add free space. So we skip locking and search the commit 383 * root, since its read-only 384 */ 385 path->skip_locking = 1; 386 path->search_commit_root = 1; 387 path->reada = 1; 388 389 key.objectid = last; 390 key.offset = 0; 391 key.type = BTRFS_EXTENT_ITEM_KEY; 392 again: 393 mutex_lock(&caching_ctl->mutex); 394 /* need to make sure the commit_root doesn't disappear */ 395 down_read(&fs_info->extent_commit_sem); 396 397 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 398 if (ret < 0) 399 goto err; 400 401 leaf = path->nodes[0]; 402 nritems = btrfs_header_nritems(leaf); 403 404 while (1) { 405 if (btrfs_fs_closing(fs_info) > 1) { 406 last = (u64)-1; 407 break; 408 } 409 410 if (path->slots[0] < nritems) { 411 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 412 } else { 413 ret = find_next_key(path, 0, &key); 414 if (ret) 415 break; 416 417 if (need_resched() || 418 btrfs_next_leaf(extent_root, path)) { 419 caching_ctl->progress = last; 420 btrfs_release_path(path); 421 up_read(&fs_info->extent_commit_sem); 422 mutex_unlock(&caching_ctl->mutex); 423 cond_resched(); 424 goto again; 425 } 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 continue; 429 } 430 431 if (key.objectid < block_group->key.objectid) { 432 path->slots[0]++; 433 continue; 434 } 435 436 if (key.objectid >= block_group->key.objectid + 437 block_group->key.offset) 438 break; 439 440 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 441 total_found += add_new_free_space(block_group, 442 fs_info, last, 443 key.objectid); 444 last = key.objectid + key.offset; 445 446 if (total_found > (1024 * 1024 * 2)) { 447 total_found = 0; 448 wake_up(&caching_ctl->wait); 449 } 450 } 451 path->slots[0]++; 452 } 453 ret = 0; 454 455 total_found += add_new_free_space(block_group, fs_info, last, 456 block_group->key.objectid + 457 block_group->key.offset); 458 caching_ctl->progress = (u64)-1; 459 460 spin_lock(&block_group->lock); 461 block_group->caching_ctl = NULL; 462 block_group->cached = BTRFS_CACHE_FINISHED; 463 spin_unlock(&block_group->lock); 464 465 err: 466 btrfs_free_path(path); 467 up_read(&fs_info->extent_commit_sem); 468 469 free_excluded_extents(extent_root, block_group); 470 471 mutex_unlock(&caching_ctl->mutex); 472 out: 473 wake_up(&caching_ctl->wait); 474 475 put_caching_control(caching_ctl); 476 btrfs_put_block_group(block_group); 477 } 478 479 static int cache_block_group(struct btrfs_block_group_cache *cache, 480 int load_cache_only) 481 { 482 DEFINE_WAIT(wait); 483 struct btrfs_fs_info *fs_info = cache->fs_info; 484 struct btrfs_caching_control *caching_ctl; 485 int ret = 0; 486 487 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 488 if (!caching_ctl) 489 return -ENOMEM; 490 491 INIT_LIST_HEAD(&caching_ctl->list); 492 mutex_init(&caching_ctl->mutex); 493 init_waitqueue_head(&caching_ctl->wait); 494 caching_ctl->block_group = cache; 495 caching_ctl->progress = cache->key.objectid; 496 atomic_set(&caching_ctl->count, 1); 497 caching_ctl->work.func = caching_thread; 498 499 spin_lock(&cache->lock); 500 /* 501 * This should be a rare occasion, but this could happen I think in the 502 * case where one thread starts to load the space cache info, and then 503 * some other thread starts a transaction commit which tries to do an 504 * allocation while the other thread is still loading the space cache 505 * info. The previous loop should have kept us from choosing this block 506 * group, but if we've moved to the state where we will wait on caching 507 * block groups we need to first check if we're doing a fast load here, 508 * so we can wait for it to finish, otherwise we could end up allocating 509 * from a block group who's cache gets evicted for one reason or 510 * another. 511 */ 512 while (cache->cached == BTRFS_CACHE_FAST) { 513 struct btrfs_caching_control *ctl; 514 515 ctl = cache->caching_ctl; 516 atomic_inc(&ctl->count); 517 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 518 spin_unlock(&cache->lock); 519 520 schedule(); 521 522 finish_wait(&ctl->wait, &wait); 523 put_caching_control(ctl); 524 spin_lock(&cache->lock); 525 } 526 527 if (cache->cached != BTRFS_CACHE_NO) { 528 spin_unlock(&cache->lock); 529 kfree(caching_ctl); 530 return 0; 531 } 532 WARN_ON(cache->caching_ctl); 533 cache->caching_ctl = caching_ctl; 534 cache->cached = BTRFS_CACHE_FAST; 535 spin_unlock(&cache->lock); 536 537 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 538 ret = load_free_space_cache(fs_info, cache); 539 540 spin_lock(&cache->lock); 541 if (ret == 1) { 542 cache->caching_ctl = NULL; 543 cache->cached = BTRFS_CACHE_FINISHED; 544 cache->last_byte_to_unpin = (u64)-1; 545 } else { 546 if (load_cache_only) { 547 cache->caching_ctl = NULL; 548 cache->cached = BTRFS_CACHE_NO; 549 } else { 550 cache->cached = BTRFS_CACHE_STARTED; 551 } 552 } 553 spin_unlock(&cache->lock); 554 wake_up(&caching_ctl->wait); 555 if (ret == 1) { 556 put_caching_control(caching_ctl); 557 free_excluded_extents(fs_info->extent_root, cache); 558 return 0; 559 } 560 } else { 561 /* 562 * We are not going to do the fast caching, set cached to the 563 * appropriate value and wakeup any waiters. 564 */ 565 spin_lock(&cache->lock); 566 if (load_cache_only) { 567 cache->caching_ctl = NULL; 568 cache->cached = BTRFS_CACHE_NO; 569 } else { 570 cache->cached = BTRFS_CACHE_STARTED; 571 } 572 spin_unlock(&cache->lock); 573 wake_up(&caching_ctl->wait); 574 } 575 576 if (load_cache_only) { 577 put_caching_control(caching_ctl); 578 return 0; 579 } 580 581 down_write(&fs_info->extent_commit_sem); 582 atomic_inc(&caching_ctl->count); 583 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 584 up_write(&fs_info->extent_commit_sem); 585 586 btrfs_get_block_group(cache); 587 588 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 589 590 return ret; 591 } 592 593 /* 594 * return the block group that starts at or after bytenr 595 */ 596 static struct btrfs_block_group_cache * 597 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 598 { 599 struct btrfs_block_group_cache *cache; 600 601 cache = block_group_cache_tree_search(info, bytenr, 0); 602 603 return cache; 604 } 605 606 /* 607 * return the block group that contains the given bytenr 608 */ 609 struct btrfs_block_group_cache *btrfs_lookup_block_group( 610 struct btrfs_fs_info *info, 611 u64 bytenr) 612 { 613 struct btrfs_block_group_cache *cache; 614 615 cache = block_group_cache_tree_search(info, bytenr, 1); 616 617 return cache; 618 } 619 620 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 621 u64 flags) 622 { 623 struct list_head *head = &info->space_info; 624 struct btrfs_space_info *found; 625 626 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 627 628 rcu_read_lock(); 629 list_for_each_entry_rcu(found, head, list) { 630 if (found->flags & flags) { 631 rcu_read_unlock(); 632 return found; 633 } 634 } 635 rcu_read_unlock(); 636 return NULL; 637 } 638 639 /* 640 * after adding space to the filesystem, we need to clear the full flags 641 * on all the space infos. 642 */ 643 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 644 { 645 struct list_head *head = &info->space_info; 646 struct btrfs_space_info *found; 647 648 rcu_read_lock(); 649 list_for_each_entry_rcu(found, head, list) 650 found->full = 0; 651 rcu_read_unlock(); 652 } 653 654 u64 btrfs_find_block_group(struct btrfs_root *root, 655 u64 search_start, u64 search_hint, int owner) 656 { 657 struct btrfs_block_group_cache *cache; 658 u64 used; 659 u64 last = max(search_hint, search_start); 660 u64 group_start = 0; 661 int full_search = 0; 662 int factor = 9; 663 int wrapped = 0; 664 again: 665 while (1) { 666 cache = btrfs_lookup_first_block_group(root->fs_info, last); 667 if (!cache) 668 break; 669 670 spin_lock(&cache->lock); 671 last = cache->key.objectid + cache->key.offset; 672 used = btrfs_block_group_used(&cache->item); 673 674 if ((full_search || !cache->ro) && 675 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 676 if (used + cache->pinned + cache->reserved < 677 div_factor(cache->key.offset, factor)) { 678 group_start = cache->key.objectid; 679 spin_unlock(&cache->lock); 680 btrfs_put_block_group(cache); 681 goto found; 682 } 683 } 684 spin_unlock(&cache->lock); 685 btrfs_put_block_group(cache); 686 cond_resched(); 687 } 688 if (!wrapped) { 689 last = search_start; 690 wrapped = 1; 691 goto again; 692 } 693 if (!full_search && factor < 10) { 694 last = search_start; 695 full_search = 1; 696 factor = 10; 697 goto again; 698 } 699 found: 700 return group_start; 701 } 702 703 /* simple helper to search for an existing extent at a given offset */ 704 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 705 { 706 int ret; 707 struct btrfs_key key; 708 struct btrfs_path *path; 709 710 path = btrfs_alloc_path(); 711 if (!path) 712 return -ENOMEM; 713 714 key.objectid = start; 715 key.offset = len; 716 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 717 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 718 0, 0); 719 btrfs_free_path(path); 720 return ret; 721 } 722 723 /* 724 * helper function to lookup reference count and flags of extent. 725 * 726 * the head node for delayed ref is used to store the sum of all the 727 * reference count modifications queued up in the rbtree. the head 728 * node may also store the extent flags to set. This way you can check 729 * to see what the reference count and extent flags would be if all of 730 * the delayed refs are not processed. 731 */ 732 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 733 struct btrfs_root *root, u64 bytenr, 734 u64 num_bytes, u64 *refs, u64 *flags) 735 { 736 struct btrfs_delayed_ref_head *head; 737 struct btrfs_delayed_ref_root *delayed_refs; 738 struct btrfs_path *path; 739 struct btrfs_extent_item *ei; 740 struct extent_buffer *leaf; 741 struct btrfs_key key; 742 u32 item_size; 743 u64 num_refs; 744 u64 extent_flags; 745 int ret; 746 747 path = btrfs_alloc_path(); 748 if (!path) 749 return -ENOMEM; 750 751 key.objectid = bytenr; 752 key.type = BTRFS_EXTENT_ITEM_KEY; 753 key.offset = num_bytes; 754 if (!trans) { 755 path->skip_locking = 1; 756 path->search_commit_root = 1; 757 } 758 again: 759 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 760 &key, path, 0, 0); 761 if (ret < 0) 762 goto out_free; 763 764 if (ret == 0) { 765 leaf = path->nodes[0]; 766 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 767 if (item_size >= sizeof(*ei)) { 768 ei = btrfs_item_ptr(leaf, path->slots[0], 769 struct btrfs_extent_item); 770 num_refs = btrfs_extent_refs(leaf, ei); 771 extent_flags = btrfs_extent_flags(leaf, ei); 772 } else { 773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 774 struct btrfs_extent_item_v0 *ei0; 775 BUG_ON(item_size != sizeof(*ei0)); 776 ei0 = btrfs_item_ptr(leaf, path->slots[0], 777 struct btrfs_extent_item_v0); 778 num_refs = btrfs_extent_refs_v0(leaf, ei0); 779 /* FIXME: this isn't correct for data */ 780 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 781 #else 782 BUG(); 783 #endif 784 } 785 BUG_ON(num_refs == 0); 786 } else { 787 num_refs = 0; 788 extent_flags = 0; 789 ret = 0; 790 } 791 792 if (!trans) 793 goto out; 794 795 delayed_refs = &trans->transaction->delayed_refs; 796 spin_lock(&delayed_refs->lock); 797 head = btrfs_find_delayed_ref_head(trans, bytenr); 798 if (head) { 799 if (!mutex_trylock(&head->mutex)) { 800 atomic_inc(&head->node.refs); 801 spin_unlock(&delayed_refs->lock); 802 803 btrfs_release_path(path); 804 805 /* 806 * Mutex was contended, block until it's released and try 807 * again 808 */ 809 mutex_lock(&head->mutex); 810 mutex_unlock(&head->mutex); 811 btrfs_put_delayed_ref(&head->node); 812 goto again; 813 } 814 if (head->extent_op && head->extent_op->update_flags) 815 extent_flags |= head->extent_op->flags_to_set; 816 else 817 BUG_ON(num_refs == 0); 818 819 num_refs += head->node.ref_mod; 820 mutex_unlock(&head->mutex); 821 } 822 spin_unlock(&delayed_refs->lock); 823 out: 824 WARN_ON(num_refs == 0); 825 if (refs) 826 *refs = num_refs; 827 if (flags) 828 *flags = extent_flags; 829 out_free: 830 btrfs_free_path(path); 831 return ret; 832 } 833 834 /* 835 * Back reference rules. Back refs have three main goals: 836 * 837 * 1) differentiate between all holders of references to an extent so that 838 * when a reference is dropped we can make sure it was a valid reference 839 * before freeing the extent. 840 * 841 * 2) Provide enough information to quickly find the holders of an extent 842 * if we notice a given block is corrupted or bad. 843 * 844 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 845 * maintenance. This is actually the same as #2, but with a slightly 846 * different use case. 847 * 848 * There are two kinds of back refs. The implicit back refs is optimized 849 * for pointers in non-shared tree blocks. For a given pointer in a block, 850 * back refs of this kind provide information about the block's owner tree 851 * and the pointer's key. These information allow us to find the block by 852 * b-tree searching. The full back refs is for pointers in tree blocks not 853 * referenced by their owner trees. The location of tree block is recorded 854 * in the back refs. Actually the full back refs is generic, and can be 855 * used in all cases the implicit back refs is used. The major shortcoming 856 * of the full back refs is its overhead. Every time a tree block gets 857 * COWed, we have to update back refs entry for all pointers in it. 858 * 859 * For a newly allocated tree block, we use implicit back refs for 860 * pointers in it. This means most tree related operations only involve 861 * implicit back refs. For a tree block created in old transaction, the 862 * only way to drop a reference to it is COW it. So we can detect the 863 * event that tree block loses its owner tree's reference and do the 864 * back refs conversion. 865 * 866 * When a tree block is COW'd through a tree, there are four cases: 867 * 868 * The reference count of the block is one and the tree is the block's 869 * owner tree. Nothing to do in this case. 870 * 871 * The reference count of the block is one and the tree is not the 872 * block's owner tree. In this case, full back refs is used for pointers 873 * in the block. Remove these full back refs, add implicit back refs for 874 * every pointers in the new block. 875 * 876 * The reference count of the block is greater than one and the tree is 877 * the block's owner tree. In this case, implicit back refs is used for 878 * pointers in the block. Add full back refs for every pointers in the 879 * block, increase lower level extents' reference counts. The original 880 * implicit back refs are entailed to the new block. 881 * 882 * The reference count of the block is greater than one and the tree is 883 * not the block's owner tree. Add implicit back refs for every pointer in 884 * the new block, increase lower level extents' reference count. 885 * 886 * Back Reference Key composing: 887 * 888 * The key objectid corresponds to the first byte in the extent, 889 * The key type is used to differentiate between types of back refs. 890 * There are different meanings of the key offset for different types 891 * of back refs. 892 * 893 * File extents can be referenced by: 894 * 895 * - multiple snapshots, subvolumes, or different generations in one subvol 896 * - different files inside a single subvolume 897 * - different offsets inside a file (bookend extents in file.c) 898 * 899 * The extent ref structure for the implicit back refs has fields for: 900 * 901 * - Objectid of the subvolume root 902 * - objectid of the file holding the reference 903 * - original offset in the file 904 * - how many bookend extents 905 * 906 * The key offset for the implicit back refs is hash of the first 907 * three fields. 908 * 909 * The extent ref structure for the full back refs has field for: 910 * 911 * - number of pointers in the tree leaf 912 * 913 * The key offset for the implicit back refs is the first byte of 914 * the tree leaf 915 * 916 * When a file extent is allocated, The implicit back refs is used. 917 * the fields are filled in: 918 * 919 * (root_key.objectid, inode objectid, offset in file, 1) 920 * 921 * When a file extent is removed file truncation, we find the 922 * corresponding implicit back refs and check the following fields: 923 * 924 * (btrfs_header_owner(leaf), inode objectid, offset in file) 925 * 926 * Btree extents can be referenced by: 927 * 928 * - Different subvolumes 929 * 930 * Both the implicit back refs and the full back refs for tree blocks 931 * only consist of key. The key offset for the implicit back refs is 932 * objectid of block's owner tree. The key offset for the full back refs 933 * is the first byte of parent block. 934 * 935 * When implicit back refs is used, information about the lowest key and 936 * level of the tree block are required. These information are stored in 937 * tree block info structure. 938 */ 939 940 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 941 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 942 struct btrfs_root *root, 943 struct btrfs_path *path, 944 u64 owner, u32 extra_size) 945 { 946 struct btrfs_extent_item *item; 947 struct btrfs_extent_item_v0 *ei0; 948 struct btrfs_extent_ref_v0 *ref0; 949 struct btrfs_tree_block_info *bi; 950 struct extent_buffer *leaf; 951 struct btrfs_key key; 952 struct btrfs_key found_key; 953 u32 new_size = sizeof(*item); 954 u64 refs; 955 int ret; 956 957 leaf = path->nodes[0]; 958 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 959 960 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 961 ei0 = btrfs_item_ptr(leaf, path->slots[0], 962 struct btrfs_extent_item_v0); 963 refs = btrfs_extent_refs_v0(leaf, ei0); 964 965 if (owner == (u64)-1) { 966 while (1) { 967 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 968 ret = btrfs_next_leaf(root, path); 969 if (ret < 0) 970 return ret; 971 BUG_ON(ret > 0); /* Corruption */ 972 leaf = path->nodes[0]; 973 } 974 btrfs_item_key_to_cpu(leaf, &found_key, 975 path->slots[0]); 976 BUG_ON(key.objectid != found_key.objectid); 977 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 978 path->slots[0]++; 979 continue; 980 } 981 ref0 = btrfs_item_ptr(leaf, path->slots[0], 982 struct btrfs_extent_ref_v0); 983 owner = btrfs_ref_objectid_v0(leaf, ref0); 984 break; 985 } 986 } 987 btrfs_release_path(path); 988 989 if (owner < BTRFS_FIRST_FREE_OBJECTID) 990 new_size += sizeof(*bi); 991 992 new_size -= sizeof(*ei0); 993 ret = btrfs_search_slot(trans, root, &key, path, 994 new_size + extra_size, 1); 995 if (ret < 0) 996 return ret; 997 BUG_ON(ret); /* Corruption */ 998 999 btrfs_extend_item(trans, root, path, new_size); 1000 1001 leaf = path->nodes[0]; 1002 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1003 btrfs_set_extent_refs(leaf, item, refs); 1004 /* FIXME: get real generation */ 1005 btrfs_set_extent_generation(leaf, item, 0); 1006 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1007 btrfs_set_extent_flags(leaf, item, 1008 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1009 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1010 bi = (struct btrfs_tree_block_info *)(item + 1); 1011 /* FIXME: get first key of the block */ 1012 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1013 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1014 } else { 1015 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1016 } 1017 btrfs_mark_buffer_dirty(leaf); 1018 return 0; 1019 } 1020 #endif 1021 1022 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1023 { 1024 u32 high_crc = ~(u32)0; 1025 u32 low_crc = ~(u32)0; 1026 __le64 lenum; 1027 1028 lenum = cpu_to_le64(root_objectid); 1029 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1030 lenum = cpu_to_le64(owner); 1031 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1032 lenum = cpu_to_le64(offset); 1033 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1034 1035 return ((u64)high_crc << 31) ^ (u64)low_crc; 1036 } 1037 1038 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1039 struct btrfs_extent_data_ref *ref) 1040 { 1041 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1042 btrfs_extent_data_ref_objectid(leaf, ref), 1043 btrfs_extent_data_ref_offset(leaf, ref)); 1044 } 1045 1046 static int match_extent_data_ref(struct extent_buffer *leaf, 1047 struct btrfs_extent_data_ref *ref, 1048 u64 root_objectid, u64 owner, u64 offset) 1049 { 1050 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1051 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1052 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1053 return 0; 1054 return 1; 1055 } 1056 1057 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1058 struct btrfs_root *root, 1059 struct btrfs_path *path, 1060 u64 bytenr, u64 parent, 1061 u64 root_objectid, 1062 u64 owner, u64 offset) 1063 { 1064 struct btrfs_key key; 1065 struct btrfs_extent_data_ref *ref; 1066 struct extent_buffer *leaf; 1067 u32 nritems; 1068 int ret; 1069 int recow; 1070 int err = -ENOENT; 1071 1072 key.objectid = bytenr; 1073 if (parent) { 1074 key.type = BTRFS_SHARED_DATA_REF_KEY; 1075 key.offset = parent; 1076 } else { 1077 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1078 key.offset = hash_extent_data_ref(root_objectid, 1079 owner, offset); 1080 } 1081 again: 1082 recow = 0; 1083 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1084 if (ret < 0) { 1085 err = ret; 1086 goto fail; 1087 } 1088 1089 if (parent) { 1090 if (!ret) 1091 return 0; 1092 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1093 key.type = BTRFS_EXTENT_REF_V0_KEY; 1094 btrfs_release_path(path); 1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1096 if (ret < 0) { 1097 err = ret; 1098 goto fail; 1099 } 1100 if (!ret) 1101 return 0; 1102 #endif 1103 goto fail; 1104 } 1105 1106 leaf = path->nodes[0]; 1107 nritems = btrfs_header_nritems(leaf); 1108 while (1) { 1109 if (path->slots[0] >= nritems) { 1110 ret = btrfs_next_leaf(root, path); 1111 if (ret < 0) 1112 err = ret; 1113 if (ret) 1114 goto fail; 1115 1116 leaf = path->nodes[0]; 1117 nritems = btrfs_header_nritems(leaf); 1118 recow = 1; 1119 } 1120 1121 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1122 if (key.objectid != bytenr || 1123 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1124 goto fail; 1125 1126 ref = btrfs_item_ptr(leaf, path->slots[0], 1127 struct btrfs_extent_data_ref); 1128 1129 if (match_extent_data_ref(leaf, ref, root_objectid, 1130 owner, offset)) { 1131 if (recow) { 1132 btrfs_release_path(path); 1133 goto again; 1134 } 1135 err = 0; 1136 break; 1137 } 1138 path->slots[0]++; 1139 } 1140 fail: 1141 return err; 1142 } 1143 1144 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1145 struct btrfs_root *root, 1146 struct btrfs_path *path, 1147 u64 bytenr, u64 parent, 1148 u64 root_objectid, u64 owner, 1149 u64 offset, int refs_to_add) 1150 { 1151 struct btrfs_key key; 1152 struct extent_buffer *leaf; 1153 u32 size; 1154 u32 num_refs; 1155 int ret; 1156 1157 key.objectid = bytenr; 1158 if (parent) { 1159 key.type = BTRFS_SHARED_DATA_REF_KEY; 1160 key.offset = parent; 1161 size = sizeof(struct btrfs_shared_data_ref); 1162 } else { 1163 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1164 key.offset = hash_extent_data_ref(root_objectid, 1165 owner, offset); 1166 size = sizeof(struct btrfs_extent_data_ref); 1167 } 1168 1169 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1170 if (ret && ret != -EEXIST) 1171 goto fail; 1172 1173 leaf = path->nodes[0]; 1174 if (parent) { 1175 struct btrfs_shared_data_ref *ref; 1176 ref = btrfs_item_ptr(leaf, path->slots[0], 1177 struct btrfs_shared_data_ref); 1178 if (ret == 0) { 1179 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1180 } else { 1181 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1182 num_refs += refs_to_add; 1183 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1184 } 1185 } else { 1186 struct btrfs_extent_data_ref *ref; 1187 while (ret == -EEXIST) { 1188 ref = btrfs_item_ptr(leaf, path->slots[0], 1189 struct btrfs_extent_data_ref); 1190 if (match_extent_data_ref(leaf, ref, root_objectid, 1191 owner, offset)) 1192 break; 1193 btrfs_release_path(path); 1194 key.offset++; 1195 ret = btrfs_insert_empty_item(trans, root, path, &key, 1196 size); 1197 if (ret && ret != -EEXIST) 1198 goto fail; 1199 1200 leaf = path->nodes[0]; 1201 } 1202 ref = btrfs_item_ptr(leaf, path->slots[0], 1203 struct btrfs_extent_data_ref); 1204 if (ret == 0) { 1205 btrfs_set_extent_data_ref_root(leaf, ref, 1206 root_objectid); 1207 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1208 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1209 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1210 } else { 1211 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1212 num_refs += refs_to_add; 1213 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1214 } 1215 } 1216 btrfs_mark_buffer_dirty(leaf); 1217 ret = 0; 1218 fail: 1219 btrfs_release_path(path); 1220 return ret; 1221 } 1222 1223 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1224 struct btrfs_root *root, 1225 struct btrfs_path *path, 1226 int refs_to_drop) 1227 { 1228 struct btrfs_key key; 1229 struct btrfs_extent_data_ref *ref1 = NULL; 1230 struct btrfs_shared_data_ref *ref2 = NULL; 1231 struct extent_buffer *leaf; 1232 u32 num_refs = 0; 1233 int ret = 0; 1234 1235 leaf = path->nodes[0]; 1236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1237 1238 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1239 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1240 struct btrfs_extent_data_ref); 1241 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1242 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1243 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1244 struct btrfs_shared_data_ref); 1245 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1246 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1247 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1248 struct btrfs_extent_ref_v0 *ref0; 1249 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1250 struct btrfs_extent_ref_v0); 1251 num_refs = btrfs_ref_count_v0(leaf, ref0); 1252 #endif 1253 } else { 1254 BUG(); 1255 } 1256 1257 BUG_ON(num_refs < refs_to_drop); 1258 num_refs -= refs_to_drop; 1259 1260 if (num_refs == 0) { 1261 ret = btrfs_del_item(trans, root, path); 1262 } else { 1263 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1264 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1265 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1266 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1268 else { 1269 struct btrfs_extent_ref_v0 *ref0; 1270 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1271 struct btrfs_extent_ref_v0); 1272 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1273 } 1274 #endif 1275 btrfs_mark_buffer_dirty(leaf); 1276 } 1277 return ret; 1278 } 1279 1280 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1281 struct btrfs_path *path, 1282 struct btrfs_extent_inline_ref *iref) 1283 { 1284 struct btrfs_key key; 1285 struct extent_buffer *leaf; 1286 struct btrfs_extent_data_ref *ref1; 1287 struct btrfs_shared_data_ref *ref2; 1288 u32 num_refs = 0; 1289 1290 leaf = path->nodes[0]; 1291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1292 if (iref) { 1293 if (btrfs_extent_inline_ref_type(leaf, iref) == 1294 BTRFS_EXTENT_DATA_REF_KEY) { 1295 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1296 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1297 } else { 1298 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1299 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1300 } 1301 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1302 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1303 struct btrfs_extent_data_ref); 1304 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1305 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1306 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1307 struct btrfs_shared_data_ref); 1308 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1310 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1311 struct btrfs_extent_ref_v0 *ref0; 1312 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1313 struct btrfs_extent_ref_v0); 1314 num_refs = btrfs_ref_count_v0(leaf, ref0); 1315 #endif 1316 } else { 1317 WARN_ON(1); 1318 } 1319 return num_refs; 1320 } 1321 1322 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *root, 1324 struct btrfs_path *path, 1325 u64 bytenr, u64 parent, 1326 u64 root_objectid) 1327 { 1328 struct btrfs_key key; 1329 int ret; 1330 1331 key.objectid = bytenr; 1332 if (parent) { 1333 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1334 key.offset = parent; 1335 } else { 1336 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1337 key.offset = root_objectid; 1338 } 1339 1340 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1341 if (ret > 0) 1342 ret = -ENOENT; 1343 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1344 if (ret == -ENOENT && parent) { 1345 btrfs_release_path(path); 1346 key.type = BTRFS_EXTENT_REF_V0_KEY; 1347 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1348 if (ret > 0) 1349 ret = -ENOENT; 1350 } 1351 #endif 1352 return ret; 1353 } 1354 1355 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1356 struct btrfs_root *root, 1357 struct btrfs_path *path, 1358 u64 bytenr, u64 parent, 1359 u64 root_objectid) 1360 { 1361 struct btrfs_key key; 1362 int ret; 1363 1364 key.objectid = bytenr; 1365 if (parent) { 1366 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1367 key.offset = parent; 1368 } else { 1369 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1370 key.offset = root_objectid; 1371 } 1372 1373 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1374 btrfs_release_path(path); 1375 return ret; 1376 } 1377 1378 static inline int extent_ref_type(u64 parent, u64 owner) 1379 { 1380 int type; 1381 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1382 if (parent > 0) 1383 type = BTRFS_SHARED_BLOCK_REF_KEY; 1384 else 1385 type = BTRFS_TREE_BLOCK_REF_KEY; 1386 } else { 1387 if (parent > 0) 1388 type = BTRFS_SHARED_DATA_REF_KEY; 1389 else 1390 type = BTRFS_EXTENT_DATA_REF_KEY; 1391 } 1392 return type; 1393 } 1394 1395 static int find_next_key(struct btrfs_path *path, int level, 1396 struct btrfs_key *key) 1397 1398 { 1399 for (; level < BTRFS_MAX_LEVEL; level++) { 1400 if (!path->nodes[level]) 1401 break; 1402 if (path->slots[level] + 1 >= 1403 btrfs_header_nritems(path->nodes[level])) 1404 continue; 1405 if (level == 0) 1406 btrfs_item_key_to_cpu(path->nodes[level], key, 1407 path->slots[level] + 1); 1408 else 1409 btrfs_node_key_to_cpu(path->nodes[level], key, 1410 path->slots[level] + 1); 1411 return 0; 1412 } 1413 return 1; 1414 } 1415 1416 /* 1417 * look for inline back ref. if back ref is found, *ref_ret is set 1418 * to the address of inline back ref, and 0 is returned. 1419 * 1420 * if back ref isn't found, *ref_ret is set to the address where it 1421 * should be inserted, and -ENOENT is returned. 1422 * 1423 * if insert is true and there are too many inline back refs, the path 1424 * points to the extent item, and -EAGAIN is returned. 1425 * 1426 * NOTE: inline back refs are ordered in the same way that back ref 1427 * items in the tree are ordered. 1428 */ 1429 static noinline_for_stack 1430 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1431 struct btrfs_root *root, 1432 struct btrfs_path *path, 1433 struct btrfs_extent_inline_ref **ref_ret, 1434 u64 bytenr, u64 num_bytes, 1435 u64 parent, u64 root_objectid, 1436 u64 owner, u64 offset, int insert) 1437 { 1438 struct btrfs_key key; 1439 struct extent_buffer *leaf; 1440 struct btrfs_extent_item *ei; 1441 struct btrfs_extent_inline_ref *iref; 1442 u64 flags; 1443 u64 item_size; 1444 unsigned long ptr; 1445 unsigned long end; 1446 int extra_size; 1447 int type; 1448 int want; 1449 int ret; 1450 int err = 0; 1451 1452 key.objectid = bytenr; 1453 key.type = BTRFS_EXTENT_ITEM_KEY; 1454 key.offset = num_bytes; 1455 1456 want = extent_ref_type(parent, owner); 1457 if (insert) { 1458 extra_size = btrfs_extent_inline_ref_size(want); 1459 path->keep_locks = 1; 1460 } else 1461 extra_size = -1; 1462 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1463 if (ret < 0) { 1464 err = ret; 1465 goto out; 1466 } 1467 if (ret && !insert) { 1468 err = -ENOENT; 1469 goto out; 1470 } 1471 BUG_ON(ret); /* Corruption */ 1472 1473 leaf = path->nodes[0]; 1474 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1476 if (item_size < sizeof(*ei)) { 1477 if (!insert) { 1478 err = -ENOENT; 1479 goto out; 1480 } 1481 ret = convert_extent_item_v0(trans, root, path, owner, 1482 extra_size); 1483 if (ret < 0) { 1484 err = ret; 1485 goto out; 1486 } 1487 leaf = path->nodes[0]; 1488 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1489 } 1490 #endif 1491 BUG_ON(item_size < sizeof(*ei)); 1492 1493 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1494 flags = btrfs_extent_flags(leaf, ei); 1495 1496 ptr = (unsigned long)(ei + 1); 1497 end = (unsigned long)ei + item_size; 1498 1499 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1500 ptr += sizeof(struct btrfs_tree_block_info); 1501 BUG_ON(ptr > end); 1502 } else { 1503 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1504 } 1505 1506 err = -ENOENT; 1507 while (1) { 1508 if (ptr >= end) { 1509 WARN_ON(ptr > end); 1510 break; 1511 } 1512 iref = (struct btrfs_extent_inline_ref *)ptr; 1513 type = btrfs_extent_inline_ref_type(leaf, iref); 1514 if (want < type) 1515 break; 1516 if (want > type) { 1517 ptr += btrfs_extent_inline_ref_size(type); 1518 continue; 1519 } 1520 1521 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1522 struct btrfs_extent_data_ref *dref; 1523 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1524 if (match_extent_data_ref(leaf, dref, root_objectid, 1525 owner, offset)) { 1526 err = 0; 1527 break; 1528 } 1529 if (hash_extent_data_ref_item(leaf, dref) < 1530 hash_extent_data_ref(root_objectid, owner, offset)) 1531 break; 1532 } else { 1533 u64 ref_offset; 1534 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1535 if (parent > 0) { 1536 if (parent == ref_offset) { 1537 err = 0; 1538 break; 1539 } 1540 if (ref_offset < parent) 1541 break; 1542 } else { 1543 if (root_objectid == ref_offset) { 1544 err = 0; 1545 break; 1546 } 1547 if (ref_offset < root_objectid) 1548 break; 1549 } 1550 } 1551 ptr += btrfs_extent_inline_ref_size(type); 1552 } 1553 if (err == -ENOENT && insert) { 1554 if (item_size + extra_size >= 1555 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1556 err = -EAGAIN; 1557 goto out; 1558 } 1559 /* 1560 * To add new inline back ref, we have to make sure 1561 * there is no corresponding back ref item. 1562 * For simplicity, we just do not add new inline back 1563 * ref if there is any kind of item for this block 1564 */ 1565 if (find_next_key(path, 0, &key) == 0 && 1566 key.objectid == bytenr && 1567 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1568 err = -EAGAIN; 1569 goto out; 1570 } 1571 } 1572 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1573 out: 1574 if (insert) { 1575 path->keep_locks = 0; 1576 btrfs_unlock_up_safe(path, 1); 1577 } 1578 return err; 1579 } 1580 1581 /* 1582 * helper to add new inline back ref 1583 */ 1584 static noinline_for_stack 1585 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1586 struct btrfs_root *root, 1587 struct btrfs_path *path, 1588 struct btrfs_extent_inline_ref *iref, 1589 u64 parent, u64 root_objectid, 1590 u64 owner, u64 offset, int refs_to_add, 1591 struct btrfs_delayed_extent_op *extent_op) 1592 { 1593 struct extent_buffer *leaf; 1594 struct btrfs_extent_item *ei; 1595 unsigned long ptr; 1596 unsigned long end; 1597 unsigned long item_offset; 1598 u64 refs; 1599 int size; 1600 int type; 1601 1602 leaf = path->nodes[0]; 1603 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1604 item_offset = (unsigned long)iref - (unsigned long)ei; 1605 1606 type = extent_ref_type(parent, owner); 1607 size = btrfs_extent_inline_ref_size(type); 1608 1609 btrfs_extend_item(trans, root, path, size); 1610 1611 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1612 refs = btrfs_extent_refs(leaf, ei); 1613 refs += refs_to_add; 1614 btrfs_set_extent_refs(leaf, ei, refs); 1615 if (extent_op) 1616 __run_delayed_extent_op(extent_op, leaf, ei); 1617 1618 ptr = (unsigned long)ei + item_offset; 1619 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1620 if (ptr < end - size) 1621 memmove_extent_buffer(leaf, ptr + size, ptr, 1622 end - size - ptr); 1623 1624 iref = (struct btrfs_extent_inline_ref *)ptr; 1625 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1626 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1627 struct btrfs_extent_data_ref *dref; 1628 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1629 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1630 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1631 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1632 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1633 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1634 struct btrfs_shared_data_ref *sref; 1635 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1636 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1637 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1638 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1639 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1640 } else { 1641 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1642 } 1643 btrfs_mark_buffer_dirty(leaf); 1644 } 1645 1646 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1647 struct btrfs_root *root, 1648 struct btrfs_path *path, 1649 struct btrfs_extent_inline_ref **ref_ret, 1650 u64 bytenr, u64 num_bytes, u64 parent, 1651 u64 root_objectid, u64 owner, u64 offset) 1652 { 1653 int ret; 1654 1655 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1656 bytenr, num_bytes, parent, 1657 root_objectid, owner, offset, 0); 1658 if (ret != -ENOENT) 1659 return ret; 1660 1661 btrfs_release_path(path); 1662 *ref_ret = NULL; 1663 1664 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1665 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1666 root_objectid); 1667 } else { 1668 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1669 root_objectid, owner, offset); 1670 } 1671 return ret; 1672 } 1673 1674 /* 1675 * helper to update/remove inline back ref 1676 */ 1677 static noinline_for_stack 1678 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1679 struct btrfs_root *root, 1680 struct btrfs_path *path, 1681 struct btrfs_extent_inline_ref *iref, 1682 int refs_to_mod, 1683 struct btrfs_delayed_extent_op *extent_op) 1684 { 1685 struct extent_buffer *leaf; 1686 struct btrfs_extent_item *ei; 1687 struct btrfs_extent_data_ref *dref = NULL; 1688 struct btrfs_shared_data_ref *sref = NULL; 1689 unsigned long ptr; 1690 unsigned long end; 1691 u32 item_size; 1692 int size; 1693 int type; 1694 u64 refs; 1695 1696 leaf = path->nodes[0]; 1697 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1698 refs = btrfs_extent_refs(leaf, ei); 1699 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1700 refs += refs_to_mod; 1701 btrfs_set_extent_refs(leaf, ei, refs); 1702 if (extent_op) 1703 __run_delayed_extent_op(extent_op, leaf, ei); 1704 1705 type = btrfs_extent_inline_ref_type(leaf, iref); 1706 1707 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1709 refs = btrfs_extent_data_ref_count(leaf, dref); 1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1711 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1712 refs = btrfs_shared_data_ref_count(leaf, sref); 1713 } else { 1714 refs = 1; 1715 BUG_ON(refs_to_mod != -1); 1716 } 1717 1718 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1719 refs += refs_to_mod; 1720 1721 if (refs > 0) { 1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1723 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1724 else 1725 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1726 } else { 1727 size = btrfs_extent_inline_ref_size(type); 1728 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1729 ptr = (unsigned long)iref; 1730 end = (unsigned long)ei + item_size; 1731 if (ptr + size < end) 1732 memmove_extent_buffer(leaf, ptr, ptr + size, 1733 end - ptr - size); 1734 item_size -= size; 1735 btrfs_truncate_item(trans, root, path, item_size, 1); 1736 } 1737 btrfs_mark_buffer_dirty(leaf); 1738 } 1739 1740 static noinline_for_stack 1741 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1742 struct btrfs_root *root, 1743 struct btrfs_path *path, 1744 u64 bytenr, u64 num_bytes, u64 parent, 1745 u64 root_objectid, u64 owner, 1746 u64 offset, int refs_to_add, 1747 struct btrfs_delayed_extent_op *extent_op) 1748 { 1749 struct btrfs_extent_inline_ref *iref; 1750 int ret; 1751 1752 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1753 bytenr, num_bytes, parent, 1754 root_objectid, owner, offset, 1); 1755 if (ret == 0) { 1756 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1757 update_inline_extent_backref(trans, root, path, iref, 1758 refs_to_add, extent_op); 1759 } else if (ret == -ENOENT) { 1760 setup_inline_extent_backref(trans, root, path, iref, parent, 1761 root_objectid, owner, offset, 1762 refs_to_add, extent_op); 1763 ret = 0; 1764 } 1765 return ret; 1766 } 1767 1768 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1769 struct btrfs_root *root, 1770 struct btrfs_path *path, 1771 u64 bytenr, u64 parent, u64 root_objectid, 1772 u64 owner, u64 offset, int refs_to_add) 1773 { 1774 int ret; 1775 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1776 BUG_ON(refs_to_add != 1); 1777 ret = insert_tree_block_ref(trans, root, path, bytenr, 1778 parent, root_objectid); 1779 } else { 1780 ret = insert_extent_data_ref(trans, root, path, bytenr, 1781 parent, root_objectid, 1782 owner, offset, refs_to_add); 1783 } 1784 return ret; 1785 } 1786 1787 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1788 struct btrfs_root *root, 1789 struct btrfs_path *path, 1790 struct btrfs_extent_inline_ref *iref, 1791 int refs_to_drop, int is_data) 1792 { 1793 int ret = 0; 1794 1795 BUG_ON(!is_data && refs_to_drop != 1); 1796 if (iref) { 1797 update_inline_extent_backref(trans, root, path, iref, 1798 -refs_to_drop, NULL); 1799 } else if (is_data) { 1800 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1801 } else { 1802 ret = btrfs_del_item(trans, root, path); 1803 } 1804 return ret; 1805 } 1806 1807 static int btrfs_issue_discard(struct block_device *bdev, 1808 u64 start, u64 len) 1809 { 1810 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1811 } 1812 1813 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1814 u64 num_bytes, u64 *actual_bytes) 1815 { 1816 int ret; 1817 u64 discarded_bytes = 0; 1818 struct btrfs_bio *bbio = NULL; 1819 1820 1821 /* Tell the block device(s) that the sectors can be discarded */ 1822 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1823 bytenr, &num_bytes, &bbio, 0); 1824 /* Error condition is -ENOMEM */ 1825 if (!ret) { 1826 struct btrfs_bio_stripe *stripe = bbio->stripes; 1827 int i; 1828 1829 1830 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1831 if (!stripe->dev->can_discard) 1832 continue; 1833 1834 ret = btrfs_issue_discard(stripe->dev->bdev, 1835 stripe->physical, 1836 stripe->length); 1837 if (!ret) 1838 discarded_bytes += stripe->length; 1839 else if (ret != -EOPNOTSUPP) 1840 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1841 1842 /* 1843 * Just in case we get back EOPNOTSUPP for some reason, 1844 * just ignore the return value so we don't screw up 1845 * people calling discard_extent. 1846 */ 1847 ret = 0; 1848 } 1849 kfree(bbio); 1850 } 1851 1852 if (actual_bytes) 1853 *actual_bytes = discarded_bytes; 1854 1855 1856 if (ret == -EOPNOTSUPP) 1857 ret = 0; 1858 return ret; 1859 } 1860 1861 /* Can return -ENOMEM */ 1862 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1863 struct btrfs_root *root, 1864 u64 bytenr, u64 num_bytes, u64 parent, 1865 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1866 { 1867 int ret; 1868 struct btrfs_fs_info *fs_info = root->fs_info; 1869 1870 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1871 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1872 1873 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1874 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1875 num_bytes, 1876 parent, root_objectid, (int)owner, 1877 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1878 } else { 1879 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1880 num_bytes, 1881 parent, root_objectid, owner, offset, 1882 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1883 } 1884 return ret; 1885 } 1886 1887 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1888 struct btrfs_root *root, 1889 u64 bytenr, u64 num_bytes, 1890 u64 parent, u64 root_objectid, 1891 u64 owner, u64 offset, int refs_to_add, 1892 struct btrfs_delayed_extent_op *extent_op) 1893 { 1894 struct btrfs_path *path; 1895 struct extent_buffer *leaf; 1896 struct btrfs_extent_item *item; 1897 u64 refs; 1898 int ret; 1899 int err = 0; 1900 1901 path = btrfs_alloc_path(); 1902 if (!path) 1903 return -ENOMEM; 1904 1905 path->reada = 1; 1906 path->leave_spinning = 1; 1907 /* this will setup the path even if it fails to insert the back ref */ 1908 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1909 path, bytenr, num_bytes, parent, 1910 root_objectid, owner, offset, 1911 refs_to_add, extent_op); 1912 if (ret == 0) 1913 goto out; 1914 1915 if (ret != -EAGAIN) { 1916 err = ret; 1917 goto out; 1918 } 1919 1920 leaf = path->nodes[0]; 1921 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1922 refs = btrfs_extent_refs(leaf, item); 1923 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1924 if (extent_op) 1925 __run_delayed_extent_op(extent_op, leaf, item); 1926 1927 btrfs_mark_buffer_dirty(leaf); 1928 btrfs_release_path(path); 1929 1930 path->reada = 1; 1931 path->leave_spinning = 1; 1932 1933 /* now insert the actual backref */ 1934 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1935 path, bytenr, parent, root_objectid, 1936 owner, offset, refs_to_add); 1937 if (ret) 1938 btrfs_abort_transaction(trans, root, ret); 1939 out: 1940 btrfs_free_path(path); 1941 return err; 1942 } 1943 1944 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1945 struct btrfs_root *root, 1946 struct btrfs_delayed_ref_node *node, 1947 struct btrfs_delayed_extent_op *extent_op, 1948 int insert_reserved) 1949 { 1950 int ret = 0; 1951 struct btrfs_delayed_data_ref *ref; 1952 struct btrfs_key ins; 1953 u64 parent = 0; 1954 u64 ref_root = 0; 1955 u64 flags = 0; 1956 1957 ins.objectid = node->bytenr; 1958 ins.offset = node->num_bytes; 1959 ins.type = BTRFS_EXTENT_ITEM_KEY; 1960 1961 ref = btrfs_delayed_node_to_data_ref(node); 1962 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1963 parent = ref->parent; 1964 else 1965 ref_root = ref->root; 1966 1967 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1968 if (extent_op) { 1969 BUG_ON(extent_op->update_key); 1970 flags |= extent_op->flags_to_set; 1971 } 1972 ret = alloc_reserved_file_extent(trans, root, 1973 parent, ref_root, flags, 1974 ref->objectid, ref->offset, 1975 &ins, node->ref_mod); 1976 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1977 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1978 node->num_bytes, parent, 1979 ref_root, ref->objectid, 1980 ref->offset, node->ref_mod, 1981 extent_op); 1982 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1983 ret = __btrfs_free_extent(trans, root, node->bytenr, 1984 node->num_bytes, parent, 1985 ref_root, ref->objectid, 1986 ref->offset, node->ref_mod, 1987 extent_op); 1988 } else { 1989 BUG(); 1990 } 1991 return ret; 1992 } 1993 1994 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1995 struct extent_buffer *leaf, 1996 struct btrfs_extent_item *ei) 1997 { 1998 u64 flags = btrfs_extent_flags(leaf, ei); 1999 if (extent_op->update_flags) { 2000 flags |= extent_op->flags_to_set; 2001 btrfs_set_extent_flags(leaf, ei, flags); 2002 } 2003 2004 if (extent_op->update_key) { 2005 struct btrfs_tree_block_info *bi; 2006 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2007 bi = (struct btrfs_tree_block_info *)(ei + 1); 2008 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2009 } 2010 } 2011 2012 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2013 struct btrfs_root *root, 2014 struct btrfs_delayed_ref_node *node, 2015 struct btrfs_delayed_extent_op *extent_op) 2016 { 2017 struct btrfs_key key; 2018 struct btrfs_path *path; 2019 struct btrfs_extent_item *ei; 2020 struct extent_buffer *leaf; 2021 u32 item_size; 2022 int ret; 2023 int err = 0; 2024 2025 if (trans->aborted) 2026 return 0; 2027 2028 path = btrfs_alloc_path(); 2029 if (!path) 2030 return -ENOMEM; 2031 2032 key.objectid = node->bytenr; 2033 key.type = BTRFS_EXTENT_ITEM_KEY; 2034 key.offset = node->num_bytes; 2035 2036 path->reada = 1; 2037 path->leave_spinning = 1; 2038 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2039 path, 0, 1); 2040 if (ret < 0) { 2041 err = ret; 2042 goto out; 2043 } 2044 if (ret > 0) { 2045 err = -EIO; 2046 goto out; 2047 } 2048 2049 leaf = path->nodes[0]; 2050 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2051 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2052 if (item_size < sizeof(*ei)) { 2053 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2054 path, (u64)-1, 0); 2055 if (ret < 0) { 2056 err = ret; 2057 goto out; 2058 } 2059 leaf = path->nodes[0]; 2060 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2061 } 2062 #endif 2063 BUG_ON(item_size < sizeof(*ei)); 2064 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2065 __run_delayed_extent_op(extent_op, leaf, ei); 2066 2067 btrfs_mark_buffer_dirty(leaf); 2068 out: 2069 btrfs_free_path(path); 2070 return err; 2071 } 2072 2073 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2074 struct btrfs_root *root, 2075 struct btrfs_delayed_ref_node *node, 2076 struct btrfs_delayed_extent_op *extent_op, 2077 int insert_reserved) 2078 { 2079 int ret = 0; 2080 struct btrfs_delayed_tree_ref *ref; 2081 struct btrfs_key ins; 2082 u64 parent = 0; 2083 u64 ref_root = 0; 2084 2085 ins.objectid = node->bytenr; 2086 ins.offset = node->num_bytes; 2087 ins.type = BTRFS_EXTENT_ITEM_KEY; 2088 2089 ref = btrfs_delayed_node_to_tree_ref(node); 2090 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2091 parent = ref->parent; 2092 else 2093 ref_root = ref->root; 2094 2095 BUG_ON(node->ref_mod != 1); 2096 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2097 BUG_ON(!extent_op || !extent_op->update_flags || 2098 !extent_op->update_key); 2099 ret = alloc_reserved_tree_block(trans, root, 2100 parent, ref_root, 2101 extent_op->flags_to_set, 2102 &extent_op->key, 2103 ref->level, &ins); 2104 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2105 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2106 node->num_bytes, parent, ref_root, 2107 ref->level, 0, 1, extent_op); 2108 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2109 ret = __btrfs_free_extent(trans, root, node->bytenr, 2110 node->num_bytes, parent, ref_root, 2111 ref->level, 0, 1, extent_op); 2112 } else { 2113 BUG(); 2114 } 2115 return ret; 2116 } 2117 2118 /* helper function to actually process a single delayed ref entry */ 2119 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2120 struct btrfs_root *root, 2121 struct btrfs_delayed_ref_node *node, 2122 struct btrfs_delayed_extent_op *extent_op, 2123 int insert_reserved) 2124 { 2125 int ret = 0; 2126 2127 if (trans->aborted) 2128 return 0; 2129 2130 if (btrfs_delayed_ref_is_head(node)) { 2131 struct btrfs_delayed_ref_head *head; 2132 /* 2133 * we've hit the end of the chain and we were supposed 2134 * to insert this extent into the tree. But, it got 2135 * deleted before we ever needed to insert it, so all 2136 * we have to do is clean up the accounting 2137 */ 2138 BUG_ON(extent_op); 2139 head = btrfs_delayed_node_to_head(node); 2140 if (insert_reserved) { 2141 btrfs_pin_extent(root, node->bytenr, 2142 node->num_bytes, 1); 2143 if (head->is_data) { 2144 ret = btrfs_del_csums(trans, root, 2145 node->bytenr, 2146 node->num_bytes); 2147 } 2148 } 2149 return ret; 2150 } 2151 2152 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2153 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2154 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2155 insert_reserved); 2156 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2157 node->type == BTRFS_SHARED_DATA_REF_KEY) 2158 ret = run_delayed_data_ref(trans, root, node, extent_op, 2159 insert_reserved); 2160 else 2161 BUG(); 2162 return ret; 2163 } 2164 2165 static noinline struct btrfs_delayed_ref_node * 2166 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2167 { 2168 struct rb_node *node; 2169 struct btrfs_delayed_ref_node *ref; 2170 int action = BTRFS_ADD_DELAYED_REF; 2171 again: 2172 /* 2173 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2174 * this prevents ref count from going down to zero when 2175 * there still are pending delayed ref. 2176 */ 2177 node = rb_prev(&head->node.rb_node); 2178 while (1) { 2179 if (!node) 2180 break; 2181 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2182 rb_node); 2183 if (ref->bytenr != head->node.bytenr) 2184 break; 2185 if (ref->action == action) 2186 return ref; 2187 node = rb_prev(node); 2188 } 2189 if (action == BTRFS_ADD_DELAYED_REF) { 2190 action = BTRFS_DROP_DELAYED_REF; 2191 goto again; 2192 } 2193 return NULL; 2194 } 2195 2196 /* 2197 * Returns 0 on success or if called with an already aborted transaction. 2198 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2199 */ 2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2201 struct btrfs_root *root, 2202 struct list_head *cluster) 2203 { 2204 struct btrfs_delayed_ref_root *delayed_refs; 2205 struct btrfs_delayed_ref_node *ref; 2206 struct btrfs_delayed_ref_head *locked_ref = NULL; 2207 struct btrfs_delayed_extent_op *extent_op; 2208 struct btrfs_fs_info *fs_info = root->fs_info; 2209 int ret; 2210 int count = 0; 2211 int must_insert_reserved = 0; 2212 2213 delayed_refs = &trans->transaction->delayed_refs; 2214 while (1) { 2215 if (!locked_ref) { 2216 /* pick a new head ref from the cluster list */ 2217 if (list_empty(cluster)) 2218 break; 2219 2220 locked_ref = list_entry(cluster->next, 2221 struct btrfs_delayed_ref_head, cluster); 2222 2223 /* grab the lock that says we are going to process 2224 * all the refs for this head */ 2225 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2226 2227 /* 2228 * we may have dropped the spin lock to get the head 2229 * mutex lock, and that might have given someone else 2230 * time to free the head. If that's true, it has been 2231 * removed from our list and we can move on. 2232 */ 2233 if (ret == -EAGAIN) { 2234 locked_ref = NULL; 2235 count++; 2236 continue; 2237 } 2238 } 2239 2240 /* 2241 * We need to try and merge add/drops of the same ref since we 2242 * can run into issues with relocate dropping the implicit ref 2243 * and then it being added back again before the drop can 2244 * finish. If we merged anything we need to re-loop so we can 2245 * get a good ref. 2246 */ 2247 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2248 locked_ref); 2249 2250 /* 2251 * locked_ref is the head node, so we have to go one 2252 * node back for any delayed ref updates 2253 */ 2254 ref = select_delayed_ref(locked_ref); 2255 2256 if (ref && ref->seq && 2257 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2258 /* 2259 * there are still refs with lower seq numbers in the 2260 * process of being added. Don't run this ref yet. 2261 */ 2262 list_del_init(&locked_ref->cluster); 2263 btrfs_delayed_ref_unlock(locked_ref); 2264 locked_ref = NULL; 2265 delayed_refs->num_heads_ready++; 2266 spin_unlock(&delayed_refs->lock); 2267 cond_resched(); 2268 spin_lock(&delayed_refs->lock); 2269 continue; 2270 } 2271 2272 /* 2273 * record the must insert reserved flag before we 2274 * drop the spin lock. 2275 */ 2276 must_insert_reserved = locked_ref->must_insert_reserved; 2277 locked_ref->must_insert_reserved = 0; 2278 2279 extent_op = locked_ref->extent_op; 2280 locked_ref->extent_op = NULL; 2281 2282 if (!ref) { 2283 /* All delayed refs have been processed, Go ahead 2284 * and send the head node to run_one_delayed_ref, 2285 * so that any accounting fixes can happen 2286 */ 2287 ref = &locked_ref->node; 2288 2289 if (extent_op && must_insert_reserved) { 2290 btrfs_free_delayed_extent_op(extent_op); 2291 extent_op = NULL; 2292 } 2293 2294 if (extent_op) { 2295 spin_unlock(&delayed_refs->lock); 2296 2297 ret = run_delayed_extent_op(trans, root, 2298 ref, extent_op); 2299 btrfs_free_delayed_extent_op(extent_op); 2300 2301 if (ret) { 2302 printk(KERN_DEBUG 2303 "btrfs: run_delayed_extent_op " 2304 "returned %d\n", ret); 2305 spin_lock(&delayed_refs->lock); 2306 btrfs_delayed_ref_unlock(locked_ref); 2307 return ret; 2308 } 2309 2310 goto next; 2311 } 2312 } 2313 2314 ref->in_tree = 0; 2315 rb_erase(&ref->rb_node, &delayed_refs->root); 2316 delayed_refs->num_entries--; 2317 if (!btrfs_delayed_ref_is_head(ref)) { 2318 /* 2319 * when we play the delayed ref, also correct the 2320 * ref_mod on head 2321 */ 2322 switch (ref->action) { 2323 case BTRFS_ADD_DELAYED_REF: 2324 case BTRFS_ADD_DELAYED_EXTENT: 2325 locked_ref->node.ref_mod -= ref->ref_mod; 2326 break; 2327 case BTRFS_DROP_DELAYED_REF: 2328 locked_ref->node.ref_mod += ref->ref_mod; 2329 break; 2330 default: 2331 WARN_ON(1); 2332 } 2333 } 2334 spin_unlock(&delayed_refs->lock); 2335 2336 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2337 must_insert_reserved); 2338 2339 btrfs_free_delayed_extent_op(extent_op); 2340 if (ret) { 2341 btrfs_delayed_ref_unlock(locked_ref); 2342 btrfs_put_delayed_ref(ref); 2343 printk(KERN_DEBUG 2344 "btrfs: run_one_delayed_ref returned %d\n", ret); 2345 spin_lock(&delayed_refs->lock); 2346 return ret; 2347 } 2348 2349 /* 2350 * If this node is a head, that means all the refs in this head 2351 * have been dealt with, and we will pick the next head to deal 2352 * with, so we must unlock the head and drop it from the cluster 2353 * list before we release it. 2354 */ 2355 if (btrfs_delayed_ref_is_head(ref)) { 2356 list_del_init(&locked_ref->cluster); 2357 btrfs_delayed_ref_unlock(locked_ref); 2358 locked_ref = NULL; 2359 } 2360 btrfs_put_delayed_ref(ref); 2361 count++; 2362 next: 2363 cond_resched(); 2364 spin_lock(&delayed_refs->lock); 2365 } 2366 return count; 2367 } 2368 2369 #ifdef SCRAMBLE_DELAYED_REFS 2370 /* 2371 * Normally delayed refs get processed in ascending bytenr order. This 2372 * correlates in most cases to the order added. To expose dependencies on this 2373 * order, we start to process the tree in the middle instead of the beginning 2374 */ 2375 static u64 find_middle(struct rb_root *root) 2376 { 2377 struct rb_node *n = root->rb_node; 2378 struct btrfs_delayed_ref_node *entry; 2379 int alt = 1; 2380 u64 middle; 2381 u64 first = 0, last = 0; 2382 2383 n = rb_first(root); 2384 if (n) { 2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2386 first = entry->bytenr; 2387 } 2388 n = rb_last(root); 2389 if (n) { 2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2391 last = entry->bytenr; 2392 } 2393 n = root->rb_node; 2394 2395 while (n) { 2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2397 WARN_ON(!entry->in_tree); 2398 2399 middle = entry->bytenr; 2400 2401 if (alt) 2402 n = n->rb_left; 2403 else 2404 n = n->rb_right; 2405 2406 alt = 1 - alt; 2407 } 2408 return middle; 2409 } 2410 #endif 2411 2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2413 struct btrfs_fs_info *fs_info) 2414 { 2415 struct qgroup_update *qgroup_update; 2416 int ret = 0; 2417 2418 if (list_empty(&trans->qgroup_ref_list) != 2419 !trans->delayed_ref_elem.seq) { 2420 /* list without seq or seq without list */ 2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", 2422 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2423 trans->delayed_ref_elem.seq); 2424 BUG(); 2425 } 2426 2427 if (!trans->delayed_ref_elem.seq) 2428 return 0; 2429 2430 while (!list_empty(&trans->qgroup_ref_list)) { 2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2432 struct qgroup_update, list); 2433 list_del(&qgroup_update->list); 2434 if (!ret) 2435 ret = btrfs_qgroup_account_ref( 2436 trans, fs_info, qgroup_update->node, 2437 qgroup_update->extent_op); 2438 kfree(qgroup_update); 2439 } 2440 2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2442 2443 return ret; 2444 } 2445 2446 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, 2447 int count) 2448 { 2449 int val = atomic_read(&delayed_refs->ref_seq); 2450 2451 if (val < seq || val >= seq + count) 2452 return 1; 2453 return 0; 2454 } 2455 2456 /* 2457 * this starts processing the delayed reference count updates and 2458 * extent insertions we have queued up so far. count can be 2459 * 0, which means to process everything in the tree at the start 2460 * of the run (but not newly added entries), or it can be some target 2461 * number you'd like to process. 2462 * 2463 * Returns 0 on success or if called with an aborted transaction 2464 * Returns <0 on error and aborts the transaction 2465 */ 2466 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2467 struct btrfs_root *root, unsigned long count) 2468 { 2469 struct rb_node *node; 2470 struct btrfs_delayed_ref_root *delayed_refs; 2471 struct btrfs_delayed_ref_node *ref; 2472 struct list_head cluster; 2473 int ret; 2474 u64 delayed_start; 2475 int run_all = count == (unsigned long)-1; 2476 int run_most = 0; 2477 int loops; 2478 2479 /* We'll clean this up in btrfs_cleanup_transaction */ 2480 if (trans->aborted) 2481 return 0; 2482 2483 if (root == root->fs_info->extent_root) 2484 root = root->fs_info->tree_root; 2485 2486 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2487 2488 delayed_refs = &trans->transaction->delayed_refs; 2489 INIT_LIST_HEAD(&cluster); 2490 if (count == 0) { 2491 count = delayed_refs->num_entries * 2; 2492 run_most = 1; 2493 } 2494 2495 if (!run_all && !run_most) { 2496 int old; 2497 int seq = atomic_read(&delayed_refs->ref_seq); 2498 2499 progress: 2500 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2501 if (old) { 2502 DEFINE_WAIT(__wait); 2503 if (delayed_refs->num_entries < 16348) 2504 return 0; 2505 2506 prepare_to_wait(&delayed_refs->wait, &__wait, 2507 TASK_UNINTERRUPTIBLE); 2508 2509 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2510 if (old) { 2511 schedule(); 2512 finish_wait(&delayed_refs->wait, &__wait); 2513 2514 if (!refs_newer(delayed_refs, seq, 256)) 2515 goto progress; 2516 else 2517 return 0; 2518 } else { 2519 finish_wait(&delayed_refs->wait, &__wait); 2520 goto again; 2521 } 2522 } 2523 2524 } else { 2525 atomic_inc(&delayed_refs->procs_running_refs); 2526 } 2527 2528 again: 2529 loops = 0; 2530 spin_lock(&delayed_refs->lock); 2531 2532 #ifdef SCRAMBLE_DELAYED_REFS 2533 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2534 #endif 2535 2536 while (1) { 2537 if (!(run_all || run_most) && 2538 delayed_refs->num_heads_ready < 64) 2539 break; 2540 2541 /* 2542 * go find something we can process in the rbtree. We start at 2543 * the beginning of the tree, and then build a cluster 2544 * of refs to process starting at the first one we are able to 2545 * lock 2546 */ 2547 delayed_start = delayed_refs->run_delayed_start; 2548 ret = btrfs_find_ref_cluster(trans, &cluster, 2549 delayed_refs->run_delayed_start); 2550 if (ret) 2551 break; 2552 2553 ret = run_clustered_refs(trans, root, &cluster); 2554 if (ret < 0) { 2555 btrfs_release_ref_cluster(&cluster); 2556 spin_unlock(&delayed_refs->lock); 2557 btrfs_abort_transaction(trans, root, ret); 2558 atomic_dec(&delayed_refs->procs_running_refs); 2559 return ret; 2560 } 2561 2562 atomic_add(ret, &delayed_refs->ref_seq); 2563 2564 count -= min_t(unsigned long, ret, count); 2565 2566 if (count == 0) 2567 break; 2568 2569 if (delayed_start >= delayed_refs->run_delayed_start) { 2570 if (loops == 0) { 2571 /* 2572 * btrfs_find_ref_cluster looped. let's do one 2573 * more cycle. if we don't run any delayed ref 2574 * during that cycle (because we can't because 2575 * all of them are blocked), bail out. 2576 */ 2577 loops = 1; 2578 } else { 2579 /* 2580 * no runnable refs left, stop trying 2581 */ 2582 BUG_ON(run_all); 2583 break; 2584 } 2585 } 2586 if (ret) { 2587 /* refs were run, let's reset staleness detection */ 2588 loops = 0; 2589 } 2590 } 2591 2592 if (run_all) { 2593 if (!list_empty(&trans->new_bgs)) { 2594 spin_unlock(&delayed_refs->lock); 2595 btrfs_create_pending_block_groups(trans, root); 2596 spin_lock(&delayed_refs->lock); 2597 } 2598 2599 node = rb_first(&delayed_refs->root); 2600 if (!node) 2601 goto out; 2602 count = (unsigned long)-1; 2603 2604 while (node) { 2605 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2606 rb_node); 2607 if (btrfs_delayed_ref_is_head(ref)) { 2608 struct btrfs_delayed_ref_head *head; 2609 2610 head = btrfs_delayed_node_to_head(ref); 2611 atomic_inc(&ref->refs); 2612 2613 spin_unlock(&delayed_refs->lock); 2614 /* 2615 * Mutex was contended, block until it's 2616 * released and try again 2617 */ 2618 mutex_lock(&head->mutex); 2619 mutex_unlock(&head->mutex); 2620 2621 btrfs_put_delayed_ref(ref); 2622 cond_resched(); 2623 goto again; 2624 } 2625 node = rb_next(node); 2626 } 2627 spin_unlock(&delayed_refs->lock); 2628 schedule_timeout(1); 2629 goto again; 2630 } 2631 out: 2632 atomic_dec(&delayed_refs->procs_running_refs); 2633 smp_mb(); 2634 if (waitqueue_active(&delayed_refs->wait)) 2635 wake_up(&delayed_refs->wait); 2636 2637 spin_unlock(&delayed_refs->lock); 2638 assert_qgroups_uptodate(trans); 2639 return 0; 2640 } 2641 2642 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2643 struct btrfs_root *root, 2644 u64 bytenr, u64 num_bytes, u64 flags, 2645 int is_data) 2646 { 2647 struct btrfs_delayed_extent_op *extent_op; 2648 int ret; 2649 2650 extent_op = btrfs_alloc_delayed_extent_op(); 2651 if (!extent_op) 2652 return -ENOMEM; 2653 2654 extent_op->flags_to_set = flags; 2655 extent_op->update_flags = 1; 2656 extent_op->update_key = 0; 2657 extent_op->is_data = is_data ? 1 : 0; 2658 2659 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2660 num_bytes, extent_op); 2661 if (ret) 2662 btrfs_free_delayed_extent_op(extent_op); 2663 return ret; 2664 } 2665 2666 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2667 struct btrfs_root *root, 2668 struct btrfs_path *path, 2669 u64 objectid, u64 offset, u64 bytenr) 2670 { 2671 struct btrfs_delayed_ref_head *head; 2672 struct btrfs_delayed_ref_node *ref; 2673 struct btrfs_delayed_data_ref *data_ref; 2674 struct btrfs_delayed_ref_root *delayed_refs; 2675 struct rb_node *node; 2676 int ret = 0; 2677 2678 ret = -ENOENT; 2679 delayed_refs = &trans->transaction->delayed_refs; 2680 spin_lock(&delayed_refs->lock); 2681 head = btrfs_find_delayed_ref_head(trans, bytenr); 2682 if (!head) 2683 goto out; 2684 2685 if (!mutex_trylock(&head->mutex)) { 2686 atomic_inc(&head->node.refs); 2687 spin_unlock(&delayed_refs->lock); 2688 2689 btrfs_release_path(path); 2690 2691 /* 2692 * Mutex was contended, block until it's released and let 2693 * caller try again 2694 */ 2695 mutex_lock(&head->mutex); 2696 mutex_unlock(&head->mutex); 2697 btrfs_put_delayed_ref(&head->node); 2698 return -EAGAIN; 2699 } 2700 2701 node = rb_prev(&head->node.rb_node); 2702 if (!node) 2703 goto out_unlock; 2704 2705 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2706 2707 if (ref->bytenr != bytenr) 2708 goto out_unlock; 2709 2710 ret = 1; 2711 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2712 goto out_unlock; 2713 2714 data_ref = btrfs_delayed_node_to_data_ref(ref); 2715 2716 node = rb_prev(node); 2717 if (node) { 2718 int seq = ref->seq; 2719 2720 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2721 if (ref->bytenr == bytenr && ref->seq == seq) 2722 goto out_unlock; 2723 } 2724 2725 if (data_ref->root != root->root_key.objectid || 2726 data_ref->objectid != objectid || data_ref->offset != offset) 2727 goto out_unlock; 2728 2729 ret = 0; 2730 out_unlock: 2731 mutex_unlock(&head->mutex); 2732 out: 2733 spin_unlock(&delayed_refs->lock); 2734 return ret; 2735 } 2736 2737 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2738 struct btrfs_root *root, 2739 struct btrfs_path *path, 2740 u64 objectid, u64 offset, u64 bytenr) 2741 { 2742 struct btrfs_root *extent_root = root->fs_info->extent_root; 2743 struct extent_buffer *leaf; 2744 struct btrfs_extent_data_ref *ref; 2745 struct btrfs_extent_inline_ref *iref; 2746 struct btrfs_extent_item *ei; 2747 struct btrfs_key key; 2748 u32 item_size; 2749 int ret; 2750 2751 key.objectid = bytenr; 2752 key.offset = (u64)-1; 2753 key.type = BTRFS_EXTENT_ITEM_KEY; 2754 2755 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2756 if (ret < 0) 2757 goto out; 2758 BUG_ON(ret == 0); /* Corruption */ 2759 2760 ret = -ENOENT; 2761 if (path->slots[0] == 0) 2762 goto out; 2763 2764 path->slots[0]--; 2765 leaf = path->nodes[0]; 2766 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2767 2768 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2769 goto out; 2770 2771 ret = 1; 2772 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2773 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2774 if (item_size < sizeof(*ei)) { 2775 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2776 goto out; 2777 } 2778 #endif 2779 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2780 2781 if (item_size != sizeof(*ei) + 2782 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2783 goto out; 2784 2785 if (btrfs_extent_generation(leaf, ei) <= 2786 btrfs_root_last_snapshot(&root->root_item)) 2787 goto out; 2788 2789 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2790 if (btrfs_extent_inline_ref_type(leaf, iref) != 2791 BTRFS_EXTENT_DATA_REF_KEY) 2792 goto out; 2793 2794 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2795 if (btrfs_extent_refs(leaf, ei) != 2796 btrfs_extent_data_ref_count(leaf, ref) || 2797 btrfs_extent_data_ref_root(leaf, ref) != 2798 root->root_key.objectid || 2799 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2800 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2801 goto out; 2802 2803 ret = 0; 2804 out: 2805 return ret; 2806 } 2807 2808 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2809 struct btrfs_root *root, 2810 u64 objectid, u64 offset, u64 bytenr) 2811 { 2812 struct btrfs_path *path; 2813 int ret; 2814 int ret2; 2815 2816 path = btrfs_alloc_path(); 2817 if (!path) 2818 return -ENOENT; 2819 2820 do { 2821 ret = check_committed_ref(trans, root, path, objectid, 2822 offset, bytenr); 2823 if (ret && ret != -ENOENT) 2824 goto out; 2825 2826 ret2 = check_delayed_ref(trans, root, path, objectid, 2827 offset, bytenr); 2828 } while (ret2 == -EAGAIN); 2829 2830 if (ret2 && ret2 != -ENOENT) { 2831 ret = ret2; 2832 goto out; 2833 } 2834 2835 if (ret != -ENOENT || ret2 != -ENOENT) 2836 ret = 0; 2837 out: 2838 btrfs_free_path(path); 2839 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2840 WARN_ON(ret > 0); 2841 return ret; 2842 } 2843 2844 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2845 struct btrfs_root *root, 2846 struct extent_buffer *buf, 2847 int full_backref, int inc, int for_cow) 2848 { 2849 u64 bytenr; 2850 u64 num_bytes; 2851 u64 parent; 2852 u64 ref_root; 2853 u32 nritems; 2854 struct btrfs_key key; 2855 struct btrfs_file_extent_item *fi; 2856 int i; 2857 int level; 2858 int ret = 0; 2859 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2860 u64, u64, u64, u64, u64, u64, int); 2861 2862 ref_root = btrfs_header_owner(buf); 2863 nritems = btrfs_header_nritems(buf); 2864 level = btrfs_header_level(buf); 2865 2866 if (!root->ref_cows && level == 0) 2867 return 0; 2868 2869 if (inc) 2870 process_func = btrfs_inc_extent_ref; 2871 else 2872 process_func = btrfs_free_extent; 2873 2874 if (full_backref) 2875 parent = buf->start; 2876 else 2877 parent = 0; 2878 2879 for (i = 0; i < nritems; i++) { 2880 if (level == 0) { 2881 btrfs_item_key_to_cpu(buf, &key, i); 2882 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2883 continue; 2884 fi = btrfs_item_ptr(buf, i, 2885 struct btrfs_file_extent_item); 2886 if (btrfs_file_extent_type(buf, fi) == 2887 BTRFS_FILE_EXTENT_INLINE) 2888 continue; 2889 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2890 if (bytenr == 0) 2891 continue; 2892 2893 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2894 key.offset -= btrfs_file_extent_offset(buf, fi); 2895 ret = process_func(trans, root, bytenr, num_bytes, 2896 parent, ref_root, key.objectid, 2897 key.offset, for_cow); 2898 if (ret) 2899 goto fail; 2900 } else { 2901 bytenr = btrfs_node_blockptr(buf, i); 2902 num_bytes = btrfs_level_size(root, level - 1); 2903 ret = process_func(trans, root, bytenr, num_bytes, 2904 parent, ref_root, level - 1, 0, 2905 for_cow); 2906 if (ret) 2907 goto fail; 2908 } 2909 } 2910 return 0; 2911 fail: 2912 return ret; 2913 } 2914 2915 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2916 struct extent_buffer *buf, int full_backref, int for_cow) 2917 { 2918 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2919 } 2920 2921 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2922 struct extent_buffer *buf, int full_backref, int for_cow) 2923 { 2924 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2925 } 2926 2927 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2928 struct btrfs_root *root, 2929 struct btrfs_path *path, 2930 struct btrfs_block_group_cache *cache) 2931 { 2932 int ret; 2933 struct btrfs_root *extent_root = root->fs_info->extent_root; 2934 unsigned long bi; 2935 struct extent_buffer *leaf; 2936 2937 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2938 if (ret < 0) 2939 goto fail; 2940 BUG_ON(ret); /* Corruption */ 2941 2942 leaf = path->nodes[0]; 2943 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2944 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2945 btrfs_mark_buffer_dirty(leaf); 2946 btrfs_release_path(path); 2947 fail: 2948 if (ret) { 2949 btrfs_abort_transaction(trans, root, ret); 2950 return ret; 2951 } 2952 return 0; 2953 2954 } 2955 2956 static struct btrfs_block_group_cache * 2957 next_block_group(struct btrfs_root *root, 2958 struct btrfs_block_group_cache *cache) 2959 { 2960 struct rb_node *node; 2961 spin_lock(&root->fs_info->block_group_cache_lock); 2962 node = rb_next(&cache->cache_node); 2963 btrfs_put_block_group(cache); 2964 if (node) { 2965 cache = rb_entry(node, struct btrfs_block_group_cache, 2966 cache_node); 2967 btrfs_get_block_group(cache); 2968 } else 2969 cache = NULL; 2970 spin_unlock(&root->fs_info->block_group_cache_lock); 2971 return cache; 2972 } 2973 2974 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2975 struct btrfs_trans_handle *trans, 2976 struct btrfs_path *path) 2977 { 2978 struct btrfs_root *root = block_group->fs_info->tree_root; 2979 struct inode *inode = NULL; 2980 u64 alloc_hint = 0; 2981 int dcs = BTRFS_DC_ERROR; 2982 int num_pages = 0; 2983 int retries = 0; 2984 int ret = 0; 2985 2986 /* 2987 * If this block group is smaller than 100 megs don't bother caching the 2988 * block group. 2989 */ 2990 if (block_group->key.offset < (100 * 1024 * 1024)) { 2991 spin_lock(&block_group->lock); 2992 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2993 spin_unlock(&block_group->lock); 2994 return 0; 2995 } 2996 2997 again: 2998 inode = lookup_free_space_inode(root, block_group, path); 2999 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3000 ret = PTR_ERR(inode); 3001 btrfs_release_path(path); 3002 goto out; 3003 } 3004 3005 if (IS_ERR(inode)) { 3006 BUG_ON(retries); 3007 retries++; 3008 3009 if (block_group->ro) 3010 goto out_free; 3011 3012 ret = create_free_space_inode(root, trans, block_group, path); 3013 if (ret) 3014 goto out_free; 3015 goto again; 3016 } 3017 3018 /* We've already setup this transaction, go ahead and exit */ 3019 if (block_group->cache_generation == trans->transid && 3020 i_size_read(inode)) { 3021 dcs = BTRFS_DC_SETUP; 3022 goto out_put; 3023 } 3024 3025 /* 3026 * We want to set the generation to 0, that way if anything goes wrong 3027 * from here on out we know not to trust this cache when we load up next 3028 * time. 3029 */ 3030 BTRFS_I(inode)->generation = 0; 3031 ret = btrfs_update_inode(trans, root, inode); 3032 WARN_ON(ret); 3033 3034 if (i_size_read(inode) > 0) { 3035 ret = btrfs_truncate_free_space_cache(root, trans, path, 3036 inode); 3037 if (ret) 3038 goto out_put; 3039 } 3040 3041 spin_lock(&block_group->lock); 3042 if (block_group->cached != BTRFS_CACHE_FINISHED || 3043 !btrfs_test_opt(root, SPACE_CACHE)) { 3044 /* 3045 * don't bother trying to write stuff out _if_ 3046 * a) we're not cached, 3047 * b) we're with nospace_cache mount option. 3048 */ 3049 dcs = BTRFS_DC_WRITTEN; 3050 spin_unlock(&block_group->lock); 3051 goto out_put; 3052 } 3053 spin_unlock(&block_group->lock); 3054 3055 /* 3056 * Try to preallocate enough space based on how big the block group is. 3057 * Keep in mind this has to include any pinned space which could end up 3058 * taking up quite a bit since it's not folded into the other space 3059 * cache. 3060 */ 3061 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3062 if (!num_pages) 3063 num_pages = 1; 3064 3065 num_pages *= 16; 3066 num_pages *= PAGE_CACHE_SIZE; 3067 3068 ret = btrfs_check_data_free_space(inode, num_pages); 3069 if (ret) 3070 goto out_put; 3071 3072 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3073 num_pages, num_pages, 3074 &alloc_hint); 3075 if (!ret) 3076 dcs = BTRFS_DC_SETUP; 3077 btrfs_free_reserved_data_space(inode, num_pages); 3078 3079 out_put: 3080 iput(inode); 3081 out_free: 3082 btrfs_release_path(path); 3083 out: 3084 spin_lock(&block_group->lock); 3085 if (!ret && dcs == BTRFS_DC_SETUP) 3086 block_group->cache_generation = trans->transid; 3087 block_group->disk_cache_state = dcs; 3088 spin_unlock(&block_group->lock); 3089 3090 return ret; 3091 } 3092 3093 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3094 struct btrfs_root *root) 3095 { 3096 struct btrfs_block_group_cache *cache; 3097 int err = 0; 3098 struct btrfs_path *path; 3099 u64 last = 0; 3100 3101 path = btrfs_alloc_path(); 3102 if (!path) 3103 return -ENOMEM; 3104 3105 again: 3106 while (1) { 3107 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3108 while (cache) { 3109 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3110 break; 3111 cache = next_block_group(root, cache); 3112 } 3113 if (!cache) { 3114 if (last == 0) 3115 break; 3116 last = 0; 3117 continue; 3118 } 3119 err = cache_save_setup(cache, trans, path); 3120 last = cache->key.objectid + cache->key.offset; 3121 btrfs_put_block_group(cache); 3122 } 3123 3124 while (1) { 3125 if (last == 0) { 3126 err = btrfs_run_delayed_refs(trans, root, 3127 (unsigned long)-1); 3128 if (err) /* File system offline */ 3129 goto out; 3130 } 3131 3132 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3133 while (cache) { 3134 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3135 btrfs_put_block_group(cache); 3136 goto again; 3137 } 3138 3139 if (cache->dirty) 3140 break; 3141 cache = next_block_group(root, cache); 3142 } 3143 if (!cache) { 3144 if (last == 0) 3145 break; 3146 last = 0; 3147 continue; 3148 } 3149 3150 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3151 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3152 cache->dirty = 0; 3153 last = cache->key.objectid + cache->key.offset; 3154 3155 err = write_one_cache_group(trans, root, path, cache); 3156 if (err) /* File system offline */ 3157 goto out; 3158 3159 btrfs_put_block_group(cache); 3160 } 3161 3162 while (1) { 3163 /* 3164 * I don't think this is needed since we're just marking our 3165 * preallocated extent as written, but just in case it can't 3166 * hurt. 3167 */ 3168 if (last == 0) { 3169 err = btrfs_run_delayed_refs(trans, root, 3170 (unsigned long)-1); 3171 if (err) /* File system offline */ 3172 goto out; 3173 } 3174 3175 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3176 while (cache) { 3177 /* 3178 * Really this shouldn't happen, but it could if we 3179 * couldn't write the entire preallocated extent and 3180 * splitting the extent resulted in a new block. 3181 */ 3182 if (cache->dirty) { 3183 btrfs_put_block_group(cache); 3184 goto again; 3185 } 3186 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3187 break; 3188 cache = next_block_group(root, cache); 3189 } 3190 if (!cache) { 3191 if (last == 0) 3192 break; 3193 last = 0; 3194 continue; 3195 } 3196 3197 err = btrfs_write_out_cache(root, trans, cache, path); 3198 3199 /* 3200 * If we didn't have an error then the cache state is still 3201 * NEED_WRITE, so we can set it to WRITTEN. 3202 */ 3203 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3204 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3205 last = cache->key.objectid + cache->key.offset; 3206 btrfs_put_block_group(cache); 3207 } 3208 out: 3209 3210 btrfs_free_path(path); 3211 return err; 3212 } 3213 3214 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3215 { 3216 struct btrfs_block_group_cache *block_group; 3217 int readonly = 0; 3218 3219 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3220 if (!block_group || block_group->ro) 3221 readonly = 1; 3222 if (block_group) 3223 btrfs_put_block_group(block_group); 3224 return readonly; 3225 } 3226 3227 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3228 u64 total_bytes, u64 bytes_used, 3229 struct btrfs_space_info **space_info) 3230 { 3231 struct btrfs_space_info *found; 3232 int i; 3233 int factor; 3234 3235 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3236 BTRFS_BLOCK_GROUP_RAID10)) 3237 factor = 2; 3238 else 3239 factor = 1; 3240 3241 found = __find_space_info(info, flags); 3242 if (found) { 3243 spin_lock(&found->lock); 3244 found->total_bytes += total_bytes; 3245 found->disk_total += total_bytes * factor; 3246 found->bytes_used += bytes_used; 3247 found->disk_used += bytes_used * factor; 3248 found->full = 0; 3249 spin_unlock(&found->lock); 3250 *space_info = found; 3251 return 0; 3252 } 3253 found = kzalloc(sizeof(*found), GFP_NOFS); 3254 if (!found) 3255 return -ENOMEM; 3256 3257 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3258 INIT_LIST_HEAD(&found->block_groups[i]); 3259 init_rwsem(&found->groups_sem); 3260 spin_lock_init(&found->lock); 3261 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3262 found->total_bytes = total_bytes; 3263 found->disk_total = total_bytes * factor; 3264 found->bytes_used = bytes_used; 3265 found->disk_used = bytes_used * factor; 3266 found->bytes_pinned = 0; 3267 found->bytes_reserved = 0; 3268 found->bytes_readonly = 0; 3269 found->bytes_may_use = 0; 3270 found->full = 0; 3271 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3272 found->chunk_alloc = 0; 3273 found->flush = 0; 3274 init_waitqueue_head(&found->wait); 3275 *space_info = found; 3276 list_add_rcu(&found->list, &info->space_info); 3277 if (flags & BTRFS_BLOCK_GROUP_DATA) 3278 info->data_sinfo = found; 3279 return 0; 3280 } 3281 3282 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3283 { 3284 u64 extra_flags = chunk_to_extended(flags) & 3285 BTRFS_EXTENDED_PROFILE_MASK; 3286 3287 write_seqlock(&fs_info->profiles_lock); 3288 if (flags & BTRFS_BLOCK_GROUP_DATA) 3289 fs_info->avail_data_alloc_bits |= extra_flags; 3290 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3291 fs_info->avail_metadata_alloc_bits |= extra_flags; 3292 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3293 fs_info->avail_system_alloc_bits |= extra_flags; 3294 write_sequnlock(&fs_info->profiles_lock); 3295 } 3296 3297 /* 3298 * returns target flags in extended format or 0 if restripe for this 3299 * chunk_type is not in progress 3300 * 3301 * should be called with either volume_mutex or balance_lock held 3302 */ 3303 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3304 { 3305 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3306 u64 target = 0; 3307 3308 if (!bctl) 3309 return 0; 3310 3311 if (flags & BTRFS_BLOCK_GROUP_DATA && 3312 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3313 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3314 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3315 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3316 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3317 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3318 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3319 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3320 } 3321 3322 return target; 3323 } 3324 3325 /* 3326 * @flags: available profiles in extended format (see ctree.h) 3327 * 3328 * Returns reduced profile in chunk format. If profile changing is in 3329 * progress (either running or paused) picks the target profile (if it's 3330 * already available), otherwise falls back to plain reducing. 3331 */ 3332 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3333 { 3334 /* 3335 * we add in the count of missing devices because we want 3336 * to make sure that any RAID levels on a degraded FS 3337 * continue to be honored. 3338 */ 3339 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3340 root->fs_info->fs_devices->missing_devices; 3341 u64 target; 3342 u64 tmp; 3343 3344 /* 3345 * see if restripe for this chunk_type is in progress, if so 3346 * try to reduce to the target profile 3347 */ 3348 spin_lock(&root->fs_info->balance_lock); 3349 target = get_restripe_target(root->fs_info, flags); 3350 if (target) { 3351 /* pick target profile only if it's already available */ 3352 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3353 spin_unlock(&root->fs_info->balance_lock); 3354 return extended_to_chunk(target); 3355 } 3356 } 3357 spin_unlock(&root->fs_info->balance_lock); 3358 3359 /* First, mask out the RAID levels which aren't possible */ 3360 if (num_devices == 1) 3361 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3362 BTRFS_BLOCK_GROUP_RAID5); 3363 if (num_devices < 3) 3364 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3365 if (num_devices < 4) 3366 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3367 3368 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3369 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3370 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3371 flags &= ~tmp; 3372 3373 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3374 tmp = BTRFS_BLOCK_GROUP_RAID6; 3375 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3376 tmp = BTRFS_BLOCK_GROUP_RAID5; 3377 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3378 tmp = BTRFS_BLOCK_GROUP_RAID10; 3379 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3380 tmp = BTRFS_BLOCK_GROUP_RAID1; 3381 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3382 tmp = BTRFS_BLOCK_GROUP_RAID0; 3383 3384 return extended_to_chunk(flags | tmp); 3385 } 3386 3387 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3388 { 3389 unsigned seq; 3390 3391 do { 3392 seq = read_seqbegin(&root->fs_info->profiles_lock); 3393 3394 if (flags & BTRFS_BLOCK_GROUP_DATA) 3395 flags |= root->fs_info->avail_data_alloc_bits; 3396 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3397 flags |= root->fs_info->avail_system_alloc_bits; 3398 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3399 flags |= root->fs_info->avail_metadata_alloc_bits; 3400 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3401 3402 return btrfs_reduce_alloc_profile(root, flags); 3403 } 3404 3405 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3406 { 3407 u64 flags; 3408 u64 ret; 3409 3410 if (data) 3411 flags = BTRFS_BLOCK_GROUP_DATA; 3412 else if (root == root->fs_info->chunk_root) 3413 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3414 else 3415 flags = BTRFS_BLOCK_GROUP_METADATA; 3416 3417 ret = get_alloc_profile(root, flags); 3418 return ret; 3419 } 3420 3421 /* 3422 * This will check the space that the inode allocates from to make sure we have 3423 * enough space for bytes. 3424 */ 3425 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3426 { 3427 struct btrfs_space_info *data_sinfo; 3428 struct btrfs_root *root = BTRFS_I(inode)->root; 3429 struct btrfs_fs_info *fs_info = root->fs_info; 3430 u64 used; 3431 int ret = 0, committed = 0, alloc_chunk = 1; 3432 3433 /* make sure bytes are sectorsize aligned */ 3434 bytes = ALIGN(bytes, root->sectorsize); 3435 3436 if (root == root->fs_info->tree_root || 3437 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3438 alloc_chunk = 0; 3439 committed = 1; 3440 } 3441 3442 data_sinfo = fs_info->data_sinfo; 3443 if (!data_sinfo) 3444 goto alloc; 3445 3446 again: 3447 /* make sure we have enough space to handle the data first */ 3448 spin_lock(&data_sinfo->lock); 3449 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3450 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3451 data_sinfo->bytes_may_use; 3452 3453 if (used + bytes > data_sinfo->total_bytes) { 3454 struct btrfs_trans_handle *trans; 3455 3456 /* 3457 * if we don't have enough free bytes in this space then we need 3458 * to alloc a new chunk. 3459 */ 3460 if (!data_sinfo->full && alloc_chunk) { 3461 u64 alloc_target; 3462 3463 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3464 spin_unlock(&data_sinfo->lock); 3465 alloc: 3466 alloc_target = btrfs_get_alloc_profile(root, 1); 3467 trans = btrfs_join_transaction(root); 3468 if (IS_ERR(trans)) 3469 return PTR_ERR(trans); 3470 3471 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3472 alloc_target, 3473 CHUNK_ALLOC_NO_FORCE); 3474 btrfs_end_transaction(trans, root); 3475 if (ret < 0) { 3476 if (ret != -ENOSPC) 3477 return ret; 3478 else 3479 goto commit_trans; 3480 } 3481 3482 if (!data_sinfo) 3483 data_sinfo = fs_info->data_sinfo; 3484 3485 goto again; 3486 } 3487 3488 /* 3489 * If we have less pinned bytes than we want to allocate then 3490 * don't bother committing the transaction, it won't help us. 3491 */ 3492 if (data_sinfo->bytes_pinned < bytes) 3493 committed = 1; 3494 spin_unlock(&data_sinfo->lock); 3495 3496 /* commit the current transaction and try again */ 3497 commit_trans: 3498 if (!committed && 3499 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3500 committed = 1; 3501 trans = btrfs_join_transaction(root); 3502 if (IS_ERR(trans)) 3503 return PTR_ERR(trans); 3504 ret = btrfs_commit_transaction(trans, root); 3505 if (ret) 3506 return ret; 3507 goto again; 3508 } 3509 3510 return -ENOSPC; 3511 } 3512 data_sinfo->bytes_may_use += bytes; 3513 trace_btrfs_space_reservation(root->fs_info, "space_info", 3514 data_sinfo->flags, bytes, 1); 3515 spin_unlock(&data_sinfo->lock); 3516 3517 return 0; 3518 } 3519 3520 /* 3521 * Called if we need to clear a data reservation for this inode. 3522 */ 3523 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3524 { 3525 struct btrfs_root *root = BTRFS_I(inode)->root; 3526 struct btrfs_space_info *data_sinfo; 3527 3528 /* make sure bytes are sectorsize aligned */ 3529 bytes = ALIGN(bytes, root->sectorsize); 3530 3531 data_sinfo = root->fs_info->data_sinfo; 3532 spin_lock(&data_sinfo->lock); 3533 data_sinfo->bytes_may_use -= bytes; 3534 trace_btrfs_space_reservation(root->fs_info, "space_info", 3535 data_sinfo->flags, bytes, 0); 3536 spin_unlock(&data_sinfo->lock); 3537 } 3538 3539 static void force_metadata_allocation(struct btrfs_fs_info *info) 3540 { 3541 struct list_head *head = &info->space_info; 3542 struct btrfs_space_info *found; 3543 3544 rcu_read_lock(); 3545 list_for_each_entry_rcu(found, head, list) { 3546 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3547 found->force_alloc = CHUNK_ALLOC_FORCE; 3548 } 3549 rcu_read_unlock(); 3550 } 3551 3552 static int should_alloc_chunk(struct btrfs_root *root, 3553 struct btrfs_space_info *sinfo, int force) 3554 { 3555 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3556 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3557 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3558 u64 thresh; 3559 3560 if (force == CHUNK_ALLOC_FORCE) 3561 return 1; 3562 3563 /* 3564 * We need to take into account the global rsv because for all intents 3565 * and purposes it's used space. Don't worry about locking the 3566 * global_rsv, it doesn't change except when the transaction commits. 3567 */ 3568 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3569 num_allocated += global_rsv->size; 3570 3571 /* 3572 * in limited mode, we want to have some free space up to 3573 * about 1% of the FS size. 3574 */ 3575 if (force == CHUNK_ALLOC_LIMITED) { 3576 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3577 thresh = max_t(u64, 64 * 1024 * 1024, 3578 div_factor_fine(thresh, 1)); 3579 3580 if (num_bytes - num_allocated < thresh) 3581 return 1; 3582 } 3583 3584 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3585 return 0; 3586 return 1; 3587 } 3588 3589 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3590 { 3591 u64 num_dev; 3592 3593 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3594 BTRFS_BLOCK_GROUP_RAID0 | 3595 BTRFS_BLOCK_GROUP_RAID5 | 3596 BTRFS_BLOCK_GROUP_RAID6)) 3597 num_dev = root->fs_info->fs_devices->rw_devices; 3598 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3599 num_dev = 2; 3600 else 3601 num_dev = 1; /* DUP or single */ 3602 3603 /* metadata for updaing devices and chunk tree */ 3604 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3605 } 3606 3607 static void check_system_chunk(struct btrfs_trans_handle *trans, 3608 struct btrfs_root *root, u64 type) 3609 { 3610 struct btrfs_space_info *info; 3611 u64 left; 3612 u64 thresh; 3613 3614 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3615 spin_lock(&info->lock); 3616 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3617 info->bytes_reserved - info->bytes_readonly; 3618 spin_unlock(&info->lock); 3619 3620 thresh = get_system_chunk_thresh(root, type); 3621 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3622 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3623 left, thresh, type); 3624 dump_space_info(info, 0, 0); 3625 } 3626 3627 if (left < thresh) { 3628 u64 flags; 3629 3630 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3631 btrfs_alloc_chunk(trans, root, flags); 3632 } 3633 } 3634 3635 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3636 struct btrfs_root *extent_root, u64 flags, int force) 3637 { 3638 struct btrfs_space_info *space_info; 3639 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3640 int wait_for_alloc = 0; 3641 int ret = 0; 3642 3643 /* Don't re-enter if we're already allocating a chunk */ 3644 if (trans->allocating_chunk) 3645 return -ENOSPC; 3646 3647 space_info = __find_space_info(extent_root->fs_info, flags); 3648 if (!space_info) { 3649 ret = update_space_info(extent_root->fs_info, flags, 3650 0, 0, &space_info); 3651 BUG_ON(ret); /* -ENOMEM */ 3652 } 3653 BUG_ON(!space_info); /* Logic error */ 3654 3655 again: 3656 spin_lock(&space_info->lock); 3657 if (force < space_info->force_alloc) 3658 force = space_info->force_alloc; 3659 if (space_info->full) { 3660 spin_unlock(&space_info->lock); 3661 return 0; 3662 } 3663 3664 if (!should_alloc_chunk(extent_root, space_info, force)) { 3665 spin_unlock(&space_info->lock); 3666 return 0; 3667 } else if (space_info->chunk_alloc) { 3668 wait_for_alloc = 1; 3669 } else { 3670 space_info->chunk_alloc = 1; 3671 } 3672 3673 spin_unlock(&space_info->lock); 3674 3675 mutex_lock(&fs_info->chunk_mutex); 3676 3677 /* 3678 * The chunk_mutex is held throughout the entirety of a chunk 3679 * allocation, so once we've acquired the chunk_mutex we know that the 3680 * other guy is done and we need to recheck and see if we should 3681 * allocate. 3682 */ 3683 if (wait_for_alloc) { 3684 mutex_unlock(&fs_info->chunk_mutex); 3685 wait_for_alloc = 0; 3686 goto again; 3687 } 3688 3689 trans->allocating_chunk = true; 3690 3691 /* 3692 * If we have mixed data/metadata chunks we want to make sure we keep 3693 * allocating mixed chunks instead of individual chunks. 3694 */ 3695 if (btrfs_mixed_space_info(space_info)) 3696 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3697 3698 /* 3699 * if we're doing a data chunk, go ahead and make sure that 3700 * we keep a reasonable number of metadata chunks allocated in the 3701 * FS as well. 3702 */ 3703 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3704 fs_info->data_chunk_allocations++; 3705 if (!(fs_info->data_chunk_allocations % 3706 fs_info->metadata_ratio)) 3707 force_metadata_allocation(fs_info); 3708 } 3709 3710 /* 3711 * Check if we have enough space in SYSTEM chunk because we may need 3712 * to update devices. 3713 */ 3714 check_system_chunk(trans, extent_root, flags); 3715 3716 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3717 trans->allocating_chunk = false; 3718 3719 spin_lock(&space_info->lock); 3720 if (ret < 0 && ret != -ENOSPC) 3721 goto out; 3722 if (ret) 3723 space_info->full = 1; 3724 else 3725 ret = 1; 3726 3727 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3728 out: 3729 space_info->chunk_alloc = 0; 3730 spin_unlock(&space_info->lock); 3731 mutex_unlock(&fs_info->chunk_mutex); 3732 return ret; 3733 } 3734 3735 static int can_overcommit(struct btrfs_root *root, 3736 struct btrfs_space_info *space_info, u64 bytes, 3737 enum btrfs_reserve_flush_enum flush) 3738 { 3739 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3740 u64 profile = btrfs_get_alloc_profile(root, 0); 3741 u64 rsv_size = 0; 3742 u64 avail; 3743 u64 used; 3744 u64 to_add; 3745 3746 used = space_info->bytes_used + space_info->bytes_reserved + 3747 space_info->bytes_pinned + space_info->bytes_readonly; 3748 3749 spin_lock(&global_rsv->lock); 3750 rsv_size = global_rsv->size; 3751 spin_unlock(&global_rsv->lock); 3752 3753 /* 3754 * We only want to allow over committing if we have lots of actual space 3755 * free, but if we don't have enough space to handle the global reserve 3756 * space then we could end up having a real enospc problem when trying 3757 * to allocate a chunk or some other such important allocation. 3758 */ 3759 rsv_size <<= 1; 3760 if (used + rsv_size >= space_info->total_bytes) 3761 return 0; 3762 3763 used += space_info->bytes_may_use; 3764 3765 spin_lock(&root->fs_info->free_chunk_lock); 3766 avail = root->fs_info->free_chunk_space; 3767 spin_unlock(&root->fs_info->free_chunk_lock); 3768 3769 /* 3770 * If we have dup, raid1 or raid10 then only half of the free 3771 * space is actually useable. For raid56, the space info used 3772 * doesn't include the parity drive, so we don't have to 3773 * change the math 3774 */ 3775 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3776 BTRFS_BLOCK_GROUP_RAID1 | 3777 BTRFS_BLOCK_GROUP_RAID10)) 3778 avail >>= 1; 3779 3780 to_add = space_info->total_bytes; 3781 3782 /* 3783 * If we aren't flushing all things, let us overcommit up to 3784 * 1/2th of the space. If we can flush, don't let us overcommit 3785 * too much, let it overcommit up to 1/8 of the space. 3786 */ 3787 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3788 to_add >>= 3; 3789 else 3790 to_add >>= 1; 3791 3792 /* 3793 * Limit the overcommit to the amount of free space we could possibly 3794 * allocate for chunks. 3795 */ 3796 to_add = min(avail, to_add); 3797 3798 if (used + bytes < space_info->total_bytes + to_add) 3799 return 1; 3800 return 0; 3801 } 3802 3803 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3804 unsigned long nr_pages) 3805 { 3806 struct super_block *sb = root->fs_info->sb; 3807 int started; 3808 3809 /* If we can not start writeback, just sync all the delalloc file. */ 3810 started = try_to_writeback_inodes_sb_nr(sb, nr_pages, 3811 WB_REASON_FS_FREE_SPACE); 3812 if (!started) { 3813 /* 3814 * We needn't worry the filesystem going from r/w to r/o though 3815 * we don't acquire ->s_umount mutex, because the filesystem 3816 * should guarantee the delalloc inodes list be empty after 3817 * the filesystem is readonly(all dirty pages are written to 3818 * the disk). 3819 */ 3820 btrfs_start_delalloc_inodes(root, 0); 3821 btrfs_wait_ordered_extents(root, 0); 3822 } 3823 } 3824 3825 /* 3826 * shrink metadata reservation for delalloc 3827 */ 3828 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3829 bool wait_ordered) 3830 { 3831 struct btrfs_block_rsv *block_rsv; 3832 struct btrfs_space_info *space_info; 3833 struct btrfs_trans_handle *trans; 3834 u64 delalloc_bytes; 3835 u64 max_reclaim; 3836 long time_left; 3837 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3838 int loops = 0; 3839 enum btrfs_reserve_flush_enum flush; 3840 3841 trans = (struct btrfs_trans_handle *)current->journal_info; 3842 block_rsv = &root->fs_info->delalloc_block_rsv; 3843 space_info = block_rsv->space_info; 3844 3845 smp_mb(); 3846 delalloc_bytes = percpu_counter_sum_positive( 3847 &root->fs_info->delalloc_bytes); 3848 if (delalloc_bytes == 0) { 3849 if (trans) 3850 return; 3851 btrfs_wait_ordered_extents(root, 0); 3852 return; 3853 } 3854 3855 while (delalloc_bytes && loops < 3) { 3856 max_reclaim = min(delalloc_bytes, to_reclaim); 3857 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3858 btrfs_writeback_inodes_sb_nr(root, nr_pages); 3859 /* 3860 * We need to wait for the async pages to actually start before 3861 * we do anything. 3862 */ 3863 wait_event(root->fs_info->async_submit_wait, 3864 !atomic_read(&root->fs_info->async_delalloc_pages)); 3865 3866 if (!trans) 3867 flush = BTRFS_RESERVE_FLUSH_ALL; 3868 else 3869 flush = BTRFS_RESERVE_NO_FLUSH; 3870 spin_lock(&space_info->lock); 3871 if (can_overcommit(root, space_info, orig, flush)) { 3872 spin_unlock(&space_info->lock); 3873 break; 3874 } 3875 spin_unlock(&space_info->lock); 3876 3877 loops++; 3878 if (wait_ordered && !trans) { 3879 btrfs_wait_ordered_extents(root, 0); 3880 } else { 3881 time_left = schedule_timeout_killable(1); 3882 if (time_left) 3883 break; 3884 } 3885 smp_mb(); 3886 delalloc_bytes = percpu_counter_sum_positive( 3887 &root->fs_info->delalloc_bytes); 3888 } 3889 } 3890 3891 /** 3892 * maybe_commit_transaction - possibly commit the transaction if its ok to 3893 * @root - the root we're allocating for 3894 * @bytes - the number of bytes we want to reserve 3895 * @force - force the commit 3896 * 3897 * This will check to make sure that committing the transaction will actually 3898 * get us somewhere and then commit the transaction if it does. Otherwise it 3899 * will return -ENOSPC. 3900 */ 3901 static int may_commit_transaction(struct btrfs_root *root, 3902 struct btrfs_space_info *space_info, 3903 u64 bytes, int force) 3904 { 3905 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3906 struct btrfs_trans_handle *trans; 3907 3908 trans = (struct btrfs_trans_handle *)current->journal_info; 3909 if (trans) 3910 return -EAGAIN; 3911 3912 if (force) 3913 goto commit; 3914 3915 /* See if there is enough pinned space to make this reservation */ 3916 spin_lock(&space_info->lock); 3917 if (space_info->bytes_pinned >= bytes) { 3918 spin_unlock(&space_info->lock); 3919 goto commit; 3920 } 3921 spin_unlock(&space_info->lock); 3922 3923 /* 3924 * See if there is some space in the delayed insertion reservation for 3925 * this reservation. 3926 */ 3927 if (space_info != delayed_rsv->space_info) 3928 return -ENOSPC; 3929 3930 spin_lock(&space_info->lock); 3931 spin_lock(&delayed_rsv->lock); 3932 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3933 spin_unlock(&delayed_rsv->lock); 3934 spin_unlock(&space_info->lock); 3935 return -ENOSPC; 3936 } 3937 spin_unlock(&delayed_rsv->lock); 3938 spin_unlock(&space_info->lock); 3939 3940 commit: 3941 trans = btrfs_join_transaction(root); 3942 if (IS_ERR(trans)) 3943 return -ENOSPC; 3944 3945 return btrfs_commit_transaction(trans, root); 3946 } 3947 3948 enum flush_state { 3949 FLUSH_DELAYED_ITEMS_NR = 1, 3950 FLUSH_DELAYED_ITEMS = 2, 3951 FLUSH_DELALLOC = 3, 3952 FLUSH_DELALLOC_WAIT = 4, 3953 ALLOC_CHUNK = 5, 3954 COMMIT_TRANS = 6, 3955 }; 3956 3957 static int flush_space(struct btrfs_root *root, 3958 struct btrfs_space_info *space_info, u64 num_bytes, 3959 u64 orig_bytes, int state) 3960 { 3961 struct btrfs_trans_handle *trans; 3962 int nr; 3963 int ret = 0; 3964 3965 switch (state) { 3966 case FLUSH_DELAYED_ITEMS_NR: 3967 case FLUSH_DELAYED_ITEMS: 3968 if (state == FLUSH_DELAYED_ITEMS_NR) { 3969 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 3970 3971 nr = (int)div64_u64(num_bytes, bytes); 3972 if (!nr) 3973 nr = 1; 3974 nr *= 2; 3975 } else { 3976 nr = -1; 3977 } 3978 trans = btrfs_join_transaction(root); 3979 if (IS_ERR(trans)) { 3980 ret = PTR_ERR(trans); 3981 break; 3982 } 3983 ret = btrfs_run_delayed_items_nr(trans, root, nr); 3984 btrfs_end_transaction(trans, root); 3985 break; 3986 case FLUSH_DELALLOC: 3987 case FLUSH_DELALLOC_WAIT: 3988 shrink_delalloc(root, num_bytes, orig_bytes, 3989 state == FLUSH_DELALLOC_WAIT); 3990 break; 3991 case ALLOC_CHUNK: 3992 trans = btrfs_join_transaction(root); 3993 if (IS_ERR(trans)) { 3994 ret = PTR_ERR(trans); 3995 break; 3996 } 3997 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3998 btrfs_get_alloc_profile(root, 0), 3999 CHUNK_ALLOC_NO_FORCE); 4000 btrfs_end_transaction(trans, root); 4001 if (ret == -ENOSPC) 4002 ret = 0; 4003 break; 4004 case COMMIT_TRANS: 4005 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4006 break; 4007 default: 4008 ret = -ENOSPC; 4009 break; 4010 } 4011 4012 return ret; 4013 } 4014 /** 4015 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4016 * @root - the root we're allocating for 4017 * @block_rsv - the block_rsv we're allocating for 4018 * @orig_bytes - the number of bytes we want 4019 * @flush - whether or not we can flush to make our reservation 4020 * 4021 * This will reserve orgi_bytes number of bytes from the space info associated 4022 * with the block_rsv. If there is not enough space it will make an attempt to 4023 * flush out space to make room. It will do this by flushing delalloc if 4024 * possible or committing the transaction. If flush is 0 then no attempts to 4025 * regain reservations will be made and this will fail if there is not enough 4026 * space already. 4027 */ 4028 static int reserve_metadata_bytes(struct btrfs_root *root, 4029 struct btrfs_block_rsv *block_rsv, 4030 u64 orig_bytes, 4031 enum btrfs_reserve_flush_enum flush) 4032 { 4033 struct btrfs_space_info *space_info = block_rsv->space_info; 4034 u64 used; 4035 u64 num_bytes = orig_bytes; 4036 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4037 int ret = 0; 4038 bool flushing = false; 4039 4040 again: 4041 ret = 0; 4042 spin_lock(&space_info->lock); 4043 /* 4044 * We only want to wait if somebody other than us is flushing and we 4045 * are actually allowed to flush all things. 4046 */ 4047 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4048 space_info->flush) { 4049 spin_unlock(&space_info->lock); 4050 /* 4051 * If we have a trans handle we can't wait because the flusher 4052 * may have to commit the transaction, which would mean we would 4053 * deadlock since we are waiting for the flusher to finish, but 4054 * hold the current transaction open. 4055 */ 4056 if (current->journal_info) 4057 return -EAGAIN; 4058 ret = wait_event_killable(space_info->wait, !space_info->flush); 4059 /* Must have been killed, return */ 4060 if (ret) 4061 return -EINTR; 4062 4063 spin_lock(&space_info->lock); 4064 } 4065 4066 ret = -ENOSPC; 4067 used = space_info->bytes_used + space_info->bytes_reserved + 4068 space_info->bytes_pinned + space_info->bytes_readonly + 4069 space_info->bytes_may_use; 4070 4071 /* 4072 * The idea here is that we've not already over-reserved the block group 4073 * then we can go ahead and save our reservation first and then start 4074 * flushing if we need to. Otherwise if we've already overcommitted 4075 * lets start flushing stuff first and then come back and try to make 4076 * our reservation. 4077 */ 4078 if (used <= space_info->total_bytes) { 4079 if (used + orig_bytes <= space_info->total_bytes) { 4080 space_info->bytes_may_use += orig_bytes; 4081 trace_btrfs_space_reservation(root->fs_info, 4082 "space_info", space_info->flags, orig_bytes, 1); 4083 ret = 0; 4084 } else { 4085 /* 4086 * Ok set num_bytes to orig_bytes since we aren't 4087 * overocmmitted, this way we only try and reclaim what 4088 * we need. 4089 */ 4090 num_bytes = orig_bytes; 4091 } 4092 } else { 4093 /* 4094 * Ok we're over committed, set num_bytes to the overcommitted 4095 * amount plus the amount of bytes that we need for this 4096 * reservation. 4097 */ 4098 num_bytes = used - space_info->total_bytes + 4099 (orig_bytes * 2); 4100 } 4101 4102 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4103 space_info->bytes_may_use += orig_bytes; 4104 trace_btrfs_space_reservation(root->fs_info, "space_info", 4105 space_info->flags, orig_bytes, 4106 1); 4107 ret = 0; 4108 } 4109 4110 /* 4111 * Couldn't make our reservation, save our place so while we're trying 4112 * to reclaim space we can actually use it instead of somebody else 4113 * stealing it from us. 4114 * 4115 * We make the other tasks wait for the flush only when we can flush 4116 * all things. 4117 */ 4118 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4119 flushing = true; 4120 space_info->flush = 1; 4121 } 4122 4123 spin_unlock(&space_info->lock); 4124 4125 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4126 goto out; 4127 4128 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4129 flush_state); 4130 flush_state++; 4131 4132 /* 4133 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4134 * would happen. So skip delalloc flush. 4135 */ 4136 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4137 (flush_state == FLUSH_DELALLOC || 4138 flush_state == FLUSH_DELALLOC_WAIT)) 4139 flush_state = ALLOC_CHUNK; 4140 4141 if (!ret) 4142 goto again; 4143 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4144 flush_state < COMMIT_TRANS) 4145 goto again; 4146 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4147 flush_state <= COMMIT_TRANS) 4148 goto again; 4149 4150 out: 4151 if (ret == -ENOSPC && 4152 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4153 struct btrfs_block_rsv *global_rsv = 4154 &root->fs_info->global_block_rsv; 4155 4156 if (block_rsv != global_rsv && 4157 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4158 ret = 0; 4159 } 4160 if (flushing) { 4161 spin_lock(&space_info->lock); 4162 space_info->flush = 0; 4163 wake_up_all(&space_info->wait); 4164 spin_unlock(&space_info->lock); 4165 } 4166 return ret; 4167 } 4168 4169 static struct btrfs_block_rsv *get_block_rsv( 4170 const struct btrfs_trans_handle *trans, 4171 const struct btrfs_root *root) 4172 { 4173 struct btrfs_block_rsv *block_rsv = NULL; 4174 4175 if (root->ref_cows) 4176 block_rsv = trans->block_rsv; 4177 4178 if (root == root->fs_info->csum_root && trans->adding_csums) 4179 block_rsv = trans->block_rsv; 4180 4181 if (!block_rsv) 4182 block_rsv = root->block_rsv; 4183 4184 if (!block_rsv) 4185 block_rsv = &root->fs_info->empty_block_rsv; 4186 4187 return block_rsv; 4188 } 4189 4190 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4191 u64 num_bytes) 4192 { 4193 int ret = -ENOSPC; 4194 spin_lock(&block_rsv->lock); 4195 if (block_rsv->reserved >= num_bytes) { 4196 block_rsv->reserved -= num_bytes; 4197 if (block_rsv->reserved < block_rsv->size) 4198 block_rsv->full = 0; 4199 ret = 0; 4200 } 4201 spin_unlock(&block_rsv->lock); 4202 return ret; 4203 } 4204 4205 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4206 u64 num_bytes, int update_size) 4207 { 4208 spin_lock(&block_rsv->lock); 4209 block_rsv->reserved += num_bytes; 4210 if (update_size) 4211 block_rsv->size += num_bytes; 4212 else if (block_rsv->reserved >= block_rsv->size) 4213 block_rsv->full = 1; 4214 spin_unlock(&block_rsv->lock); 4215 } 4216 4217 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4218 struct btrfs_block_rsv *block_rsv, 4219 struct btrfs_block_rsv *dest, u64 num_bytes) 4220 { 4221 struct btrfs_space_info *space_info = block_rsv->space_info; 4222 4223 spin_lock(&block_rsv->lock); 4224 if (num_bytes == (u64)-1) 4225 num_bytes = block_rsv->size; 4226 block_rsv->size -= num_bytes; 4227 if (block_rsv->reserved >= block_rsv->size) { 4228 num_bytes = block_rsv->reserved - block_rsv->size; 4229 block_rsv->reserved = block_rsv->size; 4230 block_rsv->full = 1; 4231 } else { 4232 num_bytes = 0; 4233 } 4234 spin_unlock(&block_rsv->lock); 4235 4236 if (num_bytes > 0) { 4237 if (dest) { 4238 spin_lock(&dest->lock); 4239 if (!dest->full) { 4240 u64 bytes_to_add; 4241 4242 bytes_to_add = dest->size - dest->reserved; 4243 bytes_to_add = min(num_bytes, bytes_to_add); 4244 dest->reserved += bytes_to_add; 4245 if (dest->reserved >= dest->size) 4246 dest->full = 1; 4247 num_bytes -= bytes_to_add; 4248 } 4249 spin_unlock(&dest->lock); 4250 } 4251 if (num_bytes) { 4252 spin_lock(&space_info->lock); 4253 space_info->bytes_may_use -= num_bytes; 4254 trace_btrfs_space_reservation(fs_info, "space_info", 4255 space_info->flags, num_bytes, 0); 4256 space_info->reservation_progress++; 4257 spin_unlock(&space_info->lock); 4258 } 4259 } 4260 } 4261 4262 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4263 struct btrfs_block_rsv *dst, u64 num_bytes) 4264 { 4265 int ret; 4266 4267 ret = block_rsv_use_bytes(src, num_bytes); 4268 if (ret) 4269 return ret; 4270 4271 block_rsv_add_bytes(dst, num_bytes, 1); 4272 return 0; 4273 } 4274 4275 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4276 { 4277 memset(rsv, 0, sizeof(*rsv)); 4278 spin_lock_init(&rsv->lock); 4279 rsv->type = type; 4280 } 4281 4282 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4283 unsigned short type) 4284 { 4285 struct btrfs_block_rsv *block_rsv; 4286 struct btrfs_fs_info *fs_info = root->fs_info; 4287 4288 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4289 if (!block_rsv) 4290 return NULL; 4291 4292 btrfs_init_block_rsv(block_rsv, type); 4293 block_rsv->space_info = __find_space_info(fs_info, 4294 BTRFS_BLOCK_GROUP_METADATA); 4295 return block_rsv; 4296 } 4297 4298 void btrfs_free_block_rsv(struct btrfs_root *root, 4299 struct btrfs_block_rsv *rsv) 4300 { 4301 if (!rsv) 4302 return; 4303 btrfs_block_rsv_release(root, rsv, (u64)-1); 4304 kfree(rsv); 4305 } 4306 4307 int btrfs_block_rsv_add(struct btrfs_root *root, 4308 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4309 enum btrfs_reserve_flush_enum flush) 4310 { 4311 int ret; 4312 4313 if (num_bytes == 0) 4314 return 0; 4315 4316 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4317 if (!ret) { 4318 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4319 return 0; 4320 } 4321 4322 return ret; 4323 } 4324 4325 int btrfs_block_rsv_check(struct btrfs_root *root, 4326 struct btrfs_block_rsv *block_rsv, int min_factor) 4327 { 4328 u64 num_bytes = 0; 4329 int ret = -ENOSPC; 4330 4331 if (!block_rsv) 4332 return 0; 4333 4334 spin_lock(&block_rsv->lock); 4335 num_bytes = div_factor(block_rsv->size, min_factor); 4336 if (block_rsv->reserved >= num_bytes) 4337 ret = 0; 4338 spin_unlock(&block_rsv->lock); 4339 4340 return ret; 4341 } 4342 4343 int btrfs_block_rsv_refill(struct btrfs_root *root, 4344 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4345 enum btrfs_reserve_flush_enum flush) 4346 { 4347 u64 num_bytes = 0; 4348 int ret = -ENOSPC; 4349 4350 if (!block_rsv) 4351 return 0; 4352 4353 spin_lock(&block_rsv->lock); 4354 num_bytes = min_reserved; 4355 if (block_rsv->reserved >= num_bytes) 4356 ret = 0; 4357 else 4358 num_bytes -= block_rsv->reserved; 4359 spin_unlock(&block_rsv->lock); 4360 4361 if (!ret) 4362 return 0; 4363 4364 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4365 if (!ret) { 4366 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4367 return 0; 4368 } 4369 4370 return ret; 4371 } 4372 4373 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4374 struct btrfs_block_rsv *dst_rsv, 4375 u64 num_bytes) 4376 { 4377 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4378 } 4379 4380 void btrfs_block_rsv_release(struct btrfs_root *root, 4381 struct btrfs_block_rsv *block_rsv, 4382 u64 num_bytes) 4383 { 4384 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4385 if (global_rsv->full || global_rsv == block_rsv || 4386 block_rsv->space_info != global_rsv->space_info) 4387 global_rsv = NULL; 4388 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4389 num_bytes); 4390 } 4391 4392 /* 4393 * helper to calculate size of global block reservation. 4394 * the desired value is sum of space used by extent tree, 4395 * checksum tree and root tree 4396 */ 4397 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4398 { 4399 struct btrfs_space_info *sinfo; 4400 u64 num_bytes; 4401 u64 meta_used; 4402 u64 data_used; 4403 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4404 4405 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4406 spin_lock(&sinfo->lock); 4407 data_used = sinfo->bytes_used; 4408 spin_unlock(&sinfo->lock); 4409 4410 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4411 spin_lock(&sinfo->lock); 4412 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4413 data_used = 0; 4414 meta_used = sinfo->bytes_used; 4415 spin_unlock(&sinfo->lock); 4416 4417 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4418 csum_size * 2; 4419 num_bytes += div64_u64(data_used + meta_used, 50); 4420 4421 if (num_bytes * 3 > meta_used) 4422 num_bytes = div64_u64(meta_used, 3); 4423 4424 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4425 } 4426 4427 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4428 { 4429 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4430 struct btrfs_space_info *sinfo = block_rsv->space_info; 4431 u64 num_bytes; 4432 4433 num_bytes = calc_global_metadata_size(fs_info); 4434 4435 spin_lock(&sinfo->lock); 4436 spin_lock(&block_rsv->lock); 4437 4438 block_rsv->size = num_bytes; 4439 4440 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4441 sinfo->bytes_reserved + sinfo->bytes_readonly + 4442 sinfo->bytes_may_use; 4443 4444 if (sinfo->total_bytes > num_bytes) { 4445 num_bytes = sinfo->total_bytes - num_bytes; 4446 block_rsv->reserved += num_bytes; 4447 sinfo->bytes_may_use += num_bytes; 4448 trace_btrfs_space_reservation(fs_info, "space_info", 4449 sinfo->flags, num_bytes, 1); 4450 } 4451 4452 if (block_rsv->reserved >= block_rsv->size) { 4453 num_bytes = block_rsv->reserved - block_rsv->size; 4454 sinfo->bytes_may_use -= num_bytes; 4455 trace_btrfs_space_reservation(fs_info, "space_info", 4456 sinfo->flags, num_bytes, 0); 4457 sinfo->reservation_progress++; 4458 block_rsv->reserved = block_rsv->size; 4459 block_rsv->full = 1; 4460 } 4461 4462 spin_unlock(&block_rsv->lock); 4463 spin_unlock(&sinfo->lock); 4464 } 4465 4466 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4467 { 4468 struct btrfs_space_info *space_info; 4469 4470 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4471 fs_info->chunk_block_rsv.space_info = space_info; 4472 4473 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4474 fs_info->global_block_rsv.space_info = space_info; 4475 fs_info->delalloc_block_rsv.space_info = space_info; 4476 fs_info->trans_block_rsv.space_info = space_info; 4477 fs_info->empty_block_rsv.space_info = space_info; 4478 fs_info->delayed_block_rsv.space_info = space_info; 4479 4480 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4481 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4482 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4483 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4484 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4485 4486 update_global_block_rsv(fs_info); 4487 } 4488 4489 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4490 { 4491 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4492 (u64)-1); 4493 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4494 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4495 WARN_ON(fs_info->trans_block_rsv.size > 0); 4496 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4497 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4498 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4499 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4500 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4501 } 4502 4503 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4504 struct btrfs_root *root) 4505 { 4506 if (!trans->block_rsv) 4507 return; 4508 4509 if (!trans->bytes_reserved) 4510 return; 4511 4512 trace_btrfs_space_reservation(root->fs_info, "transaction", 4513 trans->transid, trans->bytes_reserved, 0); 4514 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4515 trans->bytes_reserved = 0; 4516 } 4517 4518 /* Can only return 0 or -ENOSPC */ 4519 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4520 struct inode *inode) 4521 { 4522 struct btrfs_root *root = BTRFS_I(inode)->root; 4523 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4524 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4525 4526 /* 4527 * We need to hold space in order to delete our orphan item once we've 4528 * added it, so this takes the reservation so we can release it later 4529 * when we are truly done with the orphan item. 4530 */ 4531 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4532 trace_btrfs_space_reservation(root->fs_info, "orphan", 4533 btrfs_ino(inode), num_bytes, 1); 4534 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4535 } 4536 4537 void btrfs_orphan_release_metadata(struct inode *inode) 4538 { 4539 struct btrfs_root *root = BTRFS_I(inode)->root; 4540 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4541 trace_btrfs_space_reservation(root->fs_info, "orphan", 4542 btrfs_ino(inode), num_bytes, 0); 4543 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4544 } 4545 4546 /* 4547 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4548 * root: the root of the parent directory 4549 * rsv: block reservation 4550 * items: the number of items that we need do reservation 4551 * qgroup_reserved: used to return the reserved size in qgroup 4552 * 4553 * This function is used to reserve the space for snapshot/subvolume 4554 * creation and deletion. Those operations are different with the 4555 * common file/directory operations, they change two fs/file trees 4556 * and root tree, the number of items that the qgroup reserves is 4557 * different with the free space reservation. So we can not use 4558 * the space reseravtion mechanism in start_transaction(). 4559 */ 4560 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4561 struct btrfs_block_rsv *rsv, 4562 int items, 4563 u64 *qgroup_reserved) 4564 { 4565 u64 num_bytes; 4566 int ret; 4567 4568 if (root->fs_info->quota_enabled) { 4569 /* One for parent inode, two for dir entries */ 4570 num_bytes = 3 * root->leafsize; 4571 ret = btrfs_qgroup_reserve(root, num_bytes); 4572 if (ret) 4573 return ret; 4574 } else { 4575 num_bytes = 0; 4576 } 4577 4578 *qgroup_reserved = num_bytes; 4579 4580 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4581 rsv->space_info = __find_space_info(root->fs_info, 4582 BTRFS_BLOCK_GROUP_METADATA); 4583 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4584 BTRFS_RESERVE_FLUSH_ALL); 4585 if (ret) { 4586 if (*qgroup_reserved) 4587 btrfs_qgroup_free(root, *qgroup_reserved); 4588 } 4589 4590 return ret; 4591 } 4592 4593 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4594 struct btrfs_block_rsv *rsv, 4595 u64 qgroup_reserved) 4596 { 4597 btrfs_block_rsv_release(root, rsv, (u64)-1); 4598 if (qgroup_reserved) 4599 btrfs_qgroup_free(root, qgroup_reserved); 4600 } 4601 4602 /** 4603 * drop_outstanding_extent - drop an outstanding extent 4604 * @inode: the inode we're dropping the extent for 4605 * 4606 * This is called when we are freeing up an outstanding extent, either called 4607 * after an error or after an extent is written. This will return the number of 4608 * reserved extents that need to be freed. This must be called with 4609 * BTRFS_I(inode)->lock held. 4610 */ 4611 static unsigned drop_outstanding_extent(struct inode *inode) 4612 { 4613 unsigned drop_inode_space = 0; 4614 unsigned dropped_extents = 0; 4615 4616 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4617 BTRFS_I(inode)->outstanding_extents--; 4618 4619 if (BTRFS_I(inode)->outstanding_extents == 0 && 4620 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4621 &BTRFS_I(inode)->runtime_flags)) 4622 drop_inode_space = 1; 4623 4624 /* 4625 * If we have more or the same amount of outsanding extents than we have 4626 * reserved then we need to leave the reserved extents count alone. 4627 */ 4628 if (BTRFS_I(inode)->outstanding_extents >= 4629 BTRFS_I(inode)->reserved_extents) 4630 return drop_inode_space; 4631 4632 dropped_extents = BTRFS_I(inode)->reserved_extents - 4633 BTRFS_I(inode)->outstanding_extents; 4634 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4635 return dropped_extents + drop_inode_space; 4636 } 4637 4638 /** 4639 * calc_csum_metadata_size - return the amount of metada space that must be 4640 * reserved/free'd for the given bytes. 4641 * @inode: the inode we're manipulating 4642 * @num_bytes: the number of bytes in question 4643 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4644 * 4645 * This adjusts the number of csum_bytes in the inode and then returns the 4646 * correct amount of metadata that must either be reserved or freed. We 4647 * calculate how many checksums we can fit into one leaf and then divide the 4648 * number of bytes that will need to be checksumed by this value to figure out 4649 * how many checksums will be required. If we are adding bytes then the number 4650 * may go up and we will return the number of additional bytes that must be 4651 * reserved. If it is going down we will return the number of bytes that must 4652 * be freed. 4653 * 4654 * This must be called with BTRFS_I(inode)->lock held. 4655 */ 4656 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4657 int reserve) 4658 { 4659 struct btrfs_root *root = BTRFS_I(inode)->root; 4660 u64 csum_size; 4661 int num_csums_per_leaf; 4662 int num_csums; 4663 int old_csums; 4664 4665 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4666 BTRFS_I(inode)->csum_bytes == 0) 4667 return 0; 4668 4669 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4670 if (reserve) 4671 BTRFS_I(inode)->csum_bytes += num_bytes; 4672 else 4673 BTRFS_I(inode)->csum_bytes -= num_bytes; 4674 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4675 num_csums_per_leaf = (int)div64_u64(csum_size, 4676 sizeof(struct btrfs_csum_item) + 4677 sizeof(struct btrfs_disk_key)); 4678 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4679 num_csums = num_csums + num_csums_per_leaf - 1; 4680 num_csums = num_csums / num_csums_per_leaf; 4681 4682 old_csums = old_csums + num_csums_per_leaf - 1; 4683 old_csums = old_csums / num_csums_per_leaf; 4684 4685 /* No change, no need to reserve more */ 4686 if (old_csums == num_csums) 4687 return 0; 4688 4689 if (reserve) 4690 return btrfs_calc_trans_metadata_size(root, 4691 num_csums - old_csums); 4692 4693 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4694 } 4695 4696 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4697 { 4698 struct btrfs_root *root = BTRFS_I(inode)->root; 4699 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4700 u64 to_reserve = 0; 4701 u64 csum_bytes; 4702 unsigned nr_extents = 0; 4703 int extra_reserve = 0; 4704 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4705 int ret = 0; 4706 bool delalloc_lock = true; 4707 u64 to_free = 0; 4708 unsigned dropped; 4709 4710 /* If we are a free space inode we need to not flush since we will be in 4711 * the middle of a transaction commit. We also don't need the delalloc 4712 * mutex since we won't race with anybody. We need this mostly to make 4713 * lockdep shut its filthy mouth. 4714 */ 4715 if (btrfs_is_free_space_inode(inode)) { 4716 flush = BTRFS_RESERVE_NO_FLUSH; 4717 delalloc_lock = false; 4718 } 4719 4720 if (flush != BTRFS_RESERVE_NO_FLUSH && 4721 btrfs_transaction_in_commit(root->fs_info)) 4722 schedule_timeout(1); 4723 4724 if (delalloc_lock) 4725 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4726 4727 num_bytes = ALIGN(num_bytes, root->sectorsize); 4728 4729 spin_lock(&BTRFS_I(inode)->lock); 4730 BTRFS_I(inode)->outstanding_extents++; 4731 4732 if (BTRFS_I(inode)->outstanding_extents > 4733 BTRFS_I(inode)->reserved_extents) 4734 nr_extents = BTRFS_I(inode)->outstanding_extents - 4735 BTRFS_I(inode)->reserved_extents; 4736 4737 /* 4738 * Add an item to reserve for updating the inode when we complete the 4739 * delalloc io. 4740 */ 4741 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4742 &BTRFS_I(inode)->runtime_flags)) { 4743 nr_extents++; 4744 extra_reserve = 1; 4745 } 4746 4747 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4748 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4749 csum_bytes = BTRFS_I(inode)->csum_bytes; 4750 spin_unlock(&BTRFS_I(inode)->lock); 4751 4752 if (root->fs_info->quota_enabled) { 4753 ret = btrfs_qgroup_reserve(root, num_bytes + 4754 nr_extents * root->leafsize); 4755 if (ret) 4756 goto out_fail; 4757 } 4758 4759 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4760 if (unlikely(ret)) { 4761 if (root->fs_info->quota_enabled) 4762 btrfs_qgroup_free(root, num_bytes + 4763 nr_extents * root->leafsize); 4764 goto out_fail; 4765 } 4766 4767 spin_lock(&BTRFS_I(inode)->lock); 4768 if (extra_reserve) { 4769 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4770 &BTRFS_I(inode)->runtime_flags); 4771 nr_extents--; 4772 } 4773 BTRFS_I(inode)->reserved_extents += nr_extents; 4774 spin_unlock(&BTRFS_I(inode)->lock); 4775 4776 if (delalloc_lock) 4777 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4778 4779 if (to_reserve) 4780 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4781 btrfs_ino(inode), to_reserve, 1); 4782 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4783 4784 return 0; 4785 4786 out_fail: 4787 spin_lock(&BTRFS_I(inode)->lock); 4788 dropped = drop_outstanding_extent(inode); 4789 /* 4790 * If the inodes csum_bytes is the same as the original 4791 * csum_bytes then we know we haven't raced with any free()ers 4792 * so we can just reduce our inodes csum bytes and carry on. 4793 * Otherwise we have to do the normal free thing to account for 4794 * the case that the free side didn't free up its reserve 4795 * because of this outstanding reservation. 4796 */ 4797 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4798 calc_csum_metadata_size(inode, num_bytes, 0); 4799 else 4800 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4801 spin_unlock(&BTRFS_I(inode)->lock); 4802 if (dropped) 4803 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4804 4805 if (to_free) { 4806 btrfs_block_rsv_release(root, block_rsv, to_free); 4807 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4808 btrfs_ino(inode), to_free, 0); 4809 } 4810 if (delalloc_lock) 4811 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4812 return ret; 4813 } 4814 4815 /** 4816 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4817 * @inode: the inode to release the reservation for 4818 * @num_bytes: the number of bytes we're releasing 4819 * 4820 * This will release the metadata reservation for an inode. This can be called 4821 * once we complete IO for a given set of bytes to release their metadata 4822 * reservations. 4823 */ 4824 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4825 { 4826 struct btrfs_root *root = BTRFS_I(inode)->root; 4827 u64 to_free = 0; 4828 unsigned dropped; 4829 4830 num_bytes = ALIGN(num_bytes, root->sectorsize); 4831 spin_lock(&BTRFS_I(inode)->lock); 4832 dropped = drop_outstanding_extent(inode); 4833 4834 if (num_bytes) 4835 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4836 spin_unlock(&BTRFS_I(inode)->lock); 4837 if (dropped > 0) 4838 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4839 4840 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4841 btrfs_ino(inode), to_free, 0); 4842 if (root->fs_info->quota_enabled) { 4843 btrfs_qgroup_free(root, num_bytes + 4844 dropped * root->leafsize); 4845 } 4846 4847 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4848 to_free); 4849 } 4850 4851 /** 4852 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4853 * @inode: inode we're writing to 4854 * @num_bytes: the number of bytes we want to allocate 4855 * 4856 * This will do the following things 4857 * 4858 * o reserve space in the data space info for num_bytes 4859 * o reserve space in the metadata space info based on number of outstanding 4860 * extents and how much csums will be needed 4861 * o add to the inodes ->delalloc_bytes 4862 * o add it to the fs_info's delalloc inodes list. 4863 * 4864 * This will return 0 for success and -ENOSPC if there is no space left. 4865 */ 4866 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4867 { 4868 int ret; 4869 4870 ret = btrfs_check_data_free_space(inode, num_bytes); 4871 if (ret) 4872 return ret; 4873 4874 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4875 if (ret) { 4876 btrfs_free_reserved_data_space(inode, num_bytes); 4877 return ret; 4878 } 4879 4880 return 0; 4881 } 4882 4883 /** 4884 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4885 * @inode: inode we're releasing space for 4886 * @num_bytes: the number of bytes we want to free up 4887 * 4888 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4889 * called in the case that we don't need the metadata AND data reservations 4890 * anymore. So if there is an error or we insert an inline extent. 4891 * 4892 * This function will release the metadata space that was not used and will 4893 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4894 * list if there are no delalloc bytes left. 4895 */ 4896 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4897 { 4898 btrfs_delalloc_release_metadata(inode, num_bytes); 4899 btrfs_free_reserved_data_space(inode, num_bytes); 4900 } 4901 4902 static int update_block_group(struct btrfs_root *root, 4903 u64 bytenr, u64 num_bytes, int alloc) 4904 { 4905 struct btrfs_block_group_cache *cache = NULL; 4906 struct btrfs_fs_info *info = root->fs_info; 4907 u64 total = num_bytes; 4908 u64 old_val; 4909 u64 byte_in_group; 4910 int factor; 4911 4912 /* block accounting for super block */ 4913 spin_lock(&info->delalloc_lock); 4914 old_val = btrfs_super_bytes_used(info->super_copy); 4915 if (alloc) 4916 old_val += num_bytes; 4917 else 4918 old_val -= num_bytes; 4919 btrfs_set_super_bytes_used(info->super_copy, old_val); 4920 spin_unlock(&info->delalloc_lock); 4921 4922 while (total) { 4923 cache = btrfs_lookup_block_group(info, bytenr); 4924 if (!cache) 4925 return -ENOENT; 4926 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4927 BTRFS_BLOCK_GROUP_RAID1 | 4928 BTRFS_BLOCK_GROUP_RAID10)) 4929 factor = 2; 4930 else 4931 factor = 1; 4932 /* 4933 * If this block group has free space cache written out, we 4934 * need to make sure to load it if we are removing space. This 4935 * is because we need the unpinning stage to actually add the 4936 * space back to the block group, otherwise we will leak space. 4937 */ 4938 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4939 cache_block_group(cache, 1); 4940 4941 byte_in_group = bytenr - cache->key.objectid; 4942 WARN_ON(byte_in_group > cache->key.offset); 4943 4944 spin_lock(&cache->space_info->lock); 4945 spin_lock(&cache->lock); 4946 4947 if (btrfs_test_opt(root, SPACE_CACHE) && 4948 cache->disk_cache_state < BTRFS_DC_CLEAR) 4949 cache->disk_cache_state = BTRFS_DC_CLEAR; 4950 4951 cache->dirty = 1; 4952 old_val = btrfs_block_group_used(&cache->item); 4953 num_bytes = min(total, cache->key.offset - byte_in_group); 4954 if (alloc) { 4955 old_val += num_bytes; 4956 btrfs_set_block_group_used(&cache->item, old_val); 4957 cache->reserved -= num_bytes; 4958 cache->space_info->bytes_reserved -= num_bytes; 4959 cache->space_info->bytes_used += num_bytes; 4960 cache->space_info->disk_used += num_bytes * factor; 4961 spin_unlock(&cache->lock); 4962 spin_unlock(&cache->space_info->lock); 4963 } else { 4964 old_val -= num_bytes; 4965 btrfs_set_block_group_used(&cache->item, old_val); 4966 cache->pinned += num_bytes; 4967 cache->space_info->bytes_pinned += num_bytes; 4968 cache->space_info->bytes_used -= num_bytes; 4969 cache->space_info->disk_used -= num_bytes * factor; 4970 spin_unlock(&cache->lock); 4971 spin_unlock(&cache->space_info->lock); 4972 4973 set_extent_dirty(info->pinned_extents, 4974 bytenr, bytenr + num_bytes - 1, 4975 GFP_NOFS | __GFP_NOFAIL); 4976 } 4977 btrfs_put_block_group(cache); 4978 total -= num_bytes; 4979 bytenr += num_bytes; 4980 } 4981 return 0; 4982 } 4983 4984 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4985 { 4986 struct btrfs_block_group_cache *cache; 4987 u64 bytenr; 4988 4989 spin_lock(&root->fs_info->block_group_cache_lock); 4990 bytenr = root->fs_info->first_logical_byte; 4991 spin_unlock(&root->fs_info->block_group_cache_lock); 4992 4993 if (bytenr < (u64)-1) 4994 return bytenr; 4995 4996 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4997 if (!cache) 4998 return 0; 4999 5000 bytenr = cache->key.objectid; 5001 btrfs_put_block_group(cache); 5002 5003 return bytenr; 5004 } 5005 5006 static int pin_down_extent(struct btrfs_root *root, 5007 struct btrfs_block_group_cache *cache, 5008 u64 bytenr, u64 num_bytes, int reserved) 5009 { 5010 spin_lock(&cache->space_info->lock); 5011 spin_lock(&cache->lock); 5012 cache->pinned += num_bytes; 5013 cache->space_info->bytes_pinned += num_bytes; 5014 if (reserved) { 5015 cache->reserved -= num_bytes; 5016 cache->space_info->bytes_reserved -= num_bytes; 5017 } 5018 spin_unlock(&cache->lock); 5019 spin_unlock(&cache->space_info->lock); 5020 5021 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5022 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5023 return 0; 5024 } 5025 5026 /* 5027 * this function must be called within transaction 5028 */ 5029 int btrfs_pin_extent(struct btrfs_root *root, 5030 u64 bytenr, u64 num_bytes, int reserved) 5031 { 5032 struct btrfs_block_group_cache *cache; 5033 5034 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5035 BUG_ON(!cache); /* Logic error */ 5036 5037 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5038 5039 btrfs_put_block_group(cache); 5040 return 0; 5041 } 5042 5043 /* 5044 * this function must be called within transaction 5045 */ 5046 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5047 u64 bytenr, u64 num_bytes) 5048 { 5049 struct btrfs_block_group_cache *cache; 5050 5051 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5052 BUG_ON(!cache); /* Logic error */ 5053 5054 /* 5055 * pull in the free space cache (if any) so that our pin 5056 * removes the free space from the cache. We have load_only set 5057 * to one because the slow code to read in the free extents does check 5058 * the pinned extents. 5059 */ 5060 cache_block_group(cache, 1); 5061 5062 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5063 5064 /* remove us from the free space cache (if we're there at all) */ 5065 btrfs_remove_free_space(cache, bytenr, num_bytes); 5066 btrfs_put_block_group(cache); 5067 return 0; 5068 } 5069 5070 /** 5071 * btrfs_update_reserved_bytes - update the block_group and space info counters 5072 * @cache: The cache we are manipulating 5073 * @num_bytes: The number of bytes in question 5074 * @reserve: One of the reservation enums 5075 * 5076 * This is called by the allocator when it reserves space, or by somebody who is 5077 * freeing space that was never actually used on disk. For example if you 5078 * reserve some space for a new leaf in transaction A and before transaction A 5079 * commits you free that leaf, you call this with reserve set to 0 in order to 5080 * clear the reservation. 5081 * 5082 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5083 * ENOSPC accounting. For data we handle the reservation through clearing the 5084 * delalloc bits in the io_tree. We have to do this since we could end up 5085 * allocating less disk space for the amount of data we have reserved in the 5086 * case of compression. 5087 * 5088 * If this is a reservation and the block group has become read only we cannot 5089 * make the reservation and return -EAGAIN, otherwise this function always 5090 * succeeds. 5091 */ 5092 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5093 u64 num_bytes, int reserve) 5094 { 5095 struct btrfs_space_info *space_info = cache->space_info; 5096 int ret = 0; 5097 5098 spin_lock(&space_info->lock); 5099 spin_lock(&cache->lock); 5100 if (reserve != RESERVE_FREE) { 5101 if (cache->ro) { 5102 ret = -EAGAIN; 5103 } else { 5104 cache->reserved += num_bytes; 5105 space_info->bytes_reserved += num_bytes; 5106 if (reserve == RESERVE_ALLOC) { 5107 trace_btrfs_space_reservation(cache->fs_info, 5108 "space_info", space_info->flags, 5109 num_bytes, 0); 5110 space_info->bytes_may_use -= num_bytes; 5111 } 5112 } 5113 } else { 5114 if (cache->ro) 5115 space_info->bytes_readonly += num_bytes; 5116 cache->reserved -= num_bytes; 5117 space_info->bytes_reserved -= num_bytes; 5118 space_info->reservation_progress++; 5119 } 5120 spin_unlock(&cache->lock); 5121 spin_unlock(&space_info->lock); 5122 return ret; 5123 } 5124 5125 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5126 struct btrfs_root *root) 5127 { 5128 struct btrfs_fs_info *fs_info = root->fs_info; 5129 struct btrfs_caching_control *next; 5130 struct btrfs_caching_control *caching_ctl; 5131 struct btrfs_block_group_cache *cache; 5132 5133 down_write(&fs_info->extent_commit_sem); 5134 5135 list_for_each_entry_safe(caching_ctl, next, 5136 &fs_info->caching_block_groups, list) { 5137 cache = caching_ctl->block_group; 5138 if (block_group_cache_done(cache)) { 5139 cache->last_byte_to_unpin = (u64)-1; 5140 list_del_init(&caching_ctl->list); 5141 put_caching_control(caching_ctl); 5142 } else { 5143 cache->last_byte_to_unpin = caching_ctl->progress; 5144 } 5145 } 5146 5147 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5148 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5149 else 5150 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5151 5152 up_write(&fs_info->extent_commit_sem); 5153 5154 update_global_block_rsv(fs_info); 5155 } 5156 5157 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5158 { 5159 struct btrfs_fs_info *fs_info = root->fs_info; 5160 struct btrfs_block_group_cache *cache = NULL; 5161 struct btrfs_space_info *space_info; 5162 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5163 u64 len; 5164 bool readonly; 5165 5166 while (start <= end) { 5167 readonly = false; 5168 if (!cache || 5169 start >= cache->key.objectid + cache->key.offset) { 5170 if (cache) 5171 btrfs_put_block_group(cache); 5172 cache = btrfs_lookup_block_group(fs_info, start); 5173 BUG_ON(!cache); /* Logic error */ 5174 } 5175 5176 len = cache->key.objectid + cache->key.offset - start; 5177 len = min(len, end + 1 - start); 5178 5179 if (start < cache->last_byte_to_unpin) { 5180 len = min(len, cache->last_byte_to_unpin - start); 5181 btrfs_add_free_space(cache, start, len); 5182 } 5183 5184 start += len; 5185 space_info = cache->space_info; 5186 5187 spin_lock(&space_info->lock); 5188 spin_lock(&cache->lock); 5189 cache->pinned -= len; 5190 space_info->bytes_pinned -= len; 5191 if (cache->ro) { 5192 space_info->bytes_readonly += len; 5193 readonly = true; 5194 } 5195 spin_unlock(&cache->lock); 5196 if (!readonly && global_rsv->space_info == space_info) { 5197 spin_lock(&global_rsv->lock); 5198 if (!global_rsv->full) { 5199 len = min(len, global_rsv->size - 5200 global_rsv->reserved); 5201 global_rsv->reserved += len; 5202 space_info->bytes_may_use += len; 5203 if (global_rsv->reserved >= global_rsv->size) 5204 global_rsv->full = 1; 5205 } 5206 spin_unlock(&global_rsv->lock); 5207 } 5208 spin_unlock(&space_info->lock); 5209 } 5210 5211 if (cache) 5212 btrfs_put_block_group(cache); 5213 return 0; 5214 } 5215 5216 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5217 struct btrfs_root *root) 5218 { 5219 struct btrfs_fs_info *fs_info = root->fs_info; 5220 struct extent_io_tree *unpin; 5221 u64 start; 5222 u64 end; 5223 int ret; 5224 5225 if (trans->aborted) 5226 return 0; 5227 5228 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5229 unpin = &fs_info->freed_extents[1]; 5230 else 5231 unpin = &fs_info->freed_extents[0]; 5232 5233 while (1) { 5234 ret = find_first_extent_bit(unpin, 0, &start, &end, 5235 EXTENT_DIRTY, NULL); 5236 if (ret) 5237 break; 5238 5239 if (btrfs_test_opt(root, DISCARD)) 5240 ret = btrfs_discard_extent(root, start, 5241 end + 1 - start, NULL); 5242 5243 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5244 unpin_extent_range(root, start, end); 5245 cond_resched(); 5246 } 5247 5248 return 0; 5249 } 5250 5251 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5252 struct btrfs_root *root, 5253 u64 bytenr, u64 num_bytes, u64 parent, 5254 u64 root_objectid, u64 owner_objectid, 5255 u64 owner_offset, int refs_to_drop, 5256 struct btrfs_delayed_extent_op *extent_op) 5257 { 5258 struct btrfs_key key; 5259 struct btrfs_path *path; 5260 struct btrfs_fs_info *info = root->fs_info; 5261 struct btrfs_root *extent_root = info->extent_root; 5262 struct extent_buffer *leaf; 5263 struct btrfs_extent_item *ei; 5264 struct btrfs_extent_inline_ref *iref; 5265 int ret; 5266 int is_data; 5267 int extent_slot = 0; 5268 int found_extent = 0; 5269 int num_to_del = 1; 5270 u32 item_size; 5271 u64 refs; 5272 5273 path = btrfs_alloc_path(); 5274 if (!path) 5275 return -ENOMEM; 5276 5277 path->reada = 1; 5278 path->leave_spinning = 1; 5279 5280 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5281 BUG_ON(!is_data && refs_to_drop != 1); 5282 5283 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5284 bytenr, num_bytes, parent, 5285 root_objectid, owner_objectid, 5286 owner_offset); 5287 if (ret == 0) { 5288 extent_slot = path->slots[0]; 5289 while (extent_slot >= 0) { 5290 btrfs_item_key_to_cpu(path->nodes[0], &key, 5291 extent_slot); 5292 if (key.objectid != bytenr) 5293 break; 5294 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5295 key.offset == num_bytes) { 5296 found_extent = 1; 5297 break; 5298 } 5299 if (path->slots[0] - extent_slot > 5) 5300 break; 5301 extent_slot--; 5302 } 5303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5304 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5305 if (found_extent && item_size < sizeof(*ei)) 5306 found_extent = 0; 5307 #endif 5308 if (!found_extent) { 5309 BUG_ON(iref); 5310 ret = remove_extent_backref(trans, extent_root, path, 5311 NULL, refs_to_drop, 5312 is_data); 5313 if (ret) { 5314 btrfs_abort_transaction(trans, extent_root, ret); 5315 goto out; 5316 } 5317 btrfs_release_path(path); 5318 path->leave_spinning = 1; 5319 5320 key.objectid = bytenr; 5321 key.type = BTRFS_EXTENT_ITEM_KEY; 5322 key.offset = num_bytes; 5323 5324 ret = btrfs_search_slot(trans, extent_root, 5325 &key, path, -1, 1); 5326 if (ret) { 5327 printk(KERN_ERR "umm, got %d back from search" 5328 ", was looking for %llu\n", ret, 5329 (unsigned long long)bytenr); 5330 if (ret > 0) 5331 btrfs_print_leaf(extent_root, 5332 path->nodes[0]); 5333 } 5334 if (ret < 0) { 5335 btrfs_abort_transaction(trans, extent_root, ret); 5336 goto out; 5337 } 5338 extent_slot = path->slots[0]; 5339 } 5340 } else if (ret == -ENOENT) { 5341 btrfs_print_leaf(extent_root, path->nodes[0]); 5342 WARN_ON(1); 5343 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5344 "parent %llu root %llu owner %llu offset %llu\n", 5345 (unsigned long long)bytenr, 5346 (unsigned long long)parent, 5347 (unsigned long long)root_objectid, 5348 (unsigned long long)owner_objectid, 5349 (unsigned long long)owner_offset); 5350 } else { 5351 btrfs_abort_transaction(trans, extent_root, ret); 5352 goto out; 5353 } 5354 5355 leaf = path->nodes[0]; 5356 item_size = btrfs_item_size_nr(leaf, extent_slot); 5357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5358 if (item_size < sizeof(*ei)) { 5359 BUG_ON(found_extent || extent_slot != path->slots[0]); 5360 ret = convert_extent_item_v0(trans, extent_root, path, 5361 owner_objectid, 0); 5362 if (ret < 0) { 5363 btrfs_abort_transaction(trans, extent_root, ret); 5364 goto out; 5365 } 5366 5367 btrfs_release_path(path); 5368 path->leave_spinning = 1; 5369 5370 key.objectid = bytenr; 5371 key.type = BTRFS_EXTENT_ITEM_KEY; 5372 key.offset = num_bytes; 5373 5374 ret = btrfs_search_slot(trans, extent_root, &key, path, 5375 -1, 1); 5376 if (ret) { 5377 printk(KERN_ERR "umm, got %d back from search" 5378 ", was looking for %llu\n", ret, 5379 (unsigned long long)bytenr); 5380 btrfs_print_leaf(extent_root, path->nodes[0]); 5381 } 5382 if (ret < 0) { 5383 btrfs_abort_transaction(trans, extent_root, ret); 5384 goto out; 5385 } 5386 5387 extent_slot = path->slots[0]; 5388 leaf = path->nodes[0]; 5389 item_size = btrfs_item_size_nr(leaf, extent_slot); 5390 } 5391 #endif 5392 BUG_ON(item_size < sizeof(*ei)); 5393 ei = btrfs_item_ptr(leaf, extent_slot, 5394 struct btrfs_extent_item); 5395 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5396 struct btrfs_tree_block_info *bi; 5397 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5398 bi = (struct btrfs_tree_block_info *)(ei + 1); 5399 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5400 } 5401 5402 refs = btrfs_extent_refs(leaf, ei); 5403 BUG_ON(refs < refs_to_drop); 5404 refs -= refs_to_drop; 5405 5406 if (refs > 0) { 5407 if (extent_op) 5408 __run_delayed_extent_op(extent_op, leaf, ei); 5409 /* 5410 * In the case of inline back ref, reference count will 5411 * be updated by remove_extent_backref 5412 */ 5413 if (iref) { 5414 BUG_ON(!found_extent); 5415 } else { 5416 btrfs_set_extent_refs(leaf, ei, refs); 5417 btrfs_mark_buffer_dirty(leaf); 5418 } 5419 if (found_extent) { 5420 ret = remove_extent_backref(trans, extent_root, path, 5421 iref, refs_to_drop, 5422 is_data); 5423 if (ret) { 5424 btrfs_abort_transaction(trans, extent_root, ret); 5425 goto out; 5426 } 5427 } 5428 } else { 5429 if (found_extent) { 5430 BUG_ON(is_data && refs_to_drop != 5431 extent_data_ref_count(root, path, iref)); 5432 if (iref) { 5433 BUG_ON(path->slots[0] != extent_slot); 5434 } else { 5435 BUG_ON(path->slots[0] != extent_slot + 1); 5436 path->slots[0] = extent_slot; 5437 num_to_del = 2; 5438 } 5439 } 5440 5441 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5442 num_to_del); 5443 if (ret) { 5444 btrfs_abort_transaction(trans, extent_root, ret); 5445 goto out; 5446 } 5447 btrfs_release_path(path); 5448 5449 if (is_data) { 5450 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5451 if (ret) { 5452 btrfs_abort_transaction(trans, extent_root, ret); 5453 goto out; 5454 } 5455 } 5456 5457 ret = update_block_group(root, bytenr, num_bytes, 0); 5458 if (ret) { 5459 btrfs_abort_transaction(trans, extent_root, ret); 5460 goto out; 5461 } 5462 } 5463 out: 5464 btrfs_free_path(path); 5465 return ret; 5466 } 5467 5468 /* 5469 * when we free an block, it is possible (and likely) that we free the last 5470 * delayed ref for that extent as well. This searches the delayed ref tree for 5471 * a given extent, and if there are no other delayed refs to be processed, it 5472 * removes it from the tree. 5473 */ 5474 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5475 struct btrfs_root *root, u64 bytenr) 5476 { 5477 struct btrfs_delayed_ref_head *head; 5478 struct btrfs_delayed_ref_root *delayed_refs; 5479 struct btrfs_delayed_ref_node *ref; 5480 struct rb_node *node; 5481 int ret = 0; 5482 5483 delayed_refs = &trans->transaction->delayed_refs; 5484 spin_lock(&delayed_refs->lock); 5485 head = btrfs_find_delayed_ref_head(trans, bytenr); 5486 if (!head) 5487 goto out; 5488 5489 node = rb_prev(&head->node.rb_node); 5490 if (!node) 5491 goto out; 5492 5493 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5494 5495 /* there are still entries for this ref, we can't drop it */ 5496 if (ref->bytenr == bytenr) 5497 goto out; 5498 5499 if (head->extent_op) { 5500 if (!head->must_insert_reserved) 5501 goto out; 5502 btrfs_free_delayed_extent_op(head->extent_op); 5503 head->extent_op = NULL; 5504 } 5505 5506 /* 5507 * waiting for the lock here would deadlock. If someone else has it 5508 * locked they are already in the process of dropping it anyway 5509 */ 5510 if (!mutex_trylock(&head->mutex)) 5511 goto out; 5512 5513 /* 5514 * at this point we have a head with no other entries. Go 5515 * ahead and process it. 5516 */ 5517 head->node.in_tree = 0; 5518 rb_erase(&head->node.rb_node, &delayed_refs->root); 5519 5520 delayed_refs->num_entries--; 5521 5522 /* 5523 * we don't take a ref on the node because we're removing it from the 5524 * tree, so we just steal the ref the tree was holding. 5525 */ 5526 delayed_refs->num_heads--; 5527 if (list_empty(&head->cluster)) 5528 delayed_refs->num_heads_ready--; 5529 5530 list_del_init(&head->cluster); 5531 spin_unlock(&delayed_refs->lock); 5532 5533 BUG_ON(head->extent_op); 5534 if (head->must_insert_reserved) 5535 ret = 1; 5536 5537 mutex_unlock(&head->mutex); 5538 btrfs_put_delayed_ref(&head->node); 5539 return ret; 5540 out: 5541 spin_unlock(&delayed_refs->lock); 5542 return 0; 5543 } 5544 5545 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5546 struct btrfs_root *root, 5547 struct extent_buffer *buf, 5548 u64 parent, int last_ref) 5549 { 5550 struct btrfs_block_group_cache *cache = NULL; 5551 int ret; 5552 5553 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5554 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5555 buf->start, buf->len, 5556 parent, root->root_key.objectid, 5557 btrfs_header_level(buf), 5558 BTRFS_DROP_DELAYED_REF, NULL, 0); 5559 BUG_ON(ret); /* -ENOMEM */ 5560 } 5561 5562 if (!last_ref) 5563 return; 5564 5565 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5566 5567 if (btrfs_header_generation(buf) == trans->transid) { 5568 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5569 ret = check_ref_cleanup(trans, root, buf->start); 5570 if (!ret) 5571 goto out; 5572 } 5573 5574 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5575 pin_down_extent(root, cache, buf->start, buf->len, 1); 5576 goto out; 5577 } 5578 5579 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5580 5581 btrfs_add_free_space(cache, buf->start, buf->len); 5582 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5583 } 5584 out: 5585 /* 5586 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5587 * anymore. 5588 */ 5589 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5590 btrfs_put_block_group(cache); 5591 } 5592 5593 /* Can return -ENOMEM */ 5594 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5595 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5596 u64 owner, u64 offset, int for_cow) 5597 { 5598 int ret; 5599 struct btrfs_fs_info *fs_info = root->fs_info; 5600 5601 /* 5602 * tree log blocks never actually go into the extent allocation 5603 * tree, just update pinning info and exit early. 5604 */ 5605 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5606 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5607 /* unlocks the pinned mutex */ 5608 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5609 ret = 0; 5610 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5611 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5612 num_bytes, 5613 parent, root_objectid, (int)owner, 5614 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5615 } else { 5616 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5617 num_bytes, 5618 parent, root_objectid, owner, 5619 offset, BTRFS_DROP_DELAYED_REF, 5620 NULL, for_cow); 5621 } 5622 return ret; 5623 } 5624 5625 static u64 stripe_align(struct btrfs_root *root, 5626 struct btrfs_block_group_cache *cache, 5627 u64 val, u64 num_bytes) 5628 { 5629 u64 ret = ALIGN(val, root->stripesize); 5630 return ret; 5631 } 5632 5633 /* 5634 * when we wait for progress in the block group caching, its because 5635 * our allocation attempt failed at least once. So, we must sleep 5636 * and let some progress happen before we try again. 5637 * 5638 * This function will sleep at least once waiting for new free space to 5639 * show up, and then it will check the block group free space numbers 5640 * for our min num_bytes. Another option is to have it go ahead 5641 * and look in the rbtree for a free extent of a given size, but this 5642 * is a good start. 5643 */ 5644 static noinline int 5645 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5646 u64 num_bytes) 5647 { 5648 struct btrfs_caching_control *caching_ctl; 5649 5650 caching_ctl = get_caching_control(cache); 5651 if (!caching_ctl) 5652 return 0; 5653 5654 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5655 (cache->free_space_ctl->free_space >= num_bytes)); 5656 5657 put_caching_control(caching_ctl); 5658 return 0; 5659 } 5660 5661 static noinline int 5662 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5663 { 5664 struct btrfs_caching_control *caching_ctl; 5665 5666 caching_ctl = get_caching_control(cache); 5667 if (!caching_ctl) 5668 return 0; 5669 5670 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5671 5672 put_caching_control(caching_ctl); 5673 return 0; 5674 } 5675 5676 int __get_raid_index(u64 flags) 5677 { 5678 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5679 return BTRFS_RAID_RAID10; 5680 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5681 return BTRFS_RAID_RAID1; 5682 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5683 return BTRFS_RAID_DUP; 5684 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5685 return BTRFS_RAID_RAID0; 5686 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 5687 return BTRFS_RAID_RAID5; 5688 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 5689 return BTRFS_RAID_RAID6; 5690 5691 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 5692 } 5693 5694 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5695 { 5696 return __get_raid_index(cache->flags); 5697 } 5698 5699 enum btrfs_loop_type { 5700 LOOP_CACHING_NOWAIT = 0, 5701 LOOP_CACHING_WAIT = 1, 5702 LOOP_ALLOC_CHUNK = 2, 5703 LOOP_NO_EMPTY_SIZE = 3, 5704 }; 5705 5706 /* 5707 * walks the btree of allocated extents and find a hole of a given size. 5708 * The key ins is changed to record the hole: 5709 * ins->objectid == block start 5710 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5711 * ins->offset == number of blocks 5712 * Any available blocks before search_start are skipped. 5713 */ 5714 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5715 struct btrfs_root *orig_root, 5716 u64 num_bytes, u64 empty_size, 5717 u64 hint_byte, struct btrfs_key *ins, 5718 u64 data) 5719 { 5720 int ret = 0; 5721 struct btrfs_root *root = orig_root->fs_info->extent_root; 5722 struct btrfs_free_cluster *last_ptr = NULL; 5723 struct btrfs_block_group_cache *block_group = NULL; 5724 struct btrfs_block_group_cache *used_block_group; 5725 u64 search_start = 0; 5726 int empty_cluster = 2 * 1024 * 1024; 5727 struct btrfs_space_info *space_info; 5728 int loop = 0; 5729 int index = __get_raid_index(data); 5730 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5731 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5732 bool found_uncached_bg = false; 5733 bool failed_cluster_refill = false; 5734 bool failed_alloc = false; 5735 bool use_cluster = true; 5736 bool have_caching_bg = false; 5737 5738 WARN_ON(num_bytes < root->sectorsize); 5739 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5740 ins->objectid = 0; 5741 ins->offset = 0; 5742 5743 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5744 5745 space_info = __find_space_info(root->fs_info, data); 5746 if (!space_info) { 5747 printk(KERN_ERR "No space info for %llu\n", data); 5748 return -ENOSPC; 5749 } 5750 5751 /* 5752 * If the space info is for both data and metadata it means we have a 5753 * small filesystem and we can't use the clustering stuff. 5754 */ 5755 if (btrfs_mixed_space_info(space_info)) 5756 use_cluster = false; 5757 5758 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5759 last_ptr = &root->fs_info->meta_alloc_cluster; 5760 if (!btrfs_test_opt(root, SSD)) 5761 empty_cluster = 64 * 1024; 5762 } 5763 5764 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5765 btrfs_test_opt(root, SSD)) { 5766 last_ptr = &root->fs_info->data_alloc_cluster; 5767 } 5768 5769 if (last_ptr) { 5770 spin_lock(&last_ptr->lock); 5771 if (last_ptr->block_group) 5772 hint_byte = last_ptr->window_start; 5773 spin_unlock(&last_ptr->lock); 5774 } 5775 5776 search_start = max(search_start, first_logical_byte(root, 0)); 5777 search_start = max(search_start, hint_byte); 5778 5779 if (!last_ptr) 5780 empty_cluster = 0; 5781 5782 if (search_start == hint_byte) { 5783 block_group = btrfs_lookup_block_group(root->fs_info, 5784 search_start); 5785 used_block_group = block_group; 5786 /* 5787 * we don't want to use the block group if it doesn't match our 5788 * allocation bits, or if its not cached. 5789 * 5790 * However if we are re-searching with an ideal block group 5791 * picked out then we don't care that the block group is cached. 5792 */ 5793 if (block_group && block_group_bits(block_group, data) && 5794 block_group->cached != BTRFS_CACHE_NO) { 5795 down_read(&space_info->groups_sem); 5796 if (list_empty(&block_group->list) || 5797 block_group->ro) { 5798 /* 5799 * someone is removing this block group, 5800 * we can't jump into the have_block_group 5801 * target because our list pointers are not 5802 * valid 5803 */ 5804 btrfs_put_block_group(block_group); 5805 up_read(&space_info->groups_sem); 5806 } else { 5807 index = get_block_group_index(block_group); 5808 goto have_block_group; 5809 } 5810 } else if (block_group) { 5811 btrfs_put_block_group(block_group); 5812 } 5813 } 5814 search: 5815 have_caching_bg = false; 5816 down_read(&space_info->groups_sem); 5817 list_for_each_entry(block_group, &space_info->block_groups[index], 5818 list) { 5819 u64 offset; 5820 int cached; 5821 5822 used_block_group = block_group; 5823 btrfs_get_block_group(block_group); 5824 search_start = block_group->key.objectid; 5825 5826 /* 5827 * this can happen if we end up cycling through all the 5828 * raid types, but we want to make sure we only allocate 5829 * for the proper type. 5830 */ 5831 if (!block_group_bits(block_group, data)) { 5832 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5833 BTRFS_BLOCK_GROUP_RAID1 | 5834 BTRFS_BLOCK_GROUP_RAID5 | 5835 BTRFS_BLOCK_GROUP_RAID6 | 5836 BTRFS_BLOCK_GROUP_RAID10; 5837 5838 /* 5839 * if they asked for extra copies and this block group 5840 * doesn't provide them, bail. This does allow us to 5841 * fill raid0 from raid1. 5842 */ 5843 if ((data & extra) && !(block_group->flags & extra)) 5844 goto loop; 5845 } 5846 5847 have_block_group: 5848 cached = block_group_cache_done(block_group); 5849 if (unlikely(!cached)) { 5850 found_uncached_bg = true; 5851 ret = cache_block_group(block_group, 0); 5852 BUG_ON(ret < 0); 5853 ret = 0; 5854 } 5855 5856 if (unlikely(block_group->ro)) 5857 goto loop; 5858 5859 /* 5860 * Ok we want to try and use the cluster allocator, so 5861 * lets look there 5862 */ 5863 if (last_ptr) { 5864 unsigned long aligned_cluster; 5865 /* 5866 * the refill lock keeps out other 5867 * people trying to start a new cluster 5868 */ 5869 spin_lock(&last_ptr->refill_lock); 5870 used_block_group = last_ptr->block_group; 5871 if (used_block_group != block_group && 5872 (!used_block_group || 5873 used_block_group->ro || 5874 !block_group_bits(used_block_group, data))) { 5875 used_block_group = block_group; 5876 goto refill_cluster; 5877 } 5878 5879 if (used_block_group != block_group) 5880 btrfs_get_block_group(used_block_group); 5881 5882 offset = btrfs_alloc_from_cluster(used_block_group, 5883 last_ptr, num_bytes, used_block_group->key.objectid); 5884 if (offset) { 5885 /* we have a block, we're done */ 5886 spin_unlock(&last_ptr->refill_lock); 5887 trace_btrfs_reserve_extent_cluster(root, 5888 block_group, search_start, num_bytes); 5889 goto checks; 5890 } 5891 5892 WARN_ON(last_ptr->block_group != used_block_group); 5893 if (used_block_group != block_group) { 5894 btrfs_put_block_group(used_block_group); 5895 used_block_group = block_group; 5896 } 5897 refill_cluster: 5898 BUG_ON(used_block_group != block_group); 5899 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5900 * set up a new clusters, so lets just skip it 5901 * and let the allocator find whatever block 5902 * it can find. If we reach this point, we 5903 * will have tried the cluster allocator 5904 * plenty of times and not have found 5905 * anything, so we are likely way too 5906 * fragmented for the clustering stuff to find 5907 * anything. 5908 * 5909 * However, if the cluster is taken from the 5910 * current block group, release the cluster 5911 * first, so that we stand a better chance of 5912 * succeeding in the unclustered 5913 * allocation. */ 5914 if (loop >= LOOP_NO_EMPTY_SIZE && 5915 last_ptr->block_group != block_group) { 5916 spin_unlock(&last_ptr->refill_lock); 5917 goto unclustered_alloc; 5918 } 5919 5920 /* 5921 * this cluster didn't work out, free it and 5922 * start over 5923 */ 5924 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5925 5926 if (loop >= LOOP_NO_EMPTY_SIZE) { 5927 spin_unlock(&last_ptr->refill_lock); 5928 goto unclustered_alloc; 5929 } 5930 5931 aligned_cluster = max_t(unsigned long, 5932 empty_cluster + empty_size, 5933 block_group->full_stripe_len); 5934 5935 /* allocate a cluster in this block group */ 5936 ret = btrfs_find_space_cluster(trans, root, 5937 block_group, last_ptr, 5938 search_start, num_bytes, 5939 aligned_cluster); 5940 if (ret == 0) { 5941 /* 5942 * now pull our allocation out of this 5943 * cluster 5944 */ 5945 offset = btrfs_alloc_from_cluster(block_group, 5946 last_ptr, num_bytes, 5947 search_start); 5948 if (offset) { 5949 /* we found one, proceed */ 5950 spin_unlock(&last_ptr->refill_lock); 5951 trace_btrfs_reserve_extent_cluster(root, 5952 block_group, search_start, 5953 num_bytes); 5954 goto checks; 5955 } 5956 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5957 && !failed_cluster_refill) { 5958 spin_unlock(&last_ptr->refill_lock); 5959 5960 failed_cluster_refill = true; 5961 wait_block_group_cache_progress(block_group, 5962 num_bytes + empty_cluster + empty_size); 5963 goto have_block_group; 5964 } 5965 5966 /* 5967 * at this point we either didn't find a cluster 5968 * or we weren't able to allocate a block from our 5969 * cluster. Free the cluster we've been trying 5970 * to use, and go to the next block group 5971 */ 5972 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5973 spin_unlock(&last_ptr->refill_lock); 5974 goto loop; 5975 } 5976 5977 unclustered_alloc: 5978 spin_lock(&block_group->free_space_ctl->tree_lock); 5979 if (cached && 5980 block_group->free_space_ctl->free_space < 5981 num_bytes + empty_cluster + empty_size) { 5982 spin_unlock(&block_group->free_space_ctl->tree_lock); 5983 goto loop; 5984 } 5985 spin_unlock(&block_group->free_space_ctl->tree_lock); 5986 5987 offset = btrfs_find_space_for_alloc(block_group, search_start, 5988 num_bytes, empty_size); 5989 /* 5990 * If we didn't find a chunk, and we haven't failed on this 5991 * block group before, and this block group is in the middle of 5992 * caching and we are ok with waiting, then go ahead and wait 5993 * for progress to be made, and set failed_alloc to true. 5994 * 5995 * If failed_alloc is true then we've already waited on this 5996 * block group once and should move on to the next block group. 5997 */ 5998 if (!offset && !failed_alloc && !cached && 5999 loop > LOOP_CACHING_NOWAIT) { 6000 wait_block_group_cache_progress(block_group, 6001 num_bytes + empty_size); 6002 failed_alloc = true; 6003 goto have_block_group; 6004 } else if (!offset) { 6005 if (!cached) 6006 have_caching_bg = true; 6007 goto loop; 6008 } 6009 checks: 6010 search_start = stripe_align(root, used_block_group, 6011 offset, num_bytes); 6012 6013 /* move on to the next group */ 6014 if (search_start + num_bytes > 6015 used_block_group->key.objectid + used_block_group->key.offset) { 6016 btrfs_add_free_space(used_block_group, offset, num_bytes); 6017 goto loop; 6018 } 6019 6020 if (offset < search_start) 6021 btrfs_add_free_space(used_block_group, offset, 6022 search_start - offset); 6023 BUG_ON(offset > search_start); 6024 6025 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 6026 alloc_type); 6027 if (ret == -EAGAIN) { 6028 btrfs_add_free_space(used_block_group, offset, num_bytes); 6029 goto loop; 6030 } 6031 6032 /* we are all good, lets return */ 6033 ins->objectid = search_start; 6034 ins->offset = num_bytes; 6035 6036 trace_btrfs_reserve_extent(orig_root, block_group, 6037 search_start, num_bytes); 6038 if (used_block_group != block_group) 6039 btrfs_put_block_group(used_block_group); 6040 btrfs_put_block_group(block_group); 6041 break; 6042 loop: 6043 failed_cluster_refill = false; 6044 failed_alloc = false; 6045 BUG_ON(index != get_block_group_index(block_group)); 6046 if (used_block_group != block_group) 6047 btrfs_put_block_group(used_block_group); 6048 btrfs_put_block_group(block_group); 6049 } 6050 up_read(&space_info->groups_sem); 6051 6052 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6053 goto search; 6054 6055 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6056 goto search; 6057 6058 /* 6059 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6060 * caching kthreads as we move along 6061 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6062 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6063 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6064 * again 6065 */ 6066 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6067 index = 0; 6068 loop++; 6069 if (loop == LOOP_ALLOC_CHUNK) { 6070 ret = do_chunk_alloc(trans, root, data, 6071 CHUNK_ALLOC_FORCE); 6072 /* 6073 * Do not bail out on ENOSPC since we 6074 * can do more things. 6075 */ 6076 if (ret < 0 && ret != -ENOSPC) { 6077 btrfs_abort_transaction(trans, 6078 root, ret); 6079 goto out; 6080 } 6081 } 6082 6083 if (loop == LOOP_NO_EMPTY_SIZE) { 6084 empty_size = 0; 6085 empty_cluster = 0; 6086 } 6087 6088 goto search; 6089 } else if (!ins->objectid) { 6090 ret = -ENOSPC; 6091 } else if (ins->objectid) { 6092 ret = 0; 6093 } 6094 out: 6095 6096 return ret; 6097 } 6098 6099 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6100 int dump_block_groups) 6101 { 6102 struct btrfs_block_group_cache *cache; 6103 int index = 0; 6104 6105 spin_lock(&info->lock); 6106 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 6107 (unsigned long long)info->flags, 6108 (unsigned long long)(info->total_bytes - info->bytes_used - 6109 info->bytes_pinned - info->bytes_reserved - 6110 info->bytes_readonly), 6111 (info->full) ? "" : "not "); 6112 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 6113 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6114 (unsigned long long)info->total_bytes, 6115 (unsigned long long)info->bytes_used, 6116 (unsigned long long)info->bytes_pinned, 6117 (unsigned long long)info->bytes_reserved, 6118 (unsigned long long)info->bytes_may_use, 6119 (unsigned long long)info->bytes_readonly); 6120 spin_unlock(&info->lock); 6121 6122 if (!dump_block_groups) 6123 return; 6124 6125 down_read(&info->groups_sem); 6126 again: 6127 list_for_each_entry(cache, &info->block_groups[index], list) { 6128 spin_lock(&cache->lock); 6129 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 6130 (unsigned long long)cache->key.objectid, 6131 (unsigned long long)cache->key.offset, 6132 (unsigned long long)btrfs_block_group_used(&cache->item), 6133 (unsigned long long)cache->pinned, 6134 (unsigned long long)cache->reserved, 6135 cache->ro ? "[readonly]" : ""); 6136 btrfs_dump_free_space(cache, bytes); 6137 spin_unlock(&cache->lock); 6138 } 6139 if (++index < BTRFS_NR_RAID_TYPES) 6140 goto again; 6141 up_read(&info->groups_sem); 6142 } 6143 6144 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 6145 struct btrfs_root *root, 6146 u64 num_bytes, u64 min_alloc_size, 6147 u64 empty_size, u64 hint_byte, 6148 struct btrfs_key *ins, u64 data) 6149 { 6150 bool final_tried = false; 6151 int ret; 6152 6153 data = btrfs_get_alloc_profile(root, data); 6154 again: 6155 WARN_ON(num_bytes < root->sectorsize); 6156 ret = find_free_extent(trans, root, num_bytes, empty_size, 6157 hint_byte, ins, data); 6158 6159 if (ret == -ENOSPC) { 6160 if (!final_tried) { 6161 num_bytes = num_bytes >> 1; 6162 num_bytes = round_down(num_bytes, root->sectorsize); 6163 num_bytes = max(num_bytes, min_alloc_size); 6164 if (num_bytes == min_alloc_size) 6165 final_tried = true; 6166 goto again; 6167 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6168 struct btrfs_space_info *sinfo; 6169 6170 sinfo = __find_space_info(root->fs_info, data); 6171 printk(KERN_ERR "btrfs allocation failed flags %llu, " 6172 "wanted %llu\n", (unsigned long long)data, 6173 (unsigned long long)num_bytes); 6174 if (sinfo) 6175 dump_space_info(sinfo, num_bytes, 1); 6176 } 6177 } 6178 6179 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6180 6181 return ret; 6182 } 6183 6184 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6185 u64 start, u64 len, int pin) 6186 { 6187 struct btrfs_block_group_cache *cache; 6188 int ret = 0; 6189 6190 cache = btrfs_lookup_block_group(root->fs_info, start); 6191 if (!cache) { 6192 printk(KERN_ERR "Unable to find block group for %llu\n", 6193 (unsigned long long)start); 6194 return -ENOSPC; 6195 } 6196 6197 if (btrfs_test_opt(root, DISCARD)) 6198 ret = btrfs_discard_extent(root, start, len, NULL); 6199 6200 if (pin) 6201 pin_down_extent(root, cache, start, len, 1); 6202 else { 6203 btrfs_add_free_space(cache, start, len); 6204 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6205 } 6206 btrfs_put_block_group(cache); 6207 6208 trace_btrfs_reserved_extent_free(root, start, len); 6209 6210 return ret; 6211 } 6212 6213 int btrfs_free_reserved_extent(struct btrfs_root *root, 6214 u64 start, u64 len) 6215 { 6216 return __btrfs_free_reserved_extent(root, start, len, 0); 6217 } 6218 6219 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6220 u64 start, u64 len) 6221 { 6222 return __btrfs_free_reserved_extent(root, start, len, 1); 6223 } 6224 6225 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6226 struct btrfs_root *root, 6227 u64 parent, u64 root_objectid, 6228 u64 flags, u64 owner, u64 offset, 6229 struct btrfs_key *ins, int ref_mod) 6230 { 6231 int ret; 6232 struct btrfs_fs_info *fs_info = root->fs_info; 6233 struct btrfs_extent_item *extent_item; 6234 struct btrfs_extent_inline_ref *iref; 6235 struct btrfs_path *path; 6236 struct extent_buffer *leaf; 6237 int type; 6238 u32 size; 6239 6240 if (parent > 0) 6241 type = BTRFS_SHARED_DATA_REF_KEY; 6242 else 6243 type = BTRFS_EXTENT_DATA_REF_KEY; 6244 6245 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6246 6247 path = btrfs_alloc_path(); 6248 if (!path) 6249 return -ENOMEM; 6250 6251 path->leave_spinning = 1; 6252 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6253 ins, size); 6254 if (ret) { 6255 btrfs_free_path(path); 6256 return ret; 6257 } 6258 6259 leaf = path->nodes[0]; 6260 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6261 struct btrfs_extent_item); 6262 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6263 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6264 btrfs_set_extent_flags(leaf, extent_item, 6265 flags | BTRFS_EXTENT_FLAG_DATA); 6266 6267 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6268 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6269 if (parent > 0) { 6270 struct btrfs_shared_data_ref *ref; 6271 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6272 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6273 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6274 } else { 6275 struct btrfs_extent_data_ref *ref; 6276 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6277 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6278 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6279 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6280 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6281 } 6282 6283 btrfs_mark_buffer_dirty(path->nodes[0]); 6284 btrfs_free_path(path); 6285 6286 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6287 if (ret) { /* -ENOENT, logic error */ 6288 printk(KERN_ERR "btrfs update block group failed for %llu " 6289 "%llu\n", (unsigned long long)ins->objectid, 6290 (unsigned long long)ins->offset); 6291 BUG(); 6292 } 6293 return ret; 6294 } 6295 6296 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6297 struct btrfs_root *root, 6298 u64 parent, u64 root_objectid, 6299 u64 flags, struct btrfs_disk_key *key, 6300 int level, struct btrfs_key *ins) 6301 { 6302 int ret; 6303 struct btrfs_fs_info *fs_info = root->fs_info; 6304 struct btrfs_extent_item *extent_item; 6305 struct btrfs_tree_block_info *block_info; 6306 struct btrfs_extent_inline_ref *iref; 6307 struct btrfs_path *path; 6308 struct extent_buffer *leaf; 6309 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6310 6311 path = btrfs_alloc_path(); 6312 if (!path) 6313 return -ENOMEM; 6314 6315 path->leave_spinning = 1; 6316 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6317 ins, size); 6318 if (ret) { 6319 btrfs_free_path(path); 6320 return ret; 6321 } 6322 6323 leaf = path->nodes[0]; 6324 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6325 struct btrfs_extent_item); 6326 btrfs_set_extent_refs(leaf, extent_item, 1); 6327 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6328 btrfs_set_extent_flags(leaf, extent_item, 6329 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6330 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6331 6332 btrfs_set_tree_block_key(leaf, block_info, key); 6333 btrfs_set_tree_block_level(leaf, block_info, level); 6334 6335 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6336 if (parent > 0) { 6337 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6338 btrfs_set_extent_inline_ref_type(leaf, iref, 6339 BTRFS_SHARED_BLOCK_REF_KEY); 6340 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6341 } else { 6342 btrfs_set_extent_inline_ref_type(leaf, iref, 6343 BTRFS_TREE_BLOCK_REF_KEY); 6344 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6345 } 6346 6347 btrfs_mark_buffer_dirty(leaf); 6348 btrfs_free_path(path); 6349 6350 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6351 if (ret) { /* -ENOENT, logic error */ 6352 printk(KERN_ERR "btrfs update block group failed for %llu " 6353 "%llu\n", (unsigned long long)ins->objectid, 6354 (unsigned long long)ins->offset); 6355 BUG(); 6356 } 6357 return ret; 6358 } 6359 6360 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6361 struct btrfs_root *root, 6362 u64 root_objectid, u64 owner, 6363 u64 offset, struct btrfs_key *ins) 6364 { 6365 int ret; 6366 6367 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6368 6369 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6370 ins->offset, 0, 6371 root_objectid, owner, offset, 6372 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6373 return ret; 6374 } 6375 6376 /* 6377 * this is used by the tree logging recovery code. It records that 6378 * an extent has been allocated and makes sure to clear the free 6379 * space cache bits as well 6380 */ 6381 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6382 struct btrfs_root *root, 6383 u64 root_objectid, u64 owner, u64 offset, 6384 struct btrfs_key *ins) 6385 { 6386 int ret; 6387 struct btrfs_block_group_cache *block_group; 6388 struct btrfs_caching_control *caching_ctl; 6389 u64 start = ins->objectid; 6390 u64 num_bytes = ins->offset; 6391 6392 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6393 cache_block_group(block_group, 0); 6394 caching_ctl = get_caching_control(block_group); 6395 6396 if (!caching_ctl) { 6397 BUG_ON(!block_group_cache_done(block_group)); 6398 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6399 BUG_ON(ret); /* -ENOMEM */ 6400 } else { 6401 mutex_lock(&caching_ctl->mutex); 6402 6403 if (start >= caching_ctl->progress) { 6404 ret = add_excluded_extent(root, start, num_bytes); 6405 BUG_ON(ret); /* -ENOMEM */ 6406 } else if (start + num_bytes <= caching_ctl->progress) { 6407 ret = btrfs_remove_free_space(block_group, 6408 start, num_bytes); 6409 BUG_ON(ret); /* -ENOMEM */ 6410 } else { 6411 num_bytes = caching_ctl->progress - start; 6412 ret = btrfs_remove_free_space(block_group, 6413 start, num_bytes); 6414 BUG_ON(ret); /* -ENOMEM */ 6415 6416 start = caching_ctl->progress; 6417 num_bytes = ins->objectid + ins->offset - 6418 caching_ctl->progress; 6419 ret = add_excluded_extent(root, start, num_bytes); 6420 BUG_ON(ret); /* -ENOMEM */ 6421 } 6422 6423 mutex_unlock(&caching_ctl->mutex); 6424 put_caching_control(caching_ctl); 6425 } 6426 6427 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6428 RESERVE_ALLOC_NO_ACCOUNT); 6429 BUG_ON(ret); /* logic error */ 6430 btrfs_put_block_group(block_group); 6431 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6432 0, owner, offset, ins, 1); 6433 return ret; 6434 } 6435 6436 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6437 struct btrfs_root *root, 6438 u64 bytenr, u32 blocksize, 6439 int level) 6440 { 6441 struct extent_buffer *buf; 6442 6443 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6444 if (!buf) 6445 return ERR_PTR(-ENOMEM); 6446 btrfs_set_header_generation(buf, trans->transid); 6447 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6448 btrfs_tree_lock(buf); 6449 clean_tree_block(trans, root, buf); 6450 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6451 6452 btrfs_set_lock_blocking(buf); 6453 btrfs_set_buffer_uptodate(buf); 6454 6455 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6456 /* 6457 * we allow two log transactions at a time, use different 6458 * EXENT bit to differentiate dirty pages. 6459 */ 6460 if (root->log_transid % 2 == 0) 6461 set_extent_dirty(&root->dirty_log_pages, buf->start, 6462 buf->start + buf->len - 1, GFP_NOFS); 6463 else 6464 set_extent_new(&root->dirty_log_pages, buf->start, 6465 buf->start + buf->len - 1, GFP_NOFS); 6466 } else { 6467 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6468 buf->start + buf->len - 1, GFP_NOFS); 6469 } 6470 trans->blocks_used++; 6471 /* this returns a buffer locked for blocking */ 6472 return buf; 6473 } 6474 6475 static struct btrfs_block_rsv * 6476 use_block_rsv(struct btrfs_trans_handle *trans, 6477 struct btrfs_root *root, u32 blocksize) 6478 { 6479 struct btrfs_block_rsv *block_rsv; 6480 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6481 int ret; 6482 6483 block_rsv = get_block_rsv(trans, root); 6484 6485 if (block_rsv->size == 0) { 6486 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6487 BTRFS_RESERVE_NO_FLUSH); 6488 /* 6489 * If we couldn't reserve metadata bytes try and use some from 6490 * the global reserve. 6491 */ 6492 if (ret && block_rsv != global_rsv) { 6493 ret = block_rsv_use_bytes(global_rsv, blocksize); 6494 if (!ret) 6495 return global_rsv; 6496 return ERR_PTR(ret); 6497 } else if (ret) { 6498 return ERR_PTR(ret); 6499 } 6500 return block_rsv; 6501 } 6502 6503 ret = block_rsv_use_bytes(block_rsv, blocksize); 6504 if (!ret) 6505 return block_rsv; 6506 if (ret && !block_rsv->failfast) { 6507 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6508 static DEFINE_RATELIMIT_STATE(_rs, 6509 DEFAULT_RATELIMIT_INTERVAL * 10, 6510 /*DEFAULT_RATELIMIT_BURST*/ 1); 6511 if (__ratelimit(&_rs)) 6512 WARN(1, KERN_DEBUG 6513 "btrfs: block rsv returned %d\n", ret); 6514 } 6515 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6516 BTRFS_RESERVE_NO_FLUSH); 6517 if (!ret) { 6518 return block_rsv; 6519 } else if (ret && block_rsv != global_rsv) { 6520 ret = block_rsv_use_bytes(global_rsv, blocksize); 6521 if (!ret) 6522 return global_rsv; 6523 } 6524 } 6525 6526 return ERR_PTR(-ENOSPC); 6527 } 6528 6529 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6530 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6531 { 6532 block_rsv_add_bytes(block_rsv, blocksize, 0); 6533 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6534 } 6535 6536 /* 6537 * finds a free extent and does all the dirty work required for allocation 6538 * returns the key for the extent through ins, and a tree buffer for 6539 * the first block of the extent through buf. 6540 * 6541 * returns the tree buffer or NULL. 6542 */ 6543 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6544 struct btrfs_root *root, u32 blocksize, 6545 u64 parent, u64 root_objectid, 6546 struct btrfs_disk_key *key, int level, 6547 u64 hint, u64 empty_size) 6548 { 6549 struct btrfs_key ins; 6550 struct btrfs_block_rsv *block_rsv; 6551 struct extent_buffer *buf; 6552 u64 flags = 0; 6553 int ret; 6554 6555 6556 block_rsv = use_block_rsv(trans, root, blocksize); 6557 if (IS_ERR(block_rsv)) 6558 return ERR_CAST(block_rsv); 6559 6560 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6561 empty_size, hint, &ins, 0); 6562 if (ret) { 6563 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6564 return ERR_PTR(ret); 6565 } 6566 6567 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6568 blocksize, level); 6569 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6570 6571 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6572 if (parent == 0) 6573 parent = ins.objectid; 6574 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6575 } else 6576 BUG_ON(parent > 0); 6577 6578 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6579 struct btrfs_delayed_extent_op *extent_op; 6580 extent_op = btrfs_alloc_delayed_extent_op(); 6581 BUG_ON(!extent_op); /* -ENOMEM */ 6582 if (key) 6583 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6584 else 6585 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6586 extent_op->flags_to_set = flags; 6587 extent_op->update_key = 1; 6588 extent_op->update_flags = 1; 6589 extent_op->is_data = 0; 6590 6591 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6592 ins.objectid, 6593 ins.offset, parent, root_objectid, 6594 level, BTRFS_ADD_DELAYED_EXTENT, 6595 extent_op, 0); 6596 BUG_ON(ret); /* -ENOMEM */ 6597 } 6598 return buf; 6599 } 6600 6601 struct walk_control { 6602 u64 refs[BTRFS_MAX_LEVEL]; 6603 u64 flags[BTRFS_MAX_LEVEL]; 6604 struct btrfs_key update_progress; 6605 int stage; 6606 int level; 6607 int shared_level; 6608 int update_ref; 6609 int keep_locks; 6610 int reada_slot; 6611 int reada_count; 6612 int for_reloc; 6613 }; 6614 6615 #define DROP_REFERENCE 1 6616 #define UPDATE_BACKREF 2 6617 6618 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6619 struct btrfs_root *root, 6620 struct walk_control *wc, 6621 struct btrfs_path *path) 6622 { 6623 u64 bytenr; 6624 u64 generation; 6625 u64 refs; 6626 u64 flags; 6627 u32 nritems; 6628 u32 blocksize; 6629 struct btrfs_key key; 6630 struct extent_buffer *eb; 6631 int ret; 6632 int slot; 6633 int nread = 0; 6634 6635 if (path->slots[wc->level] < wc->reada_slot) { 6636 wc->reada_count = wc->reada_count * 2 / 3; 6637 wc->reada_count = max(wc->reada_count, 2); 6638 } else { 6639 wc->reada_count = wc->reada_count * 3 / 2; 6640 wc->reada_count = min_t(int, wc->reada_count, 6641 BTRFS_NODEPTRS_PER_BLOCK(root)); 6642 } 6643 6644 eb = path->nodes[wc->level]; 6645 nritems = btrfs_header_nritems(eb); 6646 blocksize = btrfs_level_size(root, wc->level - 1); 6647 6648 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6649 if (nread >= wc->reada_count) 6650 break; 6651 6652 cond_resched(); 6653 bytenr = btrfs_node_blockptr(eb, slot); 6654 generation = btrfs_node_ptr_generation(eb, slot); 6655 6656 if (slot == path->slots[wc->level]) 6657 goto reada; 6658 6659 if (wc->stage == UPDATE_BACKREF && 6660 generation <= root->root_key.offset) 6661 continue; 6662 6663 /* We don't lock the tree block, it's OK to be racy here */ 6664 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6665 &refs, &flags); 6666 /* We don't care about errors in readahead. */ 6667 if (ret < 0) 6668 continue; 6669 BUG_ON(refs == 0); 6670 6671 if (wc->stage == DROP_REFERENCE) { 6672 if (refs == 1) 6673 goto reada; 6674 6675 if (wc->level == 1 && 6676 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6677 continue; 6678 if (!wc->update_ref || 6679 generation <= root->root_key.offset) 6680 continue; 6681 btrfs_node_key_to_cpu(eb, &key, slot); 6682 ret = btrfs_comp_cpu_keys(&key, 6683 &wc->update_progress); 6684 if (ret < 0) 6685 continue; 6686 } else { 6687 if (wc->level == 1 && 6688 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6689 continue; 6690 } 6691 reada: 6692 ret = readahead_tree_block(root, bytenr, blocksize, 6693 generation); 6694 if (ret) 6695 break; 6696 nread++; 6697 } 6698 wc->reada_slot = slot; 6699 } 6700 6701 /* 6702 * helper to process tree block while walking down the tree. 6703 * 6704 * when wc->stage == UPDATE_BACKREF, this function updates 6705 * back refs for pointers in the block. 6706 * 6707 * NOTE: return value 1 means we should stop walking down. 6708 */ 6709 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6710 struct btrfs_root *root, 6711 struct btrfs_path *path, 6712 struct walk_control *wc, int lookup_info) 6713 { 6714 int level = wc->level; 6715 struct extent_buffer *eb = path->nodes[level]; 6716 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6717 int ret; 6718 6719 if (wc->stage == UPDATE_BACKREF && 6720 btrfs_header_owner(eb) != root->root_key.objectid) 6721 return 1; 6722 6723 /* 6724 * when reference count of tree block is 1, it won't increase 6725 * again. once full backref flag is set, we never clear it. 6726 */ 6727 if (lookup_info && 6728 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6729 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6730 BUG_ON(!path->locks[level]); 6731 ret = btrfs_lookup_extent_info(trans, root, 6732 eb->start, eb->len, 6733 &wc->refs[level], 6734 &wc->flags[level]); 6735 BUG_ON(ret == -ENOMEM); 6736 if (ret) 6737 return ret; 6738 BUG_ON(wc->refs[level] == 0); 6739 } 6740 6741 if (wc->stage == DROP_REFERENCE) { 6742 if (wc->refs[level] > 1) 6743 return 1; 6744 6745 if (path->locks[level] && !wc->keep_locks) { 6746 btrfs_tree_unlock_rw(eb, path->locks[level]); 6747 path->locks[level] = 0; 6748 } 6749 return 0; 6750 } 6751 6752 /* wc->stage == UPDATE_BACKREF */ 6753 if (!(wc->flags[level] & flag)) { 6754 BUG_ON(!path->locks[level]); 6755 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6756 BUG_ON(ret); /* -ENOMEM */ 6757 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6758 BUG_ON(ret); /* -ENOMEM */ 6759 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6760 eb->len, flag, 0); 6761 BUG_ON(ret); /* -ENOMEM */ 6762 wc->flags[level] |= flag; 6763 } 6764 6765 /* 6766 * the block is shared by multiple trees, so it's not good to 6767 * keep the tree lock 6768 */ 6769 if (path->locks[level] && level > 0) { 6770 btrfs_tree_unlock_rw(eb, path->locks[level]); 6771 path->locks[level] = 0; 6772 } 6773 return 0; 6774 } 6775 6776 /* 6777 * helper to process tree block pointer. 6778 * 6779 * when wc->stage == DROP_REFERENCE, this function checks 6780 * reference count of the block pointed to. if the block 6781 * is shared and we need update back refs for the subtree 6782 * rooted at the block, this function changes wc->stage to 6783 * UPDATE_BACKREF. if the block is shared and there is no 6784 * need to update back, this function drops the reference 6785 * to the block. 6786 * 6787 * NOTE: return value 1 means we should stop walking down. 6788 */ 6789 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6790 struct btrfs_root *root, 6791 struct btrfs_path *path, 6792 struct walk_control *wc, int *lookup_info) 6793 { 6794 u64 bytenr; 6795 u64 generation; 6796 u64 parent; 6797 u32 blocksize; 6798 struct btrfs_key key; 6799 struct extent_buffer *next; 6800 int level = wc->level; 6801 int reada = 0; 6802 int ret = 0; 6803 6804 generation = btrfs_node_ptr_generation(path->nodes[level], 6805 path->slots[level]); 6806 /* 6807 * if the lower level block was created before the snapshot 6808 * was created, we know there is no need to update back refs 6809 * for the subtree 6810 */ 6811 if (wc->stage == UPDATE_BACKREF && 6812 generation <= root->root_key.offset) { 6813 *lookup_info = 1; 6814 return 1; 6815 } 6816 6817 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6818 blocksize = btrfs_level_size(root, level - 1); 6819 6820 next = btrfs_find_tree_block(root, bytenr, blocksize); 6821 if (!next) { 6822 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6823 if (!next) 6824 return -ENOMEM; 6825 reada = 1; 6826 } 6827 btrfs_tree_lock(next); 6828 btrfs_set_lock_blocking(next); 6829 6830 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6831 &wc->refs[level - 1], 6832 &wc->flags[level - 1]); 6833 if (ret < 0) { 6834 btrfs_tree_unlock(next); 6835 return ret; 6836 } 6837 6838 BUG_ON(wc->refs[level - 1] == 0); 6839 *lookup_info = 0; 6840 6841 if (wc->stage == DROP_REFERENCE) { 6842 if (wc->refs[level - 1] > 1) { 6843 if (level == 1 && 6844 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6845 goto skip; 6846 6847 if (!wc->update_ref || 6848 generation <= root->root_key.offset) 6849 goto skip; 6850 6851 btrfs_node_key_to_cpu(path->nodes[level], &key, 6852 path->slots[level]); 6853 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6854 if (ret < 0) 6855 goto skip; 6856 6857 wc->stage = UPDATE_BACKREF; 6858 wc->shared_level = level - 1; 6859 } 6860 } else { 6861 if (level == 1 && 6862 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6863 goto skip; 6864 } 6865 6866 if (!btrfs_buffer_uptodate(next, generation, 0)) { 6867 btrfs_tree_unlock(next); 6868 free_extent_buffer(next); 6869 next = NULL; 6870 *lookup_info = 1; 6871 } 6872 6873 if (!next) { 6874 if (reada && level == 1) 6875 reada_walk_down(trans, root, wc, path); 6876 next = read_tree_block(root, bytenr, blocksize, generation); 6877 if (!next) 6878 return -EIO; 6879 btrfs_tree_lock(next); 6880 btrfs_set_lock_blocking(next); 6881 } 6882 6883 level--; 6884 BUG_ON(level != btrfs_header_level(next)); 6885 path->nodes[level] = next; 6886 path->slots[level] = 0; 6887 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6888 wc->level = level; 6889 if (wc->level == 1) 6890 wc->reada_slot = 0; 6891 return 0; 6892 skip: 6893 wc->refs[level - 1] = 0; 6894 wc->flags[level - 1] = 0; 6895 if (wc->stage == DROP_REFERENCE) { 6896 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6897 parent = path->nodes[level]->start; 6898 } else { 6899 BUG_ON(root->root_key.objectid != 6900 btrfs_header_owner(path->nodes[level])); 6901 parent = 0; 6902 } 6903 6904 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6905 root->root_key.objectid, level - 1, 0, 0); 6906 BUG_ON(ret); /* -ENOMEM */ 6907 } 6908 btrfs_tree_unlock(next); 6909 free_extent_buffer(next); 6910 *lookup_info = 1; 6911 return 1; 6912 } 6913 6914 /* 6915 * helper to process tree block while walking up the tree. 6916 * 6917 * when wc->stage == DROP_REFERENCE, this function drops 6918 * reference count on the block. 6919 * 6920 * when wc->stage == UPDATE_BACKREF, this function changes 6921 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6922 * to UPDATE_BACKREF previously while processing the block. 6923 * 6924 * NOTE: return value 1 means we should stop walking up. 6925 */ 6926 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6927 struct btrfs_root *root, 6928 struct btrfs_path *path, 6929 struct walk_control *wc) 6930 { 6931 int ret; 6932 int level = wc->level; 6933 struct extent_buffer *eb = path->nodes[level]; 6934 u64 parent = 0; 6935 6936 if (wc->stage == UPDATE_BACKREF) { 6937 BUG_ON(wc->shared_level < level); 6938 if (level < wc->shared_level) 6939 goto out; 6940 6941 ret = find_next_key(path, level + 1, &wc->update_progress); 6942 if (ret > 0) 6943 wc->update_ref = 0; 6944 6945 wc->stage = DROP_REFERENCE; 6946 wc->shared_level = -1; 6947 path->slots[level] = 0; 6948 6949 /* 6950 * check reference count again if the block isn't locked. 6951 * we should start walking down the tree again if reference 6952 * count is one. 6953 */ 6954 if (!path->locks[level]) { 6955 BUG_ON(level == 0); 6956 btrfs_tree_lock(eb); 6957 btrfs_set_lock_blocking(eb); 6958 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6959 6960 ret = btrfs_lookup_extent_info(trans, root, 6961 eb->start, eb->len, 6962 &wc->refs[level], 6963 &wc->flags[level]); 6964 if (ret < 0) { 6965 btrfs_tree_unlock_rw(eb, path->locks[level]); 6966 path->locks[level] = 0; 6967 return ret; 6968 } 6969 BUG_ON(wc->refs[level] == 0); 6970 if (wc->refs[level] == 1) { 6971 btrfs_tree_unlock_rw(eb, path->locks[level]); 6972 path->locks[level] = 0; 6973 return 1; 6974 } 6975 } 6976 } 6977 6978 /* wc->stage == DROP_REFERENCE */ 6979 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6980 6981 if (wc->refs[level] == 1) { 6982 if (level == 0) { 6983 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6984 ret = btrfs_dec_ref(trans, root, eb, 1, 6985 wc->for_reloc); 6986 else 6987 ret = btrfs_dec_ref(trans, root, eb, 0, 6988 wc->for_reloc); 6989 BUG_ON(ret); /* -ENOMEM */ 6990 } 6991 /* make block locked assertion in clean_tree_block happy */ 6992 if (!path->locks[level] && 6993 btrfs_header_generation(eb) == trans->transid) { 6994 btrfs_tree_lock(eb); 6995 btrfs_set_lock_blocking(eb); 6996 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6997 } 6998 clean_tree_block(trans, root, eb); 6999 } 7000 7001 if (eb == root->node) { 7002 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7003 parent = eb->start; 7004 else 7005 BUG_ON(root->root_key.objectid != 7006 btrfs_header_owner(eb)); 7007 } else { 7008 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7009 parent = path->nodes[level + 1]->start; 7010 else 7011 BUG_ON(root->root_key.objectid != 7012 btrfs_header_owner(path->nodes[level + 1])); 7013 } 7014 7015 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7016 out: 7017 wc->refs[level] = 0; 7018 wc->flags[level] = 0; 7019 return 0; 7020 } 7021 7022 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7023 struct btrfs_root *root, 7024 struct btrfs_path *path, 7025 struct walk_control *wc) 7026 { 7027 int level = wc->level; 7028 int lookup_info = 1; 7029 int ret; 7030 7031 while (level >= 0) { 7032 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7033 if (ret > 0) 7034 break; 7035 7036 if (level == 0) 7037 break; 7038 7039 if (path->slots[level] >= 7040 btrfs_header_nritems(path->nodes[level])) 7041 break; 7042 7043 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7044 if (ret > 0) { 7045 path->slots[level]++; 7046 continue; 7047 } else if (ret < 0) 7048 return ret; 7049 level = wc->level; 7050 } 7051 return 0; 7052 } 7053 7054 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7055 struct btrfs_root *root, 7056 struct btrfs_path *path, 7057 struct walk_control *wc, int max_level) 7058 { 7059 int level = wc->level; 7060 int ret; 7061 7062 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7063 while (level < max_level && path->nodes[level]) { 7064 wc->level = level; 7065 if (path->slots[level] + 1 < 7066 btrfs_header_nritems(path->nodes[level])) { 7067 path->slots[level]++; 7068 return 0; 7069 } else { 7070 ret = walk_up_proc(trans, root, path, wc); 7071 if (ret > 0) 7072 return 0; 7073 7074 if (path->locks[level]) { 7075 btrfs_tree_unlock_rw(path->nodes[level], 7076 path->locks[level]); 7077 path->locks[level] = 0; 7078 } 7079 free_extent_buffer(path->nodes[level]); 7080 path->nodes[level] = NULL; 7081 level++; 7082 } 7083 } 7084 return 1; 7085 } 7086 7087 /* 7088 * drop a subvolume tree. 7089 * 7090 * this function traverses the tree freeing any blocks that only 7091 * referenced by the tree. 7092 * 7093 * when a shared tree block is found. this function decreases its 7094 * reference count by one. if update_ref is true, this function 7095 * also make sure backrefs for the shared block and all lower level 7096 * blocks are properly updated. 7097 */ 7098 int btrfs_drop_snapshot(struct btrfs_root *root, 7099 struct btrfs_block_rsv *block_rsv, int update_ref, 7100 int for_reloc) 7101 { 7102 struct btrfs_path *path; 7103 struct btrfs_trans_handle *trans; 7104 struct btrfs_root *tree_root = root->fs_info->tree_root; 7105 struct btrfs_root_item *root_item = &root->root_item; 7106 struct walk_control *wc; 7107 struct btrfs_key key; 7108 int err = 0; 7109 int ret; 7110 int level; 7111 7112 path = btrfs_alloc_path(); 7113 if (!path) { 7114 err = -ENOMEM; 7115 goto out; 7116 } 7117 7118 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7119 if (!wc) { 7120 btrfs_free_path(path); 7121 err = -ENOMEM; 7122 goto out; 7123 } 7124 7125 trans = btrfs_start_transaction(tree_root, 0); 7126 if (IS_ERR(trans)) { 7127 err = PTR_ERR(trans); 7128 goto out_free; 7129 } 7130 7131 if (block_rsv) 7132 trans->block_rsv = block_rsv; 7133 7134 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7135 level = btrfs_header_level(root->node); 7136 path->nodes[level] = btrfs_lock_root_node(root); 7137 btrfs_set_lock_blocking(path->nodes[level]); 7138 path->slots[level] = 0; 7139 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7140 memset(&wc->update_progress, 0, 7141 sizeof(wc->update_progress)); 7142 } else { 7143 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7144 memcpy(&wc->update_progress, &key, 7145 sizeof(wc->update_progress)); 7146 7147 level = root_item->drop_level; 7148 BUG_ON(level == 0); 7149 path->lowest_level = level; 7150 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7151 path->lowest_level = 0; 7152 if (ret < 0) { 7153 err = ret; 7154 goto out_end_trans; 7155 } 7156 WARN_ON(ret > 0); 7157 7158 /* 7159 * unlock our path, this is safe because only this 7160 * function is allowed to delete this snapshot 7161 */ 7162 btrfs_unlock_up_safe(path, 0); 7163 7164 level = btrfs_header_level(root->node); 7165 while (1) { 7166 btrfs_tree_lock(path->nodes[level]); 7167 btrfs_set_lock_blocking(path->nodes[level]); 7168 7169 ret = btrfs_lookup_extent_info(trans, root, 7170 path->nodes[level]->start, 7171 path->nodes[level]->len, 7172 &wc->refs[level], 7173 &wc->flags[level]); 7174 if (ret < 0) { 7175 err = ret; 7176 goto out_end_trans; 7177 } 7178 BUG_ON(wc->refs[level] == 0); 7179 7180 if (level == root_item->drop_level) 7181 break; 7182 7183 btrfs_tree_unlock(path->nodes[level]); 7184 WARN_ON(wc->refs[level] != 1); 7185 level--; 7186 } 7187 } 7188 7189 wc->level = level; 7190 wc->shared_level = -1; 7191 wc->stage = DROP_REFERENCE; 7192 wc->update_ref = update_ref; 7193 wc->keep_locks = 0; 7194 wc->for_reloc = for_reloc; 7195 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7196 7197 while (1) { 7198 ret = walk_down_tree(trans, root, path, wc); 7199 if (ret < 0) { 7200 err = ret; 7201 break; 7202 } 7203 7204 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7205 if (ret < 0) { 7206 err = ret; 7207 break; 7208 } 7209 7210 if (ret > 0) { 7211 BUG_ON(wc->stage != DROP_REFERENCE); 7212 break; 7213 } 7214 7215 if (wc->stage == DROP_REFERENCE) { 7216 level = wc->level; 7217 btrfs_node_key(path->nodes[level], 7218 &root_item->drop_progress, 7219 path->slots[level]); 7220 root_item->drop_level = level; 7221 } 7222 7223 BUG_ON(wc->level == 0); 7224 if (btrfs_should_end_transaction(trans, tree_root)) { 7225 ret = btrfs_update_root(trans, tree_root, 7226 &root->root_key, 7227 root_item); 7228 if (ret) { 7229 btrfs_abort_transaction(trans, tree_root, ret); 7230 err = ret; 7231 goto out_end_trans; 7232 } 7233 7234 btrfs_end_transaction_throttle(trans, tree_root); 7235 trans = btrfs_start_transaction(tree_root, 0); 7236 if (IS_ERR(trans)) { 7237 err = PTR_ERR(trans); 7238 goto out_free; 7239 } 7240 if (block_rsv) 7241 trans->block_rsv = block_rsv; 7242 } 7243 } 7244 btrfs_release_path(path); 7245 if (err) 7246 goto out_end_trans; 7247 7248 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7249 if (ret) { 7250 btrfs_abort_transaction(trans, tree_root, ret); 7251 goto out_end_trans; 7252 } 7253 7254 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7255 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 7256 NULL, NULL); 7257 if (ret < 0) { 7258 btrfs_abort_transaction(trans, tree_root, ret); 7259 err = ret; 7260 goto out_end_trans; 7261 } else if (ret > 0) { 7262 /* if we fail to delete the orphan item this time 7263 * around, it'll get picked up the next time. 7264 * 7265 * The most common failure here is just -ENOENT. 7266 */ 7267 btrfs_del_orphan_item(trans, tree_root, 7268 root->root_key.objectid); 7269 } 7270 } 7271 7272 if (root->in_radix) { 7273 btrfs_free_fs_root(tree_root->fs_info, root); 7274 } else { 7275 free_extent_buffer(root->node); 7276 free_extent_buffer(root->commit_root); 7277 kfree(root); 7278 } 7279 out_end_trans: 7280 btrfs_end_transaction_throttle(trans, tree_root); 7281 out_free: 7282 kfree(wc); 7283 btrfs_free_path(path); 7284 out: 7285 if (err) 7286 btrfs_std_error(root->fs_info, err); 7287 return err; 7288 } 7289 7290 /* 7291 * drop subtree rooted at tree block 'node'. 7292 * 7293 * NOTE: this function will unlock and release tree block 'node' 7294 * only used by relocation code 7295 */ 7296 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7297 struct btrfs_root *root, 7298 struct extent_buffer *node, 7299 struct extent_buffer *parent) 7300 { 7301 struct btrfs_path *path; 7302 struct walk_control *wc; 7303 int level; 7304 int parent_level; 7305 int ret = 0; 7306 int wret; 7307 7308 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7309 7310 path = btrfs_alloc_path(); 7311 if (!path) 7312 return -ENOMEM; 7313 7314 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7315 if (!wc) { 7316 btrfs_free_path(path); 7317 return -ENOMEM; 7318 } 7319 7320 btrfs_assert_tree_locked(parent); 7321 parent_level = btrfs_header_level(parent); 7322 extent_buffer_get(parent); 7323 path->nodes[parent_level] = parent; 7324 path->slots[parent_level] = btrfs_header_nritems(parent); 7325 7326 btrfs_assert_tree_locked(node); 7327 level = btrfs_header_level(node); 7328 path->nodes[level] = node; 7329 path->slots[level] = 0; 7330 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7331 7332 wc->refs[parent_level] = 1; 7333 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7334 wc->level = level; 7335 wc->shared_level = -1; 7336 wc->stage = DROP_REFERENCE; 7337 wc->update_ref = 0; 7338 wc->keep_locks = 1; 7339 wc->for_reloc = 1; 7340 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7341 7342 while (1) { 7343 wret = walk_down_tree(trans, root, path, wc); 7344 if (wret < 0) { 7345 ret = wret; 7346 break; 7347 } 7348 7349 wret = walk_up_tree(trans, root, path, wc, parent_level); 7350 if (wret < 0) 7351 ret = wret; 7352 if (wret != 0) 7353 break; 7354 } 7355 7356 kfree(wc); 7357 btrfs_free_path(path); 7358 return ret; 7359 } 7360 7361 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7362 { 7363 u64 num_devices; 7364 u64 stripped; 7365 7366 /* 7367 * if restripe for this chunk_type is on pick target profile and 7368 * return, otherwise do the usual balance 7369 */ 7370 stripped = get_restripe_target(root->fs_info, flags); 7371 if (stripped) 7372 return extended_to_chunk(stripped); 7373 7374 /* 7375 * we add in the count of missing devices because we want 7376 * to make sure that any RAID levels on a degraded FS 7377 * continue to be honored. 7378 */ 7379 num_devices = root->fs_info->fs_devices->rw_devices + 7380 root->fs_info->fs_devices->missing_devices; 7381 7382 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7383 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7384 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7385 7386 if (num_devices == 1) { 7387 stripped |= BTRFS_BLOCK_GROUP_DUP; 7388 stripped = flags & ~stripped; 7389 7390 /* turn raid0 into single device chunks */ 7391 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7392 return stripped; 7393 7394 /* turn mirroring into duplication */ 7395 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7396 BTRFS_BLOCK_GROUP_RAID10)) 7397 return stripped | BTRFS_BLOCK_GROUP_DUP; 7398 } else { 7399 /* they already had raid on here, just return */ 7400 if (flags & stripped) 7401 return flags; 7402 7403 stripped |= BTRFS_BLOCK_GROUP_DUP; 7404 stripped = flags & ~stripped; 7405 7406 /* switch duplicated blocks with raid1 */ 7407 if (flags & BTRFS_BLOCK_GROUP_DUP) 7408 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7409 7410 /* this is drive concat, leave it alone */ 7411 } 7412 7413 return flags; 7414 } 7415 7416 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7417 { 7418 struct btrfs_space_info *sinfo = cache->space_info; 7419 u64 num_bytes; 7420 u64 min_allocable_bytes; 7421 int ret = -ENOSPC; 7422 7423 7424 /* 7425 * We need some metadata space and system metadata space for 7426 * allocating chunks in some corner cases until we force to set 7427 * it to be readonly. 7428 */ 7429 if ((sinfo->flags & 7430 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7431 !force) 7432 min_allocable_bytes = 1 * 1024 * 1024; 7433 else 7434 min_allocable_bytes = 0; 7435 7436 spin_lock(&sinfo->lock); 7437 spin_lock(&cache->lock); 7438 7439 if (cache->ro) { 7440 ret = 0; 7441 goto out; 7442 } 7443 7444 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7445 cache->bytes_super - btrfs_block_group_used(&cache->item); 7446 7447 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7448 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7449 min_allocable_bytes <= sinfo->total_bytes) { 7450 sinfo->bytes_readonly += num_bytes; 7451 cache->ro = 1; 7452 ret = 0; 7453 } 7454 out: 7455 spin_unlock(&cache->lock); 7456 spin_unlock(&sinfo->lock); 7457 return ret; 7458 } 7459 7460 int btrfs_set_block_group_ro(struct btrfs_root *root, 7461 struct btrfs_block_group_cache *cache) 7462 7463 { 7464 struct btrfs_trans_handle *trans; 7465 u64 alloc_flags; 7466 int ret; 7467 7468 BUG_ON(cache->ro); 7469 7470 trans = btrfs_join_transaction(root); 7471 if (IS_ERR(trans)) 7472 return PTR_ERR(trans); 7473 7474 alloc_flags = update_block_group_flags(root, cache->flags); 7475 if (alloc_flags != cache->flags) { 7476 ret = do_chunk_alloc(trans, root, alloc_flags, 7477 CHUNK_ALLOC_FORCE); 7478 if (ret < 0) 7479 goto out; 7480 } 7481 7482 ret = set_block_group_ro(cache, 0); 7483 if (!ret) 7484 goto out; 7485 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7486 ret = do_chunk_alloc(trans, root, alloc_flags, 7487 CHUNK_ALLOC_FORCE); 7488 if (ret < 0) 7489 goto out; 7490 ret = set_block_group_ro(cache, 0); 7491 out: 7492 btrfs_end_transaction(trans, root); 7493 return ret; 7494 } 7495 7496 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7497 struct btrfs_root *root, u64 type) 7498 { 7499 u64 alloc_flags = get_alloc_profile(root, type); 7500 return do_chunk_alloc(trans, root, alloc_flags, 7501 CHUNK_ALLOC_FORCE); 7502 } 7503 7504 /* 7505 * helper to account the unused space of all the readonly block group in the 7506 * list. takes mirrors into account. 7507 */ 7508 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7509 { 7510 struct btrfs_block_group_cache *block_group; 7511 u64 free_bytes = 0; 7512 int factor; 7513 7514 list_for_each_entry(block_group, groups_list, list) { 7515 spin_lock(&block_group->lock); 7516 7517 if (!block_group->ro) { 7518 spin_unlock(&block_group->lock); 7519 continue; 7520 } 7521 7522 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7523 BTRFS_BLOCK_GROUP_RAID10 | 7524 BTRFS_BLOCK_GROUP_DUP)) 7525 factor = 2; 7526 else 7527 factor = 1; 7528 7529 free_bytes += (block_group->key.offset - 7530 btrfs_block_group_used(&block_group->item)) * 7531 factor; 7532 7533 spin_unlock(&block_group->lock); 7534 } 7535 7536 return free_bytes; 7537 } 7538 7539 /* 7540 * helper to account the unused space of all the readonly block group in the 7541 * space_info. takes mirrors into account. 7542 */ 7543 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7544 { 7545 int i; 7546 u64 free_bytes = 0; 7547 7548 spin_lock(&sinfo->lock); 7549 7550 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7551 if (!list_empty(&sinfo->block_groups[i])) 7552 free_bytes += __btrfs_get_ro_block_group_free_space( 7553 &sinfo->block_groups[i]); 7554 7555 spin_unlock(&sinfo->lock); 7556 7557 return free_bytes; 7558 } 7559 7560 void btrfs_set_block_group_rw(struct btrfs_root *root, 7561 struct btrfs_block_group_cache *cache) 7562 { 7563 struct btrfs_space_info *sinfo = cache->space_info; 7564 u64 num_bytes; 7565 7566 BUG_ON(!cache->ro); 7567 7568 spin_lock(&sinfo->lock); 7569 spin_lock(&cache->lock); 7570 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7571 cache->bytes_super - btrfs_block_group_used(&cache->item); 7572 sinfo->bytes_readonly -= num_bytes; 7573 cache->ro = 0; 7574 spin_unlock(&cache->lock); 7575 spin_unlock(&sinfo->lock); 7576 } 7577 7578 /* 7579 * checks to see if its even possible to relocate this block group. 7580 * 7581 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7582 * ok to go ahead and try. 7583 */ 7584 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7585 { 7586 struct btrfs_block_group_cache *block_group; 7587 struct btrfs_space_info *space_info; 7588 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7589 struct btrfs_device *device; 7590 u64 min_free; 7591 u64 dev_min = 1; 7592 u64 dev_nr = 0; 7593 u64 target; 7594 int index; 7595 int full = 0; 7596 int ret = 0; 7597 7598 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7599 7600 /* odd, couldn't find the block group, leave it alone */ 7601 if (!block_group) 7602 return -1; 7603 7604 min_free = btrfs_block_group_used(&block_group->item); 7605 7606 /* no bytes used, we're good */ 7607 if (!min_free) 7608 goto out; 7609 7610 space_info = block_group->space_info; 7611 spin_lock(&space_info->lock); 7612 7613 full = space_info->full; 7614 7615 /* 7616 * if this is the last block group we have in this space, we can't 7617 * relocate it unless we're able to allocate a new chunk below. 7618 * 7619 * Otherwise, we need to make sure we have room in the space to handle 7620 * all of the extents from this block group. If we can, we're good 7621 */ 7622 if ((space_info->total_bytes != block_group->key.offset) && 7623 (space_info->bytes_used + space_info->bytes_reserved + 7624 space_info->bytes_pinned + space_info->bytes_readonly + 7625 min_free < space_info->total_bytes)) { 7626 spin_unlock(&space_info->lock); 7627 goto out; 7628 } 7629 spin_unlock(&space_info->lock); 7630 7631 /* 7632 * ok we don't have enough space, but maybe we have free space on our 7633 * devices to allocate new chunks for relocation, so loop through our 7634 * alloc devices and guess if we have enough space. if this block 7635 * group is going to be restriped, run checks against the target 7636 * profile instead of the current one. 7637 */ 7638 ret = -1; 7639 7640 /* 7641 * index: 7642 * 0: raid10 7643 * 1: raid1 7644 * 2: dup 7645 * 3: raid0 7646 * 4: single 7647 */ 7648 target = get_restripe_target(root->fs_info, block_group->flags); 7649 if (target) { 7650 index = __get_raid_index(extended_to_chunk(target)); 7651 } else { 7652 /* 7653 * this is just a balance, so if we were marked as full 7654 * we know there is no space for a new chunk 7655 */ 7656 if (full) 7657 goto out; 7658 7659 index = get_block_group_index(block_group); 7660 } 7661 7662 if (index == BTRFS_RAID_RAID10) { 7663 dev_min = 4; 7664 /* Divide by 2 */ 7665 min_free >>= 1; 7666 } else if (index == BTRFS_RAID_RAID1) { 7667 dev_min = 2; 7668 } else if (index == BTRFS_RAID_DUP) { 7669 /* Multiply by 2 */ 7670 min_free <<= 1; 7671 } else if (index == BTRFS_RAID_RAID0) { 7672 dev_min = fs_devices->rw_devices; 7673 do_div(min_free, dev_min); 7674 } 7675 7676 mutex_lock(&root->fs_info->chunk_mutex); 7677 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7678 u64 dev_offset; 7679 7680 /* 7681 * check to make sure we can actually find a chunk with enough 7682 * space to fit our block group in. 7683 */ 7684 if (device->total_bytes > device->bytes_used + min_free && 7685 !device->is_tgtdev_for_dev_replace) { 7686 ret = find_free_dev_extent(device, min_free, 7687 &dev_offset, NULL); 7688 if (!ret) 7689 dev_nr++; 7690 7691 if (dev_nr >= dev_min) 7692 break; 7693 7694 ret = -1; 7695 } 7696 } 7697 mutex_unlock(&root->fs_info->chunk_mutex); 7698 out: 7699 btrfs_put_block_group(block_group); 7700 return ret; 7701 } 7702 7703 static int find_first_block_group(struct btrfs_root *root, 7704 struct btrfs_path *path, struct btrfs_key *key) 7705 { 7706 int ret = 0; 7707 struct btrfs_key found_key; 7708 struct extent_buffer *leaf; 7709 int slot; 7710 7711 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7712 if (ret < 0) 7713 goto out; 7714 7715 while (1) { 7716 slot = path->slots[0]; 7717 leaf = path->nodes[0]; 7718 if (slot >= btrfs_header_nritems(leaf)) { 7719 ret = btrfs_next_leaf(root, path); 7720 if (ret == 0) 7721 continue; 7722 if (ret < 0) 7723 goto out; 7724 break; 7725 } 7726 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7727 7728 if (found_key.objectid >= key->objectid && 7729 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7730 ret = 0; 7731 goto out; 7732 } 7733 path->slots[0]++; 7734 } 7735 out: 7736 return ret; 7737 } 7738 7739 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7740 { 7741 struct btrfs_block_group_cache *block_group; 7742 u64 last = 0; 7743 7744 while (1) { 7745 struct inode *inode; 7746 7747 block_group = btrfs_lookup_first_block_group(info, last); 7748 while (block_group) { 7749 spin_lock(&block_group->lock); 7750 if (block_group->iref) 7751 break; 7752 spin_unlock(&block_group->lock); 7753 block_group = next_block_group(info->tree_root, 7754 block_group); 7755 } 7756 if (!block_group) { 7757 if (last == 0) 7758 break; 7759 last = 0; 7760 continue; 7761 } 7762 7763 inode = block_group->inode; 7764 block_group->iref = 0; 7765 block_group->inode = NULL; 7766 spin_unlock(&block_group->lock); 7767 iput(inode); 7768 last = block_group->key.objectid + block_group->key.offset; 7769 btrfs_put_block_group(block_group); 7770 } 7771 } 7772 7773 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7774 { 7775 struct btrfs_block_group_cache *block_group; 7776 struct btrfs_space_info *space_info; 7777 struct btrfs_caching_control *caching_ctl; 7778 struct rb_node *n; 7779 7780 down_write(&info->extent_commit_sem); 7781 while (!list_empty(&info->caching_block_groups)) { 7782 caching_ctl = list_entry(info->caching_block_groups.next, 7783 struct btrfs_caching_control, list); 7784 list_del(&caching_ctl->list); 7785 put_caching_control(caching_ctl); 7786 } 7787 up_write(&info->extent_commit_sem); 7788 7789 spin_lock(&info->block_group_cache_lock); 7790 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7791 block_group = rb_entry(n, struct btrfs_block_group_cache, 7792 cache_node); 7793 rb_erase(&block_group->cache_node, 7794 &info->block_group_cache_tree); 7795 spin_unlock(&info->block_group_cache_lock); 7796 7797 down_write(&block_group->space_info->groups_sem); 7798 list_del(&block_group->list); 7799 up_write(&block_group->space_info->groups_sem); 7800 7801 if (block_group->cached == BTRFS_CACHE_STARTED) 7802 wait_block_group_cache_done(block_group); 7803 7804 /* 7805 * We haven't cached this block group, which means we could 7806 * possibly have excluded extents on this block group. 7807 */ 7808 if (block_group->cached == BTRFS_CACHE_NO) 7809 free_excluded_extents(info->extent_root, block_group); 7810 7811 btrfs_remove_free_space_cache(block_group); 7812 btrfs_put_block_group(block_group); 7813 7814 spin_lock(&info->block_group_cache_lock); 7815 } 7816 spin_unlock(&info->block_group_cache_lock); 7817 7818 /* now that all the block groups are freed, go through and 7819 * free all the space_info structs. This is only called during 7820 * the final stages of unmount, and so we know nobody is 7821 * using them. We call synchronize_rcu() once before we start, 7822 * just to be on the safe side. 7823 */ 7824 synchronize_rcu(); 7825 7826 release_global_block_rsv(info); 7827 7828 while(!list_empty(&info->space_info)) { 7829 space_info = list_entry(info->space_info.next, 7830 struct btrfs_space_info, 7831 list); 7832 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 7833 if (space_info->bytes_pinned > 0 || 7834 space_info->bytes_reserved > 0 || 7835 space_info->bytes_may_use > 0) { 7836 WARN_ON(1); 7837 dump_space_info(space_info, 0, 0); 7838 } 7839 } 7840 list_del(&space_info->list); 7841 kfree(space_info); 7842 } 7843 return 0; 7844 } 7845 7846 static void __link_block_group(struct btrfs_space_info *space_info, 7847 struct btrfs_block_group_cache *cache) 7848 { 7849 int index = get_block_group_index(cache); 7850 7851 down_write(&space_info->groups_sem); 7852 list_add_tail(&cache->list, &space_info->block_groups[index]); 7853 up_write(&space_info->groups_sem); 7854 } 7855 7856 int btrfs_read_block_groups(struct btrfs_root *root) 7857 { 7858 struct btrfs_path *path; 7859 int ret; 7860 struct btrfs_block_group_cache *cache; 7861 struct btrfs_fs_info *info = root->fs_info; 7862 struct btrfs_space_info *space_info; 7863 struct btrfs_key key; 7864 struct btrfs_key found_key; 7865 struct extent_buffer *leaf; 7866 int need_clear = 0; 7867 u64 cache_gen; 7868 7869 root = info->extent_root; 7870 key.objectid = 0; 7871 key.offset = 0; 7872 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7873 path = btrfs_alloc_path(); 7874 if (!path) 7875 return -ENOMEM; 7876 path->reada = 1; 7877 7878 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7879 if (btrfs_test_opt(root, SPACE_CACHE) && 7880 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7881 need_clear = 1; 7882 if (btrfs_test_opt(root, CLEAR_CACHE)) 7883 need_clear = 1; 7884 7885 while (1) { 7886 ret = find_first_block_group(root, path, &key); 7887 if (ret > 0) 7888 break; 7889 if (ret != 0) 7890 goto error; 7891 leaf = path->nodes[0]; 7892 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7893 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7894 if (!cache) { 7895 ret = -ENOMEM; 7896 goto error; 7897 } 7898 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7899 GFP_NOFS); 7900 if (!cache->free_space_ctl) { 7901 kfree(cache); 7902 ret = -ENOMEM; 7903 goto error; 7904 } 7905 7906 atomic_set(&cache->count, 1); 7907 spin_lock_init(&cache->lock); 7908 cache->fs_info = info; 7909 INIT_LIST_HEAD(&cache->list); 7910 INIT_LIST_HEAD(&cache->cluster_list); 7911 7912 if (need_clear) { 7913 /* 7914 * When we mount with old space cache, we need to 7915 * set BTRFS_DC_CLEAR and set dirty flag. 7916 * 7917 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 7918 * truncate the old free space cache inode and 7919 * setup a new one. 7920 * b) Setting 'dirty flag' makes sure that we flush 7921 * the new space cache info onto disk. 7922 */ 7923 cache->disk_cache_state = BTRFS_DC_CLEAR; 7924 if (btrfs_test_opt(root, SPACE_CACHE)) 7925 cache->dirty = 1; 7926 } 7927 7928 read_extent_buffer(leaf, &cache->item, 7929 btrfs_item_ptr_offset(leaf, path->slots[0]), 7930 sizeof(cache->item)); 7931 memcpy(&cache->key, &found_key, sizeof(found_key)); 7932 7933 key.objectid = found_key.objectid + found_key.offset; 7934 btrfs_release_path(path); 7935 cache->flags = btrfs_block_group_flags(&cache->item); 7936 cache->sectorsize = root->sectorsize; 7937 cache->full_stripe_len = btrfs_full_stripe_len(root, 7938 &root->fs_info->mapping_tree, 7939 found_key.objectid); 7940 btrfs_init_free_space_ctl(cache); 7941 7942 /* 7943 * We need to exclude the super stripes now so that the space 7944 * info has super bytes accounted for, otherwise we'll think 7945 * we have more space than we actually do. 7946 */ 7947 exclude_super_stripes(root, cache); 7948 7949 /* 7950 * check for two cases, either we are full, and therefore 7951 * don't need to bother with the caching work since we won't 7952 * find any space, or we are empty, and we can just add all 7953 * the space in and be done with it. This saves us _alot_ of 7954 * time, particularly in the full case. 7955 */ 7956 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7957 cache->last_byte_to_unpin = (u64)-1; 7958 cache->cached = BTRFS_CACHE_FINISHED; 7959 free_excluded_extents(root, cache); 7960 } else if (btrfs_block_group_used(&cache->item) == 0) { 7961 cache->last_byte_to_unpin = (u64)-1; 7962 cache->cached = BTRFS_CACHE_FINISHED; 7963 add_new_free_space(cache, root->fs_info, 7964 found_key.objectid, 7965 found_key.objectid + 7966 found_key.offset); 7967 free_excluded_extents(root, cache); 7968 } 7969 7970 ret = update_space_info(info, cache->flags, found_key.offset, 7971 btrfs_block_group_used(&cache->item), 7972 &space_info); 7973 BUG_ON(ret); /* -ENOMEM */ 7974 cache->space_info = space_info; 7975 spin_lock(&cache->space_info->lock); 7976 cache->space_info->bytes_readonly += cache->bytes_super; 7977 spin_unlock(&cache->space_info->lock); 7978 7979 __link_block_group(space_info, cache); 7980 7981 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7982 BUG_ON(ret); /* Logic error */ 7983 7984 set_avail_alloc_bits(root->fs_info, cache->flags); 7985 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7986 set_block_group_ro(cache, 1); 7987 } 7988 7989 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7990 if (!(get_alloc_profile(root, space_info->flags) & 7991 (BTRFS_BLOCK_GROUP_RAID10 | 7992 BTRFS_BLOCK_GROUP_RAID1 | 7993 BTRFS_BLOCK_GROUP_RAID5 | 7994 BTRFS_BLOCK_GROUP_RAID6 | 7995 BTRFS_BLOCK_GROUP_DUP))) 7996 continue; 7997 /* 7998 * avoid allocating from un-mirrored block group if there are 7999 * mirrored block groups. 8000 */ 8001 list_for_each_entry(cache, &space_info->block_groups[3], list) 8002 set_block_group_ro(cache, 1); 8003 list_for_each_entry(cache, &space_info->block_groups[4], list) 8004 set_block_group_ro(cache, 1); 8005 } 8006 8007 init_global_block_rsv(info); 8008 ret = 0; 8009 error: 8010 btrfs_free_path(path); 8011 return ret; 8012 } 8013 8014 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8015 struct btrfs_root *root) 8016 { 8017 struct btrfs_block_group_cache *block_group, *tmp; 8018 struct btrfs_root *extent_root = root->fs_info->extent_root; 8019 struct btrfs_block_group_item item; 8020 struct btrfs_key key; 8021 int ret = 0; 8022 8023 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8024 new_bg_list) { 8025 list_del_init(&block_group->new_bg_list); 8026 8027 if (ret) 8028 continue; 8029 8030 spin_lock(&block_group->lock); 8031 memcpy(&item, &block_group->item, sizeof(item)); 8032 memcpy(&key, &block_group->key, sizeof(key)); 8033 spin_unlock(&block_group->lock); 8034 8035 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8036 sizeof(item)); 8037 if (ret) 8038 btrfs_abort_transaction(trans, extent_root, ret); 8039 } 8040 } 8041 8042 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8043 struct btrfs_root *root, u64 bytes_used, 8044 u64 type, u64 chunk_objectid, u64 chunk_offset, 8045 u64 size) 8046 { 8047 int ret; 8048 struct btrfs_root *extent_root; 8049 struct btrfs_block_group_cache *cache; 8050 8051 extent_root = root->fs_info->extent_root; 8052 8053 root->fs_info->last_trans_log_full_commit = trans->transid; 8054 8055 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8056 if (!cache) 8057 return -ENOMEM; 8058 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8059 GFP_NOFS); 8060 if (!cache->free_space_ctl) { 8061 kfree(cache); 8062 return -ENOMEM; 8063 } 8064 8065 cache->key.objectid = chunk_offset; 8066 cache->key.offset = size; 8067 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8068 cache->sectorsize = root->sectorsize; 8069 cache->fs_info = root->fs_info; 8070 cache->full_stripe_len = btrfs_full_stripe_len(root, 8071 &root->fs_info->mapping_tree, 8072 chunk_offset); 8073 8074 atomic_set(&cache->count, 1); 8075 spin_lock_init(&cache->lock); 8076 INIT_LIST_HEAD(&cache->list); 8077 INIT_LIST_HEAD(&cache->cluster_list); 8078 INIT_LIST_HEAD(&cache->new_bg_list); 8079 8080 btrfs_init_free_space_ctl(cache); 8081 8082 btrfs_set_block_group_used(&cache->item, bytes_used); 8083 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8084 cache->flags = type; 8085 btrfs_set_block_group_flags(&cache->item, type); 8086 8087 cache->last_byte_to_unpin = (u64)-1; 8088 cache->cached = BTRFS_CACHE_FINISHED; 8089 exclude_super_stripes(root, cache); 8090 8091 add_new_free_space(cache, root->fs_info, chunk_offset, 8092 chunk_offset + size); 8093 8094 free_excluded_extents(root, cache); 8095 8096 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8097 &cache->space_info); 8098 BUG_ON(ret); /* -ENOMEM */ 8099 update_global_block_rsv(root->fs_info); 8100 8101 spin_lock(&cache->space_info->lock); 8102 cache->space_info->bytes_readonly += cache->bytes_super; 8103 spin_unlock(&cache->space_info->lock); 8104 8105 __link_block_group(cache->space_info, cache); 8106 8107 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8108 BUG_ON(ret); /* Logic error */ 8109 8110 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8111 8112 set_avail_alloc_bits(extent_root->fs_info, type); 8113 8114 return 0; 8115 } 8116 8117 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8118 { 8119 u64 extra_flags = chunk_to_extended(flags) & 8120 BTRFS_EXTENDED_PROFILE_MASK; 8121 8122 write_seqlock(&fs_info->profiles_lock); 8123 if (flags & BTRFS_BLOCK_GROUP_DATA) 8124 fs_info->avail_data_alloc_bits &= ~extra_flags; 8125 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8126 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8127 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8128 fs_info->avail_system_alloc_bits &= ~extra_flags; 8129 write_sequnlock(&fs_info->profiles_lock); 8130 } 8131 8132 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8133 struct btrfs_root *root, u64 group_start) 8134 { 8135 struct btrfs_path *path; 8136 struct btrfs_block_group_cache *block_group; 8137 struct btrfs_free_cluster *cluster; 8138 struct btrfs_root *tree_root = root->fs_info->tree_root; 8139 struct btrfs_key key; 8140 struct inode *inode; 8141 int ret; 8142 int index; 8143 int factor; 8144 8145 root = root->fs_info->extent_root; 8146 8147 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8148 BUG_ON(!block_group); 8149 BUG_ON(!block_group->ro); 8150 8151 /* 8152 * Free the reserved super bytes from this block group before 8153 * remove it. 8154 */ 8155 free_excluded_extents(root, block_group); 8156 8157 memcpy(&key, &block_group->key, sizeof(key)); 8158 index = get_block_group_index(block_group); 8159 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8160 BTRFS_BLOCK_GROUP_RAID1 | 8161 BTRFS_BLOCK_GROUP_RAID10)) 8162 factor = 2; 8163 else 8164 factor = 1; 8165 8166 /* make sure this block group isn't part of an allocation cluster */ 8167 cluster = &root->fs_info->data_alloc_cluster; 8168 spin_lock(&cluster->refill_lock); 8169 btrfs_return_cluster_to_free_space(block_group, cluster); 8170 spin_unlock(&cluster->refill_lock); 8171 8172 /* 8173 * make sure this block group isn't part of a metadata 8174 * allocation cluster 8175 */ 8176 cluster = &root->fs_info->meta_alloc_cluster; 8177 spin_lock(&cluster->refill_lock); 8178 btrfs_return_cluster_to_free_space(block_group, cluster); 8179 spin_unlock(&cluster->refill_lock); 8180 8181 path = btrfs_alloc_path(); 8182 if (!path) { 8183 ret = -ENOMEM; 8184 goto out; 8185 } 8186 8187 inode = lookup_free_space_inode(tree_root, block_group, path); 8188 if (!IS_ERR(inode)) { 8189 ret = btrfs_orphan_add(trans, inode); 8190 if (ret) { 8191 btrfs_add_delayed_iput(inode); 8192 goto out; 8193 } 8194 clear_nlink(inode); 8195 /* One for the block groups ref */ 8196 spin_lock(&block_group->lock); 8197 if (block_group->iref) { 8198 block_group->iref = 0; 8199 block_group->inode = NULL; 8200 spin_unlock(&block_group->lock); 8201 iput(inode); 8202 } else { 8203 spin_unlock(&block_group->lock); 8204 } 8205 /* One for our lookup ref */ 8206 btrfs_add_delayed_iput(inode); 8207 } 8208 8209 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8210 key.offset = block_group->key.objectid; 8211 key.type = 0; 8212 8213 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8214 if (ret < 0) 8215 goto out; 8216 if (ret > 0) 8217 btrfs_release_path(path); 8218 if (ret == 0) { 8219 ret = btrfs_del_item(trans, tree_root, path); 8220 if (ret) 8221 goto out; 8222 btrfs_release_path(path); 8223 } 8224 8225 spin_lock(&root->fs_info->block_group_cache_lock); 8226 rb_erase(&block_group->cache_node, 8227 &root->fs_info->block_group_cache_tree); 8228 8229 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8230 root->fs_info->first_logical_byte = (u64)-1; 8231 spin_unlock(&root->fs_info->block_group_cache_lock); 8232 8233 down_write(&block_group->space_info->groups_sem); 8234 /* 8235 * we must use list_del_init so people can check to see if they 8236 * are still on the list after taking the semaphore 8237 */ 8238 list_del_init(&block_group->list); 8239 if (list_empty(&block_group->space_info->block_groups[index])) 8240 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8241 up_write(&block_group->space_info->groups_sem); 8242 8243 if (block_group->cached == BTRFS_CACHE_STARTED) 8244 wait_block_group_cache_done(block_group); 8245 8246 btrfs_remove_free_space_cache(block_group); 8247 8248 spin_lock(&block_group->space_info->lock); 8249 block_group->space_info->total_bytes -= block_group->key.offset; 8250 block_group->space_info->bytes_readonly -= block_group->key.offset; 8251 block_group->space_info->disk_total -= block_group->key.offset * factor; 8252 spin_unlock(&block_group->space_info->lock); 8253 8254 memcpy(&key, &block_group->key, sizeof(key)); 8255 8256 btrfs_clear_space_info_full(root->fs_info); 8257 8258 btrfs_put_block_group(block_group); 8259 btrfs_put_block_group(block_group); 8260 8261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8262 if (ret > 0) 8263 ret = -EIO; 8264 if (ret < 0) 8265 goto out; 8266 8267 ret = btrfs_del_item(trans, root, path); 8268 out: 8269 btrfs_free_path(path); 8270 return ret; 8271 } 8272 8273 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8274 { 8275 struct btrfs_space_info *space_info; 8276 struct btrfs_super_block *disk_super; 8277 u64 features; 8278 u64 flags; 8279 int mixed = 0; 8280 int ret; 8281 8282 disk_super = fs_info->super_copy; 8283 if (!btrfs_super_root(disk_super)) 8284 return 1; 8285 8286 features = btrfs_super_incompat_flags(disk_super); 8287 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8288 mixed = 1; 8289 8290 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8291 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8292 if (ret) 8293 goto out; 8294 8295 if (mixed) { 8296 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8297 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8298 } else { 8299 flags = BTRFS_BLOCK_GROUP_METADATA; 8300 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8301 if (ret) 8302 goto out; 8303 8304 flags = BTRFS_BLOCK_GROUP_DATA; 8305 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8306 } 8307 out: 8308 return ret; 8309 } 8310 8311 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8312 { 8313 return unpin_extent_range(root, start, end); 8314 } 8315 8316 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8317 u64 num_bytes, u64 *actual_bytes) 8318 { 8319 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8320 } 8321 8322 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8323 { 8324 struct btrfs_fs_info *fs_info = root->fs_info; 8325 struct btrfs_block_group_cache *cache = NULL; 8326 u64 group_trimmed; 8327 u64 start; 8328 u64 end; 8329 u64 trimmed = 0; 8330 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8331 int ret = 0; 8332 8333 /* 8334 * try to trim all FS space, our block group may start from non-zero. 8335 */ 8336 if (range->len == total_bytes) 8337 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8338 else 8339 cache = btrfs_lookup_block_group(fs_info, range->start); 8340 8341 while (cache) { 8342 if (cache->key.objectid >= (range->start + range->len)) { 8343 btrfs_put_block_group(cache); 8344 break; 8345 } 8346 8347 start = max(range->start, cache->key.objectid); 8348 end = min(range->start + range->len, 8349 cache->key.objectid + cache->key.offset); 8350 8351 if (end - start >= range->minlen) { 8352 if (!block_group_cache_done(cache)) { 8353 ret = cache_block_group(cache, 0); 8354 if (!ret) 8355 wait_block_group_cache_done(cache); 8356 } 8357 ret = btrfs_trim_block_group(cache, 8358 &group_trimmed, 8359 start, 8360 end, 8361 range->minlen); 8362 8363 trimmed += group_trimmed; 8364 if (ret) { 8365 btrfs_put_block_group(cache); 8366 break; 8367 } 8368 } 8369 8370 cache = next_block_group(fs_info->tree_root, cache); 8371 } 8372 8373 range->len = trimmed; 8374 return ret; 8375 } 8376