1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_delayed_ref_node *node, u64 parent, 43 u64 root_objectid, u64 owner_objectid, 44 u64 owner_offset, int refs_to_drop, 45 struct btrfs_delayed_extent_op *extra_op); 46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 47 struct extent_buffer *leaf, 48 struct btrfs_extent_item *ei); 49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 50 u64 parent, u64 root_objectid, 51 u64 flags, u64 owner, u64 offset, 52 struct btrfs_key *ins, int ref_mod); 53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 54 struct btrfs_delayed_ref_node *node, 55 struct btrfs_delayed_extent_op *extent_op); 56 static int find_next_key(struct btrfs_path *path, int level, 57 struct btrfs_key *key); 58 59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 60 { 61 return (cache->flags & bits) == bits; 62 } 63 64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 65 u64 start, u64 num_bytes) 66 { 67 u64 end = start + num_bytes - 1; 68 set_extent_bits(&fs_info->excluded_extents, start, end, 69 EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->start; 79 end = start + cache->length - 1; 80 81 clear_extent_bits(&fs_info->excluded_extents, start, end, 82 EXTENT_UPTODATE); 83 } 84 85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 86 { 87 if (ref->type == BTRFS_REF_METADATA) { 88 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 89 return BTRFS_BLOCK_GROUP_SYSTEM; 90 else 91 return BTRFS_BLOCK_GROUP_METADATA; 92 } 93 return BTRFS_BLOCK_GROUP_DATA; 94 } 95 96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 97 struct btrfs_ref *ref) 98 { 99 struct btrfs_space_info *space_info; 100 u64 flags = generic_ref_to_space_flags(ref); 101 102 space_info = btrfs_find_space_info(fs_info, flags); 103 ASSERT(space_info); 104 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 105 BTRFS_TOTAL_BYTES_PINNED_BATCH); 106 } 107 108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_ref *ref) 110 { 111 struct btrfs_space_info *space_info; 112 u64 flags = generic_ref_to_space_flags(ref); 113 114 space_info = btrfs_find_space_info(fs_info, flags); 115 ASSERT(space_info); 116 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 117 BTRFS_TOTAL_BYTES_PINNED_BATCH); 118 } 119 120 /* simple helper to search for an existing data extent at a given offset */ 121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 122 { 123 int ret; 124 struct btrfs_key key; 125 struct btrfs_path *path; 126 127 path = btrfs_alloc_path(); 128 if (!path) 129 return -ENOMEM; 130 131 key.objectid = start; 132 key.offset = len; 133 key.type = BTRFS_EXTENT_ITEM_KEY; 134 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 135 btrfs_free_path(path); 136 return ret; 137 } 138 139 /* 140 * helper function to lookup reference count and flags of a tree block. 141 * 142 * the head node for delayed ref is used to store the sum of all the 143 * reference count modifications queued up in the rbtree. the head 144 * node may also store the extent flags to set. This way you can check 145 * to see what the reference count and extent flags would be if all of 146 * the delayed refs are not processed. 147 */ 148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 149 struct btrfs_fs_info *fs_info, u64 bytenr, 150 u64 offset, int metadata, u64 *refs, u64 *flags) 151 { 152 struct btrfs_delayed_ref_head *head; 153 struct btrfs_delayed_ref_root *delayed_refs; 154 struct btrfs_path *path; 155 struct btrfs_extent_item *ei; 156 struct extent_buffer *leaf; 157 struct btrfs_key key; 158 u32 item_size; 159 u64 num_refs; 160 u64 extent_flags; 161 int ret; 162 163 /* 164 * If we don't have skinny metadata, don't bother doing anything 165 * different 166 */ 167 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 168 offset = fs_info->nodesize; 169 metadata = 0; 170 } 171 172 path = btrfs_alloc_path(); 173 if (!path) 174 return -ENOMEM; 175 176 if (!trans) { 177 path->skip_locking = 1; 178 path->search_commit_root = 1; 179 } 180 181 search_again: 182 key.objectid = bytenr; 183 key.offset = offset; 184 if (metadata) 185 key.type = BTRFS_METADATA_ITEM_KEY; 186 else 187 key.type = BTRFS_EXTENT_ITEM_KEY; 188 189 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 190 if (ret < 0) 191 goto out_free; 192 193 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 194 if (path->slots[0]) { 195 path->slots[0]--; 196 btrfs_item_key_to_cpu(path->nodes[0], &key, 197 path->slots[0]); 198 if (key.objectid == bytenr && 199 key.type == BTRFS_EXTENT_ITEM_KEY && 200 key.offset == fs_info->nodesize) 201 ret = 0; 202 } 203 } 204 205 if (ret == 0) { 206 leaf = path->nodes[0]; 207 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 208 if (item_size >= sizeof(*ei)) { 209 ei = btrfs_item_ptr(leaf, path->slots[0], 210 struct btrfs_extent_item); 211 num_refs = btrfs_extent_refs(leaf, ei); 212 extent_flags = btrfs_extent_flags(leaf, ei); 213 } else { 214 ret = -EINVAL; 215 btrfs_print_v0_err(fs_info); 216 if (trans) 217 btrfs_abort_transaction(trans, ret); 218 else 219 btrfs_handle_fs_error(fs_info, ret, NULL); 220 221 goto out_free; 222 } 223 224 BUG_ON(num_refs == 0); 225 } else { 226 num_refs = 0; 227 extent_flags = 0; 228 ret = 0; 229 } 230 231 if (!trans) 232 goto out; 233 234 delayed_refs = &trans->transaction->delayed_refs; 235 spin_lock(&delayed_refs->lock); 236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 237 if (head) { 238 if (!mutex_trylock(&head->mutex)) { 239 refcount_inc(&head->refs); 240 spin_unlock(&delayed_refs->lock); 241 242 btrfs_release_path(path); 243 244 /* 245 * Mutex was contended, block until it's released and try 246 * again 247 */ 248 mutex_lock(&head->mutex); 249 mutex_unlock(&head->mutex); 250 btrfs_put_delayed_ref_head(head); 251 goto search_again; 252 } 253 spin_lock(&head->lock); 254 if (head->extent_op && head->extent_op->update_flags) 255 extent_flags |= head->extent_op->flags_to_set; 256 else 257 BUG_ON(num_refs == 0); 258 259 num_refs += head->ref_mod; 260 spin_unlock(&head->lock); 261 mutex_unlock(&head->mutex); 262 } 263 spin_unlock(&delayed_refs->lock); 264 out: 265 WARN_ON(num_refs == 0); 266 if (refs) 267 *refs = num_refs; 268 if (flags) 269 *flags = extent_flags; 270 out_free: 271 btrfs_free_path(path); 272 return ret; 273 } 274 275 /* 276 * Back reference rules. Back refs have three main goals: 277 * 278 * 1) differentiate between all holders of references to an extent so that 279 * when a reference is dropped we can make sure it was a valid reference 280 * before freeing the extent. 281 * 282 * 2) Provide enough information to quickly find the holders of an extent 283 * if we notice a given block is corrupted or bad. 284 * 285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 286 * maintenance. This is actually the same as #2, but with a slightly 287 * different use case. 288 * 289 * There are two kinds of back refs. The implicit back refs is optimized 290 * for pointers in non-shared tree blocks. For a given pointer in a block, 291 * back refs of this kind provide information about the block's owner tree 292 * and the pointer's key. These information allow us to find the block by 293 * b-tree searching. The full back refs is for pointers in tree blocks not 294 * referenced by their owner trees. The location of tree block is recorded 295 * in the back refs. Actually the full back refs is generic, and can be 296 * used in all cases the implicit back refs is used. The major shortcoming 297 * of the full back refs is its overhead. Every time a tree block gets 298 * COWed, we have to update back refs entry for all pointers in it. 299 * 300 * For a newly allocated tree block, we use implicit back refs for 301 * pointers in it. This means most tree related operations only involve 302 * implicit back refs. For a tree block created in old transaction, the 303 * only way to drop a reference to it is COW it. So we can detect the 304 * event that tree block loses its owner tree's reference and do the 305 * back refs conversion. 306 * 307 * When a tree block is COWed through a tree, there are four cases: 308 * 309 * The reference count of the block is one and the tree is the block's 310 * owner tree. Nothing to do in this case. 311 * 312 * The reference count of the block is one and the tree is not the 313 * block's owner tree. In this case, full back refs is used for pointers 314 * in the block. Remove these full back refs, add implicit back refs for 315 * every pointers in the new block. 316 * 317 * The reference count of the block is greater than one and the tree is 318 * the block's owner tree. In this case, implicit back refs is used for 319 * pointers in the block. Add full back refs for every pointers in the 320 * block, increase lower level extents' reference counts. The original 321 * implicit back refs are entailed to the new block. 322 * 323 * The reference count of the block is greater than one and the tree is 324 * not the block's owner tree. Add implicit back refs for every pointer in 325 * the new block, increase lower level extents' reference count. 326 * 327 * Back Reference Key composing: 328 * 329 * The key objectid corresponds to the first byte in the extent, 330 * The key type is used to differentiate between types of back refs. 331 * There are different meanings of the key offset for different types 332 * of back refs. 333 * 334 * File extents can be referenced by: 335 * 336 * - multiple snapshots, subvolumes, or different generations in one subvol 337 * - different files inside a single subvolume 338 * - different offsets inside a file (bookend extents in file.c) 339 * 340 * The extent ref structure for the implicit back refs has fields for: 341 * 342 * - Objectid of the subvolume root 343 * - objectid of the file holding the reference 344 * - original offset in the file 345 * - how many bookend extents 346 * 347 * The key offset for the implicit back refs is hash of the first 348 * three fields. 349 * 350 * The extent ref structure for the full back refs has field for: 351 * 352 * - number of pointers in the tree leaf 353 * 354 * The key offset for the implicit back refs is the first byte of 355 * the tree leaf 356 * 357 * When a file extent is allocated, The implicit back refs is used. 358 * the fields are filled in: 359 * 360 * (root_key.objectid, inode objectid, offset in file, 1) 361 * 362 * When a file extent is removed file truncation, we find the 363 * corresponding implicit back refs and check the following fields: 364 * 365 * (btrfs_header_owner(leaf), inode objectid, offset in file) 366 * 367 * Btree extents can be referenced by: 368 * 369 * - Different subvolumes 370 * 371 * Both the implicit back refs and the full back refs for tree blocks 372 * only consist of key. The key offset for the implicit back refs is 373 * objectid of block's owner tree. The key offset for the full back refs 374 * is the first byte of parent block. 375 * 376 * When implicit back refs is used, information about the lowest key and 377 * level of the tree block are required. These information are stored in 378 * tree block info structure. 379 */ 380 381 /* 382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 385 */ 386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 387 struct btrfs_extent_inline_ref *iref, 388 enum btrfs_inline_ref_type is_data) 389 { 390 int type = btrfs_extent_inline_ref_type(eb, iref); 391 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 392 393 if (type == BTRFS_TREE_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_BLOCK_REF_KEY || 395 type == BTRFS_SHARED_DATA_REF_KEY || 396 type == BTRFS_EXTENT_DATA_REF_KEY) { 397 if (is_data == BTRFS_REF_TYPE_BLOCK) { 398 if (type == BTRFS_TREE_BLOCK_REF_KEY) 399 return type; 400 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 401 ASSERT(eb->fs_info); 402 /* 403 * Every shared one has parent tree block, 404 * which must be aligned to sector size. 405 */ 406 if (offset && 407 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 408 return type; 409 } 410 } else if (is_data == BTRFS_REF_TYPE_DATA) { 411 if (type == BTRFS_EXTENT_DATA_REF_KEY) 412 return type; 413 if (type == BTRFS_SHARED_DATA_REF_KEY) { 414 ASSERT(eb->fs_info); 415 /* 416 * Every shared one has parent tree block, 417 * which must be aligned to sector size. 418 */ 419 if (offset && 420 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 421 return type; 422 } 423 } else { 424 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 425 return type; 426 } 427 } 428 429 btrfs_print_leaf((struct extent_buffer *)eb); 430 btrfs_err(eb->fs_info, 431 "eb %llu iref 0x%lx invalid extent inline ref type %d", 432 eb->start, (unsigned long)iref, type); 433 WARN_ON(1); 434 435 return BTRFS_REF_TYPE_INVALID; 436 } 437 438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 439 { 440 u32 high_crc = ~(u32)0; 441 u32 low_crc = ~(u32)0; 442 __le64 lenum; 443 444 lenum = cpu_to_le64(root_objectid); 445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 446 lenum = cpu_to_le64(owner); 447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 448 lenum = cpu_to_le64(offset); 449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 450 451 return ((u64)high_crc << 31) ^ (u64)low_crc; 452 } 453 454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 455 struct btrfs_extent_data_ref *ref) 456 { 457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 458 btrfs_extent_data_ref_objectid(leaf, ref), 459 btrfs_extent_data_ref_offset(leaf, ref)); 460 } 461 462 static int match_extent_data_ref(struct extent_buffer *leaf, 463 struct btrfs_extent_data_ref *ref, 464 u64 root_objectid, u64 owner, u64 offset) 465 { 466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 467 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 468 btrfs_extent_data_ref_offset(leaf, ref) != offset) 469 return 0; 470 return 1; 471 } 472 473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_path *path, 475 u64 bytenr, u64 parent, 476 u64 root_objectid, 477 u64 owner, u64 offset) 478 { 479 struct btrfs_root *root = trans->fs_info->extent_root; 480 struct btrfs_key key; 481 struct btrfs_extent_data_ref *ref; 482 struct extent_buffer *leaf; 483 u32 nritems; 484 int ret; 485 int recow; 486 int err = -ENOENT; 487 488 key.objectid = bytenr; 489 if (parent) { 490 key.type = BTRFS_SHARED_DATA_REF_KEY; 491 key.offset = parent; 492 } else { 493 key.type = BTRFS_EXTENT_DATA_REF_KEY; 494 key.offset = hash_extent_data_ref(root_objectid, 495 owner, offset); 496 } 497 again: 498 recow = 0; 499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 500 if (ret < 0) { 501 err = ret; 502 goto fail; 503 } 504 505 if (parent) { 506 if (!ret) 507 return 0; 508 goto fail; 509 } 510 511 leaf = path->nodes[0]; 512 nritems = btrfs_header_nritems(leaf); 513 while (1) { 514 if (path->slots[0] >= nritems) { 515 ret = btrfs_next_leaf(root, path); 516 if (ret < 0) 517 err = ret; 518 if (ret) 519 goto fail; 520 521 leaf = path->nodes[0]; 522 nritems = btrfs_header_nritems(leaf); 523 recow = 1; 524 } 525 526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 527 if (key.objectid != bytenr || 528 key.type != BTRFS_EXTENT_DATA_REF_KEY) 529 goto fail; 530 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_extent_data_ref); 533 534 if (match_extent_data_ref(leaf, ref, root_objectid, 535 owner, offset)) { 536 if (recow) { 537 btrfs_release_path(path); 538 goto again; 539 } 540 err = 0; 541 break; 542 } 543 path->slots[0]++; 544 } 545 fail: 546 return err; 547 } 548 549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 550 struct btrfs_path *path, 551 u64 bytenr, u64 parent, 552 u64 root_objectid, u64 owner, 553 u64 offset, int refs_to_add) 554 { 555 struct btrfs_root *root = trans->fs_info->extent_root; 556 struct btrfs_key key; 557 struct extent_buffer *leaf; 558 u32 size; 559 u32 num_refs; 560 int ret; 561 562 key.objectid = bytenr; 563 if (parent) { 564 key.type = BTRFS_SHARED_DATA_REF_KEY; 565 key.offset = parent; 566 size = sizeof(struct btrfs_shared_data_ref); 567 } else { 568 key.type = BTRFS_EXTENT_DATA_REF_KEY; 569 key.offset = hash_extent_data_ref(root_objectid, 570 owner, offset); 571 size = sizeof(struct btrfs_extent_data_ref); 572 } 573 574 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 575 if (ret && ret != -EEXIST) 576 goto fail; 577 578 leaf = path->nodes[0]; 579 if (parent) { 580 struct btrfs_shared_data_ref *ref; 581 ref = btrfs_item_ptr(leaf, path->slots[0], 582 struct btrfs_shared_data_ref); 583 if (ret == 0) { 584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_shared_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 589 } 590 } else { 591 struct btrfs_extent_data_ref *ref; 592 while (ret == -EEXIST) { 593 ref = btrfs_item_ptr(leaf, path->slots[0], 594 struct btrfs_extent_data_ref); 595 if (match_extent_data_ref(leaf, ref, root_objectid, 596 owner, offset)) 597 break; 598 btrfs_release_path(path); 599 key.offset++; 600 ret = btrfs_insert_empty_item(trans, root, path, &key, 601 size); 602 if (ret && ret != -EEXIST) 603 goto fail; 604 605 leaf = path->nodes[0]; 606 } 607 ref = btrfs_item_ptr(leaf, path->slots[0], 608 struct btrfs_extent_data_ref); 609 if (ret == 0) { 610 btrfs_set_extent_data_ref_root(leaf, ref, 611 root_objectid); 612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 613 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 615 } else { 616 num_refs = btrfs_extent_data_ref_count(leaf, ref); 617 num_refs += refs_to_add; 618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 619 } 620 } 621 btrfs_mark_buffer_dirty(leaf); 622 ret = 0; 623 fail: 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 629 struct btrfs_path *path, 630 int refs_to_drop, int *last_ref) 631 { 632 struct btrfs_key key; 633 struct btrfs_extent_data_ref *ref1 = NULL; 634 struct btrfs_shared_data_ref *ref2 = NULL; 635 struct extent_buffer *leaf; 636 u32 num_refs = 0; 637 int ret = 0; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 643 ref1 = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_extent_data_ref); 645 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 647 ref2 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_shared_data_ref); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 651 btrfs_print_v0_err(trans->fs_info); 652 btrfs_abort_transaction(trans, -EINVAL); 653 return -EINVAL; 654 } else { 655 BUG(); 656 } 657 658 BUG_ON(num_refs < refs_to_drop); 659 num_refs -= refs_to_drop; 660 661 if (num_refs == 0) { 662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 663 *last_ref = 1; 664 } else { 665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 669 btrfs_mark_buffer_dirty(leaf); 670 } 671 return ret; 672 } 673 674 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 675 struct btrfs_extent_inline_ref *iref) 676 { 677 struct btrfs_key key; 678 struct extent_buffer *leaf; 679 struct btrfs_extent_data_ref *ref1; 680 struct btrfs_shared_data_ref *ref2; 681 u32 num_refs = 0; 682 int type; 683 684 leaf = path->nodes[0]; 685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 686 687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 688 if (iref) { 689 /* 690 * If type is invalid, we should have bailed out earlier than 691 * this call. 692 */ 693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 694 ASSERT(type != BTRFS_REF_TYPE_INVALID); 695 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 697 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 698 } else { 699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 700 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 701 } 702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 703 ref1 = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_extent_data_ref); 705 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 707 ref2 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_shared_data_ref); 709 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 710 } else { 711 WARN_ON(1); 712 } 713 return num_refs; 714 } 715 716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = trans->fs_info->extent_root; 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 735 if (ret > 0) 736 ret = -ENOENT; 737 return ret; 738 } 739 740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 741 struct btrfs_path *path, 742 u64 bytenr, u64 parent, 743 u64 root_objectid) 744 { 745 struct btrfs_key key; 746 int ret; 747 748 key.objectid = bytenr; 749 if (parent) { 750 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 751 key.offset = parent; 752 } else { 753 key.type = BTRFS_TREE_BLOCK_REF_KEY; 754 key.offset = root_objectid; 755 } 756 757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 758 path, &key, 0); 759 btrfs_release_path(path); 760 return ret; 761 } 762 763 static inline int extent_ref_type(u64 parent, u64 owner) 764 { 765 int type; 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (parent > 0) 768 type = BTRFS_SHARED_BLOCK_REF_KEY; 769 else 770 type = BTRFS_TREE_BLOCK_REF_KEY; 771 } else { 772 if (parent > 0) 773 type = BTRFS_SHARED_DATA_REF_KEY; 774 else 775 type = BTRFS_EXTENT_DATA_REF_KEY; 776 } 777 return type; 778 } 779 780 static int find_next_key(struct btrfs_path *path, int level, 781 struct btrfs_key *key) 782 783 { 784 for (; level < BTRFS_MAX_LEVEL; level++) { 785 if (!path->nodes[level]) 786 break; 787 if (path->slots[level] + 1 >= 788 btrfs_header_nritems(path->nodes[level])) 789 continue; 790 if (level == 0) 791 btrfs_item_key_to_cpu(path->nodes[level], key, 792 path->slots[level] + 1); 793 else 794 btrfs_node_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 return 0; 797 } 798 return 1; 799 } 800 801 /* 802 * look for inline back ref. if back ref is found, *ref_ret is set 803 * to the address of inline back ref, and 0 is returned. 804 * 805 * if back ref isn't found, *ref_ret is set to the address where it 806 * should be inserted, and -ENOENT is returned. 807 * 808 * if insert is true and there are too many inline back refs, the path 809 * points to the extent item, and -EAGAIN is returned. 810 * 811 * NOTE: inline back refs are ordered in the same way that back ref 812 * items in the tree are ordered. 813 */ 814 static noinline_for_stack 815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_extent_inline_ref **ref_ret, 818 u64 bytenr, u64 num_bytes, 819 u64 parent, u64 root_objectid, 820 u64 owner, u64 offset, int insert) 821 { 822 struct btrfs_fs_info *fs_info = trans->fs_info; 823 struct btrfs_root *root = fs_info->extent_root; 824 struct btrfs_key key; 825 struct extent_buffer *leaf; 826 struct btrfs_extent_item *ei; 827 struct btrfs_extent_inline_ref *iref; 828 u64 flags; 829 u64 item_size; 830 unsigned long ptr; 831 unsigned long end; 832 int extra_size; 833 int type; 834 int want; 835 int ret; 836 int err = 0; 837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 838 int needed; 839 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 844 want = extent_ref_type(parent, owner); 845 if (insert) { 846 extra_size = btrfs_extent_inline_ref_size(want); 847 path->keep_locks = 1; 848 } else 849 extra_size = -1; 850 851 /* 852 * Owner is our level, so we can just add one to get the level for the 853 * block we are interested in. 854 */ 855 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 856 key.type = BTRFS_METADATA_ITEM_KEY; 857 key.offset = owner; 858 } 859 860 again: 861 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 862 if (ret < 0) { 863 err = ret; 864 goto out; 865 } 866 867 /* 868 * We may be a newly converted file system which still has the old fat 869 * extent entries for metadata, so try and see if we have one of those. 870 */ 871 if (ret > 0 && skinny_metadata) { 872 skinny_metadata = false; 873 if (path->slots[0]) { 874 path->slots[0]--; 875 btrfs_item_key_to_cpu(path->nodes[0], &key, 876 path->slots[0]); 877 if (key.objectid == bytenr && 878 key.type == BTRFS_EXTENT_ITEM_KEY && 879 key.offset == num_bytes) 880 ret = 0; 881 } 882 if (ret) { 883 key.objectid = bytenr; 884 key.type = BTRFS_EXTENT_ITEM_KEY; 885 key.offset = num_bytes; 886 btrfs_release_path(path); 887 goto again; 888 } 889 } 890 891 if (ret && !insert) { 892 err = -ENOENT; 893 goto out; 894 } else if (WARN_ON(ret)) { 895 err = -EIO; 896 goto out; 897 } 898 899 leaf = path->nodes[0]; 900 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 901 if (unlikely(item_size < sizeof(*ei))) { 902 err = -EINVAL; 903 btrfs_print_v0_err(fs_info); 904 btrfs_abort_transaction(trans, err); 905 goto out; 906 } 907 908 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 909 flags = btrfs_extent_flags(leaf, ei); 910 911 ptr = (unsigned long)(ei + 1); 912 end = (unsigned long)ei + item_size; 913 914 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 915 ptr += sizeof(struct btrfs_tree_block_info); 916 BUG_ON(ptr > end); 917 } 918 919 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 920 needed = BTRFS_REF_TYPE_DATA; 921 else 922 needed = BTRFS_REF_TYPE_BLOCK; 923 924 err = -ENOENT; 925 while (1) { 926 if (ptr >= end) { 927 WARN_ON(ptr > end); 928 break; 929 } 930 iref = (struct btrfs_extent_inline_ref *)ptr; 931 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 932 if (type == BTRFS_REF_TYPE_INVALID) { 933 err = -EUCLEAN; 934 goto out; 935 } 936 937 if (want < type) 938 break; 939 if (want > type) { 940 ptr += btrfs_extent_inline_ref_size(type); 941 continue; 942 } 943 944 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 945 struct btrfs_extent_data_ref *dref; 946 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 947 if (match_extent_data_ref(leaf, dref, root_objectid, 948 owner, offset)) { 949 err = 0; 950 break; 951 } 952 if (hash_extent_data_ref_item(leaf, dref) < 953 hash_extent_data_ref(root_objectid, owner, offset)) 954 break; 955 } else { 956 u64 ref_offset; 957 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 958 if (parent > 0) { 959 if (parent == ref_offset) { 960 err = 0; 961 break; 962 } 963 if (ref_offset < parent) 964 break; 965 } else { 966 if (root_objectid == ref_offset) { 967 err = 0; 968 break; 969 } 970 if (ref_offset < root_objectid) 971 break; 972 } 973 } 974 ptr += btrfs_extent_inline_ref_size(type); 975 } 976 if (err == -ENOENT && insert) { 977 if (item_size + extra_size >= 978 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 979 err = -EAGAIN; 980 goto out; 981 } 982 /* 983 * To add new inline back ref, we have to make sure 984 * there is no corresponding back ref item. 985 * For simplicity, we just do not add new inline back 986 * ref if there is any kind of item for this block 987 */ 988 if (find_next_key(path, 0, &key) == 0 && 989 key.objectid == bytenr && 990 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 991 err = -EAGAIN; 992 goto out; 993 } 994 } 995 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 996 out: 997 if (insert) { 998 path->keep_locks = 0; 999 btrfs_unlock_up_safe(path, 1); 1000 } 1001 return err; 1002 } 1003 1004 /* 1005 * helper to add new inline back ref 1006 */ 1007 static noinline_for_stack 1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1009 struct btrfs_path *path, 1010 struct btrfs_extent_inline_ref *iref, 1011 u64 parent, u64 root_objectid, 1012 u64 owner, u64 offset, int refs_to_add, 1013 struct btrfs_delayed_extent_op *extent_op) 1014 { 1015 struct extent_buffer *leaf; 1016 struct btrfs_extent_item *ei; 1017 unsigned long ptr; 1018 unsigned long end; 1019 unsigned long item_offset; 1020 u64 refs; 1021 int size; 1022 int type; 1023 1024 leaf = path->nodes[0]; 1025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1026 item_offset = (unsigned long)iref - (unsigned long)ei; 1027 1028 type = extent_ref_type(parent, owner); 1029 size = btrfs_extent_inline_ref_size(type); 1030 1031 btrfs_extend_item(path, size); 1032 1033 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1034 refs = btrfs_extent_refs(leaf, ei); 1035 refs += refs_to_add; 1036 btrfs_set_extent_refs(leaf, ei, refs); 1037 if (extent_op) 1038 __run_delayed_extent_op(extent_op, leaf, ei); 1039 1040 ptr = (unsigned long)ei + item_offset; 1041 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1042 if (ptr < end - size) 1043 memmove_extent_buffer(leaf, ptr + size, ptr, 1044 end - size - ptr); 1045 1046 iref = (struct btrfs_extent_inline_ref *)ptr; 1047 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1048 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1049 struct btrfs_extent_data_ref *dref; 1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1051 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1052 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1053 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1054 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1055 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1056 struct btrfs_shared_data_ref *sref; 1057 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1058 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1059 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1060 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1062 } else { 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 } 1067 1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1069 struct btrfs_path *path, 1070 struct btrfs_extent_inline_ref **ref_ret, 1071 u64 bytenr, u64 num_bytes, u64 parent, 1072 u64 root_objectid, u64 owner, u64 offset) 1073 { 1074 int ret; 1075 1076 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1077 num_bytes, parent, root_objectid, 1078 owner, offset, 0); 1079 if (ret != -ENOENT) 1080 return ret; 1081 1082 btrfs_release_path(path); 1083 *ref_ret = NULL; 1084 1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1086 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1087 root_objectid); 1088 } else { 1089 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1090 root_objectid, owner, offset); 1091 } 1092 return ret; 1093 } 1094 1095 /* 1096 * helper to update/remove inline back ref 1097 */ 1098 static noinline_for_stack 1099 void update_inline_extent_backref(struct btrfs_path *path, 1100 struct btrfs_extent_inline_ref *iref, 1101 int refs_to_mod, 1102 struct btrfs_delayed_extent_op *extent_op, 1103 int *last_ref) 1104 { 1105 struct extent_buffer *leaf = path->nodes[0]; 1106 struct btrfs_extent_item *ei; 1107 struct btrfs_extent_data_ref *dref = NULL; 1108 struct btrfs_shared_data_ref *sref = NULL; 1109 unsigned long ptr; 1110 unsigned long end; 1111 u32 item_size; 1112 int size; 1113 int type; 1114 u64 refs; 1115 1116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1117 refs = btrfs_extent_refs(leaf, ei); 1118 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1119 refs += refs_to_mod; 1120 btrfs_set_extent_refs(leaf, ei, refs); 1121 if (extent_op) 1122 __run_delayed_extent_op(extent_op, leaf, ei); 1123 1124 /* 1125 * If type is invalid, we should have bailed out after 1126 * lookup_inline_extent_backref(). 1127 */ 1128 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1129 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1130 1131 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1132 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1133 refs = btrfs_extent_data_ref_count(leaf, dref); 1134 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1135 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1136 refs = btrfs_shared_data_ref_count(leaf, sref); 1137 } else { 1138 refs = 1; 1139 BUG_ON(refs_to_mod != -1); 1140 } 1141 1142 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1143 refs += refs_to_mod; 1144 1145 if (refs > 0) { 1146 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1147 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1148 else 1149 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1150 } else { 1151 *last_ref = 1; 1152 size = btrfs_extent_inline_ref_size(type); 1153 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1154 ptr = (unsigned long)iref; 1155 end = (unsigned long)ei + item_size; 1156 if (ptr + size < end) 1157 memmove_extent_buffer(leaf, ptr, ptr + size, 1158 end - ptr - size); 1159 item_size -= size; 1160 btrfs_truncate_item(path, item_size, 1); 1161 } 1162 btrfs_mark_buffer_dirty(leaf); 1163 } 1164 1165 static noinline_for_stack 1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1167 struct btrfs_path *path, 1168 u64 bytenr, u64 num_bytes, u64 parent, 1169 u64 root_objectid, u64 owner, 1170 u64 offset, int refs_to_add, 1171 struct btrfs_delayed_extent_op *extent_op) 1172 { 1173 struct btrfs_extent_inline_ref *iref; 1174 int ret; 1175 1176 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1177 num_bytes, parent, root_objectid, 1178 owner, offset, 1); 1179 if (ret == 0) { 1180 /* 1181 * We're adding refs to a tree block we already own, this 1182 * should not happen at all. 1183 */ 1184 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1185 btrfs_crit(trans->fs_info, 1186 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1187 bytenr, num_bytes, root_objectid); 1188 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1189 WARN_ON(1); 1190 btrfs_crit(trans->fs_info, 1191 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1192 btrfs_print_leaf(path->nodes[0]); 1193 } 1194 return -EUCLEAN; 1195 } 1196 update_inline_extent_backref(path, iref, refs_to_add, 1197 extent_op, NULL); 1198 } else if (ret == -ENOENT) { 1199 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1200 root_objectid, owner, offset, 1201 refs_to_add, extent_op); 1202 ret = 0; 1203 } 1204 return ret; 1205 } 1206 1207 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1208 struct btrfs_path *path, 1209 struct btrfs_extent_inline_ref *iref, 1210 int refs_to_drop, int is_data, int *last_ref) 1211 { 1212 int ret = 0; 1213 1214 BUG_ON(!is_data && refs_to_drop != 1); 1215 if (iref) { 1216 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1217 last_ref); 1218 } else if (is_data) { 1219 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1220 last_ref); 1221 } else { 1222 *last_ref = 1; 1223 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1224 } 1225 return ret; 1226 } 1227 1228 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1229 u64 *discarded_bytes) 1230 { 1231 int j, ret = 0; 1232 u64 bytes_left, end; 1233 u64 aligned_start = ALIGN(start, 1 << 9); 1234 1235 if (WARN_ON(start != aligned_start)) { 1236 len -= aligned_start - start; 1237 len = round_down(len, 1 << 9); 1238 start = aligned_start; 1239 } 1240 1241 *discarded_bytes = 0; 1242 1243 if (!len) 1244 return 0; 1245 1246 end = start + len; 1247 bytes_left = len; 1248 1249 /* Skip any superblocks on this device. */ 1250 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1251 u64 sb_start = btrfs_sb_offset(j); 1252 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1253 u64 size = sb_start - start; 1254 1255 if (!in_range(sb_start, start, bytes_left) && 1256 !in_range(sb_end, start, bytes_left) && 1257 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1258 continue; 1259 1260 /* 1261 * Superblock spans beginning of range. Adjust start and 1262 * try again. 1263 */ 1264 if (sb_start <= start) { 1265 start += sb_end - start; 1266 if (start > end) { 1267 bytes_left = 0; 1268 break; 1269 } 1270 bytes_left = end - start; 1271 continue; 1272 } 1273 1274 if (size) { 1275 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1276 GFP_NOFS, 0); 1277 if (!ret) 1278 *discarded_bytes += size; 1279 else if (ret != -EOPNOTSUPP) 1280 return ret; 1281 } 1282 1283 start = sb_end; 1284 if (start > end) { 1285 bytes_left = 0; 1286 break; 1287 } 1288 bytes_left = end - start; 1289 } 1290 1291 if (bytes_left) { 1292 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1293 GFP_NOFS, 0); 1294 if (!ret) 1295 *discarded_bytes += bytes_left; 1296 } 1297 return ret; 1298 } 1299 1300 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1301 u64 num_bytes, u64 *actual_bytes) 1302 { 1303 int ret = 0; 1304 u64 discarded_bytes = 0; 1305 u64 end = bytenr + num_bytes; 1306 u64 cur = bytenr; 1307 struct btrfs_bio *bbio = NULL; 1308 1309 1310 /* 1311 * Avoid races with device replace and make sure our bbio has devices 1312 * associated to its stripes that don't go away while we are discarding. 1313 */ 1314 btrfs_bio_counter_inc_blocked(fs_info); 1315 while (cur < end) { 1316 struct btrfs_bio_stripe *stripe; 1317 int i; 1318 1319 num_bytes = end - cur; 1320 /* Tell the block device(s) that the sectors can be discarded */ 1321 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1322 &num_bytes, &bbio, 0); 1323 /* 1324 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1325 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1326 * thus we can't continue anyway. 1327 */ 1328 if (ret < 0) 1329 goto out; 1330 1331 stripe = bbio->stripes; 1332 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1333 u64 bytes; 1334 struct request_queue *req_q; 1335 1336 if (!stripe->dev->bdev) { 1337 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1338 continue; 1339 } 1340 req_q = bdev_get_queue(stripe->dev->bdev); 1341 if (!blk_queue_discard(req_q)) 1342 continue; 1343 1344 ret = btrfs_issue_discard(stripe->dev->bdev, 1345 stripe->physical, 1346 stripe->length, 1347 &bytes); 1348 if (!ret) { 1349 discarded_bytes += bytes; 1350 } else if (ret != -EOPNOTSUPP) { 1351 /* 1352 * Logic errors or -ENOMEM, or -EIO, but 1353 * unlikely to happen. 1354 * 1355 * And since there are two loops, explicitly 1356 * go to out to avoid confusion. 1357 */ 1358 btrfs_put_bbio(bbio); 1359 goto out; 1360 } 1361 1362 /* 1363 * Just in case we get back EOPNOTSUPP for some reason, 1364 * just ignore the return value so we don't screw up 1365 * people calling discard_extent. 1366 */ 1367 ret = 0; 1368 } 1369 btrfs_put_bbio(bbio); 1370 cur += num_bytes; 1371 } 1372 out: 1373 btrfs_bio_counter_dec(fs_info); 1374 1375 if (actual_bytes) 1376 *actual_bytes = discarded_bytes; 1377 1378 1379 if (ret == -EOPNOTSUPP) 1380 ret = 0; 1381 return ret; 1382 } 1383 1384 /* Can return -ENOMEM */ 1385 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1386 struct btrfs_ref *generic_ref) 1387 { 1388 struct btrfs_fs_info *fs_info = trans->fs_info; 1389 int old_ref_mod, new_ref_mod; 1390 int ret; 1391 1392 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1393 generic_ref->action); 1394 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1395 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1396 1397 if (generic_ref->type == BTRFS_REF_METADATA) 1398 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1399 NULL, &old_ref_mod, &new_ref_mod); 1400 else 1401 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1402 &old_ref_mod, &new_ref_mod); 1403 1404 btrfs_ref_tree_mod(fs_info, generic_ref); 1405 1406 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1407 sub_pinned_bytes(fs_info, generic_ref); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * __btrfs_inc_extent_ref - insert backreference for a given extent 1414 * 1415 * The counterpart is in __btrfs_free_extent(), with examples and more details 1416 * how it works. 1417 * 1418 * @trans: Handle of transaction 1419 * 1420 * @node: The delayed ref node used to get the bytenr/length for 1421 * extent whose references are incremented. 1422 * 1423 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1424 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1425 * bytenr of the parent block. Since new extents are always 1426 * created with indirect references, this will only be the case 1427 * when relocating a shared extent. In that case, root_objectid 1428 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1429 * be 0 1430 * 1431 * @root_objectid: The id of the root where this modification has originated, 1432 * this can be either one of the well-known metadata trees or 1433 * the subvolume id which references this extent. 1434 * 1435 * @owner: For data extents it is the inode number of the owning file. 1436 * For metadata extents this parameter holds the level in the 1437 * tree of the extent. 1438 * 1439 * @offset: For metadata extents the offset is ignored and is currently 1440 * always passed as 0. For data extents it is the fileoffset 1441 * this extent belongs to. 1442 * 1443 * @refs_to_add Number of references to add 1444 * 1445 * @extent_op Pointer to a structure, holding information necessary when 1446 * updating a tree block's flags 1447 * 1448 */ 1449 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1450 struct btrfs_delayed_ref_node *node, 1451 u64 parent, u64 root_objectid, 1452 u64 owner, u64 offset, int refs_to_add, 1453 struct btrfs_delayed_extent_op *extent_op) 1454 { 1455 struct btrfs_path *path; 1456 struct extent_buffer *leaf; 1457 struct btrfs_extent_item *item; 1458 struct btrfs_key key; 1459 u64 bytenr = node->bytenr; 1460 u64 num_bytes = node->num_bytes; 1461 u64 refs; 1462 int ret; 1463 1464 path = btrfs_alloc_path(); 1465 if (!path) 1466 return -ENOMEM; 1467 1468 /* this will setup the path even if it fails to insert the back ref */ 1469 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1470 parent, root_objectid, owner, 1471 offset, refs_to_add, extent_op); 1472 if ((ret < 0 && ret != -EAGAIN) || !ret) 1473 goto out; 1474 1475 /* 1476 * Ok we had -EAGAIN which means we didn't have space to insert and 1477 * inline extent ref, so just update the reference count and add a 1478 * normal backref. 1479 */ 1480 leaf = path->nodes[0]; 1481 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1482 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1483 refs = btrfs_extent_refs(leaf, item); 1484 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1485 if (extent_op) 1486 __run_delayed_extent_op(extent_op, leaf, item); 1487 1488 btrfs_mark_buffer_dirty(leaf); 1489 btrfs_release_path(path); 1490 1491 /* now insert the actual backref */ 1492 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1493 BUG_ON(refs_to_add != 1); 1494 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1495 root_objectid); 1496 } else { 1497 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1498 root_objectid, owner, offset, 1499 refs_to_add); 1500 } 1501 if (ret) 1502 btrfs_abort_transaction(trans, ret); 1503 out: 1504 btrfs_free_path(path); 1505 return ret; 1506 } 1507 1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1509 struct btrfs_delayed_ref_node *node, 1510 struct btrfs_delayed_extent_op *extent_op, 1511 int insert_reserved) 1512 { 1513 int ret = 0; 1514 struct btrfs_delayed_data_ref *ref; 1515 struct btrfs_key ins; 1516 u64 parent = 0; 1517 u64 ref_root = 0; 1518 u64 flags = 0; 1519 1520 ins.objectid = node->bytenr; 1521 ins.offset = node->num_bytes; 1522 ins.type = BTRFS_EXTENT_ITEM_KEY; 1523 1524 ref = btrfs_delayed_node_to_data_ref(node); 1525 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1526 1527 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1528 parent = ref->parent; 1529 ref_root = ref->root; 1530 1531 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1532 if (extent_op) 1533 flags |= extent_op->flags_to_set; 1534 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1535 flags, ref->objectid, 1536 ref->offset, &ins, 1537 node->ref_mod); 1538 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1539 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1540 ref->objectid, ref->offset, 1541 node->ref_mod, extent_op); 1542 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1543 ret = __btrfs_free_extent(trans, node, parent, 1544 ref_root, ref->objectid, 1545 ref->offset, node->ref_mod, 1546 extent_op); 1547 } else { 1548 BUG(); 1549 } 1550 return ret; 1551 } 1552 1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1554 struct extent_buffer *leaf, 1555 struct btrfs_extent_item *ei) 1556 { 1557 u64 flags = btrfs_extent_flags(leaf, ei); 1558 if (extent_op->update_flags) { 1559 flags |= extent_op->flags_to_set; 1560 btrfs_set_extent_flags(leaf, ei, flags); 1561 } 1562 1563 if (extent_op->update_key) { 1564 struct btrfs_tree_block_info *bi; 1565 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1566 bi = (struct btrfs_tree_block_info *)(ei + 1); 1567 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1568 } 1569 } 1570 1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1572 struct btrfs_delayed_ref_head *head, 1573 struct btrfs_delayed_extent_op *extent_op) 1574 { 1575 struct btrfs_fs_info *fs_info = trans->fs_info; 1576 struct btrfs_key key; 1577 struct btrfs_path *path; 1578 struct btrfs_extent_item *ei; 1579 struct extent_buffer *leaf; 1580 u32 item_size; 1581 int ret; 1582 int err = 0; 1583 int metadata = !extent_op->is_data; 1584 1585 if (TRANS_ABORTED(trans)) 1586 return 0; 1587 1588 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1589 metadata = 0; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 key.objectid = head->bytenr; 1596 1597 if (metadata) { 1598 key.type = BTRFS_METADATA_ITEM_KEY; 1599 key.offset = extent_op->level; 1600 } else { 1601 key.type = BTRFS_EXTENT_ITEM_KEY; 1602 key.offset = head->num_bytes; 1603 } 1604 1605 again: 1606 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1607 if (ret < 0) { 1608 err = ret; 1609 goto out; 1610 } 1611 if (ret > 0) { 1612 if (metadata) { 1613 if (path->slots[0] > 0) { 1614 path->slots[0]--; 1615 btrfs_item_key_to_cpu(path->nodes[0], &key, 1616 path->slots[0]); 1617 if (key.objectid == head->bytenr && 1618 key.type == BTRFS_EXTENT_ITEM_KEY && 1619 key.offset == head->num_bytes) 1620 ret = 0; 1621 } 1622 if (ret > 0) { 1623 btrfs_release_path(path); 1624 metadata = 0; 1625 1626 key.objectid = head->bytenr; 1627 key.offset = head->num_bytes; 1628 key.type = BTRFS_EXTENT_ITEM_KEY; 1629 goto again; 1630 } 1631 } else { 1632 err = -EIO; 1633 goto out; 1634 } 1635 } 1636 1637 leaf = path->nodes[0]; 1638 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1639 1640 if (unlikely(item_size < sizeof(*ei))) { 1641 err = -EINVAL; 1642 btrfs_print_v0_err(fs_info); 1643 btrfs_abort_transaction(trans, err); 1644 goto out; 1645 } 1646 1647 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1648 __run_delayed_extent_op(extent_op, leaf, ei); 1649 1650 btrfs_mark_buffer_dirty(leaf); 1651 out: 1652 btrfs_free_path(path); 1653 return err; 1654 } 1655 1656 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1657 struct btrfs_delayed_ref_node *node, 1658 struct btrfs_delayed_extent_op *extent_op, 1659 int insert_reserved) 1660 { 1661 int ret = 0; 1662 struct btrfs_delayed_tree_ref *ref; 1663 u64 parent = 0; 1664 u64 ref_root = 0; 1665 1666 ref = btrfs_delayed_node_to_tree_ref(node); 1667 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1668 1669 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1670 parent = ref->parent; 1671 ref_root = ref->root; 1672 1673 if (node->ref_mod != 1) { 1674 btrfs_err(trans->fs_info, 1675 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1676 node->bytenr, node->ref_mod, node->action, ref_root, 1677 parent); 1678 return -EIO; 1679 } 1680 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1681 BUG_ON(!extent_op || !extent_op->update_flags); 1682 ret = alloc_reserved_tree_block(trans, node, extent_op); 1683 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1684 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1685 ref->level, 0, 1, extent_op); 1686 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1687 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1688 ref->level, 0, 1, extent_op); 1689 } else { 1690 BUG(); 1691 } 1692 return ret; 1693 } 1694 1695 /* helper function to actually process a single delayed ref entry */ 1696 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1697 struct btrfs_delayed_ref_node *node, 1698 struct btrfs_delayed_extent_op *extent_op, 1699 int insert_reserved) 1700 { 1701 int ret = 0; 1702 1703 if (TRANS_ABORTED(trans)) { 1704 if (insert_reserved) 1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1706 return 0; 1707 } 1708 1709 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1710 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1711 ret = run_delayed_tree_ref(trans, node, extent_op, 1712 insert_reserved); 1713 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1714 node->type == BTRFS_SHARED_DATA_REF_KEY) 1715 ret = run_delayed_data_ref(trans, node, extent_op, 1716 insert_reserved); 1717 else 1718 BUG(); 1719 if (ret && insert_reserved) 1720 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1721 return ret; 1722 } 1723 1724 static inline struct btrfs_delayed_ref_node * 1725 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1726 { 1727 struct btrfs_delayed_ref_node *ref; 1728 1729 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1730 return NULL; 1731 1732 /* 1733 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1734 * This is to prevent a ref count from going down to zero, which deletes 1735 * the extent item from the extent tree, when there still are references 1736 * to add, which would fail because they would not find the extent item. 1737 */ 1738 if (!list_empty(&head->ref_add_list)) 1739 return list_first_entry(&head->ref_add_list, 1740 struct btrfs_delayed_ref_node, add_list); 1741 1742 ref = rb_entry(rb_first_cached(&head->ref_tree), 1743 struct btrfs_delayed_ref_node, ref_node); 1744 ASSERT(list_empty(&ref->add_list)); 1745 return ref; 1746 } 1747 1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1749 struct btrfs_delayed_ref_head *head) 1750 { 1751 spin_lock(&delayed_refs->lock); 1752 head->processing = 0; 1753 delayed_refs->num_heads_ready++; 1754 spin_unlock(&delayed_refs->lock); 1755 btrfs_delayed_ref_unlock(head); 1756 } 1757 1758 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1759 struct btrfs_delayed_ref_head *head) 1760 { 1761 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1762 1763 if (!extent_op) 1764 return NULL; 1765 1766 if (head->must_insert_reserved) { 1767 head->extent_op = NULL; 1768 btrfs_free_delayed_extent_op(extent_op); 1769 return NULL; 1770 } 1771 return extent_op; 1772 } 1773 1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1775 struct btrfs_delayed_ref_head *head) 1776 { 1777 struct btrfs_delayed_extent_op *extent_op; 1778 int ret; 1779 1780 extent_op = cleanup_extent_op(head); 1781 if (!extent_op) 1782 return 0; 1783 head->extent_op = NULL; 1784 spin_unlock(&head->lock); 1785 ret = run_delayed_extent_op(trans, head, extent_op); 1786 btrfs_free_delayed_extent_op(extent_op); 1787 return ret ? ret : 1; 1788 } 1789 1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1791 struct btrfs_delayed_ref_root *delayed_refs, 1792 struct btrfs_delayed_ref_head *head) 1793 { 1794 int nr_items = 1; /* Dropping this ref head update. */ 1795 1796 if (head->total_ref_mod < 0) { 1797 struct btrfs_space_info *space_info; 1798 u64 flags; 1799 1800 if (head->is_data) 1801 flags = BTRFS_BLOCK_GROUP_DATA; 1802 else if (head->is_system) 1803 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1804 else 1805 flags = BTRFS_BLOCK_GROUP_METADATA; 1806 space_info = btrfs_find_space_info(fs_info, flags); 1807 ASSERT(space_info); 1808 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1809 -head->num_bytes, 1810 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1811 1812 /* 1813 * We had csum deletions accounted for in our delayed refs rsv, 1814 * we need to drop the csum leaves for this update from our 1815 * delayed_refs_rsv. 1816 */ 1817 if (head->is_data) { 1818 spin_lock(&delayed_refs->lock); 1819 delayed_refs->pending_csums -= head->num_bytes; 1820 spin_unlock(&delayed_refs->lock); 1821 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1822 head->num_bytes); 1823 } 1824 } 1825 1826 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1827 } 1828 1829 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1830 struct btrfs_delayed_ref_head *head) 1831 { 1832 1833 struct btrfs_fs_info *fs_info = trans->fs_info; 1834 struct btrfs_delayed_ref_root *delayed_refs; 1835 int ret; 1836 1837 delayed_refs = &trans->transaction->delayed_refs; 1838 1839 ret = run_and_cleanup_extent_op(trans, head); 1840 if (ret < 0) { 1841 unselect_delayed_ref_head(delayed_refs, head); 1842 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1843 return ret; 1844 } else if (ret) { 1845 return ret; 1846 } 1847 1848 /* 1849 * Need to drop our head ref lock and re-acquire the delayed ref lock 1850 * and then re-check to make sure nobody got added. 1851 */ 1852 spin_unlock(&head->lock); 1853 spin_lock(&delayed_refs->lock); 1854 spin_lock(&head->lock); 1855 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1856 spin_unlock(&head->lock); 1857 spin_unlock(&delayed_refs->lock); 1858 return 1; 1859 } 1860 btrfs_delete_ref_head(delayed_refs, head); 1861 spin_unlock(&head->lock); 1862 spin_unlock(&delayed_refs->lock); 1863 1864 if (head->must_insert_reserved) { 1865 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1866 if (head->is_data) { 1867 ret = btrfs_del_csums(trans, fs_info->csum_root, 1868 head->bytenr, head->num_bytes); 1869 } 1870 } 1871 1872 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1873 1874 trace_run_delayed_ref_head(fs_info, head, 0); 1875 btrfs_delayed_ref_unlock(head); 1876 btrfs_put_delayed_ref_head(head); 1877 return 0; 1878 } 1879 1880 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1881 struct btrfs_trans_handle *trans) 1882 { 1883 struct btrfs_delayed_ref_root *delayed_refs = 1884 &trans->transaction->delayed_refs; 1885 struct btrfs_delayed_ref_head *head = NULL; 1886 int ret; 1887 1888 spin_lock(&delayed_refs->lock); 1889 head = btrfs_select_ref_head(delayed_refs); 1890 if (!head) { 1891 spin_unlock(&delayed_refs->lock); 1892 return head; 1893 } 1894 1895 /* 1896 * Grab the lock that says we are going to process all the refs for 1897 * this head 1898 */ 1899 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1900 spin_unlock(&delayed_refs->lock); 1901 1902 /* 1903 * We may have dropped the spin lock to get the head mutex lock, and 1904 * that might have given someone else time to free the head. If that's 1905 * true, it has been removed from our list and we can move on. 1906 */ 1907 if (ret == -EAGAIN) 1908 head = ERR_PTR(-EAGAIN); 1909 1910 return head; 1911 } 1912 1913 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1914 struct btrfs_delayed_ref_head *locked_ref, 1915 unsigned long *run_refs) 1916 { 1917 struct btrfs_fs_info *fs_info = trans->fs_info; 1918 struct btrfs_delayed_ref_root *delayed_refs; 1919 struct btrfs_delayed_extent_op *extent_op; 1920 struct btrfs_delayed_ref_node *ref; 1921 int must_insert_reserved = 0; 1922 int ret; 1923 1924 delayed_refs = &trans->transaction->delayed_refs; 1925 1926 lockdep_assert_held(&locked_ref->mutex); 1927 lockdep_assert_held(&locked_ref->lock); 1928 1929 while ((ref = select_delayed_ref(locked_ref))) { 1930 if (ref->seq && 1931 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1932 spin_unlock(&locked_ref->lock); 1933 unselect_delayed_ref_head(delayed_refs, locked_ref); 1934 return -EAGAIN; 1935 } 1936 1937 (*run_refs)++; 1938 ref->in_tree = 0; 1939 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1940 RB_CLEAR_NODE(&ref->ref_node); 1941 if (!list_empty(&ref->add_list)) 1942 list_del(&ref->add_list); 1943 /* 1944 * When we play the delayed ref, also correct the ref_mod on 1945 * head 1946 */ 1947 switch (ref->action) { 1948 case BTRFS_ADD_DELAYED_REF: 1949 case BTRFS_ADD_DELAYED_EXTENT: 1950 locked_ref->ref_mod -= ref->ref_mod; 1951 break; 1952 case BTRFS_DROP_DELAYED_REF: 1953 locked_ref->ref_mod += ref->ref_mod; 1954 break; 1955 default: 1956 WARN_ON(1); 1957 } 1958 atomic_dec(&delayed_refs->num_entries); 1959 1960 /* 1961 * Record the must_insert_reserved flag before we drop the 1962 * spin lock. 1963 */ 1964 must_insert_reserved = locked_ref->must_insert_reserved; 1965 locked_ref->must_insert_reserved = 0; 1966 1967 extent_op = locked_ref->extent_op; 1968 locked_ref->extent_op = NULL; 1969 spin_unlock(&locked_ref->lock); 1970 1971 ret = run_one_delayed_ref(trans, ref, extent_op, 1972 must_insert_reserved); 1973 1974 btrfs_free_delayed_extent_op(extent_op); 1975 if (ret) { 1976 unselect_delayed_ref_head(delayed_refs, locked_ref); 1977 btrfs_put_delayed_ref(ref); 1978 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1979 ret); 1980 return ret; 1981 } 1982 1983 btrfs_put_delayed_ref(ref); 1984 cond_resched(); 1985 1986 spin_lock(&locked_ref->lock); 1987 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1988 } 1989 1990 return 0; 1991 } 1992 1993 /* 1994 * Returns 0 on success or if called with an already aborted transaction. 1995 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1996 */ 1997 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1998 unsigned long nr) 1999 { 2000 struct btrfs_fs_info *fs_info = trans->fs_info; 2001 struct btrfs_delayed_ref_root *delayed_refs; 2002 struct btrfs_delayed_ref_head *locked_ref = NULL; 2003 ktime_t start = ktime_get(); 2004 int ret; 2005 unsigned long count = 0; 2006 unsigned long actual_count = 0; 2007 2008 delayed_refs = &trans->transaction->delayed_refs; 2009 do { 2010 if (!locked_ref) { 2011 locked_ref = btrfs_obtain_ref_head(trans); 2012 if (IS_ERR_OR_NULL(locked_ref)) { 2013 if (PTR_ERR(locked_ref) == -EAGAIN) { 2014 continue; 2015 } else { 2016 break; 2017 } 2018 } 2019 count++; 2020 } 2021 /* 2022 * We need to try and merge add/drops of the same ref since we 2023 * can run into issues with relocate dropping the implicit ref 2024 * and then it being added back again before the drop can 2025 * finish. If we merged anything we need to re-loop so we can 2026 * get a good ref. 2027 * Or we can get node references of the same type that weren't 2028 * merged when created due to bumps in the tree mod seq, and 2029 * we need to merge them to prevent adding an inline extent 2030 * backref before dropping it (triggering a BUG_ON at 2031 * insert_inline_extent_backref()). 2032 */ 2033 spin_lock(&locked_ref->lock); 2034 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2035 2036 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2037 &actual_count); 2038 if (ret < 0 && ret != -EAGAIN) { 2039 /* 2040 * Error, btrfs_run_delayed_refs_for_head already 2041 * unlocked everything so just bail out 2042 */ 2043 return ret; 2044 } else if (!ret) { 2045 /* 2046 * Success, perform the usual cleanup of a processed 2047 * head 2048 */ 2049 ret = cleanup_ref_head(trans, locked_ref); 2050 if (ret > 0 ) { 2051 /* We dropped our lock, we need to loop. */ 2052 ret = 0; 2053 continue; 2054 } else if (ret) { 2055 return ret; 2056 } 2057 } 2058 2059 /* 2060 * Either success case or btrfs_run_delayed_refs_for_head 2061 * returned -EAGAIN, meaning we need to select another head 2062 */ 2063 2064 locked_ref = NULL; 2065 cond_resched(); 2066 } while ((nr != -1 && count < nr) || locked_ref); 2067 2068 /* 2069 * We don't want to include ref heads since we can have empty ref heads 2070 * and those will drastically skew our runtime down since we just do 2071 * accounting, no actual extent tree updates. 2072 */ 2073 if (actual_count > 0) { 2074 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2075 u64 avg; 2076 2077 /* 2078 * We weigh the current average higher than our current runtime 2079 * to avoid large swings in the average. 2080 */ 2081 spin_lock(&delayed_refs->lock); 2082 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2083 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2084 spin_unlock(&delayed_refs->lock); 2085 } 2086 return 0; 2087 } 2088 2089 #ifdef SCRAMBLE_DELAYED_REFS 2090 /* 2091 * Normally delayed refs get processed in ascending bytenr order. This 2092 * correlates in most cases to the order added. To expose dependencies on this 2093 * order, we start to process the tree in the middle instead of the beginning 2094 */ 2095 static u64 find_middle(struct rb_root *root) 2096 { 2097 struct rb_node *n = root->rb_node; 2098 struct btrfs_delayed_ref_node *entry; 2099 int alt = 1; 2100 u64 middle; 2101 u64 first = 0, last = 0; 2102 2103 n = rb_first(root); 2104 if (n) { 2105 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2106 first = entry->bytenr; 2107 } 2108 n = rb_last(root); 2109 if (n) { 2110 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2111 last = entry->bytenr; 2112 } 2113 n = root->rb_node; 2114 2115 while (n) { 2116 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2117 WARN_ON(!entry->in_tree); 2118 2119 middle = entry->bytenr; 2120 2121 if (alt) 2122 n = n->rb_left; 2123 else 2124 n = n->rb_right; 2125 2126 alt = 1 - alt; 2127 } 2128 return middle; 2129 } 2130 #endif 2131 2132 /* 2133 * this starts processing the delayed reference count updates and 2134 * extent insertions we have queued up so far. count can be 2135 * 0, which means to process everything in the tree at the start 2136 * of the run (but not newly added entries), or it can be some target 2137 * number you'd like to process. 2138 * 2139 * Returns 0 on success or if called with an aborted transaction 2140 * Returns <0 on error and aborts the transaction 2141 */ 2142 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2143 unsigned long count) 2144 { 2145 struct btrfs_fs_info *fs_info = trans->fs_info; 2146 struct rb_node *node; 2147 struct btrfs_delayed_ref_root *delayed_refs; 2148 struct btrfs_delayed_ref_head *head; 2149 int ret; 2150 int run_all = count == (unsigned long)-1; 2151 2152 /* We'll clean this up in btrfs_cleanup_transaction */ 2153 if (TRANS_ABORTED(trans)) 2154 return 0; 2155 2156 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2157 return 0; 2158 2159 delayed_refs = &trans->transaction->delayed_refs; 2160 if (count == 0) 2161 count = atomic_read(&delayed_refs->num_entries) * 2; 2162 2163 again: 2164 #ifdef SCRAMBLE_DELAYED_REFS 2165 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2166 #endif 2167 ret = __btrfs_run_delayed_refs(trans, count); 2168 if (ret < 0) { 2169 btrfs_abort_transaction(trans, ret); 2170 return ret; 2171 } 2172 2173 if (run_all) { 2174 btrfs_create_pending_block_groups(trans); 2175 2176 spin_lock(&delayed_refs->lock); 2177 node = rb_first_cached(&delayed_refs->href_root); 2178 if (!node) { 2179 spin_unlock(&delayed_refs->lock); 2180 goto out; 2181 } 2182 head = rb_entry(node, struct btrfs_delayed_ref_head, 2183 href_node); 2184 refcount_inc(&head->refs); 2185 spin_unlock(&delayed_refs->lock); 2186 2187 /* Mutex was contended, block until it's released and retry. */ 2188 mutex_lock(&head->mutex); 2189 mutex_unlock(&head->mutex); 2190 2191 btrfs_put_delayed_ref_head(head); 2192 cond_resched(); 2193 goto again; 2194 } 2195 out: 2196 return 0; 2197 } 2198 2199 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2200 struct extent_buffer *eb, u64 flags, 2201 int level, int is_data) 2202 { 2203 struct btrfs_delayed_extent_op *extent_op; 2204 int ret; 2205 2206 extent_op = btrfs_alloc_delayed_extent_op(); 2207 if (!extent_op) 2208 return -ENOMEM; 2209 2210 extent_op->flags_to_set = flags; 2211 extent_op->update_flags = true; 2212 extent_op->update_key = false; 2213 extent_op->is_data = is_data ? true : false; 2214 extent_op->level = level; 2215 2216 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2217 if (ret) 2218 btrfs_free_delayed_extent_op(extent_op); 2219 return ret; 2220 } 2221 2222 static noinline int check_delayed_ref(struct btrfs_root *root, 2223 struct btrfs_path *path, 2224 u64 objectid, u64 offset, u64 bytenr) 2225 { 2226 struct btrfs_delayed_ref_head *head; 2227 struct btrfs_delayed_ref_node *ref; 2228 struct btrfs_delayed_data_ref *data_ref; 2229 struct btrfs_delayed_ref_root *delayed_refs; 2230 struct btrfs_transaction *cur_trans; 2231 struct rb_node *node; 2232 int ret = 0; 2233 2234 spin_lock(&root->fs_info->trans_lock); 2235 cur_trans = root->fs_info->running_transaction; 2236 if (cur_trans) 2237 refcount_inc(&cur_trans->use_count); 2238 spin_unlock(&root->fs_info->trans_lock); 2239 if (!cur_trans) 2240 return 0; 2241 2242 delayed_refs = &cur_trans->delayed_refs; 2243 spin_lock(&delayed_refs->lock); 2244 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2245 if (!head) { 2246 spin_unlock(&delayed_refs->lock); 2247 btrfs_put_transaction(cur_trans); 2248 return 0; 2249 } 2250 2251 if (!mutex_trylock(&head->mutex)) { 2252 refcount_inc(&head->refs); 2253 spin_unlock(&delayed_refs->lock); 2254 2255 btrfs_release_path(path); 2256 2257 /* 2258 * Mutex was contended, block until it's released and let 2259 * caller try again 2260 */ 2261 mutex_lock(&head->mutex); 2262 mutex_unlock(&head->mutex); 2263 btrfs_put_delayed_ref_head(head); 2264 btrfs_put_transaction(cur_trans); 2265 return -EAGAIN; 2266 } 2267 spin_unlock(&delayed_refs->lock); 2268 2269 spin_lock(&head->lock); 2270 /* 2271 * XXX: We should replace this with a proper search function in the 2272 * future. 2273 */ 2274 for (node = rb_first_cached(&head->ref_tree); node; 2275 node = rb_next(node)) { 2276 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2277 /* If it's a shared ref we know a cross reference exists */ 2278 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2279 ret = 1; 2280 break; 2281 } 2282 2283 data_ref = btrfs_delayed_node_to_data_ref(ref); 2284 2285 /* 2286 * If our ref doesn't match the one we're currently looking at 2287 * then we have a cross reference. 2288 */ 2289 if (data_ref->root != root->root_key.objectid || 2290 data_ref->objectid != objectid || 2291 data_ref->offset != offset) { 2292 ret = 1; 2293 break; 2294 } 2295 } 2296 spin_unlock(&head->lock); 2297 mutex_unlock(&head->mutex); 2298 btrfs_put_transaction(cur_trans); 2299 return ret; 2300 } 2301 2302 static noinline int check_committed_ref(struct btrfs_root *root, 2303 struct btrfs_path *path, 2304 u64 objectid, u64 offset, u64 bytenr, 2305 bool strict) 2306 { 2307 struct btrfs_fs_info *fs_info = root->fs_info; 2308 struct btrfs_root *extent_root = fs_info->extent_root; 2309 struct extent_buffer *leaf; 2310 struct btrfs_extent_data_ref *ref; 2311 struct btrfs_extent_inline_ref *iref; 2312 struct btrfs_extent_item *ei; 2313 struct btrfs_key key; 2314 u32 item_size; 2315 int type; 2316 int ret; 2317 2318 key.objectid = bytenr; 2319 key.offset = (u64)-1; 2320 key.type = BTRFS_EXTENT_ITEM_KEY; 2321 2322 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2323 if (ret < 0) 2324 goto out; 2325 BUG_ON(ret == 0); /* Corruption */ 2326 2327 ret = -ENOENT; 2328 if (path->slots[0] == 0) 2329 goto out; 2330 2331 path->slots[0]--; 2332 leaf = path->nodes[0]; 2333 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2334 2335 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2336 goto out; 2337 2338 ret = 1; 2339 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2340 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2341 2342 /* If extent item has more than 1 inline ref then it's shared */ 2343 if (item_size != sizeof(*ei) + 2344 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2345 goto out; 2346 2347 /* 2348 * If extent created before last snapshot => it's shared unless the 2349 * snapshot has been deleted. Use the heuristic if strict is false. 2350 */ 2351 if (!strict && 2352 (btrfs_extent_generation(leaf, ei) <= 2353 btrfs_root_last_snapshot(&root->root_item))) 2354 goto out; 2355 2356 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2357 2358 /* If this extent has SHARED_DATA_REF then it's shared */ 2359 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2360 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2361 goto out; 2362 2363 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2364 if (btrfs_extent_refs(leaf, ei) != 2365 btrfs_extent_data_ref_count(leaf, ref) || 2366 btrfs_extent_data_ref_root(leaf, ref) != 2367 root->root_key.objectid || 2368 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2369 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2370 goto out; 2371 2372 ret = 0; 2373 out: 2374 return ret; 2375 } 2376 2377 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2378 u64 bytenr, bool strict) 2379 { 2380 struct btrfs_path *path; 2381 int ret; 2382 2383 path = btrfs_alloc_path(); 2384 if (!path) 2385 return -ENOMEM; 2386 2387 do { 2388 ret = check_committed_ref(root, path, objectid, 2389 offset, bytenr, strict); 2390 if (ret && ret != -ENOENT) 2391 goto out; 2392 2393 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2394 } while (ret == -EAGAIN); 2395 2396 out: 2397 btrfs_free_path(path); 2398 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2399 WARN_ON(ret > 0); 2400 return ret; 2401 } 2402 2403 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2404 struct btrfs_root *root, 2405 struct extent_buffer *buf, 2406 int full_backref, int inc) 2407 { 2408 struct btrfs_fs_info *fs_info = root->fs_info; 2409 u64 bytenr; 2410 u64 num_bytes; 2411 u64 parent; 2412 u64 ref_root; 2413 u32 nritems; 2414 struct btrfs_key key; 2415 struct btrfs_file_extent_item *fi; 2416 struct btrfs_ref generic_ref = { 0 }; 2417 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2418 int i; 2419 int action; 2420 int level; 2421 int ret = 0; 2422 2423 if (btrfs_is_testing(fs_info)) 2424 return 0; 2425 2426 ref_root = btrfs_header_owner(buf); 2427 nritems = btrfs_header_nritems(buf); 2428 level = btrfs_header_level(buf); 2429 2430 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2431 return 0; 2432 2433 if (full_backref) 2434 parent = buf->start; 2435 else 2436 parent = 0; 2437 if (inc) 2438 action = BTRFS_ADD_DELAYED_REF; 2439 else 2440 action = BTRFS_DROP_DELAYED_REF; 2441 2442 for (i = 0; i < nritems; i++) { 2443 if (level == 0) { 2444 btrfs_item_key_to_cpu(buf, &key, i); 2445 if (key.type != BTRFS_EXTENT_DATA_KEY) 2446 continue; 2447 fi = btrfs_item_ptr(buf, i, 2448 struct btrfs_file_extent_item); 2449 if (btrfs_file_extent_type(buf, fi) == 2450 BTRFS_FILE_EXTENT_INLINE) 2451 continue; 2452 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2453 if (bytenr == 0) 2454 continue; 2455 2456 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2457 key.offset -= btrfs_file_extent_offset(buf, fi); 2458 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2459 num_bytes, parent); 2460 generic_ref.real_root = root->root_key.objectid; 2461 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2462 key.offset); 2463 generic_ref.skip_qgroup = for_reloc; 2464 if (inc) 2465 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2466 else 2467 ret = btrfs_free_extent(trans, &generic_ref); 2468 if (ret) 2469 goto fail; 2470 } else { 2471 bytenr = btrfs_node_blockptr(buf, i); 2472 num_bytes = fs_info->nodesize; 2473 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2474 num_bytes, parent); 2475 generic_ref.real_root = root->root_key.objectid; 2476 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2477 generic_ref.skip_qgroup = for_reloc; 2478 if (inc) 2479 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2480 else 2481 ret = btrfs_free_extent(trans, &generic_ref); 2482 if (ret) 2483 goto fail; 2484 } 2485 } 2486 return 0; 2487 fail: 2488 return ret; 2489 } 2490 2491 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2492 struct extent_buffer *buf, int full_backref) 2493 { 2494 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2495 } 2496 2497 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2498 struct extent_buffer *buf, int full_backref) 2499 { 2500 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2501 } 2502 2503 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2504 { 2505 struct btrfs_block_group *block_group; 2506 int readonly = 0; 2507 2508 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2509 if (!block_group || block_group->ro) 2510 readonly = 1; 2511 if (block_group) 2512 btrfs_put_block_group(block_group); 2513 return readonly; 2514 } 2515 2516 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2517 { 2518 struct btrfs_fs_info *fs_info = root->fs_info; 2519 u64 flags; 2520 u64 ret; 2521 2522 if (data) 2523 flags = BTRFS_BLOCK_GROUP_DATA; 2524 else if (root == fs_info->chunk_root) 2525 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2526 else 2527 flags = BTRFS_BLOCK_GROUP_METADATA; 2528 2529 ret = btrfs_get_alloc_profile(fs_info, flags); 2530 return ret; 2531 } 2532 2533 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2534 { 2535 struct btrfs_block_group *cache; 2536 u64 bytenr; 2537 2538 spin_lock(&fs_info->block_group_cache_lock); 2539 bytenr = fs_info->first_logical_byte; 2540 spin_unlock(&fs_info->block_group_cache_lock); 2541 2542 if (bytenr < (u64)-1) 2543 return bytenr; 2544 2545 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2546 if (!cache) 2547 return 0; 2548 2549 bytenr = cache->start; 2550 btrfs_put_block_group(cache); 2551 2552 return bytenr; 2553 } 2554 2555 static int pin_down_extent(struct btrfs_trans_handle *trans, 2556 struct btrfs_block_group *cache, 2557 u64 bytenr, u64 num_bytes, int reserved) 2558 { 2559 struct btrfs_fs_info *fs_info = cache->fs_info; 2560 2561 spin_lock(&cache->space_info->lock); 2562 spin_lock(&cache->lock); 2563 cache->pinned += num_bytes; 2564 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2565 num_bytes); 2566 if (reserved) { 2567 cache->reserved -= num_bytes; 2568 cache->space_info->bytes_reserved -= num_bytes; 2569 } 2570 spin_unlock(&cache->lock); 2571 spin_unlock(&cache->space_info->lock); 2572 2573 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2574 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2575 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2576 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2577 return 0; 2578 } 2579 2580 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2581 u64 bytenr, u64 num_bytes, int reserved) 2582 { 2583 struct btrfs_block_group *cache; 2584 2585 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2586 BUG_ON(!cache); /* Logic error */ 2587 2588 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2589 2590 btrfs_put_block_group(cache); 2591 return 0; 2592 } 2593 2594 /* 2595 * this function must be called within transaction 2596 */ 2597 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2598 u64 bytenr, u64 num_bytes) 2599 { 2600 struct btrfs_block_group *cache; 2601 int ret; 2602 2603 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes); 2604 2605 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2606 if (!cache) 2607 return -EINVAL; 2608 2609 /* 2610 * pull in the free space cache (if any) so that our pin 2611 * removes the free space from the cache. We have load_only set 2612 * to one because the slow code to read in the free extents does check 2613 * the pinned extents. 2614 */ 2615 btrfs_cache_block_group(cache, 1); 2616 2617 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2618 2619 /* remove us from the free space cache (if we're there at all) */ 2620 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2621 btrfs_put_block_group(cache); 2622 return ret; 2623 } 2624 2625 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2626 u64 start, u64 num_bytes) 2627 { 2628 int ret; 2629 struct btrfs_block_group *block_group; 2630 struct btrfs_caching_control *caching_ctl; 2631 2632 block_group = btrfs_lookup_block_group(fs_info, start); 2633 if (!block_group) 2634 return -EINVAL; 2635 2636 btrfs_cache_block_group(block_group, 0); 2637 caching_ctl = btrfs_get_caching_control(block_group); 2638 2639 if (!caching_ctl) { 2640 /* Logic error */ 2641 BUG_ON(!btrfs_block_group_done(block_group)); 2642 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2643 } else { 2644 /* 2645 * We must wait for v1 caching to finish, otherwise we may not 2646 * remove our space. 2647 */ 2648 btrfs_wait_space_cache_v1_finished(block_group, caching_ctl); 2649 mutex_lock(&caching_ctl->mutex); 2650 2651 if (start >= caching_ctl->progress) { 2652 ret = btrfs_add_excluded_extent(fs_info, start, 2653 num_bytes); 2654 } else if (start + num_bytes <= caching_ctl->progress) { 2655 ret = btrfs_remove_free_space(block_group, 2656 start, num_bytes); 2657 } else { 2658 num_bytes = caching_ctl->progress - start; 2659 ret = btrfs_remove_free_space(block_group, 2660 start, num_bytes); 2661 if (ret) 2662 goto out_lock; 2663 2664 num_bytes = (start + num_bytes) - 2665 caching_ctl->progress; 2666 start = caching_ctl->progress; 2667 ret = btrfs_add_excluded_extent(fs_info, start, 2668 num_bytes); 2669 } 2670 out_lock: 2671 mutex_unlock(&caching_ctl->mutex); 2672 btrfs_put_caching_control(caching_ctl); 2673 } 2674 btrfs_put_block_group(block_group); 2675 return ret; 2676 } 2677 2678 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2679 { 2680 struct btrfs_fs_info *fs_info = eb->fs_info; 2681 struct btrfs_file_extent_item *item; 2682 struct btrfs_key key; 2683 int found_type; 2684 int i; 2685 int ret = 0; 2686 2687 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2688 return 0; 2689 2690 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2691 btrfs_item_key_to_cpu(eb, &key, i); 2692 if (key.type != BTRFS_EXTENT_DATA_KEY) 2693 continue; 2694 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2695 found_type = btrfs_file_extent_type(eb, item); 2696 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2697 continue; 2698 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2699 continue; 2700 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2701 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2702 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2703 if (ret) 2704 break; 2705 } 2706 2707 return ret; 2708 } 2709 2710 static void 2711 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2712 { 2713 atomic_inc(&bg->reservations); 2714 } 2715 2716 /* 2717 * Returns the free cluster for the given space info and sets empty_cluster to 2718 * what it should be based on the mount options. 2719 */ 2720 static struct btrfs_free_cluster * 2721 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2722 struct btrfs_space_info *space_info, u64 *empty_cluster) 2723 { 2724 struct btrfs_free_cluster *ret = NULL; 2725 2726 *empty_cluster = 0; 2727 if (btrfs_mixed_space_info(space_info)) 2728 return ret; 2729 2730 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2731 ret = &fs_info->meta_alloc_cluster; 2732 if (btrfs_test_opt(fs_info, SSD)) 2733 *empty_cluster = SZ_2M; 2734 else 2735 *empty_cluster = SZ_64K; 2736 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2737 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2738 *empty_cluster = SZ_2M; 2739 ret = &fs_info->data_alloc_cluster; 2740 } 2741 2742 return ret; 2743 } 2744 2745 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2746 u64 start, u64 end, 2747 const bool return_free_space) 2748 { 2749 struct btrfs_block_group *cache = NULL; 2750 struct btrfs_space_info *space_info; 2751 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2752 struct btrfs_free_cluster *cluster = NULL; 2753 u64 len; 2754 u64 total_unpinned = 0; 2755 u64 empty_cluster = 0; 2756 bool readonly; 2757 2758 while (start <= end) { 2759 readonly = false; 2760 if (!cache || 2761 start >= cache->start + cache->length) { 2762 if (cache) 2763 btrfs_put_block_group(cache); 2764 total_unpinned = 0; 2765 cache = btrfs_lookup_block_group(fs_info, start); 2766 BUG_ON(!cache); /* Logic error */ 2767 2768 cluster = fetch_cluster_info(fs_info, 2769 cache->space_info, 2770 &empty_cluster); 2771 empty_cluster <<= 1; 2772 } 2773 2774 len = cache->start + cache->length - start; 2775 len = min(len, end + 1 - start); 2776 2777 down_read(&fs_info->commit_root_sem); 2778 if (start < cache->last_byte_to_unpin && return_free_space) { 2779 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2780 2781 btrfs_add_free_space(cache, start, add_len); 2782 } 2783 up_read(&fs_info->commit_root_sem); 2784 2785 start += len; 2786 total_unpinned += len; 2787 space_info = cache->space_info; 2788 2789 /* 2790 * If this space cluster has been marked as fragmented and we've 2791 * unpinned enough in this block group to potentially allow a 2792 * cluster to be created inside of it go ahead and clear the 2793 * fragmented check. 2794 */ 2795 if (cluster && cluster->fragmented && 2796 total_unpinned > empty_cluster) { 2797 spin_lock(&cluster->lock); 2798 cluster->fragmented = 0; 2799 spin_unlock(&cluster->lock); 2800 } 2801 2802 spin_lock(&space_info->lock); 2803 spin_lock(&cache->lock); 2804 cache->pinned -= len; 2805 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2806 space_info->max_extent_size = 0; 2807 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2808 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2809 if (cache->ro) { 2810 space_info->bytes_readonly += len; 2811 readonly = true; 2812 } 2813 spin_unlock(&cache->lock); 2814 if (!readonly && return_free_space && 2815 global_rsv->space_info == space_info) { 2816 u64 to_add = len; 2817 2818 spin_lock(&global_rsv->lock); 2819 if (!global_rsv->full) { 2820 to_add = min(len, global_rsv->size - 2821 global_rsv->reserved); 2822 global_rsv->reserved += to_add; 2823 btrfs_space_info_update_bytes_may_use(fs_info, 2824 space_info, to_add); 2825 if (global_rsv->reserved >= global_rsv->size) 2826 global_rsv->full = 1; 2827 len -= to_add; 2828 } 2829 spin_unlock(&global_rsv->lock); 2830 } 2831 /* Add to any tickets we may have */ 2832 if (!readonly && return_free_space && len) 2833 btrfs_try_granting_tickets(fs_info, space_info); 2834 spin_unlock(&space_info->lock); 2835 } 2836 2837 if (cache) 2838 btrfs_put_block_group(cache); 2839 return 0; 2840 } 2841 2842 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2843 { 2844 struct btrfs_fs_info *fs_info = trans->fs_info; 2845 struct btrfs_block_group *block_group, *tmp; 2846 struct list_head *deleted_bgs; 2847 struct extent_io_tree *unpin; 2848 u64 start; 2849 u64 end; 2850 int ret; 2851 2852 unpin = &trans->transaction->pinned_extents; 2853 2854 while (!TRANS_ABORTED(trans)) { 2855 struct extent_state *cached_state = NULL; 2856 2857 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2858 ret = find_first_extent_bit(unpin, 0, &start, &end, 2859 EXTENT_DIRTY, &cached_state); 2860 if (ret) { 2861 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2862 break; 2863 } 2864 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 2865 clear_extent_bits(&fs_info->excluded_extents, start, 2866 end, EXTENT_UPTODATE); 2867 2868 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2869 ret = btrfs_discard_extent(fs_info, start, 2870 end + 1 - start, NULL); 2871 2872 clear_extent_dirty(unpin, start, end, &cached_state); 2873 unpin_extent_range(fs_info, start, end, true); 2874 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2875 free_extent_state(cached_state); 2876 cond_resched(); 2877 } 2878 2879 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2880 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2881 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2882 } 2883 2884 /* 2885 * Transaction is finished. We don't need the lock anymore. We 2886 * do need to clean up the block groups in case of a transaction 2887 * abort. 2888 */ 2889 deleted_bgs = &trans->transaction->deleted_bgs; 2890 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2891 u64 trimmed = 0; 2892 2893 ret = -EROFS; 2894 if (!TRANS_ABORTED(trans)) 2895 ret = btrfs_discard_extent(fs_info, 2896 block_group->start, 2897 block_group->length, 2898 &trimmed); 2899 2900 list_del_init(&block_group->bg_list); 2901 btrfs_unfreeze_block_group(block_group); 2902 btrfs_put_block_group(block_group); 2903 2904 if (ret) { 2905 const char *errstr = btrfs_decode_error(ret); 2906 btrfs_warn(fs_info, 2907 "discard failed while removing blockgroup: errno=%d %s", 2908 ret, errstr); 2909 } 2910 } 2911 2912 return 0; 2913 } 2914 2915 /* 2916 * Drop one or more refs of @node. 2917 * 2918 * 1. Locate the extent refs. 2919 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2920 * Locate it, then reduce the refs number or remove the ref line completely. 2921 * 2922 * 2. Update the refs count in EXTENT/METADATA_ITEM 2923 * 2924 * Inline backref case: 2925 * 2926 * in extent tree we have: 2927 * 2928 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2929 * refs 2 gen 6 flags DATA 2930 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2931 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2932 * 2933 * This function gets called with: 2934 * 2935 * node->bytenr = 13631488 2936 * node->num_bytes = 1048576 2937 * root_objectid = FS_TREE 2938 * owner_objectid = 257 2939 * owner_offset = 0 2940 * refs_to_drop = 1 2941 * 2942 * Then we should get some like: 2943 * 2944 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2945 * refs 1 gen 6 flags DATA 2946 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2947 * 2948 * Keyed backref case: 2949 * 2950 * in extent tree we have: 2951 * 2952 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2953 * refs 754 gen 6 flags DATA 2954 * [...] 2955 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2956 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2957 * 2958 * This function get called with: 2959 * 2960 * node->bytenr = 13631488 2961 * node->num_bytes = 1048576 2962 * root_objectid = FS_TREE 2963 * owner_objectid = 866 2964 * owner_offset = 0 2965 * refs_to_drop = 1 2966 * 2967 * Then we should get some like: 2968 * 2969 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2970 * refs 753 gen 6 flags DATA 2971 * 2972 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2973 */ 2974 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2975 struct btrfs_delayed_ref_node *node, u64 parent, 2976 u64 root_objectid, u64 owner_objectid, 2977 u64 owner_offset, int refs_to_drop, 2978 struct btrfs_delayed_extent_op *extent_op) 2979 { 2980 struct btrfs_fs_info *info = trans->fs_info; 2981 struct btrfs_key key; 2982 struct btrfs_path *path; 2983 struct btrfs_root *extent_root = info->extent_root; 2984 struct extent_buffer *leaf; 2985 struct btrfs_extent_item *ei; 2986 struct btrfs_extent_inline_ref *iref; 2987 int ret; 2988 int is_data; 2989 int extent_slot = 0; 2990 int found_extent = 0; 2991 int num_to_del = 1; 2992 u32 item_size; 2993 u64 refs; 2994 u64 bytenr = node->bytenr; 2995 u64 num_bytes = node->num_bytes; 2996 int last_ref = 0; 2997 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2998 2999 path = btrfs_alloc_path(); 3000 if (!path) 3001 return -ENOMEM; 3002 3003 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3004 3005 if (!is_data && refs_to_drop != 1) { 3006 btrfs_crit(info, 3007 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3008 node->bytenr, refs_to_drop); 3009 ret = -EINVAL; 3010 btrfs_abort_transaction(trans, ret); 3011 goto out; 3012 } 3013 3014 if (is_data) 3015 skinny_metadata = false; 3016 3017 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3018 parent, root_objectid, owner_objectid, 3019 owner_offset); 3020 if (ret == 0) { 3021 /* 3022 * Either the inline backref or the SHARED_DATA_REF/ 3023 * SHARED_BLOCK_REF is found 3024 * 3025 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3026 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3027 */ 3028 extent_slot = path->slots[0]; 3029 while (extent_slot >= 0) { 3030 btrfs_item_key_to_cpu(path->nodes[0], &key, 3031 extent_slot); 3032 if (key.objectid != bytenr) 3033 break; 3034 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3035 key.offset == num_bytes) { 3036 found_extent = 1; 3037 break; 3038 } 3039 if (key.type == BTRFS_METADATA_ITEM_KEY && 3040 key.offset == owner_objectid) { 3041 found_extent = 1; 3042 break; 3043 } 3044 3045 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3046 if (path->slots[0] - extent_slot > 5) 3047 break; 3048 extent_slot--; 3049 } 3050 3051 if (!found_extent) { 3052 if (iref) { 3053 btrfs_crit(info, 3054 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3055 btrfs_abort_transaction(trans, -EUCLEAN); 3056 goto err_dump; 3057 } 3058 /* Must be SHARED_* item, remove the backref first */ 3059 ret = remove_extent_backref(trans, path, NULL, 3060 refs_to_drop, 3061 is_data, &last_ref); 3062 if (ret) { 3063 btrfs_abort_transaction(trans, ret); 3064 goto out; 3065 } 3066 btrfs_release_path(path); 3067 3068 /* Slow path to locate EXTENT/METADATA_ITEM */ 3069 key.objectid = bytenr; 3070 key.type = BTRFS_EXTENT_ITEM_KEY; 3071 key.offset = num_bytes; 3072 3073 if (!is_data && skinny_metadata) { 3074 key.type = BTRFS_METADATA_ITEM_KEY; 3075 key.offset = owner_objectid; 3076 } 3077 3078 ret = btrfs_search_slot(trans, extent_root, 3079 &key, path, -1, 1); 3080 if (ret > 0 && skinny_metadata && path->slots[0]) { 3081 /* 3082 * Couldn't find our skinny metadata item, 3083 * see if we have ye olde extent item. 3084 */ 3085 path->slots[0]--; 3086 btrfs_item_key_to_cpu(path->nodes[0], &key, 3087 path->slots[0]); 3088 if (key.objectid == bytenr && 3089 key.type == BTRFS_EXTENT_ITEM_KEY && 3090 key.offset == num_bytes) 3091 ret = 0; 3092 } 3093 3094 if (ret > 0 && skinny_metadata) { 3095 skinny_metadata = false; 3096 key.objectid = bytenr; 3097 key.type = BTRFS_EXTENT_ITEM_KEY; 3098 key.offset = num_bytes; 3099 btrfs_release_path(path); 3100 ret = btrfs_search_slot(trans, extent_root, 3101 &key, path, -1, 1); 3102 } 3103 3104 if (ret) { 3105 btrfs_err(info, 3106 "umm, got %d back from search, was looking for %llu", 3107 ret, bytenr); 3108 if (ret > 0) 3109 btrfs_print_leaf(path->nodes[0]); 3110 } 3111 if (ret < 0) { 3112 btrfs_abort_transaction(trans, ret); 3113 goto out; 3114 } 3115 extent_slot = path->slots[0]; 3116 } 3117 } else if (WARN_ON(ret == -ENOENT)) { 3118 btrfs_print_leaf(path->nodes[0]); 3119 btrfs_err(info, 3120 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3121 bytenr, parent, root_objectid, owner_objectid, 3122 owner_offset); 3123 btrfs_abort_transaction(trans, ret); 3124 goto out; 3125 } else { 3126 btrfs_abort_transaction(trans, ret); 3127 goto out; 3128 } 3129 3130 leaf = path->nodes[0]; 3131 item_size = btrfs_item_size_nr(leaf, extent_slot); 3132 if (unlikely(item_size < sizeof(*ei))) { 3133 ret = -EINVAL; 3134 btrfs_print_v0_err(info); 3135 btrfs_abort_transaction(trans, ret); 3136 goto out; 3137 } 3138 ei = btrfs_item_ptr(leaf, extent_slot, 3139 struct btrfs_extent_item); 3140 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3141 key.type == BTRFS_EXTENT_ITEM_KEY) { 3142 struct btrfs_tree_block_info *bi; 3143 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3144 btrfs_crit(info, 3145 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3146 key.objectid, key.type, key.offset, 3147 owner_objectid, item_size, 3148 sizeof(*ei) + sizeof(*bi)); 3149 btrfs_abort_transaction(trans, -EUCLEAN); 3150 goto err_dump; 3151 } 3152 bi = (struct btrfs_tree_block_info *)(ei + 1); 3153 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3154 } 3155 3156 refs = btrfs_extent_refs(leaf, ei); 3157 if (refs < refs_to_drop) { 3158 btrfs_crit(info, 3159 "trying to drop %d refs but we only have %llu for bytenr %llu", 3160 refs_to_drop, refs, bytenr); 3161 btrfs_abort_transaction(trans, -EUCLEAN); 3162 goto err_dump; 3163 } 3164 refs -= refs_to_drop; 3165 3166 if (refs > 0) { 3167 if (extent_op) 3168 __run_delayed_extent_op(extent_op, leaf, ei); 3169 /* 3170 * In the case of inline back ref, reference count will 3171 * be updated by remove_extent_backref 3172 */ 3173 if (iref) { 3174 if (!found_extent) { 3175 btrfs_crit(info, 3176 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3177 btrfs_abort_transaction(trans, -EUCLEAN); 3178 goto err_dump; 3179 } 3180 } else { 3181 btrfs_set_extent_refs(leaf, ei, refs); 3182 btrfs_mark_buffer_dirty(leaf); 3183 } 3184 if (found_extent) { 3185 ret = remove_extent_backref(trans, path, iref, 3186 refs_to_drop, is_data, 3187 &last_ref); 3188 if (ret) { 3189 btrfs_abort_transaction(trans, ret); 3190 goto out; 3191 } 3192 } 3193 } else { 3194 /* In this branch refs == 1 */ 3195 if (found_extent) { 3196 if (is_data && refs_to_drop != 3197 extent_data_ref_count(path, iref)) { 3198 btrfs_crit(info, 3199 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3200 extent_data_ref_count(path, iref), 3201 refs_to_drop); 3202 btrfs_abort_transaction(trans, -EUCLEAN); 3203 goto err_dump; 3204 } 3205 if (iref) { 3206 if (path->slots[0] != extent_slot) { 3207 btrfs_crit(info, 3208 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3209 key.objectid, key.type, 3210 key.offset); 3211 btrfs_abort_transaction(trans, -EUCLEAN); 3212 goto err_dump; 3213 } 3214 } else { 3215 /* 3216 * No inline ref, we must be at SHARED_* item, 3217 * And it's single ref, it must be: 3218 * | extent_slot ||extent_slot + 1| 3219 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3220 */ 3221 if (path->slots[0] != extent_slot + 1) { 3222 btrfs_crit(info, 3223 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3224 btrfs_abort_transaction(trans, -EUCLEAN); 3225 goto err_dump; 3226 } 3227 path->slots[0] = extent_slot; 3228 num_to_del = 2; 3229 } 3230 } 3231 3232 last_ref = 1; 3233 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3234 num_to_del); 3235 if (ret) { 3236 btrfs_abort_transaction(trans, ret); 3237 goto out; 3238 } 3239 btrfs_release_path(path); 3240 3241 if (is_data) { 3242 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3243 num_bytes); 3244 if (ret) { 3245 btrfs_abort_transaction(trans, ret); 3246 goto out; 3247 } 3248 } 3249 3250 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3251 if (ret) { 3252 btrfs_abort_transaction(trans, ret); 3253 goto out; 3254 } 3255 3256 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3257 if (ret) { 3258 btrfs_abort_transaction(trans, ret); 3259 goto out; 3260 } 3261 } 3262 btrfs_release_path(path); 3263 3264 out: 3265 btrfs_free_path(path); 3266 return ret; 3267 err_dump: 3268 /* 3269 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3270 * dump for debug build. 3271 */ 3272 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3273 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3274 path->slots[0], extent_slot); 3275 btrfs_print_leaf(path->nodes[0]); 3276 } 3277 3278 btrfs_free_path(path); 3279 return -EUCLEAN; 3280 } 3281 3282 /* 3283 * when we free an block, it is possible (and likely) that we free the last 3284 * delayed ref for that extent as well. This searches the delayed ref tree for 3285 * a given extent, and if there are no other delayed refs to be processed, it 3286 * removes it from the tree. 3287 */ 3288 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3289 u64 bytenr) 3290 { 3291 struct btrfs_delayed_ref_head *head; 3292 struct btrfs_delayed_ref_root *delayed_refs; 3293 int ret = 0; 3294 3295 delayed_refs = &trans->transaction->delayed_refs; 3296 spin_lock(&delayed_refs->lock); 3297 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3298 if (!head) 3299 goto out_delayed_unlock; 3300 3301 spin_lock(&head->lock); 3302 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3303 goto out; 3304 3305 if (cleanup_extent_op(head) != NULL) 3306 goto out; 3307 3308 /* 3309 * waiting for the lock here would deadlock. If someone else has it 3310 * locked they are already in the process of dropping it anyway 3311 */ 3312 if (!mutex_trylock(&head->mutex)) 3313 goto out; 3314 3315 btrfs_delete_ref_head(delayed_refs, head); 3316 head->processing = 0; 3317 3318 spin_unlock(&head->lock); 3319 spin_unlock(&delayed_refs->lock); 3320 3321 BUG_ON(head->extent_op); 3322 if (head->must_insert_reserved) 3323 ret = 1; 3324 3325 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3326 mutex_unlock(&head->mutex); 3327 btrfs_put_delayed_ref_head(head); 3328 return ret; 3329 out: 3330 spin_unlock(&head->lock); 3331 3332 out_delayed_unlock: 3333 spin_unlock(&delayed_refs->lock); 3334 return 0; 3335 } 3336 3337 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3338 struct btrfs_root *root, 3339 struct extent_buffer *buf, 3340 u64 parent, int last_ref) 3341 { 3342 struct btrfs_fs_info *fs_info = root->fs_info; 3343 struct btrfs_ref generic_ref = { 0 }; 3344 int pin = 1; 3345 int ret; 3346 3347 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3348 buf->start, buf->len, parent); 3349 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3350 root->root_key.objectid); 3351 3352 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3353 int old_ref_mod, new_ref_mod; 3354 3355 btrfs_ref_tree_mod(fs_info, &generic_ref); 3356 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3357 &old_ref_mod, &new_ref_mod); 3358 BUG_ON(ret); /* -ENOMEM */ 3359 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3360 } 3361 3362 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3363 struct btrfs_block_group *cache; 3364 3365 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3366 ret = check_ref_cleanup(trans, buf->start); 3367 if (!ret) 3368 goto out; 3369 } 3370 3371 pin = 0; 3372 cache = btrfs_lookup_block_group(fs_info, buf->start); 3373 3374 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3375 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3376 btrfs_put_block_group(cache); 3377 goto out; 3378 } 3379 3380 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3381 3382 btrfs_add_free_space(cache, buf->start, buf->len); 3383 btrfs_free_reserved_bytes(cache, buf->len, 0); 3384 btrfs_put_block_group(cache); 3385 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3386 } 3387 out: 3388 if (pin) 3389 add_pinned_bytes(fs_info, &generic_ref); 3390 3391 if (last_ref) { 3392 /* 3393 * Deleting the buffer, clear the corrupt flag since it doesn't 3394 * matter anymore. 3395 */ 3396 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3397 } 3398 } 3399 3400 /* Can return -ENOMEM */ 3401 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3402 { 3403 struct btrfs_fs_info *fs_info = trans->fs_info; 3404 int old_ref_mod, new_ref_mod; 3405 int ret; 3406 3407 if (btrfs_is_testing(fs_info)) 3408 return 0; 3409 3410 /* 3411 * tree log blocks never actually go into the extent allocation 3412 * tree, just update pinning info and exit early. 3413 */ 3414 if ((ref->type == BTRFS_REF_METADATA && 3415 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3416 (ref->type == BTRFS_REF_DATA && 3417 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3418 /* unlocks the pinned mutex */ 3419 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3420 old_ref_mod = new_ref_mod = 0; 3421 ret = 0; 3422 } else if (ref->type == BTRFS_REF_METADATA) { 3423 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3424 &old_ref_mod, &new_ref_mod); 3425 } else { 3426 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3427 &old_ref_mod, &new_ref_mod); 3428 } 3429 3430 if (!((ref->type == BTRFS_REF_METADATA && 3431 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3432 (ref->type == BTRFS_REF_DATA && 3433 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3434 btrfs_ref_tree_mod(fs_info, ref); 3435 3436 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3437 add_pinned_bytes(fs_info, ref); 3438 3439 return ret; 3440 } 3441 3442 enum btrfs_loop_type { 3443 LOOP_CACHING_NOWAIT, 3444 LOOP_CACHING_WAIT, 3445 LOOP_ALLOC_CHUNK, 3446 LOOP_NO_EMPTY_SIZE, 3447 }; 3448 3449 static inline void 3450 btrfs_lock_block_group(struct btrfs_block_group *cache, 3451 int delalloc) 3452 { 3453 if (delalloc) 3454 down_read(&cache->data_rwsem); 3455 } 3456 3457 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3458 int delalloc) 3459 { 3460 btrfs_get_block_group(cache); 3461 if (delalloc) 3462 down_read(&cache->data_rwsem); 3463 } 3464 3465 static struct btrfs_block_group *btrfs_lock_cluster( 3466 struct btrfs_block_group *block_group, 3467 struct btrfs_free_cluster *cluster, 3468 int delalloc) 3469 __acquires(&cluster->refill_lock) 3470 { 3471 struct btrfs_block_group *used_bg = NULL; 3472 3473 spin_lock(&cluster->refill_lock); 3474 while (1) { 3475 used_bg = cluster->block_group; 3476 if (!used_bg) 3477 return NULL; 3478 3479 if (used_bg == block_group) 3480 return used_bg; 3481 3482 btrfs_get_block_group(used_bg); 3483 3484 if (!delalloc) 3485 return used_bg; 3486 3487 if (down_read_trylock(&used_bg->data_rwsem)) 3488 return used_bg; 3489 3490 spin_unlock(&cluster->refill_lock); 3491 3492 /* We should only have one-level nested. */ 3493 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3494 3495 spin_lock(&cluster->refill_lock); 3496 if (used_bg == cluster->block_group) 3497 return used_bg; 3498 3499 up_read(&used_bg->data_rwsem); 3500 btrfs_put_block_group(used_bg); 3501 } 3502 } 3503 3504 static inline void 3505 btrfs_release_block_group(struct btrfs_block_group *cache, 3506 int delalloc) 3507 { 3508 if (delalloc) 3509 up_read(&cache->data_rwsem); 3510 btrfs_put_block_group(cache); 3511 } 3512 3513 enum btrfs_extent_allocation_policy { 3514 BTRFS_EXTENT_ALLOC_CLUSTERED, 3515 }; 3516 3517 /* 3518 * Structure used internally for find_free_extent() function. Wraps needed 3519 * parameters. 3520 */ 3521 struct find_free_extent_ctl { 3522 /* Basic allocation info */ 3523 u64 num_bytes; 3524 u64 empty_size; 3525 u64 flags; 3526 int delalloc; 3527 3528 /* Where to start the search inside the bg */ 3529 u64 search_start; 3530 3531 /* For clustered allocation */ 3532 u64 empty_cluster; 3533 struct btrfs_free_cluster *last_ptr; 3534 bool use_cluster; 3535 3536 bool have_caching_bg; 3537 bool orig_have_caching_bg; 3538 3539 /* RAID index, converted from flags */ 3540 int index; 3541 3542 /* 3543 * Current loop number, check find_free_extent_update_loop() for details 3544 */ 3545 int loop; 3546 3547 /* 3548 * Whether we're refilling a cluster, if true we need to re-search 3549 * current block group but don't try to refill the cluster again. 3550 */ 3551 bool retry_clustered; 3552 3553 /* 3554 * Whether we're updating free space cache, if true we need to re-search 3555 * current block group but don't try updating free space cache again. 3556 */ 3557 bool retry_unclustered; 3558 3559 /* If current block group is cached */ 3560 int cached; 3561 3562 /* Max contiguous hole found */ 3563 u64 max_extent_size; 3564 3565 /* Total free space from free space cache, not always contiguous */ 3566 u64 total_free_space; 3567 3568 /* Found result */ 3569 u64 found_offset; 3570 3571 /* Hint where to start looking for an empty space */ 3572 u64 hint_byte; 3573 3574 /* Allocation policy */ 3575 enum btrfs_extent_allocation_policy policy; 3576 }; 3577 3578 3579 /* 3580 * Helper function for find_free_extent(). 3581 * 3582 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3583 * Return -EAGAIN to inform caller that we need to re-search this block group 3584 * Return >0 to inform caller that we find nothing 3585 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3586 */ 3587 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3588 struct find_free_extent_ctl *ffe_ctl, 3589 struct btrfs_block_group **cluster_bg_ret) 3590 { 3591 struct btrfs_block_group *cluster_bg; 3592 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3593 u64 aligned_cluster; 3594 u64 offset; 3595 int ret; 3596 3597 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3598 if (!cluster_bg) 3599 goto refill_cluster; 3600 if (cluster_bg != bg && (cluster_bg->ro || 3601 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3602 goto release_cluster; 3603 3604 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3605 ffe_ctl->num_bytes, cluster_bg->start, 3606 &ffe_ctl->max_extent_size); 3607 if (offset) { 3608 /* We have a block, we're done */ 3609 spin_unlock(&last_ptr->refill_lock); 3610 trace_btrfs_reserve_extent_cluster(cluster_bg, 3611 ffe_ctl->search_start, ffe_ctl->num_bytes); 3612 *cluster_bg_ret = cluster_bg; 3613 ffe_ctl->found_offset = offset; 3614 return 0; 3615 } 3616 WARN_ON(last_ptr->block_group != cluster_bg); 3617 3618 release_cluster: 3619 /* 3620 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3621 * lets just skip it and let the allocator find whatever block it can 3622 * find. If we reach this point, we will have tried the cluster 3623 * allocator plenty of times and not have found anything, so we are 3624 * likely way too fragmented for the clustering stuff to find anything. 3625 * 3626 * However, if the cluster is taken from the current block group, 3627 * release the cluster first, so that we stand a better chance of 3628 * succeeding in the unclustered allocation. 3629 */ 3630 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3631 spin_unlock(&last_ptr->refill_lock); 3632 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3633 return -ENOENT; 3634 } 3635 3636 /* This cluster didn't work out, free it and start over */ 3637 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3638 3639 if (cluster_bg != bg) 3640 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3641 3642 refill_cluster: 3643 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3644 spin_unlock(&last_ptr->refill_lock); 3645 return -ENOENT; 3646 } 3647 3648 aligned_cluster = max_t(u64, 3649 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3650 bg->full_stripe_len); 3651 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3652 ffe_ctl->num_bytes, aligned_cluster); 3653 if (ret == 0) { 3654 /* Now pull our allocation out of this cluster */ 3655 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3656 ffe_ctl->num_bytes, ffe_ctl->search_start, 3657 &ffe_ctl->max_extent_size); 3658 if (offset) { 3659 /* We found one, proceed */ 3660 spin_unlock(&last_ptr->refill_lock); 3661 trace_btrfs_reserve_extent_cluster(bg, 3662 ffe_ctl->search_start, 3663 ffe_ctl->num_bytes); 3664 ffe_ctl->found_offset = offset; 3665 return 0; 3666 } 3667 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3668 !ffe_ctl->retry_clustered) { 3669 spin_unlock(&last_ptr->refill_lock); 3670 3671 ffe_ctl->retry_clustered = true; 3672 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3673 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3674 return -EAGAIN; 3675 } 3676 /* 3677 * At this point we either didn't find a cluster or we weren't able to 3678 * allocate a block from our cluster. Free the cluster we've been 3679 * trying to use, and go to the next block group. 3680 */ 3681 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3682 spin_unlock(&last_ptr->refill_lock); 3683 return 1; 3684 } 3685 3686 /* 3687 * Return >0 to inform caller that we find nothing 3688 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3689 * Return -EAGAIN to inform caller that we need to re-search this block group 3690 */ 3691 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3692 struct find_free_extent_ctl *ffe_ctl) 3693 { 3694 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3695 u64 offset; 3696 3697 /* 3698 * We are doing an unclustered allocation, set the fragmented flag so 3699 * we don't bother trying to setup a cluster again until we get more 3700 * space. 3701 */ 3702 if (unlikely(last_ptr)) { 3703 spin_lock(&last_ptr->lock); 3704 last_ptr->fragmented = 1; 3705 spin_unlock(&last_ptr->lock); 3706 } 3707 if (ffe_ctl->cached) { 3708 struct btrfs_free_space_ctl *free_space_ctl; 3709 3710 free_space_ctl = bg->free_space_ctl; 3711 spin_lock(&free_space_ctl->tree_lock); 3712 if (free_space_ctl->free_space < 3713 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3714 ffe_ctl->empty_size) { 3715 ffe_ctl->total_free_space = max_t(u64, 3716 ffe_ctl->total_free_space, 3717 free_space_ctl->free_space); 3718 spin_unlock(&free_space_ctl->tree_lock); 3719 return 1; 3720 } 3721 spin_unlock(&free_space_ctl->tree_lock); 3722 } 3723 3724 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3725 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3726 &ffe_ctl->max_extent_size); 3727 3728 /* 3729 * If we didn't find a chunk, and we haven't failed on this block group 3730 * before, and this block group is in the middle of caching and we are 3731 * ok with waiting, then go ahead and wait for progress to be made, and 3732 * set @retry_unclustered to true. 3733 * 3734 * If @retry_unclustered is true then we've already waited on this 3735 * block group once and should move on to the next block group. 3736 */ 3737 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3738 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3739 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3740 ffe_ctl->empty_size); 3741 ffe_ctl->retry_unclustered = true; 3742 return -EAGAIN; 3743 } else if (!offset) { 3744 return 1; 3745 } 3746 ffe_ctl->found_offset = offset; 3747 return 0; 3748 } 3749 3750 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3751 struct find_free_extent_ctl *ffe_ctl, 3752 struct btrfs_block_group **bg_ret) 3753 { 3754 int ret; 3755 3756 /* We want to try and use the cluster allocator, so lets look there */ 3757 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3758 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3759 if (ret >= 0 || ret == -EAGAIN) 3760 return ret; 3761 /* ret == -ENOENT case falls through */ 3762 } 3763 3764 return find_free_extent_unclustered(block_group, ffe_ctl); 3765 } 3766 3767 static int do_allocation(struct btrfs_block_group *block_group, 3768 struct find_free_extent_ctl *ffe_ctl, 3769 struct btrfs_block_group **bg_ret) 3770 { 3771 switch (ffe_ctl->policy) { 3772 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3773 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3774 default: 3775 BUG(); 3776 } 3777 } 3778 3779 static void release_block_group(struct btrfs_block_group *block_group, 3780 struct find_free_extent_ctl *ffe_ctl, 3781 int delalloc) 3782 { 3783 switch (ffe_ctl->policy) { 3784 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3785 ffe_ctl->retry_clustered = false; 3786 ffe_ctl->retry_unclustered = false; 3787 break; 3788 default: 3789 BUG(); 3790 } 3791 3792 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3793 ffe_ctl->index); 3794 btrfs_release_block_group(block_group, delalloc); 3795 } 3796 3797 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3798 struct btrfs_key *ins) 3799 { 3800 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3801 3802 if (!ffe_ctl->use_cluster && last_ptr) { 3803 spin_lock(&last_ptr->lock); 3804 last_ptr->window_start = ins->objectid; 3805 spin_unlock(&last_ptr->lock); 3806 } 3807 } 3808 3809 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3810 struct btrfs_key *ins) 3811 { 3812 switch (ffe_ctl->policy) { 3813 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3814 found_extent_clustered(ffe_ctl, ins); 3815 break; 3816 default: 3817 BUG(); 3818 } 3819 } 3820 3821 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3822 { 3823 switch (ffe_ctl->policy) { 3824 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3825 /* 3826 * If we can't allocate a new chunk we've already looped through 3827 * at least once, move on to the NO_EMPTY_SIZE case. 3828 */ 3829 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3830 return 0; 3831 default: 3832 BUG(); 3833 } 3834 } 3835 3836 /* 3837 * Return >0 means caller needs to re-search for free extent 3838 * Return 0 means we have the needed free extent. 3839 * Return <0 means we failed to locate any free extent. 3840 */ 3841 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3842 struct btrfs_key *ins, 3843 struct find_free_extent_ctl *ffe_ctl, 3844 bool full_search) 3845 { 3846 struct btrfs_root *root = fs_info->extent_root; 3847 int ret; 3848 3849 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3850 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3851 ffe_ctl->orig_have_caching_bg = true; 3852 3853 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3854 ffe_ctl->have_caching_bg) 3855 return 1; 3856 3857 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3858 return 1; 3859 3860 if (ins->objectid) { 3861 found_extent(ffe_ctl, ins); 3862 return 0; 3863 } 3864 3865 /* 3866 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3867 * caching kthreads as we move along 3868 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3869 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3870 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3871 * again 3872 */ 3873 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3874 ffe_ctl->index = 0; 3875 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3876 /* 3877 * We want to skip the LOOP_CACHING_WAIT step if we 3878 * don't have any uncached bgs and we've already done a 3879 * full search through. 3880 */ 3881 if (ffe_ctl->orig_have_caching_bg || !full_search) 3882 ffe_ctl->loop = LOOP_CACHING_WAIT; 3883 else 3884 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3885 } else { 3886 ffe_ctl->loop++; 3887 } 3888 3889 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3890 struct btrfs_trans_handle *trans; 3891 int exist = 0; 3892 3893 trans = current->journal_info; 3894 if (trans) 3895 exist = 1; 3896 else 3897 trans = btrfs_join_transaction(root); 3898 3899 if (IS_ERR(trans)) { 3900 ret = PTR_ERR(trans); 3901 return ret; 3902 } 3903 3904 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3905 CHUNK_ALLOC_FORCE); 3906 3907 /* Do not bail out on ENOSPC since we can do more. */ 3908 if (ret == -ENOSPC) 3909 ret = chunk_allocation_failed(ffe_ctl); 3910 else if (ret < 0) 3911 btrfs_abort_transaction(trans, ret); 3912 else 3913 ret = 0; 3914 if (!exist) 3915 btrfs_end_transaction(trans); 3916 if (ret) 3917 return ret; 3918 } 3919 3920 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3921 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3922 return -ENOSPC; 3923 3924 /* 3925 * Don't loop again if we already have no empty_size and 3926 * no empty_cluster. 3927 */ 3928 if (ffe_ctl->empty_size == 0 && 3929 ffe_ctl->empty_cluster == 0) 3930 return -ENOSPC; 3931 ffe_ctl->empty_size = 0; 3932 ffe_ctl->empty_cluster = 0; 3933 } 3934 return 1; 3935 } 3936 return -ENOSPC; 3937 } 3938 3939 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3940 struct find_free_extent_ctl *ffe_ctl, 3941 struct btrfs_space_info *space_info, 3942 struct btrfs_key *ins) 3943 { 3944 /* 3945 * If our free space is heavily fragmented we may not be able to make 3946 * big contiguous allocations, so instead of doing the expensive search 3947 * for free space, simply return ENOSPC with our max_extent_size so we 3948 * can go ahead and search for a more manageable chunk. 3949 * 3950 * If our max_extent_size is large enough for our allocation simply 3951 * disable clustering since we will likely not be able to find enough 3952 * space to create a cluster and induce latency trying. 3953 */ 3954 if (space_info->max_extent_size) { 3955 spin_lock(&space_info->lock); 3956 if (space_info->max_extent_size && 3957 ffe_ctl->num_bytes > space_info->max_extent_size) { 3958 ins->offset = space_info->max_extent_size; 3959 spin_unlock(&space_info->lock); 3960 return -ENOSPC; 3961 } else if (space_info->max_extent_size) { 3962 ffe_ctl->use_cluster = false; 3963 } 3964 spin_unlock(&space_info->lock); 3965 } 3966 3967 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3968 &ffe_ctl->empty_cluster); 3969 if (ffe_ctl->last_ptr) { 3970 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3971 3972 spin_lock(&last_ptr->lock); 3973 if (last_ptr->block_group) 3974 ffe_ctl->hint_byte = last_ptr->window_start; 3975 if (last_ptr->fragmented) { 3976 /* 3977 * We still set window_start so we can keep track of the 3978 * last place we found an allocation to try and save 3979 * some time. 3980 */ 3981 ffe_ctl->hint_byte = last_ptr->window_start; 3982 ffe_ctl->use_cluster = false; 3983 } 3984 spin_unlock(&last_ptr->lock); 3985 } 3986 3987 return 0; 3988 } 3989 3990 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3991 struct find_free_extent_ctl *ffe_ctl, 3992 struct btrfs_space_info *space_info, 3993 struct btrfs_key *ins) 3994 { 3995 switch (ffe_ctl->policy) { 3996 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3997 return prepare_allocation_clustered(fs_info, ffe_ctl, 3998 space_info, ins); 3999 default: 4000 BUG(); 4001 } 4002 } 4003 4004 /* 4005 * walks the btree of allocated extents and find a hole of a given size. 4006 * The key ins is changed to record the hole: 4007 * ins->objectid == start position 4008 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4009 * ins->offset == the size of the hole. 4010 * Any available blocks before search_start are skipped. 4011 * 4012 * If there is no suitable free space, we will record the max size of 4013 * the free space extent currently. 4014 * 4015 * The overall logic and call chain: 4016 * 4017 * find_free_extent() 4018 * |- Iterate through all block groups 4019 * | |- Get a valid block group 4020 * | |- Try to do clustered allocation in that block group 4021 * | |- Try to do unclustered allocation in that block group 4022 * | |- Check if the result is valid 4023 * | | |- If valid, then exit 4024 * | |- Jump to next block group 4025 * | 4026 * |- Push harder to find free extents 4027 * |- If not found, re-iterate all block groups 4028 */ 4029 static noinline int find_free_extent(struct btrfs_root *root, 4030 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4031 u64 hint_byte_orig, struct btrfs_key *ins, 4032 u64 flags, int delalloc) 4033 { 4034 struct btrfs_fs_info *fs_info = root->fs_info; 4035 int ret = 0; 4036 int cache_block_group_error = 0; 4037 struct btrfs_block_group *block_group = NULL; 4038 struct find_free_extent_ctl ffe_ctl = {0}; 4039 struct btrfs_space_info *space_info; 4040 bool full_search = false; 4041 4042 WARN_ON(num_bytes < fs_info->sectorsize); 4043 4044 ffe_ctl.num_bytes = num_bytes; 4045 ffe_ctl.empty_size = empty_size; 4046 ffe_ctl.flags = flags; 4047 ffe_ctl.search_start = 0; 4048 ffe_ctl.delalloc = delalloc; 4049 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4050 ffe_ctl.have_caching_bg = false; 4051 ffe_ctl.orig_have_caching_bg = false; 4052 ffe_ctl.found_offset = 0; 4053 ffe_ctl.hint_byte = hint_byte_orig; 4054 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4055 4056 /* For clustered allocation */ 4057 ffe_ctl.retry_clustered = false; 4058 ffe_ctl.retry_unclustered = false; 4059 ffe_ctl.last_ptr = NULL; 4060 ffe_ctl.use_cluster = true; 4061 4062 ins->type = BTRFS_EXTENT_ITEM_KEY; 4063 ins->objectid = 0; 4064 ins->offset = 0; 4065 4066 trace_find_free_extent(root, num_bytes, empty_size, flags); 4067 4068 space_info = btrfs_find_space_info(fs_info, flags); 4069 if (!space_info) { 4070 btrfs_err(fs_info, "No space info for %llu", flags); 4071 return -ENOSPC; 4072 } 4073 4074 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4075 if (ret < 0) 4076 return ret; 4077 4078 ffe_ctl.search_start = max(ffe_ctl.search_start, 4079 first_logical_byte(fs_info, 0)); 4080 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4081 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4082 block_group = btrfs_lookup_block_group(fs_info, 4083 ffe_ctl.search_start); 4084 /* 4085 * we don't want to use the block group if it doesn't match our 4086 * allocation bits, or if its not cached. 4087 * 4088 * However if we are re-searching with an ideal block group 4089 * picked out then we don't care that the block group is cached. 4090 */ 4091 if (block_group && block_group_bits(block_group, flags) && 4092 block_group->cached != BTRFS_CACHE_NO) { 4093 down_read(&space_info->groups_sem); 4094 if (list_empty(&block_group->list) || 4095 block_group->ro) { 4096 /* 4097 * someone is removing this block group, 4098 * we can't jump into the have_block_group 4099 * target because our list pointers are not 4100 * valid 4101 */ 4102 btrfs_put_block_group(block_group); 4103 up_read(&space_info->groups_sem); 4104 } else { 4105 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4106 block_group->flags); 4107 btrfs_lock_block_group(block_group, delalloc); 4108 goto have_block_group; 4109 } 4110 } else if (block_group) { 4111 btrfs_put_block_group(block_group); 4112 } 4113 } 4114 search: 4115 ffe_ctl.have_caching_bg = false; 4116 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4117 ffe_ctl.index == 0) 4118 full_search = true; 4119 down_read(&space_info->groups_sem); 4120 list_for_each_entry(block_group, 4121 &space_info->block_groups[ffe_ctl.index], list) { 4122 struct btrfs_block_group *bg_ret; 4123 4124 /* If the block group is read-only, we can skip it entirely. */ 4125 if (unlikely(block_group->ro)) 4126 continue; 4127 4128 btrfs_grab_block_group(block_group, delalloc); 4129 ffe_ctl.search_start = block_group->start; 4130 4131 /* 4132 * this can happen if we end up cycling through all the 4133 * raid types, but we want to make sure we only allocate 4134 * for the proper type. 4135 */ 4136 if (!block_group_bits(block_group, flags)) { 4137 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4138 BTRFS_BLOCK_GROUP_RAID1_MASK | 4139 BTRFS_BLOCK_GROUP_RAID56_MASK | 4140 BTRFS_BLOCK_GROUP_RAID10; 4141 4142 /* 4143 * if they asked for extra copies and this block group 4144 * doesn't provide them, bail. This does allow us to 4145 * fill raid0 from raid1. 4146 */ 4147 if ((flags & extra) && !(block_group->flags & extra)) 4148 goto loop; 4149 4150 /* 4151 * This block group has different flags than we want. 4152 * It's possible that we have MIXED_GROUP flag but no 4153 * block group is mixed. Just skip such block group. 4154 */ 4155 btrfs_release_block_group(block_group, delalloc); 4156 continue; 4157 } 4158 4159 have_block_group: 4160 ffe_ctl.cached = btrfs_block_group_done(block_group); 4161 if (unlikely(!ffe_ctl.cached)) { 4162 ffe_ctl.have_caching_bg = true; 4163 ret = btrfs_cache_block_group(block_group, 0); 4164 4165 /* 4166 * If we get ENOMEM here or something else we want to 4167 * try other block groups, because it may not be fatal. 4168 * However if we can't find anything else we need to 4169 * save our return here so that we return the actual 4170 * error that caused problems, not ENOSPC. 4171 */ 4172 if (ret < 0) { 4173 if (!cache_block_group_error) 4174 cache_block_group_error = ret; 4175 ret = 0; 4176 goto loop; 4177 } 4178 ret = 0; 4179 } 4180 4181 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4182 goto loop; 4183 4184 bg_ret = NULL; 4185 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4186 if (ret == 0) { 4187 if (bg_ret && bg_ret != block_group) { 4188 btrfs_release_block_group(block_group, delalloc); 4189 block_group = bg_ret; 4190 } 4191 } else if (ret == -EAGAIN) { 4192 goto have_block_group; 4193 } else if (ret > 0) { 4194 goto loop; 4195 } 4196 4197 /* Checks */ 4198 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4199 fs_info->stripesize); 4200 4201 /* move on to the next group */ 4202 if (ffe_ctl.search_start + num_bytes > 4203 block_group->start + block_group->length) { 4204 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4205 num_bytes); 4206 goto loop; 4207 } 4208 4209 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4210 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4211 ffe_ctl.search_start - ffe_ctl.found_offset); 4212 4213 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4214 num_bytes, delalloc); 4215 if (ret == -EAGAIN) { 4216 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4217 num_bytes); 4218 goto loop; 4219 } 4220 btrfs_inc_block_group_reservations(block_group); 4221 4222 /* we are all good, lets return */ 4223 ins->objectid = ffe_ctl.search_start; 4224 ins->offset = num_bytes; 4225 4226 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4227 num_bytes); 4228 btrfs_release_block_group(block_group, delalloc); 4229 break; 4230 loop: 4231 release_block_group(block_group, &ffe_ctl, delalloc); 4232 cond_resched(); 4233 } 4234 up_read(&space_info->groups_sem); 4235 4236 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4237 if (ret > 0) 4238 goto search; 4239 4240 if (ret == -ENOSPC && !cache_block_group_error) { 4241 /* 4242 * Use ffe_ctl->total_free_space as fallback if we can't find 4243 * any contiguous hole. 4244 */ 4245 if (!ffe_ctl.max_extent_size) 4246 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4247 spin_lock(&space_info->lock); 4248 space_info->max_extent_size = ffe_ctl.max_extent_size; 4249 spin_unlock(&space_info->lock); 4250 ins->offset = ffe_ctl.max_extent_size; 4251 } else if (ret == -ENOSPC) { 4252 ret = cache_block_group_error; 4253 } 4254 return ret; 4255 } 4256 4257 /* 4258 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4259 * hole that is at least as big as @num_bytes. 4260 * 4261 * @root - The root that will contain this extent 4262 * 4263 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4264 * is used for accounting purposes. This value differs 4265 * from @num_bytes only in the case of compressed extents. 4266 * 4267 * @num_bytes - Number of bytes to allocate on-disk. 4268 * 4269 * @min_alloc_size - Indicates the minimum amount of space that the 4270 * allocator should try to satisfy. In some cases 4271 * @num_bytes may be larger than what is required and if 4272 * the filesystem is fragmented then allocation fails. 4273 * However, the presence of @min_alloc_size gives a 4274 * chance to try and satisfy the smaller allocation. 4275 * 4276 * @empty_size - A hint that you plan on doing more COW. This is the 4277 * size in bytes the allocator should try to find free 4278 * next to the block it returns. This is just a hint and 4279 * may be ignored by the allocator. 4280 * 4281 * @hint_byte - Hint to the allocator to start searching above the byte 4282 * address passed. It might be ignored. 4283 * 4284 * @ins - This key is modified to record the found hole. It will 4285 * have the following values: 4286 * ins->objectid == start position 4287 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4288 * ins->offset == the size of the hole. 4289 * 4290 * @is_data - Boolean flag indicating whether an extent is 4291 * allocated for data (true) or metadata (false) 4292 * 4293 * @delalloc - Boolean flag indicating whether this allocation is for 4294 * delalloc or not. If 'true' data_rwsem of block groups 4295 * is going to be acquired. 4296 * 4297 * 4298 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4299 * case -ENOSPC is returned then @ins->offset will contain the size of the 4300 * largest available hole the allocator managed to find. 4301 */ 4302 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4303 u64 num_bytes, u64 min_alloc_size, 4304 u64 empty_size, u64 hint_byte, 4305 struct btrfs_key *ins, int is_data, int delalloc) 4306 { 4307 struct btrfs_fs_info *fs_info = root->fs_info; 4308 bool final_tried = num_bytes == min_alloc_size; 4309 u64 flags; 4310 int ret; 4311 4312 flags = get_alloc_profile_by_root(root, is_data); 4313 again: 4314 WARN_ON(num_bytes < fs_info->sectorsize); 4315 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4316 hint_byte, ins, flags, delalloc); 4317 if (!ret && !is_data) { 4318 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4319 } else if (ret == -ENOSPC) { 4320 if (!final_tried && ins->offset) { 4321 num_bytes = min(num_bytes >> 1, ins->offset); 4322 num_bytes = round_down(num_bytes, 4323 fs_info->sectorsize); 4324 num_bytes = max(num_bytes, min_alloc_size); 4325 ram_bytes = num_bytes; 4326 if (num_bytes == min_alloc_size) 4327 final_tried = true; 4328 goto again; 4329 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4330 struct btrfs_space_info *sinfo; 4331 4332 sinfo = btrfs_find_space_info(fs_info, flags); 4333 btrfs_err(fs_info, 4334 "allocation failed flags %llu, wanted %llu", 4335 flags, num_bytes); 4336 if (sinfo) 4337 btrfs_dump_space_info(fs_info, sinfo, 4338 num_bytes, 1); 4339 } 4340 } 4341 4342 return ret; 4343 } 4344 4345 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4346 u64 start, u64 len, int delalloc) 4347 { 4348 struct btrfs_block_group *cache; 4349 4350 cache = btrfs_lookup_block_group(fs_info, start); 4351 if (!cache) { 4352 btrfs_err(fs_info, "Unable to find block group for %llu", 4353 start); 4354 return -ENOSPC; 4355 } 4356 4357 btrfs_add_free_space(cache, start, len); 4358 btrfs_free_reserved_bytes(cache, len, delalloc); 4359 trace_btrfs_reserved_extent_free(fs_info, start, len); 4360 4361 btrfs_put_block_group(cache); 4362 return 0; 4363 } 4364 4365 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4366 u64 len) 4367 { 4368 struct btrfs_block_group *cache; 4369 int ret = 0; 4370 4371 cache = btrfs_lookup_block_group(trans->fs_info, start); 4372 if (!cache) { 4373 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4374 start); 4375 return -ENOSPC; 4376 } 4377 4378 ret = pin_down_extent(trans, cache, start, len, 1); 4379 btrfs_put_block_group(cache); 4380 return ret; 4381 } 4382 4383 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4384 u64 parent, u64 root_objectid, 4385 u64 flags, u64 owner, u64 offset, 4386 struct btrfs_key *ins, int ref_mod) 4387 { 4388 struct btrfs_fs_info *fs_info = trans->fs_info; 4389 int ret; 4390 struct btrfs_extent_item *extent_item; 4391 struct btrfs_extent_inline_ref *iref; 4392 struct btrfs_path *path; 4393 struct extent_buffer *leaf; 4394 int type; 4395 u32 size; 4396 4397 if (parent > 0) 4398 type = BTRFS_SHARED_DATA_REF_KEY; 4399 else 4400 type = BTRFS_EXTENT_DATA_REF_KEY; 4401 4402 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4403 4404 path = btrfs_alloc_path(); 4405 if (!path) 4406 return -ENOMEM; 4407 4408 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4409 ins, size); 4410 if (ret) { 4411 btrfs_free_path(path); 4412 return ret; 4413 } 4414 4415 leaf = path->nodes[0]; 4416 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4417 struct btrfs_extent_item); 4418 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4419 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4420 btrfs_set_extent_flags(leaf, extent_item, 4421 flags | BTRFS_EXTENT_FLAG_DATA); 4422 4423 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4424 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4425 if (parent > 0) { 4426 struct btrfs_shared_data_ref *ref; 4427 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4428 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4429 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4430 } else { 4431 struct btrfs_extent_data_ref *ref; 4432 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4433 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4434 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4435 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4436 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4437 } 4438 4439 btrfs_mark_buffer_dirty(path->nodes[0]); 4440 btrfs_free_path(path); 4441 4442 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4443 if (ret) 4444 return ret; 4445 4446 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4447 if (ret) { /* -ENOENT, logic error */ 4448 btrfs_err(fs_info, "update block group failed for %llu %llu", 4449 ins->objectid, ins->offset); 4450 BUG(); 4451 } 4452 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4453 return ret; 4454 } 4455 4456 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4457 struct btrfs_delayed_ref_node *node, 4458 struct btrfs_delayed_extent_op *extent_op) 4459 { 4460 struct btrfs_fs_info *fs_info = trans->fs_info; 4461 int ret; 4462 struct btrfs_extent_item *extent_item; 4463 struct btrfs_key extent_key; 4464 struct btrfs_tree_block_info *block_info; 4465 struct btrfs_extent_inline_ref *iref; 4466 struct btrfs_path *path; 4467 struct extent_buffer *leaf; 4468 struct btrfs_delayed_tree_ref *ref; 4469 u32 size = sizeof(*extent_item) + sizeof(*iref); 4470 u64 num_bytes; 4471 u64 flags = extent_op->flags_to_set; 4472 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4473 4474 ref = btrfs_delayed_node_to_tree_ref(node); 4475 4476 extent_key.objectid = node->bytenr; 4477 if (skinny_metadata) { 4478 extent_key.offset = ref->level; 4479 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4480 num_bytes = fs_info->nodesize; 4481 } else { 4482 extent_key.offset = node->num_bytes; 4483 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4484 size += sizeof(*block_info); 4485 num_bytes = node->num_bytes; 4486 } 4487 4488 path = btrfs_alloc_path(); 4489 if (!path) 4490 return -ENOMEM; 4491 4492 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4493 &extent_key, size); 4494 if (ret) { 4495 btrfs_free_path(path); 4496 return ret; 4497 } 4498 4499 leaf = path->nodes[0]; 4500 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4501 struct btrfs_extent_item); 4502 btrfs_set_extent_refs(leaf, extent_item, 1); 4503 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4504 btrfs_set_extent_flags(leaf, extent_item, 4505 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4506 4507 if (skinny_metadata) { 4508 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4509 } else { 4510 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4511 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4512 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4513 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4514 } 4515 4516 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4517 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4518 btrfs_set_extent_inline_ref_type(leaf, iref, 4519 BTRFS_SHARED_BLOCK_REF_KEY); 4520 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4521 } else { 4522 btrfs_set_extent_inline_ref_type(leaf, iref, 4523 BTRFS_TREE_BLOCK_REF_KEY); 4524 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4525 } 4526 4527 btrfs_mark_buffer_dirty(leaf); 4528 btrfs_free_path(path); 4529 4530 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4531 num_bytes); 4532 if (ret) 4533 return ret; 4534 4535 ret = btrfs_update_block_group(trans, extent_key.objectid, 4536 fs_info->nodesize, 1); 4537 if (ret) { /* -ENOENT, logic error */ 4538 btrfs_err(fs_info, "update block group failed for %llu %llu", 4539 extent_key.objectid, extent_key.offset); 4540 BUG(); 4541 } 4542 4543 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4544 fs_info->nodesize); 4545 return ret; 4546 } 4547 4548 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4549 struct btrfs_root *root, u64 owner, 4550 u64 offset, u64 ram_bytes, 4551 struct btrfs_key *ins) 4552 { 4553 struct btrfs_ref generic_ref = { 0 }; 4554 int ret; 4555 4556 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4557 4558 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4559 ins->objectid, ins->offset, 0); 4560 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4561 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4562 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4563 ram_bytes, NULL, NULL); 4564 return ret; 4565 } 4566 4567 /* 4568 * this is used by the tree logging recovery code. It records that 4569 * an extent has been allocated and makes sure to clear the free 4570 * space cache bits as well 4571 */ 4572 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4573 u64 root_objectid, u64 owner, u64 offset, 4574 struct btrfs_key *ins) 4575 { 4576 struct btrfs_fs_info *fs_info = trans->fs_info; 4577 int ret; 4578 struct btrfs_block_group *block_group; 4579 struct btrfs_space_info *space_info; 4580 4581 /* 4582 * Mixed block groups will exclude before processing the log so we only 4583 * need to do the exclude dance if this fs isn't mixed. 4584 */ 4585 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4586 ret = __exclude_logged_extent(fs_info, ins->objectid, 4587 ins->offset); 4588 if (ret) 4589 return ret; 4590 } 4591 4592 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4593 if (!block_group) 4594 return -EINVAL; 4595 4596 space_info = block_group->space_info; 4597 spin_lock(&space_info->lock); 4598 spin_lock(&block_group->lock); 4599 space_info->bytes_reserved += ins->offset; 4600 block_group->reserved += ins->offset; 4601 spin_unlock(&block_group->lock); 4602 spin_unlock(&space_info->lock); 4603 4604 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4605 offset, ins, 1); 4606 if (ret) 4607 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4608 btrfs_put_block_group(block_group); 4609 return ret; 4610 } 4611 4612 static struct extent_buffer * 4613 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4614 u64 bytenr, int level, u64 owner, 4615 enum btrfs_lock_nesting nest) 4616 { 4617 struct btrfs_fs_info *fs_info = root->fs_info; 4618 struct extent_buffer *buf; 4619 4620 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4621 if (IS_ERR(buf)) 4622 return buf; 4623 4624 /* 4625 * Extra safety check in case the extent tree is corrupted and extent 4626 * allocator chooses to use a tree block which is already used and 4627 * locked. 4628 */ 4629 if (buf->lock_owner == current->pid) { 4630 btrfs_err_rl(fs_info, 4631 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4632 buf->start, btrfs_header_owner(buf), current->pid); 4633 free_extent_buffer(buf); 4634 return ERR_PTR(-EUCLEAN); 4635 } 4636 4637 /* 4638 * This needs to stay, because we could allocate a freed block from an 4639 * old tree into a new tree, so we need to make sure this new block is 4640 * set to the appropriate level and owner. 4641 */ 4642 btrfs_set_buffer_lockdep_class(owner, buf, level); 4643 __btrfs_tree_lock(buf, nest); 4644 btrfs_clean_tree_block(buf); 4645 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4646 4647 set_extent_buffer_uptodate(buf); 4648 4649 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4650 btrfs_set_header_level(buf, level); 4651 btrfs_set_header_bytenr(buf, buf->start); 4652 btrfs_set_header_generation(buf, trans->transid); 4653 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4654 btrfs_set_header_owner(buf, owner); 4655 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4656 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4657 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4658 buf->log_index = root->log_transid % 2; 4659 /* 4660 * we allow two log transactions at a time, use different 4661 * EXTENT bit to differentiate dirty pages. 4662 */ 4663 if (buf->log_index == 0) 4664 set_extent_dirty(&root->dirty_log_pages, buf->start, 4665 buf->start + buf->len - 1, GFP_NOFS); 4666 else 4667 set_extent_new(&root->dirty_log_pages, buf->start, 4668 buf->start + buf->len - 1); 4669 } else { 4670 buf->log_index = -1; 4671 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4672 buf->start + buf->len - 1, GFP_NOFS); 4673 } 4674 trans->dirty = true; 4675 /* this returns a buffer locked for blocking */ 4676 return buf; 4677 } 4678 4679 /* 4680 * finds a free extent and does all the dirty work required for allocation 4681 * returns the tree buffer or an ERR_PTR on error. 4682 */ 4683 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4684 struct btrfs_root *root, 4685 u64 parent, u64 root_objectid, 4686 const struct btrfs_disk_key *key, 4687 int level, u64 hint, 4688 u64 empty_size, 4689 enum btrfs_lock_nesting nest) 4690 { 4691 struct btrfs_fs_info *fs_info = root->fs_info; 4692 struct btrfs_key ins; 4693 struct btrfs_block_rsv *block_rsv; 4694 struct extent_buffer *buf; 4695 struct btrfs_delayed_extent_op *extent_op; 4696 struct btrfs_ref generic_ref = { 0 }; 4697 u64 flags = 0; 4698 int ret; 4699 u32 blocksize = fs_info->nodesize; 4700 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4701 4702 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4703 if (btrfs_is_testing(fs_info)) { 4704 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4705 level, root_objectid, nest); 4706 if (!IS_ERR(buf)) 4707 root->alloc_bytenr += blocksize; 4708 return buf; 4709 } 4710 #endif 4711 4712 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4713 if (IS_ERR(block_rsv)) 4714 return ERR_CAST(block_rsv); 4715 4716 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4717 empty_size, hint, &ins, 0, 0); 4718 if (ret) 4719 goto out_unuse; 4720 4721 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4722 root_objectid, nest); 4723 if (IS_ERR(buf)) { 4724 ret = PTR_ERR(buf); 4725 goto out_free_reserved; 4726 } 4727 4728 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4729 if (parent == 0) 4730 parent = ins.objectid; 4731 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4732 } else 4733 BUG_ON(parent > 0); 4734 4735 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4736 extent_op = btrfs_alloc_delayed_extent_op(); 4737 if (!extent_op) { 4738 ret = -ENOMEM; 4739 goto out_free_buf; 4740 } 4741 if (key) 4742 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4743 else 4744 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4745 extent_op->flags_to_set = flags; 4746 extent_op->update_key = skinny_metadata ? false : true; 4747 extent_op->update_flags = true; 4748 extent_op->is_data = false; 4749 extent_op->level = level; 4750 4751 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4752 ins.objectid, ins.offset, parent); 4753 generic_ref.real_root = root->root_key.objectid; 4754 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4755 btrfs_ref_tree_mod(fs_info, &generic_ref); 4756 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4757 extent_op, NULL, NULL); 4758 if (ret) 4759 goto out_free_delayed; 4760 } 4761 return buf; 4762 4763 out_free_delayed: 4764 btrfs_free_delayed_extent_op(extent_op); 4765 out_free_buf: 4766 free_extent_buffer(buf); 4767 out_free_reserved: 4768 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4769 out_unuse: 4770 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4771 return ERR_PTR(ret); 4772 } 4773 4774 struct walk_control { 4775 u64 refs[BTRFS_MAX_LEVEL]; 4776 u64 flags[BTRFS_MAX_LEVEL]; 4777 struct btrfs_key update_progress; 4778 struct btrfs_key drop_progress; 4779 int drop_level; 4780 int stage; 4781 int level; 4782 int shared_level; 4783 int update_ref; 4784 int keep_locks; 4785 int reada_slot; 4786 int reada_count; 4787 int restarted; 4788 }; 4789 4790 #define DROP_REFERENCE 1 4791 #define UPDATE_BACKREF 2 4792 4793 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4794 struct btrfs_root *root, 4795 struct walk_control *wc, 4796 struct btrfs_path *path) 4797 { 4798 struct btrfs_fs_info *fs_info = root->fs_info; 4799 u64 bytenr; 4800 u64 generation; 4801 u64 refs; 4802 u64 flags; 4803 u32 nritems; 4804 struct btrfs_key key; 4805 struct extent_buffer *eb; 4806 int ret; 4807 int slot; 4808 int nread = 0; 4809 4810 if (path->slots[wc->level] < wc->reada_slot) { 4811 wc->reada_count = wc->reada_count * 2 / 3; 4812 wc->reada_count = max(wc->reada_count, 2); 4813 } else { 4814 wc->reada_count = wc->reada_count * 3 / 2; 4815 wc->reada_count = min_t(int, wc->reada_count, 4816 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4817 } 4818 4819 eb = path->nodes[wc->level]; 4820 nritems = btrfs_header_nritems(eb); 4821 4822 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4823 if (nread >= wc->reada_count) 4824 break; 4825 4826 cond_resched(); 4827 bytenr = btrfs_node_blockptr(eb, slot); 4828 generation = btrfs_node_ptr_generation(eb, slot); 4829 4830 if (slot == path->slots[wc->level]) 4831 goto reada; 4832 4833 if (wc->stage == UPDATE_BACKREF && 4834 generation <= root->root_key.offset) 4835 continue; 4836 4837 /* We don't lock the tree block, it's OK to be racy here */ 4838 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4839 wc->level - 1, 1, &refs, 4840 &flags); 4841 /* We don't care about errors in readahead. */ 4842 if (ret < 0) 4843 continue; 4844 BUG_ON(refs == 0); 4845 4846 if (wc->stage == DROP_REFERENCE) { 4847 if (refs == 1) 4848 goto reada; 4849 4850 if (wc->level == 1 && 4851 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4852 continue; 4853 if (!wc->update_ref || 4854 generation <= root->root_key.offset) 4855 continue; 4856 btrfs_node_key_to_cpu(eb, &key, slot); 4857 ret = btrfs_comp_cpu_keys(&key, 4858 &wc->update_progress); 4859 if (ret < 0) 4860 continue; 4861 } else { 4862 if (wc->level == 1 && 4863 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4864 continue; 4865 } 4866 reada: 4867 btrfs_readahead_node_child(eb, slot); 4868 nread++; 4869 } 4870 wc->reada_slot = slot; 4871 } 4872 4873 /* 4874 * helper to process tree block while walking down the tree. 4875 * 4876 * when wc->stage == UPDATE_BACKREF, this function updates 4877 * back refs for pointers in the block. 4878 * 4879 * NOTE: return value 1 means we should stop walking down. 4880 */ 4881 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4882 struct btrfs_root *root, 4883 struct btrfs_path *path, 4884 struct walk_control *wc, int lookup_info) 4885 { 4886 struct btrfs_fs_info *fs_info = root->fs_info; 4887 int level = wc->level; 4888 struct extent_buffer *eb = path->nodes[level]; 4889 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4890 int ret; 4891 4892 if (wc->stage == UPDATE_BACKREF && 4893 btrfs_header_owner(eb) != root->root_key.objectid) 4894 return 1; 4895 4896 /* 4897 * when reference count of tree block is 1, it won't increase 4898 * again. once full backref flag is set, we never clear it. 4899 */ 4900 if (lookup_info && 4901 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4902 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4903 BUG_ON(!path->locks[level]); 4904 ret = btrfs_lookup_extent_info(trans, fs_info, 4905 eb->start, level, 1, 4906 &wc->refs[level], 4907 &wc->flags[level]); 4908 BUG_ON(ret == -ENOMEM); 4909 if (ret) 4910 return ret; 4911 BUG_ON(wc->refs[level] == 0); 4912 } 4913 4914 if (wc->stage == DROP_REFERENCE) { 4915 if (wc->refs[level] > 1) 4916 return 1; 4917 4918 if (path->locks[level] && !wc->keep_locks) { 4919 btrfs_tree_unlock_rw(eb, path->locks[level]); 4920 path->locks[level] = 0; 4921 } 4922 return 0; 4923 } 4924 4925 /* wc->stage == UPDATE_BACKREF */ 4926 if (!(wc->flags[level] & flag)) { 4927 BUG_ON(!path->locks[level]); 4928 ret = btrfs_inc_ref(trans, root, eb, 1); 4929 BUG_ON(ret); /* -ENOMEM */ 4930 ret = btrfs_dec_ref(trans, root, eb, 0); 4931 BUG_ON(ret); /* -ENOMEM */ 4932 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4933 btrfs_header_level(eb), 0); 4934 BUG_ON(ret); /* -ENOMEM */ 4935 wc->flags[level] |= flag; 4936 } 4937 4938 /* 4939 * the block is shared by multiple trees, so it's not good to 4940 * keep the tree lock 4941 */ 4942 if (path->locks[level] && level > 0) { 4943 btrfs_tree_unlock_rw(eb, path->locks[level]); 4944 path->locks[level] = 0; 4945 } 4946 return 0; 4947 } 4948 4949 /* 4950 * This is used to verify a ref exists for this root to deal with a bug where we 4951 * would have a drop_progress key that hadn't been updated properly. 4952 */ 4953 static int check_ref_exists(struct btrfs_trans_handle *trans, 4954 struct btrfs_root *root, u64 bytenr, u64 parent, 4955 int level) 4956 { 4957 struct btrfs_path *path; 4958 struct btrfs_extent_inline_ref *iref; 4959 int ret; 4960 4961 path = btrfs_alloc_path(); 4962 if (!path) 4963 return -ENOMEM; 4964 4965 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4966 root->fs_info->nodesize, parent, 4967 root->root_key.objectid, level, 0); 4968 btrfs_free_path(path); 4969 if (ret == -ENOENT) 4970 return 0; 4971 if (ret < 0) 4972 return ret; 4973 return 1; 4974 } 4975 4976 /* 4977 * helper to process tree block pointer. 4978 * 4979 * when wc->stage == DROP_REFERENCE, this function checks 4980 * reference count of the block pointed to. if the block 4981 * is shared and we need update back refs for the subtree 4982 * rooted at the block, this function changes wc->stage to 4983 * UPDATE_BACKREF. if the block is shared and there is no 4984 * need to update back, this function drops the reference 4985 * to the block. 4986 * 4987 * NOTE: return value 1 means we should stop walking down. 4988 */ 4989 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4990 struct btrfs_root *root, 4991 struct btrfs_path *path, 4992 struct walk_control *wc, int *lookup_info) 4993 { 4994 struct btrfs_fs_info *fs_info = root->fs_info; 4995 u64 bytenr; 4996 u64 generation; 4997 u64 parent; 4998 struct btrfs_key key; 4999 struct btrfs_key first_key; 5000 struct btrfs_ref ref = { 0 }; 5001 struct extent_buffer *next; 5002 int level = wc->level; 5003 int reada = 0; 5004 int ret = 0; 5005 bool need_account = false; 5006 5007 generation = btrfs_node_ptr_generation(path->nodes[level], 5008 path->slots[level]); 5009 /* 5010 * if the lower level block was created before the snapshot 5011 * was created, we know there is no need to update back refs 5012 * for the subtree 5013 */ 5014 if (wc->stage == UPDATE_BACKREF && 5015 generation <= root->root_key.offset) { 5016 *lookup_info = 1; 5017 return 1; 5018 } 5019 5020 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5021 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5022 path->slots[level]); 5023 5024 next = find_extent_buffer(fs_info, bytenr); 5025 if (!next) { 5026 next = btrfs_find_create_tree_block(fs_info, bytenr, 5027 root->root_key.objectid, level - 1); 5028 if (IS_ERR(next)) 5029 return PTR_ERR(next); 5030 reada = 1; 5031 } 5032 btrfs_tree_lock(next); 5033 5034 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5035 &wc->refs[level - 1], 5036 &wc->flags[level - 1]); 5037 if (ret < 0) 5038 goto out_unlock; 5039 5040 if (unlikely(wc->refs[level - 1] == 0)) { 5041 btrfs_err(fs_info, "Missing references."); 5042 ret = -EIO; 5043 goto out_unlock; 5044 } 5045 *lookup_info = 0; 5046 5047 if (wc->stage == DROP_REFERENCE) { 5048 if (wc->refs[level - 1] > 1) { 5049 need_account = true; 5050 if (level == 1 && 5051 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5052 goto skip; 5053 5054 if (!wc->update_ref || 5055 generation <= root->root_key.offset) 5056 goto skip; 5057 5058 btrfs_node_key_to_cpu(path->nodes[level], &key, 5059 path->slots[level]); 5060 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5061 if (ret < 0) 5062 goto skip; 5063 5064 wc->stage = UPDATE_BACKREF; 5065 wc->shared_level = level - 1; 5066 } 5067 } else { 5068 if (level == 1 && 5069 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5070 goto skip; 5071 } 5072 5073 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5074 btrfs_tree_unlock(next); 5075 free_extent_buffer(next); 5076 next = NULL; 5077 *lookup_info = 1; 5078 } 5079 5080 if (!next) { 5081 if (reada && level == 1) 5082 reada_walk_down(trans, root, wc, path); 5083 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5084 generation, level - 1, &first_key); 5085 if (IS_ERR(next)) { 5086 return PTR_ERR(next); 5087 } else if (!extent_buffer_uptodate(next)) { 5088 free_extent_buffer(next); 5089 return -EIO; 5090 } 5091 btrfs_tree_lock(next); 5092 } 5093 5094 level--; 5095 ASSERT(level == btrfs_header_level(next)); 5096 if (level != btrfs_header_level(next)) { 5097 btrfs_err(root->fs_info, "mismatched level"); 5098 ret = -EIO; 5099 goto out_unlock; 5100 } 5101 path->nodes[level] = next; 5102 path->slots[level] = 0; 5103 path->locks[level] = BTRFS_WRITE_LOCK; 5104 wc->level = level; 5105 if (wc->level == 1) 5106 wc->reada_slot = 0; 5107 return 0; 5108 skip: 5109 wc->refs[level - 1] = 0; 5110 wc->flags[level - 1] = 0; 5111 if (wc->stage == DROP_REFERENCE) { 5112 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5113 parent = path->nodes[level]->start; 5114 } else { 5115 ASSERT(root->root_key.objectid == 5116 btrfs_header_owner(path->nodes[level])); 5117 if (root->root_key.objectid != 5118 btrfs_header_owner(path->nodes[level])) { 5119 btrfs_err(root->fs_info, 5120 "mismatched block owner"); 5121 ret = -EIO; 5122 goto out_unlock; 5123 } 5124 parent = 0; 5125 } 5126 5127 /* 5128 * If we had a drop_progress we need to verify the refs are set 5129 * as expected. If we find our ref then we know that from here 5130 * on out everything should be correct, and we can clear the 5131 * ->restarted flag. 5132 */ 5133 if (wc->restarted) { 5134 ret = check_ref_exists(trans, root, bytenr, parent, 5135 level - 1); 5136 if (ret < 0) 5137 goto out_unlock; 5138 if (ret == 0) 5139 goto no_delete; 5140 ret = 0; 5141 wc->restarted = 0; 5142 } 5143 5144 /* 5145 * Reloc tree doesn't contribute to qgroup numbers, and we have 5146 * already accounted them at merge time (replace_path), 5147 * thus we could skip expensive subtree trace here. 5148 */ 5149 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5150 need_account) { 5151 ret = btrfs_qgroup_trace_subtree(trans, next, 5152 generation, level - 1); 5153 if (ret) { 5154 btrfs_err_rl(fs_info, 5155 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5156 ret); 5157 } 5158 } 5159 5160 /* 5161 * We need to update the next key in our walk control so we can 5162 * update the drop_progress key accordingly. We don't care if 5163 * find_next_key doesn't find a key because that means we're at 5164 * the end and are going to clean up now. 5165 */ 5166 wc->drop_level = level; 5167 find_next_key(path, level, &wc->drop_progress); 5168 5169 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5170 fs_info->nodesize, parent); 5171 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5172 ret = btrfs_free_extent(trans, &ref); 5173 if (ret) 5174 goto out_unlock; 5175 } 5176 no_delete: 5177 *lookup_info = 1; 5178 ret = 1; 5179 5180 out_unlock: 5181 btrfs_tree_unlock(next); 5182 free_extent_buffer(next); 5183 5184 return ret; 5185 } 5186 5187 /* 5188 * helper to process tree block while walking up the tree. 5189 * 5190 * when wc->stage == DROP_REFERENCE, this function drops 5191 * reference count on the block. 5192 * 5193 * when wc->stage == UPDATE_BACKREF, this function changes 5194 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5195 * to UPDATE_BACKREF previously while processing the block. 5196 * 5197 * NOTE: return value 1 means we should stop walking up. 5198 */ 5199 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5200 struct btrfs_root *root, 5201 struct btrfs_path *path, 5202 struct walk_control *wc) 5203 { 5204 struct btrfs_fs_info *fs_info = root->fs_info; 5205 int ret; 5206 int level = wc->level; 5207 struct extent_buffer *eb = path->nodes[level]; 5208 u64 parent = 0; 5209 5210 if (wc->stage == UPDATE_BACKREF) { 5211 BUG_ON(wc->shared_level < level); 5212 if (level < wc->shared_level) 5213 goto out; 5214 5215 ret = find_next_key(path, level + 1, &wc->update_progress); 5216 if (ret > 0) 5217 wc->update_ref = 0; 5218 5219 wc->stage = DROP_REFERENCE; 5220 wc->shared_level = -1; 5221 path->slots[level] = 0; 5222 5223 /* 5224 * check reference count again if the block isn't locked. 5225 * we should start walking down the tree again if reference 5226 * count is one. 5227 */ 5228 if (!path->locks[level]) { 5229 BUG_ON(level == 0); 5230 btrfs_tree_lock(eb); 5231 path->locks[level] = BTRFS_WRITE_LOCK; 5232 5233 ret = btrfs_lookup_extent_info(trans, fs_info, 5234 eb->start, level, 1, 5235 &wc->refs[level], 5236 &wc->flags[level]); 5237 if (ret < 0) { 5238 btrfs_tree_unlock_rw(eb, path->locks[level]); 5239 path->locks[level] = 0; 5240 return ret; 5241 } 5242 BUG_ON(wc->refs[level] == 0); 5243 if (wc->refs[level] == 1) { 5244 btrfs_tree_unlock_rw(eb, path->locks[level]); 5245 path->locks[level] = 0; 5246 return 1; 5247 } 5248 } 5249 } 5250 5251 /* wc->stage == DROP_REFERENCE */ 5252 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5253 5254 if (wc->refs[level] == 1) { 5255 if (level == 0) { 5256 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5257 ret = btrfs_dec_ref(trans, root, eb, 1); 5258 else 5259 ret = btrfs_dec_ref(trans, root, eb, 0); 5260 BUG_ON(ret); /* -ENOMEM */ 5261 if (is_fstree(root->root_key.objectid)) { 5262 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5263 if (ret) { 5264 btrfs_err_rl(fs_info, 5265 "error %d accounting leaf items, quota is out of sync, rescan required", 5266 ret); 5267 } 5268 } 5269 } 5270 /* make block locked assertion in btrfs_clean_tree_block happy */ 5271 if (!path->locks[level] && 5272 btrfs_header_generation(eb) == trans->transid) { 5273 btrfs_tree_lock(eb); 5274 path->locks[level] = BTRFS_WRITE_LOCK; 5275 } 5276 btrfs_clean_tree_block(eb); 5277 } 5278 5279 if (eb == root->node) { 5280 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5281 parent = eb->start; 5282 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5283 goto owner_mismatch; 5284 } else { 5285 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5286 parent = path->nodes[level + 1]->start; 5287 else if (root->root_key.objectid != 5288 btrfs_header_owner(path->nodes[level + 1])) 5289 goto owner_mismatch; 5290 } 5291 5292 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5293 out: 5294 wc->refs[level] = 0; 5295 wc->flags[level] = 0; 5296 return 0; 5297 5298 owner_mismatch: 5299 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5300 btrfs_header_owner(eb), root->root_key.objectid); 5301 return -EUCLEAN; 5302 } 5303 5304 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5305 struct btrfs_root *root, 5306 struct btrfs_path *path, 5307 struct walk_control *wc) 5308 { 5309 int level = wc->level; 5310 int lookup_info = 1; 5311 int ret; 5312 5313 while (level >= 0) { 5314 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5315 if (ret > 0) 5316 break; 5317 5318 if (level == 0) 5319 break; 5320 5321 if (path->slots[level] >= 5322 btrfs_header_nritems(path->nodes[level])) 5323 break; 5324 5325 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5326 if (ret > 0) { 5327 path->slots[level]++; 5328 continue; 5329 } else if (ret < 0) 5330 return ret; 5331 level = wc->level; 5332 } 5333 return 0; 5334 } 5335 5336 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5337 struct btrfs_root *root, 5338 struct btrfs_path *path, 5339 struct walk_control *wc, int max_level) 5340 { 5341 int level = wc->level; 5342 int ret; 5343 5344 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5345 while (level < max_level && path->nodes[level]) { 5346 wc->level = level; 5347 if (path->slots[level] + 1 < 5348 btrfs_header_nritems(path->nodes[level])) { 5349 path->slots[level]++; 5350 return 0; 5351 } else { 5352 ret = walk_up_proc(trans, root, path, wc); 5353 if (ret > 0) 5354 return 0; 5355 if (ret < 0) 5356 return ret; 5357 5358 if (path->locks[level]) { 5359 btrfs_tree_unlock_rw(path->nodes[level], 5360 path->locks[level]); 5361 path->locks[level] = 0; 5362 } 5363 free_extent_buffer(path->nodes[level]); 5364 path->nodes[level] = NULL; 5365 level++; 5366 } 5367 } 5368 return 1; 5369 } 5370 5371 /* 5372 * drop a subvolume tree. 5373 * 5374 * this function traverses the tree freeing any blocks that only 5375 * referenced by the tree. 5376 * 5377 * when a shared tree block is found. this function decreases its 5378 * reference count by one. if update_ref is true, this function 5379 * also make sure backrefs for the shared block and all lower level 5380 * blocks are properly updated. 5381 * 5382 * If called with for_reloc == 0, may exit early with -EAGAIN 5383 */ 5384 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5385 { 5386 struct btrfs_fs_info *fs_info = root->fs_info; 5387 struct btrfs_path *path; 5388 struct btrfs_trans_handle *trans; 5389 struct btrfs_root *tree_root = fs_info->tree_root; 5390 struct btrfs_root_item *root_item = &root->root_item; 5391 struct walk_control *wc; 5392 struct btrfs_key key; 5393 int err = 0; 5394 int ret; 5395 int level; 5396 bool root_dropped = false; 5397 5398 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5399 5400 path = btrfs_alloc_path(); 5401 if (!path) { 5402 err = -ENOMEM; 5403 goto out; 5404 } 5405 5406 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5407 if (!wc) { 5408 btrfs_free_path(path); 5409 err = -ENOMEM; 5410 goto out; 5411 } 5412 5413 /* 5414 * Use join to avoid potential EINTR from transaction start. See 5415 * wait_reserve_ticket and the whole reservation callchain. 5416 */ 5417 if (for_reloc) 5418 trans = btrfs_join_transaction(tree_root); 5419 else 5420 trans = btrfs_start_transaction(tree_root, 0); 5421 if (IS_ERR(trans)) { 5422 err = PTR_ERR(trans); 5423 goto out_free; 5424 } 5425 5426 err = btrfs_run_delayed_items(trans); 5427 if (err) 5428 goto out_end_trans; 5429 5430 /* 5431 * This will help us catch people modifying the fs tree while we're 5432 * dropping it. It is unsafe to mess with the fs tree while it's being 5433 * dropped as we unlock the root node and parent nodes as we walk down 5434 * the tree, assuming nothing will change. If something does change 5435 * then we'll have stale information and drop references to blocks we've 5436 * already dropped. 5437 */ 5438 set_bit(BTRFS_ROOT_DELETING, &root->state); 5439 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5440 level = btrfs_header_level(root->node); 5441 path->nodes[level] = btrfs_lock_root_node(root); 5442 path->slots[level] = 0; 5443 path->locks[level] = BTRFS_WRITE_LOCK; 5444 memset(&wc->update_progress, 0, 5445 sizeof(wc->update_progress)); 5446 } else { 5447 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5448 memcpy(&wc->update_progress, &key, 5449 sizeof(wc->update_progress)); 5450 5451 level = btrfs_root_drop_level(root_item); 5452 BUG_ON(level == 0); 5453 path->lowest_level = level; 5454 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5455 path->lowest_level = 0; 5456 if (ret < 0) { 5457 err = ret; 5458 goto out_end_trans; 5459 } 5460 WARN_ON(ret > 0); 5461 5462 /* 5463 * unlock our path, this is safe because only this 5464 * function is allowed to delete this snapshot 5465 */ 5466 btrfs_unlock_up_safe(path, 0); 5467 5468 level = btrfs_header_level(root->node); 5469 while (1) { 5470 btrfs_tree_lock(path->nodes[level]); 5471 path->locks[level] = BTRFS_WRITE_LOCK; 5472 5473 ret = btrfs_lookup_extent_info(trans, fs_info, 5474 path->nodes[level]->start, 5475 level, 1, &wc->refs[level], 5476 &wc->flags[level]); 5477 if (ret < 0) { 5478 err = ret; 5479 goto out_end_trans; 5480 } 5481 BUG_ON(wc->refs[level] == 0); 5482 5483 if (level == btrfs_root_drop_level(root_item)) 5484 break; 5485 5486 btrfs_tree_unlock(path->nodes[level]); 5487 path->locks[level] = 0; 5488 WARN_ON(wc->refs[level] != 1); 5489 level--; 5490 } 5491 } 5492 5493 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5494 wc->level = level; 5495 wc->shared_level = -1; 5496 wc->stage = DROP_REFERENCE; 5497 wc->update_ref = update_ref; 5498 wc->keep_locks = 0; 5499 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5500 5501 while (1) { 5502 5503 ret = walk_down_tree(trans, root, path, wc); 5504 if (ret < 0) { 5505 err = ret; 5506 break; 5507 } 5508 5509 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5510 if (ret < 0) { 5511 err = ret; 5512 break; 5513 } 5514 5515 if (ret > 0) { 5516 BUG_ON(wc->stage != DROP_REFERENCE); 5517 break; 5518 } 5519 5520 if (wc->stage == DROP_REFERENCE) { 5521 wc->drop_level = wc->level; 5522 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5523 &wc->drop_progress, 5524 path->slots[wc->drop_level]); 5525 } 5526 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5527 &wc->drop_progress); 5528 btrfs_set_root_drop_level(root_item, wc->drop_level); 5529 5530 BUG_ON(wc->level == 0); 5531 if (btrfs_should_end_transaction(trans) || 5532 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5533 ret = btrfs_update_root(trans, tree_root, 5534 &root->root_key, 5535 root_item); 5536 if (ret) { 5537 btrfs_abort_transaction(trans, ret); 5538 err = ret; 5539 goto out_end_trans; 5540 } 5541 5542 btrfs_end_transaction_throttle(trans); 5543 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5544 btrfs_debug(fs_info, 5545 "drop snapshot early exit"); 5546 err = -EAGAIN; 5547 goto out_free; 5548 } 5549 5550 trans = btrfs_start_transaction(tree_root, 0); 5551 if (IS_ERR(trans)) { 5552 err = PTR_ERR(trans); 5553 goto out_free; 5554 } 5555 } 5556 } 5557 btrfs_release_path(path); 5558 if (err) 5559 goto out_end_trans; 5560 5561 ret = btrfs_del_root(trans, &root->root_key); 5562 if (ret) { 5563 btrfs_abort_transaction(trans, ret); 5564 err = ret; 5565 goto out_end_trans; 5566 } 5567 5568 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5569 ret = btrfs_find_root(tree_root, &root->root_key, path, 5570 NULL, NULL); 5571 if (ret < 0) { 5572 btrfs_abort_transaction(trans, ret); 5573 err = ret; 5574 goto out_end_trans; 5575 } else if (ret > 0) { 5576 /* if we fail to delete the orphan item this time 5577 * around, it'll get picked up the next time. 5578 * 5579 * The most common failure here is just -ENOENT. 5580 */ 5581 btrfs_del_orphan_item(trans, tree_root, 5582 root->root_key.objectid); 5583 } 5584 } 5585 5586 /* 5587 * This subvolume is going to be completely dropped, and won't be 5588 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5589 * commit transaction time. So free it here manually. 5590 */ 5591 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5592 btrfs_qgroup_free_meta_all_pertrans(root); 5593 5594 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5595 btrfs_add_dropped_root(trans, root); 5596 else 5597 btrfs_put_root(root); 5598 root_dropped = true; 5599 out_end_trans: 5600 btrfs_end_transaction_throttle(trans); 5601 out_free: 5602 kfree(wc); 5603 btrfs_free_path(path); 5604 out: 5605 /* 5606 * So if we need to stop dropping the snapshot for whatever reason we 5607 * need to make sure to add it back to the dead root list so that we 5608 * keep trying to do the work later. This also cleans up roots if we 5609 * don't have it in the radix (like when we recover after a power fail 5610 * or unmount) so we don't leak memory. 5611 */ 5612 if (!for_reloc && !root_dropped) 5613 btrfs_add_dead_root(root); 5614 return err; 5615 } 5616 5617 /* 5618 * drop subtree rooted at tree block 'node'. 5619 * 5620 * NOTE: this function will unlock and release tree block 'node' 5621 * only used by relocation code 5622 */ 5623 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5624 struct btrfs_root *root, 5625 struct extent_buffer *node, 5626 struct extent_buffer *parent) 5627 { 5628 struct btrfs_fs_info *fs_info = root->fs_info; 5629 struct btrfs_path *path; 5630 struct walk_control *wc; 5631 int level; 5632 int parent_level; 5633 int ret = 0; 5634 int wret; 5635 5636 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5637 5638 path = btrfs_alloc_path(); 5639 if (!path) 5640 return -ENOMEM; 5641 5642 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5643 if (!wc) { 5644 btrfs_free_path(path); 5645 return -ENOMEM; 5646 } 5647 5648 btrfs_assert_tree_locked(parent); 5649 parent_level = btrfs_header_level(parent); 5650 atomic_inc(&parent->refs); 5651 path->nodes[parent_level] = parent; 5652 path->slots[parent_level] = btrfs_header_nritems(parent); 5653 5654 btrfs_assert_tree_locked(node); 5655 level = btrfs_header_level(node); 5656 path->nodes[level] = node; 5657 path->slots[level] = 0; 5658 path->locks[level] = BTRFS_WRITE_LOCK; 5659 5660 wc->refs[parent_level] = 1; 5661 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5662 wc->level = level; 5663 wc->shared_level = -1; 5664 wc->stage = DROP_REFERENCE; 5665 wc->update_ref = 0; 5666 wc->keep_locks = 1; 5667 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5668 5669 while (1) { 5670 wret = walk_down_tree(trans, root, path, wc); 5671 if (wret < 0) { 5672 ret = wret; 5673 break; 5674 } 5675 5676 wret = walk_up_tree(trans, root, path, wc, parent_level); 5677 if (wret < 0) 5678 ret = wret; 5679 if (wret != 0) 5680 break; 5681 } 5682 5683 kfree(wc); 5684 btrfs_free_path(path); 5685 return ret; 5686 } 5687 5688 /* 5689 * helper to account the unused space of all the readonly block group in the 5690 * space_info. takes mirrors into account. 5691 */ 5692 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5693 { 5694 struct btrfs_block_group *block_group; 5695 u64 free_bytes = 0; 5696 int factor; 5697 5698 /* It's df, we don't care if it's racy */ 5699 if (list_empty(&sinfo->ro_bgs)) 5700 return 0; 5701 5702 spin_lock(&sinfo->lock); 5703 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5704 spin_lock(&block_group->lock); 5705 5706 if (!block_group->ro) { 5707 spin_unlock(&block_group->lock); 5708 continue; 5709 } 5710 5711 factor = btrfs_bg_type_to_factor(block_group->flags); 5712 free_bytes += (block_group->length - 5713 block_group->used) * factor; 5714 5715 spin_unlock(&block_group->lock); 5716 } 5717 spin_unlock(&sinfo->lock); 5718 5719 return free_bytes; 5720 } 5721 5722 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5723 u64 start, u64 end) 5724 { 5725 return unpin_extent_range(fs_info, start, end, false); 5726 } 5727 5728 /* 5729 * It used to be that old block groups would be left around forever. 5730 * Iterating over them would be enough to trim unused space. Since we 5731 * now automatically remove them, we also need to iterate over unallocated 5732 * space. 5733 * 5734 * We don't want a transaction for this since the discard may take a 5735 * substantial amount of time. We don't require that a transaction be 5736 * running, but we do need to take a running transaction into account 5737 * to ensure that we're not discarding chunks that were released or 5738 * allocated in the current transaction. 5739 * 5740 * Holding the chunks lock will prevent other threads from allocating 5741 * or releasing chunks, but it won't prevent a running transaction 5742 * from committing and releasing the memory that the pending chunks 5743 * list head uses. For that, we need to take a reference to the 5744 * transaction and hold the commit root sem. We only need to hold 5745 * it while performing the free space search since we have already 5746 * held back allocations. 5747 */ 5748 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5749 { 5750 u64 start = SZ_1M, len = 0, end = 0; 5751 int ret; 5752 5753 *trimmed = 0; 5754 5755 /* Discard not supported = nothing to do. */ 5756 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5757 return 0; 5758 5759 /* Not writable = nothing to do. */ 5760 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5761 return 0; 5762 5763 /* No free space = nothing to do. */ 5764 if (device->total_bytes <= device->bytes_used) 5765 return 0; 5766 5767 ret = 0; 5768 5769 while (1) { 5770 struct btrfs_fs_info *fs_info = device->fs_info; 5771 u64 bytes; 5772 5773 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5774 if (ret) 5775 break; 5776 5777 find_first_clear_extent_bit(&device->alloc_state, start, 5778 &start, &end, 5779 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5780 5781 /* Check if there are any CHUNK_* bits left */ 5782 if (start > device->total_bytes) { 5783 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5784 btrfs_warn_in_rcu(fs_info, 5785 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5786 start, end - start + 1, 5787 rcu_str_deref(device->name), 5788 device->total_bytes); 5789 mutex_unlock(&fs_info->chunk_mutex); 5790 ret = 0; 5791 break; 5792 } 5793 5794 /* Ensure we skip the reserved area in the first 1M */ 5795 start = max_t(u64, start, SZ_1M); 5796 5797 /* 5798 * If find_first_clear_extent_bit find a range that spans the 5799 * end of the device it will set end to -1, in this case it's up 5800 * to the caller to trim the value to the size of the device. 5801 */ 5802 end = min(end, device->total_bytes - 1); 5803 5804 len = end - start + 1; 5805 5806 /* We didn't find any extents */ 5807 if (!len) { 5808 mutex_unlock(&fs_info->chunk_mutex); 5809 ret = 0; 5810 break; 5811 } 5812 5813 ret = btrfs_issue_discard(device->bdev, start, len, 5814 &bytes); 5815 if (!ret) 5816 set_extent_bits(&device->alloc_state, start, 5817 start + bytes - 1, 5818 CHUNK_TRIMMED); 5819 mutex_unlock(&fs_info->chunk_mutex); 5820 5821 if (ret) 5822 break; 5823 5824 start += len; 5825 *trimmed += bytes; 5826 5827 if (fatal_signal_pending(current)) { 5828 ret = -ERESTARTSYS; 5829 break; 5830 } 5831 5832 cond_resched(); 5833 } 5834 5835 return ret; 5836 } 5837 5838 /* 5839 * Trim the whole filesystem by: 5840 * 1) trimming the free space in each block group 5841 * 2) trimming the unallocated space on each device 5842 * 5843 * This will also continue trimming even if a block group or device encounters 5844 * an error. The return value will be the last error, or 0 if nothing bad 5845 * happens. 5846 */ 5847 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5848 { 5849 struct btrfs_block_group *cache = NULL; 5850 struct btrfs_device *device; 5851 struct list_head *devices; 5852 u64 group_trimmed; 5853 u64 range_end = U64_MAX; 5854 u64 start; 5855 u64 end; 5856 u64 trimmed = 0; 5857 u64 bg_failed = 0; 5858 u64 dev_failed = 0; 5859 int bg_ret = 0; 5860 int dev_ret = 0; 5861 int ret = 0; 5862 5863 /* 5864 * Check range overflow if range->len is set. 5865 * The default range->len is U64_MAX. 5866 */ 5867 if (range->len != U64_MAX && 5868 check_add_overflow(range->start, range->len, &range_end)) 5869 return -EINVAL; 5870 5871 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5872 for (; cache; cache = btrfs_next_block_group(cache)) { 5873 if (cache->start >= range_end) { 5874 btrfs_put_block_group(cache); 5875 break; 5876 } 5877 5878 start = max(range->start, cache->start); 5879 end = min(range_end, cache->start + cache->length); 5880 5881 if (end - start >= range->minlen) { 5882 if (!btrfs_block_group_done(cache)) { 5883 ret = btrfs_cache_block_group(cache, 0); 5884 if (ret) { 5885 bg_failed++; 5886 bg_ret = ret; 5887 continue; 5888 } 5889 ret = btrfs_wait_block_group_cache_done(cache); 5890 if (ret) { 5891 bg_failed++; 5892 bg_ret = ret; 5893 continue; 5894 } 5895 } 5896 ret = btrfs_trim_block_group(cache, 5897 &group_trimmed, 5898 start, 5899 end, 5900 range->minlen); 5901 5902 trimmed += group_trimmed; 5903 if (ret) { 5904 bg_failed++; 5905 bg_ret = ret; 5906 continue; 5907 } 5908 } 5909 } 5910 5911 if (bg_failed) 5912 btrfs_warn(fs_info, 5913 "failed to trim %llu block group(s), last error %d", 5914 bg_failed, bg_ret); 5915 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5916 devices = &fs_info->fs_devices->devices; 5917 list_for_each_entry(device, devices, dev_list) { 5918 ret = btrfs_trim_free_extents(device, &group_trimmed); 5919 if (ret) { 5920 dev_failed++; 5921 dev_ret = ret; 5922 break; 5923 } 5924 5925 trimmed += group_trimmed; 5926 } 5927 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5928 5929 if (dev_failed) 5930 btrfs_warn(fs_info, 5931 "failed to trim %llu device(s), last error %d", 5932 dev_failed, dev_ret); 5933 range->len = trimmed; 5934 if (bg_ret) 5935 return bg_ret; 5936 return dev_ret; 5937 } 5938