xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 826f328e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 			       struct btrfs_delayed_ref_node *node, u64 parent,
43 			       u64 root_objectid, u64 owner_objectid,
44 			       u64 owner_offset, int refs_to_drop,
45 			       struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 				    struct extent_buffer *leaf,
48 				    struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 				      u64 parent, u64 root_objectid,
51 				      u64 flags, u64 owner, u64 offset,
52 				      struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 				     struct btrfs_delayed_ref_node *node,
55 				     struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 			 struct btrfs_key *key);
58 
59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 	return (cache->flags & bits) == bits;
62 }
63 
64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 			      u64 start, u64 num_bytes)
66 {
67 	u64 end = start + num_bytes - 1;
68 	set_extent_bits(&fs_info->excluded_extents, start, end,
69 			EXTENT_UPTODATE);
70 	return 0;
71 }
72 
73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 	struct btrfs_fs_info *fs_info = cache->fs_info;
76 	u64 start, end;
77 
78 	start = cache->start;
79 	end = start + cache->length - 1;
80 
81 	clear_extent_bits(&fs_info->excluded_extents, start, end,
82 			  EXTENT_UPTODATE);
83 }
84 
85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
86 {
87 	if (ref->type == BTRFS_REF_METADATA) {
88 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
89 			return BTRFS_BLOCK_GROUP_SYSTEM;
90 		else
91 			return BTRFS_BLOCK_GROUP_METADATA;
92 	}
93 	return BTRFS_BLOCK_GROUP_DATA;
94 }
95 
96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
97 			     struct btrfs_ref *ref)
98 {
99 	struct btrfs_space_info *space_info;
100 	u64 flags = generic_ref_to_space_flags(ref);
101 
102 	space_info = btrfs_find_space_info(fs_info, flags);
103 	ASSERT(space_info);
104 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
105 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
106 }
107 
108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
109 			     struct btrfs_ref *ref)
110 {
111 	struct btrfs_space_info *space_info;
112 	u64 flags = generic_ref_to_space_flags(ref);
113 
114 	space_info = btrfs_find_space_info(fs_info, flags);
115 	ASSERT(space_info);
116 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
117 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
118 }
119 
120 /* simple helper to search for an existing data extent at a given offset */
121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
122 {
123 	int ret;
124 	struct btrfs_key key;
125 	struct btrfs_path *path;
126 
127 	path = btrfs_alloc_path();
128 	if (!path)
129 		return -ENOMEM;
130 
131 	key.objectid = start;
132 	key.offset = len;
133 	key.type = BTRFS_EXTENT_ITEM_KEY;
134 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
135 	btrfs_free_path(path);
136 	return ret;
137 }
138 
139 /*
140  * helper function to lookup reference count and flags of a tree block.
141  *
142  * the head node for delayed ref is used to store the sum of all the
143  * reference count modifications queued up in the rbtree. the head
144  * node may also store the extent flags to set. This way you can check
145  * to see what the reference count and extent flags would be if all of
146  * the delayed refs are not processed.
147  */
148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
149 			     struct btrfs_fs_info *fs_info, u64 bytenr,
150 			     u64 offset, int metadata, u64 *refs, u64 *flags)
151 {
152 	struct btrfs_delayed_ref_head *head;
153 	struct btrfs_delayed_ref_root *delayed_refs;
154 	struct btrfs_path *path;
155 	struct btrfs_extent_item *ei;
156 	struct extent_buffer *leaf;
157 	struct btrfs_key key;
158 	u32 item_size;
159 	u64 num_refs;
160 	u64 extent_flags;
161 	int ret;
162 
163 	/*
164 	 * If we don't have skinny metadata, don't bother doing anything
165 	 * different
166 	 */
167 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
168 		offset = fs_info->nodesize;
169 		metadata = 0;
170 	}
171 
172 	path = btrfs_alloc_path();
173 	if (!path)
174 		return -ENOMEM;
175 
176 	if (!trans) {
177 		path->skip_locking = 1;
178 		path->search_commit_root = 1;
179 	}
180 
181 search_again:
182 	key.objectid = bytenr;
183 	key.offset = offset;
184 	if (metadata)
185 		key.type = BTRFS_METADATA_ITEM_KEY;
186 	else
187 		key.type = BTRFS_EXTENT_ITEM_KEY;
188 
189 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
190 	if (ret < 0)
191 		goto out_free;
192 
193 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
194 		if (path->slots[0]) {
195 			path->slots[0]--;
196 			btrfs_item_key_to_cpu(path->nodes[0], &key,
197 					      path->slots[0]);
198 			if (key.objectid == bytenr &&
199 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
200 			    key.offset == fs_info->nodesize)
201 				ret = 0;
202 		}
203 	}
204 
205 	if (ret == 0) {
206 		leaf = path->nodes[0];
207 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
208 		if (item_size >= sizeof(*ei)) {
209 			ei = btrfs_item_ptr(leaf, path->slots[0],
210 					    struct btrfs_extent_item);
211 			num_refs = btrfs_extent_refs(leaf, ei);
212 			extent_flags = btrfs_extent_flags(leaf, ei);
213 		} else {
214 			ret = -EINVAL;
215 			btrfs_print_v0_err(fs_info);
216 			if (trans)
217 				btrfs_abort_transaction(trans, ret);
218 			else
219 				btrfs_handle_fs_error(fs_info, ret, NULL);
220 
221 			goto out_free;
222 		}
223 
224 		BUG_ON(num_refs == 0);
225 	} else {
226 		num_refs = 0;
227 		extent_flags = 0;
228 		ret = 0;
229 	}
230 
231 	if (!trans)
232 		goto out;
233 
234 	delayed_refs = &trans->transaction->delayed_refs;
235 	spin_lock(&delayed_refs->lock);
236 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
237 	if (head) {
238 		if (!mutex_trylock(&head->mutex)) {
239 			refcount_inc(&head->refs);
240 			spin_unlock(&delayed_refs->lock);
241 
242 			btrfs_release_path(path);
243 
244 			/*
245 			 * Mutex was contended, block until it's released and try
246 			 * again
247 			 */
248 			mutex_lock(&head->mutex);
249 			mutex_unlock(&head->mutex);
250 			btrfs_put_delayed_ref_head(head);
251 			goto search_again;
252 		}
253 		spin_lock(&head->lock);
254 		if (head->extent_op && head->extent_op->update_flags)
255 			extent_flags |= head->extent_op->flags_to_set;
256 		else
257 			BUG_ON(num_refs == 0);
258 
259 		num_refs += head->ref_mod;
260 		spin_unlock(&head->lock);
261 		mutex_unlock(&head->mutex);
262 	}
263 	spin_unlock(&delayed_refs->lock);
264 out:
265 	WARN_ON(num_refs == 0);
266 	if (refs)
267 		*refs = num_refs;
268 	if (flags)
269 		*flags = extent_flags;
270 out_free:
271 	btrfs_free_path(path);
272 	return ret;
273 }
274 
275 /*
276  * Back reference rules.  Back refs have three main goals:
277  *
278  * 1) differentiate between all holders of references to an extent so that
279  *    when a reference is dropped we can make sure it was a valid reference
280  *    before freeing the extent.
281  *
282  * 2) Provide enough information to quickly find the holders of an extent
283  *    if we notice a given block is corrupted or bad.
284  *
285  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
286  *    maintenance.  This is actually the same as #2, but with a slightly
287  *    different use case.
288  *
289  * There are two kinds of back refs. The implicit back refs is optimized
290  * for pointers in non-shared tree blocks. For a given pointer in a block,
291  * back refs of this kind provide information about the block's owner tree
292  * and the pointer's key. These information allow us to find the block by
293  * b-tree searching. The full back refs is for pointers in tree blocks not
294  * referenced by their owner trees. The location of tree block is recorded
295  * in the back refs. Actually the full back refs is generic, and can be
296  * used in all cases the implicit back refs is used. The major shortcoming
297  * of the full back refs is its overhead. Every time a tree block gets
298  * COWed, we have to update back refs entry for all pointers in it.
299  *
300  * For a newly allocated tree block, we use implicit back refs for
301  * pointers in it. This means most tree related operations only involve
302  * implicit back refs. For a tree block created in old transaction, the
303  * only way to drop a reference to it is COW it. So we can detect the
304  * event that tree block loses its owner tree's reference and do the
305  * back refs conversion.
306  *
307  * When a tree block is COWed through a tree, there are four cases:
308  *
309  * The reference count of the block is one and the tree is the block's
310  * owner tree. Nothing to do in this case.
311  *
312  * The reference count of the block is one and the tree is not the
313  * block's owner tree. In this case, full back refs is used for pointers
314  * in the block. Remove these full back refs, add implicit back refs for
315  * every pointers in the new block.
316  *
317  * The reference count of the block is greater than one and the tree is
318  * the block's owner tree. In this case, implicit back refs is used for
319  * pointers in the block. Add full back refs for every pointers in the
320  * block, increase lower level extents' reference counts. The original
321  * implicit back refs are entailed to the new block.
322  *
323  * The reference count of the block is greater than one and the tree is
324  * not the block's owner tree. Add implicit back refs for every pointer in
325  * the new block, increase lower level extents' reference count.
326  *
327  * Back Reference Key composing:
328  *
329  * The key objectid corresponds to the first byte in the extent,
330  * The key type is used to differentiate between types of back refs.
331  * There are different meanings of the key offset for different types
332  * of back refs.
333  *
334  * File extents can be referenced by:
335  *
336  * - multiple snapshots, subvolumes, or different generations in one subvol
337  * - different files inside a single subvolume
338  * - different offsets inside a file (bookend extents in file.c)
339  *
340  * The extent ref structure for the implicit back refs has fields for:
341  *
342  * - Objectid of the subvolume root
343  * - objectid of the file holding the reference
344  * - original offset in the file
345  * - how many bookend extents
346  *
347  * The key offset for the implicit back refs is hash of the first
348  * three fields.
349  *
350  * The extent ref structure for the full back refs has field for:
351  *
352  * - number of pointers in the tree leaf
353  *
354  * The key offset for the implicit back refs is the first byte of
355  * the tree leaf
356  *
357  * When a file extent is allocated, The implicit back refs is used.
358  * the fields are filled in:
359  *
360  *     (root_key.objectid, inode objectid, offset in file, 1)
361  *
362  * When a file extent is removed file truncation, we find the
363  * corresponding implicit back refs and check the following fields:
364  *
365  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
366  *
367  * Btree extents can be referenced by:
368  *
369  * - Different subvolumes
370  *
371  * Both the implicit back refs and the full back refs for tree blocks
372  * only consist of key. The key offset for the implicit back refs is
373  * objectid of block's owner tree. The key offset for the full back refs
374  * is the first byte of parent block.
375  *
376  * When implicit back refs is used, information about the lowest key and
377  * level of the tree block are required. These information are stored in
378  * tree block info structure.
379  */
380 
381 /*
382  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
383  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
384  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
385  */
386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
387 				     struct btrfs_extent_inline_ref *iref,
388 				     enum btrfs_inline_ref_type is_data)
389 {
390 	int type = btrfs_extent_inline_ref_type(eb, iref);
391 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
392 
393 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
394 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
395 	    type == BTRFS_SHARED_DATA_REF_KEY ||
396 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
397 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
398 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
399 				return type;
400 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
401 				ASSERT(eb->fs_info);
402 				/*
403 				 * Every shared one has parent tree block,
404 				 * which must be aligned to sector size.
405 				 */
406 				if (offset &&
407 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
408 					return type;
409 			}
410 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
411 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 				return type;
413 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 				ASSERT(eb->fs_info);
415 				/*
416 				 * Every shared one has parent tree block,
417 				 * which must be aligned to sector size.
418 				 */
419 				if (offset &&
420 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
421 					return type;
422 			}
423 		} else {
424 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
425 			return type;
426 		}
427 	}
428 
429 	btrfs_print_leaf((struct extent_buffer *)eb);
430 	btrfs_err(eb->fs_info,
431 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
432 		  eb->start, (unsigned long)iref, type);
433 	WARN_ON(1);
434 
435 	return BTRFS_REF_TYPE_INVALID;
436 }
437 
438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439 {
440 	u32 high_crc = ~(u32)0;
441 	u32 low_crc = ~(u32)0;
442 	__le64 lenum;
443 
444 	lenum = cpu_to_le64(root_objectid);
445 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 	lenum = cpu_to_le64(owner);
447 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 	lenum = cpu_to_le64(offset);
449 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450 
451 	return ((u64)high_crc << 31) ^ (u64)low_crc;
452 }
453 
454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 				     struct btrfs_extent_data_ref *ref)
456 {
457 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 				    btrfs_extent_data_ref_objectid(leaf, ref),
459 				    btrfs_extent_data_ref_offset(leaf, ref));
460 }
461 
462 static int match_extent_data_ref(struct extent_buffer *leaf,
463 				 struct btrfs_extent_data_ref *ref,
464 				 u64 root_objectid, u64 owner, u64 offset)
465 {
466 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 		return 0;
470 	return 1;
471 }
472 
473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 					   struct btrfs_path *path,
475 					   u64 bytenr, u64 parent,
476 					   u64 root_objectid,
477 					   u64 owner, u64 offset)
478 {
479 	struct btrfs_root *root = trans->fs_info->extent_root;
480 	struct btrfs_key key;
481 	struct btrfs_extent_data_ref *ref;
482 	struct extent_buffer *leaf;
483 	u32 nritems;
484 	int ret;
485 	int recow;
486 	int err = -ENOENT;
487 
488 	key.objectid = bytenr;
489 	if (parent) {
490 		key.type = BTRFS_SHARED_DATA_REF_KEY;
491 		key.offset = parent;
492 	} else {
493 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 		key.offset = hash_extent_data_ref(root_objectid,
495 						  owner, offset);
496 	}
497 again:
498 	recow = 0;
499 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 	if (ret < 0) {
501 		err = ret;
502 		goto fail;
503 	}
504 
505 	if (parent) {
506 		if (!ret)
507 			return 0;
508 		goto fail;
509 	}
510 
511 	leaf = path->nodes[0];
512 	nritems = btrfs_header_nritems(leaf);
513 	while (1) {
514 		if (path->slots[0] >= nritems) {
515 			ret = btrfs_next_leaf(root, path);
516 			if (ret < 0)
517 				err = ret;
518 			if (ret)
519 				goto fail;
520 
521 			leaf = path->nodes[0];
522 			nritems = btrfs_header_nritems(leaf);
523 			recow = 1;
524 		}
525 
526 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 		if (key.objectid != bytenr ||
528 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 			goto fail;
530 
531 		ref = btrfs_item_ptr(leaf, path->slots[0],
532 				     struct btrfs_extent_data_ref);
533 
534 		if (match_extent_data_ref(leaf, ref, root_objectid,
535 					  owner, offset)) {
536 			if (recow) {
537 				btrfs_release_path(path);
538 				goto again;
539 			}
540 			err = 0;
541 			break;
542 		}
543 		path->slots[0]++;
544 	}
545 fail:
546 	return err;
547 }
548 
549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 					   struct btrfs_path *path,
551 					   u64 bytenr, u64 parent,
552 					   u64 root_objectid, u64 owner,
553 					   u64 offset, int refs_to_add)
554 {
555 	struct btrfs_root *root = trans->fs_info->extent_root;
556 	struct btrfs_key key;
557 	struct extent_buffer *leaf;
558 	u32 size;
559 	u32 num_refs;
560 	int ret;
561 
562 	key.objectid = bytenr;
563 	if (parent) {
564 		key.type = BTRFS_SHARED_DATA_REF_KEY;
565 		key.offset = parent;
566 		size = sizeof(struct btrfs_shared_data_ref);
567 	} else {
568 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 		key.offset = hash_extent_data_ref(root_objectid,
570 						  owner, offset);
571 		size = sizeof(struct btrfs_extent_data_ref);
572 	}
573 
574 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 	if (ret && ret != -EEXIST)
576 		goto fail;
577 
578 	leaf = path->nodes[0];
579 	if (parent) {
580 		struct btrfs_shared_data_ref *ref;
581 		ref = btrfs_item_ptr(leaf, path->slots[0],
582 				     struct btrfs_shared_data_ref);
583 		if (ret == 0) {
584 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 		}
590 	} else {
591 		struct btrfs_extent_data_ref *ref;
592 		while (ret == -EEXIST) {
593 			ref = btrfs_item_ptr(leaf, path->slots[0],
594 					     struct btrfs_extent_data_ref);
595 			if (match_extent_data_ref(leaf, ref, root_objectid,
596 						  owner, offset))
597 				break;
598 			btrfs_release_path(path);
599 			key.offset++;
600 			ret = btrfs_insert_empty_item(trans, root, path, &key,
601 						      size);
602 			if (ret && ret != -EEXIST)
603 				goto fail;
604 
605 			leaf = path->nodes[0];
606 		}
607 		ref = btrfs_item_ptr(leaf, path->slots[0],
608 				     struct btrfs_extent_data_ref);
609 		if (ret == 0) {
610 			btrfs_set_extent_data_ref_root(leaf, ref,
611 						       root_objectid);
612 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 		} else {
616 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 			num_refs += refs_to_add;
618 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 		}
620 	}
621 	btrfs_mark_buffer_dirty(leaf);
622 	ret = 0;
623 fail:
624 	btrfs_release_path(path);
625 	return ret;
626 }
627 
628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 					   struct btrfs_path *path,
630 					   int refs_to_drop, int *last_ref)
631 {
632 	struct btrfs_key key;
633 	struct btrfs_extent_data_ref *ref1 = NULL;
634 	struct btrfs_shared_data_ref *ref2 = NULL;
635 	struct extent_buffer *leaf;
636 	u32 num_refs = 0;
637 	int ret = 0;
638 
639 	leaf = path->nodes[0];
640 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 
642 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 				      struct btrfs_extent_data_ref);
645 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 				      struct btrfs_shared_data_ref);
649 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 		btrfs_print_v0_err(trans->fs_info);
652 		btrfs_abort_transaction(trans, -EINVAL);
653 		return -EINVAL;
654 	} else {
655 		BUG();
656 	}
657 
658 	BUG_ON(num_refs < refs_to_drop);
659 	num_refs -= refs_to_drop;
660 
661 	if (num_refs == 0) {
662 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 		*last_ref = 1;
664 	} else {
665 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 		btrfs_mark_buffer_dirty(leaf);
670 	}
671 	return ret;
672 }
673 
674 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 					  struct btrfs_extent_inline_ref *iref)
676 {
677 	struct btrfs_key key;
678 	struct extent_buffer *leaf;
679 	struct btrfs_extent_data_ref *ref1;
680 	struct btrfs_shared_data_ref *ref2;
681 	u32 num_refs = 0;
682 	int type;
683 
684 	leaf = path->nodes[0];
685 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686 
687 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 	if (iref) {
689 		/*
690 		 * If type is invalid, we should have bailed out earlier than
691 		 * this call.
692 		 */
693 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 		} else {
699 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 		}
702 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 				      struct btrfs_extent_data_ref);
705 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 				      struct btrfs_shared_data_ref);
709 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 	} else {
711 		WARN_ON(1);
712 	}
713 	return num_refs;
714 }
715 
716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = trans->fs_info->extent_root;
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 	if (ret > 0)
736 		ret = -ENOENT;
737 	return ret;
738 }
739 
740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 					  struct btrfs_path *path,
742 					  u64 bytenr, u64 parent,
743 					  u64 root_objectid)
744 {
745 	struct btrfs_key key;
746 	int ret;
747 
748 	key.objectid = bytenr;
749 	if (parent) {
750 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 		key.offset = parent;
752 	} else {
753 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 		key.offset = root_objectid;
755 	}
756 
757 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 				      path, &key, 0);
759 	btrfs_release_path(path);
760 	return ret;
761 }
762 
763 static inline int extent_ref_type(u64 parent, u64 owner)
764 {
765 	int type;
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (parent > 0)
768 			type = BTRFS_SHARED_BLOCK_REF_KEY;
769 		else
770 			type = BTRFS_TREE_BLOCK_REF_KEY;
771 	} else {
772 		if (parent > 0)
773 			type = BTRFS_SHARED_DATA_REF_KEY;
774 		else
775 			type = BTRFS_EXTENT_DATA_REF_KEY;
776 	}
777 	return type;
778 }
779 
780 static int find_next_key(struct btrfs_path *path, int level,
781 			 struct btrfs_key *key)
782 
783 {
784 	for (; level < BTRFS_MAX_LEVEL; level++) {
785 		if (!path->nodes[level])
786 			break;
787 		if (path->slots[level] + 1 >=
788 		    btrfs_header_nritems(path->nodes[level]))
789 			continue;
790 		if (level == 0)
791 			btrfs_item_key_to_cpu(path->nodes[level], key,
792 					      path->slots[level] + 1);
793 		else
794 			btrfs_node_key_to_cpu(path->nodes[level], key,
795 					      path->slots[level] + 1);
796 		return 0;
797 	}
798 	return 1;
799 }
800 
801 /*
802  * look for inline back ref. if back ref is found, *ref_ret is set
803  * to the address of inline back ref, and 0 is returned.
804  *
805  * if back ref isn't found, *ref_ret is set to the address where it
806  * should be inserted, and -ENOENT is returned.
807  *
808  * if insert is true and there are too many inline back refs, the path
809  * points to the extent item, and -EAGAIN is returned.
810  *
811  * NOTE: inline back refs are ordered in the same way that back ref
812  *	 items in the tree are ordered.
813  */
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 				 struct btrfs_path *path,
817 				 struct btrfs_extent_inline_ref **ref_ret,
818 				 u64 bytenr, u64 num_bytes,
819 				 u64 parent, u64 root_objectid,
820 				 u64 owner, u64 offset, int insert)
821 {
822 	struct btrfs_fs_info *fs_info = trans->fs_info;
823 	struct btrfs_root *root = fs_info->extent_root;
824 	struct btrfs_key key;
825 	struct extent_buffer *leaf;
826 	struct btrfs_extent_item *ei;
827 	struct btrfs_extent_inline_ref *iref;
828 	u64 flags;
829 	u64 item_size;
830 	unsigned long ptr;
831 	unsigned long end;
832 	int extra_size;
833 	int type;
834 	int want;
835 	int ret;
836 	int err = 0;
837 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 	int needed;
839 
840 	key.objectid = bytenr;
841 	key.type = BTRFS_EXTENT_ITEM_KEY;
842 	key.offset = num_bytes;
843 
844 	want = extent_ref_type(parent, owner);
845 	if (insert) {
846 		extra_size = btrfs_extent_inline_ref_size(want);
847 		path->keep_locks = 1;
848 	} else
849 		extra_size = -1;
850 
851 	/*
852 	 * Owner is our level, so we can just add one to get the level for the
853 	 * block we are interested in.
854 	 */
855 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
856 		key.type = BTRFS_METADATA_ITEM_KEY;
857 		key.offset = owner;
858 	}
859 
860 again:
861 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
862 	if (ret < 0) {
863 		err = ret;
864 		goto out;
865 	}
866 
867 	/*
868 	 * We may be a newly converted file system which still has the old fat
869 	 * extent entries for metadata, so try and see if we have one of those.
870 	 */
871 	if (ret > 0 && skinny_metadata) {
872 		skinny_metadata = false;
873 		if (path->slots[0]) {
874 			path->slots[0]--;
875 			btrfs_item_key_to_cpu(path->nodes[0], &key,
876 					      path->slots[0]);
877 			if (key.objectid == bytenr &&
878 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
879 			    key.offset == num_bytes)
880 				ret = 0;
881 		}
882 		if (ret) {
883 			key.objectid = bytenr;
884 			key.type = BTRFS_EXTENT_ITEM_KEY;
885 			key.offset = num_bytes;
886 			btrfs_release_path(path);
887 			goto again;
888 		}
889 	}
890 
891 	if (ret && !insert) {
892 		err = -ENOENT;
893 		goto out;
894 	} else if (WARN_ON(ret)) {
895 		err = -EIO;
896 		goto out;
897 	}
898 
899 	leaf = path->nodes[0];
900 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
901 	if (unlikely(item_size < sizeof(*ei))) {
902 		err = -EINVAL;
903 		btrfs_print_v0_err(fs_info);
904 		btrfs_abort_transaction(trans, err);
905 		goto out;
906 	}
907 
908 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
909 	flags = btrfs_extent_flags(leaf, ei);
910 
911 	ptr = (unsigned long)(ei + 1);
912 	end = (unsigned long)ei + item_size;
913 
914 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
915 		ptr += sizeof(struct btrfs_tree_block_info);
916 		BUG_ON(ptr > end);
917 	}
918 
919 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
920 		needed = BTRFS_REF_TYPE_DATA;
921 	else
922 		needed = BTRFS_REF_TYPE_BLOCK;
923 
924 	err = -ENOENT;
925 	while (1) {
926 		if (ptr >= end) {
927 			WARN_ON(ptr > end);
928 			break;
929 		}
930 		iref = (struct btrfs_extent_inline_ref *)ptr;
931 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
932 		if (type == BTRFS_REF_TYPE_INVALID) {
933 			err = -EUCLEAN;
934 			goto out;
935 		}
936 
937 		if (want < type)
938 			break;
939 		if (want > type) {
940 			ptr += btrfs_extent_inline_ref_size(type);
941 			continue;
942 		}
943 
944 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
945 			struct btrfs_extent_data_ref *dref;
946 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
947 			if (match_extent_data_ref(leaf, dref, root_objectid,
948 						  owner, offset)) {
949 				err = 0;
950 				break;
951 			}
952 			if (hash_extent_data_ref_item(leaf, dref) <
953 			    hash_extent_data_ref(root_objectid, owner, offset))
954 				break;
955 		} else {
956 			u64 ref_offset;
957 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
958 			if (parent > 0) {
959 				if (parent == ref_offset) {
960 					err = 0;
961 					break;
962 				}
963 				if (ref_offset < parent)
964 					break;
965 			} else {
966 				if (root_objectid == ref_offset) {
967 					err = 0;
968 					break;
969 				}
970 				if (ref_offset < root_objectid)
971 					break;
972 			}
973 		}
974 		ptr += btrfs_extent_inline_ref_size(type);
975 	}
976 	if (err == -ENOENT && insert) {
977 		if (item_size + extra_size >=
978 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
979 			err = -EAGAIN;
980 			goto out;
981 		}
982 		/*
983 		 * To add new inline back ref, we have to make sure
984 		 * there is no corresponding back ref item.
985 		 * For simplicity, we just do not add new inline back
986 		 * ref if there is any kind of item for this block
987 		 */
988 		if (find_next_key(path, 0, &key) == 0 &&
989 		    key.objectid == bytenr &&
990 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
991 			err = -EAGAIN;
992 			goto out;
993 		}
994 	}
995 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
996 out:
997 	if (insert) {
998 		path->keep_locks = 0;
999 		btrfs_unlock_up_safe(path, 1);
1000 	}
1001 	return err;
1002 }
1003 
1004 /*
1005  * helper to add new inline back ref
1006  */
1007 static noinline_for_stack
1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1009 				 struct btrfs_path *path,
1010 				 struct btrfs_extent_inline_ref *iref,
1011 				 u64 parent, u64 root_objectid,
1012 				 u64 owner, u64 offset, int refs_to_add,
1013 				 struct btrfs_delayed_extent_op *extent_op)
1014 {
1015 	struct extent_buffer *leaf;
1016 	struct btrfs_extent_item *ei;
1017 	unsigned long ptr;
1018 	unsigned long end;
1019 	unsigned long item_offset;
1020 	u64 refs;
1021 	int size;
1022 	int type;
1023 
1024 	leaf = path->nodes[0];
1025 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1026 	item_offset = (unsigned long)iref - (unsigned long)ei;
1027 
1028 	type = extent_ref_type(parent, owner);
1029 	size = btrfs_extent_inline_ref_size(type);
1030 
1031 	btrfs_extend_item(path, size);
1032 
1033 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1034 	refs = btrfs_extent_refs(leaf, ei);
1035 	refs += refs_to_add;
1036 	btrfs_set_extent_refs(leaf, ei, refs);
1037 	if (extent_op)
1038 		__run_delayed_extent_op(extent_op, leaf, ei);
1039 
1040 	ptr = (unsigned long)ei + item_offset;
1041 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1042 	if (ptr < end - size)
1043 		memmove_extent_buffer(leaf, ptr + size, ptr,
1044 				      end - size - ptr);
1045 
1046 	iref = (struct btrfs_extent_inline_ref *)ptr;
1047 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1048 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1049 		struct btrfs_extent_data_ref *dref;
1050 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1051 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1052 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1053 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1054 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1055 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1056 		struct btrfs_shared_data_ref *sref;
1057 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1058 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1059 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1060 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1061 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 	} else {
1063 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 }
1067 
1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1069 				 struct btrfs_path *path,
1070 				 struct btrfs_extent_inline_ref **ref_ret,
1071 				 u64 bytenr, u64 num_bytes, u64 parent,
1072 				 u64 root_objectid, u64 owner, u64 offset)
1073 {
1074 	int ret;
1075 
1076 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1077 					   num_bytes, parent, root_objectid,
1078 					   owner, offset, 0);
1079 	if (ret != -ENOENT)
1080 		return ret;
1081 
1082 	btrfs_release_path(path);
1083 	*ref_ret = NULL;
1084 
1085 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1086 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1087 					    root_objectid);
1088 	} else {
1089 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1090 					     root_objectid, owner, offset);
1091 	}
1092 	return ret;
1093 }
1094 
1095 /*
1096  * helper to update/remove inline back ref
1097  */
1098 static noinline_for_stack
1099 void update_inline_extent_backref(struct btrfs_path *path,
1100 				  struct btrfs_extent_inline_ref *iref,
1101 				  int refs_to_mod,
1102 				  struct btrfs_delayed_extent_op *extent_op,
1103 				  int *last_ref)
1104 {
1105 	struct extent_buffer *leaf = path->nodes[0];
1106 	struct btrfs_extent_item *ei;
1107 	struct btrfs_extent_data_ref *dref = NULL;
1108 	struct btrfs_shared_data_ref *sref = NULL;
1109 	unsigned long ptr;
1110 	unsigned long end;
1111 	u32 item_size;
1112 	int size;
1113 	int type;
1114 	u64 refs;
1115 
1116 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1117 	refs = btrfs_extent_refs(leaf, ei);
1118 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1119 	refs += refs_to_mod;
1120 	btrfs_set_extent_refs(leaf, ei, refs);
1121 	if (extent_op)
1122 		__run_delayed_extent_op(extent_op, leaf, ei);
1123 
1124 	/*
1125 	 * If type is invalid, we should have bailed out after
1126 	 * lookup_inline_extent_backref().
1127 	 */
1128 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1129 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1130 
1131 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1132 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1133 		refs = btrfs_extent_data_ref_count(leaf, dref);
1134 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1135 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1136 		refs = btrfs_shared_data_ref_count(leaf, sref);
1137 	} else {
1138 		refs = 1;
1139 		BUG_ON(refs_to_mod != -1);
1140 	}
1141 
1142 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1143 	refs += refs_to_mod;
1144 
1145 	if (refs > 0) {
1146 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1147 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1148 		else
1149 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1150 	} else {
1151 		*last_ref = 1;
1152 		size =  btrfs_extent_inline_ref_size(type);
1153 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1154 		ptr = (unsigned long)iref;
1155 		end = (unsigned long)ei + item_size;
1156 		if (ptr + size < end)
1157 			memmove_extent_buffer(leaf, ptr, ptr + size,
1158 					      end - ptr - size);
1159 		item_size -= size;
1160 		btrfs_truncate_item(path, item_size, 1);
1161 	}
1162 	btrfs_mark_buffer_dirty(leaf);
1163 }
1164 
1165 static noinline_for_stack
1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1167 				 struct btrfs_path *path,
1168 				 u64 bytenr, u64 num_bytes, u64 parent,
1169 				 u64 root_objectid, u64 owner,
1170 				 u64 offset, int refs_to_add,
1171 				 struct btrfs_delayed_extent_op *extent_op)
1172 {
1173 	struct btrfs_extent_inline_ref *iref;
1174 	int ret;
1175 
1176 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1177 					   num_bytes, parent, root_objectid,
1178 					   owner, offset, 1);
1179 	if (ret == 0) {
1180 		/*
1181 		 * We're adding refs to a tree block we already own, this
1182 		 * should not happen at all.
1183 		 */
1184 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1185 			btrfs_crit(trans->fs_info,
1186 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1187 				   bytenr, num_bytes, root_objectid);
1188 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1189 				WARN_ON(1);
1190 				btrfs_crit(trans->fs_info,
1191 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1192 				btrfs_print_leaf(path->nodes[0]);
1193 			}
1194 			return -EUCLEAN;
1195 		}
1196 		update_inline_extent_backref(path, iref, refs_to_add,
1197 					     extent_op, NULL);
1198 	} else if (ret == -ENOENT) {
1199 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1200 					    root_objectid, owner, offset,
1201 					    refs_to_add, extent_op);
1202 		ret = 0;
1203 	}
1204 	return ret;
1205 }
1206 
1207 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1208 				 struct btrfs_path *path,
1209 				 struct btrfs_extent_inline_ref *iref,
1210 				 int refs_to_drop, int is_data, int *last_ref)
1211 {
1212 	int ret = 0;
1213 
1214 	BUG_ON(!is_data && refs_to_drop != 1);
1215 	if (iref) {
1216 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1217 					     last_ref);
1218 	} else if (is_data) {
1219 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1220 					     last_ref);
1221 	} else {
1222 		*last_ref = 1;
1223 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1224 	}
1225 	return ret;
1226 }
1227 
1228 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1229 			       u64 *discarded_bytes)
1230 {
1231 	int j, ret = 0;
1232 	u64 bytes_left, end;
1233 	u64 aligned_start = ALIGN(start, 1 << 9);
1234 
1235 	if (WARN_ON(start != aligned_start)) {
1236 		len -= aligned_start - start;
1237 		len = round_down(len, 1 << 9);
1238 		start = aligned_start;
1239 	}
1240 
1241 	*discarded_bytes = 0;
1242 
1243 	if (!len)
1244 		return 0;
1245 
1246 	end = start + len;
1247 	bytes_left = len;
1248 
1249 	/* Skip any superblocks on this device. */
1250 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1251 		u64 sb_start = btrfs_sb_offset(j);
1252 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1253 		u64 size = sb_start - start;
1254 
1255 		if (!in_range(sb_start, start, bytes_left) &&
1256 		    !in_range(sb_end, start, bytes_left) &&
1257 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1258 			continue;
1259 
1260 		/*
1261 		 * Superblock spans beginning of range.  Adjust start and
1262 		 * try again.
1263 		 */
1264 		if (sb_start <= start) {
1265 			start += sb_end - start;
1266 			if (start > end) {
1267 				bytes_left = 0;
1268 				break;
1269 			}
1270 			bytes_left = end - start;
1271 			continue;
1272 		}
1273 
1274 		if (size) {
1275 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1276 						   GFP_NOFS, 0);
1277 			if (!ret)
1278 				*discarded_bytes += size;
1279 			else if (ret != -EOPNOTSUPP)
1280 				return ret;
1281 		}
1282 
1283 		start = sb_end;
1284 		if (start > end) {
1285 			bytes_left = 0;
1286 			break;
1287 		}
1288 		bytes_left = end - start;
1289 	}
1290 
1291 	if (bytes_left) {
1292 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1293 					   GFP_NOFS, 0);
1294 		if (!ret)
1295 			*discarded_bytes += bytes_left;
1296 	}
1297 	return ret;
1298 }
1299 
1300 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1301 			 u64 num_bytes, u64 *actual_bytes)
1302 {
1303 	int ret = 0;
1304 	u64 discarded_bytes = 0;
1305 	u64 end = bytenr + num_bytes;
1306 	u64 cur = bytenr;
1307 	struct btrfs_bio *bbio = NULL;
1308 
1309 
1310 	/*
1311 	 * Avoid races with device replace and make sure our bbio has devices
1312 	 * associated to its stripes that don't go away while we are discarding.
1313 	 */
1314 	btrfs_bio_counter_inc_blocked(fs_info);
1315 	while (cur < end) {
1316 		struct btrfs_bio_stripe *stripe;
1317 		int i;
1318 
1319 		num_bytes = end - cur;
1320 		/* Tell the block device(s) that the sectors can be discarded */
1321 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1322 				      &num_bytes, &bbio, 0);
1323 		/*
1324 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1325 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1326 		 * thus we can't continue anyway.
1327 		 */
1328 		if (ret < 0)
1329 			goto out;
1330 
1331 		stripe = bbio->stripes;
1332 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1333 			u64 bytes;
1334 			struct request_queue *req_q;
1335 
1336 			if (!stripe->dev->bdev) {
1337 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1338 				continue;
1339 			}
1340 			req_q = bdev_get_queue(stripe->dev->bdev);
1341 			if (!blk_queue_discard(req_q))
1342 				continue;
1343 
1344 			ret = btrfs_issue_discard(stripe->dev->bdev,
1345 						  stripe->physical,
1346 						  stripe->length,
1347 						  &bytes);
1348 			if (!ret) {
1349 				discarded_bytes += bytes;
1350 			} else if (ret != -EOPNOTSUPP) {
1351 				/*
1352 				 * Logic errors or -ENOMEM, or -EIO, but
1353 				 * unlikely to happen.
1354 				 *
1355 				 * And since there are two loops, explicitly
1356 				 * go to out to avoid confusion.
1357 				 */
1358 				btrfs_put_bbio(bbio);
1359 				goto out;
1360 			}
1361 
1362 			/*
1363 			 * Just in case we get back EOPNOTSUPP for some reason,
1364 			 * just ignore the return value so we don't screw up
1365 			 * people calling discard_extent.
1366 			 */
1367 			ret = 0;
1368 		}
1369 		btrfs_put_bbio(bbio);
1370 		cur += num_bytes;
1371 	}
1372 out:
1373 	btrfs_bio_counter_dec(fs_info);
1374 
1375 	if (actual_bytes)
1376 		*actual_bytes = discarded_bytes;
1377 
1378 
1379 	if (ret == -EOPNOTSUPP)
1380 		ret = 0;
1381 	return ret;
1382 }
1383 
1384 /* Can return -ENOMEM */
1385 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1386 			 struct btrfs_ref *generic_ref)
1387 {
1388 	struct btrfs_fs_info *fs_info = trans->fs_info;
1389 	int old_ref_mod, new_ref_mod;
1390 	int ret;
1391 
1392 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1393 	       generic_ref->action);
1394 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1395 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1396 
1397 	if (generic_ref->type == BTRFS_REF_METADATA)
1398 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1399 				NULL, &old_ref_mod, &new_ref_mod);
1400 	else
1401 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1402 						 &old_ref_mod, &new_ref_mod);
1403 
1404 	btrfs_ref_tree_mod(fs_info, generic_ref);
1405 
1406 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1407 		sub_pinned_bytes(fs_info, generic_ref);
1408 
1409 	return ret;
1410 }
1411 
1412 /*
1413  * __btrfs_inc_extent_ref - insert backreference for a given extent
1414  *
1415  * The counterpart is in __btrfs_free_extent(), with examples and more details
1416  * how it works.
1417  *
1418  * @trans:	    Handle of transaction
1419  *
1420  * @node:	    The delayed ref node used to get the bytenr/length for
1421  *		    extent whose references are incremented.
1422  *
1423  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1424  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1425  *		    bytenr of the parent block. Since new extents are always
1426  *		    created with indirect references, this will only be the case
1427  *		    when relocating a shared extent. In that case, root_objectid
1428  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1429  *		    be 0
1430  *
1431  * @root_objectid:  The id of the root where this modification has originated,
1432  *		    this can be either one of the well-known metadata trees or
1433  *		    the subvolume id which references this extent.
1434  *
1435  * @owner:	    For data extents it is the inode number of the owning file.
1436  *		    For metadata extents this parameter holds the level in the
1437  *		    tree of the extent.
1438  *
1439  * @offset:	    For metadata extents the offset is ignored and is currently
1440  *		    always passed as 0. For data extents it is the fileoffset
1441  *		    this extent belongs to.
1442  *
1443  * @refs_to_add     Number of references to add
1444  *
1445  * @extent_op       Pointer to a structure, holding information necessary when
1446  *                  updating a tree block's flags
1447  *
1448  */
1449 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1450 				  struct btrfs_delayed_ref_node *node,
1451 				  u64 parent, u64 root_objectid,
1452 				  u64 owner, u64 offset, int refs_to_add,
1453 				  struct btrfs_delayed_extent_op *extent_op)
1454 {
1455 	struct btrfs_path *path;
1456 	struct extent_buffer *leaf;
1457 	struct btrfs_extent_item *item;
1458 	struct btrfs_key key;
1459 	u64 bytenr = node->bytenr;
1460 	u64 num_bytes = node->num_bytes;
1461 	u64 refs;
1462 	int ret;
1463 
1464 	path = btrfs_alloc_path();
1465 	if (!path)
1466 		return -ENOMEM;
1467 
1468 	/* this will setup the path even if it fails to insert the back ref */
1469 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1470 					   parent, root_objectid, owner,
1471 					   offset, refs_to_add, extent_op);
1472 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1473 		goto out;
1474 
1475 	/*
1476 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1477 	 * inline extent ref, so just update the reference count and add a
1478 	 * normal backref.
1479 	 */
1480 	leaf = path->nodes[0];
1481 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1482 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1483 	refs = btrfs_extent_refs(leaf, item);
1484 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1485 	if (extent_op)
1486 		__run_delayed_extent_op(extent_op, leaf, item);
1487 
1488 	btrfs_mark_buffer_dirty(leaf);
1489 	btrfs_release_path(path);
1490 
1491 	/* now insert the actual backref */
1492 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1493 		BUG_ON(refs_to_add != 1);
1494 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1495 					    root_objectid);
1496 	} else {
1497 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1498 					     root_objectid, owner, offset,
1499 					     refs_to_add);
1500 	}
1501 	if (ret)
1502 		btrfs_abort_transaction(trans, ret);
1503 out:
1504 	btrfs_free_path(path);
1505 	return ret;
1506 }
1507 
1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1509 				struct btrfs_delayed_ref_node *node,
1510 				struct btrfs_delayed_extent_op *extent_op,
1511 				int insert_reserved)
1512 {
1513 	int ret = 0;
1514 	struct btrfs_delayed_data_ref *ref;
1515 	struct btrfs_key ins;
1516 	u64 parent = 0;
1517 	u64 ref_root = 0;
1518 	u64 flags = 0;
1519 
1520 	ins.objectid = node->bytenr;
1521 	ins.offset = node->num_bytes;
1522 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1523 
1524 	ref = btrfs_delayed_node_to_data_ref(node);
1525 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1526 
1527 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1528 		parent = ref->parent;
1529 	ref_root = ref->root;
1530 
1531 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1532 		if (extent_op)
1533 			flags |= extent_op->flags_to_set;
1534 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1535 						 flags, ref->objectid,
1536 						 ref->offset, &ins,
1537 						 node->ref_mod);
1538 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1539 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1540 					     ref->objectid, ref->offset,
1541 					     node->ref_mod, extent_op);
1542 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1543 		ret = __btrfs_free_extent(trans, node, parent,
1544 					  ref_root, ref->objectid,
1545 					  ref->offset, node->ref_mod,
1546 					  extent_op);
1547 	} else {
1548 		BUG();
1549 	}
1550 	return ret;
1551 }
1552 
1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1554 				    struct extent_buffer *leaf,
1555 				    struct btrfs_extent_item *ei)
1556 {
1557 	u64 flags = btrfs_extent_flags(leaf, ei);
1558 	if (extent_op->update_flags) {
1559 		flags |= extent_op->flags_to_set;
1560 		btrfs_set_extent_flags(leaf, ei, flags);
1561 	}
1562 
1563 	if (extent_op->update_key) {
1564 		struct btrfs_tree_block_info *bi;
1565 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1566 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1567 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1568 	}
1569 }
1570 
1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1572 				 struct btrfs_delayed_ref_head *head,
1573 				 struct btrfs_delayed_extent_op *extent_op)
1574 {
1575 	struct btrfs_fs_info *fs_info = trans->fs_info;
1576 	struct btrfs_key key;
1577 	struct btrfs_path *path;
1578 	struct btrfs_extent_item *ei;
1579 	struct extent_buffer *leaf;
1580 	u32 item_size;
1581 	int ret;
1582 	int err = 0;
1583 	int metadata = !extent_op->is_data;
1584 
1585 	if (TRANS_ABORTED(trans))
1586 		return 0;
1587 
1588 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1589 		metadata = 0;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	key.objectid = head->bytenr;
1596 
1597 	if (metadata) {
1598 		key.type = BTRFS_METADATA_ITEM_KEY;
1599 		key.offset = extent_op->level;
1600 	} else {
1601 		key.type = BTRFS_EXTENT_ITEM_KEY;
1602 		key.offset = head->num_bytes;
1603 	}
1604 
1605 again:
1606 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1607 	if (ret < 0) {
1608 		err = ret;
1609 		goto out;
1610 	}
1611 	if (ret > 0) {
1612 		if (metadata) {
1613 			if (path->slots[0] > 0) {
1614 				path->slots[0]--;
1615 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1616 						      path->slots[0]);
1617 				if (key.objectid == head->bytenr &&
1618 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1619 				    key.offset == head->num_bytes)
1620 					ret = 0;
1621 			}
1622 			if (ret > 0) {
1623 				btrfs_release_path(path);
1624 				metadata = 0;
1625 
1626 				key.objectid = head->bytenr;
1627 				key.offset = head->num_bytes;
1628 				key.type = BTRFS_EXTENT_ITEM_KEY;
1629 				goto again;
1630 			}
1631 		} else {
1632 			err = -EIO;
1633 			goto out;
1634 		}
1635 	}
1636 
1637 	leaf = path->nodes[0];
1638 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1639 
1640 	if (unlikely(item_size < sizeof(*ei))) {
1641 		err = -EINVAL;
1642 		btrfs_print_v0_err(fs_info);
1643 		btrfs_abort_transaction(trans, err);
1644 		goto out;
1645 	}
1646 
1647 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1648 	__run_delayed_extent_op(extent_op, leaf, ei);
1649 
1650 	btrfs_mark_buffer_dirty(leaf);
1651 out:
1652 	btrfs_free_path(path);
1653 	return err;
1654 }
1655 
1656 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1657 				struct btrfs_delayed_ref_node *node,
1658 				struct btrfs_delayed_extent_op *extent_op,
1659 				int insert_reserved)
1660 {
1661 	int ret = 0;
1662 	struct btrfs_delayed_tree_ref *ref;
1663 	u64 parent = 0;
1664 	u64 ref_root = 0;
1665 
1666 	ref = btrfs_delayed_node_to_tree_ref(node);
1667 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1668 
1669 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1670 		parent = ref->parent;
1671 	ref_root = ref->root;
1672 
1673 	if (node->ref_mod != 1) {
1674 		btrfs_err(trans->fs_info,
1675 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1676 			  node->bytenr, node->ref_mod, node->action, ref_root,
1677 			  parent);
1678 		return -EIO;
1679 	}
1680 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1681 		BUG_ON(!extent_op || !extent_op->update_flags);
1682 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1683 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1684 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1685 					     ref->level, 0, 1, extent_op);
1686 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1687 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1688 					  ref->level, 0, 1, extent_op);
1689 	} else {
1690 		BUG();
1691 	}
1692 	return ret;
1693 }
1694 
1695 /* helper function to actually process a single delayed ref entry */
1696 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1697 			       struct btrfs_delayed_ref_node *node,
1698 			       struct btrfs_delayed_extent_op *extent_op,
1699 			       int insert_reserved)
1700 {
1701 	int ret = 0;
1702 
1703 	if (TRANS_ABORTED(trans)) {
1704 		if (insert_reserved)
1705 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1706 		return 0;
1707 	}
1708 
1709 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1710 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1711 		ret = run_delayed_tree_ref(trans, node, extent_op,
1712 					   insert_reserved);
1713 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1714 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1715 		ret = run_delayed_data_ref(trans, node, extent_op,
1716 					   insert_reserved);
1717 	else
1718 		BUG();
1719 	if (ret && insert_reserved)
1720 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1721 	return ret;
1722 }
1723 
1724 static inline struct btrfs_delayed_ref_node *
1725 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1726 {
1727 	struct btrfs_delayed_ref_node *ref;
1728 
1729 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1730 		return NULL;
1731 
1732 	/*
1733 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1734 	 * This is to prevent a ref count from going down to zero, which deletes
1735 	 * the extent item from the extent tree, when there still are references
1736 	 * to add, which would fail because they would not find the extent item.
1737 	 */
1738 	if (!list_empty(&head->ref_add_list))
1739 		return list_first_entry(&head->ref_add_list,
1740 				struct btrfs_delayed_ref_node, add_list);
1741 
1742 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1743 		       struct btrfs_delayed_ref_node, ref_node);
1744 	ASSERT(list_empty(&ref->add_list));
1745 	return ref;
1746 }
1747 
1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1749 				      struct btrfs_delayed_ref_head *head)
1750 {
1751 	spin_lock(&delayed_refs->lock);
1752 	head->processing = 0;
1753 	delayed_refs->num_heads_ready++;
1754 	spin_unlock(&delayed_refs->lock);
1755 	btrfs_delayed_ref_unlock(head);
1756 }
1757 
1758 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1759 				struct btrfs_delayed_ref_head *head)
1760 {
1761 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1762 
1763 	if (!extent_op)
1764 		return NULL;
1765 
1766 	if (head->must_insert_reserved) {
1767 		head->extent_op = NULL;
1768 		btrfs_free_delayed_extent_op(extent_op);
1769 		return NULL;
1770 	}
1771 	return extent_op;
1772 }
1773 
1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1775 				     struct btrfs_delayed_ref_head *head)
1776 {
1777 	struct btrfs_delayed_extent_op *extent_op;
1778 	int ret;
1779 
1780 	extent_op = cleanup_extent_op(head);
1781 	if (!extent_op)
1782 		return 0;
1783 	head->extent_op = NULL;
1784 	spin_unlock(&head->lock);
1785 	ret = run_delayed_extent_op(trans, head, extent_op);
1786 	btrfs_free_delayed_extent_op(extent_op);
1787 	return ret ? ret : 1;
1788 }
1789 
1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1791 				  struct btrfs_delayed_ref_root *delayed_refs,
1792 				  struct btrfs_delayed_ref_head *head)
1793 {
1794 	int nr_items = 1;	/* Dropping this ref head update. */
1795 
1796 	if (head->total_ref_mod < 0) {
1797 		struct btrfs_space_info *space_info;
1798 		u64 flags;
1799 
1800 		if (head->is_data)
1801 			flags = BTRFS_BLOCK_GROUP_DATA;
1802 		else if (head->is_system)
1803 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1804 		else
1805 			flags = BTRFS_BLOCK_GROUP_METADATA;
1806 		space_info = btrfs_find_space_info(fs_info, flags);
1807 		ASSERT(space_info);
1808 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1809 				   -head->num_bytes,
1810 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1811 
1812 		/*
1813 		 * We had csum deletions accounted for in our delayed refs rsv,
1814 		 * we need to drop the csum leaves for this update from our
1815 		 * delayed_refs_rsv.
1816 		 */
1817 		if (head->is_data) {
1818 			spin_lock(&delayed_refs->lock);
1819 			delayed_refs->pending_csums -= head->num_bytes;
1820 			spin_unlock(&delayed_refs->lock);
1821 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1822 				head->num_bytes);
1823 		}
1824 	}
1825 
1826 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1827 }
1828 
1829 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1830 			    struct btrfs_delayed_ref_head *head)
1831 {
1832 
1833 	struct btrfs_fs_info *fs_info = trans->fs_info;
1834 	struct btrfs_delayed_ref_root *delayed_refs;
1835 	int ret;
1836 
1837 	delayed_refs = &trans->transaction->delayed_refs;
1838 
1839 	ret = run_and_cleanup_extent_op(trans, head);
1840 	if (ret < 0) {
1841 		unselect_delayed_ref_head(delayed_refs, head);
1842 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1843 		return ret;
1844 	} else if (ret) {
1845 		return ret;
1846 	}
1847 
1848 	/*
1849 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1850 	 * and then re-check to make sure nobody got added.
1851 	 */
1852 	spin_unlock(&head->lock);
1853 	spin_lock(&delayed_refs->lock);
1854 	spin_lock(&head->lock);
1855 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1856 		spin_unlock(&head->lock);
1857 		spin_unlock(&delayed_refs->lock);
1858 		return 1;
1859 	}
1860 	btrfs_delete_ref_head(delayed_refs, head);
1861 	spin_unlock(&head->lock);
1862 	spin_unlock(&delayed_refs->lock);
1863 
1864 	if (head->must_insert_reserved) {
1865 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1866 		if (head->is_data) {
1867 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1868 					      head->bytenr, head->num_bytes);
1869 		}
1870 	}
1871 
1872 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1873 
1874 	trace_run_delayed_ref_head(fs_info, head, 0);
1875 	btrfs_delayed_ref_unlock(head);
1876 	btrfs_put_delayed_ref_head(head);
1877 	return 0;
1878 }
1879 
1880 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1881 					struct btrfs_trans_handle *trans)
1882 {
1883 	struct btrfs_delayed_ref_root *delayed_refs =
1884 		&trans->transaction->delayed_refs;
1885 	struct btrfs_delayed_ref_head *head = NULL;
1886 	int ret;
1887 
1888 	spin_lock(&delayed_refs->lock);
1889 	head = btrfs_select_ref_head(delayed_refs);
1890 	if (!head) {
1891 		spin_unlock(&delayed_refs->lock);
1892 		return head;
1893 	}
1894 
1895 	/*
1896 	 * Grab the lock that says we are going to process all the refs for
1897 	 * this head
1898 	 */
1899 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1900 	spin_unlock(&delayed_refs->lock);
1901 
1902 	/*
1903 	 * We may have dropped the spin lock to get the head mutex lock, and
1904 	 * that might have given someone else time to free the head.  If that's
1905 	 * true, it has been removed from our list and we can move on.
1906 	 */
1907 	if (ret == -EAGAIN)
1908 		head = ERR_PTR(-EAGAIN);
1909 
1910 	return head;
1911 }
1912 
1913 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1914 				    struct btrfs_delayed_ref_head *locked_ref,
1915 				    unsigned long *run_refs)
1916 {
1917 	struct btrfs_fs_info *fs_info = trans->fs_info;
1918 	struct btrfs_delayed_ref_root *delayed_refs;
1919 	struct btrfs_delayed_extent_op *extent_op;
1920 	struct btrfs_delayed_ref_node *ref;
1921 	int must_insert_reserved = 0;
1922 	int ret;
1923 
1924 	delayed_refs = &trans->transaction->delayed_refs;
1925 
1926 	lockdep_assert_held(&locked_ref->mutex);
1927 	lockdep_assert_held(&locked_ref->lock);
1928 
1929 	while ((ref = select_delayed_ref(locked_ref))) {
1930 		if (ref->seq &&
1931 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1932 			spin_unlock(&locked_ref->lock);
1933 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1934 			return -EAGAIN;
1935 		}
1936 
1937 		(*run_refs)++;
1938 		ref->in_tree = 0;
1939 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1940 		RB_CLEAR_NODE(&ref->ref_node);
1941 		if (!list_empty(&ref->add_list))
1942 			list_del(&ref->add_list);
1943 		/*
1944 		 * When we play the delayed ref, also correct the ref_mod on
1945 		 * head
1946 		 */
1947 		switch (ref->action) {
1948 		case BTRFS_ADD_DELAYED_REF:
1949 		case BTRFS_ADD_DELAYED_EXTENT:
1950 			locked_ref->ref_mod -= ref->ref_mod;
1951 			break;
1952 		case BTRFS_DROP_DELAYED_REF:
1953 			locked_ref->ref_mod += ref->ref_mod;
1954 			break;
1955 		default:
1956 			WARN_ON(1);
1957 		}
1958 		atomic_dec(&delayed_refs->num_entries);
1959 
1960 		/*
1961 		 * Record the must_insert_reserved flag before we drop the
1962 		 * spin lock.
1963 		 */
1964 		must_insert_reserved = locked_ref->must_insert_reserved;
1965 		locked_ref->must_insert_reserved = 0;
1966 
1967 		extent_op = locked_ref->extent_op;
1968 		locked_ref->extent_op = NULL;
1969 		spin_unlock(&locked_ref->lock);
1970 
1971 		ret = run_one_delayed_ref(trans, ref, extent_op,
1972 					  must_insert_reserved);
1973 
1974 		btrfs_free_delayed_extent_op(extent_op);
1975 		if (ret) {
1976 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1977 			btrfs_put_delayed_ref(ref);
1978 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1979 				    ret);
1980 			return ret;
1981 		}
1982 
1983 		btrfs_put_delayed_ref(ref);
1984 		cond_resched();
1985 
1986 		spin_lock(&locked_ref->lock);
1987 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Returns 0 on success or if called with an already aborted transaction.
1995  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1996  */
1997 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1998 					     unsigned long nr)
1999 {
2000 	struct btrfs_fs_info *fs_info = trans->fs_info;
2001 	struct btrfs_delayed_ref_root *delayed_refs;
2002 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2003 	ktime_t start = ktime_get();
2004 	int ret;
2005 	unsigned long count = 0;
2006 	unsigned long actual_count = 0;
2007 
2008 	delayed_refs = &trans->transaction->delayed_refs;
2009 	do {
2010 		if (!locked_ref) {
2011 			locked_ref = btrfs_obtain_ref_head(trans);
2012 			if (IS_ERR_OR_NULL(locked_ref)) {
2013 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2014 					continue;
2015 				} else {
2016 					break;
2017 				}
2018 			}
2019 			count++;
2020 		}
2021 		/*
2022 		 * We need to try and merge add/drops of the same ref since we
2023 		 * can run into issues with relocate dropping the implicit ref
2024 		 * and then it being added back again before the drop can
2025 		 * finish.  If we merged anything we need to re-loop so we can
2026 		 * get a good ref.
2027 		 * Or we can get node references of the same type that weren't
2028 		 * merged when created due to bumps in the tree mod seq, and
2029 		 * we need to merge them to prevent adding an inline extent
2030 		 * backref before dropping it (triggering a BUG_ON at
2031 		 * insert_inline_extent_backref()).
2032 		 */
2033 		spin_lock(&locked_ref->lock);
2034 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2035 
2036 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2037 						      &actual_count);
2038 		if (ret < 0 && ret != -EAGAIN) {
2039 			/*
2040 			 * Error, btrfs_run_delayed_refs_for_head already
2041 			 * unlocked everything so just bail out
2042 			 */
2043 			return ret;
2044 		} else if (!ret) {
2045 			/*
2046 			 * Success, perform the usual cleanup of a processed
2047 			 * head
2048 			 */
2049 			ret = cleanup_ref_head(trans, locked_ref);
2050 			if (ret > 0 ) {
2051 				/* We dropped our lock, we need to loop. */
2052 				ret = 0;
2053 				continue;
2054 			} else if (ret) {
2055 				return ret;
2056 			}
2057 		}
2058 
2059 		/*
2060 		 * Either success case or btrfs_run_delayed_refs_for_head
2061 		 * returned -EAGAIN, meaning we need to select another head
2062 		 */
2063 
2064 		locked_ref = NULL;
2065 		cond_resched();
2066 	} while ((nr != -1 && count < nr) || locked_ref);
2067 
2068 	/*
2069 	 * We don't want to include ref heads since we can have empty ref heads
2070 	 * and those will drastically skew our runtime down since we just do
2071 	 * accounting, no actual extent tree updates.
2072 	 */
2073 	if (actual_count > 0) {
2074 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2075 		u64 avg;
2076 
2077 		/*
2078 		 * We weigh the current average higher than our current runtime
2079 		 * to avoid large swings in the average.
2080 		 */
2081 		spin_lock(&delayed_refs->lock);
2082 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2083 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2084 		spin_unlock(&delayed_refs->lock);
2085 	}
2086 	return 0;
2087 }
2088 
2089 #ifdef SCRAMBLE_DELAYED_REFS
2090 /*
2091  * Normally delayed refs get processed in ascending bytenr order. This
2092  * correlates in most cases to the order added. To expose dependencies on this
2093  * order, we start to process the tree in the middle instead of the beginning
2094  */
2095 static u64 find_middle(struct rb_root *root)
2096 {
2097 	struct rb_node *n = root->rb_node;
2098 	struct btrfs_delayed_ref_node *entry;
2099 	int alt = 1;
2100 	u64 middle;
2101 	u64 first = 0, last = 0;
2102 
2103 	n = rb_first(root);
2104 	if (n) {
2105 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2106 		first = entry->bytenr;
2107 	}
2108 	n = rb_last(root);
2109 	if (n) {
2110 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111 		last = entry->bytenr;
2112 	}
2113 	n = root->rb_node;
2114 
2115 	while (n) {
2116 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2117 		WARN_ON(!entry->in_tree);
2118 
2119 		middle = entry->bytenr;
2120 
2121 		if (alt)
2122 			n = n->rb_left;
2123 		else
2124 			n = n->rb_right;
2125 
2126 		alt = 1 - alt;
2127 	}
2128 	return middle;
2129 }
2130 #endif
2131 
2132 /*
2133  * this starts processing the delayed reference count updates and
2134  * extent insertions we have queued up so far.  count can be
2135  * 0, which means to process everything in the tree at the start
2136  * of the run (but not newly added entries), or it can be some target
2137  * number you'd like to process.
2138  *
2139  * Returns 0 on success or if called with an aborted transaction
2140  * Returns <0 on error and aborts the transaction
2141  */
2142 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2143 			   unsigned long count)
2144 {
2145 	struct btrfs_fs_info *fs_info = trans->fs_info;
2146 	struct rb_node *node;
2147 	struct btrfs_delayed_ref_root *delayed_refs;
2148 	struct btrfs_delayed_ref_head *head;
2149 	int ret;
2150 	int run_all = count == (unsigned long)-1;
2151 
2152 	/* We'll clean this up in btrfs_cleanup_transaction */
2153 	if (TRANS_ABORTED(trans))
2154 		return 0;
2155 
2156 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2157 		return 0;
2158 
2159 	delayed_refs = &trans->transaction->delayed_refs;
2160 	if (count == 0)
2161 		count = atomic_read(&delayed_refs->num_entries) * 2;
2162 
2163 again:
2164 #ifdef SCRAMBLE_DELAYED_REFS
2165 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2166 #endif
2167 	ret = __btrfs_run_delayed_refs(trans, count);
2168 	if (ret < 0) {
2169 		btrfs_abort_transaction(trans, ret);
2170 		return ret;
2171 	}
2172 
2173 	if (run_all) {
2174 		btrfs_create_pending_block_groups(trans);
2175 
2176 		spin_lock(&delayed_refs->lock);
2177 		node = rb_first_cached(&delayed_refs->href_root);
2178 		if (!node) {
2179 			spin_unlock(&delayed_refs->lock);
2180 			goto out;
2181 		}
2182 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2183 				href_node);
2184 		refcount_inc(&head->refs);
2185 		spin_unlock(&delayed_refs->lock);
2186 
2187 		/* Mutex was contended, block until it's released and retry. */
2188 		mutex_lock(&head->mutex);
2189 		mutex_unlock(&head->mutex);
2190 
2191 		btrfs_put_delayed_ref_head(head);
2192 		cond_resched();
2193 		goto again;
2194 	}
2195 out:
2196 	return 0;
2197 }
2198 
2199 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2200 				struct extent_buffer *eb, u64 flags,
2201 				int level, int is_data)
2202 {
2203 	struct btrfs_delayed_extent_op *extent_op;
2204 	int ret;
2205 
2206 	extent_op = btrfs_alloc_delayed_extent_op();
2207 	if (!extent_op)
2208 		return -ENOMEM;
2209 
2210 	extent_op->flags_to_set = flags;
2211 	extent_op->update_flags = true;
2212 	extent_op->update_key = false;
2213 	extent_op->is_data = is_data ? true : false;
2214 	extent_op->level = level;
2215 
2216 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2217 	if (ret)
2218 		btrfs_free_delayed_extent_op(extent_op);
2219 	return ret;
2220 }
2221 
2222 static noinline int check_delayed_ref(struct btrfs_root *root,
2223 				      struct btrfs_path *path,
2224 				      u64 objectid, u64 offset, u64 bytenr)
2225 {
2226 	struct btrfs_delayed_ref_head *head;
2227 	struct btrfs_delayed_ref_node *ref;
2228 	struct btrfs_delayed_data_ref *data_ref;
2229 	struct btrfs_delayed_ref_root *delayed_refs;
2230 	struct btrfs_transaction *cur_trans;
2231 	struct rb_node *node;
2232 	int ret = 0;
2233 
2234 	spin_lock(&root->fs_info->trans_lock);
2235 	cur_trans = root->fs_info->running_transaction;
2236 	if (cur_trans)
2237 		refcount_inc(&cur_trans->use_count);
2238 	spin_unlock(&root->fs_info->trans_lock);
2239 	if (!cur_trans)
2240 		return 0;
2241 
2242 	delayed_refs = &cur_trans->delayed_refs;
2243 	spin_lock(&delayed_refs->lock);
2244 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2245 	if (!head) {
2246 		spin_unlock(&delayed_refs->lock);
2247 		btrfs_put_transaction(cur_trans);
2248 		return 0;
2249 	}
2250 
2251 	if (!mutex_trylock(&head->mutex)) {
2252 		refcount_inc(&head->refs);
2253 		spin_unlock(&delayed_refs->lock);
2254 
2255 		btrfs_release_path(path);
2256 
2257 		/*
2258 		 * Mutex was contended, block until it's released and let
2259 		 * caller try again
2260 		 */
2261 		mutex_lock(&head->mutex);
2262 		mutex_unlock(&head->mutex);
2263 		btrfs_put_delayed_ref_head(head);
2264 		btrfs_put_transaction(cur_trans);
2265 		return -EAGAIN;
2266 	}
2267 	spin_unlock(&delayed_refs->lock);
2268 
2269 	spin_lock(&head->lock);
2270 	/*
2271 	 * XXX: We should replace this with a proper search function in the
2272 	 * future.
2273 	 */
2274 	for (node = rb_first_cached(&head->ref_tree); node;
2275 	     node = rb_next(node)) {
2276 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2277 		/* If it's a shared ref we know a cross reference exists */
2278 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2279 			ret = 1;
2280 			break;
2281 		}
2282 
2283 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2284 
2285 		/*
2286 		 * If our ref doesn't match the one we're currently looking at
2287 		 * then we have a cross reference.
2288 		 */
2289 		if (data_ref->root != root->root_key.objectid ||
2290 		    data_ref->objectid != objectid ||
2291 		    data_ref->offset != offset) {
2292 			ret = 1;
2293 			break;
2294 		}
2295 	}
2296 	spin_unlock(&head->lock);
2297 	mutex_unlock(&head->mutex);
2298 	btrfs_put_transaction(cur_trans);
2299 	return ret;
2300 }
2301 
2302 static noinline int check_committed_ref(struct btrfs_root *root,
2303 					struct btrfs_path *path,
2304 					u64 objectid, u64 offset, u64 bytenr,
2305 					bool strict)
2306 {
2307 	struct btrfs_fs_info *fs_info = root->fs_info;
2308 	struct btrfs_root *extent_root = fs_info->extent_root;
2309 	struct extent_buffer *leaf;
2310 	struct btrfs_extent_data_ref *ref;
2311 	struct btrfs_extent_inline_ref *iref;
2312 	struct btrfs_extent_item *ei;
2313 	struct btrfs_key key;
2314 	u32 item_size;
2315 	int type;
2316 	int ret;
2317 
2318 	key.objectid = bytenr;
2319 	key.offset = (u64)-1;
2320 	key.type = BTRFS_EXTENT_ITEM_KEY;
2321 
2322 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2323 	if (ret < 0)
2324 		goto out;
2325 	BUG_ON(ret == 0); /* Corruption */
2326 
2327 	ret = -ENOENT;
2328 	if (path->slots[0] == 0)
2329 		goto out;
2330 
2331 	path->slots[0]--;
2332 	leaf = path->nodes[0];
2333 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2334 
2335 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2336 		goto out;
2337 
2338 	ret = 1;
2339 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2340 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2341 
2342 	/* If extent item has more than 1 inline ref then it's shared */
2343 	if (item_size != sizeof(*ei) +
2344 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2345 		goto out;
2346 
2347 	/*
2348 	 * If extent created before last snapshot => it's shared unless the
2349 	 * snapshot has been deleted. Use the heuristic if strict is false.
2350 	 */
2351 	if (!strict &&
2352 	    (btrfs_extent_generation(leaf, ei) <=
2353 	     btrfs_root_last_snapshot(&root->root_item)))
2354 		goto out;
2355 
2356 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2357 
2358 	/* If this extent has SHARED_DATA_REF then it's shared */
2359 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2360 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2361 		goto out;
2362 
2363 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2364 	if (btrfs_extent_refs(leaf, ei) !=
2365 	    btrfs_extent_data_ref_count(leaf, ref) ||
2366 	    btrfs_extent_data_ref_root(leaf, ref) !=
2367 	    root->root_key.objectid ||
2368 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2369 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2370 		goto out;
2371 
2372 	ret = 0;
2373 out:
2374 	return ret;
2375 }
2376 
2377 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2378 			  u64 bytenr, bool strict)
2379 {
2380 	struct btrfs_path *path;
2381 	int ret;
2382 
2383 	path = btrfs_alloc_path();
2384 	if (!path)
2385 		return -ENOMEM;
2386 
2387 	do {
2388 		ret = check_committed_ref(root, path, objectid,
2389 					  offset, bytenr, strict);
2390 		if (ret && ret != -ENOENT)
2391 			goto out;
2392 
2393 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2394 	} while (ret == -EAGAIN);
2395 
2396 out:
2397 	btrfs_free_path(path);
2398 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2399 		WARN_ON(ret > 0);
2400 	return ret;
2401 }
2402 
2403 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2404 			   struct btrfs_root *root,
2405 			   struct extent_buffer *buf,
2406 			   int full_backref, int inc)
2407 {
2408 	struct btrfs_fs_info *fs_info = root->fs_info;
2409 	u64 bytenr;
2410 	u64 num_bytes;
2411 	u64 parent;
2412 	u64 ref_root;
2413 	u32 nritems;
2414 	struct btrfs_key key;
2415 	struct btrfs_file_extent_item *fi;
2416 	struct btrfs_ref generic_ref = { 0 };
2417 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2418 	int i;
2419 	int action;
2420 	int level;
2421 	int ret = 0;
2422 
2423 	if (btrfs_is_testing(fs_info))
2424 		return 0;
2425 
2426 	ref_root = btrfs_header_owner(buf);
2427 	nritems = btrfs_header_nritems(buf);
2428 	level = btrfs_header_level(buf);
2429 
2430 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2431 		return 0;
2432 
2433 	if (full_backref)
2434 		parent = buf->start;
2435 	else
2436 		parent = 0;
2437 	if (inc)
2438 		action = BTRFS_ADD_DELAYED_REF;
2439 	else
2440 		action = BTRFS_DROP_DELAYED_REF;
2441 
2442 	for (i = 0; i < nritems; i++) {
2443 		if (level == 0) {
2444 			btrfs_item_key_to_cpu(buf, &key, i);
2445 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2446 				continue;
2447 			fi = btrfs_item_ptr(buf, i,
2448 					    struct btrfs_file_extent_item);
2449 			if (btrfs_file_extent_type(buf, fi) ==
2450 			    BTRFS_FILE_EXTENT_INLINE)
2451 				continue;
2452 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2453 			if (bytenr == 0)
2454 				continue;
2455 
2456 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2457 			key.offset -= btrfs_file_extent_offset(buf, fi);
2458 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2459 					       num_bytes, parent);
2460 			generic_ref.real_root = root->root_key.objectid;
2461 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2462 					    key.offset);
2463 			generic_ref.skip_qgroup = for_reloc;
2464 			if (inc)
2465 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2466 			else
2467 				ret = btrfs_free_extent(trans, &generic_ref);
2468 			if (ret)
2469 				goto fail;
2470 		} else {
2471 			bytenr = btrfs_node_blockptr(buf, i);
2472 			num_bytes = fs_info->nodesize;
2473 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2474 					       num_bytes, parent);
2475 			generic_ref.real_root = root->root_key.objectid;
2476 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2477 			generic_ref.skip_qgroup = for_reloc;
2478 			if (inc)
2479 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480 			else
2481 				ret = btrfs_free_extent(trans, &generic_ref);
2482 			if (ret)
2483 				goto fail;
2484 		}
2485 	}
2486 	return 0;
2487 fail:
2488 	return ret;
2489 }
2490 
2491 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2492 		  struct extent_buffer *buf, int full_backref)
2493 {
2494 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2495 }
2496 
2497 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2498 		  struct extent_buffer *buf, int full_backref)
2499 {
2500 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2501 }
2502 
2503 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2504 {
2505 	struct btrfs_block_group *block_group;
2506 	int readonly = 0;
2507 
2508 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2509 	if (!block_group || block_group->ro)
2510 		readonly = 1;
2511 	if (block_group)
2512 		btrfs_put_block_group(block_group);
2513 	return readonly;
2514 }
2515 
2516 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2517 {
2518 	struct btrfs_fs_info *fs_info = root->fs_info;
2519 	u64 flags;
2520 	u64 ret;
2521 
2522 	if (data)
2523 		flags = BTRFS_BLOCK_GROUP_DATA;
2524 	else if (root == fs_info->chunk_root)
2525 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2526 	else
2527 		flags = BTRFS_BLOCK_GROUP_METADATA;
2528 
2529 	ret = btrfs_get_alloc_profile(fs_info, flags);
2530 	return ret;
2531 }
2532 
2533 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2534 {
2535 	struct btrfs_block_group *cache;
2536 	u64 bytenr;
2537 
2538 	spin_lock(&fs_info->block_group_cache_lock);
2539 	bytenr = fs_info->first_logical_byte;
2540 	spin_unlock(&fs_info->block_group_cache_lock);
2541 
2542 	if (bytenr < (u64)-1)
2543 		return bytenr;
2544 
2545 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2546 	if (!cache)
2547 		return 0;
2548 
2549 	bytenr = cache->start;
2550 	btrfs_put_block_group(cache);
2551 
2552 	return bytenr;
2553 }
2554 
2555 static int pin_down_extent(struct btrfs_trans_handle *trans,
2556 			   struct btrfs_block_group *cache,
2557 			   u64 bytenr, u64 num_bytes, int reserved)
2558 {
2559 	struct btrfs_fs_info *fs_info = cache->fs_info;
2560 
2561 	spin_lock(&cache->space_info->lock);
2562 	spin_lock(&cache->lock);
2563 	cache->pinned += num_bytes;
2564 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2565 					     num_bytes);
2566 	if (reserved) {
2567 		cache->reserved -= num_bytes;
2568 		cache->space_info->bytes_reserved -= num_bytes;
2569 	}
2570 	spin_unlock(&cache->lock);
2571 	spin_unlock(&cache->space_info->lock);
2572 
2573 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2574 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2575 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2576 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2577 	return 0;
2578 }
2579 
2580 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2581 		     u64 bytenr, u64 num_bytes, int reserved)
2582 {
2583 	struct btrfs_block_group *cache;
2584 
2585 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2586 	BUG_ON(!cache); /* Logic error */
2587 
2588 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2589 
2590 	btrfs_put_block_group(cache);
2591 	return 0;
2592 }
2593 
2594 /*
2595  * this function must be called within transaction
2596  */
2597 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2598 				    u64 bytenr, u64 num_bytes)
2599 {
2600 	struct btrfs_block_group *cache;
2601 	int ret;
2602 
2603 	btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2604 
2605 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2606 	if (!cache)
2607 		return -EINVAL;
2608 
2609 	/*
2610 	 * pull in the free space cache (if any) so that our pin
2611 	 * removes the free space from the cache.  We have load_only set
2612 	 * to one because the slow code to read in the free extents does check
2613 	 * the pinned extents.
2614 	 */
2615 	btrfs_cache_block_group(cache, 1);
2616 
2617 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2618 
2619 	/* remove us from the free space cache (if we're there at all) */
2620 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2621 	btrfs_put_block_group(cache);
2622 	return ret;
2623 }
2624 
2625 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2626 				   u64 start, u64 num_bytes)
2627 {
2628 	int ret;
2629 	struct btrfs_block_group *block_group;
2630 	struct btrfs_caching_control *caching_ctl;
2631 
2632 	block_group = btrfs_lookup_block_group(fs_info, start);
2633 	if (!block_group)
2634 		return -EINVAL;
2635 
2636 	btrfs_cache_block_group(block_group, 0);
2637 	caching_ctl = btrfs_get_caching_control(block_group);
2638 
2639 	if (!caching_ctl) {
2640 		/* Logic error */
2641 		BUG_ON(!btrfs_block_group_done(block_group));
2642 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2643 	} else {
2644 		/*
2645 		 * We must wait for v1 caching to finish, otherwise we may not
2646 		 * remove our space.
2647 		 */
2648 		btrfs_wait_space_cache_v1_finished(block_group, caching_ctl);
2649 		mutex_lock(&caching_ctl->mutex);
2650 
2651 		if (start >= caching_ctl->progress) {
2652 			ret = btrfs_add_excluded_extent(fs_info, start,
2653 							num_bytes);
2654 		} else if (start + num_bytes <= caching_ctl->progress) {
2655 			ret = btrfs_remove_free_space(block_group,
2656 						      start, num_bytes);
2657 		} else {
2658 			num_bytes = caching_ctl->progress - start;
2659 			ret = btrfs_remove_free_space(block_group,
2660 						      start, num_bytes);
2661 			if (ret)
2662 				goto out_lock;
2663 
2664 			num_bytes = (start + num_bytes) -
2665 				caching_ctl->progress;
2666 			start = caching_ctl->progress;
2667 			ret = btrfs_add_excluded_extent(fs_info, start,
2668 							num_bytes);
2669 		}
2670 out_lock:
2671 		mutex_unlock(&caching_ctl->mutex);
2672 		btrfs_put_caching_control(caching_ctl);
2673 	}
2674 	btrfs_put_block_group(block_group);
2675 	return ret;
2676 }
2677 
2678 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2679 {
2680 	struct btrfs_fs_info *fs_info = eb->fs_info;
2681 	struct btrfs_file_extent_item *item;
2682 	struct btrfs_key key;
2683 	int found_type;
2684 	int i;
2685 	int ret = 0;
2686 
2687 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2688 		return 0;
2689 
2690 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2691 		btrfs_item_key_to_cpu(eb, &key, i);
2692 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2693 			continue;
2694 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2695 		found_type = btrfs_file_extent_type(eb, item);
2696 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2697 			continue;
2698 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2699 			continue;
2700 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2701 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2702 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2703 		if (ret)
2704 			break;
2705 	}
2706 
2707 	return ret;
2708 }
2709 
2710 static void
2711 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2712 {
2713 	atomic_inc(&bg->reservations);
2714 }
2715 
2716 /*
2717  * Returns the free cluster for the given space info and sets empty_cluster to
2718  * what it should be based on the mount options.
2719  */
2720 static struct btrfs_free_cluster *
2721 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2722 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2723 {
2724 	struct btrfs_free_cluster *ret = NULL;
2725 
2726 	*empty_cluster = 0;
2727 	if (btrfs_mixed_space_info(space_info))
2728 		return ret;
2729 
2730 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2731 		ret = &fs_info->meta_alloc_cluster;
2732 		if (btrfs_test_opt(fs_info, SSD))
2733 			*empty_cluster = SZ_2M;
2734 		else
2735 			*empty_cluster = SZ_64K;
2736 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2737 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2738 		*empty_cluster = SZ_2M;
2739 		ret = &fs_info->data_alloc_cluster;
2740 	}
2741 
2742 	return ret;
2743 }
2744 
2745 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2746 			      u64 start, u64 end,
2747 			      const bool return_free_space)
2748 {
2749 	struct btrfs_block_group *cache = NULL;
2750 	struct btrfs_space_info *space_info;
2751 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2752 	struct btrfs_free_cluster *cluster = NULL;
2753 	u64 len;
2754 	u64 total_unpinned = 0;
2755 	u64 empty_cluster = 0;
2756 	bool readonly;
2757 
2758 	while (start <= end) {
2759 		readonly = false;
2760 		if (!cache ||
2761 		    start >= cache->start + cache->length) {
2762 			if (cache)
2763 				btrfs_put_block_group(cache);
2764 			total_unpinned = 0;
2765 			cache = btrfs_lookup_block_group(fs_info, start);
2766 			BUG_ON(!cache); /* Logic error */
2767 
2768 			cluster = fetch_cluster_info(fs_info,
2769 						     cache->space_info,
2770 						     &empty_cluster);
2771 			empty_cluster <<= 1;
2772 		}
2773 
2774 		len = cache->start + cache->length - start;
2775 		len = min(len, end + 1 - start);
2776 
2777 		down_read(&fs_info->commit_root_sem);
2778 		if (start < cache->last_byte_to_unpin && return_free_space) {
2779 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2780 
2781 			btrfs_add_free_space(cache, start, add_len);
2782 		}
2783 		up_read(&fs_info->commit_root_sem);
2784 
2785 		start += len;
2786 		total_unpinned += len;
2787 		space_info = cache->space_info;
2788 
2789 		/*
2790 		 * If this space cluster has been marked as fragmented and we've
2791 		 * unpinned enough in this block group to potentially allow a
2792 		 * cluster to be created inside of it go ahead and clear the
2793 		 * fragmented check.
2794 		 */
2795 		if (cluster && cluster->fragmented &&
2796 		    total_unpinned > empty_cluster) {
2797 			spin_lock(&cluster->lock);
2798 			cluster->fragmented = 0;
2799 			spin_unlock(&cluster->lock);
2800 		}
2801 
2802 		spin_lock(&space_info->lock);
2803 		spin_lock(&cache->lock);
2804 		cache->pinned -= len;
2805 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2806 		space_info->max_extent_size = 0;
2807 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2808 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2809 		if (cache->ro) {
2810 			space_info->bytes_readonly += len;
2811 			readonly = true;
2812 		}
2813 		spin_unlock(&cache->lock);
2814 		if (!readonly && return_free_space &&
2815 		    global_rsv->space_info == space_info) {
2816 			u64 to_add = len;
2817 
2818 			spin_lock(&global_rsv->lock);
2819 			if (!global_rsv->full) {
2820 				to_add = min(len, global_rsv->size -
2821 					     global_rsv->reserved);
2822 				global_rsv->reserved += to_add;
2823 				btrfs_space_info_update_bytes_may_use(fs_info,
2824 						space_info, to_add);
2825 				if (global_rsv->reserved >= global_rsv->size)
2826 					global_rsv->full = 1;
2827 				len -= to_add;
2828 			}
2829 			spin_unlock(&global_rsv->lock);
2830 		}
2831 		/* Add to any tickets we may have */
2832 		if (!readonly && return_free_space && len)
2833 			btrfs_try_granting_tickets(fs_info, space_info);
2834 		spin_unlock(&space_info->lock);
2835 	}
2836 
2837 	if (cache)
2838 		btrfs_put_block_group(cache);
2839 	return 0;
2840 }
2841 
2842 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2843 {
2844 	struct btrfs_fs_info *fs_info = trans->fs_info;
2845 	struct btrfs_block_group *block_group, *tmp;
2846 	struct list_head *deleted_bgs;
2847 	struct extent_io_tree *unpin;
2848 	u64 start;
2849 	u64 end;
2850 	int ret;
2851 
2852 	unpin = &trans->transaction->pinned_extents;
2853 
2854 	while (!TRANS_ABORTED(trans)) {
2855 		struct extent_state *cached_state = NULL;
2856 
2857 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2858 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2859 					    EXTENT_DIRTY, &cached_state);
2860 		if (ret) {
2861 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2862 			break;
2863 		}
2864 		if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2865 			clear_extent_bits(&fs_info->excluded_extents, start,
2866 					  end, EXTENT_UPTODATE);
2867 
2868 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2869 			ret = btrfs_discard_extent(fs_info, start,
2870 						   end + 1 - start, NULL);
2871 
2872 		clear_extent_dirty(unpin, start, end, &cached_state);
2873 		unpin_extent_range(fs_info, start, end, true);
2874 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2875 		free_extent_state(cached_state);
2876 		cond_resched();
2877 	}
2878 
2879 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2880 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2881 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2882 	}
2883 
2884 	/*
2885 	 * Transaction is finished.  We don't need the lock anymore.  We
2886 	 * do need to clean up the block groups in case of a transaction
2887 	 * abort.
2888 	 */
2889 	deleted_bgs = &trans->transaction->deleted_bgs;
2890 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2891 		u64 trimmed = 0;
2892 
2893 		ret = -EROFS;
2894 		if (!TRANS_ABORTED(trans))
2895 			ret = btrfs_discard_extent(fs_info,
2896 						   block_group->start,
2897 						   block_group->length,
2898 						   &trimmed);
2899 
2900 		list_del_init(&block_group->bg_list);
2901 		btrfs_unfreeze_block_group(block_group);
2902 		btrfs_put_block_group(block_group);
2903 
2904 		if (ret) {
2905 			const char *errstr = btrfs_decode_error(ret);
2906 			btrfs_warn(fs_info,
2907 			   "discard failed while removing blockgroup: errno=%d %s",
2908 				   ret, errstr);
2909 		}
2910 	}
2911 
2912 	return 0;
2913 }
2914 
2915 /*
2916  * Drop one or more refs of @node.
2917  *
2918  * 1. Locate the extent refs.
2919  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2920  *    Locate it, then reduce the refs number or remove the ref line completely.
2921  *
2922  * 2. Update the refs count in EXTENT/METADATA_ITEM
2923  *
2924  * Inline backref case:
2925  *
2926  * in extent tree we have:
2927  *
2928  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2929  *		refs 2 gen 6 flags DATA
2930  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2931  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2932  *
2933  * This function gets called with:
2934  *
2935  *    node->bytenr = 13631488
2936  *    node->num_bytes = 1048576
2937  *    root_objectid = FS_TREE
2938  *    owner_objectid = 257
2939  *    owner_offset = 0
2940  *    refs_to_drop = 1
2941  *
2942  * Then we should get some like:
2943  *
2944  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2945  *		refs 1 gen 6 flags DATA
2946  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2947  *
2948  * Keyed backref case:
2949  *
2950  * in extent tree we have:
2951  *
2952  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2953  *		refs 754 gen 6 flags DATA
2954  *	[...]
2955  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2956  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2957  *
2958  * This function get called with:
2959  *
2960  *    node->bytenr = 13631488
2961  *    node->num_bytes = 1048576
2962  *    root_objectid = FS_TREE
2963  *    owner_objectid = 866
2964  *    owner_offset = 0
2965  *    refs_to_drop = 1
2966  *
2967  * Then we should get some like:
2968  *
2969  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2970  *		refs 753 gen 6 flags DATA
2971  *
2972  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2973  */
2974 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2975 			       struct btrfs_delayed_ref_node *node, u64 parent,
2976 			       u64 root_objectid, u64 owner_objectid,
2977 			       u64 owner_offset, int refs_to_drop,
2978 			       struct btrfs_delayed_extent_op *extent_op)
2979 {
2980 	struct btrfs_fs_info *info = trans->fs_info;
2981 	struct btrfs_key key;
2982 	struct btrfs_path *path;
2983 	struct btrfs_root *extent_root = info->extent_root;
2984 	struct extent_buffer *leaf;
2985 	struct btrfs_extent_item *ei;
2986 	struct btrfs_extent_inline_ref *iref;
2987 	int ret;
2988 	int is_data;
2989 	int extent_slot = 0;
2990 	int found_extent = 0;
2991 	int num_to_del = 1;
2992 	u32 item_size;
2993 	u64 refs;
2994 	u64 bytenr = node->bytenr;
2995 	u64 num_bytes = node->num_bytes;
2996 	int last_ref = 0;
2997 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2998 
2999 	path = btrfs_alloc_path();
3000 	if (!path)
3001 		return -ENOMEM;
3002 
3003 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3004 
3005 	if (!is_data && refs_to_drop != 1) {
3006 		btrfs_crit(info,
3007 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3008 			   node->bytenr, refs_to_drop);
3009 		ret = -EINVAL;
3010 		btrfs_abort_transaction(trans, ret);
3011 		goto out;
3012 	}
3013 
3014 	if (is_data)
3015 		skinny_metadata = false;
3016 
3017 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3018 				    parent, root_objectid, owner_objectid,
3019 				    owner_offset);
3020 	if (ret == 0) {
3021 		/*
3022 		 * Either the inline backref or the SHARED_DATA_REF/
3023 		 * SHARED_BLOCK_REF is found
3024 		 *
3025 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3026 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3027 		 */
3028 		extent_slot = path->slots[0];
3029 		while (extent_slot >= 0) {
3030 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3031 					      extent_slot);
3032 			if (key.objectid != bytenr)
3033 				break;
3034 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3035 			    key.offset == num_bytes) {
3036 				found_extent = 1;
3037 				break;
3038 			}
3039 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3040 			    key.offset == owner_objectid) {
3041 				found_extent = 1;
3042 				break;
3043 			}
3044 
3045 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3046 			if (path->slots[0] - extent_slot > 5)
3047 				break;
3048 			extent_slot--;
3049 		}
3050 
3051 		if (!found_extent) {
3052 			if (iref) {
3053 				btrfs_crit(info,
3054 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3055 				btrfs_abort_transaction(trans, -EUCLEAN);
3056 				goto err_dump;
3057 			}
3058 			/* Must be SHARED_* item, remove the backref first */
3059 			ret = remove_extent_backref(trans, path, NULL,
3060 						    refs_to_drop,
3061 						    is_data, &last_ref);
3062 			if (ret) {
3063 				btrfs_abort_transaction(trans, ret);
3064 				goto out;
3065 			}
3066 			btrfs_release_path(path);
3067 
3068 			/* Slow path to locate EXTENT/METADATA_ITEM */
3069 			key.objectid = bytenr;
3070 			key.type = BTRFS_EXTENT_ITEM_KEY;
3071 			key.offset = num_bytes;
3072 
3073 			if (!is_data && skinny_metadata) {
3074 				key.type = BTRFS_METADATA_ITEM_KEY;
3075 				key.offset = owner_objectid;
3076 			}
3077 
3078 			ret = btrfs_search_slot(trans, extent_root,
3079 						&key, path, -1, 1);
3080 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3081 				/*
3082 				 * Couldn't find our skinny metadata item,
3083 				 * see if we have ye olde extent item.
3084 				 */
3085 				path->slots[0]--;
3086 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3087 						      path->slots[0]);
3088 				if (key.objectid == bytenr &&
3089 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3090 				    key.offset == num_bytes)
3091 					ret = 0;
3092 			}
3093 
3094 			if (ret > 0 && skinny_metadata) {
3095 				skinny_metadata = false;
3096 				key.objectid = bytenr;
3097 				key.type = BTRFS_EXTENT_ITEM_KEY;
3098 				key.offset = num_bytes;
3099 				btrfs_release_path(path);
3100 				ret = btrfs_search_slot(trans, extent_root,
3101 							&key, path, -1, 1);
3102 			}
3103 
3104 			if (ret) {
3105 				btrfs_err(info,
3106 					  "umm, got %d back from search, was looking for %llu",
3107 					  ret, bytenr);
3108 				if (ret > 0)
3109 					btrfs_print_leaf(path->nodes[0]);
3110 			}
3111 			if (ret < 0) {
3112 				btrfs_abort_transaction(trans, ret);
3113 				goto out;
3114 			}
3115 			extent_slot = path->slots[0];
3116 		}
3117 	} else if (WARN_ON(ret == -ENOENT)) {
3118 		btrfs_print_leaf(path->nodes[0]);
3119 		btrfs_err(info,
3120 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3121 			bytenr, parent, root_objectid, owner_objectid,
3122 			owner_offset);
3123 		btrfs_abort_transaction(trans, ret);
3124 		goto out;
3125 	} else {
3126 		btrfs_abort_transaction(trans, ret);
3127 		goto out;
3128 	}
3129 
3130 	leaf = path->nodes[0];
3131 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3132 	if (unlikely(item_size < sizeof(*ei))) {
3133 		ret = -EINVAL;
3134 		btrfs_print_v0_err(info);
3135 		btrfs_abort_transaction(trans, ret);
3136 		goto out;
3137 	}
3138 	ei = btrfs_item_ptr(leaf, extent_slot,
3139 			    struct btrfs_extent_item);
3140 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3141 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3142 		struct btrfs_tree_block_info *bi;
3143 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3144 			btrfs_crit(info,
3145 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3146 				   key.objectid, key.type, key.offset,
3147 				   owner_objectid, item_size,
3148 				   sizeof(*ei) + sizeof(*bi));
3149 			btrfs_abort_transaction(trans, -EUCLEAN);
3150 			goto err_dump;
3151 		}
3152 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3153 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3154 	}
3155 
3156 	refs = btrfs_extent_refs(leaf, ei);
3157 	if (refs < refs_to_drop) {
3158 		btrfs_crit(info,
3159 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3160 			  refs_to_drop, refs, bytenr);
3161 		btrfs_abort_transaction(trans, -EUCLEAN);
3162 		goto err_dump;
3163 	}
3164 	refs -= refs_to_drop;
3165 
3166 	if (refs > 0) {
3167 		if (extent_op)
3168 			__run_delayed_extent_op(extent_op, leaf, ei);
3169 		/*
3170 		 * In the case of inline back ref, reference count will
3171 		 * be updated by remove_extent_backref
3172 		 */
3173 		if (iref) {
3174 			if (!found_extent) {
3175 				btrfs_crit(info,
3176 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3177 				btrfs_abort_transaction(trans, -EUCLEAN);
3178 				goto err_dump;
3179 			}
3180 		} else {
3181 			btrfs_set_extent_refs(leaf, ei, refs);
3182 			btrfs_mark_buffer_dirty(leaf);
3183 		}
3184 		if (found_extent) {
3185 			ret = remove_extent_backref(trans, path, iref,
3186 						    refs_to_drop, is_data,
3187 						    &last_ref);
3188 			if (ret) {
3189 				btrfs_abort_transaction(trans, ret);
3190 				goto out;
3191 			}
3192 		}
3193 	} else {
3194 		/* In this branch refs == 1 */
3195 		if (found_extent) {
3196 			if (is_data && refs_to_drop !=
3197 			    extent_data_ref_count(path, iref)) {
3198 				btrfs_crit(info,
3199 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3200 					   extent_data_ref_count(path, iref),
3201 					   refs_to_drop);
3202 				btrfs_abort_transaction(trans, -EUCLEAN);
3203 				goto err_dump;
3204 			}
3205 			if (iref) {
3206 				if (path->slots[0] != extent_slot) {
3207 					btrfs_crit(info,
3208 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3209 						   key.objectid, key.type,
3210 						   key.offset);
3211 					btrfs_abort_transaction(trans, -EUCLEAN);
3212 					goto err_dump;
3213 				}
3214 			} else {
3215 				/*
3216 				 * No inline ref, we must be at SHARED_* item,
3217 				 * And it's single ref, it must be:
3218 				 * |	extent_slot	  ||extent_slot + 1|
3219 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3220 				 */
3221 				if (path->slots[0] != extent_slot + 1) {
3222 					btrfs_crit(info,
3223 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3224 					btrfs_abort_transaction(trans, -EUCLEAN);
3225 					goto err_dump;
3226 				}
3227 				path->slots[0] = extent_slot;
3228 				num_to_del = 2;
3229 			}
3230 		}
3231 
3232 		last_ref = 1;
3233 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3234 				      num_to_del);
3235 		if (ret) {
3236 			btrfs_abort_transaction(trans, ret);
3237 			goto out;
3238 		}
3239 		btrfs_release_path(path);
3240 
3241 		if (is_data) {
3242 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3243 					      num_bytes);
3244 			if (ret) {
3245 				btrfs_abort_transaction(trans, ret);
3246 				goto out;
3247 			}
3248 		}
3249 
3250 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3251 		if (ret) {
3252 			btrfs_abort_transaction(trans, ret);
3253 			goto out;
3254 		}
3255 
3256 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3257 		if (ret) {
3258 			btrfs_abort_transaction(trans, ret);
3259 			goto out;
3260 		}
3261 	}
3262 	btrfs_release_path(path);
3263 
3264 out:
3265 	btrfs_free_path(path);
3266 	return ret;
3267 err_dump:
3268 	/*
3269 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3270 	 * dump for debug build.
3271 	 */
3272 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3273 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3274 			   path->slots[0], extent_slot);
3275 		btrfs_print_leaf(path->nodes[0]);
3276 	}
3277 
3278 	btrfs_free_path(path);
3279 	return -EUCLEAN;
3280 }
3281 
3282 /*
3283  * when we free an block, it is possible (and likely) that we free the last
3284  * delayed ref for that extent as well.  This searches the delayed ref tree for
3285  * a given extent, and if there are no other delayed refs to be processed, it
3286  * removes it from the tree.
3287  */
3288 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3289 				      u64 bytenr)
3290 {
3291 	struct btrfs_delayed_ref_head *head;
3292 	struct btrfs_delayed_ref_root *delayed_refs;
3293 	int ret = 0;
3294 
3295 	delayed_refs = &trans->transaction->delayed_refs;
3296 	spin_lock(&delayed_refs->lock);
3297 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3298 	if (!head)
3299 		goto out_delayed_unlock;
3300 
3301 	spin_lock(&head->lock);
3302 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3303 		goto out;
3304 
3305 	if (cleanup_extent_op(head) != NULL)
3306 		goto out;
3307 
3308 	/*
3309 	 * waiting for the lock here would deadlock.  If someone else has it
3310 	 * locked they are already in the process of dropping it anyway
3311 	 */
3312 	if (!mutex_trylock(&head->mutex))
3313 		goto out;
3314 
3315 	btrfs_delete_ref_head(delayed_refs, head);
3316 	head->processing = 0;
3317 
3318 	spin_unlock(&head->lock);
3319 	spin_unlock(&delayed_refs->lock);
3320 
3321 	BUG_ON(head->extent_op);
3322 	if (head->must_insert_reserved)
3323 		ret = 1;
3324 
3325 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3326 	mutex_unlock(&head->mutex);
3327 	btrfs_put_delayed_ref_head(head);
3328 	return ret;
3329 out:
3330 	spin_unlock(&head->lock);
3331 
3332 out_delayed_unlock:
3333 	spin_unlock(&delayed_refs->lock);
3334 	return 0;
3335 }
3336 
3337 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3338 			   struct btrfs_root *root,
3339 			   struct extent_buffer *buf,
3340 			   u64 parent, int last_ref)
3341 {
3342 	struct btrfs_fs_info *fs_info = root->fs_info;
3343 	struct btrfs_ref generic_ref = { 0 };
3344 	int pin = 1;
3345 	int ret;
3346 
3347 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3348 			       buf->start, buf->len, parent);
3349 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3350 			    root->root_key.objectid);
3351 
3352 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3353 		int old_ref_mod, new_ref_mod;
3354 
3355 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3356 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3357 						 &old_ref_mod, &new_ref_mod);
3358 		BUG_ON(ret); /* -ENOMEM */
3359 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3360 	}
3361 
3362 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3363 		struct btrfs_block_group *cache;
3364 
3365 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3366 			ret = check_ref_cleanup(trans, buf->start);
3367 			if (!ret)
3368 				goto out;
3369 		}
3370 
3371 		pin = 0;
3372 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3373 
3374 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3375 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3376 			btrfs_put_block_group(cache);
3377 			goto out;
3378 		}
3379 
3380 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3381 
3382 		btrfs_add_free_space(cache, buf->start, buf->len);
3383 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3384 		btrfs_put_block_group(cache);
3385 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3386 	}
3387 out:
3388 	if (pin)
3389 		add_pinned_bytes(fs_info, &generic_ref);
3390 
3391 	if (last_ref) {
3392 		/*
3393 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3394 		 * matter anymore.
3395 		 */
3396 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3397 	}
3398 }
3399 
3400 /* Can return -ENOMEM */
3401 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3402 {
3403 	struct btrfs_fs_info *fs_info = trans->fs_info;
3404 	int old_ref_mod, new_ref_mod;
3405 	int ret;
3406 
3407 	if (btrfs_is_testing(fs_info))
3408 		return 0;
3409 
3410 	/*
3411 	 * tree log blocks never actually go into the extent allocation
3412 	 * tree, just update pinning info and exit early.
3413 	 */
3414 	if ((ref->type == BTRFS_REF_METADATA &&
3415 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3416 	    (ref->type == BTRFS_REF_DATA &&
3417 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3418 		/* unlocks the pinned mutex */
3419 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3420 		old_ref_mod = new_ref_mod = 0;
3421 		ret = 0;
3422 	} else if (ref->type == BTRFS_REF_METADATA) {
3423 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3424 						 &old_ref_mod, &new_ref_mod);
3425 	} else {
3426 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3427 						 &old_ref_mod, &new_ref_mod);
3428 	}
3429 
3430 	if (!((ref->type == BTRFS_REF_METADATA &&
3431 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3432 	      (ref->type == BTRFS_REF_DATA &&
3433 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3434 		btrfs_ref_tree_mod(fs_info, ref);
3435 
3436 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3437 		add_pinned_bytes(fs_info, ref);
3438 
3439 	return ret;
3440 }
3441 
3442 enum btrfs_loop_type {
3443 	LOOP_CACHING_NOWAIT,
3444 	LOOP_CACHING_WAIT,
3445 	LOOP_ALLOC_CHUNK,
3446 	LOOP_NO_EMPTY_SIZE,
3447 };
3448 
3449 static inline void
3450 btrfs_lock_block_group(struct btrfs_block_group *cache,
3451 		       int delalloc)
3452 {
3453 	if (delalloc)
3454 		down_read(&cache->data_rwsem);
3455 }
3456 
3457 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3458 		       int delalloc)
3459 {
3460 	btrfs_get_block_group(cache);
3461 	if (delalloc)
3462 		down_read(&cache->data_rwsem);
3463 }
3464 
3465 static struct btrfs_block_group *btrfs_lock_cluster(
3466 		   struct btrfs_block_group *block_group,
3467 		   struct btrfs_free_cluster *cluster,
3468 		   int delalloc)
3469 	__acquires(&cluster->refill_lock)
3470 {
3471 	struct btrfs_block_group *used_bg = NULL;
3472 
3473 	spin_lock(&cluster->refill_lock);
3474 	while (1) {
3475 		used_bg = cluster->block_group;
3476 		if (!used_bg)
3477 			return NULL;
3478 
3479 		if (used_bg == block_group)
3480 			return used_bg;
3481 
3482 		btrfs_get_block_group(used_bg);
3483 
3484 		if (!delalloc)
3485 			return used_bg;
3486 
3487 		if (down_read_trylock(&used_bg->data_rwsem))
3488 			return used_bg;
3489 
3490 		spin_unlock(&cluster->refill_lock);
3491 
3492 		/* We should only have one-level nested. */
3493 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3494 
3495 		spin_lock(&cluster->refill_lock);
3496 		if (used_bg == cluster->block_group)
3497 			return used_bg;
3498 
3499 		up_read(&used_bg->data_rwsem);
3500 		btrfs_put_block_group(used_bg);
3501 	}
3502 }
3503 
3504 static inline void
3505 btrfs_release_block_group(struct btrfs_block_group *cache,
3506 			 int delalloc)
3507 {
3508 	if (delalloc)
3509 		up_read(&cache->data_rwsem);
3510 	btrfs_put_block_group(cache);
3511 }
3512 
3513 enum btrfs_extent_allocation_policy {
3514 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3515 };
3516 
3517 /*
3518  * Structure used internally for find_free_extent() function.  Wraps needed
3519  * parameters.
3520  */
3521 struct find_free_extent_ctl {
3522 	/* Basic allocation info */
3523 	u64 num_bytes;
3524 	u64 empty_size;
3525 	u64 flags;
3526 	int delalloc;
3527 
3528 	/* Where to start the search inside the bg */
3529 	u64 search_start;
3530 
3531 	/* For clustered allocation */
3532 	u64 empty_cluster;
3533 	struct btrfs_free_cluster *last_ptr;
3534 	bool use_cluster;
3535 
3536 	bool have_caching_bg;
3537 	bool orig_have_caching_bg;
3538 
3539 	/* RAID index, converted from flags */
3540 	int index;
3541 
3542 	/*
3543 	 * Current loop number, check find_free_extent_update_loop() for details
3544 	 */
3545 	int loop;
3546 
3547 	/*
3548 	 * Whether we're refilling a cluster, if true we need to re-search
3549 	 * current block group but don't try to refill the cluster again.
3550 	 */
3551 	bool retry_clustered;
3552 
3553 	/*
3554 	 * Whether we're updating free space cache, if true we need to re-search
3555 	 * current block group but don't try updating free space cache again.
3556 	 */
3557 	bool retry_unclustered;
3558 
3559 	/* If current block group is cached */
3560 	int cached;
3561 
3562 	/* Max contiguous hole found */
3563 	u64 max_extent_size;
3564 
3565 	/* Total free space from free space cache, not always contiguous */
3566 	u64 total_free_space;
3567 
3568 	/* Found result */
3569 	u64 found_offset;
3570 
3571 	/* Hint where to start looking for an empty space */
3572 	u64 hint_byte;
3573 
3574 	/* Allocation policy */
3575 	enum btrfs_extent_allocation_policy policy;
3576 };
3577 
3578 
3579 /*
3580  * Helper function for find_free_extent().
3581  *
3582  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3583  * Return -EAGAIN to inform caller that we need to re-search this block group
3584  * Return >0 to inform caller that we find nothing
3585  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3586  */
3587 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3588 				      struct find_free_extent_ctl *ffe_ctl,
3589 				      struct btrfs_block_group **cluster_bg_ret)
3590 {
3591 	struct btrfs_block_group *cluster_bg;
3592 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3593 	u64 aligned_cluster;
3594 	u64 offset;
3595 	int ret;
3596 
3597 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3598 	if (!cluster_bg)
3599 		goto refill_cluster;
3600 	if (cluster_bg != bg && (cluster_bg->ro ||
3601 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3602 		goto release_cluster;
3603 
3604 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3605 			ffe_ctl->num_bytes, cluster_bg->start,
3606 			&ffe_ctl->max_extent_size);
3607 	if (offset) {
3608 		/* We have a block, we're done */
3609 		spin_unlock(&last_ptr->refill_lock);
3610 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3611 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3612 		*cluster_bg_ret = cluster_bg;
3613 		ffe_ctl->found_offset = offset;
3614 		return 0;
3615 	}
3616 	WARN_ON(last_ptr->block_group != cluster_bg);
3617 
3618 release_cluster:
3619 	/*
3620 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3621 	 * lets just skip it and let the allocator find whatever block it can
3622 	 * find. If we reach this point, we will have tried the cluster
3623 	 * allocator plenty of times and not have found anything, so we are
3624 	 * likely way too fragmented for the clustering stuff to find anything.
3625 	 *
3626 	 * However, if the cluster is taken from the current block group,
3627 	 * release the cluster first, so that we stand a better chance of
3628 	 * succeeding in the unclustered allocation.
3629 	 */
3630 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3631 		spin_unlock(&last_ptr->refill_lock);
3632 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3633 		return -ENOENT;
3634 	}
3635 
3636 	/* This cluster didn't work out, free it and start over */
3637 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3638 
3639 	if (cluster_bg != bg)
3640 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3641 
3642 refill_cluster:
3643 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3644 		spin_unlock(&last_ptr->refill_lock);
3645 		return -ENOENT;
3646 	}
3647 
3648 	aligned_cluster = max_t(u64,
3649 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3650 			bg->full_stripe_len);
3651 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3652 			ffe_ctl->num_bytes, aligned_cluster);
3653 	if (ret == 0) {
3654 		/* Now pull our allocation out of this cluster */
3655 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3656 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3657 				&ffe_ctl->max_extent_size);
3658 		if (offset) {
3659 			/* We found one, proceed */
3660 			spin_unlock(&last_ptr->refill_lock);
3661 			trace_btrfs_reserve_extent_cluster(bg,
3662 					ffe_ctl->search_start,
3663 					ffe_ctl->num_bytes);
3664 			ffe_ctl->found_offset = offset;
3665 			return 0;
3666 		}
3667 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3668 		   !ffe_ctl->retry_clustered) {
3669 		spin_unlock(&last_ptr->refill_lock);
3670 
3671 		ffe_ctl->retry_clustered = true;
3672 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3673 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3674 		return -EAGAIN;
3675 	}
3676 	/*
3677 	 * At this point we either didn't find a cluster or we weren't able to
3678 	 * allocate a block from our cluster.  Free the cluster we've been
3679 	 * trying to use, and go to the next block group.
3680 	 */
3681 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3682 	spin_unlock(&last_ptr->refill_lock);
3683 	return 1;
3684 }
3685 
3686 /*
3687  * Return >0 to inform caller that we find nothing
3688  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3689  * Return -EAGAIN to inform caller that we need to re-search this block group
3690  */
3691 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3692 					struct find_free_extent_ctl *ffe_ctl)
3693 {
3694 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3695 	u64 offset;
3696 
3697 	/*
3698 	 * We are doing an unclustered allocation, set the fragmented flag so
3699 	 * we don't bother trying to setup a cluster again until we get more
3700 	 * space.
3701 	 */
3702 	if (unlikely(last_ptr)) {
3703 		spin_lock(&last_ptr->lock);
3704 		last_ptr->fragmented = 1;
3705 		spin_unlock(&last_ptr->lock);
3706 	}
3707 	if (ffe_ctl->cached) {
3708 		struct btrfs_free_space_ctl *free_space_ctl;
3709 
3710 		free_space_ctl = bg->free_space_ctl;
3711 		spin_lock(&free_space_ctl->tree_lock);
3712 		if (free_space_ctl->free_space <
3713 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3714 		    ffe_ctl->empty_size) {
3715 			ffe_ctl->total_free_space = max_t(u64,
3716 					ffe_ctl->total_free_space,
3717 					free_space_ctl->free_space);
3718 			spin_unlock(&free_space_ctl->tree_lock);
3719 			return 1;
3720 		}
3721 		spin_unlock(&free_space_ctl->tree_lock);
3722 	}
3723 
3724 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3725 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3726 			&ffe_ctl->max_extent_size);
3727 
3728 	/*
3729 	 * If we didn't find a chunk, and we haven't failed on this block group
3730 	 * before, and this block group is in the middle of caching and we are
3731 	 * ok with waiting, then go ahead and wait for progress to be made, and
3732 	 * set @retry_unclustered to true.
3733 	 *
3734 	 * If @retry_unclustered is true then we've already waited on this
3735 	 * block group once and should move on to the next block group.
3736 	 */
3737 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3738 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3739 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3740 						      ffe_ctl->empty_size);
3741 		ffe_ctl->retry_unclustered = true;
3742 		return -EAGAIN;
3743 	} else if (!offset) {
3744 		return 1;
3745 	}
3746 	ffe_ctl->found_offset = offset;
3747 	return 0;
3748 }
3749 
3750 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3751 				   struct find_free_extent_ctl *ffe_ctl,
3752 				   struct btrfs_block_group **bg_ret)
3753 {
3754 	int ret;
3755 
3756 	/* We want to try and use the cluster allocator, so lets look there */
3757 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3758 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3759 		if (ret >= 0 || ret == -EAGAIN)
3760 			return ret;
3761 		/* ret == -ENOENT case falls through */
3762 	}
3763 
3764 	return find_free_extent_unclustered(block_group, ffe_ctl);
3765 }
3766 
3767 static int do_allocation(struct btrfs_block_group *block_group,
3768 			 struct find_free_extent_ctl *ffe_ctl,
3769 			 struct btrfs_block_group **bg_ret)
3770 {
3771 	switch (ffe_ctl->policy) {
3772 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3773 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3774 	default:
3775 		BUG();
3776 	}
3777 }
3778 
3779 static void release_block_group(struct btrfs_block_group *block_group,
3780 				struct find_free_extent_ctl *ffe_ctl,
3781 				int delalloc)
3782 {
3783 	switch (ffe_ctl->policy) {
3784 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3785 		ffe_ctl->retry_clustered = false;
3786 		ffe_ctl->retry_unclustered = false;
3787 		break;
3788 	default:
3789 		BUG();
3790 	}
3791 
3792 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3793 	       ffe_ctl->index);
3794 	btrfs_release_block_group(block_group, delalloc);
3795 }
3796 
3797 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3798 				   struct btrfs_key *ins)
3799 {
3800 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3801 
3802 	if (!ffe_ctl->use_cluster && last_ptr) {
3803 		spin_lock(&last_ptr->lock);
3804 		last_ptr->window_start = ins->objectid;
3805 		spin_unlock(&last_ptr->lock);
3806 	}
3807 }
3808 
3809 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3810 			 struct btrfs_key *ins)
3811 {
3812 	switch (ffe_ctl->policy) {
3813 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3814 		found_extent_clustered(ffe_ctl, ins);
3815 		break;
3816 	default:
3817 		BUG();
3818 	}
3819 }
3820 
3821 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3822 {
3823 	switch (ffe_ctl->policy) {
3824 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3825 		/*
3826 		 * If we can't allocate a new chunk we've already looped through
3827 		 * at least once, move on to the NO_EMPTY_SIZE case.
3828 		 */
3829 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3830 		return 0;
3831 	default:
3832 		BUG();
3833 	}
3834 }
3835 
3836 /*
3837  * Return >0 means caller needs to re-search for free extent
3838  * Return 0 means we have the needed free extent.
3839  * Return <0 means we failed to locate any free extent.
3840  */
3841 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3842 					struct btrfs_key *ins,
3843 					struct find_free_extent_ctl *ffe_ctl,
3844 					bool full_search)
3845 {
3846 	struct btrfs_root *root = fs_info->extent_root;
3847 	int ret;
3848 
3849 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3850 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3851 		ffe_ctl->orig_have_caching_bg = true;
3852 
3853 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3854 	    ffe_ctl->have_caching_bg)
3855 		return 1;
3856 
3857 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3858 		return 1;
3859 
3860 	if (ins->objectid) {
3861 		found_extent(ffe_ctl, ins);
3862 		return 0;
3863 	}
3864 
3865 	/*
3866 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3867 	 *			caching kthreads as we move along
3868 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3869 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3870 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3871 	 *		       again
3872 	 */
3873 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3874 		ffe_ctl->index = 0;
3875 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3876 			/*
3877 			 * We want to skip the LOOP_CACHING_WAIT step if we
3878 			 * don't have any uncached bgs and we've already done a
3879 			 * full search through.
3880 			 */
3881 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3882 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3883 			else
3884 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3885 		} else {
3886 			ffe_ctl->loop++;
3887 		}
3888 
3889 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3890 			struct btrfs_trans_handle *trans;
3891 			int exist = 0;
3892 
3893 			trans = current->journal_info;
3894 			if (trans)
3895 				exist = 1;
3896 			else
3897 				trans = btrfs_join_transaction(root);
3898 
3899 			if (IS_ERR(trans)) {
3900 				ret = PTR_ERR(trans);
3901 				return ret;
3902 			}
3903 
3904 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3905 						CHUNK_ALLOC_FORCE);
3906 
3907 			/* Do not bail out on ENOSPC since we can do more. */
3908 			if (ret == -ENOSPC)
3909 				ret = chunk_allocation_failed(ffe_ctl);
3910 			else if (ret < 0)
3911 				btrfs_abort_transaction(trans, ret);
3912 			else
3913 				ret = 0;
3914 			if (!exist)
3915 				btrfs_end_transaction(trans);
3916 			if (ret)
3917 				return ret;
3918 		}
3919 
3920 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3921 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3922 				return -ENOSPC;
3923 
3924 			/*
3925 			 * Don't loop again if we already have no empty_size and
3926 			 * no empty_cluster.
3927 			 */
3928 			if (ffe_ctl->empty_size == 0 &&
3929 			    ffe_ctl->empty_cluster == 0)
3930 				return -ENOSPC;
3931 			ffe_ctl->empty_size = 0;
3932 			ffe_ctl->empty_cluster = 0;
3933 		}
3934 		return 1;
3935 	}
3936 	return -ENOSPC;
3937 }
3938 
3939 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3940 					struct find_free_extent_ctl *ffe_ctl,
3941 					struct btrfs_space_info *space_info,
3942 					struct btrfs_key *ins)
3943 {
3944 	/*
3945 	 * If our free space is heavily fragmented we may not be able to make
3946 	 * big contiguous allocations, so instead of doing the expensive search
3947 	 * for free space, simply return ENOSPC with our max_extent_size so we
3948 	 * can go ahead and search for a more manageable chunk.
3949 	 *
3950 	 * If our max_extent_size is large enough for our allocation simply
3951 	 * disable clustering since we will likely not be able to find enough
3952 	 * space to create a cluster and induce latency trying.
3953 	 */
3954 	if (space_info->max_extent_size) {
3955 		spin_lock(&space_info->lock);
3956 		if (space_info->max_extent_size &&
3957 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
3958 			ins->offset = space_info->max_extent_size;
3959 			spin_unlock(&space_info->lock);
3960 			return -ENOSPC;
3961 		} else if (space_info->max_extent_size) {
3962 			ffe_ctl->use_cluster = false;
3963 		}
3964 		spin_unlock(&space_info->lock);
3965 	}
3966 
3967 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3968 					       &ffe_ctl->empty_cluster);
3969 	if (ffe_ctl->last_ptr) {
3970 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3971 
3972 		spin_lock(&last_ptr->lock);
3973 		if (last_ptr->block_group)
3974 			ffe_ctl->hint_byte = last_ptr->window_start;
3975 		if (last_ptr->fragmented) {
3976 			/*
3977 			 * We still set window_start so we can keep track of the
3978 			 * last place we found an allocation to try and save
3979 			 * some time.
3980 			 */
3981 			ffe_ctl->hint_byte = last_ptr->window_start;
3982 			ffe_ctl->use_cluster = false;
3983 		}
3984 		spin_unlock(&last_ptr->lock);
3985 	}
3986 
3987 	return 0;
3988 }
3989 
3990 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3991 			      struct find_free_extent_ctl *ffe_ctl,
3992 			      struct btrfs_space_info *space_info,
3993 			      struct btrfs_key *ins)
3994 {
3995 	switch (ffe_ctl->policy) {
3996 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997 		return prepare_allocation_clustered(fs_info, ffe_ctl,
3998 						    space_info, ins);
3999 	default:
4000 		BUG();
4001 	}
4002 }
4003 
4004 /*
4005  * walks the btree of allocated extents and find a hole of a given size.
4006  * The key ins is changed to record the hole:
4007  * ins->objectid == start position
4008  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4009  * ins->offset == the size of the hole.
4010  * Any available blocks before search_start are skipped.
4011  *
4012  * If there is no suitable free space, we will record the max size of
4013  * the free space extent currently.
4014  *
4015  * The overall logic and call chain:
4016  *
4017  * find_free_extent()
4018  * |- Iterate through all block groups
4019  * |  |- Get a valid block group
4020  * |  |- Try to do clustered allocation in that block group
4021  * |  |- Try to do unclustered allocation in that block group
4022  * |  |- Check if the result is valid
4023  * |  |  |- If valid, then exit
4024  * |  |- Jump to next block group
4025  * |
4026  * |- Push harder to find free extents
4027  *    |- If not found, re-iterate all block groups
4028  */
4029 static noinline int find_free_extent(struct btrfs_root *root,
4030 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
4031 				u64 hint_byte_orig, struct btrfs_key *ins,
4032 				u64 flags, int delalloc)
4033 {
4034 	struct btrfs_fs_info *fs_info = root->fs_info;
4035 	int ret = 0;
4036 	int cache_block_group_error = 0;
4037 	struct btrfs_block_group *block_group = NULL;
4038 	struct find_free_extent_ctl ffe_ctl = {0};
4039 	struct btrfs_space_info *space_info;
4040 	bool full_search = false;
4041 
4042 	WARN_ON(num_bytes < fs_info->sectorsize);
4043 
4044 	ffe_ctl.num_bytes = num_bytes;
4045 	ffe_ctl.empty_size = empty_size;
4046 	ffe_ctl.flags = flags;
4047 	ffe_ctl.search_start = 0;
4048 	ffe_ctl.delalloc = delalloc;
4049 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4050 	ffe_ctl.have_caching_bg = false;
4051 	ffe_ctl.orig_have_caching_bg = false;
4052 	ffe_ctl.found_offset = 0;
4053 	ffe_ctl.hint_byte = hint_byte_orig;
4054 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4055 
4056 	/* For clustered allocation */
4057 	ffe_ctl.retry_clustered = false;
4058 	ffe_ctl.retry_unclustered = false;
4059 	ffe_ctl.last_ptr = NULL;
4060 	ffe_ctl.use_cluster = true;
4061 
4062 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4063 	ins->objectid = 0;
4064 	ins->offset = 0;
4065 
4066 	trace_find_free_extent(root, num_bytes, empty_size, flags);
4067 
4068 	space_info = btrfs_find_space_info(fs_info, flags);
4069 	if (!space_info) {
4070 		btrfs_err(fs_info, "No space info for %llu", flags);
4071 		return -ENOSPC;
4072 	}
4073 
4074 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4075 	if (ret < 0)
4076 		return ret;
4077 
4078 	ffe_ctl.search_start = max(ffe_ctl.search_start,
4079 				   first_logical_byte(fs_info, 0));
4080 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4081 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4082 		block_group = btrfs_lookup_block_group(fs_info,
4083 						       ffe_ctl.search_start);
4084 		/*
4085 		 * we don't want to use the block group if it doesn't match our
4086 		 * allocation bits, or if its not cached.
4087 		 *
4088 		 * However if we are re-searching with an ideal block group
4089 		 * picked out then we don't care that the block group is cached.
4090 		 */
4091 		if (block_group && block_group_bits(block_group, flags) &&
4092 		    block_group->cached != BTRFS_CACHE_NO) {
4093 			down_read(&space_info->groups_sem);
4094 			if (list_empty(&block_group->list) ||
4095 			    block_group->ro) {
4096 				/*
4097 				 * someone is removing this block group,
4098 				 * we can't jump into the have_block_group
4099 				 * target because our list pointers are not
4100 				 * valid
4101 				 */
4102 				btrfs_put_block_group(block_group);
4103 				up_read(&space_info->groups_sem);
4104 			} else {
4105 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4106 						block_group->flags);
4107 				btrfs_lock_block_group(block_group, delalloc);
4108 				goto have_block_group;
4109 			}
4110 		} else if (block_group) {
4111 			btrfs_put_block_group(block_group);
4112 		}
4113 	}
4114 search:
4115 	ffe_ctl.have_caching_bg = false;
4116 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4117 	    ffe_ctl.index == 0)
4118 		full_search = true;
4119 	down_read(&space_info->groups_sem);
4120 	list_for_each_entry(block_group,
4121 			    &space_info->block_groups[ffe_ctl.index], list) {
4122 		struct btrfs_block_group *bg_ret;
4123 
4124 		/* If the block group is read-only, we can skip it entirely. */
4125 		if (unlikely(block_group->ro))
4126 			continue;
4127 
4128 		btrfs_grab_block_group(block_group, delalloc);
4129 		ffe_ctl.search_start = block_group->start;
4130 
4131 		/*
4132 		 * this can happen if we end up cycling through all the
4133 		 * raid types, but we want to make sure we only allocate
4134 		 * for the proper type.
4135 		 */
4136 		if (!block_group_bits(block_group, flags)) {
4137 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4138 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4139 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4140 				BTRFS_BLOCK_GROUP_RAID10;
4141 
4142 			/*
4143 			 * if they asked for extra copies and this block group
4144 			 * doesn't provide them, bail.  This does allow us to
4145 			 * fill raid0 from raid1.
4146 			 */
4147 			if ((flags & extra) && !(block_group->flags & extra))
4148 				goto loop;
4149 
4150 			/*
4151 			 * This block group has different flags than we want.
4152 			 * It's possible that we have MIXED_GROUP flag but no
4153 			 * block group is mixed.  Just skip such block group.
4154 			 */
4155 			btrfs_release_block_group(block_group, delalloc);
4156 			continue;
4157 		}
4158 
4159 have_block_group:
4160 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4161 		if (unlikely(!ffe_ctl.cached)) {
4162 			ffe_ctl.have_caching_bg = true;
4163 			ret = btrfs_cache_block_group(block_group, 0);
4164 
4165 			/*
4166 			 * If we get ENOMEM here or something else we want to
4167 			 * try other block groups, because it may not be fatal.
4168 			 * However if we can't find anything else we need to
4169 			 * save our return here so that we return the actual
4170 			 * error that caused problems, not ENOSPC.
4171 			 */
4172 			if (ret < 0) {
4173 				if (!cache_block_group_error)
4174 					cache_block_group_error = ret;
4175 				ret = 0;
4176 				goto loop;
4177 			}
4178 			ret = 0;
4179 		}
4180 
4181 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4182 			goto loop;
4183 
4184 		bg_ret = NULL;
4185 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4186 		if (ret == 0) {
4187 			if (bg_ret && bg_ret != block_group) {
4188 				btrfs_release_block_group(block_group, delalloc);
4189 				block_group = bg_ret;
4190 			}
4191 		} else if (ret == -EAGAIN) {
4192 			goto have_block_group;
4193 		} else if (ret > 0) {
4194 			goto loop;
4195 		}
4196 
4197 		/* Checks */
4198 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4199 					     fs_info->stripesize);
4200 
4201 		/* move on to the next group */
4202 		if (ffe_ctl.search_start + num_bytes >
4203 		    block_group->start + block_group->length) {
4204 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4205 					     num_bytes);
4206 			goto loop;
4207 		}
4208 
4209 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4210 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4211 				ffe_ctl.search_start - ffe_ctl.found_offset);
4212 
4213 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4214 				num_bytes, delalloc);
4215 		if (ret == -EAGAIN) {
4216 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4217 					     num_bytes);
4218 			goto loop;
4219 		}
4220 		btrfs_inc_block_group_reservations(block_group);
4221 
4222 		/* we are all good, lets return */
4223 		ins->objectid = ffe_ctl.search_start;
4224 		ins->offset = num_bytes;
4225 
4226 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4227 					   num_bytes);
4228 		btrfs_release_block_group(block_group, delalloc);
4229 		break;
4230 loop:
4231 		release_block_group(block_group, &ffe_ctl, delalloc);
4232 		cond_resched();
4233 	}
4234 	up_read(&space_info->groups_sem);
4235 
4236 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4237 	if (ret > 0)
4238 		goto search;
4239 
4240 	if (ret == -ENOSPC && !cache_block_group_error) {
4241 		/*
4242 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4243 		 * any contiguous hole.
4244 		 */
4245 		if (!ffe_ctl.max_extent_size)
4246 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4247 		spin_lock(&space_info->lock);
4248 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4249 		spin_unlock(&space_info->lock);
4250 		ins->offset = ffe_ctl.max_extent_size;
4251 	} else if (ret == -ENOSPC) {
4252 		ret = cache_block_group_error;
4253 	}
4254 	return ret;
4255 }
4256 
4257 /*
4258  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4259  *			  hole that is at least as big as @num_bytes.
4260  *
4261  * @root           -	The root that will contain this extent
4262  *
4263  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4264  *			is used for accounting purposes. This value differs
4265  *			from @num_bytes only in the case of compressed extents.
4266  *
4267  * @num_bytes      -	Number of bytes to allocate on-disk.
4268  *
4269  * @min_alloc_size -	Indicates the minimum amount of space that the
4270  *			allocator should try to satisfy. In some cases
4271  *			@num_bytes may be larger than what is required and if
4272  *			the filesystem is fragmented then allocation fails.
4273  *			However, the presence of @min_alloc_size gives a
4274  *			chance to try and satisfy the smaller allocation.
4275  *
4276  * @empty_size     -	A hint that you plan on doing more COW. This is the
4277  *			size in bytes the allocator should try to find free
4278  *			next to the block it returns.  This is just a hint and
4279  *			may be ignored by the allocator.
4280  *
4281  * @hint_byte      -	Hint to the allocator to start searching above the byte
4282  *			address passed. It might be ignored.
4283  *
4284  * @ins            -	This key is modified to record the found hole. It will
4285  *			have the following values:
4286  *			ins->objectid == start position
4287  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4288  *			ins->offset == the size of the hole.
4289  *
4290  * @is_data        -	Boolean flag indicating whether an extent is
4291  *			allocated for data (true) or metadata (false)
4292  *
4293  * @delalloc       -	Boolean flag indicating whether this allocation is for
4294  *			delalloc or not. If 'true' data_rwsem of block groups
4295  *			is going to be acquired.
4296  *
4297  *
4298  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4299  * case -ENOSPC is returned then @ins->offset will contain the size of the
4300  * largest available hole the allocator managed to find.
4301  */
4302 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4303 			 u64 num_bytes, u64 min_alloc_size,
4304 			 u64 empty_size, u64 hint_byte,
4305 			 struct btrfs_key *ins, int is_data, int delalloc)
4306 {
4307 	struct btrfs_fs_info *fs_info = root->fs_info;
4308 	bool final_tried = num_bytes == min_alloc_size;
4309 	u64 flags;
4310 	int ret;
4311 
4312 	flags = get_alloc_profile_by_root(root, is_data);
4313 again:
4314 	WARN_ON(num_bytes < fs_info->sectorsize);
4315 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4316 			       hint_byte, ins, flags, delalloc);
4317 	if (!ret && !is_data) {
4318 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4319 	} else if (ret == -ENOSPC) {
4320 		if (!final_tried && ins->offset) {
4321 			num_bytes = min(num_bytes >> 1, ins->offset);
4322 			num_bytes = round_down(num_bytes,
4323 					       fs_info->sectorsize);
4324 			num_bytes = max(num_bytes, min_alloc_size);
4325 			ram_bytes = num_bytes;
4326 			if (num_bytes == min_alloc_size)
4327 				final_tried = true;
4328 			goto again;
4329 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4330 			struct btrfs_space_info *sinfo;
4331 
4332 			sinfo = btrfs_find_space_info(fs_info, flags);
4333 			btrfs_err(fs_info,
4334 				  "allocation failed flags %llu, wanted %llu",
4335 				  flags, num_bytes);
4336 			if (sinfo)
4337 				btrfs_dump_space_info(fs_info, sinfo,
4338 						      num_bytes, 1);
4339 		}
4340 	}
4341 
4342 	return ret;
4343 }
4344 
4345 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4346 			       u64 start, u64 len, int delalloc)
4347 {
4348 	struct btrfs_block_group *cache;
4349 
4350 	cache = btrfs_lookup_block_group(fs_info, start);
4351 	if (!cache) {
4352 		btrfs_err(fs_info, "Unable to find block group for %llu",
4353 			  start);
4354 		return -ENOSPC;
4355 	}
4356 
4357 	btrfs_add_free_space(cache, start, len);
4358 	btrfs_free_reserved_bytes(cache, len, delalloc);
4359 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4360 
4361 	btrfs_put_block_group(cache);
4362 	return 0;
4363 }
4364 
4365 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4366 			      u64 len)
4367 {
4368 	struct btrfs_block_group *cache;
4369 	int ret = 0;
4370 
4371 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4372 	if (!cache) {
4373 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4374 			  start);
4375 		return -ENOSPC;
4376 	}
4377 
4378 	ret = pin_down_extent(trans, cache, start, len, 1);
4379 	btrfs_put_block_group(cache);
4380 	return ret;
4381 }
4382 
4383 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4384 				      u64 parent, u64 root_objectid,
4385 				      u64 flags, u64 owner, u64 offset,
4386 				      struct btrfs_key *ins, int ref_mod)
4387 {
4388 	struct btrfs_fs_info *fs_info = trans->fs_info;
4389 	int ret;
4390 	struct btrfs_extent_item *extent_item;
4391 	struct btrfs_extent_inline_ref *iref;
4392 	struct btrfs_path *path;
4393 	struct extent_buffer *leaf;
4394 	int type;
4395 	u32 size;
4396 
4397 	if (parent > 0)
4398 		type = BTRFS_SHARED_DATA_REF_KEY;
4399 	else
4400 		type = BTRFS_EXTENT_DATA_REF_KEY;
4401 
4402 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4403 
4404 	path = btrfs_alloc_path();
4405 	if (!path)
4406 		return -ENOMEM;
4407 
4408 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4409 				      ins, size);
4410 	if (ret) {
4411 		btrfs_free_path(path);
4412 		return ret;
4413 	}
4414 
4415 	leaf = path->nodes[0];
4416 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4417 				     struct btrfs_extent_item);
4418 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4419 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4420 	btrfs_set_extent_flags(leaf, extent_item,
4421 			       flags | BTRFS_EXTENT_FLAG_DATA);
4422 
4423 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4424 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4425 	if (parent > 0) {
4426 		struct btrfs_shared_data_ref *ref;
4427 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4428 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4429 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4430 	} else {
4431 		struct btrfs_extent_data_ref *ref;
4432 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4433 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4434 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4435 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4436 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4437 	}
4438 
4439 	btrfs_mark_buffer_dirty(path->nodes[0]);
4440 	btrfs_free_path(path);
4441 
4442 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4443 	if (ret)
4444 		return ret;
4445 
4446 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4447 	if (ret) { /* -ENOENT, logic error */
4448 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4449 			ins->objectid, ins->offset);
4450 		BUG();
4451 	}
4452 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4453 	return ret;
4454 }
4455 
4456 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4457 				     struct btrfs_delayed_ref_node *node,
4458 				     struct btrfs_delayed_extent_op *extent_op)
4459 {
4460 	struct btrfs_fs_info *fs_info = trans->fs_info;
4461 	int ret;
4462 	struct btrfs_extent_item *extent_item;
4463 	struct btrfs_key extent_key;
4464 	struct btrfs_tree_block_info *block_info;
4465 	struct btrfs_extent_inline_ref *iref;
4466 	struct btrfs_path *path;
4467 	struct extent_buffer *leaf;
4468 	struct btrfs_delayed_tree_ref *ref;
4469 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4470 	u64 num_bytes;
4471 	u64 flags = extent_op->flags_to_set;
4472 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4473 
4474 	ref = btrfs_delayed_node_to_tree_ref(node);
4475 
4476 	extent_key.objectid = node->bytenr;
4477 	if (skinny_metadata) {
4478 		extent_key.offset = ref->level;
4479 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4480 		num_bytes = fs_info->nodesize;
4481 	} else {
4482 		extent_key.offset = node->num_bytes;
4483 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4484 		size += sizeof(*block_info);
4485 		num_bytes = node->num_bytes;
4486 	}
4487 
4488 	path = btrfs_alloc_path();
4489 	if (!path)
4490 		return -ENOMEM;
4491 
4492 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4493 				      &extent_key, size);
4494 	if (ret) {
4495 		btrfs_free_path(path);
4496 		return ret;
4497 	}
4498 
4499 	leaf = path->nodes[0];
4500 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4501 				     struct btrfs_extent_item);
4502 	btrfs_set_extent_refs(leaf, extent_item, 1);
4503 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4504 	btrfs_set_extent_flags(leaf, extent_item,
4505 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4506 
4507 	if (skinny_metadata) {
4508 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4509 	} else {
4510 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4511 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4512 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4513 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4514 	}
4515 
4516 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4517 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4518 		btrfs_set_extent_inline_ref_type(leaf, iref,
4519 						 BTRFS_SHARED_BLOCK_REF_KEY);
4520 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4521 	} else {
4522 		btrfs_set_extent_inline_ref_type(leaf, iref,
4523 						 BTRFS_TREE_BLOCK_REF_KEY);
4524 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4525 	}
4526 
4527 	btrfs_mark_buffer_dirty(leaf);
4528 	btrfs_free_path(path);
4529 
4530 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4531 					  num_bytes);
4532 	if (ret)
4533 		return ret;
4534 
4535 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4536 				       fs_info->nodesize, 1);
4537 	if (ret) { /* -ENOENT, logic error */
4538 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4539 			extent_key.objectid, extent_key.offset);
4540 		BUG();
4541 	}
4542 
4543 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4544 					  fs_info->nodesize);
4545 	return ret;
4546 }
4547 
4548 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4549 				     struct btrfs_root *root, u64 owner,
4550 				     u64 offset, u64 ram_bytes,
4551 				     struct btrfs_key *ins)
4552 {
4553 	struct btrfs_ref generic_ref = { 0 };
4554 	int ret;
4555 
4556 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4557 
4558 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4559 			       ins->objectid, ins->offset, 0);
4560 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4561 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4562 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4563 					 ram_bytes, NULL, NULL);
4564 	return ret;
4565 }
4566 
4567 /*
4568  * this is used by the tree logging recovery code.  It records that
4569  * an extent has been allocated and makes sure to clear the free
4570  * space cache bits as well
4571  */
4572 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4573 				   u64 root_objectid, u64 owner, u64 offset,
4574 				   struct btrfs_key *ins)
4575 {
4576 	struct btrfs_fs_info *fs_info = trans->fs_info;
4577 	int ret;
4578 	struct btrfs_block_group *block_group;
4579 	struct btrfs_space_info *space_info;
4580 
4581 	/*
4582 	 * Mixed block groups will exclude before processing the log so we only
4583 	 * need to do the exclude dance if this fs isn't mixed.
4584 	 */
4585 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4586 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4587 					      ins->offset);
4588 		if (ret)
4589 			return ret;
4590 	}
4591 
4592 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4593 	if (!block_group)
4594 		return -EINVAL;
4595 
4596 	space_info = block_group->space_info;
4597 	spin_lock(&space_info->lock);
4598 	spin_lock(&block_group->lock);
4599 	space_info->bytes_reserved += ins->offset;
4600 	block_group->reserved += ins->offset;
4601 	spin_unlock(&block_group->lock);
4602 	spin_unlock(&space_info->lock);
4603 
4604 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4605 					 offset, ins, 1);
4606 	if (ret)
4607 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4608 	btrfs_put_block_group(block_group);
4609 	return ret;
4610 }
4611 
4612 static struct extent_buffer *
4613 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4614 		      u64 bytenr, int level, u64 owner,
4615 		      enum btrfs_lock_nesting nest)
4616 {
4617 	struct btrfs_fs_info *fs_info = root->fs_info;
4618 	struct extent_buffer *buf;
4619 
4620 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4621 	if (IS_ERR(buf))
4622 		return buf;
4623 
4624 	/*
4625 	 * Extra safety check in case the extent tree is corrupted and extent
4626 	 * allocator chooses to use a tree block which is already used and
4627 	 * locked.
4628 	 */
4629 	if (buf->lock_owner == current->pid) {
4630 		btrfs_err_rl(fs_info,
4631 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4632 			buf->start, btrfs_header_owner(buf), current->pid);
4633 		free_extent_buffer(buf);
4634 		return ERR_PTR(-EUCLEAN);
4635 	}
4636 
4637 	/*
4638 	 * This needs to stay, because we could allocate a freed block from an
4639 	 * old tree into a new tree, so we need to make sure this new block is
4640 	 * set to the appropriate level and owner.
4641 	 */
4642 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4643 	__btrfs_tree_lock(buf, nest);
4644 	btrfs_clean_tree_block(buf);
4645 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4646 
4647 	set_extent_buffer_uptodate(buf);
4648 
4649 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4650 	btrfs_set_header_level(buf, level);
4651 	btrfs_set_header_bytenr(buf, buf->start);
4652 	btrfs_set_header_generation(buf, trans->transid);
4653 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4654 	btrfs_set_header_owner(buf, owner);
4655 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4656 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4657 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4658 		buf->log_index = root->log_transid % 2;
4659 		/*
4660 		 * we allow two log transactions at a time, use different
4661 		 * EXTENT bit to differentiate dirty pages.
4662 		 */
4663 		if (buf->log_index == 0)
4664 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4665 					buf->start + buf->len - 1, GFP_NOFS);
4666 		else
4667 			set_extent_new(&root->dirty_log_pages, buf->start,
4668 					buf->start + buf->len - 1);
4669 	} else {
4670 		buf->log_index = -1;
4671 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4672 			 buf->start + buf->len - 1, GFP_NOFS);
4673 	}
4674 	trans->dirty = true;
4675 	/* this returns a buffer locked for blocking */
4676 	return buf;
4677 }
4678 
4679 /*
4680  * finds a free extent and does all the dirty work required for allocation
4681  * returns the tree buffer or an ERR_PTR on error.
4682  */
4683 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4684 					     struct btrfs_root *root,
4685 					     u64 parent, u64 root_objectid,
4686 					     const struct btrfs_disk_key *key,
4687 					     int level, u64 hint,
4688 					     u64 empty_size,
4689 					     enum btrfs_lock_nesting nest)
4690 {
4691 	struct btrfs_fs_info *fs_info = root->fs_info;
4692 	struct btrfs_key ins;
4693 	struct btrfs_block_rsv *block_rsv;
4694 	struct extent_buffer *buf;
4695 	struct btrfs_delayed_extent_op *extent_op;
4696 	struct btrfs_ref generic_ref = { 0 };
4697 	u64 flags = 0;
4698 	int ret;
4699 	u32 blocksize = fs_info->nodesize;
4700 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4701 
4702 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4703 	if (btrfs_is_testing(fs_info)) {
4704 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4705 					    level, root_objectid, nest);
4706 		if (!IS_ERR(buf))
4707 			root->alloc_bytenr += blocksize;
4708 		return buf;
4709 	}
4710 #endif
4711 
4712 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4713 	if (IS_ERR(block_rsv))
4714 		return ERR_CAST(block_rsv);
4715 
4716 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4717 				   empty_size, hint, &ins, 0, 0);
4718 	if (ret)
4719 		goto out_unuse;
4720 
4721 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4722 				    root_objectid, nest);
4723 	if (IS_ERR(buf)) {
4724 		ret = PTR_ERR(buf);
4725 		goto out_free_reserved;
4726 	}
4727 
4728 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4729 		if (parent == 0)
4730 			parent = ins.objectid;
4731 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4732 	} else
4733 		BUG_ON(parent > 0);
4734 
4735 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4736 		extent_op = btrfs_alloc_delayed_extent_op();
4737 		if (!extent_op) {
4738 			ret = -ENOMEM;
4739 			goto out_free_buf;
4740 		}
4741 		if (key)
4742 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4743 		else
4744 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4745 		extent_op->flags_to_set = flags;
4746 		extent_op->update_key = skinny_metadata ? false : true;
4747 		extent_op->update_flags = true;
4748 		extent_op->is_data = false;
4749 		extent_op->level = level;
4750 
4751 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4752 				       ins.objectid, ins.offset, parent);
4753 		generic_ref.real_root = root->root_key.objectid;
4754 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4755 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4756 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4757 						 extent_op, NULL, NULL);
4758 		if (ret)
4759 			goto out_free_delayed;
4760 	}
4761 	return buf;
4762 
4763 out_free_delayed:
4764 	btrfs_free_delayed_extent_op(extent_op);
4765 out_free_buf:
4766 	free_extent_buffer(buf);
4767 out_free_reserved:
4768 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4769 out_unuse:
4770 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4771 	return ERR_PTR(ret);
4772 }
4773 
4774 struct walk_control {
4775 	u64 refs[BTRFS_MAX_LEVEL];
4776 	u64 flags[BTRFS_MAX_LEVEL];
4777 	struct btrfs_key update_progress;
4778 	struct btrfs_key drop_progress;
4779 	int drop_level;
4780 	int stage;
4781 	int level;
4782 	int shared_level;
4783 	int update_ref;
4784 	int keep_locks;
4785 	int reada_slot;
4786 	int reada_count;
4787 	int restarted;
4788 };
4789 
4790 #define DROP_REFERENCE	1
4791 #define UPDATE_BACKREF	2
4792 
4793 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4794 				     struct btrfs_root *root,
4795 				     struct walk_control *wc,
4796 				     struct btrfs_path *path)
4797 {
4798 	struct btrfs_fs_info *fs_info = root->fs_info;
4799 	u64 bytenr;
4800 	u64 generation;
4801 	u64 refs;
4802 	u64 flags;
4803 	u32 nritems;
4804 	struct btrfs_key key;
4805 	struct extent_buffer *eb;
4806 	int ret;
4807 	int slot;
4808 	int nread = 0;
4809 
4810 	if (path->slots[wc->level] < wc->reada_slot) {
4811 		wc->reada_count = wc->reada_count * 2 / 3;
4812 		wc->reada_count = max(wc->reada_count, 2);
4813 	} else {
4814 		wc->reada_count = wc->reada_count * 3 / 2;
4815 		wc->reada_count = min_t(int, wc->reada_count,
4816 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4817 	}
4818 
4819 	eb = path->nodes[wc->level];
4820 	nritems = btrfs_header_nritems(eb);
4821 
4822 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4823 		if (nread >= wc->reada_count)
4824 			break;
4825 
4826 		cond_resched();
4827 		bytenr = btrfs_node_blockptr(eb, slot);
4828 		generation = btrfs_node_ptr_generation(eb, slot);
4829 
4830 		if (slot == path->slots[wc->level])
4831 			goto reada;
4832 
4833 		if (wc->stage == UPDATE_BACKREF &&
4834 		    generation <= root->root_key.offset)
4835 			continue;
4836 
4837 		/* We don't lock the tree block, it's OK to be racy here */
4838 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4839 					       wc->level - 1, 1, &refs,
4840 					       &flags);
4841 		/* We don't care about errors in readahead. */
4842 		if (ret < 0)
4843 			continue;
4844 		BUG_ON(refs == 0);
4845 
4846 		if (wc->stage == DROP_REFERENCE) {
4847 			if (refs == 1)
4848 				goto reada;
4849 
4850 			if (wc->level == 1 &&
4851 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4852 				continue;
4853 			if (!wc->update_ref ||
4854 			    generation <= root->root_key.offset)
4855 				continue;
4856 			btrfs_node_key_to_cpu(eb, &key, slot);
4857 			ret = btrfs_comp_cpu_keys(&key,
4858 						  &wc->update_progress);
4859 			if (ret < 0)
4860 				continue;
4861 		} else {
4862 			if (wc->level == 1 &&
4863 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4864 				continue;
4865 		}
4866 reada:
4867 		btrfs_readahead_node_child(eb, slot);
4868 		nread++;
4869 	}
4870 	wc->reada_slot = slot;
4871 }
4872 
4873 /*
4874  * helper to process tree block while walking down the tree.
4875  *
4876  * when wc->stage == UPDATE_BACKREF, this function updates
4877  * back refs for pointers in the block.
4878  *
4879  * NOTE: return value 1 means we should stop walking down.
4880  */
4881 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4882 				   struct btrfs_root *root,
4883 				   struct btrfs_path *path,
4884 				   struct walk_control *wc, int lookup_info)
4885 {
4886 	struct btrfs_fs_info *fs_info = root->fs_info;
4887 	int level = wc->level;
4888 	struct extent_buffer *eb = path->nodes[level];
4889 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4890 	int ret;
4891 
4892 	if (wc->stage == UPDATE_BACKREF &&
4893 	    btrfs_header_owner(eb) != root->root_key.objectid)
4894 		return 1;
4895 
4896 	/*
4897 	 * when reference count of tree block is 1, it won't increase
4898 	 * again. once full backref flag is set, we never clear it.
4899 	 */
4900 	if (lookup_info &&
4901 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4902 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4903 		BUG_ON(!path->locks[level]);
4904 		ret = btrfs_lookup_extent_info(trans, fs_info,
4905 					       eb->start, level, 1,
4906 					       &wc->refs[level],
4907 					       &wc->flags[level]);
4908 		BUG_ON(ret == -ENOMEM);
4909 		if (ret)
4910 			return ret;
4911 		BUG_ON(wc->refs[level] == 0);
4912 	}
4913 
4914 	if (wc->stage == DROP_REFERENCE) {
4915 		if (wc->refs[level] > 1)
4916 			return 1;
4917 
4918 		if (path->locks[level] && !wc->keep_locks) {
4919 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4920 			path->locks[level] = 0;
4921 		}
4922 		return 0;
4923 	}
4924 
4925 	/* wc->stage == UPDATE_BACKREF */
4926 	if (!(wc->flags[level] & flag)) {
4927 		BUG_ON(!path->locks[level]);
4928 		ret = btrfs_inc_ref(trans, root, eb, 1);
4929 		BUG_ON(ret); /* -ENOMEM */
4930 		ret = btrfs_dec_ref(trans, root, eb, 0);
4931 		BUG_ON(ret); /* -ENOMEM */
4932 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4933 						  btrfs_header_level(eb), 0);
4934 		BUG_ON(ret); /* -ENOMEM */
4935 		wc->flags[level] |= flag;
4936 	}
4937 
4938 	/*
4939 	 * the block is shared by multiple trees, so it's not good to
4940 	 * keep the tree lock
4941 	 */
4942 	if (path->locks[level] && level > 0) {
4943 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4944 		path->locks[level] = 0;
4945 	}
4946 	return 0;
4947 }
4948 
4949 /*
4950  * This is used to verify a ref exists for this root to deal with a bug where we
4951  * would have a drop_progress key that hadn't been updated properly.
4952  */
4953 static int check_ref_exists(struct btrfs_trans_handle *trans,
4954 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4955 			    int level)
4956 {
4957 	struct btrfs_path *path;
4958 	struct btrfs_extent_inline_ref *iref;
4959 	int ret;
4960 
4961 	path = btrfs_alloc_path();
4962 	if (!path)
4963 		return -ENOMEM;
4964 
4965 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4966 				    root->fs_info->nodesize, parent,
4967 				    root->root_key.objectid, level, 0);
4968 	btrfs_free_path(path);
4969 	if (ret == -ENOENT)
4970 		return 0;
4971 	if (ret < 0)
4972 		return ret;
4973 	return 1;
4974 }
4975 
4976 /*
4977  * helper to process tree block pointer.
4978  *
4979  * when wc->stage == DROP_REFERENCE, this function checks
4980  * reference count of the block pointed to. if the block
4981  * is shared and we need update back refs for the subtree
4982  * rooted at the block, this function changes wc->stage to
4983  * UPDATE_BACKREF. if the block is shared and there is no
4984  * need to update back, this function drops the reference
4985  * to the block.
4986  *
4987  * NOTE: return value 1 means we should stop walking down.
4988  */
4989 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4990 				 struct btrfs_root *root,
4991 				 struct btrfs_path *path,
4992 				 struct walk_control *wc, int *lookup_info)
4993 {
4994 	struct btrfs_fs_info *fs_info = root->fs_info;
4995 	u64 bytenr;
4996 	u64 generation;
4997 	u64 parent;
4998 	struct btrfs_key key;
4999 	struct btrfs_key first_key;
5000 	struct btrfs_ref ref = { 0 };
5001 	struct extent_buffer *next;
5002 	int level = wc->level;
5003 	int reada = 0;
5004 	int ret = 0;
5005 	bool need_account = false;
5006 
5007 	generation = btrfs_node_ptr_generation(path->nodes[level],
5008 					       path->slots[level]);
5009 	/*
5010 	 * if the lower level block was created before the snapshot
5011 	 * was created, we know there is no need to update back refs
5012 	 * for the subtree
5013 	 */
5014 	if (wc->stage == UPDATE_BACKREF &&
5015 	    generation <= root->root_key.offset) {
5016 		*lookup_info = 1;
5017 		return 1;
5018 	}
5019 
5020 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5021 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5022 			      path->slots[level]);
5023 
5024 	next = find_extent_buffer(fs_info, bytenr);
5025 	if (!next) {
5026 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5027 				root->root_key.objectid, level - 1);
5028 		if (IS_ERR(next))
5029 			return PTR_ERR(next);
5030 		reada = 1;
5031 	}
5032 	btrfs_tree_lock(next);
5033 
5034 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5035 				       &wc->refs[level - 1],
5036 				       &wc->flags[level - 1]);
5037 	if (ret < 0)
5038 		goto out_unlock;
5039 
5040 	if (unlikely(wc->refs[level - 1] == 0)) {
5041 		btrfs_err(fs_info, "Missing references.");
5042 		ret = -EIO;
5043 		goto out_unlock;
5044 	}
5045 	*lookup_info = 0;
5046 
5047 	if (wc->stage == DROP_REFERENCE) {
5048 		if (wc->refs[level - 1] > 1) {
5049 			need_account = true;
5050 			if (level == 1 &&
5051 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5052 				goto skip;
5053 
5054 			if (!wc->update_ref ||
5055 			    generation <= root->root_key.offset)
5056 				goto skip;
5057 
5058 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5059 					      path->slots[level]);
5060 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5061 			if (ret < 0)
5062 				goto skip;
5063 
5064 			wc->stage = UPDATE_BACKREF;
5065 			wc->shared_level = level - 1;
5066 		}
5067 	} else {
5068 		if (level == 1 &&
5069 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5070 			goto skip;
5071 	}
5072 
5073 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5074 		btrfs_tree_unlock(next);
5075 		free_extent_buffer(next);
5076 		next = NULL;
5077 		*lookup_info = 1;
5078 	}
5079 
5080 	if (!next) {
5081 		if (reada && level == 1)
5082 			reada_walk_down(trans, root, wc, path);
5083 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5084 				       generation, level - 1, &first_key);
5085 		if (IS_ERR(next)) {
5086 			return PTR_ERR(next);
5087 		} else if (!extent_buffer_uptodate(next)) {
5088 			free_extent_buffer(next);
5089 			return -EIO;
5090 		}
5091 		btrfs_tree_lock(next);
5092 	}
5093 
5094 	level--;
5095 	ASSERT(level == btrfs_header_level(next));
5096 	if (level != btrfs_header_level(next)) {
5097 		btrfs_err(root->fs_info, "mismatched level");
5098 		ret = -EIO;
5099 		goto out_unlock;
5100 	}
5101 	path->nodes[level] = next;
5102 	path->slots[level] = 0;
5103 	path->locks[level] = BTRFS_WRITE_LOCK;
5104 	wc->level = level;
5105 	if (wc->level == 1)
5106 		wc->reada_slot = 0;
5107 	return 0;
5108 skip:
5109 	wc->refs[level - 1] = 0;
5110 	wc->flags[level - 1] = 0;
5111 	if (wc->stage == DROP_REFERENCE) {
5112 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5113 			parent = path->nodes[level]->start;
5114 		} else {
5115 			ASSERT(root->root_key.objectid ==
5116 			       btrfs_header_owner(path->nodes[level]));
5117 			if (root->root_key.objectid !=
5118 			    btrfs_header_owner(path->nodes[level])) {
5119 				btrfs_err(root->fs_info,
5120 						"mismatched block owner");
5121 				ret = -EIO;
5122 				goto out_unlock;
5123 			}
5124 			parent = 0;
5125 		}
5126 
5127 		/*
5128 		 * If we had a drop_progress we need to verify the refs are set
5129 		 * as expected.  If we find our ref then we know that from here
5130 		 * on out everything should be correct, and we can clear the
5131 		 * ->restarted flag.
5132 		 */
5133 		if (wc->restarted) {
5134 			ret = check_ref_exists(trans, root, bytenr, parent,
5135 					       level - 1);
5136 			if (ret < 0)
5137 				goto out_unlock;
5138 			if (ret == 0)
5139 				goto no_delete;
5140 			ret = 0;
5141 			wc->restarted = 0;
5142 		}
5143 
5144 		/*
5145 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5146 		 * already accounted them at merge time (replace_path),
5147 		 * thus we could skip expensive subtree trace here.
5148 		 */
5149 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5150 		    need_account) {
5151 			ret = btrfs_qgroup_trace_subtree(trans, next,
5152 							 generation, level - 1);
5153 			if (ret) {
5154 				btrfs_err_rl(fs_info,
5155 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5156 					     ret);
5157 			}
5158 		}
5159 
5160 		/*
5161 		 * We need to update the next key in our walk control so we can
5162 		 * update the drop_progress key accordingly.  We don't care if
5163 		 * find_next_key doesn't find a key because that means we're at
5164 		 * the end and are going to clean up now.
5165 		 */
5166 		wc->drop_level = level;
5167 		find_next_key(path, level, &wc->drop_progress);
5168 
5169 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5170 				       fs_info->nodesize, parent);
5171 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5172 		ret = btrfs_free_extent(trans, &ref);
5173 		if (ret)
5174 			goto out_unlock;
5175 	}
5176 no_delete:
5177 	*lookup_info = 1;
5178 	ret = 1;
5179 
5180 out_unlock:
5181 	btrfs_tree_unlock(next);
5182 	free_extent_buffer(next);
5183 
5184 	return ret;
5185 }
5186 
5187 /*
5188  * helper to process tree block while walking up the tree.
5189  *
5190  * when wc->stage == DROP_REFERENCE, this function drops
5191  * reference count on the block.
5192  *
5193  * when wc->stage == UPDATE_BACKREF, this function changes
5194  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5195  * to UPDATE_BACKREF previously while processing the block.
5196  *
5197  * NOTE: return value 1 means we should stop walking up.
5198  */
5199 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5200 				 struct btrfs_root *root,
5201 				 struct btrfs_path *path,
5202 				 struct walk_control *wc)
5203 {
5204 	struct btrfs_fs_info *fs_info = root->fs_info;
5205 	int ret;
5206 	int level = wc->level;
5207 	struct extent_buffer *eb = path->nodes[level];
5208 	u64 parent = 0;
5209 
5210 	if (wc->stage == UPDATE_BACKREF) {
5211 		BUG_ON(wc->shared_level < level);
5212 		if (level < wc->shared_level)
5213 			goto out;
5214 
5215 		ret = find_next_key(path, level + 1, &wc->update_progress);
5216 		if (ret > 0)
5217 			wc->update_ref = 0;
5218 
5219 		wc->stage = DROP_REFERENCE;
5220 		wc->shared_level = -1;
5221 		path->slots[level] = 0;
5222 
5223 		/*
5224 		 * check reference count again if the block isn't locked.
5225 		 * we should start walking down the tree again if reference
5226 		 * count is one.
5227 		 */
5228 		if (!path->locks[level]) {
5229 			BUG_ON(level == 0);
5230 			btrfs_tree_lock(eb);
5231 			path->locks[level] = BTRFS_WRITE_LOCK;
5232 
5233 			ret = btrfs_lookup_extent_info(trans, fs_info,
5234 						       eb->start, level, 1,
5235 						       &wc->refs[level],
5236 						       &wc->flags[level]);
5237 			if (ret < 0) {
5238 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5239 				path->locks[level] = 0;
5240 				return ret;
5241 			}
5242 			BUG_ON(wc->refs[level] == 0);
5243 			if (wc->refs[level] == 1) {
5244 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5245 				path->locks[level] = 0;
5246 				return 1;
5247 			}
5248 		}
5249 	}
5250 
5251 	/* wc->stage == DROP_REFERENCE */
5252 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5253 
5254 	if (wc->refs[level] == 1) {
5255 		if (level == 0) {
5256 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5257 				ret = btrfs_dec_ref(trans, root, eb, 1);
5258 			else
5259 				ret = btrfs_dec_ref(trans, root, eb, 0);
5260 			BUG_ON(ret); /* -ENOMEM */
5261 			if (is_fstree(root->root_key.objectid)) {
5262 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5263 				if (ret) {
5264 					btrfs_err_rl(fs_info,
5265 	"error %d accounting leaf items, quota is out of sync, rescan required",
5266 					     ret);
5267 				}
5268 			}
5269 		}
5270 		/* make block locked assertion in btrfs_clean_tree_block happy */
5271 		if (!path->locks[level] &&
5272 		    btrfs_header_generation(eb) == trans->transid) {
5273 			btrfs_tree_lock(eb);
5274 			path->locks[level] = BTRFS_WRITE_LOCK;
5275 		}
5276 		btrfs_clean_tree_block(eb);
5277 	}
5278 
5279 	if (eb == root->node) {
5280 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281 			parent = eb->start;
5282 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5283 			goto owner_mismatch;
5284 	} else {
5285 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5286 			parent = path->nodes[level + 1]->start;
5287 		else if (root->root_key.objectid !=
5288 			 btrfs_header_owner(path->nodes[level + 1]))
5289 			goto owner_mismatch;
5290 	}
5291 
5292 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5293 out:
5294 	wc->refs[level] = 0;
5295 	wc->flags[level] = 0;
5296 	return 0;
5297 
5298 owner_mismatch:
5299 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5300 		     btrfs_header_owner(eb), root->root_key.objectid);
5301 	return -EUCLEAN;
5302 }
5303 
5304 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5305 				   struct btrfs_root *root,
5306 				   struct btrfs_path *path,
5307 				   struct walk_control *wc)
5308 {
5309 	int level = wc->level;
5310 	int lookup_info = 1;
5311 	int ret;
5312 
5313 	while (level >= 0) {
5314 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5315 		if (ret > 0)
5316 			break;
5317 
5318 		if (level == 0)
5319 			break;
5320 
5321 		if (path->slots[level] >=
5322 		    btrfs_header_nritems(path->nodes[level]))
5323 			break;
5324 
5325 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5326 		if (ret > 0) {
5327 			path->slots[level]++;
5328 			continue;
5329 		} else if (ret < 0)
5330 			return ret;
5331 		level = wc->level;
5332 	}
5333 	return 0;
5334 }
5335 
5336 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5337 				 struct btrfs_root *root,
5338 				 struct btrfs_path *path,
5339 				 struct walk_control *wc, int max_level)
5340 {
5341 	int level = wc->level;
5342 	int ret;
5343 
5344 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5345 	while (level < max_level && path->nodes[level]) {
5346 		wc->level = level;
5347 		if (path->slots[level] + 1 <
5348 		    btrfs_header_nritems(path->nodes[level])) {
5349 			path->slots[level]++;
5350 			return 0;
5351 		} else {
5352 			ret = walk_up_proc(trans, root, path, wc);
5353 			if (ret > 0)
5354 				return 0;
5355 			if (ret < 0)
5356 				return ret;
5357 
5358 			if (path->locks[level]) {
5359 				btrfs_tree_unlock_rw(path->nodes[level],
5360 						     path->locks[level]);
5361 				path->locks[level] = 0;
5362 			}
5363 			free_extent_buffer(path->nodes[level]);
5364 			path->nodes[level] = NULL;
5365 			level++;
5366 		}
5367 	}
5368 	return 1;
5369 }
5370 
5371 /*
5372  * drop a subvolume tree.
5373  *
5374  * this function traverses the tree freeing any blocks that only
5375  * referenced by the tree.
5376  *
5377  * when a shared tree block is found. this function decreases its
5378  * reference count by one. if update_ref is true, this function
5379  * also make sure backrefs for the shared block and all lower level
5380  * blocks are properly updated.
5381  *
5382  * If called with for_reloc == 0, may exit early with -EAGAIN
5383  */
5384 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5385 {
5386 	struct btrfs_fs_info *fs_info = root->fs_info;
5387 	struct btrfs_path *path;
5388 	struct btrfs_trans_handle *trans;
5389 	struct btrfs_root *tree_root = fs_info->tree_root;
5390 	struct btrfs_root_item *root_item = &root->root_item;
5391 	struct walk_control *wc;
5392 	struct btrfs_key key;
5393 	int err = 0;
5394 	int ret;
5395 	int level;
5396 	bool root_dropped = false;
5397 
5398 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5399 
5400 	path = btrfs_alloc_path();
5401 	if (!path) {
5402 		err = -ENOMEM;
5403 		goto out;
5404 	}
5405 
5406 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5407 	if (!wc) {
5408 		btrfs_free_path(path);
5409 		err = -ENOMEM;
5410 		goto out;
5411 	}
5412 
5413 	/*
5414 	 * Use join to avoid potential EINTR from transaction start. See
5415 	 * wait_reserve_ticket and the whole reservation callchain.
5416 	 */
5417 	if (for_reloc)
5418 		trans = btrfs_join_transaction(tree_root);
5419 	else
5420 		trans = btrfs_start_transaction(tree_root, 0);
5421 	if (IS_ERR(trans)) {
5422 		err = PTR_ERR(trans);
5423 		goto out_free;
5424 	}
5425 
5426 	err = btrfs_run_delayed_items(trans);
5427 	if (err)
5428 		goto out_end_trans;
5429 
5430 	/*
5431 	 * This will help us catch people modifying the fs tree while we're
5432 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5433 	 * dropped as we unlock the root node and parent nodes as we walk down
5434 	 * the tree, assuming nothing will change.  If something does change
5435 	 * then we'll have stale information and drop references to blocks we've
5436 	 * already dropped.
5437 	 */
5438 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5439 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5440 		level = btrfs_header_level(root->node);
5441 		path->nodes[level] = btrfs_lock_root_node(root);
5442 		path->slots[level] = 0;
5443 		path->locks[level] = BTRFS_WRITE_LOCK;
5444 		memset(&wc->update_progress, 0,
5445 		       sizeof(wc->update_progress));
5446 	} else {
5447 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5448 		memcpy(&wc->update_progress, &key,
5449 		       sizeof(wc->update_progress));
5450 
5451 		level = btrfs_root_drop_level(root_item);
5452 		BUG_ON(level == 0);
5453 		path->lowest_level = level;
5454 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5455 		path->lowest_level = 0;
5456 		if (ret < 0) {
5457 			err = ret;
5458 			goto out_end_trans;
5459 		}
5460 		WARN_ON(ret > 0);
5461 
5462 		/*
5463 		 * unlock our path, this is safe because only this
5464 		 * function is allowed to delete this snapshot
5465 		 */
5466 		btrfs_unlock_up_safe(path, 0);
5467 
5468 		level = btrfs_header_level(root->node);
5469 		while (1) {
5470 			btrfs_tree_lock(path->nodes[level]);
5471 			path->locks[level] = BTRFS_WRITE_LOCK;
5472 
5473 			ret = btrfs_lookup_extent_info(trans, fs_info,
5474 						path->nodes[level]->start,
5475 						level, 1, &wc->refs[level],
5476 						&wc->flags[level]);
5477 			if (ret < 0) {
5478 				err = ret;
5479 				goto out_end_trans;
5480 			}
5481 			BUG_ON(wc->refs[level] == 0);
5482 
5483 			if (level == btrfs_root_drop_level(root_item))
5484 				break;
5485 
5486 			btrfs_tree_unlock(path->nodes[level]);
5487 			path->locks[level] = 0;
5488 			WARN_ON(wc->refs[level] != 1);
5489 			level--;
5490 		}
5491 	}
5492 
5493 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5494 	wc->level = level;
5495 	wc->shared_level = -1;
5496 	wc->stage = DROP_REFERENCE;
5497 	wc->update_ref = update_ref;
5498 	wc->keep_locks = 0;
5499 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5500 
5501 	while (1) {
5502 
5503 		ret = walk_down_tree(trans, root, path, wc);
5504 		if (ret < 0) {
5505 			err = ret;
5506 			break;
5507 		}
5508 
5509 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5510 		if (ret < 0) {
5511 			err = ret;
5512 			break;
5513 		}
5514 
5515 		if (ret > 0) {
5516 			BUG_ON(wc->stage != DROP_REFERENCE);
5517 			break;
5518 		}
5519 
5520 		if (wc->stage == DROP_REFERENCE) {
5521 			wc->drop_level = wc->level;
5522 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5523 					      &wc->drop_progress,
5524 					      path->slots[wc->drop_level]);
5525 		}
5526 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5527 				      &wc->drop_progress);
5528 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5529 
5530 		BUG_ON(wc->level == 0);
5531 		if (btrfs_should_end_transaction(trans) ||
5532 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5533 			ret = btrfs_update_root(trans, tree_root,
5534 						&root->root_key,
5535 						root_item);
5536 			if (ret) {
5537 				btrfs_abort_transaction(trans, ret);
5538 				err = ret;
5539 				goto out_end_trans;
5540 			}
5541 
5542 			btrfs_end_transaction_throttle(trans);
5543 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5544 				btrfs_debug(fs_info,
5545 					    "drop snapshot early exit");
5546 				err = -EAGAIN;
5547 				goto out_free;
5548 			}
5549 
5550 			trans = btrfs_start_transaction(tree_root, 0);
5551 			if (IS_ERR(trans)) {
5552 				err = PTR_ERR(trans);
5553 				goto out_free;
5554 			}
5555 		}
5556 	}
5557 	btrfs_release_path(path);
5558 	if (err)
5559 		goto out_end_trans;
5560 
5561 	ret = btrfs_del_root(trans, &root->root_key);
5562 	if (ret) {
5563 		btrfs_abort_transaction(trans, ret);
5564 		err = ret;
5565 		goto out_end_trans;
5566 	}
5567 
5568 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5569 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5570 				      NULL, NULL);
5571 		if (ret < 0) {
5572 			btrfs_abort_transaction(trans, ret);
5573 			err = ret;
5574 			goto out_end_trans;
5575 		} else if (ret > 0) {
5576 			/* if we fail to delete the orphan item this time
5577 			 * around, it'll get picked up the next time.
5578 			 *
5579 			 * The most common failure here is just -ENOENT.
5580 			 */
5581 			btrfs_del_orphan_item(trans, tree_root,
5582 					      root->root_key.objectid);
5583 		}
5584 	}
5585 
5586 	/*
5587 	 * This subvolume is going to be completely dropped, and won't be
5588 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5589 	 * commit transaction time.  So free it here manually.
5590 	 */
5591 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5592 	btrfs_qgroup_free_meta_all_pertrans(root);
5593 
5594 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5595 		btrfs_add_dropped_root(trans, root);
5596 	else
5597 		btrfs_put_root(root);
5598 	root_dropped = true;
5599 out_end_trans:
5600 	btrfs_end_transaction_throttle(trans);
5601 out_free:
5602 	kfree(wc);
5603 	btrfs_free_path(path);
5604 out:
5605 	/*
5606 	 * So if we need to stop dropping the snapshot for whatever reason we
5607 	 * need to make sure to add it back to the dead root list so that we
5608 	 * keep trying to do the work later.  This also cleans up roots if we
5609 	 * don't have it in the radix (like when we recover after a power fail
5610 	 * or unmount) so we don't leak memory.
5611 	 */
5612 	if (!for_reloc && !root_dropped)
5613 		btrfs_add_dead_root(root);
5614 	return err;
5615 }
5616 
5617 /*
5618  * drop subtree rooted at tree block 'node'.
5619  *
5620  * NOTE: this function will unlock and release tree block 'node'
5621  * only used by relocation code
5622  */
5623 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5624 			struct btrfs_root *root,
5625 			struct extent_buffer *node,
5626 			struct extent_buffer *parent)
5627 {
5628 	struct btrfs_fs_info *fs_info = root->fs_info;
5629 	struct btrfs_path *path;
5630 	struct walk_control *wc;
5631 	int level;
5632 	int parent_level;
5633 	int ret = 0;
5634 	int wret;
5635 
5636 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5637 
5638 	path = btrfs_alloc_path();
5639 	if (!path)
5640 		return -ENOMEM;
5641 
5642 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5643 	if (!wc) {
5644 		btrfs_free_path(path);
5645 		return -ENOMEM;
5646 	}
5647 
5648 	btrfs_assert_tree_locked(parent);
5649 	parent_level = btrfs_header_level(parent);
5650 	atomic_inc(&parent->refs);
5651 	path->nodes[parent_level] = parent;
5652 	path->slots[parent_level] = btrfs_header_nritems(parent);
5653 
5654 	btrfs_assert_tree_locked(node);
5655 	level = btrfs_header_level(node);
5656 	path->nodes[level] = node;
5657 	path->slots[level] = 0;
5658 	path->locks[level] = BTRFS_WRITE_LOCK;
5659 
5660 	wc->refs[parent_level] = 1;
5661 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5662 	wc->level = level;
5663 	wc->shared_level = -1;
5664 	wc->stage = DROP_REFERENCE;
5665 	wc->update_ref = 0;
5666 	wc->keep_locks = 1;
5667 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5668 
5669 	while (1) {
5670 		wret = walk_down_tree(trans, root, path, wc);
5671 		if (wret < 0) {
5672 			ret = wret;
5673 			break;
5674 		}
5675 
5676 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5677 		if (wret < 0)
5678 			ret = wret;
5679 		if (wret != 0)
5680 			break;
5681 	}
5682 
5683 	kfree(wc);
5684 	btrfs_free_path(path);
5685 	return ret;
5686 }
5687 
5688 /*
5689  * helper to account the unused space of all the readonly block group in the
5690  * space_info. takes mirrors into account.
5691  */
5692 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5693 {
5694 	struct btrfs_block_group *block_group;
5695 	u64 free_bytes = 0;
5696 	int factor;
5697 
5698 	/* It's df, we don't care if it's racy */
5699 	if (list_empty(&sinfo->ro_bgs))
5700 		return 0;
5701 
5702 	spin_lock(&sinfo->lock);
5703 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5704 		spin_lock(&block_group->lock);
5705 
5706 		if (!block_group->ro) {
5707 			spin_unlock(&block_group->lock);
5708 			continue;
5709 		}
5710 
5711 		factor = btrfs_bg_type_to_factor(block_group->flags);
5712 		free_bytes += (block_group->length -
5713 			       block_group->used) * factor;
5714 
5715 		spin_unlock(&block_group->lock);
5716 	}
5717 	spin_unlock(&sinfo->lock);
5718 
5719 	return free_bytes;
5720 }
5721 
5722 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5723 				   u64 start, u64 end)
5724 {
5725 	return unpin_extent_range(fs_info, start, end, false);
5726 }
5727 
5728 /*
5729  * It used to be that old block groups would be left around forever.
5730  * Iterating over them would be enough to trim unused space.  Since we
5731  * now automatically remove them, we also need to iterate over unallocated
5732  * space.
5733  *
5734  * We don't want a transaction for this since the discard may take a
5735  * substantial amount of time.  We don't require that a transaction be
5736  * running, but we do need to take a running transaction into account
5737  * to ensure that we're not discarding chunks that were released or
5738  * allocated in the current transaction.
5739  *
5740  * Holding the chunks lock will prevent other threads from allocating
5741  * or releasing chunks, but it won't prevent a running transaction
5742  * from committing and releasing the memory that the pending chunks
5743  * list head uses.  For that, we need to take a reference to the
5744  * transaction and hold the commit root sem.  We only need to hold
5745  * it while performing the free space search since we have already
5746  * held back allocations.
5747  */
5748 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5749 {
5750 	u64 start = SZ_1M, len = 0, end = 0;
5751 	int ret;
5752 
5753 	*trimmed = 0;
5754 
5755 	/* Discard not supported = nothing to do. */
5756 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5757 		return 0;
5758 
5759 	/* Not writable = nothing to do. */
5760 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5761 		return 0;
5762 
5763 	/* No free space = nothing to do. */
5764 	if (device->total_bytes <= device->bytes_used)
5765 		return 0;
5766 
5767 	ret = 0;
5768 
5769 	while (1) {
5770 		struct btrfs_fs_info *fs_info = device->fs_info;
5771 		u64 bytes;
5772 
5773 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5774 		if (ret)
5775 			break;
5776 
5777 		find_first_clear_extent_bit(&device->alloc_state, start,
5778 					    &start, &end,
5779 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5780 
5781 		/* Check if there are any CHUNK_* bits left */
5782 		if (start > device->total_bytes) {
5783 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5784 			btrfs_warn_in_rcu(fs_info,
5785 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5786 					  start, end - start + 1,
5787 					  rcu_str_deref(device->name),
5788 					  device->total_bytes);
5789 			mutex_unlock(&fs_info->chunk_mutex);
5790 			ret = 0;
5791 			break;
5792 		}
5793 
5794 		/* Ensure we skip the reserved area in the first 1M */
5795 		start = max_t(u64, start, SZ_1M);
5796 
5797 		/*
5798 		 * If find_first_clear_extent_bit find a range that spans the
5799 		 * end of the device it will set end to -1, in this case it's up
5800 		 * to the caller to trim the value to the size of the device.
5801 		 */
5802 		end = min(end, device->total_bytes - 1);
5803 
5804 		len = end - start + 1;
5805 
5806 		/* We didn't find any extents */
5807 		if (!len) {
5808 			mutex_unlock(&fs_info->chunk_mutex);
5809 			ret = 0;
5810 			break;
5811 		}
5812 
5813 		ret = btrfs_issue_discard(device->bdev, start, len,
5814 					  &bytes);
5815 		if (!ret)
5816 			set_extent_bits(&device->alloc_state, start,
5817 					start + bytes - 1,
5818 					CHUNK_TRIMMED);
5819 		mutex_unlock(&fs_info->chunk_mutex);
5820 
5821 		if (ret)
5822 			break;
5823 
5824 		start += len;
5825 		*trimmed += bytes;
5826 
5827 		if (fatal_signal_pending(current)) {
5828 			ret = -ERESTARTSYS;
5829 			break;
5830 		}
5831 
5832 		cond_resched();
5833 	}
5834 
5835 	return ret;
5836 }
5837 
5838 /*
5839  * Trim the whole filesystem by:
5840  * 1) trimming the free space in each block group
5841  * 2) trimming the unallocated space on each device
5842  *
5843  * This will also continue trimming even if a block group or device encounters
5844  * an error.  The return value will be the last error, or 0 if nothing bad
5845  * happens.
5846  */
5847 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5848 {
5849 	struct btrfs_block_group *cache = NULL;
5850 	struct btrfs_device *device;
5851 	struct list_head *devices;
5852 	u64 group_trimmed;
5853 	u64 range_end = U64_MAX;
5854 	u64 start;
5855 	u64 end;
5856 	u64 trimmed = 0;
5857 	u64 bg_failed = 0;
5858 	u64 dev_failed = 0;
5859 	int bg_ret = 0;
5860 	int dev_ret = 0;
5861 	int ret = 0;
5862 
5863 	/*
5864 	 * Check range overflow if range->len is set.
5865 	 * The default range->len is U64_MAX.
5866 	 */
5867 	if (range->len != U64_MAX &&
5868 	    check_add_overflow(range->start, range->len, &range_end))
5869 		return -EINVAL;
5870 
5871 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5872 	for (; cache; cache = btrfs_next_block_group(cache)) {
5873 		if (cache->start >= range_end) {
5874 			btrfs_put_block_group(cache);
5875 			break;
5876 		}
5877 
5878 		start = max(range->start, cache->start);
5879 		end = min(range_end, cache->start + cache->length);
5880 
5881 		if (end - start >= range->minlen) {
5882 			if (!btrfs_block_group_done(cache)) {
5883 				ret = btrfs_cache_block_group(cache, 0);
5884 				if (ret) {
5885 					bg_failed++;
5886 					bg_ret = ret;
5887 					continue;
5888 				}
5889 				ret = btrfs_wait_block_group_cache_done(cache);
5890 				if (ret) {
5891 					bg_failed++;
5892 					bg_ret = ret;
5893 					continue;
5894 				}
5895 			}
5896 			ret = btrfs_trim_block_group(cache,
5897 						     &group_trimmed,
5898 						     start,
5899 						     end,
5900 						     range->minlen);
5901 
5902 			trimmed += group_trimmed;
5903 			if (ret) {
5904 				bg_failed++;
5905 				bg_ret = ret;
5906 				continue;
5907 			}
5908 		}
5909 	}
5910 
5911 	if (bg_failed)
5912 		btrfs_warn(fs_info,
5913 			"failed to trim %llu block group(s), last error %d",
5914 			bg_failed, bg_ret);
5915 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5916 	devices = &fs_info->fs_devices->devices;
5917 	list_for_each_entry(device, devices, dev_list) {
5918 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5919 		if (ret) {
5920 			dev_failed++;
5921 			dev_ret = ret;
5922 			break;
5923 		}
5924 
5925 		trimmed += group_trimmed;
5926 	}
5927 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5928 
5929 	if (dev_failed)
5930 		btrfs_warn(fs_info,
5931 			"failed to trim %llu device(s), last error %d",
5932 			dev_failed, dev_ret);
5933 	range->len = trimmed;
5934 	if (bg_ret)
5935 		return bg_ret;
5936 	return dev_ret;
5937 }
5938