1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 static int update_block_group(struct btrfs_trans_handle *trans, 64 struct btrfs_root *root, u64 bytenr, 65 u64 num_bytes, int alloc); 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_root *root, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_root *extent_root, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 94 u64 ram_bytes, u64 num_bytes, int delalloc); 95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 96 u64 num_bytes, int delalloc); 97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 98 u64 num_bytes); 99 int btrfs_pin_extent(struct btrfs_root *root, 100 u64 bytenr, u64 num_bytes, int reserved); 101 static int __reserve_metadata_bytes(struct btrfs_root *root, 102 struct btrfs_space_info *space_info, 103 u64 orig_bytes, 104 enum btrfs_reserve_flush_enum flush); 105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_space_info *space_info, 107 u64 num_bytes); 108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_space_info *space_info, 110 u64 num_bytes); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(root->fs_info, cache->key.objectid, 271 bytenr, 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(root, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 atomic_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (atomic_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_root *root, 333 struct btrfs_block_group_cache *block_group) 334 { 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 root->nodesize : root->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group; 398 struct btrfs_fs_info *fs_info; 399 struct btrfs_root *extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 block_group = caching_ctl->block_group; 410 fs_info = block_group->fs_info; 411 extent_root = fs_info->extent_root; 412 413 path = btrfs_alloc_path(); 414 if (!path) 415 return -ENOMEM; 416 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 418 419 #ifdef CONFIG_BTRFS_DEBUG 420 /* 421 * If we're fragmenting we don't want to make anybody think we can 422 * allocate from this block group until we've had a chance to fragment 423 * the free space. 424 */ 425 if (btrfs_should_fragment_free_space(extent_root, block_group)) 426 wakeup = false; 427 #endif 428 /* 429 * We don't want to deadlock with somebody trying to allocate a new 430 * extent for the extent root while also trying to search the extent 431 * root to add free space. So we skip locking and search the commit 432 * root, since its read-only 433 */ 434 path->skip_locking = 1; 435 path->search_commit_root = 1; 436 path->reada = READA_FORWARD; 437 438 key.objectid = last; 439 key.offset = 0; 440 key.type = BTRFS_EXTENT_ITEM_KEY; 441 442 next: 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 444 if (ret < 0) 445 goto out; 446 447 leaf = path->nodes[0]; 448 nritems = btrfs_header_nritems(leaf); 449 450 while (1) { 451 if (btrfs_fs_closing(fs_info) > 1) { 452 last = (u64)-1; 453 break; 454 } 455 456 if (path->slots[0] < nritems) { 457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 458 } else { 459 ret = find_next_key(path, 0, &key); 460 if (ret) 461 break; 462 463 if (need_resched() || 464 rwsem_is_contended(&fs_info->commit_root_sem)) { 465 if (wakeup) 466 caching_ctl->progress = last; 467 btrfs_release_path(path); 468 up_read(&fs_info->commit_root_sem); 469 mutex_unlock(&caching_ctl->mutex); 470 cond_resched(); 471 mutex_lock(&caching_ctl->mutex); 472 down_read(&fs_info->commit_root_sem); 473 goto next; 474 } 475 476 ret = btrfs_next_leaf(extent_root, path); 477 if (ret < 0) 478 goto out; 479 if (ret) 480 break; 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 continue; 484 } 485 486 if (key.objectid < last) { 487 key.objectid = last; 488 key.offset = 0; 489 key.type = BTRFS_EXTENT_ITEM_KEY; 490 491 if (wakeup) 492 caching_ctl->progress = last; 493 btrfs_release_path(path); 494 goto next; 495 } 496 497 if (key.objectid < block_group->key.objectid) { 498 path->slots[0]++; 499 continue; 500 } 501 502 if (key.objectid >= block_group->key.objectid + 503 block_group->key.offset) 504 break; 505 506 if (key.type == BTRFS_EXTENT_ITEM_KEY || 507 key.type == BTRFS_METADATA_ITEM_KEY) { 508 total_found += add_new_free_space(block_group, 509 fs_info, last, 510 key.objectid); 511 if (key.type == BTRFS_METADATA_ITEM_KEY) 512 last = key.objectid + 513 fs_info->tree_root->nodesize; 514 else 515 last = key.objectid + key.offset; 516 517 if (total_found > CACHING_CTL_WAKE_UP) { 518 total_found = 0; 519 if (wakeup) 520 wake_up(&caching_ctl->wait); 521 } 522 } 523 path->slots[0]++; 524 } 525 ret = 0; 526 527 total_found += add_new_free_space(block_group, fs_info, last, 528 block_group->key.objectid + 529 block_group->key.offset); 530 caching_ctl->progress = (u64)-1; 531 532 out: 533 btrfs_free_path(path); 534 return ret; 535 } 536 537 static noinline void caching_thread(struct btrfs_work *work) 538 { 539 struct btrfs_block_group_cache *block_group; 540 struct btrfs_fs_info *fs_info; 541 struct btrfs_caching_control *caching_ctl; 542 struct btrfs_root *extent_root; 543 int ret; 544 545 caching_ctl = container_of(work, struct btrfs_caching_control, work); 546 block_group = caching_ctl->block_group; 547 fs_info = block_group->fs_info; 548 extent_root = fs_info->extent_root; 549 550 mutex_lock(&caching_ctl->mutex); 551 down_read(&fs_info->commit_root_sem); 552 553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 554 ret = load_free_space_tree(caching_ctl); 555 else 556 ret = load_extent_tree_free(caching_ctl); 557 558 spin_lock(&block_group->lock); 559 block_group->caching_ctl = NULL; 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 561 spin_unlock(&block_group->lock); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 565 u64 bytes_used; 566 567 spin_lock(&block_group->space_info->lock); 568 spin_lock(&block_group->lock); 569 bytes_used = block_group->key.offset - 570 btrfs_block_group_used(&block_group->item); 571 block_group->space_info->bytes_used += bytes_used >> 1; 572 spin_unlock(&block_group->lock); 573 spin_unlock(&block_group->space_info->lock); 574 fragment_free_space(extent_root, block_group); 575 } 576 #endif 577 578 caching_ctl->progress = (u64)-1; 579 580 up_read(&fs_info->commit_root_sem); 581 free_excluded_extents(fs_info->extent_root, block_group); 582 mutex_unlock(&caching_ctl->mutex); 583 584 wake_up(&caching_ctl->wait); 585 586 put_caching_control(caching_ctl); 587 btrfs_put_block_group(block_group); 588 } 589 590 static int cache_block_group(struct btrfs_block_group_cache *cache, 591 int load_cache_only) 592 { 593 DEFINE_WAIT(wait); 594 struct btrfs_fs_info *fs_info = cache->fs_info; 595 struct btrfs_caching_control *caching_ctl; 596 int ret = 0; 597 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 599 if (!caching_ctl) 600 return -ENOMEM; 601 602 INIT_LIST_HEAD(&caching_ctl->list); 603 mutex_init(&caching_ctl->mutex); 604 init_waitqueue_head(&caching_ctl->wait); 605 caching_ctl->block_group = cache; 606 caching_ctl->progress = cache->key.objectid; 607 atomic_set(&caching_ctl->count, 1); 608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 609 caching_thread, NULL, NULL); 610 611 spin_lock(&cache->lock); 612 /* 613 * This should be a rare occasion, but this could happen I think in the 614 * case where one thread starts to load the space cache info, and then 615 * some other thread starts a transaction commit which tries to do an 616 * allocation while the other thread is still loading the space cache 617 * info. The previous loop should have kept us from choosing this block 618 * group, but if we've moved to the state where we will wait on caching 619 * block groups we need to first check if we're doing a fast load here, 620 * so we can wait for it to finish, otherwise we could end up allocating 621 * from a block group who's cache gets evicted for one reason or 622 * another. 623 */ 624 while (cache->cached == BTRFS_CACHE_FAST) { 625 struct btrfs_caching_control *ctl; 626 627 ctl = cache->caching_ctl; 628 atomic_inc(&ctl->count); 629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 630 spin_unlock(&cache->lock); 631 632 schedule(); 633 634 finish_wait(&ctl->wait, &wait); 635 put_caching_control(ctl); 636 spin_lock(&cache->lock); 637 } 638 639 if (cache->cached != BTRFS_CACHE_NO) { 640 spin_unlock(&cache->lock); 641 kfree(caching_ctl); 642 return 0; 643 } 644 WARN_ON(cache->caching_ctl); 645 cache->caching_ctl = caching_ctl; 646 cache->cached = BTRFS_CACHE_FAST; 647 spin_unlock(&cache->lock); 648 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 650 mutex_lock(&caching_ctl->mutex); 651 ret = load_free_space_cache(fs_info, cache); 652 653 spin_lock(&cache->lock); 654 if (ret == 1) { 655 cache->caching_ctl = NULL; 656 cache->cached = BTRFS_CACHE_FINISHED; 657 cache->last_byte_to_unpin = (u64)-1; 658 caching_ctl->progress = (u64)-1; 659 } else { 660 if (load_cache_only) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_NO; 663 } else { 664 cache->cached = BTRFS_CACHE_STARTED; 665 cache->has_caching_ctl = 1; 666 } 667 } 668 spin_unlock(&cache->lock); 669 #ifdef CONFIG_BTRFS_DEBUG 670 if (ret == 1 && 671 btrfs_should_fragment_free_space(fs_info->extent_root, 672 cache)) { 673 u64 bytes_used; 674 675 spin_lock(&cache->space_info->lock); 676 spin_lock(&cache->lock); 677 bytes_used = cache->key.offset - 678 btrfs_block_group_used(&cache->item); 679 cache->space_info->bytes_used += bytes_used >> 1; 680 spin_unlock(&cache->lock); 681 spin_unlock(&cache->space_info->lock); 682 fragment_free_space(fs_info->extent_root, cache); 683 } 684 #endif 685 mutex_unlock(&caching_ctl->mutex); 686 687 wake_up(&caching_ctl->wait); 688 if (ret == 1) { 689 put_caching_control(caching_ctl); 690 free_excluded_extents(fs_info->extent_root, cache); 691 return 0; 692 } 693 } else { 694 /* 695 * We're either using the free space tree or no caching at all. 696 * Set cached to the appropriate value and wakeup any waiters. 697 */ 698 spin_lock(&cache->lock); 699 if (load_cache_only) { 700 cache->caching_ctl = NULL; 701 cache->cached = BTRFS_CACHE_NO; 702 } else { 703 cache->cached = BTRFS_CACHE_STARTED; 704 cache->has_caching_ctl = 1; 705 } 706 spin_unlock(&cache->lock); 707 wake_up(&caching_ctl->wait); 708 } 709 710 if (load_cache_only) { 711 put_caching_control(caching_ctl); 712 return 0; 713 } 714 715 down_write(&fs_info->commit_root_sem); 716 atomic_inc(&caching_ctl->count); 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 718 up_write(&fs_info->commit_root_sem); 719 720 btrfs_get_block_group(cache); 721 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 723 724 return ret; 725 } 726 727 /* 728 * return the block group that starts at or after bytenr 729 */ 730 static struct btrfs_block_group_cache * 731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 732 { 733 return block_group_cache_tree_search(info, bytenr, 0); 734 } 735 736 /* 737 * return the block group that contains the given bytenr 738 */ 739 struct btrfs_block_group_cache *btrfs_lookup_block_group( 740 struct btrfs_fs_info *info, 741 u64 bytenr) 742 { 743 return block_group_cache_tree_search(info, bytenr, 1); 744 } 745 746 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 747 u64 flags) 748 { 749 struct list_head *head = &info->space_info; 750 struct btrfs_space_info *found; 751 752 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 753 754 rcu_read_lock(); 755 list_for_each_entry_rcu(found, head, list) { 756 if (found->flags & flags) { 757 rcu_read_unlock(); 758 return found; 759 } 760 } 761 rcu_read_unlock(); 762 return NULL; 763 } 764 765 /* 766 * after adding space to the filesystem, we need to clear the full flags 767 * on all the space infos. 768 */ 769 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 770 { 771 struct list_head *head = &info->space_info; 772 struct btrfs_space_info *found; 773 774 rcu_read_lock(); 775 list_for_each_entry_rcu(found, head, list) 776 found->full = 0; 777 rcu_read_unlock(); 778 } 779 780 /* simple helper to search for an existing data extent at a given offset */ 781 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 782 { 783 int ret; 784 struct btrfs_key key; 785 struct btrfs_path *path; 786 787 path = btrfs_alloc_path(); 788 if (!path) 789 return -ENOMEM; 790 791 key.objectid = start; 792 key.offset = len; 793 key.type = BTRFS_EXTENT_ITEM_KEY; 794 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 795 0, 0); 796 btrfs_free_path(path); 797 return ret; 798 } 799 800 /* 801 * helper function to lookup reference count and flags of a tree block. 802 * 803 * the head node for delayed ref is used to store the sum of all the 804 * reference count modifications queued up in the rbtree. the head 805 * node may also store the extent flags to set. This way you can check 806 * to see what the reference count and extent flags would be if all of 807 * the delayed refs are not processed. 808 */ 809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 810 struct btrfs_root *root, u64 bytenr, 811 u64 offset, int metadata, u64 *refs, u64 *flags) 812 { 813 struct btrfs_delayed_ref_head *head; 814 struct btrfs_delayed_ref_root *delayed_refs; 815 struct btrfs_path *path; 816 struct btrfs_extent_item *ei; 817 struct extent_buffer *leaf; 818 struct btrfs_key key; 819 u32 item_size; 820 u64 num_refs; 821 u64 extent_flags; 822 int ret; 823 824 /* 825 * If we don't have skinny metadata, don't bother doing anything 826 * different 827 */ 828 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 829 offset = root->nodesize; 830 metadata = 0; 831 } 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return -ENOMEM; 836 837 if (!trans) { 838 path->skip_locking = 1; 839 path->search_commit_root = 1; 840 } 841 842 search_again: 843 key.objectid = bytenr; 844 key.offset = offset; 845 if (metadata) 846 key.type = BTRFS_METADATA_ITEM_KEY; 847 else 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 850 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 851 &key, path, 0, 0); 852 if (ret < 0) 853 goto out_free; 854 855 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 856 if (path->slots[0]) { 857 path->slots[0]--; 858 btrfs_item_key_to_cpu(path->nodes[0], &key, 859 path->slots[0]); 860 if (key.objectid == bytenr && 861 key.type == BTRFS_EXTENT_ITEM_KEY && 862 key.offset == root->nodesize) 863 ret = 0; 864 } 865 } 866 867 if (ret == 0) { 868 leaf = path->nodes[0]; 869 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 870 if (item_size >= sizeof(*ei)) { 871 ei = btrfs_item_ptr(leaf, path->slots[0], 872 struct btrfs_extent_item); 873 num_refs = btrfs_extent_refs(leaf, ei); 874 extent_flags = btrfs_extent_flags(leaf, ei); 875 } else { 876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 877 struct btrfs_extent_item_v0 *ei0; 878 BUG_ON(item_size != sizeof(*ei0)); 879 ei0 = btrfs_item_ptr(leaf, path->slots[0], 880 struct btrfs_extent_item_v0); 881 num_refs = btrfs_extent_refs_v0(leaf, ei0); 882 /* FIXME: this isn't correct for data */ 883 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 884 #else 885 BUG(); 886 #endif 887 } 888 BUG_ON(num_refs == 0); 889 } else { 890 num_refs = 0; 891 extent_flags = 0; 892 ret = 0; 893 } 894 895 if (!trans) 896 goto out; 897 898 delayed_refs = &trans->transaction->delayed_refs; 899 spin_lock(&delayed_refs->lock); 900 head = btrfs_find_delayed_ref_head(trans, bytenr); 901 if (head) { 902 if (!mutex_trylock(&head->mutex)) { 903 atomic_inc(&head->node.refs); 904 spin_unlock(&delayed_refs->lock); 905 906 btrfs_release_path(path); 907 908 /* 909 * Mutex was contended, block until it's released and try 910 * again 911 */ 912 mutex_lock(&head->mutex); 913 mutex_unlock(&head->mutex); 914 btrfs_put_delayed_ref(&head->node); 915 goto search_again; 916 } 917 spin_lock(&head->lock); 918 if (head->extent_op && head->extent_op->update_flags) 919 extent_flags |= head->extent_op->flags_to_set; 920 else 921 BUG_ON(num_refs == 0); 922 923 num_refs += head->node.ref_mod; 924 spin_unlock(&head->lock); 925 mutex_unlock(&head->mutex); 926 } 927 spin_unlock(&delayed_refs->lock); 928 out: 929 WARN_ON(num_refs == 0); 930 if (refs) 931 *refs = num_refs; 932 if (flags) 933 *flags = extent_flags; 934 out_free: 935 btrfs_free_path(path); 936 return ret; 937 } 938 939 /* 940 * Back reference rules. Back refs have three main goals: 941 * 942 * 1) differentiate between all holders of references to an extent so that 943 * when a reference is dropped we can make sure it was a valid reference 944 * before freeing the extent. 945 * 946 * 2) Provide enough information to quickly find the holders of an extent 947 * if we notice a given block is corrupted or bad. 948 * 949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 950 * maintenance. This is actually the same as #2, but with a slightly 951 * different use case. 952 * 953 * There are two kinds of back refs. The implicit back refs is optimized 954 * for pointers in non-shared tree blocks. For a given pointer in a block, 955 * back refs of this kind provide information about the block's owner tree 956 * and the pointer's key. These information allow us to find the block by 957 * b-tree searching. The full back refs is for pointers in tree blocks not 958 * referenced by their owner trees. The location of tree block is recorded 959 * in the back refs. Actually the full back refs is generic, and can be 960 * used in all cases the implicit back refs is used. The major shortcoming 961 * of the full back refs is its overhead. Every time a tree block gets 962 * COWed, we have to update back refs entry for all pointers in it. 963 * 964 * For a newly allocated tree block, we use implicit back refs for 965 * pointers in it. This means most tree related operations only involve 966 * implicit back refs. For a tree block created in old transaction, the 967 * only way to drop a reference to it is COW it. So we can detect the 968 * event that tree block loses its owner tree's reference and do the 969 * back refs conversion. 970 * 971 * When a tree block is COWed through a tree, there are four cases: 972 * 973 * The reference count of the block is one and the tree is the block's 974 * owner tree. Nothing to do in this case. 975 * 976 * The reference count of the block is one and the tree is not the 977 * block's owner tree. In this case, full back refs is used for pointers 978 * in the block. Remove these full back refs, add implicit back refs for 979 * every pointers in the new block. 980 * 981 * The reference count of the block is greater than one and the tree is 982 * the block's owner tree. In this case, implicit back refs is used for 983 * pointers in the block. Add full back refs for every pointers in the 984 * block, increase lower level extents' reference counts. The original 985 * implicit back refs are entailed to the new block. 986 * 987 * The reference count of the block is greater than one and the tree is 988 * not the block's owner tree. Add implicit back refs for every pointer in 989 * the new block, increase lower level extents' reference count. 990 * 991 * Back Reference Key composing: 992 * 993 * The key objectid corresponds to the first byte in the extent, 994 * The key type is used to differentiate between types of back refs. 995 * There are different meanings of the key offset for different types 996 * of back refs. 997 * 998 * File extents can be referenced by: 999 * 1000 * - multiple snapshots, subvolumes, or different generations in one subvol 1001 * - different files inside a single subvolume 1002 * - different offsets inside a file (bookend extents in file.c) 1003 * 1004 * The extent ref structure for the implicit back refs has fields for: 1005 * 1006 * - Objectid of the subvolume root 1007 * - objectid of the file holding the reference 1008 * - original offset in the file 1009 * - how many bookend extents 1010 * 1011 * The key offset for the implicit back refs is hash of the first 1012 * three fields. 1013 * 1014 * The extent ref structure for the full back refs has field for: 1015 * 1016 * - number of pointers in the tree leaf 1017 * 1018 * The key offset for the implicit back refs is the first byte of 1019 * the tree leaf 1020 * 1021 * When a file extent is allocated, The implicit back refs is used. 1022 * the fields are filled in: 1023 * 1024 * (root_key.objectid, inode objectid, offset in file, 1) 1025 * 1026 * When a file extent is removed file truncation, we find the 1027 * corresponding implicit back refs and check the following fields: 1028 * 1029 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1030 * 1031 * Btree extents can be referenced by: 1032 * 1033 * - Different subvolumes 1034 * 1035 * Both the implicit back refs and the full back refs for tree blocks 1036 * only consist of key. The key offset for the implicit back refs is 1037 * objectid of block's owner tree. The key offset for the full back refs 1038 * is the first byte of parent block. 1039 * 1040 * When implicit back refs is used, information about the lowest key and 1041 * level of the tree block are required. These information are stored in 1042 * tree block info structure. 1043 */ 1044 1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1046 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1047 struct btrfs_root *root, 1048 struct btrfs_path *path, 1049 u64 owner, u32 extra_size) 1050 { 1051 struct btrfs_extent_item *item; 1052 struct btrfs_extent_item_v0 *ei0; 1053 struct btrfs_extent_ref_v0 *ref0; 1054 struct btrfs_tree_block_info *bi; 1055 struct extent_buffer *leaf; 1056 struct btrfs_key key; 1057 struct btrfs_key found_key; 1058 u32 new_size = sizeof(*item); 1059 u64 refs; 1060 int ret; 1061 1062 leaf = path->nodes[0]; 1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1064 1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1066 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_extent_item_v0); 1068 refs = btrfs_extent_refs_v0(leaf, ei0); 1069 1070 if (owner == (u64)-1) { 1071 while (1) { 1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1073 ret = btrfs_next_leaf(root, path); 1074 if (ret < 0) 1075 return ret; 1076 BUG_ON(ret > 0); /* Corruption */ 1077 leaf = path->nodes[0]; 1078 } 1079 btrfs_item_key_to_cpu(leaf, &found_key, 1080 path->slots[0]); 1081 BUG_ON(key.objectid != found_key.objectid); 1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1083 path->slots[0]++; 1084 continue; 1085 } 1086 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_extent_ref_v0); 1088 owner = btrfs_ref_objectid_v0(leaf, ref0); 1089 break; 1090 } 1091 } 1092 btrfs_release_path(path); 1093 1094 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1095 new_size += sizeof(*bi); 1096 1097 new_size -= sizeof(*ei0); 1098 ret = btrfs_search_slot(trans, root, &key, path, 1099 new_size + extra_size, 1); 1100 if (ret < 0) 1101 return ret; 1102 BUG_ON(ret); /* Corruption */ 1103 1104 btrfs_extend_item(root, path, new_size); 1105 1106 leaf = path->nodes[0]; 1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1108 btrfs_set_extent_refs(leaf, item, refs); 1109 /* FIXME: get real generation */ 1110 btrfs_set_extent_generation(leaf, item, 0); 1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1112 btrfs_set_extent_flags(leaf, item, 1113 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1114 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1115 bi = (struct btrfs_tree_block_info *)(item + 1); 1116 /* FIXME: get first key of the block */ 1117 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1118 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1119 } else { 1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1121 } 1122 btrfs_mark_buffer_dirty(leaf); 1123 return 0; 1124 } 1125 #endif 1126 1127 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1128 { 1129 u32 high_crc = ~(u32)0; 1130 u32 low_crc = ~(u32)0; 1131 __le64 lenum; 1132 1133 lenum = cpu_to_le64(root_objectid); 1134 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1135 lenum = cpu_to_le64(owner); 1136 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1137 lenum = cpu_to_le64(offset); 1138 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1139 1140 return ((u64)high_crc << 31) ^ (u64)low_crc; 1141 } 1142 1143 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1144 struct btrfs_extent_data_ref *ref) 1145 { 1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1147 btrfs_extent_data_ref_objectid(leaf, ref), 1148 btrfs_extent_data_ref_offset(leaf, ref)); 1149 } 1150 1151 static int match_extent_data_ref(struct extent_buffer *leaf, 1152 struct btrfs_extent_data_ref *ref, 1153 u64 root_objectid, u64 owner, u64 offset) 1154 { 1155 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1156 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1157 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1158 return 0; 1159 return 1; 1160 } 1161 1162 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1163 struct btrfs_root *root, 1164 struct btrfs_path *path, 1165 u64 bytenr, u64 parent, 1166 u64 root_objectid, 1167 u64 owner, u64 offset) 1168 { 1169 struct btrfs_key key; 1170 struct btrfs_extent_data_ref *ref; 1171 struct extent_buffer *leaf; 1172 u32 nritems; 1173 int ret; 1174 int recow; 1175 int err = -ENOENT; 1176 1177 key.objectid = bytenr; 1178 if (parent) { 1179 key.type = BTRFS_SHARED_DATA_REF_KEY; 1180 key.offset = parent; 1181 } else { 1182 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1183 key.offset = hash_extent_data_ref(root_objectid, 1184 owner, offset); 1185 } 1186 again: 1187 recow = 0; 1188 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1189 if (ret < 0) { 1190 err = ret; 1191 goto fail; 1192 } 1193 1194 if (parent) { 1195 if (!ret) 1196 return 0; 1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1198 key.type = BTRFS_EXTENT_REF_V0_KEY; 1199 btrfs_release_path(path); 1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1201 if (ret < 0) { 1202 err = ret; 1203 goto fail; 1204 } 1205 if (!ret) 1206 return 0; 1207 #endif 1208 goto fail; 1209 } 1210 1211 leaf = path->nodes[0]; 1212 nritems = btrfs_header_nritems(leaf); 1213 while (1) { 1214 if (path->slots[0] >= nritems) { 1215 ret = btrfs_next_leaf(root, path); 1216 if (ret < 0) 1217 err = ret; 1218 if (ret) 1219 goto fail; 1220 1221 leaf = path->nodes[0]; 1222 nritems = btrfs_header_nritems(leaf); 1223 recow = 1; 1224 } 1225 1226 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1227 if (key.objectid != bytenr || 1228 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1229 goto fail; 1230 1231 ref = btrfs_item_ptr(leaf, path->slots[0], 1232 struct btrfs_extent_data_ref); 1233 1234 if (match_extent_data_ref(leaf, ref, root_objectid, 1235 owner, offset)) { 1236 if (recow) { 1237 btrfs_release_path(path); 1238 goto again; 1239 } 1240 err = 0; 1241 break; 1242 } 1243 path->slots[0]++; 1244 } 1245 fail: 1246 return err; 1247 } 1248 1249 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1250 struct btrfs_root *root, 1251 struct btrfs_path *path, 1252 u64 bytenr, u64 parent, 1253 u64 root_objectid, u64 owner, 1254 u64 offset, int refs_to_add) 1255 { 1256 struct btrfs_key key; 1257 struct extent_buffer *leaf; 1258 u32 size; 1259 u32 num_refs; 1260 int ret; 1261 1262 key.objectid = bytenr; 1263 if (parent) { 1264 key.type = BTRFS_SHARED_DATA_REF_KEY; 1265 key.offset = parent; 1266 size = sizeof(struct btrfs_shared_data_ref); 1267 } else { 1268 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1269 key.offset = hash_extent_data_ref(root_objectid, 1270 owner, offset); 1271 size = sizeof(struct btrfs_extent_data_ref); 1272 } 1273 1274 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1275 if (ret && ret != -EEXIST) 1276 goto fail; 1277 1278 leaf = path->nodes[0]; 1279 if (parent) { 1280 struct btrfs_shared_data_ref *ref; 1281 ref = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 if (ret == 0) { 1284 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1285 } else { 1286 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1287 num_refs += refs_to_add; 1288 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1289 } 1290 } else { 1291 struct btrfs_extent_data_ref *ref; 1292 while (ret == -EEXIST) { 1293 ref = btrfs_item_ptr(leaf, path->slots[0], 1294 struct btrfs_extent_data_ref); 1295 if (match_extent_data_ref(leaf, ref, root_objectid, 1296 owner, offset)) 1297 break; 1298 btrfs_release_path(path); 1299 key.offset++; 1300 ret = btrfs_insert_empty_item(trans, root, path, &key, 1301 size); 1302 if (ret && ret != -EEXIST) 1303 goto fail; 1304 1305 leaf = path->nodes[0]; 1306 } 1307 ref = btrfs_item_ptr(leaf, path->slots[0], 1308 struct btrfs_extent_data_ref); 1309 if (ret == 0) { 1310 btrfs_set_extent_data_ref_root(leaf, ref, 1311 root_objectid); 1312 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1313 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1314 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1315 } else { 1316 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1317 num_refs += refs_to_add; 1318 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1319 } 1320 } 1321 btrfs_mark_buffer_dirty(leaf); 1322 ret = 0; 1323 fail: 1324 btrfs_release_path(path); 1325 return ret; 1326 } 1327 1328 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1329 struct btrfs_root *root, 1330 struct btrfs_path *path, 1331 int refs_to_drop, int *last_ref) 1332 { 1333 struct btrfs_key key; 1334 struct btrfs_extent_data_ref *ref1 = NULL; 1335 struct btrfs_shared_data_ref *ref2 = NULL; 1336 struct extent_buffer *leaf; 1337 u32 num_refs = 0; 1338 int ret = 0; 1339 1340 leaf = path->nodes[0]; 1341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1342 1343 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1344 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1345 struct btrfs_extent_data_ref); 1346 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1347 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1348 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1349 struct btrfs_shared_data_ref); 1350 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1352 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1353 struct btrfs_extent_ref_v0 *ref0; 1354 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_extent_ref_v0); 1356 num_refs = btrfs_ref_count_v0(leaf, ref0); 1357 #endif 1358 } else { 1359 BUG(); 1360 } 1361 1362 BUG_ON(num_refs < refs_to_drop); 1363 num_refs -= refs_to_drop; 1364 1365 if (num_refs == 0) { 1366 ret = btrfs_del_item(trans, root, path); 1367 *last_ref = 1; 1368 } else { 1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1370 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1371 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1372 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1374 else { 1375 struct btrfs_extent_ref_v0 *ref0; 1376 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1377 struct btrfs_extent_ref_v0); 1378 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1379 } 1380 #endif 1381 btrfs_mark_buffer_dirty(leaf); 1382 } 1383 return ret; 1384 } 1385 1386 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1387 struct btrfs_extent_inline_ref *iref) 1388 { 1389 struct btrfs_key key; 1390 struct extent_buffer *leaf; 1391 struct btrfs_extent_data_ref *ref1; 1392 struct btrfs_shared_data_ref *ref2; 1393 u32 num_refs = 0; 1394 1395 leaf = path->nodes[0]; 1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1397 if (iref) { 1398 if (btrfs_extent_inline_ref_type(leaf, iref) == 1399 BTRFS_EXTENT_DATA_REF_KEY) { 1400 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1402 } else { 1403 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1405 } 1406 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1407 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1408 struct btrfs_extent_data_ref); 1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1410 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1411 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1412 struct btrfs_shared_data_ref); 1413 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1415 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1416 struct btrfs_extent_ref_v0 *ref0; 1417 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1418 struct btrfs_extent_ref_v0); 1419 num_refs = btrfs_ref_count_v0(leaf, ref0); 1420 #endif 1421 } else { 1422 WARN_ON(1); 1423 } 1424 return num_refs; 1425 } 1426 1427 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1428 struct btrfs_root *root, 1429 struct btrfs_path *path, 1430 u64 bytenr, u64 parent, 1431 u64 root_objectid) 1432 { 1433 struct btrfs_key key; 1434 int ret; 1435 1436 key.objectid = bytenr; 1437 if (parent) { 1438 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1439 key.offset = parent; 1440 } else { 1441 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1442 key.offset = root_objectid; 1443 } 1444 1445 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1446 if (ret > 0) 1447 ret = -ENOENT; 1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1449 if (ret == -ENOENT && parent) { 1450 btrfs_release_path(path); 1451 key.type = BTRFS_EXTENT_REF_V0_KEY; 1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1453 if (ret > 0) 1454 ret = -ENOENT; 1455 } 1456 #endif 1457 return ret; 1458 } 1459 1460 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1461 struct btrfs_root *root, 1462 struct btrfs_path *path, 1463 u64 bytenr, u64 parent, 1464 u64 root_objectid) 1465 { 1466 struct btrfs_key key; 1467 int ret; 1468 1469 key.objectid = bytenr; 1470 if (parent) { 1471 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1472 key.offset = parent; 1473 } else { 1474 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1475 key.offset = root_objectid; 1476 } 1477 1478 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1479 btrfs_release_path(path); 1480 return ret; 1481 } 1482 1483 static inline int extent_ref_type(u64 parent, u64 owner) 1484 { 1485 int type; 1486 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1487 if (parent > 0) 1488 type = BTRFS_SHARED_BLOCK_REF_KEY; 1489 else 1490 type = BTRFS_TREE_BLOCK_REF_KEY; 1491 } else { 1492 if (parent > 0) 1493 type = BTRFS_SHARED_DATA_REF_KEY; 1494 else 1495 type = BTRFS_EXTENT_DATA_REF_KEY; 1496 } 1497 return type; 1498 } 1499 1500 static int find_next_key(struct btrfs_path *path, int level, 1501 struct btrfs_key *key) 1502 1503 { 1504 for (; level < BTRFS_MAX_LEVEL; level++) { 1505 if (!path->nodes[level]) 1506 break; 1507 if (path->slots[level] + 1 >= 1508 btrfs_header_nritems(path->nodes[level])) 1509 continue; 1510 if (level == 0) 1511 btrfs_item_key_to_cpu(path->nodes[level], key, 1512 path->slots[level] + 1); 1513 else 1514 btrfs_node_key_to_cpu(path->nodes[level], key, 1515 path->slots[level] + 1); 1516 return 0; 1517 } 1518 return 1; 1519 } 1520 1521 /* 1522 * look for inline back ref. if back ref is found, *ref_ret is set 1523 * to the address of inline back ref, and 0 is returned. 1524 * 1525 * if back ref isn't found, *ref_ret is set to the address where it 1526 * should be inserted, and -ENOENT is returned. 1527 * 1528 * if insert is true and there are too many inline back refs, the path 1529 * points to the extent item, and -EAGAIN is returned. 1530 * 1531 * NOTE: inline back refs are ordered in the same way that back ref 1532 * items in the tree are ordered. 1533 */ 1534 static noinline_for_stack 1535 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1536 struct btrfs_root *root, 1537 struct btrfs_path *path, 1538 struct btrfs_extent_inline_ref **ref_ret, 1539 u64 bytenr, u64 num_bytes, 1540 u64 parent, u64 root_objectid, 1541 u64 owner, u64 offset, int insert) 1542 { 1543 struct btrfs_key key; 1544 struct extent_buffer *leaf; 1545 struct btrfs_extent_item *ei; 1546 struct btrfs_extent_inline_ref *iref; 1547 u64 flags; 1548 u64 item_size; 1549 unsigned long ptr; 1550 unsigned long end; 1551 int extra_size; 1552 int type; 1553 int want; 1554 int ret; 1555 int err = 0; 1556 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1557 SKINNY_METADATA); 1558 1559 key.objectid = bytenr; 1560 key.type = BTRFS_EXTENT_ITEM_KEY; 1561 key.offset = num_bytes; 1562 1563 want = extent_ref_type(parent, owner); 1564 if (insert) { 1565 extra_size = btrfs_extent_inline_ref_size(want); 1566 path->keep_locks = 1; 1567 } else 1568 extra_size = -1; 1569 1570 /* 1571 * Owner is our parent level, so we can just add one to get the level 1572 * for the block we are interested in. 1573 */ 1574 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1575 key.type = BTRFS_METADATA_ITEM_KEY; 1576 key.offset = owner; 1577 } 1578 1579 again: 1580 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1581 if (ret < 0) { 1582 err = ret; 1583 goto out; 1584 } 1585 1586 /* 1587 * We may be a newly converted file system which still has the old fat 1588 * extent entries for metadata, so try and see if we have one of those. 1589 */ 1590 if (ret > 0 && skinny_metadata) { 1591 skinny_metadata = false; 1592 if (path->slots[0]) { 1593 path->slots[0]--; 1594 btrfs_item_key_to_cpu(path->nodes[0], &key, 1595 path->slots[0]); 1596 if (key.objectid == bytenr && 1597 key.type == BTRFS_EXTENT_ITEM_KEY && 1598 key.offset == num_bytes) 1599 ret = 0; 1600 } 1601 if (ret) { 1602 key.objectid = bytenr; 1603 key.type = BTRFS_EXTENT_ITEM_KEY; 1604 key.offset = num_bytes; 1605 btrfs_release_path(path); 1606 goto again; 1607 } 1608 } 1609 1610 if (ret && !insert) { 1611 err = -ENOENT; 1612 goto out; 1613 } else if (WARN_ON(ret)) { 1614 err = -EIO; 1615 goto out; 1616 } 1617 1618 leaf = path->nodes[0]; 1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1621 if (item_size < sizeof(*ei)) { 1622 if (!insert) { 1623 err = -ENOENT; 1624 goto out; 1625 } 1626 ret = convert_extent_item_v0(trans, root, path, owner, 1627 extra_size); 1628 if (ret < 0) { 1629 err = ret; 1630 goto out; 1631 } 1632 leaf = path->nodes[0]; 1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1634 } 1635 #endif 1636 BUG_ON(item_size < sizeof(*ei)); 1637 1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1639 flags = btrfs_extent_flags(leaf, ei); 1640 1641 ptr = (unsigned long)(ei + 1); 1642 end = (unsigned long)ei + item_size; 1643 1644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1645 ptr += sizeof(struct btrfs_tree_block_info); 1646 BUG_ON(ptr > end); 1647 } 1648 1649 err = -ENOENT; 1650 while (1) { 1651 if (ptr >= end) { 1652 WARN_ON(ptr > end); 1653 break; 1654 } 1655 iref = (struct btrfs_extent_inline_ref *)ptr; 1656 type = btrfs_extent_inline_ref_type(leaf, iref); 1657 if (want < type) 1658 break; 1659 if (want > type) { 1660 ptr += btrfs_extent_inline_ref_size(type); 1661 continue; 1662 } 1663 1664 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1665 struct btrfs_extent_data_ref *dref; 1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1667 if (match_extent_data_ref(leaf, dref, root_objectid, 1668 owner, offset)) { 1669 err = 0; 1670 break; 1671 } 1672 if (hash_extent_data_ref_item(leaf, dref) < 1673 hash_extent_data_ref(root_objectid, owner, offset)) 1674 break; 1675 } else { 1676 u64 ref_offset; 1677 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1678 if (parent > 0) { 1679 if (parent == ref_offset) { 1680 err = 0; 1681 break; 1682 } 1683 if (ref_offset < parent) 1684 break; 1685 } else { 1686 if (root_objectid == ref_offset) { 1687 err = 0; 1688 break; 1689 } 1690 if (ref_offset < root_objectid) 1691 break; 1692 } 1693 } 1694 ptr += btrfs_extent_inline_ref_size(type); 1695 } 1696 if (err == -ENOENT && insert) { 1697 if (item_size + extra_size >= 1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1699 err = -EAGAIN; 1700 goto out; 1701 } 1702 /* 1703 * To add new inline back ref, we have to make sure 1704 * there is no corresponding back ref item. 1705 * For simplicity, we just do not add new inline back 1706 * ref if there is any kind of item for this block 1707 */ 1708 if (find_next_key(path, 0, &key) == 0 && 1709 key.objectid == bytenr && 1710 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1711 err = -EAGAIN; 1712 goto out; 1713 } 1714 } 1715 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1716 out: 1717 if (insert) { 1718 path->keep_locks = 0; 1719 btrfs_unlock_up_safe(path, 1); 1720 } 1721 return err; 1722 } 1723 1724 /* 1725 * helper to add new inline back ref 1726 */ 1727 static noinline_for_stack 1728 void setup_inline_extent_backref(struct btrfs_root *root, 1729 struct btrfs_path *path, 1730 struct btrfs_extent_inline_ref *iref, 1731 u64 parent, u64 root_objectid, 1732 u64 owner, u64 offset, int refs_to_add, 1733 struct btrfs_delayed_extent_op *extent_op) 1734 { 1735 struct extent_buffer *leaf; 1736 struct btrfs_extent_item *ei; 1737 unsigned long ptr; 1738 unsigned long end; 1739 unsigned long item_offset; 1740 u64 refs; 1741 int size; 1742 int type; 1743 1744 leaf = path->nodes[0]; 1745 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1746 item_offset = (unsigned long)iref - (unsigned long)ei; 1747 1748 type = extent_ref_type(parent, owner); 1749 size = btrfs_extent_inline_ref_size(type); 1750 1751 btrfs_extend_item(root, path, size); 1752 1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1754 refs = btrfs_extent_refs(leaf, ei); 1755 refs += refs_to_add; 1756 btrfs_set_extent_refs(leaf, ei, refs); 1757 if (extent_op) 1758 __run_delayed_extent_op(extent_op, leaf, ei); 1759 1760 ptr = (unsigned long)ei + item_offset; 1761 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1762 if (ptr < end - size) 1763 memmove_extent_buffer(leaf, ptr + size, ptr, 1764 end - size - ptr); 1765 1766 iref = (struct btrfs_extent_inline_ref *)ptr; 1767 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1768 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1769 struct btrfs_extent_data_ref *dref; 1770 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1771 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1772 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1773 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1774 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1775 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1776 struct btrfs_shared_data_ref *sref; 1777 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1778 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1779 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1780 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1781 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1782 } else { 1783 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1784 } 1785 btrfs_mark_buffer_dirty(leaf); 1786 } 1787 1788 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1789 struct btrfs_root *root, 1790 struct btrfs_path *path, 1791 struct btrfs_extent_inline_ref **ref_ret, 1792 u64 bytenr, u64 num_bytes, u64 parent, 1793 u64 root_objectid, u64 owner, u64 offset) 1794 { 1795 int ret; 1796 1797 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1798 bytenr, num_bytes, parent, 1799 root_objectid, owner, offset, 0); 1800 if (ret != -ENOENT) 1801 return ret; 1802 1803 btrfs_release_path(path); 1804 *ref_ret = NULL; 1805 1806 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1807 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1808 root_objectid); 1809 } else { 1810 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1811 root_objectid, owner, offset); 1812 } 1813 return ret; 1814 } 1815 1816 /* 1817 * helper to update/remove inline back ref 1818 */ 1819 static noinline_for_stack 1820 void update_inline_extent_backref(struct btrfs_root *root, 1821 struct btrfs_path *path, 1822 struct btrfs_extent_inline_ref *iref, 1823 int refs_to_mod, 1824 struct btrfs_delayed_extent_op *extent_op, 1825 int *last_ref) 1826 { 1827 struct extent_buffer *leaf; 1828 struct btrfs_extent_item *ei; 1829 struct btrfs_extent_data_ref *dref = NULL; 1830 struct btrfs_shared_data_ref *sref = NULL; 1831 unsigned long ptr; 1832 unsigned long end; 1833 u32 item_size; 1834 int size; 1835 int type; 1836 u64 refs; 1837 1838 leaf = path->nodes[0]; 1839 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1840 refs = btrfs_extent_refs(leaf, ei); 1841 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1842 refs += refs_to_mod; 1843 btrfs_set_extent_refs(leaf, ei, refs); 1844 if (extent_op) 1845 __run_delayed_extent_op(extent_op, leaf, ei); 1846 1847 type = btrfs_extent_inline_ref_type(leaf, iref); 1848 1849 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1850 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1851 refs = btrfs_extent_data_ref_count(leaf, dref); 1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1853 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1854 refs = btrfs_shared_data_ref_count(leaf, sref); 1855 } else { 1856 refs = 1; 1857 BUG_ON(refs_to_mod != -1); 1858 } 1859 1860 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1861 refs += refs_to_mod; 1862 1863 if (refs > 0) { 1864 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1865 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1866 else 1867 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1868 } else { 1869 *last_ref = 1; 1870 size = btrfs_extent_inline_ref_size(type); 1871 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1872 ptr = (unsigned long)iref; 1873 end = (unsigned long)ei + item_size; 1874 if (ptr + size < end) 1875 memmove_extent_buffer(leaf, ptr, ptr + size, 1876 end - ptr - size); 1877 item_size -= size; 1878 btrfs_truncate_item(root, path, item_size, 1); 1879 } 1880 btrfs_mark_buffer_dirty(leaf); 1881 } 1882 1883 static noinline_for_stack 1884 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 struct btrfs_path *path, 1887 u64 bytenr, u64 num_bytes, u64 parent, 1888 u64 root_objectid, u64 owner, 1889 u64 offset, int refs_to_add, 1890 struct btrfs_delayed_extent_op *extent_op) 1891 { 1892 struct btrfs_extent_inline_ref *iref; 1893 int ret; 1894 1895 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1896 bytenr, num_bytes, parent, 1897 root_objectid, owner, offset, 1); 1898 if (ret == 0) { 1899 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1900 update_inline_extent_backref(root, path, iref, 1901 refs_to_add, extent_op, NULL); 1902 } else if (ret == -ENOENT) { 1903 setup_inline_extent_backref(root, path, iref, parent, 1904 root_objectid, owner, offset, 1905 refs_to_add, extent_op); 1906 ret = 0; 1907 } 1908 return ret; 1909 } 1910 1911 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1912 struct btrfs_root *root, 1913 struct btrfs_path *path, 1914 u64 bytenr, u64 parent, u64 root_objectid, 1915 u64 owner, u64 offset, int refs_to_add) 1916 { 1917 int ret; 1918 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1919 BUG_ON(refs_to_add != 1); 1920 ret = insert_tree_block_ref(trans, root, path, bytenr, 1921 parent, root_objectid); 1922 } else { 1923 ret = insert_extent_data_ref(trans, root, path, bytenr, 1924 parent, root_objectid, 1925 owner, offset, refs_to_add); 1926 } 1927 return ret; 1928 } 1929 1930 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1931 struct btrfs_root *root, 1932 struct btrfs_path *path, 1933 struct btrfs_extent_inline_ref *iref, 1934 int refs_to_drop, int is_data, int *last_ref) 1935 { 1936 int ret = 0; 1937 1938 BUG_ON(!is_data && refs_to_drop != 1); 1939 if (iref) { 1940 update_inline_extent_backref(root, path, iref, 1941 -refs_to_drop, NULL, last_ref); 1942 } else if (is_data) { 1943 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1944 last_ref); 1945 } else { 1946 *last_ref = 1; 1947 ret = btrfs_del_item(trans, root, path); 1948 } 1949 return ret; 1950 } 1951 1952 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1953 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1954 u64 *discarded_bytes) 1955 { 1956 int j, ret = 0; 1957 u64 bytes_left, end; 1958 u64 aligned_start = ALIGN(start, 1 << 9); 1959 1960 if (WARN_ON(start != aligned_start)) { 1961 len -= aligned_start - start; 1962 len = round_down(len, 1 << 9); 1963 start = aligned_start; 1964 } 1965 1966 *discarded_bytes = 0; 1967 1968 if (!len) 1969 return 0; 1970 1971 end = start + len; 1972 bytes_left = len; 1973 1974 /* Skip any superblocks on this device. */ 1975 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1976 u64 sb_start = btrfs_sb_offset(j); 1977 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1978 u64 size = sb_start - start; 1979 1980 if (!in_range(sb_start, start, bytes_left) && 1981 !in_range(sb_end, start, bytes_left) && 1982 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1983 continue; 1984 1985 /* 1986 * Superblock spans beginning of range. Adjust start and 1987 * try again. 1988 */ 1989 if (sb_start <= start) { 1990 start += sb_end - start; 1991 if (start > end) { 1992 bytes_left = 0; 1993 break; 1994 } 1995 bytes_left = end - start; 1996 continue; 1997 } 1998 1999 if (size) { 2000 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2001 GFP_NOFS, 0); 2002 if (!ret) 2003 *discarded_bytes += size; 2004 else if (ret != -EOPNOTSUPP) 2005 return ret; 2006 } 2007 2008 start = sb_end; 2009 if (start > end) { 2010 bytes_left = 0; 2011 break; 2012 } 2013 bytes_left = end - start; 2014 } 2015 2016 if (bytes_left) { 2017 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2018 GFP_NOFS, 0); 2019 if (!ret) 2020 *discarded_bytes += bytes_left; 2021 } 2022 return ret; 2023 } 2024 2025 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2026 u64 num_bytes, u64 *actual_bytes) 2027 { 2028 int ret; 2029 u64 discarded_bytes = 0; 2030 struct btrfs_bio *bbio = NULL; 2031 2032 2033 /* 2034 * Avoid races with device replace and make sure our bbio has devices 2035 * associated to its stripes that don't go away while we are discarding. 2036 */ 2037 btrfs_bio_counter_inc_blocked(root->fs_info); 2038 /* Tell the block device(s) that the sectors can be discarded */ 2039 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD, 2040 bytenr, &num_bytes, &bbio, 0); 2041 /* Error condition is -ENOMEM */ 2042 if (!ret) { 2043 struct btrfs_bio_stripe *stripe = bbio->stripes; 2044 int i; 2045 2046 2047 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2048 u64 bytes; 2049 if (!stripe->dev->can_discard) 2050 continue; 2051 2052 ret = btrfs_issue_discard(stripe->dev->bdev, 2053 stripe->physical, 2054 stripe->length, 2055 &bytes); 2056 if (!ret) 2057 discarded_bytes += bytes; 2058 else if (ret != -EOPNOTSUPP) 2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2060 2061 /* 2062 * Just in case we get back EOPNOTSUPP for some reason, 2063 * just ignore the return value so we don't screw up 2064 * people calling discard_extent. 2065 */ 2066 ret = 0; 2067 } 2068 btrfs_put_bbio(bbio); 2069 } 2070 btrfs_bio_counter_dec(root->fs_info); 2071 2072 if (actual_bytes) 2073 *actual_bytes = discarded_bytes; 2074 2075 2076 if (ret == -EOPNOTSUPP) 2077 ret = 0; 2078 return ret; 2079 } 2080 2081 /* Can return -ENOMEM */ 2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2083 struct btrfs_root *root, 2084 u64 bytenr, u64 num_bytes, u64 parent, 2085 u64 root_objectid, u64 owner, u64 offset) 2086 { 2087 int ret; 2088 struct btrfs_fs_info *fs_info = root->fs_info; 2089 2090 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2091 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2092 2093 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2094 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2095 num_bytes, 2096 parent, root_objectid, (int)owner, 2097 BTRFS_ADD_DELAYED_REF, NULL); 2098 } else { 2099 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2100 num_bytes, parent, root_objectid, 2101 owner, offset, 0, 2102 BTRFS_ADD_DELAYED_REF, NULL); 2103 } 2104 return ret; 2105 } 2106 2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2108 struct btrfs_root *root, 2109 struct btrfs_delayed_ref_node *node, 2110 u64 parent, u64 root_objectid, 2111 u64 owner, u64 offset, int refs_to_add, 2112 struct btrfs_delayed_extent_op *extent_op) 2113 { 2114 struct btrfs_fs_info *fs_info = root->fs_info; 2115 struct btrfs_path *path; 2116 struct extent_buffer *leaf; 2117 struct btrfs_extent_item *item; 2118 struct btrfs_key key; 2119 u64 bytenr = node->bytenr; 2120 u64 num_bytes = node->num_bytes; 2121 u64 refs; 2122 int ret; 2123 2124 path = btrfs_alloc_path(); 2125 if (!path) 2126 return -ENOMEM; 2127 2128 path->reada = READA_FORWARD; 2129 path->leave_spinning = 1; 2130 /* this will setup the path even if it fails to insert the back ref */ 2131 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2132 bytenr, num_bytes, parent, 2133 root_objectid, owner, offset, 2134 refs_to_add, extent_op); 2135 if ((ret < 0 && ret != -EAGAIN) || !ret) 2136 goto out; 2137 2138 /* 2139 * Ok we had -EAGAIN which means we didn't have space to insert and 2140 * inline extent ref, so just update the reference count and add a 2141 * normal backref. 2142 */ 2143 leaf = path->nodes[0]; 2144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2145 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2146 refs = btrfs_extent_refs(leaf, item); 2147 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2148 if (extent_op) 2149 __run_delayed_extent_op(extent_op, leaf, item); 2150 2151 btrfs_mark_buffer_dirty(leaf); 2152 btrfs_release_path(path); 2153 2154 path->reada = READA_FORWARD; 2155 path->leave_spinning = 1; 2156 /* now insert the actual backref */ 2157 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2158 path, bytenr, parent, root_objectid, 2159 owner, offset, refs_to_add); 2160 if (ret) 2161 btrfs_abort_transaction(trans, ret); 2162 out: 2163 btrfs_free_path(path); 2164 return ret; 2165 } 2166 2167 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2168 struct btrfs_root *root, 2169 struct btrfs_delayed_ref_node *node, 2170 struct btrfs_delayed_extent_op *extent_op, 2171 int insert_reserved) 2172 { 2173 int ret = 0; 2174 struct btrfs_delayed_data_ref *ref; 2175 struct btrfs_key ins; 2176 u64 parent = 0; 2177 u64 ref_root = 0; 2178 u64 flags = 0; 2179 2180 ins.objectid = node->bytenr; 2181 ins.offset = node->num_bytes; 2182 ins.type = BTRFS_EXTENT_ITEM_KEY; 2183 2184 ref = btrfs_delayed_node_to_data_ref(node); 2185 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action); 2186 2187 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2188 parent = ref->parent; 2189 ref_root = ref->root; 2190 2191 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2192 if (extent_op) 2193 flags |= extent_op->flags_to_set; 2194 ret = alloc_reserved_file_extent(trans, root, 2195 parent, ref_root, flags, 2196 ref->objectid, ref->offset, 2197 &ins, node->ref_mod); 2198 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2199 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2200 ref_root, ref->objectid, 2201 ref->offset, node->ref_mod, 2202 extent_op); 2203 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2204 ret = __btrfs_free_extent(trans, root, node, parent, 2205 ref_root, ref->objectid, 2206 ref->offset, node->ref_mod, 2207 extent_op); 2208 } else { 2209 BUG(); 2210 } 2211 return ret; 2212 } 2213 2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2215 struct extent_buffer *leaf, 2216 struct btrfs_extent_item *ei) 2217 { 2218 u64 flags = btrfs_extent_flags(leaf, ei); 2219 if (extent_op->update_flags) { 2220 flags |= extent_op->flags_to_set; 2221 btrfs_set_extent_flags(leaf, ei, flags); 2222 } 2223 2224 if (extent_op->update_key) { 2225 struct btrfs_tree_block_info *bi; 2226 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2227 bi = (struct btrfs_tree_block_info *)(ei + 1); 2228 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2229 } 2230 } 2231 2232 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2233 struct btrfs_root *root, 2234 struct btrfs_delayed_ref_node *node, 2235 struct btrfs_delayed_extent_op *extent_op) 2236 { 2237 struct btrfs_key key; 2238 struct btrfs_path *path; 2239 struct btrfs_extent_item *ei; 2240 struct extent_buffer *leaf; 2241 u32 item_size; 2242 int ret; 2243 int err = 0; 2244 int metadata = !extent_op->is_data; 2245 2246 if (trans->aborted) 2247 return 0; 2248 2249 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2250 metadata = 0; 2251 2252 path = btrfs_alloc_path(); 2253 if (!path) 2254 return -ENOMEM; 2255 2256 key.objectid = node->bytenr; 2257 2258 if (metadata) { 2259 key.type = BTRFS_METADATA_ITEM_KEY; 2260 key.offset = extent_op->level; 2261 } else { 2262 key.type = BTRFS_EXTENT_ITEM_KEY; 2263 key.offset = node->num_bytes; 2264 } 2265 2266 again: 2267 path->reada = READA_FORWARD; 2268 path->leave_spinning = 1; 2269 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2270 path, 0, 1); 2271 if (ret < 0) { 2272 err = ret; 2273 goto out; 2274 } 2275 if (ret > 0) { 2276 if (metadata) { 2277 if (path->slots[0] > 0) { 2278 path->slots[0]--; 2279 btrfs_item_key_to_cpu(path->nodes[0], &key, 2280 path->slots[0]); 2281 if (key.objectid == node->bytenr && 2282 key.type == BTRFS_EXTENT_ITEM_KEY && 2283 key.offset == node->num_bytes) 2284 ret = 0; 2285 } 2286 if (ret > 0) { 2287 btrfs_release_path(path); 2288 metadata = 0; 2289 2290 key.objectid = node->bytenr; 2291 key.offset = node->num_bytes; 2292 key.type = BTRFS_EXTENT_ITEM_KEY; 2293 goto again; 2294 } 2295 } else { 2296 err = -EIO; 2297 goto out; 2298 } 2299 } 2300 2301 leaf = path->nodes[0]; 2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2304 if (item_size < sizeof(*ei)) { 2305 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2306 path, (u64)-1, 0); 2307 if (ret < 0) { 2308 err = ret; 2309 goto out; 2310 } 2311 leaf = path->nodes[0]; 2312 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2313 } 2314 #endif 2315 BUG_ON(item_size < sizeof(*ei)); 2316 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2317 __run_delayed_extent_op(extent_op, leaf, ei); 2318 2319 btrfs_mark_buffer_dirty(leaf); 2320 out: 2321 btrfs_free_path(path); 2322 return err; 2323 } 2324 2325 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2326 struct btrfs_root *root, 2327 struct btrfs_delayed_ref_node *node, 2328 struct btrfs_delayed_extent_op *extent_op, 2329 int insert_reserved) 2330 { 2331 int ret = 0; 2332 struct btrfs_delayed_tree_ref *ref; 2333 struct btrfs_key ins; 2334 u64 parent = 0; 2335 u64 ref_root = 0; 2336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2337 SKINNY_METADATA); 2338 2339 ref = btrfs_delayed_node_to_tree_ref(node); 2340 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action); 2341 2342 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2343 parent = ref->parent; 2344 ref_root = ref->root; 2345 2346 ins.objectid = node->bytenr; 2347 if (skinny_metadata) { 2348 ins.offset = ref->level; 2349 ins.type = BTRFS_METADATA_ITEM_KEY; 2350 } else { 2351 ins.offset = node->num_bytes; 2352 ins.type = BTRFS_EXTENT_ITEM_KEY; 2353 } 2354 2355 if (node->ref_mod != 1) { 2356 btrfs_err(root->fs_info, 2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2358 node->bytenr, node->ref_mod, node->action, ref_root, 2359 parent); 2360 return -EIO; 2361 } 2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2363 BUG_ON(!extent_op || !extent_op->update_flags); 2364 ret = alloc_reserved_tree_block(trans, root, 2365 parent, ref_root, 2366 extent_op->flags_to_set, 2367 &extent_op->key, 2368 ref->level, &ins); 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2370 ret = __btrfs_inc_extent_ref(trans, root, node, 2371 parent, ref_root, 2372 ref->level, 0, 1, 2373 extent_op); 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2375 ret = __btrfs_free_extent(trans, root, node, 2376 parent, ref_root, 2377 ref->level, 0, 1, extent_op); 2378 } else { 2379 BUG(); 2380 } 2381 return ret; 2382 } 2383 2384 /* helper function to actually process a single delayed ref entry */ 2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct btrfs_delayed_ref_node *node, 2388 struct btrfs_delayed_extent_op *extent_op, 2389 int insert_reserved) 2390 { 2391 int ret = 0; 2392 2393 if (trans->aborted) { 2394 if (insert_reserved) 2395 btrfs_pin_extent(root, node->bytenr, 2396 node->num_bytes, 1); 2397 return 0; 2398 } 2399 2400 if (btrfs_delayed_ref_is_head(node)) { 2401 struct btrfs_delayed_ref_head *head; 2402 /* 2403 * we've hit the end of the chain and we were supposed 2404 * to insert this extent into the tree. But, it got 2405 * deleted before we ever needed to insert it, so all 2406 * we have to do is clean up the accounting 2407 */ 2408 BUG_ON(extent_op); 2409 head = btrfs_delayed_node_to_head(node); 2410 trace_run_delayed_ref_head(root->fs_info, node, head, 2411 node->action); 2412 2413 if (insert_reserved) { 2414 btrfs_pin_extent(root, node->bytenr, 2415 node->num_bytes, 1); 2416 if (head->is_data) { 2417 ret = btrfs_del_csums(trans, root, 2418 node->bytenr, 2419 node->num_bytes); 2420 } 2421 } 2422 2423 /* Also free its reserved qgroup space */ 2424 btrfs_qgroup_free_delayed_ref(root->fs_info, 2425 head->qgroup_ref_root, 2426 head->qgroup_reserved); 2427 return ret; 2428 } 2429 2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2432 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2433 insert_reserved); 2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2435 node->type == BTRFS_SHARED_DATA_REF_KEY) 2436 ret = run_delayed_data_ref(trans, root, node, extent_op, 2437 insert_reserved); 2438 else 2439 BUG(); 2440 return ret; 2441 } 2442 2443 static inline struct btrfs_delayed_ref_node * 2444 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2445 { 2446 struct btrfs_delayed_ref_node *ref; 2447 2448 if (list_empty(&head->ref_list)) 2449 return NULL; 2450 2451 /* 2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2453 * This is to prevent a ref count from going down to zero, which deletes 2454 * the extent item from the extent tree, when there still are references 2455 * to add, which would fail because they would not find the extent item. 2456 */ 2457 list_for_each_entry(ref, &head->ref_list, list) { 2458 if (ref->action == BTRFS_ADD_DELAYED_REF) 2459 return ref; 2460 } 2461 2462 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2463 list); 2464 } 2465 2466 /* 2467 * Returns 0 on success or if called with an already aborted transaction. 2468 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2469 */ 2470 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2471 struct btrfs_root *root, 2472 unsigned long nr) 2473 { 2474 struct btrfs_delayed_ref_root *delayed_refs; 2475 struct btrfs_delayed_ref_node *ref; 2476 struct btrfs_delayed_ref_head *locked_ref = NULL; 2477 struct btrfs_delayed_extent_op *extent_op; 2478 struct btrfs_fs_info *fs_info = root->fs_info; 2479 ktime_t start = ktime_get(); 2480 int ret; 2481 unsigned long count = 0; 2482 unsigned long actual_count = 0; 2483 int must_insert_reserved = 0; 2484 2485 delayed_refs = &trans->transaction->delayed_refs; 2486 while (1) { 2487 if (!locked_ref) { 2488 if (count >= nr) 2489 break; 2490 2491 spin_lock(&delayed_refs->lock); 2492 locked_ref = btrfs_select_ref_head(trans); 2493 if (!locked_ref) { 2494 spin_unlock(&delayed_refs->lock); 2495 break; 2496 } 2497 2498 /* grab the lock that says we are going to process 2499 * all the refs for this head */ 2500 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2501 spin_unlock(&delayed_refs->lock); 2502 /* 2503 * we may have dropped the spin lock to get the head 2504 * mutex lock, and that might have given someone else 2505 * time to free the head. If that's true, it has been 2506 * removed from our list and we can move on. 2507 */ 2508 if (ret == -EAGAIN) { 2509 locked_ref = NULL; 2510 count++; 2511 continue; 2512 } 2513 } 2514 2515 /* 2516 * We need to try and merge add/drops of the same ref since we 2517 * can run into issues with relocate dropping the implicit ref 2518 * and then it being added back again before the drop can 2519 * finish. If we merged anything we need to re-loop so we can 2520 * get a good ref. 2521 * Or we can get node references of the same type that weren't 2522 * merged when created due to bumps in the tree mod seq, and 2523 * we need to merge them to prevent adding an inline extent 2524 * backref before dropping it (triggering a BUG_ON at 2525 * insert_inline_extent_backref()). 2526 */ 2527 spin_lock(&locked_ref->lock); 2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2529 locked_ref); 2530 2531 /* 2532 * locked_ref is the head node, so we have to go one 2533 * node back for any delayed ref updates 2534 */ 2535 ref = select_delayed_ref(locked_ref); 2536 2537 if (ref && ref->seq && 2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2539 spin_unlock(&locked_ref->lock); 2540 btrfs_delayed_ref_unlock(locked_ref); 2541 spin_lock(&delayed_refs->lock); 2542 locked_ref->processing = 0; 2543 delayed_refs->num_heads_ready++; 2544 spin_unlock(&delayed_refs->lock); 2545 locked_ref = NULL; 2546 cond_resched(); 2547 count++; 2548 continue; 2549 } 2550 2551 /* 2552 * record the must insert reserved flag before we 2553 * drop the spin lock. 2554 */ 2555 must_insert_reserved = locked_ref->must_insert_reserved; 2556 locked_ref->must_insert_reserved = 0; 2557 2558 extent_op = locked_ref->extent_op; 2559 locked_ref->extent_op = NULL; 2560 2561 if (!ref) { 2562 2563 2564 /* All delayed refs have been processed, Go ahead 2565 * and send the head node to run_one_delayed_ref, 2566 * so that any accounting fixes can happen 2567 */ 2568 ref = &locked_ref->node; 2569 2570 if (extent_op && must_insert_reserved) { 2571 btrfs_free_delayed_extent_op(extent_op); 2572 extent_op = NULL; 2573 } 2574 2575 if (extent_op) { 2576 spin_unlock(&locked_ref->lock); 2577 ret = run_delayed_extent_op(trans, root, 2578 ref, extent_op); 2579 btrfs_free_delayed_extent_op(extent_op); 2580 2581 if (ret) { 2582 /* 2583 * Need to reset must_insert_reserved if 2584 * there was an error so the abort stuff 2585 * can cleanup the reserved space 2586 * properly. 2587 */ 2588 if (must_insert_reserved) 2589 locked_ref->must_insert_reserved = 1; 2590 locked_ref->processing = 0; 2591 btrfs_debug(fs_info, 2592 "run_delayed_extent_op returned %d", 2593 ret); 2594 btrfs_delayed_ref_unlock(locked_ref); 2595 return ret; 2596 } 2597 continue; 2598 } 2599 2600 /* 2601 * Need to drop our head ref lock and re-acquire the 2602 * delayed ref lock and then re-check to make sure 2603 * nobody got added. 2604 */ 2605 spin_unlock(&locked_ref->lock); 2606 spin_lock(&delayed_refs->lock); 2607 spin_lock(&locked_ref->lock); 2608 if (!list_empty(&locked_ref->ref_list) || 2609 locked_ref->extent_op) { 2610 spin_unlock(&locked_ref->lock); 2611 spin_unlock(&delayed_refs->lock); 2612 continue; 2613 } 2614 ref->in_tree = 0; 2615 delayed_refs->num_heads--; 2616 rb_erase(&locked_ref->href_node, 2617 &delayed_refs->href_root); 2618 spin_unlock(&delayed_refs->lock); 2619 } else { 2620 actual_count++; 2621 ref->in_tree = 0; 2622 list_del(&ref->list); 2623 } 2624 atomic_dec(&delayed_refs->num_entries); 2625 2626 if (!btrfs_delayed_ref_is_head(ref)) { 2627 /* 2628 * when we play the delayed ref, also correct the 2629 * ref_mod on head 2630 */ 2631 switch (ref->action) { 2632 case BTRFS_ADD_DELAYED_REF: 2633 case BTRFS_ADD_DELAYED_EXTENT: 2634 locked_ref->node.ref_mod -= ref->ref_mod; 2635 break; 2636 case BTRFS_DROP_DELAYED_REF: 2637 locked_ref->node.ref_mod += ref->ref_mod; 2638 break; 2639 default: 2640 WARN_ON(1); 2641 } 2642 } 2643 spin_unlock(&locked_ref->lock); 2644 2645 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2646 must_insert_reserved); 2647 2648 btrfs_free_delayed_extent_op(extent_op); 2649 if (ret) { 2650 spin_lock(&delayed_refs->lock); 2651 locked_ref->processing = 0; 2652 delayed_refs->num_heads_ready++; 2653 spin_unlock(&delayed_refs->lock); 2654 btrfs_delayed_ref_unlock(locked_ref); 2655 btrfs_put_delayed_ref(ref); 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2657 ret); 2658 return ret; 2659 } 2660 2661 /* 2662 * If this node is a head, that means all the refs in this head 2663 * have been dealt with, and we will pick the next head to deal 2664 * with, so we must unlock the head and drop it from the cluster 2665 * list before we release it. 2666 */ 2667 if (btrfs_delayed_ref_is_head(ref)) { 2668 if (locked_ref->is_data && 2669 locked_ref->total_ref_mod < 0) { 2670 spin_lock(&delayed_refs->lock); 2671 delayed_refs->pending_csums -= ref->num_bytes; 2672 spin_unlock(&delayed_refs->lock); 2673 } 2674 btrfs_delayed_ref_unlock(locked_ref); 2675 locked_ref = NULL; 2676 } 2677 btrfs_put_delayed_ref(ref); 2678 count++; 2679 cond_resched(); 2680 } 2681 2682 /* 2683 * We don't want to include ref heads since we can have empty ref heads 2684 * and those will drastically skew our runtime down since we just do 2685 * accounting, no actual extent tree updates. 2686 */ 2687 if (actual_count > 0) { 2688 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2689 u64 avg; 2690 2691 /* 2692 * We weigh the current average higher than our current runtime 2693 * to avoid large swings in the average. 2694 */ 2695 spin_lock(&delayed_refs->lock); 2696 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2697 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2698 spin_unlock(&delayed_refs->lock); 2699 } 2700 return 0; 2701 } 2702 2703 #ifdef SCRAMBLE_DELAYED_REFS 2704 /* 2705 * Normally delayed refs get processed in ascending bytenr order. This 2706 * correlates in most cases to the order added. To expose dependencies on this 2707 * order, we start to process the tree in the middle instead of the beginning 2708 */ 2709 static u64 find_middle(struct rb_root *root) 2710 { 2711 struct rb_node *n = root->rb_node; 2712 struct btrfs_delayed_ref_node *entry; 2713 int alt = 1; 2714 u64 middle; 2715 u64 first = 0, last = 0; 2716 2717 n = rb_first(root); 2718 if (n) { 2719 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2720 first = entry->bytenr; 2721 } 2722 n = rb_last(root); 2723 if (n) { 2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2725 last = entry->bytenr; 2726 } 2727 n = root->rb_node; 2728 2729 while (n) { 2730 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2731 WARN_ON(!entry->in_tree); 2732 2733 middle = entry->bytenr; 2734 2735 if (alt) 2736 n = n->rb_left; 2737 else 2738 n = n->rb_right; 2739 2740 alt = 1 - alt; 2741 } 2742 return middle; 2743 } 2744 #endif 2745 2746 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2747 { 2748 u64 num_bytes; 2749 2750 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2751 sizeof(struct btrfs_extent_inline_ref)); 2752 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2753 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2754 2755 /* 2756 * We don't ever fill up leaves all the way so multiply by 2 just to be 2757 * closer to what we're really going to want to use. 2758 */ 2759 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2760 } 2761 2762 /* 2763 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2764 * would require to store the csums for that many bytes. 2765 */ 2766 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2767 { 2768 u64 csum_size; 2769 u64 num_csums_per_leaf; 2770 u64 num_csums; 2771 2772 csum_size = BTRFS_MAX_ITEM_SIZE(root); 2773 num_csums_per_leaf = div64_u64(csum_size, 2774 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2775 num_csums = div64_u64(csum_bytes, root->sectorsize); 2776 num_csums += num_csums_per_leaf - 1; 2777 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2778 return num_csums; 2779 } 2780 2781 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2782 struct btrfs_root *root) 2783 { 2784 struct btrfs_block_rsv *global_rsv; 2785 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2786 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2787 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2788 u64 num_bytes, num_dirty_bgs_bytes; 2789 int ret = 0; 2790 2791 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2792 num_heads = heads_to_leaves(root, num_heads); 2793 if (num_heads > 1) 2794 num_bytes += (num_heads - 1) * root->nodesize; 2795 num_bytes <<= 1; 2796 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2797 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2798 num_dirty_bgs); 2799 global_rsv = &root->fs_info->global_block_rsv; 2800 2801 /* 2802 * If we can't allocate any more chunks lets make sure we have _lots_ of 2803 * wiggle room since running delayed refs can create more delayed refs. 2804 */ 2805 if (global_rsv->space_info->full) { 2806 num_dirty_bgs_bytes <<= 1; 2807 num_bytes <<= 1; 2808 } 2809 2810 spin_lock(&global_rsv->lock); 2811 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2812 ret = 1; 2813 spin_unlock(&global_rsv->lock); 2814 return ret; 2815 } 2816 2817 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2818 struct btrfs_root *root) 2819 { 2820 struct btrfs_fs_info *fs_info = root->fs_info; 2821 u64 num_entries = 2822 atomic_read(&trans->transaction->delayed_refs.num_entries); 2823 u64 avg_runtime; 2824 u64 val; 2825 2826 smp_mb(); 2827 avg_runtime = fs_info->avg_delayed_ref_runtime; 2828 val = num_entries * avg_runtime; 2829 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2830 return 1; 2831 if (val >= NSEC_PER_SEC / 2) 2832 return 2; 2833 2834 return btrfs_check_space_for_delayed_refs(trans, root); 2835 } 2836 2837 struct async_delayed_refs { 2838 struct btrfs_root *root; 2839 u64 transid; 2840 int count; 2841 int error; 2842 int sync; 2843 struct completion wait; 2844 struct btrfs_work work; 2845 }; 2846 2847 static void delayed_ref_async_start(struct btrfs_work *work) 2848 { 2849 struct async_delayed_refs *async; 2850 struct btrfs_trans_handle *trans; 2851 int ret; 2852 2853 async = container_of(work, struct async_delayed_refs, work); 2854 2855 /* if the commit is already started, we don't need to wait here */ 2856 if (btrfs_transaction_blocked(async->root->fs_info)) 2857 goto done; 2858 2859 trans = btrfs_join_transaction(async->root); 2860 if (IS_ERR(trans)) { 2861 async->error = PTR_ERR(trans); 2862 goto done; 2863 } 2864 2865 /* 2866 * trans->sync means that when we call end_transaction, we won't 2867 * wait on delayed refs 2868 */ 2869 trans->sync = true; 2870 2871 /* Don't bother flushing if we got into a different transaction */ 2872 if (trans->transid > async->transid) 2873 goto end; 2874 2875 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2876 if (ret) 2877 async->error = ret; 2878 end: 2879 ret = btrfs_end_transaction(trans, async->root); 2880 if (ret && !async->error) 2881 async->error = ret; 2882 done: 2883 if (async->sync) 2884 complete(&async->wait); 2885 else 2886 kfree(async); 2887 } 2888 2889 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2890 unsigned long count, u64 transid, int wait) 2891 { 2892 struct async_delayed_refs *async; 2893 int ret; 2894 2895 async = kmalloc(sizeof(*async), GFP_NOFS); 2896 if (!async) 2897 return -ENOMEM; 2898 2899 async->root = root->fs_info->tree_root; 2900 async->count = count; 2901 async->error = 0; 2902 async->transid = transid; 2903 if (wait) 2904 async->sync = 1; 2905 else 2906 async->sync = 0; 2907 init_completion(&async->wait); 2908 2909 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2910 delayed_ref_async_start, NULL, NULL); 2911 2912 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2913 2914 if (wait) { 2915 wait_for_completion(&async->wait); 2916 ret = async->error; 2917 kfree(async); 2918 return ret; 2919 } 2920 return 0; 2921 } 2922 2923 /* 2924 * this starts processing the delayed reference count updates and 2925 * extent insertions we have queued up so far. count can be 2926 * 0, which means to process everything in the tree at the start 2927 * of the run (but not newly added entries), or it can be some target 2928 * number you'd like to process. 2929 * 2930 * Returns 0 on success or if called with an aborted transaction 2931 * Returns <0 on error and aborts the transaction 2932 */ 2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2934 struct btrfs_root *root, unsigned long count) 2935 { 2936 struct rb_node *node; 2937 struct btrfs_delayed_ref_root *delayed_refs; 2938 struct btrfs_delayed_ref_head *head; 2939 int ret; 2940 int run_all = count == (unsigned long)-1; 2941 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2942 2943 /* We'll clean this up in btrfs_cleanup_transaction */ 2944 if (trans->aborted) 2945 return 0; 2946 2947 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags)) 2948 return 0; 2949 2950 if (root == root->fs_info->extent_root) 2951 root = root->fs_info->tree_root; 2952 2953 delayed_refs = &trans->transaction->delayed_refs; 2954 if (count == 0) 2955 count = atomic_read(&delayed_refs->num_entries) * 2; 2956 2957 again: 2958 #ifdef SCRAMBLE_DELAYED_REFS 2959 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2960 #endif 2961 trans->can_flush_pending_bgs = false; 2962 ret = __btrfs_run_delayed_refs(trans, root, count); 2963 if (ret < 0) { 2964 btrfs_abort_transaction(trans, ret); 2965 return ret; 2966 } 2967 2968 if (run_all) { 2969 if (!list_empty(&trans->new_bgs)) 2970 btrfs_create_pending_block_groups(trans, root); 2971 2972 spin_lock(&delayed_refs->lock); 2973 node = rb_first(&delayed_refs->href_root); 2974 if (!node) { 2975 spin_unlock(&delayed_refs->lock); 2976 goto out; 2977 } 2978 2979 while (node) { 2980 head = rb_entry(node, struct btrfs_delayed_ref_head, 2981 href_node); 2982 if (btrfs_delayed_ref_is_head(&head->node)) { 2983 struct btrfs_delayed_ref_node *ref; 2984 2985 ref = &head->node; 2986 atomic_inc(&ref->refs); 2987 2988 spin_unlock(&delayed_refs->lock); 2989 /* 2990 * Mutex was contended, block until it's 2991 * released and try again 2992 */ 2993 mutex_lock(&head->mutex); 2994 mutex_unlock(&head->mutex); 2995 2996 btrfs_put_delayed_ref(ref); 2997 cond_resched(); 2998 goto again; 2999 } else { 3000 WARN_ON(1); 3001 } 3002 node = rb_next(node); 3003 } 3004 spin_unlock(&delayed_refs->lock); 3005 cond_resched(); 3006 goto again; 3007 } 3008 out: 3009 assert_qgroups_uptodate(trans); 3010 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3011 return 0; 3012 } 3013 3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3015 struct btrfs_root *root, 3016 u64 bytenr, u64 num_bytes, u64 flags, 3017 int level, int is_data) 3018 { 3019 struct btrfs_delayed_extent_op *extent_op; 3020 int ret; 3021 3022 extent_op = btrfs_alloc_delayed_extent_op(); 3023 if (!extent_op) 3024 return -ENOMEM; 3025 3026 extent_op->flags_to_set = flags; 3027 extent_op->update_flags = true; 3028 extent_op->update_key = false; 3029 extent_op->is_data = is_data ? true : false; 3030 extent_op->level = level; 3031 3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3033 num_bytes, extent_op); 3034 if (ret) 3035 btrfs_free_delayed_extent_op(extent_op); 3036 return ret; 3037 } 3038 3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3040 struct btrfs_root *root, 3041 struct btrfs_path *path, 3042 u64 objectid, u64 offset, u64 bytenr) 3043 { 3044 struct btrfs_delayed_ref_head *head; 3045 struct btrfs_delayed_ref_node *ref; 3046 struct btrfs_delayed_data_ref *data_ref; 3047 struct btrfs_delayed_ref_root *delayed_refs; 3048 int ret = 0; 3049 3050 delayed_refs = &trans->transaction->delayed_refs; 3051 spin_lock(&delayed_refs->lock); 3052 head = btrfs_find_delayed_ref_head(trans, bytenr); 3053 if (!head) { 3054 spin_unlock(&delayed_refs->lock); 3055 return 0; 3056 } 3057 3058 if (!mutex_trylock(&head->mutex)) { 3059 atomic_inc(&head->node.refs); 3060 spin_unlock(&delayed_refs->lock); 3061 3062 btrfs_release_path(path); 3063 3064 /* 3065 * Mutex was contended, block until it's released and let 3066 * caller try again 3067 */ 3068 mutex_lock(&head->mutex); 3069 mutex_unlock(&head->mutex); 3070 btrfs_put_delayed_ref(&head->node); 3071 return -EAGAIN; 3072 } 3073 spin_unlock(&delayed_refs->lock); 3074 3075 spin_lock(&head->lock); 3076 list_for_each_entry(ref, &head->ref_list, list) { 3077 /* If it's a shared ref we know a cross reference exists */ 3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3079 ret = 1; 3080 break; 3081 } 3082 3083 data_ref = btrfs_delayed_node_to_data_ref(ref); 3084 3085 /* 3086 * If our ref doesn't match the one we're currently looking at 3087 * then we have a cross reference. 3088 */ 3089 if (data_ref->root != root->root_key.objectid || 3090 data_ref->objectid != objectid || 3091 data_ref->offset != offset) { 3092 ret = 1; 3093 break; 3094 } 3095 } 3096 spin_unlock(&head->lock); 3097 mutex_unlock(&head->mutex); 3098 return ret; 3099 } 3100 3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3102 struct btrfs_root *root, 3103 struct btrfs_path *path, 3104 u64 objectid, u64 offset, u64 bytenr) 3105 { 3106 struct btrfs_root *extent_root = root->fs_info->extent_root; 3107 struct extent_buffer *leaf; 3108 struct btrfs_extent_data_ref *ref; 3109 struct btrfs_extent_inline_ref *iref; 3110 struct btrfs_extent_item *ei; 3111 struct btrfs_key key; 3112 u32 item_size; 3113 int ret; 3114 3115 key.objectid = bytenr; 3116 key.offset = (u64)-1; 3117 key.type = BTRFS_EXTENT_ITEM_KEY; 3118 3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3120 if (ret < 0) 3121 goto out; 3122 BUG_ON(ret == 0); /* Corruption */ 3123 3124 ret = -ENOENT; 3125 if (path->slots[0] == 0) 3126 goto out; 3127 3128 path->slots[0]--; 3129 leaf = path->nodes[0]; 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3131 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3133 goto out; 3134 3135 ret = 1; 3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3138 if (item_size < sizeof(*ei)) { 3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3140 goto out; 3141 } 3142 #endif 3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3144 3145 if (item_size != sizeof(*ei) + 3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3147 goto out; 3148 3149 if (btrfs_extent_generation(leaf, ei) <= 3150 btrfs_root_last_snapshot(&root->root_item)) 3151 goto out; 3152 3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3154 if (btrfs_extent_inline_ref_type(leaf, iref) != 3155 BTRFS_EXTENT_DATA_REF_KEY) 3156 goto out; 3157 3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3159 if (btrfs_extent_refs(leaf, ei) != 3160 btrfs_extent_data_ref_count(leaf, ref) || 3161 btrfs_extent_data_ref_root(leaf, ref) != 3162 root->root_key.objectid || 3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3164 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3165 goto out; 3166 3167 ret = 0; 3168 out: 3169 return ret; 3170 } 3171 3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3173 struct btrfs_root *root, 3174 u64 objectid, u64 offset, u64 bytenr) 3175 { 3176 struct btrfs_path *path; 3177 int ret; 3178 int ret2; 3179 3180 path = btrfs_alloc_path(); 3181 if (!path) 3182 return -ENOENT; 3183 3184 do { 3185 ret = check_committed_ref(trans, root, path, objectid, 3186 offset, bytenr); 3187 if (ret && ret != -ENOENT) 3188 goto out; 3189 3190 ret2 = check_delayed_ref(trans, root, path, objectid, 3191 offset, bytenr); 3192 } while (ret2 == -EAGAIN); 3193 3194 if (ret2 && ret2 != -ENOENT) { 3195 ret = ret2; 3196 goto out; 3197 } 3198 3199 if (ret != -ENOENT || ret2 != -ENOENT) 3200 ret = 0; 3201 out: 3202 btrfs_free_path(path); 3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3204 WARN_ON(ret > 0); 3205 return ret; 3206 } 3207 3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3209 struct btrfs_root *root, 3210 struct extent_buffer *buf, 3211 int full_backref, int inc) 3212 { 3213 u64 bytenr; 3214 u64 num_bytes; 3215 u64 parent; 3216 u64 ref_root; 3217 u32 nritems; 3218 struct btrfs_key key; 3219 struct btrfs_file_extent_item *fi; 3220 int i; 3221 int level; 3222 int ret = 0; 3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3224 u64, u64, u64, u64, u64, u64); 3225 3226 3227 if (btrfs_is_testing(root->fs_info)) 3228 return 0; 3229 3230 ref_root = btrfs_header_owner(buf); 3231 nritems = btrfs_header_nritems(buf); 3232 level = btrfs_header_level(buf); 3233 3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3235 return 0; 3236 3237 if (inc) 3238 process_func = btrfs_inc_extent_ref; 3239 else 3240 process_func = btrfs_free_extent; 3241 3242 if (full_backref) 3243 parent = buf->start; 3244 else 3245 parent = 0; 3246 3247 for (i = 0; i < nritems; i++) { 3248 if (level == 0) { 3249 btrfs_item_key_to_cpu(buf, &key, i); 3250 if (key.type != BTRFS_EXTENT_DATA_KEY) 3251 continue; 3252 fi = btrfs_item_ptr(buf, i, 3253 struct btrfs_file_extent_item); 3254 if (btrfs_file_extent_type(buf, fi) == 3255 BTRFS_FILE_EXTENT_INLINE) 3256 continue; 3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3258 if (bytenr == 0) 3259 continue; 3260 3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3262 key.offset -= btrfs_file_extent_offset(buf, fi); 3263 ret = process_func(trans, root, bytenr, num_bytes, 3264 parent, ref_root, key.objectid, 3265 key.offset); 3266 if (ret) 3267 goto fail; 3268 } else { 3269 bytenr = btrfs_node_blockptr(buf, i); 3270 num_bytes = root->nodesize; 3271 ret = process_func(trans, root, bytenr, num_bytes, 3272 parent, ref_root, level - 1, 0); 3273 if (ret) 3274 goto fail; 3275 } 3276 } 3277 return 0; 3278 fail: 3279 return ret; 3280 } 3281 3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3283 struct extent_buffer *buf, int full_backref) 3284 { 3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3286 } 3287 3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3289 struct extent_buffer *buf, int full_backref) 3290 { 3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3292 } 3293 3294 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3295 struct btrfs_root *root, 3296 struct btrfs_path *path, 3297 struct btrfs_block_group_cache *cache) 3298 { 3299 int ret; 3300 struct btrfs_root *extent_root = root->fs_info->extent_root; 3301 unsigned long bi; 3302 struct extent_buffer *leaf; 3303 3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3305 if (ret) { 3306 if (ret > 0) 3307 ret = -ENOENT; 3308 goto fail; 3309 } 3310 3311 leaf = path->nodes[0]; 3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3314 btrfs_mark_buffer_dirty(leaf); 3315 fail: 3316 btrfs_release_path(path); 3317 return ret; 3318 3319 } 3320 3321 static struct btrfs_block_group_cache * 3322 next_block_group(struct btrfs_root *root, 3323 struct btrfs_block_group_cache *cache) 3324 { 3325 struct rb_node *node; 3326 3327 spin_lock(&root->fs_info->block_group_cache_lock); 3328 3329 /* If our block group was removed, we need a full search. */ 3330 if (RB_EMPTY_NODE(&cache->cache_node)) { 3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3332 3333 spin_unlock(&root->fs_info->block_group_cache_lock); 3334 btrfs_put_block_group(cache); 3335 cache = btrfs_lookup_first_block_group(root->fs_info, 3336 next_bytenr); 3337 return cache; 3338 } 3339 node = rb_next(&cache->cache_node); 3340 btrfs_put_block_group(cache); 3341 if (node) { 3342 cache = rb_entry(node, struct btrfs_block_group_cache, 3343 cache_node); 3344 btrfs_get_block_group(cache); 3345 } else 3346 cache = NULL; 3347 spin_unlock(&root->fs_info->block_group_cache_lock); 3348 return cache; 3349 } 3350 3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3352 struct btrfs_trans_handle *trans, 3353 struct btrfs_path *path) 3354 { 3355 struct btrfs_root *root = block_group->fs_info->tree_root; 3356 struct inode *inode = NULL; 3357 u64 alloc_hint = 0; 3358 int dcs = BTRFS_DC_ERROR; 3359 u64 num_pages = 0; 3360 int retries = 0; 3361 int ret = 0; 3362 3363 /* 3364 * If this block group is smaller than 100 megs don't bother caching the 3365 * block group. 3366 */ 3367 if (block_group->key.offset < (100 * SZ_1M)) { 3368 spin_lock(&block_group->lock); 3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3370 spin_unlock(&block_group->lock); 3371 return 0; 3372 } 3373 3374 if (trans->aborted) 3375 return 0; 3376 again: 3377 inode = lookup_free_space_inode(root, block_group, path); 3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3379 ret = PTR_ERR(inode); 3380 btrfs_release_path(path); 3381 goto out; 3382 } 3383 3384 if (IS_ERR(inode)) { 3385 BUG_ON(retries); 3386 retries++; 3387 3388 if (block_group->ro) 3389 goto out_free; 3390 3391 ret = create_free_space_inode(root, trans, block_group, path); 3392 if (ret) 3393 goto out_free; 3394 goto again; 3395 } 3396 3397 /* We've already setup this transaction, go ahead and exit */ 3398 if (block_group->cache_generation == trans->transid && 3399 i_size_read(inode)) { 3400 dcs = BTRFS_DC_SETUP; 3401 goto out_put; 3402 } 3403 3404 /* 3405 * We want to set the generation to 0, that way if anything goes wrong 3406 * from here on out we know not to trust this cache when we load up next 3407 * time. 3408 */ 3409 BTRFS_I(inode)->generation = 0; 3410 ret = btrfs_update_inode(trans, root, inode); 3411 if (ret) { 3412 /* 3413 * So theoretically we could recover from this, simply set the 3414 * super cache generation to 0 so we know to invalidate the 3415 * cache, but then we'd have to keep track of the block groups 3416 * that fail this way so we know we _have_ to reset this cache 3417 * before the next commit or risk reading stale cache. So to 3418 * limit our exposure to horrible edge cases lets just abort the 3419 * transaction, this only happens in really bad situations 3420 * anyway. 3421 */ 3422 btrfs_abort_transaction(trans, ret); 3423 goto out_put; 3424 } 3425 WARN_ON(ret); 3426 3427 if (i_size_read(inode) > 0) { 3428 ret = btrfs_check_trunc_cache_free_space(root, 3429 &root->fs_info->global_block_rsv); 3430 if (ret) 3431 goto out_put; 3432 3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3434 if (ret) 3435 goto out_put; 3436 } 3437 3438 spin_lock(&block_group->lock); 3439 if (block_group->cached != BTRFS_CACHE_FINISHED || 3440 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) { 3441 /* 3442 * don't bother trying to write stuff out _if_ 3443 * a) we're not cached, 3444 * b) we're with nospace_cache mount option. 3445 */ 3446 dcs = BTRFS_DC_WRITTEN; 3447 spin_unlock(&block_group->lock); 3448 goto out_put; 3449 } 3450 spin_unlock(&block_group->lock); 3451 3452 /* 3453 * We hit an ENOSPC when setting up the cache in this transaction, just 3454 * skip doing the setup, we've already cleared the cache so we're safe. 3455 */ 3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3457 ret = -ENOSPC; 3458 goto out_put; 3459 } 3460 3461 /* 3462 * Try to preallocate enough space based on how big the block group is. 3463 * Keep in mind this has to include any pinned space which could end up 3464 * taking up quite a bit since it's not folded into the other space 3465 * cache. 3466 */ 3467 num_pages = div_u64(block_group->key.offset, SZ_256M); 3468 if (!num_pages) 3469 num_pages = 1; 3470 3471 num_pages *= 16; 3472 num_pages *= PAGE_SIZE; 3473 3474 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3475 if (ret) 3476 goto out_put; 3477 3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3479 num_pages, num_pages, 3480 &alloc_hint); 3481 /* 3482 * Our cache requires contiguous chunks so that we don't modify a bunch 3483 * of metadata or split extents when writing the cache out, which means 3484 * we can enospc if we are heavily fragmented in addition to just normal 3485 * out of space conditions. So if we hit this just skip setting up any 3486 * other block groups for this transaction, maybe we'll unpin enough 3487 * space the next time around. 3488 */ 3489 if (!ret) 3490 dcs = BTRFS_DC_SETUP; 3491 else if (ret == -ENOSPC) 3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3493 3494 out_put: 3495 iput(inode); 3496 out_free: 3497 btrfs_release_path(path); 3498 out: 3499 spin_lock(&block_group->lock); 3500 if (!ret && dcs == BTRFS_DC_SETUP) 3501 block_group->cache_generation = trans->transid; 3502 block_group->disk_cache_state = dcs; 3503 spin_unlock(&block_group->lock); 3504 3505 return ret; 3506 } 3507 3508 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3509 struct btrfs_root *root) 3510 { 3511 struct btrfs_block_group_cache *cache, *tmp; 3512 struct btrfs_transaction *cur_trans = trans->transaction; 3513 struct btrfs_path *path; 3514 3515 if (list_empty(&cur_trans->dirty_bgs) || 3516 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) 3517 return 0; 3518 3519 path = btrfs_alloc_path(); 3520 if (!path) 3521 return -ENOMEM; 3522 3523 /* Could add new block groups, use _safe just in case */ 3524 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3525 dirty_list) { 3526 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3527 cache_save_setup(cache, trans, path); 3528 } 3529 3530 btrfs_free_path(path); 3531 return 0; 3532 } 3533 3534 /* 3535 * transaction commit does final block group cache writeback during a 3536 * critical section where nothing is allowed to change the FS. This is 3537 * required in order for the cache to actually match the block group, 3538 * but can introduce a lot of latency into the commit. 3539 * 3540 * So, btrfs_start_dirty_block_groups is here to kick off block group 3541 * cache IO. There's a chance we'll have to redo some of it if the 3542 * block group changes again during the commit, but it greatly reduces 3543 * the commit latency by getting rid of the easy block groups while 3544 * we're still allowing others to join the commit. 3545 */ 3546 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3547 struct btrfs_root *root) 3548 { 3549 struct btrfs_block_group_cache *cache; 3550 struct btrfs_transaction *cur_trans = trans->transaction; 3551 int ret = 0; 3552 int should_put; 3553 struct btrfs_path *path = NULL; 3554 LIST_HEAD(dirty); 3555 struct list_head *io = &cur_trans->io_bgs; 3556 int num_started = 0; 3557 int loops = 0; 3558 3559 spin_lock(&cur_trans->dirty_bgs_lock); 3560 if (list_empty(&cur_trans->dirty_bgs)) { 3561 spin_unlock(&cur_trans->dirty_bgs_lock); 3562 return 0; 3563 } 3564 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3565 spin_unlock(&cur_trans->dirty_bgs_lock); 3566 3567 again: 3568 /* 3569 * make sure all the block groups on our dirty list actually 3570 * exist 3571 */ 3572 btrfs_create_pending_block_groups(trans, root); 3573 3574 if (!path) { 3575 path = btrfs_alloc_path(); 3576 if (!path) 3577 return -ENOMEM; 3578 } 3579 3580 /* 3581 * cache_write_mutex is here only to save us from balance or automatic 3582 * removal of empty block groups deleting this block group while we are 3583 * writing out the cache 3584 */ 3585 mutex_lock(&trans->transaction->cache_write_mutex); 3586 while (!list_empty(&dirty)) { 3587 cache = list_first_entry(&dirty, 3588 struct btrfs_block_group_cache, 3589 dirty_list); 3590 /* 3591 * this can happen if something re-dirties a block 3592 * group that is already under IO. Just wait for it to 3593 * finish and then do it all again 3594 */ 3595 if (!list_empty(&cache->io_list)) { 3596 list_del_init(&cache->io_list); 3597 btrfs_wait_cache_io(root, trans, cache, 3598 &cache->io_ctl, path, 3599 cache->key.objectid); 3600 btrfs_put_block_group(cache); 3601 } 3602 3603 3604 /* 3605 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3606 * if it should update the cache_state. Don't delete 3607 * until after we wait. 3608 * 3609 * Since we're not running in the commit critical section 3610 * we need the dirty_bgs_lock to protect from update_block_group 3611 */ 3612 spin_lock(&cur_trans->dirty_bgs_lock); 3613 list_del_init(&cache->dirty_list); 3614 spin_unlock(&cur_trans->dirty_bgs_lock); 3615 3616 should_put = 1; 3617 3618 cache_save_setup(cache, trans, path); 3619 3620 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3621 cache->io_ctl.inode = NULL; 3622 ret = btrfs_write_out_cache(root, trans, cache, path); 3623 if (ret == 0 && cache->io_ctl.inode) { 3624 num_started++; 3625 should_put = 0; 3626 3627 /* 3628 * the cache_write_mutex is protecting 3629 * the io_list 3630 */ 3631 list_add_tail(&cache->io_list, io); 3632 } else { 3633 /* 3634 * if we failed to write the cache, the 3635 * generation will be bad and life goes on 3636 */ 3637 ret = 0; 3638 } 3639 } 3640 if (!ret) { 3641 ret = write_one_cache_group(trans, root, path, cache); 3642 /* 3643 * Our block group might still be attached to the list 3644 * of new block groups in the transaction handle of some 3645 * other task (struct btrfs_trans_handle->new_bgs). This 3646 * means its block group item isn't yet in the extent 3647 * tree. If this happens ignore the error, as we will 3648 * try again later in the critical section of the 3649 * transaction commit. 3650 */ 3651 if (ret == -ENOENT) { 3652 ret = 0; 3653 spin_lock(&cur_trans->dirty_bgs_lock); 3654 if (list_empty(&cache->dirty_list)) { 3655 list_add_tail(&cache->dirty_list, 3656 &cur_trans->dirty_bgs); 3657 btrfs_get_block_group(cache); 3658 } 3659 spin_unlock(&cur_trans->dirty_bgs_lock); 3660 } else if (ret) { 3661 btrfs_abort_transaction(trans, ret); 3662 } 3663 } 3664 3665 /* if its not on the io list, we need to put the block group */ 3666 if (should_put) 3667 btrfs_put_block_group(cache); 3668 3669 if (ret) 3670 break; 3671 3672 /* 3673 * Avoid blocking other tasks for too long. It might even save 3674 * us from writing caches for block groups that are going to be 3675 * removed. 3676 */ 3677 mutex_unlock(&trans->transaction->cache_write_mutex); 3678 mutex_lock(&trans->transaction->cache_write_mutex); 3679 } 3680 mutex_unlock(&trans->transaction->cache_write_mutex); 3681 3682 /* 3683 * go through delayed refs for all the stuff we've just kicked off 3684 * and then loop back (just once) 3685 */ 3686 ret = btrfs_run_delayed_refs(trans, root, 0); 3687 if (!ret && loops == 0) { 3688 loops++; 3689 spin_lock(&cur_trans->dirty_bgs_lock); 3690 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3691 /* 3692 * dirty_bgs_lock protects us from concurrent block group 3693 * deletes too (not just cache_write_mutex). 3694 */ 3695 if (!list_empty(&dirty)) { 3696 spin_unlock(&cur_trans->dirty_bgs_lock); 3697 goto again; 3698 } 3699 spin_unlock(&cur_trans->dirty_bgs_lock); 3700 } else if (ret < 0) { 3701 btrfs_cleanup_dirty_bgs(cur_trans, root); 3702 } 3703 3704 btrfs_free_path(path); 3705 return ret; 3706 } 3707 3708 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3709 struct btrfs_root *root) 3710 { 3711 struct btrfs_block_group_cache *cache; 3712 struct btrfs_transaction *cur_trans = trans->transaction; 3713 int ret = 0; 3714 int should_put; 3715 struct btrfs_path *path; 3716 struct list_head *io = &cur_trans->io_bgs; 3717 int num_started = 0; 3718 3719 path = btrfs_alloc_path(); 3720 if (!path) 3721 return -ENOMEM; 3722 3723 /* 3724 * Even though we are in the critical section of the transaction commit, 3725 * we can still have concurrent tasks adding elements to this 3726 * transaction's list of dirty block groups. These tasks correspond to 3727 * endio free space workers started when writeback finishes for a 3728 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3729 * allocate new block groups as a result of COWing nodes of the root 3730 * tree when updating the free space inode. The writeback for the space 3731 * caches is triggered by an earlier call to 3732 * btrfs_start_dirty_block_groups() and iterations of the following 3733 * loop. 3734 * Also we want to do the cache_save_setup first and then run the 3735 * delayed refs to make sure we have the best chance at doing this all 3736 * in one shot. 3737 */ 3738 spin_lock(&cur_trans->dirty_bgs_lock); 3739 while (!list_empty(&cur_trans->dirty_bgs)) { 3740 cache = list_first_entry(&cur_trans->dirty_bgs, 3741 struct btrfs_block_group_cache, 3742 dirty_list); 3743 3744 /* 3745 * this can happen if cache_save_setup re-dirties a block 3746 * group that is already under IO. Just wait for it to 3747 * finish and then do it all again 3748 */ 3749 if (!list_empty(&cache->io_list)) { 3750 spin_unlock(&cur_trans->dirty_bgs_lock); 3751 list_del_init(&cache->io_list); 3752 btrfs_wait_cache_io(root, trans, cache, 3753 &cache->io_ctl, path, 3754 cache->key.objectid); 3755 btrfs_put_block_group(cache); 3756 spin_lock(&cur_trans->dirty_bgs_lock); 3757 } 3758 3759 /* 3760 * don't remove from the dirty list until after we've waited 3761 * on any pending IO 3762 */ 3763 list_del_init(&cache->dirty_list); 3764 spin_unlock(&cur_trans->dirty_bgs_lock); 3765 should_put = 1; 3766 3767 cache_save_setup(cache, trans, path); 3768 3769 if (!ret) 3770 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3771 3772 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3773 cache->io_ctl.inode = NULL; 3774 ret = btrfs_write_out_cache(root, trans, cache, path); 3775 if (ret == 0 && cache->io_ctl.inode) { 3776 num_started++; 3777 should_put = 0; 3778 list_add_tail(&cache->io_list, io); 3779 } else { 3780 /* 3781 * if we failed to write the cache, the 3782 * generation will be bad and life goes on 3783 */ 3784 ret = 0; 3785 } 3786 } 3787 if (!ret) { 3788 ret = write_one_cache_group(trans, root, path, cache); 3789 /* 3790 * One of the free space endio workers might have 3791 * created a new block group while updating a free space 3792 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3793 * and hasn't released its transaction handle yet, in 3794 * which case the new block group is still attached to 3795 * its transaction handle and its creation has not 3796 * finished yet (no block group item in the extent tree 3797 * yet, etc). If this is the case, wait for all free 3798 * space endio workers to finish and retry. This is a 3799 * a very rare case so no need for a more efficient and 3800 * complex approach. 3801 */ 3802 if (ret == -ENOENT) { 3803 wait_event(cur_trans->writer_wait, 3804 atomic_read(&cur_trans->num_writers) == 1); 3805 ret = write_one_cache_group(trans, root, path, 3806 cache); 3807 } 3808 if (ret) 3809 btrfs_abort_transaction(trans, ret); 3810 } 3811 3812 /* if its not on the io list, we need to put the block group */ 3813 if (should_put) 3814 btrfs_put_block_group(cache); 3815 spin_lock(&cur_trans->dirty_bgs_lock); 3816 } 3817 spin_unlock(&cur_trans->dirty_bgs_lock); 3818 3819 while (!list_empty(io)) { 3820 cache = list_first_entry(io, struct btrfs_block_group_cache, 3821 io_list); 3822 list_del_init(&cache->io_list); 3823 btrfs_wait_cache_io(root, trans, cache, 3824 &cache->io_ctl, path, cache->key.objectid); 3825 btrfs_put_block_group(cache); 3826 } 3827 3828 btrfs_free_path(path); 3829 return ret; 3830 } 3831 3832 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3833 { 3834 struct btrfs_block_group_cache *block_group; 3835 int readonly = 0; 3836 3837 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3838 if (!block_group || block_group->ro) 3839 readonly = 1; 3840 if (block_group) 3841 btrfs_put_block_group(block_group); 3842 return readonly; 3843 } 3844 3845 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3846 { 3847 struct btrfs_block_group_cache *bg; 3848 bool ret = true; 3849 3850 bg = btrfs_lookup_block_group(fs_info, bytenr); 3851 if (!bg) 3852 return false; 3853 3854 spin_lock(&bg->lock); 3855 if (bg->ro) 3856 ret = false; 3857 else 3858 atomic_inc(&bg->nocow_writers); 3859 spin_unlock(&bg->lock); 3860 3861 /* no put on block group, done by btrfs_dec_nocow_writers */ 3862 if (!ret) 3863 btrfs_put_block_group(bg); 3864 3865 return ret; 3866 3867 } 3868 3869 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3870 { 3871 struct btrfs_block_group_cache *bg; 3872 3873 bg = btrfs_lookup_block_group(fs_info, bytenr); 3874 ASSERT(bg); 3875 if (atomic_dec_and_test(&bg->nocow_writers)) 3876 wake_up_atomic_t(&bg->nocow_writers); 3877 /* 3878 * Once for our lookup and once for the lookup done by a previous call 3879 * to btrfs_inc_nocow_writers() 3880 */ 3881 btrfs_put_block_group(bg); 3882 btrfs_put_block_group(bg); 3883 } 3884 3885 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3886 { 3887 schedule(); 3888 return 0; 3889 } 3890 3891 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3892 { 3893 wait_on_atomic_t(&bg->nocow_writers, 3894 btrfs_wait_nocow_writers_atomic_t, 3895 TASK_UNINTERRUPTIBLE); 3896 } 3897 3898 static const char *alloc_name(u64 flags) 3899 { 3900 switch (flags) { 3901 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3902 return "mixed"; 3903 case BTRFS_BLOCK_GROUP_METADATA: 3904 return "metadata"; 3905 case BTRFS_BLOCK_GROUP_DATA: 3906 return "data"; 3907 case BTRFS_BLOCK_GROUP_SYSTEM: 3908 return "system"; 3909 default: 3910 WARN_ON(1); 3911 return "invalid-combination"; 3912 }; 3913 } 3914 3915 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3916 u64 total_bytes, u64 bytes_used, 3917 u64 bytes_readonly, 3918 struct btrfs_space_info **space_info) 3919 { 3920 struct btrfs_space_info *found; 3921 int i; 3922 int factor; 3923 int ret; 3924 3925 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3926 BTRFS_BLOCK_GROUP_RAID10)) 3927 factor = 2; 3928 else 3929 factor = 1; 3930 3931 found = __find_space_info(info, flags); 3932 if (found) { 3933 spin_lock(&found->lock); 3934 found->total_bytes += total_bytes; 3935 found->disk_total += total_bytes * factor; 3936 found->bytes_used += bytes_used; 3937 found->disk_used += bytes_used * factor; 3938 found->bytes_readonly += bytes_readonly; 3939 if (total_bytes > 0) 3940 found->full = 0; 3941 space_info_add_new_bytes(info, found, total_bytes - 3942 bytes_used - bytes_readonly); 3943 spin_unlock(&found->lock); 3944 *space_info = found; 3945 return 0; 3946 } 3947 found = kzalloc(sizeof(*found), GFP_NOFS); 3948 if (!found) 3949 return -ENOMEM; 3950 3951 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3952 if (ret) { 3953 kfree(found); 3954 return ret; 3955 } 3956 3957 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3958 INIT_LIST_HEAD(&found->block_groups[i]); 3959 init_rwsem(&found->groups_sem); 3960 spin_lock_init(&found->lock); 3961 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3962 found->total_bytes = total_bytes; 3963 found->disk_total = total_bytes * factor; 3964 found->bytes_used = bytes_used; 3965 found->disk_used = bytes_used * factor; 3966 found->bytes_pinned = 0; 3967 found->bytes_reserved = 0; 3968 found->bytes_readonly = bytes_readonly; 3969 found->bytes_may_use = 0; 3970 found->full = 0; 3971 found->max_extent_size = 0; 3972 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3973 found->chunk_alloc = 0; 3974 found->flush = 0; 3975 init_waitqueue_head(&found->wait); 3976 INIT_LIST_HEAD(&found->ro_bgs); 3977 INIT_LIST_HEAD(&found->tickets); 3978 INIT_LIST_HEAD(&found->priority_tickets); 3979 3980 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3981 info->space_info_kobj, "%s", 3982 alloc_name(found->flags)); 3983 if (ret) { 3984 kfree(found); 3985 return ret; 3986 } 3987 3988 *space_info = found; 3989 list_add_rcu(&found->list, &info->space_info); 3990 if (flags & BTRFS_BLOCK_GROUP_DATA) 3991 info->data_sinfo = found; 3992 3993 return ret; 3994 } 3995 3996 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3997 { 3998 u64 extra_flags = chunk_to_extended(flags) & 3999 BTRFS_EXTENDED_PROFILE_MASK; 4000 4001 write_seqlock(&fs_info->profiles_lock); 4002 if (flags & BTRFS_BLOCK_GROUP_DATA) 4003 fs_info->avail_data_alloc_bits |= extra_flags; 4004 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4005 fs_info->avail_metadata_alloc_bits |= extra_flags; 4006 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4007 fs_info->avail_system_alloc_bits |= extra_flags; 4008 write_sequnlock(&fs_info->profiles_lock); 4009 } 4010 4011 /* 4012 * returns target flags in extended format or 0 if restripe for this 4013 * chunk_type is not in progress 4014 * 4015 * should be called with either volume_mutex or balance_lock held 4016 */ 4017 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4018 { 4019 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4020 u64 target = 0; 4021 4022 if (!bctl) 4023 return 0; 4024 4025 if (flags & BTRFS_BLOCK_GROUP_DATA && 4026 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4027 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4028 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4029 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4030 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4031 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4032 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4033 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4034 } 4035 4036 return target; 4037 } 4038 4039 /* 4040 * @flags: available profiles in extended format (see ctree.h) 4041 * 4042 * Returns reduced profile in chunk format. If profile changing is in 4043 * progress (either running or paused) picks the target profile (if it's 4044 * already available), otherwise falls back to plain reducing. 4045 */ 4046 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 4047 { 4048 u64 num_devices = root->fs_info->fs_devices->rw_devices; 4049 u64 target; 4050 u64 raid_type; 4051 u64 allowed = 0; 4052 4053 /* 4054 * see if restripe for this chunk_type is in progress, if so 4055 * try to reduce to the target profile 4056 */ 4057 spin_lock(&root->fs_info->balance_lock); 4058 target = get_restripe_target(root->fs_info, flags); 4059 if (target) { 4060 /* pick target profile only if it's already available */ 4061 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4062 spin_unlock(&root->fs_info->balance_lock); 4063 return extended_to_chunk(target); 4064 } 4065 } 4066 spin_unlock(&root->fs_info->balance_lock); 4067 4068 /* First, mask out the RAID levels which aren't possible */ 4069 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4070 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4071 allowed |= btrfs_raid_group[raid_type]; 4072 } 4073 allowed &= flags; 4074 4075 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4076 allowed = BTRFS_BLOCK_GROUP_RAID6; 4077 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4078 allowed = BTRFS_BLOCK_GROUP_RAID5; 4079 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4080 allowed = BTRFS_BLOCK_GROUP_RAID10; 4081 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4082 allowed = BTRFS_BLOCK_GROUP_RAID1; 4083 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4084 allowed = BTRFS_BLOCK_GROUP_RAID0; 4085 4086 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4087 4088 return extended_to_chunk(flags | allowed); 4089 } 4090 4091 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4092 { 4093 unsigned seq; 4094 u64 flags; 4095 4096 do { 4097 flags = orig_flags; 4098 seq = read_seqbegin(&root->fs_info->profiles_lock); 4099 4100 if (flags & BTRFS_BLOCK_GROUP_DATA) 4101 flags |= root->fs_info->avail_data_alloc_bits; 4102 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4103 flags |= root->fs_info->avail_system_alloc_bits; 4104 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4105 flags |= root->fs_info->avail_metadata_alloc_bits; 4106 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4107 4108 return btrfs_reduce_alloc_profile(root, flags); 4109 } 4110 4111 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4112 { 4113 u64 flags; 4114 u64 ret; 4115 4116 if (data) 4117 flags = BTRFS_BLOCK_GROUP_DATA; 4118 else if (root == root->fs_info->chunk_root) 4119 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4120 else 4121 flags = BTRFS_BLOCK_GROUP_METADATA; 4122 4123 ret = get_alloc_profile(root, flags); 4124 return ret; 4125 } 4126 4127 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4128 { 4129 struct btrfs_space_info *data_sinfo; 4130 struct btrfs_root *root = BTRFS_I(inode)->root; 4131 struct btrfs_fs_info *fs_info = root->fs_info; 4132 u64 used; 4133 int ret = 0; 4134 int need_commit = 2; 4135 int have_pinned_space; 4136 4137 /* make sure bytes are sectorsize aligned */ 4138 bytes = ALIGN(bytes, root->sectorsize); 4139 4140 if (btrfs_is_free_space_inode(inode)) { 4141 need_commit = 0; 4142 ASSERT(current->journal_info); 4143 } 4144 4145 data_sinfo = fs_info->data_sinfo; 4146 if (!data_sinfo) 4147 goto alloc; 4148 4149 again: 4150 /* make sure we have enough space to handle the data first */ 4151 spin_lock(&data_sinfo->lock); 4152 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4153 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4154 data_sinfo->bytes_may_use; 4155 4156 if (used + bytes > data_sinfo->total_bytes) { 4157 struct btrfs_trans_handle *trans; 4158 4159 /* 4160 * if we don't have enough free bytes in this space then we need 4161 * to alloc a new chunk. 4162 */ 4163 if (!data_sinfo->full) { 4164 u64 alloc_target; 4165 4166 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4167 spin_unlock(&data_sinfo->lock); 4168 alloc: 4169 alloc_target = btrfs_get_alloc_profile(root, 1); 4170 /* 4171 * It is ugly that we don't call nolock join 4172 * transaction for the free space inode case here. 4173 * But it is safe because we only do the data space 4174 * reservation for the free space cache in the 4175 * transaction context, the common join transaction 4176 * just increase the counter of the current transaction 4177 * handler, doesn't try to acquire the trans_lock of 4178 * the fs. 4179 */ 4180 trans = btrfs_join_transaction(root); 4181 if (IS_ERR(trans)) 4182 return PTR_ERR(trans); 4183 4184 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4185 alloc_target, 4186 CHUNK_ALLOC_NO_FORCE); 4187 btrfs_end_transaction(trans, root); 4188 if (ret < 0) { 4189 if (ret != -ENOSPC) 4190 return ret; 4191 else { 4192 have_pinned_space = 1; 4193 goto commit_trans; 4194 } 4195 } 4196 4197 if (!data_sinfo) 4198 data_sinfo = fs_info->data_sinfo; 4199 4200 goto again; 4201 } 4202 4203 /* 4204 * If we don't have enough pinned space to deal with this 4205 * allocation, and no removed chunk in current transaction, 4206 * don't bother committing the transaction. 4207 */ 4208 have_pinned_space = percpu_counter_compare( 4209 &data_sinfo->total_bytes_pinned, 4210 used + bytes - data_sinfo->total_bytes); 4211 spin_unlock(&data_sinfo->lock); 4212 4213 /* commit the current transaction and try again */ 4214 commit_trans: 4215 if (need_commit && 4216 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4217 need_commit--; 4218 4219 if (need_commit > 0) { 4220 btrfs_start_delalloc_roots(fs_info, 0, -1); 4221 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 4222 } 4223 4224 trans = btrfs_join_transaction(root); 4225 if (IS_ERR(trans)) 4226 return PTR_ERR(trans); 4227 if (have_pinned_space >= 0 || 4228 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4229 &trans->transaction->flags) || 4230 need_commit > 0) { 4231 ret = btrfs_commit_transaction(trans, root); 4232 if (ret) 4233 return ret; 4234 /* 4235 * The cleaner kthread might still be doing iput 4236 * operations. Wait for it to finish so that 4237 * more space is released. 4238 */ 4239 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4240 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4241 goto again; 4242 } else { 4243 btrfs_end_transaction(trans, root); 4244 } 4245 } 4246 4247 trace_btrfs_space_reservation(root->fs_info, 4248 "space_info:enospc", 4249 data_sinfo->flags, bytes, 1); 4250 return -ENOSPC; 4251 } 4252 data_sinfo->bytes_may_use += bytes; 4253 trace_btrfs_space_reservation(root->fs_info, "space_info", 4254 data_sinfo->flags, bytes, 1); 4255 spin_unlock(&data_sinfo->lock); 4256 4257 return ret; 4258 } 4259 4260 /* 4261 * New check_data_free_space() with ability for precious data reservation 4262 * Will replace old btrfs_check_data_free_space(), but for patch split, 4263 * add a new function first and then replace it. 4264 */ 4265 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4266 { 4267 struct btrfs_root *root = BTRFS_I(inode)->root; 4268 int ret; 4269 4270 /* align the range */ 4271 len = round_up(start + len, root->sectorsize) - 4272 round_down(start, root->sectorsize); 4273 start = round_down(start, root->sectorsize); 4274 4275 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4276 if (ret < 0) 4277 return ret; 4278 4279 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4280 ret = btrfs_qgroup_reserve_data(inode, start, len); 4281 if (ret) 4282 btrfs_free_reserved_data_space_noquota(inode, start, len); 4283 return ret; 4284 } 4285 4286 /* 4287 * Called if we need to clear a data reservation for this inode 4288 * Normally in a error case. 4289 * 4290 * This one will *NOT* use accurate qgroup reserved space API, just for case 4291 * which we can't sleep and is sure it won't affect qgroup reserved space. 4292 * Like clear_bit_hook(). 4293 */ 4294 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4295 u64 len) 4296 { 4297 struct btrfs_root *root = BTRFS_I(inode)->root; 4298 struct btrfs_space_info *data_sinfo; 4299 4300 /* Make sure the range is aligned to sectorsize */ 4301 len = round_up(start + len, root->sectorsize) - 4302 round_down(start, root->sectorsize); 4303 start = round_down(start, root->sectorsize); 4304 4305 data_sinfo = root->fs_info->data_sinfo; 4306 spin_lock(&data_sinfo->lock); 4307 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4308 data_sinfo->bytes_may_use = 0; 4309 else 4310 data_sinfo->bytes_may_use -= len; 4311 trace_btrfs_space_reservation(root->fs_info, "space_info", 4312 data_sinfo->flags, len, 0); 4313 spin_unlock(&data_sinfo->lock); 4314 } 4315 4316 /* 4317 * Called if we need to clear a data reservation for this inode 4318 * Normally in a error case. 4319 * 4320 * This one will handle the per-inode data rsv map for accurate reserved 4321 * space framework. 4322 */ 4323 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4324 { 4325 btrfs_free_reserved_data_space_noquota(inode, start, len); 4326 btrfs_qgroup_free_data(inode, start, len); 4327 } 4328 4329 static void force_metadata_allocation(struct btrfs_fs_info *info) 4330 { 4331 struct list_head *head = &info->space_info; 4332 struct btrfs_space_info *found; 4333 4334 rcu_read_lock(); 4335 list_for_each_entry_rcu(found, head, list) { 4336 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4337 found->force_alloc = CHUNK_ALLOC_FORCE; 4338 } 4339 rcu_read_unlock(); 4340 } 4341 4342 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4343 { 4344 return (global->size << 1); 4345 } 4346 4347 static int should_alloc_chunk(struct btrfs_root *root, 4348 struct btrfs_space_info *sinfo, int force) 4349 { 4350 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4351 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4352 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4353 u64 thresh; 4354 4355 if (force == CHUNK_ALLOC_FORCE) 4356 return 1; 4357 4358 /* 4359 * We need to take into account the global rsv because for all intents 4360 * and purposes it's used space. Don't worry about locking the 4361 * global_rsv, it doesn't change except when the transaction commits. 4362 */ 4363 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4364 num_allocated += calc_global_rsv_need_space(global_rsv); 4365 4366 /* 4367 * in limited mode, we want to have some free space up to 4368 * about 1% of the FS size. 4369 */ 4370 if (force == CHUNK_ALLOC_LIMITED) { 4371 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4372 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4373 4374 if (num_bytes - num_allocated < thresh) 4375 return 1; 4376 } 4377 4378 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4379 return 0; 4380 return 1; 4381 } 4382 4383 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4384 { 4385 u64 num_dev; 4386 4387 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4388 BTRFS_BLOCK_GROUP_RAID0 | 4389 BTRFS_BLOCK_GROUP_RAID5 | 4390 BTRFS_BLOCK_GROUP_RAID6)) 4391 num_dev = root->fs_info->fs_devices->rw_devices; 4392 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4393 num_dev = 2; 4394 else 4395 num_dev = 1; /* DUP or single */ 4396 4397 return num_dev; 4398 } 4399 4400 /* 4401 * If @is_allocation is true, reserve space in the system space info necessary 4402 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4403 * removing a chunk. 4404 */ 4405 void check_system_chunk(struct btrfs_trans_handle *trans, 4406 struct btrfs_root *root, 4407 u64 type) 4408 { 4409 struct btrfs_space_info *info; 4410 u64 left; 4411 u64 thresh; 4412 int ret = 0; 4413 u64 num_devs; 4414 4415 /* 4416 * Needed because we can end up allocating a system chunk and for an 4417 * atomic and race free space reservation in the chunk block reserve. 4418 */ 4419 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4420 4421 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4422 spin_lock(&info->lock); 4423 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4424 info->bytes_reserved - info->bytes_readonly - 4425 info->bytes_may_use; 4426 spin_unlock(&info->lock); 4427 4428 num_devs = get_profile_num_devs(root, type); 4429 4430 /* num_devs device items to update and 1 chunk item to add or remove */ 4431 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4432 btrfs_calc_trans_metadata_size(root, 1); 4433 4434 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 4435 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4436 left, thresh, type); 4437 dump_space_info(root->fs_info, info, 0, 0); 4438 } 4439 4440 if (left < thresh) { 4441 u64 flags; 4442 4443 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4444 /* 4445 * Ignore failure to create system chunk. We might end up not 4446 * needing it, as we might not need to COW all nodes/leafs from 4447 * the paths we visit in the chunk tree (they were already COWed 4448 * or created in the current transaction for example). 4449 */ 4450 ret = btrfs_alloc_chunk(trans, root, flags); 4451 } 4452 4453 if (!ret) { 4454 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4455 &root->fs_info->chunk_block_rsv, 4456 thresh, BTRFS_RESERVE_NO_FLUSH); 4457 if (!ret) 4458 trans->chunk_bytes_reserved += thresh; 4459 } 4460 } 4461 4462 /* 4463 * If force is CHUNK_ALLOC_FORCE: 4464 * - return 1 if it successfully allocates a chunk, 4465 * - return errors including -ENOSPC otherwise. 4466 * If force is NOT CHUNK_ALLOC_FORCE: 4467 * - return 0 if it doesn't need to allocate a new chunk, 4468 * - return 1 if it successfully allocates a chunk, 4469 * - return errors including -ENOSPC otherwise. 4470 */ 4471 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4472 struct btrfs_root *extent_root, u64 flags, int force) 4473 { 4474 struct btrfs_space_info *space_info; 4475 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4476 int wait_for_alloc = 0; 4477 int ret = 0; 4478 4479 /* Don't re-enter if we're already allocating a chunk */ 4480 if (trans->allocating_chunk) 4481 return -ENOSPC; 4482 4483 space_info = __find_space_info(extent_root->fs_info, flags); 4484 if (!space_info) { 4485 ret = update_space_info(extent_root->fs_info, flags, 4486 0, 0, 0, &space_info); 4487 BUG_ON(ret); /* -ENOMEM */ 4488 } 4489 BUG_ON(!space_info); /* Logic error */ 4490 4491 again: 4492 spin_lock(&space_info->lock); 4493 if (force < space_info->force_alloc) 4494 force = space_info->force_alloc; 4495 if (space_info->full) { 4496 if (should_alloc_chunk(extent_root, space_info, force)) 4497 ret = -ENOSPC; 4498 else 4499 ret = 0; 4500 spin_unlock(&space_info->lock); 4501 return ret; 4502 } 4503 4504 if (!should_alloc_chunk(extent_root, space_info, force)) { 4505 spin_unlock(&space_info->lock); 4506 return 0; 4507 } else if (space_info->chunk_alloc) { 4508 wait_for_alloc = 1; 4509 } else { 4510 space_info->chunk_alloc = 1; 4511 } 4512 4513 spin_unlock(&space_info->lock); 4514 4515 mutex_lock(&fs_info->chunk_mutex); 4516 4517 /* 4518 * The chunk_mutex is held throughout the entirety of a chunk 4519 * allocation, so once we've acquired the chunk_mutex we know that the 4520 * other guy is done and we need to recheck and see if we should 4521 * allocate. 4522 */ 4523 if (wait_for_alloc) { 4524 mutex_unlock(&fs_info->chunk_mutex); 4525 wait_for_alloc = 0; 4526 goto again; 4527 } 4528 4529 trans->allocating_chunk = true; 4530 4531 /* 4532 * If we have mixed data/metadata chunks we want to make sure we keep 4533 * allocating mixed chunks instead of individual chunks. 4534 */ 4535 if (btrfs_mixed_space_info(space_info)) 4536 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4537 4538 /* 4539 * if we're doing a data chunk, go ahead and make sure that 4540 * we keep a reasonable number of metadata chunks allocated in the 4541 * FS as well. 4542 */ 4543 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4544 fs_info->data_chunk_allocations++; 4545 if (!(fs_info->data_chunk_allocations % 4546 fs_info->metadata_ratio)) 4547 force_metadata_allocation(fs_info); 4548 } 4549 4550 /* 4551 * Check if we have enough space in SYSTEM chunk because we may need 4552 * to update devices. 4553 */ 4554 check_system_chunk(trans, extent_root, flags); 4555 4556 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4557 trans->allocating_chunk = false; 4558 4559 spin_lock(&space_info->lock); 4560 if (ret < 0 && ret != -ENOSPC) 4561 goto out; 4562 if (ret) 4563 space_info->full = 1; 4564 else 4565 ret = 1; 4566 4567 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4568 out: 4569 space_info->chunk_alloc = 0; 4570 spin_unlock(&space_info->lock); 4571 mutex_unlock(&fs_info->chunk_mutex); 4572 /* 4573 * When we allocate a new chunk we reserve space in the chunk block 4574 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4575 * add new nodes/leafs to it if we end up needing to do it when 4576 * inserting the chunk item and updating device items as part of the 4577 * second phase of chunk allocation, performed by 4578 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4579 * large number of new block groups to create in our transaction 4580 * handle's new_bgs list to avoid exhausting the chunk block reserve 4581 * in extreme cases - like having a single transaction create many new 4582 * block groups when starting to write out the free space caches of all 4583 * the block groups that were made dirty during the lifetime of the 4584 * transaction. 4585 */ 4586 if (trans->can_flush_pending_bgs && 4587 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4588 btrfs_create_pending_block_groups(trans, extent_root); 4589 btrfs_trans_release_chunk_metadata(trans); 4590 } 4591 return ret; 4592 } 4593 4594 static int can_overcommit(struct btrfs_root *root, 4595 struct btrfs_space_info *space_info, u64 bytes, 4596 enum btrfs_reserve_flush_enum flush) 4597 { 4598 struct btrfs_block_rsv *global_rsv; 4599 u64 profile; 4600 u64 space_size; 4601 u64 avail; 4602 u64 used; 4603 4604 /* Don't overcommit when in mixed mode. */ 4605 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4606 return 0; 4607 4608 BUG_ON(root->fs_info == NULL); 4609 global_rsv = &root->fs_info->global_block_rsv; 4610 profile = btrfs_get_alloc_profile(root, 0); 4611 used = space_info->bytes_used + space_info->bytes_reserved + 4612 space_info->bytes_pinned + space_info->bytes_readonly; 4613 4614 /* 4615 * We only want to allow over committing if we have lots of actual space 4616 * free, but if we don't have enough space to handle the global reserve 4617 * space then we could end up having a real enospc problem when trying 4618 * to allocate a chunk or some other such important allocation. 4619 */ 4620 spin_lock(&global_rsv->lock); 4621 space_size = calc_global_rsv_need_space(global_rsv); 4622 spin_unlock(&global_rsv->lock); 4623 if (used + space_size >= space_info->total_bytes) 4624 return 0; 4625 4626 used += space_info->bytes_may_use; 4627 4628 spin_lock(&root->fs_info->free_chunk_lock); 4629 avail = root->fs_info->free_chunk_space; 4630 spin_unlock(&root->fs_info->free_chunk_lock); 4631 4632 /* 4633 * If we have dup, raid1 or raid10 then only half of the free 4634 * space is actually useable. For raid56, the space info used 4635 * doesn't include the parity drive, so we don't have to 4636 * change the math 4637 */ 4638 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4639 BTRFS_BLOCK_GROUP_RAID1 | 4640 BTRFS_BLOCK_GROUP_RAID10)) 4641 avail >>= 1; 4642 4643 /* 4644 * If we aren't flushing all things, let us overcommit up to 4645 * 1/2th of the space. If we can flush, don't let us overcommit 4646 * too much, let it overcommit up to 1/8 of the space. 4647 */ 4648 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4649 avail >>= 3; 4650 else 4651 avail >>= 1; 4652 4653 if (used + bytes < space_info->total_bytes + avail) 4654 return 1; 4655 return 0; 4656 } 4657 4658 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4659 unsigned long nr_pages, int nr_items) 4660 { 4661 struct super_block *sb = root->fs_info->sb; 4662 4663 if (down_read_trylock(&sb->s_umount)) { 4664 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4665 up_read(&sb->s_umount); 4666 } else { 4667 /* 4668 * We needn't worry the filesystem going from r/w to r/o though 4669 * we don't acquire ->s_umount mutex, because the filesystem 4670 * should guarantee the delalloc inodes list be empty after 4671 * the filesystem is readonly(all dirty pages are written to 4672 * the disk). 4673 */ 4674 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4675 if (!current->journal_info) 4676 btrfs_wait_ordered_roots(root->fs_info, nr_items, 4677 0, (u64)-1); 4678 } 4679 } 4680 4681 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4682 { 4683 u64 bytes; 4684 int nr; 4685 4686 bytes = btrfs_calc_trans_metadata_size(root, 1); 4687 nr = (int)div64_u64(to_reclaim, bytes); 4688 if (!nr) 4689 nr = 1; 4690 return nr; 4691 } 4692 4693 #define EXTENT_SIZE_PER_ITEM SZ_256K 4694 4695 /* 4696 * shrink metadata reservation for delalloc 4697 */ 4698 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4699 bool wait_ordered) 4700 { 4701 struct btrfs_block_rsv *block_rsv; 4702 struct btrfs_space_info *space_info; 4703 struct btrfs_trans_handle *trans; 4704 u64 delalloc_bytes; 4705 u64 max_reclaim; 4706 long time_left; 4707 unsigned long nr_pages; 4708 int loops; 4709 int items; 4710 enum btrfs_reserve_flush_enum flush; 4711 4712 /* Calc the number of the pages we need flush for space reservation */ 4713 items = calc_reclaim_items_nr(root, to_reclaim); 4714 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4715 4716 trans = (struct btrfs_trans_handle *)current->journal_info; 4717 block_rsv = &root->fs_info->delalloc_block_rsv; 4718 space_info = block_rsv->space_info; 4719 4720 delalloc_bytes = percpu_counter_sum_positive( 4721 &root->fs_info->delalloc_bytes); 4722 if (delalloc_bytes == 0) { 4723 if (trans) 4724 return; 4725 if (wait_ordered) 4726 btrfs_wait_ordered_roots(root->fs_info, items, 4727 0, (u64)-1); 4728 return; 4729 } 4730 4731 loops = 0; 4732 while (delalloc_bytes && loops < 3) { 4733 max_reclaim = min(delalloc_bytes, to_reclaim); 4734 nr_pages = max_reclaim >> PAGE_SHIFT; 4735 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4736 /* 4737 * We need to wait for the async pages to actually start before 4738 * we do anything. 4739 */ 4740 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4741 if (!max_reclaim) 4742 goto skip_async; 4743 4744 if (max_reclaim <= nr_pages) 4745 max_reclaim = 0; 4746 else 4747 max_reclaim -= nr_pages; 4748 4749 wait_event(root->fs_info->async_submit_wait, 4750 atomic_read(&root->fs_info->async_delalloc_pages) <= 4751 (int)max_reclaim); 4752 skip_async: 4753 if (!trans) 4754 flush = BTRFS_RESERVE_FLUSH_ALL; 4755 else 4756 flush = BTRFS_RESERVE_NO_FLUSH; 4757 spin_lock(&space_info->lock); 4758 if (can_overcommit(root, space_info, orig, flush)) { 4759 spin_unlock(&space_info->lock); 4760 break; 4761 } 4762 if (list_empty(&space_info->tickets) && 4763 list_empty(&space_info->priority_tickets)) { 4764 spin_unlock(&space_info->lock); 4765 break; 4766 } 4767 spin_unlock(&space_info->lock); 4768 4769 loops++; 4770 if (wait_ordered && !trans) { 4771 btrfs_wait_ordered_roots(root->fs_info, items, 4772 0, (u64)-1); 4773 } else { 4774 time_left = schedule_timeout_killable(1); 4775 if (time_left) 4776 break; 4777 } 4778 delalloc_bytes = percpu_counter_sum_positive( 4779 &root->fs_info->delalloc_bytes); 4780 } 4781 } 4782 4783 /** 4784 * maybe_commit_transaction - possibly commit the transaction if its ok to 4785 * @root - the root we're allocating for 4786 * @bytes - the number of bytes we want to reserve 4787 * @force - force the commit 4788 * 4789 * This will check to make sure that committing the transaction will actually 4790 * get us somewhere and then commit the transaction if it does. Otherwise it 4791 * will return -ENOSPC. 4792 */ 4793 static int may_commit_transaction(struct btrfs_root *root, 4794 struct btrfs_space_info *space_info, 4795 u64 bytes, int force) 4796 { 4797 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4798 struct btrfs_trans_handle *trans; 4799 4800 trans = (struct btrfs_trans_handle *)current->journal_info; 4801 if (trans) 4802 return -EAGAIN; 4803 4804 if (force) 4805 goto commit; 4806 4807 /* See if there is enough pinned space to make this reservation */ 4808 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4809 bytes) >= 0) 4810 goto commit; 4811 4812 /* 4813 * See if there is some space in the delayed insertion reservation for 4814 * this reservation. 4815 */ 4816 if (space_info != delayed_rsv->space_info) 4817 return -ENOSPC; 4818 4819 spin_lock(&delayed_rsv->lock); 4820 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4821 bytes - delayed_rsv->size) >= 0) { 4822 spin_unlock(&delayed_rsv->lock); 4823 return -ENOSPC; 4824 } 4825 spin_unlock(&delayed_rsv->lock); 4826 4827 commit: 4828 trans = btrfs_join_transaction(root); 4829 if (IS_ERR(trans)) 4830 return -ENOSPC; 4831 4832 return btrfs_commit_transaction(trans, root); 4833 } 4834 4835 struct reserve_ticket { 4836 u64 bytes; 4837 int error; 4838 struct list_head list; 4839 wait_queue_head_t wait; 4840 }; 4841 4842 static int flush_space(struct btrfs_root *root, 4843 struct btrfs_space_info *space_info, u64 num_bytes, 4844 u64 orig_bytes, int state) 4845 { 4846 struct btrfs_trans_handle *trans; 4847 int nr; 4848 int ret = 0; 4849 4850 switch (state) { 4851 case FLUSH_DELAYED_ITEMS_NR: 4852 case FLUSH_DELAYED_ITEMS: 4853 if (state == FLUSH_DELAYED_ITEMS_NR) 4854 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4855 else 4856 nr = -1; 4857 4858 trans = btrfs_join_transaction(root); 4859 if (IS_ERR(trans)) { 4860 ret = PTR_ERR(trans); 4861 break; 4862 } 4863 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4864 btrfs_end_transaction(trans, root); 4865 break; 4866 case FLUSH_DELALLOC: 4867 case FLUSH_DELALLOC_WAIT: 4868 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4869 state == FLUSH_DELALLOC_WAIT); 4870 break; 4871 case ALLOC_CHUNK: 4872 trans = btrfs_join_transaction(root); 4873 if (IS_ERR(trans)) { 4874 ret = PTR_ERR(trans); 4875 break; 4876 } 4877 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4878 btrfs_get_alloc_profile(root, 0), 4879 CHUNK_ALLOC_NO_FORCE); 4880 btrfs_end_transaction(trans, root); 4881 if (ret > 0 || ret == -ENOSPC) 4882 ret = 0; 4883 break; 4884 case COMMIT_TRANS: 4885 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4886 break; 4887 default: 4888 ret = -ENOSPC; 4889 break; 4890 } 4891 4892 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes, 4893 orig_bytes, state, ret); 4894 return ret; 4895 } 4896 4897 static inline u64 4898 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4899 struct btrfs_space_info *space_info) 4900 { 4901 struct reserve_ticket *ticket; 4902 u64 used; 4903 u64 expected; 4904 u64 to_reclaim = 0; 4905 4906 list_for_each_entry(ticket, &space_info->tickets, list) 4907 to_reclaim += ticket->bytes; 4908 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4909 to_reclaim += ticket->bytes; 4910 if (to_reclaim) 4911 return to_reclaim; 4912 4913 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4914 if (can_overcommit(root, space_info, to_reclaim, 4915 BTRFS_RESERVE_FLUSH_ALL)) 4916 return 0; 4917 4918 used = space_info->bytes_used + space_info->bytes_reserved + 4919 space_info->bytes_pinned + space_info->bytes_readonly + 4920 space_info->bytes_may_use; 4921 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4922 expected = div_factor_fine(space_info->total_bytes, 95); 4923 else 4924 expected = div_factor_fine(space_info->total_bytes, 90); 4925 4926 if (used > expected) 4927 to_reclaim = used - expected; 4928 else 4929 to_reclaim = 0; 4930 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4931 space_info->bytes_reserved); 4932 return to_reclaim; 4933 } 4934 4935 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4936 struct btrfs_root *root, u64 used) 4937 { 4938 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4939 4940 /* If we're just plain full then async reclaim just slows us down. */ 4941 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4942 return 0; 4943 4944 if (!btrfs_calc_reclaim_metadata_size(root, space_info)) 4945 return 0; 4946 4947 return (used >= thresh && !btrfs_fs_closing(root->fs_info) && 4948 !test_bit(BTRFS_FS_STATE_REMOUNTING, 4949 &root->fs_info->fs_state)); 4950 } 4951 4952 static void wake_all_tickets(struct list_head *head) 4953 { 4954 struct reserve_ticket *ticket; 4955 4956 while (!list_empty(head)) { 4957 ticket = list_first_entry(head, struct reserve_ticket, list); 4958 list_del_init(&ticket->list); 4959 ticket->error = -ENOSPC; 4960 wake_up(&ticket->wait); 4961 } 4962 } 4963 4964 /* 4965 * This is for normal flushers, we can wait all goddamned day if we want to. We 4966 * will loop and continuously try to flush as long as we are making progress. 4967 * We count progress as clearing off tickets each time we have to loop. 4968 */ 4969 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4970 { 4971 struct btrfs_fs_info *fs_info; 4972 struct btrfs_space_info *space_info; 4973 u64 to_reclaim; 4974 int flush_state; 4975 int commit_cycles = 0; 4976 u64 last_tickets_id; 4977 4978 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4979 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4980 4981 spin_lock(&space_info->lock); 4982 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4983 space_info); 4984 if (!to_reclaim) { 4985 space_info->flush = 0; 4986 spin_unlock(&space_info->lock); 4987 return; 4988 } 4989 last_tickets_id = space_info->tickets_id; 4990 spin_unlock(&space_info->lock); 4991 4992 flush_state = FLUSH_DELAYED_ITEMS_NR; 4993 do { 4994 struct reserve_ticket *ticket; 4995 int ret; 4996 4997 ret = flush_space(fs_info->fs_root, space_info, to_reclaim, 4998 to_reclaim, flush_state); 4999 spin_lock(&space_info->lock); 5000 if (list_empty(&space_info->tickets)) { 5001 space_info->flush = 0; 5002 spin_unlock(&space_info->lock); 5003 return; 5004 } 5005 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5006 space_info); 5007 ticket = list_first_entry(&space_info->tickets, 5008 struct reserve_ticket, list); 5009 if (last_tickets_id == space_info->tickets_id) { 5010 flush_state++; 5011 } else { 5012 last_tickets_id = space_info->tickets_id; 5013 flush_state = FLUSH_DELAYED_ITEMS_NR; 5014 if (commit_cycles) 5015 commit_cycles--; 5016 } 5017 5018 if (flush_state > COMMIT_TRANS) { 5019 commit_cycles++; 5020 if (commit_cycles > 2) { 5021 wake_all_tickets(&space_info->tickets); 5022 space_info->flush = 0; 5023 } else { 5024 flush_state = FLUSH_DELAYED_ITEMS_NR; 5025 } 5026 } 5027 spin_unlock(&space_info->lock); 5028 } while (flush_state <= COMMIT_TRANS); 5029 } 5030 5031 void btrfs_init_async_reclaim_work(struct work_struct *work) 5032 { 5033 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5034 } 5035 5036 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5037 struct btrfs_space_info *space_info, 5038 struct reserve_ticket *ticket) 5039 { 5040 u64 to_reclaim; 5041 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5042 5043 spin_lock(&space_info->lock); 5044 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5045 space_info); 5046 if (!to_reclaim) { 5047 spin_unlock(&space_info->lock); 5048 return; 5049 } 5050 spin_unlock(&space_info->lock); 5051 5052 do { 5053 flush_space(fs_info->fs_root, space_info, to_reclaim, 5054 to_reclaim, flush_state); 5055 flush_state++; 5056 spin_lock(&space_info->lock); 5057 if (ticket->bytes == 0) { 5058 spin_unlock(&space_info->lock); 5059 return; 5060 } 5061 spin_unlock(&space_info->lock); 5062 5063 /* 5064 * Priority flushers can't wait on delalloc without 5065 * deadlocking. 5066 */ 5067 if (flush_state == FLUSH_DELALLOC || 5068 flush_state == FLUSH_DELALLOC_WAIT) 5069 flush_state = ALLOC_CHUNK; 5070 } while (flush_state < COMMIT_TRANS); 5071 } 5072 5073 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5074 struct btrfs_space_info *space_info, 5075 struct reserve_ticket *ticket, u64 orig_bytes) 5076 5077 { 5078 DEFINE_WAIT(wait); 5079 int ret = 0; 5080 5081 spin_lock(&space_info->lock); 5082 while (ticket->bytes > 0 && ticket->error == 0) { 5083 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5084 if (ret) { 5085 ret = -EINTR; 5086 break; 5087 } 5088 spin_unlock(&space_info->lock); 5089 5090 schedule(); 5091 5092 finish_wait(&ticket->wait, &wait); 5093 spin_lock(&space_info->lock); 5094 } 5095 if (!ret) 5096 ret = ticket->error; 5097 if (!list_empty(&ticket->list)) 5098 list_del_init(&ticket->list); 5099 if (ticket->bytes && ticket->bytes < orig_bytes) { 5100 u64 num_bytes = orig_bytes - ticket->bytes; 5101 space_info->bytes_may_use -= num_bytes; 5102 trace_btrfs_space_reservation(fs_info, "space_info", 5103 space_info->flags, num_bytes, 0); 5104 } 5105 spin_unlock(&space_info->lock); 5106 5107 return ret; 5108 } 5109 5110 /** 5111 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5112 * @root - the root we're allocating for 5113 * @space_info - the space info we want to allocate from 5114 * @orig_bytes - the number of bytes we want 5115 * @flush - whether or not we can flush to make our reservation 5116 * 5117 * This will reserve orig_bytes number of bytes from the space info associated 5118 * with the block_rsv. If there is not enough space it will make an attempt to 5119 * flush out space to make room. It will do this by flushing delalloc if 5120 * possible or committing the transaction. If flush is 0 then no attempts to 5121 * regain reservations will be made and this will fail if there is not enough 5122 * space already. 5123 */ 5124 static int __reserve_metadata_bytes(struct btrfs_root *root, 5125 struct btrfs_space_info *space_info, 5126 u64 orig_bytes, 5127 enum btrfs_reserve_flush_enum flush) 5128 { 5129 struct reserve_ticket ticket; 5130 u64 used; 5131 int ret = 0; 5132 5133 ASSERT(orig_bytes); 5134 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5135 5136 spin_lock(&space_info->lock); 5137 ret = -ENOSPC; 5138 used = space_info->bytes_used + space_info->bytes_reserved + 5139 space_info->bytes_pinned + space_info->bytes_readonly + 5140 space_info->bytes_may_use; 5141 5142 /* 5143 * If we have enough space then hooray, make our reservation and carry 5144 * on. If not see if we can overcommit, and if we can, hooray carry on. 5145 * If not things get more complicated. 5146 */ 5147 if (used + orig_bytes <= space_info->total_bytes) { 5148 space_info->bytes_may_use += orig_bytes; 5149 trace_btrfs_space_reservation(root->fs_info, "space_info", 5150 space_info->flags, orig_bytes, 5151 1); 5152 ret = 0; 5153 } else if (can_overcommit(root, space_info, orig_bytes, flush)) { 5154 space_info->bytes_may_use += orig_bytes; 5155 trace_btrfs_space_reservation(root->fs_info, "space_info", 5156 space_info->flags, orig_bytes, 5157 1); 5158 ret = 0; 5159 } 5160 5161 /* 5162 * If we couldn't make a reservation then setup our reservation ticket 5163 * and kick the async worker if it's not already running. 5164 * 5165 * If we are a priority flusher then we just need to add our ticket to 5166 * the list and we will do our own flushing further down. 5167 */ 5168 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5169 ticket.bytes = orig_bytes; 5170 ticket.error = 0; 5171 init_waitqueue_head(&ticket.wait); 5172 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5173 list_add_tail(&ticket.list, &space_info->tickets); 5174 if (!space_info->flush) { 5175 space_info->flush = 1; 5176 trace_btrfs_trigger_flush(root->fs_info, 5177 space_info->flags, 5178 orig_bytes, flush, 5179 "enospc"); 5180 queue_work(system_unbound_wq, 5181 &root->fs_info->async_reclaim_work); 5182 } 5183 } else { 5184 list_add_tail(&ticket.list, 5185 &space_info->priority_tickets); 5186 } 5187 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5188 used += orig_bytes; 5189 /* 5190 * We will do the space reservation dance during log replay, 5191 * which means we won't have fs_info->fs_root set, so don't do 5192 * the async reclaim as we will panic. 5193 */ 5194 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) && 5195 need_do_async_reclaim(space_info, root, used) && 5196 !work_busy(&root->fs_info->async_reclaim_work)) { 5197 trace_btrfs_trigger_flush(root->fs_info, 5198 space_info->flags, 5199 orig_bytes, flush, 5200 "preempt"); 5201 queue_work(system_unbound_wq, 5202 &root->fs_info->async_reclaim_work); 5203 } 5204 } 5205 spin_unlock(&space_info->lock); 5206 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5207 return ret; 5208 5209 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5210 return wait_reserve_ticket(root->fs_info, space_info, &ticket, 5211 orig_bytes); 5212 5213 ret = 0; 5214 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket); 5215 spin_lock(&space_info->lock); 5216 if (ticket.bytes) { 5217 if (ticket.bytes < orig_bytes) { 5218 u64 num_bytes = orig_bytes - ticket.bytes; 5219 space_info->bytes_may_use -= num_bytes; 5220 trace_btrfs_space_reservation(root->fs_info, 5221 "space_info", space_info->flags, 5222 num_bytes, 0); 5223 5224 } 5225 list_del_init(&ticket.list); 5226 ret = -ENOSPC; 5227 } 5228 spin_unlock(&space_info->lock); 5229 ASSERT(list_empty(&ticket.list)); 5230 return ret; 5231 } 5232 5233 /** 5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5235 * @root - the root we're allocating for 5236 * @block_rsv - the block_rsv we're allocating for 5237 * @orig_bytes - the number of bytes we want 5238 * @flush - whether or not we can flush to make our reservation 5239 * 5240 * This will reserve orgi_bytes number of bytes from the space info associated 5241 * with the block_rsv. If there is not enough space it will make an attempt to 5242 * flush out space to make room. It will do this by flushing delalloc if 5243 * possible or committing the transaction. If flush is 0 then no attempts to 5244 * regain reservations will be made and this will fail if there is not enough 5245 * space already. 5246 */ 5247 static int reserve_metadata_bytes(struct btrfs_root *root, 5248 struct btrfs_block_rsv *block_rsv, 5249 u64 orig_bytes, 5250 enum btrfs_reserve_flush_enum flush) 5251 { 5252 int ret; 5253 5254 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes, 5255 flush); 5256 if (ret == -ENOSPC && 5257 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5258 struct btrfs_block_rsv *global_rsv = 5259 &root->fs_info->global_block_rsv; 5260 5261 if (block_rsv != global_rsv && 5262 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5263 ret = 0; 5264 } 5265 if (ret == -ENOSPC) 5266 trace_btrfs_space_reservation(root->fs_info, 5267 "space_info:enospc", 5268 block_rsv->space_info->flags, 5269 orig_bytes, 1); 5270 return ret; 5271 } 5272 5273 static struct btrfs_block_rsv *get_block_rsv( 5274 const struct btrfs_trans_handle *trans, 5275 const struct btrfs_root *root) 5276 { 5277 struct btrfs_block_rsv *block_rsv = NULL; 5278 5279 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5280 (root == root->fs_info->csum_root && trans->adding_csums) || 5281 (root == root->fs_info->uuid_root)) 5282 block_rsv = trans->block_rsv; 5283 5284 if (!block_rsv) 5285 block_rsv = root->block_rsv; 5286 5287 if (!block_rsv) 5288 block_rsv = &root->fs_info->empty_block_rsv; 5289 5290 return block_rsv; 5291 } 5292 5293 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5294 u64 num_bytes) 5295 { 5296 int ret = -ENOSPC; 5297 spin_lock(&block_rsv->lock); 5298 if (block_rsv->reserved >= num_bytes) { 5299 block_rsv->reserved -= num_bytes; 5300 if (block_rsv->reserved < block_rsv->size) 5301 block_rsv->full = 0; 5302 ret = 0; 5303 } 5304 spin_unlock(&block_rsv->lock); 5305 return ret; 5306 } 5307 5308 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5309 u64 num_bytes, int update_size) 5310 { 5311 spin_lock(&block_rsv->lock); 5312 block_rsv->reserved += num_bytes; 5313 if (update_size) 5314 block_rsv->size += num_bytes; 5315 else if (block_rsv->reserved >= block_rsv->size) 5316 block_rsv->full = 1; 5317 spin_unlock(&block_rsv->lock); 5318 } 5319 5320 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5321 struct btrfs_block_rsv *dest, u64 num_bytes, 5322 int min_factor) 5323 { 5324 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5325 u64 min_bytes; 5326 5327 if (global_rsv->space_info != dest->space_info) 5328 return -ENOSPC; 5329 5330 spin_lock(&global_rsv->lock); 5331 min_bytes = div_factor(global_rsv->size, min_factor); 5332 if (global_rsv->reserved < min_bytes + num_bytes) { 5333 spin_unlock(&global_rsv->lock); 5334 return -ENOSPC; 5335 } 5336 global_rsv->reserved -= num_bytes; 5337 if (global_rsv->reserved < global_rsv->size) 5338 global_rsv->full = 0; 5339 spin_unlock(&global_rsv->lock); 5340 5341 block_rsv_add_bytes(dest, num_bytes, 1); 5342 return 0; 5343 } 5344 5345 /* 5346 * This is for space we already have accounted in space_info->bytes_may_use, so 5347 * basically when we're returning space from block_rsv's. 5348 */ 5349 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5350 struct btrfs_space_info *space_info, 5351 u64 num_bytes) 5352 { 5353 struct reserve_ticket *ticket; 5354 struct list_head *head; 5355 u64 used; 5356 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5357 bool check_overcommit = false; 5358 5359 spin_lock(&space_info->lock); 5360 head = &space_info->priority_tickets; 5361 5362 /* 5363 * If we are over our limit then we need to check and see if we can 5364 * overcommit, and if we can't then we just need to free up our space 5365 * and not satisfy any requests. 5366 */ 5367 used = space_info->bytes_used + space_info->bytes_reserved + 5368 space_info->bytes_pinned + space_info->bytes_readonly + 5369 space_info->bytes_may_use; 5370 if (used - num_bytes >= space_info->total_bytes) 5371 check_overcommit = true; 5372 again: 5373 while (!list_empty(head) && num_bytes) { 5374 ticket = list_first_entry(head, struct reserve_ticket, 5375 list); 5376 /* 5377 * We use 0 bytes because this space is already reserved, so 5378 * adding the ticket space would be a double count. 5379 */ 5380 if (check_overcommit && 5381 !can_overcommit(fs_info->extent_root, space_info, 0, 5382 flush)) 5383 break; 5384 if (num_bytes >= ticket->bytes) { 5385 list_del_init(&ticket->list); 5386 num_bytes -= ticket->bytes; 5387 ticket->bytes = 0; 5388 space_info->tickets_id++; 5389 wake_up(&ticket->wait); 5390 } else { 5391 ticket->bytes -= num_bytes; 5392 num_bytes = 0; 5393 } 5394 } 5395 5396 if (num_bytes && head == &space_info->priority_tickets) { 5397 head = &space_info->tickets; 5398 flush = BTRFS_RESERVE_FLUSH_ALL; 5399 goto again; 5400 } 5401 space_info->bytes_may_use -= num_bytes; 5402 trace_btrfs_space_reservation(fs_info, "space_info", 5403 space_info->flags, num_bytes, 0); 5404 spin_unlock(&space_info->lock); 5405 } 5406 5407 /* 5408 * This is for newly allocated space that isn't accounted in 5409 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5410 * we use this helper. 5411 */ 5412 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5413 struct btrfs_space_info *space_info, 5414 u64 num_bytes) 5415 { 5416 struct reserve_ticket *ticket; 5417 struct list_head *head = &space_info->priority_tickets; 5418 5419 again: 5420 while (!list_empty(head) && num_bytes) { 5421 ticket = list_first_entry(head, struct reserve_ticket, 5422 list); 5423 if (num_bytes >= ticket->bytes) { 5424 trace_btrfs_space_reservation(fs_info, "space_info", 5425 space_info->flags, 5426 ticket->bytes, 1); 5427 list_del_init(&ticket->list); 5428 num_bytes -= ticket->bytes; 5429 space_info->bytes_may_use += ticket->bytes; 5430 ticket->bytes = 0; 5431 space_info->tickets_id++; 5432 wake_up(&ticket->wait); 5433 } else { 5434 trace_btrfs_space_reservation(fs_info, "space_info", 5435 space_info->flags, 5436 num_bytes, 1); 5437 space_info->bytes_may_use += num_bytes; 5438 ticket->bytes -= num_bytes; 5439 num_bytes = 0; 5440 } 5441 } 5442 5443 if (num_bytes && head == &space_info->priority_tickets) { 5444 head = &space_info->tickets; 5445 goto again; 5446 } 5447 } 5448 5449 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5450 struct btrfs_block_rsv *block_rsv, 5451 struct btrfs_block_rsv *dest, u64 num_bytes) 5452 { 5453 struct btrfs_space_info *space_info = block_rsv->space_info; 5454 5455 spin_lock(&block_rsv->lock); 5456 if (num_bytes == (u64)-1) 5457 num_bytes = block_rsv->size; 5458 block_rsv->size -= num_bytes; 5459 if (block_rsv->reserved >= block_rsv->size) { 5460 num_bytes = block_rsv->reserved - block_rsv->size; 5461 block_rsv->reserved = block_rsv->size; 5462 block_rsv->full = 1; 5463 } else { 5464 num_bytes = 0; 5465 } 5466 spin_unlock(&block_rsv->lock); 5467 5468 if (num_bytes > 0) { 5469 if (dest) { 5470 spin_lock(&dest->lock); 5471 if (!dest->full) { 5472 u64 bytes_to_add; 5473 5474 bytes_to_add = dest->size - dest->reserved; 5475 bytes_to_add = min(num_bytes, bytes_to_add); 5476 dest->reserved += bytes_to_add; 5477 if (dest->reserved >= dest->size) 5478 dest->full = 1; 5479 num_bytes -= bytes_to_add; 5480 } 5481 spin_unlock(&dest->lock); 5482 } 5483 if (num_bytes) 5484 space_info_add_old_bytes(fs_info, space_info, 5485 num_bytes); 5486 } 5487 } 5488 5489 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5490 struct btrfs_block_rsv *dst, u64 num_bytes, 5491 int update_size) 5492 { 5493 int ret; 5494 5495 ret = block_rsv_use_bytes(src, num_bytes); 5496 if (ret) 5497 return ret; 5498 5499 block_rsv_add_bytes(dst, num_bytes, update_size); 5500 return 0; 5501 } 5502 5503 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5504 { 5505 memset(rsv, 0, sizeof(*rsv)); 5506 spin_lock_init(&rsv->lock); 5507 rsv->type = type; 5508 } 5509 5510 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5511 unsigned short type) 5512 { 5513 struct btrfs_block_rsv *block_rsv; 5514 struct btrfs_fs_info *fs_info = root->fs_info; 5515 5516 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5517 if (!block_rsv) 5518 return NULL; 5519 5520 btrfs_init_block_rsv(block_rsv, type); 5521 block_rsv->space_info = __find_space_info(fs_info, 5522 BTRFS_BLOCK_GROUP_METADATA); 5523 return block_rsv; 5524 } 5525 5526 void btrfs_free_block_rsv(struct btrfs_root *root, 5527 struct btrfs_block_rsv *rsv) 5528 { 5529 if (!rsv) 5530 return; 5531 btrfs_block_rsv_release(root, rsv, (u64)-1); 5532 kfree(rsv); 5533 } 5534 5535 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5536 { 5537 kfree(rsv); 5538 } 5539 5540 int btrfs_block_rsv_add(struct btrfs_root *root, 5541 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5542 enum btrfs_reserve_flush_enum flush) 5543 { 5544 int ret; 5545 5546 if (num_bytes == 0) 5547 return 0; 5548 5549 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5550 if (!ret) { 5551 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5552 return 0; 5553 } 5554 5555 return ret; 5556 } 5557 5558 int btrfs_block_rsv_check(struct btrfs_root *root, 5559 struct btrfs_block_rsv *block_rsv, int min_factor) 5560 { 5561 u64 num_bytes = 0; 5562 int ret = -ENOSPC; 5563 5564 if (!block_rsv) 5565 return 0; 5566 5567 spin_lock(&block_rsv->lock); 5568 num_bytes = div_factor(block_rsv->size, min_factor); 5569 if (block_rsv->reserved >= num_bytes) 5570 ret = 0; 5571 spin_unlock(&block_rsv->lock); 5572 5573 return ret; 5574 } 5575 5576 int btrfs_block_rsv_refill(struct btrfs_root *root, 5577 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5578 enum btrfs_reserve_flush_enum flush) 5579 { 5580 u64 num_bytes = 0; 5581 int ret = -ENOSPC; 5582 5583 if (!block_rsv) 5584 return 0; 5585 5586 spin_lock(&block_rsv->lock); 5587 num_bytes = min_reserved; 5588 if (block_rsv->reserved >= num_bytes) 5589 ret = 0; 5590 else 5591 num_bytes -= block_rsv->reserved; 5592 spin_unlock(&block_rsv->lock); 5593 5594 if (!ret) 5595 return 0; 5596 5597 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5598 if (!ret) { 5599 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5600 return 0; 5601 } 5602 5603 return ret; 5604 } 5605 5606 void btrfs_block_rsv_release(struct btrfs_root *root, 5607 struct btrfs_block_rsv *block_rsv, 5608 u64 num_bytes) 5609 { 5610 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5611 if (global_rsv == block_rsv || 5612 block_rsv->space_info != global_rsv->space_info) 5613 global_rsv = NULL; 5614 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5615 num_bytes); 5616 } 5617 5618 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5619 { 5620 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5621 struct btrfs_space_info *sinfo = block_rsv->space_info; 5622 u64 num_bytes; 5623 5624 /* 5625 * The global block rsv is based on the size of the extent tree, the 5626 * checksum tree and the root tree. If the fs is empty we want to set 5627 * it to a minimal amount for safety. 5628 */ 5629 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5630 btrfs_root_used(&fs_info->csum_root->root_item) + 5631 btrfs_root_used(&fs_info->tree_root->root_item); 5632 num_bytes = max_t(u64, num_bytes, SZ_16M); 5633 5634 spin_lock(&sinfo->lock); 5635 spin_lock(&block_rsv->lock); 5636 5637 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5638 5639 if (block_rsv->reserved < block_rsv->size) { 5640 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5641 sinfo->bytes_reserved + sinfo->bytes_readonly + 5642 sinfo->bytes_may_use; 5643 if (sinfo->total_bytes > num_bytes) { 5644 num_bytes = sinfo->total_bytes - num_bytes; 5645 num_bytes = min(num_bytes, 5646 block_rsv->size - block_rsv->reserved); 5647 block_rsv->reserved += num_bytes; 5648 sinfo->bytes_may_use += num_bytes; 5649 trace_btrfs_space_reservation(fs_info, "space_info", 5650 sinfo->flags, num_bytes, 5651 1); 5652 } 5653 } else if (block_rsv->reserved > block_rsv->size) { 5654 num_bytes = block_rsv->reserved - block_rsv->size; 5655 sinfo->bytes_may_use -= num_bytes; 5656 trace_btrfs_space_reservation(fs_info, "space_info", 5657 sinfo->flags, num_bytes, 0); 5658 block_rsv->reserved = block_rsv->size; 5659 } 5660 5661 if (block_rsv->reserved == block_rsv->size) 5662 block_rsv->full = 1; 5663 else 5664 block_rsv->full = 0; 5665 5666 spin_unlock(&block_rsv->lock); 5667 spin_unlock(&sinfo->lock); 5668 } 5669 5670 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5671 { 5672 struct btrfs_space_info *space_info; 5673 5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5675 fs_info->chunk_block_rsv.space_info = space_info; 5676 5677 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5678 fs_info->global_block_rsv.space_info = space_info; 5679 fs_info->delalloc_block_rsv.space_info = space_info; 5680 fs_info->trans_block_rsv.space_info = space_info; 5681 fs_info->empty_block_rsv.space_info = space_info; 5682 fs_info->delayed_block_rsv.space_info = space_info; 5683 5684 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5685 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5686 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5687 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5688 if (fs_info->quota_root) 5689 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5690 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5691 5692 update_global_block_rsv(fs_info); 5693 } 5694 5695 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5696 { 5697 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5698 (u64)-1); 5699 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5700 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5701 WARN_ON(fs_info->trans_block_rsv.size > 0); 5702 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5703 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5704 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5705 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5706 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5707 } 5708 5709 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5710 struct btrfs_root *root) 5711 { 5712 if (!trans->block_rsv) 5713 return; 5714 5715 if (!trans->bytes_reserved) 5716 return; 5717 5718 trace_btrfs_space_reservation(root->fs_info, "transaction", 5719 trans->transid, trans->bytes_reserved, 0); 5720 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5721 trans->bytes_reserved = 0; 5722 } 5723 5724 /* 5725 * To be called after all the new block groups attached to the transaction 5726 * handle have been created (btrfs_create_pending_block_groups()). 5727 */ 5728 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5729 { 5730 struct btrfs_fs_info *fs_info = trans->fs_info; 5731 5732 if (!trans->chunk_bytes_reserved) 5733 return; 5734 5735 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5736 5737 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5738 trans->chunk_bytes_reserved); 5739 trans->chunk_bytes_reserved = 0; 5740 } 5741 5742 /* Can only return 0 or -ENOSPC */ 5743 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5744 struct inode *inode) 5745 { 5746 struct btrfs_root *root = BTRFS_I(inode)->root; 5747 /* 5748 * We always use trans->block_rsv here as we will have reserved space 5749 * for our orphan when starting the transaction, using get_block_rsv() 5750 * here will sometimes make us choose the wrong block rsv as we could be 5751 * doing a reloc inode for a non refcounted root. 5752 */ 5753 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5754 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5755 5756 /* 5757 * We need to hold space in order to delete our orphan item once we've 5758 * added it, so this takes the reservation so we can release it later 5759 * when we are truly done with the orphan item. 5760 */ 5761 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5762 trace_btrfs_space_reservation(root->fs_info, "orphan", 5763 btrfs_ino(inode), num_bytes, 1); 5764 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5765 } 5766 5767 void btrfs_orphan_release_metadata(struct inode *inode) 5768 { 5769 struct btrfs_root *root = BTRFS_I(inode)->root; 5770 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5771 trace_btrfs_space_reservation(root->fs_info, "orphan", 5772 btrfs_ino(inode), num_bytes, 0); 5773 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5774 } 5775 5776 /* 5777 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5778 * root: the root of the parent directory 5779 * rsv: block reservation 5780 * items: the number of items that we need do reservation 5781 * qgroup_reserved: used to return the reserved size in qgroup 5782 * 5783 * This function is used to reserve the space for snapshot/subvolume 5784 * creation and deletion. Those operations are different with the 5785 * common file/directory operations, they change two fs/file trees 5786 * and root tree, the number of items that the qgroup reserves is 5787 * different with the free space reservation. So we can not use 5788 * the space reservation mechanism in start_transaction(). 5789 */ 5790 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5791 struct btrfs_block_rsv *rsv, 5792 int items, 5793 u64 *qgroup_reserved, 5794 bool use_global_rsv) 5795 { 5796 u64 num_bytes; 5797 int ret; 5798 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5799 5800 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) { 5801 /* One for parent inode, two for dir entries */ 5802 num_bytes = 3 * root->nodesize; 5803 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5804 if (ret) 5805 return ret; 5806 } else { 5807 num_bytes = 0; 5808 } 5809 5810 *qgroup_reserved = num_bytes; 5811 5812 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5813 rsv->space_info = __find_space_info(root->fs_info, 5814 BTRFS_BLOCK_GROUP_METADATA); 5815 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5816 BTRFS_RESERVE_FLUSH_ALL); 5817 5818 if (ret == -ENOSPC && use_global_rsv) 5819 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5820 5821 if (ret && *qgroup_reserved) 5822 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5823 5824 return ret; 5825 } 5826 5827 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5828 struct btrfs_block_rsv *rsv, 5829 u64 qgroup_reserved) 5830 { 5831 btrfs_block_rsv_release(root, rsv, (u64)-1); 5832 } 5833 5834 /** 5835 * drop_outstanding_extent - drop an outstanding extent 5836 * @inode: the inode we're dropping the extent for 5837 * @num_bytes: the number of bytes we're releasing. 5838 * 5839 * This is called when we are freeing up an outstanding extent, either called 5840 * after an error or after an extent is written. This will return the number of 5841 * reserved extents that need to be freed. This must be called with 5842 * BTRFS_I(inode)->lock held. 5843 */ 5844 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5845 { 5846 unsigned drop_inode_space = 0; 5847 unsigned dropped_extents = 0; 5848 unsigned num_extents = 0; 5849 5850 num_extents = (unsigned)div64_u64(num_bytes + 5851 BTRFS_MAX_EXTENT_SIZE - 1, 5852 BTRFS_MAX_EXTENT_SIZE); 5853 ASSERT(num_extents); 5854 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5855 BTRFS_I(inode)->outstanding_extents -= num_extents; 5856 5857 if (BTRFS_I(inode)->outstanding_extents == 0 && 5858 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5859 &BTRFS_I(inode)->runtime_flags)) 5860 drop_inode_space = 1; 5861 5862 /* 5863 * If we have more or the same amount of outstanding extents than we have 5864 * reserved then we need to leave the reserved extents count alone. 5865 */ 5866 if (BTRFS_I(inode)->outstanding_extents >= 5867 BTRFS_I(inode)->reserved_extents) 5868 return drop_inode_space; 5869 5870 dropped_extents = BTRFS_I(inode)->reserved_extents - 5871 BTRFS_I(inode)->outstanding_extents; 5872 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5873 return dropped_extents + drop_inode_space; 5874 } 5875 5876 /** 5877 * calc_csum_metadata_size - return the amount of metadata space that must be 5878 * reserved/freed for the given bytes. 5879 * @inode: the inode we're manipulating 5880 * @num_bytes: the number of bytes in question 5881 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5882 * 5883 * This adjusts the number of csum_bytes in the inode and then returns the 5884 * correct amount of metadata that must either be reserved or freed. We 5885 * calculate how many checksums we can fit into one leaf and then divide the 5886 * number of bytes that will need to be checksumed by this value to figure out 5887 * how many checksums will be required. If we are adding bytes then the number 5888 * may go up and we will return the number of additional bytes that must be 5889 * reserved. If it is going down we will return the number of bytes that must 5890 * be freed. 5891 * 5892 * This must be called with BTRFS_I(inode)->lock held. 5893 */ 5894 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5895 int reserve) 5896 { 5897 struct btrfs_root *root = BTRFS_I(inode)->root; 5898 u64 old_csums, num_csums; 5899 5900 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5901 BTRFS_I(inode)->csum_bytes == 0) 5902 return 0; 5903 5904 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5905 if (reserve) 5906 BTRFS_I(inode)->csum_bytes += num_bytes; 5907 else 5908 BTRFS_I(inode)->csum_bytes -= num_bytes; 5909 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5910 5911 /* No change, no need to reserve more */ 5912 if (old_csums == num_csums) 5913 return 0; 5914 5915 if (reserve) 5916 return btrfs_calc_trans_metadata_size(root, 5917 num_csums - old_csums); 5918 5919 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5920 } 5921 5922 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5923 { 5924 struct btrfs_root *root = BTRFS_I(inode)->root; 5925 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5926 u64 to_reserve = 0; 5927 u64 csum_bytes; 5928 unsigned nr_extents = 0; 5929 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5930 int ret = 0; 5931 bool delalloc_lock = true; 5932 u64 to_free = 0; 5933 unsigned dropped; 5934 bool release_extra = false; 5935 5936 /* If we are a free space inode we need to not flush since we will be in 5937 * the middle of a transaction commit. We also don't need the delalloc 5938 * mutex since we won't race with anybody. We need this mostly to make 5939 * lockdep shut its filthy mouth. 5940 * 5941 * If we have a transaction open (can happen if we call truncate_block 5942 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 5943 */ 5944 if (btrfs_is_free_space_inode(inode)) { 5945 flush = BTRFS_RESERVE_NO_FLUSH; 5946 delalloc_lock = false; 5947 } else if (current->journal_info) { 5948 flush = BTRFS_RESERVE_FLUSH_LIMIT; 5949 } 5950 5951 if (flush != BTRFS_RESERVE_NO_FLUSH && 5952 btrfs_transaction_in_commit(root->fs_info)) 5953 schedule_timeout(1); 5954 5955 if (delalloc_lock) 5956 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5957 5958 num_bytes = ALIGN(num_bytes, root->sectorsize); 5959 5960 spin_lock(&BTRFS_I(inode)->lock); 5961 nr_extents = (unsigned)div64_u64(num_bytes + 5962 BTRFS_MAX_EXTENT_SIZE - 1, 5963 BTRFS_MAX_EXTENT_SIZE); 5964 BTRFS_I(inode)->outstanding_extents += nr_extents; 5965 5966 nr_extents = 0; 5967 if (BTRFS_I(inode)->outstanding_extents > 5968 BTRFS_I(inode)->reserved_extents) 5969 nr_extents += BTRFS_I(inode)->outstanding_extents - 5970 BTRFS_I(inode)->reserved_extents; 5971 5972 /* We always want to reserve a slot for updating the inode. */ 5973 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1); 5974 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5975 csum_bytes = BTRFS_I(inode)->csum_bytes; 5976 spin_unlock(&BTRFS_I(inode)->lock); 5977 5978 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) { 5979 ret = btrfs_qgroup_reserve_meta(root, 5980 nr_extents * root->nodesize); 5981 if (ret) 5982 goto out_fail; 5983 } 5984 5985 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 5986 if (unlikely(ret)) { 5987 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5988 goto out_fail; 5989 } 5990 5991 spin_lock(&BTRFS_I(inode)->lock); 5992 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5993 &BTRFS_I(inode)->runtime_flags)) { 5994 to_reserve -= btrfs_calc_trans_metadata_size(root, 1); 5995 release_extra = true; 5996 } 5997 BTRFS_I(inode)->reserved_extents += nr_extents; 5998 spin_unlock(&BTRFS_I(inode)->lock); 5999 6000 if (delalloc_lock) 6001 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6002 6003 if (to_reserve) 6004 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6005 btrfs_ino(inode), to_reserve, 1); 6006 if (release_extra) 6007 btrfs_block_rsv_release(root, block_rsv, 6008 btrfs_calc_trans_metadata_size(root, 6009 1)); 6010 return 0; 6011 6012 out_fail: 6013 spin_lock(&BTRFS_I(inode)->lock); 6014 dropped = drop_outstanding_extent(inode, num_bytes); 6015 /* 6016 * If the inodes csum_bytes is the same as the original 6017 * csum_bytes then we know we haven't raced with any free()ers 6018 * so we can just reduce our inodes csum bytes and carry on. 6019 */ 6020 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 6021 calc_csum_metadata_size(inode, num_bytes, 0); 6022 } else { 6023 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 6024 u64 bytes; 6025 6026 /* 6027 * This is tricky, but first we need to figure out how much we 6028 * freed from any free-ers that occurred during this 6029 * reservation, so we reset ->csum_bytes to the csum_bytes 6030 * before we dropped our lock, and then call the free for the 6031 * number of bytes that were freed while we were trying our 6032 * reservation. 6033 */ 6034 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 6035 BTRFS_I(inode)->csum_bytes = csum_bytes; 6036 to_free = calc_csum_metadata_size(inode, bytes, 0); 6037 6038 6039 /* 6040 * Now we need to see how much we would have freed had we not 6041 * been making this reservation and our ->csum_bytes were not 6042 * artificially inflated. 6043 */ 6044 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 6045 bytes = csum_bytes - orig_csum_bytes; 6046 bytes = calc_csum_metadata_size(inode, bytes, 0); 6047 6048 /* 6049 * Now reset ->csum_bytes to what it should be. If bytes is 6050 * more than to_free then we would have freed more space had we 6051 * not had an artificially high ->csum_bytes, so we need to free 6052 * the remainder. If bytes is the same or less then we don't 6053 * need to do anything, the other free-ers did the correct 6054 * thing. 6055 */ 6056 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 6057 if (bytes > to_free) 6058 to_free = bytes - to_free; 6059 else 6060 to_free = 0; 6061 } 6062 spin_unlock(&BTRFS_I(inode)->lock); 6063 if (dropped) 6064 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6065 6066 if (to_free) { 6067 btrfs_block_rsv_release(root, block_rsv, to_free); 6068 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6069 btrfs_ino(inode), to_free, 0); 6070 } 6071 if (delalloc_lock) 6072 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6073 return ret; 6074 } 6075 6076 /** 6077 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6078 * @inode: the inode to release the reservation for 6079 * @num_bytes: the number of bytes we're releasing 6080 * 6081 * This will release the metadata reservation for an inode. This can be called 6082 * once we complete IO for a given set of bytes to release their metadata 6083 * reservations. 6084 */ 6085 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 6086 { 6087 struct btrfs_root *root = BTRFS_I(inode)->root; 6088 u64 to_free = 0; 6089 unsigned dropped; 6090 6091 num_bytes = ALIGN(num_bytes, root->sectorsize); 6092 spin_lock(&BTRFS_I(inode)->lock); 6093 dropped = drop_outstanding_extent(inode, num_bytes); 6094 6095 if (num_bytes) 6096 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6097 spin_unlock(&BTRFS_I(inode)->lock); 6098 if (dropped > 0) 6099 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6100 6101 if (btrfs_is_testing(root->fs_info)) 6102 return; 6103 6104 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6105 btrfs_ino(inode), to_free, 0); 6106 6107 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 6108 to_free); 6109 } 6110 6111 /** 6112 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6113 * delalloc 6114 * @inode: inode we're writing to 6115 * @start: start range we are writing to 6116 * @len: how long the range we are writing to 6117 * 6118 * This will do the following things 6119 * 6120 * o reserve space in data space info for num bytes 6121 * and reserve precious corresponding qgroup space 6122 * (Done in check_data_free_space) 6123 * 6124 * o reserve space for metadata space, based on the number of outstanding 6125 * extents and how much csums will be needed 6126 * also reserve metadata space in a per root over-reserve method. 6127 * o add to the inodes->delalloc_bytes 6128 * o add it to the fs_info's delalloc inodes list. 6129 * (Above 3 all done in delalloc_reserve_metadata) 6130 * 6131 * Return 0 for success 6132 * Return <0 for error(-ENOSPC or -EQUOT) 6133 */ 6134 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 6135 { 6136 int ret; 6137 6138 ret = btrfs_check_data_free_space(inode, start, len); 6139 if (ret < 0) 6140 return ret; 6141 ret = btrfs_delalloc_reserve_metadata(inode, len); 6142 if (ret < 0) 6143 btrfs_free_reserved_data_space(inode, start, len); 6144 return ret; 6145 } 6146 6147 /** 6148 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6149 * @inode: inode we're releasing space for 6150 * @start: start position of the space already reserved 6151 * @len: the len of the space already reserved 6152 * 6153 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6154 * called in the case that we don't need the metadata AND data reservations 6155 * anymore. So if there is an error or we insert an inline extent. 6156 * 6157 * This function will release the metadata space that was not used and will 6158 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6159 * list if there are no delalloc bytes left. 6160 * Also it will handle the qgroup reserved space. 6161 */ 6162 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 6163 { 6164 btrfs_delalloc_release_metadata(inode, len); 6165 btrfs_free_reserved_data_space(inode, start, len); 6166 } 6167 6168 static int update_block_group(struct btrfs_trans_handle *trans, 6169 struct btrfs_root *root, u64 bytenr, 6170 u64 num_bytes, int alloc) 6171 { 6172 struct btrfs_block_group_cache *cache = NULL; 6173 struct btrfs_fs_info *info = root->fs_info; 6174 u64 total = num_bytes; 6175 u64 old_val; 6176 u64 byte_in_group; 6177 int factor; 6178 6179 /* block accounting for super block */ 6180 spin_lock(&info->delalloc_root_lock); 6181 old_val = btrfs_super_bytes_used(info->super_copy); 6182 if (alloc) 6183 old_val += num_bytes; 6184 else 6185 old_val -= num_bytes; 6186 btrfs_set_super_bytes_used(info->super_copy, old_val); 6187 spin_unlock(&info->delalloc_root_lock); 6188 6189 while (total) { 6190 cache = btrfs_lookup_block_group(info, bytenr); 6191 if (!cache) 6192 return -ENOENT; 6193 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6194 BTRFS_BLOCK_GROUP_RAID1 | 6195 BTRFS_BLOCK_GROUP_RAID10)) 6196 factor = 2; 6197 else 6198 factor = 1; 6199 /* 6200 * If this block group has free space cache written out, we 6201 * need to make sure to load it if we are removing space. This 6202 * is because we need the unpinning stage to actually add the 6203 * space back to the block group, otherwise we will leak space. 6204 */ 6205 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6206 cache_block_group(cache, 1); 6207 6208 byte_in_group = bytenr - cache->key.objectid; 6209 WARN_ON(byte_in_group > cache->key.offset); 6210 6211 spin_lock(&cache->space_info->lock); 6212 spin_lock(&cache->lock); 6213 6214 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 6215 cache->disk_cache_state < BTRFS_DC_CLEAR) 6216 cache->disk_cache_state = BTRFS_DC_CLEAR; 6217 6218 old_val = btrfs_block_group_used(&cache->item); 6219 num_bytes = min(total, cache->key.offset - byte_in_group); 6220 if (alloc) { 6221 old_val += num_bytes; 6222 btrfs_set_block_group_used(&cache->item, old_val); 6223 cache->reserved -= num_bytes; 6224 cache->space_info->bytes_reserved -= num_bytes; 6225 cache->space_info->bytes_used += num_bytes; 6226 cache->space_info->disk_used += num_bytes * factor; 6227 spin_unlock(&cache->lock); 6228 spin_unlock(&cache->space_info->lock); 6229 } else { 6230 old_val -= num_bytes; 6231 btrfs_set_block_group_used(&cache->item, old_val); 6232 cache->pinned += num_bytes; 6233 cache->space_info->bytes_pinned += num_bytes; 6234 cache->space_info->bytes_used -= num_bytes; 6235 cache->space_info->disk_used -= num_bytes * factor; 6236 spin_unlock(&cache->lock); 6237 spin_unlock(&cache->space_info->lock); 6238 6239 trace_btrfs_space_reservation(root->fs_info, "pinned", 6240 cache->space_info->flags, 6241 num_bytes, 1); 6242 set_extent_dirty(info->pinned_extents, 6243 bytenr, bytenr + num_bytes - 1, 6244 GFP_NOFS | __GFP_NOFAIL); 6245 } 6246 6247 spin_lock(&trans->transaction->dirty_bgs_lock); 6248 if (list_empty(&cache->dirty_list)) { 6249 list_add_tail(&cache->dirty_list, 6250 &trans->transaction->dirty_bgs); 6251 trans->transaction->num_dirty_bgs++; 6252 btrfs_get_block_group(cache); 6253 } 6254 spin_unlock(&trans->transaction->dirty_bgs_lock); 6255 6256 /* 6257 * No longer have used bytes in this block group, queue it for 6258 * deletion. We do this after adding the block group to the 6259 * dirty list to avoid races between cleaner kthread and space 6260 * cache writeout. 6261 */ 6262 if (!alloc && old_val == 0) { 6263 spin_lock(&info->unused_bgs_lock); 6264 if (list_empty(&cache->bg_list)) { 6265 btrfs_get_block_group(cache); 6266 list_add_tail(&cache->bg_list, 6267 &info->unused_bgs); 6268 } 6269 spin_unlock(&info->unused_bgs_lock); 6270 } 6271 6272 btrfs_put_block_group(cache); 6273 total -= num_bytes; 6274 bytenr += num_bytes; 6275 } 6276 return 0; 6277 } 6278 6279 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6280 { 6281 struct btrfs_block_group_cache *cache; 6282 u64 bytenr; 6283 6284 spin_lock(&root->fs_info->block_group_cache_lock); 6285 bytenr = root->fs_info->first_logical_byte; 6286 spin_unlock(&root->fs_info->block_group_cache_lock); 6287 6288 if (bytenr < (u64)-1) 6289 return bytenr; 6290 6291 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6292 if (!cache) 6293 return 0; 6294 6295 bytenr = cache->key.objectid; 6296 btrfs_put_block_group(cache); 6297 6298 return bytenr; 6299 } 6300 6301 static int pin_down_extent(struct btrfs_root *root, 6302 struct btrfs_block_group_cache *cache, 6303 u64 bytenr, u64 num_bytes, int reserved) 6304 { 6305 spin_lock(&cache->space_info->lock); 6306 spin_lock(&cache->lock); 6307 cache->pinned += num_bytes; 6308 cache->space_info->bytes_pinned += num_bytes; 6309 if (reserved) { 6310 cache->reserved -= num_bytes; 6311 cache->space_info->bytes_reserved -= num_bytes; 6312 } 6313 spin_unlock(&cache->lock); 6314 spin_unlock(&cache->space_info->lock); 6315 6316 trace_btrfs_space_reservation(root->fs_info, "pinned", 6317 cache->space_info->flags, num_bytes, 1); 6318 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6319 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6320 return 0; 6321 } 6322 6323 /* 6324 * this function must be called within transaction 6325 */ 6326 int btrfs_pin_extent(struct btrfs_root *root, 6327 u64 bytenr, u64 num_bytes, int reserved) 6328 { 6329 struct btrfs_block_group_cache *cache; 6330 6331 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6332 BUG_ON(!cache); /* Logic error */ 6333 6334 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6335 6336 btrfs_put_block_group(cache); 6337 return 0; 6338 } 6339 6340 /* 6341 * this function must be called within transaction 6342 */ 6343 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6344 u64 bytenr, u64 num_bytes) 6345 { 6346 struct btrfs_block_group_cache *cache; 6347 int ret; 6348 6349 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6350 if (!cache) 6351 return -EINVAL; 6352 6353 /* 6354 * pull in the free space cache (if any) so that our pin 6355 * removes the free space from the cache. We have load_only set 6356 * to one because the slow code to read in the free extents does check 6357 * the pinned extents. 6358 */ 6359 cache_block_group(cache, 1); 6360 6361 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6362 6363 /* remove us from the free space cache (if we're there at all) */ 6364 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6365 btrfs_put_block_group(cache); 6366 return ret; 6367 } 6368 6369 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6370 { 6371 int ret; 6372 struct btrfs_block_group_cache *block_group; 6373 struct btrfs_caching_control *caching_ctl; 6374 6375 block_group = btrfs_lookup_block_group(root->fs_info, start); 6376 if (!block_group) 6377 return -EINVAL; 6378 6379 cache_block_group(block_group, 0); 6380 caching_ctl = get_caching_control(block_group); 6381 6382 if (!caching_ctl) { 6383 /* Logic error */ 6384 BUG_ON(!block_group_cache_done(block_group)); 6385 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6386 } else { 6387 mutex_lock(&caching_ctl->mutex); 6388 6389 if (start >= caching_ctl->progress) { 6390 ret = add_excluded_extent(root, start, num_bytes); 6391 } else if (start + num_bytes <= caching_ctl->progress) { 6392 ret = btrfs_remove_free_space(block_group, 6393 start, num_bytes); 6394 } else { 6395 num_bytes = caching_ctl->progress - start; 6396 ret = btrfs_remove_free_space(block_group, 6397 start, num_bytes); 6398 if (ret) 6399 goto out_lock; 6400 6401 num_bytes = (start + num_bytes) - 6402 caching_ctl->progress; 6403 start = caching_ctl->progress; 6404 ret = add_excluded_extent(root, start, num_bytes); 6405 } 6406 out_lock: 6407 mutex_unlock(&caching_ctl->mutex); 6408 put_caching_control(caching_ctl); 6409 } 6410 btrfs_put_block_group(block_group); 6411 return ret; 6412 } 6413 6414 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6415 struct extent_buffer *eb) 6416 { 6417 struct btrfs_file_extent_item *item; 6418 struct btrfs_key key; 6419 int found_type; 6420 int i; 6421 6422 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6423 return 0; 6424 6425 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6426 btrfs_item_key_to_cpu(eb, &key, i); 6427 if (key.type != BTRFS_EXTENT_DATA_KEY) 6428 continue; 6429 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6430 found_type = btrfs_file_extent_type(eb, item); 6431 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6432 continue; 6433 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6434 continue; 6435 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6436 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6437 __exclude_logged_extent(log, key.objectid, key.offset); 6438 } 6439 6440 return 0; 6441 } 6442 6443 static void 6444 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6445 { 6446 atomic_inc(&bg->reservations); 6447 } 6448 6449 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6450 const u64 start) 6451 { 6452 struct btrfs_block_group_cache *bg; 6453 6454 bg = btrfs_lookup_block_group(fs_info, start); 6455 ASSERT(bg); 6456 if (atomic_dec_and_test(&bg->reservations)) 6457 wake_up_atomic_t(&bg->reservations); 6458 btrfs_put_block_group(bg); 6459 } 6460 6461 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6462 { 6463 schedule(); 6464 return 0; 6465 } 6466 6467 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6468 { 6469 struct btrfs_space_info *space_info = bg->space_info; 6470 6471 ASSERT(bg->ro); 6472 6473 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6474 return; 6475 6476 /* 6477 * Our block group is read only but before we set it to read only, 6478 * some task might have had allocated an extent from it already, but it 6479 * has not yet created a respective ordered extent (and added it to a 6480 * root's list of ordered extents). 6481 * Therefore wait for any task currently allocating extents, since the 6482 * block group's reservations counter is incremented while a read lock 6483 * on the groups' semaphore is held and decremented after releasing 6484 * the read access on that semaphore and creating the ordered extent. 6485 */ 6486 down_write(&space_info->groups_sem); 6487 up_write(&space_info->groups_sem); 6488 6489 wait_on_atomic_t(&bg->reservations, 6490 btrfs_wait_bg_reservations_atomic_t, 6491 TASK_UNINTERRUPTIBLE); 6492 } 6493 6494 /** 6495 * btrfs_add_reserved_bytes - update the block_group and space info counters 6496 * @cache: The cache we are manipulating 6497 * @ram_bytes: The number of bytes of file content, and will be same to 6498 * @num_bytes except for the compress path. 6499 * @num_bytes: The number of bytes in question 6500 * @delalloc: The blocks are allocated for the delalloc write 6501 * 6502 * This is called by the allocator when it reserves space. Metadata 6503 * reservations should be called with RESERVE_ALLOC so we do the proper 6504 * ENOSPC accounting. For data we handle the reservation through clearing the 6505 * delalloc bits in the io_tree. We have to do this since we could end up 6506 * allocating less disk space for the amount of data we have reserved in the 6507 * case of compression. 6508 * 6509 * If this is a reservation and the block group has become read only we cannot 6510 * make the reservation and return -EAGAIN, otherwise this function always 6511 * succeeds. 6512 */ 6513 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6514 u64 ram_bytes, u64 num_bytes, int delalloc) 6515 { 6516 struct btrfs_space_info *space_info = cache->space_info; 6517 int ret = 0; 6518 6519 spin_lock(&space_info->lock); 6520 spin_lock(&cache->lock); 6521 if (cache->ro) { 6522 ret = -EAGAIN; 6523 } else { 6524 cache->reserved += num_bytes; 6525 space_info->bytes_reserved += num_bytes; 6526 6527 trace_btrfs_space_reservation(cache->fs_info, 6528 "space_info", space_info->flags, 6529 ram_bytes, 0); 6530 space_info->bytes_may_use -= ram_bytes; 6531 if (delalloc) 6532 cache->delalloc_bytes += num_bytes; 6533 } 6534 spin_unlock(&cache->lock); 6535 spin_unlock(&space_info->lock); 6536 return ret; 6537 } 6538 6539 /** 6540 * btrfs_free_reserved_bytes - update the block_group and space info counters 6541 * @cache: The cache we are manipulating 6542 * @num_bytes: The number of bytes in question 6543 * @delalloc: The blocks are allocated for the delalloc write 6544 * 6545 * This is called by somebody who is freeing space that was never actually used 6546 * on disk. For example if you reserve some space for a new leaf in transaction 6547 * A and before transaction A commits you free that leaf, you call this with 6548 * reserve set to 0 in order to clear the reservation. 6549 */ 6550 6551 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6552 u64 num_bytes, int delalloc) 6553 { 6554 struct btrfs_space_info *space_info = cache->space_info; 6555 int ret = 0; 6556 6557 spin_lock(&space_info->lock); 6558 spin_lock(&cache->lock); 6559 if (cache->ro) 6560 space_info->bytes_readonly += num_bytes; 6561 cache->reserved -= num_bytes; 6562 space_info->bytes_reserved -= num_bytes; 6563 6564 if (delalloc) 6565 cache->delalloc_bytes -= num_bytes; 6566 spin_unlock(&cache->lock); 6567 spin_unlock(&space_info->lock); 6568 return ret; 6569 } 6570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6571 struct btrfs_root *root) 6572 { 6573 struct btrfs_fs_info *fs_info = root->fs_info; 6574 struct btrfs_caching_control *next; 6575 struct btrfs_caching_control *caching_ctl; 6576 struct btrfs_block_group_cache *cache; 6577 6578 down_write(&fs_info->commit_root_sem); 6579 6580 list_for_each_entry_safe(caching_ctl, next, 6581 &fs_info->caching_block_groups, list) { 6582 cache = caching_ctl->block_group; 6583 if (block_group_cache_done(cache)) { 6584 cache->last_byte_to_unpin = (u64)-1; 6585 list_del_init(&caching_ctl->list); 6586 put_caching_control(caching_ctl); 6587 } else { 6588 cache->last_byte_to_unpin = caching_ctl->progress; 6589 } 6590 } 6591 6592 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6593 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6594 else 6595 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6596 6597 up_write(&fs_info->commit_root_sem); 6598 6599 update_global_block_rsv(fs_info); 6600 } 6601 6602 /* 6603 * Returns the free cluster for the given space info and sets empty_cluster to 6604 * what it should be based on the mount options. 6605 */ 6606 static struct btrfs_free_cluster * 6607 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6608 u64 *empty_cluster) 6609 { 6610 struct btrfs_free_cluster *ret = NULL; 6611 bool ssd = btrfs_test_opt(root->fs_info, SSD); 6612 6613 *empty_cluster = 0; 6614 if (btrfs_mixed_space_info(space_info)) 6615 return ret; 6616 6617 if (ssd) 6618 *empty_cluster = SZ_2M; 6619 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6620 ret = &root->fs_info->meta_alloc_cluster; 6621 if (!ssd) 6622 *empty_cluster = SZ_64K; 6623 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6624 ret = &root->fs_info->data_alloc_cluster; 6625 } 6626 6627 return ret; 6628 } 6629 6630 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6631 const bool return_free_space) 6632 { 6633 struct btrfs_fs_info *fs_info = root->fs_info; 6634 struct btrfs_block_group_cache *cache = NULL; 6635 struct btrfs_space_info *space_info; 6636 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6637 struct btrfs_free_cluster *cluster = NULL; 6638 u64 len; 6639 u64 total_unpinned = 0; 6640 u64 empty_cluster = 0; 6641 bool readonly; 6642 6643 while (start <= end) { 6644 readonly = false; 6645 if (!cache || 6646 start >= cache->key.objectid + cache->key.offset) { 6647 if (cache) 6648 btrfs_put_block_group(cache); 6649 total_unpinned = 0; 6650 cache = btrfs_lookup_block_group(fs_info, start); 6651 BUG_ON(!cache); /* Logic error */ 6652 6653 cluster = fetch_cluster_info(root, 6654 cache->space_info, 6655 &empty_cluster); 6656 empty_cluster <<= 1; 6657 } 6658 6659 len = cache->key.objectid + cache->key.offset - start; 6660 len = min(len, end + 1 - start); 6661 6662 if (start < cache->last_byte_to_unpin) { 6663 len = min(len, cache->last_byte_to_unpin - start); 6664 if (return_free_space) 6665 btrfs_add_free_space(cache, start, len); 6666 } 6667 6668 start += len; 6669 total_unpinned += len; 6670 space_info = cache->space_info; 6671 6672 /* 6673 * If this space cluster has been marked as fragmented and we've 6674 * unpinned enough in this block group to potentially allow a 6675 * cluster to be created inside of it go ahead and clear the 6676 * fragmented check. 6677 */ 6678 if (cluster && cluster->fragmented && 6679 total_unpinned > empty_cluster) { 6680 spin_lock(&cluster->lock); 6681 cluster->fragmented = 0; 6682 spin_unlock(&cluster->lock); 6683 } 6684 6685 spin_lock(&space_info->lock); 6686 spin_lock(&cache->lock); 6687 cache->pinned -= len; 6688 space_info->bytes_pinned -= len; 6689 6690 trace_btrfs_space_reservation(fs_info, "pinned", 6691 space_info->flags, len, 0); 6692 space_info->max_extent_size = 0; 6693 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6694 if (cache->ro) { 6695 space_info->bytes_readonly += len; 6696 readonly = true; 6697 } 6698 spin_unlock(&cache->lock); 6699 if (!readonly && return_free_space && 6700 global_rsv->space_info == space_info) { 6701 u64 to_add = len; 6702 WARN_ON(!return_free_space); 6703 spin_lock(&global_rsv->lock); 6704 if (!global_rsv->full) { 6705 to_add = min(len, global_rsv->size - 6706 global_rsv->reserved); 6707 global_rsv->reserved += to_add; 6708 space_info->bytes_may_use += to_add; 6709 if (global_rsv->reserved >= global_rsv->size) 6710 global_rsv->full = 1; 6711 trace_btrfs_space_reservation(fs_info, 6712 "space_info", 6713 space_info->flags, 6714 to_add, 1); 6715 len -= to_add; 6716 } 6717 spin_unlock(&global_rsv->lock); 6718 /* Add to any tickets we may have */ 6719 if (len) 6720 space_info_add_new_bytes(fs_info, space_info, 6721 len); 6722 } 6723 spin_unlock(&space_info->lock); 6724 } 6725 6726 if (cache) 6727 btrfs_put_block_group(cache); 6728 return 0; 6729 } 6730 6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6732 struct btrfs_root *root) 6733 { 6734 struct btrfs_fs_info *fs_info = root->fs_info; 6735 struct btrfs_block_group_cache *block_group, *tmp; 6736 struct list_head *deleted_bgs; 6737 struct extent_io_tree *unpin; 6738 u64 start; 6739 u64 end; 6740 int ret; 6741 6742 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6743 unpin = &fs_info->freed_extents[1]; 6744 else 6745 unpin = &fs_info->freed_extents[0]; 6746 6747 while (!trans->aborted) { 6748 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6749 ret = find_first_extent_bit(unpin, 0, &start, &end, 6750 EXTENT_DIRTY, NULL); 6751 if (ret) { 6752 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6753 break; 6754 } 6755 6756 if (btrfs_test_opt(root->fs_info, DISCARD)) 6757 ret = btrfs_discard_extent(root, start, 6758 end + 1 - start, NULL); 6759 6760 clear_extent_dirty(unpin, start, end); 6761 unpin_extent_range(root, start, end, true); 6762 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6763 cond_resched(); 6764 } 6765 6766 /* 6767 * Transaction is finished. We don't need the lock anymore. We 6768 * do need to clean up the block groups in case of a transaction 6769 * abort. 6770 */ 6771 deleted_bgs = &trans->transaction->deleted_bgs; 6772 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6773 u64 trimmed = 0; 6774 6775 ret = -EROFS; 6776 if (!trans->aborted) 6777 ret = btrfs_discard_extent(root, 6778 block_group->key.objectid, 6779 block_group->key.offset, 6780 &trimmed); 6781 6782 list_del_init(&block_group->bg_list); 6783 btrfs_put_block_group_trimming(block_group); 6784 btrfs_put_block_group(block_group); 6785 6786 if (ret) { 6787 const char *errstr = btrfs_decode_error(ret); 6788 btrfs_warn(fs_info, 6789 "Discard failed while removing blockgroup: errno=%d %s\n", 6790 ret, errstr); 6791 } 6792 } 6793 6794 return 0; 6795 } 6796 6797 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6798 u64 owner, u64 root_objectid) 6799 { 6800 struct btrfs_space_info *space_info; 6801 u64 flags; 6802 6803 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6804 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6805 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6806 else 6807 flags = BTRFS_BLOCK_GROUP_METADATA; 6808 } else { 6809 flags = BTRFS_BLOCK_GROUP_DATA; 6810 } 6811 6812 space_info = __find_space_info(fs_info, flags); 6813 BUG_ON(!space_info); /* Logic bug */ 6814 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6815 } 6816 6817 6818 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6819 struct btrfs_root *root, 6820 struct btrfs_delayed_ref_node *node, u64 parent, 6821 u64 root_objectid, u64 owner_objectid, 6822 u64 owner_offset, int refs_to_drop, 6823 struct btrfs_delayed_extent_op *extent_op) 6824 { 6825 struct btrfs_key key; 6826 struct btrfs_path *path; 6827 struct btrfs_fs_info *info = root->fs_info; 6828 struct btrfs_root *extent_root = info->extent_root; 6829 struct extent_buffer *leaf; 6830 struct btrfs_extent_item *ei; 6831 struct btrfs_extent_inline_ref *iref; 6832 int ret; 6833 int is_data; 6834 int extent_slot = 0; 6835 int found_extent = 0; 6836 int num_to_del = 1; 6837 u32 item_size; 6838 u64 refs; 6839 u64 bytenr = node->bytenr; 6840 u64 num_bytes = node->num_bytes; 6841 int last_ref = 0; 6842 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6843 SKINNY_METADATA); 6844 6845 path = btrfs_alloc_path(); 6846 if (!path) 6847 return -ENOMEM; 6848 6849 path->reada = READA_FORWARD; 6850 path->leave_spinning = 1; 6851 6852 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6853 BUG_ON(!is_data && refs_to_drop != 1); 6854 6855 if (is_data) 6856 skinny_metadata = 0; 6857 6858 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6859 bytenr, num_bytes, parent, 6860 root_objectid, owner_objectid, 6861 owner_offset); 6862 if (ret == 0) { 6863 extent_slot = path->slots[0]; 6864 while (extent_slot >= 0) { 6865 btrfs_item_key_to_cpu(path->nodes[0], &key, 6866 extent_slot); 6867 if (key.objectid != bytenr) 6868 break; 6869 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6870 key.offset == num_bytes) { 6871 found_extent = 1; 6872 break; 6873 } 6874 if (key.type == BTRFS_METADATA_ITEM_KEY && 6875 key.offset == owner_objectid) { 6876 found_extent = 1; 6877 break; 6878 } 6879 if (path->slots[0] - extent_slot > 5) 6880 break; 6881 extent_slot--; 6882 } 6883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6884 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6885 if (found_extent && item_size < sizeof(*ei)) 6886 found_extent = 0; 6887 #endif 6888 if (!found_extent) { 6889 BUG_ON(iref); 6890 ret = remove_extent_backref(trans, extent_root, path, 6891 NULL, refs_to_drop, 6892 is_data, &last_ref); 6893 if (ret) { 6894 btrfs_abort_transaction(trans, ret); 6895 goto out; 6896 } 6897 btrfs_release_path(path); 6898 path->leave_spinning = 1; 6899 6900 key.objectid = bytenr; 6901 key.type = BTRFS_EXTENT_ITEM_KEY; 6902 key.offset = num_bytes; 6903 6904 if (!is_data && skinny_metadata) { 6905 key.type = BTRFS_METADATA_ITEM_KEY; 6906 key.offset = owner_objectid; 6907 } 6908 6909 ret = btrfs_search_slot(trans, extent_root, 6910 &key, path, -1, 1); 6911 if (ret > 0 && skinny_metadata && path->slots[0]) { 6912 /* 6913 * Couldn't find our skinny metadata item, 6914 * see if we have ye olde extent item. 6915 */ 6916 path->slots[0]--; 6917 btrfs_item_key_to_cpu(path->nodes[0], &key, 6918 path->slots[0]); 6919 if (key.objectid == bytenr && 6920 key.type == BTRFS_EXTENT_ITEM_KEY && 6921 key.offset == num_bytes) 6922 ret = 0; 6923 } 6924 6925 if (ret > 0 && skinny_metadata) { 6926 skinny_metadata = false; 6927 key.objectid = bytenr; 6928 key.type = BTRFS_EXTENT_ITEM_KEY; 6929 key.offset = num_bytes; 6930 btrfs_release_path(path); 6931 ret = btrfs_search_slot(trans, extent_root, 6932 &key, path, -1, 1); 6933 } 6934 6935 if (ret) { 6936 btrfs_err(info, 6937 "umm, got %d back from search, was looking for %llu", 6938 ret, bytenr); 6939 if (ret > 0) 6940 btrfs_print_leaf(extent_root, 6941 path->nodes[0]); 6942 } 6943 if (ret < 0) { 6944 btrfs_abort_transaction(trans, ret); 6945 goto out; 6946 } 6947 extent_slot = path->slots[0]; 6948 } 6949 } else if (WARN_ON(ret == -ENOENT)) { 6950 btrfs_print_leaf(extent_root, path->nodes[0]); 6951 btrfs_err(info, 6952 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6953 bytenr, parent, root_objectid, owner_objectid, 6954 owner_offset); 6955 btrfs_abort_transaction(trans, ret); 6956 goto out; 6957 } else { 6958 btrfs_abort_transaction(trans, ret); 6959 goto out; 6960 } 6961 6962 leaf = path->nodes[0]; 6963 item_size = btrfs_item_size_nr(leaf, extent_slot); 6964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6965 if (item_size < sizeof(*ei)) { 6966 BUG_ON(found_extent || extent_slot != path->slots[0]); 6967 ret = convert_extent_item_v0(trans, extent_root, path, 6968 owner_objectid, 0); 6969 if (ret < 0) { 6970 btrfs_abort_transaction(trans, ret); 6971 goto out; 6972 } 6973 6974 btrfs_release_path(path); 6975 path->leave_spinning = 1; 6976 6977 key.objectid = bytenr; 6978 key.type = BTRFS_EXTENT_ITEM_KEY; 6979 key.offset = num_bytes; 6980 6981 ret = btrfs_search_slot(trans, extent_root, &key, path, 6982 -1, 1); 6983 if (ret) { 6984 btrfs_err(info, 6985 "umm, got %d back from search, was looking for %llu", 6986 ret, bytenr); 6987 btrfs_print_leaf(extent_root, path->nodes[0]); 6988 } 6989 if (ret < 0) { 6990 btrfs_abort_transaction(trans, ret); 6991 goto out; 6992 } 6993 6994 extent_slot = path->slots[0]; 6995 leaf = path->nodes[0]; 6996 item_size = btrfs_item_size_nr(leaf, extent_slot); 6997 } 6998 #endif 6999 BUG_ON(item_size < sizeof(*ei)); 7000 ei = btrfs_item_ptr(leaf, extent_slot, 7001 struct btrfs_extent_item); 7002 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7003 key.type == BTRFS_EXTENT_ITEM_KEY) { 7004 struct btrfs_tree_block_info *bi; 7005 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7006 bi = (struct btrfs_tree_block_info *)(ei + 1); 7007 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7008 } 7009 7010 refs = btrfs_extent_refs(leaf, ei); 7011 if (refs < refs_to_drop) { 7012 btrfs_err(info, 7013 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7014 refs_to_drop, refs, bytenr); 7015 ret = -EINVAL; 7016 btrfs_abort_transaction(trans, ret); 7017 goto out; 7018 } 7019 refs -= refs_to_drop; 7020 7021 if (refs > 0) { 7022 if (extent_op) 7023 __run_delayed_extent_op(extent_op, leaf, ei); 7024 /* 7025 * In the case of inline back ref, reference count will 7026 * be updated by remove_extent_backref 7027 */ 7028 if (iref) { 7029 BUG_ON(!found_extent); 7030 } else { 7031 btrfs_set_extent_refs(leaf, ei, refs); 7032 btrfs_mark_buffer_dirty(leaf); 7033 } 7034 if (found_extent) { 7035 ret = remove_extent_backref(trans, extent_root, path, 7036 iref, refs_to_drop, 7037 is_data, &last_ref); 7038 if (ret) { 7039 btrfs_abort_transaction(trans, ret); 7040 goto out; 7041 } 7042 } 7043 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 7044 root_objectid); 7045 } else { 7046 if (found_extent) { 7047 BUG_ON(is_data && refs_to_drop != 7048 extent_data_ref_count(path, iref)); 7049 if (iref) { 7050 BUG_ON(path->slots[0] != extent_slot); 7051 } else { 7052 BUG_ON(path->slots[0] != extent_slot + 1); 7053 path->slots[0] = extent_slot; 7054 num_to_del = 2; 7055 } 7056 } 7057 7058 last_ref = 1; 7059 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7060 num_to_del); 7061 if (ret) { 7062 btrfs_abort_transaction(trans, ret); 7063 goto out; 7064 } 7065 btrfs_release_path(path); 7066 7067 if (is_data) { 7068 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 7069 if (ret) { 7070 btrfs_abort_transaction(trans, ret); 7071 goto out; 7072 } 7073 } 7074 7075 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 7076 num_bytes); 7077 if (ret) { 7078 btrfs_abort_transaction(trans, ret); 7079 goto out; 7080 } 7081 7082 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 7083 if (ret) { 7084 btrfs_abort_transaction(trans, ret); 7085 goto out; 7086 } 7087 } 7088 btrfs_release_path(path); 7089 7090 out: 7091 btrfs_free_path(path); 7092 return ret; 7093 } 7094 7095 /* 7096 * when we free an block, it is possible (and likely) that we free the last 7097 * delayed ref for that extent as well. This searches the delayed ref tree for 7098 * a given extent, and if there are no other delayed refs to be processed, it 7099 * removes it from the tree. 7100 */ 7101 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7102 struct btrfs_root *root, u64 bytenr) 7103 { 7104 struct btrfs_delayed_ref_head *head; 7105 struct btrfs_delayed_ref_root *delayed_refs; 7106 int ret = 0; 7107 7108 delayed_refs = &trans->transaction->delayed_refs; 7109 spin_lock(&delayed_refs->lock); 7110 head = btrfs_find_delayed_ref_head(trans, bytenr); 7111 if (!head) 7112 goto out_delayed_unlock; 7113 7114 spin_lock(&head->lock); 7115 if (!list_empty(&head->ref_list)) 7116 goto out; 7117 7118 if (head->extent_op) { 7119 if (!head->must_insert_reserved) 7120 goto out; 7121 btrfs_free_delayed_extent_op(head->extent_op); 7122 head->extent_op = NULL; 7123 } 7124 7125 /* 7126 * waiting for the lock here would deadlock. If someone else has it 7127 * locked they are already in the process of dropping it anyway 7128 */ 7129 if (!mutex_trylock(&head->mutex)) 7130 goto out; 7131 7132 /* 7133 * at this point we have a head with no other entries. Go 7134 * ahead and process it. 7135 */ 7136 head->node.in_tree = 0; 7137 rb_erase(&head->href_node, &delayed_refs->href_root); 7138 7139 atomic_dec(&delayed_refs->num_entries); 7140 7141 /* 7142 * we don't take a ref on the node because we're removing it from the 7143 * tree, so we just steal the ref the tree was holding. 7144 */ 7145 delayed_refs->num_heads--; 7146 if (head->processing == 0) 7147 delayed_refs->num_heads_ready--; 7148 head->processing = 0; 7149 spin_unlock(&head->lock); 7150 spin_unlock(&delayed_refs->lock); 7151 7152 BUG_ON(head->extent_op); 7153 if (head->must_insert_reserved) 7154 ret = 1; 7155 7156 mutex_unlock(&head->mutex); 7157 btrfs_put_delayed_ref(&head->node); 7158 return ret; 7159 out: 7160 spin_unlock(&head->lock); 7161 7162 out_delayed_unlock: 7163 spin_unlock(&delayed_refs->lock); 7164 return 0; 7165 } 7166 7167 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7168 struct btrfs_root *root, 7169 struct extent_buffer *buf, 7170 u64 parent, int last_ref) 7171 { 7172 int pin = 1; 7173 int ret; 7174 7175 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7176 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7177 buf->start, buf->len, 7178 parent, root->root_key.objectid, 7179 btrfs_header_level(buf), 7180 BTRFS_DROP_DELAYED_REF, NULL); 7181 BUG_ON(ret); /* -ENOMEM */ 7182 } 7183 7184 if (!last_ref) 7185 return; 7186 7187 if (btrfs_header_generation(buf) == trans->transid) { 7188 struct btrfs_block_group_cache *cache; 7189 7190 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7191 ret = check_ref_cleanup(trans, root, buf->start); 7192 if (!ret) 7193 goto out; 7194 } 7195 7196 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 7197 7198 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7199 pin_down_extent(root, cache, buf->start, buf->len, 1); 7200 btrfs_put_block_group(cache); 7201 goto out; 7202 } 7203 7204 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7205 7206 btrfs_add_free_space(cache, buf->start, buf->len); 7207 btrfs_free_reserved_bytes(cache, buf->len, 0); 7208 btrfs_put_block_group(cache); 7209 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 7210 pin = 0; 7211 } 7212 out: 7213 if (pin) 7214 add_pinned_bytes(root->fs_info, buf->len, 7215 btrfs_header_level(buf), 7216 root->root_key.objectid); 7217 7218 /* 7219 * Deleting the buffer, clear the corrupt flag since it doesn't matter 7220 * anymore. 7221 */ 7222 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7223 } 7224 7225 /* Can return -ENOMEM */ 7226 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7227 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7228 u64 owner, u64 offset) 7229 { 7230 int ret; 7231 struct btrfs_fs_info *fs_info = root->fs_info; 7232 7233 if (btrfs_is_testing(fs_info)) 7234 return 0; 7235 7236 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 7237 7238 /* 7239 * tree log blocks never actually go into the extent allocation 7240 * tree, just update pinning info and exit early. 7241 */ 7242 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7243 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7244 /* unlocks the pinned mutex */ 7245 btrfs_pin_extent(root, bytenr, num_bytes, 1); 7246 ret = 0; 7247 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7248 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7249 num_bytes, 7250 parent, root_objectid, (int)owner, 7251 BTRFS_DROP_DELAYED_REF, NULL); 7252 } else { 7253 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7254 num_bytes, 7255 parent, root_objectid, owner, 7256 offset, 0, 7257 BTRFS_DROP_DELAYED_REF, NULL); 7258 } 7259 return ret; 7260 } 7261 7262 /* 7263 * when we wait for progress in the block group caching, its because 7264 * our allocation attempt failed at least once. So, we must sleep 7265 * and let some progress happen before we try again. 7266 * 7267 * This function will sleep at least once waiting for new free space to 7268 * show up, and then it will check the block group free space numbers 7269 * for our min num_bytes. Another option is to have it go ahead 7270 * and look in the rbtree for a free extent of a given size, but this 7271 * is a good start. 7272 * 7273 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7274 * any of the information in this block group. 7275 */ 7276 static noinline void 7277 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7278 u64 num_bytes) 7279 { 7280 struct btrfs_caching_control *caching_ctl; 7281 7282 caching_ctl = get_caching_control(cache); 7283 if (!caching_ctl) 7284 return; 7285 7286 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7287 (cache->free_space_ctl->free_space >= num_bytes)); 7288 7289 put_caching_control(caching_ctl); 7290 } 7291 7292 static noinline int 7293 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7294 { 7295 struct btrfs_caching_control *caching_ctl; 7296 int ret = 0; 7297 7298 caching_ctl = get_caching_control(cache); 7299 if (!caching_ctl) 7300 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7301 7302 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7303 if (cache->cached == BTRFS_CACHE_ERROR) 7304 ret = -EIO; 7305 put_caching_control(caching_ctl); 7306 return ret; 7307 } 7308 7309 int __get_raid_index(u64 flags) 7310 { 7311 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7312 return BTRFS_RAID_RAID10; 7313 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7314 return BTRFS_RAID_RAID1; 7315 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7316 return BTRFS_RAID_DUP; 7317 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7318 return BTRFS_RAID_RAID0; 7319 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7320 return BTRFS_RAID_RAID5; 7321 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7322 return BTRFS_RAID_RAID6; 7323 7324 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7325 } 7326 7327 int get_block_group_index(struct btrfs_block_group_cache *cache) 7328 { 7329 return __get_raid_index(cache->flags); 7330 } 7331 7332 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7333 [BTRFS_RAID_RAID10] = "raid10", 7334 [BTRFS_RAID_RAID1] = "raid1", 7335 [BTRFS_RAID_DUP] = "dup", 7336 [BTRFS_RAID_RAID0] = "raid0", 7337 [BTRFS_RAID_SINGLE] = "single", 7338 [BTRFS_RAID_RAID5] = "raid5", 7339 [BTRFS_RAID_RAID6] = "raid6", 7340 }; 7341 7342 static const char *get_raid_name(enum btrfs_raid_types type) 7343 { 7344 if (type >= BTRFS_NR_RAID_TYPES) 7345 return NULL; 7346 7347 return btrfs_raid_type_names[type]; 7348 } 7349 7350 enum btrfs_loop_type { 7351 LOOP_CACHING_NOWAIT = 0, 7352 LOOP_CACHING_WAIT = 1, 7353 LOOP_ALLOC_CHUNK = 2, 7354 LOOP_NO_EMPTY_SIZE = 3, 7355 }; 7356 7357 static inline void 7358 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7359 int delalloc) 7360 { 7361 if (delalloc) 7362 down_read(&cache->data_rwsem); 7363 } 7364 7365 static inline void 7366 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7367 int delalloc) 7368 { 7369 btrfs_get_block_group(cache); 7370 if (delalloc) 7371 down_read(&cache->data_rwsem); 7372 } 7373 7374 static struct btrfs_block_group_cache * 7375 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7376 struct btrfs_free_cluster *cluster, 7377 int delalloc) 7378 { 7379 struct btrfs_block_group_cache *used_bg = NULL; 7380 7381 spin_lock(&cluster->refill_lock); 7382 while (1) { 7383 used_bg = cluster->block_group; 7384 if (!used_bg) 7385 return NULL; 7386 7387 if (used_bg == block_group) 7388 return used_bg; 7389 7390 btrfs_get_block_group(used_bg); 7391 7392 if (!delalloc) 7393 return used_bg; 7394 7395 if (down_read_trylock(&used_bg->data_rwsem)) 7396 return used_bg; 7397 7398 spin_unlock(&cluster->refill_lock); 7399 7400 down_read(&used_bg->data_rwsem); 7401 7402 spin_lock(&cluster->refill_lock); 7403 if (used_bg == cluster->block_group) 7404 return used_bg; 7405 7406 up_read(&used_bg->data_rwsem); 7407 btrfs_put_block_group(used_bg); 7408 } 7409 } 7410 7411 static inline void 7412 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7413 int delalloc) 7414 { 7415 if (delalloc) 7416 up_read(&cache->data_rwsem); 7417 btrfs_put_block_group(cache); 7418 } 7419 7420 /* 7421 * walks the btree of allocated extents and find a hole of a given size. 7422 * The key ins is changed to record the hole: 7423 * ins->objectid == start position 7424 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7425 * ins->offset == the size of the hole. 7426 * Any available blocks before search_start are skipped. 7427 * 7428 * If there is no suitable free space, we will record the max size of 7429 * the free space extent currently. 7430 */ 7431 static noinline int find_free_extent(struct btrfs_root *orig_root, 7432 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7433 u64 hint_byte, struct btrfs_key *ins, 7434 u64 flags, int delalloc) 7435 { 7436 int ret = 0; 7437 struct btrfs_root *root = orig_root->fs_info->extent_root; 7438 struct btrfs_free_cluster *last_ptr = NULL; 7439 struct btrfs_block_group_cache *block_group = NULL; 7440 u64 search_start = 0; 7441 u64 max_extent_size = 0; 7442 u64 empty_cluster = 0; 7443 struct btrfs_space_info *space_info; 7444 int loop = 0; 7445 int index = __get_raid_index(flags); 7446 bool failed_cluster_refill = false; 7447 bool failed_alloc = false; 7448 bool use_cluster = true; 7449 bool have_caching_bg = false; 7450 bool orig_have_caching_bg = false; 7451 bool full_search = false; 7452 7453 WARN_ON(num_bytes < root->sectorsize); 7454 ins->type = BTRFS_EXTENT_ITEM_KEY; 7455 ins->objectid = 0; 7456 ins->offset = 0; 7457 7458 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7459 7460 space_info = __find_space_info(root->fs_info, flags); 7461 if (!space_info) { 7462 btrfs_err(root->fs_info, "No space info for %llu", flags); 7463 return -ENOSPC; 7464 } 7465 7466 /* 7467 * If our free space is heavily fragmented we may not be able to make 7468 * big contiguous allocations, so instead of doing the expensive search 7469 * for free space, simply return ENOSPC with our max_extent_size so we 7470 * can go ahead and search for a more manageable chunk. 7471 * 7472 * If our max_extent_size is large enough for our allocation simply 7473 * disable clustering since we will likely not be able to find enough 7474 * space to create a cluster and induce latency trying. 7475 */ 7476 if (unlikely(space_info->max_extent_size)) { 7477 spin_lock(&space_info->lock); 7478 if (space_info->max_extent_size && 7479 num_bytes > space_info->max_extent_size) { 7480 ins->offset = space_info->max_extent_size; 7481 spin_unlock(&space_info->lock); 7482 return -ENOSPC; 7483 } else if (space_info->max_extent_size) { 7484 use_cluster = false; 7485 } 7486 spin_unlock(&space_info->lock); 7487 } 7488 7489 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7490 if (last_ptr) { 7491 spin_lock(&last_ptr->lock); 7492 if (last_ptr->block_group) 7493 hint_byte = last_ptr->window_start; 7494 if (last_ptr->fragmented) { 7495 /* 7496 * We still set window_start so we can keep track of the 7497 * last place we found an allocation to try and save 7498 * some time. 7499 */ 7500 hint_byte = last_ptr->window_start; 7501 use_cluster = false; 7502 } 7503 spin_unlock(&last_ptr->lock); 7504 } 7505 7506 search_start = max(search_start, first_logical_byte(root, 0)); 7507 search_start = max(search_start, hint_byte); 7508 if (search_start == hint_byte) { 7509 block_group = btrfs_lookup_block_group(root->fs_info, 7510 search_start); 7511 /* 7512 * we don't want to use the block group if it doesn't match our 7513 * allocation bits, or if its not cached. 7514 * 7515 * However if we are re-searching with an ideal block group 7516 * picked out then we don't care that the block group is cached. 7517 */ 7518 if (block_group && block_group_bits(block_group, flags) && 7519 block_group->cached != BTRFS_CACHE_NO) { 7520 down_read(&space_info->groups_sem); 7521 if (list_empty(&block_group->list) || 7522 block_group->ro) { 7523 /* 7524 * someone is removing this block group, 7525 * we can't jump into the have_block_group 7526 * target because our list pointers are not 7527 * valid 7528 */ 7529 btrfs_put_block_group(block_group); 7530 up_read(&space_info->groups_sem); 7531 } else { 7532 index = get_block_group_index(block_group); 7533 btrfs_lock_block_group(block_group, delalloc); 7534 goto have_block_group; 7535 } 7536 } else if (block_group) { 7537 btrfs_put_block_group(block_group); 7538 } 7539 } 7540 search: 7541 have_caching_bg = false; 7542 if (index == 0 || index == __get_raid_index(flags)) 7543 full_search = true; 7544 down_read(&space_info->groups_sem); 7545 list_for_each_entry(block_group, &space_info->block_groups[index], 7546 list) { 7547 u64 offset; 7548 int cached; 7549 7550 btrfs_grab_block_group(block_group, delalloc); 7551 search_start = block_group->key.objectid; 7552 7553 /* 7554 * this can happen if we end up cycling through all the 7555 * raid types, but we want to make sure we only allocate 7556 * for the proper type. 7557 */ 7558 if (!block_group_bits(block_group, flags)) { 7559 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7560 BTRFS_BLOCK_GROUP_RAID1 | 7561 BTRFS_BLOCK_GROUP_RAID5 | 7562 BTRFS_BLOCK_GROUP_RAID6 | 7563 BTRFS_BLOCK_GROUP_RAID10; 7564 7565 /* 7566 * if they asked for extra copies and this block group 7567 * doesn't provide them, bail. This does allow us to 7568 * fill raid0 from raid1. 7569 */ 7570 if ((flags & extra) && !(block_group->flags & extra)) 7571 goto loop; 7572 } 7573 7574 have_block_group: 7575 cached = block_group_cache_done(block_group); 7576 if (unlikely(!cached)) { 7577 have_caching_bg = true; 7578 ret = cache_block_group(block_group, 0); 7579 BUG_ON(ret < 0); 7580 ret = 0; 7581 } 7582 7583 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7584 goto loop; 7585 if (unlikely(block_group->ro)) 7586 goto loop; 7587 7588 /* 7589 * Ok we want to try and use the cluster allocator, so 7590 * lets look there 7591 */ 7592 if (last_ptr && use_cluster) { 7593 struct btrfs_block_group_cache *used_block_group; 7594 unsigned long aligned_cluster; 7595 /* 7596 * the refill lock keeps out other 7597 * people trying to start a new cluster 7598 */ 7599 used_block_group = btrfs_lock_cluster(block_group, 7600 last_ptr, 7601 delalloc); 7602 if (!used_block_group) 7603 goto refill_cluster; 7604 7605 if (used_block_group != block_group && 7606 (used_block_group->ro || 7607 !block_group_bits(used_block_group, flags))) 7608 goto release_cluster; 7609 7610 offset = btrfs_alloc_from_cluster(used_block_group, 7611 last_ptr, 7612 num_bytes, 7613 used_block_group->key.objectid, 7614 &max_extent_size); 7615 if (offset) { 7616 /* we have a block, we're done */ 7617 spin_unlock(&last_ptr->refill_lock); 7618 trace_btrfs_reserve_extent_cluster(root, 7619 used_block_group, 7620 search_start, num_bytes); 7621 if (used_block_group != block_group) { 7622 btrfs_release_block_group(block_group, 7623 delalloc); 7624 block_group = used_block_group; 7625 } 7626 goto checks; 7627 } 7628 7629 WARN_ON(last_ptr->block_group != used_block_group); 7630 release_cluster: 7631 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7632 * set up a new clusters, so lets just skip it 7633 * and let the allocator find whatever block 7634 * it can find. If we reach this point, we 7635 * will have tried the cluster allocator 7636 * plenty of times and not have found 7637 * anything, so we are likely way too 7638 * fragmented for the clustering stuff to find 7639 * anything. 7640 * 7641 * However, if the cluster is taken from the 7642 * current block group, release the cluster 7643 * first, so that we stand a better chance of 7644 * succeeding in the unclustered 7645 * allocation. */ 7646 if (loop >= LOOP_NO_EMPTY_SIZE && 7647 used_block_group != block_group) { 7648 spin_unlock(&last_ptr->refill_lock); 7649 btrfs_release_block_group(used_block_group, 7650 delalloc); 7651 goto unclustered_alloc; 7652 } 7653 7654 /* 7655 * this cluster didn't work out, free it and 7656 * start over 7657 */ 7658 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7659 7660 if (used_block_group != block_group) 7661 btrfs_release_block_group(used_block_group, 7662 delalloc); 7663 refill_cluster: 7664 if (loop >= LOOP_NO_EMPTY_SIZE) { 7665 spin_unlock(&last_ptr->refill_lock); 7666 goto unclustered_alloc; 7667 } 7668 7669 aligned_cluster = max_t(unsigned long, 7670 empty_cluster + empty_size, 7671 block_group->full_stripe_len); 7672 7673 /* allocate a cluster in this block group */ 7674 ret = btrfs_find_space_cluster(root, block_group, 7675 last_ptr, search_start, 7676 num_bytes, 7677 aligned_cluster); 7678 if (ret == 0) { 7679 /* 7680 * now pull our allocation out of this 7681 * cluster 7682 */ 7683 offset = btrfs_alloc_from_cluster(block_group, 7684 last_ptr, 7685 num_bytes, 7686 search_start, 7687 &max_extent_size); 7688 if (offset) { 7689 /* we found one, proceed */ 7690 spin_unlock(&last_ptr->refill_lock); 7691 trace_btrfs_reserve_extent_cluster(root, 7692 block_group, search_start, 7693 num_bytes); 7694 goto checks; 7695 } 7696 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7697 && !failed_cluster_refill) { 7698 spin_unlock(&last_ptr->refill_lock); 7699 7700 failed_cluster_refill = true; 7701 wait_block_group_cache_progress(block_group, 7702 num_bytes + empty_cluster + empty_size); 7703 goto have_block_group; 7704 } 7705 7706 /* 7707 * at this point we either didn't find a cluster 7708 * or we weren't able to allocate a block from our 7709 * cluster. Free the cluster we've been trying 7710 * to use, and go to the next block group 7711 */ 7712 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7713 spin_unlock(&last_ptr->refill_lock); 7714 goto loop; 7715 } 7716 7717 unclustered_alloc: 7718 /* 7719 * We are doing an unclustered alloc, set the fragmented flag so 7720 * we don't bother trying to setup a cluster again until we get 7721 * more space. 7722 */ 7723 if (unlikely(last_ptr)) { 7724 spin_lock(&last_ptr->lock); 7725 last_ptr->fragmented = 1; 7726 spin_unlock(&last_ptr->lock); 7727 } 7728 spin_lock(&block_group->free_space_ctl->tree_lock); 7729 if (cached && 7730 block_group->free_space_ctl->free_space < 7731 num_bytes + empty_cluster + empty_size) { 7732 if (block_group->free_space_ctl->free_space > 7733 max_extent_size) 7734 max_extent_size = 7735 block_group->free_space_ctl->free_space; 7736 spin_unlock(&block_group->free_space_ctl->tree_lock); 7737 goto loop; 7738 } 7739 spin_unlock(&block_group->free_space_ctl->tree_lock); 7740 7741 offset = btrfs_find_space_for_alloc(block_group, search_start, 7742 num_bytes, empty_size, 7743 &max_extent_size); 7744 /* 7745 * If we didn't find a chunk, and we haven't failed on this 7746 * block group before, and this block group is in the middle of 7747 * caching and we are ok with waiting, then go ahead and wait 7748 * for progress to be made, and set failed_alloc to true. 7749 * 7750 * If failed_alloc is true then we've already waited on this 7751 * block group once and should move on to the next block group. 7752 */ 7753 if (!offset && !failed_alloc && !cached && 7754 loop > LOOP_CACHING_NOWAIT) { 7755 wait_block_group_cache_progress(block_group, 7756 num_bytes + empty_size); 7757 failed_alloc = true; 7758 goto have_block_group; 7759 } else if (!offset) { 7760 goto loop; 7761 } 7762 checks: 7763 search_start = ALIGN(offset, root->stripesize); 7764 7765 /* move on to the next group */ 7766 if (search_start + num_bytes > 7767 block_group->key.objectid + block_group->key.offset) { 7768 btrfs_add_free_space(block_group, offset, num_bytes); 7769 goto loop; 7770 } 7771 7772 if (offset < search_start) 7773 btrfs_add_free_space(block_group, offset, 7774 search_start - offset); 7775 BUG_ON(offset > search_start); 7776 7777 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7778 num_bytes, delalloc); 7779 if (ret == -EAGAIN) { 7780 btrfs_add_free_space(block_group, offset, num_bytes); 7781 goto loop; 7782 } 7783 btrfs_inc_block_group_reservations(block_group); 7784 7785 /* we are all good, lets return */ 7786 ins->objectid = search_start; 7787 ins->offset = num_bytes; 7788 7789 trace_btrfs_reserve_extent(orig_root, block_group, 7790 search_start, num_bytes); 7791 btrfs_release_block_group(block_group, delalloc); 7792 break; 7793 loop: 7794 failed_cluster_refill = false; 7795 failed_alloc = false; 7796 BUG_ON(index != get_block_group_index(block_group)); 7797 btrfs_release_block_group(block_group, delalloc); 7798 } 7799 up_read(&space_info->groups_sem); 7800 7801 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7802 && !orig_have_caching_bg) 7803 orig_have_caching_bg = true; 7804 7805 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7806 goto search; 7807 7808 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7809 goto search; 7810 7811 /* 7812 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7813 * caching kthreads as we move along 7814 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7815 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7816 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7817 * again 7818 */ 7819 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7820 index = 0; 7821 if (loop == LOOP_CACHING_NOWAIT) { 7822 /* 7823 * We want to skip the LOOP_CACHING_WAIT step if we 7824 * don't have any uncached bgs and we've already done a 7825 * full search through. 7826 */ 7827 if (orig_have_caching_bg || !full_search) 7828 loop = LOOP_CACHING_WAIT; 7829 else 7830 loop = LOOP_ALLOC_CHUNK; 7831 } else { 7832 loop++; 7833 } 7834 7835 if (loop == LOOP_ALLOC_CHUNK) { 7836 struct btrfs_trans_handle *trans; 7837 int exist = 0; 7838 7839 trans = current->journal_info; 7840 if (trans) 7841 exist = 1; 7842 else 7843 trans = btrfs_join_transaction(root); 7844 7845 if (IS_ERR(trans)) { 7846 ret = PTR_ERR(trans); 7847 goto out; 7848 } 7849 7850 ret = do_chunk_alloc(trans, root, flags, 7851 CHUNK_ALLOC_FORCE); 7852 7853 /* 7854 * If we can't allocate a new chunk we've already looped 7855 * through at least once, move on to the NO_EMPTY_SIZE 7856 * case. 7857 */ 7858 if (ret == -ENOSPC) 7859 loop = LOOP_NO_EMPTY_SIZE; 7860 7861 /* 7862 * Do not bail out on ENOSPC since we 7863 * can do more things. 7864 */ 7865 if (ret < 0 && ret != -ENOSPC) 7866 btrfs_abort_transaction(trans, ret); 7867 else 7868 ret = 0; 7869 if (!exist) 7870 btrfs_end_transaction(trans, root); 7871 if (ret) 7872 goto out; 7873 } 7874 7875 if (loop == LOOP_NO_EMPTY_SIZE) { 7876 /* 7877 * Don't loop again if we already have no empty_size and 7878 * no empty_cluster. 7879 */ 7880 if (empty_size == 0 && 7881 empty_cluster == 0) { 7882 ret = -ENOSPC; 7883 goto out; 7884 } 7885 empty_size = 0; 7886 empty_cluster = 0; 7887 } 7888 7889 goto search; 7890 } else if (!ins->objectid) { 7891 ret = -ENOSPC; 7892 } else if (ins->objectid) { 7893 if (!use_cluster && last_ptr) { 7894 spin_lock(&last_ptr->lock); 7895 last_ptr->window_start = ins->objectid; 7896 spin_unlock(&last_ptr->lock); 7897 } 7898 ret = 0; 7899 } 7900 out: 7901 if (ret == -ENOSPC) { 7902 spin_lock(&space_info->lock); 7903 space_info->max_extent_size = max_extent_size; 7904 spin_unlock(&space_info->lock); 7905 ins->offset = max_extent_size; 7906 } 7907 return ret; 7908 } 7909 7910 static void dump_space_info(struct btrfs_fs_info *fs_info, 7911 struct btrfs_space_info *info, u64 bytes, 7912 int dump_block_groups) 7913 { 7914 struct btrfs_block_group_cache *cache; 7915 int index = 0; 7916 7917 spin_lock(&info->lock); 7918 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7919 info->flags, 7920 info->total_bytes - info->bytes_used - info->bytes_pinned - 7921 info->bytes_reserved - info->bytes_readonly - 7922 info->bytes_may_use, (info->full) ? "" : "not "); 7923 btrfs_info(fs_info, 7924 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7925 info->total_bytes, info->bytes_used, info->bytes_pinned, 7926 info->bytes_reserved, info->bytes_may_use, 7927 info->bytes_readonly); 7928 spin_unlock(&info->lock); 7929 7930 if (!dump_block_groups) 7931 return; 7932 7933 down_read(&info->groups_sem); 7934 again: 7935 list_for_each_entry(cache, &info->block_groups[index], list) { 7936 spin_lock(&cache->lock); 7937 btrfs_info(fs_info, 7938 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7939 cache->key.objectid, cache->key.offset, 7940 btrfs_block_group_used(&cache->item), cache->pinned, 7941 cache->reserved, cache->ro ? "[readonly]" : ""); 7942 btrfs_dump_free_space(cache, bytes); 7943 spin_unlock(&cache->lock); 7944 } 7945 if (++index < BTRFS_NR_RAID_TYPES) 7946 goto again; 7947 up_read(&info->groups_sem); 7948 } 7949 7950 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7951 u64 num_bytes, u64 min_alloc_size, 7952 u64 empty_size, u64 hint_byte, 7953 struct btrfs_key *ins, int is_data, int delalloc) 7954 { 7955 struct btrfs_fs_info *fs_info = root->fs_info; 7956 bool final_tried = num_bytes == min_alloc_size; 7957 u64 flags; 7958 int ret; 7959 7960 flags = btrfs_get_alloc_profile(root, is_data); 7961 again: 7962 WARN_ON(num_bytes < root->sectorsize); 7963 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 7964 hint_byte, ins, flags, delalloc); 7965 if (!ret && !is_data) { 7966 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 7967 } else if (ret == -ENOSPC) { 7968 if (!final_tried && ins->offset) { 7969 num_bytes = min(num_bytes >> 1, ins->offset); 7970 num_bytes = round_down(num_bytes, root->sectorsize); 7971 num_bytes = max(num_bytes, min_alloc_size); 7972 ram_bytes = num_bytes; 7973 if (num_bytes == min_alloc_size) 7974 final_tried = true; 7975 goto again; 7976 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 7977 struct btrfs_space_info *sinfo; 7978 7979 sinfo = __find_space_info(fs_info, flags); 7980 btrfs_err(root->fs_info, 7981 "allocation failed flags %llu, wanted %llu", 7982 flags, num_bytes); 7983 if (sinfo) 7984 dump_space_info(fs_info, sinfo, num_bytes, 1); 7985 } 7986 } 7987 7988 return ret; 7989 } 7990 7991 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7992 u64 start, u64 len, 7993 int pin, int delalloc) 7994 { 7995 struct btrfs_block_group_cache *cache; 7996 int ret = 0; 7997 7998 cache = btrfs_lookup_block_group(root->fs_info, start); 7999 if (!cache) { 8000 btrfs_err(root->fs_info, "Unable to find block group for %llu", 8001 start); 8002 return -ENOSPC; 8003 } 8004 8005 if (pin) 8006 pin_down_extent(root, cache, start, len, 1); 8007 else { 8008 if (btrfs_test_opt(root->fs_info, DISCARD)) 8009 ret = btrfs_discard_extent(root, start, len, NULL); 8010 btrfs_add_free_space(cache, start, len); 8011 btrfs_free_reserved_bytes(cache, len, delalloc); 8012 trace_btrfs_reserved_extent_free(root, start, len); 8013 } 8014 8015 btrfs_put_block_group(cache); 8016 return ret; 8017 } 8018 8019 int btrfs_free_reserved_extent(struct btrfs_root *root, 8020 u64 start, u64 len, int delalloc) 8021 { 8022 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 8023 } 8024 8025 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 8026 u64 start, u64 len) 8027 { 8028 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 8029 } 8030 8031 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8032 struct btrfs_root *root, 8033 u64 parent, u64 root_objectid, 8034 u64 flags, u64 owner, u64 offset, 8035 struct btrfs_key *ins, int ref_mod) 8036 { 8037 int ret; 8038 struct btrfs_fs_info *fs_info = root->fs_info; 8039 struct btrfs_extent_item *extent_item; 8040 struct btrfs_extent_inline_ref *iref; 8041 struct btrfs_path *path; 8042 struct extent_buffer *leaf; 8043 int type; 8044 u32 size; 8045 8046 if (parent > 0) 8047 type = BTRFS_SHARED_DATA_REF_KEY; 8048 else 8049 type = BTRFS_EXTENT_DATA_REF_KEY; 8050 8051 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8052 8053 path = btrfs_alloc_path(); 8054 if (!path) 8055 return -ENOMEM; 8056 8057 path->leave_spinning = 1; 8058 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8059 ins, size); 8060 if (ret) { 8061 btrfs_free_path(path); 8062 return ret; 8063 } 8064 8065 leaf = path->nodes[0]; 8066 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8067 struct btrfs_extent_item); 8068 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8069 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8070 btrfs_set_extent_flags(leaf, extent_item, 8071 flags | BTRFS_EXTENT_FLAG_DATA); 8072 8073 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8074 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8075 if (parent > 0) { 8076 struct btrfs_shared_data_ref *ref; 8077 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8078 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8079 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8080 } else { 8081 struct btrfs_extent_data_ref *ref; 8082 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8083 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8084 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8085 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8086 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8087 } 8088 8089 btrfs_mark_buffer_dirty(path->nodes[0]); 8090 btrfs_free_path(path); 8091 8092 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8093 ins->offset); 8094 if (ret) 8095 return ret; 8096 8097 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 8098 if (ret) { /* -ENOENT, logic error */ 8099 btrfs_err(fs_info, "update block group failed for %llu %llu", 8100 ins->objectid, ins->offset); 8101 BUG(); 8102 } 8103 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 8104 return ret; 8105 } 8106 8107 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8108 struct btrfs_root *root, 8109 u64 parent, u64 root_objectid, 8110 u64 flags, struct btrfs_disk_key *key, 8111 int level, struct btrfs_key *ins) 8112 { 8113 int ret; 8114 struct btrfs_fs_info *fs_info = root->fs_info; 8115 struct btrfs_extent_item *extent_item; 8116 struct btrfs_tree_block_info *block_info; 8117 struct btrfs_extent_inline_ref *iref; 8118 struct btrfs_path *path; 8119 struct extent_buffer *leaf; 8120 u32 size = sizeof(*extent_item) + sizeof(*iref); 8121 u64 num_bytes = ins->offset; 8122 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8123 SKINNY_METADATA); 8124 8125 if (!skinny_metadata) 8126 size += sizeof(*block_info); 8127 8128 path = btrfs_alloc_path(); 8129 if (!path) { 8130 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8131 root->nodesize); 8132 return -ENOMEM; 8133 } 8134 8135 path->leave_spinning = 1; 8136 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8137 ins, size); 8138 if (ret) { 8139 btrfs_free_path(path); 8140 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8141 root->nodesize); 8142 return ret; 8143 } 8144 8145 leaf = path->nodes[0]; 8146 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8147 struct btrfs_extent_item); 8148 btrfs_set_extent_refs(leaf, extent_item, 1); 8149 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8150 btrfs_set_extent_flags(leaf, extent_item, 8151 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8152 8153 if (skinny_metadata) { 8154 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8155 num_bytes = root->nodesize; 8156 } else { 8157 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8158 btrfs_set_tree_block_key(leaf, block_info, key); 8159 btrfs_set_tree_block_level(leaf, block_info, level); 8160 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8161 } 8162 8163 if (parent > 0) { 8164 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8165 btrfs_set_extent_inline_ref_type(leaf, iref, 8166 BTRFS_SHARED_BLOCK_REF_KEY); 8167 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8168 } else { 8169 btrfs_set_extent_inline_ref_type(leaf, iref, 8170 BTRFS_TREE_BLOCK_REF_KEY); 8171 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8172 } 8173 8174 btrfs_mark_buffer_dirty(leaf); 8175 btrfs_free_path(path); 8176 8177 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8178 num_bytes); 8179 if (ret) 8180 return ret; 8181 8182 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 8183 1); 8184 if (ret) { /* -ENOENT, logic error */ 8185 btrfs_err(fs_info, "update block group failed for %llu %llu", 8186 ins->objectid, ins->offset); 8187 BUG(); 8188 } 8189 8190 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 8191 return ret; 8192 } 8193 8194 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8195 struct btrfs_root *root, 8196 u64 root_objectid, u64 owner, 8197 u64 offset, u64 ram_bytes, 8198 struct btrfs_key *ins) 8199 { 8200 int ret; 8201 8202 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8203 8204 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 8205 ins->offset, 0, 8206 root_objectid, owner, offset, 8207 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 8208 NULL); 8209 return ret; 8210 } 8211 8212 /* 8213 * this is used by the tree logging recovery code. It records that 8214 * an extent has been allocated and makes sure to clear the free 8215 * space cache bits as well 8216 */ 8217 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8218 struct btrfs_root *root, 8219 u64 root_objectid, u64 owner, u64 offset, 8220 struct btrfs_key *ins) 8221 { 8222 int ret; 8223 struct btrfs_block_group_cache *block_group; 8224 struct btrfs_space_info *space_info; 8225 8226 /* 8227 * Mixed block groups will exclude before processing the log so we only 8228 * need to do the exclude dance if this fs isn't mixed. 8229 */ 8230 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 8231 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 8232 if (ret) 8233 return ret; 8234 } 8235 8236 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 8237 if (!block_group) 8238 return -EINVAL; 8239 8240 space_info = block_group->space_info; 8241 spin_lock(&space_info->lock); 8242 spin_lock(&block_group->lock); 8243 space_info->bytes_reserved += ins->offset; 8244 block_group->reserved += ins->offset; 8245 spin_unlock(&block_group->lock); 8246 spin_unlock(&space_info->lock); 8247 8248 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 8249 0, owner, offset, ins, 1); 8250 btrfs_put_block_group(block_group); 8251 return ret; 8252 } 8253 8254 static struct extent_buffer * 8255 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8256 u64 bytenr, int level) 8257 { 8258 struct extent_buffer *buf; 8259 8260 buf = btrfs_find_create_tree_block(root, bytenr); 8261 if (IS_ERR(buf)) 8262 return buf; 8263 8264 btrfs_set_header_generation(buf, trans->transid); 8265 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8266 btrfs_tree_lock(buf); 8267 clean_tree_block(trans, root->fs_info, buf); 8268 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8269 8270 btrfs_set_lock_blocking(buf); 8271 set_extent_buffer_uptodate(buf); 8272 8273 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8274 buf->log_index = root->log_transid % 2; 8275 /* 8276 * we allow two log transactions at a time, use different 8277 * EXENT bit to differentiate dirty pages. 8278 */ 8279 if (buf->log_index == 0) 8280 set_extent_dirty(&root->dirty_log_pages, buf->start, 8281 buf->start + buf->len - 1, GFP_NOFS); 8282 else 8283 set_extent_new(&root->dirty_log_pages, buf->start, 8284 buf->start + buf->len - 1); 8285 } else { 8286 buf->log_index = -1; 8287 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8288 buf->start + buf->len - 1, GFP_NOFS); 8289 } 8290 trans->dirty = true; 8291 /* this returns a buffer locked for blocking */ 8292 return buf; 8293 } 8294 8295 static struct btrfs_block_rsv * 8296 use_block_rsv(struct btrfs_trans_handle *trans, 8297 struct btrfs_root *root, u32 blocksize) 8298 { 8299 struct btrfs_block_rsv *block_rsv; 8300 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 8301 int ret; 8302 bool global_updated = false; 8303 8304 block_rsv = get_block_rsv(trans, root); 8305 8306 if (unlikely(block_rsv->size == 0)) 8307 goto try_reserve; 8308 again: 8309 ret = block_rsv_use_bytes(block_rsv, blocksize); 8310 if (!ret) 8311 return block_rsv; 8312 8313 if (block_rsv->failfast) 8314 return ERR_PTR(ret); 8315 8316 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8317 global_updated = true; 8318 update_global_block_rsv(root->fs_info); 8319 goto again; 8320 } 8321 8322 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 8323 static DEFINE_RATELIMIT_STATE(_rs, 8324 DEFAULT_RATELIMIT_INTERVAL * 10, 8325 /*DEFAULT_RATELIMIT_BURST*/ 1); 8326 if (__ratelimit(&_rs)) 8327 WARN(1, KERN_DEBUG 8328 "BTRFS: block rsv returned %d\n", ret); 8329 } 8330 try_reserve: 8331 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8332 BTRFS_RESERVE_NO_FLUSH); 8333 if (!ret) 8334 return block_rsv; 8335 /* 8336 * If we couldn't reserve metadata bytes try and use some from 8337 * the global reserve if its space type is the same as the global 8338 * reservation. 8339 */ 8340 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8341 block_rsv->space_info == global_rsv->space_info) { 8342 ret = block_rsv_use_bytes(global_rsv, blocksize); 8343 if (!ret) 8344 return global_rsv; 8345 } 8346 return ERR_PTR(ret); 8347 } 8348 8349 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8350 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8351 { 8352 block_rsv_add_bytes(block_rsv, blocksize, 0); 8353 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8354 } 8355 8356 /* 8357 * finds a free extent and does all the dirty work required for allocation 8358 * returns the tree buffer or an ERR_PTR on error. 8359 */ 8360 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8361 struct btrfs_root *root, 8362 u64 parent, u64 root_objectid, 8363 struct btrfs_disk_key *key, int level, 8364 u64 hint, u64 empty_size) 8365 { 8366 struct btrfs_key ins; 8367 struct btrfs_block_rsv *block_rsv; 8368 struct extent_buffer *buf; 8369 struct btrfs_delayed_extent_op *extent_op; 8370 u64 flags = 0; 8371 int ret; 8372 u32 blocksize = root->nodesize; 8373 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8374 SKINNY_METADATA); 8375 8376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8377 if (btrfs_is_testing(root->fs_info)) { 8378 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8379 level); 8380 if (!IS_ERR(buf)) 8381 root->alloc_bytenr += blocksize; 8382 return buf; 8383 } 8384 #endif 8385 8386 block_rsv = use_block_rsv(trans, root, blocksize); 8387 if (IS_ERR(block_rsv)) 8388 return ERR_CAST(block_rsv); 8389 8390 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8391 empty_size, hint, &ins, 0, 0); 8392 if (ret) 8393 goto out_unuse; 8394 8395 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8396 if (IS_ERR(buf)) { 8397 ret = PTR_ERR(buf); 8398 goto out_free_reserved; 8399 } 8400 8401 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8402 if (parent == 0) 8403 parent = ins.objectid; 8404 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8405 } else 8406 BUG_ON(parent > 0); 8407 8408 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8409 extent_op = btrfs_alloc_delayed_extent_op(); 8410 if (!extent_op) { 8411 ret = -ENOMEM; 8412 goto out_free_buf; 8413 } 8414 if (key) 8415 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8416 else 8417 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8418 extent_op->flags_to_set = flags; 8419 extent_op->update_key = skinny_metadata ? false : true; 8420 extent_op->update_flags = true; 8421 extent_op->is_data = false; 8422 extent_op->level = level; 8423 8424 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8425 ins.objectid, ins.offset, 8426 parent, root_objectid, level, 8427 BTRFS_ADD_DELAYED_EXTENT, 8428 extent_op); 8429 if (ret) 8430 goto out_free_delayed; 8431 } 8432 return buf; 8433 8434 out_free_delayed: 8435 btrfs_free_delayed_extent_op(extent_op); 8436 out_free_buf: 8437 free_extent_buffer(buf); 8438 out_free_reserved: 8439 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8440 out_unuse: 8441 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8442 return ERR_PTR(ret); 8443 } 8444 8445 struct walk_control { 8446 u64 refs[BTRFS_MAX_LEVEL]; 8447 u64 flags[BTRFS_MAX_LEVEL]; 8448 struct btrfs_key update_progress; 8449 int stage; 8450 int level; 8451 int shared_level; 8452 int update_ref; 8453 int keep_locks; 8454 int reada_slot; 8455 int reada_count; 8456 int for_reloc; 8457 }; 8458 8459 #define DROP_REFERENCE 1 8460 #define UPDATE_BACKREF 2 8461 8462 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8463 struct btrfs_root *root, 8464 struct walk_control *wc, 8465 struct btrfs_path *path) 8466 { 8467 u64 bytenr; 8468 u64 generation; 8469 u64 refs; 8470 u64 flags; 8471 u32 nritems; 8472 struct btrfs_key key; 8473 struct extent_buffer *eb; 8474 int ret; 8475 int slot; 8476 int nread = 0; 8477 8478 if (path->slots[wc->level] < wc->reada_slot) { 8479 wc->reada_count = wc->reada_count * 2 / 3; 8480 wc->reada_count = max(wc->reada_count, 2); 8481 } else { 8482 wc->reada_count = wc->reada_count * 3 / 2; 8483 wc->reada_count = min_t(int, wc->reada_count, 8484 BTRFS_NODEPTRS_PER_BLOCK(root)); 8485 } 8486 8487 eb = path->nodes[wc->level]; 8488 nritems = btrfs_header_nritems(eb); 8489 8490 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8491 if (nread >= wc->reada_count) 8492 break; 8493 8494 cond_resched(); 8495 bytenr = btrfs_node_blockptr(eb, slot); 8496 generation = btrfs_node_ptr_generation(eb, slot); 8497 8498 if (slot == path->slots[wc->level]) 8499 goto reada; 8500 8501 if (wc->stage == UPDATE_BACKREF && 8502 generation <= root->root_key.offset) 8503 continue; 8504 8505 /* We don't lock the tree block, it's OK to be racy here */ 8506 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8507 wc->level - 1, 1, &refs, 8508 &flags); 8509 /* We don't care about errors in readahead. */ 8510 if (ret < 0) 8511 continue; 8512 BUG_ON(refs == 0); 8513 8514 if (wc->stage == DROP_REFERENCE) { 8515 if (refs == 1) 8516 goto reada; 8517 8518 if (wc->level == 1 && 8519 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8520 continue; 8521 if (!wc->update_ref || 8522 generation <= root->root_key.offset) 8523 continue; 8524 btrfs_node_key_to_cpu(eb, &key, slot); 8525 ret = btrfs_comp_cpu_keys(&key, 8526 &wc->update_progress); 8527 if (ret < 0) 8528 continue; 8529 } else { 8530 if (wc->level == 1 && 8531 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8532 continue; 8533 } 8534 reada: 8535 readahead_tree_block(root, bytenr); 8536 nread++; 8537 } 8538 wc->reada_slot = slot; 8539 } 8540 8541 static int account_leaf_items(struct btrfs_trans_handle *trans, 8542 struct btrfs_root *root, 8543 struct extent_buffer *eb) 8544 { 8545 int nr = btrfs_header_nritems(eb); 8546 int i, extent_type, ret; 8547 struct btrfs_key key; 8548 struct btrfs_file_extent_item *fi; 8549 u64 bytenr, num_bytes; 8550 8551 /* We can be called directly from walk_up_proc() */ 8552 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) 8553 return 0; 8554 8555 for (i = 0; i < nr; i++) { 8556 btrfs_item_key_to_cpu(eb, &key, i); 8557 8558 if (key.type != BTRFS_EXTENT_DATA_KEY) 8559 continue; 8560 8561 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8562 /* filter out non qgroup-accountable extents */ 8563 extent_type = btrfs_file_extent_type(eb, fi); 8564 8565 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8566 continue; 8567 8568 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8569 if (!bytenr) 8570 continue; 8571 8572 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8573 8574 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info, 8575 bytenr, num_bytes, GFP_NOFS); 8576 if (ret) 8577 return ret; 8578 } 8579 return 0; 8580 } 8581 8582 /* 8583 * Walk up the tree from the bottom, freeing leaves and any interior 8584 * nodes which have had all slots visited. If a node (leaf or 8585 * interior) is freed, the node above it will have it's slot 8586 * incremented. The root node will never be freed. 8587 * 8588 * At the end of this function, we should have a path which has all 8589 * slots incremented to the next position for a search. If we need to 8590 * read a new node it will be NULL and the node above it will have the 8591 * correct slot selected for a later read. 8592 * 8593 * If we increment the root nodes slot counter past the number of 8594 * elements, 1 is returned to signal completion of the search. 8595 */ 8596 static int adjust_slots_upwards(struct btrfs_root *root, 8597 struct btrfs_path *path, int root_level) 8598 { 8599 int level = 0; 8600 int nr, slot; 8601 struct extent_buffer *eb; 8602 8603 if (root_level == 0) 8604 return 1; 8605 8606 while (level <= root_level) { 8607 eb = path->nodes[level]; 8608 nr = btrfs_header_nritems(eb); 8609 path->slots[level]++; 8610 slot = path->slots[level]; 8611 if (slot >= nr || level == 0) { 8612 /* 8613 * Don't free the root - we will detect this 8614 * condition after our loop and return a 8615 * positive value for caller to stop walking the tree. 8616 */ 8617 if (level != root_level) { 8618 btrfs_tree_unlock_rw(eb, path->locks[level]); 8619 path->locks[level] = 0; 8620 8621 free_extent_buffer(eb); 8622 path->nodes[level] = NULL; 8623 path->slots[level] = 0; 8624 } 8625 } else { 8626 /* 8627 * We have a valid slot to walk back down 8628 * from. Stop here so caller can process these 8629 * new nodes. 8630 */ 8631 break; 8632 } 8633 8634 level++; 8635 } 8636 8637 eb = path->nodes[root_level]; 8638 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8639 return 1; 8640 8641 return 0; 8642 } 8643 8644 /* 8645 * root_eb is the subtree root and is locked before this function is called. 8646 */ 8647 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8648 struct btrfs_root *root, 8649 struct extent_buffer *root_eb, 8650 u64 root_gen, 8651 int root_level) 8652 { 8653 int ret = 0; 8654 int level; 8655 struct extent_buffer *eb = root_eb; 8656 struct btrfs_path *path = NULL; 8657 8658 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8659 BUG_ON(root_eb == NULL); 8660 8661 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) 8662 return 0; 8663 8664 if (!extent_buffer_uptodate(root_eb)) { 8665 ret = btrfs_read_buffer(root_eb, root_gen); 8666 if (ret) 8667 goto out; 8668 } 8669 8670 if (root_level == 0) { 8671 ret = account_leaf_items(trans, root, root_eb); 8672 goto out; 8673 } 8674 8675 path = btrfs_alloc_path(); 8676 if (!path) 8677 return -ENOMEM; 8678 8679 /* 8680 * Walk down the tree. Missing extent blocks are filled in as 8681 * we go. Metadata is accounted every time we read a new 8682 * extent block. 8683 * 8684 * When we reach a leaf, we account for file extent items in it, 8685 * walk back up the tree (adjusting slot pointers as we go) 8686 * and restart the search process. 8687 */ 8688 extent_buffer_get(root_eb); /* For path */ 8689 path->nodes[root_level] = root_eb; 8690 path->slots[root_level] = 0; 8691 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8692 walk_down: 8693 level = root_level; 8694 while (level >= 0) { 8695 if (path->nodes[level] == NULL) { 8696 int parent_slot; 8697 u64 child_gen; 8698 u64 child_bytenr; 8699 8700 /* We need to get child blockptr/gen from 8701 * parent before we can read it. */ 8702 eb = path->nodes[level + 1]; 8703 parent_slot = path->slots[level + 1]; 8704 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8705 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8706 8707 eb = read_tree_block(root, child_bytenr, child_gen); 8708 if (IS_ERR(eb)) { 8709 ret = PTR_ERR(eb); 8710 goto out; 8711 } else if (!extent_buffer_uptodate(eb)) { 8712 free_extent_buffer(eb); 8713 ret = -EIO; 8714 goto out; 8715 } 8716 8717 path->nodes[level] = eb; 8718 path->slots[level] = 0; 8719 8720 btrfs_tree_read_lock(eb); 8721 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8722 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8723 8724 ret = btrfs_qgroup_insert_dirty_extent(trans, 8725 root->fs_info, child_bytenr, 8726 root->nodesize, GFP_NOFS); 8727 if (ret) 8728 goto out; 8729 } 8730 8731 if (level == 0) { 8732 ret = account_leaf_items(trans, root, path->nodes[level]); 8733 if (ret) 8734 goto out; 8735 8736 /* Nonzero return here means we completed our search */ 8737 ret = adjust_slots_upwards(root, path, root_level); 8738 if (ret) 8739 break; 8740 8741 /* Restart search with new slots */ 8742 goto walk_down; 8743 } 8744 8745 level--; 8746 } 8747 8748 ret = 0; 8749 out: 8750 btrfs_free_path(path); 8751 8752 return ret; 8753 } 8754 8755 /* 8756 * helper to process tree block while walking down the tree. 8757 * 8758 * when wc->stage == UPDATE_BACKREF, this function updates 8759 * back refs for pointers in the block. 8760 * 8761 * NOTE: return value 1 means we should stop walking down. 8762 */ 8763 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8764 struct btrfs_root *root, 8765 struct btrfs_path *path, 8766 struct walk_control *wc, int lookup_info) 8767 { 8768 int level = wc->level; 8769 struct extent_buffer *eb = path->nodes[level]; 8770 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8771 int ret; 8772 8773 if (wc->stage == UPDATE_BACKREF && 8774 btrfs_header_owner(eb) != root->root_key.objectid) 8775 return 1; 8776 8777 /* 8778 * when reference count of tree block is 1, it won't increase 8779 * again. once full backref flag is set, we never clear it. 8780 */ 8781 if (lookup_info && 8782 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8783 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8784 BUG_ON(!path->locks[level]); 8785 ret = btrfs_lookup_extent_info(trans, root, 8786 eb->start, level, 1, 8787 &wc->refs[level], 8788 &wc->flags[level]); 8789 BUG_ON(ret == -ENOMEM); 8790 if (ret) 8791 return ret; 8792 BUG_ON(wc->refs[level] == 0); 8793 } 8794 8795 if (wc->stage == DROP_REFERENCE) { 8796 if (wc->refs[level] > 1) 8797 return 1; 8798 8799 if (path->locks[level] && !wc->keep_locks) { 8800 btrfs_tree_unlock_rw(eb, path->locks[level]); 8801 path->locks[level] = 0; 8802 } 8803 return 0; 8804 } 8805 8806 /* wc->stage == UPDATE_BACKREF */ 8807 if (!(wc->flags[level] & flag)) { 8808 BUG_ON(!path->locks[level]); 8809 ret = btrfs_inc_ref(trans, root, eb, 1); 8810 BUG_ON(ret); /* -ENOMEM */ 8811 ret = btrfs_dec_ref(trans, root, eb, 0); 8812 BUG_ON(ret); /* -ENOMEM */ 8813 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8814 eb->len, flag, 8815 btrfs_header_level(eb), 0); 8816 BUG_ON(ret); /* -ENOMEM */ 8817 wc->flags[level] |= flag; 8818 } 8819 8820 /* 8821 * the block is shared by multiple trees, so it's not good to 8822 * keep the tree lock 8823 */ 8824 if (path->locks[level] && level > 0) { 8825 btrfs_tree_unlock_rw(eb, path->locks[level]); 8826 path->locks[level] = 0; 8827 } 8828 return 0; 8829 } 8830 8831 /* 8832 * helper to process tree block pointer. 8833 * 8834 * when wc->stage == DROP_REFERENCE, this function checks 8835 * reference count of the block pointed to. if the block 8836 * is shared and we need update back refs for the subtree 8837 * rooted at the block, this function changes wc->stage to 8838 * UPDATE_BACKREF. if the block is shared and there is no 8839 * need to update back, this function drops the reference 8840 * to the block. 8841 * 8842 * NOTE: return value 1 means we should stop walking down. 8843 */ 8844 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8845 struct btrfs_root *root, 8846 struct btrfs_path *path, 8847 struct walk_control *wc, int *lookup_info) 8848 { 8849 u64 bytenr; 8850 u64 generation; 8851 u64 parent; 8852 u32 blocksize; 8853 struct btrfs_key key; 8854 struct extent_buffer *next; 8855 int level = wc->level; 8856 int reada = 0; 8857 int ret = 0; 8858 bool need_account = false; 8859 8860 generation = btrfs_node_ptr_generation(path->nodes[level], 8861 path->slots[level]); 8862 /* 8863 * if the lower level block was created before the snapshot 8864 * was created, we know there is no need to update back refs 8865 * for the subtree 8866 */ 8867 if (wc->stage == UPDATE_BACKREF && 8868 generation <= root->root_key.offset) { 8869 *lookup_info = 1; 8870 return 1; 8871 } 8872 8873 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8874 blocksize = root->nodesize; 8875 8876 next = btrfs_find_tree_block(root->fs_info, bytenr); 8877 if (!next) { 8878 next = btrfs_find_create_tree_block(root, bytenr); 8879 if (IS_ERR(next)) 8880 return PTR_ERR(next); 8881 8882 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8883 level - 1); 8884 reada = 1; 8885 } 8886 btrfs_tree_lock(next); 8887 btrfs_set_lock_blocking(next); 8888 8889 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8890 &wc->refs[level - 1], 8891 &wc->flags[level - 1]); 8892 if (ret < 0) 8893 goto out_unlock; 8894 8895 if (unlikely(wc->refs[level - 1] == 0)) { 8896 btrfs_err(root->fs_info, "Missing references."); 8897 ret = -EIO; 8898 goto out_unlock; 8899 } 8900 *lookup_info = 0; 8901 8902 if (wc->stage == DROP_REFERENCE) { 8903 if (wc->refs[level - 1] > 1) { 8904 need_account = true; 8905 if (level == 1 && 8906 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8907 goto skip; 8908 8909 if (!wc->update_ref || 8910 generation <= root->root_key.offset) 8911 goto skip; 8912 8913 btrfs_node_key_to_cpu(path->nodes[level], &key, 8914 path->slots[level]); 8915 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8916 if (ret < 0) 8917 goto skip; 8918 8919 wc->stage = UPDATE_BACKREF; 8920 wc->shared_level = level - 1; 8921 } 8922 } else { 8923 if (level == 1 && 8924 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8925 goto skip; 8926 } 8927 8928 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8929 btrfs_tree_unlock(next); 8930 free_extent_buffer(next); 8931 next = NULL; 8932 *lookup_info = 1; 8933 } 8934 8935 if (!next) { 8936 if (reada && level == 1) 8937 reada_walk_down(trans, root, wc, path); 8938 next = read_tree_block(root, bytenr, generation); 8939 if (IS_ERR(next)) { 8940 return PTR_ERR(next); 8941 } else if (!extent_buffer_uptodate(next)) { 8942 free_extent_buffer(next); 8943 return -EIO; 8944 } 8945 btrfs_tree_lock(next); 8946 btrfs_set_lock_blocking(next); 8947 } 8948 8949 level--; 8950 ASSERT(level == btrfs_header_level(next)); 8951 if (level != btrfs_header_level(next)) { 8952 btrfs_err(root->fs_info, "mismatched level"); 8953 ret = -EIO; 8954 goto out_unlock; 8955 } 8956 path->nodes[level] = next; 8957 path->slots[level] = 0; 8958 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8959 wc->level = level; 8960 if (wc->level == 1) 8961 wc->reada_slot = 0; 8962 return 0; 8963 skip: 8964 wc->refs[level - 1] = 0; 8965 wc->flags[level - 1] = 0; 8966 if (wc->stage == DROP_REFERENCE) { 8967 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8968 parent = path->nodes[level]->start; 8969 } else { 8970 ASSERT(root->root_key.objectid == 8971 btrfs_header_owner(path->nodes[level])); 8972 if (root->root_key.objectid != 8973 btrfs_header_owner(path->nodes[level])) { 8974 btrfs_err(root->fs_info, 8975 "mismatched block owner"); 8976 ret = -EIO; 8977 goto out_unlock; 8978 } 8979 parent = 0; 8980 } 8981 8982 if (need_account) { 8983 ret = account_shared_subtree(trans, root, next, 8984 generation, level - 1); 8985 if (ret) { 8986 btrfs_err_rl(root->fs_info, 8987 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8988 ret); 8989 } 8990 } 8991 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8992 root->root_key.objectid, level - 1, 0); 8993 if (ret) 8994 goto out_unlock; 8995 } 8996 8997 *lookup_info = 1; 8998 ret = 1; 8999 9000 out_unlock: 9001 btrfs_tree_unlock(next); 9002 free_extent_buffer(next); 9003 9004 return ret; 9005 } 9006 9007 /* 9008 * helper to process tree block while walking up the tree. 9009 * 9010 * when wc->stage == DROP_REFERENCE, this function drops 9011 * reference count on the block. 9012 * 9013 * when wc->stage == UPDATE_BACKREF, this function changes 9014 * wc->stage back to DROP_REFERENCE if we changed wc->stage 9015 * to UPDATE_BACKREF previously while processing the block. 9016 * 9017 * NOTE: return value 1 means we should stop walking up. 9018 */ 9019 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 9020 struct btrfs_root *root, 9021 struct btrfs_path *path, 9022 struct walk_control *wc) 9023 { 9024 int ret; 9025 int level = wc->level; 9026 struct extent_buffer *eb = path->nodes[level]; 9027 u64 parent = 0; 9028 9029 if (wc->stage == UPDATE_BACKREF) { 9030 BUG_ON(wc->shared_level < level); 9031 if (level < wc->shared_level) 9032 goto out; 9033 9034 ret = find_next_key(path, level + 1, &wc->update_progress); 9035 if (ret > 0) 9036 wc->update_ref = 0; 9037 9038 wc->stage = DROP_REFERENCE; 9039 wc->shared_level = -1; 9040 path->slots[level] = 0; 9041 9042 /* 9043 * check reference count again if the block isn't locked. 9044 * we should start walking down the tree again if reference 9045 * count is one. 9046 */ 9047 if (!path->locks[level]) { 9048 BUG_ON(level == 0); 9049 btrfs_tree_lock(eb); 9050 btrfs_set_lock_blocking(eb); 9051 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9052 9053 ret = btrfs_lookup_extent_info(trans, root, 9054 eb->start, level, 1, 9055 &wc->refs[level], 9056 &wc->flags[level]); 9057 if (ret < 0) { 9058 btrfs_tree_unlock_rw(eb, path->locks[level]); 9059 path->locks[level] = 0; 9060 return ret; 9061 } 9062 BUG_ON(wc->refs[level] == 0); 9063 if (wc->refs[level] == 1) { 9064 btrfs_tree_unlock_rw(eb, path->locks[level]); 9065 path->locks[level] = 0; 9066 return 1; 9067 } 9068 } 9069 } 9070 9071 /* wc->stage == DROP_REFERENCE */ 9072 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 9073 9074 if (wc->refs[level] == 1) { 9075 if (level == 0) { 9076 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9077 ret = btrfs_dec_ref(trans, root, eb, 1); 9078 else 9079 ret = btrfs_dec_ref(trans, root, eb, 0); 9080 BUG_ON(ret); /* -ENOMEM */ 9081 ret = account_leaf_items(trans, root, eb); 9082 if (ret) { 9083 btrfs_err_rl(root->fs_info, 9084 "error %d accounting leaf items. Quota is out of sync, rescan required.", 9085 ret); 9086 } 9087 } 9088 /* make block locked assertion in clean_tree_block happy */ 9089 if (!path->locks[level] && 9090 btrfs_header_generation(eb) == trans->transid) { 9091 btrfs_tree_lock(eb); 9092 btrfs_set_lock_blocking(eb); 9093 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9094 } 9095 clean_tree_block(trans, root->fs_info, eb); 9096 } 9097 9098 if (eb == root->node) { 9099 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9100 parent = eb->start; 9101 else 9102 BUG_ON(root->root_key.objectid != 9103 btrfs_header_owner(eb)); 9104 } else { 9105 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9106 parent = path->nodes[level + 1]->start; 9107 else 9108 BUG_ON(root->root_key.objectid != 9109 btrfs_header_owner(path->nodes[level + 1])); 9110 } 9111 9112 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9113 out: 9114 wc->refs[level] = 0; 9115 wc->flags[level] = 0; 9116 return 0; 9117 } 9118 9119 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9120 struct btrfs_root *root, 9121 struct btrfs_path *path, 9122 struct walk_control *wc) 9123 { 9124 int level = wc->level; 9125 int lookup_info = 1; 9126 int ret; 9127 9128 while (level >= 0) { 9129 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9130 if (ret > 0) 9131 break; 9132 9133 if (level == 0) 9134 break; 9135 9136 if (path->slots[level] >= 9137 btrfs_header_nritems(path->nodes[level])) 9138 break; 9139 9140 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9141 if (ret > 0) { 9142 path->slots[level]++; 9143 continue; 9144 } else if (ret < 0) 9145 return ret; 9146 level = wc->level; 9147 } 9148 return 0; 9149 } 9150 9151 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9152 struct btrfs_root *root, 9153 struct btrfs_path *path, 9154 struct walk_control *wc, int max_level) 9155 { 9156 int level = wc->level; 9157 int ret; 9158 9159 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9160 while (level < max_level && path->nodes[level]) { 9161 wc->level = level; 9162 if (path->slots[level] + 1 < 9163 btrfs_header_nritems(path->nodes[level])) { 9164 path->slots[level]++; 9165 return 0; 9166 } else { 9167 ret = walk_up_proc(trans, root, path, wc); 9168 if (ret > 0) 9169 return 0; 9170 9171 if (path->locks[level]) { 9172 btrfs_tree_unlock_rw(path->nodes[level], 9173 path->locks[level]); 9174 path->locks[level] = 0; 9175 } 9176 free_extent_buffer(path->nodes[level]); 9177 path->nodes[level] = NULL; 9178 level++; 9179 } 9180 } 9181 return 1; 9182 } 9183 9184 /* 9185 * drop a subvolume tree. 9186 * 9187 * this function traverses the tree freeing any blocks that only 9188 * referenced by the tree. 9189 * 9190 * when a shared tree block is found. this function decreases its 9191 * reference count by one. if update_ref is true, this function 9192 * also make sure backrefs for the shared block and all lower level 9193 * blocks are properly updated. 9194 * 9195 * If called with for_reloc == 0, may exit early with -EAGAIN 9196 */ 9197 int btrfs_drop_snapshot(struct btrfs_root *root, 9198 struct btrfs_block_rsv *block_rsv, int update_ref, 9199 int for_reloc) 9200 { 9201 struct btrfs_fs_info *fs_info = root->fs_info; 9202 struct btrfs_path *path; 9203 struct btrfs_trans_handle *trans; 9204 struct btrfs_root *tree_root = fs_info->tree_root; 9205 struct btrfs_root_item *root_item = &root->root_item; 9206 struct walk_control *wc; 9207 struct btrfs_key key; 9208 int err = 0; 9209 int ret; 9210 int level; 9211 bool root_dropped = false; 9212 9213 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9214 9215 path = btrfs_alloc_path(); 9216 if (!path) { 9217 err = -ENOMEM; 9218 goto out; 9219 } 9220 9221 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9222 if (!wc) { 9223 btrfs_free_path(path); 9224 err = -ENOMEM; 9225 goto out; 9226 } 9227 9228 trans = btrfs_start_transaction(tree_root, 0); 9229 if (IS_ERR(trans)) { 9230 err = PTR_ERR(trans); 9231 goto out_free; 9232 } 9233 9234 if (block_rsv) 9235 trans->block_rsv = block_rsv; 9236 9237 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9238 level = btrfs_header_level(root->node); 9239 path->nodes[level] = btrfs_lock_root_node(root); 9240 btrfs_set_lock_blocking(path->nodes[level]); 9241 path->slots[level] = 0; 9242 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9243 memset(&wc->update_progress, 0, 9244 sizeof(wc->update_progress)); 9245 } else { 9246 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9247 memcpy(&wc->update_progress, &key, 9248 sizeof(wc->update_progress)); 9249 9250 level = root_item->drop_level; 9251 BUG_ON(level == 0); 9252 path->lowest_level = level; 9253 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9254 path->lowest_level = 0; 9255 if (ret < 0) { 9256 err = ret; 9257 goto out_end_trans; 9258 } 9259 WARN_ON(ret > 0); 9260 9261 /* 9262 * unlock our path, this is safe because only this 9263 * function is allowed to delete this snapshot 9264 */ 9265 btrfs_unlock_up_safe(path, 0); 9266 9267 level = btrfs_header_level(root->node); 9268 while (1) { 9269 btrfs_tree_lock(path->nodes[level]); 9270 btrfs_set_lock_blocking(path->nodes[level]); 9271 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9272 9273 ret = btrfs_lookup_extent_info(trans, root, 9274 path->nodes[level]->start, 9275 level, 1, &wc->refs[level], 9276 &wc->flags[level]); 9277 if (ret < 0) { 9278 err = ret; 9279 goto out_end_trans; 9280 } 9281 BUG_ON(wc->refs[level] == 0); 9282 9283 if (level == root_item->drop_level) 9284 break; 9285 9286 btrfs_tree_unlock(path->nodes[level]); 9287 path->locks[level] = 0; 9288 WARN_ON(wc->refs[level] != 1); 9289 level--; 9290 } 9291 } 9292 9293 wc->level = level; 9294 wc->shared_level = -1; 9295 wc->stage = DROP_REFERENCE; 9296 wc->update_ref = update_ref; 9297 wc->keep_locks = 0; 9298 wc->for_reloc = for_reloc; 9299 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9300 9301 while (1) { 9302 9303 ret = walk_down_tree(trans, root, path, wc); 9304 if (ret < 0) { 9305 err = ret; 9306 break; 9307 } 9308 9309 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9310 if (ret < 0) { 9311 err = ret; 9312 break; 9313 } 9314 9315 if (ret > 0) { 9316 BUG_ON(wc->stage != DROP_REFERENCE); 9317 break; 9318 } 9319 9320 if (wc->stage == DROP_REFERENCE) { 9321 level = wc->level; 9322 btrfs_node_key(path->nodes[level], 9323 &root_item->drop_progress, 9324 path->slots[level]); 9325 root_item->drop_level = level; 9326 } 9327 9328 BUG_ON(wc->level == 0); 9329 if (btrfs_should_end_transaction(trans, tree_root) || 9330 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 9331 ret = btrfs_update_root(trans, tree_root, 9332 &root->root_key, 9333 root_item); 9334 if (ret) { 9335 btrfs_abort_transaction(trans, ret); 9336 err = ret; 9337 goto out_end_trans; 9338 } 9339 9340 btrfs_end_transaction_throttle(trans, tree_root); 9341 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 9342 btrfs_debug(fs_info, 9343 "drop snapshot early exit"); 9344 err = -EAGAIN; 9345 goto out_free; 9346 } 9347 9348 trans = btrfs_start_transaction(tree_root, 0); 9349 if (IS_ERR(trans)) { 9350 err = PTR_ERR(trans); 9351 goto out_free; 9352 } 9353 if (block_rsv) 9354 trans->block_rsv = block_rsv; 9355 } 9356 } 9357 btrfs_release_path(path); 9358 if (err) 9359 goto out_end_trans; 9360 9361 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9362 if (ret) { 9363 btrfs_abort_transaction(trans, ret); 9364 goto out_end_trans; 9365 } 9366 9367 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9368 ret = btrfs_find_root(tree_root, &root->root_key, path, 9369 NULL, NULL); 9370 if (ret < 0) { 9371 btrfs_abort_transaction(trans, ret); 9372 err = ret; 9373 goto out_end_trans; 9374 } else if (ret > 0) { 9375 /* if we fail to delete the orphan item this time 9376 * around, it'll get picked up the next time. 9377 * 9378 * The most common failure here is just -ENOENT. 9379 */ 9380 btrfs_del_orphan_item(trans, tree_root, 9381 root->root_key.objectid); 9382 } 9383 } 9384 9385 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9386 btrfs_add_dropped_root(trans, root); 9387 } else { 9388 free_extent_buffer(root->node); 9389 free_extent_buffer(root->commit_root); 9390 btrfs_put_fs_root(root); 9391 } 9392 root_dropped = true; 9393 out_end_trans: 9394 btrfs_end_transaction_throttle(trans, tree_root); 9395 out_free: 9396 kfree(wc); 9397 btrfs_free_path(path); 9398 out: 9399 /* 9400 * So if we need to stop dropping the snapshot for whatever reason we 9401 * need to make sure to add it back to the dead root list so that we 9402 * keep trying to do the work later. This also cleans up roots if we 9403 * don't have it in the radix (like when we recover after a power fail 9404 * or unmount) so we don't leak memory. 9405 */ 9406 if (!for_reloc && root_dropped == false) 9407 btrfs_add_dead_root(root); 9408 if (err && err != -EAGAIN) 9409 btrfs_handle_fs_error(fs_info, err, NULL); 9410 return err; 9411 } 9412 9413 /* 9414 * drop subtree rooted at tree block 'node'. 9415 * 9416 * NOTE: this function will unlock and release tree block 'node' 9417 * only used by relocation code 9418 */ 9419 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9420 struct btrfs_root *root, 9421 struct extent_buffer *node, 9422 struct extent_buffer *parent) 9423 { 9424 struct btrfs_path *path; 9425 struct walk_control *wc; 9426 int level; 9427 int parent_level; 9428 int ret = 0; 9429 int wret; 9430 9431 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9432 9433 path = btrfs_alloc_path(); 9434 if (!path) 9435 return -ENOMEM; 9436 9437 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9438 if (!wc) { 9439 btrfs_free_path(path); 9440 return -ENOMEM; 9441 } 9442 9443 btrfs_assert_tree_locked(parent); 9444 parent_level = btrfs_header_level(parent); 9445 extent_buffer_get(parent); 9446 path->nodes[parent_level] = parent; 9447 path->slots[parent_level] = btrfs_header_nritems(parent); 9448 9449 btrfs_assert_tree_locked(node); 9450 level = btrfs_header_level(node); 9451 path->nodes[level] = node; 9452 path->slots[level] = 0; 9453 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9454 9455 wc->refs[parent_level] = 1; 9456 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9457 wc->level = level; 9458 wc->shared_level = -1; 9459 wc->stage = DROP_REFERENCE; 9460 wc->update_ref = 0; 9461 wc->keep_locks = 1; 9462 wc->for_reloc = 1; 9463 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9464 9465 while (1) { 9466 wret = walk_down_tree(trans, root, path, wc); 9467 if (wret < 0) { 9468 ret = wret; 9469 break; 9470 } 9471 9472 wret = walk_up_tree(trans, root, path, wc, parent_level); 9473 if (wret < 0) 9474 ret = wret; 9475 if (wret != 0) 9476 break; 9477 } 9478 9479 kfree(wc); 9480 btrfs_free_path(path); 9481 return ret; 9482 } 9483 9484 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9485 { 9486 u64 num_devices; 9487 u64 stripped; 9488 9489 /* 9490 * if restripe for this chunk_type is on pick target profile and 9491 * return, otherwise do the usual balance 9492 */ 9493 stripped = get_restripe_target(root->fs_info, flags); 9494 if (stripped) 9495 return extended_to_chunk(stripped); 9496 9497 num_devices = root->fs_info->fs_devices->rw_devices; 9498 9499 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9500 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9501 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9502 9503 if (num_devices == 1) { 9504 stripped |= BTRFS_BLOCK_GROUP_DUP; 9505 stripped = flags & ~stripped; 9506 9507 /* turn raid0 into single device chunks */ 9508 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9509 return stripped; 9510 9511 /* turn mirroring into duplication */ 9512 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9513 BTRFS_BLOCK_GROUP_RAID10)) 9514 return stripped | BTRFS_BLOCK_GROUP_DUP; 9515 } else { 9516 /* they already had raid on here, just return */ 9517 if (flags & stripped) 9518 return flags; 9519 9520 stripped |= BTRFS_BLOCK_GROUP_DUP; 9521 stripped = flags & ~stripped; 9522 9523 /* switch duplicated blocks with raid1 */ 9524 if (flags & BTRFS_BLOCK_GROUP_DUP) 9525 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9526 9527 /* this is drive concat, leave it alone */ 9528 } 9529 9530 return flags; 9531 } 9532 9533 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9534 { 9535 struct btrfs_space_info *sinfo = cache->space_info; 9536 u64 num_bytes; 9537 u64 min_allocable_bytes; 9538 int ret = -ENOSPC; 9539 9540 /* 9541 * We need some metadata space and system metadata space for 9542 * allocating chunks in some corner cases until we force to set 9543 * it to be readonly. 9544 */ 9545 if ((sinfo->flags & 9546 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9547 !force) 9548 min_allocable_bytes = SZ_1M; 9549 else 9550 min_allocable_bytes = 0; 9551 9552 spin_lock(&sinfo->lock); 9553 spin_lock(&cache->lock); 9554 9555 if (cache->ro) { 9556 cache->ro++; 9557 ret = 0; 9558 goto out; 9559 } 9560 9561 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9562 cache->bytes_super - btrfs_block_group_used(&cache->item); 9563 9564 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9565 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9566 min_allocable_bytes <= sinfo->total_bytes) { 9567 sinfo->bytes_readonly += num_bytes; 9568 cache->ro++; 9569 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9570 ret = 0; 9571 } 9572 out: 9573 spin_unlock(&cache->lock); 9574 spin_unlock(&sinfo->lock); 9575 return ret; 9576 } 9577 9578 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9579 struct btrfs_block_group_cache *cache) 9580 9581 { 9582 struct btrfs_trans_handle *trans; 9583 u64 alloc_flags; 9584 int ret; 9585 9586 again: 9587 trans = btrfs_join_transaction(root); 9588 if (IS_ERR(trans)) 9589 return PTR_ERR(trans); 9590 9591 /* 9592 * we're not allowed to set block groups readonly after the dirty 9593 * block groups cache has started writing. If it already started, 9594 * back off and let this transaction commit 9595 */ 9596 mutex_lock(&root->fs_info->ro_block_group_mutex); 9597 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9598 u64 transid = trans->transid; 9599 9600 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9601 btrfs_end_transaction(trans, root); 9602 9603 ret = btrfs_wait_for_commit(root, transid); 9604 if (ret) 9605 return ret; 9606 goto again; 9607 } 9608 9609 /* 9610 * if we are changing raid levels, try to allocate a corresponding 9611 * block group with the new raid level. 9612 */ 9613 alloc_flags = update_block_group_flags(root, cache->flags); 9614 if (alloc_flags != cache->flags) { 9615 ret = do_chunk_alloc(trans, root, alloc_flags, 9616 CHUNK_ALLOC_FORCE); 9617 /* 9618 * ENOSPC is allowed here, we may have enough space 9619 * already allocated at the new raid level to 9620 * carry on 9621 */ 9622 if (ret == -ENOSPC) 9623 ret = 0; 9624 if (ret < 0) 9625 goto out; 9626 } 9627 9628 ret = inc_block_group_ro(cache, 0); 9629 if (!ret) 9630 goto out; 9631 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9632 ret = do_chunk_alloc(trans, root, alloc_flags, 9633 CHUNK_ALLOC_FORCE); 9634 if (ret < 0) 9635 goto out; 9636 ret = inc_block_group_ro(cache, 0); 9637 out: 9638 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9639 alloc_flags = update_block_group_flags(root, cache->flags); 9640 lock_chunks(root->fs_info->chunk_root); 9641 check_system_chunk(trans, root, alloc_flags); 9642 unlock_chunks(root->fs_info->chunk_root); 9643 } 9644 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9645 9646 btrfs_end_transaction(trans, root); 9647 return ret; 9648 } 9649 9650 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9651 struct btrfs_root *root, u64 type) 9652 { 9653 u64 alloc_flags = get_alloc_profile(root, type); 9654 return do_chunk_alloc(trans, root, alloc_flags, 9655 CHUNK_ALLOC_FORCE); 9656 } 9657 9658 /* 9659 * helper to account the unused space of all the readonly block group in the 9660 * space_info. takes mirrors into account. 9661 */ 9662 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9663 { 9664 struct btrfs_block_group_cache *block_group; 9665 u64 free_bytes = 0; 9666 int factor; 9667 9668 /* It's df, we don't care if it's racy */ 9669 if (list_empty(&sinfo->ro_bgs)) 9670 return 0; 9671 9672 spin_lock(&sinfo->lock); 9673 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9674 spin_lock(&block_group->lock); 9675 9676 if (!block_group->ro) { 9677 spin_unlock(&block_group->lock); 9678 continue; 9679 } 9680 9681 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9682 BTRFS_BLOCK_GROUP_RAID10 | 9683 BTRFS_BLOCK_GROUP_DUP)) 9684 factor = 2; 9685 else 9686 factor = 1; 9687 9688 free_bytes += (block_group->key.offset - 9689 btrfs_block_group_used(&block_group->item)) * 9690 factor; 9691 9692 spin_unlock(&block_group->lock); 9693 } 9694 spin_unlock(&sinfo->lock); 9695 9696 return free_bytes; 9697 } 9698 9699 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9700 struct btrfs_block_group_cache *cache) 9701 { 9702 struct btrfs_space_info *sinfo = cache->space_info; 9703 u64 num_bytes; 9704 9705 BUG_ON(!cache->ro); 9706 9707 spin_lock(&sinfo->lock); 9708 spin_lock(&cache->lock); 9709 if (!--cache->ro) { 9710 num_bytes = cache->key.offset - cache->reserved - 9711 cache->pinned - cache->bytes_super - 9712 btrfs_block_group_used(&cache->item); 9713 sinfo->bytes_readonly -= num_bytes; 9714 list_del_init(&cache->ro_list); 9715 } 9716 spin_unlock(&cache->lock); 9717 spin_unlock(&sinfo->lock); 9718 } 9719 9720 /* 9721 * checks to see if its even possible to relocate this block group. 9722 * 9723 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9724 * ok to go ahead and try. 9725 */ 9726 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9727 { 9728 struct btrfs_block_group_cache *block_group; 9729 struct btrfs_space_info *space_info; 9730 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9731 struct btrfs_device *device; 9732 struct btrfs_trans_handle *trans; 9733 u64 min_free; 9734 u64 dev_min = 1; 9735 u64 dev_nr = 0; 9736 u64 target; 9737 int debug; 9738 int index; 9739 int full = 0; 9740 int ret = 0; 9741 9742 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG); 9743 9744 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9745 9746 /* odd, couldn't find the block group, leave it alone */ 9747 if (!block_group) { 9748 if (debug) 9749 btrfs_warn(root->fs_info, 9750 "can't find block group for bytenr %llu", 9751 bytenr); 9752 return -1; 9753 } 9754 9755 min_free = btrfs_block_group_used(&block_group->item); 9756 9757 /* no bytes used, we're good */ 9758 if (!min_free) 9759 goto out; 9760 9761 space_info = block_group->space_info; 9762 spin_lock(&space_info->lock); 9763 9764 full = space_info->full; 9765 9766 /* 9767 * if this is the last block group we have in this space, we can't 9768 * relocate it unless we're able to allocate a new chunk below. 9769 * 9770 * Otherwise, we need to make sure we have room in the space to handle 9771 * all of the extents from this block group. If we can, we're good 9772 */ 9773 if ((space_info->total_bytes != block_group->key.offset) && 9774 (space_info->bytes_used + space_info->bytes_reserved + 9775 space_info->bytes_pinned + space_info->bytes_readonly + 9776 min_free < space_info->total_bytes)) { 9777 spin_unlock(&space_info->lock); 9778 goto out; 9779 } 9780 spin_unlock(&space_info->lock); 9781 9782 /* 9783 * ok we don't have enough space, but maybe we have free space on our 9784 * devices to allocate new chunks for relocation, so loop through our 9785 * alloc devices and guess if we have enough space. if this block 9786 * group is going to be restriped, run checks against the target 9787 * profile instead of the current one. 9788 */ 9789 ret = -1; 9790 9791 /* 9792 * index: 9793 * 0: raid10 9794 * 1: raid1 9795 * 2: dup 9796 * 3: raid0 9797 * 4: single 9798 */ 9799 target = get_restripe_target(root->fs_info, block_group->flags); 9800 if (target) { 9801 index = __get_raid_index(extended_to_chunk(target)); 9802 } else { 9803 /* 9804 * this is just a balance, so if we were marked as full 9805 * we know there is no space for a new chunk 9806 */ 9807 if (full) { 9808 if (debug) 9809 btrfs_warn(root->fs_info, 9810 "no space to alloc new chunk for block group %llu", 9811 block_group->key.objectid); 9812 goto out; 9813 } 9814 9815 index = get_block_group_index(block_group); 9816 } 9817 9818 if (index == BTRFS_RAID_RAID10) { 9819 dev_min = 4; 9820 /* Divide by 2 */ 9821 min_free >>= 1; 9822 } else if (index == BTRFS_RAID_RAID1) { 9823 dev_min = 2; 9824 } else if (index == BTRFS_RAID_DUP) { 9825 /* Multiply by 2 */ 9826 min_free <<= 1; 9827 } else if (index == BTRFS_RAID_RAID0) { 9828 dev_min = fs_devices->rw_devices; 9829 min_free = div64_u64(min_free, dev_min); 9830 } 9831 9832 /* We need to do this so that we can look at pending chunks */ 9833 trans = btrfs_join_transaction(root); 9834 if (IS_ERR(trans)) { 9835 ret = PTR_ERR(trans); 9836 goto out; 9837 } 9838 9839 mutex_lock(&root->fs_info->chunk_mutex); 9840 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9841 u64 dev_offset; 9842 9843 /* 9844 * check to make sure we can actually find a chunk with enough 9845 * space to fit our block group in. 9846 */ 9847 if (device->total_bytes > device->bytes_used + min_free && 9848 !device->is_tgtdev_for_dev_replace) { 9849 ret = find_free_dev_extent(trans, device, min_free, 9850 &dev_offset, NULL); 9851 if (!ret) 9852 dev_nr++; 9853 9854 if (dev_nr >= dev_min) 9855 break; 9856 9857 ret = -1; 9858 } 9859 } 9860 if (debug && ret == -1) 9861 btrfs_warn(root->fs_info, 9862 "no space to allocate a new chunk for block group %llu", 9863 block_group->key.objectid); 9864 mutex_unlock(&root->fs_info->chunk_mutex); 9865 btrfs_end_transaction(trans, root); 9866 out: 9867 btrfs_put_block_group(block_group); 9868 return ret; 9869 } 9870 9871 static int find_first_block_group(struct btrfs_root *root, 9872 struct btrfs_path *path, struct btrfs_key *key) 9873 { 9874 int ret = 0; 9875 struct btrfs_key found_key; 9876 struct extent_buffer *leaf; 9877 int slot; 9878 9879 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9880 if (ret < 0) 9881 goto out; 9882 9883 while (1) { 9884 slot = path->slots[0]; 9885 leaf = path->nodes[0]; 9886 if (slot >= btrfs_header_nritems(leaf)) { 9887 ret = btrfs_next_leaf(root, path); 9888 if (ret == 0) 9889 continue; 9890 if (ret < 0) 9891 goto out; 9892 break; 9893 } 9894 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9895 9896 if (found_key.objectid >= key->objectid && 9897 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9898 struct extent_map_tree *em_tree; 9899 struct extent_map *em; 9900 9901 em_tree = &root->fs_info->mapping_tree.map_tree; 9902 read_lock(&em_tree->lock); 9903 em = lookup_extent_mapping(em_tree, found_key.objectid, 9904 found_key.offset); 9905 read_unlock(&em_tree->lock); 9906 if (!em) { 9907 btrfs_err(root->fs_info, 9908 "logical %llu len %llu found bg but no related chunk", 9909 found_key.objectid, found_key.offset); 9910 ret = -ENOENT; 9911 } else { 9912 ret = 0; 9913 } 9914 free_extent_map(em); 9915 goto out; 9916 } 9917 path->slots[0]++; 9918 } 9919 out: 9920 return ret; 9921 } 9922 9923 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9924 { 9925 struct btrfs_block_group_cache *block_group; 9926 u64 last = 0; 9927 9928 while (1) { 9929 struct inode *inode; 9930 9931 block_group = btrfs_lookup_first_block_group(info, last); 9932 while (block_group) { 9933 spin_lock(&block_group->lock); 9934 if (block_group->iref) 9935 break; 9936 spin_unlock(&block_group->lock); 9937 block_group = next_block_group(info->tree_root, 9938 block_group); 9939 } 9940 if (!block_group) { 9941 if (last == 0) 9942 break; 9943 last = 0; 9944 continue; 9945 } 9946 9947 inode = block_group->inode; 9948 block_group->iref = 0; 9949 block_group->inode = NULL; 9950 spin_unlock(&block_group->lock); 9951 ASSERT(block_group->io_ctl.inode == NULL); 9952 iput(inode); 9953 last = block_group->key.objectid + block_group->key.offset; 9954 btrfs_put_block_group(block_group); 9955 } 9956 } 9957 9958 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9959 { 9960 struct btrfs_block_group_cache *block_group; 9961 struct btrfs_space_info *space_info; 9962 struct btrfs_caching_control *caching_ctl; 9963 struct rb_node *n; 9964 9965 down_write(&info->commit_root_sem); 9966 while (!list_empty(&info->caching_block_groups)) { 9967 caching_ctl = list_entry(info->caching_block_groups.next, 9968 struct btrfs_caching_control, list); 9969 list_del(&caching_ctl->list); 9970 put_caching_control(caching_ctl); 9971 } 9972 up_write(&info->commit_root_sem); 9973 9974 spin_lock(&info->unused_bgs_lock); 9975 while (!list_empty(&info->unused_bgs)) { 9976 block_group = list_first_entry(&info->unused_bgs, 9977 struct btrfs_block_group_cache, 9978 bg_list); 9979 list_del_init(&block_group->bg_list); 9980 btrfs_put_block_group(block_group); 9981 } 9982 spin_unlock(&info->unused_bgs_lock); 9983 9984 spin_lock(&info->block_group_cache_lock); 9985 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9986 block_group = rb_entry(n, struct btrfs_block_group_cache, 9987 cache_node); 9988 rb_erase(&block_group->cache_node, 9989 &info->block_group_cache_tree); 9990 RB_CLEAR_NODE(&block_group->cache_node); 9991 spin_unlock(&info->block_group_cache_lock); 9992 9993 down_write(&block_group->space_info->groups_sem); 9994 list_del(&block_group->list); 9995 up_write(&block_group->space_info->groups_sem); 9996 9997 if (block_group->cached == BTRFS_CACHE_STARTED) 9998 wait_block_group_cache_done(block_group); 9999 10000 /* 10001 * We haven't cached this block group, which means we could 10002 * possibly have excluded extents on this block group. 10003 */ 10004 if (block_group->cached == BTRFS_CACHE_NO || 10005 block_group->cached == BTRFS_CACHE_ERROR) 10006 free_excluded_extents(info->extent_root, block_group); 10007 10008 btrfs_remove_free_space_cache(block_group); 10009 ASSERT(list_empty(&block_group->dirty_list)); 10010 ASSERT(list_empty(&block_group->io_list)); 10011 ASSERT(list_empty(&block_group->bg_list)); 10012 ASSERT(atomic_read(&block_group->count) == 1); 10013 btrfs_put_block_group(block_group); 10014 10015 spin_lock(&info->block_group_cache_lock); 10016 } 10017 spin_unlock(&info->block_group_cache_lock); 10018 10019 /* now that all the block groups are freed, go through and 10020 * free all the space_info structs. This is only called during 10021 * the final stages of unmount, and so we know nobody is 10022 * using them. We call synchronize_rcu() once before we start, 10023 * just to be on the safe side. 10024 */ 10025 synchronize_rcu(); 10026 10027 release_global_block_rsv(info); 10028 10029 while (!list_empty(&info->space_info)) { 10030 int i; 10031 10032 space_info = list_entry(info->space_info.next, 10033 struct btrfs_space_info, 10034 list); 10035 10036 /* 10037 * Do not hide this behind enospc_debug, this is actually 10038 * important and indicates a real bug if this happens. 10039 */ 10040 if (WARN_ON(space_info->bytes_pinned > 0 || 10041 space_info->bytes_reserved > 0 || 10042 space_info->bytes_may_use > 0)) 10043 dump_space_info(info, space_info, 0, 0); 10044 list_del(&space_info->list); 10045 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 10046 struct kobject *kobj; 10047 kobj = space_info->block_group_kobjs[i]; 10048 space_info->block_group_kobjs[i] = NULL; 10049 if (kobj) { 10050 kobject_del(kobj); 10051 kobject_put(kobj); 10052 } 10053 } 10054 kobject_del(&space_info->kobj); 10055 kobject_put(&space_info->kobj); 10056 } 10057 return 0; 10058 } 10059 10060 static void __link_block_group(struct btrfs_space_info *space_info, 10061 struct btrfs_block_group_cache *cache) 10062 { 10063 int index = get_block_group_index(cache); 10064 bool first = false; 10065 10066 down_write(&space_info->groups_sem); 10067 if (list_empty(&space_info->block_groups[index])) 10068 first = true; 10069 list_add_tail(&cache->list, &space_info->block_groups[index]); 10070 up_write(&space_info->groups_sem); 10071 10072 if (first) { 10073 struct raid_kobject *rkobj; 10074 int ret; 10075 10076 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 10077 if (!rkobj) 10078 goto out_err; 10079 rkobj->raid_type = index; 10080 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10081 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 10082 "%s", get_raid_name(index)); 10083 if (ret) { 10084 kobject_put(&rkobj->kobj); 10085 goto out_err; 10086 } 10087 space_info->block_group_kobjs[index] = &rkobj->kobj; 10088 } 10089 10090 return; 10091 out_err: 10092 btrfs_warn(cache->fs_info, 10093 "failed to add kobject for block cache, ignoring"); 10094 } 10095 10096 static struct btrfs_block_group_cache * 10097 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 10098 { 10099 struct btrfs_block_group_cache *cache; 10100 10101 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10102 if (!cache) 10103 return NULL; 10104 10105 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10106 GFP_NOFS); 10107 if (!cache->free_space_ctl) { 10108 kfree(cache); 10109 return NULL; 10110 } 10111 10112 cache->key.objectid = start; 10113 cache->key.offset = size; 10114 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10115 10116 cache->sectorsize = root->sectorsize; 10117 cache->fs_info = root->fs_info; 10118 cache->full_stripe_len = btrfs_full_stripe_len(root, 10119 &root->fs_info->mapping_tree, 10120 start); 10121 set_free_space_tree_thresholds(cache); 10122 10123 atomic_set(&cache->count, 1); 10124 spin_lock_init(&cache->lock); 10125 init_rwsem(&cache->data_rwsem); 10126 INIT_LIST_HEAD(&cache->list); 10127 INIT_LIST_HEAD(&cache->cluster_list); 10128 INIT_LIST_HEAD(&cache->bg_list); 10129 INIT_LIST_HEAD(&cache->ro_list); 10130 INIT_LIST_HEAD(&cache->dirty_list); 10131 INIT_LIST_HEAD(&cache->io_list); 10132 btrfs_init_free_space_ctl(cache); 10133 atomic_set(&cache->trimming, 0); 10134 mutex_init(&cache->free_space_lock); 10135 10136 return cache; 10137 } 10138 10139 int btrfs_read_block_groups(struct btrfs_root *root) 10140 { 10141 struct btrfs_path *path; 10142 int ret; 10143 struct btrfs_block_group_cache *cache; 10144 struct btrfs_fs_info *info = root->fs_info; 10145 struct btrfs_space_info *space_info; 10146 struct btrfs_key key; 10147 struct btrfs_key found_key; 10148 struct extent_buffer *leaf; 10149 int need_clear = 0; 10150 u64 cache_gen; 10151 u64 feature; 10152 int mixed; 10153 10154 feature = btrfs_super_incompat_flags(info->super_copy); 10155 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10156 10157 root = info->extent_root; 10158 key.objectid = 0; 10159 key.offset = 0; 10160 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10161 path = btrfs_alloc_path(); 10162 if (!path) 10163 return -ENOMEM; 10164 path->reada = READA_FORWARD; 10165 10166 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 10167 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 10168 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 10169 need_clear = 1; 10170 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE)) 10171 need_clear = 1; 10172 10173 while (1) { 10174 ret = find_first_block_group(root, path, &key); 10175 if (ret > 0) 10176 break; 10177 if (ret != 0) 10178 goto error; 10179 10180 leaf = path->nodes[0]; 10181 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10182 10183 cache = btrfs_create_block_group_cache(root, found_key.objectid, 10184 found_key.offset); 10185 if (!cache) { 10186 ret = -ENOMEM; 10187 goto error; 10188 } 10189 10190 if (need_clear) { 10191 /* 10192 * When we mount with old space cache, we need to 10193 * set BTRFS_DC_CLEAR and set dirty flag. 10194 * 10195 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10196 * truncate the old free space cache inode and 10197 * setup a new one. 10198 * b) Setting 'dirty flag' makes sure that we flush 10199 * the new space cache info onto disk. 10200 */ 10201 if (btrfs_test_opt(root->fs_info, SPACE_CACHE)) 10202 cache->disk_cache_state = BTRFS_DC_CLEAR; 10203 } 10204 10205 read_extent_buffer(leaf, &cache->item, 10206 btrfs_item_ptr_offset(leaf, path->slots[0]), 10207 sizeof(cache->item)); 10208 cache->flags = btrfs_block_group_flags(&cache->item); 10209 if (!mixed && 10210 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10211 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10212 btrfs_err(info, 10213 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10214 cache->key.objectid); 10215 ret = -EINVAL; 10216 goto error; 10217 } 10218 10219 key.objectid = found_key.objectid + found_key.offset; 10220 btrfs_release_path(path); 10221 10222 /* 10223 * We need to exclude the super stripes now so that the space 10224 * info has super bytes accounted for, otherwise we'll think 10225 * we have more space than we actually do. 10226 */ 10227 ret = exclude_super_stripes(root, cache); 10228 if (ret) { 10229 /* 10230 * We may have excluded something, so call this just in 10231 * case. 10232 */ 10233 free_excluded_extents(root, cache); 10234 btrfs_put_block_group(cache); 10235 goto error; 10236 } 10237 10238 /* 10239 * check for two cases, either we are full, and therefore 10240 * don't need to bother with the caching work since we won't 10241 * find any space, or we are empty, and we can just add all 10242 * the space in and be done with it. This saves us _alot_ of 10243 * time, particularly in the full case. 10244 */ 10245 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10246 cache->last_byte_to_unpin = (u64)-1; 10247 cache->cached = BTRFS_CACHE_FINISHED; 10248 free_excluded_extents(root, cache); 10249 } else if (btrfs_block_group_used(&cache->item) == 0) { 10250 cache->last_byte_to_unpin = (u64)-1; 10251 cache->cached = BTRFS_CACHE_FINISHED; 10252 add_new_free_space(cache, root->fs_info, 10253 found_key.objectid, 10254 found_key.objectid + 10255 found_key.offset); 10256 free_excluded_extents(root, cache); 10257 } 10258 10259 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10260 if (ret) { 10261 btrfs_remove_free_space_cache(cache); 10262 btrfs_put_block_group(cache); 10263 goto error; 10264 } 10265 10266 trace_btrfs_add_block_group(root->fs_info, cache, 0); 10267 ret = update_space_info(info, cache->flags, found_key.offset, 10268 btrfs_block_group_used(&cache->item), 10269 cache->bytes_super, &space_info); 10270 if (ret) { 10271 btrfs_remove_free_space_cache(cache); 10272 spin_lock(&info->block_group_cache_lock); 10273 rb_erase(&cache->cache_node, 10274 &info->block_group_cache_tree); 10275 RB_CLEAR_NODE(&cache->cache_node); 10276 spin_unlock(&info->block_group_cache_lock); 10277 btrfs_put_block_group(cache); 10278 goto error; 10279 } 10280 10281 cache->space_info = space_info; 10282 10283 __link_block_group(space_info, cache); 10284 10285 set_avail_alloc_bits(root->fs_info, cache->flags); 10286 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 10287 inc_block_group_ro(cache, 1); 10288 } else if (btrfs_block_group_used(&cache->item) == 0) { 10289 spin_lock(&info->unused_bgs_lock); 10290 /* Should always be true but just in case. */ 10291 if (list_empty(&cache->bg_list)) { 10292 btrfs_get_block_group(cache); 10293 list_add_tail(&cache->bg_list, 10294 &info->unused_bgs); 10295 } 10296 spin_unlock(&info->unused_bgs_lock); 10297 } 10298 } 10299 10300 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 10301 if (!(get_alloc_profile(root, space_info->flags) & 10302 (BTRFS_BLOCK_GROUP_RAID10 | 10303 BTRFS_BLOCK_GROUP_RAID1 | 10304 BTRFS_BLOCK_GROUP_RAID5 | 10305 BTRFS_BLOCK_GROUP_RAID6 | 10306 BTRFS_BLOCK_GROUP_DUP))) 10307 continue; 10308 /* 10309 * avoid allocating from un-mirrored block group if there are 10310 * mirrored block groups. 10311 */ 10312 list_for_each_entry(cache, 10313 &space_info->block_groups[BTRFS_RAID_RAID0], 10314 list) 10315 inc_block_group_ro(cache, 1); 10316 list_for_each_entry(cache, 10317 &space_info->block_groups[BTRFS_RAID_SINGLE], 10318 list) 10319 inc_block_group_ro(cache, 1); 10320 } 10321 10322 init_global_block_rsv(info); 10323 ret = 0; 10324 error: 10325 btrfs_free_path(path); 10326 return ret; 10327 } 10328 10329 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10330 struct btrfs_root *root) 10331 { 10332 struct btrfs_block_group_cache *block_group, *tmp; 10333 struct btrfs_root *extent_root = root->fs_info->extent_root; 10334 struct btrfs_block_group_item item; 10335 struct btrfs_key key; 10336 int ret = 0; 10337 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10338 10339 trans->can_flush_pending_bgs = false; 10340 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10341 if (ret) 10342 goto next; 10343 10344 spin_lock(&block_group->lock); 10345 memcpy(&item, &block_group->item, sizeof(item)); 10346 memcpy(&key, &block_group->key, sizeof(key)); 10347 spin_unlock(&block_group->lock); 10348 10349 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10350 sizeof(item)); 10351 if (ret) 10352 btrfs_abort_transaction(trans, ret); 10353 ret = btrfs_finish_chunk_alloc(trans, extent_root, 10354 key.objectid, key.offset); 10355 if (ret) 10356 btrfs_abort_transaction(trans, ret); 10357 add_block_group_free_space(trans, root->fs_info, block_group); 10358 /* already aborted the transaction if it failed. */ 10359 next: 10360 list_del_init(&block_group->bg_list); 10361 } 10362 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10363 } 10364 10365 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10366 struct btrfs_root *root, u64 bytes_used, 10367 u64 type, u64 chunk_objectid, u64 chunk_offset, 10368 u64 size) 10369 { 10370 int ret; 10371 struct btrfs_root *extent_root; 10372 struct btrfs_block_group_cache *cache; 10373 extent_root = root->fs_info->extent_root; 10374 10375 btrfs_set_log_full_commit(root->fs_info, trans); 10376 10377 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 10378 if (!cache) 10379 return -ENOMEM; 10380 10381 btrfs_set_block_group_used(&cache->item, bytes_used); 10382 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10383 btrfs_set_block_group_flags(&cache->item, type); 10384 10385 cache->flags = type; 10386 cache->last_byte_to_unpin = (u64)-1; 10387 cache->cached = BTRFS_CACHE_FINISHED; 10388 cache->needs_free_space = 1; 10389 ret = exclude_super_stripes(root, cache); 10390 if (ret) { 10391 /* 10392 * We may have excluded something, so call this just in 10393 * case. 10394 */ 10395 free_excluded_extents(root, cache); 10396 btrfs_put_block_group(cache); 10397 return ret; 10398 } 10399 10400 add_new_free_space(cache, root->fs_info, chunk_offset, 10401 chunk_offset + size); 10402 10403 free_excluded_extents(root, cache); 10404 10405 #ifdef CONFIG_BTRFS_DEBUG 10406 if (btrfs_should_fragment_free_space(root, cache)) { 10407 u64 new_bytes_used = size - bytes_used; 10408 10409 bytes_used += new_bytes_used >> 1; 10410 fragment_free_space(root, cache); 10411 } 10412 #endif 10413 /* 10414 * Call to ensure the corresponding space_info object is created and 10415 * assigned to our block group, but don't update its counters just yet. 10416 * We want our bg to be added to the rbtree with its ->space_info set. 10417 */ 10418 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0, 10419 &cache->space_info); 10420 if (ret) { 10421 btrfs_remove_free_space_cache(cache); 10422 btrfs_put_block_group(cache); 10423 return ret; 10424 } 10425 10426 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10427 if (ret) { 10428 btrfs_remove_free_space_cache(cache); 10429 btrfs_put_block_group(cache); 10430 return ret; 10431 } 10432 10433 /* 10434 * Now that our block group has its ->space_info set and is inserted in 10435 * the rbtree, update the space info's counters. 10436 */ 10437 trace_btrfs_add_block_group(root->fs_info, cache, 1); 10438 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10439 cache->bytes_super, &cache->space_info); 10440 if (ret) { 10441 btrfs_remove_free_space_cache(cache); 10442 spin_lock(&root->fs_info->block_group_cache_lock); 10443 rb_erase(&cache->cache_node, 10444 &root->fs_info->block_group_cache_tree); 10445 RB_CLEAR_NODE(&cache->cache_node); 10446 spin_unlock(&root->fs_info->block_group_cache_lock); 10447 btrfs_put_block_group(cache); 10448 return ret; 10449 } 10450 update_global_block_rsv(root->fs_info); 10451 10452 __link_block_group(cache->space_info, cache); 10453 10454 list_add_tail(&cache->bg_list, &trans->new_bgs); 10455 10456 set_avail_alloc_bits(extent_root->fs_info, type); 10457 return 0; 10458 } 10459 10460 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10461 { 10462 u64 extra_flags = chunk_to_extended(flags) & 10463 BTRFS_EXTENDED_PROFILE_MASK; 10464 10465 write_seqlock(&fs_info->profiles_lock); 10466 if (flags & BTRFS_BLOCK_GROUP_DATA) 10467 fs_info->avail_data_alloc_bits &= ~extra_flags; 10468 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10469 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10470 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10471 fs_info->avail_system_alloc_bits &= ~extra_flags; 10472 write_sequnlock(&fs_info->profiles_lock); 10473 } 10474 10475 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10476 struct btrfs_root *root, u64 group_start, 10477 struct extent_map *em) 10478 { 10479 struct btrfs_path *path; 10480 struct btrfs_block_group_cache *block_group; 10481 struct btrfs_free_cluster *cluster; 10482 struct btrfs_root *tree_root = root->fs_info->tree_root; 10483 struct btrfs_key key; 10484 struct inode *inode; 10485 struct kobject *kobj = NULL; 10486 int ret; 10487 int index; 10488 int factor; 10489 struct btrfs_caching_control *caching_ctl = NULL; 10490 bool remove_em; 10491 10492 root = root->fs_info->extent_root; 10493 10494 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10495 BUG_ON(!block_group); 10496 BUG_ON(!block_group->ro); 10497 10498 /* 10499 * Free the reserved super bytes from this block group before 10500 * remove it. 10501 */ 10502 free_excluded_extents(root, block_group); 10503 10504 memcpy(&key, &block_group->key, sizeof(key)); 10505 index = get_block_group_index(block_group); 10506 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10507 BTRFS_BLOCK_GROUP_RAID1 | 10508 BTRFS_BLOCK_GROUP_RAID10)) 10509 factor = 2; 10510 else 10511 factor = 1; 10512 10513 /* make sure this block group isn't part of an allocation cluster */ 10514 cluster = &root->fs_info->data_alloc_cluster; 10515 spin_lock(&cluster->refill_lock); 10516 btrfs_return_cluster_to_free_space(block_group, cluster); 10517 spin_unlock(&cluster->refill_lock); 10518 10519 /* 10520 * make sure this block group isn't part of a metadata 10521 * allocation cluster 10522 */ 10523 cluster = &root->fs_info->meta_alloc_cluster; 10524 spin_lock(&cluster->refill_lock); 10525 btrfs_return_cluster_to_free_space(block_group, cluster); 10526 spin_unlock(&cluster->refill_lock); 10527 10528 path = btrfs_alloc_path(); 10529 if (!path) { 10530 ret = -ENOMEM; 10531 goto out; 10532 } 10533 10534 /* 10535 * get the inode first so any iput calls done for the io_list 10536 * aren't the final iput (no unlinks allowed now) 10537 */ 10538 inode = lookup_free_space_inode(tree_root, block_group, path); 10539 10540 mutex_lock(&trans->transaction->cache_write_mutex); 10541 /* 10542 * make sure our free spache cache IO is done before remove the 10543 * free space inode 10544 */ 10545 spin_lock(&trans->transaction->dirty_bgs_lock); 10546 if (!list_empty(&block_group->io_list)) { 10547 list_del_init(&block_group->io_list); 10548 10549 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10550 10551 spin_unlock(&trans->transaction->dirty_bgs_lock); 10552 btrfs_wait_cache_io(root, trans, block_group, 10553 &block_group->io_ctl, path, 10554 block_group->key.objectid); 10555 btrfs_put_block_group(block_group); 10556 spin_lock(&trans->transaction->dirty_bgs_lock); 10557 } 10558 10559 if (!list_empty(&block_group->dirty_list)) { 10560 list_del_init(&block_group->dirty_list); 10561 btrfs_put_block_group(block_group); 10562 } 10563 spin_unlock(&trans->transaction->dirty_bgs_lock); 10564 mutex_unlock(&trans->transaction->cache_write_mutex); 10565 10566 if (!IS_ERR(inode)) { 10567 ret = btrfs_orphan_add(trans, inode); 10568 if (ret) { 10569 btrfs_add_delayed_iput(inode); 10570 goto out; 10571 } 10572 clear_nlink(inode); 10573 /* One for the block groups ref */ 10574 spin_lock(&block_group->lock); 10575 if (block_group->iref) { 10576 block_group->iref = 0; 10577 block_group->inode = NULL; 10578 spin_unlock(&block_group->lock); 10579 iput(inode); 10580 } else { 10581 spin_unlock(&block_group->lock); 10582 } 10583 /* One for our lookup ref */ 10584 btrfs_add_delayed_iput(inode); 10585 } 10586 10587 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10588 key.offset = block_group->key.objectid; 10589 key.type = 0; 10590 10591 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10592 if (ret < 0) 10593 goto out; 10594 if (ret > 0) 10595 btrfs_release_path(path); 10596 if (ret == 0) { 10597 ret = btrfs_del_item(trans, tree_root, path); 10598 if (ret) 10599 goto out; 10600 btrfs_release_path(path); 10601 } 10602 10603 spin_lock(&root->fs_info->block_group_cache_lock); 10604 rb_erase(&block_group->cache_node, 10605 &root->fs_info->block_group_cache_tree); 10606 RB_CLEAR_NODE(&block_group->cache_node); 10607 10608 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10609 root->fs_info->first_logical_byte = (u64)-1; 10610 spin_unlock(&root->fs_info->block_group_cache_lock); 10611 10612 down_write(&block_group->space_info->groups_sem); 10613 /* 10614 * we must use list_del_init so people can check to see if they 10615 * are still on the list after taking the semaphore 10616 */ 10617 list_del_init(&block_group->list); 10618 if (list_empty(&block_group->space_info->block_groups[index])) { 10619 kobj = block_group->space_info->block_group_kobjs[index]; 10620 block_group->space_info->block_group_kobjs[index] = NULL; 10621 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10622 } 10623 up_write(&block_group->space_info->groups_sem); 10624 if (kobj) { 10625 kobject_del(kobj); 10626 kobject_put(kobj); 10627 } 10628 10629 if (block_group->has_caching_ctl) 10630 caching_ctl = get_caching_control(block_group); 10631 if (block_group->cached == BTRFS_CACHE_STARTED) 10632 wait_block_group_cache_done(block_group); 10633 if (block_group->has_caching_ctl) { 10634 down_write(&root->fs_info->commit_root_sem); 10635 if (!caching_ctl) { 10636 struct btrfs_caching_control *ctl; 10637 10638 list_for_each_entry(ctl, 10639 &root->fs_info->caching_block_groups, list) 10640 if (ctl->block_group == block_group) { 10641 caching_ctl = ctl; 10642 atomic_inc(&caching_ctl->count); 10643 break; 10644 } 10645 } 10646 if (caching_ctl) 10647 list_del_init(&caching_ctl->list); 10648 up_write(&root->fs_info->commit_root_sem); 10649 if (caching_ctl) { 10650 /* Once for the caching bgs list and once for us. */ 10651 put_caching_control(caching_ctl); 10652 put_caching_control(caching_ctl); 10653 } 10654 } 10655 10656 spin_lock(&trans->transaction->dirty_bgs_lock); 10657 if (!list_empty(&block_group->dirty_list)) { 10658 WARN_ON(1); 10659 } 10660 if (!list_empty(&block_group->io_list)) { 10661 WARN_ON(1); 10662 } 10663 spin_unlock(&trans->transaction->dirty_bgs_lock); 10664 btrfs_remove_free_space_cache(block_group); 10665 10666 spin_lock(&block_group->space_info->lock); 10667 list_del_init(&block_group->ro_list); 10668 10669 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 10670 WARN_ON(block_group->space_info->total_bytes 10671 < block_group->key.offset); 10672 WARN_ON(block_group->space_info->bytes_readonly 10673 < block_group->key.offset); 10674 WARN_ON(block_group->space_info->disk_total 10675 < block_group->key.offset * factor); 10676 } 10677 block_group->space_info->total_bytes -= block_group->key.offset; 10678 block_group->space_info->bytes_readonly -= block_group->key.offset; 10679 block_group->space_info->disk_total -= block_group->key.offset * factor; 10680 10681 spin_unlock(&block_group->space_info->lock); 10682 10683 memcpy(&key, &block_group->key, sizeof(key)); 10684 10685 lock_chunks(root); 10686 if (!list_empty(&em->list)) { 10687 /* We're in the transaction->pending_chunks list. */ 10688 free_extent_map(em); 10689 } 10690 spin_lock(&block_group->lock); 10691 block_group->removed = 1; 10692 /* 10693 * At this point trimming can't start on this block group, because we 10694 * removed the block group from the tree fs_info->block_group_cache_tree 10695 * so no one can't find it anymore and even if someone already got this 10696 * block group before we removed it from the rbtree, they have already 10697 * incremented block_group->trimming - if they didn't, they won't find 10698 * any free space entries because we already removed them all when we 10699 * called btrfs_remove_free_space_cache(). 10700 * 10701 * And we must not remove the extent map from the fs_info->mapping_tree 10702 * to prevent the same logical address range and physical device space 10703 * ranges from being reused for a new block group. This is because our 10704 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10705 * completely transactionless, so while it is trimming a range the 10706 * currently running transaction might finish and a new one start, 10707 * allowing for new block groups to be created that can reuse the same 10708 * physical device locations unless we take this special care. 10709 * 10710 * There may also be an implicit trim operation if the file system 10711 * is mounted with -odiscard. The same protections must remain 10712 * in place until the extents have been discarded completely when 10713 * the transaction commit has completed. 10714 */ 10715 remove_em = (atomic_read(&block_group->trimming) == 0); 10716 /* 10717 * Make sure a trimmer task always sees the em in the pinned_chunks list 10718 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10719 * before checking block_group->removed). 10720 */ 10721 if (!remove_em) { 10722 /* 10723 * Our em might be in trans->transaction->pending_chunks which 10724 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10725 * and so is the fs_info->pinned_chunks list. 10726 * 10727 * So at this point we must be holding the chunk_mutex to avoid 10728 * any races with chunk allocation (more specifically at 10729 * volumes.c:contains_pending_extent()), to ensure it always 10730 * sees the em, either in the pending_chunks list or in the 10731 * pinned_chunks list. 10732 */ 10733 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10734 } 10735 spin_unlock(&block_group->lock); 10736 10737 if (remove_em) { 10738 struct extent_map_tree *em_tree; 10739 10740 em_tree = &root->fs_info->mapping_tree.map_tree; 10741 write_lock(&em_tree->lock); 10742 /* 10743 * The em might be in the pending_chunks list, so make sure the 10744 * chunk mutex is locked, since remove_extent_mapping() will 10745 * delete us from that list. 10746 */ 10747 remove_extent_mapping(em_tree, em); 10748 write_unlock(&em_tree->lock); 10749 /* once for the tree */ 10750 free_extent_map(em); 10751 } 10752 10753 unlock_chunks(root); 10754 10755 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10756 if (ret) 10757 goto out; 10758 10759 btrfs_put_block_group(block_group); 10760 btrfs_put_block_group(block_group); 10761 10762 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10763 if (ret > 0) 10764 ret = -EIO; 10765 if (ret < 0) 10766 goto out; 10767 10768 ret = btrfs_del_item(trans, root, path); 10769 out: 10770 btrfs_free_path(path); 10771 return ret; 10772 } 10773 10774 struct btrfs_trans_handle * 10775 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10776 const u64 chunk_offset) 10777 { 10778 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10779 struct extent_map *em; 10780 struct map_lookup *map; 10781 unsigned int num_items; 10782 10783 read_lock(&em_tree->lock); 10784 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10785 read_unlock(&em_tree->lock); 10786 ASSERT(em && em->start == chunk_offset); 10787 10788 /* 10789 * We need to reserve 3 + N units from the metadata space info in order 10790 * to remove a block group (done at btrfs_remove_chunk() and at 10791 * btrfs_remove_block_group()), which are used for: 10792 * 10793 * 1 unit for adding the free space inode's orphan (located in the tree 10794 * of tree roots). 10795 * 1 unit for deleting the block group item (located in the extent 10796 * tree). 10797 * 1 unit for deleting the free space item (located in tree of tree 10798 * roots). 10799 * N units for deleting N device extent items corresponding to each 10800 * stripe (located in the device tree). 10801 * 10802 * In order to remove a block group we also need to reserve units in the 10803 * system space info in order to update the chunk tree (update one or 10804 * more device items and remove one chunk item), but this is done at 10805 * btrfs_remove_chunk() through a call to check_system_chunk(). 10806 */ 10807 map = em->map_lookup; 10808 num_items = 3 + map->num_stripes; 10809 free_extent_map(em); 10810 10811 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10812 num_items, 1); 10813 } 10814 10815 /* 10816 * Process the unused_bgs list and remove any that don't have any allocated 10817 * space inside of them. 10818 */ 10819 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10820 { 10821 struct btrfs_block_group_cache *block_group; 10822 struct btrfs_space_info *space_info; 10823 struct btrfs_root *root = fs_info->extent_root; 10824 struct btrfs_trans_handle *trans; 10825 int ret = 0; 10826 10827 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10828 return; 10829 10830 spin_lock(&fs_info->unused_bgs_lock); 10831 while (!list_empty(&fs_info->unused_bgs)) { 10832 u64 start, end; 10833 int trimming; 10834 10835 block_group = list_first_entry(&fs_info->unused_bgs, 10836 struct btrfs_block_group_cache, 10837 bg_list); 10838 list_del_init(&block_group->bg_list); 10839 10840 space_info = block_group->space_info; 10841 10842 if (ret || btrfs_mixed_space_info(space_info)) { 10843 btrfs_put_block_group(block_group); 10844 continue; 10845 } 10846 spin_unlock(&fs_info->unused_bgs_lock); 10847 10848 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10849 10850 /* Don't want to race with allocators so take the groups_sem */ 10851 down_write(&space_info->groups_sem); 10852 spin_lock(&block_group->lock); 10853 if (block_group->reserved || 10854 btrfs_block_group_used(&block_group->item) || 10855 block_group->ro || 10856 list_is_singular(&block_group->list)) { 10857 /* 10858 * We want to bail if we made new allocations or have 10859 * outstanding allocations in this block group. We do 10860 * the ro check in case balance is currently acting on 10861 * this block group. 10862 */ 10863 spin_unlock(&block_group->lock); 10864 up_write(&space_info->groups_sem); 10865 goto next; 10866 } 10867 spin_unlock(&block_group->lock); 10868 10869 /* We don't want to force the issue, only flip if it's ok. */ 10870 ret = inc_block_group_ro(block_group, 0); 10871 up_write(&space_info->groups_sem); 10872 if (ret < 0) { 10873 ret = 0; 10874 goto next; 10875 } 10876 10877 /* 10878 * Want to do this before we do anything else so we can recover 10879 * properly if we fail to join the transaction. 10880 */ 10881 trans = btrfs_start_trans_remove_block_group(fs_info, 10882 block_group->key.objectid); 10883 if (IS_ERR(trans)) { 10884 btrfs_dec_block_group_ro(root, block_group); 10885 ret = PTR_ERR(trans); 10886 goto next; 10887 } 10888 10889 /* 10890 * We could have pending pinned extents for this block group, 10891 * just delete them, we don't care about them anymore. 10892 */ 10893 start = block_group->key.objectid; 10894 end = start + block_group->key.offset - 1; 10895 /* 10896 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10897 * btrfs_finish_extent_commit(). If we are at transaction N, 10898 * another task might be running finish_extent_commit() for the 10899 * previous transaction N - 1, and have seen a range belonging 10900 * to the block group in freed_extents[] before we were able to 10901 * clear the whole block group range from freed_extents[]. This 10902 * means that task can lookup for the block group after we 10903 * unpinned it from freed_extents[] and removed it, leading to 10904 * a BUG_ON() at btrfs_unpin_extent_range(). 10905 */ 10906 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10907 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10908 EXTENT_DIRTY); 10909 if (ret) { 10910 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10911 btrfs_dec_block_group_ro(root, block_group); 10912 goto end_trans; 10913 } 10914 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10915 EXTENT_DIRTY); 10916 if (ret) { 10917 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10918 btrfs_dec_block_group_ro(root, block_group); 10919 goto end_trans; 10920 } 10921 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10922 10923 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10924 spin_lock(&space_info->lock); 10925 spin_lock(&block_group->lock); 10926 10927 space_info->bytes_pinned -= block_group->pinned; 10928 space_info->bytes_readonly += block_group->pinned; 10929 percpu_counter_add(&space_info->total_bytes_pinned, 10930 -block_group->pinned); 10931 block_group->pinned = 0; 10932 10933 spin_unlock(&block_group->lock); 10934 spin_unlock(&space_info->lock); 10935 10936 /* DISCARD can flip during remount */ 10937 trimming = btrfs_test_opt(root->fs_info, DISCARD); 10938 10939 /* Implicit trim during transaction commit. */ 10940 if (trimming) 10941 btrfs_get_block_group_trimming(block_group); 10942 10943 /* 10944 * Btrfs_remove_chunk will abort the transaction if things go 10945 * horribly wrong. 10946 */ 10947 ret = btrfs_remove_chunk(trans, root, 10948 block_group->key.objectid); 10949 10950 if (ret) { 10951 if (trimming) 10952 btrfs_put_block_group_trimming(block_group); 10953 goto end_trans; 10954 } 10955 10956 /* 10957 * If we're not mounted with -odiscard, we can just forget 10958 * about this block group. Otherwise we'll need to wait 10959 * until transaction commit to do the actual discard. 10960 */ 10961 if (trimming) { 10962 spin_lock(&fs_info->unused_bgs_lock); 10963 /* 10964 * A concurrent scrub might have added us to the list 10965 * fs_info->unused_bgs, so use a list_move operation 10966 * to add the block group to the deleted_bgs list. 10967 */ 10968 list_move(&block_group->bg_list, 10969 &trans->transaction->deleted_bgs); 10970 spin_unlock(&fs_info->unused_bgs_lock); 10971 btrfs_get_block_group(block_group); 10972 } 10973 end_trans: 10974 btrfs_end_transaction(trans, root); 10975 next: 10976 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10977 btrfs_put_block_group(block_group); 10978 spin_lock(&fs_info->unused_bgs_lock); 10979 } 10980 spin_unlock(&fs_info->unused_bgs_lock); 10981 } 10982 10983 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10984 { 10985 struct btrfs_space_info *space_info; 10986 struct btrfs_super_block *disk_super; 10987 u64 features; 10988 u64 flags; 10989 int mixed = 0; 10990 int ret; 10991 10992 disk_super = fs_info->super_copy; 10993 if (!btrfs_super_root(disk_super)) 10994 return -EINVAL; 10995 10996 features = btrfs_super_incompat_flags(disk_super); 10997 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10998 mixed = 1; 10999 11000 flags = BTRFS_BLOCK_GROUP_SYSTEM; 11001 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11002 if (ret) 11003 goto out; 11004 11005 if (mixed) { 11006 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 11007 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11008 } else { 11009 flags = BTRFS_BLOCK_GROUP_METADATA; 11010 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11011 if (ret) 11012 goto out; 11013 11014 flags = BTRFS_BLOCK_GROUP_DATA; 11015 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 11016 } 11017 out: 11018 return ret; 11019 } 11020 11021 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 11022 { 11023 return unpin_extent_range(root, start, end, false); 11024 } 11025 11026 /* 11027 * It used to be that old block groups would be left around forever. 11028 * Iterating over them would be enough to trim unused space. Since we 11029 * now automatically remove them, we also need to iterate over unallocated 11030 * space. 11031 * 11032 * We don't want a transaction for this since the discard may take a 11033 * substantial amount of time. We don't require that a transaction be 11034 * running, but we do need to take a running transaction into account 11035 * to ensure that we're not discarding chunks that were released in 11036 * the current transaction. 11037 * 11038 * Holding the chunks lock will prevent other threads from allocating 11039 * or releasing chunks, but it won't prevent a running transaction 11040 * from committing and releasing the memory that the pending chunks 11041 * list head uses. For that, we need to take a reference to the 11042 * transaction. 11043 */ 11044 static int btrfs_trim_free_extents(struct btrfs_device *device, 11045 u64 minlen, u64 *trimmed) 11046 { 11047 u64 start = 0, len = 0; 11048 int ret; 11049 11050 *trimmed = 0; 11051 11052 /* Not writeable = nothing to do. */ 11053 if (!device->writeable) 11054 return 0; 11055 11056 /* No free space = nothing to do. */ 11057 if (device->total_bytes <= device->bytes_used) 11058 return 0; 11059 11060 ret = 0; 11061 11062 while (1) { 11063 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 11064 struct btrfs_transaction *trans; 11065 u64 bytes; 11066 11067 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 11068 if (ret) 11069 return ret; 11070 11071 down_read(&fs_info->commit_root_sem); 11072 11073 spin_lock(&fs_info->trans_lock); 11074 trans = fs_info->running_transaction; 11075 if (trans) 11076 atomic_inc(&trans->use_count); 11077 spin_unlock(&fs_info->trans_lock); 11078 11079 ret = find_free_dev_extent_start(trans, device, minlen, start, 11080 &start, &len); 11081 if (trans) 11082 btrfs_put_transaction(trans); 11083 11084 if (ret) { 11085 up_read(&fs_info->commit_root_sem); 11086 mutex_unlock(&fs_info->chunk_mutex); 11087 if (ret == -ENOSPC) 11088 ret = 0; 11089 break; 11090 } 11091 11092 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 11093 up_read(&fs_info->commit_root_sem); 11094 mutex_unlock(&fs_info->chunk_mutex); 11095 11096 if (ret) 11097 break; 11098 11099 start += len; 11100 *trimmed += bytes; 11101 11102 if (fatal_signal_pending(current)) { 11103 ret = -ERESTARTSYS; 11104 break; 11105 } 11106 11107 cond_resched(); 11108 } 11109 11110 return ret; 11111 } 11112 11113 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 11114 { 11115 struct btrfs_fs_info *fs_info = root->fs_info; 11116 struct btrfs_block_group_cache *cache = NULL; 11117 struct btrfs_device *device; 11118 struct list_head *devices; 11119 u64 group_trimmed; 11120 u64 start; 11121 u64 end; 11122 u64 trimmed = 0; 11123 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11124 int ret = 0; 11125 11126 /* 11127 * try to trim all FS space, our block group may start from non-zero. 11128 */ 11129 if (range->len == total_bytes) 11130 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11131 else 11132 cache = btrfs_lookup_block_group(fs_info, range->start); 11133 11134 while (cache) { 11135 if (cache->key.objectid >= (range->start + range->len)) { 11136 btrfs_put_block_group(cache); 11137 break; 11138 } 11139 11140 start = max(range->start, cache->key.objectid); 11141 end = min(range->start + range->len, 11142 cache->key.objectid + cache->key.offset); 11143 11144 if (end - start >= range->minlen) { 11145 if (!block_group_cache_done(cache)) { 11146 ret = cache_block_group(cache, 0); 11147 if (ret) { 11148 btrfs_put_block_group(cache); 11149 break; 11150 } 11151 ret = wait_block_group_cache_done(cache); 11152 if (ret) { 11153 btrfs_put_block_group(cache); 11154 break; 11155 } 11156 } 11157 ret = btrfs_trim_block_group(cache, 11158 &group_trimmed, 11159 start, 11160 end, 11161 range->minlen); 11162 11163 trimmed += group_trimmed; 11164 if (ret) { 11165 btrfs_put_block_group(cache); 11166 break; 11167 } 11168 } 11169 11170 cache = next_block_group(fs_info->tree_root, cache); 11171 } 11172 11173 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 11174 devices = &root->fs_info->fs_devices->alloc_list; 11175 list_for_each_entry(device, devices, dev_alloc_list) { 11176 ret = btrfs_trim_free_extents(device, range->minlen, 11177 &group_trimmed); 11178 if (ret) 11179 break; 11180 11181 trimmed += group_trimmed; 11182 } 11183 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 11184 11185 range->len = trimmed; 11186 return ret; 11187 } 11188 11189 /* 11190 * btrfs_{start,end}_write_no_snapshoting() are similar to 11191 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11192 * data into the page cache through nocow before the subvolume is snapshoted, 11193 * but flush the data into disk after the snapshot creation, or to prevent 11194 * operations while snapshoting is ongoing and that cause the snapshot to be 11195 * inconsistent (writes followed by expanding truncates for example). 11196 */ 11197 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 11198 { 11199 percpu_counter_dec(&root->subv_writers->counter); 11200 /* 11201 * Make sure counter is updated before we wake up waiters. 11202 */ 11203 smp_mb(); 11204 if (waitqueue_active(&root->subv_writers->wait)) 11205 wake_up(&root->subv_writers->wait); 11206 } 11207 11208 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 11209 { 11210 if (atomic_read(&root->will_be_snapshoted)) 11211 return 0; 11212 11213 percpu_counter_inc(&root->subv_writers->counter); 11214 /* 11215 * Make sure counter is updated before we check for snapshot creation. 11216 */ 11217 smp_mb(); 11218 if (atomic_read(&root->will_be_snapshoted)) { 11219 btrfs_end_write_no_snapshoting(root); 11220 return 0; 11221 } 11222 return 1; 11223 } 11224 11225 static int wait_snapshoting_atomic_t(atomic_t *a) 11226 { 11227 schedule(); 11228 return 0; 11229 } 11230 11231 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11232 { 11233 while (true) { 11234 int ret; 11235 11236 ret = btrfs_start_write_no_snapshoting(root); 11237 if (ret) 11238 break; 11239 wait_on_atomic_t(&root->will_be_snapshoted, 11240 wait_snapshoting_atomic_t, 11241 TASK_UNINTERRUPTIBLE); 11242 } 11243 } 11244