xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 82003e04)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 			      struct btrfs_root *root, u64 bytenr,
65 			      u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 				struct btrfs_root *root,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_root *root,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_root *root,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_root *extent_root, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
94 				    u64 ram_bytes, u64 num_bytes, int delalloc);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 				     u64 num_bytes, int delalloc);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 			       u64 num_bytes);
99 int btrfs_pin_extent(struct btrfs_root *root,
100 		     u64 bytenr, u64 num_bytes, int reserved);
101 static int __reserve_metadata_bytes(struct btrfs_root *root,
102 				    struct btrfs_space_info *space_info,
103 				    u64 orig_bytes,
104 				    enum btrfs_reserve_flush_enum flush);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 				     struct btrfs_space_info *space_info,
107 				     u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 				     struct btrfs_space_info *space_info,
110 				     u64 num_bytes);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
271 				       bytenr, 0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(root, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	atomic_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (atomic_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 				struct btrfs_block_group_cache *block_group)
334 {
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		root->nodesize : root->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group;
398 	struct btrfs_fs_info *fs_info;
399 	struct btrfs_root *extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	block_group = caching_ctl->block_group;
410 	fs_info = block_group->fs_info;
411 	extent_root = fs_info->extent_root;
412 
413 	path = btrfs_alloc_path();
414 	if (!path)
415 		return -ENOMEM;
416 
417 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418 
419 #ifdef CONFIG_BTRFS_DEBUG
420 	/*
421 	 * If we're fragmenting we don't want to make anybody think we can
422 	 * allocate from this block group until we've had a chance to fragment
423 	 * the free space.
424 	 */
425 	if (btrfs_should_fragment_free_space(extent_root, block_group))
426 		wakeup = false;
427 #endif
428 	/*
429 	 * We don't want to deadlock with somebody trying to allocate a new
430 	 * extent for the extent root while also trying to search the extent
431 	 * root to add free space.  So we skip locking and search the commit
432 	 * root, since its read-only
433 	 */
434 	path->skip_locking = 1;
435 	path->search_commit_root = 1;
436 	path->reada = READA_FORWARD;
437 
438 	key.objectid = last;
439 	key.offset = 0;
440 	key.type = BTRFS_EXTENT_ITEM_KEY;
441 
442 next:
443 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 	if (ret < 0)
445 		goto out;
446 
447 	leaf = path->nodes[0];
448 	nritems = btrfs_header_nritems(leaf);
449 
450 	while (1) {
451 		if (btrfs_fs_closing(fs_info) > 1) {
452 			last = (u64)-1;
453 			break;
454 		}
455 
456 		if (path->slots[0] < nritems) {
457 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 		} else {
459 			ret = find_next_key(path, 0, &key);
460 			if (ret)
461 				break;
462 
463 			if (need_resched() ||
464 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
465 				if (wakeup)
466 					caching_ctl->progress = last;
467 				btrfs_release_path(path);
468 				up_read(&fs_info->commit_root_sem);
469 				mutex_unlock(&caching_ctl->mutex);
470 				cond_resched();
471 				mutex_lock(&caching_ctl->mutex);
472 				down_read(&fs_info->commit_root_sem);
473 				goto next;
474 			}
475 
476 			ret = btrfs_next_leaf(extent_root, path);
477 			if (ret < 0)
478 				goto out;
479 			if (ret)
480 				break;
481 			leaf = path->nodes[0];
482 			nritems = btrfs_header_nritems(leaf);
483 			continue;
484 		}
485 
486 		if (key.objectid < last) {
487 			key.objectid = last;
488 			key.offset = 0;
489 			key.type = BTRFS_EXTENT_ITEM_KEY;
490 
491 			if (wakeup)
492 				caching_ctl->progress = last;
493 			btrfs_release_path(path);
494 			goto next;
495 		}
496 
497 		if (key.objectid < block_group->key.objectid) {
498 			path->slots[0]++;
499 			continue;
500 		}
501 
502 		if (key.objectid >= block_group->key.objectid +
503 		    block_group->key.offset)
504 			break;
505 
506 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 		    key.type == BTRFS_METADATA_ITEM_KEY) {
508 			total_found += add_new_free_space(block_group,
509 							  fs_info, last,
510 							  key.objectid);
511 			if (key.type == BTRFS_METADATA_ITEM_KEY)
512 				last = key.objectid +
513 					fs_info->tree_root->nodesize;
514 			else
515 				last = key.objectid + key.offset;
516 
517 			if (total_found > CACHING_CTL_WAKE_UP) {
518 				total_found = 0;
519 				if (wakeup)
520 					wake_up(&caching_ctl->wait);
521 			}
522 		}
523 		path->slots[0]++;
524 	}
525 	ret = 0;
526 
527 	total_found += add_new_free_space(block_group, fs_info, last,
528 					  block_group->key.objectid +
529 					  block_group->key.offset);
530 	caching_ctl->progress = (u64)-1;
531 
532 out:
533 	btrfs_free_path(path);
534 	return ret;
535 }
536 
537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 	struct btrfs_block_group_cache *block_group;
540 	struct btrfs_fs_info *fs_info;
541 	struct btrfs_caching_control *caching_ctl;
542 	struct btrfs_root *extent_root;
543 	int ret;
544 
545 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 	block_group = caching_ctl->block_group;
547 	fs_info = block_group->fs_info;
548 	extent_root = fs_info->extent_root;
549 
550 	mutex_lock(&caching_ctl->mutex);
551 	down_read(&fs_info->commit_root_sem);
552 
553 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 		ret = load_free_space_tree(caching_ctl);
555 	else
556 		ret = load_extent_tree_free(caching_ctl);
557 
558 	spin_lock(&block_group->lock);
559 	block_group->caching_ctl = NULL;
560 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 	spin_unlock(&block_group->lock);
562 
563 #ifdef CONFIG_BTRFS_DEBUG
564 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 		u64 bytes_used;
566 
567 		spin_lock(&block_group->space_info->lock);
568 		spin_lock(&block_group->lock);
569 		bytes_used = block_group->key.offset -
570 			btrfs_block_group_used(&block_group->item);
571 		block_group->space_info->bytes_used += bytes_used >> 1;
572 		spin_unlock(&block_group->lock);
573 		spin_unlock(&block_group->space_info->lock);
574 		fragment_free_space(extent_root, block_group);
575 	}
576 #endif
577 
578 	caching_ctl->progress = (u64)-1;
579 
580 	up_read(&fs_info->commit_root_sem);
581 	free_excluded_extents(fs_info->extent_root, block_group);
582 	mutex_unlock(&caching_ctl->mutex);
583 
584 	wake_up(&caching_ctl->wait);
585 
586 	put_caching_control(caching_ctl);
587 	btrfs_put_block_group(block_group);
588 }
589 
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 			     int load_cache_only)
592 {
593 	DEFINE_WAIT(wait);
594 	struct btrfs_fs_info *fs_info = cache->fs_info;
595 	struct btrfs_caching_control *caching_ctl;
596 	int ret = 0;
597 
598 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 	if (!caching_ctl)
600 		return -ENOMEM;
601 
602 	INIT_LIST_HEAD(&caching_ctl->list);
603 	mutex_init(&caching_ctl->mutex);
604 	init_waitqueue_head(&caching_ctl->wait);
605 	caching_ctl->block_group = cache;
606 	caching_ctl->progress = cache->key.objectid;
607 	atomic_set(&caching_ctl->count, 1);
608 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 			caching_thread, NULL, NULL);
610 
611 	spin_lock(&cache->lock);
612 	/*
613 	 * This should be a rare occasion, but this could happen I think in the
614 	 * case where one thread starts to load the space cache info, and then
615 	 * some other thread starts a transaction commit which tries to do an
616 	 * allocation while the other thread is still loading the space cache
617 	 * info.  The previous loop should have kept us from choosing this block
618 	 * group, but if we've moved to the state where we will wait on caching
619 	 * block groups we need to first check if we're doing a fast load here,
620 	 * so we can wait for it to finish, otherwise we could end up allocating
621 	 * from a block group who's cache gets evicted for one reason or
622 	 * another.
623 	 */
624 	while (cache->cached == BTRFS_CACHE_FAST) {
625 		struct btrfs_caching_control *ctl;
626 
627 		ctl = cache->caching_ctl;
628 		atomic_inc(&ctl->count);
629 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 		spin_unlock(&cache->lock);
631 
632 		schedule();
633 
634 		finish_wait(&ctl->wait, &wait);
635 		put_caching_control(ctl);
636 		spin_lock(&cache->lock);
637 	}
638 
639 	if (cache->cached != BTRFS_CACHE_NO) {
640 		spin_unlock(&cache->lock);
641 		kfree(caching_ctl);
642 		return 0;
643 	}
644 	WARN_ON(cache->caching_ctl);
645 	cache->caching_ctl = caching_ctl;
646 	cache->cached = BTRFS_CACHE_FAST;
647 	spin_unlock(&cache->lock);
648 
649 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 		mutex_lock(&caching_ctl->mutex);
651 		ret = load_free_space_cache(fs_info, cache);
652 
653 		spin_lock(&cache->lock);
654 		if (ret == 1) {
655 			cache->caching_ctl = NULL;
656 			cache->cached = BTRFS_CACHE_FINISHED;
657 			cache->last_byte_to_unpin = (u64)-1;
658 			caching_ctl->progress = (u64)-1;
659 		} else {
660 			if (load_cache_only) {
661 				cache->caching_ctl = NULL;
662 				cache->cached = BTRFS_CACHE_NO;
663 			} else {
664 				cache->cached = BTRFS_CACHE_STARTED;
665 				cache->has_caching_ctl = 1;
666 			}
667 		}
668 		spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 		if (ret == 1 &&
671 		    btrfs_should_fragment_free_space(fs_info->extent_root,
672 						     cache)) {
673 			u64 bytes_used;
674 
675 			spin_lock(&cache->space_info->lock);
676 			spin_lock(&cache->lock);
677 			bytes_used = cache->key.offset -
678 				btrfs_block_group_used(&cache->item);
679 			cache->space_info->bytes_used += bytes_used >> 1;
680 			spin_unlock(&cache->lock);
681 			spin_unlock(&cache->space_info->lock);
682 			fragment_free_space(fs_info->extent_root, cache);
683 		}
684 #endif
685 		mutex_unlock(&caching_ctl->mutex);
686 
687 		wake_up(&caching_ctl->wait);
688 		if (ret == 1) {
689 			put_caching_control(caching_ctl);
690 			free_excluded_extents(fs_info->extent_root, cache);
691 			return 0;
692 		}
693 	} else {
694 		/*
695 		 * We're either using the free space tree or no caching at all.
696 		 * Set cached to the appropriate value and wakeup any waiters.
697 		 */
698 		spin_lock(&cache->lock);
699 		if (load_cache_only) {
700 			cache->caching_ctl = NULL;
701 			cache->cached = BTRFS_CACHE_NO;
702 		} else {
703 			cache->cached = BTRFS_CACHE_STARTED;
704 			cache->has_caching_ctl = 1;
705 		}
706 		spin_unlock(&cache->lock);
707 		wake_up(&caching_ctl->wait);
708 	}
709 
710 	if (load_cache_only) {
711 		put_caching_control(caching_ctl);
712 		return 0;
713 	}
714 
715 	down_write(&fs_info->commit_root_sem);
716 	atomic_inc(&caching_ctl->count);
717 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 	up_write(&fs_info->commit_root_sem);
719 
720 	btrfs_get_block_group(cache);
721 
722 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723 
724 	return ret;
725 }
726 
727 /*
728  * return the block group that starts at or after bytenr
729  */
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 	return block_group_cache_tree_search(info, bytenr, 0);
734 }
735 
736 /*
737  * return the block group that contains the given bytenr
738  */
739 struct btrfs_block_group_cache *btrfs_lookup_block_group(
740 						 struct btrfs_fs_info *info,
741 						 u64 bytenr)
742 {
743 	return block_group_cache_tree_search(info, bytenr, 1);
744 }
745 
746 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
747 						  u64 flags)
748 {
749 	struct list_head *head = &info->space_info;
750 	struct btrfs_space_info *found;
751 
752 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
753 
754 	rcu_read_lock();
755 	list_for_each_entry_rcu(found, head, list) {
756 		if (found->flags & flags) {
757 			rcu_read_unlock();
758 			return found;
759 		}
760 	}
761 	rcu_read_unlock();
762 	return NULL;
763 }
764 
765 /*
766  * after adding space to the filesystem, we need to clear the full flags
767  * on all the space infos.
768  */
769 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
770 {
771 	struct list_head *head = &info->space_info;
772 	struct btrfs_space_info *found;
773 
774 	rcu_read_lock();
775 	list_for_each_entry_rcu(found, head, list)
776 		found->full = 0;
777 	rcu_read_unlock();
778 }
779 
780 /* simple helper to search for an existing data extent at a given offset */
781 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
782 {
783 	int ret;
784 	struct btrfs_key key;
785 	struct btrfs_path *path;
786 
787 	path = btrfs_alloc_path();
788 	if (!path)
789 		return -ENOMEM;
790 
791 	key.objectid = start;
792 	key.offset = len;
793 	key.type = BTRFS_EXTENT_ITEM_KEY;
794 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
795 				0, 0);
796 	btrfs_free_path(path);
797 	return ret;
798 }
799 
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 			     struct btrfs_root *root, u64 bytenr,
811 			     u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 	struct btrfs_delayed_ref_head *head;
814 	struct btrfs_delayed_ref_root *delayed_refs;
815 	struct btrfs_path *path;
816 	struct btrfs_extent_item *ei;
817 	struct extent_buffer *leaf;
818 	struct btrfs_key key;
819 	u32 item_size;
820 	u64 num_refs;
821 	u64 extent_flags;
822 	int ret;
823 
824 	/*
825 	 * If we don't have skinny metadata, don't bother doing anything
826 	 * different
827 	 */
828 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
829 		offset = root->nodesize;
830 		metadata = 0;
831 	}
832 
833 	path = btrfs_alloc_path();
834 	if (!path)
835 		return -ENOMEM;
836 
837 	if (!trans) {
838 		path->skip_locking = 1;
839 		path->search_commit_root = 1;
840 	}
841 
842 search_again:
843 	key.objectid = bytenr;
844 	key.offset = offset;
845 	if (metadata)
846 		key.type = BTRFS_METADATA_ITEM_KEY;
847 	else
848 		key.type = BTRFS_EXTENT_ITEM_KEY;
849 
850 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
851 				&key, path, 0, 0);
852 	if (ret < 0)
853 		goto out_free;
854 
855 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
856 		if (path->slots[0]) {
857 			path->slots[0]--;
858 			btrfs_item_key_to_cpu(path->nodes[0], &key,
859 					      path->slots[0]);
860 			if (key.objectid == bytenr &&
861 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
862 			    key.offset == root->nodesize)
863 				ret = 0;
864 		}
865 	}
866 
867 	if (ret == 0) {
868 		leaf = path->nodes[0];
869 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
870 		if (item_size >= sizeof(*ei)) {
871 			ei = btrfs_item_ptr(leaf, path->slots[0],
872 					    struct btrfs_extent_item);
873 			num_refs = btrfs_extent_refs(leaf, ei);
874 			extent_flags = btrfs_extent_flags(leaf, ei);
875 		} else {
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 			struct btrfs_extent_item_v0 *ei0;
878 			BUG_ON(item_size != sizeof(*ei0));
879 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
880 					     struct btrfs_extent_item_v0);
881 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
882 			/* FIXME: this isn't correct for data */
883 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
884 #else
885 			BUG();
886 #endif
887 		}
888 		BUG_ON(num_refs == 0);
889 	} else {
890 		num_refs = 0;
891 		extent_flags = 0;
892 		ret = 0;
893 	}
894 
895 	if (!trans)
896 		goto out;
897 
898 	delayed_refs = &trans->transaction->delayed_refs;
899 	spin_lock(&delayed_refs->lock);
900 	head = btrfs_find_delayed_ref_head(trans, bytenr);
901 	if (head) {
902 		if (!mutex_trylock(&head->mutex)) {
903 			atomic_inc(&head->node.refs);
904 			spin_unlock(&delayed_refs->lock);
905 
906 			btrfs_release_path(path);
907 
908 			/*
909 			 * Mutex was contended, block until it's released and try
910 			 * again
911 			 */
912 			mutex_lock(&head->mutex);
913 			mutex_unlock(&head->mutex);
914 			btrfs_put_delayed_ref(&head->node);
915 			goto search_again;
916 		}
917 		spin_lock(&head->lock);
918 		if (head->extent_op && head->extent_op->update_flags)
919 			extent_flags |= head->extent_op->flags_to_set;
920 		else
921 			BUG_ON(num_refs == 0);
922 
923 		num_refs += head->node.ref_mod;
924 		spin_unlock(&head->lock);
925 		mutex_unlock(&head->mutex);
926 	}
927 	spin_unlock(&delayed_refs->lock);
928 out:
929 	WARN_ON(num_refs == 0);
930 	if (refs)
931 		*refs = num_refs;
932 	if (flags)
933 		*flags = extent_flags;
934 out_free:
935 	btrfs_free_path(path);
936 	return ret;
937 }
938 
939 /*
940  * Back reference rules.  Back refs have three main goals:
941  *
942  * 1) differentiate between all holders of references to an extent so that
943  *    when a reference is dropped we can make sure it was a valid reference
944  *    before freeing the extent.
945  *
946  * 2) Provide enough information to quickly find the holders of an extent
947  *    if we notice a given block is corrupted or bad.
948  *
949  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950  *    maintenance.  This is actually the same as #2, but with a slightly
951  *    different use case.
952  *
953  * There are two kinds of back refs. The implicit back refs is optimized
954  * for pointers in non-shared tree blocks. For a given pointer in a block,
955  * back refs of this kind provide information about the block's owner tree
956  * and the pointer's key. These information allow us to find the block by
957  * b-tree searching. The full back refs is for pointers in tree blocks not
958  * referenced by their owner trees. The location of tree block is recorded
959  * in the back refs. Actually the full back refs is generic, and can be
960  * used in all cases the implicit back refs is used. The major shortcoming
961  * of the full back refs is its overhead. Every time a tree block gets
962  * COWed, we have to update back refs entry for all pointers in it.
963  *
964  * For a newly allocated tree block, we use implicit back refs for
965  * pointers in it. This means most tree related operations only involve
966  * implicit back refs. For a tree block created in old transaction, the
967  * only way to drop a reference to it is COW it. So we can detect the
968  * event that tree block loses its owner tree's reference and do the
969  * back refs conversion.
970  *
971  * When a tree block is COWed through a tree, there are four cases:
972  *
973  * The reference count of the block is one and the tree is the block's
974  * owner tree. Nothing to do in this case.
975  *
976  * The reference count of the block is one and the tree is not the
977  * block's owner tree. In this case, full back refs is used for pointers
978  * in the block. Remove these full back refs, add implicit back refs for
979  * every pointers in the new block.
980  *
981  * The reference count of the block is greater than one and the tree is
982  * the block's owner tree. In this case, implicit back refs is used for
983  * pointers in the block. Add full back refs for every pointers in the
984  * block, increase lower level extents' reference counts. The original
985  * implicit back refs are entailed to the new block.
986  *
987  * The reference count of the block is greater than one and the tree is
988  * not the block's owner tree. Add implicit back refs for every pointer in
989  * the new block, increase lower level extents' reference count.
990  *
991  * Back Reference Key composing:
992  *
993  * The key objectid corresponds to the first byte in the extent,
994  * The key type is used to differentiate between types of back refs.
995  * There are different meanings of the key offset for different types
996  * of back refs.
997  *
998  * File extents can be referenced by:
999  *
1000  * - multiple snapshots, subvolumes, or different generations in one subvol
1001  * - different files inside a single subvolume
1002  * - different offsets inside a file (bookend extents in file.c)
1003  *
1004  * The extent ref structure for the implicit back refs has fields for:
1005  *
1006  * - Objectid of the subvolume root
1007  * - objectid of the file holding the reference
1008  * - original offset in the file
1009  * - how many bookend extents
1010  *
1011  * The key offset for the implicit back refs is hash of the first
1012  * three fields.
1013  *
1014  * The extent ref structure for the full back refs has field for:
1015  *
1016  * - number of pointers in the tree leaf
1017  *
1018  * The key offset for the implicit back refs is the first byte of
1019  * the tree leaf
1020  *
1021  * When a file extent is allocated, The implicit back refs is used.
1022  * the fields are filled in:
1023  *
1024  *     (root_key.objectid, inode objectid, offset in file, 1)
1025  *
1026  * When a file extent is removed file truncation, we find the
1027  * corresponding implicit back refs and check the following fields:
1028  *
1029  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1030  *
1031  * Btree extents can be referenced by:
1032  *
1033  * - Different subvolumes
1034  *
1035  * Both the implicit back refs and the full back refs for tree blocks
1036  * only consist of key. The key offset for the implicit back refs is
1037  * objectid of block's owner tree. The key offset for the full back refs
1038  * is the first byte of parent block.
1039  *
1040  * When implicit back refs is used, information about the lowest key and
1041  * level of the tree block are required. These information are stored in
1042  * tree block info structure.
1043  */
1044 
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1047 				  struct btrfs_root *root,
1048 				  struct btrfs_path *path,
1049 				  u64 owner, u32 extra_size)
1050 {
1051 	struct btrfs_extent_item *item;
1052 	struct btrfs_extent_item_v0 *ei0;
1053 	struct btrfs_extent_ref_v0 *ref0;
1054 	struct btrfs_tree_block_info *bi;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_key key;
1057 	struct btrfs_key found_key;
1058 	u32 new_size = sizeof(*item);
1059 	u64 refs;
1060 	int ret;
1061 
1062 	leaf = path->nodes[0];
1063 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064 
1065 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 			     struct btrfs_extent_item_v0);
1068 	refs = btrfs_extent_refs_v0(leaf, ei0);
1069 
1070 	if (owner == (u64)-1) {
1071 		while (1) {
1072 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 				ret = btrfs_next_leaf(root, path);
1074 				if (ret < 0)
1075 					return ret;
1076 				BUG_ON(ret > 0); /* Corruption */
1077 				leaf = path->nodes[0];
1078 			}
1079 			btrfs_item_key_to_cpu(leaf, &found_key,
1080 					      path->slots[0]);
1081 			BUG_ON(key.objectid != found_key.objectid);
1082 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 				path->slots[0]++;
1084 				continue;
1085 			}
1086 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 					      struct btrfs_extent_ref_v0);
1088 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 			break;
1090 		}
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 		new_size += sizeof(*bi);
1096 
1097 	new_size -= sizeof(*ei0);
1098 	ret = btrfs_search_slot(trans, root, &key, path,
1099 				new_size + extra_size, 1);
1100 	if (ret < 0)
1101 		return ret;
1102 	BUG_ON(ret); /* Corruption */
1103 
1104 	btrfs_extend_item(root, path, new_size);
1105 
1106 	leaf = path->nodes[0];
1107 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 	btrfs_set_extent_refs(leaf, item, refs);
1109 	/* FIXME: get real generation */
1110 	btrfs_set_extent_generation(leaf, item, 0);
1111 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 		btrfs_set_extent_flags(leaf, item,
1113 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 		bi = (struct btrfs_tree_block_info *)(item + 1);
1116 		/* FIXME: get first key of the block */
1117 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1118 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 	} else {
1120 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 	}
1122 	btrfs_mark_buffer_dirty(leaf);
1123 	return 0;
1124 }
1125 #endif
1126 
1127 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1128 {
1129 	u32 high_crc = ~(u32)0;
1130 	u32 low_crc = ~(u32)0;
1131 	__le64 lenum;
1132 
1133 	lenum = cpu_to_le64(root_objectid);
1134 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1135 	lenum = cpu_to_le64(owner);
1136 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1137 	lenum = cpu_to_le64(offset);
1138 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1139 
1140 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1141 }
1142 
1143 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1144 				     struct btrfs_extent_data_ref *ref)
1145 {
1146 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1147 				    btrfs_extent_data_ref_objectid(leaf, ref),
1148 				    btrfs_extent_data_ref_offset(leaf, ref));
1149 }
1150 
1151 static int match_extent_data_ref(struct extent_buffer *leaf,
1152 				 struct btrfs_extent_data_ref *ref,
1153 				 u64 root_objectid, u64 owner, u64 offset)
1154 {
1155 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1156 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1157 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1158 		return 0;
1159 	return 1;
1160 }
1161 
1162 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1163 					   struct btrfs_root *root,
1164 					   struct btrfs_path *path,
1165 					   u64 bytenr, u64 parent,
1166 					   u64 root_objectid,
1167 					   u64 owner, u64 offset)
1168 {
1169 	struct btrfs_key key;
1170 	struct btrfs_extent_data_ref *ref;
1171 	struct extent_buffer *leaf;
1172 	u32 nritems;
1173 	int ret;
1174 	int recow;
1175 	int err = -ENOENT;
1176 
1177 	key.objectid = bytenr;
1178 	if (parent) {
1179 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1180 		key.offset = parent;
1181 	} else {
1182 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1183 		key.offset = hash_extent_data_ref(root_objectid,
1184 						  owner, offset);
1185 	}
1186 again:
1187 	recow = 0;
1188 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1189 	if (ret < 0) {
1190 		err = ret;
1191 		goto fail;
1192 	}
1193 
1194 	if (parent) {
1195 		if (!ret)
1196 			return 0;
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1199 		btrfs_release_path(path);
1200 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 		if (ret < 0) {
1202 			err = ret;
1203 			goto fail;
1204 		}
1205 		if (!ret)
1206 			return 0;
1207 #endif
1208 		goto fail;
1209 	}
1210 
1211 	leaf = path->nodes[0];
1212 	nritems = btrfs_header_nritems(leaf);
1213 	while (1) {
1214 		if (path->slots[0] >= nritems) {
1215 			ret = btrfs_next_leaf(root, path);
1216 			if (ret < 0)
1217 				err = ret;
1218 			if (ret)
1219 				goto fail;
1220 
1221 			leaf = path->nodes[0];
1222 			nritems = btrfs_header_nritems(leaf);
1223 			recow = 1;
1224 		}
1225 
1226 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1227 		if (key.objectid != bytenr ||
1228 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1229 			goto fail;
1230 
1231 		ref = btrfs_item_ptr(leaf, path->slots[0],
1232 				     struct btrfs_extent_data_ref);
1233 
1234 		if (match_extent_data_ref(leaf, ref, root_objectid,
1235 					  owner, offset)) {
1236 			if (recow) {
1237 				btrfs_release_path(path);
1238 				goto again;
1239 			}
1240 			err = 0;
1241 			break;
1242 		}
1243 		path->slots[0]++;
1244 	}
1245 fail:
1246 	return err;
1247 }
1248 
1249 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1250 					   struct btrfs_root *root,
1251 					   struct btrfs_path *path,
1252 					   u64 bytenr, u64 parent,
1253 					   u64 root_objectid, u64 owner,
1254 					   u64 offset, int refs_to_add)
1255 {
1256 	struct btrfs_key key;
1257 	struct extent_buffer *leaf;
1258 	u32 size;
1259 	u32 num_refs;
1260 	int ret;
1261 
1262 	key.objectid = bytenr;
1263 	if (parent) {
1264 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1265 		key.offset = parent;
1266 		size = sizeof(struct btrfs_shared_data_ref);
1267 	} else {
1268 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1269 		key.offset = hash_extent_data_ref(root_objectid,
1270 						  owner, offset);
1271 		size = sizeof(struct btrfs_extent_data_ref);
1272 	}
1273 
1274 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1275 	if (ret && ret != -EEXIST)
1276 		goto fail;
1277 
1278 	leaf = path->nodes[0];
1279 	if (parent) {
1280 		struct btrfs_shared_data_ref *ref;
1281 		ref = btrfs_item_ptr(leaf, path->slots[0],
1282 				     struct btrfs_shared_data_ref);
1283 		if (ret == 0) {
1284 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1285 		} else {
1286 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1287 			num_refs += refs_to_add;
1288 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1289 		}
1290 	} else {
1291 		struct btrfs_extent_data_ref *ref;
1292 		while (ret == -EEXIST) {
1293 			ref = btrfs_item_ptr(leaf, path->slots[0],
1294 					     struct btrfs_extent_data_ref);
1295 			if (match_extent_data_ref(leaf, ref, root_objectid,
1296 						  owner, offset))
1297 				break;
1298 			btrfs_release_path(path);
1299 			key.offset++;
1300 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1301 						      size);
1302 			if (ret && ret != -EEXIST)
1303 				goto fail;
1304 
1305 			leaf = path->nodes[0];
1306 		}
1307 		ref = btrfs_item_ptr(leaf, path->slots[0],
1308 				     struct btrfs_extent_data_ref);
1309 		if (ret == 0) {
1310 			btrfs_set_extent_data_ref_root(leaf, ref,
1311 						       root_objectid);
1312 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1313 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1314 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1315 		} else {
1316 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1317 			num_refs += refs_to_add;
1318 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1319 		}
1320 	}
1321 	btrfs_mark_buffer_dirty(leaf);
1322 	ret = 0;
1323 fail:
1324 	btrfs_release_path(path);
1325 	return ret;
1326 }
1327 
1328 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1329 					   struct btrfs_root *root,
1330 					   struct btrfs_path *path,
1331 					   int refs_to_drop, int *last_ref)
1332 {
1333 	struct btrfs_key key;
1334 	struct btrfs_extent_data_ref *ref1 = NULL;
1335 	struct btrfs_shared_data_ref *ref2 = NULL;
1336 	struct extent_buffer *leaf;
1337 	u32 num_refs = 0;
1338 	int ret = 0;
1339 
1340 	leaf = path->nodes[0];
1341 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1342 
1343 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1344 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1345 				      struct btrfs_extent_data_ref);
1346 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1347 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1348 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1349 				      struct btrfs_shared_data_ref);
1350 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1353 		struct btrfs_extent_ref_v0 *ref0;
1354 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_extent_ref_v0);
1356 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1357 #endif
1358 	} else {
1359 		BUG();
1360 	}
1361 
1362 	BUG_ON(num_refs < refs_to_drop);
1363 	num_refs -= refs_to_drop;
1364 
1365 	if (num_refs == 0) {
1366 		ret = btrfs_del_item(trans, root, path);
1367 		*last_ref = 1;
1368 	} else {
1369 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1370 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1371 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1372 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 		else {
1375 			struct btrfs_extent_ref_v0 *ref0;
1376 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 					struct btrfs_extent_ref_v0);
1378 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1379 		}
1380 #endif
1381 		btrfs_mark_buffer_dirty(leaf);
1382 	}
1383 	return ret;
1384 }
1385 
1386 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1387 					  struct btrfs_extent_inline_ref *iref)
1388 {
1389 	struct btrfs_key key;
1390 	struct extent_buffer *leaf;
1391 	struct btrfs_extent_data_ref *ref1;
1392 	struct btrfs_shared_data_ref *ref2;
1393 	u32 num_refs = 0;
1394 
1395 	leaf = path->nodes[0];
1396 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1397 	if (iref) {
1398 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1399 		    BTRFS_EXTENT_DATA_REF_KEY) {
1400 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1401 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1402 		} else {
1403 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1404 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405 		}
1406 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1407 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1408 				      struct btrfs_extent_data_ref);
1409 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1411 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1412 				      struct btrfs_shared_data_ref);
1413 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1416 		struct btrfs_extent_ref_v0 *ref0;
1417 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1418 				      struct btrfs_extent_ref_v0);
1419 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1420 #endif
1421 	} else {
1422 		WARN_ON(1);
1423 	}
1424 	return num_refs;
1425 }
1426 
1427 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1428 					  struct btrfs_root *root,
1429 					  struct btrfs_path *path,
1430 					  u64 bytenr, u64 parent,
1431 					  u64 root_objectid)
1432 {
1433 	struct btrfs_key key;
1434 	int ret;
1435 
1436 	key.objectid = bytenr;
1437 	if (parent) {
1438 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1439 		key.offset = parent;
1440 	} else {
1441 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1442 		key.offset = root_objectid;
1443 	}
1444 
1445 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1446 	if (ret > 0)
1447 		ret = -ENOENT;
1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 	if (ret == -ENOENT && parent) {
1450 		btrfs_release_path(path);
1451 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1452 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1453 		if (ret > 0)
1454 			ret = -ENOENT;
1455 	}
1456 #endif
1457 	return ret;
1458 }
1459 
1460 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1461 					  struct btrfs_root *root,
1462 					  struct btrfs_path *path,
1463 					  u64 bytenr, u64 parent,
1464 					  u64 root_objectid)
1465 {
1466 	struct btrfs_key key;
1467 	int ret;
1468 
1469 	key.objectid = bytenr;
1470 	if (parent) {
1471 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1472 		key.offset = parent;
1473 	} else {
1474 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1475 		key.offset = root_objectid;
1476 	}
1477 
1478 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1479 	btrfs_release_path(path);
1480 	return ret;
1481 }
1482 
1483 static inline int extent_ref_type(u64 parent, u64 owner)
1484 {
1485 	int type;
1486 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1487 		if (parent > 0)
1488 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1489 		else
1490 			type = BTRFS_TREE_BLOCK_REF_KEY;
1491 	} else {
1492 		if (parent > 0)
1493 			type = BTRFS_SHARED_DATA_REF_KEY;
1494 		else
1495 			type = BTRFS_EXTENT_DATA_REF_KEY;
1496 	}
1497 	return type;
1498 }
1499 
1500 static int find_next_key(struct btrfs_path *path, int level,
1501 			 struct btrfs_key *key)
1502 
1503 {
1504 	for (; level < BTRFS_MAX_LEVEL; level++) {
1505 		if (!path->nodes[level])
1506 			break;
1507 		if (path->slots[level] + 1 >=
1508 		    btrfs_header_nritems(path->nodes[level]))
1509 			continue;
1510 		if (level == 0)
1511 			btrfs_item_key_to_cpu(path->nodes[level], key,
1512 					      path->slots[level] + 1);
1513 		else
1514 			btrfs_node_key_to_cpu(path->nodes[level], key,
1515 					      path->slots[level] + 1);
1516 		return 0;
1517 	}
1518 	return 1;
1519 }
1520 
1521 /*
1522  * look for inline back ref. if back ref is found, *ref_ret is set
1523  * to the address of inline back ref, and 0 is returned.
1524  *
1525  * if back ref isn't found, *ref_ret is set to the address where it
1526  * should be inserted, and -ENOENT is returned.
1527  *
1528  * if insert is true and there are too many inline back refs, the path
1529  * points to the extent item, and -EAGAIN is returned.
1530  *
1531  * NOTE: inline back refs are ordered in the same way that back ref
1532  *	 items in the tree are ordered.
1533  */
1534 static noinline_for_stack
1535 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1536 				 struct btrfs_root *root,
1537 				 struct btrfs_path *path,
1538 				 struct btrfs_extent_inline_ref **ref_ret,
1539 				 u64 bytenr, u64 num_bytes,
1540 				 u64 parent, u64 root_objectid,
1541 				 u64 owner, u64 offset, int insert)
1542 {
1543 	struct btrfs_key key;
1544 	struct extent_buffer *leaf;
1545 	struct btrfs_extent_item *ei;
1546 	struct btrfs_extent_inline_ref *iref;
1547 	u64 flags;
1548 	u64 item_size;
1549 	unsigned long ptr;
1550 	unsigned long end;
1551 	int extra_size;
1552 	int type;
1553 	int want;
1554 	int ret;
1555 	int err = 0;
1556 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1557 						 SKINNY_METADATA);
1558 
1559 	key.objectid = bytenr;
1560 	key.type = BTRFS_EXTENT_ITEM_KEY;
1561 	key.offset = num_bytes;
1562 
1563 	want = extent_ref_type(parent, owner);
1564 	if (insert) {
1565 		extra_size = btrfs_extent_inline_ref_size(want);
1566 		path->keep_locks = 1;
1567 	} else
1568 		extra_size = -1;
1569 
1570 	/*
1571 	 * Owner is our parent level, so we can just add one to get the level
1572 	 * for the block we are interested in.
1573 	 */
1574 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1575 		key.type = BTRFS_METADATA_ITEM_KEY;
1576 		key.offset = owner;
1577 	}
1578 
1579 again:
1580 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1581 	if (ret < 0) {
1582 		err = ret;
1583 		goto out;
1584 	}
1585 
1586 	/*
1587 	 * We may be a newly converted file system which still has the old fat
1588 	 * extent entries for metadata, so try and see if we have one of those.
1589 	 */
1590 	if (ret > 0 && skinny_metadata) {
1591 		skinny_metadata = false;
1592 		if (path->slots[0]) {
1593 			path->slots[0]--;
1594 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1595 					      path->slots[0]);
1596 			if (key.objectid == bytenr &&
1597 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1598 			    key.offset == num_bytes)
1599 				ret = 0;
1600 		}
1601 		if (ret) {
1602 			key.objectid = bytenr;
1603 			key.type = BTRFS_EXTENT_ITEM_KEY;
1604 			key.offset = num_bytes;
1605 			btrfs_release_path(path);
1606 			goto again;
1607 		}
1608 	}
1609 
1610 	if (ret && !insert) {
1611 		err = -ENOENT;
1612 		goto out;
1613 	} else if (WARN_ON(ret)) {
1614 		err = -EIO;
1615 		goto out;
1616 	}
1617 
1618 	leaf = path->nodes[0];
1619 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 	if (item_size < sizeof(*ei)) {
1622 		if (!insert) {
1623 			err = -ENOENT;
1624 			goto out;
1625 		}
1626 		ret = convert_extent_item_v0(trans, root, path, owner,
1627 					     extra_size);
1628 		if (ret < 0) {
1629 			err = ret;
1630 			goto out;
1631 		}
1632 		leaf = path->nodes[0];
1633 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 	}
1635 #endif
1636 	BUG_ON(item_size < sizeof(*ei));
1637 
1638 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 	flags = btrfs_extent_flags(leaf, ei);
1640 
1641 	ptr = (unsigned long)(ei + 1);
1642 	end = (unsigned long)ei + item_size;
1643 
1644 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1645 		ptr += sizeof(struct btrfs_tree_block_info);
1646 		BUG_ON(ptr > end);
1647 	}
1648 
1649 	err = -ENOENT;
1650 	while (1) {
1651 		if (ptr >= end) {
1652 			WARN_ON(ptr > end);
1653 			break;
1654 		}
1655 		iref = (struct btrfs_extent_inline_ref *)ptr;
1656 		type = btrfs_extent_inline_ref_type(leaf, iref);
1657 		if (want < type)
1658 			break;
1659 		if (want > type) {
1660 			ptr += btrfs_extent_inline_ref_size(type);
1661 			continue;
1662 		}
1663 
1664 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1665 			struct btrfs_extent_data_ref *dref;
1666 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 			if (match_extent_data_ref(leaf, dref, root_objectid,
1668 						  owner, offset)) {
1669 				err = 0;
1670 				break;
1671 			}
1672 			if (hash_extent_data_ref_item(leaf, dref) <
1673 			    hash_extent_data_ref(root_objectid, owner, offset))
1674 				break;
1675 		} else {
1676 			u64 ref_offset;
1677 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1678 			if (parent > 0) {
1679 				if (parent == ref_offset) {
1680 					err = 0;
1681 					break;
1682 				}
1683 				if (ref_offset < parent)
1684 					break;
1685 			} else {
1686 				if (root_objectid == ref_offset) {
1687 					err = 0;
1688 					break;
1689 				}
1690 				if (ref_offset < root_objectid)
1691 					break;
1692 			}
1693 		}
1694 		ptr += btrfs_extent_inline_ref_size(type);
1695 	}
1696 	if (err == -ENOENT && insert) {
1697 		if (item_size + extra_size >=
1698 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1699 			err = -EAGAIN;
1700 			goto out;
1701 		}
1702 		/*
1703 		 * To add new inline back ref, we have to make sure
1704 		 * there is no corresponding back ref item.
1705 		 * For simplicity, we just do not add new inline back
1706 		 * ref if there is any kind of item for this block
1707 		 */
1708 		if (find_next_key(path, 0, &key) == 0 &&
1709 		    key.objectid == bytenr &&
1710 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1711 			err = -EAGAIN;
1712 			goto out;
1713 		}
1714 	}
1715 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1716 out:
1717 	if (insert) {
1718 		path->keep_locks = 0;
1719 		btrfs_unlock_up_safe(path, 1);
1720 	}
1721 	return err;
1722 }
1723 
1724 /*
1725  * helper to add new inline back ref
1726  */
1727 static noinline_for_stack
1728 void setup_inline_extent_backref(struct btrfs_root *root,
1729 				 struct btrfs_path *path,
1730 				 struct btrfs_extent_inline_ref *iref,
1731 				 u64 parent, u64 root_objectid,
1732 				 u64 owner, u64 offset, int refs_to_add,
1733 				 struct btrfs_delayed_extent_op *extent_op)
1734 {
1735 	struct extent_buffer *leaf;
1736 	struct btrfs_extent_item *ei;
1737 	unsigned long ptr;
1738 	unsigned long end;
1739 	unsigned long item_offset;
1740 	u64 refs;
1741 	int size;
1742 	int type;
1743 
1744 	leaf = path->nodes[0];
1745 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1746 	item_offset = (unsigned long)iref - (unsigned long)ei;
1747 
1748 	type = extent_ref_type(parent, owner);
1749 	size = btrfs_extent_inline_ref_size(type);
1750 
1751 	btrfs_extend_item(root, path, size);
1752 
1753 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 	refs = btrfs_extent_refs(leaf, ei);
1755 	refs += refs_to_add;
1756 	btrfs_set_extent_refs(leaf, ei, refs);
1757 	if (extent_op)
1758 		__run_delayed_extent_op(extent_op, leaf, ei);
1759 
1760 	ptr = (unsigned long)ei + item_offset;
1761 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1762 	if (ptr < end - size)
1763 		memmove_extent_buffer(leaf, ptr + size, ptr,
1764 				      end - size - ptr);
1765 
1766 	iref = (struct btrfs_extent_inline_ref *)ptr;
1767 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1768 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1769 		struct btrfs_extent_data_ref *dref;
1770 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1771 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1772 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1773 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1774 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1775 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1776 		struct btrfs_shared_data_ref *sref;
1777 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1778 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1779 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1780 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1781 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1782 	} else {
1783 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1784 	}
1785 	btrfs_mark_buffer_dirty(leaf);
1786 }
1787 
1788 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1789 				 struct btrfs_root *root,
1790 				 struct btrfs_path *path,
1791 				 struct btrfs_extent_inline_ref **ref_ret,
1792 				 u64 bytenr, u64 num_bytes, u64 parent,
1793 				 u64 root_objectid, u64 owner, u64 offset)
1794 {
1795 	int ret;
1796 
1797 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1798 					   bytenr, num_bytes, parent,
1799 					   root_objectid, owner, offset, 0);
1800 	if (ret != -ENOENT)
1801 		return ret;
1802 
1803 	btrfs_release_path(path);
1804 	*ref_ret = NULL;
1805 
1806 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1807 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1808 					    root_objectid);
1809 	} else {
1810 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1811 					     root_objectid, owner, offset);
1812 	}
1813 	return ret;
1814 }
1815 
1816 /*
1817  * helper to update/remove inline back ref
1818  */
1819 static noinline_for_stack
1820 void update_inline_extent_backref(struct btrfs_root *root,
1821 				  struct btrfs_path *path,
1822 				  struct btrfs_extent_inline_ref *iref,
1823 				  int refs_to_mod,
1824 				  struct btrfs_delayed_extent_op *extent_op,
1825 				  int *last_ref)
1826 {
1827 	struct extent_buffer *leaf;
1828 	struct btrfs_extent_item *ei;
1829 	struct btrfs_extent_data_ref *dref = NULL;
1830 	struct btrfs_shared_data_ref *sref = NULL;
1831 	unsigned long ptr;
1832 	unsigned long end;
1833 	u32 item_size;
1834 	int size;
1835 	int type;
1836 	u64 refs;
1837 
1838 	leaf = path->nodes[0];
1839 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1840 	refs = btrfs_extent_refs(leaf, ei);
1841 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1842 	refs += refs_to_mod;
1843 	btrfs_set_extent_refs(leaf, ei, refs);
1844 	if (extent_op)
1845 		__run_delayed_extent_op(extent_op, leaf, ei);
1846 
1847 	type = btrfs_extent_inline_ref_type(leaf, iref);
1848 
1849 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1850 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1851 		refs = btrfs_extent_data_ref_count(leaf, dref);
1852 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1854 		refs = btrfs_shared_data_ref_count(leaf, sref);
1855 	} else {
1856 		refs = 1;
1857 		BUG_ON(refs_to_mod != -1);
1858 	}
1859 
1860 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1861 	refs += refs_to_mod;
1862 
1863 	if (refs > 0) {
1864 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1865 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1866 		else
1867 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1868 	} else {
1869 		*last_ref = 1;
1870 		size =  btrfs_extent_inline_ref_size(type);
1871 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1872 		ptr = (unsigned long)iref;
1873 		end = (unsigned long)ei + item_size;
1874 		if (ptr + size < end)
1875 			memmove_extent_buffer(leaf, ptr, ptr + size,
1876 					      end - ptr - size);
1877 		item_size -= size;
1878 		btrfs_truncate_item(root, path, item_size, 1);
1879 	}
1880 	btrfs_mark_buffer_dirty(leaf);
1881 }
1882 
1883 static noinline_for_stack
1884 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1885 				 struct btrfs_root *root,
1886 				 struct btrfs_path *path,
1887 				 u64 bytenr, u64 num_bytes, u64 parent,
1888 				 u64 root_objectid, u64 owner,
1889 				 u64 offset, int refs_to_add,
1890 				 struct btrfs_delayed_extent_op *extent_op)
1891 {
1892 	struct btrfs_extent_inline_ref *iref;
1893 	int ret;
1894 
1895 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1896 					   bytenr, num_bytes, parent,
1897 					   root_objectid, owner, offset, 1);
1898 	if (ret == 0) {
1899 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1900 		update_inline_extent_backref(root, path, iref,
1901 					     refs_to_add, extent_op, NULL);
1902 	} else if (ret == -ENOENT) {
1903 		setup_inline_extent_backref(root, path, iref, parent,
1904 					    root_objectid, owner, offset,
1905 					    refs_to_add, extent_op);
1906 		ret = 0;
1907 	}
1908 	return ret;
1909 }
1910 
1911 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1912 				 struct btrfs_root *root,
1913 				 struct btrfs_path *path,
1914 				 u64 bytenr, u64 parent, u64 root_objectid,
1915 				 u64 owner, u64 offset, int refs_to_add)
1916 {
1917 	int ret;
1918 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1919 		BUG_ON(refs_to_add != 1);
1920 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1921 					    parent, root_objectid);
1922 	} else {
1923 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1924 					     parent, root_objectid,
1925 					     owner, offset, refs_to_add);
1926 	}
1927 	return ret;
1928 }
1929 
1930 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1931 				 struct btrfs_root *root,
1932 				 struct btrfs_path *path,
1933 				 struct btrfs_extent_inline_ref *iref,
1934 				 int refs_to_drop, int is_data, int *last_ref)
1935 {
1936 	int ret = 0;
1937 
1938 	BUG_ON(!is_data && refs_to_drop != 1);
1939 	if (iref) {
1940 		update_inline_extent_backref(root, path, iref,
1941 					     -refs_to_drop, NULL, last_ref);
1942 	} else if (is_data) {
1943 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1944 					     last_ref);
1945 	} else {
1946 		*last_ref = 1;
1947 		ret = btrfs_del_item(trans, root, path);
1948 	}
1949 	return ret;
1950 }
1951 
1952 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1953 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1954 			       u64 *discarded_bytes)
1955 {
1956 	int j, ret = 0;
1957 	u64 bytes_left, end;
1958 	u64 aligned_start = ALIGN(start, 1 << 9);
1959 
1960 	if (WARN_ON(start != aligned_start)) {
1961 		len -= aligned_start - start;
1962 		len = round_down(len, 1 << 9);
1963 		start = aligned_start;
1964 	}
1965 
1966 	*discarded_bytes = 0;
1967 
1968 	if (!len)
1969 		return 0;
1970 
1971 	end = start + len;
1972 	bytes_left = len;
1973 
1974 	/* Skip any superblocks on this device. */
1975 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1976 		u64 sb_start = btrfs_sb_offset(j);
1977 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1978 		u64 size = sb_start - start;
1979 
1980 		if (!in_range(sb_start, start, bytes_left) &&
1981 		    !in_range(sb_end, start, bytes_left) &&
1982 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1983 			continue;
1984 
1985 		/*
1986 		 * Superblock spans beginning of range.  Adjust start and
1987 		 * try again.
1988 		 */
1989 		if (sb_start <= start) {
1990 			start += sb_end - start;
1991 			if (start > end) {
1992 				bytes_left = 0;
1993 				break;
1994 			}
1995 			bytes_left = end - start;
1996 			continue;
1997 		}
1998 
1999 		if (size) {
2000 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2001 						   GFP_NOFS, 0);
2002 			if (!ret)
2003 				*discarded_bytes += size;
2004 			else if (ret != -EOPNOTSUPP)
2005 				return ret;
2006 		}
2007 
2008 		start = sb_end;
2009 		if (start > end) {
2010 			bytes_left = 0;
2011 			break;
2012 		}
2013 		bytes_left = end - start;
2014 	}
2015 
2016 	if (bytes_left) {
2017 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2018 					   GFP_NOFS, 0);
2019 		if (!ret)
2020 			*discarded_bytes += bytes_left;
2021 	}
2022 	return ret;
2023 }
2024 
2025 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2026 			 u64 num_bytes, u64 *actual_bytes)
2027 {
2028 	int ret;
2029 	u64 discarded_bytes = 0;
2030 	struct btrfs_bio *bbio = NULL;
2031 
2032 
2033 	/*
2034 	 * Avoid races with device replace and make sure our bbio has devices
2035 	 * associated to its stripes that don't go away while we are discarding.
2036 	 */
2037 	btrfs_bio_counter_inc_blocked(root->fs_info);
2038 	/* Tell the block device(s) that the sectors can be discarded */
2039 	ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2040 			      bytenr, &num_bytes, &bbio, 0);
2041 	/* Error condition is -ENOMEM */
2042 	if (!ret) {
2043 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2044 		int i;
2045 
2046 
2047 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2048 			u64 bytes;
2049 			if (!stripe->dev->can_discard)
2050 				continue;
2051 
2052 			ret = btrfs_issue_discard(stripe->dev->bdev,
2053 						  stripe->physical,
2054 						  stripe->length,
2055 						  &bytes);
2056 			if (!ret)
2057 				discarded_bytes += bytes;
2058 			else if (ret != -EOPNOTSUPP)
2059 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2060 
2061 			/*
2062 			 * Just in case we get back EOPNOTSUPP for some reason,
2063 			 * just ignore the return value so we don't screw up
2064 			 * people calling discard_extent.
2065 			 */
2066 			ret = 0;
2067 		}
2068 		btrfs_put_bbio(bbio);
2069 	}
2070 	btrfs_bio_counter_dec(root->fs_info);
2071 
2072 	if (actual_bytes)
2073 		*actual_bytes = discarded_bytes;
2074 
2075 
2076 	if (ret == -EOPNOTSUPP)
2077 		ret = 0;
2078 	return ret;
2079 }
2080 
2081 /* Can return -ENOMEM */
2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2083 			 struct btrfs_root *root,
2084 			 u64 bytenr, u64 num_bytes, u64 parent,
2085 			 u64 root_objectid, u64 owner, u64 offset)
2086 {
2087 	int ret;
2088 	struct btrfs_fs_info *fs_info = root->fs_info;
2089 
2090 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2091 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2092 
2093 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2094 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2095 					num_bytes,
2096 					parent, root_objectid, (int)owner,
2097 					BTRFS_ADD_DELAYED_REF, NULL);
2098 	} else {
2099 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2100 					num_bytes, parent, root_objectid,
2101 					owner, offset, 0,
2102 					BTRFS_ADD_DELAYED_REF, NULL);
2103 	}
2104 	return ret;
2105 }
2106 
2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 				  struct btrfs_root *root,
2109 				  struct btrfs_delayed_ref_node *node,
2110 				  u64 parent, u64 root_objectid,
2111 				  u64 owner, u64 offset, int refs_to_add,
2112 				  struct btrfs_delayed_extent_op *extent_op)
2113 {
2114 	struct btrfs_fs_info *fs_info = root->fs_info;
2115 	struct btrfs_path *path;
2116 	struct extent_buffer *leaf;
2117 	struct btrfs_extent_item *item;
2118 	struct btrfs_key key;
2119 	u64 bytenr = node->bytenr;
2120 	u64 num_bytes = node->num_bytes;
2121 	u64 refs;
2122 	int ret;
2123 
2124 	path = btrfs_alloc_path();
2125 	if (!path)
2126 		return -ENOMEM;
2127 
2128 	path->reada = READA_FORWARD;
2129 	path->leave_spinning = 1;
2130 	/* this will setup the path even if it fails to insert the back ref */
2131 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2132 					   bytenr, num_bytes, parent,
2133 					   root_objectid, owner, offset,
2134 					   refs_to_add, extent_op);
2135 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2136 		goto out;
2137 
2138 	/*
2139 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 	 * inline extent ref, so just update the reference count and add a
2141 	 * normal backref.
2142 	 */
2143 	leaf = path->nodes[0];
2144 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2145 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2146 	refs = btrfs_extent_refs(leaf, item);
2147 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2148 	if (extent_op)
2149 		__run_delayed_extent_op(extent_op, leaf, item);
2150 
2151 	btrfs_mark_buffer_dirty(leaf);
2152 	btrfs_release_path(path);
2153 
2154 	path->reada = READA_FORWARD;
2155 	path->leave_spinning = 1;
2156 	/* now insert the actual backref */
2157 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2158 				    path, bytenr, parent, root_objectid,
2159 				    owner, offset, refs_to_add);
2160 	if (ret)
2161 		btrfs_abort_transaction(trans, ret);
2162 out:
2163 	btrfs_free_path(path);
2164 	return ret;
2165 }
2166 
2167 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2168 				struct btrfs_root *root,
2169 				struct btrfs_delayed_ref_node *node,
2170 				struct btrfs_delayed_extent_op *extent_op,
2171 				int insert_reserved)
2172 {
2173 	int ret = 0;
2174 	struct btrfs_delayed_data_ref *ref;
2175 	struct btrfs_key ins;
2176 	u64 parent = 0;
2177 	u64 ref_root = 0;
2178 	u64 flags = 0;
2179 
2180 	ins.objectid = node->bytenr;
2181 	ins.offset = node->num_bytes;
2182 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2183 
2184 	ref = btrfs_delayed_node_to_data_ref(node);
2185 	trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2186 
2187 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2188 		parent = ref->parent;
2189 	ref_root = ref->root;
2190 
2191 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2192 		if (extent_op)
2193 			flags |= extent_op->flags_to_set;
2194 		ret = alloc_reserved_file_extent(trans, root,
2195 						 parent, ref_root, flags,
2196 						 ref->objectid, ref->offset,
2197 						 &ins, node->ref_mod);
2198 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2199 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2200 					     ref_root, ref->objectid,
2201 					     ref->offset, node->ref_mod,
2202 					     extent_op);
2203 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2204 		ret = __btrfs_free_extent(trans, root, node, parent,
2205 					  ref_root, ref->objectid,
2206 					  ref->offset, node->ref_mod,
2207 					  extent_op);
2208 	} else {
2209 		BUG();
2210 	}
2211 	return ret;
2212 }
2213 
2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2215 				    struct extent_buffer *leaf,
2216 				    struct btrfs_extent_item *ei)
2217 {
2218 	u64 flags = btrfs_extent_flags(leaf, ei);
2219 	if (extent_op->update_flags) {
2220 		flags |= extent_op->flags_to_set;
2221 		btrfs_set_extent_flags(leaf, ei, flags);
2222 	}
2223 
2224 	if (extent_op->update_key) {
2225 		struct btrfs_tree_block_info *bi;
2226 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2227 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2228 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2229 	}
2230 }
2231 
2232 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2233 				 struct btrfs_root *root,
2234 				 struct btrfs_delayed_ref_node *node,
2235 				 struct btrfs_delayed_extent_op *extent_op)
2236 {
2237 	struct btrfs_key key;
2238 	struct btrfs_path *path;
2239 	struct btrfs_extent_item *ei;
2240 	struct extent_buffer *leaf;
2241 	u32 item_size;
2242 	int ret;
2243 	int err = 0;
2244 	int metadata = !extent_op->is_data;
2245 
2246 	if (trans->aborted)
2247 		return 0;
2248 
2249 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2250 		metadata = 0;
2251 
2252 	path = btrfs_alloc_path();
2253 	if (!path)
2254 		return -ENOMEM;
2255 
2256 	key.objectid = node->bytenr;
2257 
2258 	if (metadata) {
2259 		key.type = BTRFS_METADATA_ITEM_KEY;
2260 		key.offset = extent_op->level;
2261 	} else {
2262 		key.type = BTRFS_EXTENT_ITEM_KEY;
2263 		key.offset = node->num_bytes;
2264 	}
2265 
2266 again:
2267 	path->reada = READA_FORWARD;
2268 	path->leave_spinning = 1;
2269 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2270 				path, 0, 1);
2271 	if (ret < 0) {
2272 		err = ret;
2273 		goto out;
2274 	}
2275 	if (ret > 0) {
2276 		if (metadata) {
2277 			if (path->slots[0] > 0) {
2278 				path->slots[0]--;
2279 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2280 						      path->slots[0]);
2281 				if (key.objectid == node->bytenr &&
2282 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2283 				    key.offset == node->num_bytes)
2284 					ret = 0;
2285 			}
2286 			if (ret > 0) {
2287 				btrfs_release_path(path);
2288 				metadata = 0;
2289 
2290 				key.objectid = node->bytenr;
2291 				key.offset = node->num_bytes;
2292 				key.type = BTRFS_EXTENT_ITEM_KEY;
2293 				goto again;
2294 			}
2295 		} else {
2296 			err = -EIO;
2297 			goto out;
2298 		}
2299 	}
2300 
2301 	leaf = path->nodes[0];
2302 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 	if (item_size < sizeof(*ei)) {
2305 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2306 					     path, (u64)-1, 0);
2307 		if (ret < 0) {
2308 			err = ret;
2309 			goto out;
2310 		}
2311 		leaf = path->nodes[0];
2312 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2313 	}
2314 #endif
2315 	BUG_ON(item_size < sizeof(*ei));
2316 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2317 	__run_delayed_extent_op(extent_op, leaf, ei);
2318 
2319 	btrfs_mark_buffer_dirty(leaf);
2320 out:
2321 	btrfs_free_path(path);
2322 	return err;
2323 }
2324 
2325 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2326 				struct btrfs_root *root,
2327 				struct btrfs_delayed_ref_node *node,
2328 				struct btrfs_delayed_extent_op *extent_op,
2329 				int insert_reserved)
2330 {
2331 	int ret = 0;
2332 	struct btrfs_delayed_tree_ref *ref;
2333 	struct btrfs_key ins;
2334 	u64 parent = 0;
2335 	u64 ref_root = 0;
2336 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2337 						 SKINNY_METADATA);
2338 
2339 	ref = btrfs_delayed_node_to_tree_ref(node);
2340 	trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2341 
2342 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2343 		parent = ref->parent;
2344 	ref_root = ref->root;
2345 
2346 	ins.objectid = node->bytenr;
2347 	if (skinny_metadata) {
2348 		ins.offset = ref->level;
2349 		ins.type = BTRFS_METADATA_ITEM_KEY;
2350 	} else {
2351 		ins.offset = node->num_bytes;
2352 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2353 	}
2354 
2355 	if (node->ref_mod != 1) {
2356 		btrfs_err(root->fs_info,
2357 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 			  node->bytenr, node->ref_mod, node->action, ref_root,
2359 			  parent);
2360 		return -EIO;
2361 	}
2362 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 		BUG_ON(!extent_op || !extent_op->update_flags);
2364 		ret = alloc_reserved_tree_block(trans, root,
2365 						parent, ref_root,
2366 						extent_op->flags_to_set,
2367 						&extent_op->key,
2368 						ref->level, &ins);
2369 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 		ret = __btrfs_inc_extent_ref(trans, root, node,
2371 					     parent, ref_root,
2372 					     ref->level, 0, 1,
2373 					     extent_op);
2374 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 		ret = __btrfs_free_extent(trans, root, node,
2376 					  parent, ref_root,
2377 					  ref->level, 0, 1, extent_op);
2378 	} else {
2379 		BUG();
2380 	}
2381 	return ret;
2382 }
2383 
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 			       struct btrfs_root *root,
2387 			       struct btrfs_delayed_ref_node *node,
2388 			       struct btrfs_delayed_extent_op *extent_op,
2389 			       int insert_reserved)
2390 {
2391 	int ret = 0;
2392 
2393 	if (trans->aborted) {
2394 		if (insert_reserved)
2395 			btrfs_pin_extent(root, node->bytenr,
2396 					 node->num_bytes, 1);
2397 		return 0;
2398 	}
2399 
2400 	if (btrfs_delayed_ref_is_head(node)) {
2401 		struct btrfs_delayed_ref_head *head;
2402 		/*
2403 		 * we've hit the end of the chain and we were supposed
2404 		 * to insert this extent into the tree.  But, it got
2405 		 * deleted before we ever needed to insert it, so all
2406 		 * we have to do is clean up the accounting
2407 		 */
2408 		BUG_ON(extent_op);
2409 		head = btrfs_delayed_node_to_head(node);
2410 		trace_run_delayed_ref_head(root->fs_info, node, head,
2411 					   node->action);
2412 
2413 		if (insert_reserved) {
2414 			btrfs_pin_extent(root, node->bytenr,
2415 					 node->num_bytes, 1);
2416 			if (head->is_data) {
2417 				ret = btrfs_del_csums(trans, root,
2418 						      node->bytenr,
2419 						      node->num_bytes);
2420 			}
2421 		}
2422 
2423 		/* Also free its reserved qgroup space */
2424 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2425 					      head->qgroup_ref_root,
2426 					      head->qgroup_reserved);
2427 		return ret;
2428 	}
2429 
2430 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2433 					   insert_reserved);
2434 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2437 					   insert_reserved);
2438 	else
2439 		BUG();
2440 	return ret;
2441 }
2442 
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 	struct btrfs_delayed_ref_node *ref;
2447 
2448 	if (list_empty(&head->ref_list))
2449 		return NULL;
2450 
2451 	/*
2452 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 	 * This is to prevent a ref count from going down to zero, which deletes
2454 	 * the extent item from the extent tree, when there still are references
2455 	 * to add, which would fail because they would not find the extent item.
2456 	 */
2457 	list_for_each_entry(ref, &head->ref_list, list) {
2458 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2459 			return ref;
2460 	}
2461 
2462 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2463 			  list);
2464 }
2465 
2466 /*
2467  * Returns 0 on success or if called with an already aborted transaction.
2468  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2469  */
2470 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2471 					     struct btrfs_root *root,
2472 					     unsigned long nr)
2473 {
2474 	struct btrfs_delayed_ref_root *delayed_refs;
2475 	struct btrfs_delayed_ref_node *ref;
2476 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2477 	struct btrfs_delayed_extent_op *extent_op;
2478 	struct btrfs_fs_info *fs_info = root->fs_info;
2479 	ktime_t start = ktime_get();
2480 	int ret;
2481 	unsigned long count = 0;
2482 	unsigned long actual_count = 0;
2483 	int must_insert_reserved = 0;
2484 
2485 	delayed_refs = &trans->transaction->delayed_refs;
2486 	while (1) {
2487 		if (!locked_ref) {
2488 			if (count >= nr)
2489 				break;
2490 
2491 			spin_lock(&delayed_refs->lock);
2492 			locked_ref = btrfs_select_ref_head(trans);
2493 			if (!locked_ref) {
2494 				spin_unlock(&delayed_refs->lock);
2495 				break;
2496 			}
2497 
2498 			/* grab the lock that says we are going to process
2499 			 * all the refs for this head */
2500 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 			spin_unlock(&delayed_refs->lock);
2502 			/*
2503 			 * we may have dropped the spin lock to get the head
2504 			 * mutex lock, and that might have given someone else
2505 			 * time to free the head.  If that's true, it has been
2506 			 * removed from our list and we can move on.
2507 			 */
2508 			if (ret == -EAGAIN) {
2509 				locked_ref = NULL;
2510 				count++;
2511 				continue;
2512 			}
2513 		}
2514 
2515 		/*
2516 		 * We need to try and merge add/drops of the same ref since we
2517 		 * can run into issues with relocate dropping the implicit ref
2518 		 * and then it being added back again before the drop can
2519 		 * finish.  If we merged anything we need to re-loop so we can
2520 		 * get a good ref.
2521 		 * Or we can get node references of the same type that weren't
2522 		 * merged when created due to bumps in the tree mod seq, and
2523 		 * we need to merge them to prevent adding an inline extent
2524 		 * backref before dropping it (triggering a BUG_ON at
2525 		 * insert_inline_extent_backref()).
2526 		 */
2527 		spin_lock(&locked_ref->lock);
2528 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 					 locked_ref);
2530 
2531 		/*
2532 		 * locked_ref is the head node, so we have to go one
2533 		 * node back for any delayed ref updates
2534 		 */
2535 		ref = select_delayed_ref(locked_ref);
2536 
2537 		if (ref && ref->seq &&
2538 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 			spin_unlock(&locked_ref->lock);
2540 			btrfs_delayed_ref_unlock(locked_ref);
2541 			spin_lock(&delayed_refs->lock);
2542 			locked_ref->processing = 0;
2543 			delayed_refs->num_heads_ready++;
2544 			spin_unlock(&delayed_refs->lock);
2545 			locked_ref = NULL;
2546 			cond_resched();
2547 			count++;
2548 			continue;
2549 		}
2550 
2551 		/*
2552 		 * record the must insert reserved flag before we
2553 		 * drop the spin lock.
2554 		 */
2555 		must_insert_reserved = locked_ref->must_insert_reserved;
2556 		locked_ref->must_insert_reserved = 0;
2557 
2558 		extent_op = locked_ref->extent_op;
2559 		locked_ref->extent_op = NULL;
2560 
2561 		if (!ref) {
2562 
2563 
2564 			/* All delayed refs have been processed, Go ahead
2565 			 * and send the head node to run_one_delayed_ref,
2566 			 * so that any accounting fixes can happen
2567 			 */
2568 			ref = &locked_ref->node;
2569 
2570 			if (extent_op && must_insert_reserved) {
2571 				btrfs_free_delayed_extent_op(extent_op);
2572 				extent_op = NULL;
2573 			}
2574 
2575 			if (extent_op) {
2576 				spin_unlock(&locked_ref->lock);
2577 				ret = run_delayed_extent_op(trans, root,
2578 							    ref, extent_op);
2579 				btrfs_free_delayed_extent_op(extent_op);
2580 
2581 				if (ret) {
2582 					/*
2583 					 * Need to reset must_insert_reserved if
2584 					 * there was an error so the abort stuff
2585 					 * can cleanup the reserved space
2586 					 * properly.
2587 					 */
2588 					if (must_insert_reserved)
2589 						locked_ref->must_insert_reserved = 1;
2590 					locked_ref->processing = 0;
2591 					btrfs_debug(fs_info,
2592 						    "run_delayed_extent_op returned %d",
2593 						    ret);
2594 					btrfs_delayed_ref_unlock(locked_ref);
2595 					return ret;
2596 				}
2597 				continue;
2598 			}
2599 
2600 			/*
2601 			 * Need to drop our head ref lock and re-acquire the
2602 			 * delayed ref lock and then re-check to make sure
2603 			 * nobody got added.
2604 			 */
2605 			spin_unlock(&locked_ref->lock);
2606 			spin_lock(&delayed_refs->lock);
2607 			spin_lock(&locked_ref->lock);
2608 			if (!list_empty(&locked_ref->ref_list) ||
2609 			    locked_ref->extent_op) {
2610 				spin_unlock(&locked_ref->lock);
2611 				spin_unlock(&delayed_refs->lock);
2612 				continue;
2613 			}
2614 			ref->in_tree = 0;
2615 			delayed_refs->num_heads--;
2616 			rb_erase(&locked_ref->href_node,
2617 				 &delayed_refs->href_root);
2618 			spin_unlock(&delayed_refs->lock);
2619 		} else {
2620 			actual_count++;
2621 			ref->in_tree = 0;
2622 			list_del(&ref->list);
2623 		}
2624 		atomic_dec(&delayed_refs->num_entries);
2625 
2626 		if (!btrfs_delayed_ref_is_head(ref)) {
2627 			/*
2628 			 * when we play the delayed ref, also correct the
2629 			 * ref_mod on head
2630 			 */
2631 			switch (ref->action) {
2632 			case BTRFS_ADD_DELAYED_REF:
2633 			case BTRFS_ADD_DELAYED_EXTENT:
2634 				locked_ref->node.ref_mod -= ref->ref_mod;
2635 				break;
2636 			case BTRFS_DROP_DELAYED_REF:
2637 				locked_ref->node.ref_mod += ref->ref_mod;
2638 				break;
2639 			default:
2640 				WARN_ON(1);
2641 			}
2642 		}
2643 		spin_unlock(&locked_ref->lock);
2644 
2645 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 					  must_insert_reserved);
2647 
2648 		btrfs_free_delayed_extent_op(extent_op);
2649 		if (ret) {
2650 			spin_lock(&delayed_refs->lock);
2651 			locked_ref->processing = 0;
2652 			delayed_refs->num_heads_ready++;
2653 			spin_unlock(&delayed_refs->lock);
2654 			btrfs_delayed_ref_unlock(locked_ref);
2655 			btrfs_put_delayed_ref(ref);
2656 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2657 				    ret);
2658 			return ret;
2659 		}
2660 
2661 		/*
2662 		 * If this node is a head, that means all the refs in this head
2663 		 * have been dealt with, and we will pick the next head to deal
2664 		 * with, so we must unlock the head and drop it from the cluster
2665 		 * list before we release it.
2666 		 */
2667 		if (btrfs_delayed_ref_is_head(ref)) {
2668 			if (locked_ref->is_data &&
2669 			    locked_ref->total_ref_mod < 0) {
2670 				spin_lock(&delayed_refs->lock);
2671 				delayed_refs->pending_csums -= ref->num_bytes;
2672 				spin_unlock(&delayed_refs->lock);
2673 			}
2674 			btrfs_delayed_ref_unlock(locked_ref);
2675 			locked_ref = NULL;
2676 		}
2677 		btrfs_put_delayed_ref(ref);
2678 		count++;
2679 		cond_resched();
2680 	}
2681 
2682 	/*
2683 	 * We don't want to include ref heads since we can have empty ref heads
2684 	 * and those will drastically skew our runtime down since we just do
2685 	 * accounting, no actual extent tree updates.
2686 	 */
2687 	if (actual_count > 0) {
2688 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2689 		u64 avg;
2690 
2691 		/*
2692 		 * We weigh the current average higher than our current runtime
2693 		 * to avoid large swings in the average.
2694 		 */
2695 		spin_lock(&delayed_refs->lock);
2696 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2697 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2698 		spin_unlock(&delayed_refs->lock);
2699 	}
2700 	return 0;
2701 }
2702 
2703 #ifdef SCRAMBLE_DELAYED_REFS
2704 /*
2705  * Normally delayed refs get processed in ascending bytenr order. This
2706  * correlates in most cases to the order added. To expose dependencies on this
2707  * order, we start to process the tree in the middle instead of the beginning
2708  */
2709 static u64 find_middle(struct rb_root *root)
2710 {
2711 	struct rb_node *n = root->rb_node;
2712 	struct btrfs_delayed_ref_node *entry;
2713 	int alt = 1;
2714 	u64 middle;
2715 	u64 first = 0, last = 0;
2716 
2717 	n = rb_first(root);
2718 	if (n) {
2719 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2720 		first = entry->bytenr;
2721 	}
2722 	n = rb_last(root);
2723 	if (n) {
2724 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 		last = entry->bytenr;
2726 	}
2727 	n = root->rb_node;
2728 
2729 	while (n) {
2730 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2731 		WARN_ON(!entry->in_tree);
2732 
2733 		middle = entry->bytenr;
2734 
2735 		if (alt)
2736 			n = n->rb_left;
2737 		else
2738 			n = n->rb_right;
2739 
2740 		alt = 1 - alt;
2741 	}
2742 	return middle;
2743 }
2744 #endif
2745 
2746 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2747 {
2748 	u64 num_bytes;
2749 
2750 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2751 			     sizeof(struct btrfs_extent_inline_ref));
2752 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2753 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2754 
2755 	/*
2756 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2757 	 * closer to what we're really going to want to use.
2758 	 */
2759 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2760 }
2761 
2762 /*
2763  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2764  * would require to store the csums for that many bytes.
2765  */
2766 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2767 {
2768 	u64 csum_size;
2769 	u64 num_csums_per_leaf;
2770 	u64 num_csums;
2771 
2772 	csum_size = BTRFS_MAX_ITEM_SIZE(root);
2773 	num_csums_per_leaf = div64_u64(csum_size,
2774 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2775 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2776 	num_csums += num_csums_per_leaf - 1;
2777 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2778 	return num_csums;
2779 }
2780 
2781 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2782 				       struct btrfs_root *root)
2783 {
2784 	struct btrfs_block_rsv *global_rsv;
2785 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2786 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2787 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2788 	u64 num_bytes, num_dirty_bgs_bytes;
2789 	int ret = 0;
2790 
2791 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2792 	num_heads = heads_to_leaves(root, num_heads);
2793 	if (num_heads > 1)
2794 		num_bytes += (num_heads - 1) * root->nodesize;
2795 	num_bytes <<= 1;
2796 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2797 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2798 							     num_dirty_bgs);
2799 	global_rsv = &root->fs_info->global_block_rsv;
2800 
2801 	/*
2802 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2803 	 * wiggle room since running delayed refs can create more delayed refs.
2804 	 */
2805 	if (global_rsv->space_info->full) {
2806 		num_dirty_bgs_bytes <<= 1;
2807 		num_bytes <<= 1;
2808 	}
2809 
2810 	spin_lock(&global_rsv->lock);
2811 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2812 		ret = 1;
2813 	spin_unlock(&global_rsv->lock);
2814 	return ret;
2815 }
2816 
2817 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2818 				       struct btrfs_root *root)
2819 {
2820 	struct btrfs_fs_info *fs_info = root->fs_info;
2821 	u64 num_entries =
2822 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2823 	u64 avg_runtime;
2824 	u64 val;
2825 
2826 	smp_mb();
2827 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2828 	val = num_entries * avg_runtime;
2829 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2830 		return 1;
2831 	if (val >= NSEC_PER_SEC / 2)
2832 		return 2;
2833 
2834 	return btrfs_check_space_for_delayed_refs(trans, root);
2835 }
2836 
2837 struct async_delayed_refs {
2838 	struct btrfs_root *root;
2839 	u64 transid;
2840 	int count;
2841 	int error;
2842 	int sync;
2843 	struct completion wait;
2844 	struct btrfs_work work;
2845 };
2846 
2847 static void delayed_ref_async_start(struct btrfs_work *work)
2848 {
2849 	struct async_delayed_refs *async;
2850 	struct btrfs_trans_handle *trans;
2851 	int ret;
2852 
2853 	async = container_of(work, struct async_delayed_refs, work);
2854 
2855 	/* if the commit is already started, we don't need to wait here */
2856 	if (btrfs_transaction_blocked(async->root->fs_info))
2857 		goto done;
2858 
2859 	trans = btrfs_join_transaction(async->root);
2860 	if (IS_ERR(trans)) {
2861 		async->error = PTR_ERR(trans);
2862 		goto done;
2863 	}
2864 
2865 	/*
2866 	 * trans->sync means that when we call end_transaction, we won't
2867 	 * wait on delayed refs
2868 	 */
2869 	trans->sync = true;
2870 
2871 	/* Don't bother flushing if we got into a different transaction */
2872 	if (trans->transid > async->transid)
2873 		goto end;
2874 
2875 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2876 	if (ret)
2877 		async->error = ret;
2878 end:
2879 	ret = btrfs_end_transaction(trans, async->root);
2880 	if (ret && !async->error)
2881 		async->error = ret;
2882 done:
2883 	if (async->sync)
2884 		complete(&async->wait);
2885 	else
2886 		kfree(async);
2887 }
2888 
2889 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2890 				 unsigned long count, u64 transid, int wait)
2891 {
2892 	struct async_delayed_refs *async;
2893 	int ret;
2894 
2895 	async = kmalloc(sizeof(*async), GFP_NOFS);
2896 	if (!async)
2897 		return -ENOMEM;
2898 
2899 	async->root = root->fs_info->tree_root;
2900 	async->count = count;
2901 	async->error = 0;
2902 	async->transid = transid;
2903 	if (wait)
2904 		async->sync = 1;
2905 	else
2906 		async->sync = 0;
2907 	init_completion(&async->wait);
2908 
2909 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2910 			delayed_ref_async_start, NULL, NULL);
2911 
2912 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2913 
2914 	if (wait) {
2915 		wait_for_completion(&async->wait);
2916 		ret = async->error;
2917 		kfree(async);
2918 		return ret;
2919 	}
2920 	return 0;
2921 }
2922 
2923 /*
2924  * this starts processing the delayed reference count updates and
2925  * extent insertions we have queued up so far.  count can be
2926  * 0, which means to process everything in the tree at the start
2927  * of the run (but not newly added entries), or it can be some target
2928  * number you'd like to process.
2929  *
2930  * Returns 0 on success or if called with an aborted transaction
2931  * Returns <0 on error and aborts the transaction
2932  */
2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2934 			   struct btrfs_root *root, unsigned long count)
2935 {
2936 	struct rb_node *node;
2937 	struct btrfs_delayed_ref_root *delayed_refs;
2938 	struct btrfs_delayed_ref_head *head;
2939 	int ret;
2940 	int run_all = count == (unsigned long)-1;
2941 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2942 
2943 	/* We'll clean this up in btrfs_cleanup_transaction */
2944 	if (trans->aborted)
2945 		return 0;
2946 
2947 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
2948 		return 0;
2949 
2950 	if (root == root->fs_info->extent_root)
2951 		root = root->fs_info->tree_root;
2952 
2953 	delayed_refs = &trans->transaction->delayed_refs;
2954 	if (count == 0)
2955 		count = atomic_read(&delayed_refs->num_entries) * 2;
2956 
2957 again:
2958 #ifdef SCRAMBLE_DELAYED_REFS
2959 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2960 #endif
2961 	trans->can_flush_pending_bgs = false;
2962 	ret = __btrfs_run_delayed_refs(trans, root, count);
2963 	if (ret < 0) {
2964 		btrfs_abort_transaction(trans, ret);
2965 		return ret;
2966 	}
2967 
2968 	if (run_all) {
2969 		if (!list_empty(&trans->new_bgs))
2970 			btrfs_create_pending_block_groups(trans, root);
2971 
2972 		spin_lock(&delayed_refs->lock);
2973 		node = rb_first(&delayed_refs->href_root);
2974 		if (!node) {
2975 			spin_unlock(&delayed_refs->lock);
2976 			goto out;
2977 		}
2978 
2979 		while (node) {
2980 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 					href_node);
2982 			if (btrfs_delayed_ref_is_head(&head->node)) {
2983 				struct btrfs_delayed_ref_node *ref;
2984 
2985 				ref = &head->node;
2986 				atomic_inc(&ref->refs);
2987 
2988 				spin_unlock(&delayed_refs->lock);
2989 				/*
2990 				 * Mutex was contended, block until it's
2991 				 * released and try again
2992 				 */
2993 				mutex_lock(&head->mutex);
2994 				mutex_unlock(&head->mutex);
2995 
2996 				btrfs_put_delayed_ref(ref);
2997 				cond_resched();
2998 				goto again;
2999 			} else {
3000 				WARN_ON(1);
3001 			}
3002 			node = rb_next(node);
3003 		}
3004 		spin_unlock(&delayed_refs->lock);
3005 		cond_resched();
3006 		goto again;
3007 	}
3008 out:
3009 	assert_qgroups_uptodate(trans);
3010 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011 	return 0;
3012 }
3013 
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 				struct btrfs_root *root,
3016 				u64 bytenr, u64 num_bytes, u64 flags,
3017 				int level, int is_data)
3018 {
3019 	struct btrfs_delayed_extent_op *extent_op;
3020 	int ret;
3021 
3022 	extent_op = btrfs_alloc_delayed_extent_op();
3023 	if (!extent_op)
3024 		return -ENOMEM;
3025 
3026 	extent_op->flags_to_set = flags;
3027 	extent_op->update_flags = true;
3028 	extent_op->update_key = false;
3029 	extent_op->is_data = is_data ? true : false;
3030 	extent_op->level = level;
3031 
3032 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 					  num_bytes, extent_op);
3034 	if (ret)
3035 		btrfs_free_delayed_extent_op(extent_op);
3036 	return ret;
3037 }
3038 
3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 				      struct btrfs_root *root,
3041 				      struct btrfs_path *path,
3042 				      u64 objectid, u64 offset, u64 bytenr)
3043 {
3044 	struct btrfs_delayed_ref_head *head;
3045 	struct btrfs_delayed_ref_node *ref;
3046 	struct btrfs_delayed_data_ref *data_ref;
3047 	struct btrfs_delayed_ref_root *delayed_refs;
3048 	int ret = 0;
3049 
3050 	delayed_refs = &trans->transaction->delayed_refs;
3051 	spin_lock(&delayed_refs->lock);
3052 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3053 	if (!head) {
3054 		spin_unlock(&delayed_refs->lock);
3055 		return 0;
3056 	}
3057 
3058 	if (!mutex_trylock(&head->mutex)) {
3059 		atomic_inc(&head->node.refs);
3060 		spin_unlock(&delayed_refs->lock);
3061 
3062 		btrfs_release_path(path);
3063 
3064 		/*
3065 		 * Mutex was contended, block until it's released and let
3066 		 * caller try again
3067 		 */
3068 		mutex_lock(&head->mutex);
3069 		mutex_unlock(&head->mutex);
3070 		btrfs_put_delayed_ref(&head->node);
3071 		return -EAGAIN;
3072 	}
3073 	spin_unlock(&delayed_refs->lock);
3074 
3075 	spin_lock(&head->lock);
3076 	list_for_each_entry(ref, &head->ref_list, list) {
3077 		/* If it's a shared ref we know a cross reference exists */
3078 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 			ret = 1;
3080 			break;
3081 		}
3082 
3083 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3084 
3085 		/*
3086 		 * If our ref doesn't match the one we're currently looking at
3087 		 * then we have a cross reference.
3088 		 */
3089 		if (data_ref->root != root->root_key.objectid ||
3090 		    data_ref->objectid != objectid ||
3091 		    data_ref->offset != offset) {
3092 			ret = 1;
3093 			break;
3094 		}
3095 	}
3096 	spin_unlock(&head->lock);
3097 	mutex_unlock(&head->mutex);
3098 	return ret;
3099 }
3100 
3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 					struct btrfs_root *root,
3103 					struct btrfs_path *path,
3104 					u64 objectid, u64 offset, u64 bytenr)
3105 {
3106 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3107 	struct extent_buffer *leaf;
3108 	struct btrfs_extent_data_ref *ref;
3109 	struct btrfs_extent_inline_ref *iref;
3110 	struct btrfs_extent_item *ei;
3111 	struct btrfs_key key;
3112 	u32 item_size;
3113 	int ret;
3114 
3115 	key.objectid = bytenr;
3116 	key.offset = (u64)-1;
3117 	key.type = BTRFS_EXTENT_ITEM_KEY;
3118 
3119 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 	if (ret < 0)
3121 		goto out;
3122 	BUG_ON(ret == 0); /* Corruption */
3123 
3124 	ret = -ENOENT;
3125 	if (path->slots[0] == 0)
3126 		goto out;
3127 
3128 	path->slots[0]--;
3129 	leaf = path->nodes[0];
3130 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131 
3132 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133 		goto out;
3134 
3135 	ret = 1;
3136 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 	if (item_size < sizeof(*ei)) {
3139 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 		goto out;
3141 	}
3142 #endif
3143 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144 
3145 	if (item_size != sizeof(*ei) +
3146 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 		goto out;
3148 
3149 	if (btrfs_extent_generation(leaf, ei) <=
3150 	    btrfs_root_last_snapshot(&root->root_item))
3151 		goto out;
3152 
3153 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 	    BTRFS_EXTENT_DATA_REF_KEY)
3156 		goto out;
3157 
3158 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 	if (btrfs_extent_refs(leaf, ei) !=
3160 	    btrfs_extent_data_ref_count(leaf, ref) ||
3161 	    btrfs_extent_data_ref_root(leaf, ref) !=
3162 	    root->root_key.objectid ||
3163 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 		goto out;
3166 
3167 	ret = 0;
3168 out:
3169 	return ret;
3170 }
3171 
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 			  struct btrfs_root *root,
3174 			  u64 objectid, u64 offset, u64 bytenr)
3175 {
3176 	struct btrfs_path *path;
3177 	int ret;
3178 	int ret2;
3179 
3180 	path = btrfs_alloc_path();
3181 	if (!path)
3182 		return -ENOENT;
3183 
3184 	do {
3185 		ret = check_committed_ref(trans, root, path, objectid,
3186 					  offset, bytenr);
3187 		if (ret && ret != -ENOENT)
3188 			goto out;
3189 
3190 		ret2 = check_delayed_ref(trans, root, path, objectid,
3191 					 offset, bytenr);
3192 	} while (ret2 == -EAGAIN);
3193 
3194 	if (ret2 && ret2 != -ENOENT) {
3195 		ret = ret2;
3196 		goto out;
3197 	}
3198 
3199 	if (ret != -ENOENT || ret2 != -ENOENT)
3200 		ret = 0;
3201 out:
3202 	btrfs_free_path(path);
3203 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 		WARN_ON(ret > 0);
3205 	return ret;
3206 }
3207 
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209 			   struct btrfs_root *root,
3210 			   struct extent_buffer *buf,
3211 			   int full_backref, int inc)
3212 {
3213 	u64 bytenr;
3214 	u64 num_bytes;
3215 	u64 parent;
3216 	u64 ref_root;
3217 	u32 nritems;
3218 	struct btrfs_key key;
3219 	struct btrfs_file_extent_item *fi;
3220 	int i;
3221 	int level;
3222 	int ret = 0;
3223 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3224 			    u64, u64, u64, u64, u64, u64);
3225 
3226 
3227 	if (btrfs_is_testing(root->fs_info))
3228 		return 0;
3229 
3230 	ref_root = btrfs_header_owner(buf);
3231 	nritems = btrfs_header_nritems(buf);
3232 	level = btrfs_header_level(buf);
3233 
3234 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235 		return 0;
3236 
3237 	if (inc)
3238 		process_func = btrfs_inc_extent_ref;
3239 	else
3240 		process_func = btrfs_free_extent;
3241 
3242 	if (full_backref)
3243 		parent = buf->start;
3244 	else
3245 		parent = 0;
3246 
3247 	for (i = 0; i < nritems; i++) {
3248 		if (level == 0) {
3249 			btrfs_item_key_to_cpu(buf, &key, i);
3250 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3251 				continue;
3252 			fi = btrfs_item_ptr(buf, i,
3253 					    struct btrfs_file_extent_item);
3254 			if (btrfs_file_extent_type(buf, fi) ==
3255 			    BTRFS_FILE_EXTENT_INLINE)
3256 				continue;
3257 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 			if (bytenr == 0)
3259 				continue;
3260 
3261 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 			key.offset -= btrfs_file_extent_offset(buf, fi);
3263 			ret = process_func(trans, root, bytenr, num_bytes,
3264 					   parent, ref_root, key.objectid,
3265 					   key.offset);
3266 			if (ret)
3267 				goto fail;
3268 		} else {
3269 			bytenr = btrfs_node_blockptr(buf, i);
3270 			num_bytes = root->nodesize;
3271 			ret = process_func(trans, root, bytenr, num_bytes,
3272 					   parent, ref_root, level - 1, 0);
3273 			if (ret)
3274 				goto fail;
3275 		}
3276 	}
3277 	return 0;
3278 fail:
3279 	return ret;
3280 }
3281 
3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3283 		  struct extent_buffer *buf, int full_backref)
3284 {
3285 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3286 }
3287 
3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3289 		  struct extent_buffer *buf, int full_backref)
3290 {
3291 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3292 }
3293 
3294 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 				 struct btrfs_root *root,
3296 				 struct btrfs_path *path,
3297 				 struct btrfs_block_group_cache *cache)
3298 {
3299 	int ret;
3300 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3301 	unsigned long bi;
3302 	struct extent_buffer *leaf;
3303 
3304 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3305 	if (ret) {
3306 		if (ret > 0)
3307 			ret = -ENOENT;
3308 		goto fail;
3309 	}
3310 
3311 	leaf = path->nodes[0];
3312 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 	btrfs_mark_buffer_dirty(leaf);
3315 fail:
3316 	btrfs_release_path(path);
3317 	return ret;
3318 
3319 }
3320 
3321 static struct btrfs_block_group_cache *
3322 next_block_group(struct btrfs_root *root,
3323 		 struct btrfs_block_group_cache *cache)
3324 {
3325 	struct rb_node *node;
3326 
3327 	spin_lock(&root->fs_info->block_group_cache_lock);
3328 
3329 	/* If our block group was removed, we need a full search. */
3330 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332 
3333 		spin_unlock(&root->fs_info->block_group_cache_lock);
3334 		btrfs_put_block_group(cache);
3335 		cache = btrfs_lookup_first_block_group(root->fs_info,
3336 						       next_bytenr);
3337 		return cache;
3338 	}
3339 	node = rb_next(&cache->cache_node);
3340 	btrfs_put_block_group(cache);
3341 	if (node) {
3342 		cache = rb_entry(node, struct btrfs_block_group_cache,
3343 				 cache_node);
3344 		btrfs_get_block_group(cache);
3345 	} else
3346 		cache = NULL;
3347 	spin_unlock(&root->fs_info->block_group_cache_lock);
3348 	return cache;
3349 }
3350 
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 			    struct btrfs_trans_handle *trans,
3353 			    struct btrfs_path *path)
3354 {
3355 	struct btrfs_root *root = block_group->fs_info->tree_root;
3356 	struct inode *inode = NULL;
3357 	u64 alloc_hint = 0;
3358 	int dcs = BTRFS_DC_ERROR;
3359 	u64 num_pages = 0;
3360 	int retries = 0;
3361 	int ret = 0;
3362 
3363 	/*
3364 	 * If this block group is smaller than 100 megs don't bother caching the
3365 	 * block group.
3366 	 */
3367 	if (block_group->key.offset < (100 * SZ_1M)) {
3368 		spin_lock(&block_group->lock);
3369 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 		spin_unlock(&block_group->lock);
3371 		return 0;
3372 	}
3373 
3374 	if (trans->aborted)
3375 		return 0;
3376 again:
3377 	inode = lookup_free_space_inode(root, block_group, path);
3378 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 		ret = PTR_ERR(inode);
3380 		btrfs_release_path(path);
3381 		goto out;
3382 	}
3383 
3384 	if (IS_ERR(inode)) {
3385 		BUG_ON(retries);
3386 		retries++;
3387 
3388 		if (block_group->ro)
3389 			goto out_free;
3390 
3391 		ret = create_free_space_inode(root, trans, block_group, path);
3392 		if (ret)
3393 			goto out_free;
3394 		goto again;
3395 	}
3396 
3397 	/* We've already setup this transaction, go ahead and exit */
3398 	if (block_group->cache_generation == trans->transid &&
3399 	    i_size_read(inode)) {
3400 		dcs = BTRFS_DC_SETUP;
3401 		goto out_put;
3402 	}
3403 
3404 	/*
3405 	 * We want to set the generation to 0, that way if anything goes wrong
3406 	 * from here on out we know not to trust this cache when we load up next
3407 	 * time.
3408 	 */
3409 	BTRFS_I(inode)->generation = 0;
3410 	ret = btrfs_update_inode(trans, root, inode);
3411 	if (ret) {
3412 		/*
3413 		 * So theoretically we could recover from this, simply set the
3414 		 * super cache generation to 0 so we know to invalidate the
3415 		 * cache, but then we'd have to keep track of the block groups
3416 		 * that fail this way so we know we _have_ to reset this cache
3417 		 * before the next commit or risk reading stale cache.  So to
3418 		 * limit our exposure to horrible edge cases lets just abort the
3419 		 * transaction, this only happens in really bad situations
3420 		 * anyway.
3421 		 */
3422 		btrfs_abort_transaction(trans, ret);
3423 		goto out_put;
3424 	}
3425 	WARN_ON(ret);
3426 
3427 	if (i_size_read(inode) > 0) {
3428 		ret = btrfs_check_trunc_cache_free_space(root,
3429 					&root->fs_info->global_block_rsv);
3430 		if (ret)
3431 			goto out_put;
3432 
3433 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3434 		if (ret)
3435 			goto out_put;
3436 	}
3437 
3438 	spin_lock(&block_group->lock);
3439 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3440 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3441 		/*
3442 		 * don't bother trying to write stuff out _if_
3443 		 * a) we're not cached,
3444 		 * b) we're with nospace_cache mount option.
3445 		 */
3446 		dcs = BTRFS_DC_WRITTEN;
3447 		spin_unlock(&block_group->lock);
3448 		goto out_put;
3449 	}
3450 	spin_unlock(&block_group->lock);
3451 
3452 	/*
3453 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 	 * skip doing the setup, we've already cleared the cache so we're safe.
3455 	 */
3456 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 		ret = -ENOSPC;
3458 		goto out_put;
3459 	}
3460 
3461 	/*
3462 	 * Try to preallocate enough space based on how big the block group is.
3463 	 * Keep in mind this has to include any pinned space which could end up
3464 	 * taking up quite a bit since it's not folded into the other space
3465 	 * cache.
3466 	 */
3467 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3468 	if (!num_pages)
3469 		num_pages = 1;
3470 
3471 	num_pages *= 16;
3472 	num_pages *= PAGE_SIZE;
3473 
3474 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475 	if (ret)
3476 		goto out_put;
3477 
3478 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 					      num_pages, num_pages,
3480 					      &alloc_hint);
3481 	/*
3482 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 	 * of metadata or split extents when writing the cache out, which means
3484 	 * we can enospc if we are heavily fragmented in addition to just normal
3485 	 * out of space conditions.  So if we hit this just skip setting up any
3486 	 * other block groups for this transaction, maybe we'll unpin enough
3487 	 * space the next time around.
3488 	 */
3489 	if (!ret)
3490 		dcs = BTRFS_DC_SETUP;
3491 	else if (ret == -ENOSPC)
3492 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3493 
3494 out_put:
3495 	iput(inode);
3496 out_free:
3497 	btrfs_release_path(path);
3498 out:
3499 	spin_lock(&block_group->lock);
3500 	if (!ret && dcs == BTRFS_DC_SETUP)
3501 		block_group->cache_generation = trans->transid;
3502 	block_group->disk_cache_state = dcs;
3503 	spin_unlock(&block_group->lock);
3504 
3505 	return ret;
3506 }
3507 
3508 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3509 			    struct btrfs_root *root)
3510 {
3511 	struct btrfs_block_group_cache *cache, *tmp;
3512 	struct btrfs_transaction *cur_trans = trans->transaction;
3513 	struct btrfs_path *path;
3514 
3515 	if (list_empty(&cur_trans->dirty_bgs) ||
3516 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3517 		return 0;
3518 
3519 	path = btrfs_alloc_path();
3520 	if (!path)
3521 		return -ENOMEM;
3522 
3523 	/* Could add new block groups, use _safe just in case */
3524 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3525 				 dirty_list) {
3526 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3527 			cache_save_setup(cache, trans, path);
3528 	}
3529 
3530 	btrfs_free_path(path);
3531 	return 0;
3532 }
3533 
3534 /*
3535  * transaction commit does final block group cache writeback during a
3536  * critical section where nothing is allowed to change the FS.  This is
3537  * required in order for the cache to actually match the block group,
3538  * but can introduce a lot of latency into the commit.
3539  *
3540  * So, btrfs_start_dirty_block_groups is here to kick off block group
3541  * cache IO.  There's a chance we'll have to redo some of it if the
3542  * block group changes again during the commit, but it greatly reduces
3543  * the commit latency by getting rid of the easy block groups while
3544  * we're still allowing others to join the commit.
3545  */
3546 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3547 				   struct btrfs_root *root)
3548 {
3549 	struct btrfs_block_group_cache *cache;
3550 	struct btrfs_transaction *cur_trans = trans->transaction;
3551 	int ret = 0;
3552 	int should_put;
3553 	struct btrfs_path *path = NULL;
3554 	LIST_HEAD(dirty);
3555 	struct list_head *io = &cur_trans->io_bgs;
3556 	int num_started = 0;
3557 	int loops = 0;
3558 
3559 	spin_lock(&cur_trans->dirty_bgs_lock);
3560 	if (list_empty(&cur_trans->dirty_bgs)) {
3561 		spin_unlock(&cur_trans->dirty_bgs_lock);
3562 		return 0;
3563 	}
3564 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3565 	spin_unlock(&cur_trans->dirty_bgs_lock);
3566 
3567 again:
3568 	/*
3569 	 * make sure all the block groups on our dirty list actually
3570 	 * exist
3571 	 */
3572 	btrfs_create_pending_block_groups(trans, root);
3573 
3574 	if (!path) {
3575 		path = btrfs_alloc_path();
3576 		if (!path)
3577 			return -ENOMEM;
3578 	}
3579 
3580 	/*
3581 	 * cache_write_mutex is here only to save us from balance or automatic
3582 	 * removal of empty block groups deleting this block group while we are
3583 	 * writing out the cache
3584 	 */
3585 	mutex_lock(&trans->transaction->cache_write_mutex);
3586 	while (!list_empty(&dirty)) {
3587 		cache = list_first_entry(&dirty,
3588 					 struct btrfs_block_group_cache,
3589 					 dirty_list);
3590 		/*
3591 		 * this can happen if something re-dirties a block
3592 		 * group that is already under IO.  Just wait for it to
3593 		 * finish and then do it all again
3594 		 */
3595 		if (!list_empty(&cache->io_list)) {
3596 			list_del_init(&cache->io_list);
3597 			btrfs_wait_cache_io(root, trans, cache,
3598 					    &cache->io_ctl, path,
3599 					    cache->key.objectid);
3600 			btrfs_put_block_group(cache);
3601 		}
3602 
3603 
3604 		/*
3605 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 		 * if it should update the cache_state.  Don't delete
3607 		 * until after we wait.
3608 		 *
3609 		 * Since we're not running in the commit critical section
3610 		 * we need the dirty_bgs_lock to protect from update_block_group
3611 		 */
3612 		spin_lock(&cur_trans->dirty_bgs_lock);
3613 		list_del_init(&cache->dirty_list);
3614 		spin_unlock(&cur_trans->dirty_bgs_lock);
3615 
3616 		should_put = 1;
3617 
3618 		cache_save_setup(cache, trans, path);
3619 
3620 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621 			cache->io_ctl.inode = NULL;
3622 			ret = btrfs_write_out_cache(root, trans, cache, path);
3623 			if (ret == 0 && cache->io_ctl.inode) {
3624 				num_started++;
3625 				should_put = 0;
3626 
3627 				/*
3628 				 * the cache_write_mutex is protecting
3629 				 * the io_list
3630 				 */
3631 				list_add_tail(&cache->io_list, io);
3632 			} else {
3633 				/*
3634 				 * if we failed to write the cache, the
3635 				 * generation will be bad and life goes on
3636 				 */
3637 				ret = 0;
3638 			}
3639 		}
3640 		if (!ret) {
3641 			ret = write_one_cache_group(trans, root, path, cache);
3642 			/*
3643 			 * Our block group might still be attached to the list
3644 			 * of new block groups in the transaction handle of some
3645 			 * other task (struct btrfs_trans_handle->new_bgs). This
3646 			 * means its block group item isn't yet in the extent
3647 			 * tree. If this happens ignore the error, as we will
3648 			 * try again later in the critical section of the
3649 			 * transaction commit.
3650 			 */
3651 			if (ret == -ENOENT) {
3652 				ret = 0;
3653 				spin_lock(&cur_trans->dirty_bgs_lock);
3654 				if (list_empty(&cache->dirty_list)) {
3655 					list_add_tail(&cache->dirty_list,
3656 						      &cur_trans->dirty_bgs);
3657 					btrfs_get_block_group(cache);
3658 				}
3659 				spin_unlock(&cur_trans->dirty_bgs_lock);
3660 			} else if (ret) {
3661 				btrfs_abort_transaction(trans, ret);
3662 			}
3663 		}
3664 
3665 		/* if its not on the io list, we need to put the block group */
3666 		if (should_put)
3667 			btrfs_put_block_group(cache);
3668 
3669 		if (ret)
3670 			break;
3671 
3672 		/*
3673 		 * Avoid blocking other tasks for too long. It might even save
3674 		 * us from writing caches for block groups that are going to be
3675 		 * removed.
3676 		 */
3677 		mutex_unlock(&trans->transaction->cache_write_mutex);
3678 		mutex_lock(&trans->transaction->cache_write_mutex);
3679 	}
3680 	mutex_unlock(&trans->transaction->cache_write_mutex);
3681 
3682 	/*
3683 	 * go through delayed refs for all the stuff we've just kicked off
3684 	 * and then loop back (just once)
3685 	 */
3686 	ret = btrfs_run_delayed_refs(trans, root, 0);
3687 	if (!ret && loops == 0) {
3688 		loops++;
3689 		spin_lock(&cur_trans->dirty_bgs_lock);
3690 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3691 		/*
3692 		 * dirty_bgs_lock protects us from concurrent block group
3693 		 * deletes too (not just cache_write_mutex).
3694 		 */
3695 		if (!list_empty(&dirty)) {
3696 			spin_unlock(&cur_trans->dirty_bgs_lock);
3697 			goto again;
3698 		}
3699 		spin_unlock(&cur_trans->dirty_bgs_lock);
3700 	} else if (ret < 0) {
3701 		btrfs_cleanup_dirty_bgs(cur_trans, root);
3702 	}
3703 
3704 	btrfs_free_path(path);
3705 	return ret;
3706 }
3707 
3708 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3709 				   struct btrfs_root *root)
3710 {
3711 	struct btrfs_block_group_cache *cache;
3712 	struct btrfs_transaction *cur_trans = trans->transaction;
3713 	int ret = 0;
3714 	int should_put;
3715 	struct btrfs_path *path;
3716 	struct list_head *io = &cur_trans->io_bgs;
3717 	int num_started = 0;
3718 
3719 	path = btrfs_alloc_path();
3720 	if (!path)
3721 		return -ENOMEM;
3722 
3723 	/*
3724 	 * Even though we are in the critical section of the transaction commit,
3725 	 * we can still have concurrent tasks adding elements to this
3726 	 * transaction's list of dirty block groups. These tasks correspond to
3727 	 * endio free space workers started when writeback finishes for a
3728 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3729 	 * allocate new block groups as a result of COWing nodes of the root
3730 	 * tree when updating the free space inode. The writeback for the space
3731 	 * caches is triggered by an earlier call to
3732 	 * btrfs_start_dirty_block_groups() and iterations of the following
3733 	 * loop.
3734 	 * Also we want to do the cache_save_setup first and then run the
3735 	 * delayed refs to make sure we have the best chance at doing this all
3736 	 * in one shot.
3737 	 */
3738 	spin_lock(&cur_trans->dirty_bgs_lock);
3739 	while (!list_empty(&cur_trans->dirty_bgs)) {
3740 		cache = list_first_entry(&cur_trans->dirty_bgs,
3741 					 struct btrfs_block_group_cache,
3742 					 dirty_list);
3743 
3744 		/*
3745 		 * this can happen if cache_save_setup re-dirties a block
3746 		 * group that is already under IO.  Just wait for it to
3747 		 * finish and then do it all again
3748 		 */
3749 		if (!list_empty(&cache->io_list)) {
3750 			spin_unlock(&cur_trans->dirty_bgs_lock);
3751 			list_del_init(&cache->io_list);
3752 			btrfs_wait_cache_io(root, trans, cache,
3753 					    &cache->io_ctl, path,
3754 					    cache->key.objectid);
3755 			btrfs_put_block_group(cache);
3756 			spin_lock(&cur_trans->dirty_bgs_lock);
3757 		}
3758 
3759 		/*
3760 		 * don't remove from the dirty list until after we've waited
3761 		 * on any pending IO
3762 		 */
3763 		list_del_init(&cache->dirty_list);
3764 		spin_unlock(&cur_trans->dirty_bgs_lock);
3765 		should_put = 1;
3766 
3767 		cache_save_setup(cache, trans, path);
3768 
3769 		if (!ret)
3770 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3771 
3772 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3773 			cache->io_ctl.inode = NULL;
3774 			ret = btrfs_write_out_cache(root, trans, cache, path);
3775 			if (ret == 0 && cache->io_ctl.inode) {
3776 				num_started++;
3777 				should_put = 0;
3778 				list_add_tail(&cache->io_list, io);
3779 			} else {
3780 				/*
3781 				 * if we failed to write the cache, the
3782 				 * generation will be bad and life goes on
3783 				 */
3784 				ret = 0;
3785 			}
3786 		}
3787 		if (!ret) {
3788 			ret = write_one_cache_group(trans, root, path, cache);
3789 			/*
3790 			 * One of the free space endio workers might have
3791 			 * created a new block group while updating a free space
3792 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3793 			 * and hasn't released its transaction handle yet, in
3794 			 * which case the new block group is still attached to
3795 			 * its transaction handle and its creation has not
3796 			 * finished yet (no block group item in the extent tree
3797 			 * yet, etc). If this is the case, wait for all free
3798 			 * space endio workers to finish and retry. This is a
3799 			 * a very rare case so no need for a more efficient and
3800 			 * complex approach.
3801 			 */
3802 			if (ret == -ENOENT) {
3803 				wait_event(cur_trans->writer_wait,
3804 				   atomic_read(&cur_trans->num_writers) == 1);
3805 				ret = write_one_cache_group(trans, root, path,
3806 							    cache);
3807 			}
3808 			if (ret)
3809 				btrfs_abort_transaction(trans, ret);
3810 		}
3811 
3812 		/* if its not on the io list, we need to put the block group */
3813 		if (should_put)
3814 			btrfs_put_block_group(cache);
3815 		spin_lock(&cur_trans->dirty_bgs_lock);
3816 	}
3817 	spin_unlock(&cur_trans->dirty_bgs_lock);
3818 
3819 	while (!list_empty(io)) {
3820 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3821 					 io_list);
3822 		list_del_init(&cache->io_list);
3823 		btrfs_wait_cache_io(root, trans, cache,
3824 				    &cache->io_ctl, path, cache->key.objectid);
3825 		btrfs_put_block_group(cache);
3826 	}
3827 
3828 	btrfs_free_path(path);
3829 	return ret;
3830 }
3831 
3832 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3833 {
3834 	struct btrfs_block_group_cache *block_group;
3835 	int readonly = 0;
3836 
3837 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3838 	if (!block_group || block_group->ro)
3839 		readonly = 1;
3840 	if (block_group)
3841 		btrfs_put_block_group(block_group);
3842 	return readonly;
3843 }
3844 
3845 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3846 {
3847 	struct btrfs_block_group_cache *bg;
3848 	bool ret = true;
3849 
3850 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3851 	if (!bg)
3852 		return false;
3853 
3854 	spin_lock(&bg->lock);
3855 	if (bg->ro)
3856 		ret = false;
3857 	else
3858 		atomic_inc(&bg->nocow_writers);
3859 	spin_unlock(&bg->lock);
3860 
3861 	/* no put on block group, done by btrfs_dec_nocow_writers */
3862 	if (!ret)
3863 		btrfs_put_block_group(bg);
3864 
3865 	return ret;
3866 
3867 }
3868 
3869 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3870 {
3871 	struct btrfs_block_group_cache *bg;
3872 
3873 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3874 	ASSERT(bg);
3875 	if (atomic_dec_and_test(&bg->nocow_writers))
3876 		wake_up_atomic_t(&bg->nocow_writers);
3877 	/*
3878 	 * Once for our lookup and once for the lookup done by a previous call
3879 	 * to btrfs_inc_nocow_writers()
3880 	 */
3881 	btrfs_put_block_group(bg);
3882 	btrfs_put_block_group(bg);
3883 }
3884 
3885 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3886 {
3887 	schedule();
3888 	return 0;
3889 }
3890 
3891 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3892 {
3893 	wait_on_atomic_t(&bg->nocow_writers,
3894 			 btrfs_wait_nocow_writers_atomic_t,
3895 			 TASK_UNINTERRUPTIBLE);
3896 }
3897 
3898 static const char *alloc_name(u64 flags)
3899 {
3900 	switch (flags) {
3901 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3902 		return "mixed";
3903 	case BTRFS_BLOCK_GROUP_METADATA:
3904 		return "metadata";
3905 	case BTRFS_BLOCK_GROUP_DATA:
3906 		return "data";
3907 	case BTRFS_BLOCK_GROUP_SYSTEM:
3908 		return "system";
3909 	default:
3910 		WARN_ON(1);
3911 		return "invalid-combination";
3912 	};
3913 }
3914 
3915 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3916 			     u64 total_bytes, u64 bytes_used,
3917 			     u64 bytes_readonly,
3918 			     struct btrfs_space_info **space_info)
3919 {
3920 	struct btrfs_space_info *found;
3921 	int i;
3922 	int factor;
3923 	int ret;
3924 
3925 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3926 		     BTRFS_BLOCK_GROUP_RAID10))
3927 		factor = 2;
3928 	else
3929 		factor = 1;
3930 
3931 	found = __find_space_info(info, flags);
3932 	if (found) {
3933 		spin_lock(&found->lock);
3934 		found->total_bytes += total_bytes;
3935 		found->disk_total += total_bytes * factor;
3936 		found->bytes_used += bytes_used;
3937 		found->disk_used += bytes_used * factor;
3938 		found->bytes_readonly += bytes_readonly;
3939 		if (total_bytes > 0)
3940 			found->full = 0;
3941 		space_info_add_new_bytes(info, found, total_bytes -
3942 					 bytes_used - bytes_readonly);
3943 		spin_unlock(&found->lock);
3944 		*space_info = found;
3945 		return 0;
3946 	}
3947 	found = kzalloc(sizeof(*found), GFP_NOFS);
3948 	if (!found)
3949 		return -ENOMEM;
3950 
3951 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3952 	if (ret) {
3953 		kfree(found);
3954 		return ret;
3955 	}
3956 
3957 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3958 		INIT_LIST_HEAD(&found->block_groups[i]);
3959 	init_rwsem(&found->groups_sem);
3960 	spin_lock_init(&found->lock);
3961 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3962 	found->total_bytes = total_bytes;
3963 	found->disk_total = total_bytes * factor;
3964 	found->bytes_used = bytes_used;
3965 	found->disk_used = bytes_used * factor;
3966 	found->bytes_pinned = 0;
3967 	found->bytes_reserved = 0;
3968 	found->bytes_readonly = bytes_readonly;
3969 	found->bytes_may_use = 0;
3970 	found->full = 0;
3971 	found->max_extent_size = 0;
3972 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3973 	found->chunk_alloc = 0;
3974 	found->flush = 0;
3975 	init_waitqueue_head(&found->wait);
3976 	INIT_LIST_HEAD(&found->ro_bgs);
3977 	INIT_LIST_HEAD(&found->tickets);
3978 	INIT_LIST_HEAD(&found->priority_tickets);
3979 
3980 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3981 				    info->space_info_kobj, "%s",
3982 				    alloc_name(found->flags));
3983 	if (ret) {
3984 		kfree(found);
3985 		return ret;
3986 	}
3987 
3988 	*space_info = found;
3989 	list_add_rcu(&found->list, &info->space_info);
3990 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3991 		info->data_sinfo = found;
3992 
3993 	return ret;
3994 }
3995 
3996 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3997 {
3998 	u64 extra_flags = chunk_to_extended(flags) &
3999 				BTRFS_EXTENDED_PROFILE_MASK;
4000 
4001 	write_seqlock(&fs_info->profiles_lock);
4002 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4003 		fs_info->avail_data_alloc_bits |= extra_flags;
4004 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4005 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4006 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4007 		fs_info->avail_system_alloc_bits |= extra_flags;
4008 	write_sequnlock(&fs_info->profiles_lock);
4009 }
4010 
4011 /*
4012  * returns target flags in extended format or 0 if restripe for this
4013  * chunk_type is not in progress
4014  *
4015  * should be called with either volume_mutex or balance_lock held
4016  */
4017 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4018 {
4019 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4020 	u64 target = 0;
4021 
4022 	if (!bctl)
4023 		return 0;
4024 
4025 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4026 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4027 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4028 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4029 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4030 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4031 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4032 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4033 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4034 	}
4035 
4036 	return target;
4037 }
4038 
4039 /*
4040  * @flags: available profiles in extended format (see ctree.h)
4041  *
4042  * Returns reduced profile in chunk format.  If profile changing is in
4043  * progress (either running or paused) picks the target profile (if it's
4044  * already available), otherwise falls back to plain reducing.
4045  */
4046 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4047 {
4048 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4049 	u64 target;
4050 	u64 raid_type;
4051 	u64 allowed = 0;
4052 
4053 	/*
4054 	 * see if restripe for this chunk_type is in progress, if so
4055 	 * try to reduce to the target profile
4056 	 */
4057 	spin_lock(&root->fs_info->balance_lock);
4058 	target = get_restripe_target(root->fs_info, flags);
4059 	if (target) {
4060 		/* pick target profile only if it's already available */
4061 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4062 			spin_unlock(&root->fs_info->balance_lock);
4063 			return extended_to_chunk(target);
4064 		}
4065 	}
4066 	spin_unlock(&root->fs_info->balance_lock);
4067 
4068 	/* First, mask out the RAID levels which aren't possible */
4069 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4070 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4071 			allowed |= btrfs_raid_group[raid_type];
4072 	}
4073 	allowed &= flags;
4074 
4075 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4076 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4077 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4078 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4079 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4080 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4081 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4082 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4083 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4084 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4085 
4086 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4087 
4088 	return extended_to_chunk(flags | allowed);
4089 }
4090 
4091 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4092 {
4093 	unsigned seq;
4094 	u64 flags;
4095 
4096 	do {
4097 		flags = orig_flags;
4098 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4099 
4100 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4101 			flags |= root->fs_info->avail_data_alloc_bits;
4102 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4103 			flags |= root->fs_info->avail_system_alloc_bits;
4104 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4105 			flags |= root->fs_info->avail_metadata_alloc_bits;
4106 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4107 
4108 	return btrfs_reduce_alloc_profile(root, flags);
4109 }
4110 
4111 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4112 {
4113 	u64 flags;
4114 	u64 ret;
4115 
4116 	if (data)
4117 		flags = BTRFS_BLOCK_GROUP_DATA;
4118 	else if (root == root->fs_info->chunk_root)
4119 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4120 	else
4121 		flags = BTRFS_BLOCK_GROUP_METADATA;
4122 
4123 	ret = get_alloc_profile(root, flags);
4124 	return ret;
4125 }
4126 
4127 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4128 {
4129 	struct btrfs_space_info *data_sinfo;
4130 	struct btrfs_root *root = BTRFS_I(inode)->root;
4131 	struct btrfs_fs_info *fs_info = root->fs_info;
4132 	u64 used;
4133 	int ret = 0;
4134 	int need_commit = 2;
4135 	int have_pinned_space;
4136 
4137 	/* make sure bytes are sectorsize aligned */
4138 	bytes = ALIGN(bytes, root->sectorsize);
4139 
4140 	if (btrfs_is_free_space_inode(inode)) {
4141 		need_commit = 0;
4142 		ASSERT(current->journal_info);
4143 	}
4144 
4145 	data_sinfo = fs_info->data_sinfo;
4146 	if (!data_sinfo)
4147 		goto alloc;
4148 
4149 again:
4150 	/* make sure we have enough space to handle the data first */
4151 	spin_lock(&data_sinfo->lock);
4152 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4153 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4154 		data_sinfo->bytes_may_use;
4155 
4156 	if (used + bytes > data_sinfo->total_bytes) {
4157 		struct btrfs_trans_handle *trans;
4158 
4159 		/*
4160 		 * if we don't have enough free bytes in this space then we need
4161 		 * to alloc a new chunk.
4162 		 */
4163 		if (!data_sinfo->full) {
4164 			u64 alloc_target;
4165 
4166 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4167 			spin_unlock(&data_sinfo->lock);
4168 alloc:
4169 			alloc_target = btrfs_get_alloc_profile(root, 1);
4170 			/*
4171 			 * It is ugly that we don't call nolock join
4172 			 * transaction for the free space inode case here.
4173 			 * But it is safe because we only do the data space
4174 			 * reservation for the free space cache in the
4175 			 * transaction context, the common join transaction
4176 			 * just increase the counter of the current transaction
4177 			 * handler, doesn't try to acquire the trans_lock of
4178 			 * the fs.
4179 			 */
4180 			trans = btrfs_join_transaction(root);
4181 			if (IS_ERR(trans))
4182 				return PTR_ERR(trans);
4183 
4184 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4185 					     alloc_target,
4186 					     CHUNK_ALLOC_NO_FORCE);
4187 			btrfs_end_transaction(trans, root);
4188 			if (ret < 0) {
4189 				if (ret != -ENOSPC)
4190 					return ret;
4191 				else {
4192 					have_pinned_space = 1;
4193 					goto commit_trans;
4194 				}
4195 			}
4196 
4197 			if (!data_sinfo)
4198 				data_sinfo = fs_info->data_sinfo;
4199 
4200 			goto again;
4201 		}
4202 
4203 		/*
4204 		 * If we don't have enough pinned space to deal with this
4205 		 * allocation, and no removed chunk in current transaction,
4206 		 * don't bother committing the transaction.
4207 		 */
4208 		have_pinned_space = percpu_counter_compare(
4209 			&data_sinfo->total_bytes_pinned,
4210 			used + bytes - data_sinfo->total_bytes);
4211 		spin_unlock(&data_sinfo->lock);
4212 
4213 		/* commit the current transaction and try again */
4214 commit_trans:
4215 		if (need_commit &&
4216 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4217 			need_commit--;
4218 
4219 			if (need_commit > 0) {
4220 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4221 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4222 			}
4223 
4224 			trans = btrfs_join_transaction(root);
4225 			if (IS_ERR(trans))
4226 				return PTR_ERR(trans);
4227 			if (have_pinned_space >= 0 ||
4228 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4229 				     &trans->transaction->flags) ||
4230 			    need_commit > 0) {
4231 				ret = btrfs_commit_transaction(trans, root);
4232 				if (ret)
4233 					return ret;
4234 				/*
4235 				 * The cleaner kthread might still be doing iput
4236 				 * operations. Wait for it to finish so that
4237 				 * more space is released.
4238 				 */
4239 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4240 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4241 				goto again;
4242 			} else {
4243 				btrfs_end_transaction(trans, root);
4244 			}
4245 		}
4246 
4247 		trace_btrfs_space_reservation(root->fs_info,
4248 					      "space_info:enospc",
4249 					      data_sinfo->flags, bytes, 1);
4250 		return -ENOSPC;
4251 	}
4252 	data_sinfo->bytes_may_use += bytes;
4253 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4254 				      data_sinfo->flags, bytes, 1);
4255 	spin_unlock(&data_sinfo->lock);
4256 
4257 	return ret;
4258 }
4259 
4260 /*
4261  * New check_data_free_space() with ability for precious data reservation
4262  * Will replace old btrfs_check_data_free_space(), but for patch split,
4263  * add a new function first and then replace it.
4264  */
4265 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4266 {
4267 	struct btrfs_root *root = BTRFS_I(inode)->root;
4268 	int ret;
4269 
4270 	/* align the range */
4271 	len = round_up(start + len, root->sectorsize) -
4272 	      round_down(start, root->sectorsize);
4273 	start = round_down(start, root->sectorsize);
4274 
4275 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4276 	if (ret < 0)
4277 		return ret;
4278 
4279 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4280 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4281 	if (ret)
4282 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4283 	return ret;
4284 }
4285 
4286 /*
4287  * Called if we need to clear a data reservation for this inode
4288  * Normally in a error case.
4289  *
4290  * This one will *NOT* use accurate qgroup reserved space API, just for case
4291  * which we can't sleep and is sure it won't affect qgroup reserved space.
4292  * Like clear_bit_hook().
4293  */
4294 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4295 					    u64 len)
4296 {
4297 	struct btrfs_root *root = BTRFS_I(inode)->root;
4298 	struct btrfs_space_info *data_sinfo;
4299 
4300 	/* Make sure the range is aligned to sectorsize */
4301 	len = round_up(start + len, root->sectorsize) -
4302 	      round_down(start, root->sectorsize);
4303 	start = round_down(start, root->sectorsize);
4304 
4305 	data_sinfo = root->fs_info->data_sinfo;
4306 	spin_lock(&data_sinfo->lock);
4307 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4308 		data_sinfo->bytes_may_use = 0;
4309 	else
4310 		data_sinfo->bytes_may_use -= len;
4311 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4312 				      data_sinfo->flags, len, 0);
4313 	spin_unlock(&data_sinfo->lock);
4314 }
4315 
4316 /*
4317  * Called if we need to clear a data reservation for this inode
4318  * Normally in a error case.
4319  *
4320  * This one will handle the per-inode data rsv map for accurate reserved
4321  * space framework.
4322  */
4323 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4324 {
4325 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4326 	btrfs_qgroup_free_data(inode, start, len);
4327 }
4328 
4329 static void force_metadata_allocation(struct btrfs_fs_info *info)
4330 {
4331 	struct list_head *head = &info->space_info;
4332 	struct btrfs_space_info *found;
4333 
4334 	rcu_read_lock();
4335 	list_for_each_entry_rcu(found, head, list) {
4336 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4337 			found->force_alloc = CHUNK_ALLOC_FORCE;
4338 	}
4339 	rcu_read_unlock();
4340 }
4341 
4342 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4343 {
4344 	return (global->size << 1);
4345 }
4346 
4347 static int should_alloc_chunk(struct btrfs_root *root,
4348 			      struct btrfs_space_info *sinfo, int force)
4349 {
4350 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4351 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4352 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4353 	u64 thresh;
4354 
4355 	if (force == CHUNK_ALLOC_FORCE)
4356 		return 1;
4357 
4358 	/*
4359 	 * We need to take into account the global rsv because for all intents
4360 	 * and purposes it's used space.  Don't worry about locking the
4361 	 * global_rsv, it doesn't change except when the transaction commits.
4362 	 */
4363 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4364 		num_allocated += calc_global_rsv_need_space(global_rsv);
4365 
4366 	/*
4367 	 * in limited mode, we want to have some free space up to
4368 	 * about 1% of the FS size.
4369 	 */
4370 	if (force == CHUNK_ALLOC_LIMITED) {
4371 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4372 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4373 
4374 		if (num_bytes - num_allocated < thresh)
4375 			return 1;
4376 	}
4377 
4378 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4379 		return 0;
4380 	return 1;
4381 }
4382 
4383 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4384 {
4385 	u64 num_dev;
4386 
4387 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4388 		    BTRFS_BLOCK_GROUP_RAID0 |
4389 		    BTRFS_BLOCK_GROUP_RAID5 |
4390 		    BTRFS_BLOCK_GROUP_RAID6))
4391 		num_dev = root->fs_info->fs_devices->rw_devices;
4392 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4393 		num_dev = 2;
4394 	else
4395 		num_dev = 1;	/* DUP or single */
4396 
4397 	return num_dev;
4398 }
4399 
4400 /*
4401  * If @is_allocation is true, reserve space in the system space info necessary
4402  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4403  * removing a chunk.
4404  */
4405 void check_system_chunk(struct btrfs_trans_handle *trans,
4406 			struct btrfs_root *root,
4407 			u64 type)
4408 {
4409 	struct btrfs_space_info *info;
4410 	u64 left;
4411 	u64 thresh;
4412 	int ret = 0;
4413 	u64 num_devs;
4414 
4415 	/*
4416 	 * Needed because we can end up allocating a system chunk and for an
4417 	 * atomic and race free space reservation in the chunk block reserve.
4418 	 */
4419 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4420 
4421 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4422 	spin_lock(&info->lock);
4423 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4424 		info->bytes_reserved - info->bytes_readonly -
4425 		info->bytes_may_use;
4426 	spin_unlock(&info->lock);
4427 
4428 	num_devs = get_profile_num_devs(root, type);
4429 
4430 	/* num_devs device items to update and 1 chunk item to add or remove */
4431 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4432 		btrfs_calc_trans_metadata_size(root, 1);
4433 
4434 	if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4435 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4436 			left, thresh, type);
4437 		dump_space_info(root->fs_info, info, 0, 0);
4438 	}
4439 
4440 	if (left < thresh) {
4441 		u64 flags;
4442 
4443 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4444 		/*
4445 		 * Ignore failure to create system chunk. We might end up not
4446 		 * needing it, as we might not need to COW all nodes/leafs from
4447 		 * the paths we visit in the chunk tree (they were already COWed
4448 		 * or created in the current transaction for example).
4449 		 */
4450 		ret = btrfs_alloc_chunk(trans, root, flags);
4451 	}
4452 
4453 	if (!ret) {
4454 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4455 					  &root->fs_info->chunk_block_rsv,
4456 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4457 		if (!ret)
4458 			trans->chunk_bytes_reserved += thresh;
4459 	}
4460 }
4461 
4462 /*
4463  * If force is CHUNK_ALLOC_FORCE:
4464  *    - return 1 if it successfully allocates a chunk,
4465  *    - return errors including -ENOSPC otherwise.
4466  * If force is NOT CHUNK_ALLOC_FORCE:
4467  *    - return 0 if it doesn't need to allocate a new chunk,
4468  *    - return 1 if it successfully allocates a chunk,
4469  *    - return errors including -ENOSPC otherwise.
4470  */
4471 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4472 			  struct btrfs_root *extent_root, u64 flags, int force)
4473 {
4474 	struct btrfs_space_info *space_info;
4475 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4476 	int wait_for_alloc = 0;
4477 	int ret = 0;
4478 
4479 	/* Don't re-enter if we're already allocating a chunk */
4480 	if (trans->allocating_chunk)
4481 		return -ENOSPC;
4482 
4483 	space_info = __find_space_info(extent_root->fs_info, flags);
4484 	if (!space_info) {
4485 		ret = update_space_info(extent_root->fs_info, flags,
4486 					0, 0, 0, &space_info);
4487 		BUG_ON(ret); /* -ENOMEM */
4488 	}
4489 	BUG_ON(!space_info); /* Logic error */
4490 
4491 again:
4492 	spin_lock(&space_info->lock);
4493 	if (force < space_info->force_alloc)
4494 		force = space_info->force_alloc;
4495 	if (space_info->full) {
4496 		if (should_alloc_chunk(extent_root, space_info, force))
4497 			ret = -ENOSPC;
4498 		else
4499 			ret = 0;
4500 		spin_unlock(&space_info->lock);
4501 		return ret;
4502 	}
4503 
4504 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4505 		spin_unlock(&space_info->lock);
4506 		return 0;
4507 	} else if (space_info->chunk_alloc) {
4508 		wait_for_alloc = 1;
4509 	} else {
4510 		space_info->chunk_alloc = 1;
4511 	}
4512 
4513 	spin_unlock(&space_info->lock);
4514 
4515 	mutex_lock(&fs_info->chunk_mutex);
4516 
4517 	/*
4518 	 * The chunk_mutex is held throughout the entirety of a chunk
4519 	 * allocation, so once we've acquired the chunk_mutex we know that the
4520 	 * other guy is done and we need to recheck and see if we should
4521 	 * allocate.
4522 	 */
4523 	if (wait_for_alloc) {
4524 		mutex_unlock(&fs_info->chunk_mutex);
4525 		wait_for_alloc = 0;
4526 		goto again;
4527 	}
4528 
4529 	trans->allocating_chunk = true;
4530 
4531 	/*
4532 	 * If we have mixed data/metadata chunks we want to make sure we keep
4533 	 * allocating mixed chunks instead of individual chunks.
4534 	 */
4535 	if (btrfs_mixed_space_info(space_info))
4536 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4537 
4538 	/*
4539 	 * if we're doing a data chunk, go ahead and make sure that
4540 	 * we keep a reasonable number of metadata chunks allocated in the
4541 	 * FS as well.
4542 	 */
4543 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4544 		fs_info->data_chunk_allocations++;
4545 		if (!(fs_info->data_chunk_allocations %
4546 		      fs_info->metadata_ratio))
4547 			force_metadata_allocation(fs_info);
4548 	}
4549 
4550 	/*
4551 	 * Check if we have enough space in SYSTEM chunk because we may need
4552 	 * to update devices.
4553 	 */
4554 	check_system_chunk(trans, extent_root, flags);
4555 
4556 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4557 	trans->allocating_chunk = false;
4558 
4559 	spin_lock(&space_info->lock);
4560 	if (ret < 0 && ret != -ENOSPC)
4561 		goto out;
4562 	if (ret)
4563 		space_info->full = 1;
4564 	else
4565 		ret = 1;
4566 
4567 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4568 out:
4569 	space_info->chunk_alloc = 0;
4570 	spin_unlock(&space_info->lock);
4571 	mutex_unlock(&fs_info->chunk_mutex);
4572 	/*
4573 	 * When we allocate a new chunk we reserve space in the chunk block
4574 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4575 	 * add new nodes/leafs to it if we end up needing to do it when
4576 	 * inserting the chunk item and updating device items as part of the
4577 	 * second phase of chunk allocation, performed by
4578 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4579 	 * large number of new block groups to create in our transaction
4580 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4581 	 * in extreme cases - like having a single transaction create many new
4582 	 * block groups when starting to write out the free space caches of all
4583 	 * the block groups that were made dirty during the lifetime of the
4584 	 * transaction.
4585 	 */
4586 	if (trans->can_flush_pending_bgs &&
4587 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4588 		btrfs_create_pending_block_groups(trans, extent_root);
4589 		btrfs_trans_release_chunk_metadata(trans);
4590 	}
4591 	return ret;
4592 }
4593 
4594 static int can_overcommit(struct btrfs_root *root,
4595 			  struct btrfs_space_info *space_info, u64 bytes,
4596 			  enum btrfs_reserve_flush_enum flush)
4597 {
4598 	struct btrfs_block_rsv *global_rsv;
4599 	u64 profile;
4600 	u64 space_size;
4601 	u64 avail;
4602 	u64 used;
4603 
4604 	/* Don't overcommit when in mixed mode. */
4605 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4606 		return 0;
4607 
4608 	BUG_ON(root->fs_info == NULL);
4609 	global_rsv = &root->fs_info->global_block_rsv;
4610 	profile = btrfs_get_alloc_profile(root, 0);
4611 	used = space_info->bytes_used + space_info->bytes_reserved +
4612 		space_info->bytes_pinned + space_info->bytes_readonly;
4613 
4614 	/*
4615 	 * We only want to allow over committing if we have lots of actual space
4616 	 * free, but if we don't have enough space to handle the global reserve
4617 	 * space then we could end up having a real enospc problem when trying
4618 	 * to allocate a chunk or some other such important allocation.
4619 	 */
4620 	spin_lock(&global_rsv->lock);
4621 	space_size = calc_global_rsv_need_space(global_rsv);
4622 	spin_unlock(&global_rsv->lock);
4623 	if (used + space_size >= space_info->total_bytes)
4624 		return 0;
4625 
4626 	used += space_info->bytes_may_use;
4627 
4628 	spin_lock(&root->fs_info->free_chunk_lock);
4629 	avail = root->fs_info->free_chunk_space;
4630 	spin_unlock(&root->fs_info->free_chunk_lock);
4631 
4632 	/*
4633 	 * If we have dup, raid1 or raid10 then only half of the free
4634 	 * space is actually useable.  For raid56, the space info used
4635 	 * doesn't include the parity drive, so we don't have to
4636 	 * change the math
4637 	 */
4638 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4639 		       BTRFS_BLOCK_GROUP_RAID1 |
4640 		       BTRFS_BLOCK_GROUP_RAID10))
4641 		avail >>= 1;
4642 
4643 	/*
4644 	 * If we aren't flushing all things, let us overcommit up to
4645 	 * 1/2th of the space. If we can flush, don't let us overcommit
4646 	 * too much, let it overcommit up to 1/8 of the space.
4647 	 */
4648 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4649 		avail >>= 3;
4650 	else
4651 		avail >>= 1;
4652 
4653 	if (used + bytes < space_info->total_bytes + avail)
4654 		return 1;
4655 	return 0;
4656 }
4657 
4658 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4659 					 unsigned long nr_pages, int nr_items)
4660 {
4661 	struct super_block *sb = root->fs_info->sb;
4662 
4663 	if (down_read_trylock(&sb->s_umount)) {
4664 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4665 		up_read(&sb->s_umount);
4666 	} else {
4667 		/*
4668 		 * We needn't worry the filesystem going from r/w to r/o though
4669 		 * we don't acquire ->s_umount mutex, because the filesystem
4670 		 * should guarantee the delalloc inodes list be empty after
4671 		 * the filesystem is readonly(all dirty pages are written to
4672 		 * the disk).
4673 		 */
4674 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4675 		if (!current->journal_info)
4676 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4677 						 0, (u64)-1);
4678 	}
4679 }
4680 
4681 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4682 {
4683 	u64 bytes;
4684 	int nr;
4685 
4686 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4687 	nr = (int)div64_u64(to_reclaim, bytes);
4688 	if (!nr)
4689 		nr = 1;
4690 	return nr;
4691 }
4692 
4693 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4694 
4695 /*
4696  * shrink metadata reservation for delalloc
4697  */
4698 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4699 			    bool wait_ordered)
4700 {
4701 	struct btrfs_block_rsv *block_rsv;
4702 	struct btrfs_space_info *space_info;
4703 	struct btrfs_trans_handle *trans;
4704 	u64 delalloc_bytes;
4705 	u64 max_reclaim;
4706 	long time_left;
4707 	unsigned long nr_pages;
4708 	int loops;
4709 	int items;
4710 	enum btrfs_reserve_flush_enum flush;
4711 
4712 	/* Calc the number of the pages we need flush for space reservation */
4713 	items = calc_reclaim_items_nr(root, to_reclaim);
4714 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4715 
4716 	trans = (struct btrfs_trans_handle *)current->journal_info;
4717 	block_rsv = &root->fs_info->delalloc_block_rsv;
4718 	space_info = block_rsv->space_info;
4719 
4720 	delalloc_bytes = percpu_counter_sum_positive(
4721 						&root->fs_info->delalloc_bytes);
4722 	if (delalloc_bytes == 0) {
4723 		if (trans)
4724 			return;
4725 		if (wait_ordered)
4726 			btrfs_wait_ordered_roots(root->fs_info, items,
4727 						 0, (u64)-1);
4728 		return;
4729 	}
4730 
4731 	loops = 0;
4732 	while (delalloc_bytes && loops < 3) {
4733 		max_reclaim = min(delalloc_bytes, to_reclaim);
4734 		nr_pages = max_reclaim >> PAGE_SHIFT;
4735 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4736 		/*
4737 		 * We need to wait for the async pages to actually start before
4738 		 * we do anything.
4739 		 */
4740 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4741 		if (!max_reclaim)
4742 			goto skip_async;
4743 
4744 		if (max_reclaim <= nr_pages)
4745 			max_reclaim = 0;
4746 		else
4747 			max_reclaim -= nr_pages;
4748 
4749 		wait_event(root->fs_info->async_submit_wait,
4750 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4751 			   (int)max_reclaim);
4752 skip_async:
4753 		if (!trans)
4754 			flush = BTRFS_RESERVE_FLUSH_ALL;
4755 		else
4756 			flush = BTRFS_RESERVE_NO_FLUSH;
4757 		spin_lock(&space_info->lock);
4758 		if (can_overcommit(root, space_info, orig, flush)) {
4759 			spin_unlock(&space_info->lock);
4760 			break;
4761 		}
4762 		if (list_empty(&space_info->tickets) &&
4763 		    list_empty(&space_info->priority_tickets)) {
4764 			spin_unlock(&space_info->lock);
4765 			break;
4766 		}
4767 		spin_unlock(&space_info->lock);
4768 
4769 		loops++;
4770 		if (wait_ordered && !trans) {
4771 			btrfs_wait_ordered_roots(root->fs_info, items,
4772 						 0, (u64)-1);
4773 		} else {
4774 			time_left = schedule_timeout_killable(1);
4775 			if (time_left)
4776 				break;
4777 		}
4778 		delalloc_bytes = percpu_counter_sum_positive(
4779 						&root->fs_info->delalloc_bytes);
4780 	}
4781 }
4782 
4783 /**
4784  * maybe_commit_transaction - possibly commit the transaction if its ok to
4785  * @root - the root we're allocating for
4786  * @bytes - the number of bytes we want to reserve
4787  * @force - force the commit
4788  *
4789  * This will check to make sure that committing the transaction will actually
4790  * get us somewhere and then commit the transaction if it does.  Otherwise it
4791  * will return -ENOSPC.
4792  */
4793 static int may_commit_transaction(struct btrfs_root *root,
4794 				  struct btrfs_space_info *space_info,
4795 				  u64 bytes, int force)
4796 {
4797 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4798 	struct btrfs_trans_handle *trans;
4799 
4800 	trans = (struct btrfs_trans_handle *)current->journal_info;
4801 	if (trans)
4802 		return -EAGAIN;
4803 
4804 	if (force)
4805 		goto commit;
4806 
4807 	/* See if there is enough pinned space to make this reservation */
4808 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4809 				   bytes) >= 0)
4810 		goto commit;
4811 
4812 	/*
4813 	 * See if there is some space in the delayed insertion reservation for
4814 	 * this reservation.
4815 	 */
4816 	if (space_info != delayed_rsv->space_info)
4817 		return -ENOSPC;
4818 
4819 	spin_lock(&delayed_rsv->lock);
4820 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4821 				   bytes - delayed_rsv->size) >= 0) {
4822 		spin_unlock(&delayed_rsv->lock);
4823 		return -ENOSPC;
4824 	}
4825 	spin_unlock(&delayed_rsv->lock);
4826 
4827 commit:
4828 	trans = btrfs_join_transaction(root);
4829 	if (IS_ERR(trans))
4830 		return -ENOSPC;
4831 
4832 	return btrfs_commit_transaction(trans, root);
4833 }
4834 
4835 struct reserve_ticket {
4836 	u64 bytes;
4837 	int error;
4838 	struct list_head list;
4839 	wait_queue_head_t wait;
4840 };
4841 
4842 static int flush_space(struct btrfs_root *root,
4843 		       struct btrfs_space_info *space_info, u64 num_bytes,
4844 		       u64 orig_bytes, int state)
4845 {
4846 	struct btrfs_trans_handle *trans;
4847 	int nr;
4848 	int ret = 0;
4849 
4850 	switch (state) {
4851 	case FLUSH_DELAYED_ITEMS_NR:
4852 	case FLUSH_DELAYED_ITEMS:
4853 		if (state == FLUSH_DELAYED_ITEMS_NR)
4854 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4855 		else
4856 			nr = -1;
4857 
4858 		trans = btrfs_join_transaction(root);
4859 		if (IS_ERR(trans)) {
4860 			ret = PTR_ERR(trans);
4861 			break;
4862 		}
4863 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4864 		btrfs_end_transaction(trans, root);
4865 		break;
4866 	case FLUSH_DELALLOC:
4867 	case FLUSH_DELALLOC_WAIT:
4868 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4869 				state == FLUSH_DELALLOC_WAIT);
4870 		break;
4871 	case ALLOC_CHUNK:
4872 		trans = btrfs_join_transaction(root);
4873 		if (IS_ERR(trans)) {
4874 			ret = PTR_ERR(trans);
4875 			break;
4876 		}
4877 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4878 				     btrfs_get_alloc_profile(root, 0),
4879 				     CHUNK_ALLOC_NO_FORCE);
4880 		btrfs_end_transaction(trans, root);
4881 		if (ret > 0 || ret == -ENOSPC)
4882 			ret = 0;
4883 		break;
4884 	case COMMIT_TRANS:
4885 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4886 		break;
4887 	default:
4888 		ret = -ENOSPC;
4889 		break;
4890 	}
4891 
4892 	trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4893 				orig_bytes, state, ret);
4894 	return ret;
4895 }
4896 
4897 static inline u64
4898 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4899 				 struct btrfs_space_info *space_info)
4900 {
4901 	struct reserve_ticket *ticket;
4902 	u64 used;
4903 	u64 expected;
4904 	u64 to_reclaim = 0;
4905 
4906 	list_for_each_entry(ticket, &space_info->tickets, list)
4907 		to_reclaim += ticket->bytes;
4908 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4909 		to_reclaim += ticket->bytes;
4910 	if (to_reclaim)
4911 		return to_reclaim;
4912 
4913 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4914 	if (can_overcommit(root, space_info, to_reclaim,
4915 			   BTRFS_RESERVE_FLUSH_ALL))
4916 		return 0;
4917 
4918 	used = space_info->bytes_used + space_info->bytes_reserved +
4919 	       space_info->bytes_pinned + space_info->bytes_readonly +
4920 	       space_info->bytes_may_use;
4921 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4922 		expected = div_factor_fine(space_info->total_bytes, 95);
4923 	else
4924 		expected = div_factor_fine(space_info->total_bytes, 90);
4925 
4926 	if (used > expected)
4927 		to_reclaim = used - expected;
4928 	else
4929 		to_reclaim = 0;
4930 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4931 				     space_info->bytes_reserved);
4932 	return to_reclaim;
4933 }
4934 
4935 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4936 					struct btrfs_root *root, u64 used)
4937 {
4938 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4939 
4940 	/* If we're just plain full then async reclaim just slows us down. */
4941 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4942 		return 0;
4943 
4944 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4945 		return 0;
4946 
4947 	return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4948 		!test_bit(BTRFS_FS_STATE_REMOUNTING,
4949 			  &root->fs_info->fs_state));
4950 }
4951 
4952 static void wake_all_tickets(struct list_head *head)
4953 {
4954 	struct reserve_ticket *ticket;
4955 
4956 	while (!list_empty(head)) {
4957 		ticket = list_first_entry(head, struct reserve_ticket, list);
4958 		list_del_init(&ticket->list);
4959 		ticket->error = -ENOSPC;
4960 		wake_up(&ticket->wait);
4961 	}
4962 }
4963 
4964 /*
4965  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4966  * will loop and continuously try to flush as long as we are making progress.
4967  * We count progress as clearing off tickets each time we have to loop.
4968  */
4969 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4970 {
4971 	struct btrfs_fs_info *fs_info;
4972 	struct btrfs_space_info *space_info;
4973 	u64 to_reclaim;
4974 	int flush_state;
4975 	int commit_cycles = 0;
4976 	u64 last_tickets_id;
4977 
4978 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4979 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4980 
4981 	spin_lock(&space_info->lock);
4982 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4983 						      space_info);
4984 	if (!to_reclaim) {
4985 		space_info->flush = 0;
4986 		spin_unlock(&space_info->lock);
4987 		return;
4988 	}
4989 	last_tickets_id = space_info->tickets_id;
4990 	spin_unlock(&space_info->lock);
4991 
4992 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4993 	do {
4994 		struct reserve_ticket *ticket;
4995 		int ret;
4996 
4997 		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4998 			    to_reclaim, flush_state);
4999 		spin_lock(&space_info->lock);
5000 		if (list_empty(&space_info->tickets)) {
5001 			space_info->flush = 0;
5002 			spin_unlock(&space_info->lock);
5003 			return;
5004 		}
5005 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5006 							      space_info);
5007 		ticket = list_first_entry(&space_info->tickets,
5008 					  struct reserve_ticket, list);
5009 		if (last_tickets_id == space_info->tickets_id) {
5010 			flush_state++;
5011 		} else {
5012 			last_tickets_id = space_info->tickets_id;
5013 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5014 			if (commit_cycles)
5015 				commit_cycles--;
5016 		}
5017 
5018 		if (flush_state > COMMIT_TRANS) {
5019 			commit_cycles++;
5020 			if (commit_cycles > 2) {
5021 				wake_all_tickets(&space_info->tickets);
5022 				space_info->flush = 0;
5023 			} else {
5024 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 			}
5026 		}
5027 		spin_unlock(&space_info->lock);
5028 	} while (flush_state <= COMMIT_TRANS);
5029 }
5030 
5031 void btrfs_init_async_reclaim_work(struct work_struct *work)
5032 {
5033 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5034 }
5035 
5036 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5037 					    struct btrfs_space_info *space_info,
5038 					    struct reserve_ticket *ticket)
5039 {
5040 	u64 to_reclaim;
5041 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5042 
5043 	spin_lock(&space_info->lock);
5044 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5045 						      space_info);
5046 	if (!to_reclaim) {
5047 		spin_unlock(&space_info->lock);
5048 		return;
5049 	}
5050 	spin_unlock(&space_info->lock);
5051 
5052 	do {
5053 		flush_space(fs_info->fs_root, space_info, to_reclaim,
5054 			    to_reclaim, flush_state);
5055 		flush_state++;
5056 		spin_lock(&space_info->lock);
5057 		if (ticket->bytes == 0) {
5058 			spin_unlock(&space_info->lock);
5059 			return;
5060 		}
5061 		spin_unlock(&space_info->lock);
5062 
5063 		/*
5064 		 * Priority flushers can't wait on delalloc without
5065 		 * deadlocking.
5066 		 */
5067 		if (flush_state == FLUSH_DELALLOC ||
5068 		    flush_state == FLUSH_DELALLOC_WAIT)
5069 			flush_state = ALLOC_CHUNK;
5070 	} while (flush_state < COMMIT_TRANS);
5071 }
5072 
5073 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5074 			       struct btrfs_space_info *space_info,
5075 			       struct reserve_ticket *ticket, u64 orig_bytes)
5076 
5077 {
5078 	DEFINE_WAIT(wait);
5079 	int ret = 0;
5080 
5081 	spin_lock(&space_info->lock);
5082 	while (ticket->bytes > 0 && ticket->error == 0) {
5083 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5084 		if (ret) {
5085 			ret = -EINTR;
5086 			break;
5087 		}
5088 		spin_unlock(&space_info->lock);
5089 
5090 		schedule();
5091 
5092 		finish_wait(&ticket->wait, &wait);
5093 		spin_lock(&space_info->lock);
5094 	}
5095 	if (!ret)
5096 		ret = ticket->error;
5097 	if (!list_empty(&ticket->list))
5098 		list_del_init(&ticket->list);
5099 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5100 		u64 num_bytes = orig_bytes - ticket->bytes;
5101 		space_info->bytes_may_use -= num_bytes;
5102 		trace_btrfs_space_reservation(fs_info, "space_info",
5103 					      space_info->flags, num_bytes, 0);
5104 	}
5105 	spin_unlock(&space_info->lock);
5106 
5107 	return ret;
5108 }
5109 
5110 /**
5111  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5112  * @root - the root we're allocating for
5113  * @space_info - the space info we want to allocate from
5114  * @orig_bytes - the number of bytes we want
5115  * @flush - whether or not we can flush to make our reservation
5116  *
5117  * This will reserve orig_bytes number of bytes from the space info associated
5118  * with the block_rsv.  If there is not enough space it will make an attempt to
5119  * flush out space to make room.  It will do this by flushing delalloc if
5120  * possible or committing the transaction.  If flush is 0 then no attempts to
5121  * regain reservations will be made and this will fail if there is not enough
5122  * space already.
5123  */
5124 static int __reserve_metadata_bytes(struct btrfs_root *root,
5125 				    struct btrfs_space_info *space_info,
5126 				    u64 orig_bytes,
5127 				    enum btrfs_reserve_flush_enum flush)
5128 {
5129 	struct reserve_ticket ticket;
5130 	u64 used;
5131 	int ret = 0;
5132 
5133 	ASSERT(orig_bytes);
5134 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5135 
5136 	spin_lock(&space_info->lock);
5137 	ret = -ENOSPC;
5138 	used = space_info->bytes_used + space_info->bytes_reserved +
5139 		space_info->bytes_pinned + space_info->bytes_readonly +
5140 		space_info->bytes_may_use;
5141 
5142 	/*
5143 	 * If we have enough space then hooray, make our reservation and carry
5144 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5145 	 * If not things get more complicated.
5146 	 */
5147 	if (used + orig_bytes <= space_info->total_bytes) {
5148 		space_info->bytes_may_use += orig_bytes;
5149 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5150 					      space_info->flags, orig_bytes,
5151 					      1);
5152 		ret = 0;
5153 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5154 		space_info->bytes_may_use += orig_bytes;
5155 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5156 					      space_info->flags, orig_bytes,
5157 					      1);
5158 		ret = 0;
5159 	}
5160 
5161 	/*
5162 	 * If we couldn't make a reservation then setup our reservation ticket
5163 	 * and kick the async worker if it's not already running.
5164 	 *
5165 	 * If we are a priority flusher then we just need to add our ticket to
5166 	 * the list and we will do our own flushing further down.
5167 	 */
5168 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5169 		ticket.bytes = orig_bytes;
5170 		ticket.error = 0;
5171 		init_waitqueue_head(&ticket.wait);
5172 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5173 			list_add_tail(&ticket.list, &space_info->tickets);
5174 			if (!space_info->flush) {
5175 				space_info->flush = 1;
5176 				trace_btrfs_trigger_flush(root->fs_info,
5177 							  space_info->flags,
5178 							  orig_bytes, flush,
5179 							  "enospc");
5180 				queue_work(system_unbound_wq,
5181 					   &root->fs_info->async_reclaim_work);
5182 			}
5183 		} else {
5184 			list_add_tail(&ticket.list,
5185 				      &space_info->priority_tickets);
5186 		}
5187 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5188 		used += orig_bytes;
5189 		/*
5190 		 * We will do the space reservation dance during log replay,
5191 		 * which means we won't have fs_info->fs_root set, so don't do
5192 		 * the async reclaim as we will panic.
5193 		 */
5194 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
5195 		    need_do_async_reclaim(space_info, root, used) &&
5196 		    !work_busy(&root->fs_info->async_reclaim_work)) {
5197 			trace_btrfs_trigger_flush(root->fs_info,
5198 						  space_info->flags,
5199 						  orig_bytes, flush,
5200 						  "preempt");
5201 			queue_work(system_unbound_wq,
5202 				   &root->fs_info->async_reclaim_work);
5203 		}
5204 	}
5205 	spin_unlock(&space_info->lock);
5206 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5207 		return ret;
5208 
5209 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5210 		return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5211 					   orig_bytes);
5212 
5213 	ret = 0;
5214 	priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5215 	spin_lock(&space_info->lock);
5216 	if (ticket.bytes) {
5217 		if (ticket.bytes < orig_bytes) {
5218 			u64 num_bytes = orig_bytes - ticket.bytes;
5219 			space_info->bytes_may_use -= num_bytes;
5220 			trace_btrfs_space_reservation(root->fs_info,
5221 					"space_info", space_info->flags,
5222 					num_bytes, 0);
5223 
5224 		}
5225 		list_del_init(&ticket.list);
5226 		ret = -ENOSPC;
5227 	}
5228 	spin_unlock(&space_info->lock);
5229 	ASSERT(list_empty(&ticket.list));
5230 	return ret;
5231 }
5232 
5233 /**
5234  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235  * @root - the root we're allocating for
5236  * @block_rsv - the block_rsv we're allocating for
5237  * @orig_bytes - the number of bytes we want
5238  * @flush - whether or not we can flush to make our reservation
5239  *
5240  * This will reserve orgi_bytes number of bytes from the space info associated
5241  * with the block_rsv.  If there is not enough space it will make an attempt to
5242  * flush out space to make room.  It will do this by flushing delalloc if
5243  * possible or committing the transaction.  If flush is 0 then no attempts to
5244  * regain reservations will be made and this will fail if there is not enough
5245  * space already.
5246  */
5247 static int reserve_metadata_bytes(struct btrfs_root *root,
5248 				  struct btrfs_block_rsv *block_rsv,
5249 				  u64 orig_bytes,
5250 				  enum btrfs_reserve_flush_enum flush)
5251 {
5252 	int ret;
5253 
5254 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5255 				       flush);
5256 	if (ret == -ENOSPC &&
5257 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5258 		struct btrfs_block_rsv *global_rsv =
5259 			&root->fs_info->global_block_rsv;
5260 
5261 		if (block_rsv != global_rsv &&
5262 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5263 			ret = 0;
5264 	}
5265 	if (ret == -ENOSPC)
5266 		trace_btrfs_space_reservation(root->fs_info,
5267 					      "space_info:enospc",
5268 					      block_rsv->space_info->flags,
5269 					      orig_bytes, 1);
5270 	return ret;
5271 }
5272 
5273 static struct btrfs_block_rsv *get_block_rsv(
5274 					const struct btrfs_trans_handle *trans,
5275 					const struct btrfs_root *root)
5276 {
5277 	struct btrfs_block_rsv *block_rsv = NULL;
5278 
5279 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5280 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5281 	     (root == root->fs_info->uuid_root))
5282 		block_rsv = trans->block_rsv;
5283 
5284 	if (!block_rsv)
5285 		block_rsv = root->block_rsv;
5286 
5287 	if (!block_rsv)
5288 		block_rsv = &root->fs_info->empty_block_rsv;
5289 
5290 	return block_rsv;
5291 }
5292 
5293 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5294 			       u64 num_bytes)
5295 {
5296 	int ret = -ENOSPC;
5297 	spin_lock(&block_rsv->lock);
5298 	if (block_rsv->reserved >= num_bytes) {
5299 		block_rsv->reserved -= num_bytes;
5300 		if (block_rsv->reserved < block_rsv->size)
5301 			block_rsv->full = 0;
5302 		ret = 0;
5303 	}
5304 	spin_unlock(&block_rsv->lock);
5305 	return ret;
5306 }
5307 
5308 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5309 				u64 num_bytes, int update_size)
5310 {
5311 	spin_lock(&block_rsv->lock);
5312 	block_rsv->reserved += num_bytes;
5313 	if (update_size)
5314 		block_rsv->size += num_bytes;
5315 	else if (block_rsv->reserved >= block_rsv->size)
5316 		block_rsv->full = 1;
5317 	spin_unlock(&block_rsv->lock);
5318 }
5319 
5320 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5321 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5322 			     int min_factor)
5323 {
5324 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5325 	u64 min_bytes;
5326 
5327 	if (global_rsv->space_info != dest->space_info)
5328 		return -ENOSPC;
5329 
5330 	spin_lock(&global_rsv->lock);
5331 	min_bytes = div_factor(global_rsv->size, min_factor);
5332 	if (global_rsv->reserved < min_bytes + num_bytes) {
5333 		spin_unlock(&global_rsv->lock);
5334 		return -ENOSPC;
5335 	}
5336 	global_rsv->reserved -= num_bytes;
5337 	if (global_rsv->reserved < global_rsv->size)
5338 		global_rsv->full = 0;
5339 	spin_unlock(&global_rsv->lock);
5340 
5341 	block_rsv_add_bytes(dest, num_bytes, 1);
5342 	return 0;
5343 }
5344 
5345 /*
5346  * This is for space we already have accounted in space_info->bytes_may_use, so
5347  * basically when we're returning space from block_rsv's.
5348  */
5349 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5350 				     struct btrfs_space_info *space_info,
5351 				     u64 num_bytes)
5352 {
5353 	struct reserve_ticket *ticket;
5354 	struct list_head *head;
5355 	u64 used;
5356 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5357 	bool check_overcommit = false;
5358 
5359 	spin_lock(&space_info->lock);
5360 	head = &space_info->priority_tickets;
5361 
5362 	/*
5363 	 * If we are over our limit then we need to check and see if we can
5364 	 * overcommit, and if we can't then we just need to free up our space
5365 	 * and not satisfy any requests.
5366 	 */
5367 	used = space_info->bytes_used + space_info->bytes_reserved +
5368 		space_info->bytes_pinned + space_info->bytes_readonly +
5369 		space_info->bytes_may_use;
5370 	if (used - num_bytes >= space_info->total_bytes)
5371 		check_overcommit = true;
5372 again:
5373 	while (!list_empty(head) && num_bytes) {
5374 		ticket = list_first_entry(head, struct reserve_ticket,
5375 					  list);
5376 		/*
5377 		 * We use 0 bytes because this space is already reserved, so
5378 		 * adding the ticket space would be a double count.
5379 		 */
5380 		if (check_overcommit &&
5381 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5382 				    flush))
5383 			break;
5384 		if (num_bytes >= ticket->bytes) {
5385 			list_del_init(&ticket->list);
5386 			num_bytes -= ticket->bytes;
5387 			ticket->bytes = 0;
5388 			space_info->tickets_id++;
5389 			wake_up(&ticket->wait);
5390 		} else {
5391 			ticket->bytes -= num_bytes;
5392 			num_bytes = 0;
5393 		}
5394 	}
5395 
5396 	if (num_bytes && head == &space_info->priority_tickets) {
5397 		head = &space_info->tickets;
5398 		flush = BTRFS_RESERVE_FLUSH_ALL;
5399 		goto again;
5400 	}
5401 	space_info->bytes_may_use -= num_bytes;
5402 	trace_btrfs_space_reservation(fs_info, "space_info",
5403 				      space_info->flags, num_bytes, 0);
5404 	spin_unlock(&space_info->lock);
5405 }
5406 
5407 /*
5408  * This is for newly allocated space that isn't accounted in
5409  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5410  * we use this helper.
5411  */
5412 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5413 				     struct btrfs_space_info *space_info,
5414 				     u64 num_bytes)
5415 {
5416 	struct reserve_ticket *ticket;
5417 	struct list_head *head = &space_info->priority_tickets;
5418 
5419 again:
5420 	while (!list_empty(head) && num_bytes) {
5421 		ticket = list_first_entry(head, struct reserve_ticket,
5422 					  list);
5423 		if (num_bytes >= ticket->bytes) {
5424 			trace_btrfs_space_reservation(fs_info, "space_info",
5425 						      space_info->flags,
5426 						      ticket->bytes, 1);
5427 			list_del_init(&ticket->list);
5428 			num_bytes -= ticket->bytes;
5429 			space_info->bytes_may_use += ticket->bytes;
5430 			ticket->bytes = 0;
5431 			space_info->tickets_id++;
5432 			wake_up(&ticket->wait);
5433 		} else {
5434 			trace_btrfs_space_reservation(fs_info, "space_info",
5435 						      space_info->flags,
5436 						      num_bytes, 1);
5437 			space_info->bytes_may_use += num_bytes;
5438 			ticket->bytes -= num_bytes;
5439 			num_bytes = 0;
5440 		}
5441 	}
5442 
5443 	if (num_bytes && head == &space_info->priority_tickets) {
5444 		head = &space_info->tickets;
5445 		goto again;
5446 	}
5447 }
5448 
5449 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5450 				    struct btrfs_block_rsv *block_rsv,
5451 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5452 {
5453 	struct btrfs_space_info *space_info = block_rsv->space_info;
5454 
5455 	spin_lock(&block_rsv->lock);
5456 	if (num_bytes == (u64)-1)
5457 		num_bytes = block_rsv->size;
5458 	block_rsv->size -= num_bytes;
5459 	if (block_rsv->reserved >= block_rsv->size) {
5460 		num_bytes = block_rsv->reserved - block_rsv->size;
5461 		block_rsv->reserved = block_rsv->size;
5462 		block_rsv->full = 1;
5463 	} else {
5464 		num_bytes = 0;
5465 	}
5466 	spin_unlock(&block_rsv->lock);
5467 
5468 	if (num_bytes > 0) {
5469 		if (dest) {
5470 			spin_lock(&dest->lock);
5471 			if (!dest->full) {
5472 				u64 bytes_to_add;
5473 
5474 				bytes_to_add = dest->size - dest->reserved;
5475 				bytes_to_add = min(num_bytes, bytes_to_add);
5476 				dest->reserved += bytes_to_add;
5477 				if (dest->reserved >= dest->size)
5478 					dest->full = 1;
5479 				num_bytes -= bytes_to_add;
5480 			}
5481 			spin_unlock(&dest->lock);
5482 		}
5483 		if (num_bytes)
5484 			space_info_add_old_bytes(fs_info, space_info,
5485 						 num_bytes);
5486 	}
5487 }
5488 
5489 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5490 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5491 			    int update_size)
5492 {
5493 	int ret;
5494 
5495 	ret = block_rsv_use_bytes(src, num_bytes);
5496 	if (ret)
5497 		return ret;
5498 
5499 	block_rsv_add_bytes(dst, num_bytes, update_size);
5500 	return 0;
5501 }
5502 
5503 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5504 {
5505 	memset(rsv, 0, sizeof(*rsv));
5506 	spin_lock_init(&rsv->lock);
5507 	rsv->type = type;
5508 }
5509 
5510 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5511 					      unsigned short type)
5512 {
5513 	struct btrfs_block_rsv *block_rsv;
5514 	struct btrfs_fs_info *fs_info = root->fs_info;
5515 
5516 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5517 	if (!block_rsv)
5518 		return NULL;
5519 
5520 	btrfs_init_block_rsv(block_rsv, type);
5521 	block_rsv->space_info = __find_space_info(fs_info,
5522 						  BTRFS_BLOCK_GROUP_METADATA);
5523 	return block_rsv;
5524 }
5525 
5526 void btrfs_free_block_rsv(struct btrfs_root *root,
5527 			  struct btrfs_block_rsv *rsv)
5528 {
5529 	if (!rsv)
5530 		return;
5531 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5532 	kfree(rsv);
5533 }
5534 
5535 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5536 {
5537 	kfree(rsv);
5538 }
5539 
5540 int btrfs_block_rsv_add(struct btrfs_root *root,
5541 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5542 			enum btrfs_reserve_flush_enum flush)
5543 {
5544 	int ret;
5545 
5546 	if (num_bytes == 0)
5547 		return 0;
5548 
5549 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5550 	if (!ret) {
5551 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5552 		return 0;
5553 	}
5554 
5555 	return ret;
5556 }
5557 
5558 int btrfs_block_rsv_check(struct btrfs_root *root,
5559 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5560 {
5561 	u64 num_bytes = 0;
5562 	int ret = -ENOSPC;
5563 
5564 	if (!block_rsv)
5565 		return 0;
5566 
5567 	spin_lock(&block_rsv->lock);
5568 	num_bytes = div_factor(block_rsv->size, min_factor);
5569 	if (block_rsv->reserved >= num_bytes)
5570 		ret = 0;
5571 	spin_unlock(&block_rsv->lock);
5572 
5573 	return ret;
5574 }
5575 
5576 int btrfs_block_rsv_refill(struct btrfs_root *root,
5577 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5578 			   enum btrfs_reserve_flush_enum flush)
5579 {
5580 	u64 num_bytes = 0;
5581 	int ret = -ENOSPC;
5582 
5583 	if (!block_rsv)
5584 		return 0;
5585 
5586 	spin_lock(&block_rsv->lock);
5587 	num_bytes = min_reserved;
5588 	if (block_rsv->reserved >= num_bytes)
5589 		ret = 0;
5590 	else
5591 		num_bytes -= block_rsv->reserved;
5592 	spin_unlock(&block_rsv->lock);
5593 
5594 	if (!ret)
5595 		return 0;
5596 
5597 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5598 	if (!ret) {
5599 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5600 		return 0;
5601 	}
5602 
5603 	return ret;
5604 }
5605 
5606 void btrfs_block_rsv_release(struct btrfs_root *root,
5607 			     struct btrfs_block_rsv *block_rsv,
5608 			     u64 num_bytes)
5609 {
5610 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5611 	if (global_rsv == block_rsv ||
5612 	    block_rsv->space_info != global_rsv->space_info)
5613 		global_rsv = NULL;
5614 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5615 				num_bytes);
5616 }
5617 
5618 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5619 {
5620 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5621 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5622 	u64 num_bytes;
5623 
5624 	/*
5625 	 * The global block rsv is based on the size of the extent tree, the
5626 	 * checksum tree and the root tree.  If the fs is empty we want to set
5627 	 * it to a minimal amount for safety.
5628 	 */
5629 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5630 		btrfs_root_used(&fs_info->csum_root->root_item) +
5631 		btrfs_root_used(&fs_info->tree_root->root_item);
5632 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5633 
5634 	spin_lock(&sinfo->lock);
5635 	spin_lock(&block_rsv->lock);
5636 
5637 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5638 
5639 	if (block_rsv->reserved < block_rsv->size) {
5640 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5641 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5642 			sinfo->bytes_may_use;
5643 		if (sinfo->total_bytes > num_bytes) {
5644 			num_bytes = sinfo->total_bytes - num_bytes;
5645 			num_bytes = min(num_bytes,
5646 					block_rsv->size - block_rsv->reserved);
5647 			block_rsv->reserved += num_bytes;
5648 			sinfo->bytes_may_use += num_bytes;
5649 			trace_btrfs_space_reservation(fs_info, "space_info",
5650 						      sinfo->flags, num_bytes,
5651 						      1);
5652 		}
5653 	} else if (block_rsv->reserved > block_rsv->size) {
5654 		num_bytes = block_rsv->reserved - block_rsv->size;
5655 		sinfo->bytes_may_use -= num_bytes;
5656 		trace_btrfs_space_reservation(fs_info, "space_info",
5657 				      sinfo->flags, num_bytes, 0);
5658 		block_rsv->reserved = block_rsv->size;
5659 	}
5660 
5661 	if (block_rsv->reserved == block_rsv->size)
5662 		block_rsv->full = 1;
5663 	else
5664 		block_rsv->full = 0;
5665 
5666 	spin_unlock(&block_rsv->lock);
5667 	spin_unlock(&sinfo->lock);
5668 }
5669 
5670 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5671 {
5672 	struct btrfs_space_info *space_info;
5673 
5674 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5675 	fs_info->chunk_block_rsv.space_info = space_info;
5676 
5677 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5678 	fs_info->global_block_rsv.space_info = space_info;
5679 	fs_info->delalloc_block_rsv.space_info = space_info;
5680 	fs_info->trans_block_rsv.space_info = space_info;
5681 	fs_info->empty_block_rsv.space_info = space_info;
5682 	fs_info->delayed_block_rsv.space_info = space_info;
5683 
5684 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5685 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5686 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5687 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5688 	if (fs_info->quota_root)
5689 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5690 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5691 
5692 	update_global_block_rsv(fs_info);
5693 }
5694 
5695 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5696 {
5697 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5698 				(u64)-1);
5699 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5700 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5701 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5702 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5703 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5704 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5705 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5706 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5707 }
5708 
5709 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5710 				  struct btrfs_root *root)
5711 {
5712 	if (!trans->block_rsv)
5713 		return;
5714 
5715 	if (!trans->bytes_reserved)
5716 		return;
5717 
5718 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5719 				      trans->transid, trans->bytes_reserved, 0);
5720 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5721 	trans->bytes_reserved = 0;
5722 }
5723 
5724 /*
5725  * To be called after all the new block groups attached to the transaction
5726  * handle have been created (btrfs_create_pending_block_groups()).
5727  */
5728 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5729 {
5730 	struct btrfs_fs_info *fs_info = trans->fs_info;
5731 
5732 	if (!trans->chunk_bytes_reserved)
5733 		return;
5734 
5735 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5736 
5737 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5738 				trans->chunk_bytes_reserved);
5739 	trans->chunk_bytes_reserved = 0;
5740 }
5741 
5742 /* Can only return 0 or -ENOSPC */
5743 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5744 				  struct inode *inode)
5745 {
5746 	struct btrfs_root *root = BTRFS_I(inode)->root;
5747 	/*
5748 	 * We always use trans->block_rsv here as we will have reserved space
5749 	 * for our orphan when starting the transaction, using get_block_rsv()
5750 	 * here will sometimes make us choose the wrong block rsv as we could be
5751 	 * doing a reloc inode for a non refcounted root.
5752 	 */
5753 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5754 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5755 
5756 	/*
5757 	 * We need to hold space in order to delete our orphan item once we've
5758 	 * added it, so this takes the reservation so we can release it later
5759 	 * when we are truly done with the orphan item.
5760 	 */
5761 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5762 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5763 				      btrfs_ino(inode), num_bytes, 1);
5764 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5765 }
5766 
5767 void btrfs_orphan_release_metadata(struct inode *inode)
5768 {
5769 	struct btrfs_root *root = BTRFS_I(inode)->root;
5770 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5771 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5772 				      btrfs_ino(inode), num_bytes, 0);
5773 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5774 }
5775 
5776 /*
5777  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5778  * root: the root of the parent directory
5779  * rsv: block reservation
5780  * items: the number of items that we need do reservation
5781  * qgroup_reserved: used to return the reserved size in qgroup
5782  *
5783  * This function is used to reserve the space for snapshot/subvolume
5784  * creation and deletion. Those operations are different with the
5785  * common file/directory operations, they change two fs/file trees
5786  * and root tree, the number of items that the qgroup reserves is
5787  * different with the free space reservation. So we can not use
5788  * the space reservation mechanism in start_transaction().
5789  */
5790 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5791 				     struct btrfs_block_rsv *rsv,
5792 				     int items,
5793 				     u64 *qgroup_reserved,
5794 				     bool use_global_rsv)
5795 {
5796 	u64 num_bytes;
5797 	int ret;
5798 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5799 
5800 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5801 		/* One for parent inode, two for dir entries */
5802 		num_bytes = 3 * root->nodesize;
5803 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5804 		if (ret)
5805 			return ret;
5806 	} else {
5807 		num_bytes = 0;
5808 	}
5809 
5810 	*qgroup_reserved = num_bytes;
5811 
5812 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5813 	rsv->space_info = __find_space_info(root->fs_info,
5814 					    BTRFS_BLOCK_GROUP_METADATA);
5815 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5816 				  BTRFS_RESERVE_FLUSH_ALL);
5817 
5818 	if (ret == -ENOSPC && use_global_rsv)
5819 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5820 
5821 	if (ret && *qgroup_reserved)
5822 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5823 
5824 	return ret;
5825 }
5826 
5827 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5828 				      struct btrfs_block_rsv *rsv,
5829 				      u64 qgroup_reserved)
5830 {
5831 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5832 }
5833 
5834 /**
5835  * drop_outstanding_extent - drop an outstanding extent
5836  * @inode: the inode we're dropping the extent for
5837  * @num_bytes: the number of bytes we're releasing.
5838  *
5839  * This is called when we are freeing up an outstanding extent, either called
5840  * after an error or after an extent is written.  This will return the number of
5841  * reserved extents that need to be freed.  This must be called with
5842  * BTRFS_I(inode)->lock held.
5843  */
5844 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5845 {
5846 	unsigned drop_inode_space = 0;
5847 	unsigned dropped_extents = 0;
5848 	unsigned num_extents = 0;
5849 
5850 	num_extents = (unsigned)div64_u64(num_bytes +
5851 					  BTRFS_MAX_EXTENT_SIZE - 1,
5852 					  BTRFS_MAX_EXTENT_SIZE);
5853 	ASSERT(num_extents);
5854 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5855 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5856 
5857 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5858 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5859 			       &BTRFS_I(inode)->runtime_flags))
5860 		drop_inode_space = 1;
5861 
5862 	/*
5863 	 * If we have more or the same amount of outstanding extents than we have
5864 	 * reserved then we need to leave the reserved extents count alone.
5865 	 */
5866 	if (BTRFS_I(inode)->outstanding_extents >=
5867 	    BTRFS_I(inode)->reserved_extents)
5868 		return drop_inode_space;
5869 
5870 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5871 		BTRFS_I(inode)->outstanding_extents;
5872 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5873 	return dropped_extents + drop_inode_space;
5874 }
5875 
5876 /**
5877  * calc_csum_metadata_size - return the amount of metadata space that must be
5878  *	reserved/freed for the given bytes.
5879  * @inode: the inode we're manipulating
5880  * @num_bytes: the number of bytes in question
5881  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5882  *
5883  * This adjusts the number of csum_bytes in the inode and then returns the
5884  * correct amount of metadata that must either be reserved or freed.  We
5885  * calculate how many checksums we can fit into one leaf and then divide the
5886  * number of bytes that will need to be checksumed by this value to figure out
5887  * how many checksums will be required.  If we are adding bytes then the number
5888  * may go up and we will return the number of additional bytes that must be
5889  * reserved.  If it is going down we will return the number of bytes that must
5890  * be freed.
5891  *
5892  * This must be called with BTRFS_I(inode)->lock held.
5893  */
5894 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5895 				   int reserve)
5896 {
5897 	struct btrfs_root *root = BTRFS_I(inode)->root;
5898 	u64 old_csums, num_csums;
5899 
5900 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5901 	    BTRFS_I(inode)->csum_bytes == 0)
5902 		return 0;
5903 
5904 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5905 	if (reserve)
5906 		BTRFS_I(inode)->csum_bytes += num_bytes;
5907 	else
5908 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5909 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5910 
5911 	/* No change, no need to reserve more */
5912 	if (old_csums == num_csums)
5913 		return 0;
5914 
5915 	if (reserve)
5916 		return btrfs_calc_trans_metadata_size(root,
5917 						      num_csums - old_csums);
5918 
5919 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5920 }
5921 
5922 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5923 {
5924 	struct btrfs_root *root = BTRFS_I(inode)->root;
5925 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5926 	u64 to_reserve = 0;
5927 	u64 csum_bytes;
5928 	unsigned nr_extents = 0;
5929 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5930 	int ret = 0;
5931 	bool delalloc_lock = true;
5932 	u64 to_free = 0;
5933 	unsigned dropped;
5934 	bool release_extra = false;
5935 
5936 	/* If we are a free space inode we need to not flush since we will be in
5937 	 * the middle of a transaction commit.  We also don't need the delalloc
5938 	 * mutex since we won't race with anybody.  We need this mostly to make
5939 	 * lockdep shut its filthy mouth.
5940 	 *
5941 	 * If we have a transaction open (can happen if we call truncate_block
5942 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5943 	 */
5944 	if (btrfs_is_free_space_inode(inode)) {
5945 		flush = BTRFS_RESERVE_NO_FLUSH;
5946 		delalloc_lock = false;
5947 	} else if (current->journal_info) {
5948 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5949 	}
5950 
5951 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5952 	    btrfs_transaction_in_commit(root->fs_info))
5953 		schedule_timeout(1);
5954 
5955 	if (delalloc_lock)
5956 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5957 
5958 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5959 
5960 	spin_lock(&BTRFS_I(inode)->lock);
5961 	nr_extents = (unsigned)div64_u64(num_bytes +
5962 					 BTRFS_MAX_EXTENT_SIZE - 1,
5963 					 BTRFS_MAX_EXTENT_SIZE);
5964 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5965 
5966 	nr_extents = 0;
5967 	if (BTRFS_I(inode)->outstanding_extents >
5968 	    BTRFS_I(inode)->reserved_extents)
5969 		nr_extents += BTRFS_I(inode)->outstanding_extents -
5970 			BTRFS_I(inode)->reserved_extents;
5971 
5972 	/* We always want to reserve a slot for updating the inode. */
5973 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5974 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5975 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5976 	spin_unlock(&BTRFS_I(inode)->lock);
5977 
5978 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5979 		ret = btrfs_qgroup_reserve_meta(root,
5980 				nr_extents * root->nodesize);
5981 		if (ret)
5982 			goto out_fail;
5983 	}
5984 
5985 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5986 	if (unlikely(ret)) {
5987 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5988 		goto out_fail;
5989 	}
5990 
5991 	spin_lock(&BTRFS_I(inode)->lock);
5992 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5993 			     &BTRFS_I(inode)->runtime_flags)) {
5994 		to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5995 		release_extra = true;
5996 	}
5997 	BTRFS_I(inode)->reserved_extents += nr_extents;
5998 	spin_unlock(&BTRFS_I(inode)->lock);
5999 
6000 	if (delalloc_lock)
6001 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6002 
6003 	if (to_reserve)
6004 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6005 					      btrfs_ino(inode), to_reserve, 1);
6006 	if (release_extra)
6007 		btrfs_block_rsv_release(root, block_rsv,
6008 					btrfs_calc_trans_metadata_size(root,
6009 								       1));
6010 	return 0;
6011 
6012 out_fail:
6013 	spin_lock(&BTRFS_I(inode)->lock);
6014 	dropped = drop_outstanding_extent(inode, num_bytes);
6015 	/*
6016 	 * If the inodes csum_bytes is the same as the original
6017 	 * csum_bytes then we know we haven't raced with any free()ers
6018 	 * so we can just reduce our inodes csum bytes and carry on.
6019 	 */
6020 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6021 		calc_csum_metadata_size(inode, num_bytes, 0);
6022 	} else {
6023 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6024 		u64 bytes;
6025 
6026 		/*
6027 		 * This is tricky, but first we need to figure out how much we
6028 		 * freed from any free-ers that occurred during this
6029 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 		 * before we dropped our lock, and then call the free for the
6031 		 * number of bytes that were freed while we were trying our
6032 		 * reservation.
6033 		 */
6034 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6035 		BTRFS_I(inode)->csum_bytes = csum_bytes;
6036 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6037 
6038 
6039 		/*
6040 		 * Now we need to see how much we would have freed had we not
6041 		 * been making this reservation and our ->csum_bytes were not
6042 		 * artificially inflated.
6043 		 */
6044 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6045 		bytes = csum_bytes - orig_csum_bytes;
6046 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6047 
6048 		/*
6049 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6050 		 * more than to_free then we would have freed more space had we
6051 		 * not had an artificially high ->csum_bytes, so we need to free
6052 		 * the remainder.  If bytes is the same or less then we don't
6053 		 * need to do anything, the other free-ers did the correct
6054 		 * thing.
6055 		 */
6056 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6057 		if (bytes > to_free)
6058 			to_free = bytes - to_free;
6059 		else
6060 			to_free = 0;
6061 	}
6062 	spin_unlock(&BTRFS_I(inode)->lock);
6063 	if (dropped)
6064 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6065 
6066 	if (to_free) {
6067 		btrfs_block_rsv_release(root, block_rsv, to_free);
6068 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6069 					      btrfs_ino(inode), to_free, 0);
6070 	}
6071 	if (delalloc_lock)
6072 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6073 	return ret;
6074 }
6075 
6076 /**
6077  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078  * @inode: the inode to release the reservation for
6079  * @num_bytes: the number of bytes we're releasing
6080  *
6081  * This will release the metadata reservation for an inode.  This can be called
6082  * once we complete IO for a given set of bytes to release their metadata
6083  * reservations.
6084  */
6085 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6086 {
6087 	struct btrfs_root *root = BTRFS_I(inode)->root;
6088 	u64 to_free = 0;
6089 	unsigned dropped;
6090 
6091 	num_bytes = ALIGN(num_bytes, root->sectorsize);
6092 	spin_lock(&BTRFS_I(inode)->lock);
6093 	dropped = drop_outstanding_extent(inode, num_bytes);
6094 
6095 	if (num_bytes)
6096 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6097 	spin_unlock(&BTRFS_I(inode)->lock);
6098 	if (dropped > 0)
6099 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6100 
6101 	if (btrfs_is_testing(root->fs_info))
6102 		return;
6103 
6104 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
6105 				      btrfs_ino(inode), to_free, 0);
6106 
6107 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6108 				to_free);
6109 }
6110 
6111 /**
6112  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6113  * delalloc
6114  * @inode: inode we're writing to
6115  * @start: start range we are writing to
6116  * @len: how long the range we are writing to
6117  *
6118  * This will do the following things
6119  *
6120  * o reserve space in data space info for num bytes
6121  *   and reserve precious corresponding qgroup space
6122  *   (Done in check_data_free_space)
6123  *
6124  * o reserve space for metadata space, based on the number of outstanding
6125  *   extents and how much csums will be needed
6126  *   also reserve metadata space in a per root over-reserve method.
6127  * o add to the inodes->delalloc_bytes
6128  * o add it to the fs_info's delalloc inodes list.
6129  *   (Above 3 all done in delalloc_reserve_metadata)
6130  *
6131  * Return 0 for success
6132  * Return <0 for error(-ENOSPC or -EQUOT)
6133  */
6134 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6135 {
6136 	int ret;
6137 
6138 	ret = btrfs_check_data_free_space(inode, start, len);
6139 	if (ret < 0)
6140 		return ret;
6141 	ret = btrfs_delalloc_reserve_metadata(inode, len);
6142 	if (ret < 0)
6143 		btrfs_free_reserved_data_space(inode, start, len);
6144 	return ret;
6145 }
6146 
6147 /**
6148  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6149  * @inode: inode we're releasing space for
6150  * @start: start position of the space already reserved
6151  * @len: the len of the space already reserved
6152  *
6153  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6154  * called in the case that we don't need the metadata AND data reservations
6155  * anymore.  So if there is an error or we insert an inline extent.
6156  *
6157  * This function will release the metadata space that was not used and will
6158  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6159  * list if there are no delalloc bytes left.
6160  * Also it will handle the qgroup reserved space.
6161  */
6162 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6163 {
6164 	btrfs_delalloc_release_metadata(inode, len);
6165 	btrfs_free_reserved_data_space(inode, start, len);
6166 }
6167 
6168 static int update_block_group(struct btrfs_trans_handle *trans,
6169 			      struct btrfs_root *root, u64 bytenr,
6170 			      u64 num_bytes, int alloc)
6171 {
6172 	struct btrfs_block_group_cache *cache = NULL;
6173 	struct btrfs_fs_info *info = root->fs_info;
6174 	u64 total = num_bytes;
6175 	u64 old_val;
6176 	u64 byte_in_group;
6177 	int factor;
6178 
6179 	/* block accounting for super block */
6180 	spin_lock(&info->delalloc_root_lock);
6181 	old_val = btrfs_super_bytes_used(info->super_copy);
6182 	if (alloc)
6183 		old_val += num_bytes;
6184 	else
6185 		old_val -= num_bytes;
6186 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6187 	spin_unlock(&info->delalloc_root_lock);
6188 
6189 	while (total) {
6190 		cache = btrfs_lookup_block_group(info, bytenr);
6191 		if (!cache)
6192 			return -ENOENT;
6193 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6194 				    BTRFS_BLOCK_GROUP_RAID1 |
6195 				    BTRFS_BLOCK_GROUP_RAID10))
6196 			factor = 2;
6197 		else
6198 			factor = 1;
6199 		/*
6200 		 * If this block group has free space cache written out, we
6201 		 * need to make sure to load it if we are removing space.  This
6202 		 * is because we need the unpinning stage to actually add the
6203 		 * space back to the block group, otherwise we will leak space.
6204 		 */
6205 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6206 			cache_block_group(cache, 1);
6207 
6208 		byte_in_group = bytenr - cache->key.objectid;
6209 		WARN_ON(byte_in_group > cache->key.offset);
6210 
6211 		spin_lock(&cache->space_info->lock);
6212 		spin_lock(&cache->lock);
6213 
6214 		if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6215 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6216 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6217 
6218 		old_val = btrfs_block_group_used(&cache->item);
6219 		num_bytes = min(total, cache->key.offset - byte_in_group);
6220 		if (alloc) {
6221 			old_val += num_bytes;
6222 			btrfs_set_block_group_used(&cache->item, old_val);
6223 			cache->reserved -= num_bytes;
6224 			cache->space_info->bytes_reserved -= num_bytes;
6225 			cache->space_info->bytes_used += num_bytes;
6226 			cache->space_info->disk_used += num_bytes * factor;
6227 			spin_unlock(&cache->lock);
6228 			spin_unlock(&cache->space_info->lock);
6229 		} else {
6230 			old_val -= num_bytes;
6231 			btrfs_set_block_group_used(&cache->item, old_val);
6232 			cache->pinned += num_bytes;
6233 			cache->space_info->bytes_pinned += num_bytes;
6234 			cache->space_info->bytes_used -= num_bytes;
6235 			cache->space_info->disk_used -= num_bytes * factor;
6236 			spin_unlock(&cache->lock);
6237 			spin_unlock(&cache->space_info->lock);
6238 
6239 			trace_btrfs_space_reservation(root->fs_info, "pinned",
6240 						      cache->space_info->flags,
6241 						      num_bytes, 1);
6242 			set_extent_dirty(info->pinned_extents,
6243 					 bytenr, bytenr + num_bytes - 1,
6244 					 GFP_NOFS | __GFP_NOFAIL);
6245 		}
6246 
6247 		spin_lock(&trans->transaction->dirty_bgs_lock);
6248 		if (list_empty(&cache->dirty_list)) {
6249 			list_add_tail(&cache->dirty_list,
6250 				      &trans->transaction->dirty_bgs);
6251 				trans->transaction->num_dirty_bgs++;
6252 			btrfs_get_block_group(cache);
6253 		}
6254 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6255 
6256 		/*
6257 		 * No longer have used bytes in this block group, queue it for
6258 		 * deletion. We do this after adding the block group to the
6259 		 * dirty list to avoid races between cleaner kthread and space
6260 		 * cache writeout.
6261 		 */
6262 		if (!alloc && old_val == 0) {
6263 			spin_lock(&info->unused_bgs_lock);
6264 			if (list_empty(&cache->bg_list)) {
6265 				btrfs_get_block_group(cache);
6266 				list_add_tail(&cache->bg_list,
6267 					      &info->unused_bgs);
6268 			}
6269 			spin_unlock(&info->unused_bgs_lock);
6270 		}
6271 
6272 		btrfs_put_block_group(cache);
6273 		total -= num_bytes;
6274 		bytenr += num_bytes;
6275 	}
6276 	return 0;
6277 }
6278 
6279 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6280 {
6281 	struct btrfs_block_group_cache *cache;
6282 	u64 bytenr;
6283 
6284 	spin_lock(&root->fs_info->block_group_cache_lock);
6285 	bytenr = root->fs_info->first_logical_byte;
6286 	spin_unlock(&root->fs_info->block_group_cache_lock);
6287 
6288 	if (bytenr < (u64)-1)
6289 		return bytenr;
6290 
6291 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6292 	if (!cache)
6293 		return 0;
6294 
6295 	bytenr = cache->key.objectid;
6296 	btrfs_put_block_group(cache);
6297 
6298 	return bytenr;
6299 }
6300 
6301 static int pin_down_extent(struct btrfs_root *root,
6302 			   struct btrfs_block_group_cache *cache,
6303 			   u64 bytenr, u64 num_bytes, int reserved)
6304 {
6305 	spin_lock(&cache->space_info->lock);
6306 	spin_lock(&cache->lock);
6307 	cache->pinned += num_bytes;
6308 	cache->space_info->bytes_pinned += num_bytes;
6309 	if (reserved) {
6310 		cache->reserved -= num_bytes;
6311 		cache->space_info->bytes_reserved -= num_bytes;
6312 	}
6313 	spin_unlock(&cache->lock);
6314 	spin_unlock(&cache->space_info->lock);
6315 
6316 	trace_btrfs_space_reservation(root->fs_info, "pinned",
6317 				      cache->space_info->flags, num_bytes, 1);
6318 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6319 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6320 	return 0;
6321 }
6322 
6323 /*
6324  * this function must be called within transaction
6325  */
6326 int btrfs_pin_extent(struct btrfs_root *root,
6327 		     u64 bytenr, u64 num_bytes, int reserved)
6328 {
6329 	struct btrfs_block_group_cache *cache;
6330 
6331 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6332 	BUG_ON(!cache); /* Logic error */
6333 
6334 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6335 
6336 	btrfs_put_block_group(cache);
6337 	return 0;
6338 }
6339 
6340 /*
6341  * this function must be called within transaction
6342  */
6343 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6344 				    u64 bytenr, u64 num_bytes)
6345 {
6346 	struct btrfs_block_group_cache *cache;
6347 	int ret;
6348 
6349 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6350 	if (!cache)
6351 		return -EINVAL;
6352 
6353 	/*
6354 	 * pull in the free space cache (if any) so that our pin
6355 	 * removes the free space from the cache.  We have load_only set
6356 	 * to one because the slow code to read in the free extents does check
6357 	 * the pinned extents.
6358 	 */
6359 	cache_block_group(cache, 1);
6360 
6361 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6362 
6363 	/* remove us from the free space cache (if we're there at all) */
6364 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6365 	btrfs_put_block_group(cache);
6366 	return ret;
6367 }
6368 
6369 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6370 {
6371 	int ret;
6372 	struct btrfs_block_group_cache *block_group;
6373 	struct btrfs_caching_control *caching_ctl;
6374 
6375 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6376 	if (!block_group)
6377 		return -EINVAL;
6378 
6379 	cache_block_group(block_group, 0);
6380 	caching_ctl = get_caching_control(block_group);
6381 
6382 	if (!caching_ctl) {
6383 		/* Logic error */
6384 		BUG_ON(!block_group_cache_done(block_group));
6385 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6386 	} else {
6387 		mutex_lock(&caching_ctl->mutex);
6388 
6389 		if (start >= caching_ctl->progress) {
6390 			ret = add_excluded_extent(root, start, num_bytes);
6391 		} else if (start + num_bytes <= caching_ctl->progress) {
6392 			ret = btrfs_remove_free_space(block_group,
6393 						      start, num_bytes);
6394 		} else {
6395 			num_bytes = caching_ctl->progress - start;
6396 			ret = btrfs_remove_free_space(block_group,
6397 						      start, num_bytes);
6398 			if (ret)
6399 				goto out_lock;
6400 
6401 			num_bytes = (start + num_bytes) -
6402 				caching_ctl->progress;
6403 			start = caching_ctl->progress;
6404 			ret = add_excluded_extent(root, start, num_bytes);
6405 		}
6406 out_lock:
6407 		mutex_unlock(&caching_ctl->mutex);
6408 		put_caching_control(caching_ctl);
6409 	}
6410 	btrfs_put_block_group(block_group);
6411 	return ret;
6412 }
6413 
6414 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6415 				 struct extent_buffer *eb)
6416 {
6417 	struct btrfs_file_extent_item *item;
6418 	struct btrfs_key key;
6419 	int found_type;
6420 	int i;
6421 
6422 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6423 		return 0;
6424 
6425 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6426 		btrfs_item_key_to_cpu(eb, &key, i);
6427 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6428 			continue;
6429 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6430 		found_type = btrfs_file_extent_type(eb, item);
6431 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6432 			continue;
6433 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6434 			continue;
6435 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6436 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6437 		__exclude_logged_extent(log, key.objectid, key.offset);
6438 	}
6439 
6440 	return 0;
6441 }
6442 
6443 static void
6444 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6445 {
6446 	atomic_inc(&bg->reservations);
6447 }
6448 
6449 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6450 					const u64 start)
6451 {
6452 	struct btrfs_block_group_cache *bg;
6453 
6454 	bg = btrfs_lookup_block_group(fs_info, start);
6455 	ASSERT(bg);
6456 	if (atomic_dec_and_test(&bg->reservations))
6457 		wake_up_atomic_t(&bg->reservations);
6458 	btrfs_put_block_group(bg);
6459 }
6460 
6461 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6462 {
6463 	schedule();
6464 	return 0;
6465 }
6466 
6467 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6468 {
6469 	struct btrfs_space_info *space_info = bg->space_info;
6470 
6471 	ASSERT(bg->ro);
6472 
6473 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6474 		return;
6475 
6476 	/*
6477 	 * Our block group is read only but before we set it to read only,
6478 	 * some task might have had allocated an extent from it already, but it
6479 	 * has not yet created a respective ordered extent (and added it to a
6480 	 * root's list of ordered extents).
6481 	 * Therefore wait for any task currently allocating extents, since the
6482 	 * block group's reservations counter is incremented while a read lock
6483 	 * on the groups' semaphore is held and decremented after releasing
6484 	 * the read access on that semaphore and creating the ordered extent.
6485 	 */
6486 	down_write(&space_info->groups_sem);
6487 	up_write(&space_info->groups_sem);
6488 
6489 	wait_on_atomic_t(&bg->reservations,
6490 			 btrfs_wait_bg_reservations_atomic_t,
6491 			 TASK_UNINTERRUPTIBLE);
6492 }
6493 
6494 /**
6495  * btrfs_add_reserved_bytes - update the block_group and space info counters
6496  * @cache:	The cache we are manipulating
6497  * @ram_bytes:  The number of bytes of file content, and will be same to
6498  *              @num_bytes except for the compress path.
6499  * @num_bytes:	The number of bytes in question
6500  * @delalloc:   The blocks are allocated for the delalloc write
6501  *
6502  * This is called by the allocator when it reserves space. Metadata
6503  * reservations should be called with RESERVE_ALLOC so we do the proper
6504  * ENOSPC accounting.  For data we handle the reservation through clearing the
6505  * delalloc bits in the io_tree.  We have to do this since we could end up
6506  * allocating less disk space for the amount of data we have reserved in the
6507  * case of compression.
6508  *
6509  * If this is a reservation and the block group has become read only we cannot
6510  * make the reservation and return -EAGAIN, otherwise this function always
6511  * succeeds.
6512  */
6513 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6514 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6515 {
6516 	struct btrfs_space_info *space_info = cache->space_info;
6517 	int ret = 0;
6518 
6519 	spin_lock(&space_info->lock);
6520 	spin_lock(&cache->lock);
6521 	if (cache->ro) {
6522 		ret = -EAGAIN;
6523 	} else {
6524 		cache->reserved += num_bytes;
6525 		space_info->bytes_reserved += num_bytes;
6526 
6527 		trace_btrfs_space_reservation(cache->fs_info,
6528 				"space_info", space_info->flags,
6529 				ram_bytes, 0);
6530 		space_info->bytes_may_use -= ram_bytes;
6531 		if (delalloc)
6532 			cache->delalloc_bytes += num_bytes;
6533 	}
6534 	spin_unlock(&cache->lock);
6535 	spin_unlock(&space_info->lock);
6536 	return ret;
6537 }
6538 
6539 /**
6540  * btrfs_free_reserved_bytes - update the block_group and space info counters
6541  * @cache:      The cache we are manipulating
6542  * @num_bytes:  The number of bytes in question
6543  * @delalloc:   The blocks are allocated for the delalloc write
6544  *
6545  * This is called by somebody who is freeing space that was never actually used
6546  * on disk.  For example if you reserve some space for a new leaf in transaction
6547  * A and before transaction A commits you free that leaf, you call this with
6548  * reserve set to 0 in order to clear the reservation.
6549  */
6550 
6551 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6552 				     u64 num_bytes, int delalloc)
6553 {
6554 	struct btrfs_space_info *space_info = cache->space_info;
6555 	int ret = 0;
6556 
6557 	spin_lock(&space_info->lock);
6558 	spin_lock(&cache->lock);
6559 	if (cache->ro)
6560 		space_info->bytes_readonly += num_bytes;
6561 	cache->reserved -= num_bytes;
6562 	space_info->bytes_reserved -= num_bytes;
6563 
6564 	if (delalloc)
6565 		cache->delalloc_bytes -= num_bytes;
6566 	spin_unlock(&cache->lock);
6567 	spin_unlock(&space_info->lock);
6568 	return ret;
6569 }
6570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6571 				struct btrfs_root *root)
6572 {
6573 	struct btrfs_fs_info *fs_info = root->fs_info;
6574 	struct btrfs_caching_control *next;
6575 	struct btrfs_caching_control *caching_ctl;
6576 	struct btrfs_block_group_cache *cache;
6577 
6578 	down_write(&fs_info->commit_root_sem);
6579 
6580 	list_for_each_entry_safe(caching_ctl, next,
6581 				 &fs_info->caching_block_groups, list) {
6582 		cache = caching_ctl->block_group;
6583 		if (block_group_cache_done(cache)) {
6584 			cache->last_byte_to_unpin = (u64)-1;
6585 			list_del_init(&caching_ctl->list);
6586 			put_caching_control(caching_ctl);
6587 		} else {
6588 			cache->last_byte_to_unpin = caching_ctl->progress;
6589 		}
6590 	}
6591 
6592 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6593 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6594 	else
6595 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6596 
6597 	up_write(&fs_info->commit_root_sem);
6598 
6599 	update_global_block_rsv(fs_info);
6600 }
6601 
6602 /*
6603  * Returns the free cluster for the given space info and sets empty_cluster to
6604  * what it should be based on the mount options.
6605  */
6606 static struct btrfs_free_cluster *
6607 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6608 		   u64 *empty_cluster)
6609 {
6610 	struct btrfs_free_cluster *ret = NULL;
6611 	bool ssd = btrfs_test_opt(root->fs_info, SSD);
6612 
6613 	*empty_cluster = 0;
6614 	if (btrfs_mixed_space_info(space_info))
6615 		return ret;
6616 
6617 	if (ssd)
6618 		*empty_cluster = SZ_2M;
6619 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6620 		ret = &root->fs_info->meta_alloc_cluster;
6621 		if (!ssd)
6622 			*empty_cluster = SZ_64K;
6623 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6624 		ret = &root->fs_info->data_alloc_cluster;
6625 	}
6626 
6627 	return ret;
6628 }
6629 
6630 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6631 			      const bool return_free_space)
6632 {
6633 	struct btrfs_fs_info *fs_info = root->fs_info;
6634 	struct btrfs_block_group_cache *cache = NULL;
6635 	struct btrfs_space_info *space_info;
6636 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6637 	struct btrfs_free_cluster *cluster = NULL;
6638 	u64 len;
6639 	u64 total_unpinned = 0;
6640 	u64 empty_cluster = 0;
6641 	bool readonly;
6642 
6643 	while (start <= end) {
6644 		readonly = false;
6645 		if (!cache ||
6646 		    start >= cache->key.objectid + cache->key.offset) {
6647 			if (cache)
6648 				btrfs_put_block_group(cache);
6649 			total_unpinned = 0;
6650 			cache = btrfs_lookup_block_group(fs_info, start);
6651 			BUG_ON(!cache); /* Logic error */
6652 
6653 			cluster = fetch_cluster_info(root,
6654 						     cache->space_info,
6655 						     &empty_cluster);
6656 			empty_cluster <<= 1;
6657 		}
6658 
6659 		len = cache->key.objectid + cache->key.offset - start;
6660 		len = min(len, end + 1 - start);
6661 
6662 		if (start < cache->last_byte_to_unpin) {
6663 			len = min(len, cache->last_byte_to_unpin - start);
6664 			if (return_free_space)
6665 				btrfs_add_free_space(cache, start, len);
6666 		}
6667 
6668 		start += len;
6669 		total_unpinned += len;
6670 		space_info = cache->space_info;
6671 
6672 		/*
6673 		 * If this space cluster has been marked as fragmented and we've
6674 		 * unpinned enough in this block group to potentially allow a
6675 		 * cluster to be created inside of it go ahead and clear the
6676 		 * fragmented check.
6677 		 */
6678 		if (cluster && cluster->fragmented &&
6679 		    total_unpinned > empty_cluster) {
6680 			spin_lock(&cluster->lock);
6681 			cluster->fragmented = 0;
6682 			spin_unlock(&cluster->lock);
6683 		}
6684 
6685 		spin_lock(&space_info->lock);
6686 		spin_lock(&cache->lock);
6687 		cache->pinned -= len;
6688 		space_info->bytes_pinned -= len;
6689 
6690 		trace_btrfs_space_reservation(fs_info, "pinned",
6691 					      space_info->flags, len, 0);
6692 		space_info->max_extent_size = 0;
6693 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6694 		if (cache->ro) {
6695 			space_info->bytes_readonly += len;
6696 			readonly = true;
6697 		}
6698 		spin_unlock(&cache->lock);
6699 		if (!readonly && return_free_space &&
6700 		    global_rsv->space_info == space_info) {
6701 			u64 to_add = len;
6702 			WARN_ON(!return_free_space);
6703 			spin_lock(&global_rsv->lock);
6704 			if (!global_rsv->full) {
6705 				to_add = min(len, global_rsv->size -
6706 					     global_rsv->reserved);
6707 				global_rsv->reserved += to_add;
6708 				space_info->bytes_may_use += to_add;
6709 				if (global_rsv->reserved >= global_rsv->size)
6710 					global_rsv->full = 1;
6711 				trace_btrfs_space_reservation(fs_info,
6712 							      "space_info",
6713 							      space_info->flags,
6714 							      to_add, 1);
6715 				len -= to_add;
6716 			}
6717 			spin_unlock(&global_rsv->lock);
6718 			/* Add to any tickets we may have */
6719 			if (len)
6720 				space_info_add_new_bytes(fs_info, space_info,
6721 							 len);
6722 		}
6723 		spin_unlock(&space_info->lock);
6724 	}
6725 
6726 	if (cache)
6727 		btrfs_put_block_group(cache);
6728 	return 0;
6729 }
6730 
6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6732 			       struct btrfs_root *root)
6733 {
6734 	struct btrfs_fs_info *fs_info = root->fs_info;
6735 	struct btrfs_block_group_cache *block_group, *tmp;
6736 	struct list_head *deleted_bgs;
6737 	struct extent_io_tree *unpin;
6738 	u64 start;
6739 	u64 end;
6740 	int ret;
6741 
6742 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6743 		unpin = &fs_info->freed_extents[1];
6744 	else
6745 		unpin = &fs_info->freed_extents[0];
6746 
6747 	while (!trans->aborted) {
6748 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6749 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6750 					    EXTENT_DIRTY, NULL);
6751 		if (ret) {
6752 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 			break;
6754 		}
6755 
6756 		if (btrfs_test_opt(root->fs_info, DISCARD))
6757 			ret = btrfs_discard_extent(root, start,
6758 						   end + 1 - start, NULL);
6759 
6760 		clear_extent_dirty(unpin, start, end);
6761 		unpin_extent_range(root, start, end, true);
6762 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6763 		cond_resched();
6764 	}
6765 
6766 	/*
6767 	 * Transaction is finished.  We don't need the lock anymore.  We
6768 	 * do need to clean up the block groups in case of a transaction
6769 	 * abort.
6770 	 */
6771 	deleted_bgs = &trans->transaction->deleted_bgs;
6772 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 		u64 trimmed = 0;
6774 
6775 		ret = -EROFS;
6776 		if (!trans->aborted)
6777 			ret = btrfs_discard_extent(root,
6778 						   block_group->key.objectid,
6779 						   block_group->key.offset,
6780 						   &trimmed);
6781 
6782 		list_del_init(&block_group->bg_list);
6783 		btrfs_put_block_group_trimming(block_group);
6784 		btrfs_put_block_group(block_group);
6785 
6786 		if (ret) {
6787 			const char *errstr = btrfs_decode_error(ret);
6788 			btrfs_warn(fs_info,
6789 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6790 				   ret, errstr);
6791 		}
6792 	}
6793 
6794 	return 0;
6795 }
6796 
6797 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6798 			     u64 owner, u64 root_objectid)
6799 {
6800 	struct btrfs_space_info *space_info;
6801 	u64 flags;
6802 
6803 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6804 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6805 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6806 		else
6807 			flags = BTRFS_BLOCK_GROUP_METADATA;
6808 	} else {
6809 		flags = BTRFS_BLOCK_GROUP_DATA;
6810 	}
6811 
6812 	space_info = __find_space_info(fs_info, flags);
6813 	BUG_ON(!space_info); /* Logic bug */
6814 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815 }
6816 
6817 
6818 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6819 				struct btrfs_root *root,
6820 				struct btrfs_delayed_ref_node *node, u64 parent,
6821 				u64 root_objectid, u64 owner_objectid,
6822 				u64 owner_offset, int refs_to_drop,
6823 				struct btrfs_delayed_extent_op *extent_op)
6824 {
6825 	struct btrfs_key key;
6826 	struct btrfs_path *path;
6827 	struct btrfs_fs_info *info = root->fs_info;
6828 	struct btrfs_root *extent_root = info->extent_root;
6829 	struct extent_buffer *leaf;
6830 	struct btrfs_extent_item *ei;
6831 	struct btrfs_extent_inline_ref *iref;
6832 	int ret;
6833 	int is_data;
6834 	int extent_slot = 0;
6835 	int found_extent = 0;
6836 	int num_to_del = 1;
6837 	u32 item_size;
6838 	u64 refs;
6839 	u64 bytenr = node->bytenr;
6840 	u64 num_bytes = node->num_bytes;
6841 	int last_ref = 0;
6842 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6843 						 SKINNY_METADATA);
6844 
6845 	path = btrfs_alloc_path();
6846 	if (!path)
6847 		return -ENOMEM;
6848 
6849 	path->reada = READA_FORWARD;
6850 	path->leave_spinning = 1;
6851 
6852 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6853 	BUG_ON(!is_data && refs_to_drop != 1);
6854 
6855 	if (is_data)
6856 		skinny_metadata = 0;
6857 
6858 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6859 				    bytenr, num_bytes, parent,
6860 				    root_objectid, owner_objectid,
6861 				    owner_offset);
6862 	if (ret == 0) {
6863 		extent_slot = path->slots[0];
6864 		while (extent_slot >= 0) {
6865 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6866 					      extent_slot);
6867 			if (key.objectid != bytenr)
6868 				break;
6869 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6870 			    key.offset == num_bytes) {
6871 				found_extent = 1;
6872 				break;
6873 			}
6874 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6875 			    key.offset == owner_objectid) {
6876 				found_extent = 1;
6877 				break;
6878 			}
6879 			if (path->slots[0] - extent_slot > 5)
6880 				break;
6881 			extent_slot--;
6882 		}
6883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6884 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6885 		if (found_extent && item_size < sizeof(*ei))
6886 			found_extent = 0;
6887 #endif
6888 		if (!found_extent) {
6889 			BUG_ON(iref);
6890 			ret = remove_extent_backref(trans, extent_root, path,
6891 						    NULL, refs_to_drop,
6892 						    is_data, &last_ref);
6893 			if (ret) {
6894 				btrfs_abort_transaction(trans, ret);
6895 				goto out;
6896 			}
6897 			btrfs_release_path(path);
6898 			path->leave_spinning = 1;
6899 
6900 			key.objectid = bytenr;
6901 			key.type = BTRFS_EXTENT_ITEM_KEY;
6902 			key.offset = num_bytes;
6903 
6904 			if (!is_data && skinny_metadata) {
6905 				key.type = BTRFS_METADATA_ITEM_KEY;
6906 				key.offset = owner_objectid;
6907 			}
6908 
6909 			ret = btrfs_search_slot(trans, extent_root,
6910 						&key, path, -1, 1);
6911 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6912 				/*
6913 				 * Couldn't find our skinny metadata item,
6914 				 * see if we have ye olde extent item.
6915 				 */
6916 				path->slots[0]--;
6917 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6918 						      path->slots[0]);
6919 				if (key.objectid == bytenr &&
6920 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6921 				    key.offset == num_bytes)
6922 					ret = 0;
6923 			}
6924 
6925 			if (ret > 0 && skinny_metadata) {
6926 				skinny_metadata = false;
6927 				key.objectid = bytenr;
6928 				key.type = BTRFS_EXTENT_ITEM_KEY;
6929 				key.offset = num_bytes;
6930 				btrfs_release_path(path);
6931 				ret = btrfs_search_slot(trans, extent_root,
6932 							&key, path, -1, 1);
6933 			}
6934 
6935 			if (ret) {
6936 				btrfs_err(info,
6937 					  "umm, got %d back from search, was looking for %llu",
6938 					  ret, bytenr);
6939 				if (ret > 0)
6940 					btrfs_print_leaf(extent_root,
6941 							 path->nodes[0]);
6942 			}
6943 			if (ret < 0) {
6944 				btrfs_abort_transaction(trans, ret);
6945 				goto out;
6946 			}
6947 			extent_slot = path->slots[0];
6948 		}
6949 	} else if (WARN_ON(ret == -ENOENT)) {
6950 		btrfs_print_leaf(extent_root, path->nodes[0]);
6951 		btrfs_err(info,
6952 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6953 			bytenr, parent, root_objectid, owner_objectid,
6954 			owner_offset);
6955 		btrfs_abort_transaction(trans, ret);
6956 		goto out;
6957 	} else {
6958 		btrfs_abort_transaction(trans, ret);
6959 		goto out;
6960 	}
6961 
6962 	leaf = path->nodes[0];
6963 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6965 	if (item_size < sizeof(*ei)) {
6966 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6967 		ret = convert_extent_item_v0(trans, extent_root, path,
6968 					     owner_objectid, 0);
6969 		if (ret < 0) {
6970 			btrfs_abort_transaction(trans, ret);
6971 			goto out;
6972 		}
6973 
6974 		btrfs_release_path(path);
6975 		path->leave_spinning = 1;
6976 
6977 		key.objectid = bytenr;
6978 		key.type = BTRFS_EXTENT_ITEM_KEY;
6979 		key.offset = num_bytes;
6980 
6981 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6982 					-1, 1);
6983 		if (ret) {
6984 			btrfs_err(info,
6985 				  "umm, got %d back from search, was looking for %llu",
6986 				ret, bytenr);
6987 			btrfs_print_leaf(extent_root, path->nodes[0]);
6988 		}
6989 		if (ret < 0) {
6990 			btrfs_abort_transaction(trans, ret);
6991 			goto out;
6992 		}
6993 
6994 		extent_slot = path->slots[0];
6995 		leaf = path->nodes[0];
6996 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6997 	}
6998 #endif
6999 	BUG_ON(item_size < sizeof(*ei));
7000 	ei = btrfs_item_ptr(leaf, extent_slot,
7001 			    struct btrfs_extent_item);
7002 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7003 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7004 		struct btrfs_tree_block_info *bi;
7005 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7006 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7007 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7008 	}
7009 
7010 	refs = btrfs_extent_refs(leaf, ei);
7011 	if (refs < refs_to_drop) {
7012 		btrfs_err(info,
7013 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7014 			  refs_to_drop, refs, bytenr);
7015 		ret = -EINVAL;
7016 		btrfs_abort_transaction(trans, ret);
7017 		goto out;
7018 	}
7019 	refs -= refs_to_drop;
7020 
7021 	if (refs > 0) {
7022 		if (extent_op)
7023 			__run_delayed_extent_op(extent_op, leaf, ei);
7024 		/*
7025 		 * In the case of inline back ref, reference count will
7026 		 * be updated by remove_extent_backref
7027 		 */
7028 		if (iref) {
7029 			BUG_ON(!found_extent);
7030 		} else {
7031 			btrfs_set_extent_refs(leaf, ei, refs);
7032 			btrfs_mark_buffer_dirty(leaf);
7033 		}
7034 		if (found_extent) {
7035 			ret = remove_extent_backref(trans, extent_root, path,
7036 						    iref, refs_to_drop,
7037 						    is_data, &last_ref);
7038 			if (ret) {
7039 				btrfs_abort_transaction(trans, ret);
7040 				goto out;
7041 			}
7042 		}
7043 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7044 				 root_objectid);
7045 	} else {
7046 		if (found_extent) {
7047 			BUG_ON(is_data && refs_to_drop !=
7048 			       extent_data_ref_count(path, iref));
7049 			if (iref) {
7050 				BUG_ON(path->slots[0] != extent_slot);
7051 			} else {
7052 				BUG_ON(path->slots[0] != extent_slot + 1);
7053 				path->slots[0] = extent_slot;
7054 				num_to_del = 2;
7055 			}
7056 		}
7057 
7058 		last_ref = 1;
7059 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7060 				      num_to_del);
7061 		if (ret) {
7062 			btrfs_abort_transaction(trans, ret);
7063 			goto out;
7064 		}
7065 		btrfs_release_path(path);
7066 
7067 		if (is_data) {
7068 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7069 			if (ret) {
7070 				btrfs_abort_transaction(trans, ret);
7071 				goto out;
7072 			}
7073 		}
7074 
7075 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7076 					     num_bytes);
7077 		if (ret) {
7078 			btrfs_abort_transaction(trans, ret);
7079 			goto out;
7080 		}
7081 
7082 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7083 		if (ret) {
7084 			btrfs_abort_transaction(trans, ret);
7085 			goto out;
7086 		}
7087 	}
7088 	btrfs_release_path(path);
7089 
7090 out:
7091 	btrfs_free_path(path);
7092 	return ret;
7093 }
7094 
7095 /*
7096  * when we free an block, it is possible (and likely) that we free the last
7097  * delayed ref for that extent as well.  This searches the delayed ref tree for
7098  * a given extent, and if there are no other delayed refs to be processed, it
7099  * removes it from the tree.
7100  */
7101 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7102 				      struct btrfs_root *root, u64 bytenr)
7103 {
7104 	struct btrfs_delayed_ref_head *head;
7105 	struct btrfs_delayed_ref_root *delayed_refs;
7106 	int ret = 0;
7107 
7108 	delayed_refs = &trans->transaction->delayed_refs;
7109 	spin_lock(&delayed_refs->lock);
7110 	head = btrfs_find_delayed_ref_head(trans, bytenr);
7111 	if (!head)
7112 		goto out_delayed_unlock;
7113 
7114 	spin_lock(&head->lock);
7115 	if (!list_empty(&head->ref_list))
7116 		goto out;
7117 
7118 	if (head->extent_op) {
7119 		if (!head->must_insert_reserved)
7120 			goto out;
7121 		btrfs_free_delayed_extent_op(head->extent_op);
7122 		head->extent_op = NULL;
7123 	}
7124 
7125 	/*
7126 	 * waiting for the lock here would deadlock.  If someone else has it
7127 	 * locked they are already in the process of dropping it anyway
7128 	 */
7129 	if (!mutex_trylock(&head->mutex))
7130 		goto out;
7131 
7132 	/*
7133 	 * at this point we have a head with no other entries.  Go
7134 	 * ahead and process it.
7135 	 */
7136 	head->node.in_tree = 0;
7137 	rb_erase(&head->href_node, &delayed_refs->href_root);
7138 
7139 	atomic_dec(&delayed_refs->num_entries);
7140 
7141 	/*
7142 	 * we don't take a ref on the node because we're removing it from the
7143 	 * tree, so we just steal the ref the tree was holding.
7144 	 */
7145 	delayed_refs->num_heads--;
7146 	if (head->processing == 0)
7147 		delayed_refs->num_heads_ready--;
7148 	head->processing = 0;
7149 	spin_unlock(&head->lock);
7150 	spin_unlock(&delayed_refs->lock);
7151 
7152 	BUG_ON(head->extent_op);
7153 	if (head->must_insert_reserved)
7154 		ret = 1;
7155 
7156 	mutex_unlock(&head->mutex);
7157 	btrfs_put_delayed_ref(&head->node);
7158 	return ret;
7159 out:
7160 	spin_unlock(&head->lock);
7161 
7162 out_delayed_unlock:
7163 	spin_unlock(&delayed_refs->lock);
7164 	return 0;
7165 }
7166 
7167 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7168 			   struct btrfs_root *root,
7169 			   struct extent_buffer *buf,
7170 			   u64 parent, int last_ref)
7171 {
7172 	int pin = 1;
7173 	int ret;
7174 
7175 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7176 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7177 					buf->start, buf->len,
7178 					parent, root->root_key.objectid,
7179 					btrfs_header_level(buf),
7180 					BTRFS_DROP_DELAYED_REF, NULL);
7181 		BUG_ON(ret); /* -ENOMEM */
7182 	}
7183 
7184 	if (!last_ref)
7185 		return;
7186 
7187 	if (btrfs_header_generation(buf) == trans->transid) {
7188 		struct btrfs_block_group_cache *cache;
7189 
7190 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7191 			ret = check_ref_cleanup(trans, root, buf->start);
7192 			if (!ret)
7193 				goto out;
7194 		}
7195 
7196 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7197 
7198 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7199 			pin_down_extent(root, cache, buf->start, buf->len, 1);
7200 			btrfs_put_block_group(cache);
7201 			goto out;
7202 		}
7203 
7204 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7205 
7206 		btrfs_add_free_space(cache, buf->start, buf->len);
7207 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7208 		btrfs_put_block_group(cache);
7209 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7210 		pin = 0;
7211 	}
7212 out:
7213 	if (pin)
7214 		add_pinned_bytes(root->fs_info, buf->len,
7215 				 btrfs_header_level(buf),
7216 				 root->root_key.objectid);
7217 
7218 	/*
7219 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7220 	 * anymore.
7221 	 */
7222 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7223 }
7224 
7225 /* Can return -ENOMEM */
7226 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7227 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7228 		      u64 owner, u64 offset)
7229 {
7230 	int ret;
7231 	struct btrfs_fs_info *fs_info = root->fs_info;
7232 
7233 	if (btrfs_is_testing(fs_info))
7234 		return 0;
7235 
7236 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7237 
7238 	/*
7239 	 * tree log blocks never actually go into the extent allocation
7240 	 * tree, just update pinning info and exit early.
7241 	 */
7242 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7243 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7244 		/* unlocks the pinned mutex */
7245 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7246 		ret = 0;
7247 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7248 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7249 					num_bytes,
7250 					parent, root_objectid, (int)owner,
7251 					BTRFS_DROP_DELAYED_REF, NULL);
7252 	} else {
7253 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7254 						num_bytes,
7255 						parent, root_objectid, owner,
7256 						offset, 0,
7257 						BTRFS_DROP_DELAYED_REF, NULL);
7258 	}
7259 	return ret;
7260 }
7261 
7262 /*
7263  * when we wait for progress in the block group caching, its because
7264  * our allocation attempt failed at least once.  So, we must sleep
7265  * and let some progress happen before we try again.
7266  *
7267  * This function will sleep at least once waiting for new free space to
7268  * show up, and then it will check the block group free space numbers
7269  * for our min num_bytes.  Another option is to have it go ahead
7270  * and look in the rbtree for a free extent of a given size, but this
7271  * is a good start.
7272  *
7273  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7274  * any of the information in this block group.
7275  */
7276 static noinline void
7277 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7278 				u64 num_bytes)
7279 {
7280 	struct btrfs_caching_control *caching_ctl;
7281 
7282 	caching_ctl = get_caching_control(cache);
7283 	if (!caching_ctl)
7284 		return;
7285 
7286 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7287 		   (cache->free_space_ctl->free_space >= num_bytes));
7288 
7289 	put_caching_control(caching_ctl);
7290 }
7291 
7292 static noinline int
7293 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7294 {
7295 	struct btrfs_caching_control *caching_ctl;
7296 	int ret = 0;
7297 
7298 	caching_ctl = get_caching_control(cache);
7299 	if (!caching_ctl)
7300 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7301 
7302 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7303 	if (cache->cached == BTRFS_CACHE_ERROR)
7304 		ret = -EIO;
7305 	put_caching_control(caching_ctl);
7306 	return ret;
7307 }
7308 
7309 int __get_raid_index(u64 flags)
7310 {
7311 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7312 		return BTRFS_RAID_RAID10;
7313 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7314 		return BTRFS_RAID_RAID1;
7315 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7316 		return BTRFS_RAID_DUP;
7317 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7318 		return BTRFS_RAID_RAID0;
7319 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7320 		return BTRFS_RAID_RAID5;
7321 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7322 		return BTRFS_RAID_RAID6;
7323 
7324 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7325 }
7326 
7327 int get_block_group_index(struct btrfs_block_group_cache *cache)
7328 {
7329 	return __get_raid_index(cache->flags);
7330 }
7331 
7332 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7333 	[BTRFS_RAID_RAID10]	= "raid10",
7334 	[BTRFS_RAID_RAID1]	= "raid1",
7335 	[BTRFS_RAID_DUP]	= "dup",
7336 	[BTRFS_RAID_RAID0]	= "raid0",
7337 	[BTRFS_RAID_SINGLE]	= "single",
7338 	[BTRFS_RAID_RAID5]	= "raid5",
7339 	[BTRFS_RAID_RAID6]	= "raid6",
7340 };
7341 
7342 static const char *get_raid_name(enum btrfs_raid_types type)
7343 {
7344 	if (type >= BTRFS_NR_RAID_TYPES)
7345 		return NULL;
7346 
7347 	return btrfs_raid_type_names[type];
7348 }
7349 
7350 enum btrfs_loop_type {
7351 	LOOP_CACHING_NOWAIT = 0,
7352 	LOOP_CACHING_WAIT = 1,
7353 	LOOP_ALLOC_CHUNK = 2,
7354 	LOOP_NO_EMPTY_SIZE = 3,
7355 };
7356 
7357 static inline void
7358 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7359 		       int delalloc)
7360 {
7361 	if (delalloc)
7362 		down_read(&cache->data_rwsem);
7363 }
7364 
7365 static inline void
7366 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7367 		       int delalloc)
7368 {
7369 	btrfs_get_block_group(cache);
7370 	if (delalloc)
7371 		down_read(&cache->data_rwsem);
7372 }
7373 
7374 static struct btrfs_block_group_cache *
7375 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7376 		   struct btrfs_free_cluster *cluster,
7377 		   int delalloc)
7378 {
7379 	struct btrfs_block_group_cache *used_bg = NULL;
7380 
7381 	spin_lock(&cluster->refill_lock);
7382 	while (1) {
7383 		used_bg = cluster->block_group;
7384 		if (!used_bg)
7385 			return NULL;
7386 
7387 		if (used_bg == block_group)
7388 			return used_bg;
7389 
7390 		btrfs_get_block_group(used_bg);
7391 
7392 		if (!delalloc)
7393 			return used_bg;
7394 
7395 		if (down_read_trylock(&used_bg->data_rwsem))
7396 			return used_bg;
7397 
7398 		spin_unlock(&cluster->refill_lock);
7399 
7400 		down_read(&used_bg->data_rwsem);
7401 
7402 		spin_lock(&cluster->refill_lock);
7403 		if (used_bg == cluster->block_group)
7404 			return used_bg;
7405 
7406 		up_read(&used_bg->data_rwsem);
7407 		btrfs_put_block_group(used_bg);
7408 	}
7409 }
7410 
7411 static inline void
7412 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7413 			 int delalloc)
7414 {
7415 	if (delalloc)
7416 		up_read(&cache->data_rwsem);
7417 	btrfs_put_block_group(cache);
7418 }
7419 
7420 /*
7421  * walks the btree of allocated extents and find a hole of a given size.
7422  * The key ins is changed to record the hole:
7423  * ins->objectid == start position
7424  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7425  * ins->offset == the size of the hole.
7426  * Any available blocks before search_start are skipped.
7427  *
7428  * If there is no suitable free space, we will record the max size of
7429  * the free space extent currently.
7430  */
7431 static noinline int find_free_extent(struct btrfs_root *orig_root,
7432 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7433 				u64 hint_byte, struct btrfs_key *ins,
7434 				u64 flags, int delalloc)
7435 {
7436 	int ret = 0;
7437 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7438 	struct btrfs_free_cluster *last_ptr = NULL;
7439 	struct btrfs_block_group_cache *block_group = NULL;
7440 	u64 search_start = 0;
7441 	u64 max_extent_size = 0;
7442 	u64 empty_cluster = 0;
7443 	struct btrfs_space_info *space_info;
7444 	int loop = 0;
7445 	int index = __get_raid_index(flags);
7446 	bool failed_cluster_refill = false;
7447 	bool failed_alloc = false;
7448 	bool use_cluster = true;
7449 	bool have_caching_bg = false;
7450 	bool orig_have_caching_bg = false;
7451 	bool full_search = false;
7452 
7453 	WARN_ON(num_bytes < root->sectorsize);
7454 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7455 	ins->objectid = 0;
7456 	ins->offset = 0;
7457 
7458 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7459 
7460 	space_info = __find_space_info(root->fs_info, flags);
7461 	if (!space_info) {
7462 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7463 		return -ENOSPC;
7464 	}
7465 
7466 	/*
7467 	 * If our free space is heavily fragmented we may not be able to make
7468 	 * big contiguous allocations, so instead of doing the expensive search
7469 	 * for free space, simply return ENOSPC with our max_extent_size so we
7470 	 * can go ahead and search for a more manageable chunk.
7471 	 *
7472 	 * If our max_extent_size is large enough for our allocation simply
7473 	 * disable clustering since we will likely not be able to find enough
7474 	 * space to create a cluster and induce latency trying.
7475 	 */
7476 	if (unlikely(space_info->max_extent_size)) {
7477 		spin_lock(&space_info->lock);
7478 		if (space_info->max_extent_size &&
7479 		    num_bytes > space_info->max_extent_size) {
7480 			ins->offset = space_info->max_extent_size;
7481 			spin_unlock(&space_info->lock);
7482 			return -ENOSPC;
7483 		} else if (space_info->max_extent_size) {
7484 			use_cluster = false;
7485 		}
7486 		spin_unlock(&space_info->lock);
7487 	}
7488 
7489 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7490 	if (last_ptr) {
7491 		spin_lock(&last_ptr->lock);
7492 		if (last_ptr->block_group)
7493 			hint_byte = last_ptr->window_start;
7494 		if (last_ptr->fragmented) {
7495 			/*
7496 			 * We still set window_start so we can keep track of the
7497 			 * last place we found an allocation to try and save
7498 			 * some time.
7499 			 */
7500 			hint_byte = last_ptr->window_start;
7501 			use_cluster = false;
7502 		}
7503 		spin_unlock(&last_ptr->lock);
7504 	}
7505 
7506 	search_start = max(search_start, first_logical_byte(root, 0));
7507 	search_start = max(search_start, hint_byte);
7508 	if (search_start == hint_byte) {
7509 		block_group = btrfs_lookup_block_group(root->fs_info,
7510 						       search_start);
7511 		/*
7512 		 * we don't want to use the block group if it doesn't match our
7513 		 * allocation bits, or if its not cached.
7514 		 *
7515 		 * However if we are re-searching with an ideal block group
7516 		 * picked out then we don't care that the block group is cached.
7517 		 */
7518 		if (block_group && block_group_bits(block_group, flags) &&
7519 		    block_group->cached != BTRFS_CACHE_NO) {
7520 			down_read(&space_info->groups_sem);
7521 			if (list_empty(&block_group->list) ||
7522 			    block_group->ro) {
7523 				/*
7524 				 * someone is removing this block group,
7525 				 * we can't jump into the have_block_group
7526 				 * target because our list pointers are not
7527 				 * valid
7528 				 */
7529 				btrfs_put_block_group(block_group);
7530 				up_read(&space_info->groups_sem);
7531 			} else {
7532 				index = get_block_group_index(block_group);
7533 				btrfs_lock_block_group(block_group, delalloc);
7534 				goto have_block_group;
7535 			}
7536 		} else if (block_group) {
7537 			btrfs_put_block_group(block_group);
7538 		}
7539 	}
7540 search:
7541 	have_caching_bg = false;
7542 	if (index == 0 || index == __get_raid_index(flags))
7543 		full_search = true;
7544 	down_read(&space_info->groups_sem);
7545 	list_for_each_entry(block_group, &space_info->block_groups[index],
7546 			    list) {
7547 		u64 offset;
7548 		int cached;
7549 
7550 		btrfs_grab_block_group(block_group, delalloc);
7551 		search_start = block_group->key.objectid;
7552 
7553 		/*
7554 		 * this can happen if we end up cycling through all the
7555 		 * raid types, but we want to make sure we only allocate
7556 		 * for the proper type.
7557 		 */
7558 		if (!block_group_bits(block_group, flags)) {
7559 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7560 				BTRFS_BLOCK_GROUP_RAID1 |
7561 				BTRFS_BLOCK_GROUP_RAID5 |
7562 				BTRFS_BLOCK_GROUP_RAID6 |
7563 				BTRFS_BLOCK_GROUP_RAID10;
7564 
7565 			/*
7566 			 * if they asked for extra copies and this block group
7567 			 * doesn't provide them, bail.  This does allow us to
7568 			 * fill raid0 from raid1.
7569 			 */
7570 			if ((flags & extra) && !(block_group->flags & extra))
7571 				goto loop;
7572 		}
7573 
7574 have_block_group:
7575 		cached = block_group_cache_done(block_group);
7576 		if (unlikely(!cached)) {
7577 			have_caching_bg = true;
7578 			ret = cache_block_group(block_group, 0);
7579 			BUG_ON(ret < 0);
7580 			ret = 0;
7581 		}
7582 
7583 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7584 			goto loop;
7585 		if (unlikely(block_group->ro))
7586 			goto loop;
7587 
7588 		/*
7589 		 * Ok we want to try and use the cluster allocator, so
7590 		 * lets look there
7591 		 */
7592 		if (last_ptr && use_cluster) {
7593 			struct btrfs_block_group_cache *used_block_group;
7594 			unsigned long aligned_cluster;
7595 			/*
7596 			 * the refill lock keeps out other
7597 			 * people trying to start a new cluster
7598 			 */
7599 			used_block_group = btrfs_lock_cluster(block_group,
7600 							      last_ptr,
7601 							      delalloc);
7602 			if (!used_block_group)
7603 				goto refill_cluster;
7604 
7605 			if (used_block_group != block_group &&
7606 			    (used_block_group->ro ||
7607 			     !block_group_bits(used_block_group, flags)))
7608 				goto release_cluster;
7609 
7610 			offset = btrfs_alloc_from_cluster(used_block_group,
7611 						last_ptr,
7612 						num_bytes,
7613 						used_block_group->key.objectid,
7614 						&max_extent_size);
7615 			if (offset) {
7616 				/* we have a block, we're done */
7617 				spin_unlock(&last_ptr->refill_lock);
7618 				trace_btrfs_reserve_extent_cluster(root,
7619 						used_block_group,
7620 						search_start, num_bytes);
7621 				if (used_block_group != block_group) {
7622 					btrfs_release_block_group(block_group,
7623 								  delalloc);
7624 					block_group = used_block_group;
7625 				}
7626 				goto checks;
7627 			}
7628 
7629 			WARN_ON(last_ptr->block_group != used_block_group);
7630 release_cluster:
7631 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7632 			 * set up a new clusters, so lets just skip it
7633 			 * and let the allocator find whatever block
7634 			 * it can find.  If we reach this point, we
7635 			 * will have tried the cluster allocator
7636 			 * plenty of times and not have found
7637 			 * anything, so we are likely way too
7638 			 * fragmented for the clustering stuff to find
7639 			 * anything.
7640 			 *
7641 			 * However, if the cluster is taken from the
7642 			 * current block group, release the cluster
7643 			 * first, so that we stand a better chance of
7644 			 * succeeding in the unclustered
7645 			 * allocation.  */
7646 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7647 			    used_block_group != block_group) {
7648 				spin_unlock(&last_ptr->refill_lock);
7649 				btrfs_release_block_group(used_block_group,
7650 							  delalloc);
7651 				goto unclustered_alloc;
7652 			}
7653 
7654 			/*
7655 			 * this cluster didn't work out, free it and
7656 			 * start over
7657 			 */
7658 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7659 
7660 			if (used_block_group != block_group)
7661 				btrfs_release_block_group(used_block_group,
7662 							  delalloc);
7663 refill_cluster:
7664 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7665 				spin_unlock(&last_ptr->refill_lock);
7666 				goto unclustered_alloc;
7667 			}
7668 
7669 			aligned_cluster = max_t(unsigned long,
7670 						empty_cluster + empty_size,
7671 					      block_group->full_stripe_len);
7672 
7673 			/* allocate a cluster in this block group */
7674 			ret = btrfs_find_space_cluster(root, block_group,
7675 						       last_ptr, search_start,
7676 						       num_bytes,
7677 						       aligned_cluster);
7678 			if (ret == 0) {
7679 				/*
7680 				 * now pull our allocation out of this
7681 				 * cluster
7682 				 */
7683 				offset = btrfs_alloc_from_cluster(block_group,
7684 							last_ptr,
7685 							num_bytes,
7686 							search_start,
7687 							&max_extent_size);
7688 				if (offset) {
7689 					/* we found one, proceed */
7690 					spin_unlock(&last_ptr->refill_lock);
7691 					trace_btrfs_reserve_extent_cluster(root,
7692 						block_group, search_start,
7693 						num_bytes);
7694 					goto checks;
7695 				}
7696 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7697 				   && !failed_cluster_refill) {
7698 				spin_unlock(&last_ptr->refill_lock);
7699 
7700 				failed_cluster_refill = true;
7701 				wait_block_group_cache_progress(block_group,
7702 				       num_bytes + empty_cluster + empty_size);
7703 				goto have_block_group;
7704 			}
7705 
7706 			/*
7707 			 * at this point we either didn't find a cluster
7708 			 * or we weren't able to allocate a block from our
7709 			 * cluster.  Free the cluster we've been trying
7710 			 * to use, and go to the next block group
7711 			 */
7712 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7713 			spin_unlock(&last_ptr->refill_lock);
7714 			goto loop;
7715 		}
7716 
7717 unclustered_alloc:
7718 		/*
7719 		 * We are doing an unclustered alloc, set the fragmented flag so
7720 		 * we don't bother trying to setup a cluster again until we get
7721 		 * more space.
7722 		 */
7723 		if (unlikely(last_ptr)) {
7724 			spin_lock(&last_ptr->lock);
7725 			last_ptr->fragmented = 1;
7726 			spin_unlock(&last_ptr->lock);
7727 		}
7728 		spin_lock(&block_group->free_space_ctl->tree_lock);
7729 		if (cached &&
7730 		    block_group->free_space_ctl->free_space <
7731 		    num_bytes + empty_cluster + empty_size) {
7732 			if (block_group->free_space_ctl->free_space >
7733 			    max_extent_size)
7734 				max_extent_size =
7735 					block_group->free_space_ctl->free_space;
7736 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7737 			goto loop;
7738 		}
7739 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7740 
7741 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7742 						    num_bytes, empty_size,
7743 						    &max_extent_size);
7744 		/*
7745 		 * If we didn't find a chunk, and we haven't failed on this
7746 		 * block group before, and this block group is in the middle of
7747 		 * caching and we are ok with waiting, then go ahead and wait
7748 		 * for progress to be made, and set failed_alloc to true.
7749 		 *
7750 		 * If failed_alloc is true then we've already waited on this
7751 		 * block group once and should move on to the next block group.
7752 		 */
7753 		if (!offset && !failed_alloc && !cached &&
7754 		    loop > LOOP_CACHING_NOWAIT) {
7755 			wait_block_group_cache_progress(block_group,
7756 						num_bytes + empty_size);
7757 			failed_alloc = true;
7758 			goto have_block_group;
7759 		} else if (!offset) {
7760 			goto loop;
7761 		}
7762 checks:
7763 		search_start = ALIGN(offset, root->stripesize);
7764 
7765 		/* move on to the next group */
7766 		if (search_start + num_bytes >
7767 		    block_group->key.objectid + block_group->key.offset) {
7768 			btrfs_add_free_space(block_group, offset, num_bytes);
7769 			goto loop;
7770 		}
7771 
7772 		if (offset < search_start)
7773 			btrfs_add_free_space(block_group, offset,
7774 					     search_start - offset);
7775 		BUG_ON(offset > search_start);
7776 
7777 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7778 				num_bytes, delalloc);
7779 		if (ret == -EAGAIN) {
7780 			btrfs_add_free_space(block_group, offset, num_bytes);
7781 			goto loop;
7782 		}
7783 		btrfs_inc_block_group_reservations(block_group);
7784 
7785 		/* we are all good, lets return */
7786 		ins->objectid = search_start;
7787 		ins->offset = num_bytes;
7788 
7789 		trace_btrfs_reserve_extent(orig_root, block_group,
7790 					   search_start, num_bytes);
7791 		btrfs_release_block_group(block_group, delalloc);
7792 		break;
7793 loop:
7794 		failed_cluster_refill = false;
7795 		failed_alloc = false;
7796 		BUG_ON(index != get_block_group_index(block_group));
7797 		btrfs_release_block_group(block_group, delalloc);
7798 	}
7799 	up_read(&space_info->groups_sem);
7800 
7801 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7802 		&& !orig_have_caching_bg)
7803 		orig_have_caching_bg = true;
7804 
7805 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7806 		goto search;
7807 
7808 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7809 		goto search;
7810 
7811 	/*
7812 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7813 	 *			caching kthreads as we move along
7814 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7815 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7816 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7817 	 *			again
7818 	 */
7819 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7820 		index = 0;
7821 		if (loop == LOOP_CACHING_NOWAIT) {
7822 			/*
7823 			 * We want to skip the LOOP_CACHING_WAIT step if we
7824 			 * don't have any uncached bgs and we've already done a
7825 			 * full search through.
7826 			 */
7827 			if (orig_have_caching_bg || !full_search)
7828 				loop = LOOP_CACHING_WAIT;
7829 			else
7830 				loop = LOOP_ALLOC_CHUNK;
7831 		} else {
7832 			loop++;
7833 		}
7834 
7835 		if (loop == LOOP_ALLOC_CHUNK) {
7836 			struct btrfs_trans_handle *trans;
7837 			int exist = 0;
7838 
7839 			trans = current->journal_info;
7840 			if (trans)
7841 				exist = 1;
7842 			else
7843 				trans = btrfs_join_transaction(root);
7844 
7845 			if (IS_ERR(trans)) {
7846 				ret = PTR_ERR(trans);
7847 				goto out;
7848 			}
7849 
7850 			ret = do_chunk_alloc(trans, root, flags,
7851 					     CHUNK_ALLOC_FORCE);
7852 
7853 			/*
7854 			 * If we can't allocate a new chunk we've already looped
7855 			 * through at least once, move on to the NO_EMPTY_SIZE
7856 			 * case.
7857 			 */
7858 			if (ret == -ENOSPC)
7859 				loop = LOOP_NO_EMPTY_SIZE;
7860 
7861 			/*
7862 			 * Do not bail out on ENOSPC since we
7863 			 * can do more things.
7864 			 */
7865 			if (ret < 0 && ret != -ENOSPC)
7866 				btrfs_abort_transaction(trans, ret);
7867 			else
7868 				ret = 0;
7869 			if (!exist)
7870 				btrfs_end_transaction(trans, root);
7871 			if (ret)
7872 				goto out;
7873 		}
7874 
7875 		if (loop == LOOP_NO_EMPTY_SIZE) {
7876 			/*
7877 			 * Don't loop again if we already have no empty_size and
7878 			 * no empty_cluster.
7879 			 */
7880 			if (empty_size == 0 &&
7881 			    empty_cluster == 0) {
7882 				ret = -ENOSPC;
7883 				goto out;
7884 			}
7885 			empty_size = 0;
7886 			empty_cluster = 0;
7887 		}
7888 
7889 		goto search;
7890 	} else if (!ins->objectid) {
7891 		ret = -ENOSPC;
7892 	} else if (ins->objectid) {
7893 		if (!use_cluster && last_ptr) {
7894 			spin_lock(&last_ptr->lock);
7895 			last_ptr->window_start = ins->objectid;
7896 			spin_unlock(&last_ptr->lock);
7897 		}
7898 		ret = 0;
7899 	}
7900 out:
7901 	if (ret == -ENOSPC) {
7902 		spin_lock(&space_info->lock);
7903 		space_info->max_extent_size = max_extent_size;
7904 		spin_unlock(&space_info->lock);
7905 		ins->offset = max_extent_size;
7906 	}
7907 	return ret;
7908 }
7909 
7910 static void dump_space_info(struct btrfs_fs_info *fs_info,
7911 			    struct btrfs_space_info *info, u64 bytes,
7912 			    int dump_block_groups)
7913 {
7914 	struct btrfs_block_group_cache *cache;
7915 	int index = 0;
7916 
7917 	spin_lock(&info->lock);
7918 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7919 		   info->flags,
7920 		   info->total_bytes - info->bytes_used - info->bytes_pinned -
7921 		   info->bytes_reserved - info->bytes_readonly -
7922 		   info->bytes_may_use, (info->full) ? "" : "not ");
7923 	btrfs_info(fs_info,
7924 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7925 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7926 		info->bytes_reserved, info->bytes_may_use,
7927 		info->bytes_readonly);
7928 	spin_unlock(&info->lock);
7929 
7930 	if (!dump_block_groups)
7931 		return;
7932 
7933 	down_read(&info->groups_sem);
7934 again:
7935 	list_for_each_entry(cache, &info->block_groups[index], list) {
7936 		spin_lock(&cache->lock);
7937 		btrfs_info(fs_info,
7938 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7939 			cache->key.objectid, cache->key.offset,
7940 			btrfs_block_group_used(&cache->item), cache->pinned,
7941 			cache->reserved, cache->ro ? "[readonly]" : "");
7942 		btrfs_dump_free_space(cache, bytes);
7943 		spin_unlock(&cache->lock);
7944 	}
7945 	if (++index < BTRFS_NR_RAID_TYPES)
7946 		goto again;
7947 	up_read(&info->groups_sem);
7948 }
7949 
7950 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7951 			 u64 num_bytes, u64 min_alloc_size,
7952 			 u64 empty_size, u64 hint_byte,
7953 			 struct btrfs_key *ins, int is_data, int delalloc)
7954 {
7955 	struct btrfs_fs_info *fs_info = root->fs_info;
7956 	bool final_tried = num_bytes == min_alloc_size;
7957 	u64 flags;
7958 	int ret;
7959 
7960 	flags = btrfs_get_alloc_profile(root, is_data);
7961 again:
7962 	WARN_ON(num_bytes < root->sectorsize);
7963 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7964 			       hint_byte, ins, flags, delalloc);
7965 	if (!ret && !is_data) {
7966 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7967 	} else if (ret == -ENOSPC) {
7968 		if (!final_tried && ins->offset) {
7969 			num_bytes = min(num_bytes >> 1, ins->offset);
7970 			num_bytes = round_down(num_bytes, root->sectorsize);
7971 			num_bytes = max(num_bytes, min_alloc_size);
7972 			ram_bytes = num_bytes;
7973 			if (num_bytes == min_alloc_size)
7974 				final_tried = true;
7975 			goto again;
7976 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7977 			struct btrfs_space_info *sinfo;
7978 
7979 			sinfo = __find_space_info(fs_info, flags);
7980 			btrfs_err(root->fs_info,
7981 				  "allocation failed flags %llu, wanted %llu",
7982 				  flags, num_bytes);
7983 			if (sinfo)
7984 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7985 		}
7986 	}
7987 
7988 	return ret;
7989 }
7990 
7991 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7992 					u64 start, u64 len,
7993 					int pin, int delalloc)
7994 {
7995 	struct btrfs_block_group_cache *cache;
7996 	int ret = 0;
7997 
7998 	cache = btrfs_lookup_block_group(root->fs_info, start);
7999 	if (!cache) {
8000 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
8001 			start);
8002 		return -ENOSPC;
8003 	}
8004 
8005 	if (pin)
8006 		pin_down_extent(root, cache, start, len, 1);
8007 	else {
8008 		if (btrfs_test_opt(root->fs_info, DISCARD))
8009 			ret = btrfs_discard_extent(root, start, len, NULL);
8010 		btrfs_add_free_space(cache, start, len);
8011 		btrfs_free_reserved_bytes(cache, len, delalloc);
8012 		trace_btrfs_reserved_extent_free(root, start, len);
8013 	}
8014 
8015 	btrfs_put_block_group(cache);
8016 	return ret;
8017 }
8018 
8019 int btrfs_free_reserved_extent(struct btrfs_root *root,
8020 			       u64 start, u64 len, int delalloc)
8021 {
8022 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8023 }
8024 
8025 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8026 				       u64 start, u64 len)
8027 {
8028 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8029 }
8030 
8031 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8032 				      struct btrfs_root *root,
8033 				      u64 parent, u64 root_objectid,
8034 				      u64 flags, u64 owner, u64 offset,
8035 				      struct btrfs_key *ins, int ref_mod)
8036 {
8037 	int ret;
8038 	struct btrfs_fs_info *fs_info = root->fs_info;
8039 	struct btrfs_extent_item *extent_item;
8040 	struct btrfs_extent_inline_ref *iref;
8041 	struct btrfs_path *path;
8042 	struct extent_buffer *leaf;
8043 	int type;
8044 	u32 size;
8045 
8046 	if (parent > 0)
8047 		type = BTRFS_SHARED_DATA_REF_KEY;
8048 	else
8049 		type = BTRFS_EXTENT_DATA_REF_KEY;
8050 
8051 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8052 
8053 	path = btrfs_alloc_path();
8054 	if (!path)
8055 		return -ENOMEM;
8056 
8057 	path->leave_spinning = 1;
8058 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8059 				      ins, size);
8060 	if (ret) {
8061 		btrfs_free_path(path);
8062 		return ret;
8063 	}
8064 
8065 	leaf = path->nodes[0];
8066 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8067 				     struct btrfs_extent_item);
8068 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8069 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8070 	btrfs_set_extent_flags(leaf, extent_item,
8071 			       flags | BTRFS_EXTENT_FLAG_DATA);
8072 
8073 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8074 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8075 	if (parent > 0) {
8076 		struct btrfs_shared_data_ref *ref;
8077 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8078 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8079 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8080 	} else {
8081 		struct btrfs_extent_data_ref *ref;
8082 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8083 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8084 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8085 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8086 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8087 	}
8088 
8089 	btrfs_mark_buffer_dirty(path->nodes[0]);
8090 	btrfs_free_path(path);
8091 
8092 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8093 					  ins->offset);
8094 	if (ret)
8095 		return ret;
8096 
8097 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8098 	if (ret) { /* -ENOENT, logic error */
8099 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8100 			ins->objectid, ins->offset);
8101 		BUG();
8102 	}
8103 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8104 	return ret;
8105 }
8106 
8107 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8108 				     struct btrfs_root *root,
8109 				     u64 parent, u64 root_objectid,
8110 				     u64 flags, struct btrfs_disk_key *key,
8111 				     int level, struct btrfs_key *ins)
8112 {
8113 	int ret;
8114 	struct btrfs_fs_info *fs_info = root->fs_info;
8115 	struct btrfs_extent_item *extent_item;
8116 	struct btrfs_tree_block_info *block_info;
8117 	struct btrfs_extent_inline_ref *iref;
8118 	struct btrfs_path *path;
8119 	struct extent_buffer *leaf;
8120 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8121 	u64 num_bytes = ins->offset;
8122 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8123 						 SKINNY_METADATA);
8124 
8125 	if (!skinny_metadata)
8126 		size += sizeof(*block_info);
8127 
8128 	path = btrfs_alloc_path();
8129 	if (!path) {
8130 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8131 						   root->nodesize);
8132 		return -ENOMEM;
8133 	}
8134 
8135 	path->leave_spinning = 1;
8136 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8137 				      ins, size);
8138 	if (ret) {
8139 		btrfs_free_path(path);
8140 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8141 						   root->nodesize);
8142 		return ret;
8143 	}
8144 
8145 	leaf = path->nodes[0];
8146 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8147 				     struct btrfs_extent_item);
8148 	btrfs_set_extent_refs(leaf, extent_item, 1);
8149 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8150 	btrfs_set_extent_flags(leaf, extent_item,
8151 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8152 
8153 	if (skinny_metadata) {
8154 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8155 		num_bytes = root->nodesize;
8156 	} else {
8157 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8158 		btrfs_set_tree_block_key(leaf, block_info, key);
8159 		btrfs_set_tree_block_level(leaf, block_info, level);
8160 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8161 	}
8162 
8163 	if (parent > 0) {
8164 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8165 		btrfs_set_extent_inline_ref_type(leaf, iref,
8166 						 BTRFS_SHARED_BLOCK_REF_KEY);
8167 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8168 	} else {
8169 		btrfs_set_extent_inline_ref_type(leaf, iref,
8170 						 BTRFS_TREE_BLOCK_REF_KEY);
8171 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8172 	}
8173 
8174 	btrfs_mark_buffer_dirty(leaf);
8175 	btrfs_free_path(path);
8176 
8177 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8178 					  num_bytes);
8179 	if (ret)
8180 		return ret;
8181 
8182 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8183 				 1);
8184 	if (ret) { /* -ENOENT, logic error */
8185 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8186 			ins->objectid, ins->offset);
8187 		BUG();
8188 	}
8189 
8190 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8191 	return ret;
8192 }
8193 
8194 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8195 				     struct btrfs_root *root,
8196 				     u64 root_objectid, u64 owner,
8197 				     u64 offset, u64 ram_bytes,
8198 				     struct btrfs_key *ins)
8199 {
8200 	int ret;
8201 
8202 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8203 
8204 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8205 					 ins->offset, 0,
8206 					 root_objectid, owner, offset,
8207 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8208 					 NULL);
8209 	return ret;
8210 }
8211 
8212 /*
8213  * this is used by the tree logging recovery code.  It records that
8214  * an extent has been allocated and makes sure to clear the free
8215  * space cache bits as well
8216  */
8217 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8218 				   struct btrfs_root *root,
8219 				   u64 root_objectid, u64 owner, u64 offset,
8220 				   struct btrfs_key *ins)
8221 {
8222 	int ret;
8223 	struct btrfs_block_group_cache *block_group;
8224 	struct btrfs_space_info *space_info;
8225 
8226 	/*
8227 	 * Mixed block groups will exclude before processing the log so we only
8228 	 * need to do the exclude dance if this fs isn't mixed.
8229 	 */
8230 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8231 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8232 		if (ret)
8233 			return ret;
8234 	}
8235 
8236 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8237 	if (!block_group)
8238 		return -EINVAL;
8239 
8240 	space_info = block_group->space_info;
8241 	spin_lock(&space_info->lock);
8242 	spin_lock(&block_group->lock);
8243 	space_info->bytes_reserved += ins->offset;
8244 	block_group->reserved += ins->offset;
8245 	spin_unlock(&block_group->lock);
8246 	spin_unlock(&space_info->lock);
8247 
8248 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8249 					 0, owner, offset, ins, 1);
8250 	btrfs_put_block_group(block_group);
8251 	return ret;
8252 }
8253 
8254 static struct extent_buffer *
8255 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8256 		      u64 bytenr, int level)
8257 {
8258 	struct extent_buffer *buf;
8259 
8260 	buf = btrfs_find_create_tree_block(root, bytenr);
8261 	if (IS_ERR(buf))
8262 		return buf;
8263 
8264 	btrfs_set_header_generation(buf, trans->transid);
8265 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8266 	btrfs_tree_lock(buf);
8267 	clean_tree_block(trans, root->fs_info, buf);
8268 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8269 
8270 	btrfs_set_lock_blocking(buf);
8271 	set_extent_buffer_uptodate(buf);
8272 
8273 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8274 		buf->log_index = root->log_transid % 2;
8275 		/*
8276 		 * we allow two log transactions at a time, use different
8277 		 * EXENT bit to differentiate dirty pages.
8278 		 */
8279 		if (buf->log_index == 0)
8280 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8281 					buf->start + buf->len - 1, GFP_NOFS);
8282 		else
8283 			set_extent_new(&root->dirty_log_pages, buf->start,
8284 					buf->start + buf->len - 1);
8285 	} else {
8286 		buf->log_index = -1;
8287 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8288 			 buf->start + buf->len - 1, GFP_NOFS);
8289 	}
8290 	trans->dirty = true;
8291 	/* this returns a buffer locked for blocking */
8292 	return buf;
8293 }
8294 
8295 static struct btrfs_block_rsv *
8296 use_block_rsv(struct btrfs_trans_handle *trans,
8297 	      struct btrfs_root *root, u32 blocksize)
8298 {
8299 	struct btrfs_block_rsv *block_rsv;
8300 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8301 	int ret;
8302 	bool global_updated = false;
8303 
8304 	block_rsv = get_block_rsv(trans, root);
8305 
8306 	if (unlikely(block_rsv->size == 0))
8307 		goto try_reserve;
8308 again:
8309 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8310 	if (!ret)
8311 		return block_rsv;
8312 
8313 	if (block_rsv->failfast)
8314 		return ERR_PTR(ret);
8315 
8316 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8317 		global_updated = true;
8318 		update_global_block_rsv(root->fs_info);
8319 		goto again;
8320 	}
8321 
8322 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8323 		static DEFINE_RATELIMIT_STATE(_rs,
8324 				DEFAULT_RATELIMIT_INTERVAL * 10,
8325 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8326 		if (__ratelimit(&_rs))
8327 			WARN(1, KERN_DEBUG
8328 				"BTRFS: block rsv returned %d\n", ret);
8329 	}
8330 try_reserve:
8331 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8332 				     BTRFS_RESERVE_NO_FLUSH);
8333 	if (!ret)
8334 		return block_rsv;
8335 	/*
8336 	 * If we couldn't reserve metadata bytes try and use some from
8337 	 * the global reserve if its space type is the same as the global
8338 	 * reservation.
8339 	 */
8340 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8341 	    block_rsv->space_info == global_rsv->space_info) {
8342 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8343 		if (!ret)
8344 			return global_rsv;
8345 	}
8346 	return ERR_PTR(ret);
8347 }
8348 
8349 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8350 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8351 {
8352 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8353 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8354 }
8355 
8356 /*
8357  * finds a free extent and does all the dirty work required for allocation
8358  * returns the tree buffer or an ERR_PTR on error.
8359  */
8360 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8361 					struct btrfs_root *root,
8362 					u64 parent, u64 root_objectid,
8363 					struct btrfs_disk_key *key, int level,
8364 					u64 hint, u64 empty_size)
8365 {
8366 	struct btrfs_key ins;
8367 	struct btrfs_block_rsv *block_rsv;
8368 	struct extent_buffer *buf;
8369 	struct btrfs_delayed_extent_op *extent_op;
8370 	u64 flags = 0;
8371 	int ret;
8372 	u32 blocksize = root->nodesize;
8373 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8374 						 SKINNY_METADATA);
8375 
8376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8377 	if (btrfs_is_testing(root->fs_info)) {
8378 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8379 					    level);
8380 		if (!IS_ERR(buf))
8381 			root->alloc_bytenr += blocksize;
8382 		return buf;
8383 	}
8384 #endif
8385 
8386 	block_rsv = use_block_rsv(trans, root, blocksize);
8387 	if (IS_ERR(block_rsv))
8388 		return ERR_CAST(block_rsv);
8389 
8390 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8391 				   empty_size, hint, &ins, 0, 0);
8392 	if (ret)
8393 		goto out_unuse;
8394 
8395 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8396 	if (IS_ERR(buf)) {
8397 		ret = PTR_ERR(buf);
8398 		goto out_free_reserved;
8399 	}
8400 
8401 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8402 		if (parent == 0)
8403 			parent = ins.objectid;
8404 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8405 	} else
8406 		BUG_ON(parent > 0);
8407 
8408 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8409 		extent_op = btrfs_alloc_delayed_extent_op();
8410 		if (!extent_op) {
8411 			ret = -ENOMEM;
8412 			goto out_free_buf;
8413 		}
8414 		if (key)
8415 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8416 		else
8417 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8418 		extent_op->flags_to_set = flags;
8419 		extent_op->update_key = skinny_metadata ? false : true;
8420 		extent_op->update_flags = true;
8421 		extent_op->is_data = false;
8422 		extent_op->level = level;
8423 
8424 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8425 						 ins.objectid, ins.offset,
8426 						 parent, root_objectid, level,
8427 						 BTRFS_ADD_DELAYED_EXTENT,
8428 						 extent_op);
8429 		if (ret)
8430 			goto out_free_delayed;
8431 	}
8432 	return buf;
8433 
8434 out_free_delayed:
8435 	btrfs_free_delayed_extent_op(extent_op);
8436 out_free_buf:
8437 	free_extent_buffer(buf);
8438 out_free_reserved:
8439 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8440 out_unuse:
8441 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8442 	return ERR_PTR(ret);
8443 }
8444 
8445 struct walk_control {
8446 	u64 refs[BTRFS_MAX_LEVEL];
8447 	u64 flags[BTRFS_MAX_LEVEL];
8448 	struct btrfs_key update_progress;
8449 	int stage;
8450 	int level;
8451 	int shared_level;
8452 	int update_ref;
8453 	int keep_locks;
8454 	int reada_slot;
8455 	int reada_count;
8456 	int for_reloc;
8457 };
8458 
8459 #define DROP_REFERENCE	1
8460 #define UPDATE_BACKREF	2
8461 
8462 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8463 				     struct btrfs_root *root,
8464 				     struct walk_control *wc,
8465 				     struct btrfs_path *path)
8466 {
8467 	u64 bytenr;
8468 	u64 generation;
8469 	u64 refs;
8470 	u64 flags;
8471 	u32 nritems;
8472 	struct btrfs_key key;
8473 	struct extent_buffer *eb;
8474 	int ret;
8475 	int slot;
8476 	int nread = 0;
8477 
8478 	if (path->slots[wc->level] < wc->reada_slot) {
8479 		wc->reada_count = wc->reada_count * 2 / 3;
8480 		wc->reada_count = max(wc->reada_count, 2);
8481 	} else {
8482 		wc->reada_count = wc->reada_count * 3 / 2;
8483 		wc->reada_count = min_t(int, wc->reada_count,
8484 					BTRFS_NODEPTRS_PER_BLOCK(root));
8485 	}
8486 
8487 	eb = path->nodes[wc->level];
8488 	nritems = btrfs_header_nritems(eb);
8489 
8490 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8491 		if (nread >= wc->reada_count)
8492 			break;
8493 
8494 		cond_resched();
8495 		bytenr = btrfs_node_blockptr(eb, slot);
8496 		generation = btrfs_node_ptr_generation(eb, slot);
8497 
8498 		if (slot == path->slots[wc->level])
8499 			goto reada;
8500 
8501 		if (wc->stage == UPDATE_BACKREF &&
8502 		    generation <= root->root_key.offset)
8503 			continue;
8504 
8505 		/* We don't lock the tree block, it's OK to be racy here */
8506 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8507 					       wc->level - 1, 1, &refs,
8508 					       &flags);
8509 		/* We don't care about errors in readahead. */
8510 		if (ret < 0)
8511 			continue;
8512 		BUG_ON(refs == 0);
8513 
8514 		if (wc->stage == DROP_REFERENCE) {
8515 			if (refs == 1)
8516 				goto reada;
8517 
8518 			if (wc->level == 1 &&
8519 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8520 				continue;
8521 			if (!wc->update_ref ||
8522 			    generation <= root->root_key.offset)
8523 				continue;
8524 			btrfs_node_key_to_cpu(eb, &key, slot);
8525 			ret = btrfs_comp_cpu_keys(&key,
8526 						  &wc->update_progress);
8527 			if (ret < 0)
8528 				continue;
8529 		} else {
8530 			if (wc->level == 1 &&
8531 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8532 				continue;
8533 		}
8534 reada:
8535 		readahead_tree_block(root, bytenr);
8536 		nread++;
8537 	}
8538 	wc->reada_slot = slot;
8539 }
8540 
8541 static int account_leaf_items(struct btrfs_trans_handle *trans,
8542 			      struct btrfs_root *root,
8543 			      struct extent_buffer *eb)
8544 {
8545 	int nr = btrfs_header_nritems(eb);
8546 	int i, extent_type, ret;
8547 	struct btrfs_key key;
8548 	struct btrfs_file_extent_item *fi;
8549 	u64 bytenr, num_bytes;
8550 
8551 	/* We can be called directly from walk_up_proc() */
8552 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8553 		return 0;
8554 
8555 	for (i = 0; i < nr; i++) {
8556 		btrfs_item_key_to_cpu(eb, &key, i);
8557 
8558 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8559 			continue;
8560 
8561 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8562 		/* filter out non qgroup-accountable extents  */
8563 		extent_type = btrfs_file_extent_type(eb, fi);
8564 
8565 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8566 			continue;
8567 
8568 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8569 		if (!bytenr)
8570 			continue;
8571 
8572 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8573 
8574 		ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8575 				bytenr, num_bytes, GFP_NOFS);
8576 		if (ret)
8577 			return ret;
8578 	}
8579 	return 0;
8580 }
8581 
8582 /*
8583  * Walk up the tree from the bottom, freeing leaves and any interior
8584  * nodes which have had all slots visited. If a node (leaf or
8585  * interior) is freed, the node above it will have it's slot
8586  * incremented. The root node will never be freed.
8587  *
8588  * At the end of this function, we should have a path which has all
8589  * slots incremented to the next position for a search. If we need to
8590  * read a new node it will be NULL and the node above it will have the
8591  * correct slot selected for a later read.
8592  *
8593  * If we increment the root nodes slot counter past the number of
8594  * elements, 1 is returned to signal completion of the search.
8595  */
8596 static int adjust_slots_upwards(struct btrfs_root *root,
8597 				struct btrfs_path *path, int root_level)
8598 {
8599 	int level = 0;
8600 	int nr, slot;
8601 	struct extent_buffer *eb;
8602 
8603 	if (root_level == 0)
8604 		return 1;
8605 
8606 	while (level <= root_level) {
8607 		eb = path->nodes[level];
8608 		nr = btrfs_header_nritems(eb);
8609 		path->slots[level]++;
8610 		slot = path->slots[level];
8611 		if (slot >= nr || level == 0) {
8612 			/*
8613 			 * Don't free the root -  we will detect this
8614 			 * condition after our loop and return a
8615 			 * positive value for caller to stop walking the tree.
8616 			 */
8617 			if (level != root_level) {
8618 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8619 				path->locks[level] = 0;
8620 
8621 				free_extent_buffer(eb);
8622 				path->nodes[level] = NULL;
8623 				path->slots[level] = 0;
8624 			}
8625 		} else {
8626 			/*
8627 			 * We have a valid slot to walk back down
8628 			 * from. Stop here so caller can process these
8629 			 * new nodes.
8630 			 */
8631 			break;
8632 		}
8633 
8634 		level++;
8635 	}
8636 
8637 	eb = path->nodes[root_level];
8638 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8639 		return 1;
8640 
8641 	return 0;
8642 }
8643 
8644 /*
8645  * root_eb is the subtree root and is locked before this function is called.
8646  */
8647 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8648 				  struct btrfs_root *root,
8649 				  struct extent_buffer *root_eb,
8650 				  u64 root_gen,
8651 				  int root_level)
8652 {
8653 	int ret = 0;
8654 	int level;
8655 	struct extent_buffer *eb = root_eb;
8656 	struct btrfs_path *path = NULL;
8657 
8658 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8659 	BUG_ON(root_eb == NULL);
8660 
8661 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8662 		return 0;
8663 
8664 	if (!extent_buffer_uptodate(root_eb)) {
8665 		ret = btrfs_read_buffer(root_eb, root_gen);
8666 		if (ret)
8667 			goto out;
8668 	}
8669 
8670 	if (root_level == 0) {
8671 		ret = account_leaf_items(trans, root, root_eb);
8672 		goto out;
8673 	}
8674 
8675 	path = btrfs_alloc_path();
8676 	if (!path)
8677 		return -ENOMEM;
8678 
8679 	/*
8680 	 * Walk down the tree.  Missing extent blocks are filled in as
8681 	 * we go. Metadata is accounted every time we read a new
8682 	 * extent block.
8683 	 *
8684 	 * When we reach a leaf, we account for file extent items in it,
8685 	 * walk back up the tree (adjusting slot pointers as we go)
8686 	 * and restart the search process.
8687 	 */
8688 	extent_buffer_get(root_eb); /* For path */
8689 	path->nodes[root_level] = root_eb;
8690 	path->slots[root_level] = 0;
8691 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8692 walk_down:
8693 	level = root_level;
8694 	while (level >= 0) {
8695 		if (path->nodes[level] == NULL) {
8696 			int parent_slot;
8697 			u64 child_gen;
8698 			u64 child_bytenr;
8699 
8700 			/* We need to get child blockptr/gen from
8701 			 * parent before we can read it. */
8702 			eb = path->nodes[level + 1];
8703 			parent_slot = path->slots[level + 1];
8704 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8705 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8706 
8707 			eb = read_tree_block(root, child_bytenr, child_gen);
8708 			if (IS_ERR(eb)) {
8709 				ret = PTR_ERR(eb);
8710 				goto out;
8711 			} else if (!extent_buffer_uptodate(eb)) {
8712 				free_extent_buffer(eb);
8713 				ret = -EIO;
8714 				goto out;
8715 			}
8716 
8717 			path->nodes[level] = eb;
8718 			path->slots[level] = 0;
8719 
8720 			btrfs_tree_read_lock(eb);
8721 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8722 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8723 
8724 			ret = btrfs_qgroup_insert_dirty_extent(trans,
8725 					root->fs_info, child_bytenr,
8726 					root->nodesize, GFP_NOFS);
8727 			if (ret)
8728 				goto out;
8729 		}
8730 
8731 		if (level == 0) {
8732 			ret = account_leaf_items(trans, root, path->nodes[level]);
8733 			if (ret)
8734 				goto out;
8735 
8736 			/* Nonzero return here means we completed our search */
8737 			ret = adjust_slots_upwards(root, path, root_level);
8738 			if (ret)
8739 				break;
8740 
8741 			/* Restart search with new slots */
8742 			goto walk_down;
8743 		}
8744 
8745 		level--;
8746 	}
8747 
8748 	ret = 0;
8749 out:
8750 	btrfs_free_path(path);
8751 
8752 	return ret;
8753 }
8754 
8755 /*
8756  * helper to process tree block while walking down the tree.
8757  *
8758  * when wc->stage == UPDATE_BACKREF, this function updates
8759  * back refs for pointers in the block.
8760  *
8761  * NOTE: return value 1 means we should stop walking down.
8762  */
8763 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8764 				   struct btrfs_root *root,
8765 				   struct btrfs_path *path,
8766 				   struct walk_control *wc, int lookup_info)
8767 {
8768 	int level = wc->level;
8769 	struct extent_buffer *eb = path->nodes[level];
8770 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8771 	int ret;
8772 
8773 	if (wc->stage == UPDATE_BACKREF &&
8774 	    btrfs_header_owner(eb) != root->root_key.objectid)
8775 		return 1;
8776 
8777 	/*
8778 	 * when reference count of tree block is 1, it won't increase
8779 	 * again. once full backref flag is set, we never clear it.
8780 	 */
8781 	if (lookup_info &&
8782 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8783 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8784 		BUG_ON(!path->locks[level]);
8785 		ret = btrfs_lookup_extent_info(trans, root,
8786 					       eb->start, level, 1,
8787 					       &wc->refs[level],
8788 					       &wc->flags[level]);
8789 		BUG_ON(ret == -ENOMEM);
8790 		if (ret)
8791 			return ret;
8792 		BUG_ON(wc->refs[level] == 0);
8793 	}
8794 
8795 	if (wc->stage == DROP_REFERENCE) {
8796 		if (wc->refs[level] > 1)
8797 			return 1;
8798 
8799 		if (path->locks[level] && !wc->keep_locks) {
8800 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8801 			path->locks[level] = 0;
8802 		}
8803 		return 0;
8804 	}
8805 
8806 	/* wc->stage == UPDATE_BACKREF */
8807 	if (!(wc->flags[level] & flag)) {
8808 		BUG_ON(!path->locks[level]);
8809 		ret = btrfs_inc_ref(trans, root, eb, 1);
8810 		BUG_ON(ret); /* -ENOMEM */
8811 		ret = btrfs_dec_ref(trans, root, eb, 0);
8812 		BUG_ON(ret); /* -ENOMEM */
8813 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8814 						  eb->len, flag,
8815 						  btrfs_header_level(eb), 0);
8816 		BUG_ON(ret); /* -ENOMEM */
8817 		wc->flags[level] |= flag;
8818 	}
8819 
8820 	/*
8821 	 * the block is shared by multiple trees, so it's not good to
8822 	 * keep the tree lock
8823 	 */
8824 	if (path->locks[level] && level > 0) {
8825 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8826 		path->locks[level] = 0;
8827 	}
8828 	return 0;
8829 }
8830 
8831 /*
8832  * helper to process tree block pointer.
8833  *
8834  * when wc->stage == DROP_REFERENCE, this function checks
8835  * reference count of the block pointed to. if the block
8836  * is shared and we need update back refs for the subtree
8837  * rooted at the block, this function changes wc->stage to
8838  * UPDATE_BACKREF. if the block is shared and there is no
8839  * need to update back, this function drops the reference
8840  * to the block.
8841  *
8842  * NOTE: return value 1 means we should stop walking down.
8843  */
8844 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8845 				 struct btrfs_root *root,
8846 				 struct btrfs_path *path,
8847 				 struct walk_control *wc, int *lookup_info)
8848 {
8849 	u64 bytenr;
8850 	u64 generation;
8851 	u64 parent;
8852 	u32 blocksize;
8853 	struct btrfs_key key;
8854 	struct extent_buffer *next;
8855 	int level = wc->level;
8856 	int reada = 0;
8857 	int ret = 0;
8858 	bool need_account = false;
8859 
8860 	generation = btrfs_node_ptr_generation(path->nodes[level],
8861 					       path->slots[level]);
8862 	/*
8863 	 * if the lower level block was created before the snapshot
8864 	 * was created, we know there is no need to update back refs
8865 	 * for the subtree
8866 	 */
8867 	if (wc->stage == UPDATE_BACKREF &&
8868 	    generation <= root->root_key.offset) {
8869 		*lookup_info = 1;
8870 		return 1;
8871 	}
8872 
8873 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8874 	blocksize = root->nodesize;
8875 
8876 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8877 	if (!next) {
8878 		next = btrfs_find_create_tree_block(root, bytenr);
8879 		if (IS_ERR(next))
8880 			return PTR_ERR(next);
8881 
8882 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8883 					       level - 1);
8884 		reada = 1;
8885 	}
8886 	btrfs_tree_lock(next);
8887 	btrfs_set_lock_blocking(next);
8888 
8889 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8890 				       &wc->refs[level - 1],
8891 				       &wc->flags[level - 1]);
8892 	if (ret < 0)
8893 		goto out_unlock;
8894 
8895 	if (unlikely(wc->refs[level - 1] == 0)) {
8896 		btrfs_err(root->fs_info, "Missing references.");
8897 		ret = -EIO;
8898 		goto out_unlock;
8899 	}
8900 	*lookup_info = 0;
8901 
8902 	if (wc->stage == DROP_REFERENCE) {
8903 		if (wc->refs[level - 1] > 1) {
8904 			need_account = true;
8905 			if (level == 1 &&
8906 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8907 				goto skip;
8908 
8909 			if (!wc->update_ref ||
8910 			    generation <= root->root_key.offset)
8911 				goto skip;
8912 
8913 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8914 					      path->slots[level]);
8915 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8916 			if (ret < 0)
8917 				goto skip;
8918 
8919 			wc->stage = UPDATE_BACKREF;
8920 			wc->shared_level = level - 1;
8921 		}
8922 	} else {
8923 		if (level == 1 &&
8924 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8925 			goto skip;
8926 	}
8927 
8928 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8929 		btrfs_tree_unlock(next);
8930 		free_extent_buffer(next);
8931 		next = NULL;
8932 		*lookup_info = 1;
8933 	}
8934 
8935 	if (!next) {
8936 		if (reada && level == 1)
8937 			reada_walk_down(trans, root, wc, path);
8938 		next = read_tree_block(root, bytenr, generation);
8939 		if (IS_ERR(next)) {
8940 			return PTR_ERR(next);
8941 		} else if (!extent_buffer_uptodate(next)) {
8942 			free_extent_buffer(next);
8943 			return -EIO;
8944 		}
8945 		btrfs_tree_lock(next);
8946 		btrfs_set_lock_blocking(next);
8947 	}
8948 
8949 	level--;
8950 	ASSERT(level == btrfs_header_level(next));
8951 	if (level != btrfs_header_level(next)) {
8952 		btrfs_err(root->fs_info, "mismatched level");
8953 		ret = -EIO;
8954 		goto out_unlock;
8955 	}
8956 	path->nodes[level] = next;
8957 	path->slots[level] = 0;
8958 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8959 	wc->level = level;
8960 	if (wc->level == 1)
8961 		wc->reada_slot = 0;
8962 	return 0;
8963 skip:
8964 	wc->refs[level - 1] = 0;
8965 	wc->flags[level - 1] = 0;
8966 	if (wc->stage == DROP_REFERENCE) {
8967 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8968 			parent = path->nodes[level]->start;
8969 		} else {
8970 			ASSERT(root->root_key.objectid ==
8971 			       btrfs_header_owner(path->nodes[level]));
8972 			if (root->root_key.objectid !=
8973 			    btrfs_header_owner(path->nodes[level])) {
8974 				btrfs_err(root->fs_info,
8975 						"mismatched block owner");
8976 				ret = -EIO;
8977 				goto out_unlock;
8978 			}
8979 			parent = 0;
8980 		}
8981 
8982 		if (need_account) {
8983 			ret = account_shared_subtree(trans, root, next,
8984 						     generation, level - 1);
8985 			if (ret) {
8986 				btrfs_err_rl(root->fs_info,
8987 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8988 					     ret);
8989 			}
8990 		}
8991 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8992 				root->root_key.objectid, level - 1, 0);
8993 		if (ret)
8994 			goto out_unlock;
8995 	}
8996 
8997 	*lookup_info = 1;
8998 	ret = 1;
8999 
9000 out_unlock:
9001 	btrfs_tree_unlock(next);
9002 	free_extent_buffer(next);
9003 
9004 	return ret;
9005 }
9006 
9007 /*
9008  * helper to process tree block while walking up the tree.
9009  *
9010  * when wc->stage == DROP_REFERENCE, this function drops
9011  * reference count on the block.
9012  *
9013  * when wc->stage == UPDATE_BACKREF, this function changes
9014  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9015  * to UPDATE_BACKREF previously while processing the block.
9016  *
9017  * NOTE: return value 1 means we should stop walking up.
9018  */
9019 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9020 				 struct btrfs_root *root,
9021 				 struct btrfs_path *path,
9022 				 struct walk_control *wc)
9023 {
9024 	int ret;
9025 	int level = wc->level;
9026 	struct extent_buffer *eb = path->nodes[level];
9027 	u64 parent = 0;
9028 
9029 	if (wc->stage == UPDATE_BACKREF) {
9030 		BUG_ON(wc->shared_level < level);
9031 		if (level < wc->shared_level)
9032 			goto out;
9033 
9034 		ret = find_next_key(path, level + 1, &wc->update_progress);
9035 		if (ret > 0)
9036 			wc->update_ref = 0;
9037 
9038 		wc->stage = DROP_REFERENCE;
9039 		wc->shared_level = -1;
9040 		path->slots[level] = 0;
9041 
9042 		/*
9043 		 * check reference count again if the block isn't locked.
9044 		 * we should start walking down the tree again if reference
9045 		 * count is one.
9046 		 */
9047 		if (!path->locks[level]) {
9048 			BUG_ON(level == 0);
9049 			btrfs_tree_lock(eb);
9050 			btrfs_set_lock_blocking(eb);
9051 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9052 
9053 			ret = btrfs_lookup_extent_info(trans, root,
9054 						       eb->start, level, 1,
9055 						       &wc->refs[level],
9056 						       &wc->flags[level]);
9057 			if (ret < 0) {
9058 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9059 				path->locks[level] = 0;
9060 				return ret;
9061 			}
9062 			BUG_ON(wc->refs[level] == 0);
9063 			if (wc->refs[level] == 1) {
9064 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9065 				path->locks[level] = 0;
9066 				return 1;
9067 			}
9068 		}
9069 	}
9070 
9071 	/* wc->stage == DROP_REFERENCE */
9072 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9073 
9074 	if (wc->refs[level] == 1) {
9075 		if (level == 0) {
9076 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9077 				ret = btrfs_dec_ref(trans, root, eb, 1);
9078 			else
9079 				ret = btrfs_dec_ref(trans, root, eb, 0);
9080 			BUG_ON(ret); /* -ENOMEM */
9081 			ret = account_leaf_items(trans, root, eb);
9082 			if (ret) {
9083 				btrfs_err_rl(root->fs_info,
9084 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
9085 					     ret);
9086 			}
9087 		}
9088 		/* make block locked assertion in clean_tree_block happy */
9089 		if (!path->locks[level] &&
9090 		    btrfs_header_generation(eb) == trans->transid) {
9091 			btrfs_tree_lock(eb);
9092 			btrfs_set_lock_blocking(eb);
9093 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9094 		}
9095 		clean_tree_block(trans, root->fs_info, eb);
9096 	}
9097 
9098 	if (eb == root->node) {
9099 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9100 			parent = eb->start;
9101 		else
9102 			BUG_ON(root->root_key.objectid !=
9103 			       btrfs_header_owner(eb));
9104 	} else {
9105 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9106 			parent = path->nodes[level + 1]->start;
9107 		else
9108 			BUG_ON(root->root_key.objectid !=
9109 			       btrfs_header_owner(path->nodes[level + 1]));
9110 	}
9111 
9112 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9113 out:
9114 	wc->refs[level] = 0;
9115 	wc->flags[level] = 0;
9116 	return 0;
9117 }
9118 
9119 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9120 				   struct btrfs_root *root,
9121 				   struct btrfs_path *path,
9122 				   struct walk_control *wc)
9123 {
9124 	int level = wc->level;
9125 	int lookup_info = 1;
9126 	int ret;
9127 
9128 	while (level >= 0) {
9129 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9130 		if (ret > 0)
9131 			break;
9132 
9133 		if (level == 0)
9134 			break;
9135 
9136 		if (path->slots[level] >=
9137 		    btrfs_header_nritems(path->nodes[level]))
9138 			break;
9139 
9140 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9141 		if (ret > 0) {
9142 			path->slots[level]++;
9143 			continue;
9144 		} else if (ret < 0)
9145 			return ret;
9146 		level = wc->level;
9147 	}
9148 	return 0;
9149 }
9150 
9151 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9152 				 struct btrfs_root *root,
9153 				 struct btrfs_path *path,
9154 				 struct walk_control *wc, int max_level)
9155 {
9156 	int level = wc->level;
9157 	int ret;
9158 
9159 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9160 	while (level < max_level && path->nodes[level]) {
9161 		wc->level = level;
9162 		if (path->slots[level] + 1 <
9163 		    btrfs_header_nritems(path->nodes[level])) {
9164 			path->slots[level]++;
9165 			return 0;
9166 		} else {
9167 			ret = walk_up_proc(trans, root, path, wc);
9168 			if (ret > 0)
9169 				return 0;
9170 
9171 			if (path->locks[level]) {
9172 				btrfs_tree_unlock_rw(path->nodes[level],
9173 						     path->locks[level]);
9174 				path->locks[level] = 0;
9175 			}
9176 			free_extent_buffer(path->nodes[level]);
9177 			path->nodes[level] = NULL;
9178 			level++;
9179 		}
9180 	}
9181 	return 1;
9182 }
9183 
9184 /*
9185  * drop a subvolume tree.
9186  *
9187  * this function traverses the tree freeing any blocks that only
9188  * referenced by the tree.
9189  *
9190  * when a shared tree block is found. this function decreases its
9191  * reference count by one. if update_ref is true, this function
9192  * also make sure backrefs for the shared block and all lower level
9193  * blocks are properly updated.
9194  *
9195  * If called with for_reloc == 0, may exit early with -EAGAIN
9196  */
9197 int btrfs_drop_snapshot(struct btrfs_root *root,
9198 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9199 			 int for_reloc)
9200 {
9201 	struct btrfs_fs_info *fs_info = root->fs_info;
9202 	struct btrfs_path *path;
9203 	struct btrfs_trans_handle *trans;
9204 	struct btrfs_root *tree_root = fs_info->tree_root;
9205 	struct btrfs_root_item *root_item = &root->root_item;
9206 	struct walk_control *wc;
9207 	struct btrfs_key key;
9208 	int err = 0;
9209 	int ret;
9210 	int level;
9211 	bool root_dropped = false;
9212 
9213 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9214 
9215 	path = btrfs_alloc_path();
9216 	if (!path) {
9217 		err = -ENOMEM;
9218 		goto out;
9219 	}
9220 
9221 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9222 	if (!wc) {
9223 		btrfs_free_path(path);
9224 		err = -ENOMEM;
9225 		goto out;
9226 	}
9227 
9228 	trans = btrfs_start_transaction(tree_root, 0);
9229 	if (IS_ERR(trans)) {
9230 		err = PTR_ERR(trans);
9231 		goto out_free;
9232 	}
9233 
9234 	if (block_rsv)
9235 		trans->block_rsv = block_rsv;
9236 
9237 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9238 		level = btrfs_header_level(root->node);
9239 		path->nodes[level] = btrfs_lock_root_node(root);
9240 		btrfs_set_lock_blocking(path->nodes[level]);
9241 		path->slots[level] = 0;
9242 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9243 		memset(&wc->update_progress, 0,
9244 		       sizeof(wc->update_progress));
9245 	} else {
9246 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9247 		memcpy(&wc->update_progress, &key,
9248 		       sizeof(wc->update_progress));
9249 
9250 		level = root_item->drop_level;
9251 		BUG_ON(level == 0);
9252 		path->lowest_level = level;
9253 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9254 		path->lowest_level = 0;
9255 		if (ret < 0) {
9256 			err = ret;
9257 			goto out_end_trans;
9258 		}
9259 		WARN_ON(ret > 0);
9260 
9261 		/*
9262 		 * unlock our path, this is safe because only this
9263 		 * function is allowed to delete this snapshot
9264 		 */
9265 		btrfs_unlock_up_safe(path, 0);
9266 
9267 		level = btrfs_header_level(root->node);
9268 		while (1) {
9269 			btrfs_tree_lock(path->nodes[level]);
9270 			btrfs_set_lock_blocking(path->nodes[level]);
9271 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9272 
9273 			ret = btrfs_lookup_extent_info(trans, root,
9274 						path->nodes[level]->start,
9275 						level, 1, &wc->refs[level],
9276 						&wc->flags[level]);
9277 			if (ret < 0) {
9278 				err = ret;
9279 				goto out_end_trans;
9280 			}
9281 			BUG_ON(wc->refs[level] == 0);
9282 
9283 			if (level == root_item->drop_level)
9284 				break;
9285 
9286 			btrfs_tree_unlock(path->nodes[level]);
9287 			path->locks[level] = 0;
9288 			WARN_ON(wc->refs[level] != 1);
9289 			level--;
9290 		}
9291 	}
9292 
9293 	wc->level = level;
9294 	wc->shared_level = -1;
9295 	wc->stage = DROP_REFERENCE;
9296 	wc->update_ref = update_ref;
9297 	wc->keep_locks = 0;
9298 	wc->for_reloc = for_reloc;
9299 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9300 
9301 	while (1) {
9302 
9303 		ret = walk_down_tree(trans, root, path, wc);
9304 		if (ret < 0) {
9305 			err = ret;
9306 			break;
9307 		}
9308 
9309 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9310 		if (ret < 0) {
9311 			err = ret;
9312 			break;
9313 		}
9314 
9315 		if (ret > 0) {
9316 			BUG_ON(wc->stage != DROP_REFERENCE);
9317 			break;
9318 		}
9319 
9320 		if (wc->stage == DROP_REFERENCE) {
9321 			level = wc->level;
9322 			btrfs_node_key(path->nodes[level],
9323 				       &root_item->drop_progress,
9324 				       path->slots[level]);
9325 			root_item->drop_level = level;
9326 		}
9327 
9328 		BUG_ON(wc->level == 0);
9329 		if (btrfs_should_end_transaction(trans, tree_root) ||
9330 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9331 			ret = btrfs_update_root(trans, tree_root,
9332 						&root->root_key,
9333 						root_item);
9334 			if (ret) {
9335 				btrfs_abort_transaction(trans, ret);
9336 				err = ret;
9337 				goto out_end_trans;
9338 			}
9339 
9340 			btrfs_end_transaction_throttle(trans, tree_root);
9341 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9342 				btrfs_debug(fs_info,
9343 					    "drop snapshot early exit");
9344 				err = -EAGAIN;
9345 				goto out_free;
9346 			}
9347 
9348 			trans = btrfs_start_transaction(tree_root, 0);
9349 			if (IS_ERR(trans)) {
9350 				err = PTR_ERR(trans);
9351 				goto out_free;
9352 			}
9353 			if (block_rsv)
9354 				trans->block_rsv = block_rsv;
9355 		}
9356 	}
9357 	btrfs_release_path(path);
9358 	if (err)
9359 		goto out_end_trans;
9360 
9361 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9362 	if (ret) {
9363 		btrfs_abort_transaction(trans, ret);
9364 		goto out_end_trans;
9365 	}
9366 
9367 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9368 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9369 				      NULL, NULL);
9370 		if (ret < 0) {
9371 			btrfs_abort_transaction(trans, ret);
9372 			err = ret;
9373 			goto out_end_trans;
9374 		} else if (ret > 0) {
9375 			/* if we fail to delete the orphan item this time
9376 			 * around, it'll get picked up the next time.
9377 			 *
9378 			 * The most common failure here is just -ENOENT.
9379 			 */
9380 			btrfs_del_orphan_item(trans, tree_root,
9381 					      root->root_key.objectid);
9382 		}
9383 	}
9384 
9385 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9386 		btrfs_add_dropped_root(trans, root);
9387 	} else {
9388 		free_extent_buffer(root->node);
9389 		free_extent_buffer(root->commit_root);
9390 		btrfs_put_fs_root(root);
9391 	}
9392 	root_dropped = true;
9393 out_end_trans:
9394 	btrfs_end_transaction_throttle(trans, tree_root);
9395 out_free:
9396 	kfree(wc);
9397 	btrfs_free_path(path);
9398 out:
9399 	/*
9400 	 * So if we need to stop dropping the snapshot for whatever reason we
9401 	 * need to make sure to add it back to the dead root list so that we
9402 	 * keep trying to do the work later.  This also cleans up roots if we
9403 	 * don't have it in the radix (like when we recover after a power fail
9404 	 * or unmount) so we don't leak memory.
9405 	 */
9406 	if (!for_reloc && root_dropped == false)
9407 		btrfs_add_dead_root(root);
9408 	if (err && err != -EAGAIN)
9409 		btrfs_handle_fs_error(fs_info, err, NULL);
9410 	return err;
9411 }
9412 
9413 /*
9414  * drop subtree rooted at tree block 'node'.
9415  *
9416  * NOTE: this function will unlock and release tree block 'node'
9417  * only used by relocation code
9418  */
9419 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9420 			struct btrfs_root *root,
9421 			struct extent_buffer *node,
9422 			struct extent_buffer *parent)
9423 {
9424 	struct btrfs_path *path;
9425 	struct walk_control *wc;
9426 	int level;
9427 	int parent_level;
9428 	int ret = 0;
9429 	int wret;
9430 
9431 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9432 
9433 	path = btrfs_alloc_path();
9434 	if (!path)
9435 		return -ENOMEM;
9436 
9437 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9438 	if (!wc) {
9439 		btrfs_free_path(path);
9440 		return -ENOMEM;
9441 	}
9442 
9443 	btrfs_assert_tree_locked(parent);
9444 	parent_level = btrfs_header_level(parent);
9445 	extent_buffer_get(parent);
9446 	path->nodes[parent_level] = parent;
9447 	path->slots[parent_level] = btrfs_header_nritems(parent);
9448 
9449 	btrfs_assert_tree_locked(node);
9450 	level = btrfs_header_level(node);
9451 	path->nodes[level] = node;
9452 	path->slots[level] = 0;
9453 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9454 
9455 	wc->refs[parent_level] = 1;
9456 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9457 	wc->level = level;
9458 	wc->shared_level = -1;
9459 	wc->stage = DROP_REFERENCE;
9460 	wc->update_ref = 0;
9461 	wc->keep_locks = 1;
9462 	wc->for_reloc = 1;
9463 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9464 
9465 	while (1) {
9466 		wret = walk_down_tree(trans, root, path, wc);
9467 		if (wret < 0) {
9468 			ret = wret;
9469 			break;
9470 		}
9471 
9472 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9473 		if (wret < 0)
9474 			ret = wret;
9475 		if (wret != 0)
9476 			break;
9477 	}
9478 
9479 	kfree(wc);
9480 	btrfs_free_path(path);
9481 	return ret;
9482 }
9483 
9484 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9485 {
9486 	u64 num_devices;
9487 	u64 stripped;
9488 
9489 	/*
9490 	 * if restripe for this chunk_type is on pick target profile and
9491 	 * return, otherwise do the usual balance
9492 	 */
9493 	stripped = get_restripe_target(root->fs_info, flags);
9494 	if (stripped)
9495 		return extended_to_chunk(stripped);
9496 
9497 	num_devices = root->fs_info->fs_devices->rw_devices;
9498 
9499 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9500 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9501 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9502 
9503 	if (num_devices == 1) {
9504 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9505 		stripped = flags & ~stripped;
9506 
9507 		/* turn raid0 into single device chunks */
9508 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9509 			return stripped;
9510 
9511 		/* turn mirroring into duplication */
9512 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9513 			     BTRFS_BLOCK_GROUP_RAID10))
9514 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9515 	} else {
9516 		/* they already had raid on here, just return */
9517 		if (flags & stripped)
9518 			return flags;
9519 
9520 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9521 		stripped = flags & ~stripped;
9522 
9523 		/* switch duplicated blocks with raid1 */
9524 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9525 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9526 
9527 		/* this is drive concat, leave it alone */
9528 	}
9529 
9530 	return flags;
9531 }
9532 
9533 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9534 {
9535 	struct btrfs_space_info *sinfo = cache->space_info;
9536 	u64 num_bytes;
9537 	u64 min_allocable_bytes;
9538 	int ret = -ENOSPC;
9539 
9540 	/*
9541 	 * We need some metadata space and system metadata space for
9542 	 * allocating chunks in some corner cases until we force to set
9543 	 * it to be readonly.
9544 	 */
9545 	if ((sinfo->flags &
9546 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9547 	    !force)
9548 		min_allocable_bytes = SZ_1M;
9549 	else
9550 		min_allocable_bytes = 0;
9551 
9552 	spin_lock(&sinfo->lock);
9553 	spin_lock(&cache->lock);
9554 
9555 	if (cache->ro) {
9556 		cache->ro++;
9557 		ret = 0;
9558 		goto out;
9559 	}
9560 
9561 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9562 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9563 
9564 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9565 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9566 	    min_allocable_bytes <= sinfo->total_bytes) {
9567 		sinfo->bytes_readonly += num_bytes;
9568 		cache->ro++;
9569 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9570 		ret = 0;
9571 	}
9572 out:
9573 	spin_unlock(&cache->lock);
9574 	spin_unlock(&sinfo->lock);
9575 	return ret;
9576 }
9577 
9578 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9579 			     struct btrfs_block_group_cache *cache)
9580 
9581 {
9582 	struct btrfs_trans_handle *trans;
9583 	u64 alloc_flags;
9584 	int ret;
9585 
9586 again:
9587 	trans = btrfs_join_transaction(root);
9588 	if (IS_ERR(trans))
9589 		return PTR_ERR(trans);
9590 
9591 	/*
9592 	 * we're not allowed to set block groups readonly after the dirty
9593 	 * block groups cache has started writing.  If it already started,
9594 	 * back off and let this transaction commit
9595 	 */
9596 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9597 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9598 		u64 transid = trans->transid;
9599 
9600 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9601 		btrfs_end_transaction(trans, root);
9602 
9603 		ret = btrfs_wait_for_commit(root, transid);
9604 		if (ret)
9605 			return ret;
9606 		goto again;
9607 	}
9608 
9609 	/*
9610 	 * if we are changing raid levels, try to allocate a corresponding
9611 	 * block group with the new raid level.
9612 	 */
9613 	alloc_flags = update_block_group_flags(root, cache->flags);
9614 	if (alloc_flags != cache->flags) {
9615 		ret = do_chunk_alloc(trans, root, alloc_flags,
9616 				     CHUNK_ALLOC_FORCE);
9617 		/*
9618 		 * ENOSPC is allowed here, we may have enough space
9619 		 * already allocated at the new raid level to
9620 		 * carry on
9621 		 */
9622 		if (ret == -ENOSPC)
9623 			ret = 0;
9624 		if (ret < 0)
9625 			goto out;
9626 	}
9627 
9628 	ret = inc_block_group_ro(cache, 0);
9629 	if (!ret)
9630 		goto out;
9631 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9632 	ret = do_chunk_alloc(trans, root, alloc_flags,
9633 			     CHUNK_ALLOC_FORCE);
9634 	if (ret < 0)
9635 		goto out;
9636 	ret = inc_block_group_ro(cache, 0);
9637 out:
9638 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9639 		alloc_flags = update_block_group_flags(root, cache->flags);
9640 		lock_chunks(root->fs_info->chunk_root);
9641 		check_system_chunk(trans, root, alloc_flags);
9642 		unlock_chunks(root->fs_info->chunk_root);
9643 	}
9644 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9645 
9646 	btrfs_end_transaction(trans, root);
9647 	return ret;
9648 }
9649 
9650 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9651 			    struct btrfs_root *root, u64 type)
9652 {
9653 	u64 alloc_flags = get_alloc_profile(root, type);
9654 	return do_chunk_alloc(trans, root, alloc_flags,
9655 			      CHUNK_ALLOC_FORCE);
9656 }
9657 
9658 /*
9659  * helper to account the unused space of all the readonly block group in the
9660  * space_info. takes mirrors into account.
9661  */
9662 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9663 {
9664 	struct btrfs_block_group_cache *block_group;
9665 	u64 free_bytes = 0;
9666 	int factor;
9667 
9668 	/* It's df, we don't care if it's racy */
9669 	if (list_empty(&sinfo->ro_bgs))
9670 		return 0;
9671 
9672 	spin_lock(&sinfo->lock);
9673 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9674 		spin_lock(&block_group->lock);
9675 
9676 		if (!block_group->ro) {
9677 			spin_unlock(&block_group->lock);
9678 			continue;
9679 		}
9680 
9681 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9682 					  BTRFS_BLOCK_GROUP_RAID10 |
9683 					  BTRFS_BLOCK_GROUP_DUP))
9684 			factor = 2;
9685 		else
9686 			factor = 1;
9687 
9688 		free_bytes += (block_group->key.offset -
9689 			       btrfs_block_group_used(&block_group->item)) *
9690 			       factor;
9691 
9692 		spin_unlock(&block_group->lock);
9693 	}
9694 	spin_unlock(&sinfo->lock);
9695 
9696 	return free_bytes;
9697 }
9698 
9699 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9700 			      struct btrfs_block_group_cache *cache)
9701 {
9702 	struct btrfs_space_info *sinfo = cache->space_info;
9703 	u64 num_bytes;
9704 
9705 	BUG_ON(!cache->ro);
9706 
9707 	spin_lock(&sinfo->lock);
9708 	spin_lock(&cache->lock);
9709 	if (!--cache->ro) {
9710 		num_bytes = cache->key.offset - cache->reserved -
9711 			    cache->pinned - cache->bytes_super -
9712 			    btrfs_block_group_used(&cache->item);
9713 		sinfo->bytes_readonly -= num_bytes;
9714 		list_del_init(&cache->ro_list);
9715 	}
9716 	spin_unlock(&cache->lock);
9717 	spin_unlock(&sinfo->lock);
9718 }
9719 
9720 /*
9721  * checks to see if its even possible to relocate this block group.
9722  *
9723  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9724  * ok to go ahead and try.
9725  */
9726 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9727 {
9728 	struct btrfs_block_group_cache *block_group;
9729 	struct btrfs_space_info *space_info;
9730 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9731 	struct btrfs_device *device;
9732 	struct btrfs_trans_handle *trans;
9733 	u64 min_free;
9734 	u64 dev_min = 1;
9735 	u64 dev_nr = 0;
9736 	u64 target;
9737 	int debug;
9738 	int index;
9739 	int full = 0;
9740 	int ret = 0;
9741 
9742 	debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9743 
9744 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9745 
9746 	/* odd, couldn't find the block group, leave it alone */
9747 	if (!block_group) {
9748 		if (debug)
9749 			btrfs_warn(root->fs_info,
9750 				   "can't find block group for bytenr %llu",
9751 				   bytenr);
9752 		return -1;
9753 	}
9754 
9755 	min_free = btrfs_block_group_used(&block_group->item);
9756 
9757 	/* no bytes used, we're good */
9758 	if (!min_free)
9759 		goto out;
9760 
9761 	space_info = block_group->space_info;
9762 	spin_lock(&space_info->lock);
9763 
9764 	full = space_info->full;
9765 
9766 	/*
9767 	 * if this is the last block group we have in this space, we can't
9768 	 * relocate it unless we're able to allocate a new chunk below.
9769 	 *
9770 	 * Otherwise, we need to make sure we have room in the space to handle
9771 	 * all of the extents from this block group.  If we can, we're good
9772 	 */
9773 	if ((space_info->total_bytes != block_group->key.offset) &&
9774 	    (space_info->bytes_used + space_info->bytes_reserved +
9775 	     space_info->bytes_pinned + space_info->bytes_readonly +
9776 	     min_free < space_info->total_bytes)) {
9777 		spin_unlock(&space_info->lock);
9778 		goto out;
9779 	}
9780 	spin_unlock(&space_info->lock);
9781 
9782 	/*
9783 	 * ok we don't have enough space, but maybe we have free space on our
9784 	 * devices to allocate new chunks for relocation, so loop through our
9785 	 * alloc devices and guess if we have enough space.  if this block
9786 	 * group is going to be restriped, run checks against the target
9787 	 * profile instead of the current one.
9788 	 */
9789 	ret = -1;
9790 
9791 	/*
9792 	 * index:
9793 	 *      0: raid10
9794 	 *      1: raid1
9795 	 *      2: dup
9796 	 *      3: raid0
9797 	 *      4: single
9798 	 */
9799 	target = get_restripe_target(root->fs_info, block_group->flags);
9800 	if (target) {
9801 		index = __get_raid_index(extended_to_chunk(target));
9802 	} else {
9803 		/*
9804 		 * this is just a balance, so if we were marked as full
9805 		 * we know there is no space for a new chunk
9806 		 */
9807 		if (full) {
9808 			if (debug)
9809 				btrfs_warn(root->fs_info,
9810 					"no space to alloc new chunk for block group %llu",
9811 					block_group->key.objectid);
9812 			goto out;
9813 		}
9814 
9815 		index = get_block_group_index(block_group);
9816 	}
9817 
9818 	if (index == BTRFS_RAID_RAID10) {
9819 		dev_min = 4;
9820 		/* Divide by 2 */
9821 		min_free >>= 1;
9822 	} else if (index == BTRFS_RAID_RAID1) {
9823 		dev_min = 2;
9824 	} else if (index == BTRFS_RAID_DUP) {
9825 		/* Multiply by 2 */
9826 		min_free <<= 1;
9827 	} else if (index == BTRFS_RAID_RAID0) {
9828 		dev_min = fs_devices->rw_devices;
9829 		min_free = div64_u64(min_free, dev_min);
9830 	}
9831 
9832 	/* We need to do this so that we can look at pending chunks */
9833 	trans = btrfs_join_transaction(root);
9834 	if (IS_ERR(trans)) {
9835 		ret = PTR_ERR(trans);
9836 		goto out;
9837 	}
9838 
9839 	mutex_lock(&root->fs_info->chunk_mutex);
9840 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9841 		u64 dev_offset;
9842 
9843 		/*
9844 		 * check to make sure we can actually find a chunk with enough
9845 		 * space to fit our block group in.
9846 		 */
9847 		if (device->total_bytes > device->bytes_used + min_free &&
9848 		    !device->is_tgtdev_for_dev_replace) {
9849 			ret = find_free_dev_extent(trans, device, min_free,
9850 						   &dev_offset, NULL);
9851 			if (!ret)
9852 				dev_nr++;
9853 
9854 			if (dev_nr >= dev_min)
9855 				break;
9856 
9857 			ret = -1;
9858 		}
9859 	}
9860 	if (debug && ret == -1)
9861 		btrfs_warn(root->fs_info,
9862 			"no space to allocate a new chunk for block group %llu",
9863 			block_group->key.objectid);
9864 	mutex_unlock(&root->fs_info->chunk_mutex);
9865 	btrfs_end_transaction(trans, root);
9866 out:
9867 	btrfs_put_block_group(block_group);
9868 	return ret;
9869 }
9870 
9871 static int find_first_block_group(struct btrfs_root *root,
9872 		struct btrfs_path *path, struct btrfs_key *key)
9873 {
9874 	int ret = 0;
9875 	struct btrfs_key found_key;
9876 	struct extent_buffer *leaf;
9877 	int slot;
9878 
9879 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9880 	if (ret < 0)
9881 		goto out;
9882 
9883 	while (1) {
9884 		slot = path->slots[0];
9885 		leaf = path->nodes[0];
9886 		if (slot >= btrfs_header_nritems(leaf)) {
9887 			ret = btrfs_next_leaf(root, path);
9888 			if (ret == 0)
9889 				continue;
9890 			if (ret < 0)
9891 				goto out;
9892 			break;
9893 		}
9894 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9895 
9896 		if (found_key.objectid >= key->objectid &&
9897 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9898 			struct extent_map_tree *em_tree;
9899 			struct extent_map *em;
9900 
9901 			em_tree = &root->fs_info->mapping_tree.map_tree;
9902 			read_lock(&em_tree->lock);
9903 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9904 						   found_key.offset);
9905 			read_unlock(&em_tree->lock);
9906 			if (!em) {
9907 				btrfs_err(root->fs_info,
9908 			"logical %llu len %llu found bg but no related chunk",
9909 					  found_key.objectid, found_key.offset);
9910 				ret = -ENOENT;
9911 			} else {
9912 				ret = 0;
9913 			}
9914 			free_extent_map(em);
9915 			goto out;
9916 		}
9917 		path->slots[0]++;
9918 	}
9919 out:
9920 	return ret;
9921 }
9922 
9923 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9924 {
9925 	struct btrfs_block_group_cache *block_group;
9926 	u64 last = 0;
9927 
9928 	while (1) {
9929 		struct inode *inode;
9930 
9931 		block_group = btrfs_lookup_first_block_group(info, last);
9932 		while (block_group) {
9933 			spin_lock(&block_group->lock);
9934 			if (block_group->iref)
9935 				break;
9936 			spin_unlock(&block_group->lock);
9937 			block_group = next_block_group(info->tree_root,
9938 						       block_group);
9939 		}
9940 		if (!block_group) {
9941 			if (last == 0)
9942 				break;
9943 			last = 0;
9944 			continue;
9945 		}
9946 
9947 		inode = block_group->inode;
9948 		block_group->iref = 0;
9949 		block_group->inode = NULL;
9950 		spin_unlock(&block_group->lock);
9951 		ASSERT(block_group->io_ctl.inode == NULL);
9952 		iput(inode);
9953 		last = block_group->key.objectid + block_group->key.offset;
9954 		btrfs_put_block_group(block_group);
9955 	}
9956 }
9957 
9958 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9959 {
9960 	struct btrfs_block_group_cache *block_group;
9961 	struct btrfs_space_info *space_info;
9962 	struct btrfs_caching_control *caching_ctl;
9963 	struct rb_node *n;
9964 
9965 	down_write(&info->commit_root_sem);
9966 	while (!list_empty(&info->caching_block_groups)) {
9967 		caching_ctl = list_entry(info->caching_block_groups.next,
9968 					 struct btrfs_caching_control, list);
9969 		list_del(&caching_ctl->list);
9970 		put_caching_control(caching_ctl);
9971 	}
9972 	up_write(&info->commit_root_sem);
9973 
9974 	spin_lock(&info->unused_bgs_lock);
9975 	while (!list_empty(&info->unused_bgs)) {
9976 		block_group = list_first_entry(&info->unused_bgs,
9977 					       struct btrfs_block_group_cache,
9978 					       bg_list);
9979 		list_del_init(&block_group->bg_list);
9980 		btrfs_put_block_group(block_group);
9981 	}
9982 	spin_unlock(&info->unused_bgs_lock);
9983 
9984 	spin_lock(&info->block_group_cache_lock);
9985 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9986 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9987 				       cache_node);
9988 		rb_erase(&block_group->cache_node,
9989 			 &info->block_group_cache_tree);
9990 		RB_CLEAR_NODE(&block_group->cache_node);
9991 		spin_unlock(&info->block_group_cache_lock);
9992 
9993 		down_write(&block_group->space_info->groups_sem);
9994 		list_del(&block_group->list);
9995 		up_write(&block_group->space_info->groups_sem);
9996 
9997 		if (block_group->cached == BTRFS_CACHE_STARTED)
9998 			wait_block_group_cache_done(block_group);
9999 
10000 		/*
10001 		 * We haven't cached this block group, which means we could
10002 		 * possibly have excluded extents on this block group.
10003 		 */
10004 		if (block_group->cached == BTRFS_CACHE_NO ||
10005 		    block_group->cached == BTRFS_CACHE_ERROR)
10006 			free_excluded_extents(info->extent_root, block_group);
10007 
10008 		btrfs_remove_free_space_cache(block_group);
10009 		ASSERT(list_empty(&block_group->dirty_list));
10010 		ASSERT(list_empty(&block_group->io_list));
10011 		ASSERT(list_empty(&block_group->bg_list));
10012 		ASSERT(atomic_read(&block_group->count) == 1);
10013 		btrfs_put_block_group(block_group);
10014 
10015 		spin_lock(&info->block_group_cache_lock);
10016 	}
10017 	spin_unlock(&info->block_group_cache_lock);
10018 
10019 	/* now that all the block groups are freed, go through and
10020 	 * free all the space_info structs.  This is only called during
10021 	 * the final stages of unmount, and so we know nobody is
10022 	 * using them.  We call synchronize_rcu() once before we start,
10023 	 * just to be on the safe side.
10024 	 */
10025 	synchronize_rcu();
10026 
10027 	release_global_block_rsv(info);
10028 
10029 	while (!list_empty(&info->space_info)) {
10030 		int i;
10031 
10032 		space_info = list_entry(info->space_info.next,
10033 					struct btrfs_space_info,
10034 					list);
10035 
10036 		/*
10037 		 * Do not hide this behind enospc_debug, this is actually
10038 		 * important and indicates a real bug if this happens.
10039 		 */
10040 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10041 			    space_info->bytes_reserved > 0 ||
10042 			    space_info->bytes_may_use > 0))
10043 			dump_space_info(info, space_info, 0, 0);
10044 		list_del(&space_info->list);
10045 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10046 			struct kobject *kobj;
10047 			kobj = space_info->block_group_kobjs[i];
10048 			space_info->block_group_kobjs[i] = NULL;
10049 			if (kobj) {
10050 				kobject_del(kobj);
10051 				kobject_put(kobj);
10052 			}
10053 		}
10054 		kobject_del(&space_info->kobj);
10055 		kobject_put(&space_info->kobj);
10056 	}
10057 	return 0;
10058 }
10059 
10060 static void __link_block_group(struct btrfs_space_info *space_info,
10061 			       struct btrfs_block_group_cache *cache)
10062 {
10063 	int index = get_block_group_index(cache);
10064 	bool first = false;
10065 
10066 	down_write(&space_info->groups_sem);
10067 	if (list_empty(&space_info->block_groups[index]))
10068 		first = true;
10069 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10070 	up_write(&space_info->groups_sem);
10071 
10072 	if (first) {
10073 		struct raid_kobject *rkobj;
10074 		int ret;
10075 
10076 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10077 		if (!rkobj)
10078 			goto out_err;
10079 		rkobj->raid_type = index;
10080 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10081 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10082 				  "%s", get_raid_name(index));
10083 		if (ret) {
10084 			kobject_put(&rkobj->kobj);
10085 			goto out_err;
10086 		}
10087 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10088 	}
10089 
10090 	return;
10091 out_err:
10092 	btrfs_warn(cache->fs_info,
10093 		   "failed to add kobject for block cache, ignoring");
10094 }
10095 
10096 static struct btrfs_block_group_cache *
10097 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10098 {
10099 	struct btrfs_block_group_cache *cache;
10100 
10101 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10102 	if (!cache)
10103 		return NULL;
10104 
10105 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10106 					GFP_NOFS);
10107 	if (!cache->free_space_ctl) {
10108 		kfree(cache);
10109 		return NULL;
10110 	}
10111 
10112 	cache->key.objectid = start;
10113 	cache->key.offset = size;
10114 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10115 
10116 	cache->sectorsize = root->sectorsize;
10117 	cache->fs_info = root->fs_info;
10118 	cache->full_stripe_len = btrfs_full_stripe_len(root,
10119 					       &root->fs_info->mapping_tree,
10120 					       start);
10121 	set_free_space_tree_thresholds(cache);
10122 
10123 	atomic_set(&cache->count, 1);
10124 	spin_lock_init(&cache->lock);
10125 	init_rwsem(&cache->data_rwsem);
10126 	INIT_LIST_HEAD(&cache->list);
10127 	INIT_LIST_HEAD(&cache->cluster_list);
10128 	INIT_LIST_HEAD(&cache->bg_list);
10129 	INIT_LIST_HEAD(&cache->ro_list);
10130 	INIT_LIST_HEAD(&cache->dirty_list);
10131 	INIT_LIST_HEAD(&cache->io_list);
10132 	btrfs_init_free_space_ctl(cache);
10133 	atomic_set(&cache->trimming, 0);
10134 	mutex_init(&cache->free_space_lock);
10135 
10136 	return cache;
10137 }
10138 
10139 int btrfs_read_block_groups(struct btrfs_root *root)
10140 {
10141 	struct btrfs_path *path;
10142 	int ret;
10143 	struct btrfs_block_group_cache *cache;
10144 	struct btrfs_fs_info *info = root->fs_info;
10145 	struct btrfs_space_info *space_info;
10146 	struct btrfs_key key;
10147 	struct btrfs_key found_key;
10148 	struct extent_buffer *leaf;
10149 	int need_clear = 0;
10150 	u64 cache_gen;
10151 	u64 feature;
10152 	int mixed;
10153 
10154 	feature = btrfs_super_incompat_flags(info->super_copy);
10155 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10156 
10157 	root = info->extent_root;
10158 	key.objectid = 0;
10159 	key.offset = 0;
10160 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10161 	path = btrfs_alloc_path();
10162 	if (!path)
10163 		return -ENOMEM;
10164 	path->reada = READA_FORWARD;
10165 
10166 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10167 	if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10168 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10169 		need_clear = 1;
10170 	if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10171 		need_clear = 1;
10172 
10173 	while (1) {
10174 		ret = find_first_block_group(root, path, &key);
10175 		if (ret > 0)
10176 			break;
10177 		if (ret != 0)
10178 			goto error;
10179 
10180 		leaf = path->nodes[0];
10181 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10182 
10183 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
10184 						       found_key.offset);
10185 		if (!cache) {
10186 			ret = -ENOMEM;
10187 			goto error;
10188 		}
10189 
10190 		if (need_clear) {
10191 			/*
10192 			 * When we mount with old space cache, we need to
10193 			 * set BTRFS_DC_CLEAR and set dirty flag.
10194 			 *
10195 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10196 			 *    truncate the old free space cache inode and
10197 			 *    setup a new one.
10198 			 * b) Setting 'dirty flag' makes sure that we flush
10199 			 *    the new space cache info onto disk.
10200 			 */
10201 			if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10202 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10203 		}
10204 
10205 		read_extent_buffer(leaf, &cache->item,
10206 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10207 				   sizeof(cache->item));
10208 		cache->flags = btrfs_block_group_flags(&cache->item);
10209 		if (!mixed &&
10210 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10211 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10212 			btrfs_err(info,
10213 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10214 				  cache->key.objectid);
10215 			ret = -EINVAL;
10216 			goto error;
10217 		}
10218 
10219 		key.objectid = found_key.objectid + found_key.offset;
10220 		btrfs_release_path(path);
10221 
10222 		/*
10223 		 * We need to exclude the super stripes now so that the space
10224 		 * info has super bytes accounted for, otherwise we'll think
10225 		 * we have more space than we actually do.
10226 		 */
10227 		ret = exclude_super_stripes(root, cache);
10228 		if (ret) {
10229 			/*
10230 			 * We may have excluded something, so call this just in
10231 			 * case.
10232 			 */
10233 			free_excluded_extents(root, cache);
10234 			btrfs_put_block_group(cache);
10235 			goto error;
10236 		}
10237 
10238 		/*
10239 		 * check for two cases, either we are full, and therefore
10240 		 * don't need to bother with the caching work since we won't
10241 		 * find any space, or we are empty, and we can just add all
10242 		 * the space in and be done with it.  This saves us _alot_ of
10243 		 * time, particularly in the full case.
10244 		 */
10245 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10246 			cache->last_byte_to_unpin = (u64)-1;
10247 			cache->cached = BTRFS_CACHE_FINISHED;
10248 			free_excluded_extents(root, cache);
10249 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10250 			cache->last_byte_to_unpin = (u64)-1;
10251 			cache->cached = BTRFS_CACHE_FINISHED;
10252 			add_new_free_space(cache, root->fs_info,
10253 					   found_key.objectid,
10254 					   found_key.objectid +
10255 					   found_key.offset);
10256 			free_excluded_extents(root, cache);
10257 		}
10258 
10259 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
10260 		if (ret) {
10261 			btrfs_remove_free_space_cache(cache);
10262 			btrfs_put_block_group(cache);
10263 			goto error;
10264 		}
10265 
10266 		trace_btrfs_add_block_group(root->fs_info, cache, 0);
10267 		ret = update_space_info(info, cache->flags, found_key.offset,
10268 					btrfs_block_group_used(&cache->item),
10269 					cache->bytes_super, &space_info);
10270 		if (ret) {
10271 			btrfs_remove_free_space_cache(cache);
10272 			spin_lock(&info->block_group_cache_lock);
10273 			rb_erase(&cache->cache_node,
10274 				 &info->block_group_cache_tree);
10275 			RB_CLEAR_NODE(&cache->cache_node);
10276 			spin_unlock(&info->block_group_cache_lock);
10277 			btrfs_put_block_group(cache);
10278 			goto error;
10279 		}
10280 
10281 		cache->space_info = space_info;
10282 
10283 		__link_block_group(space_info, cache);
10284 
10285 		set_avail_alloc_bits(root->fs_info, cache->flags);
10286 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10287 			inc_block_group_ro(cache, 1);
10288 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10289 			spin_lock(&info->unused_bgs_lock);
10290 			/* Should always be true but just in case. */
10291 			if (list_empty(&cache->bg_list)) {
10292 				btrfs_get_block_group(cache);
10293 				list_add_tail(&cache->bg_list,
10294 					      &info->unused_bgs);
10295 			}
10296 			spin_unlock(&info->unused_bgs_lock);
10297 		}
10298 	}
10299 
10300 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10301 		if (!(get_alloc_profile(root, space_info->flags) &
10302 		      (BTRFS_BLOCK_GROUP_RAID10 |
10303 		       BTRFS_BLOCK_GROUP_RAID1 |
10304 		       BTRFS_BLOCK_GROUP_RAID5 |
10305 		       BTRFS_BLOCK_GROUP_RAID6 |
10306 		       BTRFS_BLOCK_GROUP_DUP)))
10307 			continue;
10308 		/*
10309 		 * avoid allocating from un-mirrored block group if there are
10310 		 * mirrored block groups.
10311 		 */
10312 		list_for_each_entry(cache,
10313 				&space_info->block_groups[BTRFS_RAID_RAID0],
10314 				list)
10315 			inc_block_group_ro(cache, 1);
10316 		list_for_each_entry(cache,
10317 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10318 				list)
10319 			inc_block_group_ro(cache, 1);
10320 	}
10321 
10322 	init_global_block_rsv(info);
10323 	ret = 0;
10324 error:
10325 	btrfs_free_path(path);
10326 	return ret;
10327 }
10328 
10329 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10330 				       struct btrfs_root *root)
10331 {
10332 	struct btrfs_block_group_cache *block_group, *tmp;
10333 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10334 	struct btrfs_block_group_item item;
10335 	struct btrfs_key key;
10336 	int ret = 0;
10337 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10338 
10339 	trans->can_flush_pending_bgs = false;
10340 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10341 		if (ret)
10342 			goto next;
10343 
10344 		spin_lock(&block_group->lock);
10345 		memcpy(&item, &block_group->item, sizeof(item));
10346 		memcpy(&key, &block_group->key, sizeof(key));
10347 		spin_unlock(&block_group->lock);
10348 
10349 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10350 					sizeof(item));
10351 		if (ret)
10352 			btrfs_abort_transaction(trans, ret);
10353 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10354 					       key.objectid, key.offset);
10355 		if (ret)
10356 			btrfs_abort_transaction(trans, ret);
10357 		add_block_group_free_space(trans, root->fs_info, block_group);
10358 		/* already aborted the transaction if it failed. */
10359 next:
10360 		list_del_init(&block_group->bg_list);
10361 	}
10362 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10363 }
10364 
10365 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10366 			   struct btrfs_root *root, u64 bytes_used,
10367 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10368 			   u64 size)
10369 {
10370 	int ret;
10371 	struct btrfs_root *extent_root;
10372 	struct btrfs_block_group_cache *cache;
10373 	extent_root = root->fs_info->extent_root;
10374 
10375 	btrfs_set_log_full_commit(root->fs_info, trans);
10376 
10377 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10378 	if (!cache)
10379 		return -ENOMEM;
10380 
10381 	btrfs_set_block_group_used(&cache->item, bytes_used);
10382 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10383 	btrfs_set_block_group_flags(&cache->item, type);
10384 
10385 	cache->flags = type;
10386 	cache->last_byte_to_unpin = (u64)-1;
10387 	cache->cached = BTRFS_CACHE_FINISHED;
10388 	cache->needs_free_space = 1;
10389 	ret = exclude_super_stripes(root, cache);
10390 	if (ret) {
10391 		/*
10392 		 * We may have excluded something, so call this just in
10393 		 * case.
10394 		 */
10395 		free_excluded_extents(root, cache);
10396 		btrfs_put_block_group(cache);
10397 		return ret;
10398 	}
10399 
10400 	add_new_free_space(cache, root->fs_info, chunk_offset,
10401 			   chunk_offset + size);
10402 
10403 	free_excluded_extents(root, cache);
10404 
10405 #ifdef CONFIG_BTRFS_DEBUG
10406 	if (btrfs_should_fragment_free_space(root, cache)) {
10407 		u64 new_bytes_used = size - bytes_used;
10408 
10409 		bytes_used += new_bytes_used >> 1;
10410 		fragment_free_space(root, cache);
10411 	}
10412 #endif
10413 	/*
10414 	 * Call to ensure the corresponding space_info object is created and
10415 	 * assigned to our block group, but don't update its counters just yet.
10416 	 * We want our bg to be added to the rbtree with its ->space_info set.
10417 	 */
10418 	ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10419 				&cache->space_info);
10420 	if (ret) {
10421 		btrfs_remove_free_space_cache(cache);
10422 		btrfs_put_block_group(cache);
10423 		return ret;
10424 	}
10425 
10426 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10427 	if (ret) {
10428 		btrfs_remove_free_space_cache(cache);
10429 		btrfs_put_block_group(cache);
10430 		return ret;
10431 	}
10432 
10433 	/*
10434 	 * Now that our block group has its ->space_info set and is inserted in
10435 	 * the rbtree, update the space info's counters.
10436 	 */
10437 	trace_btrfs_add_block_group(root->fs_info, cache, 1);
10438 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10439 				cache->bytes_super, &cache->space_info);
10440 	if (ret) {
10441 		btrfs_remove_free_space_cache(cache);
10442 		spin_lock(&root->fs_info->block_group_cache_lock);
10443 		rb_erase(&cache->cache_node,
10444 			 &root->fs_info->block_group_cache_tree);
10445 		RB_CLEAR_NODE(&cache->cache_node);
10446 		spin_unlock(&root->fs_info->block_group_cache_lock);
10447 		btrfs_put_block_group(cache);
10448 		return ret;
10449 	}
10450 	update_global_block_rsv(root->fs_info);
10451 
10452 	__link_block_group(cache->space_info, cache);
10453 
10454 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10455 
10456 	set_avail_alloc_bits(extent_root->fs_info, type);
10457 	return 0;
10458 }
10459 
10460 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10461 {
10462 	u64 extra_flags = chunk_to_extended(flags) &
10463 				BTRFS_EXTENDED_PROFILE_MASK;
10464 
10465 	write_seqlock(&fs_info->profiles_lock);
10466 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10467 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10468 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10469 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10470 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10471 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10472 	write_sequnlock(&fs_info->profiles_lock);
10473 }
10474 
10475 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10476 			     struct btrfs_root *root, u64 group_start,
10477 			     struct extent_map *em)
10478 {
10479 	struct btrfs_path *path;
10480 	struct btrfs_block_group_cache *block_group;
10481 	struct btrfs_free_cluster *cluster;
10482 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10483 	struct btrfs_key key;
10484 	struct inode *inode;
10485 	struct kobject *kobj = NULL;
10486 	int ret;
10487 	int index;
10488 	int factor;
10489 	struct btrfs_caching_control *caching_ctl = NULL;
10490 	bool remove_em;
10491 
10492 	root = root->fs_info->extent_root;
10493 
10494 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10495 	BUG_ON(!block_group);
10496 	BUG_ON(!block_group->ro);
10497 
10498 	/*
10499 	 * Free the reserved super bytes from this block group before
10500 	 * remove it.
10501 	 */
10502 	free_excluded_extents(root, block_group);
10503 
10504 	memcpy(&key, &block_group->key, sizeof(key));
10505 	index = get_block_group_index(block_group);
10506 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10507 				  BTRFS_BLOCK_GROUP_RAID1 |
10508 				  BTRFS_BLOCK_GROUP_RAID10))
10509 		factor = 2;
10510 	else
10511 		factor = 1;
10512 
10513 	/* make sure this block group isn't part of an allocation cluster */
10514 	cluster = &root->fs_info->data_alloc_cluster;
10515 	spin_lock(&cluster->refill_lock);
10516 	btrfs_return_cluster_to_free_space(block_group, cluster);
10517 	spin_unlock(&cluster->refill_lock);
10518 
10519 	/*
10520 	 * make sure this block group isn't part of a metadata
10521 	 * allocation cluster
10522 	 */
10523 	cluster = &root->fs_info->meta_alloc_cluster;
10524 	spin_lock(&cluster->refill_lock);
10525 	btrfs_return_cluster_to_free_space(block_group, cluster);
10526 	spin_unlock(&cluster->refill_lock);
10527 
10528 	path = btrfs_alloc_path();
10529 	if (!path) {
10530 		ret = -ENOMEM;
10531 		goto out;
10532 	}
10533 
10534 	/*
10535 	 * get the inode first so any iput calls done for the io_list
10536 	 * aren't the final iput (no unlinks allowed now)
10537 	 */
10538 	inode = lookup_free_space_inode(tree_root, block_group, path);
10539 
10540 	mutex_lock(&trans->transaction->cache_write_mutex);
10541 	/*
10542 	 * make sure our free spache cache IO is done before remove the
10543 	 * free space inode
10544 	 */
10545 	spin_lock(&trans->transaction->dirty_bgs_lock);
10546 	if (!list_empty(&block_group->io_list)) {
10547 		list_del_init(&block_group->io_list);
10548 
10549 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10550 
10551 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10552 		btrfs_wait_cache_io(root, trans, block_group,
10553 				    &block_group->io_ctl, path,
10554 				    block_group->key.objectid);
10555 		btrfs_put_block_group(block_group);
10556 		spin_lock(&trans->transaction->dirty_bgs_lock);
10557 	}
10558 
10559 	if (!list_empty(&block_group->dirty_list)) {
10560 		list_del_init(&block_group->dirty_list);
10561 		btrfs_put_block_group(block_group);
10562 	}
10563 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10564 	mutex_unlock(&trans->transaction->cache_write_mutex);
10565 
10566 	if (!IS_ERR(inode)) {
10567 		ret = btrfs_orphan_add(trans, inode);
10568 		if (ret) {
10569 			btrfs_add_delayed_iput(inode);
10570 			goto out;
10571 		}
10572 		clear_nlink(inode);
10573 		/* One for the block groups ref */
10574 		spin_lock(&block_group->lock);
10575 		if (block_group->iref) {
10576 			block_group->iref = 0;
10577 			block_group->inode = NULL;
10578 			spin_unlock(&block_group->lock);
10579 			iput(inode);
10580 		} else {
10581 			spin_unlock(&block_group->lock);
10582 		}
10583 		/* One for our lookup ref */
10584 		btrfs_add_delayed_iput(inode);
10585 	}
10586 
10587 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10588 	key.offset = block_group->key.objectid;
10589 	key.type = 0;
10590 
10591 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10592 	if (ret < 0)
10593 		goto out;
10594 	if (ret > 0)
10595 		btrfs_release_path(path);
10596 	if (ret == 0) {
10597 		ret = btrfs_del_item(trans, tree_root, path);
10598 		if (ret)
10599 			goto out;
10600 		btrfs_release_path(path);
10601 	}
10602 
10603 	spin_lock(&root->fs_info->block_group_cache_lock);
10604 	rb_erase(&block_group->cache_node,
10605 		 &root->fs_info->block_group_cache_tree);
10606 	RB_CLEAR_NODE(&block_group->cache_node);
10607 
10608 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10609 		root->fs_info->first_logical_byte = (u64)-1;
10610 	spin_unlock(&root->fs_info->block_group_cache_lock);
10611 
10612 	down_write(&block_group->space_info->groups_sem);
10613 	/*
10614 	 * we must use list_del_init so people can check to see if they
10615 	 * are still on the list after taking the semaphore
10616 	 */
10617 	list_del_init(&block_group->list);
10618 	if (list_empty(&block_group->space_info->block_groups[index])) {
10619 		kobj = block_group->space_info->block_group_kobjs[index];
10620 		block_group->space_info->block_group_kobjs[index] = NULL;
10621 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10622 	}
10623 	up_write(&block_group->space_info->groups_sem);
10624 	if (kobj) {
10625 		kobject_del(kobj);
10626 		kobject_put(kobj);
10627 	}
10628 
10629 	if (block_group->has_caching_ctl)
10630 		caching_ctl = get_caching_control(block_group);
10631 	if (block_group->cached == BTRFS_CACHE_STARTED)
10632 		wait_block_group_cache_done(block_group);
10633 	if (block_group->has_caching_ctl) {
10634 		down_write(&root->fs_info->commit_root_sem);
10635 		if (!caching_ctl) {
10636 			struct btrfs_caching_control *ctl;
10637 
10638 			list_for_each_entry(ctl,
10639 				    &root->fs_info->caching_block_groups, list)
10640 				if (ctl->block_group == block_group) {
10641 					caching_ctl = ctl;
10642 					atomic_inc(&caching_ctl->count);
10643 					break;
10644 				}
10645 		}
10646 		if (caching_ctl)
10647 			list_del_init(&caching_ctl->list);
10648 		up_write(&root->fs_info->commit_root_sem);
10649 		if (caching_ctl) {
10650 			/* Once for the caching bgs list and once for us. */
10651 			put_caching_control(caching_ctl);
10652 			put_caching_control(caching_ctl);
10653 		}
10654 	}
10655 
10656 	spin_lock(&trans->transaction->dirty_bgs_lock);
10657 	if (!list_empty(&block_group->dirty_list)) {
10658 		WARN_ON(1);
10659 	}
10660 	if (!list_empty(&block_group->io_list)) {
10661 		WARN_ON(1);
10662 	}
10663 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10664 	btrfs_remove_free_space_cache(block_group);
10665 
10666 	spin_lock(&block_group->space_info->lock);
10667 	list_del_init(&block_group->ro_list);
10668 
10669 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10670 		WARN_ON(block_group->space_info->total_bytes
10671 			< block_group->key.offset);
10672 		WARN_ON(block_group->space_info->bytes_readonly
10673 			< block_group->key.offset);
10674 		WARN_ON(block_group->space_info->disk_total
10675 			< block_group->key.offset * factor);
10676 	}
10677 	block_group->space_info->total_bytes -= block_group->key.offset;
10678 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10679 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10680 
10681 	spin_unlock(&block_group->space_info->lock);
10682 
10683 	memcpy(&key, &block_group->key, sizeof(key));
10684 
10685 	lock_chunks(root);
10686 	if (!list_empty(&em->list)) {
10687 		/* We're in the transaction->pending_chunks list. */
10688 		free_extent_map(em);
10689 	}
10690 	spin_lock(&block_group->lock);
10691 	block_group->removed = 1;
10692 	/*
10693 	 * At this point trimming can't start on this block group, because we
10694 	 * removed the block group from the tree fs_info->block_group_cache_tree
10695 	 * so no one can't find it anymore and even if someone already got this
10696 	 * block group before we removed it from the rbtree, they have already
10697 	 * incremented block_group->trimming - if they didn't, they won't find
10698 	 * any free space entries because we already removed them all when we
10699 	 * called btrfs_remove_free_space_cache().
10700 	 *
10701 	 * And we must not remove the extent map from the fs_info->mapping_tree
10702 	 * to prevent the same logical address range and physical device space
10703 	 * ranges from being reused for a new block group. This is because our
10704 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10705 	 * completely transactionless, so while it is trimming a range the
10706 	 * currently running transaction might finish and a new one start,
10707 	 * allowing for new block groups to be created that can reuse the same
10708 	 * physical device locations unless we take this special care.
10709 	 *
10710 	 * There may also be an implicit trim operation if the file system
10711 	 * is mounted with -odiscard. The same protections must remain
10712 	 * in place until the extents have been discarded completely when
10713 	 * the transaction commit has completed.
10714 	 */
10715 	remove_em = (atomic_read(&block_group->trimming) == 0);
10716 	/*
10717 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10718 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10719 	 * before checking block_group->removed).
10720 	 */
10721 	if (!remove_em) {
10722 		/*
10723 		 * Our em might be in trans->transaction->pending_chunks which
10724 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10725 		 * and so is the fs_info->pinned_chunks list.
10726 		 *
10727 		 * So at this point we must be holding the chunk_mutex to avoid
10728 		 * any races with chunk allocation (more specifically at
10729 		 * volumes.c:contains_pending_extent()), to ensure it always
10730 		 * sees the em, either in the pending_chunks list or in the
10731 		 * pinned_chunks list.
10732 		 */
10733 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10734 	}
10735 	spin_unlock(&block_group->lock);
10736 
10737 	if (remove_em) {
10738 		struct extent_map_tree *em_tree;
10739 
10740 		em_tree = &root->fs_info->mapping_tree.map_tree;
10741 		write_lock(&em_tree->lock);
10742 		/*
10743 		 * The em might be in the pending_chunks list, so make sure the
10744 		 * chunk mutex is locked, since remove_extent_mapping() will
10745 		 * delete us from that list.
10746 		 */
10747 		remove_extent_mapping(em_tree, em);
10748 		write_unlock(&em_tree->lock);
10749 		/* once for the tree */
10750 		free_extent_map(em);
10751 	}
10752 
10753 	unlock_chunks(root);
10754 
10755 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10756 	if (ret)
10757 		goto out;
10758 
10759 	btrfs_put_block_group(block_group);
10760 	btrfs_put_block_group(block_group);
10761 
10762 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10763 	if (ret > 0)
10764 		ret = -EIO;
10765 	if (ret < 0)
10766 		goto out;
10767 
10768 	ret = btrfs_del_item(trans, root, path);
10769 out:
10770 	btrfs_free_path(path);
10771 	return ret;
10772 }
10773 
10774 struct btrfs_trans_handle *
10775 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10776 				     const u64 chunk_offset)
10777 {
10778 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10779 	struct extent_map *em;
10780 	struct map_lookup *map;
10781 	unsigned int num_items;
10782 
10783 	read_lock(&em_tree->lock);
10784 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10785 	read_unlock(&em_tree->lock);
10786 	ASSERT(em && em->start == chunk_offset);
10787 
10788 	/*
10789 	 * We need to reserve 3 + N units from the metadata space info in order
10790 	 * to remove a block group (done at btrfs_remove_chunk() and at
10791 	 * btrfs_remove_block_group()), which are used for:
10792 	 *
10793 	 * 1 unit for adding the free space inode's orphan (located in the tree
10794 	 * of tree roots).
10795 	 * 1 unit for deleting the block group item (located in the extent
10796 	 * tree).
10797 	 * 1 unit for deleting the free space item (located in tree of tree
10798 	 * roots).
10799 	 * N units for deleting N device extent items corresponding to each
10800 	 * stripe (located in the device tree).
10801 	 *
10802 	 * In order to remove a block group we also need to reserve units in the
10803 	 * system space info in order to update the chunk tree (update one or
10804 	 * more device items and remove one chunk item), but this is done at
10805 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10806 	 */
10807 	map = em->map_lookup;
10808 	num_items = 3 + map->num_stripes;
10809 	free_extent_map(em);
10810 
10811 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10812 							   num_items, 1);
10813 }
10814 
10815 /*
10816  * Process the unused_bgs list and remove any that don't have any allocated
10817  * space inside of them.
10818  */
10819 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10820 {
10821 	struct btrfs_block_group_cache *block_group;
10822 	struct btrfs_space_info *space_info;
10823 	struct btrfs_root *root = fs_info->extent_root;
10824 	struct btrfs_trans_handle *trans;
10825 	int ret = 0;
10826 
10827 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10828 		return;
10829 
10830 	spin_lock(&fs_info->unused_bgs_lock);
10831 	while (!list_empty(&fs_info->unused_bgs)) {
10832 		u64 start, end;
10833 		int trimming;
10834 
10835 		block_group = list_first_entry(&fs_info->unused_bgs,
10836 					       struct btrfs_block_group_cache,
10837 					       bg_list);
10838 		list_del_init(&block_group->bg_list);
10839 
10840 		space_info = block_group->space_info;
10841 
10842 		if (ret || btrfs_mixed_space_info(space_info)) {
10843 			btrfs_put_block_group(block_group);
10844 			continue;
10845 		}
10846 		spin_unlock(&fs_info->unused_bgs_lock);
10847 
10848 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10849 
10850 		/* Don't want to race with allocators so take the groups_sem */
10851 		down_write(&space_info->groups_sem);
10852 		spin_lock(&block_group->lock);
10853 		if (block_group->reserved ||
10854 		    btrfs_block_group_used(&block_group->item) ||
10855 		    block_group->ro ||
10856 		    list_is_singular(&block_group->list)) {
10857 			/*
10858 			 * We want to bail if we made new allocations or have
10859 			 * outstanding allocations in this block group.  We do
10860 			 * the ro check in case balance is currently acting on
10861 			 * this block group.
10862 			 */
10863 			spin_unlock(&block_group->lock);
10864 			up_write(&space_info->groups_sem);
10865 			goto next;
10866 		}
10867 		spin_unlock(&block_group->lock);
10868 
10869 		/* We don't want to force the issue, only flip if it's ok. */
10870 		ret = inc_block_group_ro(block_group, 0);
10871 		up_write(&space_info->groups_sem);
10872 		if (ret < 0) {
10873 			ret = 0;
10874 			goto next;
10875 		}
10876 
10877 		/*
10878 		 * Want to do this before we do anything else so we can recover
10879 		 * properly if we fail to join the transaction.
10880 		 */
10881 		trans = btrfs_start_trans_remove_block_group(fs_info,
10882 						     block_group->key.objectid);
10883 		if (IS_ERR(trans)) {
10884 			btrfs_dec_block_group_ro(root, block_group);
10885 			ret = PTR_ERR(trans);
10886 			goto next;
10887 		}
10888 
10889 		/*
10890 		 * We could have pending pinned extents for this block group,
10891 		 * just delete them, we don't care about them anymore.
10892 		 */
10893 		start = block_group->key.objectid;
10894 		end = start + block_group->key.offset - 1;
10895 		/*
10896 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10897 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10898 		 * another task might be running finish_extent_commit() for the
10899 		 * previous transaction N - 1, and have seen a range belonging
10900 		 * to the block group in freed_extents[] before we were able to
10901 		 * clear the whole block group range from freed_extents[]. This
10902 		 * means that task can lookup for the block group after we
10903 		 * unpinned it from freed_extents[] and removed it, leading to
10904 		 * a BUG_ON() at btrfs_unpin_extent_range().
10905 		 */
10906 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10907 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10908 				  EXTENT_DIRTY);
10909 		if (ret) {
10910 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10911 			btrfs_dec_block_group_ro(root, block_group);
10912 			goto end_trans;
10913 		}
10914 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10915 				  EXTENT_DIRTY);
10916 		if (ret) {
10917 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10918 			btrfs_dec_block_group_ro(root, block_group);
10919 			goto end_trans;
10920 		}
10921 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10922 
10923 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10924 		spin_lock(&space_info->lock);
10925 		spin_lock(&block_group->lock);
10926 
10927 		space_info->bytes_pinned -= block_group->pinned;
10928 		space_info->bytes_readonly += block_group->pinned;
10929 		percpu_counter_add(&space_info->total_bytes_pinned,
10930 				   -block_group->pinned);
10931 		block_group->pinned = 0;
10932 
10933 		spin_unlock(&block_group->lock);
10934 		spin_unlock(&space_info->lock);
10935 
10936 		/* DISCARD can flip during remount */
10937 		trimming = btrfs_test_opt(root->fs_info, DISCARD);
10938 
10939 		/* Implicit trim during transaction commit. */
10940 		if (trimming)
10941 			btrfs_get_block_group_trimming(block_group);
10942 
10943 		/*
10944 		 * Btrfs_remove_chunk will abort the transaction if things go
10945 		 * horribly wrong.
10946 		 */
10947 		ret = btrfs_remove_chunk(trans, root,
10948 					 block_group->key.objectid);
10949 
10950 		if (ret) {
10951 			if (trimming)
10952 				btrfs_put_block_group_trimming(block_group);
10953 			goto end_trans;
10954 		}
10955 
10956 		/*
10957 		 * If we're not mounted with -odiscard, we can just forget
10958 		 * about this block group. Otherwise we'll need to wait
10959 		 * until transaction commit to do the actual discard.
10960 		 */
10961 		if (trimming) {
10962 			spin_lock(&fs_info->unused_bgs_lock);
10963 			/*
10964 			 * A concurrent scrub might have added us to the list
10965 			 * fs_info->unused_bgs, so use a list_move operation
10966 			 * to add the block group to the deleted_bgs list.
10967 			 */
10968 			list_move(&block_group->bg_list,
10969 				  &trans->transaction->deleted_bgs);
10970 			spin_unlock(&fs_info->unused_bgs_lock);
10971 			btrfs_get_block_group(block_group);
10972 		}
10973 end_trans:
10974 		btrfs_end_transaction(trans, root);
10975 next:
10976 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10977 		btrfs_put_block_group(block_group);
10978 		spin_lock(&fs_info->unused_bgs_lock);
10979 	}
10980 	spin_unlock(&fs_info->unused_bgs_lock);
10981 }
10982 
10983 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10984 {
10985 	struct btrfs_space_info *space_info;
10986 	struct btrfs_super_block *disk_super;
10987 	u64 features;
10988 	u64 flags;
10989 	int mixed = 0;
10990 	int ret;
10991 
10992 	disk_super = fs_info->super_copy;
10993 	if (!btrfs_super_root(disk_super))
10994 		return -EINVAL;
10995 
10996 	features = btrfs_super_incompat_flags(disk_super);
10997 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10998 		mixed = 1;
10999 
11000 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
11001 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11002 	if (ret)
11003 		goto out;
11004 
11005 	if (mixed) {
11006 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11007 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11008 	} else {
11009 		flags = BTRFS_BLOCK_GROUP_METADATA;
11010 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11011 		if (ret)
11012 			goto out;
11013 
11014 		flags = BTRFS_BLOCK_GROUP_DATA;
11015 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11016 	}
11017 out:
11018 	return ret;
11019 }
11020 
11021 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
11022 {
11023 	return unpin_extent_range(root, start, end, false);
11024 }
11025 
11026 /*
11027  * It used to be that old block groups would be left around forever.
11028  * Iterating over them would be enough to trim unused space.  Since we
11029  * now automatically remove them, we also need to iterate over unallocated
11030  * space.
11031  *
11032  * We don't want a transaction for this since the discard may take a
11033  * substantial amount of time.  We don't require that a transaction be
11034  * running, but we do need to take a running transaction into account
11035  * to ensure that we're not discarding chunks that were released in
11036  * the current transaction.
11037  *
11038  * Holding the chunks lock will prevent other threads from allocating
11039  * or releasing chunks, but it won't prevent a running transaction
11040  * from committing and releasing the memory that the pending chunks
11041  * list head uses.  For that, we need to take a reference to the
11042  * transaction.
11043  */
11044 static int btrfs_trim_free_extents(struct btrfs_device *device,
11045 				   u64 minlen, u64 *trimmed)
11046 {
11047 	u64 start = 0, len = 0;
11048 	int ret;
11049 
11050 	*trimmed = 0;
11051 
11052 	/* Not writeable = nothing to do. */
11053 	if (!device->writeable)
11054 		return 0;
11055 
11056 	/* No free space = nothing to do. */
11057 	if (device->total_bytes <= device->bytes_used)
11058 		return 0;
11059 
11060 	ret = 0;
11061 
11062 	while (1) {
11063 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11064 		struct btrfs_transaction *trans;
11065 		u64 bytes;
11066 
11067 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11068 		if (ret)
11069 			return ret;
11070 
11071 		down_read(&fs_info->commit_root_sem);
11072 
11073 		spin_lock(&fs_info->trans_lock);
11074 		trans = fs_info->running_transaction;
11075 		if (trans)
11076 			atomic_inc(&trans->use_count);
11077 		spin_unlock(&fs_info->trans_lock);
11078 
11079 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11080 						 &start, &len);
11081 		if (trans)
11082 			btrfs_put_transaction(trans);
11083 
11084 		if (ret) {
11085 			up_read(&fs_info->commit_root_sem);
11086 			mutex_unlock(&fs_info->chunk_mutex);
11087 			if (ret == -ENOSPC)
11088 				ret = 0;
11089 			break;
11090 		}
11091 
11092 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11093 		up_read(&fs_info->commit_root_sem);
11094 		mutex_unlock(&fs_info->chunk_mutex);
11095 
11096 		if (ret)
11097 			break;
11098 
11099 		start += len;
11100 		*trimmed += bytes;
11101 
11102 		if (fatal_signal_pending(current)) {
11103 			ret = -ERESTARTSYS;
11104 			break;
11105 		}
11106 
11107 		cond_resched();
11108 	}
11109 
11110 	return ret;
11111 }
11112 
11113 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11114 {
11115 	struct btrfs_fs_info *fs_info = root->fs_info;
11116 	struct btrfs_block_group_cache *cache = NULL;
11117 	struct btrfs_device *device;
11118 	struct list_head *devices;
11119 	u64 group_trimmed;
11120 	u64 start;
11121 	u64 end;
11122 	u64 trimmed = 0;
11123 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11124 	int ret = 0;
11125 
11126 	/*
11127 	 * try to trim all FS space, our block group may start from non-zero.
11128 	 */
11129 	if (range->len == total_bytes)
11130 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11131 	else
11132 		cache = btrfs_lookup_block_group(fs_info, range->start);
11133 
11134 	while (cache) {
11135 		if (cache->key.objectid >= (range->start + range->len)) {
11136 			btrfs_put_block_group(cache);
11137 			break;
11138 		}
11139 
11140 		start = max(range->start, cache->key.objectid);
11141 		end = min(range->start + range->len,
11142 				cache->key.objectid + cache->key.offset);
11143 
11144 		if (end - start >= range->minlen) {
11145 			if (!block_group_cache_done(cache)) {
11146 				ret = cache_block_group(cache, 0);
11147 				if (ret) {
11148 					btrfs_put_block_group(cache);
11149 					break;
11150 				}
11151 				ret = wait_block_group_cache_done(cache);
11152 				if (ret) {
11153 					btrfs_put_block_group(cache);
11154 					break;
11155 				}
11156 			}
11157 			ret = btrfs_trim_block_group(cache,
11158 						     &group_trimmed,
11159 						     start,
11160 						     end,
11161 						     range->minlen);
11162 
11163 			trimmed += group_trimmed;
11164 			if (ret) {
11165 				btrfs_put_block_group(cache);
11166 				break;
11167 			}
11168 		}
11169 
11170 		cache = next_block_group(fs_info->tree_root, cache);
11171 	}
11172 
11173 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11174 	devices = &root->fs_info->fs_devices->alloc_list;
11175 	list_for_each_entry(device, devices, dev_alloc_list) {
11176 		ret = btrfs_trim_free_extents(device, range->minlen,
11177 					      &group_trimmed);
11178 		if (ret)
11179 			break;
11180 
11181 		trimmed += group_trimmed;
11182 	}
11183 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11184 
11185 	range->len = trimmed;
11186 	return ret;
11187 }
11188 
11189 /*
11190  * btrfs_{start,end}_write_no_snapshoting() are similar to
11191  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11192  * data into the page cache through nocow before the subvolume is snapshoted,
11193  * but flush the data into disk after the snapshot creation, or to prevent
11194  * operations while snapshoting is ongoing and that cause the snapshot to be
11195  * inconsistent (writes followed by expanding truncates for example).
11196  */
11197 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11198 {
11199 	percpu_counter_dec(&root->subv_writers->counter);
11200 	/*
11201 	 * Make sure counter is updated before we wake up waiters.
11202 	 */
11203 	smp_mb();
11204 	if (waitqueue_active(&root->subv_writers->wait))
11205 		wake_up(&root->subv_writers->wait);
11206 }
11207 
11208 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11209 {
11210 	if (atomic_read(&root->will_be_snapshoted))
11211 		return 0;
11212 
11213 	percpu_counter_inc(&root->subv_writers->counter);
11214 	/*
11215 	 * Make sure counter is updated before we check for snapshot creation.
11216 	 */
11217 	smp_mb();
11218 	if (atomic_read(&root->will_be_snapshoted)) {
11219 		btrfs_end_write_no_snapshoting(root);
11220 		return 0;
11221 	}
11222 	return 1;
11223 }
11224 
11225 static int wait_snapshoting_atomic_t(atomic_t *a)
11226 {
11227 	schedule();
11228 	return 0;
11229 }
11230 
11231 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11232 {
11233 	while (true) {
11234 		int ret;
11235 
11236 		ret = btrfs_start_write_no_snapshoting(root);
11237 		if (ret)
11238 			break;
11239 		wait_on_atomic_t(&root->will_be_snapshoted,
11240 				 wait_snapshoting_atomic_t,
11241 				 TASK_UNINTERRUPTIBLE);
11242 	}
11243 }
11244