1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "compat.h" 29 #include "hash.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "transaction.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "math.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED; 117 } 118 119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 120 { 121 return (cache->flags & bits) == bits; 122 } 123 124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 125 { 126 atomic_inc(&cache->count); 127 } 128 129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 130 { 131 if (atomic_dec_and_test(&cache->count)) { 132 WARN_ON(cache->pinned > 0); 133 WARN_ON(cache->reserved > 0); 134 kfree(cache->free_space_ctl); 135 kfree(cache); 136 } 137 } 138 139 /* 140 * this adds the block group to the fs_info rb tree for the block group 141 * cache 142 */ 143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 144 struct btrfs_block_group_cache *block_group) 145 { 146 struct rb_node **p; 147 struct rb_node *parent = NULL; 148 struct btrfs_block_group_cache *cache; 149 150 spin_lock(&info->block_group_cache_lock); 151 p = &info->block_group_cache_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 cache = rb_entry(parent, struct btrfs_block_group_cache, 156 cache_node); 157 if (block_group->key.objectid < cache->key.objectid) { 158 p = &(*p)->rb_left; 159 } else if (block_group->key.objectid > cache->key.objectid) { 160 p = &(*p)->rb_right; 161 } else { 162 spin_unlock(&info->block_group_cache_lock); 163 return -EEXIST; 164 } 165 } 166 167 rb_link_node(&block_group->cache_node, parent, p); 168 rb_insert_color(&block_group->cache_node, 169 &info->block_group_cache_tree); 170 171 if (info->first_logical_byte > block_group->key.objectid) 172 info->first_logical_byte = block_group->key.objectid; 173 174 spin_unlock(&info->block_group_cache_lock); 175 176 return 0; 177 } 178 179 /* 180 * This will return the block group at or after bytenr if contains is 0, else 181 * it will return the block group that contains the bytenr 182 */ 183 static struct btrfs_block_group_cache * 184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 185 int contains) 186 { 187 struct btrfs_block_group_cache *cache, *ret = NULL; 188 struct rb_node *n; 189 u64 end, start; 190 191 spin_lock(&info->block_group_cache_lock); 192 n = info->block_group_cache_tree.rb_node; 193 194 while (n) { 195 cache = rb_entry(n, struct btrfs_block_group_cache, 196 cache_node); 197 end = cache->key.objectid + cache->key.offset - 1; 198 start = cache->key.objectid; 199 200 if (bytenr < start) { 201 if (!contains && (!ret || start < ret->key.objectid)) 202 ret = cache; 203 n = n->rb_left; 204 } else if (bytenr > start) { 205 if (contains && bytenr <= end) { 206 ret = cache; 207 break; 208 } 209 n = n->rb_right; 210 } else { 211 ret = cache; 212 break; 213 } 214 } 215 if (ret) { 216 btrfs_get_block_group(ret); 217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 218 info->first_logical_byte = ret->key.objectid; 219 } 220 spin_unlock(&info->block_group_cache_lock); 221 222 return ret; 223 } 224 225 static int add_excluded_extent(struct btrfs_root *root, 226 u64 start, u64 num_bytes) 227 { 228 u64 end = start + num_bytes - 1; 229 set_extent_bits(&root->fs_info->freed_extents[0], 230 start, end, EXTENT_UPTODATE, GFP_NOFS); 231 set_extent_bits(&root->fs_info->freed_extents[1], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 return 0; 234 } 235 236 static void free_excluded_extents(struct btrfs_root *root, 237 struct btrfs_block_group_cache *cache) 238 { 239 u64 start, end; 240 241 start = cache->key.objectid; 242 end = start + cache->key.offset - 1; 243 244 clear_extent_bits(&root->fs_info->freed_extents[0], 245 start, end, EXTENT_UPTODATE, GFP_NOFS); 246 clear_extent_bits(&root->fs_info->freed_extents[1], 247 start, end, EXTENT_UPTODATE, GFP_NOFS); 248 } 249 250 static int exclude_super_stripes(struct btrfs_root *root, 251 struct btrfs_block_group_cache *cache) 252 { 253 u64 bytenr; 254 u64 *logical; 255 int stripe_len; 256 int i, nr, ret; 257 258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 260 cache->bytes_super += stripe_len; 261 ret = add_excluded_extent(root, cache->key.objectid, 262 stripe_len); 263 if (ret) 264 return ret; 265 } 266 267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 268 bytenr = btrfs_sb_offset(i); 269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 270 cache->key.objectid, bytenr, 271 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(root, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (cache->cached != BTRFS_CACHE_STARTED) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 /* We're loading it the fast way, so we don't have a caching_ctl. */ 320 if (!cache->caching_ctl) { 321 spin_unlock(&cache->lock); 322 return NULL; 323 } 324 325 ctl = cache->caching_ctl; 326 atomic_inc(&ctl->count); 327 spin_unlock(&cache->lock); 328 return ctl; 329 } 330 331 static void put_caching_control(struct btrfs_caching_control *ctl) 332 { 333 if (atomic_dec_and_test(&ctl->count)) 334 kfree(ctl); 335 } 336 337 /* 338 * this is only called by cache_block_group, since we could have freed extents 339 * we need to check the pinned_extents for any extents that can't be used yet 340 * since their free space will be released as soon as the transaction commits. 341 */ 342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 343 struct btrfs_fs_info *info, u64 start, u64 end) 344 { 345 u64 extent_start, extent_end, size, total_added = 0; 346 int ret; 347 348 while (start < end) { 349 ret = find_first_extent_bit(info->pinned_extents, start, 350 &extent_start, &extent_end, 351 EXTENT_DIRTY | EXTENT_UPTODATE, 352 NULL); 353 if (ret) 354 break; 355 356 if (extent_start <= start) { 357 start = extent_end + 1; 358 } else if (extent_start > start && extent_start < end) { 359 size = extent_start - start; 360 total_added += size; 361 ret = btrfs_add_free_space(block_group, start, 362 size); 363 BUG_ON(ret); /* -ENOMEM or logic error */ 364 start = extent_end + 1; 365 } else { 366 break; 367 } 368 } 369 370 if (start < end) { 371 size = end - start; 372 total_added += size; 373 ret = btrfs_add_free_space(block_group, start, size); 374 BUG_ON(ret); /* -ENOMEM or logic error */ 375 } 376 377 return total_added; 378 } 379 380 static noinline void caching_thread(struct btrfs_work *work) 381 { 382 struct btrfs_block_group_cache *block_group; 383 struct btrfs_fs_info *fs_info; 384 struct btrfs_caching_control *caching_ctl; 385 struct btrfs_root *extent_root; 386 struct btrfs_path *path; 387 struct extent_buffer *leaf; 388 struct btrfs_key key; 389 u64 total_found = 0; 390 u64 last = 0; 391 u32 nritems; 392 int ret = 0; 393 394 caching_ctl = container_of(work, struct btrfs_caching_control, work); 395 block_group = caching_ctl->block_group; 396 fs_info = block_group->fs_info; 397 extent_root = fs_info->extent_root; 398 399 path = btrfs_alloc_path(); 400 if (!path) 401 goto out; 402 403 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 404 405 /* 406 * We don't want to deadlock with somebody trying to allocate a new 407 * extent for the extent root while also trying to search the extent 408 * root to add free space. So we skip locking and search the commit 409 * root, since its read-only 410 */ 411 path->skip_locking = 1; 412 path->search_commit_root = 1; 413 path->reada = 1; 414 415 key.objectid = last; 416 key.offset = 0; 417 key.type = BTRFS_EXTENT_ITEM_KEY; 418 again: 419 mutex_lock(&caching_ctl->mutex); 420 /* need to make sure the commit_root doesn't disappear */ 421 down_read(&fs_info->extent_commit_sem); 422 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 424 if (ret < 0) 425 goto err; 426 427 leaf = path->nodes[0]; 428 nritems = btrfs_header_nritems(leaf); 429 430 while (1) { 431 if (btrfs_fs_closing(fs_info) > 1) { 432 last = (u64)-1; 433 break; 434 } 435 436 if (path->slots[0] < nritems) { 437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 438 } else { 439 ret = find_next_key(path, 0, &key); 440 if (ret) 441 break; 442 443 if (need_resched()) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->extent_commit_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < block_group->key.objectid) { 463 path->slots[0]++; 464 continue; 465 } 466 467 if (key.objectid >= block_group->key.objectid + 468 block_group->key.offset) 469 break; 470 471 if (key.type == BTRFS_EXTENT_ITEM_KEY || 472 key.type == BTRFS_METADATA_ITEM_KEY) { 473 total_found += add_new_free_space(block_group, 474 fs_info, last, 475 key.objectid); 476 if (key.type == BTRFS_METADATA_ITEM_KEY) 477 last = key.objectid + 478 fs_info->tree_root->leafsize; 479 else 480 last = key.objectid + key.offset; 481 482 if (total_found > (1024 * 1024 * 2)) { 483 total_found = 0; 484 wake_up(&caching_ctl->wait); 485 } 486 } 487 path->slots[0]++; 488 } 489 ret = 0; 490 491 total_found += add_new_free_space(block_group, fs_info, last, 492 block_group->key.objectid + 493 block_group->key.offset); 494 caching_ctl->progress = (u64)-1; 495 496 spin_lock(&block_group->lock); 497 block_group->caching_ctl = NULL; 498 block_group->cached = BTRFS_CACHE_FINISHED; 499 spin_unlock(&block_group->lock); 500 501 err: 502 btrfs_free_path(path); 503 up_read(&fs_info->extent_commit_sem); 504 505 free_excluded_extents(extent_root, block_group); 506 507 mutex_unlock(&caching_ctl->mutex); 508 out: 509 wake_up(&caching_ctl->wait); 510 511 put_caching_control(caching_ctl); 512 btrfs_put_block_group(block_group); 513 } 514 515 static int cache_block_group(struct btrfs_block_group_cache *cache, 516 int load_cache_only) 517 { 518 DEFINE_WAIT(wait); 519 struct btrfs_fs_info *fs_info = cache->fs_info; 520 struct btrfs_caching_control *caching_ctl; 521 int ret = 0; 522 523 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 524 if (!caching_ctl) 525 return -ENOMEM; 526 527 INIT_LIST_HEAD(&caching_ctl->list); 528 mutex_init(&caching_ctl->mutex); 529 init_waitqueue_head(&caching_ctl->wait); 530 caching_ctl->block_group = cache; 531 caching_ctl->progress = cache->key.objectid; 532 atomic_set(&caching_ctl->count, 1); 533 caching_ctl->work.func = caching_thread; 534 535 spin_lock(&cache->lock); 536 /* 537 * This should be a rare occasion, but this could happen I think in the 538 * case where one thread starts to load the space cache info, and then 539 * some other thread starts a transaction commit which tries to do an 540 * allocation while the other thread is still loading the space cache 541 * info. The previous loop should have kept us from choosing this block 542 * group, but if we've moved to the state where we will wait on caching 543 * block groups we need to first check if we're doing a fast load here, 544 * so we can wait for it to finish, otherwise we could end up allocating 545 * from a block group who's cache gets evicted for one reason or 546 * another. 547 */ 548 while (cache->cached == BTRFS_CACHE_FAST) { 549 struct btrfs_caching_control *ctl; 550 551 ctl = cache->caching_ctl; 552 atomic_inc(&ctl->count); 553 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 554 spin_unlock(&cache->lock); 555 556 schedule(); 557 558 finish_wait(&ctl->wait, &wait); 559 put_caching_control(ctl); 560 spin_lock(&cache->lock); 561 } 562 563 if (cache->cached != BTRFS_CACHE_NO) { 564 spin_unlock(&cache->lock); 565 kfree(caching_ctl); 566 return 0; 567 } 568 WARN_ON(cache->caching_ctl); 569 cache->caching_ctl = caching_ctl; 570 cache->cached = BTRFS_CACHE_FAST; 571 spin_unlock(&cache->lock); 572 573 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 574 ret = load_free_space_cache(fs_info, cache); 575 576 spin_lock(&cache->lock); 577 if (ret == 1) { 578 cache->caching_ctl = NULL; 579 cache->cached = BTRFS_CACHE_FINISHED; 580 cache->last_byte_to_unpin = (u64)-1; 581 } else { 582 if (load_cache_only) { 583 cache->caching_ctl = NULL; 584 cache->cached = BTRFS_CACHE_NO; 585 } else { 586 cache->cached = BTRFS_CACHE_STARTED; 587 } 588 } 589 spin_unlock(&cache->lock); 590 wake_up(&caching_ctl->wait); 591 if (ret == 1) { 592 put_caching_control(caching_ctl); 593 free_excluded_extents(fs_info->extent_root, cache); 594 return 0; 595 } 596 } else { 597 /* 598 * We are not going to do the fast caching, set cached to the 599 * appropriate value and wakeup any waiters. 600 */ 601 spin_lock(&cache->lock); 602 if (load_cache_only) { 603 cache->caching_ctl = NULL; 604 cache->cached = BTRFS_CACHE_NO; 605 } else { 606 cache->cached = BTRFS_CACHE_STARTED; 607 } 608 spin_unlock(&cache->lock); 609 wake_up(&caching_ctl->wait); 610 } 611 612 if (load_cache_only) { 613 put_caching_control(caching_ctl); 614 return 0; 615 } 616 617 down_write(&fs_info->extent_commit_sem); 618 atomic_inc(&caching_ctl->count); 619 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 620 up_write(&fs_info->extent_commit_sem); 621 622 btrfs_get_block_group(cache); 623 624 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 625 626 return ret; 627 } 628 629 /* 630 * return the block group that starts at or after bytenr 631 */ 632 static struct btrfs_block_group_cache * 633 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 634 { 635 struct btrfs_block_group_cache *cache; 636 637 cache = block_group_cache_tree_search(info, bytenr, 0); 638 639 return cache; 640 } 641 642 /* 643 * return the block group that contains the given bytenr 644 */ 645 struct btrfs_block_group_cache *btrfs_lookup_block_group( 646 struct btrfs_fs_info *info, 647 u64 bytenr) 648 { 649 struct btrfs_block_group_cache *cache; 650 651 cache = block_group_cache_tree_search(info, bytenr, 1); 652 653 return cache; 654 } 655 656 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 657 u64 flags) 658 { 659 struct list_head *head = &info->space_info; 660 struct btrfs_space_info *found; 661 662 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 663 664 rcu_read_lock(); 665 list_for_each_entry_rcu(found, head, list) { 666 if (found->flags & flags) { 667 rcu_read_unlock(); 668 return found; 669 } 670 } 671 rcu_read_unlock(); 672 return NULL; 673 } 674 675 /* 676 * after adding space to the filesystem, we need to clear the full flags 677 * on all the space infos. 678 */ 679 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 680 { 681 struct list_head *head = &info->space_info; 682 struct btrfs_space_info *found; 683 684 rcu_read_lock(); 685 list_for_each_entry_rcu(found, head, list) 686 found->full = 0; 687 rcu_read_unlock(); 688 } 689 690 /* simple helper to search for an existing extent at a given offset */ 691 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 692 { 693 int ret; 694 struct btrfs_key key; 695 struct btrfs_path *path; 696 697 path = btrfs_alloc_path(); 698 if (!path) 699 return -ENOMEM; 700 701 key.objectid = start; 702 key.offset = len; 703 key.type = BTRFS_EXTENT_ITEM_KEY; 704 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 705 0, 0); 706 if (ret > 0) { 707 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 708 if (key.objectid == start && 709 key.type == BTRFS_METADATA_ITEM_KEY) 710 ret = 0; 711 } 712 btrfs_free_path(path); 713 return ret; 714 } 715 716 /* 717 * helper function to lookup reference count and flags of a tree block. 718 * 719 * the head node for delayed ref is used to store the sum of all the 720 * reference count modifications queued up in the rbtree. the head 721 * node may also store the extent flags to set. This way you can check 722 * to see what the reference count and extent flags would be if all of 723 * the delayed refs are not processed. 724 */ 725 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 726 struct btrfs_root *root, u64 bytenr, 727 u64 offset, int metadata, u64 *refs, u64 *flags) 728 { 729 struct btrfs_delayed_ref_head *head; 730 struct btrfs_delayed_ref_root *delayed_refs; 731 struct btrfs_path *path; 732 struct btrfs_extent_item *ei; 733 struct extent_buffer *leaf; 734 struct btrfs_key key; 735 u32 item_size; 736 u64 num_refs; 737 u64 extent_flags; 738 int ret; 739 740 /* 741 * If we don't have skinny metadata, don't bother doing anything 742 * different 743 */ 744 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 745 offset = root->leafsize; 746 metadata = 0; 747 } 748 749 path = btrfs_alloc_path(); 750 if (!path) 751 return -ENOMEM; 752 753 if (metadata) { 754 key.objectid = bytenr; 755 key.type = BTRFS_METADATA_ITEM_KEY; 756 key.offset = offset; 757 } else { 758 key.objectid = bytenr; 759 key.type = BTRFS_EXTENT_ITEM_KEY; 760 key.offset = offset; 761 } 762 763 if (!trans) { 764 path->skip_locking = 1; 765 path->search_commit_root = 1; 766 } 767 again: 768 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 769 &key, path, 0, 0); 770 if (ret < 0) 771 goto out_free; 772 773 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 774 key.type = BTRFS_EXTENT_ITEM_KEY; 775 key.offset = root->leafsize; 776 btrfs_release_path(path); 777 goto again; 778 } 779 780 if (ret == 0) { 781 leaf = path->nodes[0]; 782 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 783 if (item_size >= sizeof(*ei)) { 784 ei = btrfs_item_ptr(leaf, path->slots[0], 785 struct btrfs_extent_item); 786 num_refs = btrfs_extent_refs(leaf, ei); 787 extent_flags = btrfs_extent_flags(leaf, ei); 788 } else { 789 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 790 struct btrfs_extent_item_v0 *ei0; 791 BUG_ON(item_size != sizeof(*ei0)); 792 ei0 = btrfs_item_ptr(leaf, path->slots[0], 793 struct btrfs_extent_item_v0); 794 num_refs = btrfs_extent_refs_v0(leaf, ei0); 795 /* FIXME: this isn't correct for data */ 796 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 797 #else 798 BUG(); 799 #endif 800 } 801 BUG_ON(num_refs == 0); 802 } else { 803 num_refs = 0; 804 extent_flags = 0; 805 ret = 0; 806 } 807 808 if (!trans) 809 goto out; 810 811 delayed_refs = &trans->transaction->delayed_refs; 812 spin_lock(&delayed_refs->lock); 813 head = btrfs_find_delayed_ref_head(trans, bytenr); 814 if (head) { 815 if (!mutex_trylock(&head->mutex)) { 816 atomic_inc(&head->node.refs); 817 spin_unlock(&delayed_refs->lock); 818 819 btrfs_release_path(path); 820 821 /* 822 * Mutex was contended, block until it's released and try 823 * again 824 */ 825 mutex_lock(&head->mutex); 826 mutex_unlock(&head->mutex); 827 btrfs_put_delayed_ref(&head->node); 828 goto again; 829 } 830 if (head->extent_op && head->extent_op->update_flags) 831 extent_flags |= head->extent_op->flags_to_set; 832 else 833 BUG_ON(num_refs == 0); 834 835 num_refs += head->node.ref_mod; 836 mutex_unlock(&head->mutex); 837 } 838 spin_unlock(&delayed_refs->lock); 839 out: 840 WARN_ON(num_refs == 0); 841 if (refs) 842 *refs = num_refs; 843 if (flags) 844 *flags = extent_flags; 845 out_free: 846 btrfs_free_path(path); 847 return ret; 848 } 849 850 /* 851 * Back reference rules. Back refs have three main goals: 852 * 853 * 1) differentiate between all holders of references to an extent so that 854 * when a reference is dropped we can make sure it was a valid reference 855 * before freeing the extent. 856 * 857 * 2) Provide enough information to quickly find the holders of an extent 858 * if we notice a given block is corrupted or bad. 859 * 860 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 861 * maintenance. This is actually the same as #2, but with a slightly 862 * different use case. 863 * 864 * There are two kinds of back refs. The implicit back refs is optimized 865 * for pointers in non-shared tree blocks. For a given pointer in a block, 866 * back refs of this kind provide information about the block's owner tree 867 * and the pointer's key. These information allow us to find the block by 868 * b-tree searching. The full back refs is for pointers in tree blocks not 869 * referenced by their owner trees. The location of tree block is recorded 870 * in the back refs. Actually the full back refs is generic, and can be 871 * used in all cases the implicit back refs is used. The major shortcoming 872 * of the full back refs is its overhead. Every time a tree block gets 873 * COWed, we have to update back refs entry for all pointers in it. 874 * 875 * For a newly allocated tree block, we use implicit back refs for 876 * pointers in it. This means most tree related operations only involve 877 * implicit back refs. For a tree block created in old transaction, the 878 * only way to drop a reference to it is COW it. So we can detect the 879 * event that tree block loses its owner tree's reference and do the 880 * back refs conversion. 881 * 882 * When a tree block is COW'd through a tree, there are four cases: 883 * 884 * The reference count of the block is one and the tree is the block's 885 * owner tree. Nothing to do in this case. 886 * 887 * The reference count of the block is one and the tree is not the 888 * block's owner tree. In this case, full back refs is used for pointers 889 * in the block. Remove these full back refs, add implicit back refs for 890 * every pointers in the new block. 891 * 892 * The reference count of the block is greater than one and the tree is 893 * the block's owner tree. In this case, implicit back refs is used for 894 * pointers in the block. Add full back refs for every pointers in the 895 * block, increase lower level extents' reference counts. The original 896 * implicit back refs are entailed to the new block. 897 * 898 * The reference count of the block is greater than one and the tree is 899 * not the block's owner tree. Add implicit back refs for every pointer in 900 * the new block, increase lower level extents' reference count. 901 * 902 * Back Reference Key composing: 903 * 904 * The key objectid corresponds to the first byte in the extent, 905 * The key type is used to differentiate between types of back refs. 906 * There are different meanings of the key offset for different types 907 * of back refs. 908 * 909 * File extents can be referenced by: 910 * 911 * - multiple snapshots, subvolumes, or different generations in one subvol 912 * - different files inside a single subvolume 913 * - different offsets inside a file (bookend extents in file.c) 914 * 915 * The extent ref structure for the implicit back refs has fields for: 916 * 917 * - Objectid of the subvolume root 918 * - objectid of the file holding the reference 919 * - original offset in the file 920 * - how many bookend extents 921 * 922 * The key offset for the implicit back refs is hash of the first 923 * three fields. 924 * 925 * The extent ref structure for the full back refs has field for: 926 * 927 * - number of pointers in the tree leaf 928 * 929 * The key offset for the implicit back refs is the first byte of 930 * the tree leaf 931 * 932 * When a file extent is allocated, The implicit back refs is used. 933 * the fields are filled in: 934 * 935 * (root_key.objectid, inode objectid, offset in file, 1) 936 * 937 * When a file extent is removed file truncation, we find the 938 * corresponding implicit back refs and check the following fields: 939 * 940 * (btrfs_header_owner(leaf), inode objectid, offset in file) 941 * 942 * Btree extents can be referenced by: 943 * 944 * - Different subvolumes 945 * 946 * Both the implicit back refs and the full back refs for tree blocks 947 * only consist of key. The key offset for the implicit back refs is 948 * objectid of block's owner tree. The key offset for the full back refs 949 * is the first byte of parent block. 950 * 951 * When implicit back refs is used, information about the lowest key and 952 * level of the tree block are required. These information are stored in 953 * tree block info structure. 954 */ 955 956 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 957 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 958 struct btrfs_root *root, 959 struct btrfs_path *path, 960 u64 owner, u32 extra_size) 961 { 962 struct btrfs_extent_item *item; 963 struct btrfs_extent_item_v0 *ei0; 964 struct btrfs_extent_ref_v0 *ref0; 965 struct btrfs_tree_block_info *bi; 966 struct extent_buffer *leaf; 967 struct btrfs_key key; 968 struct btrfs_key found_key; 969 u32 new_size = sizeof(*item); 970 u64 refs; 971 int ret; 972 973 leaf = path->nodes[0]; 974 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 975 976 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 977 ei0 = btrfs_item_ptr(leaf, path->slots[0], 978 struct btrfs_extent_item_v0); 979 refs = btrfs_extent_refs_v0(leaf, ei0); 980 981 if (owner == (u64)-1) { 982 while (1) { 983 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 984 ret = btrfs_next_leaf(root, path); 985 if (ret < 0) 986 return ret; 987 BUG_ON(ret > 0); /* Corruption */ 988 leaf = path->nodes[0]; 989 } 990 btrfs_item_key_to_cpu(leaf, &found_key, 991 path->slots[0]); 992 BUG_ON(key.objectid != found_key.objectid); 993 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 994 path->slots[0]++; 995 continue; 996 } 997 ref0 = btrfs_item_ptr(leaf, path->slots[0], 998 struct btrfs_extent_ref_v0); 999 owner = btrfs_ref_objectid_v0(leaf, ref0); 1000 break; 1001 } 1002 } 1003 btrfs_release_path(path); 1004 1005 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1006 new_size += sizeof(*bi); 1007 1008 new_size -= sizeof(*ei0); 1009 ret = btrfs_search_slot(trans, root, &key, path, 1010 new_size + extra_size, 1); 1011 if (ret < 0) 1012 return ret; 1013 BUG_ON(ret); /* Corruption */ 1014 1015 btrfs_extend_item(root, path, new_size); 1016 1017 leaf = path->nodes[0]; 1018 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1019 btrfs_set_extent_refs(leaf, item, refs); 1020 /* FIXME: get real generation */ 1021 btrfs_set_extent_generation(leaf, item, 0); 1022 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1023 btrfs_set_extent_flags(leaf, item, 1024 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1025 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1026 bi = (struct btrfs_tree_block_info *)(item + 1); 1027 /* FIXME: get first key of the block */ 1028 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1029 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1030 } else { 1031 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1032 } 1033 btrfs_mark_buffer_dirty(leaf); 1034 return 0; 1035 } 1036 #endif 1037 1038 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1039 { 1040 u32 high_crc = ~(u32)0; 1041 u32 low_crc = ~(u32)0; 1042 __le64 lenum; 1043 1044 lenum = cpu_to_le64(root_objectid); 1045 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1046 lenum = cpu_to_le64(owner); 1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1048 lenum = cpu_to_le64(offset); 1049 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1050 1051 return ((u64)high_crc << 31) ^ (u64)low_crc; 1052 } 1053 1054 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1055 struct btrfs_extent_data_ref *ref) 1056 { 1057 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1058 btrfs_extent_data_ref_objectid(leaf, ref), 1059 btrfs_extent_data_ref_offset(leaf, ref)); 1060 } 1061 1062 static int match_extent_data_ref(struct extent_buffer *leaf, 1063 struct btrfs_extent_data_ref *ref, 1064 u64 root_objectid, u64 owner, u64 offset) 1065 { 1066 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1067 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1068 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1069 return 0; 1070 return 1; 1071 } 1072 1073 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1074 struct btrfs_root *root, 1075 struct btrfs_path *path, 1076 u64 bytenr, u64 parent, 1077 u64 root_objectid, 1078 u64 owner, u64 offset) 1079 { 1080 struct btrfs_key key; 1081 struct btrfs_extent_data_ref *ref; 1082 struct extent_buffer *leaf; 1083 u32 nritems; 1084 int ret; 1085 int recow; 1086 int err = -ENOENT; 1087 1088 key.objectid = bytenr; 1089 if (parent) { 1090 key.type = BTRFS_SHARED_DATA_REF_KEY; 1091 key.offset = parent; 1092 } else { 1093 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1094 key.offset = hash_extent_data_ref(root_objectid, 1095 owner, offset); 1096 } 1097 again: 1098 recow = 0; 1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1100 if (ret < 0) { 1101 err = ret; 1102 goto fail; 1103 } 1104 1105 if (parent) { 1106 if (!ret) 1107 return 0; 1108 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1109 key.type = BTRFS_EXTENT_REF_V0_KEY; 1110 btrfs_release_path(path); 1111 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1112 if (ret < 0) { 1113 err = ret; 1114 goto fail; 1115 } 1116 if (!ret) 1117 return 0; 1118 #endif 1119 goto fail; 1120 } 1121 1122 leaf = path->nodes[0]; 1123 nritems = btrfs_header_nritems(leaf); 1124 while (1) { 1125 if (path->slots[0] >= nritems) { 1126 ret = btrfs_next_leaf(root, path); 1127 if (ret < 0) 1128 err = ret; 1129 if (ret) 1130 goto fail; 1131 1132 leaf = path->nodes[0]; 1133 nritems = btrfs_header_nritems(leaf); 1134 recow = 1; 1135 } 1136 1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1138 if (key.objectid != bytenr || 1139 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1140 goto fail; 1141 1142 ref = btrfs_item_ptr(leaf, path->slots[0], 1143 struct btrfs_extent_data_ref); 1144 1145 if (match_extent_data_ref(leaf, ref, root_objectid, 1146 owner, offset)) { 1147 if (recow) { 1148 btrfs_release_path(path); 1149 goto again; 1150 } 1151 err = 0; 1152 break; 1153 } 1154 path->slots[0]++; 1155 } 1156 fail: 1157 return err; 1158 } 1159 1160 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1161 struct btrfs_root *root, 1162 struct btrfs_path *path, 1163 u64 bytenr, u64 parent, 1164 u64 root_objectid, u64 owner, 1165 u64 offset, int refs_to_add) 1166 { 1167 struct btrfs_key key; 1168 struct extent_buffer *leaf; 1169 u32 size; 1170 u32 num_refs; 1171 int ret; 1172 1173 key.objectid = bytenr; 1174 if (parent) { 1175 key.type = BTRFS_SHARED_DATA_REF_KEY; 1176 key.offset = parent; 1177 size = sizeof(struct btrfs_shared_data_ref); 1178 } else { 1179 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1180 key.offset = hash_extent_data_ref(root_objectid, 1181 owner, offset); 1182 size = sizeof(struct btrfs_extent_data_ref); 1183 } 1184 1185 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1186 if (ret && ret != -EEXIST) 1187 goto fail; 1188 1189 leaf = path->nodes[0]; 1190 if (parent) { 1191 struct btrfs_shared_data_ref *ref; 1192 ref = btrfs_item_ptr(leaf, path->slots[0], 1193 struct btrfs_shared_data_ref); 1194 if (ret == 0) { 1195 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1196 } else { 1197 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1198 num_refs += refs_to_add; 1199 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1200 } 1201 } else { 1202 struct btrfs_extent_data_ref *ref; 1203 while (ret == -EEXIST) { 1204 ref = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_extent_data_ref); 1206 if (match_extent_data_ref(leaf, ref, root_objectid, 1207 owner, offset)) 1208 break; 1209 btrfs_release_path(path); 1210 key.offset++; 1211 ret = btrfs_insert_empty_item(trans, root, path, &key, 1212 size); 1213 if (ret && ret != -EEXIST) 1214 goto fail; 1215 1216 leaf = path->nodes[0]; 1217 } 1218 ref = btrfs_item_ptr(leaf, path->slots[0], 1219 struct btrfs_extent_data_ref); 1220 if (ret == 0) { 1221 btrfs_set_extent_data_ref_root(leaf, ref, 1222 root_objectid); 1223 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1224 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1225 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1226 } else { 1227 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1228 num_refs += refs_to_add; 1229 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1230 } 1231 } 1232 btrfs_mark_buffer_dirty(leaf); 1233 ret = 0; 1234 fail: 1235 btrfs_release_path(path); 1236 return ret; 1237 } 1238 1239 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1240 struct btrfs_root *root, 1241 struct btrfs_path *path, 1242 int refs_to_drop) 1243 { 1244 struct btrfs_key key; 1245 struct btrfs_extent_data_ref *ref1 = NULL; 1246 struct btrfs_shared_data_ref *ref2 = NULL; 1247 struct extent_buffer *leaf; 1248 u32 num_refs = 0; 1249 int ret = 0; 1250 1251 leaf = path->nodes[0]; 1252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1253 1254 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1255 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1256 struct btrfs_extent_data_ref); 1257 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1258 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1259 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_shared_data_ref); 1261 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1262 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1263 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1264 struct btrfs_extent_ref_v0 *ref0; 1265 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1266 struct btrfs_extent_ref_v0); 1267 num_refs = btrfs_ref_count_v0(leaf, ref0); 1268 #endif 1269 } else { 1270 BUG(); 1271 } 1272 1273 BUG_ON(num_refs < refs_to_drop); 1274 num_refs -= refs_to_drop; 1275 1276 if (num_refs == 0) { 1277 ret = btrfs_del_item(trans, root, path); 1278 } else { 1279 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1280 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1281 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1282 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1283 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1284 else { 1285 struct btrfs_extent_ref_v0 *ref0; 1286 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1287 struct btrfs_extent_ref_v0); 1288 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1289 } 1290 #endif 1291 btrfs_mark_buffer_dirty(leaf); 1292 } 1293 return ret; 1294 } 1295 1296 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1297 struct btrfs_path *path, 1298 struct btrfs_extent_inline_ref *iref) 1299 { 1300 struct btrfs_key key; 1301 struct extent_buffer *leaf; 1302 struct btrfs_extent_data_ref *ref1; 1303 struct btrfs_shared_data_ref *ref2; 1304 u32 num_refs = 0; 1305 1306 leaf = path->nodes[0]; 1307 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1308 if (iref) { 1309 if (btrfs_extent_inline_ref_type(leaf, iref) == 1310 BTRFS_EXTENT_DATA_REF_KEY) { 1311 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1312 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1313 } else { 1314 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1315 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1316 } 1317 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1318 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_extent_data_ref); 1320 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1321 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1322 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1323 struct btrfs_shared_data_ref); 1324 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1326 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1327 struct btrfs_extent_ref_v0 *ref0; 1328 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1329 struct btrfs_extent_ref_v0); 1330 num_refs = btrfs_ref_count_v0(leaf, ref0); 1331 #endif 1332 } else { 1333 WARN_ON(1); 1334 } 1335 return num_refs; 1336 } 1337 1338 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1339 struct btrfs_root *root, 1340 struct btrfs_path *path, 1341 u64 bytenr, u64 parent, 1342 u64 root_objectid) 1343 { 1344 struct btrfs_key key; 1345 int ret; 1346 1347 key.objectid = bytenr; 1348 if (parent) { 1349 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1350 key.offset = parent; 1351 } else { 1352 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1353 key.offset = root_objectid; 1354 } 1355 1356 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1357 if (ret > 0) 1358 ret = -ENOENT; 1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1360 if (ret == -ENOENT && parent) { 1361 btrfs_release_path(path); 1362 key.type = BTRFS_EXTENT_REF_V0_KEY; 1363 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1364 if (ret > 0) 1365 ret = -ENOENT; 1366 } 1367 #endif 1368 return ret; 1369 } 1370 1371 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1372 struct btrfs_root *root, 1373 struct btrfs_path *path, 1374 u64 bytenr, u64 parent, 1375 u64 root_objectid) 1376 { 1377 struct btrfs_key key; 1378 int ret; 1379 1380 key.objectid = bytenr; 1381 if (parent) { 1382 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1383 key.offset = parent; 1384 } else { 1385 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1386 key.offset = root_objectid; 1387 } 1388 1389 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1390 btrfs_release_path(path); 1391 return ret; 1392 } 1393 1394 static inline int extent_ref_type(u64 parent, u64 owner) 1395 { 1396 int type; 1397 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1398 if (parent > 0) 1399 type = BTRFS_SHARED_BLOCK_REF_KEY; 1400 else 1401 type = BTRFS_TREE_BLOCK_REF_KEY; 1402 } else { 1403 if (parent > 0) 1404 type = BTRFS_SHARED_DATA_REF_KEY; 1405 else 1406 type = BTRFS_EXTENT_DATA_REF_KEY; 1407 } 1408 return type; 1409 } 1410 1411 static int find_next_key(struct btrfs_path *path, int level, 1412 struct btrfs_key *key) 1413 1414 { 1415 for (; level < BTRFS_MAX_LEVEL; level++) { 1416 if (!path->nodes[level]) 1417 break; 1418 if (path->slots[level] + 1 >= 1419 btrfs_header_nritems(path->nodes[level])) 1420 continue; 1421 if (level == 0) 1422 btrfs_item_key_to_cpu(path->nodes[level], key, 1423 path->slots[level] + 1); 1424 else 1425 btrfs_node_key_to_cpu(path->nodes[level], key, 1426 path->slots[level] + 1); 1427 return 0; 1428 } 1429 return 1; 1430 } 1431 1432 /* 1433 * look for inline back ref. if back ref is found, *ref_ret is set 1434 * to the address of inline back ref, and 0 is returned. 1435 * 1436 * if back ref isn't found, *ref_ret is set to the address where it 1437 * should be inserted, and -ENOENT is returned. 1438 * 1439 * if insert is true and there are too many inline back refs, the path 1440 * points to the extent item, and -EAGAIN is returned. 1441 * 1442 * NOTE: inline back refs are ordered in the same way that back ref 1443 * items in the tree are ordered. 1444 */ 1445 static noinline_for_stack 1446 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1447 struct btrfs_root *root, 1448 struct btrfs_path *path, 1449 struct btrfs_extent_inline_ref **ref_ret, 1450 u64 bytenr, u64 num_bytes, 1451 u64 parent, u64 root_objectid, 1452 u64 owner, u64 offset, int insert) 1453 { 1454 struct btrfs_key key; 1455 struct extent_buffer *leaf; 1456 struct btrfs_extent_item *ei; 1457 struct btrfs_extent_inline_ref *iref; 1458 u64 flags; 1459 u64 item_size; 1460 unsigned long ptr; 1461 unsigned long end; 1462 int extra_size; 1463 int type; 1464 int want; 1465 int ret; 1466 int err = 0; 1467 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1468 SKINNY_METADATA); 1469 1470 key.objectid = bytenr; 1471 key.type = BTRFS_EXTENT_ITEM_KEY; 1472 key.offset = num_bytes; 1473 1474 want = extent_ref_type(parent, owner); 1475 if (insert) { 1476 extra_size = btrfs_extent_inline_ref_size(want); 1477 path->keep_locks = 1; 1478 } else 1479 extra_size = -1; 1480 1481 /* 1482 * Owner is our parent level, so we can just add one to get the level 1483 * for the block we are interested in. 1484 */ 1485 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1486 key.type = BTRFS_METADATA_ITEM_KEY; 1487 key.offset = owner; 1488 } 1489 1490 again: 1491 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1492 if (ret < 0) { 1493 err = ret; 1494 goto out; 1495 } 1496 1497 /* 1498 * We may be a newly converted file system which still has the old fat 1499 * extent entries for metadata, so try and see if we have one of those. 1500 */ 1501 if (ret > 0 && skinny_metadata) { 1502 skinny_metadata = false; 1503 if (path->slots[0]) { 1504 path->slots[0]--; 1505 btrfs_item_key_to_cpu(path->nodes[0], &key, 1506 path->slots[0]); 1507 if (key.objectid == bytenr && 1508 key.type == BTRFS_EXTENT_ITEM_KEY && 1509 key.offset == num_bytes) 1510 ret = 0; 1511 } 1512 if (ret) { 1513 key.type = BTRFS_EXTENT_ITEM_KEY; 1514 key.offset = num_bytes; 1515 btrfs_release_path(path); 1516 goto again; 1517 } 1518 } 1519 1520 if (ret && !insert) { 1521 err = -ENOENT; 1522 goto out; 1523 } else if (ret) { 1524 err = -EIO; 1525 WARN_ON(1); 1526 goto out; 1527 } 1528 1529 leaf = path->nodes[0]; 1530 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1531 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1532 if (item_size < sizeof(*ei)) { 1533 if (!insert) { 1534 err = -ENOENT; 1535 goto out; 1536 } 1537 ret = convert_extent_item_v0(trans, root, path, owner, 1538 extra_size); 1539 if (ret < 0) { 1540 err = ret; 1541 goto out; 1542 } 1543 leaf = path->nodes[0]; 1544 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1545 } 1546 #endif 1547 BUG_ON(item_size < sizeof(*ei)); 1548 1549 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1550 flags = btrfs_extent_flags(leaf, ei); 1551 1552 ptr = (unsigned long)(ei + 1); 1553 end = (unsigned long)ei + item_size; 1554 1555 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1556 ptr += sizeof(struct btrfs_tree_block_info); 1557 BUG_ON(ptr > end); 1558 } 1559 1560 err = -ENOENT; 1561 while (1) { 1562 if (ptr >= end) { 1563 WARN_ON(ptr > end); 1564 break; 1565 } 1566 iref = (struct btrfs_extent_inline_ref *)ptr; 1567 type = btrfs_extent_inline_ref_type(leaf, iref); 1568 if (want < type) 1569 break; 1570 if (want > type) { 1571 ptr += btrfs_extent_inline_ref_size(type); 1572 continue; 1573 } 1574 1575 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1576 struct btrfs_extent_data_ref *dref; 1577 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1578 if (match_extent_data_ref(leaf, dref, root_objectid, 1579 owner, offset)) { 1580 err = 0; 1581 break; 1582 } 1583 if (hash_extent_data_ref_item(leaf, dref) < 1584 hash_extent_data_ref(root_objectid, owner, offset)) 1585 break; 1586 } else { 1587 u64 ref_offset; 1588 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1589 if (parent > 0) { 1590 if (parent == ref_offset) { 1591 err = 0; 1592 break; 1593 } 1594 if (ref_offset < parent) 1595 break; 1596 } else { 1597 if (root_objectid == ref_offset) { 1598 err = 0; 1599 break; 1600 } 1601 if (ref_offset < root_objectid) 1602 break; 1603 } 1604 } 1605 ptr += btrfs_extent_inline_ref_size(type); 1606 } 1607 if (err == -ENOENT && insert) { 1608 if (item_size + extra_size >= 1609 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1610 err = -EAGAIN; 1611 goto out; 1612 } 1613 /* 1614 * To add new inline back ref, we have to make sure 1615 * there is no corresponding back ref item. 1616 * For simplicity, we just do not add new inline back 1617 * ref if there is any kind of item for this block 1618 */ 1619 if (find_next_key(path, 0, &key) == 0 && 1620 key.objectid == bytenr && 1621 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1622 err = -EAGAIN; 1623 goto out; 1624 } 1625 } 1626 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1627 out: 1628 if (insert) { 1629 path->keep_locks = 0; 1630 btrfs_unlock_up_safe(path, 1); 1631 } 1632 return err; 1633 } 1634 1635 /* 1636 * helper to add new inline back ref 1637 */ 1638 static noinline_for_stack 1639 void setup_inline_extent_backref(struct btrfs_root *root, 1640 struct btrfs_path *path, 1641 struct btrfs_extent_inline_ref *iref, 1642 u64 parent, u64 root_objectid, 1643 u64 owner, u64 offset, int refs_to_add, 1644 struct btrfs_delayed_extent_op *extent_op) 1645 { 1646 struct extent_buffer *leaf; 1647 struct btrfs_extent_item *ei; 1648 unsigned long ptr; 1649 unsigned long end; 1650 unsigned long item_offset; 1651 u64 refs; 1652 int size; 1653 int type; 1654 1655 leaf = path->nodes[0]; 1656 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1657 item_offset = (unsigned long)iref - (unsigned long)ei; 1658 1659 type = extent_ref_type(parent, owner); 1660 size = btrfs_extent_inline_ref_size(type); 1661 1662 btrfs_extend_item(root, path, size); 1663 1664 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1665 refs = btrfs_extent_refs(leaf, ei); 1666 refs += refs_to_add; 1667 btrfs_set_extent_refs(leaf, ei, refs); 1668 if (extent_op) 1669 __run_delayed_extent_op(extent_op, leaf, ei); 1670 1671 ptr = (unsigned long)ei + item_offset; 1672 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1673 if (ptr < end - size) 1674 memmove_extent_buffer(leaf, ptr + size, ptr, 1675 end - size - ptr); 1676 1677 iref = (struct btrfs_extent_inline_ref *)ptr; 1678 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1679 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1680 struct btrfs_extent_data_ref *dref; 1681 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1682 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1683 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1684 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1685 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1686 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1687 struct btrfs_shared_data_ref *sref; 1688 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1689 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1690 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1691 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1692 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1693 } else { 1694 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1695 } 1696 btrfs_mark_buffer_dirty(leaf); 1697 } 1698 1699 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1700 struct btrfs_root *root, 1701 struct btrfs_path *path, 1702 struct btrfs_extent_inline_ref **ref_ret, 1703 u64 bytenr, u64 num_bytes, u64 parent, 1704 u64 root_objectid, u64 owner, u64 offset) 1705 { 1706 int ret; 1707 1708 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1709 bytenr, num_bytes, parent, 1710 root_objectid, owner, offset, 0); 1711 if (ret != -ENOENT) 1712 return ret; 1713 1714 btrfs_release_path(path); 1715 *ref_ret = NULL; 1716 1717 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1718 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1719 root_objectid); 1720 } else { 1721 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1722 root_objectid, owner, offset); 1723 } 1724 return ret; 1725 } 1726 1727 /* 1728 * helper to update/remove inline back ref 1729 */ 1730 static noinline_for_stack 1731 void update_inline_extent_backref(struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref *iref, 1734 int refs_to_mod, 1735 struct btrfs_delayed_extent_op *extent_op) 1736 { 1737 struct extent_buffer *leaf; 1738 struct btrfs_extent_item *ei; 1739 struct btrfs_extent_data_ref *dref = NULL; 1740 struct btrfs_shared_data_ref *sref = NULL; 1741 unsigned long ptr; 1742 unsigned long end; 1743 u32 item_size; 1744 int size; 1745 int type; 1746 u64 refs; 1747 1748 leaf = path->nodes[0]; 1749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1750 refs = btrfs_extent_refs(leaf, ei); 1751 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1752 refs += refs_to_mod; 1753 btrfs_set_extent_refs(leaf, ei, refs); 1754 if (extent_op) 1755 __run_delayed_extent_op(extent_op, leaf, ei); 1756 1757 type = btrfs_extent_inline_ref_type(leaf, iref); 1758 1759 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1760 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1761 refs = btrfs_extent_data_ref_count(leaf, dref); 1762 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1763 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1764 refs = btrfs_shared_data_ref_count(leaf, sref); 1765 } else { 1766 refs = 1; 1767 BUG_ON(refs_to_mod != -1); 1768 } 1769 1770 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1771 refs += refs_to_mod; 1772 1773 if (refs > 0) { 1774 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1775 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1776 else 1777 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1778 } else { 1779 size = btrfs_extent_inline_ref_size(type); 1780 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1781 ptr = (unsigned long)iref; 1782 end = (unsigned long)ei + item_size; 1783 if (ptr + size < end) 1784 memmove_extent_buffer(leaf, ptr, ptr + size, 1785 end - ptr - size); 1786 item_size -= size; 1787 btrfs_truncate_item(root, path, item_size, 1); 1788 } 1789 btrfs_mark_buffer_dirty(leaf); 1790 } 1791 1792 static noinline_for_stack 1793 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1794 struct btrfs_root *root, 1795 struct btrfs_path *path, 1796 u64 bytenr, u64 num_bytes, u64 parent, 1797 u64 root_objectid, u64 owner, 1798 u64 offset, int refs_to_add, 1799 struct btrfs_delayed_extent_op *extent_op) 1800 { 1801 struct btrfs_extent_inline_ref *iref; 1802 int ret; 1803 1804 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1805 bytenr, num_bytes, parent, 1806 root_objectid, owner, offset, 1); 1807 if (ret == 0) { 1808 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1809 update_inline_extent_backref(root, path, iref, 1810 refs_to_add, extent_op); 1811 } else if (ret == -ENOENT) { 1812 setup_inline_extent_backref(root, path, iref, parent, 1813 root_objectid, owner, offset, 1814 refs_to_add, extent_op); 1815 ret = 0; 1816 } 1817 return ret; 1818 } 1819 1820 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1821 struct btrfs_root *root, 1822 struct btrfs_path *path, 1823 u64 bytenr, u64 parent, u64 root_objectid, 1824 u64 owner, u64 offset, int refs_to_add) 1825 { 1826 int ret; 1827 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1828 BUG_ON(refs_to_add != 1); 1829 ret = insert_tree_block_ref(trans, root, path, bytenr, 1830 parent, root_objectid); 1831 } else { 1832 ret = insert_extent_data_ref(trans, root, path, bytenr, 1833 parent, root_objectid, 1834 owner, offset, refs_to_add); 1835 } 1836 return ret; 1837 } 1838 1839 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1840 struct btrfs_root *root, 1841 struct btrfs_path *path, 1842 struct btrfs_extent_inline_ref *iref, 1843 int refs_to_drop, int is_data) 1844 { 1845 int ret = 0; 1846 1847 BUG_ON(!is_data && refs_to_drop != 1); 1848 if (iref) { 1849 update_inline_extent_backref(root, path, iref, 1850 -refs_to_drop, NULL); 1851 } else if (is_data) { 1852 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1853 } else { 1854 ret = btrfs_del_item(trans, root, path); 1855 } 1856 return ret; 1857 } 1858 1859 static int btrfs_issue_discard(struct block_device *bdev, 1860 u64 start, u64 len) 1861 { 1862 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1863 } 1864 1865 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1866 u64 num_bytes, u64 *actual_bytes) 1867 { 1868 int ret; 1869 u64 discarded_bytes = 0; 1870 struct btrfs_bio *bbio = NULL; 1871 1872 1873 /* Tell the block device(s) that the sectors can be discarded */ 1874 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1875 bytenr, &num_bytes, &bbio, 0); 1876 /* Error condition is -ENOMEM */ 1877 if (!ret) { 1878 struct btrfs_bio_stripe *stripe = bbio->stripes; 1879 int i; 1880 1881 1882 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1883 if (!stripe->dev->can_discard) 1884 continue; 1885 1886 ret = btrfs_issue_discard(stripe->dev->bdev, 1887 stripe->physical, 1888 stripe->length); 1889 if (!ret) 1890 discarded_bytes += stripe->length; 1891 else if (ret != -EOPNOTSUPP) 1892 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1893 1894 /* 1895 * Just in case we get back EOPNOTSUPP for some reason, 1896 * just ignore the return value so we don't screw up 1897 * people calling discard_extent. 1898 */ 1899 ret = 0; 1900 } 1901 kfree(bbio); 1902 } 1903 1904 if (actual_bytes) 1905 *actual_bytes = discarded_bytes; 1906 1907 1908 if (ret == -EOPNOTSUPP) 1909 ret = 0; 1910 return ret; 1911 } 1912 1913 /* Can return -ENOMEM */ 1914 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1915 struct btrfs_root *root, 1916 u64 bytenr, u64 num_bytes, u64 parent, 1917 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1918 { 1919 int ret; 1920 struct btrfs_fs_info *fs_info = root->fs_info; 1921 1922 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1923 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1924 1925 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1926 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1927 num_bytes, 1928 parent, root_objectid, (int)owner, 1929 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1930 } else { 1931 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1932 num_bytes, 1933 parent, root_objectid, owner, offset, 1934 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1935 } 1936 return ret; 1937 } 1938 1939 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1940 struct btrfs_root *root, 1941 u64 bytenr, u64 num_bytes, 1942 u64 parent, u64 root_objectid, 1943 u64 owner, u64 offset, int refs_to_add, 1944 struct btrfs_delayed_extent_op *extent_op) 1945 { 1946 struct btrfs_path *path; 1947 struct extent_buffer *leaf; 1948 struct btrfs_extent_item *item; 1949 u64 refs; 1950 int ret; 1951 int err = 0; 1952 1953 path = btrfs_alloc_path(); 1954 if (!path) 1955 return -ENOMEM; 1956 1957 path->reada = 1; 1958 path->leave_spinning = 1; 1959 /* this will setup the path even if it fails to insert the back ref */ 1960 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1961 path, bytenr, num_bytes, parent, 1962 root_objectid, owner, offset, 1963 refs_to_add, extent_op); 1964 if (ret == 0) 1965 goto out; 1966 1967 if (ret != -EAGAIN) { 1968 err = ret; 1969 goto out; 1970 } 1971 1972 leaf = path->nodes[0]; 1973 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1974 refs = btrfs_extent_refs(leaf, item); 1975 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1976 if (extent_op) 1977 __run_delayed_extent_op(extent_op, leaf, item); 1978 1979 btrfs_mark_buffer_dirty(leaf); 1980 btrfs_release_path(path); 1981 1982 path->reada = 1; 1983 path->leave_spinning = 1; 1984 1985 /* now insert the actual backref */ 1986 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1987 path, bytenr, parent, root_objectid, 1988 owner, offset, refs_to_add); 1989 if (ret) 1990 btrfs_abort_transaction(trans, root, ret); 1991 out: 1992 btrfs_free_path(path); 1993 return err; 1994 } 1995 1996 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1997 struct btrfs_root *root, 1998 struct btrfs_delayed_ref_node *node, 1999 struct btrfs_delayed_extent_op *extent_op, 2000 int insert_reserved) 2001 { 2002 int ret = 0; 2003 struct btrfs_delayed_data_ref *ref; 2004 struct btrfs_key ins; 2005 u64 parent = 0; 2006 u64 ref_root = 0; 2007 u64 flags = 0; 2008 2009 ins.objectid = node->bytenr; 2010 ins.offset = node->num_bytes; 2011 ins.type = BTRFS_EXTENT_ITEM_KEY; 2012 2013 ref = btrfs_delayed_node_to_data_ref(node); 2014 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2015 parent = ref->parent; 2016 else 2017 ref_root = ref->root; 2018 2019 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2020 if (extent_op) 2021 flags |= extent_op->flags_to_set; 2022 ret = alloc_reserved_file_extent(trans, root, 2023 parent, ref_root, flags, 2024 ref->objectid, ref->offset, 2025 &ins, node->ref_mod); 2026 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2027 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2028 node->num_bytes, parent, 2029 ref_root, ref->objectid, 2030 ref->offset, node->ref_mod, 2031 extent_op); 2032 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2033 ret = __btrfs_free_extent(trans, root, node->bytenr, 2034 node->num_bytes, parent, 2035 ref_root, ref->objectid, 2036 ref->offset, node->ref_mod, 2037 extent_op); 2038 } else { 2039 BUG(); 2040 } 2041 return ret; 2042 } 2043 2044 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2045 struct extent_buffer *leaf, 2046 struct btrfs_extent_item *ei) 2047 { 2048 u64 flags = btrfs_extent_flags(leaf, ei); 2049 if (extent_op->update_flags) { 2050 flags |= extent_op->flags_to_set; 2051 btrfs_set_extent_flags(leaf, ei, flags); 2052 } 2053 2054 if (extent_op->update_key) { 2055 struct btrfs_tree_block_info *bi; 2056 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2057 bi = (struct btrfs_tree_block_info *)(ei + 1); 2058 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2059 } 2060 } 2061 2062 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2063 struct btrfs_root *root, 2064 struct btrfs_delayed_ref_node *node, 2065 struct btrfs_delayed_extent_op *extent_op) 2066 { 2067 struct btrfs_key key; 2068 struct btrfs_path *path; 2069 struct btrfs_extent_item *ei; 2070 struct extent_buffer *leaf; 2071 u32 item_size; 2072 int ret; 2073 int err = 0; 2074 int metadata = !extent_op->is_data; 2075 2076 if (trans->aborted) 2077 return 0; 2078 2079 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2080 metadata = 0; 2081 2082 path = btrfs_alloc_path(); 2083 if (!path) 2084 return -ENOMEM; 2085 2086 key.objectid = node->bytenr; 2087 2088 if (metadata) { 2089 key.type = BTRFS_METADATA_ITEM_KEY; 2090 key.offset = extent_op->level; 2091 } else { 2092 key.type = BTRFS_EXTENT_ITEM_KEY; 2093 key.offset = node->num_bytes; 2094 } 2095 2096 again: 2097 path->reada = 1; 2098 path->leave_spinning = 1; 2099 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2100 path, 0, 1); 2101 if (ret < 0) { 2102 err = ret; 2103 goto out; 2104 } 2105 if (ret > 0) { 2106 if (metadata) { 2107 btrfs_release_path(path); 2108 metadata = 0; 2109 2110 key.offset = node->num_bytes; 2111 key.type = BTRFS_EXTENT_ITEM_KEY; 2112 goto again; 2113 } 2114 err = -EIO; 2115 goto out; 2116 } 2117 2118 leaf = path->nodes[0]; 2119 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2121 if (item_size < sizeof(*ei)) { 2122 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2123 path, (u64)-1, 0); 2124 if (ret < 0) { 2125 err = ret; 2126 goto out; 2127 } 2128 leaf = path->nodes[0]; 2129 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2130 } 2131 #endif 2132 BUG_ON(item_size < sizeof(*ei)); 2133 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2134 __run_delayed_extent_op(extent_op, leaf, ei); 2135 2136 btrfs_mark_buffer_dirty(leaf); 2137 out: 2138 btrfs_free_path(path); 2139 return err; 2140 } 2141 2142 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2143 struct btrfs_root *root, 2144 struct btrfs_delayed_ref_node *node, 2145 struct btrfs_delayed_extent_op *extent_op, 2146 int insert_reserved) 2147 { 2148 int ret = 0; 2149 struct btrfs_delayed_tree_ref *ref; 2150 struct btrfs_key ins; 2151 u64 parent = 0; 2152 u64 ref_root = 0; 2153 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2154 SKINNY_METADATA); 2155 2156 ref = btrfs_delayed_node_to_tree_ref(node); 2157 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2158 parent = ref->parent; 2159 else 2160 ref_root = ref->root; 2161 2162 ins.objectid = node->bytenr; 2163 if (skinny_metadata) { 2164 ins.offset = ref->level; 2165 ins.type = BTRFS_METADATA_ITEM_KEY; 2166 } else { 2167 ins.offset = node->num_bytes; 2168 ins.type = BTRFS_EXTENT_ITEM_KEY; 2169 } 2170 2171 BUG_ON(node->ref_mod != 1); 2172 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2173 BUG_ON(!extent_op || !extent_op->update_flags); 2174 ret = alloc_reserved_tree_block(trans, root, 2175 parent, ref_root, 2176 extent_op->flags_to_set, 2177 &extent_op->key, 2178 ref->level, &ins); 2179 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2180 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2181 node->num_bytes, parent, ref_root, 2182 ref->level, 0, 1, extent_op); 2183 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2184 ret = __btrfs_free_extent(trans, root, node->bytenr, 2185 node->num_bytes, parent, ref_root, 2186 ref->level, 0, 1, extent_op); 2187 } else { 2188 BUG(); 2189 } 2190 return ret; 2191 } 2192 2193 /* helper function to actually process a single delayed ref entry */ 2194 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2195 struct btrfs_root *root, 2196 struct btrfs_delayed_ref_node *node, 2197 struct btrfs_delayed_extent_op *extent_op, 2198 int insert_reserved) 2199 { 2200 int ret = 0; 2201 2202 if (trans->aborted) 2203 return 0; 2204 2205 if (btrfs_delayed_ref_is_head(node)) { 2206 struct btrfs_delayed_ref_head *head; 2207 /* 2208 * we've hit the end of the chain and we were supposed 2209 * to insert this extent into the tree. But, it got 2210 * deleted before we ever needed to insert it, so all 2211 * we have to do is clean up the accounting 2212 */ 2213 BUG_ON(extent_op); 2214 head = btrfs_delayed_node_to_head(node); 2215 if (insert_reserved) { 2216 btrfs_pin_extent(root, node->bytenr, 2217 node->num_bytes, 1); 2218 if (head->is_data) { 2219 ret = btrfs_del_csums(trans, root, 2220 node->bytenr, 2221 node->num_bytes); 2222 } 2223 } 2224 return ret; 2225 } 2226 2227 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2228 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2229 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2230 insert_reserved); 2231 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2232 node->type == BTRFS_SHARED_DATA_REF_KEY) 2233 ret = run_delayed_data_ref(trans, root, node, extent_op, 2234 insert_reserved); 2235 else 2236 BUG(); 2237 return ret; 2238 } 2239 2240 static noinline struct btrfs_delayed_ref_node * 2241 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2242 { 2243 struct rb_node *node; 2244 struct btrfs_delayed_ref_node *ref; 2245 int action = BTRFS_ADD_DELAYED_REF; 2246 again: 2247 /* 2248 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2249 * this prevents ref count from going down to zero when 2250 * there still are pending delayed ref. 2251 */ 2252 node = rb_prev(&head->node.rb_node); 2253 while (1) { 2254 if (!node) 2255 break; 2256 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2257 rb_node); 2258 if (ref->bytenr != head->node.bytenr) 2259 break; 2260 if (ref->action == action) 2261 return ref; 2262 node = rb_prev(node); 2263 } 2264 if (action == BTRFS_ADD_DELAYED_REF) { 2265 action = BTRFS_DROP_DELAYED_REF; 2266 goto again; 2267 } 2268 return NULL; 2269 } 2270 2271 /* 2272 * Returns 0 on success or if called with an already aborted transaction. 2273 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2274 */ 2275 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2276 struct btrfs_root *root, 2277 struct list_head *cluster) 2278 { 2279 struct btrfs_delayed_ref_root *delayed_refs; 2280 struct btrfs_delayed_ref_node *ref; 2281 struct btrfs_delayed_ref_head *locked_ref = NULL; 2282 struct btrfs_delayed_extent_op *extent_op; 2283 struct btrfs_fs_info *fs_info = root->fs_info; 2284 int ret; 2285 int count = 0; 2286 int must_insert_reserved = 0; 2287 2288 delayed_refs = &trans->transaction->delayed_refs; 2289 while (1) { 2290 if (!locked_ref) { 2291 /* pick a new head ref from the cluster list */ 2292 if (list_empty(cluster)) 2293 break; 2294 2295 locked_ref = list_entry(cluster->next, 2296 struct btrfs_delayed_ref_head, cluster); 2297 2298 /* grab the lock that says we are going to process 2299 * all the refs for this head */ 2300 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2301 2302 /* 2303 * we may have dropped the spin lock to get the head 2304 * mutex lock, and that might have given someone else 2305 * time to free the head. If that's true, it has been 2306 * removed from our list and we can move on. 2307 */ 2308 if (ret == -EAGAIN) { 2309 locked_ref = NULL; 2310 count++; 2311 continue; 2312 } 2313 } 2314 2315 /* 2316 * We need to try and merge add/drops of the same ref since we 2317 * can run into issues with relocate dropping the implicit ref 2318 * and then it being added back again before the drop can 2319 * finish. If we merged anything we need to re-loop so we can 2320 * get a good ref. 2321 */ 2322 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2323 locked_ref); 2324 2325 /* 2326 * locked_ref is the head node, so we have to go one 2327 * node back for any delayed ref updates 2328 */ 2329 ref = select_delayed_ref(locked_ref); 2330 2331 if (ref && ref->seq && 2332 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2333 /* 2334 * there are still refs with lower seq numbers in the 2335 * process of being added. Don't run this ref yet. 2336 */ 2337 list_del_init(&locked_ref->cluster); 2338 btrfs_delayed_ref_unlock(locked_ref); 2339 locked_ref = NULL; 2340 delayed_refs->num_heads_ready++; 2341 spin_unlock(&delayed_refs->lock); 2342 cond_resched(); 2343 spin_lock(&delayed_refs->lock); 2344 continue; 2345 } 2346 2347 /* 2348 * record the must insert reserved flag before we 2349 * drop the spin lock. 2350 */ 2351 must_insert_reserved = locked_ref->must_insert_reserved; 2352 locked_ref->must_insert_reserved = 0; 2353 2354 extent_op = locked_ref->extent_op; 2355 locked_ref->extent_op = NULL; 2356 2357 if (!ref) { 2358 /* All delayed refs have been processed, Go ahead 2359 * and send the head node to run_one_delayed_ref, 2360 * so that any accounting fixes can happen 2361 */ 2362 ref = &locked_ref->node; 2363 2364 if (extent_op && must_insert_reserved) { 2365 btrfs_free_delayed_extent_op(extent_op); 2366 extent_op = NULL; 2367 } 2368 2369 if (extent_op) { 2370 spin_unlock(&delayed_refs->lock); 2371 2372 ret = run_delayed_extent_op(trans, root, 2373 ref, extent_op); 2374 btrfs_free_delayed_extent_op(extent_op); 2375 2376 if (ret) { 2377 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2378 spin_lock(&delayed_refs->lock); 2379 btrfs_delayed_ref_unlock(locked_ref); 2380 return ret; 2381 } 2382 2383 goto next; 2384 } 2385 } 2386 2387 ref->in_tree = 0; 2388 rb_erase(&ref->rb_node, &delayed_refs->root); 2389 delayed_refs->num_entries--; 2390 if (!btrfs_delayed_ref_is_head(ref)) { 2391 /* 2392 * when we play the delayed ref, also correct the 2393 * ref_mod on head 2394 */ 2395 switch (ref->action) { 2396 case BTRFS_ADD_DELAYED_REF: 2397 case BTRFS_ADD_DELAYED_EXTENT: 2398 locked_ref->node.ref_mod -= ref->ref_mod; 2399 break; 2400 case BTRFS_DROP_DELAYED_REF: 2401 locked_ref->node.ref_mod += ref->ref_mod; 2402 break; 2403 default: 2404 WARN_ON(1); 2405 } 2406 } 2407 spin_unlock(&delayed_refs->lock); 2408 2409 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2410 must_insert_reserved); 2411 2412 btrfs_free_delayed_extent_op(extent_op); 2413 if (ret) { 2414 btrfs_delayed_ref_unlock(locked_ref); 2415 btrfs_put_delayed_ref(ref); 2416 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2417 spin_lock(&delayed_refs->lock); 2418 return ret; 2419 } 2420 2421 /* 2422 * If this node is a head, that means all the refs in this head 2423 * have been dealt with, and we will pick the next head to deal 2424 * with, so we must unlock the head and drop it from the cluster 2425 * list before we release it. 2426 */ 2427 if (btrfs_delayed_ref_is_head(ref)) { 2428 list_del_init(&locked_ref->cluster); 2429 btrfs_delayed_ref_unlock(locked_ref); 2430 locked_ref = NULL; 2431 } 2432 btrfs_put_delayed_ref(ref); 2433 count++; 2434 next: 2435 cond_resched(); 2436 spin_lock(&delayed_refs->lock); 2437 } 2438 return count; 2439 } 2440 2441 #ifdef SCRAMBLE_DELAYED_REFS 2442 /* 2443 * Normally delayed refs get processed in ascending bytenr order. This 2444 * correlates in most cases to the order added. To expose dependencies on this 2445 * order, we start to process the tree in the middle instead of the beginning 2446 */ 2447 static u64 find_middle(struct rb_root *root) 2448 { 2449 struct rb_node *n = root->rb_node; 2450 struct btrfs_delayed_ref_node *entry; 2451 int alt = 1; 2452 u64 middle; 2453 u64 first = 0, last = 0; 2454 2455 n = rb_first(root); 2456 if (n) { 2457 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2458 first = entry->bytenr; 2459 } 2460 n = rb_last(root); 2461 if (n) { 2462 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2463 last = entry->bytenr; 2464 } 2465 n = root->rb_node; 2466 2467 while (n) { 2468 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2469 WARN_ON(!entry->in_tree); 2470 2471 middle = entry->bytenr; 2472 2473 if (alt) 2474 n = n->rb_left; 2475 else 2476 n = n->rb_right; 2477 2478 alt = 1 - alt; 2479 } 2480 return middle; 2481 } 2482 #endif 2483 2484 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2485 struct btrfs_fs_info *fs_info) 2486 { 2487 struct qgroup_update *qgroup_update; 2488 int ret = 0; 2489 2490 if (list_empty(&trans->qgroup_ref_list) != 2491 !trans->delayed_ref_elem.seq) { 2492 /* list without seq or seq without list */ 2493 btrfs_err(fs_info, 2494 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2495 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2496 (u32)(trans->delayed_ref_elem.seq >> 32), 2497 (u32)trans->delayed_ref_elem.seq); 2498 BUG(); 2499 } 2500 2501 if (!trans->delayed_ref_elem.seq) 2502 return 0; 2503 2504 while (!list_empty(&trans->qgroup_ref_list)) { 2505 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2506 struct qgroup_update, list); 2507 list_del(&qgroup_update->list); 2508 if (!ret) 2509 ret = btrfs_qgroup_account_ref( 2510 trans, fs_info, qgroup_update->node, 2511 qgroup_update->extent_op); 2512 kfree(qgroup_update); 2513 } 2514 2515 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2516 2517 return ret; 2518 } 2519 2520 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, 2521 int count) 2522 { 2523 int val = atomic_read(&delayed_refs->ref_seq); 2524 2525 if (val < seq || val >= seq + count) 2526 return 1; 2527 return 0; 2528 } 2529 2530 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2531 { 2532 u64 num_bytes; 2533 2534 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2535 sizeof(struct btrfs_extent_inline_ref)); 2536 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2537 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2538 2539 /* 2540 * We don't ever fill up leaves all the way so multiply by 2 just to be 2541 * closer to what we're really going to want to ouse. 2542 */ 2543 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2544 } 2545 2546 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2547 struct btrfs_root *root) 2548 { 2549 struct btrfs_block_rsv *global_rsv; 2550 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2551 u64 num_bytes; 2552 int ret = 0; 2553 2554 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2555 num_heads = heads_to_leaves(root, num_heads); 2556 if (num_heads > 1) 2557 num_bytes += (num_heads - 1) * root->leafsize; 2558 num_bytes <<= 1; 2559 global_rsv = &root->fs_info->global_block_rsv; 2560 2561 /* 2562 * If we can't allocate any more chunks lets make sure we have _lots_ of 2563 * wiggle room since running delayed refs can create more delayed refs. 2564 */ 2565 if (global_rsv->space_info->full) 2566 num_bytes <<= 1; 2567 2568 spin_lock(&global_rsv->lock); 2569 if (global_rsv->reserved <= num_bytes) 2570 ret = 1; 2571 spin_unlock(&global_rsv->lock); 2572 return ret; 2573 } 2574 2575 /* 2576 * this starts processing the delayed reference count updates and 2577 * extent insertions we have queued up so far. count can be 2578 * 0, which means to process everything in the tree at the start 2579 * of the run (but not newly added entries), or it can be some target 2580 * number you'd like to process. 2581 * 2582 * Returns 0 on success or if called with an aborted transaction 2583 * Returns <0 on error and aborts the transaction 2584 */ 2585 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2586 struct btrfs_root *root, unsigned long count) 2587 { 2588 struct rb_node *node; 2589 struct btrfs_delayed_ref_root *delayed_refs; 2590 struct btrfs_delayed_ref_node *ref; 2591 struct list_head cluster; 2592 int ret; 2593 u64 delayed_start; 2594 int run_all = count == (unsigned long)-1; 2595 int run_most = 0; 2596 int loops; 2597 2598 /* We'll clean this up in btrfs_cleanup_transaction */ 2599 if (trans->aborted) 2600 return 0; 2601 2602 if (root == root->fs_info->extent_root) 2603 root = root->fs_info->tree_root; 2604 2605 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2606 2607 delayed_refs = &trans->transaction->delayed_refs; 2608 INIT_LIST_HEAD(&cluster); 2609 if (count == 0) { 2610 count = delayed_refs->num_entries * 2; 2611 run_most = 1; 2612 } 2613 2614 if (!run_all && !run_most) { 2615 int old; 2616 int seq = atomic_read(&delayed_refs->ref_seq); 2617 2618 progress: 2619 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2620 if (old) { 2621 DEFINE_WAIT(__wait); 2622 if (delayed_refs->flushing || 2623 !btrfs_should_throttle_delayed_refs(trans, root)) 2624 return 0; 2625 2626 prepare_to_wait(&delayed_refs->wait, &__wait, 2627 TASK_UNINTERRUPTIBLE); 2628 2629 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2630 if (old) { 2631 schedule(); 2632 finish_wait(&delayed_refs->wait, &__wait); 2633 2634 if (!refs_newer(delayed_refs, seq, 256)) 2635 goto progress; 2636 else 2637 return 0; 2638 } else { 2639 finish_wait(&delayed_refs->wait, &__wait); 2640 goto again; 2641 } 2642 } 2643 2644 } else { 2645 atomic_inc(&delayed_refs->procs_running_refs); 2646 } 2647 2648 again: 2649 loops = 0; 2650 spin_lock(&delayed_refs->lock); 2651 2652 #ifdef SCRAMBLE_DELAYED_REFS 2653 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2654 #endif 2655 2656 while (1) { 2657 if (!(run_all || run_most) && 2658 !btrfs_should_throttle_delayed_refs(trans, root)) 2659 break; 2660 2661 /* 2662 * go find something we can process in the rbtree. We start at 2663 * the beginning of the tree, and then build a cluster 2664 * of refs to process starting at the first one we are able to 2665 * lock 2666 */ 2667 delayed_start = delayed_refs->run_delayed_start; 2668 ret = btrfs_find_ref_cluster(trans, &cluster, 2669 delayed_refs->run_delayed_start); 2670 if (ret) 2671 break; 2672 2673 ret = run_clustered_refs(trans, root, &cluster); 2674 if (ret < 0) { 2675 btrfs_release_ref_cluster(&cluster); 2676 spin_unlock(&delayed_refs->lock); 2677 btrfs_abort_transaction(trans, root, ret); 2678 atomic_dec(&delayed_refs->procs_running_refs); 2679 wake_up(&delayed_refs->wait); 2680 return ret; 2681 } 2682 2683 atomic_add(ret, &delayed_refs->ref_seq); 2684 2685 count -= min_t(unsigned long, ret, count); 2686 2687 if (count == 0) 2688 break; 2689 2690 if (delayed_start >= delayed_refs->run_delayed_start) { 2691 if (loops == 0) { 2692 /* 2693 * btrfs_find_ref_cluster looped. let's do one 2694 * more cycle. if we don't run any delayed ref 2695 * during that cycle (because we can't because 2696 * all of them are blocked), bail out. 2697 */ 2698 loops = 1; 2699 } else { 2700 /* 2701 * no runnable refs left, stop trying 2702 */ 2703 BUG_ON(run_all); 2704 break; 2705 } 2706 } 2707 if (ret) { 2708 /* refs were run, let's reset staleness detection */ 2709 loops = 0; 2710 } 2711 } 2712 2713 if (run_all) { 2714 if (!list_empty(&trans->new_bgs)) { 2715 spin_unlock(&delayed_refs->lock); 2716 btrfs_create_pending_block_groups(trans, root); 2717 spin_lock(&delayed_refs->lock); 2718 } 2719 2720 node = rb_first(&delayed_refs->root); 2721 if (!node) 2722 goto out; 2723 count = (unsigned long)-1; 2724 2725 while (node) { 2726 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2727 rb_node); 2728 if (btrfs_delayed_ref_is_head(ref)) { 2729 struct btrfs_delayed_ref_head *head; 2730 2731 head = btrfs_delayed_node_to_head(ref); 2732 atomic_inc(&ref->refs); 2733 2734 spin_unlock(&delayed_refs->lock); 2735 /* 2736 * Mutex was contended, block until it's 2737 * released and try again 2738 */ 2739 mutex_lock(&head->mutex); 2740 mutex_unlock(&head->mutex); 2741 2742 btrfs_put_delayed_ref(ref); 2743 cond_resched(); 2744 goto again; 2745 } 2746 node = rb_next(node); 2747 } 2748 spin_unlock(&delayed_refs->lock); 2749 schedule_timeout(1); 2750 goto again; 2751 } 2752 out: 2753 atomic_dec(&delayed_refs->procs_running_refs); 2754 smp_mb(); 2755 if (waitqueue_active(&delayed_refs->wait)) 2756 wake_up(&delayed_refs->wait); 2757 2758 spin_unlock(&delayed_refs->lock); 2759 assert_qgroups_uptodate(trans); 2760 return 0; 2761 } 2762 2763 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 u64 bytenr, u64 num_bytes, u64 flags, 2766 int level, int is_data) 2767 { 2768 struct btrfs_delayed_extent_op *extent_op; 2769 int ret; 2770 2771 extent_op = btrfs_alloc_delayed_extent_op(); 2772 if (!extent_op) 2773 return -ENOMEM; 2774 2775 extent_op->flags_to_set = flags; 2776 extent_op->update_flags = 1; 2777 extent_op->update_key = 0; 2778 extent_op->is_data = is_data ? 1 : 0; 2779 extent_op->level = level; 2780 2781 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2782 num_bytes, extent_op); 2783 if (ret) 2784 btrfs_free_delayed_extent_op(extent_op); 2785 return ret; 2786 } 2787 2788 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 struct btrfs_path *path, 2791 u64 objectid, u64 offset, u64 bytenr) 2792 { 2793 struct btrfs_delayed_ref_head *head; 2794 struct btrfs_delayed_ref_node *ref; 2795 struct btrfs_delayed_data_ref *data_ref; 2796 struct btrfs_delayed_ref_root *delayed_refs; 2797 struct rb_node *node; 2798 int ret = 0; 2799 2800 ret = -ENOENT; 2801 delayed_refs = &trans->transaction->delayed_refs; 2802 spin_lock(&delayed_refs->lock); 2803 head = btrfs_find_delayed_ref_head(trans, bytenr); 2804 if (!head) 2805 goto out; 2806 2807 if (!mutex_trylock(&head->mutex)) { 2808 atomic_inc(&head->node.refs); 2809 spin_unlock(&delayed_refs->lock); 2810 2811 btrfs_release_path(path); 2812 2813 /* 2814 * Mutex was contended, block until it's released and let 2815 * caller try again 2816 */ 2817 mutex_lock(&head->mutex); 2818 mutex_unlock(&head->mutex); 2819 btrfs_put_delayed_ref(&head->node); 2820 return -EAGAIN; 2821 } 2822 2823 node = rb_prev(&head->node.rb_node); 2824 if (!node) 2825 goto out_unlock; 2826 2827 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2828 2829 if (ref->bytenr != bytenr) 2830 goto out_unlock; 2831 2832 ret = 1; 2833 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2834 goto out_unlock; 2835 2836 data_ref = btrfs_delayed_node_to_data_ref(ref); 2837 2838 node = rb_prev(node); 2839 if (node) { 2840 int seq = ref->seq; 2841 2842 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2843 if (ref->bytenr == bytenr && ref->seq == seq) 2844 goto out_unlock; 2845 } 2846 2847 if (data_ref->root != root->root_key.objectid || 2848 data_ref->objectid != objectid || data_ref->offset != offset) 2849 goto out_unlock; 2850 2851 ret = 0; 2852 out_unlock: 2853 mutex_unlock(&head->mutex); 2854 out: 2855 spin_unlock(&delayed_refs->lock); 2856 return ret; 2857 } 2858 2859 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2860 struct btrfs_root *root, 2861 struct btrfs_path *path, 2862 u64 objectid, u64 offset, u64 bytenr) 2863 { 2864 struct btrfs_root *extent_root = root->fs_info->extent_root; 2865 struct extent_buffer *leaf; 2866 struct btrfs_extent_data_ref *ref; 2867 struct btrfs_extent_inline_ref *iref; 2868 struct btrfs_extent_item *ei; 2869 struct btrfs_key key; 2870 u32 item_size; 2871 int ret; 2872 2873 key.objectid = bytenr; 2874 key.offset = (u64)-1; 2875 key.type = BTRFS_EXTENT_ITEM_KEY; 2876 2877 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2878 if (ret < 0) 2879 goto out; 2880 BUG_ON(ret == 0); /* Corruption */ 2881 2882 ret = -ENOENT; 2883 if (path->slots[0] == 0) 2884 goto out; 2885 2886 path->slots[0]--; 2887 leaf = path->nodes[0]; 2888 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2889 2890 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2891 goto out; 2892 2893 ret = 1; 2894 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2896 if (item_size < sizeof(*ei)) { 2897 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2898 goto out; 2899 } 2900 #endif 2901 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2902 2903 if (item_size != sizeof(*ei) + 2904 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2905 goto out; 2906 2907 if (btrfs_extent_generation(leaf, ei) <= 2908 btrfs_root_last_snapshot(&root->root_item)) 2909 goto out; 2910 2911 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2912 if (btrfs_extent_inline_ref_type(leaf, iref) != 2913 BTRFS_EXTENT_DATA_REF_KEY) 2914 goto out; 2915 2916 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2917 if (btrfs_extent_refs(leaf, ei) != 2918 btrfs_extent_data_ref_count(leaf, ref) || 2919 btrfs_extent_data_ref_root(leaf, ref) != 2920 root->root_key.objectid || 2921 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2922 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2923 goto out; 2924 2925 ret = 0; 2926 out: 2927 return ret; 2928 } 2929 2930 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2931 struct btrfs_root *root, 2932 u64 objectid, u64 offset, u64 bytenr) 2933 { 2934 struct btrfs_path *path; 2935 int ret; 2936 int ret2; 2937 2938 path = btrfs_alloc_path(); 2939 if (!path) 2940 return -ENOENT; 2941 2942 do { 2943 ret = check_committed_ref(trans, root, path, objectid, 2944 offset, bytenr); 2945 if (ret && ret != -ENOENT) 2946 goto out; 2947 2948 ret2 = check_delayed_ref(trans, root, path, objectid, 2949 offset, bytenr); 2950 } while (ret2 == -EAGAIN); 2951 2952 if (ret2 && ret2 != -ENOENT) { 2953 ret = ret2; 2954 goto out; 2955 } 2956 2957 if (ret != -ENOENT || ret2 != -ENOENT) 2958 ret = 0; 2959 out: 2960 btrfs_free_path(path); 2961 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2962 WARN_ON(ret > 0); 2963 return ret; 2964 } 2965 2966 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, 2968 struct extent_buffer *buf, 2969 int full_backref, int inc, int for_cow) 2970 { 2971 u64 bytenr; 2972 u64 num_bytes; 2973 u64 parent; 2974 u64 ref_root; 2975 u32 nritems; 2976 struct btrfs_key key; 2977 struct btrfs_file_extent_item *fi; 2978 int i; 2979 int level; 2980 int ret = 0; 2981 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2982 u64, u64, u64, u64, u64, u64, int); 2983 2984 ref_root = btrfs_header_owner(buf); 2985 nritems = btrfs_header_nritems(buf); 2986 level = btrfs_header_level(buf); 2987 2988 if (!root->ref_cows && level == 0) 2989 return 0; 2990 2991 if (inc) 2992 process_func = btrfs_inc_extent_ref; 2993 else 2994 process_func = btrfs_free_extent; 2995 2996 if (full_backref) 2997 parent = buf->start; 2998 else 2999 parent = 0; 3000 3001 for (i = 0; i < nritems; i++) { 3002 if (level == 0) { 3003 btrfs_item_key_to_cpu(buf, &key, i); 3004 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3005 continue; 3006 fi = btrfs_item_ptr(buf, i, 3007 struct btrfs_file_extent_item); 3008 if (btrfs_file_extent_type(buf, fi) == 3009 BTRFS_FILE_EXTENT_INLINE) 3010 continue; 3011 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3012 if (bytenr == 0) 3013 continue; 3014 3015 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3016 key.offset -= btrfs_file_extent_offset(buf, fi); 3017 ret = process_func(trans, root, bytenr, num_bytes, 3018 parent, ref_root, key.objectid, 3019 key.offset, for_cow); 3020 if (ret) 3021 goto fail; 3022 } else { 3023 bytenr = btrfs_node_blockptr(buf, i); 3024 num_bytes = btrfs_level_size(root, level - 1); 3025 ret = process_func(trans, root, bytenr, num_bytes, 3026 parent, ref_root, level - 1, 0, 3027 for_cow); 3028 if (ret) 3029 goto fail; 3030 } 3031 } 3032 return 0; 3033 fail: 3034 return ret; 3035 } 3036 3037 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3038 struct extent_buffer *buf, int full_backref, int for_cow) 3039 { 3040 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3041 } 3042 3043 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3044 struct extent_buffer *buf, int full_backref, int for_cow) 3045 { 3046 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3047 } 3048 3049 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root, 3051 struct btrfs_path *path, 3052 struct btrfs_block_group_cache *cache) 3053 { 3054 int ret; 3055 struct btrfs_root *extent_root = root->fs_info->extent_root; 3056 unsigned long bi; 3057 struct extent_buffer *leaf; 3058 3059 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3060 if (ret < 0) 3061 goto fail; 3062 BUG_ON(ret); /* Corruption */ 3063 3064 leaf = path->nodes[0]; 3065 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3066 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3067 btrfs_mark_buffer_dirty(leaf); 3068 btrfs_release_path(path); 3069 fail: 3070 if (ret) { 3071 btrfs_abort_transaction(trans, root, ret); 3072 return ret; 3073 } 3074 return 0; 3075 3076 } 3077 3078 static struct btrfs_block_group_cache * 3079 next_block_group(struct btrfs_root *root, 3080 struct btrfs_block_group_cache *cache) 3081 { 3082 struct rb_node *node; 3083 spin_lock(&root->fs_info->block_group_cache_lock); 3084 node = rb_next(&cache->cache_node); 3085 btrfs_put_block_group(cache); 3086 if (node) { 3087 cache = rb_entry(node, struct btrfs_block_group_cache, 3088 cache_node); 3089 btrfs_get_block_group(cache); 3090 } else 3091 cache = NULL; 3092 spin_unlock(&root->fs_info->block_group_cache_lock); 3093 return cache; 3094 } 3095 3096 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3097 struct btrfs_trans_handle *trans, 3098 struct btrfs_path *path) 3099 { 3100 struct btrfs_root *root = block_group->fs_info->tree_root; 3101 struct inode *inode = NULL; 3102 u64 alloc_hint = 0; 3103 int dcs = BTRFS_DC_ERROR; 3104 int num_pages = 0; 3105 int retries = 0; 3106 int ret = 0; 3107 3108 /* 3109 * If this block group is smaller than 100 megs don't bother caching the 3110 * block group. 3111 */ 3112 if (block_group->key.offset < (100 * 1024 * 1024)) { 3113 spin_lock(&block_group->lock); 3114 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3115 spin_unlock(&block_group->lock); 3116 return 0; 3117 } 3118 3119 again: 3120 inode = lookup_free_space_inode(root, block_group, path); 3121 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3122 ret = PTR_ERR(inode); 3123 btrfs_release_path(path); 3124 goto out; 3125 } 3126 3127 if (IS_ERR(inode)) { 3128 BUG_ON(retries); 3129 retries++; 3130 3131 if (block_group->ro) 3132 goto out_free; 3133 3134 ret = create_free_space_inode(root, trans, block_group, path); 3135 if (ret) 3136 goto out_free; 3137 goto again; 3138 } 3139 3140 /* We've already setup this transaction, go ahead and exit */ 3141 if (block_group->cache_generation == trans->transid && 3142 i_size_read(inode)) { 3143 dcs = BTRFS_DC_SETUP; 3144 goto out_put; 3145 } 3146 3147 /* 3148 * We want to set the generation to 0, that way if anything goes wrong 3149 * from here on out we know not to trust this cache when we load up next 3150 * time. 3151 */ 3152 BTRFS_I(inode)->generation = 0; 3153 ret = btrfs_update_inode(trans, root, inode); 3154 WARN_ON(ret); 3155 3156 if (i_size_read(inode) > 0) { 3157 ret = btrfs_check_trunc_cache_free_space(root, 3158 &root->fs_info->global_block_rsv); 3159 if (ret) 3160 goto out_put; 3161 3162 ret = btrfs_truncate_free_space_cache(root, trans, path, 3163 inode); 3164 if (ret) 3165 goto out_put; 3166 } 3167 3168 spin_lock(&block_group->lock); 3169 if (block_group->cached != BTRFS_CACHE_FINISHED || 3170 !btrfs_test_opt(root, SPACE_CACHE)) { 3171 /* 3172 * don't bother trying to write stuff out _if_ 3173 * a) we're not cached, 3174 * b) we're with nospace_cache mount option. 3175 */ 3176 dcs = BTRFS_DC_WRITTEN; 3177 spin_unlock(&block_group->lock); 3178 goto out_put; 3179 } 3180 spin_unlock(&block_group->lock); 3181 3182 /* 3183 * Try to preallocate enough space based on how big the block group is. 3184 * Keep in mind this has to include any pinned space which could end up 3185 * taking up quite a bit since it's not folded into the other space 3186 * cache. 3187 */ 3188 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3189 if (!num_pages) 3190 num_pages = 1; 3191 3192 num_pages *= 16; 3193 num_pages *= PAGE_CACHE_SIZE; 3194 3195 ret = btrfs_check_data_free_space(inode, num_pages); 3196 if (ret) 3197 goto out_put; 3198 3199 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3200 num_pages, num_pages, 3201 &alloc_hint); 3202 if (!ret) 3203 dcs = BTRFS_DC_SETUP; 3204 btrfs_free_reserved_data_space(inode, num_pages); 3205 3206 out_put: 3207 iput(inode); 3208 out_free: 3209 btrfs_release_path(path); 3210 out: 3211 spin_lock(&block_group->lock); 3212 if (!ret && dcs == BTRFS_DC_SETUP) 3213 block_group->cache_generation = trans->transid; 3214 block_group->disk_cache_state = dcs; 3215 spin_unlock(&block_group->lock); 3216 3217 return ret; 3218 } 3219 3220 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3221 struct btrfs_root *root) 3222 { 3223 struct btrfs_block_group_cache *cache; 3224 int err = 0; 3225 struct btrfs_path *path; 3226 u64 last = 0; 3227 3228 path = btrfs_alloc_path(); 3229 if (!path) 3230 return -ENOMEM; 3231 3232 again: 3233 while (1) { 3234 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3235 while (cache) { 3236 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3237 break; 3238 cache = next_block_group(root, cache); 3239 } 3240 if (!cache) { 3241 if (last == 0) 3242 break; 3243 last = 0; 3244 continue; 3245 } 3246 err = cache_save_setup(cache, trans, path); 3247 last = cache->key.objectid + cache->key.offset; 3248 btrfs_put_block_group(cache); 3249 } 3250 3251 while (1) { 3252 if (last == 0) { 3253 err = btrfs_run_delayed_refs(trans, root, 3254 (unsigned long)-1); 3255 if (err) /* File system offline */ 3256 goto out; 3257 } 3258 3259 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3260 while (cache) { 3261 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3262 btrfs_put_block_group(cache); 3263 goto again; 3264 } 3265 3266 if (cache->dirty) 3267 break; 3268 cache = next_block_group(root, cache); 3269 } 3270 if (!cache) { 3271 if (last == 0) 3272 break; 3273 last = 0; 3274 continue; 3275 } 3276 3277 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3278 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3279 cache->dirty = 0; 3280 last = cache->key.objectid + cache->key.offset; 3281 3282 err = write_one_cache_group(trans, root, path, cache); 3283 if (err) /* File system offline */ 3284 goto out; 3285 3286 btrfs_put_block_group(cache); 3287 } 3288 3289 while (1) { 3290 /* 3291 * I don't think this is needed since we're just marking our 3292 * preallocated extent as written, but just in case it can't 3293 * hurt. 3294 */ 3295 if (last == 0) { 3296 err = btrfs_run_delayed_refs(trans, root, 3297 (unsigned long)-1); 3298 if (err) /* File system offline */ 3299 goto out; 3300 } 3301 3302 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3303 while (cache) { 3304 /* 3305 * Really this shouldn't happen, but it could if we 3306 * couldn't write the entire preallocated extent and 3307 * splitting the extent resulted in a new block. 3308 */ 3309 if (cache->dirty) { 3310 btrfs_put_block_group(cache); 3311 goto again; 3312 } 3313 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3314 break; 3315 cache = next_block_group(root, cache); 3316 } 3317 if (!cache) { 3318 if (last == 0) 3319 break; 3320 last = 0; 3321 continue; 3322 } 3323 3324 err = btrfs_write_out_cache(root, trans, cache, path); 3325 3326 /* 3327 * If we didn't have an error then the cache state is still 3328 * NEED_WRITE, so we can set it to WRITTEN. 3329 */ 3330 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3331 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3332 last = cache->key.objectid + cache->key.offset; 3333 btrfs_put_block_group(cache); 3334 } 3335 out: 3336 3337 btrfs_free_path(path); 3338 return err; 3339 } 3340 3341 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3342 { 3343 struct btrfs_block_group_cache *block_group; 3344 int readonly = 0; 3345 3346 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3347 if (!block_group || block_group->ro) 3348 readonly = 1; 3349 if (block_group) 3350 btrfs_put_block_group(block_group); 3351 return readonly; 3352 } 3353 3354 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3355 u64 total_bytes, u64 bytes_used, 3356 struct btrfs_space_info **space_info) 3357 { 3358 struct btrfs_space_info *found; 3359 int i; 3360 int factor; 3361 int ret; 3362 3363 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3364 BTRFS_BLOCK_GROUP_RAID10)) 3365 factor = 2; 3366 else 3367 factor = 1; 3368 3369 found = __find_space_info(info, flags); 3370 if (found) { 3371 spin_lock(&found->lock); 3372 found->total_bytes += total_bytes; 3373 found->disk_total += total_bytes * factor; 3374 found->bytes_used += bytes_used; 3375 found->disk_used += bytes_used * factor; 3376 found->full = 0; 3377 spin_unlock(&found->lock); 3378 *space_info = found; 3379 return 0; 3380 } 3381 found = kzalloc(sizeof(*found), GFP_NOFS); 3382 if (!found) 3383 return -ENOMEM; 3384 3385 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3386 if (ret) { 3387 kfree(found); 3388 return ret; 3389 } 3390 3391 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3392 INIT_LIST_HEAD(&found->block_groups[i]); 3393 init_rwsem(&found->groups_sem); 3394 spin_lock_init(&found->lock); 3395 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3396 found->total_bytes = total_bytes; 3397 found->disk_total = total_bytes * factor; 3398 found->bytes_used = bytes_used; 3399 found->disk_used = bytes_used * factor; 3400 found->bytes_pinned = 0; 3401 found->bytes_reserved = 0; 3402 found->bytes_readonly = 0; 3403 found->bytes_may_use = 0; 3404 found->full = 0; 3405 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3406 found->chunk_alloc = 0; 3407 found->flush = 0; 3408 init_waitqueue_head(&found->wait); 3409 *space_info = found; 3410 list_add_rcu(&found->list, &info->space_info); 3411 if (flags & BTRFS_BLOCK_GROUP_DATA) 3412 info->data_sinfo = found; 3413 return 0; 3414 } 3415 3416 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3417 { 3418 u64 extra_flags = chunk_to_extended(flags) & 3419 BTRFS_EXTENDED_PROFILE_MASK; 3420 3421 write_seqlock(&fs_info->profiles_lock); 3422 if (flags & BTRFS_BLOCK_GROUP_DATA) 3423 fs_info->avail_data_alloc_bits |= extra_flags; 3424 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3425 fs_info->avail_metadata_alloc_bits |= extra_flags; 3426 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3427 fs_info->avail_system_alloc_bits |= extra_flags; 3428 write_sequnlock(&fs_info->profiles_lock); 3429 } 3430 3431 /* 3432 * returns target flags in extended format or 0 if restripe for this 3433 * chunk_type is not in progress 3434 * 3435 * should be called with either volume_mutex or balance_lock held 3436 */ 3437 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3438 { 3439 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3440 u64 target = 0; 3441 3442 if (!bctl) 3443 return 0; 3444 3445 if (flags & BTRFS_BLOCK_GROUP_DATA && 3446 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3447 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3448 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3449 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3450 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3451 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3452 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3453 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3454 } 3455 3456 return target; 3457 } 3458 3459 /* 3460 * @flags: available profiles in extended format (see ctree.h) 3461 * 3462 * Returns reduced profile in chunk format. If profile changing is in 3463 * progress (either running or paused) picks the target profile (if it's 3464 * already available), otherwise falls back to plain reducing. 3465 */ 3466 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3467 { 3468 /* 3469 * we add in the count of missing devices because we want 3470 * to make sure that any RAID levels on a degraded FS 3471 * continue to be honored. 3472 */ 3473 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3474 root->fs_info->fs_devices->missing_devices; 3475 u64 target; 3476 u64 tmp; 3477 3478 /* 3479 * see if restripe for this chunk_type is in progress, if so 3480 * try to reduce to the target profile 3481 */ 3482 spin_lock(&root->fs_info->balance_lock); 3483 target = get_restripe_target(root->fs_info, flags); 3484 if (target) { 3485 /* pick target profile only if it's already available */ 3486 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3487 spin_unlock(&root->fs_info->balance_lock); 3488 return extended_to_chunk(target); 3489 } 3490 } 3491 spin_unlock(&root->fs_info->balance_lock); 3492 3493 /* First, mask out the RAID levels which aren't possible */ 3494 if (num_devices == 1) 3495 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3496 BTRFS_BLOCK_GROUP_RAID5); 3497 if (num_devices < 3) 3498 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3499 if (num_devices < 4) 3500 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3501 3502 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3503 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3504 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3505 flags &= ~tmp; 3506 3507 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3508 tmp = BTRFS_BLOCK_GROUP_RAID6; 3509 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3510 tmp = BTRFS_BLOCK_GROUP_RAID5; 3511 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3512 tmp = BTRFS_BLOCK_GROUP_RAID10; 3513 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3514 tmp = BTRFS_BLOCK_GROUP_RAID1; 3515 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3516 tmp = BTRFS_BLOCK_GROUP_RAID0; 3517 3518 return extended_to_chunk(flags | tmp); 3519 } 3520 3521 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3522 { 3523 unsigned seq; 3524 3525 do { 3526 seq = read_seqbegin(&root->fs_info->profiles_lock); 3527 3528 if (flags & BTRFS_BLOCK_GROUP_DATA) 3529 flags |= root->fs_info->avail_data_alloc_bits; 3530 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3531 flags |= root->fs_info->avail_system_alloc_bits; 3532 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3533 flags |= root->fs_info->avail_metadata_alloc_bits; 3534 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3535 3536 return btrfs_reduce_alloc_profile(root, flags); 3537 } 3538 3539 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3540 { 3541 u64 flags; 3542 u64 ret; 3543 3544 if (data) 3545 flags = BTRFS_BLOCK_GROUP_DATA; 3546 else if (root == root->fs_info->chunk_root) 3547 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3548 else 3549 flags = BTRFS_BLOCK_GROUP_METADATA; 3550 3551 ret = get_alloc_profile(root, flags); 3552 return ret; 3553 } 3554 3555 /* 3556 * This will check the space that the inode allocates from to make sure we have 3557 * enough space for bytes. 3558 */ 3559 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3560 { 3561 struct btrfs_space_info *data_sinfo; 3562 struct btrfs_root *root = BTRFS_I(inode)->root; 3563 struct btrfs_fs_info *fs_info = root->fs_info; 3564 u64 used; 3565 int ret = 0, committed = 0, alloc_chunk = 1; 3566 3567 /* make sure bytes are sectorsize aligned */ 3568 bytes = ALIGN(bytes, root->sectorsize); 3569 3570 if (root == root->fs_info->tree_root || 3571 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3572 alloc_chunk = 0; 3573 committed = 1; 3574 } 3575 3576 data_sinfo = fs_info->data_sinfo; 3577 if (!data_sinfo) 3578 goto alloc; 3579 3580 again: 3581 /* make sure we have enough space to handle the data first */ 3582 spin_lock(&data_sinfo->lock); 3583 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3584 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3585 data_sinfo->bytes_may_use; 3586 3587 if (used + bytes > data_sinfo->total_bytes) { 3588 struct btrfs_trans_handle *trans; 3589 3590 /* 3591 * if we don't have enough free bytes in this space then we need 3592 * to alloc a new chunk. 3593 */ 3594 if (!data_sinfo->full && alloc_chunk) { 3595 u64 alloc_target; 3596 3597 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3598 spin_unlock(&data_sinfo->lock); 3599 alloc: 3600 alloc_target = btrfs_get_alloc_profile(root, 1); 3601 trans = btrfs_join_transaction(root); 3602 if (IS_ERR(trans)) 3603 return PTR_ERR(trans); 3604 3605 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3606 alloc_target, 3607 CHUNK_ALLOC_NO_FORCE); 3608 btrfs_end_transaction(trans, root); 3609 if (ret < 0) { 3610 if (ret != -ENOSPC) 3611 return ret; 3612 else 3613 goto commit_trans; 3614 } 3615 3616 if (!data_sinfo) 3617 data_sinfo = fs_info->data_sinfo; 3618 3619 goto again; 3620 } 3621 3622 /* 3623 * If we don't have enough pinned space to deal with this 3624 * allocation don't bother committing the transaction. 3625 */ 3626 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3627 bytes) < 0) 3628 committed = 1; 3629 spin_unlock(&data_sinfo->lock); 3630 3631 /* commit the current transaction and try again */ 3632 commit_trans: 3633 if (!committed && 3634 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3635 committed = 1; 3636 3637 trans = btrfs_join_transaction(root); 3638 if (IS_ERR(trans)) 3639 return PTR_ERR(trans); 3640 ret = btrfs_commit_transaction(trans, root); 3641 if (ret) 3642 return ret; 3643 goto again; 3644 } 3645 3646 return -ENOSPC; 3647 } 3648 data_sinfo->bytes_may_use += bytes; 3649 trace_btrfs_space_reservation(root->fs_info, "space_info", 3650 data_sinfo->flags, bytes, 1); 3651 spin_unlock(&data_sinfo->lock); 3652 3653 return 0; 3654 } 3655 3656 /* 3657 * Called if we need to clear a data reservation for this inode. 3658 */ 3659 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3660 { 3661 struct btrfs_root *root = BTRFS_I(inode)->root; 3662 struct btrfs_space_info *data_sinfo; 3663 3664 /* make sure bytes are sectorsize aligned */ 3665 bytes = ALIGN(bytes, root->sectorsize); 3666 3667 data_sinfo = root->fs_info->data_sinfo; 3668 spin_lock(&data_sinfo->lock); 3669 WARN_ON(data_sinfo->bytes_may_use < bytes); 3670 data_sinfo->bytes_may_use -= bytes; 3671 trace_btrfs_space_reservation(root->fs_info, "space_info", 3672 data_sinfo->flags, bytes, 0); 3673 spin_unlock(&data_sinfo->lock); 3674 } 3675 3676 static void force_metadata_allocation(struct btrfs_fs_info *info) 3677 { 3678 struct list_head *head = &info->space_info; 3679 struct btrfs_space_info *found; 3680 3681 rcu_read_lock(); 3682 list_for_each_entry_rcu(found, head, list) { 3683 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3684 found->force_alloc = CHUNK_ALLOC_FORCE; 3685 } 3686 rcu_read_unlock(); 3687 } 3688 3689 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3690 { 3691 return (global->size << 1); 3692 } 3693 3694 static int should_alloc_chunk(struct btrfs_root *root, 3695 struct btrfs_space_info *sinfo, int force) 3696 { 3697 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3698 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3699 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3700 u64 thresh; 3701 3702 if (force == CHUNK_ALLOC_FORCE) 3703 return 1; 3704 3705 /* 3706 * We need to take into account the global rsv because for all intents 3707 * and purposes it's used space. Don't worry about locking the 3708 * global_rsv, it doesn't change except when the transaction commits. 3709 */ 3710 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3711 num_allocated += calc_global_rsv_need_space(global_rsv); 3712 3713 /* 3714 * in limited mode, we want to have some free space up to 3715 * about 1% of the FS size. 3716 */ 3717 if (force == CHUNK_ALLOC_LIMITED) { 3718 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3719 thresh = max_t(u64, 64 * 1024 * 1024, 3720 div_factor_fine(thresh, 1)); 3721 3722 if (num_bytes - num_allocated < thresh) 3723 return 1; 3724 } 3725 3726 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3727 return 0; 3728 return 1; 3729 } 3730 3731 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3732 { 3733 u64 num_dev; 3734 3735 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3736 BTRFS_BLOCK_GROUP_RAID0 | 3737 BTRFS_BLOCK_GROUP_RAID5 | 3738 BTRFS_BLOCK_GROUP_RAID6)) 3739 num_dev = root->fs_info->fs_devices->rw_devices; 3740 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3741 num_dev = 2; 3742 else 3743 num_dev = 1; /* DUP or single */ 3744 3745 /* metadata for updaing devices and chunk tree */ 3746 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3747 } 3748 3749 static void check_system_chunk(struct btrfs_trans_handle *trans, 3750 struct btrfs_root *root, u64 type) 3751 { 3752 struct btrfs_space_info *info; 3753 u64 left; 3754 u64 thresh; 3755 3756 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3757 spin_lock(&info->lock); 3758 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3759 info->bytes_reserved - info->bytes_readonly; 3760 spin_unlock(&info->lock); 3761 3762 thresh = get_system_chunk_thresh(root, type); 3763 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3764 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3765 left, thresh, type); 3766 dump_space_info(info, 0, 0); 3767 } 3768 3769 if (left < thresh) { 3770 u64 flags; 3771 3772 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3773 btrfs_alloc_chunk(trans, root, flags); 3774 } 3775 } 3776 3777 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3778 struct btrfs_root *extent_root, u64 flags, int force) 3779 { 3780 struct btrfs_space_info *space_info; 3781 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3782 int wait_for_alloc = 0; 3783 int ret = 0; 3784 3785 /* Don't re-enter if we're already allocating a chunk */ 3786 if (trans->allocating_chunk) 3787 return -ENOSPC; 3788 3789 space_info = __find_space_info(extent_root->fs_info, flags); 3790 if (!space_info) { 3791 ret = update_space_info(extent_root->fs_info, flags, 3792 0, 0, &space_info); 3793 BUG_ON(ret); /* -ENOMEM */ 3794 } 3795 BUG_ON(!space_info); /* Logic error */ 3796 3797 again: 3798 spin_lock(&space_info->lock); 3799 if (force < space_info->force_alloc) 3800 force = space_info->force_alloc; 3801 if (space_info->full) { 3802 spin_unlock(&space_info->lock); 3803 return 0; 3804 } 3805 3806 if (!should_alloc_chunk(extent_root, space_info, force)) { 3807 spin_unlock(&space_info->lock); 3808 return 0; 3809 } else if (space_info->chunk_alloc) { 3810 wait_for_alloc = 1; 3811 } else { 3812 space_info->chunk_alloc = 1; 3813 } 3814 3815 spin_unlock(&space_info->lock); 3816 3817 mutex_lock(&fs_info->chunk_mutex); 3818 3819 /* 3820 * The chunk_mutex is held throughout the entirety of a chunk 3821 * allocation, so once we've acquired the chunk_mutex we know that the 3822 * other guy is done and we need to recheck and see if we should 3823 * allocate. 3824 */ 3825 if (wait_for_alloc) { 3826 mutex_unlock(&fs_info->chunk_mutex); 3827 wait_for_alloc = 0; 3828 goto again; 3829 } 3830 3831 trans->allocating_chunk = true; 3832 3833 /* 3834 * If we have mixed data/metadata chunks we want to make sure we keep 3835 * allocating mixed chunks instead of individual chunks. 3836 */ 3837 if (btrfs_mixed_space_info(space_info)) 3838 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3839 3840 /* 3841 * if we're doing a data chunk, go ahead and make sure that 3842 * we keep a reasonable number of metadata chunks allocated in the 3843 * FS as well. 3844 */ 3845 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3846 fs_info->data_chunk_allocations++; 3847 if (!(fs_info->data_chunk_allocations % 3848 fs_info->metadata_ratio)) 3849 force_metadata_allocation(fs_info); 3850 } 3851 3852 /* 3853 * Check if we have enough space in SYSTEM chunk because we may need 3854 * to update devices. 3855 */ 3856 check_system_chunk(trans, extent_root, flags); 3857 3858 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3859 trans->allocating_chunk = false; 3860 3861 spin_lock(&space_info->lock); 3862 if (ret < 0 && ret != -ENOSPC) 3863 goto out; 3864 if (ret) 3865 space_info->full = 1; 3866 else 3867 ret = 1; 3868 3869 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3870 out: 3871 space_info->chunk_alloc = 0; 3872 spin_unlock(&space_info->lock); 3873 mutex_unlock(&fs_info->chunk_mutex); 3874 return ret; 3875 } 3876 3877 static int can_overcommit(struct btrfs_root *root, 3878 struct btrfs_space_info *space_info, u64 bytes, 3879 enum btrfs_reserve_flush_enum flush) 3880 { 3881 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3882 u64 profile = btrfs_get_alloc_profile(root, 0); 3883 u64 space_size; 3884 u64 avail; 3885 u64 used; 3886 u64 to_add; 3887 3888 used = space_info->bytes_used + space_info->bytes_reserved + 3889 space_info->bytes_pinned + space_info->bytes_readonly; 3890 3891 /* 3892 * We only want to allow over committing if we have lots of actual space 3893 * free, but if we don't have enough space to handle the global reserve 3894 * space then we could end up having a real enospc problem when trying 3895 * to allocate a chunk or some other such important allocation. 3896 */ 3897 spin_lock(&global_rsv->lock); 3898 space_size = calc_global_rsv_need_space(global_rsv); 3899 spin_unlock(&global_rsv->lock); 3900 if (used + space_size >= space_info->total_bytes) 3901 return 0; 3902 3903 used += space_info->bytes_may_use; 3904 3905 spin_lock(&root->fs_info->free_chunk_lock); 3906 avail = root->fs_info->free_chunk_space; 3907 spin_unlock(&root->fs_info->free_chunk_lock); 3908 3909 /* 3910 * If we have dup, raid1 or raid10 then only half of the free 3911 * space is actually useable. For raid56, the space info used 3912 * doesn't include the parity drive, so we don't have to 3913 * change the math 3914 */ 3915 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3916 BTRFS_BLOCK_GROUP_RAID1 | 3917 BTRFS_BLOCK_GROUP_RAID10)) 3918 avail >>= 1; 3919 3920 to_add = space_info->total_bytes; 3921 3922 /* 3923 * If we aren't flushing all things, let us overcommit up to 3924 * 1/2th of the space. If we can flush, don't let us overcommit 3925 * too much, let it overcommit up to 1/8 of the space. 3926 */ 3927 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3928 to_add >>= 3; 3929 else 3930 to_add >>= 1; 3931 3932 /* 3933 * Limit the overcommit to the amount of free space we could possibly 3934 * allocate for chunks. 3935 */ 3936 to_add = min(avail, to_add); 3937 3938 if (used + bytes < space_info->total_bytes + to_add) 3939 return 1; 3940 return 0; 3941 } 3942 3943 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3944 unsigned long nr_pages) 3945 { 3946 struct super_block *sb = root->fs_info->sb; 3947 3948 if (down_read_trylock(&sb->s_umount)) { 3949 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3950 up_read(&sb->s_umount); 3951 } else { 3952 /* 3953 * We needn't worry the filesystem going from r/w to r/o though 3954 * we don't acquire ->s_umount mutex, because the filesystem 3955 * should guarantee the delalloc inodes list be empty after 3956 * the filesystem is readonly(all dirty pages are written to 3957 * the disk). 3958 */ 3959 btrfs_start_all_delalloc_inodes(root->fs_info, 0); 3960 if (!current->journal_info) 3961 btrfs_wait_all_ordered_extents(root->fs_info, 0); 3962 } 3963 } 3964 3965 /* 3966 * shrink metadata reservation for delalloc 3967 */ 3968 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3969 bool wait_ordered) 3970 { 3971 struct btrfs_block_rsv *block_rsv; 3972 struct btrfs_space_info *space_info; 3973 struct btrfs_trans_handle *trans; 3974 u64 delalloc_bytes; 3975 u64 max_reclaim; 3976 long time_left; 3977 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3978 int loops = 0; 3979 enum btrfs_reserve_flush_enum flush; 3980 3981 trans = (struct btrfs_trans_handle *)current->journal_info; 3982 block_rsv = &root->fs_info->delalloc_block_rsv; 3983 space_info = block_rsv->space_info; 3984 3985 smp_mb(); 3986 delalloc_bytes = percpu_counter_sum_positive( 3987 &root->fs_info->delalloc_bytes); 3988 if (delalloc_bytes == 0) { 3989 if (trans) 3990 return; 3991 btrfs_wait_all_ordered_extents(root->fs_info, 0); 3992 return; 3993 } 3994 3995 while (delalloc_bytes && loops < 3) { 3996 max_reclaim = min(delalloc_bytes, to_reclaim); 3997 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3998 btrfs_writeback_inodes_sb_nr(root, nr_pages); 3999 /* 4000 * We need to wait for the async pages to actually start before 4001 * we do anything. 4002 */ 4003 wait_event(root->fs_info->async_submit_wait, 4004 !atomic_read(&root->fs_info->async_delalloc_pages)); 4005 4006 if (!trans) 4007 flush = BTRFS_RESERVE_FLUSH_ALL; 4008 else 4009 flush = BTRFS_RESERVE_NO_FLUSH; 4010 spin_lock(&space_info->lock); 4011 if (can_overcommit(root, space_info, orig, flush)) { 4012 spin_unlock(&space_info->lock); 4013 break; 4014 } 4015 spin_unlock(&space_info->lock); 4016 4017 loops++; 4018 if (wait_ordered && !trans) { 4019 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4020 } else { 4021 time_left = schedule_timeout_killable(1); 4022 if (time_left) 4023 break; 4024 } 4025 smp_mb(); 4026 delalloc_bytes = percpu_counter_sum_positive( 4027 &root->fs_info->delalloc_bytes); 4028 } 4029 } 4030 4031 /** 4032 * maybe_commit_transaction - possibly commit the transaction if its ok to 4033 * @root - the root we're allocating for 4034 * @bytes - the number of bytes we want to reserve 4035 * @force - force the commit 4036 * 4037 * This will check to make sure that committing the transaction will actually 4038 * get us somewhere and then commit the transaction if it does. Otherwise it 4039 * will return -ENOSPC. 4040 */ 4041 static int may_commit_transaction(struct btrfs_root *root, 4042 struct btrfs_space_info *space_info, 4043 u64 bytes, int force) 4044 { 4045 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4046 struct btrfs_trans_handle *trans; 4047 4048 trans = (struct btrfs_trans_handle *)current->journal_info; 4049 if (trans) 4050 return -EAGAIN; 4051 4052 if (force) 4053 goto commit; 4054 4055 /* See if there is enough pinned space to make this reservation */ 4056 spin_lock(&space_info->lock); 4057 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4058 bytes) >= 0) { 4059 spin_unlock(&space_info->lock); 4060 goto commit; 4061 } 4062 spin_unlock(&space_info->lock); 4063 4064 /* 4065 * See if there is some space in the delayed insertion reservation for 4066 * this reservation. 4067 */ 4068 if (space_info != delayed_rsv->space_info) 4069 return -ENOSPC; 4070 4071 spin_lock(&space_info->lock); 4072 spin_lock(&delayed_rsv->lock); 4073 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4074 bytes - delayed_rsv->size) >= 0) { 4075 spin_unlock(&delayed_rsv->lock); 4076 spin_unlock(&space_info->lock); 4077 return -ENOSPC; 4078 } 4079 spin_unlock(&delayed_rsv->lock); 4080 spin_unlock(&space_info->lock); 4081 4082 commit: 4083 trans = btrfs_join_transaction(root); 4084 if (IS_ERR(trans)) 4085 return -ENOSPC; 4086 4087 return btrfs_commit_transaction(trans, root); 4088 } 4089 4090 enum flush_state { 4091 FLUSH_DELAYED_ITEMS_NR = 1, 4092 FLUSH_DELAYED_ITEMS = 2, 4093 FLUSH_DELALLOC = 3, 4094 FLUSH_DELALLOC_WAIT = 4, 4095 ALLOC_CHUNK = 5, 4096 COMMIT_TRANS = 6, 4097 }; 4098 4099 static int flush_space(struct btrfs_root *root, 4100 struct btrfs_space_info *space_info, u64 num_bytes, 4101 u64 orig_bytes, int state) 4102 { 4103 struct btrfs_trans_handle *trans; 4104 int nr; 4105 int ret = 0; 4106 4107 switch (state) { 4108 case FLUSH_DELAYED_ITEMS_NR: 4109 case FLUSH_DELAYED_ITEMS: 4110 if (state == FLUSH_DELAYED_ITEMS_NR) { 4111 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 4112 4113 nr = (int)div64_u64(num_bytes, bytes); 4114 if (!nr) 4115 nr = 1; 4116 nr *= 2; 4117 } else { 4118 nr = -1; 4119 } 4120 trans = btrfs_join_transaction(root); 4121 if (IS_ERR(trans)) { 4122 ret = PTR_ERR(trans); 4123 break; 4124 } 4125 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4126 btrfs_end_transaction(trans, root); 4127 break; 4128 case FLUSH_DELALLOC: 4129 case FLUSH_DELALLOC_WAIT: 4130 shrink_delalloc(root, num_bytes, orig_bytes, 4131 state == FLUSH_DELALLOC_WAIT); 4132 break; 4133 case ALLOC_CHUNK: 4134 trans = btrfs_join_transaction(root); 4135 if (IS_ERR(trans)) { 4136 ret = PTR_ERR(trans); 4137 break; 4138 } 4139 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4140 btrfs_get_alloc_profile(root, 0), 4141 CHUNK_ALLOC_NO_FORCE); 4142 btrfs_end_transaction(trans, root); 4143 if (ret == -ENOSPC) 4144 ret = 0; 4145 break; 4146 case COMMIT_TRANS: 4147 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4148 break; 4149 default: 4150 ret = -ENOSPC; 4151 break; 4152 } 4153 4154 return ret; 4155 } 4156 /** 4157 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4158 * @root - the root we're allocating for 4159 * @block_rsv - the block_rsv we're allocating for 4160 * @orig_bytes - the number of bytes we want 4161 * @flush - whether or not we can flush to make our reservation 4162 * 4163 * This will reserve orgi_bytes number of bytes from the space info associated 4164 * with the block_rsv. If there is not enough space it will make an attempt to 4165 * flush out space to make room. It will do this by flushing delalloc if 4166 * possible or committing the transaction. If flush is 0 then no attempts to 4167 * regain reservations will be made and this will fail if there is not enough 4168 * space already. 4169 */ 4170 static int reserve_metadata_bytes(struct btrfs_root *root, 4171 struct btrfs_block_rsv *block_rsv, 4172 u64 orig_bytes, 4173 enum btrfs_reserve_flush_enum flush) 4174 { 4175 struct btrfs_space_info *space_info = block_rsv->space_info; 4176 u64 used; 4177 u64 num_bytes = orig_bytes; 4178 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4179 int ret = 0; 4180 bool flushing = false; 4181 4182 again: 4183 ret = 0; 4184 spin_lock(&space_info->lock); 4185 /* 4186 * We only want to wait if somebody other than us is flushing and we 4187 * are actually allowed to flush all things. 4188 */ 4189 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4190 space_info->flush) { 4191 spin_unlock(&space_info->lock); 4192 /* 4193 * If we have a trans handle we can't wait because the flusher 4194 * may have to commit the transaction, which would mean we would 4195 * deadlock since we are waiting for the flusher to finish, but 4196 * hold the current transaction open. 4197 */ 4198 if (current->journal_info) 4199 return -EAGAIN; 4200 ret = wait_event_killable(space_info->wait, !space_info->flush); 4201 /* Must have been killed, return */ 4202 if (ret) 4203 return -EINTR; 4204 4205 spin_lock(&space_info->lock); 4206 } 4207 4208 ret = -ENOSPC; 4209 used = space_info->bytes_used + space_info->bytes_reserved + 4210 space_info->bytes_pinned + space_info->bytes_readonly + 4211 space_info->bytes_may_use; 4212 4213 /* 4214 * The idea here is that we've not already over-reserved the block group 4215 * then we can go ahead and save our reservation first and then start 4216 * flushing if we need to. Otherwise if we've already overcommitted 4217 * lets start flushing stuff first and then come back and try to make 4218 * our reservation. 4219 */ 4220 if (used <= space_info->total_bytes) { 4221 if (used + orig_bytes <= space_info->total_bytes) { 4222 space_info->bytes_may_use += orig_bytes; 4223 trace_btrfs_space_reservation(root->fs_info, 4224 "space_info", space_info->flags, orig_bytes, 1); 4225 ret = 0; 4226 } else { 4227 /* 4228 * Ok set num_bytes to orig_bytes since we aren't 4229 * overocmmitted, this way we only try and reclaim what 4230 * we need. 4231 */ 4232 num_bytes = orig_bytes; 4233 } 4234 } else { 4235 /* 4236 * Ok we're over committed, set num_bytes to the overcommitted 4237 * amount plus the amount of bytes that we need for this 4238 * reservation. 4239 */ 4240 num_bytes = used - space_info->total_bytes + 4241 (orig_bytes * 2); 4242 } 4243 4244 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4245 space_info->bytes_may_use += orig_bytes; 4246 trace_btrfs_space_reservation(root->fs_info, "space_info", 4247 space_info->flags, orig_bytes, 4248 1); 4249 ret = 0; 4250 } 4251 4252 /* 4253 * Couldn't make our reservation, save our place so while we're trying 4254 * to reclaim space we can actually use it instead of somebody else 4255 * stealing it from us. 4256 * 4257 * We make the other tasks wait for the flush only when we can flush 4258 * all things. 4259 */ 4260 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4261 flushing = true; 4262 space_info->flush = 1; 4263 } 4264 4265 spin_unlock(&space_info->lock); 4266 4267 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4268 goto out; 4269 4270 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4271 flush_state); 4272 flush_state++; 4273 4274 /* 4275 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4276 * would happen. So skip delalloc flush. 4277 */ 4278 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4279 (flush_state == FLUSH_DELALLOC || 4280 flush_state == FLUSH_DELALLOC_WAIT)) 4281 flush_state = ALLOC_CHUNK; 4282 4283 if (!ret) 4284 goto again; 4285 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4286 flush_state < COMMIT_TRANS) 4287 goto again; 4288 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4289 flush_state <= COMMIT_TRANS) 4290 goto again; 4291 4292 out: 4293 if (ret == -ENOSPC && 4294 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4295 struct btrfs_block_rsv *global_rsv = 4296 &root->fs_info->global_block_rsv; 4297 4298 if (block_rsv != global_rsv && 4299 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4300 ret = 0; 4301 } 4302 if (flushing) { 4303 spin_lock(&space_info->lock); 4304 space_info->flush = 0; 4305 wake_up_all(&space_info->wait); 4306 spin_unlock(&space_info->lock); 4307 } 4308 return ret; 4309 } 4310 4311 static struct btrfs_block_rsv *get_block_rsv( 4312 const struct btrfs_trans_handle *trans, 4313 const struct btrfs_root *root) 4314 { 4315 struct btrfs_block_rsv *block_rsv = NULL; 4316 4317 if (root->ref_cows) 4318 block_rsv = trans->block_rsv; 4319 4320 if (root == root->fs_info->csum_root && trans->adding_csums) 4321 block_rsv = trans->block_rsv; 4322 4323 if (!block_rsv) 4324 block_rsv = root->block_rsv; 4325 4326 if (!block_rsv) 4327 block_rsv = &root->fs_info->empty_block_rsv; 4328 4329 return block_rsv; 4330 } 4331 4332 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4333 u64 num_bytes) 4334 { 4335 int ret = -ENOSPC; 4336 spin_lock(&block_rsv->lock); 4337 if (block_rsv->reserved >= num_bytes) { 4338 block_rsv->reserved -= num_bytes; 4339 if (block_rsv->reserved < block_rsv->size) 4340 block_rsv->full = 0; 4341 ret = 0; 4342 } 4343 spin_unlock(&block_rsv->lock); 4344 return ret; 4345 } 4346 4347 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4348 u64 num_bytes, int update_size) 4349 { 4350 spin_lock(&block_rsv->lock); 4351 block_rsv->reserved += num_bytes; 4352 if (update_size) 4353 block_rsv->size += num_bytes; 4354 else if (block_rsv->reserved >= block_rsv->size) 4355 block_rsv->full = 1; 4356 spin_unlock(&block_rsv->lock); 4357 } 4358 4359 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4360 struct btrfs_block_rsv *dest, u64 num_bytes, 4361 int min_factor) 4362 { 4363 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4364 u64 min_bytes; 4365 4366 if (global_rsv->space_info != dest->space_info) 4367 return -ENOSPC; 4368 4369 spin_lock(&global_rsv->lock); 4370 min_bytes = div_factor(global_rsv->size, min_factor); 4371 if (global_rsv->reserved < min_bytes + num_bytes) { 4372 spin_unlock(&global_rsv->lock); 4373 return -ENOSPC; 4374 } 4375 global_rsv->reserved -= num_bytes; 4376 if (global_rsv->reserved < global_rsv->size) 4377 global_rsv->full = 0; 4378 spin_unlock(&global_rsv->lock); 4379 4380 block_rsv_add_bytes(dest, num_bytes, 1); 4381 return 0; 4382 } 4383 4384 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4385 struct btrfs_block_rsv *block_rsv, 4386 struct btrfs_block_rsv *dest, u64 num_bytes) 4387 { 4388 struct btrfs_space_info *space_info = block_rsv->space_info; 4389 4390 spin_lock(&block_rsv->lock); 4391 if (num_bytes == (u64)-1) 4392 num_bytes = block_rsv->size; 4393 block_rsv->size -= num_bytes; 4394 if (block_rsv->reserved >= block_rsv->size) { 4395 num_bytes = block_rsv->reserved - block_rsv->size; 4396 block_rsv->reserved = block_rsv->size; 4397 block_rsv->full = 1; 4398 } else { 4399 num_bytes = 0; 4400 } 4401 spin_unlock(&block_rsv->lock); 4402 4403 if (num_bytes > 0) { 4404 if (dest) { 4405 spin_lock(&dest->lock); 4406 if (!dest->full) { 4407 u64 bytes_to_add; 4408 4409 bytes_to_add = dest->size - dest->reserved; 4410 bytes_to_add = min(num_bytes, bytes_to_add); 4411 dest->reserved += bytes_to_add; 4412 if (dest->reserved >= dest->size) 4413 dest->full = 1; 4414 num_bytes -= bytes_to_add; 4415 } 4416 spin_unlock(&dest->lock); 4417 } 4418 if (num_bytes) { 4419 spin_lock(&space_info->lock); 4420 space_info->bytes_may_use -= num_bytes; 4421 trace_btrfs_space_reservation(fs_info, "space_info", 4422 space_info->flags, num_bytes, 0); 4423 space_info->reservation_progress++; 4424 spin_unlock(&space_info->lock); 4425 } 4426 } 4427 } 4428 4429 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4430 struct btrfs_block_rsv *dst, u64 num_bytes) 4431 { 4432 int ret; 4433 4434 ret = block_rsv_use_bytes(src, num_bytes); 4435 if (ret) 4436 return ret; 4437 4438 block_rsv_add_bytes(dst, num_bytes, 1); 4439 return 0; 4440 } 4441 4442 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4443 { 4444 memset(rsv, 0, sizeof(*rsv)); 4445 spin_lock_init(&rsv->lock); 4446 rsv->type = type; 4447 } 4448 4449 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4450 unsigned short type) 4451 { 4452 struct btrfs_block_rsv *block_rsv; 4453 struct btrfs_fs_info *fs_info = root->fs_info; 4454 4455 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4456 if (!block_rsv) 4457 return NULL; 4458 4459 btrfs_init_block_rsv(block_rsv, type); 4460 block_rsv->space_info = __find_space_info(fs_info, 4461 BTRFS_BLOCK_GROUP_METADATA); 4462 return block_rsv; 4463 } 4464 4465 void btrfs_free_block_rsv(struct btrfs_root *root, 4466 struct btrfs_block_rsv *rsv) 4467 { 4468 if (!rsv) 4469 return; 4470 btrfs_block_rsv_release(root, rsv, (u64)-1); 4471 kfree(rsv); 4472 } 4473 4474 int btrfs_block_rsv_add(struct btrfs_root *root, 4475 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4476 enum btrfs_reserve_flush_enum flush) 4477 { 4478 int ret; 4479 4480 if (num_bytes == 0) 4481 return 0; 4482 4483 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4484 if (!ret) { 4485 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4486 return 0; 4487 } 4488 4489 return ret; 4490 } 4491 4492 int btrfs_block_rsv_check(struct btrfs_root *root, 4493 struct btrfs_block_rsv *block_rsv, int min_factor) 4494 { 4495 u64 num_bytes = 0; 4496 int ret = -ENOSPC; 4497 4498 if (!block_rsv) 4499 return 0; 4500 4501 spin_lock(&block_rsv->lock); 4502 num_bytes = div_factor(block_rsv->size, min_factor); 4503 if (block_rsv->reserved >= num_bytes) 4504 ret = 0; 4505 spin_unlock(&block_rsv->lock); 4506 4507 return ret; 4508 } 4509 4510 int btrfs_block_rsv_refill(struct btrfs_root *root, 4511 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4512 enum btrfs_reserve_flush_enum flush) 4513 { 4514 u64 num_bytes = 0; 4515 int ret = -ENOSPC; 4516 4517 if (!block_rsv) 4518 return 0; 4519 4520 spin_lock(&block_rsv->lock); 4521 num_bytes = min_reserved; 4522 if (block_rsv->reserved >= num_bytes) 4523 ret = 0; 4524 else 4525 num_bytes -= block_rsv->reserved; 4526 spin_unlock(&block_rsv->lock); 4527 4528 if (!ret) 4529 return 0; 4530 4531 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4532 if (!ret) { 4533 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4534 return 0; 4535 } 4536 4537 return ret; 4538 } 4539 4540 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4541 struct btrfs_block_rsv *dst_rsv, 4542 u64 num_bytes) 4543 { 4544 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4545 } 4546 4547 void btrfs_block_rsv_release(struct btrfs_root *root, 4548 struct btrfs_block_rsv *block_rsv, 4549 u64 num_bytes) 4550 { 4551 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4552 if (global_rsv->full || global_rsv == block_rsv || 4553 block_rsv->space_info != global_rsv->space_info) 4554 global_rsv = NULL; 4555 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4556 num_bytes); 4557 } 4558 4559 /* 4560 * helper to calculate size of global block reservation. 4561 * the desired value is sum of space used by extent tree, 4562 * checksum tree and root tree 4563 */ 4564 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4565 { 4566 struct btrfs_space_info *sinfo; 4567 u64 num_bytes; 4568 u64 meta_used; 4569 u64 data_used; 4570 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4571 4572 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4573 spin_lock(&sinfo->lock); 4574 data_used = sinfo->bytes_used; 4575 spin_unlock(&sinfo->lock); 4576 4577 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4578 spin_lock(&sinfo->lock); 4579 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4580 data_used = 0; 4581 meta_used = sinfo->bytes_used; 4582 spin_unlock(&sinfo->lock); 4583 4584 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4585 csum_size * 2; 4586 num_bytes += div64_u64(data_used + meta_used, 50); 4587 4588 if (num_bytes * 3 > meta_used) 4589 num_bytes = div64_u64(meta_used, 3); 4590 4591 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4592 } 4593 4594 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4595 { 4596 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4597 struct btrfs_space_info *sinfo = block_rsv->space_info; 4598 u64 num_bytes; 4599 4600 num_bytes = calc_global_metadata_size(fs_info); 4601 4602 spin_lock(&sinfo->lock); 4603 spin_lock(&block_rsv->lock); 4604 4605 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4606 4607 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4608 sinfo->bytes_reserved + sinfo->bytes_readonly + 4609 sinfo->bytes_may_use; 4610 4611 if (sinfo->total_bytes > num_bytes) { 4612 num_bytes = sinfo->total_bytes - num_bytes; 4613 block_rsv->reserved += num_bytes; 4614 sinfo->bytes_may_use += num_bytes; 4615 trace_btrfs_space_reservation(fs_info, "space_info", 4616 sinfo->flags, num_bytes, 1); 4617 } 4618 4619 if (block_rsv->reserved >= block_rsv->size) { 4620 num_bytes = block_rsv->reserved - block_rsv->size; 4621 sinfo->bytes_may_use -= num_bytes; 4622 trace_btrfs_space_reservation(fs_info, "space_info", 4623 sinfo->flags, num_bytes, 0); 4624 sinfo->reservation_progress++; 4625 block_rsv->reserved = block_rsv->size; 4626 block_rsv->full = 1; 4627 } 4628 4629 spin_unlock(&block_rsv->lock); 4630 spin_unlock(&sinfo->lock); 4631 } 4632 4633 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4634 { 4635 struct btrfs_space_info *space_info; 4636 4637 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4638 fs_info->chunk_block_rsv.space_info = space_info; 4639 4640 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4641 fs_info->global_block_rsv.space_info = space_info; 4642 fs_info->delalloc_block_rsv.space_info = space_info; 4643 fs_info->trans_block_rsv.space_info = space_info; 4644 fs_info->empty_block_rsv.space_info = space_info; 4645 fs_info->delayed_block_rsv.space_info = space_info; 4646 4647 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4648 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4649 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4650 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4651 if (fs_info->quota_root) 4652 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4653 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4654 4655 update_global_block_rsv(fs_info); 4656 } 4657 4658 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4659 { 4660 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4661 (u64)-1); 4662 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4663 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4664 WARN_ON(fs_info->trans_block_rsv.size > 0); 4665 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4666 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4667 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4668 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4669 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4670 } 4671 4672 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4673 struct btrfs_root *root) 4674 { 4675 if (!trans->block_rsv) 4676 return; 4677 4678 if (!trans->bytes_reserved) 4679 return; 4680 4681 trace_btrfs_space_reservation(root->fs_info, "transaction", 4682 trans->transid, trans->bytes_reserved, 0); 4683 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4684 trans->bytes_reserved = 0; 4685 } 4686 4687 /* Can only return 0 or -ENOSPC */ 4688 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4689 struct inode *inode) 4690 { 4691 struct btrfs_root *root = BTRFS_I(inode)->root; 4692 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4693 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4694 4695 /* 4696 * We need to hold space in order to delete our orphan item once we've 4697 * added it, so this takes the reservation so we can release it later 4698 * when we are truly done with the orphan item. 4699 */ 4700 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4701 trace_btrfs_space_reservation(root->fs_info, "orphan", 4702 btrfs_ino(inode), num_bytes, 1); 4703 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4704 } 4705 4706 void btrfs_orphan_release_metadata(struct inode *inode) 4707 { 4708 struct btrfs_root *root = BTRFS_I(inode)->root; 4709 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4710 trace_btrfs_space_reservation(root->fs_info, "orphan", 4711 btrfs_ino(inode), num_bytes, 0); 4712 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4713 } 4714 4715 /* 4716 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4717 * root: the root of the parent directory 4718 * rsv: block reservation 4719 * items: the number of items that we need do reservation 4720 * qgroup_reserved: used to return the reserved size in qgroup 4721 * 4722 * This function is used to reserve the space for snapshot/subvolume 4723 * creation and deletion. Those operations are different with the 4724 * common file/directory operations, they change two fs/file trees 4725 * and root tree, the number of items that the qgroup reserves is 4726 * different with the free space reservation. So we can not use 4727 * the space reseravtion mechanism in start_transaction(). 4728 */ 4729 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4730 struct btrfs_block_rsv *rsv, 4731 int items, 4732 u64 *qgroup_reserved) 4733 { 4734 u64 num_bytes; 4735 int ret; 4736 4737 if (root->fs_info->quota_enabled) { 4738 /* One for parent inode, two for dir entries */ 4739 num_bytes = 3 * root->leafsize; 4740 ret = btrfs_qgroup_reserve(root, num_bytes); 4741 if (ret) 4742 return ret; 4743 } else { 4744 num_bytes = 0; 4745 } 4746 4747 *qgroup_reserved = num_bytes; 4748 4749 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4750 rsv->space_info = __find_space_info(root->fs_info, 4751 BTRFS_BLOCK_GROUP_METADATA); 4752 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4753 BTRFS_RESERVE_FLUSH_ALL); 4754 if (ret) { 4755 if (*qgroup_reserved) 4756 btrfs_qgroup_free(root, *qgroup_reserved); 4757 } 4758 4759 return ret; 4760 } 4761 4762 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4763 struct btrfs_block_rsv *rsv, 4764 u64 qgroup_reserved) 4765 { 4766 btrfs_block_rsv_release(root, rsv, (u64)-1); 4767 if (qgroup_reserved) 4768 btrfs_qgroup_free(root, qgroup_reserved); 4769 } 4770 4771 /** 4772 * drop_outstanding_extent - drop an outstanding extent 4773 * @inode: the inode we're dropping the extent for 4774 * 4775 * This is called when we are freeing up an outstanding extent, either called 4776 * after an error or after an extent is written. This will return the number of 4777 * reserved extents that need to be freed. This must be called with 4778 * BTRFS_I(inode)->lock held. 4779 */ 4780 static unsigned drop_outstanding_extent(struct inode *inode) 4781 { 4782 unsigned drop_inode_space = 0; 4783 unsigned dropped_extents = 0; 4784 4785 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4786 BTRFS_I(inode)->outstanding_extents--; 4787 4788 if (BTRFS_I(inode)->outstanding_extents == 0 && 4789 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4790 &BTRFS_I(inode)->runtime_flags)) 4791 drop_inode_space = 1; 4792 4793 /* 4794 * If we have more or the same amount of outsanding extents than we have 4795 * reserved then we need to leave the reserved extents count alone. 4796 */ 4797 if (BTRFS_I(inode)->outstanding_extents >= 4798 BTRFS_I(inode)->reserved_extents) 4799 return drop_inode_space; 4800 4801 dropped_extents = BTRFS_I(inode)->reserved_extents - 4802 BTRFS_I(inode)->outstanding_extents; 4803 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4804 return dropped_extents + drop_inode_space; 4805 } 4806 4807 /** 4808 * calc_csum_metadata_size - return the amount of metada space that must be 4809 * reserved/free'd for the given bytes. 4810 * @inode: the inode we're manipulating 4811 * @num_bytes: the number of bytes in question 4812 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4813 * 4814 * This adjusts the number of csum_bytes in the inode and then returns the 4815 * correct amount of metadata that must either be reserved or freed. We 4816 * calculate how many checksums we can fit into one leaf and then divide the 4817 * number of bytes that will need to be checksumed by this value to figure out 4818 * how many checksums will be required. If we are adding bytes then the number 4819 * may go up and we will return the number of additional bytes that must be 4820 * reserved. If it is going down we will return the number of bytes that must 4821 * be freed. 4822 * 4823 * This must be called with BTRFS_I(inode)->lock held. 4824 */ 4825 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4826 int reserve) 4827 { 4828 struct btrfs_root *root = BTRFS_I(inode)->root; 4829 u64 csum_size; 4830 int num_csums_per_leaf; 4831 int num_csums; 4832 int old_csums; 4833 4834 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4835 BTRFS_I(inode)->csum_bytes == 0) 4836 return 0; 4837 4838 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4839 if (reserve) 4840 BTRFS_I(inode)->csum_bytes += num_bytes; 4841 else 4842 BTRFS_I(inode)->csum_bytes -= num_bytes; 4843 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4844 num_csums_per_leaf = (int)div64_u64(csum_size, 4845 sizeof(struct btrfs_csum_item) + 4846 sizeof(struct btrfs_disk_key)); 4847 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4848 num_csums = num_csums + num_csums_per_leaf - 1; 4849 num_csums = num_csums / num_csums_per_leaf; 4850 4851 old_csums = old_csums + num_csums_per_leaf - 1; 4852 old_csums = old_csums / num_csums_per_leaf; 4853 4854 /* No change, no need to reserve more */ 4855 if (old_csums == num_csums) 4856 return 0; 4857 4858 if (reserve) 4859 return btrfs_calc_trans_metadata_size(root, 4860 num_csums - old_csums); 4861 4862 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4863 } 4864 4865 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4866 { 4867 struct btrfs_root *root = BTRFS_I(inode)->root; 4868 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4869 u64 to_reserve = 0; 4870 u64 csum_bytes; 4871 unsigned nr_extents = 0; 4872 int extra_reserve = 0; 4873 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4874 int ret = 0; 4875 bool delalloc_lock = true; 4876 u64 to_free = 0; 4877 unsigned dropped; 4878 4879 /* If we are a free space inode we need to not flush since we will be in 4880 * the middle of a transaction commit. We also don't need the delalloc 4881 * mutex since we won't race with anybody. We need this mostly to make 4882 * lockdep shut its filthy mouth. 4883 */ 4884 if (btrfs_is_free_space_inode(inode)) { 4885 flush = BTRFS_RESERVE_NO_FLUSH; 4886 delalloc_lock = false; 4887 } 4888 4889 if (flush != BTRFS_RESERVE_NO_FLUSH && 4890 btrfs_transaction_in_commit(root->fs_info)) 4891 schedule_timeout(1); 4892 4893 if (delalloc_lock) 4894 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4895 4896 num_bytes = ALIGN(num_bytes, root->sectorsize); 4897 4898 spin_lock(&BTRFS_I(inode)->lock); 4899 BTRFS_I(inode)->outstanding_extents++; 4900 4901 if (BTRFS_I(inode)->outstanding_extents > 4902 BTRFS_I(inode)->reserved_extents) 4903 nr_extents = BTRFS_I(inode)->outstanding_extents - 4904 BTRFS_I(inode)->reserved_extents; 4905 4906 /* 4907 * Add an item to reserve for updating the inode when we complete the 4908 * delalloc io. 4909 */ 4910 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4911 &BTRFS_I(inode)->runtime_flags)) { 4912 nr_extents++; 4913 extra_reserve = 1; 4914 } 4915 4916 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4917 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4918 csum_bytes = BTRFS_I(inode)->csum_bytes; 4919 spin_unlock(&BTRFS_I(inode)->lock); 4920 4921 if (root->fs_info->quota_enabled) { 4922 ret = btrfs_qgroup_reserve(root, num_bytes + 4923 nr_extents * root->leafsize); 4924 if (ret) 4925 goto out_fail; 4926 } 4927 4928 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4929 if (unlikely(ret)) { 4930 if (root->fs_info->quota_enabled) 4931 btrfs_qgroup_free(root, num_bytes + 4932 nr_extents * root->leafsize); 4933 goto out_fail; 4934 } 4935 4936 spin_lock(&BTRFS_I(inode)->lock); 4937 if (extra_reserve) { 4938 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4939 &BTRFS_I(inode)->runtime_flags); 4940 nr_extents--; 4941 } 4942 BTRFS_I(inode)->reserved_extents += nr_extents; 4943 spin_unlock(&BTRFS_I(inode)->lock); 4944 4945 if (delalloc_lock) 4946 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4947 4948 if (to_reserve) 4949 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4950 btrfs_ino(inode), to_reserve, 1); 4951 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4952 4953 return 0; 4954 4955 out_fail: 4956 spin_lock(&BTRFS_I(inode)->lock); 4957 dropped = drop_outstanding_extent(inode); 4958 /* 4959 * If the inodes csum_bytes is the same as the original 4960 * csum_bytes then we know we haven't raced with any free()ers 4961 * so we can just reduce our inodes csum bytes and carry on. 4962 */ 4963 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 4964 calc_csum_metadata_size(inode, num_bytes, 0); 4965 } else { 4966 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 4967 u64 bytes; 4968 4969 /* 4970 * This is tricky, but first we need to figure out how much we 4971 * free'd from any free-ers that occured during this 4972 * reservation, so we reset ->csum_bytes to the csum_bytes 4973 * before we dropped our lock, and then call the free for the 4974 * number of bytes that were freed while we were trying our 4975 * reservation. 4976 */ 4977 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 4978 BTRFS_I(inode)->csum_bytes = csum_bytes; 4979 to_free = calc_csum_metadata_size(inode, bytes, 0); 4980 4981 4982 /* 4983 * Now we need to see how much we would have freed had we not 4984 * been making this reservation and our ->csum_bytes were not 4985 * artificially inflated. 4986 */ 4987 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 4988 bytes = csum_bytes - orig_csum_bytes; 4989 bytes = calc_csum_metadata_size(inode, bytes, 0); 4990 4991 /* 4992 * Now reset ->csum_bytes to what it should be. If bytes is 4993 * more than to_free then we would have free'd more space had we 4994 * not had an artificially high ->csum_bytes, so we need to free 4995 * the remainder. If bytes is the same or less then we don't 4996 * need to do anything, the other free-ers did the correct 4997 * thing. 4998 */ 4999 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5000 if (bytes > to_free) 5001 to_free = bytes - to_free; 5002 else 5003 to_free = 0; 5004 } 5005 spin_unlock(&BTRFS_I(inode)->lock); 5006 if (dropped) 5007 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5008 5009 if (to_free) { 5010 btrfs_block_rsv_release(root, block_rsv, to_free); 5011 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5012 btrfs_ino(inode), to_free, 0); 5013 } 5014 if (delalloc_lock) 5015 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5016 return ret; 5017 } 5018 5019 /** 5020 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5021 * @inode: the inode to release the reservation for 5022 * @num_bytes: the number of bytes we're releasing 5023 * 5024 * This will release the metadata reservation for an inode. This can be called 5025 * once we complete IO for a given set of bytes to release their metadata 5026 * reservations. 5027 */ 5028 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5029 { 5030 struct btrfs_root *root = BTRFS_I(inode)->root; 5031 u64 to_free = 0; 5032 unsigned dropped; 5033 5034 num_bytes = ALIGN(num_bytes, root->sectorsize); 5035 spin_lock(&BTRFS_I(inode)->lock); 5036 dropped = drop_outstanding_extent(inode); 5037 5038 if (num_bytes) 5039 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5040 spin_unlock(&BTRFS_I(inode)->lock); 5041 if (dropped > 0) 5042 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5043 5044 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5045 btrfs_ino(inode), to_free, 0); 5046 if (root->fs_info->quota_enabled) { 5047 btrfs_qgroup_free(root, num_bytes + 5048 dropped * root->leafsize); 5049 } 5050 5051 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5052 to_free); 5053 } 5054 5055 /** 5056 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5057 * @inode: inode we're writing to 5058 * @num_bytes: the number of bytes we want to allocate 5059 * 5060 * This will do the following things 5061 * 5062 * o reserve space in the data space info for num_bytes 5063 * o reserve space in the metadata space info based on number of outstanding 5064 * extents and how much csums will be needed 5065 * o add to the inodes ->delalloc_bytes 5066 * o add it to the fs_info's delalloc inodes list. 5067 * 5068 * This will return 0 for success and -ENOSPC if there is no space left. 5069 */ 5070 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5071 { 5072 int ret; 5073 5074 ret = btrfs_check_data_free_space(inode, num_bytes); 5075 if (ret) 5076 return ret; 5077 5078 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5079 if (ret) { 5080 btrfs_free_reserved_data_space(inode, num_bytes); 5081 return ret; 5082 } 5083 5084 return 0; 5085 } 5086 5087 /** 5088 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5089 * @inode: inode we're releasing space for 5090 * @num_bytes: the number of bytes we want to free up 5091 * 5092 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5093 * called in the case that we don't need the metadata AND data reservations 5094 * anymore. So if there is an error or we insert an inline extent. 5095 * 5096 * This function will release the metadata space that was not used and will 5097 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5098 * list if there are no delalloc bytes left. 5099 */ 5100 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5101 { 5102 btrfs_delalloc_release_metadata(inode, num_bytes); 5103 btrfs_free_reserved_data_space(inode, num_bytes); 5104 } 5105 5106 static int update_block_group(struct btrfs_root *root, 5107 u64 bytenr, u64 num_bytes, int alloc) 5108 { 5109 struct btrfs_block_group_cache *cache = NULL; 5110 struct btrfs_fs_info *info = root->fs_info; 5111 u64 total = num_bytes; 5112 u64 old_val; 5113 u64 byte_in_group; 5114 int factor; 5115 5116 /* block accounting for super block */ 5117 spin_lock(&info->delalloc_root_lock); 5118 old_val = btrfs_super_bytes_used(info->super_copy); 5119 if (alloc) 5120 old_val += num_bytes; 5121 else 5122 old_val -= num_bytes; 5123 btrfs_set_super_bytes_used(info->super_copy, old_val); 5124 spin_unlock(&info->delalloc_root_lock); 5125 5126 while (total) { 5127 cache = btrfs_lookup_block_group(info, bytenr); 5128 if (!cache) 5129 return -ENOENT; 5130 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5131 BTRFS_BLOCK_GROUP_RAID1 | 5132 BTRFS_BLOCK_GROUP_RAID10)) 5133 factor = 2; 5134 else 5135 factor = 1; 5136 /* 5137 * If this block group has free space cache written out, we 5138 * need to make sure to load it if we are removing space. This 5139 * is because we need the unpinning stage to actually add the 5140 * space back to the block group, otherwise we will leak space. 5141 */ 5142 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5143 cache_block_group(cache, 1); 5144 5145 byte_in_group = bytenr - cache->key.objectid; 5146 WARN_ON(byte_in_group > cache->key.offset); 5147 5148 spin_lock(&cache->space_info->lock); 5149 spin_lock(&cache->lock); 5150 5151 if (btrfs_test_opt(root, SPACE_CACHE) && 5152 cache->disk_cache_state < BTRFS_DC_CLEAR) 5153 cache->disk_cache_state = BTRFS_DC_CLEAR; 5154 5155 cache->dirty = 1; 5156 old_val = btrfs_block_group_used(&cache->item); 5157 num_bytes = min(total, cache->key.offset - byte_in_group); 5158 if (alloc) { 5159 old_val += num_bytes; 5160 btrfs_set_block_group_used(&cache->item, old_val); 5161 cache->reserved -= num_bytes; 5162 cache->space_info->bytes_reserved -= num_bytes; 5163 cache->space_info->bytes_used += num_bytes; 5164 cache->space_info->disk_used += num_bytes * factor; 5165 spin_unlock(&cache->lock); 5166 spin_unlock(&cache->space_info->lock); 5167 } else { 5168 old_val -= num_bytes; 5169 btrfs_set_block_group_used(&cache->item, old_val); 5170 cache->pinned += num_bytes; 5171 cache->space_info->bytes_pinned += num_bytes; 5172 cache->space_info->bytes_used -= num_bytes; 5173 cache->space_info->disk_used -= num_bytes * factor; 5174 spin_unlock(&cache->lock); 5175 spin_unlock(&cache->space_info->lock); 5176 5177 set_extent_dirty(info->pinned_extents, 5178 bytenr, bytenr + num_bytes - 1, 5179 GFP_NOFS | __GFP_NOFAIL); 5180 } 5181 btrfs_put_block_group(cache); 5182 total -= num_bytes; 5183 bytenr += num_bytes; 5184 } 5185 return 0; 5186 } 5187 5188 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5189 { 5190 struct btrfs_block_group_cache *cache; 5191 u64 bytenr; 5192 5193 spin_lock(&root->fs_info->block_group_cache_lock); 5194 bytenr = root->fs_info->first_logical_byte; 5195 spin_unlock(&root->fs_info->block_group_cache_lock); 5196 5197 if (bytenr < (u64)-1) 5198 return bytenr; 5199 5200 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5201 if (!cache) 5202 return 0; 5203 5204 bytenr = cache->key.objectid; 5205 btrfs_put_block_group(cache); 5206 5207 return bytenr; 5208 } 5209 5210 static int pin_down_extent(struct btrfs_root *root, 5211 struct btrfs_block_group_cache *cache, 5212 u64 bytenr, u64 num_bytes, int reserved) 5213 { 5214 spin_lock(&cache->space_info->lock); 5215 spin_lock(&cache->lock); 5216 cache->pinned += num_bytes; 5217 cache->space_info->bytes_pinned += num_bytes; 5218 if (reserved) { 5219 cache->reserved -= num_bytes; 5220 cache->space_info->bytes_reserved -= num_bytes; 5221 } 5222 spin_unlock(&cache->lock); 5223 spin_unlock(&cache->space_info->lock); 5224 5225 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5226 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5227 return 0; 5228 } 5229 5230 /* 5231 * this function must be called within transaction 5232 */ 5233 int btrfs_pin_extent(struct btrfs_root *root, 5234 u64 bytenr, u64 num_bytes, int reserved) 5235 { 5236 struct btrfs_block_group_cache *cache; 5237 5238 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5239 BUG_ON(!cache); /* Logic error */ 5240 5241 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5242 5243 btrfs_put_block_group(cache); 5244 return 0; 5245 } 5246 5247 /* 5248 * this function must be called within transaction 5249 */ 5250 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5251 u64 bytenr, u64 num_bytes) 5252 { 5253 struct btrfs_block_group_cache *cache; 5254 int ret; 5255 5256 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5257 if (!cache) 5258 return -EINVAL; 5259 5260 /* 5261 * pull in the free space cache (if any) so that our pin 5262 * removes the free space from the cache. We have load_only set 5263 * to one because the slow code to read in the free extents does check 5264 * the pinned extents. 5265 */ 5266 cache_block_group(cache, 1); 5267 5268 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5269 5270 /* remove us from the free space cache (if we're there at all) */ 5271 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5272 btrfs_put_block_group(cache); 5273 return ret; 5274 } 5275 5276 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5277 { 5278 int ret; 5279 struct btrfs_block_group_cache *block_group; 5280 struct btrfs_caching_control *caching_ctl; 5281 5282 block_group = btrfs_lookup_block_group(root->fs_info, start); 5283 if (!block_group) 5284 return -EINVAL; 5285 5286 cache_block_group(block_group, 0); 5287 caching_ctl = get_caching_control(block_group); 5288 5289 if (!caching_ctl) { 5290 /* Logic error */ 5291 BUG_ON(!block_group_cache_done(block_group)); 5292 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5293 } else { 5294 mutex_lock(&caching_ctl->mutex); 5295 5296 if (start >= caching_ctl->progress) { 5297 ret = add_excluded_extent(root, start, num_bytes); 5298 } else if (start + num_bytes <= caching_ctl->progress) { 5299 ret = btrfs_remove_free_space(block_group, 5300 start, num_bytes); 5301 } else { 5302 num_bytes = caching_ctl->progress - start; 5303 ret = btrfs_remove_free_space(block_group, 5304 start, num_bytes); 5305 if (ret) 5306 goto out_lock; 5307 5308 num_bytes = (start + num_bytes) - 5309 caching_ctl->progress; 5310 start = caching_ctl->progress; 5311 ret = add_excluded_extent(root, start, num_bytes); 5312 } 5313 out_lock: 5314 mutex_unlock(&caching_ctl->mutex); 5315 put_caching_control(caching_ctl); 5316 } 5317 btrfs_put_block_group(block_group); 5318 return ret; 5319 } 5320 5321 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5322 struct extent_buffer *eb) 5323 { 5324 struct btrfs_file_extent_item *item; 5325 struct btrfs_key key; 5326 int found_type; 5327 int i; 5328 5329 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5330 return 0; 5331 5332 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5333 btrfs_item_key_to_cpu(eb, &key, i); 5334 if (key.type != BTRFS_EXTENT_DATA_KEY) 5335 continue; 5336 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5337 found_type = btrfs_file_extent_type(eb, item); 5338 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5339 continue; 5340 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5341 continue; 5342 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5343 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5344 __exclude_logged_extent(log, key.objectid, key.offset); 5345 } 5346 5347 return 0; 5348 } 5349 5350 /** 5351 * btrfs_update_reserved_bytes - update the block_group and space info counters 5352 * @cache: The cache we are manipulating 5353 * @num_bytes: The number of bytes in question 5354 * @reserve: One of the reservation enums 5355 * 5356 * This is called by the allocator when it reserves space, or by somebody who is 5357 * freeing space that was never actually used on disk. For example if you 5358 * reserve some space for a new leaf in transaction A and before transaction A 5359 * commits you free that leaf, you call this with reserve set to 0 in order to 5360 * clear the reservation. 5361 * 5362 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5363 * ENOSPC accounting. For data we handle the reservation through clearing the 5364 * delalloc bits in the io_tree. We have to do this since we could end up 5365 * allocating less disk space for the amount of data we have reserved in the 5366 * case of compression. 5367 * 5368 * If this is a reservation and the block group has become read only we cannot 5369 * make the reservation and return -EAGAIN, otherwise this function always 5370 * succeeds. 5371 */ 5372 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5373 u64 num_bytes, int reserve) 5374 { 5375 struct btrfs_space_info *space_info = cache->space_info; 5376 int ret = 0; 5377 5378 spin_lock(&space_info->lock); 5379 spin_lock(&cache->lock); 5380 if (reserve != RESERVE_FREE) { 5381 if (cache->ro) { 5382 ret = -EAGAIN; 5383 } else { 5384 cache->reserved += num_bytes; 5385 space_info->bytes_reserved += num_bytes; 5386 if (reserve == RESERVE_ALLOC) { 5387 trace_btrfs_space_reservation(cache->fs_info, 5388 "space_info", space_info->flags, 5389 num_bytes, 0); 5390 space_info->bytes_may_use -= num_bytes; 5391 } 5392 } 5393 } else { 5394 if (cache->ro) 5395 space_info->bytes_readonly += num_bytes; 5396 cache->reserved -= num_bytes; 5397 space_info->bytes_reserved -= num_bytes; 5398 space_info->reservation_progress++; 5399 } 5400 spin_unlock(&cache->lock); 5401 spin_unlock(&space_info->lock); 5402 return ret; 5403 } 5404 5405 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5406 struct btrfs_root *root) 5407 { 5408 struct btrfs_fs_info *fs_info = root->fs_info; 5409 struct btrfs_caching_control *next; 5410 struct btrfs_caching_control *caching_ctl; 5411 struct btrfs_block_group_cache *cache; 5412 struct btrfs_space_info *space_info; 5413 5414 down_write(&fs_info->extent_commit_sem); 5415 5416 list_for_each_entry_safe(caching_ctl, next, 5417 &fs_info->caching_block_groups, list) { 5418 cache = caching_ctl->block_group; 5419 if (block_group_cache_done(cache)) { 5420 cache->last_byte_to_unpin = (u64)-1; 5421 list_del_init(&caching_ctl->list); 5422 put_caching_control(caching_ctl); 5423 } else { 5424 cache->last_byte_to_unpin = caching_ctl->progress; 5425 } 5426 } 5427 5428 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5429 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5430 else 5431 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5432 5433 up_write(&fs_info->extent_commit_sem); 5434 5435 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5436 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5437 5438 update_global_block_rsv(fs_info); 5439 } 5440 5441 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5442 { 5443 struct btrfs_fs_info *fs_info = root->fs_info; 5444 struct btrfs_block_group_cache *cache = NULL; 5445 struct btrfs_space_info *space_info; 5446 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5447 u64 len; 5448 bool readonly; 5449 5450 while (start <= end) { 5451 readonly = false; 5452 if (!cache || 5453 start >= cache->key.objectid + cache->key.offset) { 5454 if (cache) 5455 btrfs_put_block_group(cache); 5456 cache = btrfs_lookup_block_group(fs_info, start); 5457 BUG_ON(!cache); /* Logic error */ 5458 } 5459 5460 len = cache->key.objectid + cache->key.offset - start; 5461 len = min(len, end + 1 - start); 5462 5463 if (start < cache->last_byte_to_unpin) { 5464 len = min(len, cache->last_byte_to_unpin - start); 5465 btrfs_add_free_space(cache, start, len); 5466 } 5467 5468 start += len; 5469 space_info = cache->space_info; 5470 5471 spin_lock(&space_info->lock); 5472 spin_lock(&cache->lock); 5473 cache->pinned -= len; 5474 space_info->bytes_pinned -= len; 5475 if (cache->ro) { 5476 space_info->bytes_readonly += len; 5477 readonly = true; 5478 } 5479 spin_unlock(&cache->lock); 5480 if (!readonly && global_rsv->space_info == space_info) { 5481 spin_lock(&global_rsv->lock); 5482 if (!global_rsv->full) { 5483 len = min(len, global_rsv->size - 5484 global_rsv->reserved); 5485 global_rsv->reserved += len; 5486 space_info->bytes_may_use += len; 5487 if (global_rsv->reserved >= global_rsv->size) 5488 global_rsv->full = 1; 5489 } 5490 spin_unlock(&global_rsv->lock); 5491 } 5492 spin_unlock(&space_info->lock); 5493 } 5494 5495 if (cache) 5496 btrfs_put_block_group(cache); 5497 return 0; 5498 } 5499 5500 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5501 struct btrfs_root *root) 5502 { 5503 struct btrfs_fs_info *fs_info = root->fs_info; 5504 struct extent_io_tree *unpin; 5505 u64 start; 5506 u64 end; 5507 int ret; 5508 5509 if (trans->aborted) 5510 return 0; 5511 5512 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5513 unpin = &fs_info->freed_extents[1]; 5514 else 5515 unpin = &fs_info->freed_extents[0]; 5516 5517 while (1) { 5518 ret = find_first_extent_bit(unpin, 0, &start, &end, 5519 EXTENT_DIRTY, NULL); 5520 if (ret) 5521 break; 5522 5523 if (btrfs_test_opt(root, DISCARD)) 5524 ret = btrfs_discard_extent(root, start, 5525 end + 1 - start, NULL); 5526 5527 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5528 unpin_extent_range(root, start, end); 5529 cond_resched(); 5530 } 5531 5532 return 0; 5533 } 5534 5535 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5536 u64 owner, u64 root_objectid) 5537 { 5538 struct btrfs_space_info *space_info; 5539 u64 flags; 5540 5541 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5542 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5543 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5544 else 5545 flags = BTRFS_BLOCK_GROUP_METADATA; 5546 } else { 5547 flags = BTRFS_BLOCK_GROUP_DATA; 5548 } 5549 5550 space_info = __find_space_info(fs_info, flags); 5551 BUG_ON(!space_info); /* Logic bug */ 5552 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5553 } 5554 5555 5556 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5557 struct btrfs_root *root, 5558 u64 bytenr, u64 num_bytes, u64 parent, 5559 u64 root_objectid, u64 owner_objectid, 5560 u64 owner_offset, int refs_to_drop, 5561 struct btrfs_delayed_extent_op *extent_op) 5562 { 5563 struct btrfs_key key; 5564 struct btrfs_path *path; 5565 struct btrfs_fs_info *info = root->fs_info; 5566 struct btrfs_root *extent_root = info->extent_root; 5567 struct extent_buffer *leaf; 5568 struct btrfs_extent_item *ei; 5569 struct btrfs_extent_inline_ref *iref; 5570 int ret; 5571 int is_data; 5572 int extent_slot = 0; 5573 int found_extent = 0; 5574 int num_to_del = 1; 5575 u32 item_size; 5576 u64 refs; 5577 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5578 SKINNY_METADATA); 5579 5580 path = btrfs_alloc_path(); 5581 if (!path) 5582 return -ENOMEM; 5583 5584 path->reada = 1; 5585 path->leave_spinning = 1; 5586 5587 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5588 BUG_ON(!is_data && refs_to_drop != 1); 5589 5590 if (is_data) 5591 skinny_metadata = 0; 5592 5593 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5594 bytenr, num_bytes, parent, 5595 root_objectid, owner_objectid, 5596 owner_offset); 5597 if (ret == 0) { 5598 extent_slot = path->slots[0]; 5599 while (extent_slot >= 0) { 5600 btrfs_item_key_to_cpu(path->nodes[0], &key, 5601 extent_slot); 5602 if (key.objectid != bytenr) 5603 break; 5604 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5605 key.offset == num_bytes) { 5606 found_extent = 1; 5607 break; 5608 } 5609 if (key.type == BTRFS_METADATA_ITEM_KEY && 5610 key.offset == owner_objectid) { 5611 found_extent = 1; 5612 break; 5613 } 5614 if (path->slots[0] - extent_slot > 5) 5615 break; 5616 extent_slot--; 5617 } 5618 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5619 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5620 if (found_extent && item_size < sizeof(*ei)) 5621 found_extent = 0; 5622 #endif 5623 if (!found_extent) { 5624 BUG_ON(iref); 5625 ret = remove_extent_backref(trans, extent_root, path, 5626 NULL, refs_to_drop, 5627 is_data); 5628 if (ret) { 5629 btrfs_abort_transaction(trans, extent_root, ret); 5630 goto out; 5631 } 5632 btrfs_release_path(path); 5633 path->leave_spinning = 1; 5634 5635 key.objectid = bytenr; 5636 key.type = BTRFS_EXTENT_ITEM_KEY; 5637 key.offset = num_bytes; 5638 5639 if (!is_data && skinny_metadata) { 5640 key.type = BTRFS_METADATA_ITEM_KEY; 5641 key.offset = owner_objectid; 5642 } 5643 5644 ret = btrfs_search_slot(trans, extent_root, 5645 &key, path, -1, 1); 5646 if (ret > 0 && skinny_metadata && path->slots[0]) { 5647 /* 5648 * Couldn't find our skinny metadata item, 5649 * see if we have ye olde extent item. 5650 */ 5651 path->slots[0]--; 5652 btrfs_item_key_to_cpu(path->nodes[0], &key, 5653 path->slots[0]); 5654 if (key.objectid == bytenr && 5655 key.type == BTRFS_EXTENT_ITEM_KEY && 5656 key.offset == num_bytes) 5657 ret = 0; 5658 } 5659 5660 if (ret > 0 && skinny_metadata) { 5661 skinny_metadata = false; 5662 key.type = BTRFS_EXTENT_ITEM_KEY; 5663 key.offset = num_bytes; 5664 btrfs_release_path(path); 5665 ret = btrfs_search_slot(trans, extent_root, 5666 &key, path, -1, 1); 5667 } 5668 5669 if (ret) { 5670 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5671 ret, (unsigned long long)bytenr); 5672 if (ret > 0) 5673 btrfs_print_leaf(extent_root, 5674 path->nodes[0]); 5675 } 5676 if (ret < 0) { 5677 btrfs_abort_transaction(trans, extent_root, ret); 5678 goto out; 5679 } 5680 extent_slot = path->slots[0]; 5681 } 5682 } else if (ret == -ENOENT) { 5683 btrfs_print_leaf(extent_root, path->nodes[0]); 5684 WARN_ON(1); 5685 btrfs_err(info, 5686 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5687 (unsigned long long)bytenr, 5688 (unsigned long long)parent, 5689 (unsigned long long)root_objectid, 5690 (unsigned long long)owner_objectid, 5691 (unsigned long long)owner_offset); 5692 } else { 5693 btrfs_abort_transaction(trans, extent_root, ret); 5694 goto out; 5695 } 5696 5697 leaf = path->nodes[0]; 5698 item_size = btrfs_item_size_nr(leaf, extent_slot); 5699 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5700 if (item_size < sizeof(*ei)) { 5701 BUG_ON(found_extent || extent_slot != path->slots[0]); 5702 ret = convert_extent_item_v0(trans, extent_root, path, 5703 owner_objectid, 0); 5704 if (ret < 0) { 5705 btrfs_abort_transaction(trans, extent_root, ret); 5706 goto out; 5707 } 5708 5709 btrfs_release_path(path); 5710 path->leave_spinning = 1; 5711 5712 key.objectid = bytenr; 5713 key.type = BTRFS_EXTENT_ITEM_KEY; 5714 key.offset = num_bytes; 5715 5716 ret = btrfs_search_slot(trans, extent_root, &key, path, 5717 -1, 1); 5718 if (ret) { 5719 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5720 ret, (unsigned long long)bytenr); 5721 btrfs_print_leaf(extent_root, path->nodes[0]); 5722 } 5723 if (ret < 0) { 5724 btrfs_abort_transaction(trans, extent_root, ret); 5725 goto out; 5726 } 5727 5728 extent_slot = path->slots[0]; 5729 leaf = path->nodes[0]; 5730 item_size = btrfs_item_size_nr(leaf, extent_slot); 5731 } 5732 #endif 5733 BUG_ON(item_size < sizeof(*ei)); 5734 ei = btrfs_item_ptr(leaf, extent_slot, 5735 struct btrfs_extent_item); 5736 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5737 key.type == BTRFS_EXTENT_ITEM_KEY) { 5738 struct btrfs_tree_block_info *bi; 5739 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5740 bi = (struct btrfs_tree_block_info *)(ei + 1); 5741 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5742 } 5743 5744 refs = btrfs_extent_refs(leaf, ei); 5745 if (refs < refs_to_drop) { 5746 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5747 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5748 ret = -EINVAL; 5749 btrfs_abort_transaction(trans, extent_root, ret); 5750 goto out; 5751 } 5752 refs -= refs_to_drop; 5753 5754 if (refs > 0) { 5755 if (extent_op) 5756 __run_delayed_extent_op(extent_op, leaf, ei); 5757 /* 5758 * In the case of inline back ref, reference count will 5759 * be updated by remove_extent_backref 5760 */ 5761 if (iref) { 5762 BUG_ON(!found_extent); 5763 } else { 5764 btrfs_set_extent_refs(leaf, ei, refs); 5765 btrfs_mark_buffer_dirty(leaf); 5766 } 5767 if (found_extent) { 5768 ret = remove_extent_backref(trans, extent_root, path, 5769 iref, refs_to_drop, 5770 is_data); 5771 if (ret) { 5772 btrfs_abort_transaction(trans, extent_root, ret); 5773 goto out; 5774 } 5775 } 5776 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5777 root_objectid); 5778 } else { 5779 if (found_extent) { 5780 BUG_ON(is_data && refs_to_drop != 5781 extent_data_ref_count(root, path, iref)); 5782 if (iref) { 5783 BUG_ON(path->slots[0] != extent_slot); 5784 } else { 5785 BUG_ON(path->slots[0] != extent_slot + 1); 5786 path->slots[0] = extent_slot; 5787 num_to_del = 2; 5788 } 5789 } 5790 5791 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5792 num_to_del); 5793 if (ret) { 5794 btrfs_abort_transaction(trans, extent_root, ret); 5795 goto out; 5796 } 5797 btrfs_release_path(path); 5798 5799 if (is_data) { 5800 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5801 if (ret) { 5802 btrfs_abort_transaction(trans, extent_root, ret); 5803 goto out; 5804 } 5805 } 5806 5807 ret = update_block_group(root, bytenr, num_bytes, 0); 5808 if (ret) { 5809 btrfs_abort_transaction(trans, extent_root, ret); 5810 goto out; 5811 } 5812 } 5813 out: 5814 btrfs_free_path(path); 5815 return ret; 5816 } 5817 5818 /* 5819 * when we free an block, it is possible (and likely) that we free the last 5820 * delayed ref for that extent as well. This searches the delayed ref tree for 5821 * a given extent, and if there are no other delayed refs to be processed, it 5822 * removes it from the tree. 5823 */ 5824 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5825 struct btrfs_root *root, u64 bytenr) 5826 { 5827 struct btrfs_delayed_ref_head *head; 5828 struct btrfs_delayed_ref_root *delayed_refs; 5829 struct btrfs_delayed_ref_node *ref; 5830 struct rb_node *node; 5831 int ret = 0; 5832 5833 delayed_refs = &trans->transaction->delayed_refs; 5834 spin_lock(&delayed_refs->lock); 5835 head = btrfs_find_delayed_ref_head(trans, bytenr); 5836 if (!head) 5837 goto out; 5838 5839 node = rb_prev(&head->node.rb_node); 5840 if (!node) 5841 goto out; 5842 5843 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5844 5845 /* there are still entries for this ref, we can't drop it */ 5846 if (ref->bytenr == bytenr) 5847 goto out; 5848 5849 if (head->extent_op) { 5850 if (!head->must_insert_reserved) 5851 goto out; 5852 btrfs_free_delayed_extent_op(head->extent_op); 5853 head->extent_op = NULL; 5854 } 5855 5856 /* 5857 * waiting for the lock here would deadlock. If someone else has it 5858 * locked they are already in the process of dropping it anyway 5859 */ 5860 if (!mutex_trylock(&head->mutex)) 5861 goto out; 5862 5863 /* 5864 * at this point we have a head with no other entries. Go 5865 * ahead and process it. 5866 */ 5867 head->node.in_tree = 0; 5868 rb_erase(&head->node.rb_node, &delayed_refs->root); 5869 5870 delayed_refs->num_entries--; 5871 5872 /* 5873 * we don't take a ref on the node because we're removing it from the 5874 * tree, so we just steal the ref the tree was holding. 5875 */ 5876 delayed_refs->num_heads--; 5877 if (list_empty(&head->cluster)) 5878 delayed_refs->num_heads_ready--; 5879 5880 list_del_init(&head->cluster); 5881 spin_unlock(&delayed_refs->lock); 5882 5883 BUG_ON(head->extent_op); 5884 if (head->must_insert_reserved) 5885 ret = 1; 5886 5887 mutex_unlock(&head->mutex); 5888 btrfs_put_delayed_ref(&head->node); 5889 return ret; 5890 out: 5891 spin_unlock(&delayed_refs->lock); 5892 return 0; 5893 } 5894 5895 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5896 struct btrfs_root *root, 5897 struct extent_buffer *buf, 5898 u64 parent, int last_ref) 5899 { 5900 struct btrfs_block_group_cache *cache = NULL; 5901 int pin = 1; 5902 int ret; 5903 5904 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5905 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5906 buf->start, buf->len, 5907 parent, root->root_key.objectid, 5908 btrfs_header_level(buf), 5909 BTRFS_DROP_DELAYED_REF, NULL, 0); 5910 BUG_ON(ret); /* -ENOMEM */ 5911 } 5912 5913 if (!last_ref) 5914 return; 5915 5916 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5917 5918 if (btrfs_header_generation(buf) == trans->transid) { 5919 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5920 ret = check_ref_cleanup(trans, root, buf->start); 5921 if (!ret) 5922 goto out; 5923 } 5924 5925 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5926 pin_down_extent(root, cache, buf->start, buf->len, 1); 5927 goto out; 5928 } 5929 5930 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5931 5932 btrfs_add_free_space(cache, buf->start, buf->len); 5933 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5934 pin = 0; 5935 } 5936 out: 5937 if (pin) 5938 add_pinned_bytes(root->fs_info, buf->len, 5939 btrfs_header_level(buf), 5940 root->root_key.objectid); 5941 5942 /* 5943 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5944 * anymore. 5945 */ 5946 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5947 btrfs_put_block_group(cache); 5948 } 5949 5950 /* Can return -ENOMEM */ 5951 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5952 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5953 u64 owner, u64 offset, int for_cow) 5954 { 5955 int ret; 5956 struct btrfs_fs_info *fs_info = root->fs_info; 5957 5958 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 5959 5960 /* 5961 * tree log blocks never actually go into the extent allocation 5962 * tree, just update pinning info and exit early. 5963 */ 5964 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5965 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5966 /* unlocks the pinned mutex */ 5967 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5968 ret = 0; 5969 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5970 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5971 num_bytes, 5972 parent, root_objectid, (int)owner, 5973 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5974 } else { 5975 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5976 num_bytes, 5977 parent, root_objectid, owner, 5978 offset, BTRFS_DROP_DELAYED_REF, 5979 NULL, for_cow); 5980 } 5981 return ret; 5982 } 5983 5984 static u64 stripe_align(struct btrfs_root *root, 5985 struct btrfs_block_group_cache *cache, 5986 u64 val, u64 num_bytes) 5987 { 5988 u64 ret = ALIGN(val, root->stripesize); 5989 return ret; 5990 } 5991 5992 /* 5993 * when we wait for progress in the block group caching, its because 5994 * our allocation attempt failed at least once. So, we must sleep 5995 * and let some progress happen before we try again. 5996 * 5997 * This function will sleep at least once waiting for new free space to 5998 * show up, and then it will check the block group free space numbers 5999 * for our min num_bytes. Another option is to have it go ahead 6000 * and look in the rbtree for a free extent of a given size, but this 6001 * is a good start. 6002 */ 6003 static noinline int 6004 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6005 u64 num_bytes) 6006 { 6007 struct btrfs_caching_control *caching_ctl; 6008 6009 caching_ctl = get_caching_control(cache); 6010 if (!caching_ctl) 6011 return 0; 6012 6013 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6014 (cache->free_space_ctl->free_space >= num_bytes)); 6015 6016 put_caching_control(caching_ctl); 6017 return 0; 6018 } 6019 6020 static noinline int 6021 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6022 { 6023 struct btrfs_caching_control *caching_ctl; 6024 6025 caching_ctl = get_caching_control(cache); 6026 if (!caching_ctl) 6027 return 0; 6028 6029 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6030 6031 put_caching_control(caching_ctl); 6032 return 0; 6033 } 6034 6035 int __get_raid_index(u64 flags) 6036 { 6037 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6038 return BTRFS_RAID_RAID10; 6039 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6040 return BTRFS_RAID_RAID1; 6041 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6042 return BTRFS_RAID_DUP; 6043 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6044 return BTRFS_RAID_RAID0; 6045 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6046 return BTRFS_RAID_RAID5; 6047 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6048 return BTRFS_RAID_RAID6; 6049 6050 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6051 } 6052 6053 static int get_block_group_index(struct btrfs_block_group_cache *cache) 6054 { 6055 return __get_raid_index(cache->flags); 6056 } 6057 6058 enum btrfs_loop_type { 6059 LOOP_CACHING_NOWAIT = 0, 6060 LOOP_CACHING_WAIT = 1, 6061 LOOP_ALLOC_CHUNK = 2, 6062 LOOP_NO_EMPTY_SIZE = 3, 6063 }; 6064 6065 /* 6066 * walks the btree of allocated extents and find a hole of a given size. 6067 * The key ins is changed to record the hole: 6068 * ins->objectid == block start 6069 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6070 * ins->offset == number of blocks 6071 * Any available blocks before search_start are skipped. 6072 */ 6073 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 6074 struct btrfs_root *orig_root, 6075 u64 num_bytes, u64 empty_size, 6076 u64 hint_byte, struct btrfs_key *ins, 6077 u64 flags) 6078 { 6079 int ret = 0; 6080 struct btrfs_root *root = orig_root->fs_info->extent_root; 6081 struct btrfs_free_cluster *last_ptr = NULL; 6082 struct btrfs_block_group_cache *block_group = NULL; 6083 struct btrfs_block_group_cache *used_block_group; 6084 u64 search_start = 0; 6085 int empty_cluster = 2 * 1024 * 1024; 6086 struct btrfs_space_info *space_info; 6087 int loop = 0; 6088 int index = __get_raid_index(flags); 6089 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6090 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6091 bool found_uncached_bg = false; 6092 bool failed_cluster_refill = false; 6093 bool failed_alloc = false; 6094 bool use_cluster = true; 6095 bool have_caching_bg = false; 6096 6097 WARN_ON(num_bytes < root->sectorsize); 6098 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6099 ins->objectid = 0; 6100 ins->offset = 0; 6101 6102 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6103 6104 space_info = __find_space_info(root->fs_info, flags); 6105 if (!space_info) { 6106 btrfs_err(root->fs_info, "No space info for %llu", flags); 6107 return -ENOSPC; 6108 } 6109 6110 /* 6111 * If the space info is for both data and metadata it means we have a 6112 * small filesystem and we can't use the clustering stuff. 6113 */ 6114 if (btrfs_mixed_space_info(space_info)) 6115 use_cluster = false; 6116 6117 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6118 last_ptr = &root->fs_info->meta_alloc_cluster; 6119 if (!btrfs_test_opt(root, SSD)) 6120 empty_cluster = 64 * 1024; 6121 } 6122 6123 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6124 btrfs_test_opt(root, SSD)) { 6125 last_ptr = &root->fs_info->data_alloc_cluster; 6126 } 6127 6128 if (last_ptr) { 6129 spin_lock(&last_ptr->lock); 6130 if (last_ptr->block_group) 6131 hint_byte = last_ptr->window_start; 6132 spin_unlock(&last_ptr->lock); 6133 } 6134 6135 search_start = max(search_start, first_logical_byte(root, 0)); 6136 search_start = max(search_start, hint_byte); 6137 6138 if (!last_ptr) 6139 empty_cluster = 0; 6140 6141 if (search_start == hint_byte) { 6142 block_group = btrfs_lookup_block_group(root->fs_info, 6143 search_start); 6144 used_block_group = block_group; 6145 /* 6146 * we don't want to use the block group if it doesn't match our 6147 * allocation bits, or if its not cached. 6148 * 6149 * However if we are re-searching with an ideal block group 6150 * picked out then we don't care that the block group is cached. 6151 */ 6152 if (block_group && block_group_bits(block_group, flags) && 6153 block_group->cached != BTRFS_CACHE_NO) { 6154 down_read(&space_info->groups_sem); 6155 if (list_empty(&block_group->list) || 6156 block_group->ro) { 6157 /* 6158 * someone is removing this block group, 6159 * we can't jump into the have_block_group 6160 * target because our list pointers are not 6161 * valid 6162 */ 6163 btrfs_put_block_group(block_group); 6164 up_read(&space_info->groups_sem); 6165 } else { 6166 index = get_block_group_index(block_group); 6167 goto have_block_group; 6168 } 6169 } else if (block_group) { 6170 btrfs_put_block_group(block_group); 6171 } 6172 } 6173 search: 6174 have_caching_bg = false; 6175 down_read(&space_info->groups_sem); 6176 list_for_each_entry(block_group, &space_info->block_groups[index], 6177 list) { 6178 u64 offset; 6179 int cached; 6180 6181 used_block_group = block_group; 6182 btrfs_get_block_group(block_group); 6183 search_start = block_group->key.objectid; 6184 6185 /* 6186 * this can happen if we end up cycling through all the 6187 * raid types, but we want to make sure we only allocate 6188 * for the proper type. 6189 */ 6190 if (!block_group_bits(block_group, flags)) { 6191 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6192 BTRFS_BLOCK_GROUP_RAID1 | 6193 BTRFS_BLOCK_GROUP_RAID5 | 6194 BTRFS_BLOCK_GROUP_RAID6 | 6195 BTRFS_BLOCK_GROUP_RAID10; 6196 6197 /* 6198 * if they asked for extra copies and this block group 6199 * doesn't provide them, bail. This does allow us to 6200 * fill raid0 from raid1. 6201 */ 6202 if ((flags & extra) && !(block_group->flags & extra)) 6203 goto loop; 6204 } 6205 6206 have_block_group: 6207 cached = block_group_cache_done(block_group); 6208 if (unlikely(!cached)) { 6209 found_uncached_bg = true; 6210 ret = cache_block_group(block_group, 0); 6211 BUG_ON(ret < 0); 6212 ret = 0; 6213 } 6214 6215 if (unlikely(block_group->ro)) 6216 goto loop; 6217 6218 /* 6219 * Ok we want to try and use the cluster allocator, so 6220 * lets look there 6221 */ 6222 if (last_ptr) { 6223 unsigned long aligned_cluster; 6224 /* 6225 * the refill lock keeps out other 6226 * people trying to start a new cluster 6227 */ 6228 spin_lock(&last_ptr->refill_lock); 6229 used_block_group = last_ptr->block_group; 6230 if (used_block_group != block_group && 6231 (!used_block_group || 6232 used_block_group->ro || 6233 !block_group_bits(used_block_group, flags))) { 6234 used_block_group = block_group; 6235 goto refill_cluster; 6236 } 6237 6238 if (used_block_group != block_group) 6239 btrfs_get_block_group(used_block_group); 6240 6241 offset = btrfs_alloc_from_cluster(used_block_group, 6242 last_ptr, num_bytes, used_block_group->key.objectid); 6243 if (offset) { 6244 /* we have a block, we're done */ 6245 spin_unlock(&last_ptr->refill_lock); 6246 trace_btrfs_reserve_extent_cluster(root, 6247 block_group, search_start, num_bytes); 6248 goto checks; 6249 } 6250 6251 WARN_ON(last_ptr->block_group != used_block_group); 6252 if (used_block_group != block_group) { 6253 btrfs_put_block_group(used_block_group); 6254 used_block_group = block_group; 6255 } 6256 refill_cluster: 6257 BUG_ON(used_block_group != block_group); 6258 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6259 * set up a new clusters, so lets just skip it 6260 * and let the allocator find whatever block 6261 * it can find. If we reach this point, we 6262 * will have tried the cluster allocator 6263 * plenty of times and not have found 6264 * anything, so we are likely way too 6265 * fragmented for the clustering stuff to find 6266 * anything. 6267 * 6268 * However, if the cluster is taken from the 6269 * current block group, release the cluster 6270 * first, so that we stand a better chance of 6271 * succeeding in the unclustered 6272 * allocation. */ 6273 if (loop >= LOOP_NO_EMPTY_SIZE && 6274 last_ptr->block_group != block_group) { 6275 spin_unlock(&last_ptr->refill_lock); 6276 goto unclustered_alloc; 6277 } 6278 6279 /* 6280 * this cluster didn't work out, free it and 6281 * start over 6282 */ 6283 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6284 6285 if (loop >= LOOP_NO_EMPTY_SIZE) { 6286 spin_unlock(&last_ptr->refill_lock); 6287 goto unclustered_alloc; 6288 } 6289 6290 aligned_cluster = max_t(unsigned long, 6291 empty_cluster + empty_size, 6292 block_group->full_stripe_len); 6293 6294 /* allocate a cluster in this block group */ 6295 ret = btrfs_find_space_cluster(trans, root, 6296 block_group, last_ptr, 6297 search_start, num_bytes, 6298 aligned_cluster); 6299 if (ret == 0) { 6300 /* 6301 * now pull our allocation out of this 6302 * cluster 6303 */ 6304 offset = btrfs_alloc_from_cluster(block_group, 6305 last_ptr, num_bytes, 6306 search_start); 6307 if (offset) { 6308 /* we found one, proceed */ 6309 spin_unlock(&last_ptr->refill_lock); 6310 trace_btrfs_reserve_extent_cluster(root, 6311 block_group, search_start, 6312 num_bytes); 6313 goto checks; 6314 } 6315 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6316 && !failed_cluster_refill) { 6317 spin_unlock(&last_ptr->refill_lock); 6318 6319 failed_cluster_refill = true; 6320 wait_block_group_cache_progress(block_group, 6321 num_bytes + empty_cluster + empty_size); 6322 goto have_block_group; 6323 } 6324 6325 /* 6326 * at this point we either didn't find a cluster 6327 * or we weren't able to allocate a block from our 6328 * cluster. Free the cluster we've been trying 6329 * to use, and go to the next block group 6330 */ 6331 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6332 spin_unlock(&last_ptr->refill_lock); 6333 goto loop; 6334 } 6335 6336 unclustered_alloc: 6337 spin_lock(&block_group->free_space_ctl->tree_lock); 6338 if (cached && 6339 block_group->free_space_ctl->free_space < 6340 num_bytes + empty_cluster + empty_size) { 6341 spin_unlock(&block_group->free_space_ctl->tree_lock); 6342 goto loop; 6343 } 6344 spin_unlock(&block_group->free_space_ctl->tree_lock); 6345 6346 offset = btrfs_find_space_for_alloc(block_group, search_start, 6347 num_bytes, empty_size); 6348 /* 6349 * If we didn't find a chunk, and we haven't failed on this 6350 * block group before, and this block group is in the middle of 6351 * caching and we are ok with waiting, then go ahead and wait 6352 * for progress to be made, and set failed_alloc to true. 6353 * 6354 * If failed_alloc is true then we've already waited on this 6355 * block group once and should move on to the next block group. 6356 */ 6357 if (!offset && !failed_alloc && !cached && 6358 loop > LOOP_CACHING_NOWAIT) { 6359 wait_block_group_cache_progress(block_group, 6360 num_bytes + empty_size); 6361 failed_alloc = true; 6362 goto have_block_group; 6363 } else if (!offset) { 6364 if (!cached) 6365 have_caching_bg = true; 6366 goto loop; 6367 } 6368 checks: 6369 search_start = stripe_align(root, used_block_group, 6370 offset, num_bytes); 6371 6372 /* move on to the next group */ 6373 if (search_start + num_bytes > 6374 used_block_group->key.objectid + used_block_group->key.offset) { 6375 btrfs_add_free_space(used_block_group, offset, num_bytes); 6376 goto loop; 6377 } 6378 6379 if (offset < search_start) 6380 btrfs_add_free_space(used_block_group, offset, 6381 search_start - offset); 6382 BUG_ON(offset > search_start); 6383 6384 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 6385 alloc_type); 6386 if (ret == -EAGAIN) { 6387 btrfs_add_free_space(used_block_group, offset, num_bytes); 6388 goto loop; 6389 } 6390 6391 /* we are all good, lets return */ 6392 ins->objectid = search_start; 6393 ins->offset = num_bytes; 6394 6395 trace_btrfs_reserve_extent(orig_root, block_group, 6396 search_start, num_bytes); 6397 if (used_block_group != block_group) 6398 btrfs_put_block_group(used_block_group); 6399 btrfs_put_block_group(block_group); 6400 break; 6401 loop: 6402 failed_cluster_refill = false; 6403 failed_alloc = false; 6404 BUG_ON(index != get_block_group_index(block_group)); 6405 if (used_block_group != block_group) 6406 btrfs_put_block_group(used_block_group); 6407 btrfs_put_block_group(block_group); 6408 } 6409 up_read(&space_info->groups_sem); 6410 6411 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6412 goto search; 6413 6414 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6415 goto search; 6416 6417 /* 6418 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6419 * caching kthreads as we move along 6420 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6421 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6422 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6423 * again 6424 */ 6425 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6426 index = 0; 6427 loop++; 6428 if (loop == LOOP_ALLOC_CHUNK) { 6429 ret = do_chunk_alloc(trans, root, flags, 6430 CHUNK_ALLOC_FORCE); 6431 /* 6432 * Do not bail out on ENOSPC since we 6433 * can do more things. 6434 */ 6435 if (ret < 0 && ret != -ENOSPC) { 6436 btrfs_abort_transaction(trans, 6437 root, ret); 6438 goto out; 6439 } 6440 } 6441 6442 if (loop == LOOP_NO_EMPTY_SIZE) { 6443 empty_size = 0; 6444 empty_cluster = 0; 6445 } 6446 6447 goto search; 6448 } else if (!ins->objectid) { 6449 ret = -ENOSPC; 6450 } else if (ins->objectid) { 6451 ret = 0; 6452 } 6453 out: 6454 6455 return ret; 6456 } 6457 6458 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6459 int dump_block_groups) 6460 { 6461 struct btrfs_block_group_cache *cache; 6462 int index = 0; 6463 6464 spin_lock(&info->lock); 6465 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 6466 (unsigned long long)info->flags, 6467 (unsigned long long)(info->total_bytes - info->bytes_used - 6468 info->bytes_pinned - info->bytes_reserved - 6469 info->bytes_readonly), 6470 (info->full) ? "" : "not "); 6471 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 6472 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6473 (unsigned long long)info->total_bytes, 6474 (unsigned long long)info->bytes_used, 6475 (unsigned long long)info->bytes_pinned, 6476 (unsigned long long)info->bytes_reserved, 6477 (unsigned long long)info->bytes_may_use, 6478 (unsigned long long)info->bytes_readonly); 6479 spin_unlock(&info->lock); 6480 6481 if (!dump_block_groups) 6482 return; 6483 6484 down_read(&info->groups_sem); 6485 again: 6486 list_for_each_entry(cache, &info->block_groups[index], list) { 6487 spin_lock(&cache->lock); 6488 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 6489 (unsigned long long)cache->key.objectid, 6490 (unsigned long long)cache->key.offset, 6491 (unsigned long long)btrfs_block_group_used(&cache->item), 6492 (unsigned long long)cache->pinned, 6493 (unsigned long long)cache->reserved, 6494 cache->ro ? "[readonly]" : ""); 6495 btrfs_dump_free_space(cache, bytes); 6496 spin_unlock(&cache->lock); 6497 } 6498 if (++index < BTRFS_NR_RAID_TYPES) 6499 goto again; 6500 up_read(&info->groups_sem); 6501 } 6502 6503 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 6504 struct btrfs_root *root, 6505 u64 num_bytes, u64 min_alloc_size, 6506 u64 empty_size, u64 hint_byte, 6507 struct btrfs_key *ins, int is_data) 6508 { 6509 bool final_tried = false; 6510 u64 flags; 6511 int ret; 6512 6513 flags = btrfs_get_alloc_profile(root, is_data); 6514 again: 6515 WARN_ON(num_bytes < root->sectorsize); 6516 ret = find_free_extent(trans, root, num_bytes, empty_size, 6517 hint_byte, ins, flags); 6518 6519 if (ret == -ENOSPC) { 6520 if (!final_tried) { 6521 num_bytes = num_bytes >> 1; 6522 num_bytes = round_down(num_bytes, root->sectorsize); 6523 num_bytes = max(num_bytes, min_alloc_size); 6524 if (num_bytes == min_alloc_size) 6525 final_tried = true; 6526 goto again; 6527 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6528 struct btrfs_space_info *sinfo; 6529 6530 sinfo = __find_space_info(root->fs_info, flags); 6531 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6532 (unsigned long long)flags, 6533 (unsigned long long)num_bytes); 6534 if (sinfo) 6535 dump_space_info(sinfo, num_bytes, 1); 6536 } 6537 } 6538 6539 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6540 6541 return ret; 6542 } 6543 6544 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6545 u64 start, u64 len, int pin) 6546 { 6547 struct btrfs_block_group_cache *cache; 6548 int ret = 0; 6549 6550 cache = btrfs_lookup_block_group(root->fs_info, start); 6551 if (!cache) { 6552 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6553 (unsigned long long)start); 6554 return -ENOSPC; 6555 } 6556 6557 if (btrfs_test_opt(root, DISCARD)) 6558 ret = btrfs_discard_extent(root, start, len, NULL); 6559 6560 if (pin) 6561 pin_down_extent(root, cache, start, len, 1); 6562 else { 6563 btrfs_add_free_space(cache, start, len); 6564 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6565 } 6566 btrfs_put_block_group(cache); 6567 6568 trace_btrfs_reserved_extent_free(root, start, len); 6569 6570 return ret; 6571 } 6572 6573 int btrfs_free_reserved_extent(struct btrfs_root *root, 6574 u64 start, u64 len) 6575 { 6576 return __btrfs_free_reserved_extent(root, start, len, 0); 6577 } 6578 6579 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6580 u64 start, u64 len) 6581 { 6582 return __btrfs_free_reserved_extent(root, start, len, 1); 6583 } 6584 6585 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6586 struct btrfs_root *root, 6587 u64 parent, u64 root_objectid, 6588 u64 flags, u64 owner, u64 offset, 6589 struct btrfs_key *ins, int ref_mod) 6590 { 6591 int ret; 6592 struct btrfs_fs_info *fs_info = root->fs_info; 6593 struct btrfs_extent_item *extent_item; 6594 struct btrfs_extent_inline_ref *iref; 6595 struct btrfs_path *path; 6596 struct extent_buffer *leaf; 6597 int type; 6598 u32 size; 6599 6600 if (parent > 0) 6601 type = BTRFS_SHARED_DATA_REF_KEY; 6602 else 6603 type = BTRFS_EXTENT_DATA_REF_KEY; 6604 6605 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6606 6607 path = btrfs_alloc_path(); 6608 if (!path) 6609 return -ENOMEM; 6610 6611 path->leave_spinning = 1; 6612 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6613 ins, size); 6614 if (ret) { 6615 btrfs_free_path(path); 6616 return ret; 6617 } 6618 6619 leaf = path->nodes[0]; 6620 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6621 struct btrfs_extent_item); 6622 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6623 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6624 btrfs_set_extent_flags(leaf, extent_item, 6625 flags | BTRFS_EXTENT_FLAG_DATA); 6626 6627 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6628 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6629 if (parent > 0) { 6630 struct btrfs_shared_data_ref *ref; 6631 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6632 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6633 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6634 } else { 6635 struct btrfs_extent_data_ref *ref; 6636 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6637 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6638 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6639 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6640 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6641 } 6642 6643 btrfs_mark_buffer_dirty(path->nodes[0]); 6644 btrfs_free_path(path); 6645 6646 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6647 if (ret) { /* -ENOENT, logic error */ 6648 btrfs_err(fs_info, "update block group failed for %llu %llu", 6649 (unsigned long long)ins->objectid, 6650 (unsigned long long)ins->offset); 6651 BUG(); 6652 } 6653 return ret; 6654 } 6655 6656 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6657 struct btrfs_root *root, 6658 u64 parent, u64 root_objectid, 6659 u64 flags, struct btrfs_disk_key *key, 6660 int level, struct btrfs_key *ins) 6661 { 6662 int ret; 6663 struct btrfs_fs_info *fs_info = root->fs_info; 6664 struct btrfs_extent_item *extent_item; 6665 struct btrfs_tree_block_info *block_info; 6666 struct btrfs_extent_inline_ref *iref; 6667 struct btrfs_path *path; 6668 struct extent_buffer *leaf; 6669 u32 size = sizeof(*extent_item) + sizeof(*iref); 6670 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6671 SKINNY_METADATA); 6672 6673 if (!skinny_metadata) 6674 size += sizeof(*block_info); 6675 6676 path = btrfs_alloc_path(); 6677 if (!path) 6678 return -ENOMEM; 6679 6680 path->leave_spinning = 1; 6681 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6682 ins, size); 6683 if (ret) { 6684 btrfs_free_path(path); 6685 return ret; 6686 } 6687 6688 leaf = path->nodes[0]; 6689 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6690 struct btrfs_extent_item); 6691 btrfs_set_extent_refs(leaf, extent_item, 1); 6692 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6693 btrfs_set_extent_flags(leaf, extent_item, 6694 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6695 6696 if (skinny_metadata) { 6697 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6698 } else { 6699 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6700 btrfs_set_tree_block_key(leaf, block_info, key); 6701 btrfs_set_tree_block_level(leaf, block_info, level); 6702 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6703 } 6704 6705 if (parent > 0) { 6706 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6707 btrfs_set_extent_inline_ref_type(leaf, iref, 6708 BTRFS_SHARED_BLOCK_REF_KEY); 6709 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6710 } else { 6711 btrfs_set_extent_inline_ref_type(leaf, iref, 6712 BTRFS_TREE_BLOCK_REF_KEY); 6713 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6714 } 6715 6716 btrfs_mark_buffer_dirty(leaf); 6717 btrfs_free_path(path); 6718 6719 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6720 if (ret) { /* -ENOENT, logic error */ 6721 btrfs_err(fs_info, "update block group failed for %llu %llu", 6722 (unsigned long long)ins->objectid, 6723 (unsigned long long)ins->offset); 6724 BUG(); 6725 } 6726 return ret; 6727 } 6728 6729 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6730 struct btrfs_root *root, 6731 u64 root_objectid, u64 owner, 6732 u64 offset, struct btrfs_key *ins) 6733 { 6734 int ret; 6735 6736 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6737 6738 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6739 ins->offset, 0, 6740 root_objectid, owner, offset, 6741 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6742 return ret; 6743 } 6744 6745 /* 6746 * this is used by the tree logging recovery code. It records that 6747 * an extent has been allocated and makes sure to clear the free 6748 * space cache bits as well 6749 */ 6750 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6751 struct btrfs_root *root, 6752 u64 root_objectid, u64 owner, u64 offset, 6753 struct btrfs_key *ins) 6754 { 6755 int ret; 6756 struct btrfs_block_group_cache *block_group; 6757 6758 /* 6759 * Mixed block groups will exclude before processing the log so we only 6760 * need to do the exlude dance if this fs isn't mixed. 6761 */ 6762 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6763 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6764 if (ret) 6765 return ret; 6766 } 6767 6768 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6769 if (!block_group) 6770 return -EINVAL; 6771 6772 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6773 RESERVE_ALLOC_NO_ACCOUNT); 6774 BUG_ON(ret); /* logic error */ 6775 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6776 0, owner, offset, ins, 1); 6777 btrfs_put_block_group(block_group); 6778 return ret; 6779 } 6780 6781 static struct extent_buffer * 6782 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6783 u64 bytenr, u32 blocksize, int level) 6784 { 6785 struct extent_buffer *buf; 6786 6787 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6788 if (!buf) 6789 return ERR_PTR(-ENOMEM); 6790 btrfs_set_header_generation(buf, trans->transid); 6791 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6792 btrfs_tree_lock(buf); 6793 clean_tree_block(trans, root, buf); 6794 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6795 6796 btrfs_set_lock_blocking(buf); 6797 btrfs_set_buffer_uptodate(buf); 6798 6799 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6800 /* 6801 * we allow two log transactions at a time, use different 6802 * EXENT bit to differentiate dirty pages. 6803 */ 6804 if (root->log_transid % 2 == 0) 6805 set_extent_dirty(&root->dirty_log_pages, buf->start, 6806 buf->start + buf->len - 1, GFP_NOFS); 6807 else 6808 set_extent_new(&root->dirty_log_pages, buf->start, 6809 buf->start + buf->len - 1, GFP_NOFS); 6810 } else { 6811 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6812 buf->start + buf->len - 1, GFP_NOFS); 6813 } 6814 trans->blocks_used++; 6815 /* this returns a buffer locked for blocking */ 6816 return buf; 6817 } 6818 6819 static struct btrfs_block_rsv * 6820 use_block_rsv(struct btrfs_trans_handle *trans, 6821 struct btrfs_root *root, u32 blocksize) 6822 { 6823 struct btrfs_block_rsv *block_rsv; 6824 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6825 int ret; 6826 bool global_updated = false; 6827 6828 block_rsv = get_block_rsv(trans, root); 6829 6830 if (unlikely(block_rsv->size == 0)) 6831 goto try_reserve; 6832 again: 6833 ret = block_rsv_use_bytes(block_rsv, blocksize); 6834 if (!ret) 6835 return block_rsv; 6836 6837 if (block_rsv->failfast) 6838 return ERR_PTR(ret); 6839 6840 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6841 global_updated = true; 6842 update_global_block_rsv(root->fs_info); 6843 goto again; 6844 } 6845 6846 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6847 static DEFINE_RATELIMIT_STATE(_rs, 6848 DEFAULT_RATELIMIT_INTERVAL * 10, 6849 /*DEFAULT_RATELIMIT_BURST*/ 1); 6850 if (__ratelimit(&_rs)) 6851 WARN(1, KERN_DEBUG 6852 "btrfs: block rsv returned %d\n", ret); 6853 } 6854 try_reserve: 6855 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6856 BTRFS_RESERVE_NO_FLUSH); 6857 if (!ret) 6858 return block_rsv; 6859 /* 6860 * If we couldn't reserve metadata bytes try and use some from 6861 * the global reserve if its space type is the same as the global 6862 * reservation. 6863 */ 6864 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6865 block_rsv->space_info == global_rsv->space_info) { 6866 ret = block_rsv_use_bytes(global_rsv, blocksize); 6867 if (!ret) 6868 return global_rsv; 6869 } 6870 return ERR_PTR(ret); 6871 } 6872 6873 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6874 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6875 { 6876 block_rsv_add_bytes(block_rsv, blocksize, 0); 6877 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6878 } 6879 6880 /* 6881 * finds a free extent and does all the dirty work required for allocation 6882 * returns the key for the extent through ins, and a tree buffer for 6883 * the first block of the extent through buf. 6884 * 6885 * returns the tree buffer or NULL. 6886 */ 6887 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6888 struct btrfs_root *root, u32 blocksize, 6889 u64 parent, u64 root_objectid, 6890 struct btrfs_disk_key *key, int level, 6891 u64 hint, u64 empty_size) 6892 { 6893 struct btrfs_key ins; 6894 struct btrfs_block_rsv *block_rsv; 6895 struct extent_buffer *buf; 6896 u64 flags = 0; 6897 int ret; 6898 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6899 SKINNY_METADATA); 6900 6901 block_rsv = use_block_rsv(trans, root, blocksize); 6902 if (IS_ERR(block_rsv)) 6903 return ERR_CAST(block_rsv); 6904 6905 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6906 empty_size, hint, &ins, 0); 6907 if (ret) { 6908 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6909 return ERR_PTR(ret); 6910 } 6911 6912 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6913 blocksize, level); 6914 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6915 6916 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6917 if (parent == 0) 6918 parent = ins.objectid; 6919 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6920 } else 6921 BUG_ON(parent > 0); 6922 6923 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6924 struct btrfs_delayed_extent_op *extent_op; 6925 extent_op = btrfs_alloc_delayed_extent_op(); 6926 BUG_ON(!extent_op); /* -ENOMEM */ 6927 if (key) 6928 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6929 else 6930 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6931 extent_op->flags_to_set = flags; 6932 if (skinny_metadata) 6933 extent_op->update_key = 0; 6934 else 6935 extent_op->update_key = 1; 6936 extent_op->update_flags = 1; 6937 extent_op->is_data = 0; 6938 extent_op->level = level; 6939 6940 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6941 ins.objectid, 6942 ins.offset, parent, root_objectid, 6943 level, BTRFS_ADD_DELAYED_EXTENT, 6944 extent_op, 0); 6945 BUG_ON(ret); /* -ENOMEM */ 6946 } 6947 return buf; 6948 } 6949 6950 struct walk_control { 6951 u64 refs[BTRFS_MAX_LEVEL]; 6952 u64 flags[BTRFS_MAX_LEVEL]; 6953 struct btrfs_key update_progress; 6954 int stage; 6955 int level; 6956 int shared_level; 6957 int update_ref; 6958 int keep_locks; 6959 int reada_slot; 6960 int reada_count; 6961 int for_reloc; 6962 }; 6963 6964 #define DROP_REFERENCE 1 6965 #define UPDATE_BACKREF 2 6966 6967 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6968 struct btrfs_root *root, 6969 struct walk_control *wc, 6970 struct btrfs_path *path) 6971 { 6972 u64 bytenr; 6973 u64 generation; 6974 u64 refs; 6975 u64 flags; 6976 u32 nritems; 6977 u32 blocksize; 6978 struct btrfs_key key; 6979 struct extent_buffer *eb; 6980 int ret; 6981 int slot; 6982 int nread = 0; 6983 6984 if (path->slots[wc->level] < wc->reada_slot) { 6985 wc->reada_count = wc->reada_count * 2 / 3; 6986 wc->reada_count = max(wc->reada_count, 2); 6987 } else { 6988 wc->reada_count = wc->reada_count * 3 / 2; 6989 wc->reada_count = min_t(int, wc->reada_count, 6990 BTRFS_NODEPTRS_PER_BLOCK(root)); 6991 } 6992 6993 eb = path->nodes[wc->level]; 6994 nritems = btrfs_header_nritems(eb); 6995 blocksize = btrfs_level_size(root, wc->level - 1); 6996 6997 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6998 if (nread >= wc->reada_count) 6999 break; 7000 7001 cond_resched(); 7002 bytenr = btrfs_node_blockptr(eb, slot); 7003 generation = btrfs_node_ptr_generation(eb, slot); 7004 7005 if (slot == path->slots[wc->level]) 7006 goto reada; 7007 7008 if (wc->stage == UPDATE_BACKREF && 7009 generation <= root->root_key.offset) 7010 continue; 7011 7012 /* We don't lock the tree block, it's OK to be racy here */ 7013 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7014 wc->level - 1, 1, &refs, 7015 &flags); 7016 /* We don't care about errors in readahead. */ 7017 if (ret < 0) 7018 continue; 7019 BUG_ON(refs == 0); 7020 7021 if (wc->stage == DROP_REFERENCE) { 7022 if (refs == 1) 7023 goto reada; 7024 7025 if (wc->level == 1 && 7026 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7027 continue; 7028 if (!wc->update_ref || 7029 generation <= root->root_key.offset) 7030 continue; 7031 btrfs_node_key_to_cpu(eb, &key, slot); 7032 ret = btrfs_comp_cpu_keys(&key, 7033 &wc->update_progress); 7034 if (ret < 0) 7035 continue; 7036 } else { 7037 if (wc->level == 1 && 7038 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7039 continue; 7040 } 7041 reada: 7042 ret = readahead_tree_block(root, bytenr, blocksize, 7043 generation); 7044 if (ret) 7045 break; 7046 nread++; 7047 } 7048 wc->reada_slot = slot; 7049 } 7050 7051 /* 7052 * helper to process tree block while walking down the tree. 7053 * 7054 * when wc->stage == UPDATE_BACKREF, this function updates 7055 * back refs for pointers in the block. 7056 * 7057 * NOTE: return value 1 means we should stop walking down. 7058 */ 7059 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7060 struct btrfs_root *root, 7061 struct btrfs_path *path, 7062 struct walk_control *wc, int lookup_info) 7063 { 7064 int level = wc->level; 7065 struct extent_buffer *eb = path->nodes[level]; 7066 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7067 int ret; 7068 7069 if (wc->stage == UPDATE_BACKREF && 7070 btrfs_header_owner(eb) != root->root_key.objectid) 7071 return 1; 7072 7073 /* 7074 * when reference count of tree block is 1, it won't increase 7075 * again. once full backref flag is set, we never clear it. 7076 */ 7077 if (lookup_info && 7078 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7079 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7080 BUG_ON(!path->locks[level]); 7081 ret = btrfs_lookup_extent_info(trans, root, 7082 eb->start, level, 1, 7083 &wc->refs[level], 7084 &wc->flags[level]); 7085 BUG_ON(ret == -ENOMEM); 7086 if (ret) 7087 return ret; 7088 BUG_ON(wc->refs[level] == 0); 7089 } 7090 7091 if (wc->stage == DROP_REFERENCE) { 7092 if (wc->refs[level] > 1) 7093 return 1; 7094 7095 if (path->locks[level] && !wc->keep_locks) { 7096 btrfs_tree_unlock_rw(eb, path->locks[level]); 7097 path->locks[level] = 0; 7098 } 7099 return 0; 7100 } 7101 7102 /* wc->stage == UPDATE_BACKREF */ 7103 if (!(wc->flags[level] & flag)) { 7104 BUG_ON(!path->locks[level]); 7105 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7106 BUG_ON(ret); /* -ENOMEM */ 7107 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7108 BUG_ON(ret); /* -ENOMEM */ 7109 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7110 eb->len, flag, 7111 btrfs_header_level(eb), 0); 7112 BUG_ON(ret); /* -ENOMEM */ 7113 wc->flags[level] |= flag; 7114 } 7115 7116 /* 7117 * the block is shared by multiple trees, so it's not good to 7118 * keep the tree lock 7119 */ 7120 if (path->locks[level] && level > 0) { 7121 btrfs_tree_unlock_rw(eb, path->locks[level]); 7122 path->locks[level] = 0; 7123 } 7124 return 0; 7125 } 7126 7127 /* 7128 * helper to process tree block pointer. 7129 * 7130 * when wc->stage == DROP_REFERENCE, this function checks 7131 * reference count of the block pointed to. if the block 7132 * is shared and we need update back refs for the subtree 7133 * rooted at the block, this function changes wc->stage to 7134 * UPDATE_BACKREF. if the block is shared and there is no 7135 * need to update back, this function drops the reference 7136 * to the block. 7137 * 7138 * NOTE: return value 1 means we should stop walking down. 7139 */ 7140 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7141 struct btrfs_root *root, 7142 struct btrfs_path *path, 7143 struct walk_control *wc, int *lookup_info) 7144 { 7145 u64 bytenr; 7146 u64 generation; 7147 u64 parent; 7148 u32 blocksize; 7149 struct btrfs_key key; 7150 struct extent_buffer *next; 7151 int level = wc->level; 7152 int reada = 0; 7153 int ret = 0; 7154 7155 generation = btrfs_node_ptr_generation(path->nodes[level], 7156 path->slots[level]); 7157 /* 7158 * if the lower level block was created before the snapshot 7159 * was created, we know there is no need to update back refs 7160 * for the subtree 7161 */ 7162 if (wc->stage == UPDATE_BACKREF && 7163 generation <= root->root_key.offset) { 7164 *lookup_info = 1; 7165 return 1; 7166 } 7167 7168 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7169 blocksize = btrfs_level_size(root, level - 1); 7170 7171 next = btrfs_find_tree_block(root, bytenr, blocksize); 7172 if (!next) { 7173 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7174 if (!next) 7175 return -ENOMEM; 7176 reada = 1; 7177 } 7178 btrfs_tree_lock(next); 7179 btrfs_set_lock_blocking(next); 7180 7181 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7182 &wc->refs[level - 1], 7183 &wc->flags[level - 1]); 7184 if (ret < 0) { 7185 btrfs_tree_unlock(next); 7186 return ret; 7187 } 7188 7189 if (unlikely(wc->refs[level - 1] == 0)) { 7190 btrfs_err(root->fs_info, "Missing references."); 7191 BUG(); 7192 } 7193 *lookup_info = 0; 7194 7195 if (wc->stage == DROP_REFERENCE) { 7196 if (wc->refs[level - 1] > 1) { 7197 if (level == 1 && 7198 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7199 goto skip; 7200 7201 if (!wc->update_ref || 7202 generation <= root->root_key.offset) 7203 goto skip; 7204 7205 btrfs_node_key_to_cpu(path->nodes[level], &key, 7206 path->slots[level]); 7207 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7208 if (ret < 0) 7209 goto skip; 7210 7211 wc->stage = UPDATE_BACKREF; 7212 wc->shared_level = level - 1; 7213 } 7214 } else { 7215 if (level == 1 && 7216 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7217 goto skip; 7218 } 7219 7220 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7221 btrfs_tree_unlock(next); 7222 free_extent_buffer(next); 7223 next = NULL; 7224 *lookup_info = 1; 7225 } 7226 7227 if (!next) { 7228 if (reada && level == 1) 7229 reada_walk_down(trans, root, wc, path); 7230 next = read_tree_block(root, bytenr, blocksize, generation); 7231 if (!next || !extent_buffer_uptodate(next)) { 7232 free_extent_buffer(next); 7233 return -EIO; 7234 } 7235 btrfs_tree_lock(next); 7236 btrfs_set_lock_blocking(next); 7237 } 7238 7239 level--; 7240 BUG_ON(level != btrfs_header_level(next)); 7241 path->nodes[level] = next; 7242 path->slots[level] = 0; 7243 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7244 wc->level = level; 7245 if (wc->level == 1) 7246 wc->reada_slot = 0; 7247 return 0; 7248 skip: 7249 wc->refs[level - 1] = 0; 7250 wc->flags[level - 1] = 0; 7251 if (wc->stage == DROP_REFERENCE) { 7252 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7253 parent = path->nodes[level]->start; 7254 } else { 7255 BUG_ON(root->root_key.objectid != 7256 btrfs_header_owner(path->nodes[level])); 7257 parent = 0; 7258 } 7259 7260 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7261 root->root_key.objectid, level - 1, 0, 0); 7262 BUG_ON(ret); /* -ENOMEM */ 7263 } 7264 btrfs_tree_unlock(next); 7265 free_extent_buffer(next); 7266 *lookup_info = 1; 7267 return 1; 7268 } 7269 7270 /* 7271 * helper to process tree block while walking up the tree. 7272 * 7273 * when wc->stage == DROP_REFERENCE, this function drops 7274 * reference count on the block. 7275 * 7276 * when wc->stage == UPDATE_BACKREF, this function changes 7277 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7278 * to UPDATE_BACKREF previously while processing the block. 7279 * 7280 * NOTE: return value 1 means we should stop walking up. 7281 */ 7282 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7283 struct btrfs_root *root, 7284 struct btrfs_path *path, 7285 struct walk_control *wc) 7286 { 7287 int ret; 7288 int level = wc->level; 7289 struct extent_buffer *eb = path->nodes[level]; 7290 u64 parent = 0; 7291 7292 if (wc->stage == UPDATE_BACKREF) { 7293 BUG_ON(wc->shared_level < level); 7294 if (level < wc->shared_level) 7295 goto out; 7296 7297 ret = find_next_key(path, level + 1, &wc->update_progress); 7298 if (ret > 0) 7299 wc->update_ref = 0; 7300 7301 wc->stage = DROP_REFERENCE; 7302 wc->shared_level = -1; 7303 path->slots[level] = 0; 7304 7305 /* 7306 * check reference count again if the block isn't locked. 7307 * we should start walking down the tree again if reference 7308 * count is one. 7309 */ 7310 if (!path->locks[level]) { 7311 BUG_ON(level == 0); 7312 btrfs_tree_lock(eb); 7313 btrfs_set_lock_blocking(eb); 7314 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7315 7316 ret = btrfs_lookup_extent_info(trans, root, 7317 eb->start, level, 1, 7318 &wc->refs[level], 7319 &wc->flags[level]); 7320 if (ret < 0) { 7321 btrfs_tree_unlock_rw(eb, path->locks[level]); 7322 path->locks[level] = 0; 7323 return ret; 7324 } 7325 BUG_ON(wc->refs[level] == 0); 7326 if (wc->refs[level] == 1) { 7327 btrfs_tree_unlock_rw(eb, path->locks[level]); 7328 path->locks[level] = 0; 7329 return 1; 7330 } 7331 } 7332 } 7333 7334 /* wc->stage == DROP_REFERENCE */ 7335 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7336 7337 if (wc->refs[level] == 1) { 7338 if (level == 0) { 7339 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7340 ret = btrfs_dec_ref(trans, root, eb, 1, 7341 wc->for_reloc); 7342 else 7343 ret = btrfs_dec_ref(trans, root, eb, 0, 7344 wc->for_reloc); 7345 BUG_ON(ret); /* -ENOMEM */ 7346 } 7347 /* make block locked assertion in clean_tree_block happy */ 7348 if (!path->locks[level] && 7349 btrfs_header_generation(eb) == trans->transid) { 7350 btrfs_tree_lock(eb); 7351 btrfs_set_lock_blocking(eb); 7352 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7353 } 7354 clean_tree_block(trans, root, eb); 7355 } 7356 7357 if (eb == root->node) { 7358 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7359 parent = eb->start; 7360 else 7361 BUG_ON(root->root_key.objectid != 7362 btrfs_header_owner(eb)); 7363 } else { 7364 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7365 parent = path->nodes[level + 1]->start; 7366 else 7367 BUG_ON(root->root_key.objectid != 7368 btrfs_header_owner(path->nodes[level + 1])); 7369 } 7370 7371 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7372 out: 7373 wc->refs[level] = 0; 7374 wc->flags[level] = 0; 7375 return 0; 7376 } 7377 7378 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7379 struct btrfs_root *root, 7380 struct btrfs_path *path, 7381 struct walk_control *wc) 7382 { 7383 int level = wc->level; 7384 int lookup_info = 1; 7385 int ret; 7386 7387 while (level >= 0) { 7388 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7389 if (ret > 0) 7390 break; 7391 7392 if (level == 0) 7393 break; 7394 7395 if (path->slots[level] >= 7396 btrfs_header_nritems(path->nodes[level])) 7397 break; 7398 7399 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7400 if (ret > 0) { 7401 path->slots[level]++; 7402 continue; 7403 } else if (ret < 0) 7404 return ret; 7405 level = wc->level; 7406 } 7407 return 0; 7408 } 7409 7410 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7411 struct btrfs_root *root, 7412 struct btrfs_path *path, 7413 struct walk_control *wc, int max_level) 7414 { 7415 int level = wc->level; 7416 int ret; 7417 7418 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7419 while (level < max_level && path->nodes[level]) { 7420 wc->level = level; 7421 if (path->slots[level] + 1 < 7422 btrfs_header_nritems(path->nodes[level])) { 7423 path->slots[level]++; 7424 return 0; 7425 } else { 7426 ret = walk_up_proc(trans, root, path, wc); 7427 if (ret > 0) 7428 return 0; 7429 7430 if (path->locks[level]) { 7431 btrfs_tree_unlock_rw(path->nodes[level], 7432 path->locks[level]); 7433 path->locks[level] = 0; 7434 } 7435 free_extent_buffer(path->nodes[level]); 7436 path->nodes[level] = NULL; 7437 level++; 7438 } 7439 } 7440 return 1; 7441 } 7442 7443 /* 7444 * drop a subvolume tree. 7445 * 7446 * this function traverses the tree freeing any blocks that only 7447 * referenced by the tree. 7448 * 7449 * when a shared tree block is found. this function decreases its 7450 * reference count by one. if update_ref is true, this function 7451 * also make sure backrefs for the shared block and all lower level 7452 * blocks are properly updated. 7453 * 7454 * If called with for_reloc == 0, may exit early with -EAGAIN 7455 */ 7456 int btrfs_drop_snapshot(struct btrfs_root *root, 7457 struct btrfs_block_rsv *block_rsv, int update_ref, 7458 int for_reloc) 7459 { 7460 struct btrfs_path *path; 7461 struct btrfs_trans_handle *trans; 7462 struct btrfs_root *tree_root = root->fs_info->tree_root; 7463 struct btrfs_root_item *root_item = &root->root_item; 7464 struct walk_control *wc; 7465 struct btrfs_key key; 7466 int err = 0; 7467 int ret; 7468 int level; 7469 bool root_dropped = false; 7470 7471 path = btrfs_alloc_path(); 7472 if (!path) { 7473 err = -ENOMEM; 7474 goto out; 7475 } 7476 7477 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7478 if (!wc) { 7479 btrfs_free_path(path); 7480 err = -ENOMEM; 7481 goto out; 7482 } 7483 7484 trans = btrfs_start_transaction(tree_root, 0); 7485 if (IS_ERR(trans)) { 7486 err = PTR_ERR(trans); 7487 goto out_free; 7488 } 7489 7490 if (block_rsv) 7491 trans->block_rsv = block_rsv; 7492 7493 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7494 level = btrfs_header_level(root->node); 7495 path->nodes[level] = btrfs_lock_root_node(root); 7496 btrfs_set_lock_blocking(path->nodes[level]); 7497 path->slots[level] = 0; 7498 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7499 memset(&wc->update_progress, 0, 7500 sizeof(wc->update_progress)); 7501 } else { 7502 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7503 memcpy(&wc->update_progress, &key, 7504 sizeof(wc->update_progress)); 7505 7506 level = root_item->drop_level; 7507 BUG_ON(level == 0); 7508 path->lowest_level = level; 7509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7510 path->lowest_level = 0; 7511 if (ret < 0) { 7512 err = ret; 7513 goto out_end_trans; 7514 } 7515 WARN_ON(ret > 0); 7516 7517 /* 7518 * unlock our path, this is safe because only this 7519 * function is allowed to delete this snapshot 7520 */ 7521 btrfs_unlock_up_safe(path, 0); 7522 7523 level = btrfs_header_level(root->node); 7524 while (1) { 7525 btrfs_tree_lock(path->nodes[level]); 7526 btrfs_set_lock_blocking(path->nodes[level]); 7527 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7528 7529 ret = btrfs_lookup_extent_info(trans, root, 7530 path->nodes[level]->start, 7531 level, 1, &wc->refs[level], 7532 &wc->flags[level]); 7533 if (ret < 0) { 7534 err = ret; 7535 goto out_end_trans; 7536 } 7537 BUG_ON(wc->refs[level] == 0); 7538 7539 if (level == root_item->drop_level) 7540 break; 7541 7542 btrfs_tree_unlock(path->nodes[level]); 7543 path->locks[level] = 0; 7544 WARN_ON(wc->refs[level] != 1); 7545 level--; 7546 } 7547 } 7548 7549 wc->level = level; 7550 wc->shared_level = -1; 7551 wc->stage = DROP_REFERENCE; 7552 wc->update_ref = update_ref; 7553 wc->keep_locks = 0; 7554 wc->for_reloc = for_reloc; 7555 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7556 7557 while (1) { 7558 7559 ret = walk_down_tree(trans, root, path, wc); 7560 if (ret < 0) { 7561 err = ret; 7562 break; 7563 } 7564 7565 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7566 if (ret < 0) { 7567 err = ret; 7568 break; 7569 } 7570 7571 if (ret > 0) { 7572 BUG_ON(wc->stage != DROP_REFERENCE); 7573 break; 7574 } 7575 7576 if (wc->stage == DROP_REFERENCE) { 7577 level = wc->level; 7578 btrfs_node_key(path->nodes[level], 7579 &root_item->drop_progress, 7580 path->slots[level]); 7581 root_item->drop_level = level; 7582 } 7583 7584 BUG_ON(wc->level == 0); 7585 if (btrfs_should_end_transaction(trans, tree_root) || 7586 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7587 ret = btrfs_update_root(trans, tree_root, 7588 &root->root_key, 7589 root_item); 7590 if (ret) { 7591 btrfs_abort_transaction(trans, tree_root, ret); 7592 err = ret; 7593 goto out_end_trans; 7594 } 7595 7596 btrfs_end_transaction_throttle(trans, tree_root); 7597 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7598 pr_debug("btrfs: drop snapshot early exit\n"); 7599 err = -EAGAIN; 7600 goto out_free; 7601 } 7602 7603 trans = btrfs_start_transaction(tree_root, 0); 7604 if (IS_ERR(trans)) { 7605 err = PTR_ERR(trans); 7606 goto out_free; 7607 } 7608 if (block_rsv) 7609 trans->block_rsv = block_rsv; 7610 } 7611 } 7612 btrfs_release_path(path); 7613 if (err) 7614 goto out_end_trans; 7615 7616 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7617 if (ret) { 7618 btrfs_abort_transaction(trans, tree_root, ret); 7619 goto out_end_trans; 7620 } 7621 7622 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7623 ret = btrfs_find_root(tree_root, &root->root_key, path, 7624 NULL, NULL); 7625 if (ret < 0) { 7626 btrfs_abort_transaction(trans, tree_root, ret); 7627 err = ret; 7628 goto out_end_trans; 7629 } else if (ret > 0) { 7630 /* if we fail to delete the orphan item this time 7631 * around, it'll get picked up the next time. 7632 * 7633 * The most common failure here is just -ENOENT. 7634 */ 7635 btrfs_del_orphan_item(trans, tree_root, 7636 root->root_key.objectid); 7637 } 7638 } 7639 7640 if (root->in_radix) { 7641 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7642 } else { 7643 free_extent_buffer(root->node); 7644 free_extent_buffer(root->commit_root); 7645 btrfs_put_fs_root(root); 7646 } 7647 root_dropped = true; 7648 out_end_trans: 7649 btrfs_end_transaction_throttle(trans, tree_root); 7650 out_free: 7651 kfree(wc); 7652 btrfs_free_path(path); 7653 out: 7654 /* 7655 * So if we need to stop dropping the snapshot for whatever reason we 7656 * need to make sure to add it back to the dead root list so that we 7657 * keep trying to do the work later. This also cleans up roots if we 7658 * don't have it in the radix (like when we recover after a power fail 7659 * or unmount) so we don't leak memory. 7660 */ 7661 if (root_dropped == false) 7662 btrfs_add_dead_root(root); 7663 if (err) 7664 btrfs_std_error(root->fs_info, err); 7665 return err; 7666 } 7667 7668 /* 7669 * drop subtree rooted at tree block 'node'. 7670 * 7671 * NOTE: this function will unlock and release tree block 'node' 7672 * only used by relocation code 7673 */ 7674 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7675 struct btrfs_root *root, 7676 struct extent_buffer *node, 7677 struct extent_buffer *parent) 7678 { 7679 struct btrfs_path *path; 7680 struct walk_control *wc; 7681 int level; 7682 int parent_level; 7683 int ret = 0; 7684 int wret; 7685 7686 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7687 7688 path = btrfs_alloc_path(); 7689 if (!path) 7690 return -ENOMEM; 7691 7692 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7693 if (!wc) { 7694 btrfs_free_path(path); 7695 return -ENOMEM; 7696 } 7697 7698 btrfs_assert_tree_locked(parent); 7699 parent_level = btrfs_header_level(parent); 7700 extent_buffer_get(parent); 7701 path->nodes[parent_level] = parent; 7702 path->slots[parent_level] = btrfs_header_nritems(parent); 7703 7704 btrfs_assert_tree_locked(node); 7705 level = btrfs_header_level(node); 7706 path->nodes[level] = node; 7707 path->slots[level] = 0; 7708 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7709 7710 wc->refs[parent_level] = 1; 7711 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7712 wc->level = level; 7713 wc->shared_level = -1; 7714 wc->stage = DROP_REFERENCE; 7715 wc->update_ref = 0; 7716 wc->keep_locks = 1; 7717 wc->for_reloc = 1; 7718 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7719 7720 while (1) { 7721 wret = walk_down_tree(trans, root, path, wc); 7722 if (wret < 0) { 7723 ret = wret; 7724 break; 7725 } 7726 7727 wret = walk_up_tree(trans, root, path, wc, parent_level); 7728 if (wret < 0) 7729 ret = wret; 7730 if (wret != 0) 7731 break; 7732 } 7733 7734 kfree(wc); 7735 btrfs_free_path(path); 7736 return ret; 7737 } 7738 7739 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7740 { 7741 u64 num_devices; 7742 u64 stripped; 7743 7744 /* 7745 * if restripe for this chunk_type is on pick target profile and 7746 * return, otherwise do the usual balance 7747 */ 7748 stripped = get_restripe_target(root->fs_info, flags); 7749 if (stripped) 7750 return extended_to_chunk(stripped); 7751 7752 /* 7753 * we add in the count of missing devices because we want 7754 * to make sure that any RAID levels on a degraded FS 7755 * continue to be honored. 7756 */ 7757 num_devices = root->fs_info->fs_devices->rw_devices + 7758 root->fs_info->fs_devices->missing_devices; 7759 7760 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7761 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7762 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7763 7764 if (num_devices == 1) { 7765 stripped |= BTRFS_BLOCK_GROUP_DUP; 7766 stripped = flags & ~stripped; 7767 7768 /* turn raid0 into single device chunks */ 7769 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7770 return stripped; 7771 7772 /* turn mirroring into duplication */ 7773 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7774 BTRFS_BLOCK_GROUP_RAID10)) 7775 return stripped | BTRFS_BLOCK_GROUP_DUP; 7776 } else { 7777 /* they already had raid on here, just return */ 7778 if (flags & stripped) 7779 return flags; 7780 7781 stripped |= BTRFS_BLOCK_GROUP_DUP; 7782 stripped = flags & ~stripped; 7783 7784 /* switch duplicated blocks with raid1 */ 7785 if (flags & BTRFS_BLOCK_GROUP_DUP) 7786 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7787 7788 /* this is drive concat, leave it alone */ 7789 } 7790 7791 return flags; 7792 } 7793 7794 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7795 { 7796 struct btrfs_space_info *sinfo = cache->space_info; 7797 u64 num_bytes; 7798 u64 min_allocable_bytes; 7799 int ret = -ENOSPC; 7800 7801 7802 /* 7803 * We need some metadata space and system metadata space for 7804 * allocating chunks in some corner cases until we force to set 7805 * it to be readonly. 7806 */ 7807 if ((sinfo->flags & 7808 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7809 !force) 7810 min_allocable_bytes = 1 * 1024 * 1024; 7811 else 7812 min_allocable_bytes = 0; 7813 7814 spin_lock(&sinfo->lock); 7815 spin_lock(&cache->lock); 7816 7817 if (cache->ro) { 7818 ret = 0; 7819 goto out; 7820 } 7821 7822 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7823 cache->bytes_super - btrfs_block_group_used(&cache->item); 7824 7825 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7826 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7827 min_allocable_bytes <= sinfo->total_bytes) { 7828 sinfo->bytes_readonly += num_bytes; 7829 cache->ro = 1; 7830 ret = 0; 7831 } 7832 out: 7833 spin_unlock(&cache->lock); 7834 spin_unlock(&sinfo->lock); 7835 return ret; 7836 } 7837 7838 int btrfs_set_block_group_ro(struct btrfs_root *root, 7839 struct btrfs_block_group_cache *cache) 7840 7841 { 7842 struct btrfs_trans_handle *trans; 7843 u64 alloc_flags; 7844 int ret; 7845 7846 BUG_ON(cache->ro); 7847 7848 trans = btrfs_join_transaction(root); 7849 if (IS_ERR(trans)) 7850 return PTR_ERR(trans); 7851 7852 alloc_flags = update_block_group_flags(root, cache->flags); 7853 if (alloc_flags != cache->flags) { 7854 ret = do_chunk_alloc(trans, root, alloc_flags, 7855 CHUNK_ALLOC_FORCE); 7856 if (ret < 0) 7857 goto out; 7858 } 7859 7860 ret = set_block_group_ro(cache, 0); 7861 if (!ret) 7862 goto out; 7863 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7864 ret = do_chunk_alloc(trans, root, alloc_flags, 7865 CHUNK_ALLOC_FORCE); 7866 if (ret < 0) 7867 goto out; 7868 ret = set_block_group_ro(cache, 0); 7869 out: 7870 btrfs_end_transaction(trans, root); 7871 return ret; 7872 } 7873 7874 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7875 struct btrfs_root *root, u64 type) 7876 { 7877 u64 alloc_flags = get_alloc_profile(root, type); 7878 return do_chunk_alloc(trans, root, alloc_flags, 7879 CHUNK_ALLOC_FORCE); 7880 } 7881 7882 /* 7883 * helper to account the unused space of all the readonly block group in the 7884 * list. takes mirrors into account. 7885 */ 7886 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7887 { 7888 struct btrfs_block_group_cache *block_group; 7889 u64 free_bytes = 0; 7890 int factor; 7891 7892 list_for_each_entry(block_group, groups_list, list) { 7893 spin_lock(&block_group->lock); 7894 7895 if (!block_group->ro) { 7896 spin_unlock(&block_group->lock); 7897 continue; 7898 } 7899 7900 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7901 BTRFS_BLOCK_GROUP_RAID10 | 7902 BTRFS_BLOCK_GROUP_DUP)) 7903 factor = 2; 7904 else 7905 factor = 1; 7906 7907 free_bytes += (block_group->key.offset - 7908 btrfs_block_group_used(&block_group->item)) * 7909 factor; 7910 7911 spin_unlock(&block_group->lock); 7912 } 7913 7914 return free_bytes; 7915 } 7916 7917 /* 7918 * helper to account the unused space of all the readonly block group in the 7919 * space_info. takes mirrors into account. 7920 */ 7921 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7922 { 7923 int i; 7924 u64 free_bytes = 0; 7925 7926 spin_lock(&sinfo->lock); 7927 7928 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7929 if (!list_empty(&sinfo->block_groups[i])) 7930 free_bytes += __btrfs_get_ro_block_group_free_space( 7931 &sinfo->block_groups[i]); 7932 7933 spin_unlock(&sinfo->lock); 7934 7935 return free_bytes; 7936 } 7937 7938 void btrfs_set_block_group_rw(struct btrfs_root *root, 7939 struct btrfs_block_group_cache *cache) 7940 { 7941 struct btrfs_space_info *sinfo = cache->space_info; 7942 u64 num_bytes; 7943 7944 BUG_ON(!cache->ro); 7945 7946 spin_lock(&sinfo->lock); 7947 spin_lock(&cache->lock); 7948 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7949 cache->bytes_super - btrfs_block_group_used(&cache->item); 7950 sinfo->bytes_readonly -= num_bytes; 7951 cache->ro = 0; 7952 spin_unlock(&cache->lock); 7953 spin_unlock(&sinfo->lock); 7954 } 7955 7956 /* 7957 * checks to see if its even possible to relocate this block group. 7958 * 7959 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7960 * ok to go ahead and try. 7961 */ 7962 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7963 { 7964 struct btrfs_block_group_cache *block_group; 7965 struct btrfs_space_info *space_info; 7966 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7967 struct btrfs_device *device; 7968 struct btrfs_trans_handle *trans; 7969 u64 min_free; 7970 u64 dev_min = 1; 7971 u64 dev_nr = 0; 7972 u64 target; 7973 int index; 7974 int full = 0; 7975 int ret = 0; 7976 7977 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7978 7979 /* odd, couldn't find the block group, leave it alone */ 7980 if (!block_group) 7981 return -1; 7982 7983 min_free = btrfs_block_group_used(&block_group->item); 7984 7985 /* no bytes used, we're good */ 7986 if (!min_free) 7987 goto out; 7988 7989 space_info = block_group->space_info; 7990 spin_lock(&space_info->lock); 7991 7992 full = space_info->full; 7993 7994 /* 7995 * if this is the last block group we have in this space, we can't 7996 * relocate it unless we're able to allocate a new chunk below. 7997 * 7998 * Otherwise, we need to make sure we have room in the space to handle 7999 * all of the extents from this block group. If we can, we're good 8000 */ 8001 if ((space_info->total_bytes != block_group->key.offset) && 8002 (space_info->bytes_used + space_info->bytes_reserved + 8003 space_info->bytes_pinned + space_info->bytes_readonly + 8004 min_free < space_info->total_bytes)) { 8005 spin_unlock(&space_info->lock); 8006 goto out; 8007 } 8008 spin_unlock(&space_info->lock); 8009 8010 /* 8011 * ok we don't have enough space, but maybe we have free space on our 8012 * devices to allocate new chunks for relocation, so loop through our 8013 * alloc devices and guess if we have enough space. if this block 8014 * group is going to be restriped, run checks against the target 8015 * profile instead of the current one. 8016 */ 8017 ret = -1; 8018 8019 /* 8020 * index: 8021 * 0: raid10 8022 * 1: raid1 8023 * 2: dup 8024 * 3: raid0 8025 * 4: single 8026 */ 8027 target = get_restripe_target(root->fs_info, block_group->flags); 8028 if (target) { 8029 index = __get_raid_index(extended_to_chunk(target)); 8030 } else { 8031 /* 8032 * this is just a balance, so if we were marked as full 8033 * we know there is no space for a new chunk 8034 */ 8035 if (full) 8036 goto out; 8037 8038 index = get_block_group_index(block_group); 8039 } 8040 8041 if (index == BTRFS_RAID_RAID10) { 8042 dev_min = 4; 8043 /* Divide by 2 */ 8044 min_free >>= 1; 8045 } else if (index == BTRFS_RAID_RAID1) { 8046 dev_min = 2; 8047 } else if (index == BTRFS_RAID_DUP) { 8048 /* Multiply by 2 */ 8049 min_free <<= 1; 8050 } else if (index == BTRFS_RAID_RAID0) { 8051 dev_min = fs_devices->rw_devices; 8052 do_div(min_free, dev_min); 8053 } 8054 8055 /* We need to do this so that we can look at pending chunks */ 8056 trans = btrfs_join_transaction(root); 8057 if (IS_ERR(trans)) { 8058 ret = PTR_ERR(trans); 8059 goto out; 8060 } 8061 8062 mutex_lock(&root->fs_info->chunk_mutex); 8063 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8064 u64 dev_offset; 8065 8066 /* 8067 * check to make sure we can actually find a chunk with enough 8068 * space to fit our block group in. 8069 */ 8070 if (device->total_bytes > device->bytes_used + min_free && 8071 !device->is_tgtdev_for_dev_replace) { 8072 ret = find_free_dev_extent(trans, device, min_free, 8073 &dev_offset, NULL); 8074 if (!ret) 8075 dev_nr++; 8076 8077 if (dev_nr >= dev_min) 8078 break; 8079 8080 ret = -1; 8081 } 8082 } 8083 mutex_unlock(&root->fs_info->chunk_mutex); 8084 btrfs_end_transaction(trans, root); 8085 out: 8086 btrfs_put_block_group(block_group); 8087 return ret; 8088 } 8089 8090 static int find_first_block_group(struct btrfs_root *root, 8091 struct btrfs_path *path, struct btrfs_key *key) 8092 { 8093 int ret = 0; 8094 struct btrfs_key found_key; 8095 struct extent_buffer *leaf; 8096 int slot; 8097 8098 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8099 if (ret < 0) 8100 goto out; 8101 8102 while (1) { 8103 slot = path->slots[0]; 8104 leaf = path->nodes[0]; 8105 if (slot >= btrfs_header_nritems(leaf)) { 8106 ret = btrfs_next_leaf(root, path); 8107 if (ret == 0) 8108 continue; 8109 if (ret < 0) 8110 goto out; 8111 break; 8112 } 8113 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8114 8115 if (found_key.objectid >= key->objectid && 8116 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8117 ret = 0; 8118 goto out; 8119 } 8120 path->slots[0]++; 8121 } 8122 out: 8123 return ret; 8124 } 8125 8126 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8127 { 8128 struct btrfs_block_group_cache *block_group; 8129 u64 last = 0; 8130 8131 while (1) { 8132 struct inode *inode; 8133 8134 block_group = btrfs_lookup_first_block_group(info, last); 8135 while (block_group) { 8136 spin_lock(&block_group->lock); 8137 if (block_group->iref) 8138 break; 8139 spin_unlock(&block_group->lock); 8140 block_group = next_block_group(info->tree_root, 8141 block_group); 8142 } 8143 if (!block_group) { 8144 if (last == 0) 8145 break; 8146 last = 0; 8147 continue; 8148 } 8149 8150 inode = block_group->inode; 8151 block_group->iref = 0; 8152 block_group->inode = NULL; 8153 spin_unlock(&block_group->lock); 8154 iput(inode); 8155 last = block_group->key.objectid + block_group->key.offset; 8156 btrfs_put_block_group(block_group); 8157 } 8158 } 8159 8160 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8161 { 8162 struct btrfs_block_group_cache *block_group; 8163 struct btrfs_space_info *space_info; 8164 struct btrfs_caching_control *caching_ctl; 8165 struct rb_node *n; 8166 8167 down_write(&info->extent_commit_sem); 8168 while (!list_empty(&info->caching_block_groups)) { 8169 caching_ctl = list_entry(info->caching_block_groups.next, 8170 struct btrfs_caching_control, list); 8171 list_del(&caching_ctl->list); 8172 put_caching_control(caching_ctl); 8173 } 8174 up_write(&info->extent_commit_sem); 8175 8176 spin_lock(&info->block_group_cache_lock); 8177 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8178 block_group = rb_entry(n, struct btrfs_block_group_cache, 8179 cache_node); 8180 rb_erase(&block_group->cache_node, 8181 &info->block_group_cache_tree); 8182 spin_unlock(&info->block_group_cache_lock); 8183 8184 down_write(&block_group->space_info->groups_sem); 8185 list_del(&block_group->list); 8186 up_write(&block_group->space_info->groups_sem); 8187 8188 if (block_group->cached == BTRFS_CACHE_STARTED) 8189 wait_block_group_cache_done(block_group); 8190 8191 /* 8192 * We haven't cached this block group, which means we could 8193 * possibly have excluded extents on this block group. 8194 */ 8195 if (block_group->cached == BTRFS_CACHE_NO) 8196 free_excluded_extents(info->extent_root, block_group); 8197 8198 btrfs_remove_free_space_cache(block_group); 8199 btrfs_put_block_group(block_group); 8200 8201 spin_lock(&info->block_group_cache_lock); 8202 } 8203 spin_unlock(&info->block_group_cache_lock); 8204 8205 /* now that all the block groups are freed, go through and 8206 * free all the space_info structs. This is only called during 8207 * the final stages of unmount, and so we know nobody is 8208 * using them. We call synchronize_rcu() once before we start, 8209 * just to be on the safe side. 8210 */ 8211 synchronize_rcu(); 8212 8213 release_global_block_rsv(info); 8214 8215 while(!list_empty(&info->space_info)) { 8216 space_info = list_entry(info->space_info.next, 8217 struct btrfs_space_info, 8218 list); 8219 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8220 if (space_info->bytes_pinned > 0 || 8221 space_info->bytes_reserved > 0 || 8222 space_info->bytes_may_use > 0) { 8223 WARN_ON(1); 8224 dump_space_info(space_info, 0, 0); 8225 } 8226 } 8227 percpu_counter_destroy(&space_info->total_bytes_pinned); 8228 list_del(&space_info->list); 8229 kfree(space_info); 8230 } 8231 return 0; 8232 } 8233 8234 static void __link_block_group(struct btrfs_space_info *space_info, 8235 struct btrfs_block_group_cache *cache) 8236 { 8237 int index = get_block_group_index(cache); 8238 8239 down_write(&space_info->groups_sem); 8240 list_add_tail(&cache->list, &space_info->block_groups[index]); 8241 up_write(&space_info->groups_sem); 8242 } 8243 8244 int btrfs_read_block_groups(struct btrfs_root *root) 8245 { 8246 struct btrfs_path *path; 8247 int ret; 8248 struct btrfs_block_group_cache *cache; 8249 struct btrfs_fs_info *info = root->fs_info; 8250 struct btrfs_space_info *space_info; 8251 struct btrfs_key key; 8252 struct btrfs_key found_key; 8253 struct extent_buffer *leaf; 8254 int need_clear = 0; 8255 u64 cache_gen; 8256 8257 root = info->extent_root; 8258 key.objectid = 0; 8259 key.offset = 0; 8260 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8261 path = btrfs_alloc_path(); 8262 if (!path) 8263 return -ENOMEM; 8264 path->reada = 1; 8265 8266 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8267 if (btrfs_test_opt(root, SPACE_CACHE) && 8268 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8269 need_clear = 1; 8270 if (btrfs_test_opt(root, CLEAR_CACHE)) 8271 need_clear = 1; 8272 8273 while (1) { 8274 ret = find_first_block_group(root, path, &key); 8275 if (ret > 0) 8276 break; 8277 if (ret != 0) 8278 goto error; 8279 leaf = path->nodes[0]; 8280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8281 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8282 if (!cache) { 8283 ret = -ENOMEM; 8284 goto error; 8285 } 8286 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8287 GFP_NOFS); 8288 if (!cache->free_space_ctl) { 8289 kfree(cache); 8290 ret = -ENOMEM; 8291 goto error; 8292 } 8293 8294 atomic_set(&cache->count, 1); 8295 spin_lock_init(&cache->lock); 8296 cache->fs_info = info; 8297 INIT_LIST_HEAD(&cache->list); 8298 INIT_LIST_HEAD(&cache->cluster_list); 8299 8300 if (need_clear) { 8301 /* 8302 * When we mount with old space cache, we need to 8303 * set BTRFS_DC_CLEAR and set dirty flag. 8304 * 8305 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8306 * truncate the old free space cache inode and 8307 * setup a new one. 8308 * b) Setting 'dirty flag' makes sure that we flush 8309 * the new space cache info onto disk. 8310 */ 8311 cache->disk_cache_state = BTRFS_DC_CLEAR; 8312 if (btrfs_test_opt(root, SPACE_CACHE)) 8313 cache->dirty = 1; 8314 } 8315 8316 read_extent_buffer(leaf, &cache->item, 8317 btrfs_item_ptr_offset(leaf, path->slots[0]), 8318 sizeof(cache->item)); 8319 memcpy(&cache->key, &found_key, sizeof(found_key)); 8320 8321 key.objectid = found_key.objectid + found_key.offset; 8322 btrfs_release_path(path); 8323 cache->flags = btrfs_block_group_flags(&cache->item); 8324 cache->sectorsize = root->sectorsize; 8325 cache->full_stripe_len = btrfs_full_stripe_len(root, 8326 &root->fs_info->mapping_tree, 8327 found_key.objectid); 8328 btrfs_init_free_space_ctl(cache); 8329 8330 /* 8331 * We need to exclude the super stripes now so that the space 8332 * info has super bytes accounted for, otherwise we'll think 8333 * we have more space than we actually do. 8334 */ 8335 ret = exclude_super_stripes(root, cache); 8336 if (ret) { 8337 /* 8338 * We may have excluded something, so call this just in 8339 * case. 8340 */ 8341 free_excluded_extents(root, cache); 8342 kfree(cache->free_space_ctl); 8343 kfree(cache); 8344 goto error; 8345 } 8346 8347 /* 8348 * check for two cases, either we are full, and therefore 8349 * don't need to bother with the caching work since we won't 8350 * find any space, or we are empty, and we can just add all 8351 * the space in and be done with it. This saves us _alot_ of 8352 * time, particularly in the full case. 8353 */ 8354 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8355 cache->last_byte_to_unpin = (u64)-1; 8356 cache->cached = BTRFS_CACHE_FINISHED; 8357 free_excluded_extents(root, cache); 8358 } else if (btrfs_block_group_used(&cache->item) == 0) { 8359 cache->last_byte_to_unpin = (u64)-1; 8360 cache->cached = BTRFS_CACHE_FINISHED; 8361 add_new_free_space(cache, root->fs_info, 8362 found_key.objectid, 8363 found_key.objectid + 8364 found_key.offset); 8365 free_excluded_extents(root, cache); 8366 } 8367 8368 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8369 if (ret) { 8370 btrfs_remove_free_space_cache(cache); 8371 btrfs_put_block_group(cache); 8372 goto error; 8373 } 8374 8375 ret = update_space_info(info, cache->flags, found_key.offset, 8376 btrfs_block_group_used(&cache->item), 8377 &space_info); 8378 if (ret) { 8379 btrfs_remove_free_space_cache(cache); 8380 spin_lock(&info->block_group_cache_lock); 8381 rb_erase(&cache->cache_node, 8382 &info->block_group_cache_tree); 8383 spin_unlock(&info->block_group_cache_lock); 8384 btrfs_put_block_group(cache); 8385 goto error; 8386 } 8387 8388 cache->space_info = space_info; 8389 spin_lock(&cache->space_info->lock); 8390 cache->space_info->bytes_readonly += cache->bytes_super; 8391 spin_unlock(&cache->space_info->lock); 8392 8393 __link_block_group(space_info, cache); 8394 8395 set_avail_alloc_bits(root->fs_info, cache->flags); 8396 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8397 set_block_group_ro(cache, 1); 8398 } 8399 8400 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8401 if (!(get_alloc_profile(root, space_info->flags) & 8402 (BTRFS_BLOCK_GROUP_RAID10 | 8403 BTRFS_BLOCK_GROUP_RAID1 | 8404 BTRFS_BLOCK_GROUP_RAID5 | 8405 BTRFS_BLOCK_GROUP_RAID6 | 8406 BTRFS_BLOCK_GROUP_DUP))) 8407 continue; 8408 /* 8409 * avoid allocating from un-mirrored block group if there are 8410 * mirrored block groups. 8411 */ 8412 list_for_each_entry(cache, &space_info->block_groups[3], list) 8413 set_block_group_ro(cache, 1); 8414 list_for_each_entry(cache, &space_info->block_groups[4], list) 8415 set_block_group_ro(cache, 1); 8416 } 8417 8418 init_global_block_rsv(info); 8419 ret = 0; 8420 error: 8421 btrfs_free_path(path); 8422 return ret; 8423 } 8424 8425 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8426 struct btrfs_root *root) 8427 { 8428 struct btrfs_block_group_cache *block_group, *tmp; 8429 struct btrfs_root *extent_root = root->fs_info->extent_root; 8430 struct btrfs_block_group_item item; 8431 struct btrfs_key key; 8432 int ret = 0; 8433 8434 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8435 new_bg_list) { 8436 list_del_init(&block_group->new_bg_list); 8437 8438 if (ret) 8439 continue; 8440 8441 spin_lock(&block_group->lock); 8442 memcpy(&item, &block_group->item, sizeof(item)); 8443 memcpy(&key, &block_group->key, sizeof(key)); 8444 spin_unlock(&block_group->lock); 8445 8446 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8447 sizeof(item)); 8448 if (ret) 8449 btrfs_abort_transaction(trans, extent_root, ret); 8450 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8451 key.objectid, key.offset); 8452 if (ret) 8453 btrfs_abort_transaction(trans, extent_root, ret); 8454 } 8455 } 8456 8457 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8458 struct btrfs_root *root, u64 bytes_used, 8459 u64 type, u64 chunk_objectid, u64 chunk_offset, 8460 u64 size) 8461 { 8462 int ret; 8463 struct btrfs_root *extent_root; 8464 struct btrfs_block_group_cache *cache; 8465 8466 extent_root = root->fs_info->extent_root; 8467 8468 root->fs_info->last_trans_log_full_commit = trans->transid; 8469 8470 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8471 if (!cache) 8472 return -ENOMEM; 8473 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8474 GFP_NOFS); 8475 if (!cache->free_space_ctl) { 8476 kfree(cache); 8477 return -ENOMEM; 8478 } 8479 8480 cache->key.objectid = chunk_offset; 8481 cache->key.offset = size; 8482 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8483 cache->sectorsize = root->sectorsize; 8484 cache->fs_info = root->fs_info; 8485 cache->full_stripe_len = btrfs_full_stripe_len(root, 8486 &root->fs_info->mapping_tree, 8487 chunk_offset); 8488 8489 atomic_set(&cache->count, 1); 8490 spin_lock_init(&cache->lock); 8491 INIT_LIST_HEAD(&cache->list); 8492 INIT_LIST_HEAD(&cache->cluster_list); 8493 INIT_LIST_HEAD(&cache->new_bg_list); 8494 8495 btrfs_init_free_space_ctl(cache); 8496 8497 btrfs_set_block_group_used(&cache->item, bytes_used); 8498 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8499 cache->flags = type; 8500 btrfs_set_block_group_flags(&cache->item, type); 8501 8502 cache->last_byte_to_unpin = (u64)-1; 8503 cache->cached = BTRFS_CACHE_FINISHED; 8504 ret = exclude_super_stripes(root, cache); 8505 if (ret) { 8506 /* 8507 * We may have excluded something, so call this just in 8508 * case. 8509 */ 8510 free_excluded_extents(root, cache); 8511 kfree(cache->free_space_ctl); 8512 kfree(cache); 8513 return ret; 8514 } 8515 8516 add_new_free_space(cache, root->fs_info, chunk_offset, 8517 chunk_offset + size); 8518 8519 free_excluded_extents(root, cache); 8520 8521 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8522 if (ret) { 8523 btrfs_remove_free_space_cache(cache); 8524 btrfs_put_block_group(cache); 8525 return ret; 8526 } 8527 8528 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8529 &cache->space_info); 8530 if (ret) { 8531 btrfs_remove_free_space_cache(cache); 8532 spin_lock(&root->fs_info->block_group_cache_lock); 8533 rb_erase(&cache->cache_node, 8534 &root->fs_info->block_group_cache_tree); 8535 spin_unlock(&root->fs_info->block_group_cache_lock); 8536 btrfs_put_block_group(cache); 8537 return ret; 8538 } 8539 update_global_block_rsv(root->fs_info); 8540 8541 spin_lock(&cache->space_info->lock); 8542 cache->space_info->bytes_readonly += cache->bytes_super; 8543 spin_unlock(&cache->space_info->lock); 8544 8545 __link_block_group(cache->space_info, cache); 8546 8547 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8548 8549 set_avail_alloc_bits(extent_root->fs_info, type); 8550 8551 return 0; 8552 } 8553 8554 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8555 { 8556 u64 extra_flags = chunk_to_extended(flags) & 8557 BTRFS_EXTENDED_PROFILE_MASK; 8558 8559 write_seqlock(&fs_info->profiles_lock); 8560 if (flags & BTRFS_BLOCK_GROUP_DATA) 8561 fs_info->avail_data_alloc_bits &= ~extra_flags; 8562 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8563 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8564 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8565 fs_info->avail_system_alloc_bits &= ~extra_flags; 8566 write_sequnlock(&fs_info->profiles_lock); 8567 } 8568 8569 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8570 struct btrfs_root *root, u64 group_start) 8571 { 8572 struct btrfs_path *path; 8573 struct btrfs_block_group_cache *block_group; 8574 struct btrfs_free_cluster *cluster; 8575 struct btrfs_root *tree_root = root->fs_info->tree_root; 8576 struct btrfs_key key; 8577 struct inode *inode; 8578 int ret; 8579 int index; 8580 int factor; 8581 8582 root = root->fs_info->extent_root; 8583 8584 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8585 BUG_ON(!block_group); 8586 BUG_ON(!block_group->ro); 8587 8588 /* 8589 * Free the reserved super bytes from this block group before 8590 * remove it. 8591 */ 8592 free_excluded_extents(root, block_group); 8593 8594 memcpy(&key, &block_group->key, sizeof(key)); 8595 index = get_block_group_index(block_group); 8596 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8597 BTRFS_BLOCK_GROUP_RAID1 | 8598 BTRFS_BLOCK_GROUP_RAID10)) 8599 factor = 2; 8600 else 8601 factor = 1; 8602 8603 /* make sure this block group isn't part of an allocation cluster */ 8604 cluster = &root->fs_info->data_alloc_cluster; 8605 spin_lock(&cluster->refill_lock); 8606 btrfs_return_cluster_to_free_space(block_group, cluster); 8607 spin_unlock(&cluster->refill_lock); 8608 8609 /* 8610 * make sure this block group isn't part of a metadata 8611 * allocation cluster 8612 */ 8613 cluster = &root->fs_info->meta_alloc_cluster; 8614 spin_lock(&cluster->refill_lock); 8615 btrfs_return_cluster_to_free_space(block_group, cluster); 8616 spin_unlock(&cluster->refill_lock); 8617 8618 path = btrfs_alloc_path(); 8619 if (!path) { 8620 ret = -ENOMEM; 8621 goto out; 8622 } 8623 8624 inode = lookup_free_space_inode(tree_root, block_group, path); 8625 if (!IS_ERR(inode)) { 8626 ret = btrfs_orphan_add(trans, inode); 8627 if (ret) { 8628 btrfs_add_delayed_iput(inode); 8629 goto out; 8630 } 8631 clear_nlink(inode); 8632 /* One for the block groups ref */ 8633 spin_lock(&block_group->lock); 8634 if (block_group->iref) { 8635 block_group->iref = 0; 8636 block_group->inode = NULL; 8637 spin_unlock(&block_group->lock); 8638 iput(inode); 8639 } else { 8640 spin_unlock(&block_group->lock); 8641 } 8642 /* One for our lookup ref */ 8643 btrfs_add_delayed_iput(inode); 8644 } 8645 8646 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8647 key.offset = block_group->key.objectid; 8648 key.type = 0; 8649 8650 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8651 if (ret < 0) 8652 goto out; 8653 if (ret > 0) 8654 btrfs_release_path(path); 8655 if (ret == 0) { 8656 ret = btrfs_del_item(trans, tree_root, path); 8657 if (ret) 8658 goto out; 8659 btrfs_release_path(path); 8660 } 8661 8662 spin_lock(&root->fs_info->block_group_cache_lock); 8663 rb_erase(&block_group->cache_node, 8664 &root->fs_info->block_group_cache_tree); 8665 8666 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8667 root->fs_info->first_logical_byte = (u64)-1; 8668 spin_unlock(&root->fs_info->block_group_cache_lock); 8669 8670 down_write(&block_group->space_info->groups_sem); 8671 /* 8672 * we must use list_del_init so people can check to see if they 8673 * are still on the list after taking the semaphore 8674 */ 8675 list_del_init(&block_group->list); 8676 if (list_empty(&block_group->space_info->block_groups[index])) 8677 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8678 up_write(&block_group->space_info->groups_sem); 8679 8680 if (block_group->cached == BTRFS_CACHE_STARTED) 8681 wait_block_group_cache_done(block_group); 8682 8683 btrfs_remove_free_space_cache(block_group); 8684 8685 spin_lock(&block_group->space_info->lock); 8686 block_group->space_info->total_bytes -= block_group->key.offset; 8687 block_group->space_info->bytes_readonly -= block_group->key.offset; 8688 block_group->space_info->disk_total -= block_group->key.offset * factor; 8689 spin_unlock(&block_group->space_info->lock); 8690 8691 memcpy(&key, &block_group->key, sizeof(key)); 8692 8693 btrfs_clear_space_info_full(root->fs_info); 8694 8695 btrfs_put_block_group(block_group); 8696 btrfs_put_block_group(block_group); 8697 8698 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8699 if (ret > 0) 8700 ret = -EIO; 8701 if (ret < 0) 8702 goto out; 8703 8704 ret = btrfs_del_item(trans, root, path); 8705 out: 8706 btrfs_free_path(path); 8707 return ret; 8708 } 8709 8710 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8711 { 8712 struct btrfs_space_info *space_info; 8713 struct btrfs_super_block *disk_super; 8714 u64 features; 8715 u64 flags; 8716 int mixed = 0; 8717 int ret; 8718 8719 disk_super = fs_info->super_copy; 8720 if (!btrfs_super_root(disk_super)) 8721 return 1; 8722 8723 features = btrfs_super_incompat_flags(disk_super); 8724 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8725 mixed = 1; 8726 8727 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8728 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8729 if (ret) 8730 goto out; 8731 8732 if (mixed) { 8733 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8734 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8735 } else { 8736 flags = BTRFS_BLOCK_GROUP_METADATA; 8737 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8738 if (ret) 8739 goto out; 8740 8741 flags = BTRFS_BLOCK_GROUP_DATA; 8742 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8743 } 8744 out: 8745 return ret; 8746 } 8747 8748 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8749 { 8750 return unpin_extent_range(root, start, end); 8751 } 8752 8753 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8754 u64 num_bytes, u64 *actual_bytes) 8755 { 8756 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8757 } 8758 8759 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8760 { 8761 struct btrfs_fs_info *fs_info = root->fs_info; 8762 struct btrfs_block_group_cache *cache = NULL; 8763 u64 group_trimmed; 8764 u64 start; 8765 u64 end; 8766 u64 trimmed = 0; 8767 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8768 int ret = 0; 8769 8770 /* 8771 * try to trim all FS space, our block group may start from non-zero. 8772 */ 8773 if (range->len == total_bytes) 8774 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8775 else 8776 cache = btrfs_lookup_block_group(fs_info, range->start); 8777 8778 while (cache) { 8779 if (cache->key.objectid >= (range->start + range->len)) { 8780 btrfs_put_block_group(cache); 8781 break; 8782 } 8783 8784 start = max(range->start, cache->key.objectid); 8785 end = min(range->start + range->len, 8786 cache->key.objectid + cache->key.offset); 8787 8788 if (end - start >= range->minlen) { 8789 if (!block_group_cache_done(cache)) { 8790 ret = cache_block_group(cache, 0); 8791 if (ret) { 8792 btrfs_put_block_group(cache); 8793 break; 8794 } 8795 ret = wait_block_group_cache_done(cache); 8796 if (ret) { 8797 btrfs_put_block_group(cache); 8798 break; 8799 } 8800 } 8801 ret = btrfs_trim_block_group(cache, 8802 &group_trimmed, 8803 start, 8804 end, 8805 range->minlen); 8806 8807 trimmed += group_trimmed; 8808 if (ret) { 8809 btrfs_put_block_group(cache); 8810 break; 8811 } 8812 } 8813 8814 cache = next_block_group(fs_info->tree_root, cache); 8815 } 8816 8817 range->len = trimmed; 8818 return ret; 8819 } 8820