xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 
39 #undef SCRAMBLE_DELAYED_REFS
40 
41 /*
42  * control flags for do_chunk_alloc's force field
43  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44  * if we really need one.
45  *
46  * CHUNK_ALLOC_LIMITED means to only try and allocate one
47  * if we have very few chunks already allocated.  This is
48  * used as part of the clustering code to help make sure
49  * we have a good pool of storage to cluster in, without
50  * filling the FS with empty chunks
51  *
52  * CHUNK_ALLOC_FORCE means it must try to allocate one
53  *
54  */
55 enum {
56 	CHUNK_ALLOC_NO_FORCE = 0,
57 	CHUNK_ALLOC_LIMITED = 1,
58 	CHUNK_ALLOC_FORCE = 2,
59 };
60 
61 /*
62  * Control how reservations are dealt with.
63  *
64  * RESERVE_FREE - freeing a reservation.
65  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66  *   ENOSPC accounting
67  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68  *   bytes_may_use as the ENOSPC accounting is done elsewhere
69  */
70 enum {
71 	RESERVE_FREE = 0,
72 	RESERVE_ALLOC = 1,
73 	RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75 
76 static int update_block_group(struct btrfs_root *root,
77 			      u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 				struct btrfs_root *root,
80 				u64 bytenr, u64 num_bytes, u64 parent,
81 				u64 root_objectid, u64 owner_objectid,
82 				u64 owner_offset, int refs_to_drop,
83 				struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 				    struct extent_buffer *leaf,
86 				    struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 				      struct btrfs_root *root,
89 				      u64 parent, u64 root_objectid,
90 				      u64 flags, u64 owner, u64 offset,
91 				      struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 				     struct btrfs_root *root,
94 				     u64 parent, u64 root_objectid,
95 				     u64 flags, struct btrfs_disk_key *key,
96 				     int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 			  struct btrfs_root *extent_root, u64 flags,
99 			  int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 			 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 			    int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 				       u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 			       u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 		     u64 bytenr, u64 num_bytes, int reserved);
110 
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 	smp_mb();
115 	return cache->cached == BTRFS_CACHE_FINISHED ||
116 		cache->cached == BTRFS_CACHE_ERROR;
117 }
118 
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 	return (cache->flags & bits) == bits;
122 }
123 
124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	atomic_inc(&cache->count);
127 }
128 
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	if (atomic_dec_and_test(&cache->count)) {
132 		WARN_ON(cache->pinned > 0);
133 		WARN_ON(cache->reserved > 0);
134 		kfree(cache->free_space_ctl);
135 		kfree(cache);
136 	}
137 }
138 
139 /*
140  * this adds the block group to the fs_info rb tree for the block group
141  * cache
142  */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 				struct btrfs_block_group_cache *block_group)
145 {
146 	struct rb_node **p;
147 	struct rb_node *parent = NULL;
148 	struct btrfs_block_group_cache *cache;
149 
150 	spin_lock(&info->block_group_cache_lock);
151 	p = &info->block_group_cache_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		cache = rb_entry(parent, struct btrfs_block_group_cache,
156 				 cache_node);
157 		if (block_group->key.objectid < cache->key.objectid) {
158 			p = &(*p)->rb_left;
159 		} else if (block_group->key.objectid > cache->key.objectid) {
160 			p = &(*p)->rb_right;
161 		} else {
162 			spin_unlock(&info->block_group_cache_lock);
163 			return -EEXIST;
164 		}
165 	}
166 
167 	rb_link_node(&block_group->cache_node, parent, p);
168 	rb_insert_color(&block_group->cache_node,
169 			&info->block_group_cache_tree);
170 
171 	if (info->first_logical_byte > block_group->key.objectid)
172 		info->first_logical_byte = block_group->key.objectid;
173 
174 	spin_unlock(&info->block_group_cache_lock);
175 
176 	return 0;
177 }
178 
179 /*
180  * This will return the block group at or after bytenr if contains is 0, else
181  * it will return the block group that contains the bytenr
182  */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 			      int contains)
186 {
187 	struct btrfs_block_group_cache *cache, *ret = NULL;
188 	struct rb_node *n;
189 	u64 end, start;
190 
191 	spin_lock(&info->block_group_cache_lock);
192 	n = info->block_group_cache_tree.rb_node;
193 
194 	while (n) {
195 		cache = rb_entry(n, struct btrfs_block_group_cache,
196 				 cache_node);
197 		end = cache->key.objectid + cache->key.offset - 1;
198 		start = cache->key.objectid;
199 
200 		if (bytenr < start) {
201 			if (!contains && (!ret || start < ret->key.objectid))
202 				ret = cache;
203 			n = n->rb_left;
204 		} else if (bytenr > start) {
205 			if (contains && bytenr <= end) {
206 				ret = cache;
207 				break;
208 			}
209 			n = n->rb_right;
210 		} else {
211 			ret = cache;
212 			break;
213 		}
214 	}
215 	if (ret) {
216 		btrfs_get_block_group(ret);
217 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 			info->first_logical_byte = ret->key.objectid;
219 	}
220 	spin_unlock(&info->block_group_cache_lock);
221 
222 	return ret;
223 }
224 
225 static int add_excluded_extent(struct btrfs_root *root,
226 			       u64 start, u64 num_bytes)
227 {
228 	u64 end = start + num_bytes - 1;
229 	set_extent_bits(&root->fs_info->freed_extents[0],
230 			start, end, EXTENT_UPTODATE, GFP_NOFS);
231 	set_extent_bits(&root->fs_info->freed_extents[1],
232 			start, end, EXTENT_UPTODATE, GFP_NOFS);
233 	return 0;
234 }
235 
236 static void free_excluded_extents(struct btrfs_root *root,
237 				  struct btrfs_block_group_cache *cache)
238 {
239 	u64 start, end;
240 
241 	start = cache->key.objectid;
242 	end = start + cache->key.offset - 1;
243 
244 	clear_extent_bits(&root->fs_info->freed_extents[0],
245 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
246 	clear_extent_bits(&root->fs_info->freed_extents[1],
247 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
248 }
249 
250 static int exclude_super_stripes(struct btrfs_root *root,
251 				 struct btrfs_block_group_cache *cache)
252 {
253 	u64 bytenr;
254 	u64 *logical;
255 	int stripe_len;
256 	int i, nr, ret;
257 
258 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 		cache->bytes_super += stripe_len;
261 		ret = add_excluded_extent(root, cache->key.objectid,
262 					  stripe_len);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 		bytenr = btrfs_sb_offset(i);
269 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 				       cache->key.objectid, bytenr,
271 				       0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(root, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (cache->cached != BTRFS_CACHE_STARTED) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	/* We're loading it the fast way, so we don't have a caching_ctl. */
320 	if (!cache->caching_ctl) {
321 		spin_unlock(&cache->lock);
322 		return NULL;
323 	}
324 
325 	ctl = cache->caching_ctl;
326 	atomic_inc(&ctl->count);
327 	spin_unlock(&cache->lock);
328 	return ctl;
329 }
330 
331 static void put_caching_control(struct btrfs_caching_control *ctl)
332 {
333 	if (atomic_dec_and_test(&ctl->count))
334 		kfree(ctl);
335 }
336 
337 /*
338  * this is only called by cache_block_group, since we could have freed extents
339  * we need to check the pinned_extents for any extents that can't be used yet
340  * since their free space will be released as soon as the transaction commits.
341  */
342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 			      struct btrfs_fs_info *info, u64 start, u64 end)
344 {
345 	u64 extent_start, extent_end, size, total_added = 0;
346 	int ret;
347 
348 	while (start < end) {
349 		ret = find_first_extent_bit(info->pinned_extents, start,
350 					    &extent_start, &extent_end,
351 					    EXTENT_DIRTY | EXTENT_UPTODATE,
352 					    NULL);
353 		if (ret)
354 			break;
355 
356 		if (extent_start <= start) {
357 			start = extent_end + 1;
358 		} else if (extent_start > start && extent_start < end) {
359 			size = extent_start - start;
360 			total_added += size;
361 			ret = btrfs_add_free_space(block_group, start,
362 						   size);
363 			BUG_ON(ret); /* -ENOMEM or logic error */
364 			start = extent_end + 1;
365 		} else {
366 			break;
367 		}
368 	}
369 
370 	if (start < end) {
371 		size = end - start;
372 		total_added += size;
373 		ret = btrfs_add_free_space(block_group, start, size);
374 		BUG_ON(ret); /* -ENOMEM or logic error */
375 	}
376 
377 	return total_added;
378 }
379 
380 static noinline void caching_thread(struct btrfs_work *work)
381 {
382 	struct btrfs_block_group_cache *block_group;
383 	struct btrfs_fs_info *fs_info;
384 	struct btrfs_caching_control *caching_ctl;
385 	struct btrfs_root *extent_root;
386 	struct btrfs_path *path;
387 	struct extent_buffer *leaf;
388 	struct btrfs_key key;
389 	u64 total_found = 0;
390 	u64 last = 0;
391 	u32 nritems;
392 	int ret = -ENOMEM;
393 
394 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
395 	block_group = caching_ctl->block_group;
396 	fs_info = block_group->fs_info;
397 	extent_root = fs_info->extent_root;
398 
399 	path = btrfs_alloc_path();
400 	if (!path)
401 		goto out;
402 
403 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
404 
405 	/*
406 	 * We don't want to deadlock with somebody trying to allocate a new
407 	 * extent for the extent root while also trying to search the extent
408 	 * root to add free space.  So we skip locking and search the commit
409 	 * root, since its read-only
410 	 */
411 	path->skip_locking = 1;
412 	path->search_commit_root = 1;
413 	path->reada = 1;
414 
415 	key.objectid = last;
416 	key.offset = 0;
417 	key.type = BTRFS_EXTENT_ITEM_KEY;
418 again:
419 	mutex_lock(&caching_ctl->mutex);
420 	/* need to make sure the commit_root doesn't disappear */
421 	down_read(&fs_info->extent_commit_sem);
422 
423 next:
424 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 	if (ret < 0)
426 		goto err;
427 
428 	leaf = path->nodes[0];
429 	nritems = btrfs_header_nritems(leaf);
430 
431 	while (1) {
432 		if (btrfs_fs_closing(fs_info) > 1) {
433 			last = (u64)-1;
434 			break;
435 		}
436 
437 		if (path->slots[0] < nritems) {
438 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 		} else {
440 			ret = find_next_key(path, 0, &key);
441 			if (ret)
442 				break;
443 
444 			if (need_resched()) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->extent_commit_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->leafsize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->extent_commit_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	caching_ctl->work.func = caching_thread;
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		ret = load_free_space_cache(fs_info, cache);
592 
593 		spin_lock(&cache->lock);
594 		if (ret == 1) {
595 			cache->caching_ctl = NULL;
596 			cache->cached = BTRFS_CACHE_FINISHED;
597 			cache->last_byte_to_unpin = (u64)-1;
598 		} else {
599 			if (load_cache_only) {
600 				cache->caching_ctl = NULL;
601 				cache->cached = BTRFS_CACHE_NO;
602 			} else {
603 				cache->cached = BTRFS_CACHE_STARTED;
604 			}
605 		}
606 		spin_unlock(&cache->lock);
607 		wake_up(&caching_ctl->wait);
608 		if (ret == 1) {
609 			put_caching_control(caching_ctl);
610 			free_excluded_extents(fs_info->extent_root, cache);
611 			return 0;
612 		}
613 	} else {
614 		/*
615 		 * We are not going to do the fast caching, set cached to the
616 		 * appropriate value and wakeup any waiters.
617 		 */
618 		spin_lock(&cache->lock);
619 		if (load_cache_only) {
620 			cache->caching_ctl = NULL;
621 			cache->cached = BTRFS_CACHE_NO;
622 		} else {
623 			cache->cached = BTRFS_CACHE_STARTED;
624 		}
625 		spin_unlock(&cache->lock);
626 		wake_up(&caching_ctl->wait);
627 	}
628 
629 	if (load_cache_only) {
630 		put_caching_control(caching_ctl);
631 		return 0;
632 	}
633 
634 	down_write(&fs_info->extent_commit_sem);
635 	atomic_inc(&caching_ctl->count);
636 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
637 	up_write(&fs_info->extent_commit_sem);
638 
639 	btrfs_get_block_group(cache);
640 
641 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
642 
643 	return ret;
644 }
645 
646 /*
647  * return the block group that starts at or after bytenr
648  */
649 static struct btrfs_block_group_cache *
650 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
651 {
652 	struct btrfs_block_group_cache *cache;
653 
654 	cache = block_group_cache_tree_search(info, bytenr, 0);
655 
656 	return cache;
657 }
658 
659 /*
660  * return the block group that contains the given bytenr
661  */
662 struct btrfs_block_group_cache *btrfs_lookup_block_group(
663 						 struct btrfs_fs_info *info,
664 						 u64 bytenr)
665 {
666 	struct btrfs_block_group_cache *cache;
667 
668 	cache = block_group_cache_tree_search(info, bytenr, 1);
669 
670 	return cache;
671 }
672 
673 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
674 						  u64 flags)
675 {
676 	struct list_head *head = &info->space_info;
677 	struct btrfs_space_info *found;
678 
679 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
680 
681 	rcu_read_lock();
682 	list_for_each_entry_rcu(found, head, list) {
683 		if (found->flags & flags) {
684 			rcu_read_unlock();
685 			return found;
686 		}
687 	}
688 	rcu_read_unlock();
689 	return NULL;
690 }
691 
692 /*
693  * after adding space to the filesystem, we need to clear the full flags
694  * on all the space infos.
695  */
696 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
697 {
698 	struct list_head *head = &info->space_info;
699 	struct btrfs_space_info *found;
700 
701 	rcu_read_lock();
702 	list_for_each_entry_rcu(found, head, list)
703 		found->full = 0;
704 	rcu_read_unlock();
705 }
706 
707 /* simple helper to search for an existing extent at a given offset */
708 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
709 {
710 	int ret;
711 	struct btrfs_key key;
712 	struct btrfs_path *path;
713 
714 	path = btrfs_alloc_path();
715 	if (!path)
716 		return -ENOMEM;
717 
718 	key.objectid = start;
719 	key.offset = len;
720 	key.type = BTRFS_EXTENT_ITEM_KEY;
721 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
722 				0, 0);
723 	if (ret > 0) {
724 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
725 		if (key.objectid == start &&
726 		    key.type == BTRFS_METADATA_ITEM_KEY)
727 			ret = 0;
728 	}
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->leafsize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (metadata) {
771 		key.objectid = bytenr;
772 		key.type = BTRFS_METADATA_ITEM_KEY;
773 		key.offset = offset;
774 	} else {
775 		key.objectid = bytenr;
776 		key.type = BTRFS_EXTENT_ITEM_KEY;
777 		key.offset = offset;
778 	}
779 
780 	if (!trans) {
781 		path->skip_locking = 1;
782 		path->search_commit_root = 1;
783 	}
784 again:
785 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
786 				&key, path, 0, 0);
787 	if (ret < 0)
788 		goto out_free;
789 
790 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
791 		metadata = 0;
792 		if (path->slots[0]) {
793 			path->slots[0]--;
794 			btrfs_item_key_to_cpu(path->nodes[0], &key,
795 					      path->slots[0]);
796 			if (key.objectid == bytenr &&
797 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
798 			    key.offset == root->leafsize)
799 				ret = 0;
800 		}
801 		if (ret) {
802 			key.objectid = bytenr;
803 			key.type = BTRFS_EXTENT_ITEM_KEY;
804 			key.offset = root->leafsize;
805 			btrfs_release_path(path);
806 			goto again;
807 		}
808 	}
809 
810 	if (ret == 0) {
811 		leaf = path->nodes[0];
812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 		if (item_size >= sizeof(*ei)) {
814 			ei = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_extent_item);
816 			num_refs = btrfs_extent_refs(leaf, ei);
817 			extent_flags = btrfs_extent_flags(leaf, ei);
818 		} else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 			struct btrfs_extent_item_v0 *ei0;
821 			BUG_ON(item_size != sizeof(*ei0));
822 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 					     struct btrfs_extent_item_v0);
824 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 			/* FIXME: this isn't correct for data */
826 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 			BUG();
829 #endif
830 		}
831 		BUG_ON(num_refs == 0);
832 	} else {
833 		num_refs = 0;
834 		extent_flags = 0;
835 		ret = 0;
836 	}
837 
838 	if (!trans)
839 		goto out;
840 
841 	delayed_refs = &trans->transaction->delayed_refs;
842 	spin_lock(&delayed_refs->lock);
843 	head = btrfs_find_delayed_ref_head(trans, bytenr);
844 	if (head) {
845 		if (!mutex_trylock(&head->mutex)) {
846 			atomic_inc(&head->node.refs);
847 			spin_unlock(&delayed_refs->lock);
848 
849 			btrfs_release_path(path);
850 
851 			/*
852 			 * Mutex was contended, block until it's released and try
853 			 * again
854 			 */
855 			mutex_lock(&head->mutex);
856 			mutex_unlock(&head->mutex);
857 			btrfs_put_delayed_ref(&head->node);
858 			goto again;
859 		}
860 		if (head->extent_op && head->extent_op->update_flags)
861 			extent_flags |= head->extent_op->flags_to_set;
862 		else
863 			BUG_ON(num_refs == 0);
864 
865 		num_refs += head->node.ref_mod;
866 		mutex_unlock(&head->mutex);
867 	}
868 	spin_unlock(&delayed_refs->lock);
869 out:
870 	WARN_ON(num_refs == 0);
871 	if (refs)
872 		*refs = num_refs;
873 	if (flags)
874 		*flags = extent_flags;
875 out_free:
876 	btrfs_free_path(path);
877 	return ret;
878 }
879 
880 /*
881  * Back reference rules.  Back refs have three main goals:
882  *
883  * 1) differentiate between all holders of references to an extent so that
884  *    when a reference is dropped we can make sure it was a valid reference
885  *    before freeing the extent.
886  *
887  * 2) Provide enough information to quickly find the holders of an extent
888  *    if we notice a given block is corrupted or bad.
889  *
890  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
891  *    maintenance.  This is actually the same as #2, but with a slightly
892  *    different use case.
893  *
894  * There are two kinds of back refs. The implicit back refs is optimized
895  * for pointers in non-shared tree blocks. For a given pointer in a block,
896  * back refs of this kind provide information about the block's owner tree
897  * and the pointer's key. These information allow us to find the block by
898  * b-tree searching. The full back refs is for pointers in tree blocks not
899  * referenced by their owner trees. The location of tree block is recorded
900  * in the back refs. Actually the full back refs is generic, and can be
901  * used in all cases the implicit back refs is used. The major shortcoming
902  * of the full back refs is its overhead. Every time a tree block gets
903  * COWed, we have to update back refs entry for all pointers in it.
904  *
905  * For a newly allocated tree block, we use implicit back refs for
906  * pointers in it. This means most tree related operations only involve
907  * implicit back refs. For a tree block created in old transaction, the
908  * only way to drop a reference to it is COW it. So we can detect the
909  * event that tree block loses its owner tree's reference and do the
910  * back refs conversion.
911  *
912  * When a tree block is COW'd through a tree, there are four cases:
913  *
914  * The reference count of the block is one and the tree is the block's
915  * owner tree. Nothing to do in this case.
916  *
917  * The reference count of the block is one and the tree is not the
918  * block's owner tree. In this case, full back refs is used for pointers
919  * in the block. Remove these full back refs, add implicit back refs for
920  * every pointers in the new block.
921  *
922  * The reference count of the block is greater than one and the tree is
923  * the block's owner tree. In this case, implicit back refs is used for
924  * pointers in the block. Add full back refs for every pointers in the
925  * block, increase lower level extents' reference counts. The original
926  * implicit back refs are entailed to the new block.
927  *
928  * The reference count of the block is greater than one and the tree is
929  * not the block's owner tree. Add implicit back refs for every pointer in
930  * the new block, increase lower level extents' reference count.
931  *
932  * Back Reference Key composing:
933  *
934  * The key objectid corresponds to the first byte in the extent,
935  * The key type is used to differentiate between types of back refs.
936  * There are different meanings of the key offset for different types
937  * of back refs.
938  *
939  * File extents can be referenced by:
940  *
941  * - multiple snapshots, subvolumes, or different generations in one subvol
942  * - different files inside a single subvolume
943  * - different offsets inside a file (bookend extents in file.c)
944  *
945  * The extent ref structure for the implicit back refs has fields for:
946  *
947  * - Objectid of the subvolume root
948  * - objectid of the file holding the reference
949  * - original offset in the file
950  * - how many bookend extents
951  *
952  * The key offset for the implicit back refs is hash of the first
953  * three fields.
954  *
955  * The extent ref structure for the full back refs has field for:
956  *
957  * - number of pointers in the tree leaf
958  *
959  * The key offset for the implicit back refs is the first byte of
960  * the tree leaf
961  *
962  * When a file extent is allocated, The implicit back refs is used.
963  * the fields are filled in:
964  *
965  *     (root_key.objectid, inode objectid, offset in file, 1)
966  *
967  * When a file extent is removed file truncation, we find the
968  * corresponding implicit back refs and check the following fields:
969  *
970  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
971  *
972  * Btree extents can be referenced by:
973  *
974  * - Different subvolumes
975  *
976  * Both the implicit back refs and the full back refs for tree blocks
977  * only consist of key. The key offset for the implicit back refs is
978  * objectid of block's owner tree. The key offset for the full back refs
979  * is the first byte of parent block.
980  *
981  * When implicit back refs is used, information about the lowest key and
982  * level of the tree block are required. These information are stored in
983  * tree block info structure.
984  */
985 
986 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
987 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
988 				  struct btrfs_root *root,
989 				  struct btrfs_path *path,
990 				  u64 owner, u32 extra_size)
991 {
992 	struct btrfs_extent_item *item;
993 	struct btrfs_extent_item_v0 *ei0;
994 	struct btrfs_extent_ref_v0 *ref0;
995 	struct btrfs_tree_block_info *bi;
996 	struct extent_buffer *leaf;
997 	struct btrfs_key key;
998 	struct btrfs_key found_key;
999 	u32 new_size = sizeof(*item);
1000 	u64 refs;
1001 	int ret;
1002 
1003 	leaf = path->nodes[0];
1004 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1005 
1006 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1007 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1008 			     struct btrfs_extent_item_v0);
1009 	refs = btrfs_extent_refs_v0(leaf, ei0);
1010 
1011 	if (owner == (u64)-1) {
1012 		while (1) {
1013 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1014 				ret = btrfs_next_leaf(root, path);
1015 				if (ret < 0)
1016 					return ret;
1017 				BUG_ON(ret > 0); /* Corruption */
1018 				leaf = path->nodes[0];
1019 			}
1020 			btrfs_item_key_to_cpu(leaf, &found_key,
1021 					      path->slots[0]);
1022 			BUG_ON(key.objectid != found_key.objectid);
1023 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1024 				path->slots[0]++;
1025 				continue;
1026 			}
1027 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1028 					      struct btrfs_extent_ref_v0);
1029 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1030 			break;
1031 		}
1032 	}
1033 	btrfs_release_path(path);
1034 
1035 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1036 		new_size += sizeof(*bi);
1037 
1038 	new_size -= sizeof(*ei0);
1039 	ret = btrfs_search_slot(trans, root, &key, path,
1040 				new_size + extra_size, 1);
1041 	if (ret < 0)
1042 		return ret;
1043 	BUG_ON(ret); /* Corruption */
1044 
1045 	btrfs_extend_item(root, path, new_size);
1046 
1047 	leaf = path->nodes[0];
1048 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1049 	btrfs_set_extent_refs(leaf, item, refs);
1050 	/* FIXME: get real generation */
1051 	btrfs_set_extent_generation(leaf, item, 0);
1052 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1053 		btrfs_set_extent_flags(leaf, item,
1054 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1055 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1056 		bi = (struct btrfs_tree_block_info *)(item + 1);
1057 		/* FIXME: get first key of the block */
1058 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1059 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1060 	} else {
1061 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1062 	}
1063 	btrfs_mark_buffer_dirty(leaf);
1064 	return 0;
1065 }
1066 #endif
1067 
1068 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1069 {
1070 	u32 high_crc = ~(u32)0;
1071 	u32 low_crc = ~(u32)0;
1072 	__le64 lenum;
1073 
1074 	lenum = cpu_to_le64(root_objectid);
1075 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1076 	lenum = cpu_to_le64(owner);
1077 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1078 	lenum = cpu_to_le64(offset);
1079 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1080 
1081 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1082 }
1083 
1084 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1085 				     struct btrfs_extent_data_ref *ref)
1086 {
1087 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1088 				    btrfs_extent_data_ref_objectid(leaf, ref),
1089 				    btrfs_extent_data_ref_offset(leaf, ref));
1090 }
1091 
1092 static int match_extent_data_ref(struct extent_buffer *leaf,
1093 				 struct btrfs_extent_data_ref *ref,
1094 				 u64 root_objectid, u64 owner, u64 offset)
1095 {
1096 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1097 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1098 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1099 		return 0;
1100 	return 1;
1101 }
1102 
1103 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1104 					   struct btrfs_root *root,
1105 					   struct btrfs_path *path,
1106 					   u64 bytenr, u64 parent,
1107 					   u64 root_objectid,
1108 					   u64 owner, u64 offset)
1109 {
1110 	struct btrfs_key key;
1111 	struct btrfs_extent_data_ref *ref;
1112 	struct extent_buffer *leaf;
1113 	u32 nritems;
1114 	int ret;
1115 	int recow;
1116 	int err = -ENOENT;
1117 
1118 	key.objectid = bytenr;
1119 	if (parent) {
1120 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1121 		key.offset = parent;
1122 	} else {
1123 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1124 		key.offset = hash_extent_data_ref(root_objectid,
1125 						  owner, offset);
1126 	}
1127 again:
1128 	recow = 0;
1129 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1130 	if (ret < 0) {
1131 		err = ret;
1132 		goto fail;
1133 	}
1134 
1135 	if (parent) {
1136 		if (!ret)
1137 			return 0;
1138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1139 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1140 		btrfs_release_path(path);
1141 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1142 		if (ret < 0) {
1143 			err = ret;
1144 			goto fail;
1145 		}
1146 		if (!ret)
1147 			return 0;
1148 #endif
1149 		goto fail;
1150 	}
1151 
1152 	leaf = path->nodes[0];
1153 	nritems = btrfs_header_nritems(leaf);
1154 	while (1) {
1155 		if (path->slots[0] >= nritems) {
1156 			ret = btrfs_next_leaf(root, path);
1157 			if (ret < 0)
1158 				err = ret;
1159 			if (ret)
1160 				goto fail;
1161 
1162 			leaf = path->nodes[0];
1163 			nritems = btrfs_header_nritems(leaf);
1164 			recow = 1;
1165 		}
1166 
1167 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1168 		if (key.objectid != bytenr ||
1169 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1170 			goto fail;
1171 
1172 		ref = btrfs_item_ptr(leaf, path->slots[0],
1173 				     struct btrfs_extent_data_ref);
1174 
1175 		if (match_extent_data_ref(leaf, ref, root_objectid,
1176 					  owner, offset)) {
1177 			if (recow) {
1178 				btrfs_release_path(path);
1179 				goto again;
1180 			}
1181 			err = 0;
1182 			break;
1183 		}
1184 		path->slots[0]++;
1185 	}
1186 fail:
1187 	return err;
1188 }
1189 
1190 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1191 					   struct btrfs_root *root,
1192 					   struct btrfs_path *path,
1193 					   u64 bytenr, u64 parent,
1194 					   u64 root_objectid, u64 owner,
1195 					   u64 offset, int refs_to_add)
1196 {
1197 	struct btrfs_key key;
1198 	struct extent_buffer *leaf;
1199 	u32 size;
1200 	u32 num_refs;
1201 	int ret;
1202 
1203 	key.objectid = bytenr;
1204 	if (parent) {
1205 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1206 		key.offset = parent;
1207 		size = sizeof(struct btrfs_shared_data_ref);
1208 	} else {
1209 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1210 		key.offset = hash_extent_data_ref(root_objectid,
1211 						  owner, offset);
1212 		size = sizeof(struct btrfs_extent_data_ref);
1213 	}
1214 
1215 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1216 	if (ret && ret != -EEXIST)
1217 		goto fail;
1218 
1219 	leaf = path->nodes[0];
1220 	if (parent) {
1221 		struct btrfs_shared_data_ref *ref;
1222 		ref = btrfs_item_ptr(leaf, path->slots[0],
1223 				     struct btrfs_shared_data_ref);
1224 		if (ret == 0) {
1225 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1226 		} else {
1227 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1228 			num_refs += refs_to_add;
1229 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1230 		}
1231 	} else {
1232 		struct btrfs_extent_data_ref *ref;
1233 		while (ret == -EEXIST) {
1234 			ref = btrfs_item_ptr(leaf, path->slots[0],
1235 					     struct btrfs_extent_data_ref);
1236 			if (match_extent_data_ref(leaf, ref, root_objectid,
1237 						  owner, offset))
1238 				break;
1239 			btrfs_release_path(path);
1240 			key.offset++;
1241 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1242 						      size);
1243 			if (ret && ret != -EEXIST)
1244 				goto fail;
1245 
1246 			leaf = path->nodes[0];
1247 		}
1248 		ref = btrfs_item_ptr(leaf, path->slots[0],
1249 				     struct btrfs_extent_data_ref);
1250 		if (ret == 0) {
1251 			btrfs_set_extent_data_ref_root(leaf, ref,
1252 						       root_objectid);
1253 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1254 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1255 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1256 		} else {
1257 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1258 			num_refs += refs_to_add;
1259 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1260 		}
1261 	}
1262 	btrfs_mark_buffer_dirty(leaf);
1263 	ret = 0;
1264 fail:
1265 	btrfs_release_path(path);
1266 	return ret;
1267 }
1268 
1269 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1270 					   struct btrfs_root *root,
1271 					   struct btrfs_path *path,
1272 					   int refs_to_drop)
1273 {
1274 	struct btrfs_key key;
1275 	struct btrfs_extent_data_ref *ref1 = NULL;
1276 	struct btrfs_shared_data_ref *ref2 = NULL;
1277 	struct extent_buffer *leaf;
1278 	u32 num_refs = 0;
1279 	int ret = 0;
1280 
1281 	leaf = path->nodes[0];
1282 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1283 
1284 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1285 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1286 				      struct btrfs_extent_data_ref);
1287 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1288 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1289 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1290 				      struct btrfs_shared_data_ref);
1291 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1292 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1293 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1294 		struct btrfs_extent_ref_v0 *ref0;
1295 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1296 				      struct btrfs_extent_ref_v0);
1297 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1298 #endif
1299 	} else {
1300 		BUG();
1301 	}
1302 
1303 	BUG_ON(num_refs < refs_to_drop);
1304 	num_refs -= refs_to_drop;
1305 
1306 	if (num_refs == 0) {
1307 		ret = btrfs_del_item(trans, root, path);
1308 	} else {
1309 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1310 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1311 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1312 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1314 		else {
1315 			struct btrfs_extent_ref_v0 *ref0;
1316 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1317 					struct btrfs_extent_ref_v0);
1318 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1319 		}
1320 #endif
1321 		btrfs_mark_buffer_dirty(leaf);
1322 	}
1323 	return ret;
1324 }
1325 
1326 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1327 					  struct btrfs_path *path,
1328 					  struct btrfs_extent_inline_ref *iref)
1329 {
1330 	struct btrfs_key key;
1331 	struct extent_buffer *leaf;
1332 	struct btrfs_extent_data_ref *ref1;
1333 	struct btrfs_shared_data_ref *ref2;
1334 	u32 num_refs = 0;
1335 
1336 	leaf = path->nodes[0];
1337 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338 	if (iref) {
1339 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1340 		    BTRFS_EXTENT_DATA_REF_KEY) {
1341 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1342 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 		} else {
1344 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1345 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346 		}
1347 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1348 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1349 				      struct btrfs_extent_data_ref);
1350 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1351 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1352 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_shared_data_ref);
1354 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1355 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1356 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1357 		struct btrfs_extent_ref_v0 *ref0;
1358 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1359 				      struct btrfs_extent_ref_v0);
1360 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1361 #endif
1362 	} else {
1363 		WARN_ON(1);
1364 	}
1365 	return num_refs;
1366 }
1367 
1368 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1369 					  struct btrfs_root *root,
1370 					  struct btrfs_path *path,
1371 					  u64 bytenr, u64 parent,
1372 					  u64 root_objectid)
1373 {
1374 	struct btrfs_key key;
1375 	int ret;
1376 
1377 	key.objectid = bytenr;
1378 	if (parent) {
1379 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 		key.offset = parent;
1381 	} else {
1382 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 		key.offset = root_objectid;
1384 	}
1385 
1386 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 	if (ret > 0)
1388 		ret = -ENOENT;
1389 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1390 	if (ret == -ENOENT && parent) {
1391 		btrfs_release_path(path);
1392 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1393 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 		if (ret > 0)
1395 			ret = -ENOENT;
1396 	}
1397 #endif
1398 	return ret;
1399 }
1400 
1401 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1402 					  struct btrfs_root *root,
1403 					  struct btrfs_path *path,
1404 					  u64 bytenr, u64 parent,
1405 					  u64 root_objectid)
1406 {
1407 	struct btrfs_key key;
1408 	int ret;
1409 
1410 	key.objectid = bytenr;
1411 	if (parent) {
1412 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1413 		key.offset = parent;
1414 	} else {
1415 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1416 		key.offset = root_objectid;
1417 	}
1418 
1419 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1420 	btrfs_release_path(path);
1421 	return ret;
1422 }
1423 
1424 static inline int extent_ref_type(u64 parent, u64 owner)
1425 {
1426 	int type;
1427 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1428 		if (parent > 0)
1429 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 		else
1431 			type = BTRFS_TREE_BLOCK_REF_KEY;
1432 	} else {
1433 		if (parent > 0)
1434 			type = BTRFS_SHARED_DATA_REF_KEY;
1435 		else
1436 			type = BTRFS_EXTENT_DATA_REF_KEY;
1437 	}
1438 	return type;
1439 }
1440 
1441 static int find_next_key(struct btrfs_path *path, int level,
1442 			 struct btrfs_key *key)
1443 
1444 {
1445 	for (; level < BTRFS_MAX_LEVEL; level++) {
1446 		if (!path->nodes[level])
1447 			break;
1448 		if (path->slots[level] + 1 >=
1449 		    btrfs_header_nritems(path->nodes[level]))
1450 			continue;
1451 		if (level == 0)
1452 			btrfs_item_key_to_cpu(path->nodes[level], key,
1453 					      path->slots[level] + 1);
1454 		else
1455 			btrfs_node_key_to_cpu(path->nodes[level], key,
1456 					      path->slots[level] + 1);
1457 		return 0;
1458 	}
1459 	return 1;
1460 }
1461 
1462 /*
1463  * look for inline back ref. if back ref is found, *ref_ret is set
1464  * to the address of inline back ref, and 0 is returned.
1465  *
1466  * if back ref isn't found, *ref_ret is set to the address where it
1467  * should be inserted, and -ENOENT is returned.
1468  *
1469  * if insert is true and there are too many inline back refs, the path
1470  * points to the extent item, and -EAGAIN is returned.
1471  *
1472  * NOTE: inline back refs are ordered in the same way that back ref
1473  *	 items in the tree are ordered.
1474  */
1475 static noinline_for_stack
1476 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1477 				 struct btrfs_root *root,
1478 				 struct btrfs_path *path,
1479 				 struct btrfs_extent_inline_ref **ref_ret,
1480 				 u64 bytenr, u64 num_bytes,
1481 				 u64 parent, u64 root_objectid,
1482 				 u64 owner, u64 offset, int insert)
1483 {
1484 	struct btrfs_key key;
1485 	struct extent_buffer *leaf;
1486 	struct btrfs_extent_item *ei;
1487 	struct btrfs_extent_inline_ref *iref;
1488 	u64 flags;
1489 	u64 item_size;
1490 	unsigned long ptr;
1491 	unsigned long end;
1492 	int extra_size;
1493 	int type;
1494 	int want;
1495 	int ret;
1496 	int err = 0;
1497 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1498 						 SKINNY_METADATA);
1499 
1500 	key.objectid = bytenr;
1501 	key.type = BTRFS_EXTENT_ITEM_KEY;
1502 	key.offset = num_bytes;
1503 
1504 	want = extent_ref_type(parent, owner);
1505 	if (insert) {
1506 		extra_size = btrfs_extent_inline_ref_size(want);
1507 		path->keep_locks = 1;
1508 	} else
1509 		extra_size = -1;
1510 
1511 	/*
1512 	 * Owner is our parent level, so we can just add one to get the level
1513 	 * for the block we are interested in.
1514 	 */
1515 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1516 		key.type = BTRFS_METADATA_ITEM_KEY;
1517 		key.offset = owner;
1518 	}
1519 
1520 again:
1521 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1522 	if (ret < 0) {
1523 		err = ret;
1524 		goto out;
1525 	}
1526 
1527 	/*
1528 	 * We may be a newly converted file system which still has the old fat
1529 	 * extent entries for metadata, so try and see if we have one of those.
1530 	 */
1531 	if (ret > 0 && skinny_metadata) {
1532 		skinny_metadata = false;
1533 		if (path->slots[0]) {
1534 			path->slots[0]--;
1535 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1536 					      path->slots[0]);
1537 			if (key.objectid == bytenr &&
1538 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1539 			    key.offset == num_bytes)
1540 				ret = 0;
1541 		}
1542 		if (ret) {
1543 			key.type = BTRFS_EXTENT_ITEM_KEY;
1544 			key.offset = num_bytes;
1545 			btrfs_release_path(path);
1546 			goto again;
1547 		}
1548 	}
1549 
1550 	if (ret && !insert) {
1551 		err = -ENOENT;
1552 		goto out;
1553 	} else if (WARN_ON(ret)) {
1554 		err = -EIO;
1555 		goto out;
1556 	}
1557 
1558 	leaf = path->nodes[0];
1559 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1560 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1561 	if (item_size < sizeof(*ei)) {
1562 		if (!insert) {
1563 			err = -ENOENT;
1564 			goto out;
1565 		}
1566 		ret = convert_extent_item_v0(trans, root, path, owner,
1567 					     extra_size);
1568 		if (ret < 0) {
1569 			err = ret;
1570 			goto out;
1571 		}
1572 		leaf = path->nodes[0];
1573 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1574 	}
1575 #endif
1576 	BUG_ON(item_size < sizeof(*ei));
1577 
1578 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1579 	flags = btrfs_extent_flags(leaf, ei);
1580 
1581 	ptr = (unsigned long)(ei + 1);
1582 	end = (unsigned long)ei + item_size;
1583 
1584 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1585 		ptr += sizeof(struct btrfs_tree_block_info);
1586 		BUG_ON(ptr > end);
1587 	}
1588 
1589 	err = -ENOENT;
1590 	while (1) {
1591 		if (ptr >= end) {
1592 			WARN_ON(ptr > end);
1593 			break;
1594 		}
1595 		iref = (struct btrfs_extent_inline_ref *)ptr;
1596 		type = btrfs_extent_inline_ref_type(leaf, iref);
1597 		if (want < type)
1598 			break;
1599 		if (want > type) {
1600 			ptr += btrfs_extent_inline_ref_size(type);
1601 			continue;
1602 		}
1603 
1604 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1605 			struct btrfs_extent_data_ref *dref;
1606 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1607 			if (match_extent_data_ref(leaf, dref, root_objectid,
1608 						  owner, offset)) {
1609 				err = 0;
1610 				break;
1611 			}
1612 			if (hash_extent_data_ref_item(leaf, dref) <
1613 			    hash_extent_data_ref(root_objectid, owner, offset))
1614 				break;
1615 		} else {
1616 			u64 ref_offset;
1617 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1618 			if (parent > 0) {
1619 				if (parent == ref_offset) {
1620 					err = 0;
1621 					break;
1622 				}
1623 				if (ref_offset < parent)
1624 					break;
1625 			} else {
1626 				if (root_objectid == ref_offset) {
1627 					err = 0;
1628 					break;
1629 				}
1630 				if (ref_offset < root_objectid)
1631 					break;
1632 			}
1633 		}
1634 		ptr += btrfs_extent_inline_ref_size(type);
1635 	}
1636 	if (err == -ENOENT && insert) {
1637 		if (item_size + extra_size >=
1638 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1639 			err = -EAGAIN;
1640 			goto out;
1641 		}
1642 		/*
1643 		 * To add new inline back ref, we have to make sure
1644 		 * there is no corresponding back ref item.
1645 		 * For simplicity, we just do not add new inline back
1646 		 * ref if there is any kind of item for this block
1647 		 */
1648 		if (find_next_key(path, 0, &key) == 0 &&
1649 		    key.objectid == bytenr &&
1650 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1651 			err = -EAGAIN;
1652 			goto out;
1653 		}
1654 	}
1655 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1656 out:
1657 	if (insert) {
1658 		path->keep_locks = 0;
1659 		btrfs_unlock_up_safe(path, 1);
1660 	}
1661 	return err;
1662 }
1663 
1664 /*
1665  * helper to add new inline back ref
1666  */
1667 static noinline_for_stack
1668 void setup_inline_extent_backref(struct btrfs_root *root,
1669 				 struct btrfs_path *path,
1670 				 struct btrfs_extent_inline_ref *iref,
1671 				 u64 parent, u64 root_objectid,
1672 				 u64 owner, u64 offset, int refs_to_add,
1673 				 struct btrfs_delayed_extent_op *extent_op)
1674 {
1675 	struct extent_buffer *leaf;
1676 	struct btrfs_extent_item *ei;
1677 	unsigned long ptr;
1678 	unsigned long end;
1679 	unsigned long item_offset;
1680 	u64 refs;
1681 	int size;
1682 	int type;
1683 
1684 	leaf = path->nodes[0];
1685 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1686 	item_offset = (unsigned long)iref - (unsigned long)ei;
1687 
1688 	type = extent_ref_type(parent, owner);
1689 	size = btrfs_extent_inline_ref_size(type);
1690 
1691 	btrfs_extend_item(root, path, size);
1692 
1693 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 	refs = btrfs_extent_refs(leaf, ei);
1695 	refs += refs_to_add;
1696 	btrfs_set_extent_refs(leaf, ei, refs);
1697 	if (extent_op)
1698 		__run_delayed_extent_op(extent_op, leaf, ei);
1699 
1700 	ptr = (unsigned long)ei + item_offset;
1701 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1702 	if (ptr < end - size)
1703 		memmove_extent_buffer(leaf, ptr + size, ptr,
1704 				      end - size - ptr);
1705 
1706 	iref = (struct btrfs_extent_inline_ref *)ptr;
1707 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1708 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1709 		struct btrfs_extent_data_ref *dref;
1710 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1711 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1712 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1713 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1714 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1715 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1716 		struct btrfs_shared_data_ref *sref;
1717 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1718 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1719 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 	} else {
1723 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1724 	}
1725 	btrfs_mark_buffer_dirty(leaf);
1726 }
1727 
1728 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1729 				 struct btrfs_root *root,
1730 				 struct btrfs_path *path,
1731 				 struct btrfs_extent_inline_ref **ref_ret,
1732 				 u64 bytenr, u64 num_bytes, u64 parent,
1733 				 u64 root_objectid, u64 owner, u64 offset)
1734 {
1735 	int ret;
1736 
1737 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1738 					   bytenr, num_bytes, parent,
1739 					   root_objectid, owner, offset, 0);
1740 	if (ret != -ENOENT)
1741 		return ret;
1742 
1743 	btrfs_release_path(path);
1744 	*ref_ret = NULL;
1745 
1746 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1747 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1748 					    root_objectid);
1749 	} else {
1750 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1751 					     root_objectid, owner, offset);
1752 	}
1753 	return ret;
1754 }
1755 
1756 /*
1757  * helper to update/remove inline back ref
1758  */
1759 static noinline_for_stack
1760 void update_inline_extent_backref(struct btrfs_root *root,
1761 				  struct btrfs_path *path,
1762 				  struct btrfs_extent_inline_ref *iref,
1763 				  int refs_to_mod,
1764 				  struct btrfs_delayed_extent_op *extent_op)
1765 {
1766 	struct extent_buffer *leaf;
1767 	struct btrfs_extent_item *ei;
1768 	struct btrfs_extent_data_ref *dref = NULL;
1769 	struct btrfs_shared_data_ref *sref = NULL;
1770 	unsigned long ptr;
1771 	unsigned long end;
1772 	u32 item_size;
1773 	int size;
1774 	int type;
1775 	u64 refs;
1776 
1777 	leaf = path->nodes[0];
1778 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1779 	refs = btrfs_extent_refs(leaf, ei);
1780 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1781 	refs += refs_to_mod;
1782 	btrfs_set_extent_refs(leaf, ei, refs);
1783 	if (extent_op)
1784 		__run_delayed_extent_op(extent_op, leaf, ei);
1785 
1786 	type = btrfs_extent_inline_ref_type(leaf, iref);
1787 
1788 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1789 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1790 		refs = btrfs_extent_data_ref_count(leaf, dref);
1791 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1792 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1793 		refs = btrfs_shared_data_ref_count(leaf, sref);
1794 	} else {
1795 		refs = 1;
1796 		BUG_ON(refs_to_mod != -1);
1797 	}
1798 
1799 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1800 	refs += refs_to_mod;
1801 
1802 	if (refs > 0) {
1803 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1804 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1805 		else
1806 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1807 	} else {
1808 		size =  btrfs_extent_inline_ref_size(type);
1809 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1810 		ptr = (unsigned long)iref;
1811 		end = (unsigned long)ei + item_size;
1812 		if (ptr + size < end)
1813 			memmove_extent_buffer(leaf, ptr, ptr + size,
1814 					      end - ptr - size);
1815 		item_size -= size;
1816 		btrfs_truncate_item(root, path, item_size, 1);
1817 	}
1818 	btrfs_mark_buffer_dirty(leaf);
1819 }
1820 
1821 static noinline_for_stack
1822 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1823 				 struct btrfs_root *root,
1824 				 struct btrfs_path *path,
1825 				 u64 bytenr, u64 num_bytes, u64 parent,
1826 				 u64 root_objectid, u64 owner,
1827 				 u64 offset, int refs_to_add,
1828 				 struct btrfs_delayed_extent_op *extent_op)
1829 {
1830 	struct btrfs_extent_inline_ref *iref;
1831 	int ret;
1832 
1833 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1834 					   bytenr, num_bytes, parent,
1835 					   root_objectid, owner, offset, 1);
1836 	if (ret == 0) {
1837 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1838 		update_inline_extent_backref(root, path, iref,
1839 					     refs_to_add, extent_op);
1840 	} else if (ret == -ENOENT) {
1841 		setup_inline_extent_backref(root, path, iref, parent,
1842 					    root_objectid, owner, offset,
1843 					    refs_to_add, extent_op);
1844 		ret = 0;
1845 	}
1846 	return ret;
1847 }
1848 
1849 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1850 				 struct btrfs_root *root,
1851 				 struct btrfs_path *path,
1852 				 u64 bytenr, u64 parent, u64 root_objectid,
1853 				 u64 owner, u64 offset, int refs_to_add)
1854 {
1855 	int ret;
1856 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1857 		BUG_ON(refs_to_add != 1);
1858 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1859 					    parent, root_objectid);
1860 	} else {
1861 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1862 					     parent, root_objectid,
1863 					     owner, offset, refs_to_add);
1864 	}
1865 	return ret;
1866 }
1867 
1868 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1869 				 struct btrfs_root *root,
1870 				 struct btrfs_path *path,
1871 				 struct btrfs_extent_inline_ref *iref,
1872 				 int refs_to_drop, int is_data)
1873 {
1874 	int ret = 0;
1875 
1876 	BUG_ON(!is_data && refs_to_drop != 1);
1877 	if (iref) {
1878 		update_inline_extent_backref(root, path, iref,
1879 					     -refs_to_drop, NULL);
1880 	} else if (is_data) {
1881 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1882 	} else {
1883 		ret = btrfs_del_item(trans, root, path);
1884 	}
1885 	return ret;
1886 }
1887 
1888 static int btrfs_issue_discard(struct block_device *bdev,
1889 				u64 start, u64 len)
1890 {
1891 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1892 }
1893 
1894 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1895 				u64 num_bytes, u64 *actual_bytes)
1896 {
1897 	int ret;
1898 	u64 discarded_bytes = 0;
1899 	struct btrfs_bio *bbio = NULL;
1900 
1901 
1902 	/* Tell the block device(s) that the sectors can be discarded */
1903 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1904 			      bytenr, &num_bytes, &bbio, 0);
1905 	/* Error condition is -ENOMEM */
1906 	if (!ret) {
1907 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1908 		int i;
1909 
1910 
1911 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1912 			if (!stripe->dev->can_discard)
1913 				continue;
1914 
1915 			ret = btrfs_issue_discard(stripe->dev->bdev,
1916 						  stripe->physical,
1917 						  stripe->length);
1918 			if (!ret)
1919 				discarded_bytes += stripe->length;
1920 			else if (ret != -EOPNOTSUPP)
1921 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1922 
1923 			/*
1924 			 * Just in case we get back EOPNOTSUPP for some reason,
1925 			 * just ignore the return value so we don't screw up
1926 			 * people calling discard_extent.
1927 			 */
1928 			ret = 0;
1929 		}
1930 		kfree(bbio);
1931 	}
1932 
1933 	if (actual_bytes)
1934 		*actual_bytes = discarded_bytes;
1935 
1936 
1937 	if (ret == -EOPNOTSUPP)
1938 		ret = 0;
1939 	return ret;
1940 }
1941 
1942 /* Can return -ENOMEM */
1943 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1944 			 struct btrfs_root *root,
1945 			 u64 bytenr, u64 num_bytes, u64 parent,
1946 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  struct btrfs_delayed_extent_op *extent_op)
1974 {
1975 	struct btrfs_path *path;
1976 	struct extent_buffer *leaf;
1977 	struct btrfs_extent_item *item;
1978 	u64 refs;
1979 	int ret;
1980 
1981 	path = btrfs_alloc_path();
1982 	if (!path)
1983 		return -ENOMEM;
1984 
1985 	path->reada = 1;
1986 	path->leave_spinning = 1;
1987 	/* this will setup the path even if it fails to insert the back ref */
1988 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1989 					   path, bytenr, num_bytes, parent,
1990 					   root_objectid, owner, offset,
1991 					   refs_to_add, extent_op);
1992 	if (ret != -EAGAIN)
1993 		goto out;
1994 
1995 	leaf = path->nodes[0];
1996 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1997 	refs = btrfs_extent_refs(leaf, item);
1998 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1999 	if (extent_op)
2000 		__run_delayed_extent_op(extent_op, leaf, item);
2001 
2002 	btrfs_mark_buffer_dirty(leaf);
2003 	btrfs_release_path(path);
2004 
2005 	path->reada = 1;
2006 	path->leave_spinning = 1;
2007 
2008 	/* now insert the actual backref */
2009 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2010 				    path, bytenr, parent, root_objectid,
2011 				    owner, offset, refs_to_add);
2012 	if (ret)
2013 		btrfs_abort_transaction(trans, root, ret);
2014 out:
2015 	btrfs_free_path(path);
2016 	return ret;
2017 }
2018 
2019 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2020 				struct btrfs_root *root,
2021 				struct btrfs_delayed_ref_node *node,
2022 				struct btrfs_delayed_extent_op *extent_op,
2023 				int insert_reserved)
2024 {
2025 	int ret = 0;
2026 	struct btrfs_delayed_data_ref *ref;
2027 	struct btrfs_key ins;
2028 	u64 parent = 0;
2029 	u64 ref_root = 0;
2030 	u64 flags = 0;
2031 
2032 	ins.objectid = node->bytenr;
2033 	ins.offset = node->num_bytes;
2034 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2035 
2036 	ref = btrfs_delayed_node_to_data_ref(node);
2037 	trace_run_delayed_data_ref(node, ref, node->action);
2038 
2039 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2040 		parent = ref->parent;
2041 	else
2042 		ref_root = ref->root;
2043 
2044 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2045 		if (extent_op)
2046 			flags |= extent_op->flags_to_set;
2047 		ret = alloc_reserved_file_extent(trans, root,
2048 						 parent, ref_root, flags,
2049 						 ref->objectid, ref->offset,
2050 						 &ins, node->ref_mod);
2051 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2052 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2053 					     node->num_bytes, parent,
2054 					     ref_root, ref->objectid,
2055 					     ref->offset, node->ref_mod,
2056 					     extent_op);
2057 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2058 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2059 					  node->num_bytes, parent,
2060 					  ref_root, ref->objectid,
2061 					  ref->offset, node->ref_mod,
2062 					  extent_op);
2063 	} else {
2064 		BUG();
2065 	}
2066 	return ret;
2067 }
2068 
2069 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2070 				    struct extent_buffer *leaf,
2071 				    struct btrfs_extent_item *ei)
2072 {
2073 	u64 flags = btrfs_extent_flags(leaf, ei);
2074 	if (extent_op->update_flags) {
2075 		flags |= extent_op->flags_to_set;
2076 		btrfs_set_extent_flags(leaf, ei, flags);
2077 	}
2078 
2079 	if (extent_op->update_key) {
2080 		struct btrfs_tree_block_info *bi;
2081 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2082 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2083 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2084 	}
2085 }
2086 
2087 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2088 				 struct btrfs_root *root,
2089 				 struct btrfs_delayed_ref_node *node,
2090 				 struct btrfs_delayed_extent_op *extent_op)
2091 {
2092 	struct btrfs_key key;
2093 	struct btrfs_path *path;
2094 	struct btrfs_extent_item *ei;
2095 	struct extent_buffer *leaf;
2096 	u32 item_size;
2097 	int ret;
2098 	int err = 0;
2099 	int metadata = !extent_op->is_data;
2100 
2101 	if (trans->aborted)
2102 		return 0;
2103 
2104 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2105 		metadata = 0;
2106 
2107 	path = btrfs_alloc_path();
2108 	if (!path)
2109 		return -ENOMEM;
2110 
2111 	key.objectid = node->bytenr;
2112 
2113 	if (metadata) {
2114 		key.type = BTRFS_METADATA_ITEM_KEY;
2115 		key.offset = extent_op->level;
2116 	} else {
2117 		key.type = BTRFS_EXTENT_ITEM_KEY;
2118 		key.offset = node->num_bytes;
2119 	}
2120 
2121 again:
2122 	path->reada = 1;
2123 	path->leave_spinning = 1;
2124 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2125 				path, 0, 1);
2126 	if (ret < 0) {
2127 		err = ret;
2128 		goto out;
2129 	}
2130 	if (ret > 0) {
2131 		if (metadata) {
2132 			if (path->slots[0] > 0) {
2133 				path->slots[0]--;
2134 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2135 						      path->slots[0]);
2136 				if (key.objectid == node->bytenr &&
2137 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2138 				    key.offset == node->num_bytes)
2139 					ret = 0;
2140 			}
2141 			if (ret > 0) {
2142 				btrfs_release_path(path);
2143 				metadata = 0;
2144 
2145 				key.objectid = node->bytenr;
2146 				key.offset = node->num_bytes;
2147 				key.type = BTRFS_EXTENT_ITEM_KEY;
2148 				goto again;
2149 			}
2150 		} else {
2151 			err = -EIO;
2152 			goto out;
2153 		}
2154 	}
2155 
2156 	leaf = path->nodes[0];
2157 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2158 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2159 	if (item_size < sizeof(*ei)) {
2160 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2161 					     path, (u64)-1, 0);
2162 		if (ret < 0) {
2163 			err = ret;
2164 			goto out;
2165 		}
2166 		leaf = path->nodes[0];
2167 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2168 	}
2169 #endif
2170 	BUG_ON(item_size < sizeof(*ei));
2171 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2172 	__run_delayed_extent_op(extent_op, leaf, ei);
2173 
2174 	btrfs_mark_buffer_dirty(leaf);
2175 out:
2176 	btrfs_free_path(path);
2177 	return err;
2178 }
2179 
2180 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2181 				struct btrfs_root *root,
2182 				struct btrfs_delayed_ref_node *node,
2183 				struct btrfs_delayed_extent_op *extent_op,
2184 				int insert_reserved)
2185 {
2186 	int ret = 0;
2187 	struct btrfs_delayed_tree_ref *ref;
2188 	struct btrfs_key ins;
2189 	u64 parent = 0;
2190 	u64 ref_root = 0;
2191 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2192 						 SKINNY_METADATA);
2193 
2194 	ref = btrfs_delayed_node_to_tree_ref(node);
2195 	trace_run_delayed_tree_ref(node, ref, node->action);
2196 
2197 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2198 		parent = ref->parent;
2199 	else
2200 		ref_root = ref->root;
2201 
2202 	ins.objectid = node->bytenr;
2203 	if (skinny_metadata) {
2204 		ins.offset = ref->level;
2205 		ins.type = BTRFS_METADATA_ITEM_KEY;
2206 	} else {
2207 		ins.offset = node->num_bytes;
2208 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2209 	}
2210 
2211 	BUG_ON(node->ref_mod != 1);
2212 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2213 		BUG_ON(!extent_op || !extent_op->update_flags);
2214 		ret = alloc_reserved_tree_block(trans, root,
2215 						parent, ref_root,
2216 						extent_op->flags_to_set,
2217 						&extent_op->key,
2218 						ref->level, &ins);
2219 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2220 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2221 					     node->num_bytes, parent, ref_root,
2222 					     ref->level, 0, 1, extent_op);
2223 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2224 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2225 					  node->num_bytes, parent, ref_root,
2226 					  ref->level, 0, 1, extent_op);
2227 	} else {
2228 		BUG();
2229 	}
2230 	return ret;
2231 }
2232 
2233 /* helper function to actually process a single delayed ref entry */
2234 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2235 			       struct btrfs_root *root,
2236 			       struct btrfs_delayed_ref_node *node,
2237 			       struct btrfs_delayed_extent_op *extent_op,
2238 			       int insert_reserved)
2239 {
2240 	int ret = 0;
2241 
2242 	if (trans->aborted) {
2243 		if (insert_reserved)
2244 			btrfs_pin_extent(root, node->bytenr,
2245 					 node->num_bytes, 1);
2246 		return 0;
2247 	}
2248 
2249 	if (btrfs_delayed_ref_is_head(node)) {
2250 		struct btrfs_delayed_ref_head *head;
2251 		/*
2252 		 * we've hit the end of the chain and we were supposed
2253 		 * to insert this extent into the tree.  But, it got
2254 		 * deleted before we ever needed to insert it, so all
2255 		 * we have to do is clean up the accounting
2256 		 */
2257 		BUG_ON(extent_op);
2258 		head = btrfs_delayed_node_to_head(node);
2259 		trace_run_delayed_ref_head(node, head, node->action);
2260 
2261 		if (insert_reserved) {
2262 			btrfs_pin_extent(root, node->bytenr,
2263 					 node->num_bytes, 1);
2264 			if (head->is_data) {
2265 				ret = btrfs_del_csums(trans, root,
2266 						      node->bytenr,
2267 						      node->num_bytes);
2268 			}
2269 		}
2270 		return ret;
2271 	}
2272 
2273 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2274 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2276 					   insert_reserved);
2277 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2278 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2279 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2280 					   insert_reserved);
2281 	else
2282 		BUG();
2283 	return ret;
2284 }
2285 
2286 static noinline struct btrfs_delayed_ref_node *
2287 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2288 {
2289 	struct rb_node *node;
2290 	struct btrfs_delayed_ref_node *ref;
2291 	int action = BTRFS_ADD_DELAYED_REF;
2292 again:
2293 	/*
2294 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2295 	 * this prevents ref count from going down to zero when
2296 	 * there still are pending delayed ref.
2297 	 */
2298 	node = rb_prev(&head->node.rb_node);
2299 	while (1) {
2300 		if (!node)
2301 			break;
2302 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 				rb_node);
2304 		if (ref->bytenr != head->node.bytenr)
2305 			break;
2306 		if (ref->action == action)
2307 			return ref;
2308 		node = rb_prev(node);
2309 	}
2310 	if (action == BTRFS_ADD_DELAYED_REF) {
2311 		action = BTRFS_DROP_DELAYED_REF;
2312 		goto again;
2313 	}
2314 	return NULL;
2315 }
2316 
2317 /*
2318  * Returns 0 on success or if called with an already aborted transaction.
2319  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2320  */
2321 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2322 				       struct btrfs_root *root,
2323 				       struct list_head *cluster)
2324 {
2325 	struct btrfs_delayed_ref_root *delayed_refs;
2326 	struct btrfs_delayed_ref_node *ref;
2327 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2328 	struct btrfs_delayed_extent_op *extent_op;
2329 	struct btrfs_fs_info *fs_info = root->fs_info;
2330 	int ret;
2331 	int count = 0;
2332 	int must_insert_reserved = 0;
2333 
2334 	delayed_refs = &trans->transaction->delayed_refs;
2335 	while (1) {
2336 		if (!locked_ref) {
2337 			/* pick a new head ref from the cluster list */
2338 			if (list_empty(cluster))
2339 				break;
2340 
2341 			locked_ref = list_entry(cluster->next,
2342 				     struct btrfs_delayed_ref_head, cluster);
2343 
2344 			/* grab the lock that says we are going to process
2345 			 * all the refs for this head */
2346 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 
2348 			/*
2349 			 * we may have dropped the spin lock to get the head
2350 			 * mutex lock, and that might have given someone else
2351 			 * time to free the head.  If that's true, it has been
2352 			 * removed from our list and we can move on.
2353 			 */
2354 			if (ret == -EAGAIN) {
2355 				locked_ref = NULL;
2356 				count++;
2357 				continue;
2358 			}
2359 		}
2360 
2361 		/*
2362 		 * We need to try and merge add/drops of the same ref since we
2363 		 * can run into issues with relocate dropping the implicit ref
2364 		 * and then it being added back again before the drop can
2365 		 * finish.  If we merged anything we need to re-loop so we can
2366 		 * get a good ref.
2367 		 */
2368 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2369 					 locked_ref);
2370 
2371 		/*
2372 		 * locked_ref is the head node, so we have to go one
2373 		 * node back for any delayed ref updates
2374 		 */
2375 		ref = select_delayed_ref(locked_ref);
2376 
2377 		if (ref && ref->seq &&
2378 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2379 			/*
2380 			 * there are still refs with lower seq numbers in the
2381 			 * process of being added. Don't run this ref yet.
2382 			 */
2383 			list_del_init(&locked_ref->cluster);
2384 			btrfs_delayed_ref_unlock(locked_ref);
2385 			locked_ref = NULL;
2386 			delayed_refs->num_heads_ready++;
2387 			spin_unlock(&delayed_refs->lock);
2388 			cond_resched();
2389 			spin_lock(&delayed_refs->lock);
2390 			continue;
2391 		}
2392 
2393 		/*
2394 		 * record the must insert reserved flag before we
2395 		 * drop the spin lock.
2396 		 */
2397 		must_insert_reserved = locked_ref->must_insert_reserved;
2398 		locked_ref->must_insert_reserved = 0;
2399 
2400 		extent_op = locked_ref->extent_op;
2401 		locked_ref->extent_op = NULL;
2402 
2403 		if (!ref) {
2404 			/* All delayed refs have been processed, Go ahead
2405 			 * and send the head node to run_one_delayed_ref,
2406 			 * so that any accounting fixes can happen
2407 			 */
2408 			ref = &locked_ref->node;
2409 
2410 			if (extent_op && must_insert_reserved) {
2411 				btrfs_free_delayed_extent_op(extent_op);
2412 				extent_op = NULL;
2413 			}
2414 
2415 			if (extent_op) {
2416 				spin_unlock(&delayed_refs->lock);
2417 
2418 				ret = run_delayed_extent_op(trans, root,
2419 							    ref, extent_op);
2420 				btrfs_free_delayed_extent_op(extent_op);
2421 
2422 				if (ret) {
2423 					/*
2424 					 * Need to reset must_insert_reserved if
2425 					 * there was an error so the abort stuff
2426 					 * can cleanup the reserved space
2427 					 * properly.
2428 					 */
2429 					if (must_insert_reserved)
2430 						locked_ref->must_insert_reserved = 1;
2431 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2432 					spin_lock(&delayed_refs->lock);
2433 					btrfs_delayed_ref_unlock(locked_ref);
2434 					return ret;
2435 				}
2436 
2437 				goto next;
2438 			}
2439 		}
2440 
2441 		ref->in_tree = 0;
2442 		rb_erase(&ref->rb_node, &delayed_refs->root);
2443 		delayed_refs->num_entries--;
2444 		if (!btrfs_delayed_ref_is_head(ref)) {
2445 			/*
2446 			 * when we play the delayed ref, also correct the
2447 			 * ref_mod on head
2448 			 */
2449 			switch (ref->action) {
2450 			case BTRFS_ADD_DELAYED_REF:
2451 			case BTRFS_ADD_DELAYED_EXTENT:
2452 				locked_ref->node.ref_mod -= ref->ref_mod;
2453 				break;
2454 			case BTRFS_DROP_DELAYED_REF:
2455 				locked_ref->node.ref_mod += ref->ref_mod;
2456 				break;
2457 			default:
2458 				WARN_ON(1);
2459 			}
2460 		} else {
2461 			list_del_init(&locked_ref->cluster);
2462 		}
2463 		spin_unlock(&delayed_refs->lock);
2464 
2465 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2466 					  must_insert_reserved);
2467 
2468 		btrfs_free_delayed_extent_op(extent_op);
2469 		if (ret) {
2470 			btrfs_delayed_ref_unlock(locked_ref);
2471 			btrfs_put_delayed_ref(ref);
2472 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2473 			spin_lock(&delayed_refs->lock);
2474 			return ret;
2475 		}
2476 
2477 		/*
2478 		 * If this node is a head, that means all the refs in this head
2479 		 * have been dealt with, and we will pick the next head to deal
2480 		 * with, so we must unlock the head and drop it from the cluster
2481 		 * list before we release it.
2482 		 */
2483 		if (btrfs_delayed_ref_is_head(ref)) {
2484 			btrfs_delayed_ref_unlock(locked_ref);
2485 			locked_ref = NULL;
2486 		}
2487 		btrfs_put_delayed_ref(ref);
2488 		count++;
2489 next:
2490 		cond_resched();
2491 		spin_lock(&delayed_refs->lock);
2492 	}
2493 	return count;
2494 }
2495 
2496 #ifdef SCRAMBLE_DELAYED_REFS
2497 /*
2498  * Normally delayed refs get processed in ascending bytenr order. This
2499  * correlates in most cases to the order added. To expose dependencies on this
2500  * order, we start to process the tree in the middle instead of the beginning
2501  */
2502 static u64 find_middle(struct rb_root *root)
2503 {
2504 	struct rb_node *n = root->rb_node;
2505 	struct btrfs_delayed_ref_node *entry;
2506 	int alt = 1;
2507 	u64 middle;
2508 	u64 first = 0, last = 0;
2509 
2510 	n = rb_first(root);
2511 	if (n) {
2512 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2513 		first = entry->bytenr;
2514 	}
2515 	n = rb_last(root);
2516 	if (n) {
2517 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2518 		last = entry->bytenr;
2519 	}
2520 	n = root->rb_node;
2521 
2522 	while (n) {
2523 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2524 		WARN_ON(!entry->in_tree);
2525 
2526 		middle = entry->bytenr;
2527 
2528 		if (alt)
2529 			n = n->rb_left;
2530 		else
2531 			n = n->rb_right;
2532 
2533 		alt = 1 - alt;
2534 	}
2535 	return middle;
2536 }
2537 #endif
2538 
2539 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2540 					 struct btrfs_fs_info *fs_info)
2541 {
2542 	struct qgroup_update *qgroup_update;
2543 	int ret = 0;
2544 
2545 	if (list_empty(&trans->qgroup_ref_list) !=
2546 	    !trans->delayed_ref_elem.seq) {
2547 		/* list without seq or seq without list */
2548 		btrfs_err(fs_info,
2549 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2550 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2551 			(u32)(trans->delayed_ref_elem.seq >> 32),
2552 			(u32)trans->delayed_ref_elem.seq);
2553 		BUG();
2554 	}
2555 
2556 	if (!trans->delayed_ref_elem.seq)
2557 		return 0;
2558 
2559 	while (!list_empty(&trans->qgroup_ref_list)) {
2560 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2561 						 struct qgroup_update, list);
2562 		list_del(&qgroup_update->list);
2563 		if (!ret)
2564 			ret = btrfs_qgroup_account_ref(
2565 					trans, fs_info, qgroup_update->node,
2566 					qgroup_update->extent_op);
2567 		kfree(qgroup_update);
2568 	}
2569 
2570 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2571 
2572 	return ret;
2573 }
2574 
2575 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2576 		      int count)
2577 {
2578 	int val = atomic_read(&delayed_refs->ref_seq);
2579 
2580 	if (val < seq || val >= seq + count)
2581 		return 1;
2582 	return 0;
2583 }
2584 
2585 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2586 {
2587 	u64 num_bytes;
2588 
2589 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2590 			     sizeof(struct btrfs_extent_inline_ref));
2591 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2592 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2593 
2594 	/*
2595 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2596 	 * closer to what we're really going to want to ouse.
2597 	 */
2598 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2599 }
2600 
2601 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2602 				       struct btrfs_root *root)
2603 {
2604 	struct btrfs_block_rsv *global_rsv;
2605 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2606 	u64 num_bytes;
2607 	int ret = 0;
2608 
2609 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2610 	num_heads = heads_to_leaves(root, num_heads);
2611 	if (num_heads > 1)
2612 		num_bytes += (num_heads - 1) * root->leafsize;
2613 	num_bytes <<= 1;
2614 	global_rsv = &root->fs_info->global_block_rsv;
2615 
2616 	/*
2617 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2618 	 * wiggle room since running delayed refs can create more delayed refs.
2619 	 */
2620 	if (global_rsv->space_info->full)
2621 		num_bytes <<= 1;
2622 
2623 	spin_lock(&global_rsv->lock);
2624 	if (global_rsv->reserved <= num_bytes)
2625 		ret = 1;
2626 	spin_unlock(&global_rsv->lock);
2627 	return ret;
2628 }
2629 
2630 /*
2631  * this starts processing the delayed reference count updates and
2632  * extent insertions we have queued up so far.  count can be
2633  * 0, which means to process everything in the tree at the start
2634  * of the run (but not newly added entries), or it can be some target
2635  * number you'd like to process.
2636  *
2637  * Returns 0 on success or if called with an aborted transaction
2638  * Returns <0 on error and aborts the transaction
2639  */
2640 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2641 			   struct btrfs_root *root, unsigned long count)
2642 {
2643 	struct rb_node *node;
2644 	struct btrfs_delayed_ref_root *delayed_refs;
2645 	struct btrfs_delayed_ref_node *ref;
2646 	struct list_head cluster;
2647 	int ret;
2648 	u64 delayed_start;
2649 	int run_all = count == (unsigned long)-1;
2650 	int run_most = 0;
2651 	int loops;
2652 
2653 	/* We'll clean this up in btrfs_cleanup_transaction */
2654 	if (trans->aborted)
2655 		return 0;
2656 
2657 	if (root == root->fs_info->extent_root)
2658 		root = root->fs_info->tree_root;
2659 
2660 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2661 
2662 	delayed_refs = &trans->transaction->delayed_refs;
2663 	INIT_LIST_HEAD(&cluster);
2664 	if (count == 0) {
2665 		count = delayed_refs->num_entries * 2;
2666 		run_most = 1;
2667 	}
2668 
2669 	if (!run_all && !run_most) {
2670 		int old;
2671 		int seq = atomic_read(&delayed_refs->ref_seq);
2672 
2673 progress:
2674 		old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2675 		if (old) {
2676 			DEFINE_WAIT(__wait);
2677 			if (delayed_refs->flushing ||
2678 			    !btrfs_should_throttle_delayed_refs(trans, root))
2679 				return 0;
2680 
2681 			prepare_to_wait(&delayed_refs->wait, &__wait,
2682 					TASK_UNINTERRUPTIBLE);
2683 
2684 			old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2685 			if (old) {
2686 				schedule();
2687 				finish_wait(&delayed_refs->wait, &__wait);
2688 
2689 				if (!refs_newer(delayed_refs, seq, 256))
2690 					goto progress;
2691 				else
2692 					return 0;
2693 			} else {
2694 				finish_wait(&delayed_refs->wait, &__wait);
2695 				goto again;
2696 			}
2697 		}
2698 
2699 	} else {
2700 		atomic_inc(&delayed_refs->procs_running_refs);
2701 	}
2702 
2703 again:
2704 	loops = 0;
2705 	spin_lock(&delayed_refs->lock);
2706 
2707 #ifdef SCRAMBLE_DELAYED_REFS
2708 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2709 #endif
2710 
2711 	while (1) {
2712 		if (!(run_all || run_most) &&
2713 		    !btrfs_should_throttle_delayed_refs(trans, root))
2714 			break;
2715 
2716 		/*
2717 		 * go find something we can process in the rbtree.  We start at
2718 		 * the beginning of the tree, and then build a cluster
2719 		 * of refs to process starting at the first one we are able to
2720 		 * lock
2721 		 */
2722 		delayed_start = delayed_refs->run_delayed_start;
2723 		ret = btrfs_find_ref_cluster(trans, &cluster,
2724 					     delayed_refs->run_delayed_start);
2725 		if (ret)
2726 			break;
2727 
2728 		ret = run_clustered_refs(trans, root, &cluster);
2729 		if (ret < 0) {
2730 			btrfs_release_ref_cluster(&cluster);
2731 			spin_unlock(&delayed_refs->lock);
2732 			btrfs_abort_transaction(trans, root, ret);
2733 			atomic_dec(&delayed_refs->procs_running_refs);
2734 			wake_up(&delayed_refs->wait);
2735 			return ret;
2736 		}
2737 
2738 		atomic_add(ret, &delayed_refs->ref_seq);
2739 
2740 		count -= min_t(unsigned long, ret, count);
2741 
2742 		if (count == 0)
2743 			break;
2744 
2745 		if (delayed_start >= delayed_refs->run_delayed_start) {
2746 			if (loops == 0) {
2747 				/*
2748 				 * btrfs_find_ref_cluster looped. let's do one
2749 				 * more cycle. if we don't run any delayed ref
2750 				 * during that cycle (because we can't because
2751 				 * all of them are blocked), bail out.
2752 				 */
2753 				loops = 1;
2754 			} else {
2755 				/*
2756 				 * no runnable refs left, stop trying
2757 				 */
2758 				BUG_ON(run_all);
2759 				break;
2760 			}
2761 		}
2762 		if (ret) {
2763 			/* refs were run, let's reset staleness detection */
2764 			loops = 0;
2765 		}
2766 	}
2767 
2768 	if (run_all) {
2769 		if (!list_empty(&trans->new_bgs)) {
2770 			spin_unlock(&delayed_refs->lock);
2771 			btrfs_create_pending_block_groups(trans, root);
2772 			spin_lock(&delayed_refs->lock);
2773 		}
2774 
2775 		node = rb_first(&delayed_refs->root);
2776 		if (!node)
2777 			goto out;
2778 		count = (unsigned long)-1;
2779 
2780 		while (node) {
2781 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2782 				       rb_node);
2783 			if (btrfs_delayed_ref_is_head(ref)) {
2784 				struct btrfs_delayed_ref_head *head;
2785 
2786 				head = btrfs_delayed_node_to_head(ref);
2787 				atomic_inc(&ref->refs);
2788 
2789 				spin_unlock(&delayed_refs->lock);
2790 				/*
2791 				 * Mutex was contended, block until it's
2792 				 * released and try again
2793 				 */
2794 				mutex_lock(&head->mutex);
2795 				mutex_unlock(&head->mutex);
2796 
2797 				btrfs_put_delayed_ref(ref);
2798 				cond_resched();
2799 				goto again;
2800 			}
2801 			node = rb_next(node);
2802 		}
2803 		spin_unlock(&delayed_refs->lock);
2804 		schedule_timeout(1);
2805 		goto again;
2806 	}
2807 out:
2808 	atomic_dec(&delayed_refs->procs_running_refs);
2809 	smp_mb();
2810 	if (waitqueue_active(&delayed_refs->wait))
2811 		wake_up(&delayed_refs->wait);
2812 
2813 	spin_unlock(&delayed_refs->lock);
2814 	assert_qgroups_uptodate(trans);
2815 	return 0;
2816 }
2817 
2818 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2819 				struct btrfs_root *root,
2820 				u64 bytenr, u64 num_bytes, u64 flags,
2821 				int level, int is_data)
2822 {
2823 	struct btrfs_delayed_extent_op *extent_op;
2824 	int ret;
2825 
2826 	extent_op = btrfs_alloc_delayed_extent_op();
2827 	if (!extent_op)
2828 		return -ENOMEM;
2829 
2830 	extent_op->flags_to_set = flags;
2831 	extent_op->update_flags = 1;
2832 	extent_op->update_key = 0;
2833 	extent_op->is_data = is_data ? 1 : 0;
2834 	extent_op->level = level;
2835 
2836 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2837 					  num_bytes, extent_op);
2838 	if (ret)
2839 		btrfs_free_delayed_extent_op(extent_op);
2840 	return ret;
2841 }
2842 
2843 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2844 				      struct btrfs_root *root,
2845 				      struct btrfs_path *path,
2846 				      u64 objectid, u64 offset, u64 bytenr)
2847 {
2848 	struct btrfs_delayed_ref_head *head;
2849 	struct btrfs_delayed_ref_node *ref;
2850 	struct btrfs_delayed_data_ref *data_ref;
2851 	struct btrfs_delayed_ref_root *delayed_refs;
2852 	struct rb_node *node;
2853 	int ret = 0;
2854 
2855 	ret = -ENOENT;
2856 	delayed_refs = &trans->transaction->delayed_refs;
2857 	spin_lock(&delayed_refs->lock);
2858 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2859 	if (!head)
2860 		goto out;
2861 
2862 	if (!mutex_trylock(&head->mutex)) {
2863 		atomic_inc(&head->node.refs);
2864 		spin_unlock(&delayed_refs->lock);
2865 
2866 		btrfs_release_path(path);
2867 
2868 		/*
2869 		 * Mutex was contended, block until it's released and let
2870 		 * caller try again
2871 		 */
2872 		mutex_lock(&head->mutex);
2873 		mutex_unlock(&head->mutex);
2874 		btrfs_put_delayed_ref(&head->node);
2875 		return -EAGAIN;
2876 	}
2877 
2878 	node = rb_prev(&head->node.rb_node);
2879 	if (!node)
2880 		goto out_unlock;
2881 
2882 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2883 
2884 	if (ref->bytenr != bytenr)
2885 		goto out_unlock;
2886 
2887 	ret = 1;
2888 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2889 		goto out_unlock;
2890 
2891 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2892 
2893 	node = rb_prev(node);
2894 	if (node) {
2895 		int seq = ref->seq;
2896 
2897 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2898 		if (ref->bytenr == bytenr && ref->seq == seq)
2899 			goto out_unlock;
2900 	}
2901 
2902 	if (data_ref->root != root->root_key.objectid ||
2903 	    data_ref->objectid != objectid || data_ref->offset != offset)
2904 		goto out_unlock;
2905 
2906 	ret = 0;
2907 out_unlock:
2908 	mutex_unlock(&head->mutex);
2909 out:
2910 	spin_unlock(&delayed_refs->lock);
2911 	return ret;
2912 }
2913 
2914 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2915 					struct btrfs_root *root,
2916 					struct btrfs_path *path,
2917 					u64 objectid, u64 offset, u64 bytenr)
2918 {
2919 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2920 	struct extent_buffer *leaf;
2921 	struct btrfs_extent_data_ref *ref;
2922 	struct btrfs_extent_inline_ref *iref;
2923 	struct btrfs_extent_item *ei;
2924 	struct btrfs_key key;
2925 	u32 item_size;
2926 	int ret;
2927 
2928 	key.objectid = bytenr;
2929 	key.offset = (u64)-1;
2930 	key.type = BTRFS_EXTENT_ITEM_KEY;
2931 
2932 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2933 	if (ret < 0)
2934 		goto out;
2935 	BUG_ON(ret == 0); /* Corruption */
2936 
2937 	ret = -ENOENT;
2938 	if (path->slots[0] == 0)
2939 		goto out;
2940 
2941 	path->slots[0]--;
2942 	leaf = path->nodes[0];
2943 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2944 
2945 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2946 		goto out;
2947 
2948 	ret = 1;
2949 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2951 	if (item_size < sizeof(*ei)) {
2952 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2953 		goto out;
2954 	}
2955 #endif
2956 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2957 
2958 	if (item_size != sizeof(*ei) +
2959 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2960 		goto out;
2961 
2962 	if (btrfs_extent_generation(leaf, ei) <=
2963 	    btrfs_root_last_snapshot(&root->root_item))
2964 		goto out;
2965 
2966 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2967 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2968 	    BTRFS_EXTENT_DATA_REF_KEY)
2969 		goto out;
2970 
2971 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2972 	if (btrfs_extent_refs(leaf, ei) !=
2973 	    btrfs_extent_data_ref_count(leaf, ref) ||
2974 	    btrfs_extent_data_ref_root(leaf, ref) !=
2975 	    root->root_key.objectid ||
2976 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2977 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2978 		goto out;
2979 
2980 	ret = 0;
2981 out:
2982 	return ret;
2983 }
2984 
2985 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2986 			  struct btrfs_root *root,
2987 			  u64 objectid, u64 offset, u64 bytenr)
2988 {
2989 	struct btrfs_path *path;
2990 	int ret;
2991 	int ret2;
2992 
2993 	path = btrfs_alloc_path();
2994 	if (!path)
2995 		return -ENOENT;
2996 
2997 	do {
2998 		ret = check_committed_ref(trans, root, path, objectid,
2999 					  offset, bytenr);
3000 		if (ret && ret != -ENOENT)
3001 			goto out;
3002 
3003 		ret2 = check_delayed_ref(trans, root, path, objectid,
3004 					 offset, bytenr);
3005 	} while (ret2 == -EAGAIN);
3006 
3007 	if (ret2 && ret2 != -ENOENT) {
3008 		ret = ret2;
3009 		goto out;
3010 	}
3011 
3012 	if (ret != -ENOENT || ret2 != -ENOENT)
3013 		ret = 0;
3014 out:
3015 	btrfs_free_path(path);
3016 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3017 		WARN_ON(ret > 0);
3018 	return ret;
3019 }
3020 
3021 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3022 			   struct btrfs_root *root,
3023 			   struct extent_buffer *buf,
3024 			   int full_backref, int inc, int for_cow)
3025 {
3026 	u64 bytenr;
3027 	u64 num_bytes;
3028 	u64 parent;
3029 	u64 ref_root;
3030 	u32 nritems;
3031 	struct btrfs_key key;
3032 	struct btrfs_file_extent_item *fi;
3033 	int i;
3034 	int level;
3035 	int ret = 0;
3036 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3037 			    u64, u64, u64, u64, u64, u64, int);
3038 
3039 	ref_root = btrfs_header_owner(buf);
3040 	nritems = btrfs_header_nritems(buf);
3041 	level = btrfs_header_level(buf);
3042 
3043 	if (!root->ref_cows && level == 0)
3044 		return 0;
3045 
3046 	if (inc)
3047 		process_func = btrfs_inc_extent_ref;
3048 	else
3049 		process_func = btrfs_free_extent;
3050 
3051 	if (full_backref)
3052 		parent = buf->start;
3053 	else
3054 		parent = 0;
3055 
3056 	for (i = 0; i < nritems; i++) {
3057 		if (level == 0) {
3058 			btrfs_item_key_to_cpu(buf, &key, i);
3059 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3060 				continue;
3061 			fi = btrfs_item_ptr(buf, i,
3062 					    struct btrfs_file_extent_item);
3063 			if (btrfs_file_extent_type(buf, fi) ==
3064 			    BTRFS_FILE_EXTENT_INLINE)
3065 				continue;
3066 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3067 			if (bytenr == 0)
3068 				continue;
3069 
3070 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3071 			key.offset -= btrfs_file_extent_offset(buf, fi);
3072 			ret = process_func(trans, root, bytenr, num_bytes,
3073 					   parent, ref_root, key.objectid,
3074 					   key.offset, for_cow);
3075 			if (ret)
3076 				goto fail;
3077 		} else {
3078 			bytenr = btrfs_node_blockptr(buf, i);
3079 			num_bytes = btrfs_level_size(root, level - 1);
3080 			ret = process_func(trans, root, bytenr, num_bytes,
3081 					   parent, ref_root, level - 1, 0,
3082 					   for_cow);
3083 			if (ret)
3084 				goto fail;
3085 		}
3086 	}
3087 	return 0;
3088 fail:
3089 	return ret;
3090 }
3091 
3092 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3093 		  struct extent_buffer *buf, int full_backref, int for_cow)
3094 {
3095 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3096 }
3097 
3098 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3099 		  struct extent_buffer *buf, int full_backref, int for_cow)
3100 {
3101 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3102 }
3103 
3104 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3105 				 struct btrfs_root *root,
3106 				 struct btrfs_path *path,
3107 				 struct btrfs_block_group_cache *cache)
3108 {
3109 	int ret;
3110 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3111 	unsigned long bi;
3112 	struct extent_buffer *leaf;
3113 
3114 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3115 	if (ret < 0)
3116 		goto fail;
3117 	BUG_ON(ret); /* Corruption */
3118 
3119 	leaf = path->nodes[0];
3120 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3121 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3122 	btrfs_mark_buffer_dirty(leaf);
3123 	btrfs_release_path(path);
3124 fail:
3125 	if (ret) {
3126 		btrfs_abort_transaction(trans, root, ret);
3127 		return ret;
3128 	}
3129 	return 0;
3130 
3131 }
3132 
3133 static struct btrfs_block_group_cache *
3134 next_block_group(struct btrfs_root *root,
3135 		 struct btrfs_block_group_cache *cache)
3136 {
3137 	struct rb_node *node;
3138 	spin_lock(&root->fs_info->block_group_cache_lock);
3139 	node = rb_next(&cache->cache_node);
3140 	btrfs_put_block_group(cache);
3141 	if (node) {
3142 		cache = rb_entry(node, struct btrfs_block_group_cache,
3143 				 cache_node);
3144 		btrfs_get_block_group(cache);
3145 	} else
3146 		cache = NULL;
3147 	spin_unlock(&root->fs_info->block_group_cache_lock);
3148 	return cache;
3149 }
3150 
3151 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3152 			    struct btrfs_trans_handle *trans,
3153 			    struct btrfs_path *path)
3154 {
3155 	struct btrfs_root *root = block_group->fs_info->tree_root;
3156 	struct inode *inode = NULL;
3157 	u64 alloc_hint = 0;
3158 	int dcs = BTRFS_DC_ERROR;
3159 	int num_pages = 0;
3160 	int retries = 0;
3161 	int ret = 0;
3162 
3163 	/*
3164 	 * If this block group is smaller than 100 megs don't bother caching the
3165 	 * block group.
3166 	 */
3167 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3168 		spin_lock(&block_group->lock);
3169 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3170 		spin_unlock(&block_group->lock);
3171 		return 0;
3172 	}
3173 
3174 again:
3175 	inode = lookup_free_space_inode(root, block_group, path);
3176 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3177 		ret = PTR_ERR(inode);
3178 		btrfs_release_path(path);
3179 		goto out;
3180 	}
3181 
3182 	if (IS_ERR(inode)) {
3183 		BUG_ON(retries);
3184 		retries++;
3185 
3186 		if (block_group->ro)
3187 			goto out_free;
3188 
3189 		ret = create_free_space_inode(root, trans, block_group, path);
3190 		if (ret)
3191 			goto out_free;
3192 		goto again;
3193 	}
3194 
3195 	/* We've already setup this transaction, go ahead and exit */
3196 	if (block_group->cache_generation == trans->transid &&
3197 	    i_size_read(inode)) {
3198 		dcs = BTRFS_DC_SETUP;
3199 		goto out_put;
3200 	}
3201 
3202 	/*
3203 	 * We want to set the generation to 0, that way if anything goes wrong
3204 	 * from here on out we know not to trust this cache when we load up next
3205 	 * time.
3206 	 */
3207 	BTRFS_I(inode)->generation = 0;
3208 	ret = btrfs_update_inode(trans, root, inode);
3209 	WARN_ON(ret);
3210 
3211 	if (i_size_read(inode) > 0) {
3212 		ret = btrfs_check_trunc_cache_free_space(root,
3213 					&root->fs_info->global_block_rsv);
3214 		if (ret)
3215 			goto out_put;
3216 
3217 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3218 		if (ret)
3219 			goto out_put;
3220 	}
3221 
3222 	spin_lock(&block_group->lock);
3223 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3224 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3225 		/*
3226 		 * don't bother trying to write stuff out _if_
3227 		 * a) we're not cached,
3228 		 * b) we're with nospace_cache mount option.
3229 		 */
3230 		dcs = BTRFS_DC_WRITTEN;
3231 		spin_unlock(&block_group->lock);
3232 		goto out_put;
3233 	}
3234 	spin_unlock(&block_group->lock);
3235 
3236 	/*
3237 	 * Try to preallocate enough space based on how big the block group is.
3238 	 * Keep in mind this has to include any pinned space which could end up
3239 	 * taking up quite a bit since it's not folded into the other space
3240 	 * cache.
3241 	 */
3242 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3243 	if (!num_pages)
3244 		num_pages = 1;
3245 
3246 	num_pages *= 16;
3247 	num_pages *= PAGE_CACHE_SIZE;
3248 
3249 	ret = btrfs_check_data_free_space(inode, num_pages);
3250 	if (ret)
3251 		goto out_put;
3252 
3253 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3254 					      num_pages, num_pages,
3255 					      &alloc_hint);
3256 	if (!ret)
3257 		dcs = BTRFS_DC_SETUP;
3258 	btrfs_free_reserved_data_space(inode, num_pages);
3259 
3260 out_put:
3261 	iput(inode);
3262 out_free:
3263 	btrfs_release_path(path);
3264 out:
3265 	spin_lock(&block_group->lock);
3266 	if (!ret && dcs == BTRFS_DC_SETUP)
3267 		block_group->cache_generation = trans->transid;
3268 	block_group->disk_cache_state = dcs;
3269 	spin_unlock(&block_group->lock);
3270 
3271 	return ret;
3272 }
3273 
3274 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3275 				   struct btrfs_root *root)
3276 {
3277 	struct btrfs_block_group_cache *cache;
3278 	int err = 0;
3279 	struct btrfs_path *path;
3280 	u64 last = 0;
3281 
3282 	path = btrfs_alloc_path();
3283 	if (!path)
3284 		return -ENOMEM;
3285 
3286 again:
3287 	while (1) {
3288 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3289 		while (cache) {
3290 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3291 				break;
3292 			cache = next_block_group(root, cache);
3293 		}
3294 		if (!cache) {
3295 			if (last == 0)
3296 				break;
3297 			last = 0;
3298 			continue;
3299 		}
3300 		err = cache_save_setup(cache, trans, path);
3301 		last = cache->key.objectid + cache->key.offset;
3302 		btrfs_put_block_group(cache);
3303 	}
3304 
3305 	while (1) {
3306 		if (last == 0) {
3307 			err = btrfs_run_delayed_refs(trans, root,
3308 						     (unsigned long)-1);
3309 			if (err) /* File system offline */
3310 				goto out;
3311 		}
3312 
3313 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3314 		while (cache) {
3315 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3316 				btrfs_put_block_group(cache);
3317 				goto again;
3318 			}
3319 
3320 			if (cache->dirty)
3321 				break;
3322 			cache = next_block_group(root, cache);
3323 		}
3324 		if (!cache) {
3325 			if (last == 0)
3326 				break;
3327 			last = 0;
3328 			continue;
3329 		}
3330 
3331 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3332 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3333 		cache->dirty = 0;
3334 		last = cache->key.objectid + cache->key.offset;
3335 
3336 		err = write_one_cache_group(trans, root, path, cache);
3337 		btrfs_put_block_group(cache);
3338 		if (err) /* File system offline */
3339 			goto out;
3340 	}
3341 
3342 	while (1) {
3343 		/*
3344 		 * I don't think this is needed since we're just marking our
3345 		 * preallocated extent as written, but just in case it can't
3346 		 * hurt.
3347 		 */
3348 		if (last == 0) {
3349 			err = btrfs_run_delayed_refs(trans, root,
3350 						     (unsigned long)-1);
3351 			if (err) /* File system offline */
3352 				goto out;
3353 		}
3354 
3355 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 		while (cache) {
3357 			/*
3358 			 * Really this shouldn't happen, but it could if we
3359 			 * couldn't write the entire preallocated extent and
3360 			 * splitting the extent resulted in a new block.
3361 			 */
3362 			if (cache->dirty) {
3363 				btrfs_put_block_group(cache);
3364 				goto again;
3365 			}
3366 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3367 				break;
3368 			cache = next_block_group(root, cache);
3369 		}
3370 		if (!cache) {
3371 			if (last == 0)
3372 				break;
3373 			last = 0;
3374 			continue;
3375 		}
3376 
3377 		err = btrfs_write_out_cache(root, trans, cache, path);
3378 
3379 		/*
3380 		 * If we didn't have an error then the cache state is still
3381 		 * NEED_WRITE, so we can set it to WRITTEN.
3382 		 */
3383 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3384 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3385 		last = cache->key.objectid + cache->key.offset;
3386 		btrfs_put_block_group(cache);
3387 	}
3388 out:
3389 
3390 	btrfs_free_path(path);
3391 	return err;
3392 }
3393 
3394 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3395 {
3396 	struct btrfs_block_group_cache *block_group;
3397 	int readonly = 0;
3398 
3399 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3400 	if (!block_group || block_group->ro)
3401 		readonly = 1;
3402 	if (block_group)
3403 		btrfs_put_block_group(block_group);
3404 	return readonly;
3405 }
3406 
3407 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3408 			     u64 total_bytes, u64 bytes_used,
3409 			     struct btrfs_space_info **space_info)
3410 {
3411 	struct btrfs_space_info *found;
3412 	int i;
3413 	int factor;
3414 	int ret;
3415 
3416 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3417 		     BTRFS_BLOCK_GROUP_RAID10))
3418 		factor = 2;
3419 	else
3420 		factor = 1;
3421 
3422 	found = __find_space_info(info, flags);
3423 	if (found) {
3424 		spin_lock(&found->lock);
3425 		found->total_bytes += total_bytes;
3426 		found->disk_total += total_bytes * factor;
3427 		found->bytes_used += bytes_used;
3428 		found->disk_used += bytes_used * factor;
3429 		found->full = 0;
3430 		spin_unlock(&found->lock);
3431 		*space_info = found;
3432 		return 0;
3433 	}
3434 	found = kzalloc(sizeof(*found), GFP_NOFS);
3435 	if (!found)
3436 		return -ENOMEM;
3437 
3438 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3439 	if (ret) {
3440 		kfree(found);
3441 		return ret;
3442 	}
3443 
3444 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3445 		INIT_LIST_HEAD(&found->block_groups[i]);
3446 	init_rwsem(&found->groups_sem);
3447 	spin_lock_init(&found->lock);
3448 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3449 	found->total_bytes = total_bytes;
3450 	found->disk_total = total_bytes * factor;
3451 	found->bytes_used = bytes_used;
3452 	found->disk_used = bytes_used * factor;
3453 	found->bytes_pinned = 0;
3454 	found->bytes_reserved = 0;
3455 	found->bytes_readonly = 0;
3456 	found->bytes_may_use = 0;
3457 	found->full = 0;
3458 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3459 	found->chunk_alloc = 0;
3460 	found->flush = 0;
3461 	init_waitqueue_head(&found->wait);
3462 	*space_info = found;
3463 	list_add_rcu(&found->list, &info->space_info);
3464 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3465 		info->data_sinfo = found;
3466 	return 0;
3467 }
3468 
3469 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3470 {
3471 	u64 extra_flags = chunk_to_extended(flags) &
3472 				BTRFS_EXTENDED_PROFILE_MASK;
3473 
3474 	write_seqlock(&fs_info->profiles_lock);
3475 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3476 		fs_info->avail_data_alloc_bits |= extra_flags;
3477 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3478 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3479 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3480 		fs_info->avail_system_alloc_bits |= extra_flags;
3481 	write_sequnlock(&fs_info->profiles_lock);
3482 }
3483 
3484 /*
3485  * returns target flags in extended format or 0 if restripe for this
3486  * chunk_type is not in progress
3487  *
3488  * should be called with either volume_mutex or balance_lock held
3489  */
3490 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3491 {
3492 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3493 	u64 target = 0;
3494 
3495 	if (!bctl)
3496 		return 0;
3497 
3498 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3499 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3500 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3501 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3502 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3503 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3504 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3505 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3506 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3507 	}
3508 
3509 	return target;
3510 }
3511 
3512 /*
3513  * @flags: available profiles in extended format (see ctree.h)
3514  *
3515  * Returns reduced profile in chunk format.  If profile changing is in
3516  * progress (either running or paused) picks the target profile (if it's
3517  * already available), otherwise falls back to plain reducing.
3518  */
3519 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3520 {
3521 	/*
3522 	 * we add in the count of missing devices because we want
3523 	 * to make sure that any RAID levels on a degraded FS
3524 	 * continue to be honored.
3525 	 */
3526 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3527 		root->fs_info->fs_devices->missing_devices;
3528 	u64 target;
3529 	u64 tmp;
3530 
3531 	/*
3532 	 * see if restripe for this chunk_type is in progress, if so
3533 	 * try to reduce to the target profile
3534 	 */
3535 	spin_lock(&root->fs_info->balance_lock);
3536 	target = get_restripe_target(root->fs_info, flags);
3537 	if (target) {
3538 		/* pick target profile only if it's already available */
3539 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3540 			spin_unlock(&root->fs_info->balance_lock);
3541 			return extended_to_chunk(target);
3542 		}
3543 	}
3544 	spin_unlock(&root->fs_info->balance_lock);
3545 
3546 	/* First, mask out the RAID levels which aren't possible */
3547 	if (num_devices == 1)
3548 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3549 			   BTRFS_BLOCK_GROUP_RAID5);
3550 	if (num_devices < 3)
3551 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3552 	if (num_devices < 4)
3553 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3554 
3555 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3556 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3557 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3558 	flags &= ~tmp;
3559 
3560 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3561 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3562 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3563 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3564 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3565 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3566 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3567 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3568 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3569 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3570 
3571 	return extended_to_chunk(flags | tmp);
3572 }
3573 
3574 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3575 {
3576 	unsigned seq;
3577 
3578 	do {
3579 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3580 
3581 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3582 			flags |= root->fs_info->avail_data_alloc_bits;
3583 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3584 			flags |= root->fs_info->avail_system_alloc_bits;
3585 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3586 			flags |= root->fs_info->avail_metadata_alloc_bits;
3587 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3588 
3589 	return btrfs_reduce_alloc_profile(root, flags);
3590 }
3591 
3592 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3593 {
3594 	u64 flags;
3595 	u64 ret;
3596 
3597 	if (data)
3598 		flags = BTRFS_BLOCK_GROUP_DATA;
3599 	else if (root == root->fs_info->chunk_root)
3600 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3601 	else
3602 		flags = BTRFS_BLOCK_GROUP_METADATA;
3603 
3604 	ret = get_alloc_profile(root, flags);
3605 	return ret;
3606 }
3607 
3608 /*
3609  * This will check the space that the inode allocates from to make sure we have
3610  * enough space for bytes.
3611  */
3612 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3613 {
3614 	struct btrfs_space_info *data_sinfo;
3615 	struct btrfs_root *root = BTRFS_I(inode)->root;
3616 	struct btrfs_fs_info *fs_info = root->fs_info;
3617 	u64 used;
3618 	int ret = 0, committed = 0, alloc_chunk = 1;
3619 
3620 	/* make sure bytes are sectorsize aligned */
3621 	bytes = ALIGN(bytes, root->sectorsize);
3622 
3623 	if (btrfs_is_free_space_inode(inode)) {
3624 		committed = 1;
3625 		ASSERT(current->journal_info);
3626 	}
3627 
3628 	data_sinfo = fs_info->data_sinfo;
3629 	if (!data_sinfo)
3630 		goto alloc;
3631 
3632 again:
3633 	/* make sure we have enough space to handle the data first */
3634 	spin_lock(&data_sinfo->lock);
3635 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3636 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3637 		data_sinfo->bytes_may_use;
3638 
3639 	if (used + bytes > data_sinfo->total_bytes) {
3640 		struct btrfs_trans_handle *trans;
3641 
3642 		/*
3643 		 * if we don't have enough free bytes in this space then we need
3644 		 * to alloc a new chunk.
3645 		 */
3646 		if (!data_sinfo->full && alloc_chunk) {
3647 			u64 alloc_target;
3648 
3649 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3650 			spin_unlock(&data_sinfo->lock);
3651 alloc:
3652 			alloc_target = btrfs_get_alloc_profile(root, 1);
3653 			/*
3654 			 * It is ugly that we don't call nolock join
3655 			 * transaction for the free space inode case here.
3656 			 * But it is safe because we only do the data space
3657 			 * reservation for the free space cache in the
3658 			 * transaction context, the common join transaction
3659 			 * just increase the counter of the current transaction
3660 			 * handler, doesn't try to acquire the trans_lock of
3661 			 * the fs.
3662 			 */
3663 			trans = btrfs_join_transaction(root);
3664 			if (IS_ERR(trans))
3665 				return PTR_ERR(trans);
3666 
3667 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3668 					     alloc_target,
3669 					     CHUNK_ALLOC_NO_FORCE);
3670 			btrfs_end_transaction(trans, root);
3671 			if (ret < 0) {
3672 				if (ret != -ENOSPC)
3673 					return ret;
3674 				else
3675 					goto commit_trans;
3676 			}
3677 
3678 			if (!data_sinfo)
3679 				data_sinfo = fs_info->data_sinfo;
3680 
3681 			goto again;
3682 		}
3683 
3684 		/*
3685 		 * If we don't have enough pinned space to deal with this
3686 		 * allocation don't bother committing the transaction.
3687 		 */
3688 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3689 					   bytes) < 0)
3690 			committed = 1;
3691 		spin_unlock(&data_sinfo->lock);
3692 
3693 		/* commit the current transaction and try again */
3694 commit_trans:
3695 		if (!committed &&
3696 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3697 			committed = 1;
3698 
3699 			trans = btrfs_join_transaction(root);
3700 			if (IS_ERR(trans))
3701 				return PTR_ERR(trans);
3702 			ret = btrfs_commit_transaction(trans, root);
3703 			if (ret)
3704 				return ret;
3705 			goto again;
3706 		}
3707 
3708 		trace_btrfs_space_reservation(root->fs_info,
3709 					      "space_info:enospc",
3710 					      data_sinfo->flags, bytes, 1);
3711 		return -ENOSPC;
3712 	}
3713 	data_sinfo->bytes_may_use += bytes;
3714 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3715 				      data_sinfo->flags, bytes, 1);
3716 	spin_unlock(&data_sinfo->lock);
3717 
3718 	return 0;
3719 }
3720 
3721 /*
3722  * Called if we need to clear a data reservation for this inode.
3723  */
3724 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3725 {
3726 	struct btrfs_root *root = BTRFS_I(inode)->root;
3727 	struct btrfs_space_info *data_sinfo;
3728 
3729 	/* make sure bytes are sectorsize aligned */
3730 	bytes = ALIGN(bytes, root->sectorsize);
3731 
3732 	data_sinfo = root->fs_info->data_sinfo;
3733 	spin_lock(&data_sinfo->lock);
3734 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3735 	data_sinfo->bytes_may_use -= bytes;
3736 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3737 				      data_sinfo->flags, bytes, 0);
3738 	spin_unlock(&data_sinfo->lock);
3739 }
3740 
3741 static void force_metadata_allocation(struct btrfs_fs_info *info)
3742 {
3743 	struct list_head *head = &info->space_info;
3744 	struct btrfs_space_info *found;
3745 
3746 	rcu_read_lock();
3747 	list_for_each_entry_rcu(found, head, list) {
3748 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 			found->force_alloc = CHUNK_ALLOC_FORCE;
3750 	}
3751 	rcu_read_unlock();
3752 }
3753 
3754 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3755 {
3756 	return (global->size << 1);
3757 }
3758 
3759 static int should_alloc_chunk(struct btrfs_root *root,
3760 			      struct btrfs_space_info *sinfo, int force)
3761 {
3762 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3763 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3764 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3765 	u64 thresh;
3766 
3767 	if (force == CHUNK_ALLOC_FORCE)
3768 		return 1;
3769 
3770 	/*
3771 	 * We need to take into account the global rsv because for all intents
3772 	 * and purposes it's used space.  Don't worry about locking the
3773 	 * global_rsv, it doesn't change except when the transaction commits.
3774 	 */
3775 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3776 		num_allocated += calc_global_rsv_need_space(global_rsv);
3777 
3778 	/*
3779 	 * in limited mode, we want to have some free space up to
3780 	 * about 1% of the FS size.
3781 	 */
3782 	if (force == CHUNK_ALLOC_LIMITED) {
3783 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3784 		thresh = max_t(u64, 64 * 1024 * 1024,
3785 			       div_factor_fine(thresh, 1));
3786 
3787 		if (num_bytes - num_allocated < thresh)
3788 			return 1;
3789 	}
3790 
3791 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3792 		return 0;
3793 	return 1;
3794 }
3795 
3796 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3797 {
3798 	u64 num_dev;
3799 
3800 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3801 		    BTRFS_BLOCK_GROUP_RAID0 |
3802 		    BTRFS_BLOCK_GROUP_RAID5 |
3803 		    BTRFS_BLOCK_GROUP_RAID6))
3804 		num_dev = root->fs_info->fs_devices->rw_devices;
3805 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3806 		num_dev = 2;
3807 	else
3808 		num_dev = 1;	/* DUP or single */
3809 
3810 	/* metadata for updaing devices and chunk tree */
3811 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3812 }
3813 
3814 static void check_system_chunk(struct btrfs_trans_handle *trans,
3815 			       struct btrfs_root *root, u64 type)
3816 {
3817 	struct btrfs_space_info *info;
3818 	u64 left;
3819 	u64 thresh;
3820 
3821 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3822 	spin_lock(&info->lock);
3823 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3824 		info->bytes_reserved - info->bytes_readonly;
3825 	spin_unlock(&info->lock);
3826 
3827 	thresh = get_system_chunk_thresh(root, type);
3828 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3829 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3830 			left, thresh, type);
3831 		dump_space_info(info, 0, 0);
3832 	}
3833 
3834 	if (left < thresh) {
3835 		u64 flags;
3836 
3837 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3838 		btrfs_alloc_chunk(trans, root, flags);
3839 	}
3840 }
3841 
3842 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3843 			  struct btrfs_root *extent_root, u64 flags, int force)
3844 {
3845 	struct btrfs_space_info *space_info;
3846 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3847 	int wait_for_alloc = 0;
3848 	int ret = 0;
3849 
3850 	/* Don't re-enter if we're already allocating a chunk */
3851 	if (trans->allocating_chunk)
3852 		return -ENOSPC;
3853 
3854 	space_info = __find_space_info(extent_root->fs_info, flags);
3855 	if (!space_info) {
3856 		ret = update_space_info(extent_root->fs_info, flags,
3857 					0, 0, &space_info);
3858 		BUG_ON(ret); /* -ENOMEM */
3859 	}
3860 	BUG_ON(!space_info); /* Logic error */
3861 
3862 again:
3863 	spin_lock(&space_info->lock);
3864 	if (force < space_info->force_alloc)
3865 		force = space_info->force_alloc;
3866 	if (space_info->full) {
3867 		if (should_alloc_chunk(extent_root, space_info, force))
3868 			ret = -ENOSPC;
3869 		else
3870 			ret = 0;
3871 		spin_unlock(&space_info->lock);
3872 		return ret;
3873 	}
3874 
3875 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3876 		spin_unlock(&space_info->lock);
3877 		return 0;
3878 	} else if (space_info->chunk_alloc) {
3879 		wait_for_alloc = 1;
3880 	} else {
3881 		space_info->chunk_alloc = 1;
3882 	}
3883 
3884 	spin_unlock(&space_info->lock);
3885 
3886 	mutex_lock(&fs_info->chunk_mutex);
3887 
3888 	/*
3889 	 * The chunk_mutex is held throughout the entirety of a chunk
3890 	 * allocation, so once we've acquired the chunk_mutex we know that the
3891 	 * other guy is done and we need to recheck and see if we should
3892 	 * allocate.
3893 	 */
3894 	if (wait_for_alloc) {
3895 		mutex_unlock(&fs_info->chunk_mutex);
3896 		wait_for_alloc = 0;
3897 		goto again;
3898 	}
3899 
3900 	trans->allocating_chunk = true;
3901 
3902 	/*
3903 	 * If we have mixed data/metadata chunks we want to make sure we keep
3904 	 * allocating mixed chunks instead of individual chunks.
3905 	 */
3906 	if (btrfs_mixed_space_info(space_info))
3907 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3908 
3909 	/*
3910 	 * if we're doing a data chunk, go ahead and make sure that
3911 	 * we keep a reasonable number of metadata chunks allocated in the
3912 	 * FS as well.
3913 	 */
3914 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3915 		fs_info->data_chunk_allocations++;
3916 		if (!(fs_info->data_chunk_allocations %
3917 		      fs_info->metadata_ratio))
3918 			force_metadata_allocation(fs_info);
3919 	}
3920 
3921 	/*
3922 	 * Check if we have enough space in SYSTEM chunk because we may need
3923 	 * to update devices.
3924 	 */
3925 	check_system_chunk(trans, extent_root, flags);
3926 
3927 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3928 	trans->allocating_chunk = false;
3929 
3930 	spin_lock(&space_info->lock);
3931 	if (ret < 0 && ret != -ENOSPC)
3932 		goto out;
3933 	if (ret)
3934 		space_info->full = 1;
3935 	else
3936 		ret = 1;
3937 
3938 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3939 out:
3940 	space_info->chunk_alloc = 0;
3941 	spin_unlock(&space_info->lock);
3942 	mutex_unlock(&fs_info->chunk_mutex);
3943 	return ret;
3944 }
3945 
3946 static int can_overcommit(struct btrfs_root *root,
3947 			  struct btrfs_space_info *space_info, u64 bytes,
3948 			  enum btrfs_reserve_flush_enum flush)
3949 {
3950 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3951 	u64 profile = btrfs_get_alloc_profile(root, 0);
3952 	u64 space_size;
3953 	u64 avail;
3954 	u64 used;
3955 
3956 	used = space_info->bytes_used + space_info->bytes_reserved +
3957 		space_info->bytes_pinned + space_info->bytes_readonly;
3958 
3959 	/*
3960 	 * We only want to allow over committing if we have lots of actual space
3961 	 * free, but if we don't have enough space to handle the global reserve
3962 	 * space then we could end up having a real enospc problem when trying
3963 	 * to allocate a chunk or some other such important allocation.
3964 	 */
3965 	spin_lock(&global_rsv->lock);
3966 	space_size = calc_global_rsv_need_space(global_rsv);
3967 	spin_unlock(&global_rsv->lock);
3968 	if (used + space_size >= space_info->total_bytes)
3969 		return 0;
3970 
3971 	used += space_info->bytes_may_use;
3972 
3973 	spin_lock(&root->fs_info->free_chunk_lock);
3974 	avail = root->fs_info->free_chunk_space;
3975 	spin_unlock(&root->fs_info->free_chunk_lock);
3976 
3977 	/*
3978 	 * If we have dup, raid1 or raid10 then only half of the free
3979 	 * space is actually useable.  For raid56, the space info used
3980 	 * doesn't include the parity drive, so we don't have to
3981 	 * change the math
3982 	 */
3983 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3984 		       BTRFS_BLOCK_GROUP_RAID1 |
3985 		       BTRFS_BLOCK_GROUP_RAID10))
3986 		avail >>= 1;
3987 
3988 	/*
3989 	 * If we aren't flushing all things, let us overcommit up to
3990 	 * 1/2th of the space. If we can flush, don't let us overcommit
3991 	 * too much, let it overcommit up to 1/8 of the space.
3992 	 */
3993 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3994 		avail >>= 3;
3995 	else
3996 		avail >>= 1;
3997 
3998 	if (used + bytes < space_info->total_bytes + avail)
3999 		return 1;
4000 	return 0;
4001 }
4002 
4003 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4004 					 unsigned long nr_pages)
4005 {
4006 	struct super_block *sb = root->fs_info->sb;
4007 
4008 	if (down_read_trylock(&sb->s_umount)) {
4009 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4010 		up_read(&sb->s_umount);
4011 	} else {
4012 		/*
4013 		 * We needn't worry the filesystem going from r/w to r/o though
4014 		 * we don't acquire ->s_umount mutex, because the filesystem
4015 		 * should guarantee the delalloc inodes list be empty after
4016 		 * the filesystem is readonly(all dirty pages are written to
4017 		 * the disk).
4018 		 */
4019 		btrfs_start_delalloc_roots(root->fs_info, 0);
4020 		if (!current->journal_info)
4021 			btrfs_wait_ordered_roots(root->fs_info, -1);
4022 	}
4023 }
4024 
4025 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4026 {
4027 	u64 bytes;
4028 	int nr;
4029 
4030 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4031 	nr = (int)div64_u64(to_reclaim, bytes);
4032 	if (!nr)
4033 		nr = 1;
4034 	return nr;
4035 }
4036 
4037 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4038 
4039 /*
4040  * shrink metadata reservation for delalloc
4041  */
4042 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4043 			    bool wait_ordered)
4044 {
4045 	struct btrfs_block_rsv *block_rsv;
4046 	struct btrfs_space_info *space_info;
4047 	struct btrfs_trans_handle *trans;
4048 	u64 delalloc_bytes;
4049 	u64 max_reclaim;
4050 	long time_left;
4051 	unsigned long nr_pages;
4052 	int loops;
4053 	int items;
4054 	enum btrfs_reserve_flush_enum flush;
4055 
4056 	/* Calc the number of the pages we need flush for space reservation */
4057 	items = calc_reclaim_items_nr(root, to_reclaim);
4058 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4059 
4060 	trans = (struct btrfs_trans_handle *)current->journal_info;
4061 	block_rsv = &root->fs_info->delalloc_block_rsv;
4062 	space_info = block_rsv->space_info;
4063 
4064 	delalloc_bytes = percpu_counter_sum_positive(
4065 						&root->fs_info->delalloc_bytes);
4066 	if (delalloc_bytes == 0) {
4067 		if (trans)
4068 			return;
4069 		if (wait_ordered)
4070 			btrfs_wait_ordered_roots(root->fs_info, items);
4071 		return;
4072 	}
4073 
4074 	loops = 0;
4075 	while (delalloc_bytes && loops < 3) {
4076 		max_reclaim = min(delalloc_bytes, to_reclaim);
4077 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4078 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4079 		/*
4080 		 * We need to wait for the async pages to actually start before
4081 		 * we do anything.
4082 		 */
4083 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4084 		if (!max_reclaim)
4085 			goto skip_async;
4086 
4087 		if (max_reclaim <= nr_pages)
4088 			max_reclaim = 0;
4089 		else
4090 			max_reclaim -= nr_pages;
4091 
4092 		wait_event(root->fs_info->async_submit_wait,
4093 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4094 			   (int)max_reclaim);
4095 skip_async:
4096 		if (!trans)
4097 			flush = BTRFS_RESERVE_FLUSH_ALL;
4098 		else
4099 			flush = BTRFS_RESERVE_NO_FLUSH;
4100 		spin_lock(&space_info->lock);
4101 		if (can_overcommit(root, space_info, orig, flush)) {
4102 			spin_unlock(&space_info->lock);
4103 			break;
4104 		}
4105 		spin_unlock(&space_info->lock);
4106 
4107 		loops++;
4108 		if (wait_ordered && !trans) {
4109 			btrfs_wait_ordered_roots(root->fs_info, items);
4110 		} else {
4111 			time_left = schedule_timeout_killable(1);
4112 			if (time_left)
4113 				break;
4114 		}
4115 		delalloc_bytes = percpu_counter_sum_positive(
4116 						&root->fs_info->delalloc_bytes);
4117 	}
4118 }
4119 
4120 /**
4121  * maybe_commit_transaction - possibly commit the transaction if its ok to
4122  * @root - the root we're allocating for
4123  * @bytes - the number of bytes we want to reserve
4124  * @force - force the commit
4125  *
4126  * This will check to make sure that committing the transaction will actually
4127  * get us somewhere and then commit the transaction if it does.  Otherwise it
4128  * will return -ENOSPC.
4129  */
4130 static int may_commit_transaction(struct btrfs_root *root,
4131 				  struct btrfs_space_info *space_info,
4132 				  u64 bytes, int force)
4133 {
4134 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4135 	struct btrfs_trans_handle *trans;
4136 
4137 	trans = (struct btrfs_trans_handle *)current->journal_info;
4138 	if (trans)
4139 		return -EAGAIN;
4140 
4141 	if (force)
4142 		goto commit;
4143 
4144 	/* See if there is enough pinned space to make this reservation */
4145 	spin_lock(&space_info->lock);
4146 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4147 				   bytes) >= 0) {
4148 		spin_unlock(&space_info->lock);
4149 		goto commit;
4150 	}
4151 	spin_unlock(&space_info->lock);
4152 
4153 	/*
4154 	 * See if there is some space in the delayed insertion reservation for
4155 	 * this reservation.
4156 	 */
4157 	if (space_info != delayed_rsv->space_info)
4158 		return -ENOSPC;
4159 
4160 	spin_lock(&space_info->lock);
4161 	spin_lock(&delayed_rsv->lock);
4162 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4163 				   bytes - delayed_rsv->size) >= 0) {
4164 		spin_unlock(&delayed_rsv->lock);
4165 		spin_unlock(&space_info->lock);
4166 		return -ENOSPC;
4167 	}
4168 	spin_unlock(&delayed_rsv->lock);
4169 	spin_unlock(&space_info->lock);
4170 
4171 commit:
4172 	trans = btrfs_join_transaction(root);
4173 	if (IS_ERR(trans))
4174 		return -ENOSPC;
4175 
4176 	return btrfs_commit_transaction(trans, root);
4177 }
4178 
4179 enum flush_state {
4180 	FLUSH_DELAYED_ITEMS_NR	=	1,
4181 	FLUSH_DELAYED_ITEMS	=	2,
4182 	FLUSH_DELALLOC		=	3,
4183 	FLUSH_DELALLOC_WAIT	=	4,
4184 	ALLOC_CHUNK		=	5,
4185 	COMMIT_TRANS		=	6,
4186 };
4187 
4188 static int flush_space(struct btrfs_root *root,
4189 		       struct btrfs_space_info *space_info, u64 num_bytes,
4190 		       u64 orig_bytes, int state)
4191 {
4192 	struct btrfs_trans_handle *trans;
4193 	int nr;
4194 	int ret = 0;
4195 
4196 	switch (state) {
4197 	case FLUSH_DELAYED_ITEMS_NR:
4198 	case FLUSH_DELAYED_ITEMS:
4199 		if (state == FLUSH_DELAYED_ITEMS_NR)
4200 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4201 		else
4202 			nr = -1;
4203 
4204 		trans = btrfs_join_transaction(root);
4205 		if (IS_ERR(trans)) {
4206 			ret = PTR_ERR(trans);
4207 			break;
4208 		}
4209 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4210 		btrfs_end_transaction(trans, root);
4211 		break;
4212 	case FLUSH_DELALLOC:
4213 	case FLUSH_DELALLOC_WAIT:
4214 		shrink_delalloc(root, num_bytes, orig_bytes,
4215 				state == FLUSH_DELALLOC_WAIT);
4216 		break;
4217 	case ALLOC_CHUNK:
4218 		trans = btrfs_join_transaction(root);
4219 		if (IS_ERR(trans)) {
4220 			ret = PTR_ERR(trans);
4221 			break;
4222 		}
4223 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4224 				     btrfs_get_alloc_profile(root, 0),
4225 				     CHUNK_ALLOC_NO_FORCE);
4226 		btrfs_end_transaction(trans, root);
4227 		if (ret == -ENOSPC)
4228 			ret = 0;
4229 		break;
4230 	case COMMIT_TRANS:
4231 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4232 		break;
4233 	default:
4234 		ret = -ENOSPC;
4235 		break;
4236 	}
4237 
4238 	return ret;
4239 }
4240 /**
4241  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4242  * @root - the root we're allocating for
4243  * @block_rsv - the block_rsv we're allocating for
4244  * @orig_bytes - the number of bytes we want
4245  * @flush - whether or not we can flush to make our reservation
4246  *
4247  * This will reserve orgi_bytes number of bytes from the space info associated
4248  * with the block_rsv.  If there is not enough space it will make an attempt to
4249  * flush out space to make room.  It will do this by flushing delalloc if
4250  * possible or committing the transaction.  If flush is 0 then no attempts to
4251  * regain reservations will be made and this will fail if there is not enough
4252  * space already.
4253  */
4254 static int reserve_metadata_bytes(struct btrfs_root *root,
4255 				  struct btrfs_block_rsv *block_rsv,
4256 				  u64 orig_bytes,
4257 				  enum btrfs_reserve_flush_enum flush)
4258 {
4259 	struct btrfs_space_info *space_info = block_rsv->space_info;
4260 	u64 used;
4261 	u64 num_bytes = orig_bytes;
4262 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4263 	int ret = 0;
4264 	bool flushing = false;
4265 
4266 again:
4267 	ret = 0;
4268 	spin_lock(&space_info->lock);
4269 	/*
4270 	 * We only want to wait if somebody other than us is flushing and we
4271 	 * are actually allowed to flush all things.
4272 	 */
4273 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4274 	       space_info->flush) {
4275 		spin_unlock(&space_info->lock);
4276 		/*
4277 		 * If we have a trans handle we can't wait because the flusher
4278 		 * may have to commit the transaction, which would mean we would
4279 		 * deadlock since we are waiting for the flusher to finish, but
4280 		 * hold the current transaction open.
4281 		 */
4282 		if (current->journal_info)
4283 			return -EAGAIN;
4284 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4285 		/* Must have been killed, return */
4286 		if (ret)
4287 			return -EINTR;
4288 
4289 		spin_lock(&space_info->lock);
4290 	}
4291 
4292 	ret = -ENOSPC;
4293 	used = space_info->bytes_used + space_info->bytes_reserved +
4294 		space_info->bytes_pinned + space_info->bytes_readonly +
4295 		space_info->bytes_may_use;
4296 
4297 	/*
4298 	 * The idea here is that we've not already over-reserved the block group
4299 	 * then we can go ahead and save our reservation first and then start
4300 	 * flushing if we need to.  Otherwise if we've already overcommitted
4301 	 * lets start flushing stuff first and then come back and try to make
4302 	 * our reservation.
4303 	 */
4304 	if (used <= space_info->total_bytes) {
4305 		if (used + orig_bytes <= space_info->total_bytes) {
4306 			space_info->bytes_may_use += orig_bytes;
4307 			trace_btrfs_space_reservation(root->fs_info,
4308 				"space_info", space_info->flags, orig_bytes, 1);
4309 			ret = 0;
4310 		} else {
4311 			/*
4312 			 * Ok set num_bytes to orig_bytes since we aren't
4313 			 * overocmmitted, this way we only try and reclaim what
4314 			 * we need.
4315 			 */
4316 			num_bytes = orig_bytes;
4317 		}
4318 	} else {
4319 		/*
4320 		 * Ok we're over committed, set num_bytes to the overcommitted
4321 		 * amount plus the amount of bytes that we need for this
4322 		 * reservation.
4323 		 */
4324 		num_bytes = used - space_info->total_bytes +
4325 			(orig_bytes * 2);
4326 	}
4327 
4328 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4329 		space_info->bytes_may_use += orig_bytes;
4330 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4331 					      space_info->flags, orig_bytes,
4332 					      1);
4333 		ret = 0;
4334 	}
4335 
4336 	/*
4337 	 * Couldn't make our reservation, save our place so while we're trying
4338 	 * to reclaim space we can actually use it instead of somebody else
4339 	 * stealing it from us.
4340 	 *
4341 	 * We make the other tasks wait for the flush only when we can flush
4342 	 * all things.
4343 	 */
4344 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4345 		flushing = true;
4346 		space_info->flush = 1;
4347 	}
4348 
4349 	spin_unlock(&space_info->lock);
4350 
4351 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4352 		goto out;
4353 
4354 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4355 			  flush_state);
4356 	flush_state++;
4357 
4358 	/*
4359 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4360 	 * would happen. So skip delalloc flush.
4361 	 */
4362 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4363 	    (flush_state == FLUSH_DELALLOC ||
4364 	     flush_state == FLUSH_DELALLOC_WAIT))
4365 		flush_state = ALLOC_CHUNK;
4366 
4367 	if (!ret)
4368 		goto again;
4369 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4370 		 flush_state < COMMIT_TRANS)
4371 		goto again;
4372 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4373 		 flush_state <= COMMIT_TRANS)
4374 		goto again;
4375 
4376 out:
4377 	if (ret == -ENOSPC &&
4378 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4379 		struct btrfs_block_rsv *global_rsv =
4380 			&root->fs_info->global_block_rsv;
4381 
4382 		if (block_rsv != global_rsv &&
4383 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4384 			ret = 0;
4385 	}
4386 	if (ret == -ENOSPC)
4387 		trace_btrfs_space_reservation(root->fs_info,
4388 					      "space_info:enospc",
4389 					      space_info->flags, orig_bytes, 1);
4390 	if (flushing) {
4391 		spin_lock(&space_info->lock);
4392 		space_info->flush = 0;
4393 		wake_up_all(&space_info->wait);
4394 		spin_unlock(&space_info->lock);
4395 	}
4396 	return ret;
4397 }
4398 
4399 static struct btrfs_block_rsv *get_block_rsv(
4400 					const struct btrfs_trans_handle *trans,
4401 					const struct btrfs_root *root)
4402 {
4403 	struct btrfs_block_rsv *block_rsv = NULL;
4404 
4405 	if (root->ref_cows)
4406 		block_rsv = trans->block_rsv;
4407 
4408 	if (root == root->fs_info->csum_root && trans->adding_csums)
4409 		block_rsv = trans->block_rsv;
4410 
4411 	if (root == root->fs_info->uuid_root)
4412 		block_rsv = trans->block_rsv;
4413 
4414 	if (!block_rsv)
4415 		block_rsv = root->block_rsv;
4416 
4417 	if (!block_rsv)
4418 		block_rsv = &root->fs_info->empty_block_rsv;
4419 
4420 	return block_rsv;
4421 }
4422 
4423 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4424 			       u64 num_bytes)
4425 {
4426 	int ret = -ENOSPC;
4427 	spin_lock(&block_rsv->lock);
4428 	if (block_rsv->reserved >= num_bytes) {
4429 		block_rsv->reserved -= num_bytes;
4430 		if (block_rsv->reserved < block_rsv->size)
4431 			block_rsv->full = 0;
4432 		ret = 0;
4433 	}
4434 	spin_unlock(&block_rsv->lock);
4435 	return ret;
4436 }
4437 
4438 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4439 				u64 num_bytes, int update_size)
4440 {
4441 	spin_lock(&block_rsv->lock);
4442 	block_rsv->reserved += num_bytes;
4443 	if (update_size)
4444 		block_rsv->size += num_bytes;
4445 	else if (block_rsv->reserved >= block_rsv->size)
4446 		block_rsv->full = 1;
4447 	spin_unlock(&block_rsv->lock);
4448 }
4449 
4450 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4451 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4452 			     int min_factor)
4453 {
4454 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4455 	u64 min_bytes;
4456 
4457 	if (global_rsv->space_info != dest->space_info)
4458 		return -ENOSPC;
4459 
4460 	spin_lock(&global_rsv->lock);
4461 	min_bytes = div_factor(global_rsv->size, min_factor);
4462 	if (global_rsv->reserved < min_bytes + num_bytes) {
4463 		spin_unlock(&global_rsv->lock);
4464 		return -ENOSPC;
4465 	}
4466 	global_rsv->reserved -= num_bytes;
4467 	if (global_rsv->reserved < global_rsv->size)
4468 		global_rsv->full = 0;
4469 	spin_unlock(&global_rsv->lock);
4470 
4471 	block_rsv_add_bytes(dest, num_bytes, 1);
4472 	return 0;
4473 }
4474 
4475 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4476 				    struct btrfs_block_rsv *block_rsv,
4477 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4478 {
4479 	struct btrfs_space_info *space_info = block_rsv->space_info;
4480 
4481 	spin_lock(&block_rsv->lock);
4482 	if (num_bytes == (u64)-1)
4483 		num_bytes = block_rsv->size;
4484 	block_rsv->size -= num_bytes;
4485 	if (block_rsv->reserved >= block_rsv->size) {
4486 		num_bytes = block_rsv->reserved - block_rsv->size;
4487 		block_rsv->reserved = block_rsv->size;
4488 		block_rsv->full = 1;
4489 	} else {
4490 		num_bytes = 0;
4491 	}
4492 	spin_unlock(&block_rsv->lock);
4493 
4494 	if (num_bytes > 0) {
4495 		if (dest) {
4496 			spin_lock(&dest->lock);
4497 			if (!dest->full) {
4498 				u64 bytes_to_add;
4499 
4500 				bytes_to_add = dest->size - dest->reserved;
4501 				bytes_to_add = min(num_bytes, bytes_to_add);
4502 				dest->reserved += bytes_to_add;
4503 				if (dest->reserved >= dest->size)
4504 					dest->full = 1;
4505 				num_bytes -= bytes_to_add;
4506 			}
4507 			spin_unlock(&dest->lock);
4508 		}
4509 		if (num_bytes) {
4510 			spin_lock(&space_info->lock);
4511 			space_info->bytes_may_use -= num_bytes;
4512 			trace_btrfs_space_reservation(fs_info, "space_info",
4513 					space_info->flags, num_bytes, 0);
4514 			spin_unlock(&space_info->lock);
4515 		}
4516 	}
4517 }
4518 
4519 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4520 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4521 {
4522 	int ret;
4523 
4524 	ret = block_rsv_use_bytes(src, num_bytes);
4525 	if (ret)
4526 		return ret;
4527 
4528 	block_rsv_add_bytes(dst, num_bytes, 1);
4529 	return 0;
4530 }
4531 
4532 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4533 {
4534 	memset(rsv, 0, sizeof(*rsv));
4535 	spin_lock_init(&rsv->lock);
4536 	rsv->type = type;
4537 }
4538 
4539 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4540 					      unsigned short type)
4541 {
4542 	struct btrfs_block_rsv *block_rsv;
4543 	struct btrfs_fs_info *fs_info = root->fs_info;
4544 
4545 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4546 	if (!block_rsv)
4547 		return NULL;
4548 
4549 	btrfs_init_block_rsv(block_rsv, type);
4550 	block_rsv->space_info = __find_space_info(fs_info,
4551 						  BTRFS_BLOCK_GROUP_METADATA);
4552 	return block_rsv;
4553 }
4554 
4555 void btrfs_free_block_rsv(struct btrfs_root *root,
4556 			  struct btrfs_block_rsv *rsv)
4557 {
4558 	if (!rsv)
4559 		return;
4560 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4561 	kfree(rsv);
4562 }
4563 
4564 int btrfs_block_rsv_add(struct btrfs_root *root,
4565 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4566 			enum btrfs_reserve_flush_enum flush)
4567 {
4568 	int ret;
4569 
4570 	if (num_bytes == 0)
4571 		return 0;
4572 
4573 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4574 	if (!ret) {
4575 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4576 		return 0;
4577 	}
4578 
4579 	return ret;
4580 }
4581 
4582 int btrfs_block_rsv_check(struct btrfs_root *root,
4583 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4584 {
4585 	u64 num_bytes = 0;
4586 	int ret = -ENOSPC;
4587 
4588 	if (!block_rsv)
4589 		return 0;
4590 
4591 	spin_lock(&block_rsv->lock);
4592 	num_bytes = div_factor(block_rsv->size, min_factor);
4593 	if (block_rsv->reserved >= num_bytes)
4594 		ret = 0;
4595 	spin_unlock(&block_rsv->lock);
4596 
4597 	return ret;
4598 }
4599 
4600 int btrfs_block_rsv_refill(struct btrfs_root *root,
4601 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4602 			   enum btrfs_reserve_flush_enum flush)
4603 {
4604 	u64 num_bytes = 0;
4605 	int ret = -ENOSPC;
4606 
4607 	if (!block_rsv)
4608 		return 0;
4609 
4610 	spin_lock(&block_rsv->lock);
4611 	num_bytes = min_reserved;
4612 	if (block_rsv->reserved >= num_bytes)
4613 		ret = 0;
4614 	else
4615 		num_bytes -= block_rsv->reserved;
4616 	spin_unlock(&block_rsv->lock);
4617 
4618 	if (!ret)
4619 		return 0;
4620 
4621 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4622 	if (!ret) {
4623 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4624 		return 0;
4625 	}
4626 
4627 	return ret;
4628 }
4629 
4630 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4631 			    struct btrfs_block_rsv *dst_rsv,
4632 			    u64 num_bytes)
4633 {
4634 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4635 }
4636 
4637 void btrfs_block_rsv_release(struct btrfs_root *root,
4638 			     struct btrfs_block_rsv *block_rsv,
4639 			     u64 num_bytes)
4640 {
4641 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4642 	if (global_rsv->full || global_rsv == block_rsv ||
4643 	    block_rsv->space_info != global_rsv->space_info)
4644 		global_rsv = NULL;
4645 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4646 				num_bytes);
4647 }
4648 
4649 /*
4650  * helper to calculate size of global block reservation.
4651  * the desired value is sum of space used by extent tree,
4652  * checksum tree and root tree
4653  */
4654 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4655 {
4656 	struct btrfs_space_info *sinfo;
4657 	u64 num_bytes;
4658 	u64 meta_used;
4659 	u64 data_used;
4660 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4661 
4662 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4663 	spin_lock(&sinfo->lock);
4664 	data_used = sinfo->bytes_used;
4665 	spin_unlock(&sinfo->lock);
4666 
4667 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4668 	spin_lock(&sinfo->lock);
4669 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4670 		data_used = 0;
4671 	meta_used = sinfo->bytes_used;
4672 	spin_unlock(&sinfo->lock);
4673 
4674 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4675 		    csum_size * 2;
4676 	num_bytes += div64_u64(data_used + meta_used, 50);
4677 
4678 	if (num_bytes * 3 > meta_used)
4679 		num_bytes = div64_u64(meta_used, 3);
4680 
4681 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4682 }
4683 
4684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4685 {
4686 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4687 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4688 	u64 num_bytes;
4689 
4690 	num_bytes = calc_global_metadata_size(fs_info);
4691 
4692 	spin_lock(&sinfo->lock);
4693 	spin_lock(&block_rsv->lock);
4694 
4695 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4696 
4697 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4698 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4699 		    sinfo->bytes_may_use;
4700 
4701 	if (sinfo->total_bytes > num_bytes) {
4702 		num_bytes = sinfo->total_bytes - num_bytes;
4703 		block_rsv->reserved += num_bytes;
4704 		sinfo->bytes_may_use += num_bytes;
4705 		trace_btrfs_space_reservation(fs_info, "space_info",
4706 				      sinfo->flags, num_bytes, 1);
4707 	}
4708 
4709 	if (block_rsv->reserved >= block_rsv->size) {
4710 		num_bytes = block_rsv->reserved - block_rsv->size;
4711 		sinfo->bytes_may_use -= num_bytes;
4712 		trace_btrfs_space_reservation(fs_info, "space_info",
4713 				      sinfo->flags, num_bytes, 0);
4714 		block_rsv->reserved = block_rsv->size;
4715 		block_rsv->full = 1;
4716 	}
4717 
4718 	spin_unlock(&block_rsv->lock);
4719 	spin_unlock(&sinfo->lock);
4720 }
4721 
4722 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4723 {
4724 	struct btrfs_space_info *space_info;
4725 
4726 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4727 	fs_info->chunk_block_rsv.space_info = space_info;
4728 
4729 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4730 	fs_info->global_block_rsv.space_info = space_info;
4731 	fs_info->delalloc_block_rsv.space_info = space_info;
4732 	fs_info->trans_block_rsv.space_info = space_info;
4733 	fs_info->empty_block_rsv.space_info = space_info;
4734 	fs_info->delayed_block_rsv.space_info = space_info;
4735 
4736 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4737 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4738 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4739 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4740 	if (fs_info->quota_root)
4741 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4742 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4743 
4744 	update_global_block_rsv(fs_info);
4745 }
4746 
4747 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4748 {
4749 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4750 				(u64)-1);
4751 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4752 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4753 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4754 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4755 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4756 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4757 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4758 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4759 }
4760 
4761 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4762 				  struct btrfs_root *root)
4763 {
4764 	if (!trans->block_rsv)
4765 		return;
4766 
4767 	if (!trans->bytes_reserved)
4768 		return;
4769 
4770 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4771 				      trans->transid, trans->bytes_reserved, 0);
4772 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4773 	trans->bytes_reserved = 0;
4774 }
4775 
4776 /* Can only return 0 or -ENOSPC */
4777 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4778 				  struct inode *inode)
4779 {
4780 	struct btrfs_root *root = BTRFS_I(inode)->root;
4781 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4782 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4783 
4784 	/*
4785 	 * We need to hold space in order to delete our orphan item once we've
4786 	 * added it, so this takes the reservation so we can release it later
4787 	 * when we are truly done with the orphan item.
4788 	 */
4789 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4790 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4791 				      btrfs_ino(inode), num_bytes, 1);
4792 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4793 }
4794 
4795 void btrfs_orphan_release_metadata(struct inode *inode)
4796 {
4797 	struct btrfs_root *root = BTRFS_I(inode)->root;
4798 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4799 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4800 				      btrfs_ino(inode), num_bytes, 0);
4801 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4802 }
4803 
4804 /*
4805  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4806  * root: the root of the parent directory
4807  * rsv: block reservation
4808  * items: the number of items that we need do reservation
4809  * qgroup_reserved: used to return the reserved size in qgroup
4810  *
4811  * This function is used to reserve the space for snapshot/subvolume
4812  * creation and deletion. Those operations are different with the
4813  * common file/directory operations, they change two fs/file trees
4814  * and root tree, the number of items that the qgroup reserves is
4815  * different with the free space reservation. So we can not use
4816  * the space reseravtion mechanism in start_transaction().
4817  */
4818 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4819 				     struct btrfs_block_rsv *rsv,
4820 				     int items,
4821 				     u64 *qgroup_reserved,
4822 				     bool use_global_rsv)
4823 {
4824 	u64 num_bytes;
4825 	int ret;
4826 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4827 
4828 	if (root->fs_info->quota_enabled) {
4829 		/* One for parent inode, two for dir entries */
4830 		num_bytes = 3 * root->leafsize;
4831 		ret = btrfs_qgroup_reserve(root, num_bytes);
4832 		if (ret)
4833 			return ret;
4834 	} else {
4835 		num_bytes = 0;
4836 	}
4837 
4838 	*qgroup_reserved = num_bytes;
4839 
4840 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4841 	rsv->space_info = __find_space_info(root->fs_info,
4842 					    BTRFS_BLOCK_GROUP_METADATA);
4843 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4844 				  BTRFS_RESERVE_FLUSH_ALL);
4845 
4846 	if (ret == -ENOSPC && use_global_rsv)
4847 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4848 
4849 	if (ret) {
4850 		if (*qgroup_reserved)
4851 			btrfs_qgroup_free(root, *qgroup_reserved);
4852 	}
4853 
4854 	return ret;
4855 }
4856 
4857 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4858 				      struct btrfs_block_rsv *rsv,
4859 				      u64 qgroup_reserved)
4860 {
4861 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4862 	if (qgroup_reserved)
4863 		btrfs_qgroup_free(root, qgroup_reserved);
4864 }
4865 
4866 /**
4867  * drop_outstanding_extent - drop an outstanding extent
4868  * @inode: the inode we're dropping the extent for
4869  *
4870  * This is called when we are freeing up an outstanding extent, either called
4871  * after an error or after an extent is written.  This will return the number of
4872  * reserved extents that need to be freed.  This must be called with
4873  * BTRFS_I(inode)->lock held.
4874  */
4875 static unsigned drop_outstanding_extent(struct inode *inode)
4876 {
4877 	unsigned drop_inode_space = 0;
4878 	unsigned dropped_extents = 0;
4879 
4880 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4881 	BTRFS_I(inode)->outstanding_extents--;
4882 
4883 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4884 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4885 			       &BTRFS_I(inode)->runtime_flags))
4886 		drop_inode_space = 1;
4887 
4888 	/*
4889 	 * If we have more or the same amount of outsanding extents than we have
4890 	 * reserved then we need to leave the reserved extents count alone.
4891 	 */
4892 	if (BTRFS_I(inode)->outstanding_extents >=
4893 	    BTRFS_I(inode)->reserved_extents)
4894 		return drop_inode_space;
4895 
4896 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4897 		BTRFS_I(inode)->outstanding_extents;
4898 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4899 	return dropped_extents + drop_inode_space;
4900 }
4901 
4902 /**
4903  * calc_csum_metadata_size - return the amount of metada space that must be
4904  *	reserved/free'd for the given bytes.
4905  * @inode: the inode we're manipulating
4906  * @num_bytes: the number of bytes in question
4907  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4908  *
4909  * This adjusts the number of csum_bytes in the inode and then returns the
4910  * correct amount of metadata that must either be reserved or freed.  We
4911  * calculate how many checksums we can fit into one leaf and then divide the
4912  * number of bytes that will need to be checksumed by this value to figure out
4913  * how many checksums will be required.  If we are adding bytes then the number
4914  * may go up and we will return the number of additional bytes that must be
4915  * reserved.  If it is going down we will return the number of bytes that must
4916  * be freed.
4917  *
4918  * This must be called with BTRFS_I(inode)->lock held.
4919  */
4920 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4921 				   int reserve)
4922 {
4923 	struct btrfs_root *root = BTRFS_I(inode)->root;
4924 	u64 csum_size;
4925 	int num_csums_per_leaf;
4926 	int num_csums;
4927 	int old_csums;
4928 
4929 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4930 	    BTRFS_I(inode)->csum_bytes == 0)
4931 		return 0;
4932 
4933 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4934 	if (reserve)
4935 		BTRFS_I(inode)->csum_bytes += num_bytes;
4936 	else
4937 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4938 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4939 	num_csums_per_leaf = (int)div64_u64(csum_size,
4940 					    sizeof(struct btrfs_csum_item) +
4941 					    sizeof(struct btrfs_disk_key));
4942 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4943 	num_csums = num_csums + num_csums_per_leaf - 1;
4944 	num_csums = num_csums / num_csums_per_leaf;
4945 
4946 	old_csums = old_csums + num_csums_per_leaf - 1;
4947 	old_csums = old_csums / num_csums_per_leaf;
4948 
4949 	/* No change, no need to reserve more */
4950 	if (old_csums == num_csums)
4951 		return 0;
4952 
4953 	if (reserve)
4954 		return btrfs_calc_trans_metadata_size(root,
4955 						      num_csums - old_csums);
4956 
4957 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4958 }
4959 
4960 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4961 {
4962 	struct btrfs_root *root = BTRFS_I(inode)->root;
4963 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4964 	u64 to_reserve = 0;
4965 	u64 csum_bytes;
4966 	unsigned nr_extents = 0;
4967 	int extra_reserve = 0;
4968 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4969 	int ret = 0;
4970 	bool delalloc_lock = true;
4971 	u64 to_free = 0;
4972 	unsigned dropped;
4973 
4974 	/* If we are a free space inode we need to not flush since we will be in
4975 	 * the middle of a transaction commit.  We also don't need the delalloc
4976 	 * mutex since we won't race with anybody.  We need this mostly to make
4977 	 * lockdep shut its filthy mouth.
4978 	 */
4979 	if (btrfs_is_free_space_inode(inode)) {
4980 		flush = BTRFS_RESERVE_NO_FLUSH;
4981 		delalloc_lock = false;
4982 	}
4983 
4984 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4985 	    btrfs_transaction_in_commit(root->fs_info))
4986 		schedule_timeout(1);
4987 
4988 	if (delalloc_lock)
4989 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4990 
4991 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4992 
4993 	spin_lock(&BTRFS_I(inode)->lock);
4994 	BTRFS_I(inode)->outstanding_extents++;
4995 
4996 	if (BTRFS_I(inode)->outstanding_extents >
4997 	    BTRFS_I(inode)->reserved_extents)
4998 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4999 			BTRFS_I(inode)->reserved_extents;
5000 
5001 	/*
5002 	 * Add an item to reserve for updating the inode when we complete the
5003 	 * delalloc io.
5004 	 */
5005 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5006 		      &BTRFS_I(inode)->runtime_flags)) {
5007 		nr_extents++;
5008 		extra_reserve = 1;
5009 	}
5010 
5011 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5012 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5013 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5014 	spin_unlock(&BTRFS_I(inode)->lock);
5015 
5016 	if (root->fs_info->quota_enabled) {
5017 		ret = btrfs_qgroup_reserve(root, num_bytes +
5018 					   nr_extents * root->leafsize);
5019 		if (ret)
5020 			goto out_fail;
5021 	}
5022 
5023 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5024 	if (unlikely(ret)) {
5025 		if (root->fs_info->quota_enabled)
5026 			btrfs_qgroup_free(root, num_bytes +
5027 						nr_extents * root->leafsize);
5028 		goto out_fail;
5029 	}
5030 
5031 	spin_lock(&BTRFS_I(inode)->lock);
5032 	if (extra_reserve) {
5033 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5034 			&BTRFS_I(inode)->runtime_flags);
5035 		nr_extents--;
5036 	}
5037 	BTRFS_I(inode)->reserved_extents += nr_extents;
5038 	spin_unlock(&BTRFS_I(inode)->lock);
5039 
5040 	if (delalloc_lock)
5041 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5042 
5043 	if (to_reserve)
5044 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5045 					      btrfs_ino(inode), to_reserve, 1);
5046 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5047 
5048 	return 0;
5049 
5050 out_fail:
5051 	spin_lock(&BTRFS_I(inode)->lock);
5052 	dropped = drop_outstanding_extent(inode);
5053 	/*
5054 	 * If the inodes csum_bytes is the same as the original
5055 	 * csum_bytes then we know we haven't raced with any free()ers
5056 	 * so we can just reduce our inodes csum bytes and carry on.
5057 	 */
5058 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5059 		calc_csum_metadata_size(inode, num_bytes, 0);
5060 	} else {
5061 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5062 		u64 bytes;
5063 
5064 		/*
5065 		 * This is tricky, but first we need to figure out how much we
5066 		 * free'd from any free-ers that occured during this
5067 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5068 		 * before we dropped our lock, and then call the free for the
5069 		 * number of bytes that were freed while we were trying our
5070 		 * reservation.
5071 		 */
5072 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5073 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5074 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5075 
5076 
5077 		/*
5078 		 * Now we need to see how much we would have freed had we not
5079 		 * been making this reservation and our ->csum_bytes were not
5080 		 * artificially inflated.
5081 		 */
5082 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5083 		bytes = csum_bytes - orig_csum_bytes;
5084 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5085 
5086 		/*
5087 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5088 		 * more than to_free then we would have free'd more space had we
5089 		 * not had an artificially high ->csum_bytes, so we need to free
5090 		 * the remainder.  If bytes is the same or less then we don't
5091 		 * need to do anything, the other free-ers did the correct
5092 		 * thing.
5093 		 */
5094 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5095 		if (bytes > to_free)
5096 			to_free = bytes - to_free;
5097 		else
5098 			to_free = 0;
5099 	}
5100 	spin_unlock(&BTRFS_I(inode)->lock);
5101 	if (dropped)
5102 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5103 
5104 	if (to_free) {
5105 		btrfs_block_rsv_release(root, block_rsv, to_free);
5106 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5107 					      btrfs_ino(inode), to_free, 0);
5108 	}
5109 	if (delalloc_lock)
5110 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5111 	return ret;
5112 }
5113 
5114 /**
5115  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5116  * @inode: the inode to release the reservation for
5117  * @num_bytes: the number of bytes we're releasing
5118  *
5119  * This will release the metadata reservation for an inode.  This can be called
5120  * once we complete IO for a given set of bytes to release their metadata
5121  * reservations.
5122  */
5123 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5124 {
5125 	struct btrfs_root *root = BTRFS_I(inode)->root;
5126 	u64 to_free = 0;
5127 	unsigned dropped;
5128 
5129 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5130 	spin_lock(&BTRFS_I(inode)->lock);
5131 	dropped = drop_outstanding_extent(inode);
5132 
5133 	if (num_bytes)
5134 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5135 	spin_unlock(&BTRFS_I(inode)->lock);
5136 	if (dropped > 0)
5137 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5138 
5139 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5140 				      btrfs_ino(inode), to_free, 0);
5141 	if (root->fs_info->quota_enabled) {
5142 		btrfs_qgroup_free(root, num_bytes +
5143 					dropped * root->leafsize);
5144 	}
5145 
5146 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5147 				to_free);
5148 }
5149 
5150 /**
5151  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5152  * @inode: inode we're writing to
5153  * @num_bytes: the number of bytes we want to allocate
5154  *
5155  * This will do the following things
5156  *
5157  * o reserve space in the data space info for num_bytes
5158  * o reserve space in the metadata space info based on number of outstanding
5159  *   extents and how much csums will be needed
5160  * o add to the inodes ->delalloc_bytes
5161  * o add it to the fs_info's delalloc inodes list.
5162  *
5163  * This will return 0 for success and -ENOSPC if there is no space left.
5164  */
5165 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5166 {
5167 	int ret;
5168 
5169 	ret = btrfs_check_data_free_space(inode, num_bytes);
5170 	if (ret)
5171 		return ret;
5172 
5173 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5174 	if (ret) {
5175 		btrfs_free_reserved_data_space(inode, num_bytes);
5176 		return ret;
5177 	}
5178 
5179 	return 0;
5180 }
5181 
5182 /**
5183  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5184  * @inode: inode we're releasing space for
5185  * @num_bytes: the number of bytes we want to free up
5186  *
5187  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5188  * called in the case that we don't need the metadata AND data reservations
5189  * anymore.  So if there is an error or we insert an inline extent.
5190  *
5191  * This function will release the metadata space that was not used and will
5192  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5193  * list if there are no delalloc bytes left.
5194  */
5195 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5196 {
5197 	btrfs_delalloc_release_metadata(inode, num_bytes);
5198 	btrfs_free_reserved_data_space(inode, num_bytes);
5199 }
5200 
5201 static int update_block_group(struct btrfs_root *root,
5202 			      u64 bytenr, u64 num_bytes, int alloc)
5203 {
5204 	struct btrfs_block_group_cache *cache = NULL;
5205 	struct btrfs_fs_info *info = root->fs_info;
5206 	u64 total = num_bytes;
5207 	u64 old_val;
5208 	u64 byte_in_group;
5209 	int factor;
5210 
5211 	/* block accounting for super block */
5212 	spin_lock(&info->delalloc_root_lock);
5213 	old_val = btrfs_super_bytes_used(info->super_copy);
5214 	if (alloc)
5215 		old_val += num_bytes;
5216 	else
5217 		old_val -= num_bytes;
5218 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5219 	spin_unlock(&info->delalloc_root_lock);
5220 
5221 	while (total) {
5222 		cache = btrfs_lookup_block_group(info, bytenr);
5223 		if (!cache)
5224 			return -ENOENT;
5225 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5226 				    BTRFS_BLOCK_GROUP_RAID1 |
5227 				    BTRFS_BLOCK_GROUP_RAID10))
5228 			factor = 2;
5229 		else
5230 			factor = 1;
5231 		/*
5232 		 * If this block group has free space cache written out, we
5233 		 * need to make sure to load it if we are removing space.  This
5234 		 * is because we need the unpinning stage to actually add the
5235 		 * space back to the block group, otherwise we will leak space.
5236 		 */
5237 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5238 			cache_block_group(cache, 1);
5239 
5240 		byte_in_group = bytenr - cache->key.objectid;
5241 		WARN_ON(byte_in_group > cache->key.offset);
5242 
5243 		spin_lock(&cache->space_info->lock);
5244 		spin_lock(&cache->lock);
5245 
5246 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5247 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5248 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5249 
5250 		cache->dirty = 1;
5251 		old_val = btrfs_block_group_used(&cache->item);
5252 		num_bytes = min(total, cache->key.offset - byte_in_group);
5253 		if (alloc) {
5254 			old_val += num_bytes;
5255 			btrfs_set_block_group_used(&cache->item, old_val);
5256 			cache->reserved -= num_bytes;
5257 			cache->space_info->bytes_reserved -= num_bytes;
5258 			cache->space_info->bytes_used += num_bytes;
5259 			cache->space_info->disk_used += num_bytes * factor;
5260 			spin_unlock(&cache->lock);
5261 			spin_unlock(&cache->space_info->lock);
5262 		} else {
5263 			old_val -= num_bytes;
5264 			btrfs_set_block_group_used(&cache->item, old_val);
5265 			cache->pinned += num_bytes;
5266 			cache->space_info->bytes_pinned += num_bytes;
5267 			cache->space_info->bytes_used -= num_bytes;
5268 			cache->space_info->disk_used -= num_bytes * factor;
5269 			spin_unlock(&cache->lock);
5270 			spin_unlock(&cache->space_info->lock);
5271 
5272 			set_extent_dirty(info->pinned_extents,
5273 					 bytenr, bytenr + num_bytes - 1,
5274 					 GFP_NOFS | __GFP_NOFAIL);
5275 		}
5276 		btrfs_put_block_group(cache);
5277 		total -= num_bytes;
5278 		bytenr += num_bytes;
5279 	}
5280 	return 0;
5281 }
5282 
5283 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5284 {
5285 	struct btrfs_block_group_cache *cache;
5286 	u64 bytenr;
5287 
5288 	spin_lock(&root->fs_info->block_group_cache_lock);
5289 	bytenr = root->fs_info->first_logical_byte;
5290 	spin_unlock(&root->fs_info->block_group_cache_lock);
5291 
5292 	if (bytenr < (u64)-1)
5293 		return bytenr;
5294 
5295 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5296 	if (!cache)
5297 		return 0;
5298 
5299 	bytenr = cache->key.objectid;
5300 	btrfs_put_block_group(cache);
5301 
5302 	return bytenr;
5303 }
5304 
5305 static int pin_down_extent(struct btrfs_root *root,
5306 			   struct btrfs_block_group_cache *cache,
5307 			   u64 bytenr, u64 num_bytes, int reserved)
5308 {
5309 	spin_lock(&cache->space_info->lock);
5310 	spin_lock(&cache->lock);
5311 	cache->pinned += num_bytes;
5312 	cache->space_info->bytes_pinned += num_bytes;
5313 	if (reserved) {
5314 		cache->reserved -= num_bytes;
5315 		cache->space_info->bytes_reserved -= num_bytes;
5316 	}
5317 	spin_unlock(&cache->lock);
5318 	spin_unlock(&cache->space_info->lock);
5319 
5320 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5321 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5322 	if (reserved)
5323 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5324 	return 0;
5325 }
5326 
5327 /*
5328  * this function must be called within transaction
5329  */
5330 int btrfs_pin_extent(struct btrfs_root *root,
5331 		     u64 bytenr, u64 num_bytes, int reserved)
5332 {
5333 	struct btrfs_block_group_cache *cache;
5334 
5335 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5336 	BUG_ON(!cache); /* Logic error */
5337 
5338 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5339 
5340 	btrfs_put_block_group(cache);
5341 	return 0;
5342 }
5343 
5344 /*
5345  * this function must be called within transaction
5346  */
5347 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5348 				    u64 bytenr, u64 num_bytes)
5349 {
5350 	struct btrfs_block_group_cache *cache;
5351 	int ret;
5352 
5353 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5354 	if (!cache)
5355 		return -EINVAL;
5356 
5357 	/*
5358 	 * pull in the free space cache (if any) so that our pin
5359 	 * removes the free space from the cache.  We have load_only set
5360 	 * to one because the slow code to read in the free extents does check
5361 	 * the pinned extents.
5362 	 */
5363 	cache_block_group(cache, 1);
5364 
5365 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5366 
5367 	/* remove us from the free space cache (if we're there at all) */
5368 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5369 	btrfs_put_block_group(cache);
5370 	return ret;
5371 }
5372 
5373 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5374 {
5375 	int ret;
5376 	struct btrfs_block_group_cache *block_group;
5377 	struct btrfs_caching_control *caching_ctl;
5378 
5379 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5380 	if (!block_group)
5381 		return -EINVAL;
5382 
5383 	cache_block_group(block_group, 0);
5384 	caching_ctl = get_caching_control(block_group);
5385 
5386 	if (!caching_ctl) {
5387 		/* Logic error */
5388 		BUG_ON(!block_group_cache_done(block_group));
5389 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5390 	} else {
5391 		mutex_lock(&caching_ctl->mutex);
5392 
5393 		if (start >= caching_ctl->progress) {
5394 			ret = add_excluded_extent(root, start, num_bytes);
5395 		} else if (start + num_bytes <= caching_ctl->progress) {
5396 			ret = btrfs_remove_free_space(block_group,
5397 						      start, num_bytes);
5398 		} else {
5399 			num_bytes = caching_ctl->progress - start;
5400 			ret = btrfs_remove_free_space(block_group,
5401 						      start, num_bytes);
5402 			if (ret)
5403 				goto out_lock;
5404 
5405 			num_bytes = (start + num_bytes) -
5406 				caching_ctl->progress;
5407 			start = caching_ctl->progress;
5408 			ret = add_excluded_extent(root, start, num_bytes);
5409 		}
5410 out_lock:
5411 		mutex_unlock(&caching_ctl->mutex);
5412 		put_caching_control(caching_ctl);
5413 	}
5414 	btrfs_put_block_group(block_group);
5415 	return ret;
5416 }
5417 
5418 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5419 				 struct extent_buffer *eb)
5420 {
5421 	struct btrfs_file_extent_item *item;
5422 	struct btrfs_key key;
5423 	int found_type;
5424 	int i;
5425 
5426 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5427 		return 0;
5428 
5429 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5430 		btrfs_item_key_to_cpu(eb, &key, i);
5431 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5432 			continue;
5433 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5434 		found_type = btrfs_file_extent_type(eb, item);
5435 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5436 			continue;
5437 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5438 			continue;
5439 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5440 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5441 		__exclude_logged_extent(log, key.objectid, key.offset);
5442 	}
5443 
5444 	return 0;
5445 }
5446 
5447 /**
5448  * btrfs_update_reserved_bytes - update the block_group and space info counters
5449  * @cache:	The cache we are manipulating
5450  * @num_bytes:	The number of bytes in question
5451  * @reserve:	One of the reservation enums
5452  *
5453  * This is called by the allocator when it reserves space, or by somebody who is
5454  * freeing space that was never actually used on disk.  For example if you
5455  * reserve some space for a new leaf in transaction A and before transaction A
5456  * commits you free that leaf, you call this with reserve set to 0 in order to
5457  * clear the reservation.
5458  *
5459  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5460  * ENOSPC accounting.  For data we handle the reservation through clearing the
5461  * delalloc bits in the io_tree.  We have to do this since we could end up
5462  * allocating less disk space for the amount of data we have reserved in the
5463  * case of compression.
5464  *
5465  * If this is a reservation and the block group has become read only we cannot
5466  * make the reservation and return -EAGAIN, otherwise this function always
5467  * succeeds.
5468  */
5469 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5470 				       u64 num_bytes, int reserve)
5471 {
5472 	struct btrfs_space_info *space_info = cache->space_info;
5473 	int ret = 0;
5474 
5475 	spin_lock(&space_info->lock);
5476 	spin_lock(&cache->lock);
5477 	if (reserve != RESERVE_FREE) {
5478 		if (cache->ro) {
5479 			ret = -EAGAIN;
5480 		} else {
5481 			cache->reserved += num_bytes;
5482 			space_info->bytes_reserved += num_bytes;
5483 			if (reserve == RESERVE_ALLOC) {
5484 				trace_btrfs_space_reservation(cache->fs_info,
5485 						"space_info", space_info->flags,
5486 						num_bytes, 0);
5487 				space_info->bytes_may_use -= num_bytes;
5488 			}
5489 		}
5490 	} else {
5491 		if (cache->ro)
5492 			space_info->bytes_readonly += num_bytes;
5493 		cache->reserved -= num_bytes;
5494 		space_info->bytes_reserved -= num_bytes;
5495 	}
5496 	spin_unlock(&cache->lock);
5497 	spin_unlock(&space_info->lock);
5498 	return ret;
5499 }
5500 
5501 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5502 				struct btrfs_root *root)
5503 {
5504 	struct btrfs_fs_info *fs_info = root->fs_info;
5505 	struct btrfs_caching_control *next;
5506 	struct btrfs_caching_control *caching_ctl;
5507 	struct btrfs_block_group_cache *cache;
5508 	struct btrfs_space_info *space_info;
5509 
5510 	down_write(&fs_info->extent_commit_sem);
5511 
5512 	list_for_each_entry_safe(caching_ctl, next,
5513 				 &fs_info->caching_block_groups, list) {
5514 		cache = caching_ctl->block_group;
5515 		if (block_group_cache_done(cache)) {
5516 			cache->last_byte_to_unpin = (u64)-1;
5517 			list_del_init(&caching_ctl->list);
5518 			put_caching_control(caching_ctl);
5519 		} else {
5520 			cache->last_byte_to_unpin = caching_ctl->progress;
5521 		}
5522 	}
5523 
5524 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5525 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5526 	else
5527 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5528 
5529 	up_write(&fs_info->extent_commit_sem);
5530 
5531 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5532 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5533 
5534 	update_global_block_rsv(fs_info);
5535 }
5536 
5537 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5538 {
5539 	struct btrfs_fs_info *fs_info = root->fs_info;
5540 	struct btrfs_block_group_cache *cache = NULL;
5541 	struct btrfs_space_info *space_info;
5542 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5543 	u64 len;
5544 	bool readonly;
5545 
5546 	while (start <= end) {
5547 		readonly = false;
5548 		if (!cache ||
5549 		    start >= cache->key.objectid + cache->key.offset) {
5550 			if (cache)
5551 				btrfs_put_block_group(cache);
5552 			cache = btrfs_lookup_block_group(fs_info, start);
5553 			BUG_ON(!cache); /* Logic error */
5554 		}
5555 
5556 		len = cache->key.objectid + cache->key.offset - start;
5557 		len = min(len, end + 1 - start);
5558 
5559 		if (start < cache->last_byte_to_unpin) {
5560 			len = min(len, cache->last_byte_to_unpin - start);
5561 			btrfs_add_free_space(cache, start, len);
5562 		}
5563 
5564 		start += len;
5565 		space_info = cache->space_info;
5566 
5567 		spin_lock(&space_info->lock);
5568 		spin_lock(&cache->lock);
5569 		cache->pinned -= len;
5570 		space_info->bytes_pinned -= len;
5571 		if (cache->ro) {
5572 			space_info->bytes_readonly += len;
5573 			readonly = true;
5574 		}
5575 		spin_unlock(&cache->lock);
5576 		if (!readonly && global_rsv->space_info == space_info) {
5577 			spin_lock(&global_rsv->lock);
5578 			if (!global_rsv->full) {
5579 				len = min(len, global_rsv->size -
5580 					  global_rsv->reserved);
5581 				global_rsv->reserved += len;
5582 				space_info->bytes_may_use += len;
5583 				if (global_rsv->reserved >= global_rsv->size)
5584 					global_rsv->full = 1;
5585 			}
5586 			spin_unlock(&global_rsv->lock);
5587 		}
5588 		spin_unlock(&space_info->lock);
5589 	}
5590 
5591 	if (cache)
5592 		btrfs_put_block_group(cache);
5593 	return 0;
5594 }
5595 
5596 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5597 			       struct btrfs_root *root)
5598 {
5599 	struct btrfs_fs_info *fs_info = root->fs_info;
5600 	struct extent_io_tree *unpin;
5601 	u64 start;
5602 	u64 end;
5603 	int ret;
5604 
5605 	if (trans->aborted)
5606 		return 0;
5607 
5608 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5609 		unpin = &fs_info->freed_extents[1];
5610 	else
5611 		unpin = &fs_info->freed_extents[0];
5612 
5613 	while (1) {
5614 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5615 					    EXTENT_DIRTY, NULL);
5616 		if (ret)
5617 			break;
5618 
5619 		if (btrfs_test_opt(root, DISCARD))
5620 			ret = btrfs_discard_extent(root, start,
5621 						   end + 1 - start, NULL);
5622 
5623 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5624 		unpin_extent_range(root, start, end);
5625 		cond_resched();
5626 	}
5627 
5628 	return 0;
5629 }
5630 
5631 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5632 			     u64 owner, u64 root_objectid)
5633 {
5634 	struct btrfs_space_info *space_info;
5635 	u64 flags;
5636 
5637 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5638 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5639 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5640 		else
5641 			flags = BTRFS_BLOCK_GROUP_METADATA;
5642 	} else {
5643 		flags = BTRFS_BLOCK_GROUP_DATA;
5644 	}
5645 
5646 	space_info = __find_space_info(fs_info, flags);
5647 	BUG_ON(!space_info); /* Logic bug */
5648 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5649 }
5650 
5651 
5652 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5653 				struct btrfs_root *root,
5654 				u64 bytenr, u64 num_bytes, u64 parent,
5655 				u64 root_objectid, u64 owner_objectid,
5656 				u64 owner_offset, int refs_to_drop,
5657 				struct btrfs_delayed_extent_op *extent_op)
5658 {
5659 	struct btrfs_key key;
5660 	struct btrfs_path *path;
5661 	struct btrfs_fs_info *info = root->fs_info;
5662 	struct btrfs_root *extent_root = info->extent_root;
5663 	struct extent_buffer *leaf;
5664 	struct btrfs_extent_item *ei;
5665 	struct btrfs_extent_inline_ref *iref;
5666 	int ret;
5667 	int is_data;
5668 	int extent_slot = 0;
5669 	int found_extent = 0;
5670 	int num_to_del = 1;
5671 	u32 item_size;
5672 	u64 refs;
5673 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5674 						 SKINNY_METADATA);
5675 
5676 	path = btrfs_alloc_path();
5677 	if (!path)
5678 		return -ENOMEM;
5679 
5680 	path->reada = 1;
5681 	path->leave_spinning = 1;
5682 
5683 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5684 	BUG_ON(!is_data && refs_to_drop != 1);
5685 
5686 	if (is_data)
5687 		skinny_metadata = 0;
5688 
5689 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5690 				    bytenr, num_bytes, parent,
5691 				    root_objectid, owner_objectid,
5692 				    owner_offset);
5693 	if (ret == 0) {
5694 		extent_slot = path->slots[0];
5695 		while (extent_slot >= 0) {
5696 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5697 					      extent_slot);
5698 			if (key.objectid != bytenr)
5699 				break;
5700 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5701 			    key.offset == num_bytes) {
5702 				found_extent = 1;
5703 				break;
5704 			}
5705 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5706 			    key.offset == owner_objectid) {
5707 				found_extent = 1;
5708 				break;
5709 			}
5710 			if (path->slots[0] - extent_slot > 5)
5711 				break;
5712 			extent_slot--;
5713 		}
5714 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5715 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5716 		if (found_extent && item_size < sizeof(*ei))
5717 			found_extent = 0;
5718 #endif
5719 		if (!found_extent) {
5720 			BUG_ON(iref);
5721 			ret = remove_extent_backref(trans, extent_root, path,
5722 						    NULL, refs_to_drop,
5723 						    is_data);
5724 			if (ret) {
5725 				btrfs_abort_transaction(trans, extent_root, ret);
5726 				goto out;
5727 			}
5728 			btrfs_release_path(path);
5729 			path->leave_spinning = 1;
5730 
5731 			key.objectid = bytenr;
5732 			key.type = BTRFS_EXTENT_ITEM_KEY;
5733 			key.offset = num_bytes;
5734 
5735 			if (!is_data && skinny_metadata) {
5736 				key.type = BTRFS_METADATA_ITEM_KEY;
5737 				key.offset = owner_objectid;
5738 			}
5739 
5740 			ret = btrfs_search_slot(trans, extent_root,
5741 						&key, path, -1, 1);
5742 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5743 				/*
5744 				 * Couldn't find our skinny metadata item,
5745 				 * see if we have ye olde extent item.
5746 				 */
5747 				path->slots[0]--;
5748 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5749 						      path->slots[0]);
5750 				if (key.objectid == bytenr &&
5751 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5752 				    key.offset == num_bytes)
5753 					ret = 0;
5754 			}
5755 
5756 			if (ret > 0 && skinny_metadata) {
5757 				skinny_metadata = false;
5758 				key.type = BTRFS_EXTENT_ITEM_KEY;
5759 				key.offset = num_bytes;
5760 				btrfs_release_path(path);
5761 				ret = btrfs_search_slot(trans, extent_root,
5762 							&key, path, -1, 1);
5763 			}
5764 
5765 			if (ret) {
5766 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5767 					ret, bytenr);
5768 				if (ret > 0)
5769 					btrfs_print_leaf(extent_root,
5770 							 path->nodes[0]);
5771 			}
5772 			if (ret < 0) {
5773 				btrfs_abort_transaction(trans, extent_root, ret);
5774 				goto out;
5775 			}
5776 			extent_slot = path->slots[0];
5777 		}
5778 	} else if (WARN_ON(ret == -ENOENT)) {
5779 		btrfs_print_leaf(extent_root, path->nodes[0]);
5780 		btrfs_err(info,
5781 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5782 			bytenr, parent, root_objectid, owner_objectid,
5783 			owner_offset);
5784 	} else {
5785 		btrfs_abort_transaction(trans, extent_root, ret);
5786 		goto out;
5787 	}
5788 
5789 	leaf = path->nodes[0];
5790 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5791 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5792 	if (item_size < sizeof(*ei)) {
5793 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5794 		ret = convert_extent_item_v0(trans, extent_root, path,
5795 					     owner_objectid, 0);
5796 		if (ret < 0) {
5797 			btrfs_abort_transaction(trans, extent_root, ret);
5798 			goto out;
5799 		}
5800 
5801 		btrfs_release_path(path);
5802 		path->leave_spinning = 1;
5803 
5804 		key.objectid = bytenr;
5805 		key.type = BTRFS_EXTENT_ITEM_KEY;
5806 		key.offset = num_bytes;
5807 
5808 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5809 					-1, 1);
5810 		if (ret) {
5811 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5812 				ret, bytenr);
5813 			btrfs_print_leaf(extent_root, path->nodes[0]);
5814 		}
5815 		if (ret < 0) {
5816 			btrfs_abort_transaction(trans, extent_root, ret);
5817 			goto out;
5818 		}
5819 
5820 		extent_slot = path->slots[0];
5821 		leaf = path->nodes[0];
5822 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5823 	}
5824 #endif
5825 	BUG_ON(item_size < sizeof(*ei));
5826 	ei = btrfs_item_ptr(leaf, extent_slot,
5827 			    struct btrfs_extent_item);
5828 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5829 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5830 		struct btrfs_tree_block_info *bi;
5831 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5832 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5833 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5834 	}
5835 
5836 	refs = btrfs_extent_refs(leaf, ei);
5837 	if (refs < refs_to_drop) {
5838 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5839 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5840 		ret = -EINVAL;
5841 		btrfs_abort_transaction(trans, extent_root, ret);
5842 		goto out;
5843 	}
5844 	refs -= refs_to_drop;
5845 
5846 	if (refs > 0) {
5847 		if (extent_op)
5848 			__run_delayed_extent_op(extent_op, leaf, ei);
5849 		/*
5850 		 * In the case of inline back ref, reference count will
5851 		 * be updated by remove_extent_backref
5852 		 */
5853 		if (iref) {
5854 			BUG_ON(!found_extent);
5855 		} else {
5856 			btrfs_set_extent_refs(leaf, ei, refs);
5857 			btrfs_mark_buffer_dirty(leaf);
5858 		}
5859 		if (found_extent) {
5860 			ret = remove_extent_backref(trans, extent_root, path,
5861 						    iref, refs_to_drop,
5862 						    is_data);
5863 			if (ret) {
5864 				btrfs_abort_transaction(trans, extent_root, ret);
5865 				goto out;
5866 			}
5867 		}
5868 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5869 				 root_objectid);
5870 	} else {
5871 		if (found_extent) {
5872 			BUG_ON(is_data && refs_to_drop !=
5873 			       extent_data_ref_count(root, path, iref));
5874 			if (iref) {
5875 				BUG_ON(path->slots[0] != extent_slot);
5876 			} else {
5877 				BUG_ON(path->slots[0] != extent_slot + 1);
5878 				path->slots[0] = extent_slot;
5879 				num_to_del = 2;
5880 			}
5881 		}
5882 
5883 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5884 				      num_to_del);
5885 		if (ret) {
5886 			btrfs_abort_transaction(trans, extent_root, ret);
5887 			goto out;
5888 		}
5889 		btrfs_release_path(path);
5890 
5891 		if (is_data) {
5892 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5893 			if (ret) {
5894 				btrfs_abort_transaction(trans, extent_root, ret);
5895 				goto out;
5896 			}
5897 		}
5898 
5899 		ret = update_block_group(root, bytenr, num_bytes, 0);
5900 		if (ret) {
5901 			btrfs_abort_transaction(trans, extent_root, ret);
5902 			goto out;
5903 		}
5904 	}
5905 out:
5906 	btrfs_free_path(path);
5907 	return ret;
5908 }
5909 
5910 /*
5911  * when we free an block, it is possible (and likely) that we free the last
5912  * delayed ref for that extent as well.  This searches the delayed ref tree for
5913  * a given extent, and if there are no other delayed refs to be processed, it
5914  * removes it from the tree.
5915  */
5916 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5917 				      struct btrfs_root *root, u64 bytenr)
5918 {
5919 	struct btrfs_delayed_ref_head *head;
5920 	struct btrfs_delayed_ref_root *delayed_refs;
5921 	struct btrfs_delayed_ref_node *ref;
5922 	struct rb_node *node;
5923 	int ret = 0;
5924 
5925 	delayed_refs = &trans->transaction->delayed_refs;
5926 	spin_lock(&delayed_refs->lock);
5927 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5928 	if (!head)
5929 		goto out;
5930 
5931 	node = rb_prev(&head->node.rb_node);
5932 	if (!node)
5933 		goto out;
5934 
5935 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5936 
5937 	/* there are still entries for this ref, we can't drop it */
5938 	if (ref->bytenr == bytenr)
5939 		goto out;
5940 
5941 	if (head->extent_op) {
5942 		if (!head->must_insert_reserved)
5943 			goto out;
5944 		btrfs_free_delayed_extent_op(head->extent_op);
5945 		head->extent_op = NULL;
5946 	}
5947 
5948 	/*
5949 	 * waiting for the lock here would deadlock.  If someone else has it
5950 	 * locked they are already in the process of dropping it anyway
5951 	 */
5952 	if (!mutex_trylock(&head->mutex))
5953 		goto out;
5954 
5955 	/*
5956 	 * at this point we have a head with no other entries.  Go
5957 	 * ahead and process it.
5958 	 */
5959 	head->node.in_tree = 0;
5960 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5961 
5962 	delayed_refs->num_entries--;
5963 
5964 	/*
5965 	 * we don't take a ref on the node because we're removing it from the
5966 	 * tree, so we just steal the ref the tree was holding.
5967 	 */
5968 	delayed_refs->num_heads--;
5969 	if (list_empty(&head->cluster))
5970 		delayed_refs->num_heads_ready--;
5971 
5972 	list_del_init(&head->cluster);
5973 	spin_unlock(&delayed_refs->lock);
5974 
5975 	BUG_ON(head->extent_op);
5976 	if (head->must_insert_reserved)
5977 		ret = 1;
5978 
5979 	mutex_unlock(&head->mutex);
5980 	btrfs_put_delayed_ref(&head->node);
5981 	return ret;
5982 out:
5983 	spin_unlock(&delayed_refs->lock);
5984 	return 0;
5985 }
5986 
5987 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5988 			   struct btrfs_root *root,
5989 			   struct extent_buffer *buf,
5990 			   u64 parent, int last_ref)
5991 {
5992 	struct btrfs_block_group_cache *cache = NULL;
5993 	int pin = 1;
5994 	int ret;
5995 
5996 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5997 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5998 					buf->start, buf->len,
5999 					parent, root->root_key.objectid,
6000 					btrfs_header_level(buf),
6001 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6002 		BUG_ON(ret); /* -ENOMEM */
6003 	}
6004 
6005 	if (!last_ref)
6006 		return;
6007 
6008 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6009 
6010 	if (btrfs_header_generation(buf) == trans->transid) {
6011 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6012 			ret = check_ref_cleanup(trans, root, buf->start);
6013 			if (!ret)
6014 				goto out;
6015 		}
6016 
6017 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6018 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6019 			goto out;
6020 		}
6021 
6022 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6023 
6024 		btrfs_add_free_space(cache, buf->start, buf->len);
6025 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6026 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6027 		pin = 0;
6028 	}
6029 out:
6030 	if (pin)
6031 		add_pinned_bytes(root->fs_info, buf->len,
6032 				 btrfs_header_level(buf),
6033 				 root->root_key.objectid);
6034 
6035 	/*
6036 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6037 	 * anymore.
6038 	 */
6039 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6040 	btrfs_put_block_group(cache);
6041 }
6042 
6043 /* Can return -ENOMEM */
6044 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6045 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6046 		      u64 owner, u64 offset, int for_cow)
6047 {
6048 	int ret;
6049 	struct btrfs_fs_info *fs_info = root->fs_info;
6050 
6051 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6052 
6053 	/*
6054 	 * tree log blocks never actually go into the extent allocation
6055 	 * tree, just update pinning info and exit early.
6056 	 */
6057 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6058 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6059 		/* unlocks the pinned mutex */
6060 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6061 		ret = 0;
6062 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6063 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6064 					num_bytes,
6065 					parent, root_objectid, (int)owner,
6066 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6067 	} else {
6068 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6069 						num_bytes,
6070 						parent, root_objectid, owner,
6071 						offset, BTRFS_DROP_DELAYED_REF,
6072 						NULL, for_cow);
6073 	}
6074 	return ret;
6075 }
6076 
6077 static u64 stripe_align(struct btrfs_root *root,
6078 			struct btrfs_block_group_cache *cache,
6079 			u64 val, u64 num_bytes)
6080 {
6081 	u64 ret = ALIGN(val, root->stripesize);
6082 	return ret;
6083 }
6084 
6085 /*
6086  * when we wait for progress in the block group caching, its because
6087  * our allocation attempt failed at least once.  So, we must sleep
6088  * and let some progress happen before we try again.
6089  *
6090  * This function will sleep at least once waiting for new free space to
6091  * show up, and then it will check the block group free space numbers
6092  * for our min num_bytes.  Another option is to have it go ahead
6093  * and look in the rbtree for a free extent of a given size, but this
6094  * is a good start.
6095  *
6096  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6097  * any of the information in this block group.
6098  */
6099 static noinline void
6100 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6101 				u64 num_bytes)
6102 {
6103 	struct btrfs_caching_control *caching_ctl;
6104 
6105 	caching_ctl = get_caching_control(cache);
6106 	if (!caching_ctl)
6107 		return;
6108 
6109 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6110 		   (cache->free_space_ctl->free_space >= num_bytes));
6111 
6112 	put_caching_control(caching_ctl);
6113 }
6114 
6115 static noinline int
6116 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6117 {
6118 	struct btrfs_caching_control *caching_ctl;
6119 	int ret = 0;
6120 
6121 	caching_ctl = get_caching_control(cache);
6122 	if (!caching_ctl)
6123 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6124 
6125 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6126 	if (cache->cached == BTRFS_CACHE_ERROR)
6127 		ret = -EIO;
6128 	put_caching_control(caching_ctl);
6129 	return ret;
6130 }
6131 
6132 int __get_raid_index(u64 flags)
6133 {
6134 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6135 		return BTRFS_RAID_RAID10;
6136 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6137 		return BTRFS_RAID_RAID1;
6138 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6139 		return BTRFS_RAID_DUP;
6140 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6141 		return BTRFS_RAID_RAID0;
6142 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6143 		return BTRFS_RAID_RAID5;
6144 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6145 		return BTRFS_RAID_RAID6;
6146 
6147 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6148 }
6149 
6150 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6151 {
6152 	return __get_raid_index(cache->flags);
6153 }
6154 
6155 enum btrfs_loop_type {
6156 	LOOP_CACHING_NOWAIT = 0,
6157 	LOOP_CACHING_WAIT = 1,
6158 	LOOP_ALLOC_CHUNK = 2,
6159 	LOOP_NO_EMPTY_SIZE = 3,
6160 };
6161 
6162 /*
6163  * walks the btree of allocated extents and find a hole of a given size.
6164  * The key ins is changed to record the hole:
6165  * ins->objectid == start position
6166  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6167  * ins->offset == the size of the hole.
6168  * Any available blocks before search_start are skipped.
6169  *
6170  * If there is no suitable free space, we will record the max size of
6171  * the free space extent currently.
6172  */
6173 static noinline int find_free_extent(struct btrfs_root *orig_root,
6174 				     u64 num_bytes, u64 empty_size,
6175 				     u64 hint_byte, struct btrfs_key *ins,
6176 				     u64 flags)
6177 {
6178 	int ret = 0;
6179 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6180 	struct btrfs_free_cluster *last_ptr = NULL;
6181 	struct btrfs_block_group_cache *block_group = NULL;
6182 	struct btrfs_block_group_cache *used_block_group;
6183 	u64 search_start = 0;
6184 	u64 max_extent_size = 0;
6185 	int empty_cluster = 2 * 1024 * 1024;
6186 	struct btrfs_space_info *space_info;
6187 	int loop = 0;
6188 	int index = __get_raid_index(flags);
6189 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6190 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6191 	bool found_uncached_bg = false;
6192 	bool failed_cluster_refill = false;
6193 	bool failed_alloc = false;
6194 	bool use_cluster = true;
6195 	bool have_caching_bg = false;
6196 
6197 	WARN_ON(num_bytes < root->sectorsize);
6198 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6199 	ins->objectid = 0;
6200 	ins->offset = 0;
6201 
6202 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6203 
6204 	space_info = __find_space_info(root->fs_info, flags);
6205 	if (!space_info) {
6206 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6207 		return -ENOSPC;
6208 	}
6209 
6210 	/*
6211 	 * If the space info is for both data and metadata it means we have a
6212 	 * small filesystem and we can't use the clustering stuff.
6213 	 */
6214 	if (btrfs_mixed_space_info(space_info))
6215 		use_cluster = false;
6216 
6217 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6218 		last_ptr = &root->fs_info->meta_alloc_cluster;
6219 		if (!btrfs_test_opt(root, SSD))
6220 			empty_cluster = 64 * 1024;
6221 	}
6222 
6223 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6224 	    btrfs_test_opt(root, SSD)) {
6225 		last_ptr = &root->fs_info->data_alloc_cluster;
6226 	}
6227 
6228 	if (last_ptr) {
6229 		spin_lock(&last_ptr->lock);
6230 		if (last_ptr->block_group)
6231 			hint_byte = last_ptr->window_start;
6232 		spin_unlock(&last_ptr->lock);
6233 	}
6234 
6235 	search_start = max(search_start, first_logical_byte(root, 0));
6236 	search_start = max(search_start, hint_byte);
6237 
6238 	if (!last_ptr)
6239 		empty_cluster = 0;
6240 
6241 	if (search_start == hint_byte) {
6242 		block_group = btrfs_lookup_block_group(root->fs_info,
6243 						       search_start);
6244 		used_block_group = block_group;
6245 		/*
6246 		 * we don't want to use the block group if it doesn't match our
6247 		 * allocation bits, or if its not cached.
6248 		 *
6249 		 * However if we are re-searching with an ideal block group
6250 		 * picked out then we don't care that the block group is cached.
6251 		 */
6252 		if (block_group && block_group_bits(block_group, flags) &&
6253 		    block_group->cached != BTRFS_CACHE_NO) {
6254 			down_read(&space_info->groups_sem);
6255 			if (list_empty(&block_group->list) ||
6256 			    block_group->ro) {
6257 				/*
6258 				 * someone is removing this block group,
6259 				 * we can't jump into the have_block_group
6260 				 * target because our list pointers are not
6261 				 * valid
6262 				 */
6263 				btrfs_put_block_group(block_group);
6264 				up_read(&space_info->groups_sem);
6265 			} else {
6266 				index = get_block_group_index(block_group);
6267 				goto have_block_group;
6268 			}
6269 		} else if (block_group) {
6270 			btrfs_put_block_group(block_group);
6271 		}
6272 	}
6273 search:
6274 	have_caching_bg = false;
6275 	down_read(&space_info->groups_sem);
6276 	list_for_each_entry(block_group, &space_info->block_groups[index],
6277 			    list) {
6278 		u64 offset;
6279 		int cached;
6280 
6281 		used_block_group = block_group;
6282 		btrfs_get_block_group(block_group);
6283 		search_start = block_group->key.objectid;
6284 
6285 		/*
6286 		 * this can happen if we end up cycling through all the
6287 		 * raid types, but we want to make sure we only allocate
6288 		 * for the proper type.
6289 		 */
6290 		if (!block_group_bits(block_group, flags)) {
6291 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6292 				BTRFS_BLOCK_GROUP_RAID1 |
6293 				BTRFS_BLOCK_GROUP_RAID5 |
6294 				BTRFS_BLOCK_GROUP_RAID6 |
6295 				BTRFS_BLOCK_GROUP_RAID10;
6296 
6297 			/*
6298 			 * if they asked for extra copies and this block group
6299 			 * doesn't provide them, bail.  This does allow us to
6300 			 * fill raid0 from raid1.
6301 			 */
6302 			if ((flags & extra) && !(block_group->flags & extra))
6303 				goto loop;
6304 		}
6305 
6306 have_block_group:
6307 		cached = block_group_cache_done(block_group);
6308 		if (unlikely(!cached)) {
6309 			found_uncached_bg = true;
6310 			ret = cache_block_group(block_group, 0);
6311 			BUG_ON(ret < 0);
6312 			ret = 0;
6313 		}
6314 
6315 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6316 			goto loop;
6317 		if (unlikely(block_group->ro))
6318 			goto loop;
6319 
6320 		/*
6321 		 * Ok we want to try and use the cluster allocator, so
6322 		 * lets look there
6323 		 */
6324 		if (last_ptr) {
6325 			unsigned long aligned_cluster;
6326 			/*
6327 			 * the refill lock keeps out other
6328 			 * people trying to start a new cluster
6329 			 */
6330 			spin_lock(&last_ptr->refill_lock);
6331 			used_block_group = last_ptr->block_group;
6332 			if (used_block_group != block_group &&
6333 			    (!used_block_group ||
6334 			     used_block_group->ro ||
6335 			     !block_group_bits(used_block_group, flags))) {
6336 				used_block_group = block_group;
6337 				goto refill_cluster;
6338 			}
6339 
6340 			if (used_block_group != block_group)
6341 				btrfs_get_block_group(used_block_group);
6342 
6343 			offset = btrfs_alloc_from_cluster(used_block_group,
6344 						last_ptr,
6345 						num_bytes,
6346 						used_block_group->key.objectid,
6347 						&max_extent_size);
6348 			if (offset) {
6349 				/* we have a block, we're done */
6350 				spin_unlock(&last_ptr->refill_lock);
6351 				trace_btrfs_reserve_extent_cluster(root,
6352 					block_group, search_start, num_bytes);
6353 				goto checks;
6354 			}
6355 
6356 			WARN_ON(last_ptr->block_group != used_block_group);
6357 			if (used_block_group != block_group) {
6358 				btrfs_put_block_group(used_block_group);
6359 				used_block_group = block_group;
6360 			}
6361 refill_cluster:
6362 			BUG_ON(used_block_group != block_group);
6363 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6364 			 * set up a new clusters, so lets just skip it
6365 			 * and let the allocator find whatever block
6366 			 * it can find.  If we reach this point, we
6367 			 * will have tried the cluster allocator
6368 			 * plenty of times and not have found
6369 			 * anything, so we are likely way too
6370 			 * fragmented for the clustering stuff to find
6371 			 * anything.
6372 			 *
6373 			 * However, if the cluster is taken from the
6374 			 * current block group, release the cluster
6375 			 * first, so that we stand a better chance of
6376 			 * succeeding in the unclustered
6377 			 * allocation.  */
6378 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6379 			    last_ptr->block_group != block_group) {
6380 				spin_unlock(&last_ptr->refill_lock);
6381 				goto unclustered_alloc;
6382 			}
6383 
6384 			/*
6385 			 * this cluster didn't work out, free it and
6386 			 * start over
6387 			 */
6388 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6389 
6390 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6391 				spin_unlock(&last_ptr->refill_lock);
6392 				goto unclustered_alloc;
6393 			}
6394 
6395 			aligned_cluster = max_t(unsigned long,
6396 						empty_cluster + empty_size,
6397 					      block_group->full_stripe_len);
6398 
6399 			/* allocate a cluster in this block group */
6400 			ret = btrfs_find_space_cluster(root, block_group,
6401 						       last_ptr, search_start,
6402 						       num_bytes,
6403 						       aligned_cluster);
6404 			if (ret == 0) {
6405 				/*
6406 				 * now pull our allocation out of this
6407 				 * cluster
6408 				 */
6409 				offset = btrfs_alloc_from_cluster(block_group,
6410 							last_ptr,
6411 							num_bytes,
6412 							search_start,
6413 							&max_extent_size);
6414 				if (offset) {
6415 					/* we found one, proceed */
6416 					spin_unlock(&last_ptr->refill_lock);
6417 					trace_btrfs_reserve_extent_cluster(root,
6418 						block_group, search_start,
6419 						num_bytes);
6420 					goto checks;
6421 				}
6422 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6423 				   && !failed_cluster_refill) {
6424 				spin_unlock(&last_ptr->refill_lock);
6425 
6426 				failed_cluster_refill = true;
6427 				wait_block_group_cache_progress(block_group,
6428 				       num_bytes + empty_cluster + empty_size);
6429 				goto have_block_group;
6430 			}
6431 
6432 			/*
6433 			 * at this point we either didn't find a cluster
6434 			 * or we weren't able to allocate a block from our
6435 			 * cluster.  Free the cluster we've been trying
6436 			 * to use, and go to the next block group
6437 			 */
6438 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6439 			spin_unlock(&last_ptr->refill_lock);
6440 			goto loop;
6441 		}
6442 
6443 unclustered_alloc:
6444 		spin_lock(&block_group->free_space_ctl->tree_lock);
6445 		if (cached &&
6446 		    block_group->free_space_ctl->free_space <
6447 		    num_bytes + empty_cluster + empty_size) {
6448 			if (block_group->free_space_ctl->free_space >
6449 			    max_extent_size)
6450 				max_extent_size =
6451 					block_group->free_space_ctl->free_space;
6452 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6453 			goto loop;
6454 		}
6455 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6456 
6457 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6458 						    num_bytes, empty_size,
6459 						    &max_extent_size);
6460 		/*
6461 		 * If we didn't find a chunk, and we haven't failed on this
6462 		 * block group before, and this block group is in the middle of
6463 		 * caching and we are ok with waiting, then go ahead and wait
6464 		 * for progress to be made, and set failed_alloc to true.
6465 		 *
6466 		 * If failed_alloc is true then we've already waited on this
6467 		 * block group once and should move on to the next block group.
6468 		 */
6469 		if (!offset && !failed_alloc && !cached &&
6470 		    loop > LOOP_CACHING_NOWAIT) {
6471 			wait_block_group_cache_progress(block_group,
6472 						num_bytes + empty_size);
6473 			failed_alloc = true;
6474 			goto have_block_group;
6475 		} else if (!offset) {
6476 			if (!cached)
6477 				have_caching_bg = true;
6478 			goto loop;
6479 		}
6480 checks:
6481 		search_start = stripe_align(root, used_block_group,
6482 					    offset, num_bytes);
6483 
6484 		/* move on to the next group */
6485 		if (search_start + num_bytes >
6486 		    used_block_group->key.objectid + used_block_group->key.offset) {
6487 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6488 			goto loop;
6489 		}
6490 
6491 		if (offset < search_start)
6492 			btrfs_add_free_space(used_block_group, offset,
6493 					     search_start - offset);
6494 		BUG_ON(offset > search_start);
6495 
6496 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6497 						  alloc_type);
6498 		if (ret == -EAGAIN) {
6499 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6500 			goto loop;
6501 		}
6502 
6503 		/* we are all good, lets return */
6504 		ins->objectid = search_start;
6505 		ins->offset = num_bytes;
6506 
6507 		trace_btrfs_reserve_extent(orig_root, block_group,
6508 					   search_start, num_bytes);
6509 		if (used_block_group != block_group)
6510 			btrfs_put_block_group(used_block_group);
6511 		btrfs_put_block_group(block_group);
6512 		break;
6513 loop:
6514 		failed_cluster_refill = false;
6515 		failed_alloc = false;
6516 		BUG_ON(index != get_block_group_index(block_group));
6517 		if (used_block_group != block_group)
6518 			btrfs_put_block_group(used_block_group);
6519 		btrfs_put_block_group(block_group);
6520 	}
6521 	up_read(&space_info->groups_sem);
6522 
6523 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6524 		goto search;
6525 
6526 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6527 		goto search;
6528 
6529 	/*
6530 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6531 	 *			caching kthreads as we move along
6532 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6533 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6534 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6535 	 *			again
6536 	 */
6537 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6538 		index = 0;
6539 		loop++;
6540 		if (loop == LOOP_ALLOC_CHUNK) {
6541 			struct btrfs_trans_handle *trans;
6542 
6543 			trans = btrfs_join_transaction(root);
6544 			if (IS_ERR(trans)) {
6545 				ret = PTR_ERR(trans);
6546 				goto out;
6547 			}
6548 
6549 			ret = do_chunk_alloc(trans, root, flags,
6550 					     CHUNK_ALLOC_FORCE);
6551 			/*
6552 			 * Do not bail out on ENOSPC since we
6553 			 * can do more things.
6554 			 */
6555 			if (ret < 0 && ret != -ENOSPC)
6556 				btrfs_abort_transaction(trans,
6557 							root, ret);
6558 			else
6559 				ret = 0;
6560 			btrfs_end_transaction(trans, root);
6561 			if (ret)
6562 				goto out;
6563 		}
6564 
6565 		if (loop == LOOP_NO_EMPTY_SIZE) {
6566 			empty_size = 0;
6567 			empty_cluster = 0;
6568 		}
6569 
6570 		goto search;
6571 	} else if (!ins->objectid) {
6572 		ret = -ENOSPC;
6573 	} else if (ins->objectid) {
6574 		ret = 0;
6575 	}
6576 out:
6577 	if (ret == -ENOSPC)
6578 		ins->offset = max_extent_size;
6579 	return ret;
6580 }
6581 
6582 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6583 			    int dump_block_groups)
6584 {
6585 	struct btrfs_block_group_cache *cache;
6586 	int index = 0;
6587 
6588 	spin_lock(&info->lock);
6589 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6590 	       info->flags,
6591 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6592 	       info->bytes_reserved - info->bytes_readonly,
6593 	       (info->full) ? "" : "not ");
6594 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6595 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6596 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6597 	       info->bytes_reserved, info->bytes_may_use,
6598 	       info->bytes_readonly);
6599 	spin_unlock(&info->lock);
6600 
6601 	if (!dump_block_groups)
6602 		return;
6603 
6604 	down_read(&info->groups_sem);
6605 again:
6606 	list_for_each_entry(cache, &info->block_groups[index], list) {
6607 		spin_lock(&cache->lock);
6608 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6609 		       cache->key.objectid, cache->key.offset,
6610 		       btrfs_block_group_used(&cache->item), cache->pinned,
6611 		       cache->reserved, cache->ro ? "[readonly]" : "");
6612 		btrfs_dump_free_space(cache, bytes);
6613 		spin_unlock(&cache->lock);
6614 	}
6615 	if (++index < BTRFS_NR_RAID_TYPES)
6616 		goto again;
6617 	up_read(&info->groups_sem);
6618 }
6619 
6620 int btrfs_reserve_extent(struct btrfs_root *root,
6621 			 u64 num_bytes, u64 min_alloc_size,
6622 			 u64 empty_size, u64 hint_byte,
6623 			 struct btrfs_key *ins, int is_data)
6624 {
6625 	bool final_tried = false;
6626 	u64 flags;
6627 	int ret;
6628 
6629 	flags = btrfs_get_alloc_profile(root, is_data);
6630 again:
6631 	WARN_ON(num_bytes < root->sectorsize);
6632 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6633 			       flags);
6634 
6635 	if (ret == -ENOSPC) {
6636 		if (!final_tried && ins->offset) {
6637 			num_bytes = min(num_bytes >> 1, ins->offset);
6638 			num_bytes = round_down(num_bytes, root->sectorsize);
6639 			num_bytes = max(num_bytes, min_alloc_size);
6640 			if (num_bytes == min_alloc_size)
6641 				final_tried = true;
6642 			goto again;
6643 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6644 			struct btrfs_space_info *sinfo;
6645 
6646 			sinfo = __find_space_info(root->fs_info, flags);
6647 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6648 				flags, num_bytes);
6649 			if (sinfo)
6650 				dump_space_info(sinfo, num_bytes, 1);
6651 		}
6652 	}
6653 
6654 	return ret;
6655 }
6656 
6657 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6658 					u64 start, u64 len, int pin)
6659 {
6660 	struct btrfs_block_group_cache *cache;
6661 	int ret = 0;
6662 
6663 	cache = btrfs_lookup_block_group(root->fs_info, start);
6664 	if (!cache) {
6665 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6666 			start);
6667 		return -ENOSPC;
6668 	}
6669 
6670 	if (btrfs_test_opt(root, DISCARD))
6671 		ret = btrfs_discard_extent(root, start, len, NULL);
6672 
6673 	if (pin)
6674 		pin_down_extent(root, cache, start, len, 1);
6675 	else {
6676 		btrfs_add_free_space(cache, start, len);
6677 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6678 	}
6679 	btrfs_put_block_group(cache);
6680 
6681 	trace_btrfs_reserved_extent_free(root, start, len);
6682 
6683 	return ret;
6684 }
6685 
6686 int btrfs_free_reserved_extent(struct btrfs_root *root,
6687 					u64 start, u64 len)
6688 {
6689 	return __btrfs_free_reserved_extent(root, start, len, 0);
6690 }
6691 
6692 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6693 				       u64 start, u64 len)
6694 {
6695 	return __btrfs_free_reserved_extent(root, start, len, 1);
6696 }
6697 
6698 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6699 				      struct btrfs_root *root,
6700 				      u64 parent, u64 root_objectid,
6701 				      u64 flags, u64 owner, u64 offset,
6702 				      struct btrfs_key *ins, int ref_mod)
6703 {
6704 	int ret;
6705 	struct btrfs_fs_info *fs_info = root->fs_info;
6706 	struct btrfs_extent_item *extent_item;
6707 	struct btrfs_extent_inline_ref *iref;
6708 	struct btrfs_path *path;
6709 	struct extent_buffer *leaf;
6710 	int type;
6711 	u32 size;
6712 
6713 	if (parent > 0)
6714 		type = BTRFS_SHARED_DATA_REF_KEY;
6715 	else
6716 		type = BTRFS_EXTENT_DATA_REF_KEY;
6717 
6718 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6719 
6720 	path = btrfs_alloc_path();
6721 	if (!path)
6722 		return -ENOMEM;
6723 
6724 	path->leave_spinning = 1;
6725 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6726 				      ins, size);
6727 	if (ret) {
6728 		btrfs_free_path(path);
6729 		return ret;
6730 	}
6731 
6732 	leaf = path->nodes[0];
6733 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6734 				     struct btrfs_extent_item);
6735 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6736 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6737 	btrfs_set_extent_flags(leaf, extent_item,
6738 			       flags | BTRFS_EXTENT_FLAG_DATA);
6739 
6740 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6741 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6742 	if (parent > 0) {
6743 		struct btrfs_shared_data_ref *ref;
6744 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6745 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6746 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6747 	} else {
6748 		struct btrfs_extent_data_ref *ref;
6749 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6750 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6751 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6752 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6753 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6754 	}
6755 
6756 	btrfs_mark_buffer_dirty(path->nodes[0]);
6757 	btrfs_free_path(path);
6758 
6759 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6760 	if (ret) { /* -ENOENT, logic error */
6761 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6762 			ins->objectid, ins->offset);
6763 		BUG();
6764 	}
6765 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6766 	return ret;
6767 }
6768 
6769 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6770 				     struct btrfs_root *root,
6771 				     u64 parent, u64 root_objectid,
6772 				     u64 flags, struct btrfs_disk_key *key,
6773 				     int level, struct btrfs_key *ins)
6774 {
6775 	int ret;
6776 	struct btrfs_fs_info *fs_info = root->fs_info;
6777 	struct btrfs_extent_item *extent_item;
6778 	struct btrfs_tree_block_info *block_info;
6779 	struct btrfs_extent_inline_ref *iref;
6780 	struct btrfs_path *path;
6781 	struct extent_buffer *leaf;
6782 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6783 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6784 						 SKINNY_METADATA);
6785 
6786 	if (!skinny_metadata)
6787 		size += sizeof(*block_info);
6788 
6789 	path = btrfs_alloc_path();
6790 	if (!path) {
6791 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6792 						   root->leafsize);
6793 		return -ENOMEM;
6794 	}
6795 
6796 	path->leave_spinning = 1;
6797 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6798 				      ins, size);
6799 	if (ret) {
6800 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6801 						   root->leafsize);
6802 		btrfs_free_path(path);
6803 		return ret;
6804 	}
6805 
6806 	leaf = path->nodes[0];
6807 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6808 				     struct btrfs_extent_item);
6809 	btrfs_set_extent_refs(leaf, extent_item, 1);
6810 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6811 	btrfs_set_extent_flags(leaf, extent_item,
6812 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6813 
6814 	if (skinny_metadata) {
6815 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6816 	} else {
6817 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6818 		btrfs_set_tree_block_key(leaf, block_info, key);
6819 		btrfs_set_tree_block_level(leaf, block_info, level);
6820 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6821 	}
6822 
6823 	if (parent > 0) {
6824 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6825 		btrfs_set_extent_inline_ref_type(leaf, iref,
6826 						 BTRFS_SHARED_BLOCK_REF_KEY);
6827 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6828 	} else {
6829 		btrfs_set_extent_inline_ref_type(leaf, iref,
6830 						 BTRFS_TREE_BLOCK_REF_KEY);
6831 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6832 	}
6833 
6834 	btrfs_mark_buffer_dirty(leaf);
6835 	btrfs_free_path(path);
6836 
6837 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6838 	if (ret) { /* -ENOENT, logic error */
6839 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6840 			ins->objectid, ins->offset);
6841 		BUG();
6842 	}
6843 
6844 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6845 	return ret;
6846 }
6847 
6848 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6849 				     struct btrfs_root *root,
6850 				     u64 root_objectid, u64 owner,
6851 				     u64 offset, struct btrfs_key *ins)
6852 {
6853 	int ret;
6854 
6855 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6856 
6857 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6858 					 ins->offset, 0,
6859 					 root_objectid, owner, offset,
6860 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6861 	return ret;
6862 }
6863 
6864 /*
6865  * this is used by the tree logging recovery code.  It records that
6866  * an extent has been allocated and makes sure to clear the free
6867  * space cache bits as well
6868  */
6869 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6870 				   struct btrfs_root *root,
6871 				   u64 root_objectid, u64 owner, u64 offset,
6872 				   struct btrfs_key *ins)
6873 {
6874 	int ret;
6875 	struct btrfs_block_group_cache *block_group;
6876 
6877 	/*
6878 	 * Mixed block groups will exclude before processing the log so we only
6879 	 * need to do the exlude dance if this fs isn't mixed.
6880 	 */
6881 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6882 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6883 		if (ret)
6884 			return ret;
6885 	}
6886 
6887 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6888 	if (!block_group)
6889 		return -EINVAL;
6890 
6891 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6892 					  RESERVE_ALLOC_NO_ACCOUNT);
6893 	BUG_ON(ret); /* logic error */
6894 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6895 					 0, owner, offset, ins, 1);
6896 	btrfs_put_block_group(block_group);
6897 	return ret;
6898 }
6899 
6900 static struct extent_buffer *
6901 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6902 		      u64 bytenr, u32 blocksize, int level)
6903 {
6904 	struct extent_buffer *buf;
6905 
6906 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6907 	if (!buf)
6908 		return ERR_PTR(-ENOMEM);
6909 	btrfs_set_header_generation(buf, trans->transid);
6910 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6911 	btrfs_tree_lock(buf);
6912 	clean_tree_block(trans, root, buf);
6913 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6914 
6915 	btrfs_set_lock_blocking(buf);
6916 	btrfs_set_buffer_uptodate(buf);
6917 
6918 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6919 		/*
6920 		 * we allow two log transactions at a time, use different
6921 		 * EXENT bit to differentiate dirty pages.
6922 		 */
6923 		if (root->log_transid % 2 == 0)
6924 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6925 					buf->start + buf->len - 1, GFP_NOFS);
6926 		else
6927 			set_extent_new(&root->dirty_log_pages, buf->start,
6928 					buf->start + buf->len - 1, GFP_NOFS);
6929 	} else {
6930 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6931 			 buf->start + buf->len - 1, GFP_NOFS);
6932 	}
6933 	trans->blocks_used++;
6934 	/* this returns a buffer locked for blocking */
6935 	return buf;
6936 }
6937 
6938 static struct btrfs_block_rsv *
6939 use_block_rsv(struct btrfs_trans_handle *trans,
6940 	      struct btrfs_root *root, u32 blocksize)
6941 {
6942 	struct btrfs_block_rsv *block_rsv;
6943 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6944 	int ret;
6945 	bool global_updated = false;
6946 
6947 	block_rsv = get_block_rsv(trans, root);
6948 
6949 	if (unlikely(block_rsv->size == 0))
6950 		goto try_reserve;
6951 again:
6952 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6953 	if (!ret)
6954 		return block_rsv;
6955 
6956 	if (block_rsv->failfast)
6957 		return ERR_PTR(ret);
6958 
6959 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6960 		global_updated = true;
6961 		update_global_block_rsv(root->fs_info);
6962 		goto again;
6963 	}
6964 
6965 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6966 		static DEFINE_RATELIMIT_STATE(_rs,
6967 				DEFAULT_RATELIMIT_INTERVAL * 10,
6968 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6969 		if (__ratelimit(&_rs))
6970 			WARN(1, KERN_DEBUG
6971 				"btrfs: block rsv returned %d\n", ret);
6972 	}
6973 try_reserve:
6974 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6975 				     BTRFS_RESERVE_NO_FLUSH);
6976 	if (!ret)
6977 		return block_rsv;
6978 	/*
6979 	 * If we couldn't reserve metadata bytes try and use some from
6980 	 * the global reserve if its space type is the same as the global
6981 	 * reservation.
6982 	 */
6983 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6984 	    block_rsv->space_info == global_rsv->space_info) {
6985 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6986 		if (!ret)
6987 			return global_rsv;
6988 	}
6989 	return ERR_PTR(ret);
6990 }
6991 
6992 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6993 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6994 {
6995 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6996 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6997 }
6998 
6999 /*
7000  * finds a free extent and does all the dirty work required for allocation
7001  * returns the key for the extent through ins, and a tree buffer for
7002  * the first block of the extent through buf.
7003  *
7004  * returns the tree buffer or NULL.
7005  */
7006 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7007 					struct btrfs_root *root, u32 blocksize,
7008 					u64 parent, u64 root_objectid,
7009 					struct btrfs_disk_key *key, int level,
7010 					u64 hint, u64 empty_size)
7011 {
7012 	struct btrfs_key ins;
7013 	struct btrfs_block_rsv *block_rsv;
7014 	struct extent_buffer *buf;
7015 	u64 flags = 0;
7016 	int ret;
7017 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7018 						 SKINNY_METADATA);
7019 
7020 	block_rsv = use_block_rsv(trans, root, blocksize);
7021 	if (IS_ERR(block_rsv))
7022 		return ERR_CAST(block_rsv);
7023 
7024 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7025 				   empty_size, hint, &ins, 0);
7026 	if (ret) {
7027 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7028 		return ERR_PTR(ret);
7029 	}
7030 
7031 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7032 				    blocksize, level);
7033 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7034 
7035 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7036 		if (parent == 0)
7037 			parent = ins.objectid;
7038 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7039 	} else
7040 		BUG_ON(parent > 0);
7041 
7042 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7043 		struct btrfs_delayed_extent_op *extent_op;
7044 		extent_op = btrfs_alloc_delayed_extent_op();
7045 		BUG_ON(!extent_op); /* -ENOMEM */
7046 		if (key)
7047 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7048 		else
7049 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7050 		extent_op->flags_to_set = flags;
7051 		if (skinny_metadata)
7052 			extent_op->update_key = 0;
7053 		else
7054 			extent_op->update_key = 1;
7055 		extent_op->update_flags = 1;
7056 		extent_op->is_data = 0;
7057 		extent_op->level = level;
7058 
7059 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7060 					ins.objectid,
7061 					ins.offset, parent, root_objectid,
7062 					level, BTRFS_ADD_DELAYED_EXTENT,
7063 					extent_op, 0);
7064 		BUG_ON(ret); /* -ENOMEM */
7065 	}
7066 	return buf;
7067 }
7068 
7069 struct walk_control {
7070 	u64 refs[BTRFS_MAX_LEVEL];
7071 	u64 flags[BTRFS_MAX_LEVEL];
7072 	struct btrfs_key update_progress;
7073 	int stage;
7074 	int level;
7075 	int shared_level;
7076 	int update_ref;
7077 	int keep_locks;
7078 	int reada_slot;
7079 	int reada_count;
7080 	int for_reloc;
7081 };
7082 
7083 #define DROP_REFERENCE	1
7084 #define UPDATE_BACKREF	2
7085 
7086 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7087 				     struct btrfs_root *root,
7088 				     struct walk_control *wc,
7089 				     struct btrfs_path *path)
7090 {
7091 	u64 bytenr;
7092 	u64 generation;
7093 	u64 refs;
7094 	u64 flags;
7095 	u32 nritems;
7096 	u32 blocksize;
7097 	struct btrfs_key key;
7098 	struct extent_buffer *eb;
7099 	int ret;
7100 	int slot;
7101 	int nread = 0;
7102 
7103 	if (path->slots[wc->level] < wc->reada_slot) {
7104 		wc->reada_count = wc->reada_count * 2 / 3;
7105 		wc->reada_count = max(wc->reada_count, 2);
7106 	} else {
7107 		wc->reada_count = wc->reada_count * 3 / 2;
7108 		wc->reada_count = min_t(int, wc->reada_count,
7109 					BTRFS_NODEPTRS_PER_BLOCK(root));
7110 	}
7111 
7112 	eb = path->nodes[wc->level];
7113 	nritems = btrfs_header_nritems(eb);
7114 	blocksize = btrfs_level_size(root, wc->level - 1);
7115 
7116 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7117 		if (nread >= wc->reada_count)
7118 			break;
7119 
7120 		cond_resched();
7121 		bytenr = btrfs_node_blockptr(eb, slot);
7122 		generation = btrfs_node_ptr_generation(eb, slot);
7123 
7124 		if (slot == path->slots[wc->level])
7125 			goto reada;
7126 
7127 		if (wc->stage == UPDATE_BACKREF &&
7128 		    generation <= root->root_key.offset)
7129 			continue;
7130 
7131 		/* We don't lock the tree block, it's OK to be racy here */
7132 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7133 					       wc->level - 1, 1, &refs,
7134 					       &flags);
7135 		/* We don't care about errors in readahead. */
7136 		if (ret < 0)
7137 			continue;
7138 		BUG_ON(refs == 0);
7139 
7140 		if (wc->stage == DROP_REFERENCE) {
7141 			if (refs == 1)
7142 				goto reada;
7143 
7144 			if (wc->level == 1 &&
7145 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7146 				continue;
7147 			if (!wc->update_ref ||
7148 			    generation <= root->root_key.offset)
7149 				continue;
7150 			btrfs_node_key_to_cpu(eb, &key, slot);
7151 			ret = btrfs_comp_cpu_keys(&key,
7152 						  &wc->update_progress);
7153 			if (ret < 0)
7154 				continue;
7155 		} else {
7156 			if (wc->level == 1 &&
7157 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7158 				continue;
7159 		}
7160 reada:
7161 		ret = readahead_tree_block(root, bytenr, blocksize,
7162 					   generation);
7163 		if (ret)
7164 			break;
7165 		nread++;
7166 	}
7167 	wc->reada_slot = slot;
7168 }
7169 
7170 /*
7171  * helper to process tree block while walking down the tree.
7172  *
7173  * when wc->stage == UPDATE_BACKREF, this function updates
7174  * back refs for pointers in the block.
7175  *
7176  * NOTE: return value 1 means we should stop walking down.
7177  */
7178 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7179 				   struct btrfs_root *root,
7180 				   struct btrfs_path *path,
7181 				   struct walk_control *wc, int lookup_info)
7182 {
7183 	int level = wc->level;
7184 	struct extent_buffer *eb = path->nodes[level];
7185 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7186 	int ret;
7187 
7188 	if (wc->stage == UPDATE_BACKREF &&
7189 	    btrfs_header_owner(eb) != root->root_key.objectid)
7190 		return 1;
7191 
7192 	/*
7193 	 * when reference count of tree block is 1, it won't increase
7194 	 * again. once full backref flag is set, we never clear it.
7195 	 */
7196 	if (lookup_info &&
7197 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7198 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7199 		BUG_ON(!path->locks[level]);
7200 		ret = btrfs_lookup_extent_info(trans, root,
7201 					       eb->start, level, 1,
7202 					       &wc->refs[level],
7203 					       &wc->flags[level]);
7204 		BUG_ON(ret == -ENOMEM);
7205 		if (ret)
7206 			return ret;
7207 		BUG_ON(wc->refs[level] == 0);
7208 	}
7209 
7210 	if (wc->stage == DROP_REFERENCE) {
7211 		if (wc->refs[level] > 1)
7212 			return 1;
7213 
7214 		if (path->locks[level] && !wc->keep_locks) {
7215 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7216 			path->locks[level] = 0;
7217 		}
7218 		return 0;
7219 	}
7220 
7221 	/* wc->stage == UPDATE_BACKREF */
7222 	if (!(wc->flags[level] & flag)) {
7223 		BUG_ON(!path->locks[level]);
7224 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7225 		BUG_ON(ret); /* -ENOMEM */
7226 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7227 		BUG_ON(ret); /* -ENOMEM */
7228 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7229 						  eb->len, flag,
7230 						  btrfs_header_level(eb), 0);
7231 		BUG_ON(ret); /* -ENOMEM */
7232 		wc->flags[level] |= flag;
7233 	}
7234 
7235 	/*
7236 	 * the block is shared by multiple trees, so it's not good to
7237 	 * keep the tree lock
7238 	 */
7239 	if (path->locks[level] && level > 0) {
7240 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7241 		path->locks[level] = 0;
7242 	}
7243 	return 0;
7244 }
7245 
7246 /*
7247  * helper to process tree block pointer.
7248  *
7249  * when wc->stage == DROP_REFERENCE, this function checks
7250  * reference count of the block pointed to. if the block
7251  * is shared and we need update back refs for the subtree
7252  * rooted at the block, this function changes wc->stage to
7253  * UPDATE_BACKREF. if the block is shared and there is no
7254  * need to update back, this function drops the reference
7255  * to the block.
7256  *
7257  * NOTE: return value 1 means we should stop walking down.
7258  */
7259 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7260 				 struct btrfs_root *root,
7261 				 struct btrfs_path *path,
7262 				 struct walk_control *wc, int *lookup_info)
7263 {
7264 	u64 bytenr;
7265 	u64 generation;
7266 	u64 parent;
7267 	u32 blocksize;
7268 	struct btrfs_key key;
7269 	struct extent_buffer *next;
7270 	int level = wc->level;
7271 	int reada = 0;
7272 	int ret = 0;
7273 
7274 	generation = btrfs_node_ptr_generation(path->nodes[level],
7275 					       path->slots[level]);
7276 	/*
7277 	 * if the lower level block was created before the snapshot
7278 	 * was created, we know there is no need to update back refs
7279 	 * for the subtree
7280 	 */
7281 	if (wc->stage == UPDATE_BACKREF &&
7282 	    generation <= root->root_key.offset) {
7283 		*lookup_info = 1;
7284 		return 1;
7285 	}
7286 
7287 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7288 	blocksize = btrfs_level_size(root, level - 1);
7289 
7290 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7291 	if (!next) {
7292 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7293 		if (!next)
7294 			return -ENOMEM;
7295 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7296 					       level - 1);
7297 		reada = 1;
7298 	}
7299 	btrfs_tree_lock(next);
7300 	btrfs_set_lock_blocking(next);
7301 
7302 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7303 				       &wc->refs[level - 1],
7304 				       &wc->flags[level - 1]);
7305 	if (ret < 0) {
7306 		btrfs_tree_unlock(next);
7307 		return ret;
7308 	}
7309 
7310 	if (unlikely(wc->refs[level - 1] == 0)) {
7311 		btrfs_err(root->fs_info, "Missing references.");
7312 		BUG();
7313 	}
7314 	*lookup_info = 0;
7315 
7316 	if (wc->stage == DROP_REFERENCE) {
7317 		if (wc->refs[level - 1] > 1) {
7318 			if (level == 1 &&
7319 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7320 				goto skip;
7321 
7322 			if (!wc->update_ref ||
7323 			    generation <= root->root_key.offset)
7324 				goto skip;
7325 
7326 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7327 					      path->slots[level]);
7328 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7329 			if (ret < 0)
7330 				goto skip;
7331 
7332 			wc->stage = UPDATE_BACKREF;
7333 			wc->shared_level = level - 1;
7334 		}
7335 	} else {
7336 		if (level == 1 &&
7337 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7338 			goto skip;
7339 	}
7340 
7341 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7342 		btrfs_tree_unlock(next);
7343 		free_extent_buffer(next);
7344 		next = NULL;
7345 		*lookup_info = 1;
7346 	}
7347 
7348 	if (!next) {
7349 		if (reada && level == 1)
7350 			reada_walk_down(trans, root, wc, path);
7351 		next = read_tree_block(root, bytenr, blocksize, generation);
7352 		if (!next || !extent_buffer_uptodate(next)) {
7353 			free_extent_buffer(next);
7354 			return -EIO;
7355 		}
7356 		btrfs_tree_lock(next);
7357 		btrfs_set_lock_blocking(next);
7358 	}
7359 
7360 	level--;
7361 	BUG_ON(level != btrfs_header_level(next));
7362 	path->nodes[level] = next;
7363 	path->slots[level] = 0;
7364 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7365 	wc->level = level;
7366 	if (wc->level == 1)
7367 		wc->reada_slot = 0;
7368 	return 0;
7369 skip:
7370 	wc->refs[level - 1] = 0;
7371 	wc->flags[level - 1] = 0;
7372 	if (wc->stage == DROP_REFERENCE) {
7373 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7374 			parent = path->nodes[level]->start;
7375 		} else {
7376 			BUG_ON(root->root_key.objectid !=
7377 			       btrfs_header_owner(path->nodes[level]));
7378 			parent = 0;
7379 		}
7380 
7381 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7382 				root->root_key.objectid, level - 1, 0, 0);
7383 		BUG_ON(ret); /* -ENOMEM */
7384 	}
7385 	btrfs_tree_unlock(next);
7386 	free_extent_buffer(next);
7387 	*lookup_info = 1;
7388 	return 1;
7389 }
7390 
7391 /*
7392  * helper to process tree block while walking up the tree.
7393  *
7394  * when wc->stage == DROP_REFERENCE, this function drops
7395  * reference count on the block.
7396  *
7397  * when wc->stage == UPDATE_BACKREF, this function changes
7398  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7399  * to UPDATE_BACKREF previously while processing the block.
7400  *
7401  * NOTE: return value 1 means we should stop walking up.
7402  */
7403 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7404 				 struct btrfs_root *root,
7405 				 struct btrfs_path *path,
7406 				 struct walk_control *wc)
7407 {
7408 	int ret;
7409 	int level = wc->level;
7410 	struct extent_buffer *eb = path->nodes[level];
7411 	u64 parent = 0;
7412 
7413 	if (wc->stage == UPDATE_BACKREF) {
7414 		BUG_ON(wc->shared_level < level);
7415 		if (level < wc->shared_level)
7416 			goto out;
7417 
7418 		ret = find_next_key(path, level + 1, &wc->update_progress);
7419 		if (ret > 0)
7420 			wc->update_ref = 0;
7421 
7422 		wc->stage = DROP_REFERENCE;
7423 		wc->shared_level = -1;
7424 		path->slots[level] = 0;
7425 
7426 		/*
7427 		 * check reference count again if the block isn't locked.
7428 		 * we should start walking down the tree again if reference
7429 		 * count is one.
7430 		 */
7431 		if (!path->locks[level]) {
7432 			BUG_ON(level == 0);
7433 			btrfs_tree_lock(eb);
7434 			btrfs_set_lock_blocking(eb);
7435 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7436 
7437 			ret = btrfs_lookup_extent_info(trans, root,
7438 						       eb->start, level, 1,
7439 						       &wc->refs[level],
7440 						       &wc->flags[level]);
7441 			if (ret < 0) {
7442 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7443 				path->locks[level] = 0;
7444 				return ret;
7445 			}
7446 			BUG_ON(wc->refs[level] == 0);
7447 			if (wc->refs[level] == 1) {
7448 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7449 				path->locks[level] = 0;
7450 				return 1;
7451 			}
7452 		}
7453 	}
7454 
7455 	/* wc->stage == DROP_REFERENCE */
7456 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7457 
7458 	if (wc->refs[level] == 1) {
7459 		if (level == 0) {
7460 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7461 				ret = btrfs_dec_ref(trans, root, eb, 1,
7462 						    wc->for_reloc);
7463 			else
7464 				ret = btrfs_dec_ref(trans, root, eb, 0,
7465 						    wc->for_reloc);
7466 			BUG_ON(ret); /* -ENOMEM */
7467 		}
7468 		/* make block locked assertion in clean_tree_block happy */
7469 		if (!path->locks[level] &&
7470 		    btrfs_header_generation(eb) == trans->transid) {
7471 			btrfs_tree_lock(eb);
7472 			btrfs_set_lock_blocking(eb);
7473 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7474 		}
7475 		clean_tree_block(trans, root, eb);
7476 	}
7477 
7478 	if (eb == root->node) {
7479 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7480 			parent = eb->start;
7481 		else
7482 			BUG_ON(root->root_key.objectid !=
7483 			       btrfs_header_owner(eb));
7484 	} else {
7485 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7486 			parent = path->nodes[level + 1]->start;
7487 		else
7488 			BUG_ON(root->root_key.objectid !=
7489 			       btrfs_header_owner(path->nodes[level + 1]));
7490 	}
7491 
7492 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7493 out:
7494 	wc->refs[level] = 0;
7495 	wc->flags[level] = 0;
7496 	return 0;
7497 }
7498 
7499 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7500 				   struct btrfs_root *root,
7501 				   struct btrfs_path *path,
7502 				   struct walk_control *wc)
7503 {
7504 	int level = wc->level;
7505 	int lookup_info = 1;
7506 	int ret;
7507 
7508 	while (level >= 0) {
7509 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7510 		if (ret > 0)
7511 			break;
7512 
7513 		if (level == 0)
7514 			break;
7515 
7516 		if (path->slots[level] >=
7517 		    btrfs_header_nritems(path->nodes[level]))
7518 			break;
7519 
7520 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7521 		if (ret > 0) {
7522 			path->slots[level]++;
7523 			continue;
7524 		} else if (ret < 0)
7525 			return ret;
7526 		level = wc->level;
7527 	}
7528 	return 0;
7529 }
7530 
7531 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7532 				 struct btrfs_root *root,
7533 				 struct btrfs_path *path,
7534 				 struct walk_control *wc, int max_level)
7535 {
7536 	int level = wc->level;
7537 	int ret;
7538 
7539 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7540 	while (level < max_level && path->nodes[level]) {
7541 		wc->level = level;
7542 		if (path->slots[level] + 1 <
7543 		    btrfs_header_nritems(path->nodes[level])) {
7544 			path->slots[level]++;
7545 			return 0;
7546 		} else {
7547 			ret = walk_up_proc(trans, root, path, wc);
7548 			if (ret > 0)
7549 				return 0;
7550 
7551 			if (path->locks[level]) {
7552 				btrfs_tree_unlock_rw(path->nodes[level],
7553 						     path->locks[level]);
7554 				path->locks[level] = 0;
7555 			}
7556 			free_extent_buffer(path->nodes[level]);
7557 			path->nodes[level] = NULL;
7558 			level++;
7559 		}
7560 	}
7561 	return 1;
7562 }
7563 
7564 /*
7565  * drop a subvolume tree.
7566  *
7567  * this function traverses the tree freeing any blocks that only
7568  * referenced by the tree.
7569  *
7570  * when a shared tree block is found. this function decreases its
7571  * reference count by one. if update_ref is true, this function
7572  * also make sure backrefs for the shared block and all lower level
7573  * blocks are properly updated.
7574  *
7575  * If called with for_reloc == 0, may exit early with -EAGAIN
7576  */
7577 int btrfs_drop_snapshot(struct btrfs_root *root,
7578 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7579 			 int for_reloc)
7580 {
7581 	struct btrfs_path *path;
7582 	struct btrfs_trans_handle *trans;
7583 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7584 	struct btrfs_root_item *root_item = &root->root_item;
7585 	struct walk_control *wc;
7586 	struct btrfs_key key;
7587 	int err = 0;
7588 	int ret;
7589 	int level;
7590 	bool root_dropped = false;
7591 
7592 	path = btrfs_alloc_path();
7593 	if (!path) {
7594 		err = -ENOMEM;
7595 		goto out;
7596 	}
7597 
7598 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7599 	if (!wc) {
7600 		btrfs_free_path(path);
7601 		err = -ENOMEM;
7602 		goto out;
7603 	}
7604 
7605 	trans = btrfs_start_transaction(tree_root, 0);
7606 	if (IS_ERR(trans)) {
7607 		err = PTR_ERR(trans);
7608 		goto out_free;
7609 	}
7610 
7611 	if (block_rsv)
7612 		trans->block_rsv = block_rsv;
7613 
7614 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7615 		level = btrfs_header_level(root->node);
7616 		path->nodes[level] = btrfs_lock_root_node(root);
7617 		btrfs_set_lock_blocking(path->nodes[level]);
7618 		path->slots[level] = 0;
7619 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7620 		memset(&wc->update_progress, 0,
7621 		       sizeof(wc->update_progress));
7622 	} else {
7623 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7624 		memcpy(&wc->update_progress, &key,
7625 		       sizeof(wc->update_progress));
7626 
7627 		level = root_item->drop_level;
7628 		BUG_ON(level == 0);
7629 		path->lowest_level = level;
7630 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7631 		path->lowest_level = 0;
7632 		if (ret < 0) {
7633 			err = ret;
7634 			goto out_end_trans;
7635 		}
7636 		WARN_ON(ret > 0);
7637 
7638 		/*
7639 		 * unlock our path, this is safe because only this
7640 		 * function is allowed to delete this snapshot
7641 		 */
7642 		btrfs_unlock_up_safe(path, 0);
7643 
7644 		level = btrfs_header_level(root->node);
7645 		while (1) {
7646 			btrfs_tree_lock(path->nodes[level]);
7647 			btrfs_set_lock_blocking(path->nodes[level]);
7648 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7649 
7650 			ret = btrfs_lookup_extent_info(trans, root,
7651 						path->nodes[level]->start,
7652 						level, 1, &wc->refs[level],
7653 						&wc->flags[level]);
7654 			if (ret < 0) {
7655 				err = ret;
7656 				goto out_end_trans;
7657 			}
7658 			BUG_ON(wc->refs[level] == 0);
7659 
7660 			if (level == root_item->drop_level)
7661 				break;
7662 
7663 			btrfs_tree_unlock(path->nodes[level]);
7664 			path->locks[level] = 0;
7665 			WARN_ON(wc->refs[level] != 1);
7666 			level--;
7667 		}
7668 	}
7669 
7670 	wc->level = level;
7671 	wc->shared_level = -1;
7672 	wc->stage = DROP_REFERENCE;
7673 	wc->update_ref = update_ref;
7674 	wc->keep_locks = 0;
7675 	wc->for_reloc = for_reloc;
7676 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7677 
7678 	while (1) {
7679 
7680 		ret = walk_down_tree(trans, root, path, wc);
7681 		if (ret < 0) {
7682 			err = ret;
7683 			break;
7684 		}
7685 
7686 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7687 		if (ret < 0) {
7688 			err = ret;
7689 			break;
7690 		}
7691 
7692 		if (ret > 0) {
7693 			BUG_ON(wc->stage != DROP_REFERENCE);
7694 			break;
7695 		}
7696 
7697 		if (wc->stage == DROP_REFERENCE) {
7698 			level = wc->level;
7699 			btrfs_node_key(path->nodes[level],
7700 				       &root_item->drop_progress,
7701 				       path->slots[level]);
7702 			root_item->drop_level = level;
7703 		}
7704 
7705 		BUG_ON(wc->level == 0);
7706 		if (btrfs_should_end_transaction(trans, tree_root) ||
7707 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7708 			ret = btrfs_update_root(trans, tree_root,
7709 						&root->root_key,
7710 						root_item);
7711 			if (ret) {
7712 				btrfs_abort_transaction(trans, tree_root, ret);
7713 				err = ret;
7714 				goto out_end_trans;
7715 			}
7716 
7717 			btrfs_end_transaction_throttle(trans, tree_root);
7718 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7719 				pr_debug("btrfs: drop snapshot early exit\n");
7720 				err = -EAGAIN;
7721 				goto out_free;
7722 			}
7723 
7724 			trans = btrfs_start_transaction(tree_root, 0);
7725 			if (IS_ERR(trans)) {
7726 				err = PTR_ERR(trans);
7727 				goto out_free;
7728 			}
7729 			if (block_rsv)
7730 				trans->block_rsv = block_rsv;
7731 		}
7732 	}
7733 	btrfs_release_path(path);
7734 	if (err)
7735 		goto out_end_trans;
7736 
7737 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7738 	if (ret) {
7739 		btrfs_abort_transaction(trans, tree_root, ret);
7740 		goto out_end_trans;
7741 	}
7742 
7743 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7744 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7745 				      NULL, NULL);
7746 		if (ret < 0) {
7747 			btrfs_abort_transaction(trans, tree_root, ret);
7748 			err = ret;
7749 			goto out_end_trans;
7750 		} else if (ret > 0) {
7751 			/* if we fail to delete the orphan item this time
7752 			 * around, it'll get picked up the next time.
7753 			 *
7754 			 * The most common failure here is just -ENOENT.
7755 			 */
7756 			btrfs_del_orphan_item(trans, tree_root,
7757 					      root->root_key.objectid);
7758 		}
7759 	}
7760 
7761 	if (root->in_radix) {
7762 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7763 	} else {
7764 		free_extent_buffer(root->node);
7765 		free_extent_buffer(root->commit_root);
7766 		btrfs_put_fs_root(root);
7767 	}
7768 	root_dropped = true;
7769 out_end_trans:
7770 	btrfs_end_transaction_throttle(trans, tree_root);
7771 out_free:
7772 	kfree(wc);
7773 	btrfs_free_path(path);
7774 out:
7775 	/*
7776 	 * So if we need to stop dropping the snapshot for whatever reason we
7777 	 * need to make sure to add it back to the dead root list so that we
7778 	 * keep trying to do the work later.  This also cleans up roots if we
7779 	 * don't have it in the radix (like when we recover after a power fail
7780 	 * or unmount) so we don't leak memory.
7781 	 */
7782 	if (!for_reloc && root_dropped == false)
7783 		btrfs_add_dead_root(root);
7784 	if (err)
7785 		btrfs_std_error(root->fs_info, err);
7786 	return err;
7787 }
7788 
7789 /*
7790  * drop subtree rooted at tree block 'node'.
7791  *
7792  * NOTE: this function will unlock and release tree block 'node'
7793  * only used by relocation code
7794  */
7795 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7796 			struct btrfs_root *root,
7797 			struct extent_buffer *node,
7798 			struct extent_buffer *parent)
7799 {
7800 	struct btrfs_path *path;
7801 	struct walk_control *wc;
7802 	int level;
7803 	int parent_level;
7804 	int ret = 0;
7805 	int wret;
7806 
7807 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7808 
7809 	path = btrfs_alloc_path();
7810 	if (!path)
7811 		return -ENOMEM;
7812 
7813 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7814 	if (!wc) {
7815 		btrfs_free_path(path);
7816 		return -ENOMEM;
7817 	}
7818 
7819 	btrfs_assert_tree_locked(parent);
7820 	parent_level = btrfs_header_level(parent);
7821 	extent_buffer_get(parent);
7822 	path->nodes[parent_level] = parent;
7823 	path->slots[parent_level] = btrfs_header_nritems(parent);
7824 
7825 	btrfs_assert_tree_locked(node);
7826 	level = btrfs_header_level(node);
7827 	path->nodes[level] = node;
7828 	path->slots[level] = 0;
7829 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7830 
7831 	wc->refs[parent_level] = 1;
7832 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7833 	wc->level = level;
7834 	wc->shared_level = -1;
7835 	wc->stage = DROP_REFERENCE;
7836 	wc->update_ref = 0;
7837 	wc->keep_locks = 1;
7838 	wc->for_reloc = 1;
7839 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7840 
7841 	while (1) {
7842 		wret = walk_down_tree(trans, root, path, wc);
7843 		if (wret < 0) {
7844 			ret = wret;
7845 			break;
7846 		}
7847 
7848 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7849 		if (wret < 0)
7850 			ret = wret;
7851 		if (wret != 0)
7852 			break;
7853 	}
7854 
7855 	kfree(wc);
7856 	btrfs_free_path(path);
7857 	return ret;
7858 }
7859 
7860 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7861 {
7862 	u64 num_devices;
7863 	u64 stripped;
7864 
7865 	/*
7866 	 * if restripe for this chunk_type is on pick target profile and
7867 	 * return, otherwise do the usual balance
7868 	 */
7869 	stripped = get_restripe_target(root->fs_info, flags);
7870 	if (stripped)
7871 		return extended_to_chunk(stripped);
7872 
7873 	/*
7874 	 * we add in the count of missing devices because we want
7875 	 * to make sure that any RAID levels on a degraded FS
7876 	 * continue to be honored.
7877 	 */
7878 	num_devices = root->fs_info->fs_devices->rw_devices +
7879 		root->fs_info->fs_devices->missing_devices;
7880 
7881 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7882 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7883 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7884 
7885 	if (num_devices == 1) {
7886 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7887 		stripped = flags & ~stripped;
7888 
7889 		/* turn raid0 into single device chunks */
7890 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7891 			return stripped;
7892 
7893 		/* turn mirroring into duplication */
7894 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7895 			     BTRFS_BLOCK_GROUP_RAID10))
7896 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7897 	} else {
7898 		/* they already had raid on here, just return */
7899 		if (flags & stripped)
7900 			return flags;
7901 
7902 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7903 		stripped = flags & ~stripped;
7904 
7905 		/* switch duplicated blocks with raid1 */
7906 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7907 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7908 
7909 		/* this is drive concat, leave it alone */
7910 	}
7911 
7912 	return flags;
7913 }
7914 
7915 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7916 {
7917 	struct btrfs_space_info *sinfo = cache->space_info;
7918 	u64 num_bytes;
7919 	u64 min_allocable_bytes;
7920 	int ret = -ENOSPC;
7921 
7922 
7923 	/*
7924 	 * We need some metadata space and system metadata space for
7925 	 * allocating chunks in some corner cases until we force to set
7926 	 * it to be readonly.
7927 	 */
7928 	if ((sinfo->flags &
7929 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7930 	    !force)
7931 		min_allocable_bytes = 1 * 1024 * 1024;
7932 	else
7933 		min_allocable_bytes = 0;
7934 
7935 	spin_lock(&sinfo->lock);
7936 	spin_lock(&cache->lock);
7937 
7938 	if (cache->ro) {
7939 		ret = 0;
7940 		goto out;
7941 	}
7942 
7943 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7944 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7945 
7946 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7947 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7948 	    min_allocable_bytes <= sinfo->total_bytes) {
7949 		sinfo->bytes_readonly += num_bytes;
7950 		cache->ro = 1;
7951 		ret = 0;
7952 	}
7953 out:
7954 	spin_unlock(&cache->lock);
7955 	spin_unlock(&sinfo->lock);
7956 	return ret;
7957 }
7958 
7959 int btrfs_set_block_group_ro(struct btrfs_root *root,
7960 			     struct btrfs_block_group_cache *cache)
7961 
7962 {
7963 	struct btrfs_trans_handle *trans;
7964 	u64 alloc_flags;
7965 	int ret;
7966 
7967 	BUG_ON(cache->ro);
7968 
7969 	trans = btrfs_join_transaction(root);
7970 	if (IS_ERR(trans))
7971 		return PTR_ERR(trans);
7972 
7973 	alloc_flags = update_block_group_flags(root, cache->flags);
7974 	if (alloc_flags != cache->flags) {
7975 		ret = do_chunk_alloc(trans, root, alloc_flags,
7976 				     CHUNK_ALLOC_FORCE);
7977 		if (ret < 0)
7978 			goto out;
7979 	}
7980 
7981 	ret = set_block_group_ro(cache, 0);
7982 	if (!ret)
7983 		goto out;
7984 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7985 	ret = do_chunk_alloc(trans, root, alloc_flags,
7986 			     CHUNK_ALLOC_FORCE);
7987 	if (ret < 0)
7988 		goto out;
7989 	ret = set_block_group_ro(cache, 0);
7990 out:
7991 	btrfs_end_transaction(trans, root);
7992 	return ret;
7993 }
7994 
7995 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7996 			    struct btrfs_root *root, u64 type)
7997 {
7998 	u64 alloc_flags = get_alloc_profile(root, type);
7999 	return do_chunk_alloc(trans, root, alloc_flags,
8000 			      CHUNK_ALLOC_FORCE);
8001 }
8002 
8003 /*
8004  * helper to account the unused space of all the readonly block group in the
8005  * list. takes mirrors into account.
8006  */
8007 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8008 {
8009 	struct btrfs_block_group_cache *block_group;
8010 	u64 free_bytes = 0;
8011 	int factor;
8012 
8013 	list_for_each_entry(block_group, groups_list, list) {
8014 		spin_lock(&block_group->lock);
8015 
8016 		if (!block_group->ro) {
8017 			spin_unlock(&block_group->lock);
8018 			continue;
8019 		}
8020 
8021 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8022 					  BTRFS_BLOCK_GROUP_RAID10 |
8023 					  BTRFS_BLOCK_GROUP_DUP))
8024 			factor = 2;
8025 		else
8026 			factor = 1;
8027 
8028 		free_bytes += (block_group->key.offset -
8029 			       btrfs_block_group_used(&block_group->item)) *
8030 			       factor;
8031 
8032 		spin_unlock(&block_group->lock);
8033 	}
8034 
8035 	return free_bytes;
8036 }
8037 
8038 /*
8039  * helper to account the unused space of all the readonly block group in the
8040  * space_info. takes mirrors into account.
8041  */
8042 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8043 {
8044 	int i;
8045 	u64 free_bytes = 0;
8046 
8047 	spin_lock(&sinfo->lock);
8048 
8049 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8050 		if (!list_empty(&sinfo->block_groups[i]))
8051 			free_bytes += __btrfs_get_ro_block_group_free_space(
8052 						&sinfo->block_groups[i]);
8053 
8054 	spin_unlock(&sinfo->lock);
8055 
8056 	return free_bytes;
8057 }
8058 
8059 void btrfs_set_block_group_rw(struct btrfs_root *root,
8060 			      struct btrfs_block_group_cache *cache)
8061 {
8062 	struct btrfs_space_info *sinfo = cache->space_info;
8063 	u64 num_bytes;
8064 
8065 	BUG_ON(!cache->ro);
8066 
8067 	spin_lock(&sinfo->lock);
8068 	spin_lock(&cache->lock);
8069 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8070 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8071 	sinfo->bytes_readonly -= num_bytes;
8072 	cache->ro = 0;
8073 	spin_unlock(&cache->lock);
8074 	spin_unlock(&sinfo->lock);
8075 }
8076 
8077 /*
8078  * checks to see if its even possible to relocate this block group.
8079  *
8080  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8081  * ok to go ahead and try.
8082  */
8083 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8084 {
8085 	struct btrfs_block_group_cache *block_group;
8086 	struct btrfs_space_info *space_info;
8087 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8088 	struct btrfs_device *device;
8089 	struct btrfs_trans_handle *trans;
8090 	u64 min_free;
8091 	u64 dev_min = 1;
8092 	u64 dev_nr = 0;
8093 	u64 target;
8094 	int index;
8095 	int full = 0;
8096 	int ret = 0;
8097 
8098 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8099 
8100 	/* odd, couldn't find the block group, leave it alone */
8101 	if (!block_group)
8102 		return -1;
8103 
8104 	min_free = btrfs_block_group_used(&block_group->item);
8105 
8106 	/* no bytes used, we're good */
8107 	if (!min_free)
8108 		goto out;
8109 
8110 	space_info = block_group->space_info;
8111 	spin_lock(&space_info->lock);
8112 
8113 	full = space_info->full;
8114 
8115 	/*
8116 	 * if this is the last block group we have in this space, we can't
8117 	 * relocate it unless we're able to allocate a new chunk below.
8118 	 *
8119 	 * Otherwise, we need to make sure we have room in the space to handle
8120 	 * all of the extents from this block group.  If we can, we're good
8121 	 */
8122 	if ((space_info->total_bytes != block_group->key.offset) &&
8123 	    (space_info->bytes_used + space_info->bytes_reserved +
8124 	     space_info->bytes_pinned + space_info->bytes_readonly +
8125 	     min_free < space_info->total_bytes)) {
8126 		spin_unlock(&space_info->lock);
8127 		goto out;
8128 	}
8129 	spin_unlock(&space_info->lock);
8130 
8131 	/*
8132 	 * ok we don't have enough space, but maybe we have free space on our
8133 	 * devices to allocate new chunks for relocation, so loop through our
8134 	 * alloc devices and guess if we have enough space.  if this block
8135 	 * group is going to be restriped, run checks against the target
8136 	 * profile instead of the current one.
8137 	 */
8138 	ret = -1;
8139 
8140 	/*
8141 	 * index:
8142 	 *      0: raid10
8143 	 *      1: raid1
8144 	 *      2: dup
8145 	 *      3: raid0
8146 	 *      4: single
8147 	 */
8148 	target = get_restripe_target(root->fs_info, block_group->flags);
8149 	if (target) {
8150 		index = __get_raid_index(extended_to_chunk(target));
8151 	} else {
8152 		/*
8153 		 * this is just a balance, so if we were marked as full
8154 		 * we know there is no space for a new chunk
8155 		 */
8156 		if (full)
8157 			goto out;
8158 
8159 		index = get_block_group_index(block_group);
8160 	}
8161 
8162 	if (index == BTRFS_RAID_RAID10) {
8163 		dev_min = 4;
8164 		/* Divide by 2 */
8165 		min_free >>= 1;
8166 	} else if (index == BTRFS_RAID_RAID1) {
8167 		dev_min = 2;
8168 	} else if (index == BTRFS_RAID_DUP) {
8169 		/* Multiply by 2 */
8170 		min_free <<= 1;
8171 	} else if (index == BTRFS_RAID_RAID0) {
8172 		dev_min = fs_devices->rw_devices;
8173 		do_div(min_free, dev_min);
8174 	}
8175 
8176 	/* We need to do this so that we can look at pending chunks */
8177 	trans = btrfs_join_transaction(root);
8178 	if (IS_ERR(trans)) {
8179 		ret = PTR_ERR(trans);
8180 		goto out;
8181 	}
8182 
8183 	mutex_lock(&root->fs_info->chunk_mutex);
8184 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8185 		u64 dev_offset;
8186 
8187 		/*
8188 		 * check to make sure we can actually find a chunk with enough
8189 		 * space to fit our block group in.
8190 		 */
8191 		if (device->total_bytes > device->bytes_used + min_free &&
8192 		    !device->is_tgtdev_for_dev_replace) {
8193 			ret = find_free_dev_extent(trans, device, min_free,
8194 						   &dev_offset, NULL);
8195 			if (!ret)
8196 				dev_nr++;
8197 
8198 			if (dev_nr >= dev_min)
8199 				break;
8200 
8201 			ret = -1;
8202 		}
8203 	}
8204 	mutex_unlock(&root->fs_info->chunk_mutex);
8205 	btrfs_end_transaction(trans, root);
8206 out:
8207 	btrfs_put_block_group(block_group);
8208 	return ret;
8209 }
8210 
8211 static int find_first_block_group(struct btrfs_root *root,
8212 		struct btrfs_path *path, struct btrfs_key *key)
8213 {
8214 	int ret = 0;
8215 	struct btrfs_key found_key;
8216 	struct extent_buffer *leaf;
8217 	int slot;
8218 
8219 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8220 	if (ret < 0)
8221 		goto out;
8222 
8223 	while (1) {
8224 		slot = path->slots[0];
8225 		leaf = path->nodes[0];
8226 		if (slot >= btrfs_header_nritems(leaf)) {
8227 			ret = btrfs_next_leaf(root, path);
8228 			if (ret == 0)
8229 				continue;
8230 			if (ret < 0)
8231 				goto out;
8232 			break;
8233 		}
8234 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8235 
8236 		if (found_key.objectid >= key->objectid &&
8237 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8238 			ret = 0;
8239 			goto out;
8240 		}
8241 		path->slots[0]++;
8242 	}
8243 out:
8244 	return ret;
8245 }
8246 
8247 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8248 {
8249 	struct btrfs_block_group_cache *block_group;
8250 	u64 last = 0;
8251 
8252 	while (1) {
8253 		struct inode *inode;
8254 
8255 		block_group = btrfs_lookup_first_block_group(info, last);
8256 		while (block_group) {
8257 			spin_lock(&block_group->lock);
8258 			if (block_group->iref)
8259 				break;
8260 			spin_unlock(&block_group->lock);
8261 			block_group = next_block_group(info->tree_root,
8262 						       block_group);
8263 		}
8264 		if (!block_group) {
8265 			if (last == 0)
8266 				break;
8267 			last = 0;
8268 			continue;
8269 		}
8270 
8271 		inode = block_group->inode;
8272 		block_group->iref = 0;
8273 		block_group->inode = NULL;
8274 		spin_unlock(&block_group->lock);
8275 		iput(inode);
8276 		last = block_group->key.objectid + block_group->key.offset;
8277 		btrfs_put_block_group(block_group);
8278 	}
8279 }
8280 
8281 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8282 {
8283 	struct btrfs_block_group_cache *block_group;
8284 	struct btrfs_space_info *space_info;
8285 	struct btrfs_caching_control *caching_ctl;
8286 	struct rb_node *n;
8287 
8288 	down_write(&info->extent_commit_sem);
8289 	while (!list_empty(&info->caching_block_groups)) {
8290 		caching_ctl = list_entry(info->caching_block_groups.next,
8291 					 struct btrfs_caching_control, list);
8292 		list_del(&caching_ctl->list);
8293 		put_caching_control(caching_ctl);
8294 	}
8295 	up_write(&info->extent_commit_sem);
8296 
8297 	spin_lock(&info->block_group_cache_lock);
8298 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8299 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8300 				       cache_node);
8301 		rb_erase(&block_group->cache_node,
8302 			 &info->block_group_cache_tree);
8303 		spin_unlock(&info->block_group_cache_lock);
8304 
8305 		down_write(&block_group->space_info->groups_sem);
8306 		list_del(&block_group->list);
8307 		up_write(&block_group->space_info->groups_sem);
8308 
8309 		if (block_group->cached == BTRFS_CACHE_STARTED)
8310 			wait_block_group_cache_done(block_group);
8311 
8312 		/*
8313 		 * We haven't cached this block group, which means we could
8314 		 * possibly have excluded extents on this block group.
8315 		 */
8316 		if (block_group->cached == BTRFS_CACHE_NO ||
8317 		    block_group->cached == BTRFS_CACHE_ERROR)
8318 			free_excluded_extents(info->extent_root, block_group);
8319 
8320 		btrfs_remove_free_space_cache(block_group);
8321 		btrfs_put_block_group(block_group);
8322 
8323 		spin_lock(&info->block_group_cache_lock);
8324 	}
8325 	spin_unlock(&info->block_group_cache_lock);
8326 
8327 	/* now that all the block groups are freed, go through and
8328 	 * free all the space_info structs.  This is only called during
8329 	 * the final stages of unmount, and so we know nobody is
8330 	 * using them.  We call synchronize_rcu() once before we start,
8331 	 * just to be on the safe side.
8332 	 */
8333 	synchronize_rcu();
8334 
8335 	release_global_block_rsv(info);
8336 
8337 	while (!list_empty(&info->space_info)) {
8338 		space_info = list_entry(info->space_info.next,
8339 					struct btrfs_space_info,
8340 					list);
8341 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8342 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8343 			    space_info->bytes_reserved > 0 ||
8344 			    space_info->bytes_may_use > 0)) {
8345 				dump_space_info(space_info, 0, 0);
8346 			}
8347 		}
8348 		percpu_counter_destroy(&space_info->total_bytes_pinned);
8349 		list_del(&space_info->list);
8350 		kfree(space_info);
8351 	}
8352 	return 0;
8353 }
8354 
8355 static void __link_block_group(struct btrfs_space_info *space_info,
8356 			       struct btrfs_block_group_cache *cache)
8357 {
8358 	int index = get_block_group_index(cache);
8359 
8360 	down_write(&space_info->groups_sem);
8361 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8362 	up_write(&space_info->groups_sem);
8363 }
8364 
8365 int btrfs_read_block_groups(struct btrfs_root *root)
8366 {
8367 	struct btrfs_path *path;
8368 	int ret;
8369 	struct btrfs_block_group_cache *cache;
8370 	struct btrfs_fs_info *info = root->fs_info;
8371 	struct btrfs_space_info *space_info;
8372 	struct btrfs_key key;
8373 	struct btrfs_key found_key;
8374 	struct extent_buffer *leaf;
8375 	int need_clear = 0;
8376 	u64 cache_gen;
8377 
8378 	root = info->extent_root;
8379 	key.objectid = 0;
8380 	key.offset = 0;
8381 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8382 	path = btrfs_alloc_path();
8383 	if (!path)
8384 		return -ENOMEM;
8385 	path->reada = 1;
8386 
8387 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8388 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8389 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8390 		need_clear = 1;
8391 	if (btrfs_test_opt(root, CLEAR_CACHE))
8392 		need_clear = 1;
8393 
8394 	while (1) {
8395 		ret = find_first_block_group(root, path, &key);
8396 		if (ret > 0)
8397 			break;
8398 		if (ret != 0)
8399 			goto error;
8400 		leaf = path->nodes[0];
8401 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8402 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8403 		if (!cache) {
8404 			ret = -ENOMEM;
8405 			goto error;
8406 		}
8407 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8408 						GFP_NOFS);
8409 		if (!cache->free_space_ctl) {
8410 			kfree(cache);
8411 			ret = -ENOMEM;
8412 			goto error;
8413 		}
8414 
8415 		atomic_set(&cache->count, 1);
8416 		spin_lock_init(&cache->lock);
8417 		cache->fs_info = info;
8418 		INIT_LIST_HEAD(&cache->list);
8419 		INIT_LIST_HEAD(&cache->cluster_list);
8420 
8421 		if (need_clear) {
8422 			/*
8423 			 * When we mount with old space cache, we need to
8424 			 * set BTRFS_DC_CLEAR and set dirty flag.
8425 			 *
8426 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8427 			 *    truncate the old free space cache inode and
8428 			 *    setup a new one.
8429 			 * b) Setting 'dirty flag' makes sure that we flush
8430 			 *    the new space cache info onto disk.
8431 			 */
8432 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8433 			if (btrfs_test_opt(root, SPACE_CACHE))
8434 				cache->dirty = 1;
8435 		}
8436 
8437 		read_extent_buffer(leaf, &cache->item,
8438 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8439 				   sizeof(cache->item));
8440 		memcpy(&cache->key, &found_key, sizeof(found_key));
8441 
8442 		key.objectid = found_key.objectid + found_key.offset;
8443 		btrfs_release_path(path);
8444 		cache->flags = btrfs_block_group_flags(&cache->item);
8445 		cache->sectorsize = root->sectorsize;
8446 		cache->full_stripe_len = btrfs_full_stripe_len(root,
8447 					       &root->fs_info->mapping_tree,
8448 					       found_key.objectid);
8449 		btrfs_init_free_space_ctl(cache);
8450 
8451 		/*
8452 		 * We need to exclude the super stripes now so that the space
8453 		 * info has super bytes accounted for, otherwise we'll think
8454 		 * we have more space than we actually do.
8455 		 */
8456 		ret = exclude_super_stripes(root, cache);
8457 		if (ret) {
8458 			/*
8459 			 * We may have excluded something, so call this just in
8460 			 * case.
8461 			 */
8462 			free_excluded_extents(root, cache);
8463 			kfree(cache->free_space_ctl);
8464 			kfree(cache);
8465 			goto error;
8466 		}
8467 
8468 		/*
8469 		 * check for two cases, either we are full, and therefore
8470 		 * don't need to bother with the caching work since we won't
8471 		 * find any space, or we are empty, and we can just add all
8472 		 * the space in and be done with it.  This saves us _alot_ of
8473 		 * time, particularly in the full case.
8474 		 */
8475 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8476 			cache->last_byte_to_unpin = (u64)-1;
8477 			cache->cached = BTRFS_CACHE_FINISHED;
8478 			free_excluded_extents(root, cache);
8479 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8480 			cache->last_byte_to_unpin = (u64)-1;
8481 			cache->cached = BTRFS_CACHE_FINISHED;
8482 			add_new_free_space(cache, root->fs_info,
8483 					   found_key.objectid,
8484 					   found_key.objectid +
8485 					   found_key.offset);
8486 			free_excluded_extents(root, cache);
8487 		}
8488 
8489 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8490 		if (ret) {
8491 			btrfs_remove_free_space_cache(cache);
8492 			btrfs_put_block_group(cache);
8493 			goto error;
8494 		}
8495 
8496 		ret = update_space_info(info, cache->flags, found_key.offset,
8497 					btrfs_block_group_used(&cache->item),
8498 					&space_info);
8499 		if (ret) {
8500 			btrfs_remove_free_space_cache(cache);
8501 			spin_lock(&info->block_group_cache_lock);
8502 			rb_erase(&cache->cache_node,
8503 				 &info->block_group_cache_tree);
8504 			spin_unlock(&info->block_group_cache_lock);
8505 			btrfs_put_block_group(cache);
8506 			goto error;
8507 		}
8508 
8509 		cache->space_info = space_info;
8510 		spin_lock(&cache->space_info->lock);
8511 		cache->space_info->bytes_readonly += cache->bytes_super;
8512 		spin_unlock(&cache->space_info->lock);
8513 
8514 		__link_block_group(space_info, cache);
8515 
8516 		set_avail_alloc_bits(root->fs_info, cache->flags);
8517 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8518 			set_block_group_ro(cache, 1);
8519 	}
8520 
8521 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8522 		if (!(get_alloc_profile(root, space_info->flags) &
8523 		      (BTRFS_BLOCK_GROUP_RAID10 |
8524 		       BTRFS_BLOCK_GROUP_RAID1 |
8525 		       BTRFS_BLOCK_GROUP_RAID5 |
8526 		       BTRFS_BLOCK_GROUP_RAID6 |
8527 		       BTRFS_BLOCK_GROUP_DUP)))
8528 			continue;
8529 		/*
8530 		 * avoid allocating from un-mirrored block group if there are
8531 		 * mirrored block groups.
8532 		 */
8533 		list_for_each_entry(cache,
8534 				&space_info->block_groups[BTRFS_RAID_RAID0],
8535 				list)
8536 			set_block_group_ro(cache, 1);
8537 		list_for_each_entry(cache,
8538 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8539 				list)
8540 			set_block_group_ro(cache, 1);
8541 	}
8542 
8543 	init_global_block_rsv(info);
8544 	ret = 0;
8545 error:
8546 	btrfs_free_path(path);
8547 	return ret;
8548 }
8549 
8550 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8551 				       struct btrfs_root *root)
8552 {
8553 	struct btrfs_block_group_cache *block_group, *tmp;
8554 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8555 	struct btrfs_block_group_item item;
8556 	struct btrfs_key key;
8557 	int ret = 0;
8558 
8559 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8560 				 new_bg_list) {
8561 		list_del_init(&block_group->new_bg_list);
8562 
8563 		if (ret)
8564 			continue;
8565 
8566 		spin_lock(&block_group->lock);
8567 		memcpy(&item, &block_group->item, sizeof(item));
8568 		memcpy(&key, &block_group->key, sizeof(key));
8569 		spin_unlock(&block_group->lock);
8570 
8571 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8572 					sizeof(item));
8573 		if (ret)
8574 			btrfs_abort_transaction(trans, extent_root, ret);
8575 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8576 					       key.objectid, key.offset);
8577 		if (ret)
8578 			btrfs_abort_transaction(trans, extent_root, ret);
8579 	}
8580 }
8581 
8582 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8583 			   struct btrfs_root *root, u64 bytes_used,
8584 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8585 			   u64 size)
8586 {
8587 	int ret;
8588 	struct btrfs_root *extent_root;
8589 	struct btrfs_block_group_cache *cache;
8590 
8591 	extent_root = root->fs_info->extent_root;
8592 
8593 	root->fs_info->last_trans_log_full_commit = trans->transid;
8594 
8595 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8596 	if (!cache)
8597 		return -ENOMEM;
8598 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8599 					GFP_NOFS);
8600 	if (!cache->free_space_ctl) {
8601 		kfree(cache);
8602 		return -ENOMEM;
8603 	}
8604 
8605 	cache->key.objectid = chunk_offset;
8606 	cache->key.offset = size;
8607 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8608 	cache->sectorsize = root->sectorsize;
8609 	cache->fs_info = root->fs_info;
8610 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8611 					       &root->fs_info->mapping_tree,
8612 					       chunk_offset);
8613 
8614 	atomic_set(&cache->count, 1);
8615 	spin_lock_init(&cache->lock);
8616 	INIT_LIST_HEAD(&cache->list);
8617 	INIT_LIST_HEAD(&cache->cluster_list);
8618 	INIT_LIST_HEAD(&cache->new_bg_list);
8619 
8620 	btrfs_init_free_space_ctl(cache);
8621 
8622 	btrfs_set_block_group_used(&cache->item, bytes_used);
8623 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8624 	cache->flags = type;
8625 	btrfs_set_block_group_flags(&cache->item, type);
8626 
8627 	cache->last_byte_to_unpin = (u64)-1;
8628 	cache->cached = BTRFS_CACHE_FINISHED;
8629 	ret = exclude_super_stripes(root, cache);
8630 	if (ret) {
8631 		/*
8632 		 * We may have excluded something, so call this just in
8633 		 * case.
8634 		 */
8635 		free_excluded_extents(root, cache);
8636 		kfree(cache->free_space_ctl);
8637 		kfree(cache);
8638 		return ret;
8639 	}
8640 
8641 	add_new_free_space(cache, root->fs_info, chunk_offset,
8642 			   chunk_offset + size);
8643 
8644 	free_excluded_extents(root, cache);
8645 
8646 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8647 	if (ret) {
8648 		btrfs_remove_free_space_cache(cache);
8649 		btrfs_put_block_group(cache);
8650 		return ret;
8651 	}
8652 
8653 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8654 				&cache->space_info);
8655 	if (ret) {
8656 		btrfs_remove_free_space_cache(cache);
8657 		spin_lock(&root->fs_info->block_group_cache_lock);
8658 		rb_erase(&cache->cache_node,
8659 			 &root->fs_info->block_group_cache_tree);
8660 		spin_unlock(&root->fs_info->block_group_cache_lock);
8661 		btrfs_put_block_group(cache);
8662 		return ret;
8663 	}
8664 	update_global_block_rsv(root->fs_info);
8665 
8666 	spin_lock(&cache->space_info->lock);
8667 	cache->space_info->bytes_readonly += cache->bytes_super;
8668 	spin_unlock(&cache->space_info->lock);
8669 
8670 	__link_block_group(cache->space_info, cache);
8671 
8672 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8673 
8674 	set_avail_alloc_bits(extent_root->fs_info, type);
8675 
8676 	return 0;
8677 }
8678 
8679 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8680 {
8681 	u64 extra_flags = chunk_to_extended(flags) &
8682 				BTRFS_EXTENDED_PROFILE_MASK;
8683 
8684 	write_seqlock(&fs_info->profiles_lock);
8685 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8686 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8687 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8688 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8689 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8690 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8691 	write_sequnlock(&fs_info->profiles_lock);
8692 }
8693 
8694 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8695 			     struct btrfs_root *root, u64 group_start)
8696 {
8697 	struct btrfs_path *path;
8698 	struct btrfs_block_group_cache *block_group;
8699 	struct btrfs_free_cluster *cluster;
8700 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8701 	struct btrfs_key key;
8702 	struct inode *inode;
8703 	int ret;
8704 	int index;
8705 	int factor;
8706 
8707 	root = root->fs_info->extent_root;
8708 
8709 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8710 	BUG_ON(!block_group);
8711 	BUG_ON(!block_group->ro);
8712 
8713 	/*
8714 	 * Free the reserved super bytes from this block group before
8715 	 * remove it.
8716 	 */
8717 	free_excluded_extents(root, block_group);
8718 
8719 	memcpy(&key, &block_group->key, sizeof(key));
8720 	index = get_block_group_index(block_group);
8721 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8722 				  BTRFS_BLOCK_GROUP_RAID1 |
8723 				  BTRFS_BLOCK_GROUP_RAID10))
8724 		factor = 2;
8725 	else
8726 		factor = 1;
8727 
8728 	/* make sure this block group isn't part of an allocation cluster */
8729 	cluster = &root->fs_info->data_alloc_cluster;
8730 	spin_lock(&cluster->refill_lock);
8731 	btrfs_return_cluster_to_free_space(block_group, cluster);
8732 	spin_unlock(&cluster->refill_lock);
8733 
8734 	/*
8735 	 * make sure this block group isn't part of a metadata
8736 	 * allocation cluster
8737 	 */
8738 	cluster = &root->fs_info->meta_alloc_cluster;
8739 	spin_lock(&cluster->refill_lock);
8740 	btrfs_return_cluster_to_free_space(block_group, cluster);
8741 	spin_unlock(&cluster->refill_lock);
8742 
8743 	path = btrfs_alloc_path();
8744 	if (!path) {
8745 		ret = -ENOMEM;
8746 		goto out;
8747 	}
8748 
8749 	inode = lookup_free_space_inode(tree_root, block_group, path);
8750 	if (!IS_ERR(inode)) {
8751 		ret = btrfs_orphan_add(trans, inode);
8752 		if (ret) {
8753 			btrfs_add_delayed_iput(inode);
8754 			goto out;
8755 		}
8756 		clear_nlink(inode);
8757 		/* One for the block groups ref */
8758 		spin_lock(&block_group->lock);
8759 		if (block_group->iref) {
8760 			block_group->iref = 0;
8761 			block_group->inode = NULL;
8762 			spin_unlock(&block_group->lock);
8763 			iput(inode);
8764 		} else {
8765 			spin_unlock(&block_group->lock);
8766 		}
8767 		/* One for our lookup ref */
8768 		btrfs_add_delayed_iput(inode);
8769 	}
8770 
8771 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8772 	key.offset = block_group->key.objectid;
8773 	key.type = 0;
8774 
8775 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8776 	if (ret < 0)
8777 		goto out;
8778 	if (ret > 0)
8779 		btrfs_release_path(path);
8780 	if (ret == 0) {
8781 		ret = btrfs_del_item(trans, tree_root, path);
8782 		if (ret)
8783 			goto out;
8784 		btrfs_release_path(path);
8785 	}
8786 
8787 	spin_lock(&root->fs_info->block_group_cache_lock);
8788 	rb_erase(&block_group->cache_node,
8789 		 &root->fs_info->block_group_cache_tree);
8790 
8791 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8792 		root->fs_info->first_logical_byte = (u64)-1;
8793 	spin_unlock(&root->fs_info->block_group_cache_lock);
8794 
8795 	down_write(&block_group->space_info->groups_sem);
8796 	/*
8797 	 * we must use list_del_init so people can check to see if they
8798 	 * are still on the list after taking the semaphore
8799 	 */
8800 	list_del_init(&block_group->list);
8801 	if (list_empty(&block_group->space_info->block_groups[index]))
8802 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8803 	up_write(&block_group->space_info->groups_sem);
8804 
8805 	if (block_group->cached == BTRFS_CACHE_STARTED)
8806 		wait_block_group_cache_done(block_group);
8807 
8808 	btrfs_remove_free_space_cache(block_group);
8809 
8810 	spin_lock(&block_group->space_info->lock);
8811 	block_group->space_info->total_bytes -= block_group->key.offset;
8812 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8813 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8814 	spin_unlock(&block_group->space_info->lock);
8815 
8816 	memcpy(&key, &block_group->key, sizeof(key));
8817 
8818 	btrfs_clear_space_info_full(root->fs_info);
8819 
8820 	btrfs_put_block_group(block_group);
8821 	btrfs_put_block_group(block_group);
8822 
8823 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8824 	if (ret > 0)
8825 		ret = -EIO;
8826 	if (ret < 0)
8827 		goto out;
8828 
8829 	ret = btrfs_del_item(trans, root, path);
8830 out:
8831 	btrfs_free_path(path);
8832 	return ret;
8833 }
8834 
8835 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8836 {
8837 	struct btrfs_space_info *space_info;
8838 	struct btrfs_super_block *disk_super;
8839 	u64 features;
8840 	u64 flags;
8841 	int mixed = 0;
8842 	int ret;
8843 
8844 	disk_super = fs_info->super_copy;
8845 	if (!btrfs_super_root(disk_super))
8846 		return 1;
8847 
8848 	features = btrfs_super_incompat_flags(disk_super);
8849 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8850 		mixed = 1;
8851 
8852 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8853 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8854 	if (ret)
8855 		goto out;
8856 
8857 	if (mixed) {
8858 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8859 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8860 	} else {
8861 		flags = BTRFS_BLOCK_GROUP_METADATA;
8862 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 		if (ret)
8864 			goto out;
8865 
8866 		flags = BTRFS_BLOCK_GROUP_DATA;
8867 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8868 	}
8869 out:
8870 	return ret;
8871 }
8872 
8873 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8874 {
8875 	return unpin_extent_range(root, start, end);
8876 }
8877 
8878 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8879 			       u64 num_bytes, u64 *actual_bytes)
8880 {
8881 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8882 }
8883 
8884 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8885 {
8886 	struct btrfs_fs_info *fs_info = root->fs_info;
8887 	struct btrfs_block_group_cache *cache = NULL;
8888 	u64 group_trimmed;
8889 	u64 start;
8890 	u64 end;
8891 	u64 trimmed = 0;
8892 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8893 	int ret = 0;
8894 
8895 	/*
8896 	 * try to trim all FS space, our block group may start from non-zero.
8897 	 */
8898 	if (range->len == total_bytes)
8899 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8900 	else
8901 		cache = btrfs_lookup_block_group(fs_info, range->start);
8902 
8903 	while (cache) {
8904 		if (cache->key.objectid >= (range->start + range->len)) {
8905 			btrfs_put_block_group(cache);
8906 			break;
8907 		}
8908 
8909 		start = max(range->start, cache->key.objectid);
8910 		end = min(range->start + range->len,
8911 				cache->key.objectid + cache->key.offset);
8912 
8913 		if (end - start >= range->minlen) {
8914 			if (!block_group_cache_done(cache)) {
8915 				ret = cache_block_group(cache, 0);
8916 				if (ret) {
8917 					btrfs_put_block_group(cache);
8918 					break;
8919 				}
8920 				ret = wait_block_group_cache_done(cache);
8921 				if (ret) {
8922 					btrfs_put_block_group(cache);
8923 					break;
8924 				}
8925 			}
8926 			ret = btrfs_trim_block_group(cache,
8927 						     &group_trimmed,
8928 						     start,
8929 						     end,
8930 						     range->minlen);
8931 
8932 			trimmed += group_trimmed;
8933 			if (ret) {
8934 				btrfs_put_block_group(cache);
8935 				break;
8936 			}
8937 		}
8938 
8939 		cache = next_block_group(fs_info->tree_root, cache);
8940 	}
8941 
8942 	range->len = trimmed;
8943 	return ret;
8944 }
8945