1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "math.h" 38 39 #undef SCRAMBLE_DELAYED_REFS 40 41 /* 42 * control flags for do_chunk_alloc's force field 43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 44 * if we really need one. 45 * 46 * CHUNK_ALLOC_LIMITED means to only try and allocate one 47 * if we have very few chunks already allocated. This is 48 * used as part of the clustering code to help make sure 49 * we have a good pool of storage to cluster in, without 50 * filling the FS with empty chunks 51 * 52 * CHUNK_ALLOC_FORCE means it must try to allocate one 53 * 54 */ 55 enum { 56 CHUNK_ALLOC_NO_FORCE = 0, 57 CHUNK_ALLOC_LIMITED = 1, 58 CHUNK_ALLOC_FORCE = 2, 59 }; 60 61 /* 62 * Control how reservations are dealt with. 63 * 64 * RESERVE_FREE - freeing a reservation. 65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 66 * ENOSPC accounting 67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 68 * bytes_may_use as the ENOSPC accounting is done elsewhere 69 */ 70 enum { 71 RESERVE_FREE = 0, 72 RESERVE_ALLOC = 1, 73 RESERVE_ALLOC_NO_ACCOUNT = 2, 74 }; 75 76 static int update_block_group(struct btrfs_root *root, 77 u64 bytenr, u64 num_bytes, int alloc); 78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, 80 u64 bytenr, u64 num_bytes, u64 parent, 81 u64 root_objectid, u64 owner_objectid, 82 u64 owner_offset, int refs_to_drop, 83 struct btrfs_delayed_extent_op *extra_op); 84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 85 struct extent_buffer *leaf, 86 struct btrfs_extent_item *ei); 87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 88 struct btrfs_root *root, 89 u64 parent, u64 root_objectid, 90 u64 flags, u64 owner, u64 offset, 91 struct btrfs_key *ins, int ref_mod); 92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 93 struct btrfs_root *root, 94 u64 parent, u64 root_objectid, 95 u64 flags, struct btrfs_disk_key *key, 96 int level, struct btrfs_key *ins); 97 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 98 struct btrfs_root *extent_root, u64 flags, 99 int force); 100 static int find_next_key(struct btrfs_path *path, int level, 101 struct btrfs_key *key); 102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 103 int dump_block_groups); 104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 105 u64 num_bytes, int reserve); 106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 107 u64 num_bytes); 108 int btrfs_pin_extent(struct btrfs_root *root, 109 u64 bytenr, u64 num_bytes, int reserved); 110 111 static noinline int 112 block_group_cache_done(struct btrfs_block_group_cache *cache) 113 { 114 smp_mb(); 115 return cache->cached == BTRFS_CACHE_FINISHED || 116 cache->cached == BTRFS_CACHE_ERROR; 117 } 118 119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 120 { 121 return (cache->flags & bits) == bits; 122 } 123 124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 125 { 126 atomic_inc(&cache->count); 127 } 128 129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 130 { 131 if (atomic_dec_and_test(&cache->count)) { 132 WARN_ON(cache->pinned > 0); 133 WARN_ON(cache->reserved > 0); 134 kfree(cache->free_space_ctl); 135 kfree(cache); 136 } 137 } 138 139 /* 140 * this adds the block group to the fs_info rb tree for the block group 141 * cache 142 */ 143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 144 struct btrfs_block_group_cache *block_group) 145 { 146 struct rb_node **p; 147 struct rb_node *parent = NULL; 148 struct btrfs_block_group_cache *cache; 149 150 spin_lock(&info->block_group_cache_lock); 151 p = &info->block_group_cache_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 cache = rb_entry(parent, struct btrfs_block_group_cache, 156 cache_node); 157 if (block_group->key.objectid < cache->key.objectid) { 158 p = &(*p)->rb_left; 159 } else if (block_group->key.objectid > cache->key.objectid) { 160 p = &(*p)->rb_right; 161 } else { 162 spin_unlock(&info->block_group_cache_lock); 163 return -EEXIST; 164 } 165 } 166 167 rb_link_node(&block_group->cache_node, parent, p); 168 rb_insert_color(&block_group->cache_node, 169 &info->block_group_cache_tree); 170 171 if (info->first_logical_byte > block_group->key.objectid) 172 info->first_logical_byte = block_group->key.objectid; 173 174 spin_unlock(&info->block_group_cache_lock); 175 176 return 0; 177 } 178 179 /* 180 * This will return the block group at or after bytenr if contains is 0, else 181 * it will return the block group that contains the bytenr 182 */ 183 static struct btrfs_block_group_cache * 184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 185 int contains) 186 { 187 struct btrfs_block_group_cache *cache, *ret = NULL; 188 struct rb_node *n; 189 u64 end, start; 190 191 spin_lock(&info->block_group_cache_lock); 192 n = info->block_group_cache_tree.rb_node; 193 194 while (n) { 195 cache = rb_entry(n, struct btrfs_block_group_cache, 196 cache_node); 197 end = cache->key.objectid + cache->key.offset - 1; 198 start = cache->key.objectid; 199 200 if (bytenr < start) { 201 if (!contains && (!ret || start < ret->key.objectid)) 202 ret = cache; 203 n = n->rb_left; 204 } else if (bytenr > start) { 205 if (contains && bytenr <= end) { 206 ret = cache; 207 break; 208 } 209 n = n->rb_right; 210 } else { 211 ret = cache; 212 break; 213 } 214 } 215 if (ret) { 216 btrfs_get_block_group(ret); 217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 218 info->first_logical_byte = ret->key.objectid; 219 } 220 spin_unlock(&info->block_group_cache_lock); 221 222 return ret; 223 } 224 225 static int add_excluded_extent(struct btrfs_root *root, 226 u64 start, u64 num_bytes) 227 { 228 u64 end = start + num_bytes - 1; 229 set_extent_bits(&root->fs_info->freed_extents[0], 230 start, end, EXTENT_UPTODATE, GFP_NOFS); 231 set_extent_bits(&root->fs_info->freed_extents[1], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 return 0; 234 } 235 236 static void free_excluded_extents(struct btrfs_root *root, 237 struct btrfs_block_group_cache *cache) 238 { 239 u64 start, end; 240 241 start = cache->key.objectid; 242 end = start + cache->key.offset - 1; 243 244 clear_extent_bits(&root->fs_info->freed_extents[0], 245 start, end, EXTENT_UPTODATE, GFP_NOFS); 246 clear_extent_bits(&root->fs_info->freed_extents[1], 247 start, end, EXTENT_UPTODATE, GFP_NOFS); 248 } 249 250 static int exclude_super_stripes(struct btrfs_root *root, 251 struct btrfs_block_group_cache *cache) 252 { 253 u64 bytenr; 254 u64 *logical; 255 int stripe_len; 256 int i, nr, ret; 257 258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 260 cache->bytes_super += stripe_len; 261 ret = add_excluded_extent(root, cache->key.objectid, 262 stripe_len); 263 if (ret) 264 return ret; 265 } 266 267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 268 bytenr = btrfs_sb_offset(i); 269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 270 cache->key.objectid, bytenr, 271 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(root, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (cache->cached != BTRFS_CACHE_STARTED) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 /* We're loading it the fast way, so we don't have a caching_ctl. */ 320 if (!cache->caching_ctl) { 321 spin_unlock(&cache->lock); 322 return NULL; 323 } 324 325 ctl = cache->caching_ctl; 326 atomic_inc(&ctl->count); 327 spin_unlock(&cache->lock); 328 return ctl; 329 } 330 331 static void put_caching_control(struct btrfs_caching_control *ctl) 332 { 333 if (atomic_dec_and_test(&ctl->count)) 334 kfree(ctl); 335 } 336 337 /* 338 * this is only called by cache_block_group, since we could have freed extents 339 * we need to check the pinned_extents for any extents that can't be used yet 340 * since their free space will be released as soon as the transaction commits. 341 */ 342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 343 struct btrfs_fs_info *info, u64 start, u64 end) 344 { 345 u64 extent_start, extent_end, size, total_added = 0; 346 int ret; 347 348 while (start < end) { 349 ret = find_first_extent_bit(info->pinned_extents, start, 350 &extent_start, &extent_end, 351 EXTENT_DIRTY | EXTENT_UPTODATE, 352 NULL); 353 if (ret) 354 break; 355 356 if (extent_start <= start) { 357 start = extent_end + 1; 358 } else if (extent_start > start && extent_start < end) { 359 size = extent_start - start; 360 total_added += size; 361 ret = btrfs_add_free_space(block_group, start, 362 size); 363 BUG_ON(ret); /* -ENOMEM or logic error */ 364 start = extent_end + 1; 365 } else { 366 break; 367 } 368 } 369 370 if (start < end) { 371 size = end - start; 372 total_added += size; 373 ret = btrfs_add_free_space(block_group, start, size); 374 BUG_ON(ret); /* -ENOMEM or logic error */ 375 } 376 377 return total_added; 378 } 379 380 static noinline void caching_thread(struct btrfs_work *work) 381 { 382 struct btrfs_block_group_cache *block_group; 383 struct btrfs_fs_info *fs_info; 384 struct btrfs_caching_control *caching_ctl; 385 struct btrfs_root *extent_root; 386 struct btrfs_path *path; 387 struct extent_buffer *leaf; 388 struct btrfs_key key; 389 u64 total_found = 0; 390 u64 last = 0; 391 u32 nritems; 392 int ret = -ENOMEM; 393 394 caching_ctl = container_of(work, struct btrfs_caching_control, work); 395 block_group = caching_ctl->block_group; 396 fs_info = block_group->fs_info; 397 extent_root = fs_info->extent_root; 398 399 path = btrfs_alloc_path(); 400 if (!path) 401 goto out; 402 403 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 404 405 /* 406 * We don't want to deadlock with somebody trying to allocate a new 407 * extent for the extent root while also trying to search the extent 408 * root to add free space. So we skip locking and search the commit 409 * root, since its read-only 410 */ 411 path->skip_locking = 1; 412 path->search_commit_root = 1; 413 path->reada = 1; 414 415 key.objectid = last; 416 key.offset = 0; 417 key.type = BTRFS_EXTENT_ITEM_KEY; 418 again: 419 mutex_lock(&caching_ctl->mutex); 420 /* need to make sure the commit_root doesn't disappear */ 421 down_read(&fs_info->extent_commit_sem); 422 423 next: 424 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 425 if (ret < 0) 426 goto err; 427 428 leaf = path->nodes[0]; 429 nritems = btrfs_header_nritems(leaf); 430 431 while (1) { 432 if (btrfs_fs_closing(fs_info) > 1) { 433 last = (u64)-1; 434 break; 435 } 436 437 if (path->slots[0] < nritems) { 438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 439 } else { 440 ret = find_next_key(path, 0, &key); 441 if (ret) 442 break; 443 444 if (need_resched()) { 445 caching_ctl->progress = last; 446 btrfs_release_path(path); 447 up_read(&fs_info->extent_commit_sem); 448 mutex_unlock(&caching_ctl->mutex); 449 cond_resched(); 450 goto again; 451 } 452 453 ret = btrfs_next_leaf(extent_root, path); 454 if (ret < 0) 455 goto err; 456 if (ret) 457 break; 458 leaf = path->nodes[0]; 459 nritems = btrfs_header_nritems(leaf); 460 continue; 461 } 462 463 if (key.objectid < last) { 464 key.objectid = last; 465 key.offset = 0; 466 key.type = BTRFS_EXTENT_ITEM_KEY; 467 468 caching_ctl->progress = last; 469 btrfs_release_path(path); 470 goto next; 471 } 472 473 if (key.objectid < block_group->key.objectid) { 474 path->slots[0]++; 475 continue; 476 } 477 478 if (key.objectid >= block_group->key.objectid + 479 block_group->key.offset) 480 break; 481 482 if (key.type == BTRFS_EXTENT_ITEM_KEY || 483 key.type == BTRFS_METADATA_ITEM_KEY) { 484 total_found += add_new_free_space(block_group, 485 fs_info, last, 486 key.objectid); 487 if (key.type == BTRFS_METADATA_ITEM_KEY) 488 last = key.objectid + 489 fs_info->tree_root->leafsize; 490 else 491 last = key.objectid + key.offset; 492 493 if (total_found > (1024 * 1024 * 2)) { 494 total_found = 0; 495 wake_up(&caching_ctl->wait); 496 } 497 } 498 path->slots[0]++; 499 } 500 ret = 0; 501 502 total_found += add_new_free_space(block_group, fs_info, last, 503 block_group->key.objectid + 504 block_group->key.offset); 505 caching_ctl->progress = (u64)-1; 506 507 spin_lock(&block_group->lock); 508 block_group->caching_ctl = NULL; 509 block_group->cached = BTRFS_CACHE_FINISHED; 510 spin_unlock(&block_group->lock); 511 512 err: 513 btrfs_free_path(path); 514 up_read(&fs_info->extent_commit_sem); 515 516 free_excluded_extents(extent_root, block_group); 517 518 mutex_unlock(&caching_ctl->mutex); 519 out: 520 if (ret) { 521 spin_lock(&block_group->lock); 522 block_group->caching_ctl = NULL; 523 block_group->cached = BTRFS_CACHE_ERROR; 524 spin_unlock(&block_group->lock); 525 } 526 wake_up(&caching_ctl->wait); 527 528 put_caching_control(caching_ctl); 529 btrfs_put_block_group(block_group); 530 } 531 532 static int cache_block_group(struct btrfs_block_group_cache *cache, 533 int load_cache_only) 534 { 535 DEFINE_WAIT(wait); 536 struct btrfs_fs_info *fs_info = cache->fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 int ret = 0; 539 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 541 if (!caching_ctl) 542 return -ENOMEM; 543 544 INIT_LIST_HEAD(&caching_ctl->list); 545 mutex_init(&caching_ctl->mutex); 546 init_waitqueue_head(&caching_ctl->wait); 547 caching_ctl->block_group = cache; 548 caching_ctl->progress = cache->key.objectid; 549 atomic_set(&caching_ctl->count, 1); 550 caching_ctl->work.func = caching_thread; 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 ret = load_free_space_cache(fs_info, cache); 592 593 spin_lock(&cache->lock); 594 if (ret == 1) { 595 cache->caching_ctl = NULL; 596 cache->cached = BTRFS_CACHE_FINISHED; 597 cache->last_byte_to_unpin = (u64)-1; 598 } else { 599 if (load_cache_only) { 600 cache->caching_ctl = NULL; 601 cache->cached = BTRFS_CACHE_NO; 602 } else { 603 cache->cached = BTRFS_CACHE_STARTED; 604 } 605 } 606 spin_unlock(&cache->lock); 607 wake_up(&caching_ctl->wait); 608 if (ret == 1) { 609 put_caching_control(caching_ctl); 610 free_excluded_extents(fs_info->extent_root, cache); 611 return 0; 612 } 613 } else { 614 /* 615 * We are not going to do the fast caching, set cached to the 616 * appropriate value and wakeup any waiters. 617 */ 618 spin_lock(&cache->lock); 619 if (load_cache_only) { 620 cache->caching_ctl = NULL; 621 cache->cached = BTRFS_CACHE_NO; 622 } else { 623 cache->cached = BTRFS_CACHE_STARTED; 624 } 625 spin_unlock(&cache->lock); 626 wake_up(&caching_ctl->wait); 627 } 628 629 if (load_cache_only) { 630 put_caching_control(caching_ctl); 631 return 0; 632 } 633 634 down_write(&fs_info->extent_commit_sem); 635 atomic_inc(&caching_ctl->count); 636 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 637 up_write(&fs_info->extent_commit_sem); 638 639 btrfs_get_block_group(cache); 640 641 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 642 643 return ret; 644 } 645 646 /* 647 * return the block group that starts at or after bytenr 648 */ 649 static struct btrfs_block_group_cache * 650 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 651 { 652 struct btrfs_block_group_cache *cache; 653 654 cache = block_group_cache_tree_search(info, bytenr, 0); 655 656 return cache; 657 } 658 659 /* 660 * return the block group that contains the given bytenr 661 */ 662 struct btrfs_block_group_cache *btrfs_lookup_block_group( 663 struct btrfs_fs_info *info, 664 u64 bytenr) 665 { 666 struct btrfs_block_group_cache *cache; 667 668 cache = block_group_cache_tree_search(info, bytenr, 1); 669 670 return cache; 671 } 672 673 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 674 u64 flags) 675 { 676 struct list_head *head = &info->space_info; 677 struct btrfs_space_info *found; 678 679 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 680 681 rcu_read_lock(); 682 list_for_each_entry_rcu(found, head, list) { 683 if (found->flags & flags) { 684 rcu_read_unlock(); 685 return found; 686 } 687 } 688 rcu_read_unlock(); 689 return NULL; 690 } 691 692 /* 693 * after adding space to the filesystem, we need to clear the full flags 694 * on all the space infos. 695 */ 696 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 697 { 698 struct list_head *head = &info->space_info; 699 struct btrfs_space_info *found; 700 701 rcu_read_lock(); 702 list_for_each_entry_rcu(found, head, list) 703 found->full = 0; 704 rcu_read_unlock(); 705 } 706 707 /* simple helper to search for an existing extent at a given offset */ 708 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 709 { 710 int ret; 711 struct btrfs_key key; 712 struct btrfs_path *path; 713 714 path = btrfs_alloc_path(); 715 if (!path) 716 return -ENOMEM; 717 718 key.objectid = start; 719 key.offset = len; 720 key.type = BTRFS_EXTENT_ITEM_KEY; 721 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 722 0, 0); 723 if (ret > 0) { 724 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 725 if (key.objectid == start && 726 key.type == BTRFS_METADATA_ITEM_KEY) 727 ret = 0; 728 } 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->leafsize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (metadata) { 771 key.objectid = bytenr; 772 key.type = BTRFS_METADATA_ITEM_KEY; 773 key.offset = offset; 774 } else { 775 key.objectid = bytenr; 776 key.type = BTRFS_EXTENT_ITEM_KEY; 777 key.offset = offset; 778 } 779 780 if (!trans) { 781 path->skip_locking = 1; 782 path->search_commit_root = 1; 783 } 784 again: 785 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 786 &key, path, 0, 0); 787 if (ret < 0) 788 goto out_free; 789 790 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 791 metadata = 0; 792 if (path->slots[0]) { 793 path->slots[0]--; 794 btrfs_item_key_to_cpu(path->nodes[0], &key, 795 path->slots[0]); 796 if (key.objectid == bytenr && 797 key.type == BTRFS_EXTENT_ITEM_KEY && 798 key.offset == root->leafsize) 799 ret = 0; 800 } 801 if (ret) { 802 key.objectid = bytenr; 803 key.type = BTRFS_EXTENT_ITEM_KEY; 804 key.offset = root->leafsize; 805 btrfs_release_path(path); 806 goto again; 807 } 808 } 809 810 if (ret == 0) { 811 leaf = path->nodes[0]; 812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 813 if (item_size >= sizeof(*ei)) { 814 ei = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_extent_item); 816 num_refs = btrfs_extent_refs(leaf, ei); 817 extent_flags = btrfs_extent_flags(leaf, ei); 818 } else { 819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 820 struct btrfs_extent_item_v0 *ei0; 821 BUG_ON(item_size != sizeof(*ei0)); 822 ei0 = btrfs_item_ptr(leaf, path->slots[0], 823 struct btrfs_extent_item_v0); 824 num_refs = btrfs_extent_refs_v0(leaf, ei0); 825 /* FIXME: this isn't correct for data */ 826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 827 #else 828 BUG(); 829 #endif 830 } 831 BUG_ON(num_refs == 0); 832 } else { 833 num_refs = 0; 834 extent_flags = 0; 835 ret = 0; 836 } 837 838 if (!trans) 839 goto out; 840 841 delayed_refs = &trans->transaction->delayed_refs; 842 spin_lock(&delayed_refs->lock); 843 head = btrfs_find_delayed_ref_head(trans, bytenr); 844 if (head) { 845 if (!mutex_trylock(&head->mutex)) { 846 atomic_inc(&head->node.refs); 847 spin_unlock(&delayed_refs->lock); 848 849 btrfs_release_path(path); 850 851 /* 852 * Mutex was contended, block until it's released and try 853 * again 854 */ 855 mutex_lock(&head->mutex); 856 mutex_unlock(&head->mutex); 857 btrfs_put_delayed_ref(&head->node); 858 goto again; 859 } 860 if (head->extent_op && head->extent_op->update_flags) 861 extent_flags |= head->extent_op->flags_to_set; 862 else 863 BUG_ON(num_refs == 0); 864 865 num_refs += head->node.ref_mod; 866 mutex_unlock(&head->mutex); 867 } 868 spin_unlock(&delayed_refs->lock); 869 out: 870 WARN_ON(num_refs == 0); 871 if (refs) 872 *refs = num_refs; 873 if (flags) 874 *flags = extent_flags; 875 out_free: 876 btrfs_free_path(path); 877 return ret; 878 } 879 880 /* 881 * Back reference rules. Back refs have three main goals: 882 * 883 * 1) differentiate between all holders of references to an extent so that 884 * when a reference is dropped we can make sure it was a valid reference 885 * before freeing the extent. 886 * 887 * 2) Provide enough information to quickly find the holders of an extent 888 * if we notice a given block is corrupted or bad. 889 * 890 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 891 * maintenance. This is actually the same as #2, but with a slightly 892 * different use case. 893 * 894 * There are two kinds of back refs. The implicit back refs is optimized 895 * for pointers in non-shared tree blocks. For a given pointer in a block, 896 * back refs of this kind provide information about the block's owner tree 897 * and the pointer's key. These information allow us to find the block by 898 * b-tree searching. The full back refs is for pointers in tree blocks not 899 * referenced by their owner trees. The location of tree block is recorded 900 * in the back refs. Actually the full back refs is generic, and can be 901 * used in all cases the implicit back refs is used. The major shortcoming 902 * of the full back refs is its overhead. Every time a tree block gets 903 * COWed, we have to update back refs entry for all pointers in it. 904 * 905 * For a newly allocated tree block, we use implicit back refs for 906 * pointers in it. This means most tree related operations only involve 907 * implicit back refs. For a tree block created in old transaction, the 908 * only way to drop a reference to it is COW it. So we can detect the 909 * event that tree block loses its owner tree's reference and do the 910 * back refs conversion. 911 * 912 * When a tree block is COW'd through a tree, there are four cases: 913 * 914 * The reference count of the block is one and the tree is the block's 915 * owner tree. Nothing to do in this case. 916 * 917 * The reference count of the block is one and the tree is not the 918 * block's owner tree. In this case, full back refs is used for pointers 919 * in the block. Remove these full back refs, add implicit back refs for 920 * every pointers in the new block. 921 * 922 * The reference count of the block is greater than one and the tree is 923 * the block's owner tree. In this case, implicit back refs is used for 924 * pointers in the block. Add full back refs for every pointers in the 925 * block, increase lower level extents' reference counts. The original 926 * implicit back refs are entailed to the new block. 927 * 928 * The reference count of the block is greater than one and the tree is 929 * not the block's owner tree. Add implicit back refs for every pointer in 930 * the new block, increase lower level extents' reference count. 931 * 932 * Back Reference Key composing: 933 * 934 * The key objectid corresponds to the first byte in the extent, 935 * The key type is used to differentiate between types of back refs. 936 * There are different meanings of the key offset for different types 937 * of back refs. 938 * 939 * File extents can be referenced by: 940 * 941 * - multiple snapshots, subvolumes, or different generations in one subvol 942 * - different files inside a single subvolume 943 * - different offsets inside a file (bookend extents in file.c) 944 * 945 * The extent ref structure for the implicit back refs has fields for: 946 * 947 * - Objectid of the subvolume root 948 * - objectid of the file holding the reference 949 * - original offset in the file 950 * - how many bookend extents 951 * 952 * The key offset for the implicit back refs is hash of the first 953 * three fields. 954 * 955 * The extent ref structure for the full back refs has field for: 956 * 957 * - number of pointers in the tree leaf 958 * 959 * The key offset for the implicit back refs is the first byte of 960 * the tree leaf 961 * 962 * When a file extent is allocated, The implicit back refs is used. 963 * the fields are filled in: 964 * 965 * (root_key.objectid, inode objectid, offset in file, 1) 966 * 967 * When a file extent is removed file truncation, we find the 968 * corresponding implicit back refs and check the following fields: 969 * 970 * (btrfs_header_owner(leaf), inode objectid, offset in file) 971 * 972 * Btree extents can be referenced by: 973 * 974 * - Different subvolumes 975 * 976 * Both the implicit back refs and the full back refs for tree blocks 977 * only consist of key. The key offset for the implicit back refs is 978 * objectid of block's owner tree. The key offset for the full back refs 979 * is the first byte of parent block. 980 * 981 * When implicit back refs is used, information about the lowest key and 982 * level of the tree block are required. These information are stored in 983 * tree block info structure. 984 */ 985 986 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 987 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 988 struct btrfs_root *root, 989 struct btrfs_path *path, 990 u64 owner, u32 extra_size) 991 { 992 struct btrfs_extent_item *item; 993 struct btrfs_extent_item_v0 *ei0; 994 struct btrfs_extent_ref_v0 *ref0; 995 struct btrfs_tree_block_info *bi; 996 struct extent_buffer *leaf; 997 struct btrfs_key key; 998 struct btrfs_key found_key; 999 u32 new_size = sizeof(*item); 1000 u64 refs; 1001 int ret; 1002 1003 leaf = path->nodes[0]; 1004 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1005 1006 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1007 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1008 struct btrfs_extent_item_v0); 1009 refs = btrfs_extent_refs_v0(leaf, ei0); 1010 1011 if (owner == (u64)-1) { 1012 while (1) { 1013 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1014 ret = btrfs_next_leaf(root, path); 1015 if (ret < 0) 1016 return ret; 1017 BUG_ON(ret > 0); /* Corruption */ 1018 leaf = path->nodes[0]; 1019 } 1020 btrfs_item_key_to_cpu(leaf, &found_key, 1021 path->slots[0]); 1022 BUG_ON(key.objectid != found_key.objectid); 1023 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1024 path->slots[0]++; 1025 continue; 1026 } 1027 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1028 struct btrfs_extent_ref_v0); 1029 owner = btrfs_ref_objectid_v0(leaf, ref0); 1030 break; 1031 } 1032 } 1033 btrfs_release_path(path); 1034 1035 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1036 new_size += sizeof(*bi); 1037 1038 new_size -= sizeof(*ei0); 1039 ret = btrfs_search_slot(trans, root, &key, path, 1040 new_size + extra_size, 1); 1041 if (ret < 0) 1042 return ret; 1043 BUG_ON(ret); /* Corruption */ 1044 1045 btrfs_extend_item(root, path, new_size); 1046 1047 leaf = path->nodes[0]; 1048 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1049 btrfs_set_extent_refs(leaf, item, refs); 1050 /* FIXME: get real generation */ 1051 btrfs_set_extent_generation(leaf, item, 0); 1052 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1053 btrfs_set_extent_flags(leaf, item, 1054 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1055 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1056 bi = (struct btrfs_tree_block_info *)(item + 1); 1057 /* FIXME: get first key of the block */ 1058 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1059 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1060 } else { 1061 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1062 } 1063 btrfs_mark_buffer_dirty(leaf); 1064 return 0; 1065 } 1066 #endif 1067 1068 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1069 { 1070 u32 high_crc = ~(u32)0; 1071 u32 low_crc = ~(u32)0; 1072 __le64 lenum; 1073 1074 lenum = cpu_to_le64(root_objectid); 1075 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1076 lenum = cpu_to_le64(owner); 1077 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1078 lenum = cpu_to_le64(offset); 1079 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1080 1081 return ((u64)high_crc << 31) ^ (u64)low_crc; 1082 } 1083 1084 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref) 1086 { 1087 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1088 btrfs_extent_data_ref_objectid(leaf, ref), 1089 btrfs_extent_data_ref_offset(leaf, ref)); 1090 } 1091 1092 static int match_extent_data_ref(struct extent_buffer *leaf, 1093 struct btrfs_extent_data_ref *ref, 1094 u64 root_objectid, u64 owner, u64 offset) 1095 { 1096 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1097 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1098 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1099 return 0; 1100 return 1; 1101 } 1102 1103 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1104 struct btrfs_root *root, 1105 struct btrfs_path *path, 1106 u64 bytenr, u64 parent, 1107 u64 root_objectid, 1108 u64 owner, u64 offset) 1109 { 1110 struct btrfs_key key; 1111 struct btrfs_extent_data_ref *ref; 1112 struct extent_buffer *leaf; 1113 u32 nritems; 1114 int ret; 1115 int recow; 1116 int err = -ENOENT; 1117 1118 key.objectid = bytenr; 1119 if (parent) { 1120 key.type = BTRFS_SHARED_DATA_REF_KEY; 1121 key.offset = parent; 1122 } else { 1123 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1124 key.offset = hash_extent_data_ref(root_objectid, 1125 owner, offset); 1126 } 1127 again: 1128 recow = 0; 1129 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1130 if (ret < 0) { 1131 err = ret; 1132 goto fail; 1133 } 1134 1135 if (parent) { 1136 if (!ret) 1137 return 0; 1138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1139 key.type = BTRFS_EXTENT_REF_V0_KEY; 1140 btrfs_release_path(path); 1141 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1142 if (ret < 0) { 1143 err = ret; 1144 goto fail; 1145 } 1146 if (!ret) 1147 return 0; 1148 #endif 1149 goto fail; 1150 } 1151 1152 leaf = path->nodes[0]; 1153 nritems = btrfs_header_nritems(leaf); 1154 while (1) { 1155 if (path->slots[0] >= nritems) { 1156 ret = btrfs_next_leaf(root, path); 1157 if (ret < 0) 1158 err = ret; 1159 if (ret) 1160 goto fail; 1161 1162 leaf = path->nodes[0]; 1163 nritems = btrfs_header_nritems(leaf); 1164 recow = 1; 1165 } 1166 1167 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1168 if (key.objectid != bytenr || 1169 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1170 goto fail; 1171 1172 ref = btrfs_item_ptr(leaf, path->slots[0], 1173 struct btrfs_extent_data_ref); 1174 1175 if (match_extent_data_ref(leaf, ref, root_objectid, 1176 owner, offset)) { 1177 if (recow) { 1178 btrfs_release_path(path); 1179 goto again; 1180 } 1181 err = 0; 1182 break; 1183 } 1184 path->slots[0]++; 1185 } 1186 fail: 1187 return err; 1188 } 1189 1190 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1191 struct btrfs_root *root, 1192 struct btrfs_path *path, 1193 u64 bytenr, u64 parent, 1194 u64 root_objectid, u64 owner, 1195 u64 offset, int refs_to_add) 1196 { 1197 struct btrfs_key key; 1198 struct extent_buffer *leaf; 1199 u32 size; 1200 u32 num_refs; 1201 int ret; 1202 1203 key.objectid = bytenr; 1204 if (parent) { 1205 key.type = BTRFS_SHARED_DATA_REF_KEY; 1206 key.offset = parent; 1207 size = sizeof(struct btrfs_shared_data_ref); 1208 } else { 1209 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1210 key.offset = hash_extent_data_ref(root_objectid, 1211 owner, offset); 1212 size = sizeof(struct btrfs_extent_data_ref); 1213 } 1214 1215 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1216 if (ret && ret != -EEXIST) 1217 goto fail; 1218 1219 leaf = path->nodes[0]; 1220 if (parent) { 1221 struct btrfs_shared_data_ref *ref; 1222 ref = btrfs_item_ptr(leaf, path->slots[0], 1223 struct btrfs_shared_data_ref); 1224 if (ret == 0) { 1225 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1226 } else { 1227 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1228 num_refs += refs_to_add; 1229 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1230 } 1231 } else { 1232 struct btrfs_extent_data_ref *ref; 1233 while (ret == -EEXIST) { 1234 ref = btrfs_item_ptr(leaf, path->slots[0], 1235 struct btrfs_extent_data_ref); 1236 if (match_extent_data_ref(leaf, ref, root_objectid, 1237 owner, offset)) 1238 break; 1239 btrfs_release_path(path); 1240 key.offset++; 1241 ret = btrfs_insert_empty_item(trans, root, path, &key, 1242 size); 1243 if (ret && ret != -EEXIST) 1244 goto fail; 1245 1246 leaf = path->nodes[0]; 1247 } 1248 ref = btrfs_item_ptr(leaf, path->slots[0], 1249 struct btrfs_extent_data_ref); 1250 if (ret == 0) { 1251 btrfs_set_extent_data_ref_root(leaf, ref, 1252 root_objectid); 1253 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1254 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1255 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1256 } else { 1257 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1258 num_refs += refs_to_add; 1259 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1260 } 1261 } 1262 btrfs_mark_buffer_dirty(leaf); 1263 ret = 0; 1264 fail: 1265 btrfs_release_path(path); 1266 return ret; 1267 } 1268 1269 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1270 struct btrfs_root *root, 1271 struct btrfs_path *path, 1272 int refs_to_drop) 1273 { 1274 struct btrfs_key key; 1275 struct btrfs_extent_data_ref *ref1 = NULL; 1276 struct btrfs_shared_data_ref *ref2 = NULL; 1277 struct extent_buffer *leaf; 1278 u32 num_refs = 0; 1279 int ret = 0; 1280 1281 leaf = path->nodes[0]; 1282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1283 1284 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1285 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1286 struct btrfs_extent_data_ref); 1287 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1288 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1289 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_shared_data_ref); 1291 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1292 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1293 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1294 struct btrfs_extent_ref_v0 *ref0; 1295 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1296 struct btrfs_extent_ref_v0); 1297 num_refs = btrfs_ref_count_v0(leaf, ref0); 1298 #endif 1299 } else { 1300 BUG(); 1301 } 1302 1303 BUG_ON(num_refs < refs_to_drop); 1304 num_refs -= refs_to_drop; 1305 1306 if (num_refs == 0) { 1307 ret = btrfs_del_item(trans, root, path); 1308 } else { 1309 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1310 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1311 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1312 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1314 else { 1315 struct btrfs_extent_ref_v0 *ref0; 1316 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1317 struct btrfs_extent_ref_v0); 1318 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1319 } 1320 #endif 1321 btrfs_mark_buffer_dirty(leaf); 1322 } 1323 return ret; 1324 } 1325 1326 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1327 struct btrfs_path *path, 1328 struct btrfs_extent_inline_ref *iref) 1329 { 1330 struct btrfs_key key; 1331 struct extent_buffer *leaf; 1332 struct btrfs_extent_data_ref *ref1; 1333 struct btrfs_shared_data_ref *ref2; 1334 u32 num_refs = 0; 1335 1336 leaf = path->nodes[0]; 1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1338 if (iref) { 1339 if (btrfs_extent_inline_ref_type(leaf, iref) == 1340 BTRFS_EXTENT_DATA_REF_KEY) { 1341 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1343 } else { 1344 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1345 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1346 } 1347 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1348 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1349 struct btrfs_extent_data_ref); 1350 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1351 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1352 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_shared_data_ref); 1354 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1355 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1356 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1357 struct btrfs_extent_ref_v0 *ref0; 1358 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1359 struct btrfs_extent_ref_v0); 1360 num_refs = btrfs_ref_count_v0(leaf, ref0); 1361 #endif 1362 } else { 1363 WARN_ON(1); 1364 } 1365 return num_refs; 1366 } 1367 1368 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1369 struct btrfs_root *root, 1370 struct btrfs_path *path, 1371 u64 bytenr, u64 parent, 1372 u64 root_objectid) 1373 { 1374 struct btrfs_key key; 1375 int ret; 1376 1377 key.objectid = bytenr; 1378 if (parent) { 1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1380 key.offset = parent; 1381 } else { 1382 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1383 key.offset = root_objectid; 1384 } 1385 1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1387 if (ret > 0) 1388 ret = -ENOENT; 1389 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1390 if (ret == -ENOENT && parent) { 1391 btrfs_release_path(path); 1392 key.type = BTRFS_EXTENT_REF_V0_KEY; 1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1394 if (ret > 0) 1395 ret = -ENOENT; 1396 } 1397 #endif 1398 return ret; 1399 } 1400 1401 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1402 struct btrfs_root *root, 1403 struct btrfs_path *path, 1404 u64 bytenr, u64 parent, 1405 u64 root_objectid) 1406 { 1407 struct btrfs_key key; 1408 int ret; 1409 1410 key.objectid = bytenr; 1411 if (parent) { 1412 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1413 key.offset = parent; 1414 } else { 1415 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1416 key.offset = root_objectid; 1417 } 1418 1419 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1420 btrfs_release_path(path); 1421 return ret; 1422 } 1423 1424 static inline int extent_ref_type(u64 parent, u64 owner) 1425 { 1426 int type; 1427 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1428 if (parent > 0) 1429 type = BTRFS_SHARED_BLOCK_REF_KEY; 1430 else 1431 type = BTRFS_TREE_BLOCK_REF_KEY; 1432 } else { 1433 if (parent > 0) 1434 type = BTRFS_SHARED_DATA_REF_KEY; 1435 else 1436 type = BTRFS_EXTENT_DATA_REF_KEY; 1437 } 1438 return type; 1439 } 1440 1441 static int find_next_key(struct btrfs_path *path, int level, 1442 struct btrfs_key *key) 1443 1444 { 1445 for (; level < BTRFS_MAX_LEVEL; level++) { 1446 if (!path->nodes[level]) 1447 break; 1448 if (path->slots[level] + 1 >= 1449 btrfs_header_nritems(path->nodes[level])) 1450 continue; 1451 if (level == 0) 1452 btrfs_item_key_to_cpu(path->nodes[level], key, 1453 path->slots[level] + 1); 1454 else 1455 btrfs_node_key_to_cpu(path->nodes[level], key, 1456 path->slots[level] + 1); 1457 return 0; 1458 } 1459 return 1; 1460 } 1461 1462 /* 1463 * look for inline back ref. if back ref is found, *ref_ret is set 1464 * to the address of inline back ref, and 0 is returned. 1465 * 1466 * if back ref isn't found, *ref_ret is set to the address where it 1467 * should be inserted, and -ENOENT is returned. 1468 * 1469 * if insert is true and there are too many inline back refs, the path 1470 * points to the extent item, and -EAGAIN is returned. 1471 * 1472 * NOTE: inline back refs are ordered in the same way that back ref 1473 * items in the tree are ordered. 1474 */ 1475 static noinline_for_stack 1476 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1477 struct btrfs_root *root, 1478 struct btrfs_path *path, 1479 struct btrfs_extent_inline_ref **ref_ret, 1480 u64 bytenr, u64 num_bytes, 1481 u64 parent, u64 root_objectid, 1482 u64 owner, u64 offset, int insert) 1483 { 1484 struct btrfs_key key; 1485 struct extent_buffer *leaf; 1486 struct btrfs_extent_item *ei; 1487 struct btrfs_extent_inline_ref *iref; 1488 u64 flags; 1489 u64 item_size; 1490 unsigned long ptr; 1491 unsigned long end; 1492 int extra_size; 1493 int type; 1494 int want; 1495 int ret; 1496 int err = 0; 1497 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1498 SKINNY_METADATA); 1499 1500 key.objectid = bytenr; 1501 key.type = BTRFS_EXTENT_ITEM_KEY; 1502 key.offset = num_bytes; 1503 1504 want = extent_ref_type(parent, owner); 1505 if (insert) { 1506 extra_size = btrfs_extent_inline_ref_size(want); 1507 path->keep_locks = 1; 1508 } else 1509 extra_size = -1; 1510 1511 /* 1512 * Owner is our parent level, so we can just add one to get the level 1513 * for the block we are interested in. 1514 */ 1515 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1516 key.type = BTRFS_METADATA_ITEM_KEY; 1517 key.offset = owner; 1518 } 1519 1520 again: 1521 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1522 if (ret < 0) { 1523 err = ret; 1524 goto out; 1525 } 1526 1527 /* 1528 * We may be a newly converted file system which still has the old fat 1529 * extent entries for metadata, so try and see if we have one of those. 1530 */ 1531 if (ret > 0 && skinny_metadata) { 1532 skinny_metadata = false; 1533 if (path->slots[0]) { 1534 path->slots[0]--; 1535 btrfs_item_key_to_cpu(path->nodes[0], &key, 1536 path->slots[0]); 1537 if (key.objectid == bytenr && 1538 key.type == BTRFS_EXTENT_ITEM_KEY && 1539 key.offset == num_bytes) 1540 ret = 0; 1541 } 1542 if (ret) { 1543 key.type = BTRFS_EXTENT_ITEM_KEY; 1544 key.offset = num_bytes; 1545 btrfs_release_path(path); 1546 goto again; 1547 } 1548 } 1549 1550 if (ret && !insert) { 1551 err = -ENOENT; 1552 goto out; 1553 } else if (WARN_ON(ret)) { 1554 err = -EIO; 1555 goto out; 1556 } 1557 1558 leaf = path->nodes[0]; 1559 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1560 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1561 if (item_size < sizeof(*ei)) { 1562 if (!insert) { 1563 err = -ENOENT; 1564 goto out; 1565 } 1566 ret = convert_extent_item_v0(trans, root, path, owner, 1567 extra_size); 1568 if (ret < 0) { 1569 err = ret; 1570 goto out; 1571 } 1572 leaf = path->nodes[0]; 1573 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1574 } 1575 #endif 1576 BUG_ON(item_size < sizeof(*ei)); 1577 1578 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1579 flags = btrfs_extent_flags(leaf, ei); 1580 1581 ptr = (unsigned long)(ei + 1); 1582 end = (unsigned long)ei + item_size; 1583 1584 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1585 ptr += sizeof(struct btrfs_tree_block_info); 1586 BUG_ON(ptr > end); 1587 } 1588 1589 err = -ENOENT; 1590 while (1) { 1591 if (ptr >= end) { 1592 WARN_ON(ptr > end); 1593 break; 1594 } 1595 iref = (struct btrfs_extent_inline_ref *)ptr; 1596 type = btrfs_extent_inline_ref_type(leaf, iref); 1597 if (want < type) 1598 break; 1599 if (want > type) { 1600 ptr += btrfs_extent_inline_ref_size(type); 1601 continue; 1602 } 1603 1604 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1605 struct btrfs_extent_data_ref *dref; 1606 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1607 if (match_extent_data_ref(leaf, dref, root_objectid, 1608 owner, offset)) { 1609 err = 0; 1610 break; 1611 } 1612 if (hash_extent_data_ref_item(leaf, dref) < 1613 hash_extent_data_ref(root_objectid, owner, offset)) 1614 break; 1615 } else { 1616 u64 ref_offset; 1617 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1618 if (parent > 0) { 1619 if (parent == ref_offset) { 1620 err = 0; 1621 break; 1622 } 1623 if (ref_offset < parent) 1624 break; 1625 } else { 1626 if (root_objectid == ref_offset) { 1627 err = 0; 1628 break; 1629 } 1630 if (ref_offset < root_objectid) 1631 break; 1632 } 1633 } 1634 ptr += btrfs_extent_inline_ref_size(type); 1635 } 1636 if (err == -ENOENT && insert) { 1637 if (item_size + extra_size >= 1638 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1639 err = -EAGAIN; 1640 goto out; 1641 } 1642 /* 1643 * To add new inline back ref, we have to make sure 1644 * there is no corresponding back ref item. 1645 * For simplicity, we just do not add new inline back 1646 * ref if there is any kind of item for this block 1647 */ 1648 if (find_next_key(path, 0, &key) == 0 && 1649 key.objectid == bytenr && 1650 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1651 err = -EAGAIN; 1652 goto out; 1653 } 1654 } 1655 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1656 out: 1657 if (insert) { 1658 path->keep_locks = 0; 1659 btrfs_unlock_up_safe(path, 1); 1660 } 1661 return err; 1662 } 1663 1664 /* 1665 * helper to add new inline back ref 1666 */ 1667 static noinline_for_stack 1668 void setup_inline_extent_backref(struct btrfs_root *root, 1669 struct btrfs_path *path, 1670 struct btrfs_extent_inline_ref *iref, 1671 u64 parent, u64 root_objectid, 1672 u64 owner, u64 offset, int refs_to_add, 1673 struct btrfs_delayed_extent_op *extent_op) 1674 { 1675 struct extent_buffer *leaf; 1676 struct btrfs_extent_item *ei; 1677 unsigned long ptr; 1678 unsigned long end; 1679 unsigned long item_offset; 1680 u64 refs; 1681 int size; 1682 int type; 1683 1684 leaf = path->nodes[0]; 1685 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1686 item_offset = (unsigned long)iref - (unsigned long)ei; 1687 1688 type = extent_ref_type(parent, owner); 1689 size = btrfs_extent_inline_ref_size(type); 1690 1691 btrfs_extend_item(root, path, size); 1692 1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1694 refs = btrfs_extent_refs(leaf, ei); 1695 refs += refs_to_add; 1696 btrfs_set_extent_refs(leaf, ei, refs); 1697 if (extent_op) 1698 __run_delayed_extent_op(extent_op, leaf, ei); 1699 1700 ptr = (unsigned long)ei + item_offset; 1701 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1702 if (ptr < end - size) 1703 memmove_extent_buffer(leaf, ptr + size, ptr, 1704 end - size - ptr); 1705 1706 iref = (struct btrfs_extent_inline_ref *)ptr; 1707 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1708 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1709 struct btrfs_extent_data_ref *dref; 1710 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1711 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1712 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1713 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1714 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1715 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1716 struct btrfs_shared_data_ref *sref; 1717 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1718 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1720 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1724 } 1725 btrfs_mark_buffer_dirty(leaf); 1726 } 1727 1728 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1729 struct btrfs_root *root, 1730 struct btrfs_path *path, 1731 struct btrfs_extent_inline_ref **ref_ret, 1732 u64 bytenr, u64 num_bytes, u64 parent, 1733 u64 root_objectid, u64 owner, u64 offset) 1734 { 1735 int ret; 1736 1737 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1738 bytenr, num_bytes, parent, 1739 root_objectid, owner, offset, 0); 1740 if (ret != -ENOENT) 1741 return ret; 1742 1743 btrfs_release_path(path); 1744 *ref_ret = NULL; 1745 1746 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1747 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1748 root_objectid); 1749 } else { 1750 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1751 root_objectid, owner, offset); 1752 } 1753 return ret; 1754 } 1755 1756 /* 1757 * helper to update/remove inline back ref 1758 */ 1759 static noinline_for_stack 1760 void update_inline_extent_backref(struct btrfs_root *root, 1761 struct btrfs_path *path, 1762 struct btrfs_extent_inline_ref *iref, 1763 int refs_to_mod, 1764 struct btrfs_delayed_extent_op *extent_op) 1765 { 1766 struct extent_buffer *leaf; 1767 struct btrfs_extent_item *ei; 1768 struct btrfs_extent_data_ref *dref = NULL; 1769 struct btrfs_shared_data_ref *sref = NULL; 1770 unsigned long ptr; 1771 unsigned long end; 1772 u32 item_size; 1773 int size; 1774 int type; 1775 u64 refs; 1776 1777 leaf = path->nodes[0]; 1778 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1779 refs = btrfs_extent_refs(leaf, ei); 1780 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1781 refs += refs_to_mod; 1782 btrfs_set_extent_refs(leaf, ei, refs); 1783 if (extent_op) 1784 __run_delayed_extent_op(extent_op, leaf, ei); 1785 1786 type = btrfs_extent_inline_ref_type(leaf, iref); 1787 1788 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1789 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1790 refs = btrfs_extent_data_ref_count(leaf, dref); 1791 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1792 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1793 refs = btrfs_shared_data_ref_count(leaf, sref); 1794 } else { 1795 refs = 1; 1796 BUG_ON(refs_to_mod != -1); 1797 } 1798 1799 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1800 refs += refs_to_mod; 1801 1802 if (refs > 0) { 1803 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1804 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1805 else 1806 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1807 } else { 1808 size = btrfs_extent_inline_ref_size(type); 1809 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1810 ptr = (unsigned long)iref; 1811 end = (unsigned long)ei + item_size; 1812 if (ptr + size < end) 1813 memmove_extent_buffer(leaf, ptr, ptr + size, 1814 end - ptr - size); 1815 item_size -= size; 1816 btrfs_truncate_item(root, path, item_size, 1); 1817 } 1818 btrfs_mark_buffer_dirty(leaf); 1819 } 1820 1821 static noinline_for_stack 1822 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1823 struct btrfs_root *root, 1824 struct btrfs_path *path, 1825 u64 bytenr, u64 num_bytes, u64 parent, 1826 u64 root_objectid, u64 owner, 1827 u64 offset, int refs_to_add, 1828 struct btrfs_delayed_extent_op *extent_op) 1829 { 1830 struct btrfs_extent_inline_ref *iref; 1831 int ret; 1832 1833 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1834 bytenr, num_bytes, parent, 1835 root_objectid, owner, offset, 1); 1836 if (ret == 0) { 1837 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1838 update_inline_extent_backref(root, path, iref, 1839 refs_to_add, extent_op); 1840 } else if (ret == -ENOENT) { 1841 setup_inline_extent_backref(root, path, iref, parent, 1842 root_objectid, owner, offset, 1843 refs_to_add, extent_op); 1844 ret = 0; 1845 } 1846 return ret; 1847 } 1848 1849 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1850 struct btrfs_root *root, 1851 struct btrfs_path *path, 1852 u64 bytenr, u64 parent, u64 root_objectid, 1853 u64 owner, u64 offset, int refs_to_add) 1854 { 1855 int ret; 1856 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1857 BUG_ON(refs_to_add != 1); 1858 ret = insert_tree_block_ref(trans, root, path, bytenr, 1859 parent, root_objectid); 1860 } else { 1861 ret = insert_extent_data_ref(trans, root, path, bytenr, 1862 parent, root_objectid, 1863 owner, offset, refs_to_add); 1864 } 1865 return ret; 1866 } 1867 1868 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1869 struct btrfs_root *root, 1870 struct btrfs_path *path, 1871 struct btrfs_extent_inline_ref *iref, 1872 int refs_to_drop, int is_data) 1873 { 1874 int ret = 0; 1875 1876 BUG_ON(!is_data && refs_to_drop != 1); 1877 if (iref) { 1878 update_inline_extent_backref(root, path, iref, 1879 -refs_to_drop, NULL); 1880 } else if (is_data) { 1881 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1882 } else { 1883 ret = btrfs_del_item(trans, root, path); 1884 } 1885 return ret; 1886 } 1887 1888 static int btrfs_issue_discard(struct block_device *bdev, 1889 u64 start, u64 len) 1890 { 1891 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1892 } 1893 1894 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1895 u64 num_bytes, u64 *actual_bytes) 1896 { 1897 int ret; 1898 u64 discarded_bytes = 0; 1899 struct btrfs_bio *bbio = NULL; 1900 1901 1902 /* Tell the block device(s) that the sectors can be discarded */ 1903 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1904 bytenr, &num_bytes, &bbio, 0); 1905 /* Error condition is -ENOMEM */ 1906 if (!ret) { 1907 struct btrfs_bio_stripe *stripe = bbio->stripes; 1908 int i; 1909 1910 1911 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1912 if (!stripe->dev->can_discard) 1913 continue; 1914 1915 ret = btrfs_issue_discard(stripe->dev->bdev, 1916 stripe->physical, 1917 stripe->length); 1918 if (!ret) 1919 discarded_bytes += stripe->length; 1920 else if (ret != -EOPNOTSUPP) 1921 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1922 1923 /* 1924 * Just in case we get back EOPNOTSUPP for some reason, 1925 * just ignore the return value so we don't screw up 1926 * people calling discard_extent. 1927 */ 1928 ret = 0; 1929 } 1930 kfree(bbio); 1931 } 1932 1933 if (actual_bytes) 1934 *actual_bytes = discarded_bytes; 1935 1936 1937 if (ret == -EOPNOTSUPP) 1938 ret = 0; 1939 return ret; 1940 } 1941 1942 /* Can return -ENOMEM */ 1943 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1944 struct btrfs_root *root, 1945 u64 bytenr, u64 num_bytes, u64 parent, 1946 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1947 { 1948 int ret; 1949 struct btrfs_fs_info *fs_info = root->fs_info; 1950 1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1952 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1953 1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1956 num_bytes, 1957 parent, root_objectid, (int)owner, 1958 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1959 } else { 1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1961 num_bytes, 1962 parent, root_objectid, owner, offset, 1963 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1964 } 1965 return ret; 1966 } 1967 1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1969 struct btrfs_root *root, 1970 u64 bytenr, u64 num_bytes, 1971 u64 parent, u64 root_objectid, 1972 u64 owner, u64 offset, int refs_to_add, 1973 struct btrfs_delayed_extent_op *extent_op) 1974 { 1975 struct btrfs_path *path; 1976 struct extent_buffer *leaf; 1977 struct btrfs_extent_item *item; 1978 u64 refs; 1979 int ret; 1980 1981 path = btrfs_alloc_path(); 1982 if (!path) 1983 return -ENOMEM; 1984 1985 path->reada = 1; 1986 path->leave_spinning = 1; 1987 /* this will setup the path even if it fails to insert the back ref */ 1988 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1989 path, bytenr, num_bytes, parent, 1990 root_objectid, owner, offset, 1991 refs_to_add, extent_op); 1992 if (ret != -EAGAIN) 1993 goto out; 1994 1995 leaf = path->nodes[0]; 1996 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1997 refs = btrfs_extent_refs(leaf, item); 1998 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1999 if (extent_op) 2000 __run_delayed_extent_op(extent_op, leaf, item); 2001 2002 btrfs_mark_buffer_dirty(leaf); 2003 btrfs_release_path(path); 2004 2005 path->reada = 1; 2006 path->leave_spinning = 1; 2007 2008 /* now insert the actual backref */ 2009 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2010 path, bytenr, parent, root_objectid, 2011 owner, offset, refs_to_add); 2012 if (ret) 2013 btrfs_abort_transaction(trans, root, ret); 2014 out: 2015 btrfs_free_path(path); 2016 return ret; 2017 } 2018 2019 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2020 struct btrfs_root *root, 2021 struct btrfs_delayed_ref_node *node, 2022 struct btrfs_delayed_extent_op *extent_op, 2023 int insert_reserved) 2024 { 2025 int ret = 0; 2026 struct btrfs_delayed_data_ref *ref; 2027 struct btrfs_key ins; 2028 u64 parent = 0; 2029 u64 ref_root = 0; 2030 u64 flags = 0; 2031 2032 ins.objectid = node->bytenr; 2033 ins.offset = node->num_bytes; 2034 ins.type = BTRFS_EXTENT_ITEM_KEY; 2035 2036 ref = btrfs_delayed_node_to_data_ref(node); 2037 trace_run_delayed_data_ref(node, ref, node->action); 2038 2039 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2040 parent = ref->parent; 2041 else 2042 ref_root = ref->root; 2043 2044 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2045 if (extent_op) 2046 flags |= extent_op->flags_to_set; 2047 ret = alloc_reserved_file_extent(trans, root, 2048 parent, ref_root, flags, 2049 ref->objectid, ref->offset, 2050 &ins, node->ref_mod); 2051 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2052 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2053 node->num_bytes, parent, 2054 ref_root, ref->objectid, 2055 ref->offset, node->ref_mod, 2056 extent_op); 2057 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2058 ret = __btrfs_free_extent(trans, root, node->bytenr, 2059 node->num_bytes, parent, 2060 ref_root, ref->objectid, 2061 ref->offset, node->ref_mod, 2062 extent_op); 2063 } else { 2064 BUG(); 2065 } 2066 return ret; 2067 } 2068 2069 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2070 struct extent_buffer *leaf, 2071 struct btrfs_extent_item *ei) 2072 { 2073 u64 flags = btrfs_extent_flags(leaf, ei); 2074 if (extent_op->update_flags) { 2075 flags |= extent_op->flags_to_set; 2076 btrfs_set_extent_flags(leaf, ei, flags); 2077 } 2078 2079 if (extent_op->update_key) { 2080 struct btrfs_tree_block_info *bi; 2081 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2082 bi = (struct btrfs_tree_block_info *)(ei + 1); 2083 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2084 } 2085 } 2086 2087 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2088 struct btrfs_root *root, 2089 struct btrfs_delayed_ref_node *node, 2090 struct btrfs_delayed_extent_op *extent_op) 2091 { 2092 struct btrfs_key key; 2093 struct btrfs_path *path; 2094 struct btrfs_extent_item *ei; 2095 struct extent_buffer *leaf; 2096 u32 item_size; 2097 int ret; 2098 int err = 0; 2099 int metadata = !extent_op->is_data; 2100 2101 if (trans->aborted) 2102 return 0; 2103 2104 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2105 metadata = 0; 2106 2107 path = btrfs_alloc_path(); 2108 if (!path) 2109 return -ENOMEM; 2110 2111 key.objectid = node->bytenr; 2112 2113 if (metadata) { 2114 key.type = BTRFS_METADATA_ITEM_KEY; 2115 key.offset = extent_op->level; 2116 } else { 2117 key.type = BTRFS_EXTENT_ITEM_KEY; 2118 key.offset = node->num_bytes; 2119 } 2120 2121 again: 2122 path->reada = 1; 2123 path->leave_spinning = 1; 2124 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2125 path, 0, 1); 2126 if (ret < 0) { 2127 err = ret; 2128 goto out; 2129 } 2130 if (ret > 0) { 2131 if (metadata) { 2132 if (path->slots[0] > 0) { 2133 path->slots[0]--; 2134 btrfs_item_key_to_cpu(path->nodes[0], &key, 2135 path->slots[0]); 2136 if (key.objectid == node->bytenr && 2137 key.type == BTRFS_EXTENT_ITEM_KEY && 2138 key.offset == node->num_bytes) 2139 ret = 0; 2140 } 2141 if (ret > 0) { 2142 btrfs_release_path(path); 2143 metadata = 0; 2144 2145 key.objectid = node->bytenr; 2146 key.offset = node->num_bytes; 2147 key.type = BTRFS_EXTENT_ITEM_KEY; 2148 goto again; 2149 } 2150 } else { 2151 err = -EIO; 2152 goto out; 2153 } 2154 } 2155 2156 leaf = path->nodes[0]; 2157 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2158 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2159 if (item_size < sizeof(*ei)) { 2160 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2161 path, (u64)-1, 0); 2162 if (ret < 0) { 2163 err = ret; 2164 goto out; 2165 } 2166 leaf = path->nodes[0]; 2167 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2168 } 2169 #endif 2170 BUG_ON(item_size < sizeof(*ei)); 2171 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2172 __run_delayed_extent_op(extent_op, leaf, ei); 2173 2174 btrfs_mark_buffer_dirty(leaf); 2175 out: 2176 btrfs_free_path(path); 2177 return err; 2178 } 2179 2180 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2181 struct btrfs_root *root, 2182 struct btrfs_delayed_ref_node *node, 2183 struct btrfs_delayed_extent_op *extent_op, 2184 int insert_reserved) 2185 { 2186 int ret = 0; 2187 struct btrfs_delayed_tree_ref *ref; 2188 struct btrfs_key ins; 2189 u64 parent = 0; 2190 u64 ref_root = 0; 2191 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2192 SKINNY_METADATA); 2193 2194 ref = btrfs_delayed_node_to_tree_ref(node); 2195 trace_run_delayed_tree_ref(node, ref, node->action); 2196 2197 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2198 parent = ref->parent; 2199 else 2200 ref_root = ref->root; 2201 2202 ins.objectid = node->bytenr; 2203 if (skinny_metadata) { 2204 ins.offset = ref->level; 2205 ins.type = BTRFS_METADATA_ITEM_KEY; 2206 } else { 2207 ins.offset = node->num_bytes; 2208 ins.type = BTRFS_EXTENT_ITEM_KEY; 2209 } 2210 2211 BUG_ON(node->ref_mod != 1); 2212 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2213 BUG_ON(!extent_op || !extent_op->update_flags); 2214 ret = alloc_reserved_tree_block(trans, root, 2215 parent, ref_root, 2216 extent_op->flags_to_set, 2217 &extent_op->key, 2218 ref->level, &ins); 2219 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2220 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2221 node->num_bytes, parent, ref_root, 2222 ref->level, 0, 1, extent_op); 2223 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2224 ret = __btrfs_free_extent(trans, root, node->bytenr, 2225 node->num_bytes, parent, ref_root, 2226 ref->level, 0, 1, extent_op); 2227 } else { 2228 BUG(); 2229 } 2230 return ret; 2231 } 2232 2233 /* helper function to actually process a single delayed ref entry */ 2234 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2235 struct btrfs_root *root, 2236 struct btrfs_delayed_ref_node *node, 2237 struct btrfs_delayed_extent_op *extent_op, 2238 int insert_reserved) 2239 { 2240 int ret = 0; 2241 2242 if (trans->aborted) { 2243 if (insert_reserved) 2244 btrfs_pin_extent(root, node->bytenr, 2245 node->num_bytes, 1); 2246 return 0; 2247 } 2248 2249 if (btrfs_delayed_ref_is_head(node)) { 2250 struct btrfs_delayed_ref_head *head; 2251 /* 2252 * we've hit the end of the chain and we were supposed 2253 * to insert this extent into the tree. But, it got 2254 * deleted before we ever needed to insert it, so all 2255 * we have to do is clean up the accounting 2256 */ 2257 BUG_ON(extent_op); 2258 head = btrfs_delayed_node_to_head(node); 2259 trace_run_delayed_ref_head(node, head, node->action); 2260 2261 if (insert_reserved) { 2262 btrfs_pin_extent(root, node->bytenr, 2263 node->num_bytes, 1); 2264 if (head->is_data) { 2265 ret = btrfs_del_csums(trans, root, 2266 node->bytenr, 2267 node->num_bytes); 2268 } 2269 } 2270 return ret; 2271 } 2272 2273 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2274 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2275 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2276 insert_reserved); 2277 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2278 node->type == BTRFS_SHARED_DATA_REF_KEY) 2279 ret = run_delayed_data_ref(trans, root, node, extent_op, 2280 insert_reserved); 2281 else 2282 BUG(); 2283 return ret; 2284 } 2285 2286 static noinline struct btrfs_delayed_ref_node * 2287 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2288 { 2289 struct rb_node *node; 2290 struct btrfs_delayed_ref_node *ref; 2291 int action = BTRFS_ADD_DELAYED_REF; 2292 again: 2293 /* 2294 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2295 * this prevents ref count from going down to zero when 2296 * there still are pending delayed ref. 2297 */ 2298 node = rb_prev(&head->node.rb_node); 2299 while (1) { 2300 if (!node) 2301 break; 2302 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2303 rb_node); 2304 if (ref->bytenr != head->node.bytenr) 2305 break; 2306 if (ref->action == action) 2307 return ref; 2308 node = rb_prev(node); 2309 } 2310 if (action == BTRFS_ADD_DELAYED_REF) { 2311 action = BTRFS_DROP_DELAYED_REF; 2312 goto again; 2313 } 2314 return NULL; 2315 } 2316 2317 /* 2318 * Returns 0 on success or if called with an already aborted transaction. 2319 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2320 */ 2321 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2322 struct btrfs_root *root, 2323 struct list_head *cluster) 2324 { 2325 struct btrfs_delayed_ref_root *delayed_refs; 2326 struct btrfs_delayed_ref_node *ref; 2327 struct btrfs_delayed_ref_head *locked_ref = NULL; 2328 struct btrfs_delayed_extent_op *extent_op; 2329 struct btrfs_fs_info *fs_info = root->fs_info; 2330 int ret; 2331 int count = 0; 2332 int must_insert_reserved = 0; 2333 2334 delayed_refs = &trans->transaction->delayed_refs; 2335 while (1) { 2336 if (!locked_ref) { 2337 /* pick a new head ref from the cluster list */ 2338 if (list_empty(cluster)) 2339 break; 2340 2341 locked_ref = list_entry(cluster->next, 2342 struct btrfs_delayed_ref_head, cluster); 2343 2344 /* grab the lock that says we are going to process 2345 * all the refs for this head */ 2346 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2347 2348 /* 2349 * we may have dropped the spin lock to get the head 2350 * mutex lock, and that might have given someone else 2351 * time to free the head. If that's true, it has been 2352 * removed from our list and we can move on. 2353 */ 2354 if (ret == -EAGAIN) { 2355 locked_ref = NULL; 2356 count++; 2357 continue; 2358 } 2359 } 2360 2361 /* 2362 * We need to try and merge add/drops of the same ref since we 2363 * can run into issues with relocate dropping the implicit ref 2364 * and then it being added back again before the drop can 2365 * finish. If we merged anything we need to re-loop so we can 2366 * get a good ref. 2367 */ 2368 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2369 locked_ref); 2370 2371 /* 2372 * locked_ref is the head node, so we have to go one 2373 * node back for any delayed ref updates 2374 */ 2375 ref = select_delayed_ref(locked_ref); 2376 2377 if (ref && ref->seq && 2378 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2379 /* 2380 * there are still refs with lower seq numbers in the 2381 * process of being added. Don't run this ref yet. 2382 */ 2383 list_del_init(&locked_ref->cluster); 2384 btrfs_delayed_ref_unlock(locked_ref); 2385 locked_ref = NULL; 2386 delayed_refs->num_heads_ready++; 2387 spin_unlock(&delayed_refs->lock); 2388 cond_resched(); 2389 spin_lock(&delayed_refs->lock); 2390 continue; 2391 } 2392 2393 /* 2394 * record the must insert reserved flag before we 2395 * drop the spin lock. 2396 */ 2397 must_insert_reserved = locked_ref->must_insert_reserved; 2398 locked_ref->must_insert_reserved = 0; 2399 2400 extent_op = locked_ref->extent_op; 2401 locked_ref->extent_op = NULL; 2402 2403 if (!ref) { 2404 /* All delayed refs have been processed, Go ahead 2405 * and send the head node to run_one_delayed_ref, 2406 * so that any accounting fixes can happen 2407 */ 2408 ref = &locked_ref->node; 2409 2410 if (extent_op && must_insert_reserved) { 2411 btrfs_free_delayed_extent_op(extent_op); 2412 extent_op = NULL; 2413 } 2414 2415 if (extent_op) { 2416 spin_unlock(&delayed_refs->lock); 2417 2418 ret = run_delayed_extent_op(trans, root, 2419 ref, extent_op); 2420 btrfs_free_delayed_extent_op(extent_op); 2421 2422 if (ret) { 2423 /* 2424 * Need to reset must_insert_reserved if 2425 * there was an error so the abort stuff 2426 * can cleanup the reserved space 2427 * properly. 2428 */ 2429 if (must_insert_reserved) 2430 locked_ref->must_insert_reserved = 1; 2431 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2432 spin_lock(&delayed_refs->lock); 2433 btrfs_delayed_ref_unlock(locked_ref); 2434 return ret; 2435 } 2436 2437 goto next; 2438 } 2439 } 2440 2441 ref->in_tree = 0; 2442 rb_erase(&ref->rb_node, &delayed_refs->root); 2443 delayed_refs->num_entries--; 2444 if (!btrfs_delayed_ref_is_head(ref)) { 2445 /* 2446 * when we play the delayed ref, also correct the 2447 * ref_mod on head 2448 */ 2449 switch (ref->action) { 2450 case BTRFS_ADD_DELAYED_REF: 2451 case BTRFS_ADD_DELAYED_EXTENT: 2452 locked_ref->node.ref_mod -= ref->ref_mod; 2453 break; 2454 case BTRFS_DROP_DELAYED_REF: 2455 locked_ref->node.ref_mod += ref->ref_mod; 2456 break; 2457 default: 2458 WARN_ON(1); 2459 } 2460 } else { 2461 list_del_init(&locked_ref->cluster); 2462 } 2463 spin_unlock(&delayed_refs->lock); 2464 2465 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2466 must_insert_reserved); 2467 2468 btrfs_free_delayed_extent_op(extent_op); 2469 if (ret) { 2470 btrfs_delayed_ref_unlock(locked_ref); 2471 btrfs_put_delayed_ref(ref); 2472 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2473 spin_lock(&delayed_refs->lock); 2474 return ret; 2475 } 2476 2477 /* 2478 * If this node is a head, that means all the refs in this head 2479 * have been dealt with, and we will pick the next head to deal 2480 * with, so we must unlock the head and drop it from the cluster 2481 * list before we release it. 2482 */ 2483 if (btrfs_delayed_ref_is_head(ref)) { 2484 btrfs_delayed_ref_unlock(locked_ref); 2485 locked_ref = NULL; 2486 } 2487 btrfs_put_delayed_ref(ref); 2488 count++; 2489 next: 2490 cond_resched(); 2491 spin_lock(&delayed_refs->lock); 2492 } 2493 return count; 2494 } 2495 2496 #ifdef SCRAMBLE_DELAYED_REFS 2497 /* 2498 * Normally delayed refs get processed in ascending bytenr order. This 2499 * correlates in most cases to the order added. To expose dependencies on this 2500 * order, we start to process the tree in the middle instead of the beginning 2501 */ 2502 static u64 find_middle(struct rb_root *root) 2503 { 2504 struct rb_node *n = root->rb_node; 2505 struct btrfs_delayed_ref_node *entry; 2506 int alt = 1; 2507 u64 middle; 2508 u64 first = 0, last = 0; 2509 2510 n = rb_first(root); 2511 if (n) { 2512 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2513 first = entry->bytenr; 2514 } 2515 n = rb_last(root); 2516 if (n) { 2517 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2518 last = entry->bytenr; 2519 } 2520 n = root->rb_node; 2521 2522 while (n) { 2523 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2524 WARN_ON(!entry->in_tree); 2525 2526 middle = entry->bytenr; 2527 2528 if (alt) 2529 n = n->rb_left; 2530 else 2531 n = n->rb_right; 2532 2533 alt = 1 - alt; 2534 } 2535 return middle; 2536 } 2537 #endif 2538 2539 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2540 struct btrfs_fs_info *fs_info) 2541 { 2542 struct qgroup_update *qgroup_update; 2543 int ret = 0; 2544 2545 if (list_empty(&trans->qgroup_ref_list) != 2546 !trans->delayed_ref_elem.seq) { 2547 /* list without seq or seq without list */ 2548 btrfs_err(fs_info, 2549 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2550 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2551 (u32)(trans->delayed_ref_elem.seq >> 32), 2552 (u32)trans->delayed_ref_elem.seq); 2553 BUG(); 2554 } 2555 2556 if (!trans->delayed_ref_elem.seq) 2557 return 0; 2558 2559 while (!list_empty(&trans->qgroup_ref_list)) { 2560 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2561 struct qgroup_update, list); 2562 list_del(&qgroup_update->list); 2563 if (!ret) 2564 ret = btrfs_qgroup_account_ref( 2565 trans, fs_info, qgroup_update->node, 2566 qgroup_update->extent_op); 2567 kfree(qgroup_update); 2568 } 2569 2570 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2571 2572 return ret; 2573 } 2574 2575 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, 2576 int count) 2577 { 2578 int val = atomic_read(&delayed_refs->ref_seq); 2579 2580 if (val < seq || val >= seq + count) 2581 return 1; 2582 return 0; 2583 } 2584 2585 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2586 { 2587 u64 num_bytes; 2588 2589 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2590 sizeof(struct btrfs_extent_inline_ref)); 2591 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2592 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2593 2594 /* 2595 * We don't ever fill up leaves all the way so multiply by 2 just to be 2596 * closer to what we're really going to want to ouse. 2597 */ 2598 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2599 } 2600 2601 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2602 struct btrfs_root *root) 2603 { 2604 struct btrfs_block_rsv *global_rsv; 2605 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2606 u64 num_bytes; 2607 int ret = 0; 2608 2609 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2610 num_heads = heads_to_leaves(root, num_heads); 2611 if (num_heads > 1) 2612 num_bytes += (num_heads - 1) * root->leafsize; 2613 num_bytes <<= 1; 2614 global_rsv = &root->fs_info->global_block_rsv; 2615 2616 /* 2617 * If we can't allocate any more chunks lets make sure we have _lots_ of 2618 * wiggle room since running delayed refs can create more delayed refs. 2619 */ 2620 if (global_rsv->space_info->full) 2621 num_bytes <<= 1; 2622 2623 spin_lock(&global_rsv->lock); 2624 if (global_rsv->reserved <= num_bytes) 2625 ret = 1; 2626 spin_unlock(&global_rsv->lock); 2627 return ret; 2628 } 2629 2630 /* 2631 * this starts processing the delayed reference count updates and 2632 * extent insertions we have queued up so far. count can be 2633 * 0, which means to process everything in the tree at the start 2634 * of the run (but not newly added entries), or it can be some target 2635 * number you'd like to process. 2636 * 2637 * Returns 0 on success or if called with an aborted transaction 2638 * Returns <0 on error and aborts the transaction 2639 */ 2640 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2641 struct btrfs_root *root, unsigned long count) 2642 { 2643 struct rb_node *node; 2644 struct btrfs_delayed_ref_root *delayed_refs; 2645 struct btrfs_delayed_ref_node *ref; 2646 struct list_head cluster; 2647 int ret; 2648 u64 delayed_start; 2649 int run_all = count == (unsigned long)-1; 2650 int run_most = 0; 2651 int loops; 2652 2653 /* We'll clean this up in btrfs_cleanup_transaction */ 2654 if (trans->aborted) 2655 return 0; 2656 2657 if (root == root->fs_info->extent_root) 2658 root = root->fs_info->tree_root; 2659 2660 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2661 2662 delayed_refs = &trans->transaction->delayed_refs; 2663 INIT_LIST_HEAD(&cluster); 2664 if (count == 0) { 2665 count = delayed_refs->num_entries * 2; 2666 run_most = 1; 2667 } 2668 2669 if (!run_all && !run_most) { 2670 int old; 2671 int seq = atomic_read(&delayed_refs->ref_seq); 2672 2673 progress: 2674 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2675 if (old) { 2676 DEFINE_WAIT(__wait); 2677 if (delayed_refs->flushing || 2678 !btrfs_should_throttle_delayed_refs(trans, root)) 2679 return 0; 2680 2681 prepare_to_wait(&delayed_refs->wait, &__wait, 2682 TASK_UNINTERRUPTIBLE); 2683 2684 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2685 if (old) { 2686 schedule(); 2687 finish_wait(&delayed_refs->wait, &__wait); 2688 2689 if (!refs_newer(delayed_refs, seq, 256)) 2690 goto progress; 2691 else 2692 return 0; 2693 } else { 2694 finish_wait(&delayed_refs->wait, &__wait); 2695 goto again; 2696 } 2697 } 2698 2699 } else { 2700 atomic_inc(&delayed_refs->procs_running_refs); 2701 } 2702 2703 again: 2704 loops = 0; 2705 spin_lock(&delayed_refs->lock); 2706 2707 #ifdef SCRAMBLE_DELAYED_REFS 2708 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2709 #endif 2710 2711 while (1) { 2712 if (!(run_all || run_most) && 2713 !btrfs_should_throttle_delayed_refs(trans, root)) 2714 break; 2715 2716 /* 2717 * go find something we can process in the rbtree. We start at 2718 * the beginning of the tree, and then build a cluster 2719 * of refs to process starting at the first one we are able to 2720 * lock 2721 */ 2722 delayed_start = delayed_refs->run_delayed_start; 2723 ret = btrfs_find_ref_cluster(trans, &cluster, 2724 delayed_refs->run_delayed_start); 2725 if (ret) 2726 break; 2727 2728 ret = run_clustered_refs(trans, root, &cluster); 2729 if (ret < 0) { 2730 btrfs_release_ref_cluster(&cluster); 2731 spin_unlock(&delayed_refs->lock); 2732 btrfs_abort_transaction(trans, root, ret); 2733 atomic_dec(&delayed_refs->procs_running_refs); 2734 wake_up(&delayed_refs->wait); 2735 return ret; 2736 } 2737 2738 atomic_add(ret, &delayed_refs->ref_seq); 2739 2740 count -= min_t(unsigned long, ret, count); 2741 2742 if (count == 0) 2743 break; 2744 2745 if (delayed_start >= delayed_refs->run_delayed_start) { 2746 if (loops == 0) { 2747 /* 2748 * btrfs_find_ref_cluster looped. let's do one 2749 * more cycle. if we don't run any delayed ref 2750 * during that cycle (because we can't because 2751 * all of them are blocked), bail out. 2752 */ 2753 loops = 1; 2754 } else { 2755 /* 2756 * no runnable refs left, stop trying 2757 */ 2758 BUG_ON(run_all); 2759 break; 2760 } 2761 } 2762 if (ret) { 2763 /* refs were run, let's reset staleness detection */ 2764 loops = 0; 2765 } 2766 } 2767 2768 if (run_all) { 2769 if (!list_empty(&trans->new_bgs)) { 2770 spin_unlock(&delayed_refs->lock); 2771 btrfs_create_pending_block_groups(trans, root); 2772 spin_lock(&delayed_refs->lock); 2773 } 2774 2775 node = rb_first(&delayed_refs->root); 2776 if (!node) 2777 goto out; 2778 count = (unsigned long)-1; 2779 2780 while (node) { 2781 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2782 rb_node); 2783 if (btrfs_delayed_ref_is_head(ref)) { 2784 struct btrfs_delayed_ref_head *head; 2785 2786 head = btrfs_delayed_node_to_head(ref); 2787 atomic_inc(&ref->refs); 2788 2789 spin_unlock(&delayed_refs->lock); 2790 /* 2791 * Mutex was contended, block until it's 2792 * released and try again 2793 */ 2794 mutex_lock(&head->mutex); 2795 mutex_unlock(&head->mutex); 2796 2797 btrfs_put_delayed_ref(ref); 2798 cond_resched(); 2799 goto again; 2800 } 2801 node = rb_next(node); 2802 } 2803 spin_unlock(&delayed_refs->lock); 2804 schedule_timeout(1); 2805 goto again; 2806 } 2807 out: 2808 atomic_dec(&delayed_refs->procs_running_refs); 2809 smp_mb(); 2810 if (waitqueue_active(&delayed_refs->wait)) 2811 wake_up(&delayed_refs->wait); 2812 2813 spin_unlock(&delayed_refs->lock); 2814 assert_qgroups_uptodate(trans); 2815 return 0; 2816 } 2817 2818 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2819 struct btrfs_root *root, 2820 u64 bytenr, u64 num_bytes, u64 flags, 2821 int level, int is_data) 2822 { 2823 struct btrfs_delayed_extent_op *extent_op; 2824 int ret; 2825 2826 extent_op = btrfs_alloc_delayed_extent_op(); 2827 if (!extent_op) 2828 return -ENOMEM; 2829 2830 extent_op->flags_to_set = flags; 2831 extent_op->update_flags = 1; 2832 extent_op->update_key = 0; 2833 extent_op->is_data = is_data ? 1 : 0; 2834 extent_op->level = level; 2835 2836 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2837 num_bytes, extent_op); 2838 if (ret) 2839 btrfs_free_delayed_extent_op(extent_op); 2840 return ret; 2841 } 2842 2843 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root, 2845 struct btrfs_path *path, 2846 u64 objectid, u64 offset, u64 bytenr) 2847 { 2848 struct btrfs_delayed_ref_head *head; 2849 struct btrfs_delayed_ref_node *ref; 2850 struct btrfs_delayed_data_ref *data_ref; 2851 struct btrfs_delayed_ref_root *delayed_refs; 2852 struct rb_node *node; 2853 int ret = 0; 2854 2855 ret = -ENOENT; 2856 delayed_refs = &trans->transaction->delayed_refs; 2857 spin_lock(&delayed_refs->lock); 2858 head = btrfs_find_delayed_ref_head(trans, bytenr); 2859 if (!head) 2860 goto out; 2861 2862 if (!mutex_trylock(&head->mutex)) { 2863 atomic_inc(&head->node.refs); 2864 spin_unlock(&delayed_refs->lock); 2865 2866 btrfs_release_path(path); 2867 2868 /* 2869 * Mutex was contended, block until it's released and let 2870 * caller try again 2871 */ 2872 mutex_lock(&head->mutex); 2873 mutex_unlock(&head->mutex); 2874 btrfs_put_delayed_ref(&head->node); 2875 return -EAGAIN; 2876 } 2877 2878 node = rb_prev(&head->node.rb_node); 2879 if (!node) 2880 goto out_unlock; 2881 2882 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2883 2884 if (ref->bytenr != bytenr) 2885 goto out_unlock; 2886 2887 ret = 1; 2888 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2889 goto out_unlock; 2890 2891 data_ref = btrfs_delayed_node_to_data_ref(ref); 2892 2893 node = rb_prev(node); 2894 if (node) { 2895 int seq = ref->seq; 2896 2897 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2898 if (ref->bytenr == bytenr && ref->seq == seq) 2899 goto out_unlock; 2900 } 2901 2902 if (data_ref->root != root->root_key.objectid || 2903 data_ref->objectid != objectid || data_ref->offset != offset) 2904 goto out_unlock; 2905 2906 ret = 0; 2907 out_unlock: 2908 mutex_unlock(&head->mutex); 2909 out: 2910 spin_unlock(&delayed_refs->lock); 2911 return ret; 2912 } 2913 2914 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2915 struct btrfs_root *root, 2916 struct btrfs_path *path, 2917 u64 objectid, u64 offset, u64 bytenr) 2918 { 2919 struct btrfs_root *extent_root = root->fs_info->extent_root; 2920 struct extent_buffer *leaf; 2921 struct btrfs_extent_data_ref *ref; 2922 struct btrfs_extent_inline_ref *iref; 2923 struct btrfs_extent_item *ei; 2924 struct btrfs_key key; 2925 u32 item_size; 2926 int ret; 2927 2928 key.objectid = bytenr; 2929 key.offset = (u64)-1; 2930 key.type = BTRFS_EXTENT_ITEM_KEY; 2931 2932 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2933 if (ret < 0) 2934 goto out; 2935 BUG_ON(ret == 0); /* Corruption */ 2936 2937 ret = -ENOENT; 2938 if (path->slots[0] == 0) 2939 goto out; 2940 2941 path->slots[0]--; 2942 leaf = path->nodes[0]; 2943 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2944 2945 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2946 goto out; 2947 2948 ret = 1; 2949 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2951 if (item_size < sizeof(*ei)) { 2952 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2953 goto out; 2954 } 2955 #endif 2956 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2957 2958 if (item_size != sizeof(*ei) + 2959 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2960 goto out; 2961 2962 if (btrfs_extent_generation(leaf, ei) <= 2963 btrfs_root_last_snapshot(&root->root_item)) 2964 goto out; 2965 2966 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2967 if (btrfs_extent_inline_ref_type(leaf, iref) != 2968 BTRFS_EXTENT_DATA_REF_KEY) 2969 goto out; 2970 2971 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2972 if (btrfs_extent_refs(leaf, ei) != 2973 btrfs_extent_data_ref_count(leaf, ref) || 2974 btrfs_extent_data_ref_root(leaf, ref) != 2975 root->root_key.objectid || 2976 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2977 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2978 goto out; 2979 2980 ret = 0; 2981 out: 2982 return ret; 2983 } 2984 2985 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2986 struct btrfs_root *root, 2987 u64 objectid, u64 offset, u64 bytenr) 2988 { 2989 struct btrfs_path *path; 2990 int ret; 2991 int ret2; 2992 2993 path = btrfs_alloc_path(); 2994 if (!path) 2995 return -ENOENT; 2996 2997 do { 2998 ret = check_committed_ref(trans, root, path, objectid, 2999 offset, bytenr); 3000 if (ret && ret != -ENOENT) 3001 goto out; 3002 3003 ret2 = check_delayed_ref(trans, root, path, objectid, 3004 offset, bytenr); 3005 } while (ret2 == -EAGAIN); 3006 3007 if (ret2 && ret2 != -ENOENT) { 3008 ret = ret2; 3009 goto out; 3010 } 3011 3012 if (ret != -ENOENT || ret2 != -ENOENT) 3013 ret = 0; 3014 out: 3015 btrfs_free_path(path); 3016 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3017 WARN_ON(ret > 0); 3018 return ret; 3019 } 3020 3021 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3022 struct btrfs_root *root, 3023 struct extent_buffer *buf, 3024 int full_backref, int inc, int for_cow) 3025 { 3026 u64 bytenr; 3027 u64 num_bytes; 3028 u64 parent; 3029 u64 ref_root; 3030 u32 nritems; 3031 struct btrfs_key key; 3032 struct btrfs_file_extent_item *fi; 3033 int i; 3034 int level; 3035 int ret = 0; 3036 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3037 u64, u64, u64, u64, u64, u64, int); 3038 3039 ref_root = btrfs_header_owner(buf); 3040 nritems = btrfs_header_nritems(buf); 3041 level = btrfs_header_level(buf); 3042 3043 if (!root->ref_cows && level == 0) 3044 return 0; 3045 3046 if (inc) 3047 process_func = btrfs_inc_extent_ref; 3048 else 3049 process_func = btrfs_free_extent; 3050 3051 if (full_backref) 3052 parent = buf->start; 3053 else 3054 parent = 0; 3055 3056 for (i = 0; i < nritems; i++) { 3057 if (level == 0) { 3058 btrfs_item_key_to_cpu(buf, &key, i); 3059 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3060 continue; 3061 fi = btrfs_item_ptr(buf, i, 3062 struct btrfs_file_extent_item); 3063 if (btrfs_file_extent_type(buf, fi) == 3064 BTRFS_FILE_EXTENT_INLINE) 3065 continue; 3066 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3067 if (bytenr == 0) 3068 continue; 3069 3070 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3071 key.offset -= btrfs_file_extent_offset(buf, fi); 3072 ret = process_func(trans, root, bytenr, num_bytes, 3073 parent, ref_root, key.objectid, 3074 key.offset, for_cow); 3075 if (ret) 3076 goto fail; 3077 } else { 3078 bytenr = btrfs_node_blockptr(buf, i); 3079 num_bytes = btrfs_level_size(root, level - 1); 3080 ret = process_func(trans, root, bytenr, num_bytes, 3081 parent, ref_root, level - 1, 0, 3082 for_cow); 3083 if (ret) 3084 goto fail; 3085 } 3086 } 3087 return 0; 3088 fail: 3089 return ret; 3090 } 3091 3092 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3093 struct extent_buffer *buf, int full_backref, int for_cow) 3094 { 3095 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3096 } 3097 3098 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3099 struct extent_buffer *buf, int full_backref, int for_cow) 3100 { 3101 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3102 } 3103 3104 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3105 struct btrfs_root *root, 3106 struct btrfs_path *path, 3107 struct btrfs_block_group_cache *cache) 3108 { 3109 int ret; 3110 struct btrfs_root *extent_root = root->fs_info->extent_root; 3111 unsigned long bi; 3112 struct extent_buffer *leaf; 3113 3114 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3115 if (ret < 0) 3116 goto fail; 3117 BUG_ON(ret); /* Corruption */ 3118 3119 leaf = path->nodes[0]; 3120 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3121 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3122 btrfs_mark_buffer_dirty(leaf); 3123 btrfs_release_path(path); 3124 fail: 3125 if (ret) { 3126 btrfs_abort_transaction(trans, root, ret); 3127 return ret; 3128 } 3129 return 0; 3130 3131 } 3132 3133 static struct btrfs_block_group_cache * 3134 next_block_group(struct btrfs_root *root, 3135 struct btrfs_block_group_cache *cache) 3136 { 3137 struct rb_node *node; 3138 spin_lock(&root->fs_info->block_group_cache_lock); 3139 node = rb_next(&cache->cache_node); 3140 btrfs_put_block_group(cache); 3141 if (node) { 3142 cache = rb_entry(node, struct btrfs_block_group_cache, 3143 cache_node); 3144 btrfs_get_block_group(cache); 3145 } else 3146 cache = NULL; 3147 spin_unlock(&root->fs_info->block_group_cache_lock); 3148 return cache; 3149 } 3150 3151 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3152 struct btrfs_trans_handle *trans, 3153 struct btrfs_path *path) 3154 { 3155 struct btrfs_root *root = block_group->fs_info->tree_root; 3156 struct inode *inode = NULL; 3157 u64 alloc_hint = 0; 3158 int dcs = BTRFS_DC_ERROR; 3159 int num_pages = 0; 3160 int retries = 0; 3161 int ret = 0; 3162 3163 /* 3164 * If this block group is smaller than 100 megs don't bother caching the 3165 * block group. 3166 */ 3167 if (block_group->key.offset < (100 * 1024 * 1024)) { 3168 spin_lock(&block_group->lock); 3169 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3170 spin_unlock(&block_group->lock); 3171 return 0; 3172 } 3173 3174 again: 3175 inode = lookup_free_space_inode(root, block_group, path); 3176 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3177 ret = PTR_ERR(inode); 3178 btrfs_release_path(path); 3179 goto out; 3180 } 3181 3182 if (IS_ERR(inode)) { 3183 BUG_ON(retries); 3184 retries++; 3185 3186 if (block_group->ro) 3187 goto out_free; 3188 3189 ret = create_free_space_inode(root, trans, block_group, path); 3190 if (ret) 3191 goto out_free; 3192 goto again; 3193 } 3194 3195 /* We've already setup this transaction, go ahead and exit */ 3196 if (block_group->cache_generation == trans->transid && 3197 i_size_read(inode)) { 3198 dcs = BTRFS_DC_SETUP; 3199 goto out_put; 3200 } 3201 3202 /* 3203 * We want to set the generation to 0, that way if anything goes wrong 3204 * from here on out we know not to trust this cache when we load up next 3205 * time. 3206 */ 3207 BTRFS_I(inode)->generation = 0; 3208 ret = btrfs_update_inode(trans, root, inode); 3209 WARN_ON(ret); 3210 3211 if (i_size_read(inode) > 0) { 3212 ret = btrfs_check_trunc_cache_free_space(root, 3213 &root->fs_info->global_block_rsv); 3214 if (ret) 3215 goto out_put; 3216 3217 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3218 if (ret) 3219 goto out_put; 3220 } 3221 3222 spin_lock(&block_group->lock); 3223 if (block_group->cached != BTRFS_CACHE_FINISHED || 3224 !btrfs_test_opt(root, SPACE_CACHE)) { 3225 /* 3226 * don't bother trying to write stuff out _if_ 3227 * a) we're not cached, 3228 * b) we're with nospace_cache mount option. 3229 */ 3230 dcs = BTRFS_DC_WRITTEN; 3231 spin_unlock(&block_group->lock); 3232 goto out_put; 3233 } 3234 spin_unlock(&block_group->lock); 3235 3236 /* 3237 * Try to preallocate enough space based on how big the block group is. 3238 * Keep in mind this has to include any pinned space which could end up 3239 * taking up quite a bit since it's not folded into the other space 3240 * cache. 3241 */ 3242 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3243 if (!num_pages) 3244 num_pages = 1; 3245 3246 num_pages *= 16; 3247 num_pages *= PAGE_CACHE_SIZE; 3248 3249 ret = btrfs_check_data_free_space(inode, num_pages); 3250 if (ret) 3251 goto out_put; 3252 3253 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3254 num_pages, num_pages, 3255 &alloc_hint); 3256 if (!ret) 3257 dcs = BTRFS_DC_SETUP; 3258 btrfs_free_reserved_data_space(inode, num_pages); 3259 3260 out_put: 3261 iput(inode); 3262 out_free: 3263 btrfs_release_path(path); 3264 out: 3265 spin_lock(&block_group->lock); 3266 if (!ret && dcs == BTRFS_DC_SETUP) 3267 block_group->cache_generation = trans->transid; 3268 block_group->disk_cache_state = dcs; 3269 spin_unlock(&block_group->lock); 3270 3271 return ret; 3272 } 3273 3274 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3275 struct btrfs_root *root) 3276 { 3277 struct btrfs_block_group_cache *cache; 3278 int err = 0; 3279 struct btrfs_path *path; 3280 u64 last = 0; 3281 3282 path = btrfs_alloc_path(); 3283 if (!path) 3284 return -ENOMEM; 3285 3286 again: 3287 while (1) { 3288 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3289 while (cache) { 3290 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3291 break; 3292 cache = next_block_group(root, cache); 3293 } 3294 if (!cache) { 3295 if (last == 0) 3296 break; 3297 last = 0; 3298 continue; 3299 } 3300 err = cache_save_setup(cache, trans, path); 3301 last = cache->key.objectid + cache->key.offset; 3302 btrfs_put_block_group(cache); 3303 } 3304 3305 while (1) { 3306 if (last == 0) { 3307 err = btrfs_run_delayed_refs(trans, root, 3308 (unsigned long)-1); 3309 if (err) /* File system offline */ 3310 goto out; 3311 } 3312 3313 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3314 while (cache) { 3315 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3316 btrfs_put_block_group(cache); 3317 goto again; 3318 } 3319 3320 if (cache->dirty) 3321 break; 3322 cache = next_block_group(root, cache); 3323 } 3324 if (!cache) { 3325 if (last == 0) 3326 break; 3327 last = 0; 3328 continue; 3329 } 3330 3331 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3332 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3333 cache->dirty = 0; 3334 last = cache->key.objectid + cache->key.offset; 3335 3336 err = write_one_cache_group(trans, root, path, cache); 3337 btrfs_put_block_group(cache); 3338 if (err) /* File system offline */ 3339 goto out; 3340 } 3341 3342 while (1) { 3343 /* 3344 * I don't think this is needed since we're just marking our 3345 * preallocated extent as written, but just in case it can't 3346 * hurt. 3347 */ 3348 if (last == 0) { 3349 err = btrfs_run_delayed_refs(trans, root, 3350 (unsigned long)-1); 3351 if (err) /* File system offline */ 3352 goto out; 3353 } 3354 3355 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3356 while (cache) { 3357 /* 3358 * Really this shouldn't happen, but it could if we 3359 * couldn't write the entire preallocated extent and 3360 * splitting the extent resulted in a new block. 3361 */ 3362 if (cache->dirty) { 3363 btrfs_put_block_group(cache); 3364 goto again; 3365 } 3366 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3367 break; 3368 cache = next_block_group(root, cache); 3369 } 3370 if (!cache) { 3371 if (last == 0) 3372 break; 3373 last = 0; 3374 continue; 3375 } 3376 3377 err = btrfs_write_out_cache(root, trans, cache, path); 3378 3379 /* 3380 * If we didn't have an error then the cache state is still 3381 * NEED_WRITE, so we can set it to WRITTEN. 3382 */ 3383 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3384 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3385 last = cache->key.objectid + cache->key.offset; 3386 btrfs_put_block_group(cache); 3387 } 3388 out: 3389 3390 btrfs_free_path(path); 3391 return err; 3392 } 3393 3394 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3395 { 3396 struct btrfs_block_group_cache *block_group; 3397 int readonly = 0; 3398 3399 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3400 if (!block_group || block_group->ro) 3401 readonly = 1; 3402 if (block_group) 3403 btrfs_put_block_group(block_group); 3404 return readonly; 3405 } 3406 3407 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3408 u64 total_bytes, u64 bytes_used, 3409 struct btrfs_space_info **space_info) 3410 { 3411 struct btrfs_space_info *found; 3412 int i; 3413 int factor; 3414 int ret; 3415 3416 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3417 BTRFS_BLOCK_GROUP_RAID10)) 3418 factor = 2; 3419 else 3420 factor = 1; 3421 3422 found = __find_space_info(info, flags); 3423 if (found) { 3424 spin_lock(&found->lock); 3425 found->total_bytes += total_bytes; 3426 found->disk_total += total_bytes * factor; 3427 found->bytes_used += bytes_used; 3428 found->disk_used += bytes_used * factor; 3429 found->full = 0; 3430 spin_unlock(&found->lock); 3431 *space_info = found; 3432 return 0; 3433 } 3434 found = kzalloc(sizeof(*found), GFP_NOFS); 3435 if (!found) 3436 return -ENOMEM; 3437 3438 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3439 if (ret) { 3440 kfree(found); 3441 return ret; 3442 } 3443 3444 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3445 INIT_LIST_HEAD(&found->block_groups[i]); 3446 init_rwsem(&found->groups_sem); 3447 spin_lock_init(&found->lock); 3448 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3449 found->total_bytes = total_bytes; 3450 found->disk_total = total_bytes * factor; 3451 found->bytes_used = bytes_used; 3452 found->disk_used = bytes_used * factor; 3453 found->bytes_pinned = 0; 3454 found->bytes_reserved = 0; 3455 found->bytes_readonly = 0; 3456 found->bytes_may_use = 0; 3457 found->full = 0; 3458 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3459 found->chunk_alloc = 0; 3460 found->flush = 0; 3461 init_waitqueue_head(&found->wait); 3462 *space_info = found; 3463 list_add_rcu(&found->list, &info->space_info); 3464 if (flags & BTRFS_BLOCK_GROUP_DATA) 3465 info->data_sinfo = found; 3466 return 0; 3467 } 3468 3469 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3470 { 3471 u64 extra_flags = chunk_to_extended(flags) & 3472 BTRFS_EXTENDED_PROFILE_MASK; 3473 3474 write_seqlock(&fs_info->profiles_lock); 3475 if (flags & BTRFS_BLOCK_GROUP_DATA) 3476 fs_info->avail_data_alloc_bits |= extra_flags; 3477 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3478 fs_info->avail_metadata_alloc_bits |= extra_flags; 3479 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3480 fs_info->avail_system_alloc_bits |= extra_flags; 3481 write_sequnlock(&fs_info->profiles_lock); 3482 } 3483 3484 /* 3485 * returns target flags in extended format or 0 if restripe for this 3486 * chunk_type is not in progress 3487 * 3488 * should be called with either volume_mutex or balance_lock held 3489 */ 3490 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3491 { 3492 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3493 u64 target = 0; 3494 3495 if (!bctl) 3496 return 0; 3497 3498 if (flags & BTRFS_BLOCK_GROUP_DATA && 3499 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3500 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3501 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3502 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3503 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3504 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3505 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3506 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3507 } 3508 3509 return target; 3510 } 3511 3512 /* 3513 * @flags: available profiles in extended format (see ctree.h) 3514 * 3515 * Returns reduced profile in chunk format. If profile changing is in 3516 * progress (either running or paused) picks the target profile (if it's 3517 * already available), otherwise falls back to plain reducing. 3518 */ 3519 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3520 { 3521 /* 3522 * we add in the count of missing devices because we want 3523 * to make sure that any RAID levels on a degraded FS 3524 * continue to be honored. 3525 */ 3526 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3527 root->fs_info->fs_devices->missing_devices; 3528 u64 target; 3529 u64 tmp; 3530 3531 /* 3532 * see if restripe for this chunk_type is in progress, if so 3533 * try to reduce to the target profile 3534 */ 3535 spin_lock(&root->fs_info->balance_lock); 3536 target = get_restripe_target(root->fs_info, flags); 3537 if (target) { 3538 /* pick target profile only if it's already available */ 3539 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3540 spin_unlock(&root->fs_info->balance_lock); 3541 return extended_to_chunk(target); 3542 } 3543 } 3544 spin_unlock(&root->fs_info->balance_lock); 3545 3546 /* First, mask out the RAID levels which aren't possible */ 3547 if (num_devices == 1) 3548 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3549 BTRFS_BLOCK_GROUP_RAID5); 3550 if (num_devices < 3) 3551 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3552 if (num_devices < 4) 3553 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3554 3555 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3556 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3557 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3558 flags &= ~tmp; 3559 3560 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3561 tmp = BTRFS_BLOCK_GROUP_RAID6; 3562 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3563 tmp = BTRFS_BLOCK_GROUP_RAID5; 3564 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3565 tmp = BTRFS_BLOCK_GROUP_RAID10; 3566 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3567 tmp = BTRFS_BLOCK_GROUP_RAID1; 3568 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3569 tmp = BTRFS_BLOCK_GROUP_RAID0; 3570 3571 return extended_to_chunk(flags | tmp); 3572 } 3573 3574 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3575 { 3576 unsigned seq; 3577 3578 do { 3579 seq = read_seqbegin(&root->fs_info->profiles_lock); 3580 3581 if (flags & BTRFS_BLOCK_GROUP_DATA) 3582 flags |= root->fs_info->avail_data_alloc_bits; 3583 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3584 flags |= root->fs_info->avail_system_alloc_bits; 3585 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3586 flags |= root->fs_info->avail_metadata_alloc_bits; 3587 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3588 3589 return btrfs_reduce_alloc_profile(root, flags); 3590 } 3591 3592 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3593 { 3594 u64 flags; 3595 u64 ret; 3596 3597 if (data) 3598 flags = BTRFS_BLOCK_GROUP_DATA; 3599 else if (root == root->fs_info->chunk_root) 3600 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3601 else 3602 flags = BTRFS_BLOCK_GROUP_METADATA; 3603 3604 ret = get_alloc_profile(root, flags); 3605 return ret; 3606 } 3607 3608 /* 3609 * This will check the space that the inode allocates from to make sure we have 3610 * enough space for bytes. 3611 */ 3612 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3613 { 3614 struct btrfs_space_info *data_sinfo; 3615 struct btrfs_root *root = BTRFS_I(inode)->root; 3616 struct btrfs_fs_info *fs_info = root->fs_info; 3617 u64 used; 3618 int ret = 0, committed = 0, alloc_chunk = 1; 3619 3620 /* make sure bytes are sectorsize aligned */ 3621 bytes = ALIGN(bytes, root->sectorsize); 3622 3623 if (btrfs_is_free_space_inode(inode)) { 3624 committed = 1; 3625 ASSERT(current->journal_info); 3626 } 3627 3628 data_sinfo = fs_info->data_sinfo; 3629 if (!data_sinfo) 3630 goto alloc; 3631 3632 again: 3633 /* make sure we have enough space to handle the data first */ 3634 spin_lock(&data_sinfo->lock); 3635 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3636 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3637 data_sinfo->bytes_may_use; 3638 3639 if (used + bytes > data_sinfo->total_bytes) { 3640 struct btrfs_trans_handle *trans; 3641 3642 /* 3643 * if we don't have enough free bytes in this space then we need 3644 * to alloc a new chunk. 3645 */ 3646 if (!data_sinfo->full && alloc_chunk) { 3647 u64 alloc_target; 3648 3649 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3650 spin_unlock(&data_sinfo->lock); 3651 alloc: 3652 alloc_target = btrfs_get_alloc_profile(root, 1); 3653 /* 3654 * It is ugly that we don't call nolock join 3655 * transaction for the free space inode case here. 3656 * But it is safe because we only do the data space 3657 * reservation for the free space cache in the 3658 * transaction context, the common join transaction 3659 * just increase the counter of the current transaction 3660 * handler, doesn't try to acquire the trans_lock of 3661 * the fs. 3662 */ 3663 trans = btrfs_join_transaction(root); 3664 if (IS_ERR(trans)) 3665 return PTR_ERR(trans); 3666 3667 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3668 alloc_target, 3669 CHUNK_ALLOC_NO_FORCE); 3670 btrfs_end_transaction(trans, root); 3671 if (ret < 0) { 3672 if (ret != -ENOSPC) 3673 return ret; 3674 else 3675 goto commit_trans; 3676 } 3677 3678 if (!data_sinfo) 3679 data_sinfo = fs_info->data_sinfo; 3680 3681 goto again; 3682 } 3683 3684 /* 3685 * If we don't have enough pinned space to deal with this 3686 * allocation don't bother committing the transaction. 3687 */ 3688 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3689 bytes) < 0) 3690 committed = 1; 3691 spin_unlock(&data_sinfo->lock); 3692 3693 /* commit the current transaction and try again */ 3694 commit_trans: 3695 if (!committed && 3696 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3697 committed = 1; 3698 3699 trans = btrfs_join_transaction(root); 3700 if (IS_ERR(trans)) 3701 return PTR_ERR(trans); 3702 ret = btrfs_commit_transaction(trans, root); 3703 if (ret) 3704 return ret; 3705 goto again; 3706 } 3707 3708 trace_btrfs_space_reservation(root->fs_info, 3709 "space_info:enospc", 3710 data_sinfo->flags, bytes, 1); 3711 return -ENOSPC; 3712 } 3713 data_sinfo->bytes_may_use += bytes; 3714 trace_btrfs_space_reservation(root->fs_info, "space_info", 3715 data_sinfo->flags, bytes, 1); 3716 spin_unlock(&data_sinfo->lock); 3717 3718 return 0; 3719 } 3720 3721 /* 3722 * Called if we need to clear a data reservation for this inode. 3723 */ 3724 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3725 { 3726 struct btrfs_root *root = BTRFS_I(inode)->root; 3727 struct btrfs_space_info *data_sinfo; 3728 3729 /* make sure bytes are sectorsize aligned */ 3730 bytes = ALIGN(bytes, root->sectorsize); 3731 3732 data_sinfo = root->fs_info->data_sinfo; 3733 spin_lock(&data_sinfo->lock); 3734 WARN_ON(data_sinfo->bytes_may_use < bytes); 3735 data_sinfo->bytes_may_use -= bytes; 3736 trace_btrfs_space_reservation(root->fs_info, "space_info", 3737 data_sinfo->flags, bytes, 0); 3738 spin_unlock(&data_sinfo->lock); 3739 } 3740 3741 static void force_metadata_allocation(struct btrfs_fs_info *info) 3742 { 3743 struct list_head *head = &info->space_info; 3744 struct btrfs_space_info *found; 3745 3746 rcu_read_lock(); 3747 list_for_each_entry_rcu(found, head, list) { 3748 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3749 found->force_alloc = CHUNK_ALLOC_FORCE; 3750 } 3751 rcu_read_unlock(); 3752 } 3753 3754 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3755 { 3756 return (global->size << 1); 3757 } 3758 3759 static int should_alloc_chunk(struct btrfs_root *root, 3760 struct btrfs_space_info *sinfo, int force) 3761 { 3762 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3763 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3764 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3765 u64 thresh; 3766 3767 if (force == CHUNK_ALLOC_FORCE) 3768 return 1; 3769 3770 /* 3771 * We need to take into account the global rsv because for all intents 3772 * and purposes it's used space. Don't worry about locking the 3773 * global_rsv, it doesn't change except when the transaction commits. 3774 */ 3775 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3776 num_allocated += calc_global_rsv_need_space(global_rsv); 3777 3778 /* 3779 * in limited mode, we want to have some free space up to 3780 * about 1% of the FS size. 3781 */ 3782 if (force == CHUNK_ALLOC_LIMITED) { 3783 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3784 thresh = max_t(u64, 64 * 1024 * 1024, 3785 div_factor_fine(thresh, 1)); 3786 3787 if (num_bytes - num_allocated < thresh) 3788 return 1; 3789 } 3790 3791 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3792 return 0; 3793 return 1; 3794 } 3795 3796 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3797 { 3798 u64 num_dev; 3799 3800 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3801 BTRFS_BLOCK_GROUP_RAID0 | 3802 BTRFS_BLOCK_GROUP_RAID5 | 3803 BTRFS_BLOCK_GROUP_RAID6)) 3804 num_dev = root->fs_info->fs_devices->rw_devices; 3805 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3806 num_dev = 2; 3807 else 3808 num_dev = 1; /* DUP or single */ 3809 3810 /* metadata for updaing devices and chunk tree */ 3811 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3812 } 3813 3814 static void check_system_chunk(struct btrfs_trans_handle *trans, 3815 struct btrfs_root *root, u64 type) 3816 { 3817 struct btrfs_space_info *info; 3818 u64 left; 3819 u64 thresh; 3820 3821 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3822 spin_lock(&info->lock); 3823 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3824 info->bytes_reserved - info->bytes_readonly; 3825 spin_unlock(&info->lock); 3826 3827 thresh = get_system_chunk_thresh(root, type); 3828 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3829 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3830 left, thresh, type); 3831 dump_space_info(info, 0, 0); 3832 } 3833 3834 if (left < thresh) { 3835 u64 flags; 3836 3837 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3838 btrfs_alloc_chunk(trans, root, flags); 3839 } 3840 } 3841 3842 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3843 struct btrfs_root *extent_root, u64 flags, int force) 3844 { 3845 struct btrfs_space_info *space_info; 3846 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3847 int wait_for_alloc = 0; 3848 int ret = 0; 3849 3850 /* Don't re-enter if we're already allocating a chunk */ 3851 if (trans->allocating_chunk) 3852 return -ENOSPC; 3853 3854 space_info = __find_space_info(extent_root->fs_info, flags); 3855 if (!space_info) { 3856 ret = update_space_info(extent_root->fs_info, flags, 3857 0, 0, &space_info); 3858 BUG_ON(ret); /* -ENOMEM */ 3859 } 3860 BUG_ON(!space_info); /* Logic error */ 3861 3862 again: 3863 spin_lock(&space_info->lock); 3864 if (force < space_info->force_alloc) 3865 force = space_info->force_alloc; 3866 if (space_info->full) { 3867 if (should_alloc_chunk(extent_root, space_info, force)) 3868 ret = -ENOSPC; 3869 else 3870 ret = 0; 3871 spin_unlock(&space_info->lock); 3872 return ret; 3873 } 3874 3875 if (!should_alloc_chunk(extent_root, space_info, force)) { 3876 spin_unlock(&space_info->lock); 3877 return 0; 3878 } else if (space_info->chunk_alloc) { 3879 wait_for_alloc = 1; 3880 } else { 3881 space_info->chunk_alloc = 1; 3882 } 3883 3884 spin_unlock(&space_info->lock); 3885 3886 mutex_lock(&fs_info->chunk_mutex); 3887 3888 /* 3889 * The chunk_mutex is held throughout the entirety of a chunk 3890 * allocation, so once we've acquired the chunk_mutex we know that the 3891 * other guy is done and we need to recheck and see if we should 3892 * allocate. 3893 */ 3894 if (wait_for_alloc) { 3895 mutex_unlock(&fs_info->chunk_mutex); 3896 wait_for_alloc = 0; 3897 goto again; 3898 } 3899 3900 trans->allocating_chunk = true; 3901 3902 /* 3903 * If we have mixed data/metadata chunks we want to make sure we keep 3904 * allocating mixed chunks instead of individual chunks. 3905 */ 3906 if (btrfs_mixed_space_info(space_info)) 3907 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3908 3909 /* 3910 * if we're doing a data chunk, go ahead and make sure that 3911 * we keep a reasonable number of metadata chunks allocated in the 3912 * FS as well. 3913 */ 3914 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3915 fs_info->data_chunk_allocations++; 3916 if (!(fs_info->data_chunk_allocations % 3917 fs_info->metadata_ratio)) 3918 force_metadata_allocation(fs_info); 3919 } 3920 3921 /* 3922 * Check if we have enough space in SYSTEM chunk because we may need 3923 * to update devices. 3924 */ 3925 check_system_chunk(trans, extent_root, flags); 3926 3927 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3928 trans->allocating_chunk = false; 3929 3930 spin_lock(&space_info->lock); 3931 if (ret < 0 && ret != -ENOSPC) 3932 goto out; 3933 if (ret) 3934 space_info->full = 1; 3935 else 3936 ret = 1; 3937 3938 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3939 out: 3940 space_info->chunk_alloc = 0; 3941 spin_unlock(&space_info->lock); 3942 mutex_unlock(&fs_info->chunk_mutex); 3943 return ret; 3944 } 3945 3946 static int can_overcommit(struct btrfs_root *root, 3947 struct btrfs_space_info *space_info, u64 bytes, 3948 enum btrfs_reserve_flush_enum flush) 3949 { 3950 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3951 u64 profile = btrfs_get_alloc_profile(root, 0); 3952 u64 space_size; 3953 u64 avail; 3954 u64 used; 3955 3956 used = space_info->bytes_used + space_info->bytes_reserved + 3957 space_info->bytes_pinned + space_info->bytes_readonly; 3958 3959 /* 3960 * We only want to allow over committing if we have lots of actual space 3961 * free, but if we don't have enough space to handle the global reserve 3962 * space then we could end up having a real enospc problem when trying 3963 * to allocate a chunk or some other such important allocation. 3964 */ 3965 spin_lock(&global_rsv->lock); 3966 space_size = calc_global_rsv_need_space(global_rsv); 3967 spin_unlock(&global_rsv->lock); 3968 if (used + space_size >= space_info->total_bytes) 3969 return 0; 3970 3971 used += space_info->bytes_may_use; 3972 3973 spin_lock(&root->fs_info->free_chunk_lock); 3974 avail = root->fs_info->free_chunk_space; 3975 spin_unlock(&root->fs_info->free_chunk_lock); 3976 3977 /* 3978 * If we have dup, raid1 or raid10 then only half of the free 3979 * space is actually useable. For raid56, the space info used 3980 * doesn't include the parity drive, so we don't have to 3981 * change the math 3982 */ 3983 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3984 BTRFS_BLOCK_GROUP_RAID1 | 3985 BTRFS_BLOCK_GROUP_RAID10)) 3986 avail >>= 1; 3987 3988 /* 3989 * If we aren't flushing all things, let us overcommit up to 3990 * 1/2th of the space. If we can flush, don't let us overcommit 3991 * too much, let it overcommit up to 1/8 of the space. 3992 */ 3993 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3994 avail >>= 3; 3995 else 3996 avail >>= 1; 3997 3998 if (used + bytes < space_info->total_bytes + avail) 3999 return 1; 4000 return 0; 4001 } 4002 4003 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4004 unsigned long nr_pages) 4005 { 4006 struct super_block *sb = root->fs_info->sb; 4007 4008 if (down_read_trylock(&sb->s_umount)) { 4009 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4010 up_read(&sb->s_umount); 4011 } else { 4012 /* 4013 * We needn't worry the filesystem going from r/w to r/o though 4014 * we don't acquire ->s_umount mutex, because the filesystem 4015 * should guarantee the delalloc inodes list be empty after 4016 * the filesystem is readonly(all dirty pages are written to 4017 * the disk). 4018 */ 4019 btrfs_start_delalloc_roots(root->fs_info, 0); 4020 if (!current->journal_info) 4021 btrfs_wait_ordered_roots(root->fs_info, -1); 4022 } 4023 } 4024 4025 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4026 { 4027 u64 bytes; 4028 int nr; 4029 4030 bytes = btrfs_calc_trans_metadata_size(root, 1); 4031 nr = (int)div64_u64(to_reclaim, bytes); 4032 if (!nr) 4033 nr = 1; 4034 return nr; 4035 } 4036 4037 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4038 4039 /* 4040 * shrink metadata reservation for delalloc 4041 */ 4042 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4043 bool wait_ordered) 4044 { 4045 struct btrfs_block_rsv *block_rsv; 4046 struct btrfs_space_info *space_info; 4047 struct btrfs_trans_handle *trans; 4048 u64 delalloc_bytes; 4049 u64 max_reclaim; 4050 long time_left; 4051 unsigned long nr_pages; 4052 int loops; 4053 int items; 4054 enum btrfs_reserve_flush_enum flush; 4055 4056 /* Calc the number of the pages we need flush for space reservation */ 4057 items = calc_reclaim_items_nr(root, to_reclaim); 4058 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4059 4060 trans = (struct btrfs_trans_handle *)current->journal_info; 4061 block_rsv = &root->fs_info->delalloc_block_rsv; 4062 space_info = block_rsv->space_info; 4063 4064 delalloc_bytes = percpu_counter_sum_positive( 4065 &root->fs_info->delalloc_bytes); 4066 if (delalloc_bytes == 0) { 4067 if (trans) 4068 return; 4069 if (wait_ordered) 4070 btrfs_wait_ordered_roots(root->fs_info, items); 4071 return; 4072 } 4073 4074 loops = 0; 4075 while (delalloc_bytes && loops < 3) { 4076 max_reclaim = min(delalloc_bytes, to_reclaim); 4077 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4078 btrfs_writeback_inodes_sb_nr(root, nr_pages); 4079 /* 4080 * We need to wait for the async pages to actually start before 4081 * we do anything. 4082 */ 4083 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4084 if (!max_reclaim) 4085 goto skip_async; 4086 4087 if (max_reclaim <= nr_pages) 4088 max_reclaim = 0; 4089 else 4090 max_reclaim -= nr_pages; 4091 4092 wait_event(root->fs_info->async_submit_wait, 4093 atomic_read(&root->fs_info->async_delalloc_pages) <= 4094 (int)max_reclaim); 4095 skip_async: 4096 if (!trans) 4097 flush = BTRFS_RESERVE_FLUSH_ALL; 4098 else 4099 flush = BTRFS_RESERVE_NO_FLUSH; 4100 spin_lock(&space_info->lock); 4101 if (can_overcommit(root, space_info, orig, flush)) { 4102 spin_unlock(&space_info->lock); 4103 break; 4104 } 4105 spin_unlock(&space_info->lock); 4106 4107 loops++; 4108 if (wait_ordered && !trans) { 4109 btrfs_wait_ordered_roots(root->fs_info, items); 4110 } else { 4111 time_left = schedule_timeout_killable(1); 4112 if (time_left) 4113 break; 4114 } 4115 delalloc_bytes = percpu_counter_sum_positive( 4116 &root->fs_info->delalloc_bytes); 4117 } 4118 } 4119 4120 /** 4121 * maybe_commit_transaction - possibly commit the transaction if its ok to 4122 * @root - the root we're allocating for 4123 * @bytes - the number of bytes we want to reserve 4124 * @force - force the commit 4125 * 4126 * This will check to make sure that committing the transaction will actually 4127 * get us somewhere and then commit the transaction if it does. Otherwise it 4128 * will return -ENOSPC. 4129 */ 4130 static int may_commit_transaction(struct btrfs_root *root, 4131 struct btrfs_space_info *space_info, 4132 u64 bytes, int force) 4133 { 4134 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4135 struct btrfs_trans_handle *trans; 4136 4137 trans = (struct btrfs_trans_handle *)current->journal_info; 4138 if (trans) 4139 return -EAGAIN; 4140 4141 if (force) 4142 goto commit; 4143 4144 /* See if there is enough pinned space to make this reservation */ 4145 spin_lock(&space_info->lock); 4146 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4147 bytes) >= 0) { 4148 spin_unlock(&space_info->lock); 4149 goto commit; 4150 } 4151 spin_unlock(&space_info->lock); 4152 4153 /* 4154 * See if there is some space in the delayed insertion reservation for 4155 * this reservation. 4156 */ 4157 if (space_info != delayed_rsv->space_info) 4158 return -ENOSPC; 4159 4160 spin_lock(&space_info->lock); 4161 spin_lock(&delayed_rsv->lock); 4162 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4163 bytes - delayed_rsv->size) >= 0) { 4164 spin_unlock(&delayed_rsv->lock); 4165 spin_unlock(&space_info->lock); 4166 return -ENOSPC; 4167 } 4168 spin_unlock(&delayed_rsv->lock); 4169 spin_unlock(&space_info->lock); 4170 4171 commit: 4172 trans = btrfs_join_transaction(root); 4173 if (IS_ERR(trans)) 4174 return -ENOSPC; 4175 4176 return btrfs_commit_transaction(trans, root); 4177 } 4178 4179 enum flush_state { 4180 FLUSH_DELAYED_ITEMS_NR = 1, 4181 FLUSH_DELAYED_ITEMS = 2, 4182 FLUSH_DELALLOC = 3, 4183 FLUSH_DELALLOC_WAIT = 4, 4184 ALLOC_CHUNK = 5, 4185 COMMIT_TRANS = 6, 4186 }; 4187 4188 static int flush_space(struct btrfs_root *root, 4189 struct btrfs_space_info *space_info, u64 num_bytes, 4190 u64 orig_bytes, int state) 4191 { 4192 struct btrfs_trans_handle *trans; 4193 int nr; 4194 int ret = 0; 4195 4196 switch (state) { 4197 case FLUSH_DELAYED_ITEMS_NR: 4198 case FLUSH_DELAYED_ITEMS: 4199 if (state == FLUSH_DELAYED_ITEMS_NR) 4200 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4201 else 4202 nr = -1; 4203 4204 trans = btrfs_join_transaction(root); 4205 if (IS_ERR(trans)) { 4206 ret = PTR_ERR(trans); 4207 break; 4208 } 4209 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4210 btrfs_end_transaction(trans, root); 4211 break; 4212 case FLUSH_DELALLOC: 4213 case FLUSH_DELALLOC_WAIT: 4214 shrink_delalloc(root, num_bytes, orig_bytes, 4215 state == FLUSH_DELALLOC_WAIT); 4216 break; 4217 case ALLOC_CHUNK: 4218 trans = btrfs_join_transaction(root); 4219 if (IS_ERR(trans)) { 4220 ret = PTR_ERR(trans); 4221 break; 4222 } 4223 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4224 btrfs_get_alloc_profile(root, 0), 4225 CHUNK_ALLOC_NO_FORCE); 4226 btrfs_end_transaction(trans, root); 4227 if (ret == -ENOSPC) 4228 ret = 0; 4229 break; 4230 case COMMIT_TRANS: 4231 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4232 break; 4233 default: 4234 ret = -ENOSPC; 4235 break; 4236 } 4237 4238 return ret; 4239 } 4240 /** 4241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4242 * @root - the root we're allocating for 4243 * @block_rsv - the block_rsv we're allocating for 4244 * @orig_bytes - the number of bytes we want 4245 * @flush - whether or not we can flush to make our reservation 4246 * 4247 * This will reserve orgi_bytes number of bytes from the space info associated 4248 * with the block_rsv. If there is not enough space it will make an attempt to 4249 * flush out space to make room. It will do this by flushing delalloc if 4250 * possible or committing the transaction. If flush is 0 then no attempts to 4251 * regain reservations will be made and this will fail if there is not enough 4252 * space already. 4253 */ 4254 static int reserve_metadata_bytes(struct btrfs_root *root, 4255 struct btrfs_block_rsv *block_rsv, 4256 u64 orig_bytes, 4257 enum btrfs_reserve_flush_enum flush) 4258 { 4259 struct btrfs_space_info *space_info = block_rsv->space_info; 4260 u64 used; 4261 u64 num_bytes = orig_bytes; 4262 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4263 int ret = 0; 4264 bool flushing = false; 4265 4266 again: 4267 ret = 0; 4268 spin_lock(&space_info->lock); 4269 /* 4270 * We only want to wait if somebody other than us is flushing and we 4271 * are actually allowed to flush all things. 4272 */ 4273 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4274 space_info->flush) { 4275 spin_unlock(&space_info->lock); 4276 /* 4277 * If we have a trans handle we can't wait because the flusher 4278 * may have to commit the transaction, which would mean we would 4279 * deadlock since we are waiting for the flusher to finish, but 4280 * hold the current transaction open. 4281 */ 4282 if (current->journal_info) 4283 return -EAGAIN; 4284 ret = wait_event_killable(space_info->wait, !space_info->flush); 4285 /* Must have been killed, return */ 4286 if (ret) 4287 return -EINTR; 4288 4289 spin_lock(&space_info->lock); 4290 } 4291 4292 ret = -ENOSPC; 4293 used = space_info->bytes_used + space_info->bytes_reserved + 4294 space_info->bytes_pinned + space_info->bytes_readonly + 4295 space_info->bytes_may_use; 4296 4297 /* 4298 * The idea here is that we've not already over-reserved the block group 4299 * then we can go ahead and save our reservation first and then start 4300 * flushing if we need to. Otherwise if we've already overcommitted 4301 * lets start flushing stuff first and then come back and try to make 4302 * our reservation. 4303 */ 4304 if (used <= space_info->total_bytes) { 4305 if (used + orig_bytes <= space_info->total_bytes) { 4306 space_info->bytes_may_use += orig_bytes; 4307 trace_btrfs_space_reservation(root->fs_info, 4308 "space_info", space_info->flags, orig_bytes, 1); 4309 ret = 0; 4310 } else { 4311 /* 4312 * Ok set num_bytes to orig_bytes since we aren't 4313 * overocmmitted, this way we only try and reclaim what 4314 * we need. 4315 */ 4316 num_bytes = orig_bytes; 4317 } 4318 } else { 4319 /* 4320 * Ok we're over committed, set num_bytes to the overcommitted 4321 * amount plus the amount of bytes that we need for this 4322 * reservation. 4323 */ 4324 num_bytes = used - space_info->total_bytes + 4325 (orig_bytes * 2); 4326 } 4327 4328 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4329 space_info->bytes_may_use += orig_bytes; 4330 trace_btrfs_space_reservation(root->fs_info, "space_info", 4331 space_info->flags, orig_bytes, 4332 1); 4333 ret = 0; 4334 } 4335 4336 /* 4337 * Couldn't make our reservation, save our place so while we're trying 4338 * to reclaim space we can actually use it instead of somebody else 4339 * stealing it from us. 4340 * 4341 * We make the other tasks wait for the flush only when we can flush 4342 * all things. 4343 */ 4344 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4345 flushing = true; 4346 space_info->flush = 1; 4347 } 4348 4349 spin_unlock(&space_info->lock); 4350 4351 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4352 goto out; 4353 4354 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4355 flush_state); 4356 flush_state++; 4357 4358 /* 4359 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4360 * would happen. So skip delalloc flush. 4361 */ 4362 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4363 (flush_state == FLUSH_DELALLOC || 4364 flush_state == FLUSH_DELALLOC_WAIT)) 4365 flush_state = ALLOC_CHUNK; 4366 4367 if (!ret) 4368 goto again; 4369 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4370 flush_state < COMMIT_TRANS) 4371 goto again; 4372 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4373 flush_state <= COMMIT_TRANS) 4374 goto again; 4375 4376 out: 4377 if (ret == -ENOSPC && 4378 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4379 struct btrfs_block_rsv *global_rsv = 4380 &root->fs_info->global_block_rsv; 4381 4382 if (block_rsv != global_rsv && 4383 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4384 ret = 0; 4385 } 4386 if (ret == -ENOSPC) 4387 trace_btrfs_space_reservation(root->fs_info, 4388 "space_info:enospc", 4389 space_info->flags, orig_bytes, 1); 4390 if (flushing) { 4391 spin_lock(&space_info->lock); 4392 space_info->flush = 0; 4393 wake_up_all(&space_info->wait); 4394 spin_unlock(&space_info->lock); 4395 } 4396 return ret; 4397 } 4398 4399 static struct btrfs_block_rsv *get_block_rsv( 4400 const struct btrfs_trans_handle *trans, 4401 const struct btrfs_root *root) 4402 { 4403 struct btrfs_block_rsv *block_rsv = NULL; 4404 4405 if (root->ref_cows) 4406 block_rsv = trans->block_rsv; 4407 4408 if (root == root->fs_info->csum_root && trans->adding_csums) 4409 block_rsv = trans->block_rsv; 4410 4411 if (root == root->fs_info->uuid_root) 4412 block_rsv = trans->block_rsv; 4413 4414 if (!block_rsv) 4415 block_rsv = root->block_rsv; 4416 4417 if (!block_rsv) 4418 block_rsv = &root->fs_info->empty_block_rsv; 4419 4420 return block_rsv; 4421 } 4422 4423 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4424 u64 num_bytes) 4425 { 4426 int ret = -ENOSPC; 4427 spin_lock(&block_rsv->lock); 4428 if (block_rsv->reserved >= num_bytes) { 4429 block_rsv->reserved -= num_bytes; 4430 if (block_rsv->reserved < block_rsv->size) 4431 block_rsv->full = 0; 4432 ret = 0; 4433 } 4434 spin_unlock(&block_rsv->lock); 4435 return ret; 4436 } 4437 4438 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4439 u64 num_bytes, int update_size) 4440 { 4441 spin_lock(&block_rsv->lock); 4442 block_rsv->reserved += num_bytes; 4443 if (update_size) 4444 block_rsv->size += num_bytes; 4445 else if (block_rsv->reserved >= block_rsv->size) 4446 block_rsv->full = 1; 4447 spin_unlock(&block_rsv->lock); 4448 } 4449 4450 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4451 struct btrfs_block_rsv *dest, u64 num_bytes, 4452 int min_factor) 4453 { 4454 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4455 u64 min_bytes; 4456 4457 if (global_rsv->space_info != dest->space_info) 4458 return -ENOSPC; 4459 4460 spin_lock(&global_rsv->lock); 4461 min_bytes = div_factor(global_rsv->size, min_factor); 4462 if (global_rsv->reserved < min_bytes + num_bytes) { 4463 spin_unlock(&global_rsv->lock); 4464 return -ENOSPC; 4465 } 4466 global_rsv->reserved -= num_bytes; 4467 if (global_rsv->reserved < global_rsv->size) 4468 global_rsv->full = 0; 4469 spin_unlock(&global_rsv->lock); 4470 4471 block_rsv_add_bytes(dest, num_bytes, 1); 4472 return 0; 4473 } 4474 4475 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4476 struct btrfs_block_rsv *block_rsv, 4477 struct btrfs_block_rsv *dest, u64 num_bytes) 4478 { 4479 struct btrfs_space_info *space_info = block_rsv->space_info; 4480 4481 spin_lock(&block_rsv->lock); 4482 if (num_bytes == (u64)-1) 4483 num_bytes = block_rsv->size; 4484 block_rsv->size -= num_bytes; 4485 if (block_rsv->reserved >= block_rsv->size) { 4486 num_bytes = block_rsv->reserved - block_rsv->size; 4487 block_rsv->reserved = block_rsv->size; 4488 block_rsv->full = 1; 4489 } else { 4490 num_bytes = 0; 4491 } 4492 spin_unlock(&block_rsv->lock); 4493 4494 if (num_bytes > 0) { 4495 if (dest) { 4496 spin_lock(&dest->lock); 4497 if (!dest->full) { 4498 u64 bytes_to_add; 4499 4500 bytes_to_add = dest->size - dest->reserved; 4501 bytes_to_add = min(num_bytes, bytes_to_add); 4502 dest->reserved += bytes_to_add; 4503 if (dest->reserved >= dest->size) 4504 dest->full = 1; 4505 num_bytes -= bytes_to_add; 4506 } 4507 spin_unlock(&dest->lock); 4508 } 4509 if (num_bytes) { 4510 spin_lock(&space_info->lock); 4511 space_info->bytes_may_use -= num_bytes; 4512 trace_btrfs_space_reservation(fs_info, "space_info", 4513 space_info->flags, num_bytes, 0); 4514 spin_unlock(&space_info->lock); 4515 } 4516 } 4517 } 4518 4519 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4520 struct btrfs_block_rsv *dst, u64 num_bytes) 4521 { 4522 int ret; 4523 4524 ret = block_rsv_use_bytes(src, num_bytes); 4525 if (ret) 4526 return ret; 4527 4528 block_rsv_add_bytes(dst, num_bytes, 1); 4529 return 0; 4530 } 4531 4532 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4533 { 4534 memset(rsv, 0, sizeof(*rsv)); 4535 spin_lock_init(&rsv->lock); 4536 rsv->type = type; 4537 } 4538 4539 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4540 unsigned short type) 4541 { 4542 struct btrfs_block_rsv *block_rsv; 4543 struct btrfs_fs_info *fs_info = root->fs_info; 4544 4545 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4546 if (!block_rsv) 4547 return NULL; 4548 4549 btrfs_init_block_rsv(block_rsv, type); 4550 block_rsv->space_info = __find_space_info(fs_info, 4551 BTRFS_BLOCK_GROUP_METADATA); 4552 return block_rsv; 4553 } 4554 4555 void btrfs_free_block_rsv(struct btrfs_root *root, 4556 struct btrfs_block_rsv *rsv) 4557 { 4558 if (!rsv) 4559 return; 4560 btrfs_block_rsv_release(root, rsv, (u64)-1); 4561 kfree(rsv); 4562 } 4563 4564 int btrfs_block_rsv_add(struct btrfs_root *root, 4565 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4566 enum btrfs_reserve_flush_enum flush) 4567 { 4568 int ret; 4569 4570 if (num_bytes == 0) 4571 return 0; 4572 4573 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4574 if (!ret) { 4575 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4576 return 0; 4577 } 4578 4579 return ret; 4580 } 4581 4582 int btrfs_block_rsv_check(struct btrfs_root *root, 4583 struct btrfs_block_rsv *block_rsv, int min_factor) 4584 { 4585 u64 num_bytes = 0; 4586 int ret = -ENOSPC; 4587 4588 if (!block_rsv) 4589 return 0; 4590 4591 spin_lock(&block_rsv->lock); 4592 num_bytes = div_factor(block_rsv->size, min_factor); 4593 if (block_rsv->reserved >= num_bytes) 4594 ret = 0; 4595 spin_unlock(&block_rsv->lock); 4596 4597 return ret; 4598 } 4599 4600 int btrfs_block_rsv_refill(struct btrfs_root *root, 4601 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4602 enum btrfs_reserve_flush_enum flush) 4603 { 4604 u64 num_bytes = 0; 4605 int ret = -ENOSPC; 4606 4607 if (!block_rsv) 4608 return 0; 4609 4610 spin_lock(&block_rsv->lock); 4611 num_bytes = min_reserved; 4612 if (block_rsv->reserved >= num_bytes) 4613 ret = 0; 4614 else 4615 num_bytes -= block_rsv->reserved; 4616 spin_unlock(&block_rsv->lock); 4617 4618 if (!ret) 4619 return 0; 4620 4621 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4622 if (!ret) { 4623 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4624 return 0; 4625 } 4626 4627 return ret; 4628 } 4629 4630 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4631 struct btrfs_block_rsv *dst_rsv, 4632 u64 num_bytes) 4633 { 4634 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4635 } 4636 4637 void btrfs_block_rsv_release(struct btrfs_root *root, 4638 struct btrfs_block_rsv *block_rsv, 4639 u64 num_bytes) 4640 { 4641 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4642 if (global_rsv->full || global_rsv == block_rsv || 4643 block_rsv->space_info != global_rsv->space_info) 4644 global_rsv = NULL; 4645 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4646 num_bytes); 4647 } 4648 4649 /* 4650 * helper to calculate size of global block reservation. 4651 * the desired value is sum of space used by extent tree, 4652 * checksum tree and root tree 4653 */ 4654 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4655 { 4656 struct btrfs_space_info *sinfo; 4657 u64 num_bytes; 4658 u64 meta_used; 4659 u64 data_used; 4660 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4661 4662 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4663 spin_lock(&sinfo->lock); 4664 data_used = sinfo->bytes_used; 4665 spin_unlock(&sinfo->lock); 4666 4667 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4668 spin_lock(&sinfo->lock); 4669 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4670 data_used = 0; 4671 meta_used = sinfo->bytes_used; 4672 spin_unlock(&sinfo->lock); 4673 4674 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4675 csum_size * 2; 4676 num_bytes += div64_u64(data_used + meta_used, 50); 4677 4678 if (num_bytes * 3 > meta_used) 4679 num_bytes = div64_u64(meta_used, 3); 4680 4681 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4682 } 4683 4684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4685 { 4686 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4687 struct btrfs_space_info *sinfo = block_rsv->space_info; 4688 u64 num_bytes; 4689 4690 num_bytes = calc_global_metadata_size(fs_info); 4691 4692 spin_lock(&sinfo->lock); 4693 spin_lock(&block_rsv->lock); 4694 4695 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4696 4697 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4698 sinfo->bytes_reserved + sinfo->bytes_readonly + 4699 sinfo->bytes_may_use; 4700 4701 if (sinfo->total_bytes > num_bytes) { 4702 num_bytes = sinfo->total_bytes - num_bytes; 4703 block_rsv->reserved += num_bytes; 4704 sinfo->bytes_may_use += num_bytes; 4705 trace_btrfs_space_reservation(fs_info, "space_info", 4706 sinfo->flags, num_bytes, 1); 4707 } 4708 4709 if (block_rsv->reserved >= block_rsv->size) { 4710 num_bytes = block_rsv->reserved - block_rsv->size; 4711 sinfo->bytes_may_use -= num_bytes; 4712 trace_btrfs_space_reservation(fs_info, "space_info", 4713 sinfo->flags, num_bytes, 0); 4714 block_rsv->reserved = block_rsv->size; 4715 block_rsv->full = 1; 4716 } 4717 4718 spin_unlock(&block_rsv->lock); 4719 spin_unlock(&sinfo->lock); 4720 } 4721 4722 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4723 { 4724 struct btrfs_space_info *space_info; 4725 4726 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4727 fs_info->chunk_block_rsv.space_info = space_info; 4728 4729 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4730 fs_info->global_block_rsv.space_info = space_info; 4731 fs_info->delalloc_block_rsv.space_info = space_info; 4732 fs_info->trans_block_rsv.space_info = space_info; 4733 fs_info->empty_block_rsv.space_info = space_info; 4734 fs_info->delayed_block_rsv.space_info = space_info; 4735 4736 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4737 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4738 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4739 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4740 if (fs_info->quota_root) 4741 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4742 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4743 4744 update_global_block_rsv(fs_info); 4745 } 4746 4747 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4748 { 4749 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4750 (u64)-1); 4751 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4752 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4753 WARN_ON(fs_info->trans_block_rsv.size > 0); 4754 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4755 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4756 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4757 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4758 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4759 } 4760 4761 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4762 struct btrfs_root *root) 4763 { 4764 if (!trans->block_rsv) 4765 return; 4766 4767 if (!trans->bytes_reserved) 4768 return; 4769 4770 trace_btrfs_space_reservation(root->fs_info, "transaction", 4771 trans->transid, trans->bytes_reserved, 0); 4772 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4773 trans->bytes_reserved = 0; 4774 } 4775 4776 /* Can only return 0 or -ENOSPC */ 4777 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4778 struct inode *inode) 4779 { 4780 struct btrfs_root *root = BTRFS_I(inode)->root; 4781 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4782 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4783 4784 /* 4785 * We need to hold space in order to delete our orphan item once we've 4786 * added it, so this takes the reservation so we can release it later 4787 * when we are truly done with the orphan item. 4788 */ 4789 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4790 trace_btrfs_space_reservation(root->fs_info, "orphan", 4791 btrfs_ino(inode), num_bytes, 1); 4792 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4793 } 4794 4795 void btrfs_orphan_release_metadata(struct inode *inode) 4796 { 4797 struct btrfs_root *root = BTRFS_I(inode)->root; 4798 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4799 trace_btrfs_space_reservation(root->fs_info, "orphan", 4800 btrfs_ino(inode), num_bytes, 0); 4801 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4802 } 4803 4804 /* 4805 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4806 * root: the root of the parent directory 4807 * rsv: block reservation 4808 * items: the number of items that we need do reservation 4809 * qgroup_reserved: used to return the reserved size in qgroup 4810 * 4811 * This function is used to reserve the space for snapshot/subvolume 4812 * creation and deletion. Those operations are different with the 4813 * common file/directory operations, they change two fs/file trees 4814 * and root tree, the number of items that the qgroup reserves is 4815 * different with the free space reservation. So we can not use 4816 * the space reseravtion mechanism in start_transaction(). 4817 */ 4818 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4819 struct btrfs_block_rsv *rsv, 4820 int items, 4821 u64 *qgroup_reserved, 4822 bool use_global_rsv) 4823 { 4824 u64 num_bytes; 4825 int ret; 4826 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4827 4828 if (root->fs_info->quota_enabled) { 4829 /* One for parent inode, two for dir entries */ 4830 num_bytes = 3 * root->leafsize; 4831 ret = btrfs_qgroup_reserve(root, num_bytes); 4832 if (ret) 4833 return ret; 4834 } else { 4835 num_bytes = 0; 4836 } 4837 4838 *qgroup_reserved = num_bytes; 4839 4840 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4841 rsv->space_info = __find_space_info(root->fs_info, 4842 BTRFS_BLOCK_GROUP_METADATA); 4843 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4844 BTRFS_RESERVE_FLUSH_ALL); 4845 4846 if (ret == -ENOSPC && use_global_rsv) 4847 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4848 4849 if (ret) { 4850 if (*qgroup_reserved) 4851 btrfs_qgroup_free(root, *qgroup_reserved); 4852 } 4853 4854 return ret; 4855 } 4856 4857 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4858 struct btrfs_block_rsv *rsv, 4859 u64 qgroup_reserved) 4860 { 4861 btrfs_block_rsv_release(root, rsv, (u64)-1); 4862 if (qgroup_reserved) 4863 btrfs_qgroup_free(root, qgroup_reserved); 4864 } 4865 4866 /** 4867 * drop_outstanding_extent - drop an outstanding extent 4868 * @inode: the inode we're dropping the extent for 4869 * 4870 * This is called when we are freeing up an outstanding extent, either called 4871 * after an error or after an extent is written. This will return the number of 4872 * reserved extents that need to be freed. This must be called with 4873 * BTRFS_I(inode)->lock held. 4874 */ 4875 static unsigned drop_outstanding_extent(struct inode *inode) 4876 { 4877 unsigned drop_inode_space = 0; 4878 unsigned dropped_extents = 0; 4879 4880 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4881 BTRFS_I(inode)->outstanding_extents--; 4882 4883 if (BTRFS_I(inode)->outstanding_extents == 0 && 4884 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4885 &BTRFS_I(inode)->runtime_flags)) 4886 drop_inode_space = 1; 4887 4888 /* 4889 * If we have more or the same amount of outsanding extents than we have 4890 * reserved then we need to leave the reserved extents count alone. 4891 */ 4892 if (BTRFS_I(inode)->outstanding_extents >= 4893 BTRFS_I(inode)->reserved_extents) 4894 return drop_inode_space; 4895 4896 dropped_extents = BTRFS_I(inode)->reserved_extents - 4897 BTRFS_I(inode)->outstanding_extents; 4898 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4899 return dropped_extents + drop_inode_space; 4900 } 4901 4902 /** 4903 * calc_csum_metadata_size - return the amount of metada space that must be 4904 * reserved/free'd for the given bytes. 4905 * @inode: the inode we're manipulating 4906 * @num_bytes: the number of bytes in question 4907 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4908 * 4909 * This adjusts the number of csum_bytes in the inode and then returns the 4910 * correct amount of metadata that must either be reserved or freed. We 4911 * calculate how many checksums we can fit into one leaf and then divide the 4912 * number of bytes that will need to be checksumed by this value to figure out 4913 * how many checksums will be required. If we are adding bytes then the number 4914 * may go up and we will return the number of additional bytes that must be 4915 * reserved. If it is going down we will return the number of bytes that must 4916 * be freed. 4917 * 4918 * This must be called with BTRFS_I(inode)->lock held. 4919 */ 4920 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4921 int reserve) 4922 { 4923 struct btrfs_root *root = BTRFS_I(inode)->root; 4924 u64 csum_size; 4925 int num_csums_per_leaf; 4926 int num_csums; 4927 int old_csums; 4928 4929 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4930 BTRFS_I(inode)->csum_bytes == 0) 4931 return 0; 4932 4933 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4934 if (reserve) 4935 BTRFS_I(inode)->csum_bytes += num_bytes; 4936 else 4937 BTRFS_I(inode)->csum_bytes -= num_bytes; 4938 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4939 num_csums_per_leaf = (int)div64_u64(csum_size, 4940 sizeof(struct btrfs_csum_item) + 4941 sizeof(struct btrfs_disk_key)); 4942 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4943 num_csums = num_csums + num_csums_per_leaf - 1; 4944 num_csums = num_csums / num_csums_per_leaf; 4945 4946 old_csums = old_csums + num_csums_per_leaf - 1; 4947 old_csums = old_csums / num_csums_per_leaf; 4948 4949 /* No change, no need to reserve more */ 4950 if (old_csums == num_csums) 4951 return 0; 4952 4953 if (reserve) 4954 return btrfs_calc_trans_metadata_size(root, 4955 num_csums - old_csums); 4956 4957 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4958 } 4959 4960 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4961 { 4962 struct btrfs_root *root = BTRFS_I(inode)->root; 4963 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4964 u64 to_reserve = 0; 4965 u64 csum_bytes; 4966 unsigned nr_extents = 0; 4967 int extra_reserve = 0; 4968 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4969 int ret = 0; 4970 bool delalloc_lock = true; 4971 u64 to_free = 0; 4972 unsigned dropped; 4973 4974 /* If we are a free space inode we need to not flush since we will be in 4975 * the middle of a transaction commit. We also don't need the delalloc 4976 * mutex since we won't race with anybody. We need this mostly to make 4977 * lockdep shut its filthy mouth. 4978 */ 4979 if (btrfs_is_free_space_inode(inode)) { 4980 flush = BTRFS_RESERVE_NO_FLUSH; 4981 delalloc_lock = false; 4982 } 4983 4984 if (flush != BTRFS_RESERVE_NO_FLUSH && 4985 btrfs_transaction_in_commit(root->fs_info)) 4986 schedule_timeout(1); 4987 4988 if (delalloc_lock) 4989 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4990 4991 num_bytes = ALIGN(num_bytes, root->sectorsize); 4992 4993 spin_lock(&BTRFS_I(inode)->lock); 4994 BTRFS_I(inode)->outstanding_extents++; 4995 4996 if (BTRFS_I(inode)->outstanding_extents > 4997 BTRFS_I(inode)->reserved_extents) 4998 nr_extents = BTRFS_I(inode)->outstanding_extents - 4999 BTRFS_I(inode)->reserved_extents; 5000 5001 /* 5002 * Add an item to reserve for updating the inode when we complete the 5003 * delalloc io. 5004 */ 5005 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5006 &BTRFS_I(inode)->runtime_flags)) { 5007 nr_extents++; 5008 extra_reserve = 1; 5009 } 5010 5011 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5012 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5013 csum_bytes = BTRFS_I(inode)->csum_bytes; 5014 spin_unlock(&BTRFS_I(inode)->lock); 5015 5016 if (root->fs_info->quota_enabled) { 5017 ret = btrfs_qgroup_reserve(root, num_bytes + 5018 nr_extents * root->leafsize); 5019 if (ret) 5020 goto out_fail; 5021 } 5022 5023 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5024 if (unlikely(ret)) { 5025 if (root->fs_info->quota_enabled) 5026 btrfs_qgroup_free(root, num_bytes + 5027 nr_extents * root->leafsize); 5028 goto out_fail; 5029 } 5030 5031 spin_lock(&BTRFS_I(inode)->lock); 5032 if (extra_reserve) { 5033 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5034 &BTRFS_I(inode)->runtime_flags); 5035 nr_extents--; 5036 } 5037 BTRFS_I(inode)->reserved_extents += nr_extents; 5038 spin_unlock(&BTRFS_I(inode)->lock); 5039 5040 if (delalloc_lock) 5041 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5042 5043 if (to_reserve) 5044 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5045 btrfs_ino(inode), to_reserve, 1); 5046 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5047 5048 return 0; 5049 5050 out_fail: 5051 spin_lock(&BTRFS_I(inode)->lock); 5052 dropped = drop_outstanding_extent(inode); 5053 /* 5054 * If the inodes csum_bytes is the same as the original 5055 * csum_bytes then we know we haven't raced with any free()ers 5056 * so we can just reduce our inodes csum bytes and carry on. 5057 */ 5058 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5059 calc_csum_metadata_size(inode, num_bytes, 0); 5060 } else { 5061 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5062 u64 bytes; 5063 5064 /* 5065 * This is tricky, but first we need to figure out how much we 5066 * free'd from any free-ers that occured during this 5067 * reservation, so we reset ->csum_bytes to the csum_bytes 5068 * before we dropped our lock, and then call the free for the 5069 * number of bytes that were freed while we were trying our 5070 * reservation. 5071 */ 5072 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5073 BTRFS_I(inode)->csum_bytes = csum_bytes; 5074 to_free = calc_csum_metadata_size(inode, bytes, 0); 5075 5076 5077 /* 5078 * Now we need to see how much we would have freed had we not 5079 * been making this reservation and our ->csum_bytes were not 5080 * artificially inflated. 5081 */ 5082 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5083 bytes = csum_bytes - orig_csum_bytes; 5084 bytes = calc_csum_metadata_size(inode, bytes, 0); 5085 5086 /* 5087 * Now reset ->csum_bytes to what it should be. If bytes is 5088 * more than to_free then we would have free'd more space had we 5089 * not had an artificially high ->csum_bytes, so we need to free 5090 * the remainder. If bytes is the same or less then we don't 5091 * need to do anything, the other free-ers did the correct 5092 * thing. 5093 */ 5094 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5095 if (bytes > to_free) 5096 to_free = bytes - to_free; 5097 else 5098 to_free = 0; 5099 } 5100 spin_unlock(&BTRFS_I(inode)->lock); 5101 if (dropped) 5102 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5103 5104 if (to_free) { 5105 btrfs_block_rsv_release(root, block_rsv, to_free); 5106 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5107 btrfs_ino(inode), to_free, 0); 5108 } 5109 if (delalloc_lock) 5110 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5111 return ret; 5112 } 5113 5114 /** 5115 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5116 * @inode: the inode to release the reservation for 5117 * @num_bytes: the number of bytes we're releasing 5118 * 5119 * This will release the metadata reservation for an inode. This can be called 5120 * once we complete IO for a given set of bytes to release their metadata 5121 * reservations. 5122 */ 5123 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5124 { 5125 struct btrfs_root *root = BTRFS_I(inode)->root; 5126 u64 to_free = 0; 5127 unsigned dropped; 5128 5129 num_bytes = ALIGN(num_bytes, root->sectorsize); 5130 spin_lock(&BTRFS_I(inode)->lock); 5131 dropped = drop_outstanding_extent(inode); 5132 5133 if (num_bytes) 5134 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5135 spin_unlock(&BTRFS_I(inode)->lock); 5136 if (dropped > 0) 5137 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5138 5139 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5140 btrfs_ino(inode), to_free, 0); 5141 if (root->fs_info->quota_enabled) { 5142 btrfs_qgroup_free(root, num_bytes + 5143 dropped * root->leafsize); 5144 } 5145 5146 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5147 to_free); 5148 } 5149 5150 /** 5151 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5152 * @inode: inode we're writing to 5153 * @num_bytes: the number of bytes we want to allocate 5154 * 5155 * This will do the following things 5156 * 5157 * o reserve space in the data space info for num_bytes 5158 * o reserve space in the metadata space info based on number of outstanding 5159 * extents and how much csums will be needed 5160 * o add to the inodes ->delalloc_bytes 5161 * o add it to the fs_info's delalloc inodes list. 5162 * 5163 * This will return 0 for success and -ENOSPC if there is no space left. 5164 */ 5165 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5166 { 5167 int ret; 5168 5169 ret = btrfs_check_data_free_space(inode, num_bytes); 5170 if (ret) 5171 return ret; 5172 5173 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5174 if (ret) { 5175 btrfs_free_reserved_data_space(inode, num_bytes); 5176 return ret; 5177 } 5178 5179 return 0; 5180 } 5181 5182 /** 5183 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5184 * @inode: inode we're releasing space for 5185 * @num_bytes: the number of bytes we want to free up 5186 * 5187 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5188 * called in the case that we don't need the metadata AND data reservations 5189 * anymore. So if there is an error or we insert an inline extent. 5190 * 5191 * This function will release the metadata space that was not used and will 5192 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5193 * list if there are no delalloc bytes left. 5194 */ 5195 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5196 { 5197 btrfs_delalloc_release_metadata(inode, num_bytes); 5198 btrfs_free_reserved_data_space(inode, num_bytes); 5199 } 5200 5201 static int update_block_group(struct btrfs_root *root, 5202 u64 bytenr, u64 num_bytes, int alloc) 5203 { 5204 struct btrfs_block_group_cache *cache = NULL; 5205 struct btrfs_fs_info *info = root->fs_info; 5206 u64 total = num_bytes; 5207 u64 old_val; 5208 u64 byte_in_group; 5209 int factor; 5210 5211 /* block accounting for super block */ 5212 spin_lock(&info->delalloc_root_lock); 5213 old_val = btrfs_super_bytes_used(info->super_copy); 5214 if (alloc) 5215 old_val += num_bytes; 5216 else 5217 old_val -= num_bytes; 5218 btrfs_set_super_bytes_used(info->super_copy, old_val); 5219 spin_unlock(&info->delalloc_root_lock); 5220 5221 while (total) { 5222 cache = btrfs_lookup_block_group(info, bytenr); 5223 if (!cache) 5224 return -ENOENT; 5225 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5226 BTRFS_BLOCK_GROUP_RAID1 | 5227 BTRFS_BLOCK_GROUP_RAID10)) 5228 factor = 2; 5229 else 5230 factor = 1; 5231 /* 5232 * If this block group has free space cache written out, we 5233 * need to make sure to load it if we are removing space. This 5234 * is because we need the unpinning stage to actually add the 5235 * space back to the block group, otherwise we will leak space. 5236 */ 5237 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5238 cache_block_group(cache, 1); 5239 5240 byte_in_group = bytenr - cache->key.objectid; 5241 WARN_ON(byte_in_group > cache->key.offset); 5242 5243 spin_lock(&cache->space_info->lock); 5244 spin_lock(&cache->lock); 5245 5246 if (btrfs_test_opt(root, SPACE_CACHE) && 5247 cache->disk_cache_state < BTRFS_DC_CLEAR) 5248 cache->disk_cache_state = BTRFS_DC_CLEAR; 5249 5250 cache->dirty = 1; 5251 old_val = btrfs_block_group_used(&cache->item); 5252 num_bytes = min(total, cache->key.offset - byte_in_group); 5253 if (alloc) { 5254 old_val += num_bytes; 5255 btrfs_set_block_group_used(&cache->item, old_val); 5256 cache->reserved -= num_bytes; 5257 cache->space_info->bytes_reserved -= num_bytes; 5258 cache->space_info->bytes_used += num_bytes; 5259 cache->space_info->disk_used += num_bytes * factor; 5260 spin_unlock(&cache->lock); 5261 spin_unlock(&cache->space_info->lock); 5262 } else { 5263 old_val -= num_bytes; 5264 btrfs_set_block_group_used(&cache->item, old_val); 5265 cache->pinned += num_bytes; 5266 cache->space_info->bytes_pinned += num_bytes; 5267 cache->space_info->bytes_used -= num_bytes; 5268 cache->space_info->disk_used -= num_bytes * factor; 5269 spin_unlock(&cache->lock); 5270 spin_unlock(&cache->space_info->lock); 5271 5272 set_extent_dirty(info->pinned_extents, 5273 bytenr, bytenr + num_bytes - 1, 5274 GFP_NOFS | __GFP_NOFAIL); 5275 } 5276 btrfs_put_block_group(cache); 5277 total -= num_bytes; 5278 bytenr += num_bytes; 5279 } 5280 return 0; 5281 } 5282 5283 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5284 { 5285 struct btrfs_block_group_cache *cache; 5286 u64 bytenr; 5287 5288 spin_lock(&root->fs_info->block_group_cache_lock); 5289 bytenr = root->fs_info->first_logical_byte; 5290 spin_unlock(&root->fs_info->block_group_cache_lock); 5291 5292 if (bytenr < (u64)-1) 5293 return bytenr; 5294 5295 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5296 if (!cache) 5297 return 0; 5298 5299 bytenr = cache->key.objectid; 5300 btrfs_put_block_group(cache); 5301 5302 return bytenr; 5303 } 5304 5305 static int pin_down_extent(struct btrfs_root *root, 5306 struct btrfs_block_group_cache *cache, 5307 u64 bytenr, u64 num_bytes, int reserved) 5308 { 5309 spin_lock(&cache->space_info->lock); 5310 spin_lock(&cache->lock); 5311 cache->pinned += num_bytes; 5312 cache->space_info->bytes_pinned += num_bytes; 5313 if (reserved) { 5314 cache->reserved -= num_bytes; 5315 cache->space_info->bytes_reserved -= num_bytes; 5316 } 5317 spin_unlock(&cache->lock); 5318 spin_unlock(&cache->space_info->lock); 5319 5320 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5321 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5322 if (reserved) 5323 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5324 return 0; 5325 } 5326 5327 /* 5328 * this function must be called within transaction 5329 */ 5330 int btrfs_pin_extent(struct btrfs_root *root, 5331 u64 bytenr, u64 num_bytes, int reserved) 5332 { 5333 struct btrfs_block_group_cache *cache; 5334 5335 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5336 BUG_ON(!cache); /* Logic error */ 5337 5338 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5339 5340 btrfs_put_block_group(cache); 5341 return 0; 5342 } 5343 5344 /* 5345 * this function must be called within transaction 5346 */ 5347 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5348 u64 bytenr, u64 num_bytes) 5349 { 5350 struct btrfs_block_group_cache *cache; 5351 int ret; 5352 5353 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5354 if (!cache) 5355 return -EINVAL; 5356 5357 /* 5358 * pull in the free space cache (if any) so that our pin 5359 * removes the free space from the cache. We have load_only set 5360 * to one because the slow code to read in the free extents does check 5361 * the pinned extents. 5362 */ 5363 cache_block_group(cache, 1); 5364 5365 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5366 5367 /* remove us from the free space cache (if we're there at all) */ 5368 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5369 btrfs_put_block_group(cache); 5370 return ret; 5371 } 5372 5373 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5374 { 5375 int ret; 5376 struct btrfs_block_group_cache *block_group; 5377 struct btrfs_caching_control *caching_ctl; 5378 5379 block_group = btrfs_lookup_block_group(root->fs_info, start); 5380 if (!block_group) 5381 return -EINVAL; 5382 5383 cache_block_group(block_group, 0); 5384 caching_ctl = get_caching_control(block_group); 5385 5386 if (!caching_ctl) { 5387 /* Logic error */ 5388 BUG_ON(!block_group_cache_done(block_group)); 5389 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5390 } else { 5391 mutex_lock(&caching_ctl->mutex); 5392 5393 if (start >= caching_ctl->progress) { 5394 ret = add_excluded_extent(root, start, num_bytes); 5395 } else if (start + num_bytes <= caching_ctl->progress) { 5396 ret = btrfs_remove_free_space(block_group, 5397 start, num_bytes); 5398 } else { 5399 num_bytes = caching_ctl->progress - start; 5400 ret = btrfs_remove_free_space(block_group, 5401 start, num_bytes); 5402 if (ret) 5403 goto out_lock; 5404 5405 num_bytes = (start + num_bytes) - 5406 caching_ctl->progress; 5407 start = caching_ctl->progress; 5408 ret = add_excluded_extent(root, start, num_bytes); 5409 } 5410 out_lock: 5411 mutex_unlock(&caching_ctl->mutex); 5412 put_caching_control(caching_ctl); 5413 } 5414 btrfs_put_block_group(block_group); 5415 return ret; 5416 } 5417 5418 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5419 struct extent_buffer *eb) 5420 { 5421 struct btrfs_file_extent_item *item; 5422 struct btrfs_key key; 5423 int found_type; 5424 int i; 5425 5426 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5427 return 0; 5428 5429 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5430 btrfs_item_key_to_cpu(eb, &key, i); 5431 if (key.type != BTRFS_EXTENT_DATA_KEY) 5432 continue; 5433 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5434 found_type = btrfs_file_extent_type(eb, item); 5435 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5436 continue; 5437 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5438 continue; 5439 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5440 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5441 __exclude_logged_extent(log, key.objectid, key.offset); 5442 } 5443 5444 return 0; 5445 } 5446 5447 /** 5448 * btrfs_update_reserved_bytes - update the block_group and space info counters 5449 * @cache: The cache we are manipulating 5450 * @num_bytes: The number of bytes in question 5451 * @reserve: One of the reservation enums 5452 * 5453 * This is called by the allocator when it reserves space, or by somebody who is 5454 * freeing space that was never actually used on disk. For example if you 5455 * reserve some space for a new leaf in transaction A and before transaction A 5456 * commits you free that leaf, you call this with reserve set to 0 in order to 5457 * clear the reservation. 5458 * 5459 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5460 * ENOSPC accounting. For data we handle the reservation through clearing the 5461 * delalloc bits in the io_tree. We have to do this since we could end up 5462 * allocating less disk space for the amount of data we have reserved in the 5463 * case of compression. 5464 * 5465 * If this is a reservation and the block group has become read only we cannot 5466 * make the reservation and return -EAGAIN, otherwise this function always 5467 * succeeds. 5468 */ 5469 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5470 u64 num_bytes, int reserve) 5471 { 5472 struct btrfs_space_info *space_info = cache->space_info; 5473 int ret = 0; 5474 5475 spin_lock(&space_info->lock); 5476 spin_lock(&cache->lock); 5477 if (reserve != RESERVE_FREE) { 5478 if (cache->ro) { 5479 ret = -EAGAIN; 5480 } else { 5481 cache->reserved += num_bytes; 5482 space_info->bytes_reserved += num_bytes; 5483 if (reserve == RESERVE_ALLOC) { 5484 trace_btrfs_space_reservation(cache->fs_info, 5485 "space_info", space_info->flags, 5486 num_bytes, 0); 5487 space_info->bytes_may_use -= num_bytes; 5488 } 5489 } 5490 } else { 5491 if (cache->ro) 5492 space_info->bytes_readonly += num_bytes; 5493 cache->reserved -= num_bytes; 5494 space_info->bytes_reserved -= num_bytes; 5495 } 5496 spin_unlock(&cache->lock); 5497 spin_unlock(&space_info->lock); 5498 return ret; 5499 } 5500 5501 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5502 struct btrfs_root *root) 5503 { 5504 struct btrfs_fs_info *fs_info = root->fs_info; 5505 struct btrfs_caching_control *next; 5506 struct btrfs_caching_control *caching_ctl; 5507 struct btrfs_block_group_cache *cache; 5508 struct btrfs_space_info *space_info; 5509 5510 down_write(&fs_info->extent_commit_sem); 5511 5512 list_for_each_entry_safe(caching_ctl, next, 5513 &fs_info->caching_block_groups, list) { 5514 cache = caching_ctl->block_group; 5515 if (block_group_cache_done(cache)) { 5516 cache->last_byte_to_unpin = (u64)-1; 5517 list_del_init(&caching_ctl->list); 5518 put_caching_control(caching_ctl); 5519 } else { 5520 cache->last_byte_to_unpin = caching_ctl->progress; 5521 } 5522 } 5523 5524 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5525 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5526 else 5527 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5528 5529 up_write(&fs_info->extent_commit_sem); 5530 5531 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5532 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5533 5534 update_global_block_rsv(fs_info); 5535 } 5536 5537 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5538 { 5539 struct btrfs_fs_info *fs_info = root->fs_info; 5540 struct btrfs_block_group_cache *cache = NULL; 5541 struct btrfs_space_info *space_info; 5542 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5543 u64 len; 5544 bool readonly; 5545 5546 while (start <= end) { 5547 readonly = false; 5548 if (!cache || 5549 start >= cache->key.objectid + cache->key.offset) { 5550 if (cache) 5551 btrfs_put_block_group(cache); 5552 cache = btrfs_lookup_block_group(fs_info, start); 5553 BUG_ON(!cache); /* Logic error */ 5554 } 5555 5556 len = cache->key.objectid + cache->key.offset - start; 5557 len = min(len, end + 1 - start); 5558 5559 if (start < cache->last_byte_to_unpin) { 5560 len = min(len, cache->last_byte_to_unpin - start); 5561 btrfs_add_free_space(cache, start, len); 5562 } 5563 5564 start += len; 5565 space_info = cache->space_info; 5566 5567 spin_lock(&space_info->lock); 5568 spin_lock(&cache->lock); 5569 cache->pinned -= len; 5570 space_info->bytes_pinned -= len; 5571 if (cache->ro) { 5572 space_info->bytes_readonly += len; 5573 readonly = true; 5574 } 5575 spin_unlock(&cache->lock); 5576 if (!readonly && global_rsv->space_info == space_info) { 5577 spin_lock(&global_rsv->lock); 5578 if (!global_rsv->full) { 5579 len = min(len, global_rsv->size - 5580 global_rsv->reserved); 5581 global_rsv->reserved += len; 5582 space_info->bytes_may_use += len; 5583 if (global_rsv->reserved >= global_rsv->size) 5584 global_rsv->full = 1; 5585 } 5586 spin_unlock(&global_rsv->lock); 5587 } 5588 spin_unlock(&space_info->lock); 5589 } 5590 5591 if (cache) 5592 btrfs_put_block_group(cache); 5593 return 0; 5594 } 5595 5596 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5597 struct btrfs_root *root) 5598 { 5599 struct btrfs_fs_info *fs_info = root->fs_info; 5600 struct extent_io_tree *unpin; 5601 u64 start; 5602 u64 end; 5603 int ret; 5604 5605 if (trans->aborted) 5606 return 0; 5607 5608 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5609 unpin = &fs_info->freed_extents[1]; 5610 else 5611 unpin = &fs_info->freed_extents[0]; 5612 5613 while (1) { 5614 ret = find_first_extent_bit(unpin, 0, &start, &end, 5615 EXTENT_DIRTY, NULL); 5616 if (ret) 5617 break; 5618 5619 if (btrfs_test_opt(root, DISCARD)) 5620 ret = btrfs_discard_extent(root, start, 5621 end + 1 - start, NULL); 5622 5623 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5624 unpin_extent_range(root, start, end); 5625 cond_resched(); 5626 } 5627 5628 return 0; 5629 } 5630 5631 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5632 u64 owner, u64 root_objectid) 5633 { 5634 struct btrfs_space_info *space_info; 5635 u64 flags; 5636 5637 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5638 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5639 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5640 else 5641 flags = BTRFS_BLOCK_GROUP_METADATA; 5642 } else { 5643 flags = BTRFS_BLOCK_GROUP_DATA; 5644 } 5645 5646 space_info = __find_space_info(fs_info, flags); 5647 BUG_ON(!space_info); /* Logic bug */ 5648 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5649 } 5650 5651 5652 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5653 struct btrfs_root *root, 5654 u64 bytenr, u64 num_bytes, u64 parent, 5655 u64 root_objectid, u64 owner_objectid, 5656 u64 owner_offset, int refs_to_drop, 5657 struct btrfs_delayed_extent_op *extent_op) 5658 { 5659 struct btrfs_key key; 5660 struct btrfs_path *path; 5661 struct btrfs_fs_info *info = root->fs_info; 5662 struct btrfs_root *extent_root = info->extent_root; 5663 struct extent_buffer *leaf; 5664 struct btrfs_extent_item *ei; 5665 struct btrfs_extent_inline_ref *iref; 5666 int ret; 5667 int is_data; 5668 int extent_slot = 0; 5669 int found_extent = 0; 5670 int num_to_del = 1; 5671 u32 item_size; 5672 u64 refs; 5673 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5674 SKINNY_METADATA); 5675 5676 path = btrfs_alloc_path(); 5677 if (!path) 5678 return -ENOMEM; 5679 5680 path->reada = 1; 5681 path->leave_spinning = 1; 5682 5683 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5684 BUG_ON(!is_data && refs_to_drop != 1); 5685 5686 if (is_data) 5687 skinny_metadata = 0; 5688 5689 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5690 bytenr, num_bytes, parent, 5691 root_objectid, owner_objectid, 5692 owner_offset); 5693 if (ret == 0) { 5694 extent_slot = path->slots[0]; 5695 while (extent_slot >= 0) { 5696 btrfs_item_key_to_cpu(path->nodes[0], &key, 5697 extent_slot); 5698 if (key.objectid != bytenr) 5699 break; 5700 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5701 key.offset == num_bytes) { 5702 found_extent = 1; 5703 break; 5704 } 5705 if (key.type == BTRFS_METADATA_ITEM_KEY && 5706 key.offset == owner_objectid) { 5707 found_extent = 1; 5708 break; 5709 } 5710 if (path->slots[0] - extent_slot > 5) 5711 break; 5712 extent_slot--; 5713 } 5714 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5715 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5716 if (found_extent && item_size < sizeof(*ei)) 5717 found_extent = 0; 5718 #endif 5719 if (!found_extent) { 5720 BUG_ON(iref); 5721 ret = remove_extent_backref(trans, extent_root, path, 5722 NULL, refs_to_drop, 5723 is_data); 5724 if (ret) { 5725 btrfs_abort_transaction(trans, extent_root, ret); 5726 goto out; 5727 } 5728 btrfs_release_path(path); 5729 path->leave_spinning = 1; 5730 5731 key.objectid = bytenr; 5732 key.type = BTRFS_EXTENT_ITEM_KEY; 5733 key.offset = num_bytes; 5734 5735 if (!is_data && skinny_metadata) { 5736 key.type = BTRFS_METADATA_ITEM_KEY; 5737 key.offset = owner_objectid; 5738 } 5739 5740 ret = btrfs_search_slot(trans, extent_root, 5741 &key, path, -1, 1); 5742 if (ret > 0 && skinny_metadata && path->slots[0]) { 5743 /* 5744 * Couldn't find our skinny metadata item, 5745 * see if we have ye olde extent item. 5746 */ 5747 path->slots[0]--; 5748 btrfs_item_key_to_cpu(path->nodes[0], &key, 5749 path->slots[0]); 5750 if (key.objectid == bytenr && 5751 key.type == BTRFS_EXTENT_ITEM_KEY && 5752 key.offset == num_bytes) 5753 ret = 0; 5754 } 5755 5756 if (ret > 0 && skinny_metadata) { 5757 skinny_metadata = false; 5758 key.type = BTRFS_EXTENT_ITEM_KEY; 5759 key.offset = num_bytes; 5760 btrfs_release_path(path); 5761 ret = btrfs_search_slot(trans, extent_root, 5762 &key, path, -1, 1); 5763 } 5764 5765 if (ret) { 5766 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5767 ret, bytenr); 5768 if (ret > 0) 5769 btrfs_print_leaf(extent_root, 5770 path->nodes[0]); 5771 } 5772 if (ret < 0) { 5773 btrfs_abort_transaction(trans, extent_root, ret); 5774 goto out; 5775 } 5776 extent_slot = path->slots[0]; 5777 } 5778 } else if (WARN_ON(ret == -ENOENT)) { 5779 btrfs_print_leaf(extent_root, path->nodes[0]); 5780 btrfs_err(info, 5781 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5782 bytenr, parent, root_objectid, owner_objectid, 5783 owner_offset); 5784 } else { 5785 btrfs_abort_transaction(trans, extent_root, ret); 5786 goto out; 5787 } 5788 5789 leaf = path->nodes[0]; 5790 item_size = btrfs_item_size_nr(leaf, extent_slot); 5791 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5792 if (item_size < sizeof(*ei)) { 5793 BUG_ON(found_extent || extent_slot != path->slots[0]); 5794 ret = convert_extent_item_v0(trans, extent_root, path, 5795 owner_objectid, 0); 5796 if (ret < 0) { 5797 btrfs_abort_transaction(trans, extent_root, ret); 5798 goto out; 5799 } 5800 5801 btrfs_release_path(path); 5802 path->leave_spinning = 1; 5803 5804 key.objectid = bytenr; 5805 key.type = BTRFS_EXTENT_ITEM_KEY; 5806 key.offset = num_bytes; 5807 5808 ret = btrfs_search_slot(trans, extent_root, &key, path, 5809 -1, 1); 5810 if (ret) { 5811 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5812 ret, bytenr); 5813 btrfs_print_leaf(extent_root, path->nodes[0]); 5814 } 5815 if (ret < 0) { 5816 btrfs_abort_transaction(trans, extent_root, ret); 5817 goto out; 5818 } 5819 5820 extent_slot = path->slots[0]; 5821 leaf = path->nodes[0]; 5822 item_size = btrfs_item_size_nr(leaf, extent_slot); 5823 } 5824 #endif 5825 BUG_ON(item_size < sizeof(*ei)); 5826 ei = btrfs_item_ptr(leaf, extent_slot, 5827 struct btrfs_extent_item); 5828 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5829 key.type == BTRFS_EXTENT_ITEM_KEY) { 5830 struct btrfs_tree_block_info *bi; 5831 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5832 bi = (struct btrfs_tree_block_info *)(ei + 1); 5833 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5834 } 5835 5836 refs = btrfs_extent_refs(leaf, ei); 5837 if (refs < refs_to_drop) { 5838 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5839 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5840 ret = -EINVAL; 5841 btrfs_abort_transaction(trans, extent_root, ret); 5842 goto out; 5843 } 5844 refs -= refs_to_drop; 5845 5846 if (refs > 0) { 5847 if (extent_op) 5848 __run_delayed_extent_op(extent_op, leaf, ei); 5849 /* 5850 * In the case of inline back ref, reference count will 5851 * be updated by remove_extent_backref 5852 */ 5853 if (iref) { 5854 BUG_ON(!found_extent); 5855 } else { 5856 btrfs_set_extent_refs(leaf, ei, refs); 5857 btrfs_mark_buffer_dirty(leaf); 5858 } 5859 if (found_extent) { 5860 ret = remove_extent_backref(trans, extent_root, path, 5861 iref, refs_to_drop, 5862 is_data); 5863 if (ret) { 5864 btrfs_abort_transaction(trans, extent_root, ret); 5865 goto out; 5866 } 5867 } 5868 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5869 root_objectid); 5870 } else { 5871 if (found_extent) { 5872 BUG_ON(is_data && refs_to_drop != 5873 extent_data_ref_count(root, path, iref)); 5874 if (iref) { 5875 BUG_ON(path->slots[0] != extent_slot); 5876 } else { 5877 BUG_ON(path->slots[0] != extent_slot + 1); 5878 path->slots[0] = extent_slot; 5879 num_to_del = 2; 5880 } 5881 } 5882 5883 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5884 num_to_del); 5885 if (ret) { 5886 btrfs_abort_transaction(trans, extent_root, ret); 5887 goto out; 5888 } 5889 btrfs_release_path(path); 5890 5891 if (is_data) { 5892 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5893 if (ret) { 5894 btrfs_abort_transaction(trans, extent_root, ret); 5895 goto out; 5896 } 5897 } 5898 5899 ret = update_block_group(root, bytenr, num_bytes, 0); 5900 if (ret) { 5901 btrfs_abort_transaction(trans, extent_root, ret); 5902 goto out; 5903 } 5904 } 5905 out: 5906 btrfs_free_path(path); 5907 return ret; 5908 } 5909 5910 /* 5911 * when we free an block, it is possible (and likely) that we free the last 5912 * delayed ref for that extent as well. This searches the delayed ref tree for 5913 * a given extent, and if there are no other delayed refs to be processed, it 5914 * removes it from the tree. 5915 */ 5916 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5917 struct btrfs_root *root, u64 bytenr) 5918 { 5919 struct btrfs_delayed_ref_head *head; 5920 struct btrfs_delayed_ref_root *delayed_refs; 5921 struct btrfs_delayed_ref_node *ref; 5922 struct rb_node *node; 5923 int ret = 0; 5924 5925 delayed_refs = &trans->transaction->delayed_refs; 5926 spin_lock(&delayed_refs->lock); 5927 head = btrfs_find_delayed_ref_head(trans, bytenr); 5928 if (!head) 5929 goto out; 5930 5931 node = rb_prev(&head->node.rb_node); 5932 if (!node) 5933 goto out; 5934 5935 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5936 5937 /* there are still entries for this ref, we can't drop it */ 5938 if (ref->bytenr == bytenr) 5939 goto out; 5940 5941 if (head->extent_op) { 5942 if (!head->must_insert_reserved) 5943 goto out; 5944 btrfs_free_delayed_extent_op(head->extent_op); 5945 head->extent_op = NULL; 5946 } 5947 5948 /* 5949 * waiting for the lock here would deadlock. If someone else has it 5950 * locked they are already in the process of dropping it anyway 5951 */ 5952 if (!mutex_trylock(&head->mutex)) 5953 goto out; 5954 5955 /* 5956 * at this point we have a head with no other entries. Go 5957 * ahead and process it. 5958 */ 5959 head->node.in_tree = 0; 5960 rb_erase(&head->node.rb_node, &delayed_refs->root); 5961 5962 delayed_refs->num_entries--; 5963 5964 /* 5965 * we don't take a ref on the node because we're removing it from the 5966 * tree, so we just steal the ref the tree was holding. 5967 */ 5968 delayed_refs->num_heads--; 5969 if (list_empty(&head->cluster)) 5970 delayed_refs->num_heads_ready--; 5971 5972 list_del_init(&head->cluster); 5973 spin_unlock(&delayed_refs->lock); 5974 5975 BUG_ON(head->extent_op); 5976 if (head->must_insert_reserved) 5977 ret = 1; 5978 5979 mutex_unlock(&head->mutex); 5980 btrfs_put_delayed_ref(&head->node); 5981 return ret; 5982 out: 5983 spin_unlock(&delayed_refs->lock); 5984 return 0; 5985 } 5986 5987 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5988 struct btrfs_root *root, 5989 struct extent_buffer *buf, 5990 u64 parent, int last_ref) 5991 { 5992 struct btrfs_block_group_cache *cache = NULL; 5993 int pin = 1; 5994 int ret; 5995 5996 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5997 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5998 buf->start, buf->len, 5999 parent, root->root_key.objectid, 6000 btrfs_header_level(buf), 6001 BTRFS_DROP_DELAYED_REF, NULL, 0); 6002 BUG_ON(ret); /* -ENOMEM */ 6003 } 6004 6005 if (!last_ref) 6006 return; 6007 6008 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6009 6010 if (btrfs_header_generation(buf) == trans->transid) { 6011 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6012 ret = check_ref_cleanup(trans, root, buf->start); 6013 if (!ret) 6014 goto out; 6015 } 6016 6017 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6018 pin_down_extent(root, cache, buf->start, buf->len, 1); 6019 goto out; 6020 } 6021 6022 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6023 6024 btrfs_add_free_space(cache, buf->start, buf->len); 6025 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 6026 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6027 pin = 0; 6028 } 6029 out: 6030 if (pin) 6031 add_pinned_bytes(root->fs_info, buf->len, 6032 btrfs_header_level(buf), 6033 root->root_key.objectid); 6034 6035 /* 6036 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6037 * anymore. 6038 */ 6039 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6040 btrfs_put_block_group(cache); 6041 } 6042 6043 /* Can return -ENOMEM */ 6044 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6045 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6046 u64 owner, u64 offset, int for_cow) 6047 { 6048 int ret; 6049 struct btrfs_fs_info *fs_info = root->fs_info; 6050 6051 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6052 6053 /* 6054 * tree log blocks never actually go into the extent allocation 6055 * tree, just update pinning info and exit early. 6056 */ 6057 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6058 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6059 /* unlocks the pinned mutex */ 6060 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6061 ret = 0; 6062 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6063 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6064 num_bytes, 6065 parent, root_objectid, (int)owner, 6066 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6067 } else { 6068 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6069 num_bytes, 6070 parent, root_objectid, owner, 6071 offset, BTRFS_DROP_DELAYED_REF, 6072 NULL, for_cow); 6073 } 6074 return ret; 6075 } 6076 6077 static u64 stripe_align(struct btrfs_root *root, 6078 struct btrfs_block_group_cache *cache, 6079 u64 val, u64 num_bytes) 6080 { 6081 u64 ret = ALIGN(val, root->stripesize); 6082 return ret; 6083 } 6084 6085 /* 6086 * when we wait for progress in the block group caching, its because 6087 * our allocation attempt failed at least once. So, we must sleep 6088 * and let some progress happen before we try again. 6089 * 6090 * This function will sleep at least once waiting for new free space to 6091 * show up, and then it will check the block group free space numbers 6092 * for our min num_bytes. Another option is to have it go ahead 6093 * and look in the rbtree for a free extent of a given size, but this 6094 * is a good start. 6095 * 6096 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6097 * any of the information in this block group. 6098 */ 6099 static noinline void 6100 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6101 u64 num_bytes) 6102 { 6103 struct btrfs_caching_control *caching_ctl; 6104 6105 caching_ctl = get_caching_control(cache); 6106 if (!caching_ctl) 6107 return; 6108 6109 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6110 (cache->free_space_ctl->free_space >= num_bytes)); 6111 6112 put_caching_control(caching_ctl); 6113 } 6114 6115 static noinline int 6116 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6117 { 6118 struct btrfs_caching_control *caching_ctl; 6119 int ret = 0; 6120 6121 caching_ctl = get_caching_control(cache); 6122 if (!caching_ctl) 6123 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6124 6125 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6126 if (cache->cached == BTRFS_CACHE_ERROR) 6127 ret = -EIO; 6128 put_caching_control(caching_ctl); 6129 return ret; 6130 } 6131 6132 int __get_raid_index(u64 flags) 6133 { 6134 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6135 return BTRFS_RAID_RAID10; 6136 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6137 return BTRFS_RAID_RAID1; 6138 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6139 return BTRFS_RAID_DUP; 6140 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6141 return BTRFS_RAID_RAID0; 6142 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6143 return BTRFS_RAID_RAID5; 6144 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6145 return BTRFS_RAID_RAID6; 6146 6147 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6148 } 6149 6150 static int get_block_group_index(struct btrfs_block_group_cache *cache) 6151 { 6152 return __get_raid_index(cache->flags); 6153 } 6154 6155 enum btrfs_loop_type { 6156 LOOP_CACHING_NOWAIT = 0, 6157 LOOP_CACHING_WAIT = 1, 6158 LOOP_ALLOC_CHUNK = 2, 6159 LOOP_NO_EMPTY_SIZE = 3, 6160 }; 6161 6162 /* 6163 * walks the btree of allocated extents and find a hole of a given size. 6164 * The key ins is changed to record the hole: 6165 * ins->objectid == start position 6166 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6167 * ins->offset == the size of the hole. 6168 * Any available blocks before search_start are skipped. 6169 * 6170 * If there is no suitable free space, we will record the max size of 6171 * the free space extent currently. 6172 */ 6173 static noinline int find_free_extent(struct btrfs_root *orig_root, 6174 u64 num_bytes, u64 empty_size, 6175 u64 hint_byte, struct btrfs_key *ins, 6176 u64 flags) 6177 { 6178 int ret = 0; 6179 struct btrfs_root *root = orig_root->fs_info->extent_root; 6180 struct btrfs_free_cluster *last_ptr = NULL; 6181 struct btrfs_block_group_cache *block_group = NULL; 6182 struct btrfs_block_group_cache *used_block_group; 6183 u64 search_start = 0; 6184 u64 max_extent_size = 0; 6185 int empty_cluster = 2 * 1024 * 1024; 6186 struct btrfs_space_info *space_info; 6187 int loop = 0; 6188 int index = __get_raid_index(flags); 6189 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6190 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6191 bool found_uncached_bg = false; 6192 bool failed_cluster_refill = false; 6193 bool failed_alloc = false; 6194 bool use_cluster = true; 6195 bool have_caching_bg = false; 6196 6197 WARN_ON(num_bytes < root->sectorsize); 6198 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6199 ins->objectid = 0; 6200 ins->offset = 0; 6201 6202 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6203 6204 space_info = __find_space_info(root->fs_info, flags); 6205 if (!space_info) { 6206 btrfs_err(root->fs_info, "No space info for %llu", flags); 6207 return -ENOSPC; 6208 } 6209 6210 /* 6211 * If the space info is for both data and metadata it means we have a 6212 * small filesystem and we can't use the clustering stuff. 6213 */ 6214 if (btrfs_mixed_space_info(space_info)) 6215 use_cluster = false; 6216 6217 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6218 last_ptr = &root->fs_info->meta_alloc_cluster; 6219 if (!btrfs_test_opt(root, SSD)) 6220 empty_cluster = 64 * 1024; 6221 } 6222 6223 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6224 btrfs_test_opt(root, SSD)) { 6225 last_ptr = &root->fs_info->data_alloc_cluster; 6226 } 6227 6228 if (last_ptr) { 6229 spin_lock(&last_ptr->lock); 6230 if (last_ptr->block_group) 6231 hint_byte = last_ptr->window_start; 6232 spin_unlock(&last_ptr->lock); 6233 } 6234 6235 search_start = max(search_start, first_logical_byte(root, 0)); 6236 search_start = max(search_start, hint_byte); 6237 6238 if (!last_ptr) 6239 empty_cluster = 0; 6240 6241 if (search_start == hint_byte) { 6242 block_group = btrfs_lookup_block_group(root->fs_info, 6243 search_start); 6244 used_block_group = block_group; 6245 /* 6246 * we don't want to use the block group if it doesn't match our 6247 * allocation bits, or if its not cached. 6248 * 6249 * However if we are re-searching with an ideal block group 6250 * picked out then we don't care that the block group is cached. 6251 */ 6252 if (block_group && block_group_bits(block_group, flags) && 6253 block_group->cached != BTRFS_CACHE_NO) { 6254 down_read(&space_info->groups_sem); 6255 if (list_empty(&block_group->list) || 6256 block_group->ro) { 6257 /* 6258 * someone is removing this block group, 6259 * we can't jump into the have_block_group 6260 * target because our list pointers are not 6261 * valid 6262 */ 6263 btrfs_put_block_group(block_group); 6264 up_read(&space_info->groups_sem); 6265 } else { 6266 index = get_block_group_index(block_group); 6267 goto have_block_group; 6268 } 6269 } else if (block_group) { 6270 btrfs_put_block_group(block_group); 6271 } 6272 } 6273 search: 6274 have_caching_bg = false; 6275 down_read(&space_info->groups_sem); 6276 list_for_each_entry(block_group, &space_info->block_groups[index], 6277 list) { 6278 u64 offset; 6279 int cached; 6280 6281 used_block_group = block_group; 6282 btrfs_get_block_group(block_group); 6283 search_start = block_group->key.objectid; 6284 6285 /* 6286 * this can happen if we end up cycling through all the 6287 * raid types, but we want to make sure we only allocate 6288 * for the proper type. 6289 */ 6290 if (!block_group_bits(block_group, flags)) { 6291 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6292 BTRFS_BLOCK_GROUP_RAID1 | 6293 BTRFS_BLOCK_GROUP_RAID5 | 6294 BTRFS_BLOCK_GROUP_RAID6 | 6295 BTRFS_BLOCK_GROUP_RAID10; 6296 6297 /* 6298 * if they asked for extra copies and this block group 6299 * doesn't provide them, bail. This does allow us to 6300 * fill raid0 from raid1. 6301 */ 6302 if ((flags & extra) && !(block_group->flags & extra)) 6303 goto loop; 6304 } 6305 6306 have_block_group: 6307 cached = block_group_cache_done(block_group); 6308 if (unlikely(!cached)) { 6309 found_uncached_bg = true; 6310 ret = cache_block_group(block_group, 0); 6311 BUG_ON(ret < 0); 6312 ret = 0; 6313 } 6314 6315 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6316 goto loop; 6317 if (unlikely(block_group->ro)) 6318 goto loop; 6319 6320 /* 6321 * Ok we want to try and use the cluster allocator, so 6322 * lets look there 6323 */ 6324 if (last_ptr) { 6325 unsigned long aligned_cluster; 6326 /* 6327 * the refill lock keeps out other 6328 * people trying to start a new cluster 6329 */ 6330 spin_lock(&last_ptr->refill_lock); 6331 used_block_group = last_ptr->block_group; 6332 if (used_block_group != block_group && 6333 (!used_block_group || 6334 used_block_group->ro || 6335 !block_group_bits(used_block_group, flags))) { 6336 used_block_group = block_group; 6337 goto refill_cluster; 6338 } 6339 6340 if (used_block_group != block_group) 6341 btrfs_get_block_group(used_block_group); 6342 6343 offset = btrfs_alloc_from_cluster(used_block_group, 6344 last_ptr, 6345 num_bytes, 6346 used_block_group->key.objectid, 6347 &max_extent_size); 6348 if (offset) { 6349 /* we have a block, we're done */ 6350 spin_unlock(&last_ptr->refill_lock); 6351 trace_btrfs_reserve_extent_cluster(root, 6352 block_group, search_start, num_bytes); 6353 goto checks; 6354 } 6355 6356 WARN_ON(last_ptr->block_group != used_block_group); 6357 if (used_block_group != block_group) { 6358 btrfs_put_block_group(used_block_group); 6359 used_block_group = block_group; 6360 } 6361 refill_cluster: 6362 BUG_ON(used_block_group != block_group); 6363 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6364 * set up a new clusters, so lets just skip it 6365 * and let the allocator find whatever block 6366 * it can find. If we reach this point, we 6367 * will have tried the cluster allocator 6368 * plenty of times and not have found 6369 * anything, so we are likely way too 6370 * fragmented for the clustering stuff to find 6371 * anything. 6372 * 6373 * However, if the cluster is taken from the 6374 * current block group, release the cluster 6375 * first, so that we stand a better chance of 6376 * succeeding in the unclustered 6377 * allocation. */ 6378 if (loop >= LOOP_NO_EMPTY_SIZE && 6379 last_ptr->block_group != block_group) { 6380 spin_unlock(&last_ptr->refill_lock); 6381 goto unclustered_alloc; 6382 } 6383 6384 /* 6385 * this cluster didn't work out, free it and 6386 * start over 6387 */ 6388 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6389 6390 if (loop >= LOOP_NO_EMPTY_SIZE) { 6391 spin_unlock(&last_ptr->refill_lock); 6392 goto unclustered_alloc; 6393 } 6394 6395 aligned_cluster = max_t(unsigned long, 6396 empty_cluster + empty_size, 6397 block_group->full_stripe_len); 6398 6399 /* allocate a cluster in this block group */ 6400 ret = btrfs_find_space_cluster(root, block_group, 6401 last_ptr, search_start, 6402 num_bytes, 6403 aligned_cluster); 6404 if (ret == 0) { 6405 /* 6406 * now pull our allocation out of this 6407 * cluster 6408 */ 6409 offset = btrfs_alloc_from_cluster(block_group, 6410 last_ptr, 6411 num_bytes, 6412 search_start, 6413 &max_extent_size); 6414 if (offset) { 6415 /* we found one, proceed */ 6416 spin_unlock(&last_ptr->refill_lock); 6417 trace_btrfs_reserve_extent_cluster(root, 6418 block_group, search_start, 6419 num_bytes); 6420 goto checks; 6421 } 6422 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6423 && !failed_cluster_refill) { 6424 spin_unlock(&last_ptr->refill_lock); 6425 6426 failed_cluster_refill = true; 6427 wait_block_group_cache_progress(block_group, 6428 num_bytes + empty_cluster + empty_size); 6429 goto have_block_group; 6430 } 6431 6432 /* 6433 * at this point we either didn't find a cluster 6434 * or we weren't able to allocate a block from our 6435 * cluster. Free the cluster we've been trying 6436 * to use, and go to the next block group 6437 */ 6438 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6439 spin_unlock(&last_ptr->refill_lock); 6440 goto loop; 6441 } 6442 6443 unclustered_alloc: 6444 spin_lock(&block_group->free_space_ctl->tree_lock); 6445 if (cached && 6446 block_group->free_space_ctl->free_space < 6447 num_bytes + empty_cluster + empty_size) { 6448 if (block_group->free_space_ctl->free_space > 6449 max_extent_size) 6450 max_extent_size = 6451 block_group->free_space_ctl->free_space; 6452 spin_unlock(&block_group->free_space_ctl->tree_lock); 6453 goto loop; 6454 } 6455 spin_unlock(&block_group->free_space_ctl->tree_lock); 6456 6457 offset = btrfs_find_space_for_alloc(block_group, search_start, 6458 num_bytes, empty_size, 6459 &max_extent_size); 6460 /* 6461 * If we didn't find a chunk, and we haven't failed on this 6462 * block group before, and this block group is in the middle of 6463 * caching and we are ok with waiting, then go ahead and wait 6464 * for progress to be made, and set failed_alloc to true. 6465 * 6466 * If failed_alloc is true then we've already waited on this 6467 * block group once and should move on to the next block group. 6468 */ 6469 if (!offset && !failed_alloc && !cached && 6470 loop > LOOP_CACHING_NOWAIT) { 6471 wait_block_group_cache_progress(block_group, 6472 num_bytes + empty_size); 6473 failed_alloc = true; 6474 goto have_block_group; 6475 } else if (!offset) { 6476 if (!cached) 6477 have_caching_bg = true; 6478 goto loop; 6479 } 6480 checks: 6481 search_start = stripe_align(root, used_block_group, 6482 offset, num_bytes); 6483 6484 /* move on to the next group */ 6485 if (search_start + num_bytes > 6486 used_block_group->key.objectid + used_block_group->key.offset) { 6487 btrfs_add_free_space(used_block_group, offset, num_bytes); 6488 goto loop; 6489 } 6490 6491 if (offset < search_start) 6492 btrfs_add_free_space(used_block_group, offset, 6493 search_start - offset); 6494 BUG_ON(offset > search_start); 6495 6496 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 6497 alloc_type); 6498 if (ret == -EAGAIN) { 6499 btrfs_add_free_space(used_block_group, offset, num_bytes); 6500 goto loop; 6501 } 6502 6503 /* we are all good, lets return */ 6504 ins->objectid = search_start; 6505 ins->offset = num_bytes; 6506 6507 trace_btrfs_reserve_extent(orig_root, block_group, 6508 search_start, num_bytes); 6509 if (used_block_group != block_group) 6510 btrfs_put_block_group(used_block_group); 6511 btrfs_put_block_group(block_group); 6512 break; 6513 loop: 6514 failed_cluster_refill = false; 6515 failed_alloc = false; 6516 BUG_ON(index != get_block_group_index(block_group)); 6517 if (used_block_group != block_group) 6518 btrfs_put_block_group(used_block_group); 6519 btrfs_put_block_group(block_group); 6520 } 6521 up_read(&space_info->groups_sem); 6522 6523 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6524 goto search; 6525 6526 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6527 goto search; 6528 6529 /* 6530 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6531 * caching kthreads as we move along 6532 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6533 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6534 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6535 * again 6536 */ 6537 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6538 index = 0; 6539 loop++; 6540 if (loop == LOOP_ALLOC_CHUNK) { 6541 struct btrfs_trans_handle *trans; 6542 6543 trans = btrfs_join_transaction(root); 6544 if (IS_ERR(trans)) { 6545 ret = PTR_ERR(trans); 6546 goto out; 6547 } 6548 6549 ret = do_chunk_alloc(trans, root, flags, 6550 CHUNK_ALLOC_FORCE); 6551 /* 6552 * Do not bail out on ENOSPC since we 6553 * can do more things. 6554 */ 6555 if (ret < 0 && ret != -ENOSPC) 6556 btrfs_abort_transaction(trans, 6557 root, ret); 6558 else 6559 ret = 0; 6560 btrfs_end_transaction(trans, root); 6561 if (ret) 6562 goto out; 6563 } 6564 6565 if (loop == LOOP_NO_EMPTY_SIZE) { 6566 empty_size = 0; 6567 empty_cluster = 0; 6568 } 6569 6570 goto search; 6571 } else if (!ins->objectid) { 6572 ret = -ENOSPC; 6573 } else if (ins->objectid) { 6574 ret = 0; 6575 } 6576 out: 6577 if (ret == -ENOSPC) 6578 ins->offset = max_extent_size; 6579 return ret; 6580 } 6581 6582 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6583 int dump_block_groups) 6584 { 6585 struct btrfs_block_group_cache *cache; 6586 int index = 0; 6587 6588 spin_lock(&info->lock); 6589 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 6590 info->flags, 6591 info->total_bytes - info->bytes_used - info->bytes_pinned - 6592 info->bytes_reserved - info->bytes_readonly, 6593 (info->full) ? "" : "not "); 6594 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 6595 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6596 info->total_bytes, info->bytes_used, info->bytes_pinned, 6597 info->bytes_reserved, info->bytes_may_use, 6598 info->bytes_readonly); 6599 spin_unlock(&info->lock); 6600 6601 if (!dump_block_groups) 6602 return; 6603 6604 down_read(&info->groups_sem); 6605 again: 6606 list_for_each_entry(cache, &info->block_groups[index], list) { 6607 spin_lock(&cache->lock); 6608 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 6609 cache->key.objectid, cache->key.offset, 6610 btrfs_block_group_used(&cache->item), cache->pinned, 6611 cache->reserved, cache->ro ? "[readonly]" : ""); 6612 btrfs_dump_free_space(cache, bytes); 6613 spin_unlock(&cache->lock); 6614 } 6615 if (++index < BTRFS_NR_RAID_TYPES) 6616 goto again; 6617 up_read(&info->groups_sem); 6618 } 6619 6620 int btrfs_reserve_extent(struct btrfs_root *root, 6621 u64 num_bytes, u64 min_alloc_size, 6622 u64 empty_size, u64 hint_byte, 6623 struct btrfs_key *ins, int is_data) 6624 { 6625 bool final_tried = false; 6626 u64 flags; 6627 int ret; 6628 6629 flags = btrfs_get_alloc_profile(root, is_data); 6630 again: 6631 WARN_ON(num_bytes < root->sectorsize); 6632 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6633 flags); 6634 6635 if (ret == -ENOSPC) { 6636 if (!final_tried && ins->offset) { 6637 num_bytes = min(num_bytes >> 1, ins->offset); 6638 num_bytes = round_down(num_bytes, root->sectorsize); 6639 num_bytes = max(num_bytes, min_alloc_size); 6640 if (num_bytes == min_alloc_size) 6641 final_tried = true; 6642 goto again; 6643 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6644 struct btrfs_space_info *sinfo; 6645 6646 sinfo = __find_space_info(root->fs_info, flags); 6647 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6648 flags, num_bytes); 6649 if (sinfo) 6650 dump_space_info(sinfo, num_bytes, 1); 6651 } 6652 } 6653 6654 return ret; 6655 } 6656 6657 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6658 u64 start, u64 len, int pin) 6659 { 6660 struct btrfs_block_group_cache *cache; 6661 int ret = 0; 6662 6663 cache = btrfs_lookup_block_group(root->fs_info, start); 6664 if (!cache) { 6665 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6666 start); 6667 return -ENOSPC; 6668 } 6669 6670 if (btrfs_test_opt(root, DISCARD)) 6671 ret = btrfs_discard_extent(root, start, len, NULL); 6672 6673 if (pin) 6674 pin_down_extent(root, cache, start, len, 1); 6675 else { 6676 btrfs_add_free_space(cache, start, len); 6677 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6678 } 6679 btrfs_put_block_group(cache); 6680 6681 trace_btrfs_reserved_extent_free(root, start, len); 6682 6683 return ret; 6684 } 6685 6686 int btrfs_free_reserved_extent(struct btrfs_root *root, 6687 u64 start, u64 len) 6688 { 6689 return __btrfs_free_reserved_extent(root, start, len, 0); 6690 } 6691 6692 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6693 u64 start, u64 len) 6694 { 6695 return __btrfs_free_reserved_extent(root, start, len, 1); 6696 } 6697 6698 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6699 struct btrfs_root *root, 6700 u64 parent, u64 root_objectid, 6701 u64 flags, u64 owner, u64 offset, 6702 struct btrfs_key *ins, int ref_mod) 6703 { 6704 int ret; 6705 struct btrfs_fs_info *fs_info = root->fs_info; 6706 struct btrfs_extent_item *extent_item; 6707 struct btrfs_extent_inline_ref *iref; 6708 struct btrfs_path *path; 6709 struct extent_buffer *leaf; 6710 int type; 6711 u32 size; 6712 6713 if (parent > 0) 6714 type = BTRFS_SHARED_DATA_REF_KEY; 6715 else 6716 type = BTRFS_EXTENT_DATA_REF_KEY; 6717 6718 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6719 6720 path = btrfs_alloc_path(); 6721 if (!path) 6722 return -ENOMEM; 6723 6724 path->leave_spinning = 1; 6725 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6726 ins, size); 6727 if (ret) { 6728 btrfs_free_path(path); 6729 return ret; 6730 } 6731 6732 leaf = path->nodes[0]; 6733 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6734 struct btrfs_extent_item); 6735 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6736 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6737 btrfs_set_extent_flags(leaf, extent_item, 6738 flags | BTRFS_EXTENT_FLAG_DATA); 6739 6740 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6741 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6742 if (parent > 0) { 6743 struct btrfs_shared_data_ref *ref; 6744 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6745 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6746 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6747 } else { 6748 struct btrfs_extent_data_ref *ref; 6749 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6750 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6751 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6752 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6753 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6754 } 6755 6756 btrfs_mark_buffer_dirty(path->nodes[0]); 6757 btrfs_free_path(path); 6758 6759 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6760 if (ret) { /* -ENOENT, logic error */ 6761 btrfs_err(fs_info, "update block group failed for %llu %llu", 6762 ins->objectid, ins->offset); 6763 BUG(); 6764 } 6765 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6766 return ret; 6767 } 6768 6769 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6770 struct btrfs_root *root, 6771 u64 parent, u64 root_objectid, 6772 u64 flags, struct btrfs_disk_key *key, 6773 int level, struct btrfs_key *ins) 6774 { 6775 int ret; 6776 struct btrfs_fs_info *fs_info = root->fs_info; 6777 struct btrfs_extent_item *extent_item; 6778 struct btrfs_tree_block_info *block_info; 6779 struct btrfs_extent_inline_ref *iref; 6780 struct btrfs_path *path; 6781 struct extent_buffer *leaf; 6782 u32 size = sizeof(*extent_item) + sizeof(*iref); 6783 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6784 SKINNY_METADATA); 6785 6786 if (!skinny_metadata) 6787 size += sizeof(*block_info); 6788 6789 path = btrfs_alloc_path(); 6790 if (!path) { 6791 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6792 root->leafsize); 6793 return -ENOMEM; 6794 } 6795 6796 path->leave_spinning = 1; 6797 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6798 ins, size); 6799 if (ret) { 6800 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6801 root->leafsize); 6802 btrfs_free_path(path); 6803 return ret; 6804 } 6805 6806 leaf = path->nodes[0]; 6807 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6808 struct btrfs_extent_item); 6809 btrfs_set_extent_refs(leaf, extent_item, 1); 6810 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6811 btrfs_set_extent_flags(leaf, extent_item, 6812 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6813 6814 if (skinny_metadata) { 6815 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6816 } else { 6817 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6818 btrfs_set_tree_block_key(leaf, block_info, key); 6819 btrfs_set_tree_block_level(leaf, block_info, level); 6820 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6821 } 6822 6823 if (parent > 0) { 6824 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6825 btrfs_set_extent_inline_ref_type(leaf, iref, 6826 BTRFS_SHARED_BLOCK_REF_KEY); 6827 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6828 } else { 6829 btrfs_set_extent_inline_ref_type(leaf, iref, 6830 BTRFS_TREE_BLOCK_REF_KEY); 6831 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6832 } 6833 6834 btrfs_mark_buffer_dirty(leaf); 6835 btrfs_free_path(path); 6836 6837 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6838 if (ret) { /* -ENOENT, logic error */ 6839 btrfs_err(fs_info, "update block group failed for %llu %llu", 6840 ins->objectid, ins->offset); 6841 BUG(); 6842 } 6843 6844 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize); 6845 return ret; 6846 } 6847 6848 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6849 struct btrfs_root *root, 6850 u64 root_objectid, u64 owner, 6851 u64 offset, struct btrfs_key *ins) 6852 { 6853 int ret; 6854 6855 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6856 6857 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6858 ins->offset, 0, 6859 root_objectid, owner, offset, 6860 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6861 return ret; 6862 } 6863 6864 /* 6865 * this is used by the tree logging recovery code. It records that 6866 * an extent has been allocated and makes sure to clear the free 6867 * space cache bits as well 6868 */ 6869 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6870 struct btrfs_root *root, 6871 u64 root_objectid, u64 owner, u64 offset, 6872 struct btrfs_key *ins) 6873 { 6874 int ret; 6875 struct btrfs_block_group_cache *block_group; 6876 6877 /* 6878 * Mixed block groups will exclude before processing the log so we only 6879 * need to do the exlude dance if this fs isn't mixed. 6880 */ 6881 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6882 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6883 if (ret) 6884 return ret; 6885 } 6886 6887 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6888 if (!block_group) 6889 return -EINVAL; 6890 6891 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6892 RESERVE_ALLOC_NO_ACCOUNT); 6893 BUG_ON(ret); /* logic error */ 6894 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6895 0, owner, offset, ins, 1); 6896 btrfs_put_block_group(block_group); 6897 return ret; 6898 } 6899 6900 static struct extent_buffer * 6901 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6902 u64 bytenr, u32 blocksize, int level) 6903 { 6904 struct extent_buffer *buf; 6905 6906 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6907 if (!buf) 6908 return ERR_PTR(-ENOMEM); 6909 btrfs_set_header_generation(buf, trans->transid); 6910 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6911 btrfs_tree_lock(buf); 6912 clean_tree_block(trans, root, buf); 6913 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6914 6915 btrfs_set_lock_blocking(buf); 6916 btrfs_set_buffer_uptodate(buf); 6917 6918 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6919 /* 6920 * we allow two log transactions at a time, use different 6921 * EXENT bit to differentiate dirty pages. 6922 */ 6923 if (root->log_transid % 2 == 0) 6924 set_extent_dirty(&root->dirty_log_pages, buf->start, 6925 buf->start + buf->len - 1, GFP_NOFS); 6926 else 6927 set_extent_new(&root->dirty_log_pages, buf->start, 6928 buf->start + buf->len - 1, GFP_NOFS); 6929 } else { 6930 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6931 buf->start + buf->len - 1, GFP_NOFS); 6932 } 6933 trans->blocks_used++; 6934 /* this returns a buffer locked for blocking */ 6935 return buf; 6936 } 6937 6938 static struct btrfs_block_rsv * 6939 use_block_rsv(struct btrfs_trans_handle *trans, 6940 struct btrfs_root *root, u32 blocksize) 6941 { 6942 struct btrfs_block_rsv *block_rsv; 6943 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6944 int ret; 6945 bool global_updated = false; 6946 6947 block_rsv = get_block_rsv(trans, root); 6948 6949 if (unlikely(block_rsv->size == 0)) 6950 goto try_reserve; 6951 again: 6952 ret = block_rsv_use_bytes(block_rsv, blocksize); 6953 if (!ret) 6954 return block_rsv; 6955 6956 if (block_rsv->failfast) 6957 return ERR_PTR(ret); 6958 6959 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6960 global_updated = true; 6961 update_global_block_rsv(root->fs_info); 6962 goto again; 6963 } 6964 6965 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6966 static DEFINE_RATELIMIT_STATE(_rs, 6967 DEFAULT_RATELIMIT_INTERVAL * 10, 6968 /*DEFAULT_RATELIMIT_BURST*/ 1); 6969 if (__ratelimit(&_rs)) 6970 WARN(1, KERN_DEBUG 6971 "btrfs: block rsv returned %d\n", ret); 6972 } 6973 try_reserve: 6974 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6975 BTRFS_RESERVE_NO_FLUSH); 6976 if (!ret) 6977 return block_rsv; 6978 /* 6979 * If we couldn't reserve metadata bytes try and use some from 6980 * the global reserve if its space type is the same as the global 6981 * reservation. 6982 */ 6983 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6984 block_rsv->space_info == global_rsv->space_info) { 6985 ret = block_rsv_use_bytes(global_rsv, blocksize); 6986 if (!ret) 6987 return global_rsv; 6988 } 6989 return ERR_PTR(ret); 6990 } 6991 6992 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6993 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6994 { 6995 block_rsv_add_bytes(block_rsv, blocksize, 0); 6996 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6997 } 6998 6999 /* 7000 * finds a free extent and does all the dirty work required for allocation 7001 * returns the key for the extent through ins, and a tree buffer for 7002 * the first block of the extent through buf. 7003 * 7004 * returns the tree buffer or NULL. 7005 */ 7006 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 7007 struct btrfs_root *root, u32 blocksize, 7008 u64 parent, u64 root_objectid, 7009 struct btrfs_disk_key *key, int level, 7010 u64 hint, u64 empty_size) 7011 { 7012 struct btrfs_key ins; 7013 struct btrfs_block_rsv *block_rsv; 7014 struct extent_buffer *buf; 7015 u64 flags = 0; 7016 int ret; 7017 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7018 SKINNY_METADATA); 7019 7020 block_rsv = use_block_rsv(trans, root, blocksize); 7021 if (IS_ERR(block_rsv)) 7022 return ERR_CAST(block_rsv); 7023 7024 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7025 empty_size, hint, &ins, 0); 7026 if (ret) { 7027 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7028 return ERR_PTR(ret); 7029 } 7030 7031 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7032 blocksize, level); 7033 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7034 7035 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7036 if (parent == 0) 7037 parent = ins.objectid; 7038 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7039 } else 7040 BUG_ON(parent > 0); 7041 7042 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7043 struct btrfs_delayed_extent_op *extent_op; 7044 extent_op = btrfs_alloc_delayed_extent_op(); 7045 BUG_ON(!extent_op); /* -ENOMEM */ 7046 if (key) 7047 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7048 else 7049 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7050 extent_op->flags_to_set = flags; 7051 if (skinny_metadata) 7052 extent_op->update_key = 0; 7053 else 7054 extent_op->update_key = 1; 7055 extent_op->update_flags = 1; 7056 extent_op->is_data = 0; 7057 extent_op->level = level; 7058 7059 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7060 ins.objectid, 7061 ins.offset, parent, root_objectid, 7062 level, BTRFS_ADD_DELAYED_EXTENT, 7063 extent_op, 0); 7064 BUG_ON(ret); /* -ENOMEM */ 7065 } 7066 return buf; 7067 } 7068 7069 struct walk_control { 7070 u64 refs[BTRFS_MAX_LEVEL]; 7071 u64 flags[BTRFS_MAX_LEVEL]; 7072 struct btrfs_key update_progress; 7073 int stage; 7074 int level; 7075 int shared_level; 7076 int update_ref; 7077 int keep_locks; 7078 int reada_slot; 7079 int reada_count; 7080 int for_reloc; 7081 }; 7082 7083 #define DROP_REFERENCE 1 7084 #define UPDATE_BACKREF 2 7085 7086 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7087 struct btrfs_root *root, 7088 struct walk_control *wc, 7089 struct btrfs_path *path) 7090 { 7091 u64 bytenr; 7092 u64 generation; 7093 u64 refs; 7094 u64 flags; 7095 u32 nritems; 7096 u32 blocksize; 7097 struct btrfs_key key; 7098 struct extent_buffer *eb; 7099 int ret; 7100 int slot; 7101 int nread = 0; 7102 7103 if (path->slots[wc->level] < wc->reada_slot) { 7104 wc->reada_count = wc->reada_count * 2 / 3; 7105 wc->reada_count = max(wc->reada_count, 2); 7106 } else { 7107 wc->reada_count = wc->reada_count * 3 / 2; 7108 wc->reada_count = min_t(int, wc->reada_count, 7109 BTRFS_NODEPTRS_PER_BLOCK(root)); 7110 } 7111 7112 eb = path->nodes[wc->level]; 7113 nritems = btrfs_header_nritems(eb); 7114 blocksize = btrfs_level_size(root, wc->level - 1); 7115 7116 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7117 if (nread >= wc->reada_count) 7118 break; 7119 7120 cond_resched(); 7121 bytenr = btrfs_node_blockptr(eb, slot); 7122 generation = btrfs_node_ptr_generation(eb, slot); 7123 7124 if (slot == path->slots[wc->level]) 7125 goto reada; 7126 7127 if (wc->stage == UPDATE_BACKREF && 7128 generation <= root->root_key.offset) 7129 continue; 7130 7131 /* We don't lock the tree block, it's OK to be racy here */ 7132 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7133 wc->level - 1, 1, &refs, 7134 &flags); 7135 /* We don't care about errors in readahead. */ 7136 if (ret < 0) 7137 continue; 7138 BUG_ON(refs == 0); 7139 7140 if (wc->stage == DROP_REFERENCE) { 7141 if (refs == 1) 7142 goto reada; 7143 7144 if (wc->level == 1 && 7145 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7146 continue; 7147 if (!wc->update_ref || 7148 generation <= root->root_key.offset) 7149 continue; 7150 btrfs_node_key_to_cpu(eb, &key, slot); 7151 ret = btrfs_comp_cpu_keys(&key, 7152 &wc->update_progress); 7153 if (ret < 0) 7154 continue; 7155 } else { 7156 if (wc->level == 1 && 7157 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7158 continue; 7159 } 7160 reada: 7161 ret = readahead_tree_block(root, bytenr, blocksize, 7162 generation); 7163 if (ret) 7164 break; 7165 nread++; 7166 } 7167 wc->reada_slot = slot; 7168 } 7169 7170 /* 7171 * helper to process tree block while walking down the tree. 7172 * 7173 * when wc->stage == UPDATE_BACKREF, this function updates 7174 * back refs for pointers in the block. 7175 * 7176 * NOTE: return value 1 means we should stop walking down. 7177 */ 7178 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7179 struct btrfs_root *root, 7180 struct btrfs_path *path, 7181 struct walk_control *wc, int lookup_info) 7182 { 7183 int level = wc->level; 7184 struct extent_buffer *eb = path->nodes[level]; 7185 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7186 int ret; 7187 7188 if (wc->stage == UPDATE_BACKREF && 7189 btrfs_header_owner(eb) != root->root_key.objectid) 7190 return 1; 7191 7192 /* 7193 * when reference count of tree block is 1, it won't increase 7194 * again. once full backref flag is set, we never clear it. 7195 */ 7196 if (lookup_info && 7197 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7198 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7199 BUG_ON(!path->locks[level]); 7200 ret = btrfs_lookup_extent_info(trans, root, 7201 eb->start, level, 1, 7202 &wc->refs[level], 7203 &wc->flags[level]); 7204 BUG_ON(ret == -ENOMEM); 7205 if (ret) 7206 return ret; 7207 BUG_ON(wc->refs[level] == 0); 7208 } 7209 7210 if (wc->stage == DROP_REFERENCE) { 7211 if (wc->refs[level] > 1) 7212 return 1; 7213 7214 if (path->locks[level] && !wc->keep_locks) { 7215 btrfs_tree_unlock_rw(eb, path->locks[level]); 7216 path->locks[level] = 0; 7217 } 7218 return 0; 7219 } 7220 7221 /* wc->stage == UPDATE_BACKREF */ 7222 if (!(wc->flags[level] & flag)) { 7223 BUG_ON(!path->locks[level]); 7224 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7225 BUG_ON(ret); /* -ENOMEM */ 7226 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7227 BUG_ON(ret); /* -ENOMEM */ 7228 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7229 eb->len, flag, 7230 btrfs_header_level(eb), 0); 7231 BUG_ON(ret); /* -ENOMEM */ 7232 wc->flags[level] |= flag; 7233 } 7234 7235 /* 7236 * the block is shared by multiple trees, so it's not good to 7237 * keep the tree lock 7238 */ 7239 if (path->locks[level] && level > 0) { 7240 btrfs_tree_unlock_rw(eb, path->locks[level]); 7241 path->locks[level] = 0; 7242 } 7243 return 0; 7244 } 7245 7246 /* 7247 * helper to process tree block pointer. 7248 * 7249 * when wc->stage == DROP_REFERENCE, this function checks 7250 * reference count of the block pointed to. if the block 7251 * is shared and we need update back refs for the subtree 7252 * rooted at the block, this function changes wc->stage to 7253 * UPDATE_BACKREF. if the block is shared and there is no 7254 * need to update back, this function drops the reference 7255 * to the block. 7256 * 7257 * NOTE: return value 1 means we should stop walking down. 7258 */ 7259 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7260 struct btrfs_root *root, 7261 struct btrfs_path *path, 7262 struct walk_control *wc, int *lookup_info) 7263 { 7264 u64 bytenr; 7265 u64 generation; 7266 u64 parent; 7267 u32 blocksize; 7268 struct btrfs_key key; 7269 struct extent_buffer *next; 7270 int level = wc->level; 7271 int reada = 0; 7272 int ret = 0; 7273 7274 generation = btrfs_node_ptr_generation(path->nodes[level], 7275 path->slots[level]); 7276 /* 7277 * if the lower level block was created before the snapshot 7278 * was created, we know there is no need to update back refs 7279 * for the subtree 7280 */ 7281 if (wc->stage == UPDATE_BACKREF && 7282 generation <= root->root_key.offset) { 7283 *lookup_info = 1; 7284 return 1; 7285 } 7286 7287 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7288 blocksize = btrfs_level_size(root, level - 1); 7289 7290 next = btrfs_find_tree_block(root, bytenr, blocksize); 7291 if (!next) { 7292 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7293 if (!next) 7294 return -ENOMEM; 7295 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7296 level - 1); 7297 reada = 1; 7298 } 7299 btrfs_tree_lock(next); 7300 btrfs_set_lock_blocking(next); 7301 7302 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7303 &wc->refs[level - 1], 7304 &wc->flags[level - 1]); 7305 if (ret < 0) { 7306 btrfs_tree_unlock(next); 7307 return ret; 7308 } 7309 7310 if (unlikely(wc->refs[level - 1] == 0)) { 7311 btrfs_err(root->fs_info, "Missing references."); 7312 BUG(); 7313 } 7314 *lookup_info = 0; 7315 7316 if (wc->stage == DROP_REFERENCE) { 7317 if (wc->refs[level - 1] > 1) { 7318 if (level == 1 && 7319 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7320 goto skip; 7321 7322 if (!wc->update_ref || 7323 generation <= root->root_key.offset) 7324 goto skip; 7325 7326 btrfs_node_key_to_cpu(path->nodes[level], &key, 7327 path->slots[level]); 7328 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7329 if (ret < 0) 7330 goto skip; 7331 7332 wc->stage = UPDATE_BACKREF; 7333 wc->shared_level = level - 1; 7334 } 7335 } else { 7336 if (level == 1 && 7337 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7338 goto skip; 7339 } 7340 7341 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7342 btrfs_tree_unlock(next); 7343 free_extent_buffer(next); 7344 next = NULL; 7345 *lookup_info = 1; 7346 } 7347 7348 if (!next) { 7349 if (reada && level == 1) 7350 reada_walk_down(trans, root, wc, path); 7351 next = read_tree_block(root, bytenr, blocksize, generation); 7352 if (!next || !extent_buffer_uptodate(next)) { 7353 free_extent_buffer(next); 7354 return -EIO; 7355 } 7356 btrfs_tree_lock(next); 7357 btrfs_set_lock_blocking(next); 7358 } 7359 7360 level--; 7361 BUG_ON(level != btrfs_header_level(next)); 7362 path->nodes[level] = next; 7363 path->slots[level] = 0; 7364 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7365 wc->level = level; 7366 if (wc->level == 1) 7367 wc->reada_slot = 0; 7368 return 0; 7369 skip: 7370 wc->refs[level - 1] = 0; 7371 wc->flags[level - 1] = 0; 7372 if (wc->stage == DROP_REFERENCE) { 7373 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7374 parent = path->nodes[level]->start; 7375 } else { 7376 BUG_ON(root->root_key.objectid != 7377 btrfs_header_owner(path->nodes[level])); 7378 parent = 0; 7379 } 7380 7381 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7382 root->root_key.objectid, level - 1, 0, 0); 7383 BUG_ON(ret); /* -ENOMEM */ 7384 } 7385 btrfs_tree_unlock(next); 7386 free_extent_buffer(next); 7387 *lookup_info = 1; 7388 return 1; 7389 } 7390 7391 /* 7392 * helper to process tree block while walking up the tree. 7393 * 7394 * when wc->stage == DROP_REFERENCE, this function drops 7395 * reference count on the block. 7396 * 7397 * when wc->stage == UPDATE_BACKREF, this function changes 7398 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7399 * to UPDATE_BACKREF previously while processing the block. 7400 * 7401 * NOTE: return value 1 means we should stop walking up. 7402 */ 7403 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7404 struct btrfs_root *root, 7405 struct btrfs_path *path, 7406 struct walk_control *wc) 7407 { 7408 int ret; 7409 int level = wc->level; 7410 struct extent_buffer *eb = path->nodes[level]; 7411 u64 parent = 0; 7412 7413 if (wc->stage == UPDATE_BACKREF) { 7414 BUG_ON(wc->shared_level < level); 7415 if (level < wc->shared_level) 7416 goto out; 7417 7418 ret = find_next_key(path, level + 1, &wc->update_progress); 7419 if (ret > 0) 7420 wc->update_ref = 0; 7421 7422 wc->stage = DROP_REFERENCE; 7423 wc->shared_level = -1; 7424 path->slots[level] = 0; 7425 7426 /* 7427 * check reference count again if the block isn't locked. 7428 * we should start walking down the tree again if reference 7429 * count is one. 7430 */ 7431 if (!path->locks[level]) { 7432 BUG_ON(level == 0); 7433 btrfs_tree_lock(eb); 7434 btrfs_set_lock_blocking(eb); 7435 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7436 7437 ret = btrfs_lookup_extent_info(trans, root, 7438 eb->start, level, 1, 7439 &wc->refs[level], 7440 &wc->flags[level]); 7441 if (ret < 0) { 7442 btrfs_tree_unlock_rw(eb, path->locks[level]); 7443 path->locks[level] = 0; 7444 return ret; 7445 } 7446 BUG_ON(wc->refs[level] == 0); 7447 if (wc->refs[level] == 1) { 7448 btrfs_tree_unlock_rw(eb, path->locks[level]); 7449 path->locks[level] = 0; 7450 return 1; 7451 } 7452 } 7453 } 7454 7455 /* wc->stage == DROP_REFERENCE */ 7456 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7457 7458 if (wc->refs[level] == 1) { 7459 if (level == 0) { 7460 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7461 ret = btrfs_dec_ref(trans, root, eb, 1, 7462 wc->for_reloc); 7463 else 7464 ret = btrfs_dec_ref(trans, root, eb, 0, 7465 wc->for_reloc); 7466 BUG_ON(ret); /* -ENOMEM */ 7467 } 7468 /* make block locked assertion in clean_tree_block happy */ 7469 if (!path->locks[level] && 7470 btrfs_header_generation(eb) == trans->transid) { 7471 btrfs_tree_lock(eb); 7472 btrfs_set_lock_blocking(eb); 7473 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7474 } 7475 clean_tree_block(trans, root, eb); 7476 } 7477 7478 if (eb == root->node) { 7479 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7480 parent = eb->start; 7481 else 7482 BUG_ON(root->root_key.objectid != 7483 btrfs_header_owner(eb)); 7484 } else { 7485 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7486 parent = path->nodes[level + 1]->start; 7487 else 7488 BUG_ON(root->root_key.objectid != 7489 btrfs_header_owner(path->nodes[level + 1])); 7490 } 7491 7492 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7493 out: 7494 wc->refs[level] = 0; 7495 wc->flags[level] = 0; 7496 return 0; 7497 } 7498 7499 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7500 struct btrfs_root *root, 7501 struct btrfs_path *path, 7502 struct walk_control *wc) 7503 { 7504 int level = wc->level; 7505 int lookup_info = 1; 7506 int ret; 7507 7508 while (level >= 0) { 7509 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7510 if (ret > 0) 7511 break; 7512 7513 if (level == 0) 7514 break; 7515 7516 if (path->slots[level] >= 7517 btrfs_header_nritems(path->nodes[level])) 7518 break; 7519 7520 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7521 if (ret > 0) { 7522 path->slots[level]++; 7523 continue; 7524 } else if (ret < 0) 7525 return ret; 7526 level = wc->level; 7527 } 7528 return 0; 7529 } 7530 7531 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7532 struct btrfs_root *root, 7533 struct btrfs_path *path, 7534 struct walk_control *wc, int max_level) 7535 { 7536 int level = wc->level; 7537 int ret; 7538 7539 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7540 while (level < max_level && path->nodes[level]) { 7541 wc->level = level; 7542 if (path->slots[level] + 1 < 7543 btrfs_header_nritems(path->nodes[level])) { 7544 path->slots[level]++; 7545 return 0; 7546 } else { 7547 ret = walk_up_proc(trans, root, path, wc); 7548 if (ret > 0) 7549 return 0; 7550 7551 if (path->locks[level]) { 7552 btrfs_tree_unlock_rw(path->nodes[level], 7553 path->locks[level]); 7554 path->locks[level] = 0; 7555 } 7556 free_extent_buffer(path->nodes[level]); 7557 path->nodes[level] = NULL; 7558 level++; 7559 } 7560 } 7561 return 1; 7562 } 7563 7564 /* 7565 * drop a subvolume tree. 7566 * 7567 * this function traverses the tree freeing any blocks that only 7568 * referenced by the tree. 7569 * 7570 * when a shared tree block is found. this function decreases its 7571 * reference count by one. if update_ref is true, this function 7572 * also make sure backrefs for the shared block and all lower level 7573 * blocks are properly updated. 7574 * 7575 * If called with for_reloc == 0, may exit early with -EAGAIN 7576 */ 7577 int btrfs_drop_snapshot(struct btrfs_root *root, 7578 struct btrfs_block_rsv *block_rsv, int update_ref, 7579 int for_reloc) 7580 { 7581 struct btrfs_path *path; 7582 struct btrfs_trans_handle *trans; 7583 struct btrfs_root *tree_root = root->fs_info->tree_root; 7584 struct btrfs_root_item *root_item = &root->root_item; 7585 struct walk_control *wc; 7586 struct btrfs_key key; 7587 int err = 0; 7588 int ret; 7589 int level; 7590 bool root_dropped = false; 7591 7592 path = btrfs_alloc_path(); 7593 if (!path) { 7594 err = -ENOMEM; 7595 goto out; 7596 } 7597 7598 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7599 if (!wc) { 7600 btrfs_free_path(path); 7601 err = -ENOMEM; 7602 goto out; 7603 } 7604 7605 trans = btrfs_start_transaction(tree_root, 0); 7606 if (IS_ERR(trans)) { 7607 err = PTR_ERR(trans); 7608 goto out_free; 7609 } 7610 7611 if (block_rsv) 7612 trans->block_rsv = block_rsv; 7613 7614 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7615 level = btrfs_header_level(root->node); 7616 path->nodes[level] = btrfs_lock_root_node(root); 7617 btrfs_set_lock_blocking(path->nodes[level]); 7618 path->slots[level] = 0; 7619 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7620 memset(&wc->update_progress, 0, 7621 sizeof(wc->update_progress)); 7622 } else { 7623 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7624 memcpy(&wc->update_progress, &key, 7625 sizeof(wc->update_progress)); 7626 7627 level = root_item->drop_level; 7628 BUG_ON(level == 0); 7629 path->lowest_level = level; 7630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7631 path->lowest_level = 0; 7632 if (ret < 0) { 7633 err = ret; 7634 goto out_end_trans; 7635 } 7636 WARN_ON(ret > 0); 7637 7638 /* 7639 * unlock our path, this is safe because only this 7640 * function is allowed to delete this snapshot 7641 */ 7642 btrfs_unlock_up_safe(path, 0); 7643 7644 level = btrfs_header_level(root->node); 7645 while (1) { 7646 btrfs_tree_lock(path->nodes[level]); 7647 btrfs_set_lock_blocking(path->nodes[level]); 7648 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7649 7650 ret = btrfs_lookup_extent_info(trans, root, 7651 path->nodes[level]->start, 7652 level, 1, &wc->refs[level], 7653 &wc->flags[level]); 7654 if (ret < 0) { 7655 err = ret; 7656 goto out_end_trans; 7657 } 7658 BUG_ON(wc->refs[level] == 0); 7659 7660 if (level == root_item->drop_level) 7661 break; 7662 7663 btrfs_tree_unlock(path->nodes[level]); 7664 path->locks[level] = 0; 7665 WARN_ON(wc->refs[level] != 1); 7666 level--; 7667 } 7668 } 7669 7670 wc->level = level; 7671 wc->shared_level = -1; 7672 wc->stage = DROP_REFERENCE; 7673 wc->update_ref = update_ref; 7674 wc->keep_locks = 0; 7675 wc->for_reloc = for_reloc; 7676 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7677 7678 while (1) { 7679 7680 ret = walk_down_tree(trans, root, path, wc); 7681 if (ret < 0) { 7682 err = ret; 7683 break; 7684 } 7685 7686 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7687 if (ret < 0) { 7688 err = ret; 7689 break; 7690 } 7691 7692 if (ret > 0) { 7693 BUG_ON(wc->stage != DROP_REFERENCE); 7694 break; 7695 } 7696 7697 if (wc->stage == DROP_REFERENCE) { 7698 level = wc->level; 7699 btrfs_node_key(path->nodes[level], 7700 &root_item->drop_progress, 7701 path->slots[level]); 7702 root_item->drop_level = level; 7703 } 7704 7705 BUG_ON(wc->level == 0); 7706 if (btrfs_should_end_transaction(trans, tree_root) || 7707 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7708 ret = btrfs_update_root(trans, tree_root, 7709 &root->root_key, 7710 root_item); 7711 if (ret) { 7712 btrfs_abort_transaction(trans, tree_root, ret); 7713 err = ret; 7714 goto out_end_trans; 7715 } 7716 7717 btrfs_end_transaction_throttle(trans, tree_root); 7718 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7719 pr_debug("btrfs: drop snapshot early exit\n"); 7720 err = -EAGAIN; 7721 goto out_free; 7722 } 7723 7724 trans = btrfs_start_transaction(tree_root, 0); 7725 if (IS_ERR(trans)) { 7726 err = PTR_ERR(trans); 7727 goto out_free; 7728 } 7729 if (block_rsv) 7730 trans->block_rsv = block_rsv; 7731 } 7732 } 7733 btrfs_release_path(path); 7734 if (err) 7735 goto out_end_trans; 7736 7737 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7738 if (ret) { 7739 btrfs_abort_transaction(trans, tree_root, ret); 7740 goto out_end_trans; 7741 } 7742 7743 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7744 ret = btrfs_find_root(tree_root, &root->root_key, path, 7745 NULL, NULL); 7746 if (ret < 0) { 7747 btrfs_abort_transaction(trans, tree_root, ret); 7748 err = ret; 7749 goto out_end_trans; 7750 } else if (ret > 0) { 7751 /* if we fail to delete the orphan item this time 7752 * around, it'll get picked up the next time. 7753 * 7754 * The most common failure here is just -ENOENT. 7755 */ 7756 btrfs_del_orphan_item(trans, tree_root, 7757 root->root_key.objectid); 7758 } 7759 } 7760 7761 if (root->in_radix) { 7762 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7763 } else { 7764 free_extent_buffer(root->node); 7765 free_extent_buffer(root->commit_root); 7766 btrfs_put_fs_root(root); 7767 } 7768 root_dropped = true; 7769 out_end_trans: 7770 btrfs_end_transaction_throttle(trans, tree_root); 7771 out_free: 7772 kfree(wc); 7773 btrfs_free_path(path); 7774 out: 7775 /* 7776 * So if we need to stop dropping the snapshot for whatever reason we 7777 * need to make sure to add it back to the dead root list so that we 7778 * keep trying to do the work later. This also cleans up roots if we 7779 * don't have it in the radix (like when we recover after a power fail 7780 * or unmount) so we don't leak memory. 7781 */ 7782 if (!for_reloc && root_dropped == false) 7783 btrfs_add_dead_root(root); 7784 if (err) 7785 btrfs_std_error(root->fs_info, err); 7786 return err; 7787 } 7788 7789 /* 7790 * drop subtree rooted at tree block 'node'. 7791 * 7792 * NOTE: this function will unlock and release tree block 'node' 7793 * only used by relocation code 7794 */ 7795 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7796 struct btrfs_root *root, 7797 struct extent_buffer *node, 7798 struct extent_buffer *parent) 7799 { 7800 struct btrfs_path *path; 7801 struct walk_control *wc; 7802 int level; 7803 int parent_level; 7804 int ret = 0; 7805 int wret; 7806 7807 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7808 7809 path = btrfs_alloc_path(); 7810 if (!path) 7811 return -ENOMEM; 7812 7813 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7814 if (!wc) { 7815 btrfs_free_path(path); 7816 return -ENOMEM; 7817 } 7818 7819 btrfs_assert_tree_locked(parent); 7820 parent_level = btrfs_header_level(parent); 7821 extent_buffer_get(parent); 7822 path->nodes[parent_level] = parent; 7823 path->slots[parent_level] = btrfs_header_nritems(parent); 7824 7825 btrfs_assert_tree_locked(node); 7826 level = btrfs_header_level(node); 7827 path->nodes[level] = node; 7828 path->slots[level] = 0; 7829 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7830 7831 wc->refs[parent_level] = 1; 7832 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7833 wc->level = level; 7834 wc->shared_level = -1; 7835 wc->stage = DROP_REFERENCE; 7836 wc->update_ref = 0; 7837 wc->keep_locks = 1; 7838 wc->for_reloc = 1; 7839 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7840 7841 while (1) { 7842 wret = walk_down_tree(trans, root, path, wc); 7843 if (wret < 0) { 7844 ret = wret; 7845 break; 7846 } 7847 7848 wret = walk_up_tree(trans, root, path, wc, parent_level); 7849 if (wret < 0) 7850 ret = wret; 7851 if (wret != 0) 7852 break; 7853 } 7854 7855 kfree(wc); 7856 btrfs_free_path(path); 7857 return ret; 7858 } 7859 7860 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7861 { 7862 u64 num_devices; 7863 u64 stripped; 7864 7865 /* 7866 * if restripe for this chunk_type is on pick target profile and 7867 * return, otherwise do the usual balance 7868 */ 7869 stripped = get_restripe_target(root->fs_info, flags); 7870 if (stripped) 7871 return extended_to_chunk(stripped); 7872 7873 /* 7874 * we add in the count of missing devices because we want 7875 * to make sure that any RAID levels on a degraded FS 7876 * continue to be honored. 7877 */ 7878 num_devices = root->fs_info->fs_devices->rw_devices + 7879 root->fs_info->fs_devices->missing_devices; 7880 7881 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7882 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7883 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7884 7885 if (num_devices == 1) { 7886 stripped |= BTRFS_BLOCK_GROUP_DUP; 7887 stripped = flags & ~stripped; 7888 7889 /* turn raid0 into single device chunks */ 7890 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7891 return stripped; 7892 7893 /* turn mirroring into duplication */ 7894 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7895 BTRFS_BLOCK_GROUP_RAID10)) 7896 return stripped | BTRFS_BLOCK_GROUP_DUP; 7897 } else { 7898 /* they already had raid on here, just return */ 7899 if (flags & stripped) 7900 return flags; 7901 7902 stripped |= BTRFS_BLOCK_GROUP_DUP; 7903 stripped = flags & ~stripped; 7904 7905 /* switch duplicated blocks with raid1 */ 7906 if (flags & BTRFS_BLOCK_GROUP_DUP) 7907 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7908 7909 /* this is drive concat, leave it alone */ 7910 } 7911 7912 return flags; 7913 } 7914 7915 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7916 { 7917 struct btrfs_space_info *sinfo = cache->space_info; 7918 u64 num_bytes; 7919 u64 min_allocable_bytes; 7920 int ret = -ENOSPC; 7921 7922 7923 /* 7924 * We need some metadata space and system metadata space for 7925 * allocating chunks in some corner cases until we force to set 7926 * it to be readonly. 7927 */ 7928 if ((sinfo->flags & 7929 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7930 !force) 7931 min_allocable_bytes = 1 * 1024 * 1024; 7932 else 7933 min_allocable_bytes = 0; 7934 7935 spin_lock(&sinfo->lock); 7936 spin_lock(&cache->lock); 7937 7938 if (cache->ro) { 7939 ret = 0; 7940 goto out; 7941 } 7942 7943 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7944 cache->bytes_super - btrfs_block_group_used(&cache->item); 7945 7946 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7947 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7948 min_allocable_bytes <= sinfo->total_bytes) { 7949 sinfo->bytes_readonly += num_bytes; 7950 cache->ro = 1; 7951 ret = 0; 7952 } 7953 out: 7954 spin_unlock(&cache->lock); 7955 spin_unlock(&sinfo->lock); 7956 return ret; 7957 } 7958 7959 int btrfs_set_block_group_ro(struct btrfs_root *root, 7960 struct btrfs_block_group_cache *cache) 7961 7962 { 7963 struct btrfs_trans_handle *trans; 7964 u64 alloc_flags; 7965 int ret; 7966 7967 BUG_ON(cache->ro); 7968 7969 trans = btrfs_join_transaction(root); 7970 if (IS_ERR(trans)) 7971 return PTR_ERR(trans); 7972 7973 alloc_flags = update_block_group_flags(root, cache->flags); 7974 if (alloc_flags != cache->flags) { 7975 ret = do_chunk_alloc(trans, root, alloc_flags, 7976 CHUNK_ALLOC_FORCE); 7977 if (ret < 0) 7978 goto out; 7979 } 7980 7981 ret = set_block_group_ro(cache, 0); 7982 if (!ret) 7983 goto out; 7984 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7985 ret = do_chunk_alloc(trans, root, alloc_flags, 7986 CHUNK_ALLOC_FORCE); 7987 if (ret < 0) 7988 goto out; 7989 ret = set_block_group_ro(cache, 0); 7990 out: 7991 btrfs_end_transaction(trans, root); 7992 return ret; 7993 } 7994 7995 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7996 struct btrfs_root *root, u64 type) 7997 { 7998 u64 alloc_flags = get_alloc_profile(root, type); 7999 return do_chunk_alloc(trans, root, alloc_flags, 8000 CHUNK_ALLOC_FORCE); 8001 } 8002 8003 /* 8004 * helper to account the unused space of all the readonly block group in the 8005 * list. takes mirrors into account. 8006 */ 8007 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 8008 { 8009 struct btrfs_block_group_cache *block_group; 8010 u64 free_bytes = 0; 8011 int factor; 8012 8013 list_for_each_entry(block_group, groups_list, list) { 8014 spin_lock(&block_group->lock); 8015 8016 if (!block_group->ro) { 8017 spin_unlock(&block_group->lock); 8018 continue; 8019 } 8020 8021 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8022 BTRFS_BLOCK_GROUP_RAID10 | 8023 BTRFS_BLOCK_GROUP_DUP)) 8024 factor = 2; 8025 else 8026 factor = 1; 8027 8028 free_bytes += (block_group->key.offset - 8029 btrfs_block_group_used(&block_group->item)) * 8030 factor; 8031 8032 spin_unlock(&block_group->lock); 8033 } 8034 8035 return free_bytes; 8036 } 8037 8038 /* 8039 * helper to account the unused space of all the readonly block group in the 8040 * space_info. takes mirrors into account. 8041 */ 8042 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8043 { 8044 int i; 8045 u64 free_bytes = 0; 8046 8047 spin_lock(&sinfo->lock); 8048 8049 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8050 if (!list_empty(&sinfo->block_groups[i])) 8051 free_bytes += __btrfs_get_ro_block_group_free_space( 8052 &sinfo->block_groups[i]); 8053 8054 spin_unlock(&sinfo->lock); 8055 8056 return free_bytes; 8057 } 8058 8059 void btrfs_set_block_group_rw(struct btrfs_root *root, 8060 struct btrfs_block_group_cache *cache) 8061 { 8062 struct btrfs_space_info *sinfo = cache->space_info; 8063 u64 num_bytes; 8064 8065 BUG_ON(!cache->ro); 8066 8067 spin_lock(&sinfo->lock); 8068 spin_lock(&cache->lock); 8069 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8070 cache->bytes_super - btrfs_block_group_used(&cache->item); 8071 sinfo->bytes_readonly -= num_bytes; 8072 cache->ro = 0; 8073 spin_unlock(&cache->lock); 8074 spin_unlock(&sinfo->lock); 8075 } 8076 8077 /* 8078 * checks to see if its even possible to relocate this block group. 8079 * 8080 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8081 * ok to go ahead and try. 8082 */ 8083 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8084 { 8085 struct btrfs_block_group_cache *block_group; 8086 struct btrfs_space_info *space_info; 8087 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8088 struct btrfs_device *device; 8089 struct btrfs_trans_handle *trans; 8090 u64 min_free; 8091 u64 dev_min = 1; 8092 u64 dev_nr = 0; 8093 u64 target; 8094 int index; 8095 int full = 0; 8096 int ret = 0; 8097 8098 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8099 8100 /* odd, couldn't find the block group, leave it alone */ 8101 if (!block_group) 8102 return -1; 8103 8104 min_free = btrfs_block_group_used(&block_group->item); 8105 8106 /* no bytes used, we're good */ 8107 if (!min_free) 8108 goto out; 8109 8110 space_info = block_group->space_info; 8111 spin_lock(&space_info->lock); 8112 8113 full = space_info->full; 8114 8115 /* 8116 * if this is the last block group we have in this space, we can't 8117 * relocate it unless we're able to allocate a new chunk below. 8118 * 8119 * Otherwise, we need to make sure we have room in the space to handle 8120 * all of the extents from this block group. If we can, we're good 8121 */ 8122 if ((space_info->total_bytes != block_group->key.offset) && 8123 (space_info->bytes_used + space_info->bytes_reserved + 8124 space_info->bytes_pinned + space_info->bytes_readonly + 8125 min_free < space_info->total_bytes)) { 8126 spin_unlock(&space_info->lock); 8127 goto out; 8128 } 8129 spin_unlock(&space_info->lock); 8130 8131 /* 8132 * ok we don't have enough space, but maybe we have free space on our 8133 * devices to allocate new chunks for relocation, so loop through our 8134 * alloc devices and guess if we have enough space. if this block 8135 * group is going to be restriped, run checks against the target 8136 * profile instead of the current one. 8137 */ 8138 ret = -1; 8139 8140 /* 8141 * index: 8142 * 0: raid10 8143 * 1: raid1 8144 * 2: dup 8145 * 3: raid0 8146 * 4: single 8147 */ 8148 target = get_restripe_target(root->fs_info, block_group->flags); 8149 if (target) { 8150 index = __get_raid_index(extended_to_chunk(target)); 8151 } else { 8152 /* 8153 * this is just a balance, so if we were marked as full 8154 * we know there is no space for a new chunk 8155 */ 8156 if (full) 8157 goto out; 8158 8159 index = get_block_group_index(block_group); 8160 } 8161 8162 if (index == BTRFS_RAID_RAID10) { 8163 dev_min = 4; 8164 /* Divide by 2 */ 8165 min_free >>= 1; 8166 } else if (index == BTRFS_RAID_RAID1) { 8167 dev_min = 2; 8168 } else if (index == BTRFS_RAID_DUP) { 8169 /* Multiply by 2 */ 8170 min_free <<= 1; 8171 } else if (index == BTRFS_RAID_RAID0) { 8172 dev_min = fs_devices->rw_devices; 8173 do_div(min_free, dev_min); 8174 } 8175 8176 /* We need to do this so that we can look at pending chunks */ 8177 trans = btrfs_join_transaction(root); 8178 if (IS_ERR(trans)) { 8179 ret = PTR_ERR(trans); 8180 goto out; 8181 } 8182 8183 mutex_lock(&root->fs_info->chunk_mutex); 8184 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8185 u64 dev_offset; 8186 8187 /* 8188 * check to make sure we can actually find a chunk with enough 8189 * space to fit our block group in. 8190 */ 8191 if (device->total_bytes > device->bytes_used + min_free && 8192 !device->is_tgtdev_for_dev_replace) { 8193 ret = find_free_dev_extent(trans, device, min_free, 8194 &dev_offset, NULL); 8195 if (!ret) 8196 dev_nr++; 8197 8198 if (dev_nr >= dev_min) 8199 break; 8200 8201 ret = -1; 8202 } 8203 } 8204 mutex_unlock(&root->fs_info->chunk_mutex); 8205 btrfs_end_transaction(trans, root); 8206 out: 8207 btrfs_put_block_group(block_group); 8208 return ret; 8209 } 8210 8211 static int find_first_block_group(struct btrfs_root *root, 8212 struct btrfs_path *path, struct btrfs_key *key) 8213 { 8214 int ret = 0; 8215 struct btrfs_key found_key; 8216 struct extent_buffer *leaf; 8217 int slot; 8218 8219 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8220 if (ret < 0) 8221 goto out; 8222 8223 while (1) { 8224 slot = path->slots[0]; 8225 leaf = path->nodes[0]; 8226 if (slot >= btrfs_header_nritems(leaf)) { 8227 ret = btrfs_next_leaf(root, path); 8228 if (ret == 0) 8229 continue; 8230 if (ret < 0) 8231 goto out; 8232 break; 8233 } 8234 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8235 8236 if (found_key.objectid >= key->objectid && 8237 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8238 ret = 0; 8239 goto out; 8240 } 8241 path->slots[0]++; 8242 } 8243 out: 8244 return ret; 8245 } 8246 8247 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8248 { 8249 struct btrfs_block_group_cache *block_group; 8250 u64 last = 0; 8251 8252 while (1) { 8253 struct inode *inode; 8254 8255 block_group = btrfs_lookup_first_block_group(info, last); 8256 while (block_group) { 8257 spin_lock(&block_group->lock); 8258 if (block_group->iref) 8259 break; 8260 spin_unlock(&block_group->lock); 8261 block_group = next_block_group(info->tree_root, 8262 block_group); 8263 } 8264 if (!block_group) { 8265 if (last == 0) 8266 break; 8267 last = 0; 8268 continue; 8269 } 8270 8271 inode = block_group->inode; 8272 block_group->iref = 0; 8273 block_group->inode = NULL; 8274 spin_unlock(&block_group->lock); 8275 iput(inode); 8276 last = block_group->key.objectid + block_group->key.offset; 8277 btrfs_put_block_group(block_group); 8278 } 8279 } 8280 8281 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8282 { 8283 struct btrfs_block_group_cache *block_group; 8284 struct btrfs_space_info *space_info; 8285 struct btrfs_caching_control *caching_ctl; 8286 struct rb_node *n; 8287 8288 down_write(&info->extent_commit_sem); 8289 while (!list_empty(&info->caching_block_groups)) { 8290 caching_ctl = list_entry(info->caching_block_groups.next, 8291 struct btrfs_caching_control, list); 8292 list_del(&caching_ctl->list); 8293 put_caching_control(caching_ctl); 8294 } 8295 up_write(&info->extent_commit_sem); 8296 8297 spin_lock(&info->block_group_cache_lock); 8298 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8299 block_group = rb_entry(n, struct btrfs_block_group_cache, 8300 cache_node); 8301 rb_erase(&block_group->cache_node, 8302 &info->block_group_cache_tree); 8303 spin_unlock(&info->block_group_cache_lock); 8304 8305 down_write(&block_group->space_info->groups_sem); 8306 list_del(&block_group->list); 8307 up_write(&block_group->space_info->groups_sem); 8308 8309 if (block_group->cached == BTRFS_CACHE_STARTED) 8310 wait_block_group_cache_done(block_group); 8311 8312 /* 8313 * We haven't cached this block group, which means we could 8314 * possibly have excluded extents on this block group. 8315 */ 8316 if (block_group->cached == BTRFS_CACHE_NO || 8317 block_group->cached == BTRFS_CACHE_ERROR) 8318 free_excluded_extents(info->extent_root, block_group); 8319 8320 btrfs_remove_free_space_cache(block_group); 8321 btrfs_put_block_group(block_group); 8322 8323 spin_lock(&info->block_group_cache_lock); 8324 } 8325 spin_unlock(&info->block_group_cache_lock); 8326 8327 /* now that all the block groups are freed, go through and 8328 * free all the space_info structs. This is only called during 8329 * the final stages of unmount, and so we know nobody is 8330 * using them. We call synchronize_rcu() once before we start, 8331 * just to be on the safe side. 8332 */ 8333 synchronize_rcu(); 8334 8335 release_global_block_rsv(info); 8336 8337 while (!list_empty(&info->space_info)) { 8338 space_info = list_entry(info->space_info.next, 8339 struct btrfs_space_info, 8340 list); 8341 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8342 if (WARN_ON(space_info->bytes_pinned > 0 || 8343 space_info->bytes_reserved > 0 || 8344 space_info->bytes_may_use > 0)) { 8345 dump_space_info(space_info, 0, 0); 8346 } 8347 } 8348 percpu_counter_destroy(&space_info->total_bytes_pinned); 8349 list_del(&space_info->list); 8350 kfree(space_info); 8351 } 8352 return 0; 8353 } 8354 8355 static void __link_block_group(struct btrfs_space_info *space_info, 8356 struct btrfs_block_group_cache *cache) 8357 { 8358 int index = get_block_group_index(cache); 8359 8360 down_write(&space_info->groups_sem); 8361 list_add_tail(&cache->list, &space_info->block_groups[index]); 8362 up_write(&space_info->groups_sem); 8363 } 8364 8365 int btrfs_read_block_groups(struct btrfs_root *root) 8366 { 8367 struct btrfs_path *path; 8368 int ret; 8369 struct btrfs_block_group_cache *cache; 8370 struct btrfs_fs_info *info = root->fs_info; 8371 struct btrfs_space_info *space_info; 8372 struct btrfs_key key; 8373 struct btrfs_key found_key; 8374 struct extent_buffer *leaf; 8375 int need_clear = 0; 8376 u64 cache_gen; 8377 8378 root = info->extent_root; 8379 key.objectid = 0; 8380 key.offset = 0; 8381 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8382 path = btrfs_alloc_path(); 8383 if (!path) 8384 return -ENOMEM; 8385 path->reada = 1; 8386 8387 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8388 if (btrfs_test_opt(root, SPACE_CACHE) && 8389 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8390 need_clear = 1; 8391 if (btrfs_test_opt(root, CLEAR_CACHE)) 8392 need_clear = 1; 8393 8394 while (1) { 8395 ret = find_first_block_group(root, path, &key); 8396 if (ret > 0) 8397 break; 8398 if (ret != 0) 8399 goto error; 8400 leaf = path->nodes[0]; 8401 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8402 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8403 if (!cache) { 8404 ret = -ENOMEM; 8405 goto error; 8406 } 8407 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8408 GFP_NOFS); 8409 if (!cache->free_space_ctl) { 8410 kfree(cache); 8411 ret = -ENOMEM; 8412 goto error; 8413 } 8414 8415 atomic_set(&cache->count, 1); 8416 spin_lock_init(&cache->lock); 8417 cache->fs_info = info; 8418 INIT_LIST_HEAD(&cache->list); 8419 INIT_LIST_HEAD(&cache->cluster_list); 8420 8421 if (need_clear) { 8422 /* 8423 * When we mount with old space cache, we need to 8424 * set BTRFS_DC_CLEAR and set dirty flag. 8425 * 8426 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8427 * truncate the old free space cache inode and 8428 * setup a new one. 8429 * b) Setting 'dirty flag' makes sure that we flush 8430 * the new space cache info onto disk. 8431 */ 8432 cache->disk_cache_state = BTRFS_DC_CLEAR; 8433 if (btrfs_test_opt(root, SPACE_CACHE)) 8434 cache->dirty = 1; 8435 } 8436 8437 read_extent_buffer(leaf, &cache->item, 8438 btrfs_item_ptr_offset(leaf, path->slots[0]), 8439 sizeof(cache->item)); 8440 memcpy(&cache->key, &found_key, sizeof(found_key)); 8441 8442 key.objectid = found_key.objectid + found_key.offset; 8443 btrfs_release_path(path); 8444 cache->flags = btrfs_block_group_flags(&cache->item); 8445 cache->sectorsize = root->sectorsize; 8446 cache->full_stripe_len = btrfs_full_stripe_len(root, 8447 &root->fs_info->mapping_tree, 8448 found_key.objectid); 8449 btrfs_init_free_space_ctl(cache); 8450 8451 /* 8452 * We need to exclude the super stripes now so that the space 8453 * info has super bytes accounted for, otherwise we'll think 8454 * we have more space than we actually do. 8455 */ 8456 ret = exclude_super_stripes(root, cache); 8457 if (ret) { 8458 /* 8459 * We may have excluded something, so call this just in 8460 * case. 8461 */ 8462 free_excluded_extents(root, cache); 8463 kfree(cache->free_space_ctl); 8464 kfree(cache); 8465 goto error; 8466 } 8467 8468 /* 8469 * check for two cases, either we are full, and therefore 8470 * don't need to bother with the caching work since we won't 8471 * find any space, or we are empty, and we can just add all 8472 * the space in and be done with it. This saves us _alot_ of 8473 * time, particularly in the full case. 8474 */ 8475 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8476 cache->last_byte_to_unpin = (u64)-1; 8477 cache->cached = BTRFS_CACHE_FINISHED; 8478 free_excluded_extents(root, cache); 8479 } else if (btrfs_block_group_used(&cache->item) == 0) { 8480 cache->last_byte_to_unpin = (u64)-1; 8481 cache->cached = BTRFS_CACHE_FINISHED; 8482 add_new_free_space(cache, root->fs_info, 8483 found_key.objectid, 8484 found_key.objectid + 8485 found_key.offset); 8486 free_excluded_extents(root, cache); 8487 } 8488 8489 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8490 if (ret) { 8491 btrfs_remove_free_space_cache(cache); 8492 btrfs_put_block_group(cache); 8493 goto error; 8494 } 8495 8496 ret = update_space_info(info, cache->flags, found_key.offset, 8497 btrfs_block_group_used(&cache->item), 8498 &space_info); 8499 if (ret) { 8500 btrfs_remove_free_space_cache(cache); 8501 spin_lock(&info->block_group_cache_lock); 8502 rb_erase(&cache->cache_node, 8503 &info->block_group_cache_tree); 8504 spin_unlock(&info->block_group_cache_lock); 8505 btrfs_put_block_group(cache); 8506 goto error; 8507 } 8508 8509 cache->space_info = space_info; 8510 spin_lock(&cache->space_info->lock); 8511 cache->space_info->bytes_readonly += cache->bytes_super; 8512 spin_unlock(&cache->space_info->lock); 8513 8514 __link_block_group(space_info, cache); 8515 8516 set_avail_alloc_bits(root->fs_info, cache->flags); 8517 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8518 set_block_group_ro(cache, 1); 8519 } 8520 8521 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8522 if (!(get_alloc_profile(root, space_info->flags) & 8523 (BTRFS_BLOCK_GROUP_RAID10 | 8524 BTRFS_BLOCK_GROUP_RAID1 | 8525 BTRFS_BLOCK_GROUP_RAID5 | 8526 BTRFS_BLOCK_GROUP_RAID6 | 8527 BTRFS_BLOCK_GROUP_DUP))) 8528 continue; 8529 /* 8530 * avoid allocating from un-mirrored block group if there are 8531 * mirrored block groups. 8532 */ 8533 list_for_each_entry(cache, 8534 &space_info->block_groups[BTRFS_RAID_RAID0], 8535 list) 8536 set_block_group_ro(cache, 1); 8537 list_for_each_entry(cache, 8538 &space_info->block_groups[BTRFS_RAID_SINGLE], 8539 list) 8540 set_block_group_ro(cache, 1); 8541 } 8542 8543 init_global_block_rsv(info); 8544 ret = 0; 8545 error: 8546 btrfs_free_path(path); 8547 return ret; 8548 } 8549 8550 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8551 struct btrfs_root *root) 8552 { 8553 struct btrfs_block_group_cache *block_group, *tmp; 8554 struct btrfs_root *extent_root = root->fs_info->extent_root; 8555 struct btrfs_block_group_item item; 8556 struct btrfs_key key; 8557 int ret = 0; 8558 8559 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8560 new_bg_list) { 8561 list_del_init(&block_group->new_bg_list); 8562 8563 if (ret) 8564 continue; 8565 8566 spin_lock(&block_group->lock); 8567 memcpy(&item, &block_group->item, sizeof(item)); 8568 memcpy(&key, &block_group->key, sizeof(key)); 8569 spin_unlock(&block_group->lock); 8570 8571 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8572 sizeof(item)); 8573 if (ret) 8574 btrfs_abort_transaction(trans, extent_root, ret); 8575 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8576 key.objectid, key.offset); 8577 if (ret) 8578 btrfs_abort_transaction(trans, extent_root, ret); 8579 } 8580 } 8581 8582 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8583 struct btrfs_root *root, u64 bytes_used, 8584 u64 type, u64 chunk_objectid, u64 chunk_offset, 8585 u64 size) 8586 { 8587 int ret; 8588 struct btrfs_root *extent_root; 8589 struct btrfs_block_group_cache *cache; 8590 8591 extent_root = root->fs_info->extent_root; 8592 8593 root->fs_info->last_trans_log_full_commit = trans->transid; 8594 8595 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8596 if (!cache) 8597 return -ENOMEM; 8598 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8599 GFP_NOFS); 8600 if (!cache->free_space_ctl) { 8601 kfree(cache); 8602 return -ENOMEM; 8603 } 8604 8605 cache->key.objectid = chunk_offset; 8606 cache->key.offset = size; 8607 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8608 cache->sectorsize = root->sectorsize; 8609 cache->fs_info = root->fs_info; 8610 cache->full_stripe_len = btrfs_full_stripe_len(root, 8611 &root->fs_info->mapping_tree, 8612 chunk_offset); 8613 8614 atomic_set(&cache->count, 1); 8615 spin_lock_init(&cache->lock); 8616 INIT_LIST_HEAD(&cache->list); 8617 INIT_LIST_HEAD(&cache->cluster_list); 8618 INIT_LIST_HEAD(&cache->new_bg_list); 8619 8620 btrfs_init_free_space_ctl(cache); 8621 8622 btrfs_set_block_group_used(&cache->item, bytes_used); 8623 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8624 cache->flags = type; 8625 btrfs_set_block_group_flags(&cache->item, type); 8626 8627 cache->last_byte_to_unpin = (u64)-1; 8628 cache->cached = BTRFS_CACHE_FINISHED; 8629 ret = exclude_super_stripes(root, cache); 8630 if (ret) { 8631 /* 8632 * We may have excluded something, so call this just in 8633 * case. 8634 */ 8635 free_excluded_extents(root, cache); 8636 kfree(cache->free_space_ctl); 8637 kfree(cache); 8638 return ret; 8639 } 8640 8641 add_new_free_space(cache, root->fs_info, chunk_offset, 8642 chunk_offset + size); 8643 8644 free_excluded_extents(root, cache); 8645 8646 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8647 if (ret) { 8648 btrfs_remove_free_space_cache(cache); 8649 btrfs_put_block_group(cache); 8650 return ret; 8651 } 8652 8653 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8654 &cache->space_info); 8655 if (ret) { 8656 btrfs_remove_free_space_cache(cache); 8657 spin_lock(&root->fs_info->block_group_cache_lock); 8658 rb_erase(&cache->cache_node, 8659 &root->fs_info->block_group_cache_tree); 8660 spin_unlock(&root->fs_info->block_group_cache_lock); 8661 btrfs_put_block_group(cache); 8662 return ret; 8663 } 8664 update_global_block_rsv(root->fs_info); 8665 8666 spin_lock(&cache->space_info->lock); 8667 cache->space_info->bytes_readonly += cache->bytes_super; 8668 spin_unlock(&cache->space_info->lock); 8669 8670 __link_block_group(cache->space_info, cache); 8671 8672 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8673 8674 set_avail_alloc_bits(extent_root->fs_info, type); 8675 8676 return 0; 8677 } 8678 8679 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8680 { 8681 u64 extra_flags = chunk_to_extended(flags) & 8682 BTRFS_EXTENDED_PROFILE_MASK; 8683 8684 write_seqlock(&fs_info->profiles_lock); 8685 if (flags & BTRFS_BLOCK_GROUP_DATA) 8686 fs_info->avail_data_alloc_bits &= ~extra_flags; 8687 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8688 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8689 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8690 fs_info->avail_system_alloc_bits &= ~extra_flags; 8691 write_sequnlock(&fs_info->profiles_lock); 8692 } 8693 8694 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8695 struct btrfs_root *root, u64 group_start) 8696 { 8697 struct btrfs_path *path; 8698 struct btrfs_block_group_cache *block_group; 8699 struct btrfs_free_cluster *cluster; 8700 struct btrfs_root *tree_root = root->fs_info->tree_root; 8701 struct btrfs_key key; 8702 struct inode *inode; 8703 int ret; 8704 int index; 8705 int factor; 8706 8707 root = root->fs_info->extent_root; 8708 8709 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8710 BUG_ON(!block_group); 8711 BUG_ON(!block_group->ro); 8712 8713 /* 8714 * Free the reserved super bytes from this block group before 8715 * remove it. 8716 */ 8717 free_excluded_extents(root, block_group); 8718 8719 memcpy(&key, &block_group->key, sizeof(key)); 8720 index = get_block_group_index(block_group); 8721 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8722 BTRFS_BLOCK_GROUP_RAID1 | 8723 BTRFS_BLOCK_GROUP_RAID10)) 8724 factor = 2; 8725 else 8726 factor = 1; 8727 8728 /* make sure this block group isn't part of an allocation cluster */ 8729 cluster = &root->fs_info->data_alloc_cluster; 8730 spin_lock(&cluster->refill_lock); 8731 btrfs_return_cluster_to_free_space(block_group, cluster); 8732 spin_unlock(&cluster->refill_lock); 8733 8734 /* 8735 * make sure this block group isn't part of a metadata 8736 * allocation cluster 8737 */ 8738 cluster = &root->fs_info->meta_alloc_cluster; 8739 spin_lock(&cluster->refill_lock); 8740 btrfs_return_cluster_to_free_space(block_group, cluster); 8741 spin_unlock(&cluster->refill_lock); 8742 8743 path = btrfs_alloc_path(); 8744 if (!path) { 8745 ret = -ENOMEM; 8746 goto out; 8747 } 8748 8749 inode = lookup_free_space_inode(tree_root, block_group, path); 8750 if (!IS_ERR(inode)) { 8751 ret = btrfs_orphan_add(trans, inode); 8752 if (ret) { 8753 btrfs_add_delayed_iput(inode); 8754 goto out; 8755 } 8756 clear_nlink(inode); 8757 /* One for the block groups ref */ 8758 spin_lock(&block_group->lock); 8759 if (block_group->iref) { 8760 block_group->iref = 0; 8761 block_group->inode = NULL; 8762 spin_unlock(&block_group->lock); 8763 iput(inode); 8764 } else { 8765 spin_unlock(&block_group->lock); 8766 } 8767 /* One for our lookup ref */ 8768 btrfs_add_delayed_iput(inode); 8769 } 8770 8771 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8772 key.offset = block_group->key.objectid; 8773 key.type = 0; 8774 8775 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8776 if (ret < 0) 8777 goto out; 8778 if (ret > 0) 8779 btrfs_release_path(path); 8780 if (ret == 0) { 8781 ret = btrfs_del_item(trans, tree_root, path); 8782 if (ret) 8783 goto out; 8784 btrfs_release_path(path); 8785 } 8786 8787 spin_lock(&root->fs_info->block_group_cache_lock); 8788 rb_erase(&block_group->cache_node, 8789 &root->fs_info->block_group_cache_tree); 8790 8791 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8792 root->fs_info->first_logical_byte = (u64)-1; 8793 spin_unlock(&root->fs_info->block_group_cache_lock); 8794 8795 down_write(&block_group->space_info->groups_sem); 8796 /* 8797 * we must use list_del_init so people can check to see if they 8798 * are still on the list after taking the semaphore 8799 */ 8800 list_del_init(&block_group->list); 8801 if (list_empty(&block_group->space_info->block_groups[index])) 8802 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8803 up_write(&block_group->space_info->groups_sem); 8804 8805 if (block_group->cached == BTRFS_CACHE_STARTED) 8806 wait_block_group_cache_done(block_group); 8807 8808 btrfs_remove_free_space_cache(block_group); 8809 8810 spin_lock(&block_group->space_info->lock); 8811 block_group->space_info->total_bytes -= block_group->key.offset; 8812 block_group->space_info->bytes_readonly -= block_group->key.offset; 8813 block_group->space_info->disk_total -= block_group->key.offset * factor; 8814 spin_unlock(&block_group->space_info->lock); 8815 8816 memcpy(&key, &block_group->key, sizeof(key)); 8817 8818 btrfs_clear_space_info_full(root->fs_info); 8819 8820 btrfs_put_block_group(block_group); 8821 btrfs_put_block_group(block_group); 8822 8823 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8824 if (ret > 0) 8825 ret = -EIO; 8826 if (ret < 0) 8827 goto out; 8828 8829 ret = btrfs_del_item(trans, root, path); 8830 out: 8831 btrfs_free_path(path); 8832 return ret; 8833 } 8834 8835 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8836 { 8837 struct btrfs_space_info *space_info; 8838 struct btrfs_super_block *disk_super; 8839 u64 features; 8840 u64 flags; 8841 int mixed = 0; 8842 int ret; 8843 8844 disk_super = fs_info->super_copy; 8845 if (!btrfs_super_root(disk_super)) 8846 return 1; 8847 8848 features = btrfs_super_incompat_flags(disk_super); 8849 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8850 mixed = 1; 8851 8852 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8853 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8854 if (ret) 8855 goto out; 8856 8857 if (mixed) { 8858 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8859 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8860 } else { 8861 flags = BTRFS_BLOCK_GROUP_METADATA; 8862 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8863 if (ret) 8864 goto out; 8865 8866 flags = BTRFS_BLOCK_GROUP_DATA; 8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8868 } 8869 out: 8870 return ret; 8871 } 8872 8873 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8874 { 8875 return unpin_extent_range(root, start, end); 8876 } 8877 8878 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8879 u64 num_bytes, u64 *actual_bytes) 8880 { 8881 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8882 } 8883 8884 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8885 { 8886 struct btrfs_fs_info *fs_info = root->fs_info; 8887 struct btrfs_block_group_cache *cache = NULL; 8888 u64 group_trimmed; 8889 u64 start; 8890 u64 end; 8891 u64 trimmed = 0; 8892 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8893 int ret = 0; 8894 8895 /* 8896 * try to trim all FS space, our block group may start from non-zero. 8897 */ 8898 if (range->len == total_bytes) 8899 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8900 else 8901 cache = btrfs_lookup_block_group(fs_info, range->start); 8902 8903 while (cache) { 8904 if (cache->key.objectid >= (range->start + range->len)) { 8905 btrfs_put_block_group(cache); 8906 break; 8907 } 8908 8909 start = max(range->start, cache->key.objectid); 8910 end = min(range->start + range->len, 8911 cache->key.objectid + cache->key.offset); 8912 8913 if (end - start >= range->minlen) { 8914 if (!block_group_cache_done(cache)) { 8915 ret = cache_block_group(cache, 0); 8916 if (ret) { 8917 btrfs_put_block_group(cache); 8918 break; 8919 } 8920 ret = wait_block_group_cache_done(cache); 8921 if (ret) { 8922 btrfs_put_block_group(cache); 8923 break; 8924 } 8925 } 8926 ret = btrfs_trim_block_group(cache, 8927 &group_trimmed, 8928 start, 8929 end, 8930 range->minlen); 8931 8932 trimmed += group_trimmed; 8933 if (ret) { 8934 btrfs_put_block_group(cache); 8935 break; 8936 } 8937 } 8938 8939 cache = next_block_group(fs_info->tree_root, cache); 8940 } 8941 8942 range->len = trimmed; 8943 return ret; 8944 } 8945