1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include "compat.h" 25 #include "hash.h" 26 #include "crc32c.h" 27 #include "ctree.h" 28 #include "disk-io.h" 29 #include "print-tree.h" 30 #include "transaction.h" 31 #include "volumes.h" 32 #include "locking.h" 33 #include "ref-cache.h" 34 #include "free-space-cache.h" 35 36 #define PENDING_EXTENT_INSERT 0 37 #define PENDING_EXTENT_DELETE 1 38 #define PENDING_BACKREF_UPDATE 2 39 40 struct pending_extent_op { 41 int type; 42 u64 bytenr; 43 u64 num_bytes; 44 u64 parent; 45 u64 orig_parent; 46 u64 generation; 47 u64 orig_generation; 48 int level; 49 struct list_head list; 50 int del; 51 }; 52 53 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, 54 struct btrfs_root *root, u64 parent, 55 u64 root_objectid, u64 ref_generation, 56 u64 owner, struct btrfs_key *ins, 57 int ref_mod); 58 static int update_reserved_extents(struct btrfs_root *root, 59 u64 bytenr, u64 num, int reserve); 60 static int update_block_group(struct btrfs_trans_handle *trans, 61 struct btrfs_root *root, 62 u64 bytenr, u64 num_bytes, int alloc, 63 int mark_free); 64 static noinline int __btrfs_free_extent(struct btrfs_trans_handle *trans, 65 struct btrfs_root *root, 66 u64 bytenr, u64 num_bytes, u64 parent, 67 u64 root_objectid, u64 ref_generation, 68 u64 owner_objectid, int pin, 69 int ref_to_drop); 70 71 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 72 struct btrfs_root *extent_root, u64 alloc_bytes, 73 u64 flags, int force); 74 75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 76 { 77 return (cache->flags & bits) == bits; 78 } 79 80 /* 81 * this adds the block group to the fs_info rb tree for the block group 82 * cache 83 */ 84 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 85 struct btrfs_block_group_cache *block_group) 86 { 87 struct rb_node **p; 88 struct rb_node *parent = NULL; 89 struct btrfs_block_group_cache *cache; 90 91 spin_lock(&info->block_group_cache_lock); 92 p = &info->block_group_cache_tree.rb_node; 93 94 while (*p) { 95 parent = *p; 96 cache = rb_entry(parent, struct btrfs_block_group_cache, 97 cache_node); 98 if (block_group->key.objectid < cache->key.objectid) { 99 p = &(*p)->rb_left; 100 } else if (block_group->key.objectid > cache->key.objectid) { 101 p = &(*p)->rb_right; 102 } else { 103 spin_unlock(&info->block_group_cache_lock); 104 return -EEXIST; 105 } 106 } 107 108 rb_link_node(&block_group->cache_node, parent, p); 109 rb_insert_color(&block_group->cache_node, 110 &info->block_group_cache_tree); 111 spin_unlock(&info->block_group_cache_lock); 112 113 return 0; 114 } 115 116 /* 117 * This will return the block group at or after bytenr if contains is 0, else 118 * it will return the block group that contains the bytenr 119 */ 120 static struct btrfs_block_group_cache * 121 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 122 int contains) 123 { 124 struct btrfs_block_group_cache *cache, *ret = NULL; 125 struct rb_node *n; 126 u64 end, start; 127 128 spin_lock(&info->block_group_cache_lock); 129 n = info->block_group_cache_tree.rb_node; 130 131 while (n) { 132 cache = rb_entry(n, struct btrfs_block_group_cache, 133 cache_node); 134 end = cache->key.objectid + cache->key.offset - 1; 135 start = cache->key.objectid; 136 137 if (bytenr < start) { 138 if (!contains && (!ret || start < ret->key.objectid)) 139 ret = cache; 140 n = n->rb_left; 141 } else if (bytenr > start) { 142 if (contains && bytenr <= end) { 143 ret = cache; 144 break; 145 } 146 n = n->rb_right; 147 } else { 148 ret = cache; 149 break; 150 } 151 } 152 if (ret) 153 atomic_inc(&ret->count); 154 spin_unlock(&info->block_group_cache_lock); 155 156 return ret; 157 } 158 159 /* 160 * this is only called by cache_block_group, since we could have freed extents 161 * we need to check the pinned_extents for any extents that can't be used yet 162 * since their free space will be released as soon as the transaction commits. 163 */ 164 static int add_new_free_space(struct btrfs_block_group_cache *block_group, 165 struct btrfs_fs_info *info, u64 start, u64 end) 166 { 167 u64 extent_start, extent_end, size; 168 int ret; 169 170 while (start < end) { 171 ret = find_first_extent_bit(&info->pinned_extents, start, 172 &extent_start, &extent_end, 173 EXTENT_DIRTY); 174 if (ret) 175 break; 176 177 if (extent_start == start) { 178 start = extent_end + 1; 179 } else if (extent_start > start && extent_start < end) { 180 size = extent_start - start; 181 ret = btrfs_add_free_space(block_group, start, 182 size); 183 BUG_ON(ret); 184 start = extent_end + 1; 185 } else { 186 break; 187 } 188 } 189 190 if (start < end) { 191 size = end - start; 192 ret = btrfs_add_free_space(block_group, start, size); 193 BUG_ON(ret); 194 } 195 196 return 0; 197 } 198 199 static int remove_sb_from_cache(struct btrfs_root *root, 200 struct btrfs_block_group_cache *cache) 201 { 202 u64 bytenr; 203 u64 *logical; 204 int stripe_len; 205 int i, nr, ret; 206 207 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 208 bytenr = btrfs_sb_offset(i); 209 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 210 cache->key.objectid, bytenr, 0, 211 &logical, &nr, &stripe_len); 212 BUG_ON(ret); 213 while (nr--) { 214 btrfs_remove_free_space(cache, logical[nr], 215 stripe_len); 216 } 217 kfree(logical); 218 } 219 return 0; 220 } 221 222 static int cache_block_group(struct btrfs_root *root, 223 struct btrfs_block_group_cache *block_group) 224 { 225 struct btrfs_path *path; 226 int ret = 0; 227 struct btrfs_key key; 228 struct extent_buffer *leaf; 229 int slot; 230 u64 last; 231 232 if (!block_group) 233 return 0; 234 235 root = root->fs_info->extent_root; 236 237 if (block_group->cached) 238 return 0; 239 240 path = btrfs_alloc_path(); 241 if (!path) 242 return -ENOMEM; 243 244 path->reada = 2; 245 /* 246 * we get into deadlocks with paths held by callers of this function. 247 * since the alloc_mutex is protecting things right now, just 248 * skip the locking here 249 */ 250 path->skip_locking = 1; 251 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 252 key.objectid = last; 253 key.offset = 0; 254 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 256 if (ret < 0) 257 goto err; 258 259 while (1) { 260 leaf = path->nodes[0]; 261 slot = path->slots[0]; 262 if (slot >= btrfs_header_nritems(leaf)) { 263 ret = btrfs_next_leaf(root, path); 264 if (ret < 0) 265 goto err; 266 if (ret == 0) 267 continue; 268 else 269 break; 270 } 271 btrfs_item_key_to_cpu(leaf, &key, slot); 272 if (key.objectid < block_group->key.objectid) 273 goto next; 274 275 if (key.objectid >= block_group->key.objectid + 276 block_group->key.offset) 277 break; 278 279 if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) { 280 add_new_free_space(block_group, root->fs_info, last, 281 key.objectid); 282 283 last = key.objectid + key.offset; 284 } 285 next: 286 path->slots[0]++; 287 } 288 289 add_new_free_space(block_group, root->fs_info, last, 290 block_group->key.objectid + 291 block_group->key.offset); 292 293 block_group->cached = 1; 294 remove_sb_from_cache(root, block_group); 295 ret = 0; 296 err: 297 btrfs_free_path(path); 298 return ret; 299 } 300 301 /* 302 * return the block group that starts at or after bytenr 303 */ 304 static struct btrfs_block_group_cache * 305 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 306 { 307 struct btrfs_block_group_cache *cache; 308 309 cache = block_group_cache_tree_search(info, bytenr, 0); 310 311 return cache; 312 } 313 314 /* 315 * return the block group that contains the given bytenr 316 */ 317 struct btrfs_block_group_cache *btrfs_lookup_block_group( 318 struct btrfs_fs_info *info, 319 u64 bytenr) 320 { 321 struct btrfs_block_group_cache *cache; 322 323 cache = block_group_cache_tree_search(info, bytenr, 1); 324 325 return cache; 326 } 327 328 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 329 { 330 if (atomic_dec_and_test(&cache->count)) 331 kfree(cache); 332 } 333 334 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 335 u64 flags) 336 { 337 struct list_head *head = &info->space_info; 338 struct btrfs_space_info *found; 339 340 rcu_read_lock(); 341 list_for_each_entry_rcu(found, head, list) { 342 if (found->flags == flags) { 343 rcu_read_unlock(); 344 return found; 345 } 346 } 347 rcu_read_unlock(); 348 return NULL; 349 } 350 351 /* 352 * after adding space to the filesystem, we need to clear the full flags 353 * on all the space infos. 354 */ 355 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 356 { 357 struct list_head *head = &info->space_info; 358 struct btrfs_space_info *found; 359 360 rcu_read_lock(); 361 list_for_each_entry_rcu(found, head, list) 362 found->full = 0; 363 rcu_read_unlock(); 364 } 365 366 static u64 div_factor(u64 num, int factor) 367 { 368 if (factor == 10) 369 return num; 370 num *= factor; 371 do_div(num, 10); 372 return num; 373 } 374 375 u64 btrfs_find_block_group(struct btrfs_root *root, 376 u64 search_start, u64 search_hint, int owner) 377 { 378 struct btrfs_block_group_cache *cache; 379 u64 used; 380 u64 last = max(search_hint, search_start); 381 u64 group_start = 0; 382 int full_search = 0; 383 int factor = 9; 384 int wrapped = 0; 385 again: 386 while (1) { 387 cache = btrfs_lookup_first_block_group(root->fs_info, last); 388 if (!cache) 389 break; 390 391 spin_lock(&cache->lock); 392 last = cache->key.objectid + cache->key.offset; 393 used = btrfs_block_group_used(&cache->item); 394 395 if ((full_search || !cache->ro) && 396 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 397 if (used + cache->pinned + cache->reserved < 398 div_factor(cache->key.offset, factor)) { 399 group_start = cache->key.objectid; 400 spin_unlock(&cache->lock); 401 btrfs_put_block_group(cache); 402 goto found; 403 } 404 } 405 spin_unlock(&cache->lock); 406 btrfs_put_block_group(cache); 407 cond_resched(); 408 } 409 if (!wrapped) { 410 last = search_start; 411 wrapped = 1; 412 goto again; 413 } 414 if (!full_search && factor < 10) { 415 last = search_start; 416 full_search = 1; 417 factor = 10; 418 goto again; 419 } 420 found: 421 return group_start; 422 } 423 424 /* simple helper to search for an existing extent at a given offset */ 425 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 426 { 427 int ret; 428 struct btrfs_key key; 429 struct btrfs_path *path; 430 431 path = btrfs_alloc_path(); 432 BUG_ON(!path); 433 key.objectid = start; 434 key.offset = len; 435 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 436 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 437 0, 0); 438 btrfs_free_path(path); 439 return ret; 440 } 441 442 /* 443 * Back reference rules. Back refs have three main goals: 444 * 445 * 1) differentiate between all holders of references to an extent so that 446 * when a reference is dropped we can make sure it was a valid reference 447 * before freeing the extent. 448 * 449 * 2) Provide enough information to quickly find the holders of an extent 450 * if we notice a given block is corrupted or bad. 451 * 452 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 453 * maintenance. This is actually the same as #2, but with a slightly 454 * different use case. 455 * 456 * File extents can be referenced by: 457 * 458 * - multiple snapshots, subvolumes, or different generations in one subvol 459 * - different files inside a single subvolume 460 * - different offsets inside a file (bookend extents in file.c) 461 * 462 * The extent ref structure has fields for: 463 * 464 * - Objectid of the subvolume root 465 * - Generation number of the tree holding the reference 466 * - objectid of the file holding the reference 467 * - number of references holding by parent node (alway 1 for tree blocks) 468 * 469 * Btree leaf may hold multiple references to a file extent. In most cases, 470 * these references are from same file and the corresponding offsets inside 471 * the file are close together. 472 * 473 * When a file extent is allocated the fields are filled in: 474 * (root_key.objectid, trans->transid, inode objectid, 1) 475 * 476 * When a leaf is cow'd new references are added for every file extent found 477 * in the leaf. It looks similar to the create case, but trans->transid will 478 * be different when the block is cow'd. 479 * 480 * (root_key.objectid, trans->transid, inode objectid, 481 * number of references in the leaf) 482 * 483 * When a file extent is removed either during snapshot deletion or 484 * file truncation, we find the corresponding back reference and check 485 * the following fields: 486 * 487 * (btrfs_header_owner(leaf), btrfs_header_generation(leaf), 488 * inode objectid) 489 * 490 * Btree extents can be referenced by: 491 * 492 * - Different subvolumes 493 * - Different generations of the same subvolume 494 * 495 * When a tree block is created, back references are inserted: 496 * 497 * (root->root_key.objectid, trans->transid, level, 1) 498 * 499 * When a tree block is cow'd, new back references are added for all the 500 * blocks it points to. If the tree block isn't in reference counted root, 501 * the old back references are removed. These new back references are of 502 * the form (trans->transid will have increased since creation): 503 * 504 * (root->root_key.objectid, trans->transid, level, 1) 505 * 506 * When a backref is in deleting, the following fields are checked: 507 * 508 * if backref was for a tree root: 509 * (btrfs_header_owner(itself), btrfs_header_generation(itself), level) 510 * else 511 * (btrfs_header_owner(parent), btrfs_header_generation(parent), level) 512 * 513 * Back Reference Key composing: 514 * 515 * The key objectid corresponds to the first byte in the extent, the key 516 * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first 517 * byte of parent extent. If a extent is tree root, the key offset is set 518 * to the key objectid. 519 */ 520 521 static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans, 522 struct btrfs_root *root, 523 struct btrfs_path *path, 524 u64 bytenr, u64 parent, 525 u64 ref_root, u64 ref_generation, 526 u64 owner_objectid, int del) 527 { 528 struct btrfs_key key; 529 struct btrfs_extent_ref *ref; 530 struct extent_buffer *leaf; 531 u64 ref_objectid; 532 int ret; 533 534 key.objectid = bytenr; 535 key.type = BTRFS_EXTENT_REF_KEY; 536 key.offset = parent; 537 538 ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1); 539 if (ret < 0) 540 goto out; 541 if (ret > 0) { 542 ret = -ENOENT; 543 goto out; 544 } 545 546 leaf = path->nodes[0]; 547 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); 548 ref_objectid = btrfs_ref_objectid(leaf, ref); 549 if (btrfs_ref_root(leaf, ref) != ref_root || 550 btrfs_ref_generation(leaf, ref) != ref_generation || 551 (ref_objectid != owner_objectid && 552 ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) { 553 ret = -EIO; 554 WARN_ON(1); 555 goto out; 556 } 557 ret = 0; 558 out: 559 return ret; 560 } 561 562 static noinline int insert_extent_backref(struct btrfs_trans_handle *trans, 563 struct btrfs_root *root, 564 struct btrfs_path *path, 565 u64 bytenr, u64 parent, 566 u64 ref_root, u64 ref_generation, 567 u64 owner_objectid, 568 int refs_to_add) 569 { 570 struct btrfs_key key; 571 struct extent_buffer *leaf; 572 struct btrfs_extent_ref *ref; 573 u32 num_refs; 574 int ret; 575 576 key.objectid = bytenr; 577 key.type = BTRFS_EXTENT_REF_KEY; 578 key.offset = parent; 579 580 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref)); 581 if (ret == 0) { 582 leaf = path->nodes[0]; 583 ref = btrfs_item_ptr(leaf, path->slots[0], 584 struct btrfs_extent_ref); 585 btrfs_set_ref_root(leaf, ref, ref_root); 586 btrfs_set_ref_generation(leaf, ref, ref_generation); 587 btrfs_set_ref_objectid(leaf, ref, owner_objectid); 588 btrfs_set_ref_num_refs(leaf, ref, refs_to_add); 589 } else if (ret == -EEXIST) { 590 u64 existing_owner; 591 592 BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID); 593 leaf = path->nodes[0]; 594 ref = btrfs_item_ptr(leaf, path->slots[0], 595 struct btrfs_extent_ref); 596 if (btrfs_ref_root(leaf, ref) != ref_root || 597 btrfs_ref_generation(leaf, ref) != ref_generation) { 598 ret = -EIO; 599 WARN_ON(1); 600 goto out; 601 } 602 603 num_refs = btrfs_ref_num_refs(leaf, ref); 604 BUG_ON(num_refs == 0); 605 btrfs_set_ref_num_refs(leaf, ref, num_refs + refs_to_add); 606 607 existing_owner = btrfs_ref_objectid(leaf, ref); 608 if (existing_owner != owner_objectid && 609 existing_owner != BTRFS_MULTIPLE_OBJECTIDS) { 610 btrfs_set_ref_objectid(leaf, ref, 611 BTRFS_MULTIPLE_OBJECTIDS); 612 } 613 ret = 0; 614 } else { 615 goto out; 616 } 617 btrfs_unlock_up_safe(path, 1); 618 btrfs_mark_buffer_dirty(path->nodes[0]); 619 out: 620 btrfs_release_path(root, path); 621 return ret; 622 } 623 624 static noinline int remove_extent_backref(struct btrfs_trans_handle *trans, 625 struct btrfs_root *root, 626 struct btrfs_path *path, 627 int refs_to_drop) 628 { 629 struct extent_buffer *leaf; 630 struct btrfs_extent_ref *ref; 631 u32 num_refs; 632 int ret = 0; 633 634 leaf = path->nodes[0]; 635 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref); 636 num_refs = btrfs_ref_num_refs(leaf, ref); 637 BUG_ON(num_refs < refs_to_drop); 638 num_refs -= refs_to_drop; 639 if (num_refs == 0) { 640 ret = btrfs_del_item(trans, root, path); 641 } else { 642 btrfs_set_ref_num_refs(leaf, ref, num_refs); 643 btrfs_mark_buffer_dirty(leaf); 644 } 645 btrfs_release_path(root, path); 646 return ret; 647 } 648 649 #ifdef BIO_RW_DISCARD 650 static void btrfs_issue_discard(struct block_device *bdev, 651 u64 start, u64 len) 652 { 653 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL); 654 } 655 #endif 656 657 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 658 u64 num_bytes) 659 { 660 #ifdef BIO_RW_DISCARD 661 int ret; 662 u64 map_length = num_bytes; 663 struct btrfs_multi_bio *multi = NULL; 664 665 /* Tell the block device(s) that the sectors can be discarded */ 666 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, 667 bytenr, &map_length, &multi, 0); 668 if (!ret) { 669 struct btrfs_bio_stripe *stripe = multi->stripes; 670 int i; 671 672 if (map_length > num_bytes) 673 map_length = num_bytes; 674 675 for (i = 0; i < multi->num_stripes; i++, stripe++) { 676 btrfs_issue_discard(stripe->dev->bdev, 677 stripe->physical, 678 map_length); 679 } 680 kfree(multi); 681 } 682 683 return ret; 684 #else 685 return 0; 686 #endif 687 } 688 689 static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans, 690 struct btrfs_root *root, u64 bytenr, 691 u64 num_bytes, 692 u64 orig_parent, u64 parent, 693 u64 orig_root, u64 ref_root, 694 u64 orig_generation, u64 ref_generation, 695 u64 owner_objectid) 696 { 697 int ret; 698 int pin = owner_objectid < BTRFS_FIRST_FREE_OBJECTID; 699 700 ret = btrfs_update_delayed_ref(trans, bytenr, num_bytes, 701 orig_parent, parent, orig_root, 702 ref_root, orig_generation, 703 ref_generation, owner_objectid, pin); 704 BUG_ON(ret); 705 return ret; 706 } 707 708 int btrfs_update_extent_ref(struct btrfs_trans_handle *trans, 709 struct btrfs_root *root, u64 bytenr, 710 u64 num_bytes, u64 orig_parent, u64 parent, 711 u64 ref_root, u64 ref_generation, 712 u64 owner_objectid) 713 { 714 int ret; 715 if (ref_root == BTRFS_TREE_LOG_OBJECTID && 716 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 717 return 0; 718 719 ret = __btrfs_update_extent_ref(trans, root, bytenr, num_bytes, 720 orig_parent, parent, ref_root, 721 ref_root, ref_generation, 722 ref_generation, owner_objectid); 723 return ret; 724 } 725 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 726 struct btrfs_root *root, u64 bytenr, 727 u64 num_bytes, 728 u64 orig_parent, u64 parent, 729 u64 orig_root, u64 ref_root, 730 u64 orig_generation, u64 ref_generation, 731 u64 owner_objectid) 732 { 733 int ret; 734 735 ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, ref_root, 736 ref_generation, owner_objectid, 737 BTRFS_ADD_DELAYED_REF, 0); 738 BUG_ON(ret); 739 return ret; 740 } 741 742 static noinline_for_stack int add_extent_ref(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 num_bytes, u64 parent, u64 ref_root, 745 u64 ref_generation, u64 owner_objectid, 746 int refs_to_add) 747 { 748 struct btrfs_path *path; 749 int ret; 750 struct btrfs_key key; 751 struct extent_buffer *l; 752 struct btrfs_extent_item *item; 753 u32 refs; 754 755 path = btrfs_alloc_path(); 756 if (!path) 757 return -ENOMEM; 758 759 path->reada = 1; 760 path->leave_spinning = 1; 761 key.objectid = bytenr; 762 key.type = BTRFS_EXTENT_ITEM_KEY; 763 key.offset = num_bytes; 764 765 /* first find the extent item and update its reference count */ 766 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 767 path, 0, 1); 768 if (ret < 0) { 769 btrfs_set_path_blocking(path); 770 return ret; 771 } 772 773 if (ret > 0) { 774 WARN_ON(1); 775 btrfs_free_path(path); 776 return -EIO; 777 } 778 l = path->nodes[0]; 779 780 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 781 if (key.objectid != bytenr) { 782 btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]); 783 printk(KERN_ERR "btrfs wanted %llu found %llu\n", 784 (unsigned long long)bytenr, 785 (unsigned long long)key.objectid); 786 BUG(); 787 } 788 BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY); 789 790 item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item); 791 792 refs = btrfs_extent_refs(l, item); 793 btrfs_set_extent_refs(l, item, refs + refs_to_add); 794 btrfs_unlock_up_safe(path, 1); 795 796 btrfs_mark_buffer_dirty(path->nodes[0]); 797 798 btrfs_release_path(root->fs_info->extent_root, path); 799 800 path->reada = 1; 801 path->leave_spinning = 1; 802 803 /* now insert the actual backref */ 804 ret = insert_extent_backref(trans, root->fs_info->extent_root, 805 path, bytenr, parent, 806 ref_root, ref_generation, 807 owner_objectid, refs_to_add); 808 BUG_ON(ret); 809 btrfs_free_path(path); 810 return 0; 811 } 812 813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 814 struct btrfs_root *root, 815 u64 bytenr, u64 num_bytes, u64 parent, 816 u64 ref_root, u64 ref_generation, 817 u64 owner_objectid) 818 { 819 int ret; 820 if (ref_root == BTRFS_TREE_LOG_OBJECTID && 821 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 822 return 0; 823 824 ret = __btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0, parent, 825 0, ref_root, 0, ref_generation, 826 owner_objectid); 827 return ret; 828 } 829 830 static int drop_delayed_ref(struct btrfs_trans_handle *trans, 831 struct btrfs_root *root, 832 struct btrfs_delayed_ref_node *node) 833 { 834 int ret = 0; 835 struct btrfs_delayed_ref *ref = btrfs_delayed_node_to_ref(node); 836 837 BUG_ON(node->ref_mod == 0); 838 ret = __btrfs_free_extent(trans, root, node->bytenr, node->num_bytes, 839 node->parent, ref->root, ref->generation, 840 ref->owner_objectid, ref->pin, node->ref_mod); 841 842 return ret; 843 } 844 845 /* helper function to actually process a single delayed ref entry */ 846 static noinline int run_one_delayed_ref(struct btrfs_trans_handle *trans, 847 struct btrfs_root *root, 848 struct btrfs_delayed_ref_node *node, 849 int insert_reserved) 850 { 851 int ret; 852 struct btrfs_delayed_ref *ref; 853 854 if (node->parent == (u64)-1) { 855 struct btrfs_delayed_ref_head *head; 856 /* 857 * we've hit the end of the chain and we were supposed 858 * to insert this extent into the tree. But, it got 859 * deleted before we ever needed to insert it, so all 860 * we have to do is clean up the accounting 861 */ 862 if (insert_reserved) { 863 update_reserved_extents(root, node->bytenr, 864 node->num_bytes, 0); 865 } 866 head = btrfs_delayed_node_to_head(node); 867 mutex_unlock(&head->mutex); 868 return 0; 869 } 870 871 ref = btrfs_delayed_node_to_ref(node); 872 if (ref->action == BTRFS_ADD_DELAYED_REF) { 873 if (insert_reserved) { 874 struct btrfs_key ins; 875 876 ins.objectid = node->bytenr; 877 ins.offset = node->num_bytes; 878 ins.type = BTRFS_EXTENT_ITEM_KEY; 879 880 /* record the full extent allocation */ 881 ret = __btrfs_alloc_reserved_extent(trans, root, 882 node->parent, ref->root, 883 ref->generation, ref->owner_objectid, 884 &ins, node->ref_mod); 885 update_reserved_extents(root, node->bytenr, 886 node->num_bytes, 0); 887 } else { 888 /* just add one backref */ 889 ret = add_extent_ref(trans, root, node->bytenr, 890 node->num_bytes, 891 node->parent, ref->root, ref->generation, 892 ref->owner_objectid, node->ref_mod); 893 } 894 BUG_ON(ret); 895 } else if (ref->action == BTRFS_DROP_DELAYED_REF) { 896 WARN_ON(insert_reserved); 897 ret = drop_delayed_ref(trans, root, node); 898 } 899 return 0; 900 } 901 902 static noinline struct btrfs_delayed_ref_node * 903 select_delayed_ref(struct btrfs_delayed_ref_head *head) 904 { 905 struct rb_node *node; 906 struct btrfs_delayed_ref_node *ref; 907 int action = BTRFS_ADD_DELAYED_REF; 908 again: 909 /* 910 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 911 * this prevents ref count from going down to zero when 912 * there still are pending delayed ref. 913 */ 914 node = rb_prev(&head->node.rb_node); 915 while (1) { 916 if (!node) 917 break; 918 ref = rb_entry(node, struct btrfs_delayed_ref_node, 919 rb_node); 920 if (ref->bytenr != head->node.bytenr) 921 break; 922 if (btrfs_delayed_node_to_ref(ref)->action == action) 923 return ref; 924 node = rb_prev(node); 925 } 926 if (action == BTRFS_ADD_DELAYED_REF) { 927 action = BTRFS_DROP_DELAYED_REF; 928 goto again; 929 } 930 return NULL; 931 } 932 933 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 934 struct btrfs_root *root, 935 struct list_head *cluster) 936 { 937 struct btrfs_delayed_ref_root *delayed_refs; 938 struct btrfs_delayed_ref_node *ref; 939 struct btrfs_delayed_ref_head *locked_ref = NULL; 940 int ret; 941 int count = 0; 942 int must_insert_reserved = 0; 943 944 delayed_refs = &trans->transaction->delayed_refs; 945 while (1) { 946 if (!locked_ref) { 947 /* pick a new head ref from the cluster list */ 948 if (list_empty(cluster)) 949 break; 950 951 locked_ref = list_entry(cluster->next, 952 struct btrfs_delayed_ref_head, cluster); 953 954 /* grab the lock that says we are going to process 955 * all the refs for this head */ 956 ret = btrfs_delayed_ref_lock(trans, locked_ref); 957 958 /* 959 * we may have dropped the spin lock to get the head 960 * mutex lock, and that might have given someone else 961 * time to free the head. If that's true, it has been 962 * removed from our list and we can move on. 963 */ 964 if (ret == -EAGAIN) { 965 locked_ref = NULL; 966 count++; 967 continue; 968 } 969 } 970 971 /* 972 * record the must insert reserved flag before we 973 * drop the spin lock. 974 */ 975 must_insert_reserved = locked_ref->must_insert_reserved; 976 locked_ref->must_insert_reserved = 0; 977 978 /* 979 * locked_ref is the head node, so we have to go one 980 * node back for any delayed ref updates 981 */ 982 ref = select_delayed_ref(locked_ref); 983 if (!ref) { 984 /* All delayed refs have been processed, Go ahead 985 * and send the head node to run_one_delayed_ref, 986 * so that any accounting fixes can happen 987 */ 988 ref = &locked_ref->node; 989 list_del_init(&locked_ref->cluster); 990 locked_ref = NULL; 991 } 992 993 ref->in_tree = 0; 994 rb_erase(&ref->rb_node, &delayed_refs->root); 995 delayed_refs->num_entries--; 996 spin_unlock(&delayed_refs->lock); 997 998 ret = run_one_delayed_ref(trans, root, ref, 999 must_insert_reserved); 1000 BUG_ON(ret); 1001 btrfs_put_delayed_ref(ref); 1002 1003 count++; 1004 cond_resched(); 1005 spin_lock(&delayed_refs->lock); 1006 } 1007 return count; 1008 } 1009 1010 /* 1011 * this starts processing the delayed reference count updates and 1012 * extent insertions we have queued up so far. count can be 1013 * 0, which means to process everything in the tree at the start 1014 * of the run (but not newly added entries), or it can be some target 1015 * number you'd like to process. 1016 */ 1017 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1018 struct btrfs_root *root, unsigned long count) 1019 { 1020 struct rb_node *node; 1021 struct btrfs_delayed_ref_root *delayed_refs; 1022 struct btrfs_delayed_ref_node *ref; 1023 struct list_head cluster; 1024 int ret; 1025 int run_all = count == (unsigned long)-1; 1026 int run_most = 0; 1027 1028 if (root == root->fs_info->extent_root) 1029 root = root->fs_info->tree_root; 1030 1031 delayed_refs = &trans->transaction->delayed_refs; 1032 INIT_LIST_HEAD(&cluster); 1033 again: 1034 spin_lock(&delayed_refs->lock); 1035 if (count == 0) { 1036 count = delayed_refs->num_entries * 2; 1037 run_most = 1; 1038 } 1039 while (1) { 1040 if (!(run_all || run_most) && 1041 delayed_refs->num_heads_ready < 64) 1042 break; 1043 1044 /* 1045 * go find something we can process in the rbtree. We start at 1046 * the beginning of the tree, and then build a cluster 1047 * of refs to process starting at the first one we are able to 1048 * lock 1049 */ 1050 ret = btrfs_find_ref_cluster(trans, &cluster, 1051 delayed_refs->run_delayed_start); 1052 if (ret) 1053 break; 1054 1055 ret = run_clustered_refs(trans, root, &cluster); 1056 BUG_ON(ret < 0); 1057 1058 count -= min_t(unsigned long, ret, count); 1059 1060 if (count == 0) 1061 break; 1062 } 1063 1064 if (run_all) { 1065 node = rb_first(&delayed_refs->root); 1066 if (!node) 1067 goto out; 1068 count = (unsigned long)-1; 1069 1070 while (node) { 1071 ref = rb_entry(node, struct btrfs_delayed_ref_node, 1072 rb_node); 1073 if (btrfs_delayed_ref_is_head(ref)) { 1074 struct btrfs_delayed_ref_head *head; 1075 1076 head = btrfs_delayed_node_to_head(ref); 1077 atomic_inc(&ref->refs); 1078 1079 spin_unlock(&delayed_refs->lock); 1080 mutex_lock(&head->mutex); 1081 mutex_unlock(&head->mutex); 1082 1083 btrfs_put_delayed_ref(ref); 1084 cond_resched(); 1085 goto again; 1086 } 1087 node = rb_next(node); 1088 } 1089 spin_unlock(&delayed_refs->lock); 1090 schedule_timeout(1); 1091 goto again; 1092 } 1093 out: 1094 spin_unlock(&delayed_refs->lock); 1095 return 0; 1096 } 1097 1098 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 1099 struct btrfs_root *root, u64 objectid, u64 bytenr) 1100 { 1101 struct btrfs_root *extent_root = root->fs_info->extent_root; 1102 struct btrfs_path *path; 1103 struct extent_buffer *leaf; 1104 struct btrfs_extent_ref *ref_item; 1105 struct btrfs_key key; 1106 struct btrfs_key found_key; 1107 u64 ref_root; 1108 u64 last_snapshot; 1109 u32 nritems; 1110 int ret; 1111 1112 key.objectid = bytenr; 1113 key.offset = (u64)-1; 1114 key.type = BTRFS_EXTENT_ITEM_KEY; 1115 1116 path = btrfs_alloc_path(); 1117 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1118 if (ret < 0) 1119 goto out; 1120 BUG_ON(ret == 0); 1121 1122 ret = -ENOENT; 1123 if (path->slots[0] == 0) 1124 goto out; 1125 1126 path->slots[0]--; 1127 leaf = path->nodes[0]; 1128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1129 1130 if (found_key.objectid != bytenr || 1131 found_key.type != BTRFS_EXTENT_ITEM_KEY) 1132 goto out; 1133 1134 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1135 while (1) { 1136 leaf = path->nodes[0]; 1137 nritems = btrfs_header_nritems(leaf); 1138 if (path->slots[0] >= nritems) { 1139 ret = btrfs_next_leaf(extent_root, path); 1140 if (ret < 0) 1141 goto out; 1142 if (ret == 0) 1143 continue; 1144 break; 1145 } 1146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1147 if (found_key.objectid != bytenr) 1148 break; 1149 1150 if (found_key.type != BTRFS_EXTENT_REF_KEY) { 1151 path->slots[0]++; 1152 continue; 1153 } 1154 1155 ref_item = btrfs_item_ptr(leaf, path->slots[0], 1156 struct btrfs_extent_ref); 1157 ref_root = btrfs_ref_root(leaf, ref_item); 1158 if ((ref_root != root->root_key.objectid && 1159 ref_root != BTRFS_TREE_LOG_OBJECTID) || 1160 objectid != btrfs_ref_objectid(leaf, ref_item)) { 1161 ret = 1; 1162 goto out; 1163 } 1164 if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) { 1165 ret = 1; 1166 goto out; 1167 } 1168 1169 path->slots[0]++; 1170 } 1171 ret = 0; 1172 out: 1173 btrfs_free_path(path); 1174 return ret; 1175 } 1176 1177 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1178 struct extent_buffer *buf, u32 nr_extents) 1179 { 1180 struct btrfs_key key; 1181 struct btrfs_file_extent_item *fi; 1182 u64 root_gen; 1183 u32 nritems; 1184 int i; 1185 int level; 1186 int ret = 0; 1187 int shared = 0; 1188 1189 if (!root->ref_cows) 1190 return 0; 1191 1192 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1193 shared = 0; 1194 root_gen = root->root_key.offset; 1195 } else { 1196 shared = 1; 1197 root_gen = trans->transid - 1; 1198 } 1199 1200 level = btrfs_header_level(buf); 1201 nritems = btrfs_header_nritems(buf); 1202 1203 if (level == 0) { 1204 struct btrfs_leaf_ref *ref; 1205 struct btrfs_extent_info *info; 1206 1207 ref = btrfs_alloc_leaf_ref(root, nr_extents); 1208 if (!ref) { 1209 ret = -ENOMEM; 1210 goto out; 1211 } 1212 1213 ref->root_gen = root_gen; 1214 ref->bytenr = buf->start; 1215 ref->owner = btrfs_header_owner(buf); 1216 ref->generation = btrfs_header_generation(buf); 1217 ref->nritems = nr_extents; 1218 info = ref->extents; 1219 1220 for (i = 0; nr_extents > 0 && i < nritems; i++) { 1221 u64 disk_bytenr; 1222 btrfs_item_key_to_cpu(buf, &key, i); 1223 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 1224 continue; 1225 fi = btrfs_item_ptr(buf, i, 1226 struct btrfs_file_extent_item); 1227 if (btrfs_file_extent_type(buf, fi) == 1228 BTRFS_FILE_EXTENT_INLINE) 1229 continue; 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1231 if (disk_bytenr == 0) 1232 continue; 1233 1234 info->bytenr = disk_bytenr; 1235 info->num_bytes = 1236 btrfs_file_extent_disk_num_bytes(buf, fi); 1237 info->objectid = key.objectid; 1238 info->offset = key.offset; 1239 info++; 1240 } 1241 1242 ret = btrfs_add_leaf_ref(root, ref, shared); 1243 if (ret == -EEXIST && shared) { 1244 struct btrfs_leaf_ref *old; 1245 old = btrfs_lookup_leaf_ref(root, ref->bytenr); 1246 BUG_ON(!old); 1247 btrfs_remove_leaf_ref(root, old); 1248 btrfs_free_leaf_ref(root, old); 1249 ret = btrfs_add_leaf_ref(root, ref, shared); 1250 } 1251 WARN_ON(ret); 1252 btrfs_free_leaf_ref(root, ref); 1253 } 1254 out: 1255 return ret; 1256 } 1257 1258 /* when a block goes through cow, we update the reference counts of 1259 * everything that block points to. The internal pointers of the block 1260 * can be in just about any order, and it is likely to have clusters of 1261 * things that are close together and clusters of things that are not. 1262 * 1263 * To help reduce the seeks that come with updating all of these reference 1264 * counts, sort them by byte number before actual updates are done. 1265 * 1266 * struct refsort is used to match byte number to slot in the btree block. 1267 * we sort based on the byte number and then use the slot to actually 1268 * find the item. 1269 * 1270 * struct refsort is smaller than strcut btrfs_item and smaller than 1271 * struct btrfs_key_ptr. Since we're currently limited to the page size 1272 * for a btree block, there's no way for a kmalloc of refsorts for a 1273 * single node to be bigger than a page. 1274 */ 1275 struct refsort { 1276 u64 bytenr; 1277 u32 slot; 1278 }; 1279 1280 /* 1281 * for passing into sort() 1282 */ 1283 static int refsort_cmp(const void *a_void, const void *b_void) 1284 { 1285 const struct refsort *a = a_void; 1286 const struct refsort *b = b_void; 1287 1288 if (a->bytenr < b->bytenr) 1289 return -1; 1290 if (a->bytenr > b->bytenr) 1291 return 1; 1292 return 0; 1293 } 1294 1295 1296 noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans, 1297 struct btrfs_root *root, 1298 struct extent_buffer *orig_buf, 1299 struct extent_buffer *buf, u32 *nr_extents) 1300 { 1301 u64 bytenr; 1302 u64 ref_root; 1303 u64 orig_root; 1304 u64 ref_generation; 1305 u64 orig_generation; 1306 struct refsort *sorted; 1307 u32 nritems; 1308 u32 nr_file_extents = 0; 1309 struct btrfs_key key; 1310 struct btrfs_file_extent_item *fi; 1311 int i; 1312 int level; 1313 int ret = 0; 1314 int faili = 0; 1315 int refi = 0; 1316 int slot; 1317 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 1318 u64, u64, u64, u64, u64, u64, u64, u64, u64); 1319 1320 ref_root = btrfs_header_owner(buf); 1321 ref_generation = btrfs_header_generation(buf); 1322 orig_root = btrfs_header_owner(orig_buf); 1323 orig_generation = btrfs_header_generation(orig_buf); 1324 1325 nritems = btrfs_header_nritems(buf); 1326 level = btrfs_header_level(buf); 1327 1328 sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS); 1329 BUG_ON(!sorted); 1330 1331 if (root->ref_cows) { 1332 process_func = __btrfs_inc_extent_ref; 1333 } else { 1334 if (level == 0 && 1335 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 1336 goto out; 1337 if (level != 0 && 1338 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) 1339 goto out; 1340 process_func = __btrfs_update_extent_ref; 1341 } 1342 1343 /* 1344 * we make two passes through the items. In the first pass we 1345 * only record the byte number and slot. Then we sort based on 1346 * byte number and do the actual work based on the sorted results 1347 */ 1348 for (i = 0; i < nritems; i++) { 1349 cond_resched(); 1350 if (level == 0) { 1351 btrfs_item_key_to_cpu(buf, &key, i); 1352 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 1353 continue; 1354 fi = btrfs_item_ptr(buf, i, 1355 struct btrfs_file_extent_item); 1356 if (btrfs_file_extent_type(buf, fi) == 1357 BTRFS_FILE_EXTENT_INLINE) 1358 continue; 1359 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1360 if (bytenr == 0) 1361 continue; 1362 1363 nr_file_extents++; 1364 sorted[refi].bytenr = bytenr; 1365 sorted[refi].slot = i; 1366 refi++; 1367 } else { 1368 bytenr = btrfs_node_blockptr(buf, i); 1369 sorted[refi].bytenr = bytenr; 1370 sorted[refi].slot = i; 1371 refi++; 1372 } 1373 } 1374 /* 1375 * if refi == 0, we didn't actually put anything into the sorted 1376 * array and we're done 1377 */ 1378 if (refi == 0) 1379 goto out; 1380 1381 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL); 1382 1383 for (i = 0; i < refi; i++) { 1384 cond_resched(); 1385 slot = sorted[i].slot; 1386 bytenr = sorted[i].bytenr; 1387 1388 if (level == 0) { 1389 btrfs_item_key_to_cpu(buf, &key, slot); 1390 fi = btrfs_item_ptr(buf, slot, 1391 struct btrfs_file_extent_item); 1392 1393 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1394 if (bytenr == 0) 1395 continue; 1396 1397 ret = process_func(trans, root, bytenr, 1398 btrfs_file_extent_disk_num_bytes(buf, fi), 1399 orig_buf->start, buf->start, 1400 orig_root, ref_root, 1401 orig_generation, ref_generation, 1402 key.objectid); 1403 1404 if (ret) { 1405 faili = slot; 1406 WARN_ON(1); 1407 goto fail; 1408 } 1409 } else { 1410 ret = process_func(trans, root, bytenr, buf->len, 1411 orig_buf->start, buf->start, 1412 orig_root, ref_root, 1413 orig_generation, ref_generation, 1414 level - 1); 1415 if (ret) { 1416 faili = slot; 1417 WARN_ON(1); 1418 goto fail; 1419 } 1420 } 1421 } 1422 out: 1423 kfree(sorted); 1424 if (nr_extents) { 1425 if (level == 0) 1426 *nr_extents = nr_file_extents; 1427 else 1428 *nr_extents = nritems; 1429 } 1430 return 0; 1431 fail: 1432 kfree(sorted); 1433 WARN_ON(1); 1434 return ret; 1435 } 1436 1437 int btrfs_update_ref(struct btrfs_trans_handle *trans, 1438 struct btrfs_root *root, struct extent_buffer *orig_buf, 1439 struct extent_buffer *buf, int start_slot, int nr) 1440 1441 { 1442 u64 bytenr; 1443 u64 ref_root; 1444 u64 orig_root; 1445 u64 ref_generation; 1446 u64 orig_generation; 1447 struct btrfs_key key; 1448 struct btrfs_file_extent_item *fi; 1449 int i; 1450 int ret; 1451 int slot; 1452 int level; 1453 1454 BUG_ON(start_slot < 0); 1455 BUG_ON(start_slot + nr > btrfs_header_nritems(buf)); 1456 1457 ref_root = btrfs_header_owner(buf); 1458 ref_generation = btrfs_header_generation(buf); 1459 orig_root = btrfs_header_owner(orig_buf); 1460 orig_generation = btrfs_header_generation(orig_buf); 1461 level = btrfs_header_level(buf); 1462 1463 if (!root->ref_cows) { 1464 if (level == 0 && 1465 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 1466 return 0; 1467 if (level != 0 && 1468 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) 1469 return 0; 1470 } 1471 1472 for (i = 0, slot = start_slot; i < nr; i++, slot++) { 1473 cond_resched(); 1474 if (level == 0) { 1475 btrfs_item_key_to_cpu(buf, &key, slot); 1476 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 1477 continue; 1478 fi = btrfs_item_ptr(buf, slot, 1479 struct btrfs_file_extent_item); 1480 if (btrfs_file_extent_type(buf, fi) == 1481 BTRFS_FILE_EXTENT_INLINE) 1482 continue; 1483 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 1484 if (bytenr == 0) 1485 continue; 1486 ret = __btrfs_update_extent_ref(trans, root, bytenr, 1487 btrfs_file_extent_disk_num_bytes(buf, fi), 1488 orig_buf->start, buf->start, 1489 orig_root, ref_root, orig_generation, 1490 ref_generation, key.objectid); 1491 if (ret) 1492 goto fail; 1493 } else { 1494 bytenr = btrfs_node_blockptr(buf, slot); 1495 ret = __btrfs_update_extent_ref(trans, root, bytenr, 1496 buf->len, orig_buf->start, 1497 buf->start, orig_root, ref_root, 1498 orig_generation, ref_generation, 1499 level - 1); 1500 if (ret) 1501 goto fail; 1502 } 1503 } 1504 return 0; 1505 fail: 1506 WARN_ON(1); 1507 return -1; 1508 } 1509 1510 static int write_one_cache_group(struct btrfs_trans_handle *trans, 1511 struct btrfs_root *root, 1512 struct btrfs_path *path, 1513 struct btrfs_block_group_cache *cache) 1514 { 1515 int ret; 1516 struct btrfs_root *extent_root = root->fs_info->extent_root; 1517 unsigned long bi; 1518 struct extent_buffer *leaf; 1519 1520 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 1521 if (ret < 0) 1522 goto fail; 1523 BUG_ON(ret); 1524 1525 leaf = path->nodes[0]; 1526 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 1527 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 1528 btrfs_mark_buffer_dirty(leaf); 1529 btrfs_release_path(extent_root, path); 1530 fail: 1531 if (ret) 1532 return ret; 1533 return 0; 1534 1535 } 1536 1537 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root) 1539 { 1540 struct btrfs_block_group_cache *cache, *entry; 1541 struct rb_node *n; 1542 int err = 0; 1543 int werr = 0; 1544 struct btrfs_path *path; 1545 u64 last = 0; 1546 1547 path = btrfs_alloc_path(); 1548 if (!path) 1549 return -ENOMEM; 1550 1551 while (1) { 1552 cache = NULL; 1553 spin_lock(&root->fs_info->block_group_cache_lock); 1554 for (n = rb_first(&root->fs_info->block_group_cache_tree); 1555 n; n = rb_next(n)) { 1556 entry = rb_entry(n, struct btrfs_block_group_cache, 1557 cache_node); 1558 if (entry->dirty) { 1559 cache = entry; 1560 break; 1561 } 1562 } 1563 spin_unlock(&root->fs_info->block_group_cache_lock); 1564 1565 if (!cache) 1566 break; 1567 1568 cache->dirty = 0; 1569 last += cache->key.offset; 1570 1571 err = write_one_cache_group(trans, root, 1572 path, cache); 1573 /* 1574 * if we fail to write the cache group, we want 1575 * to keep it marked dirty in hopes that a later 1576 * write will work 1577 */ 1578 if (err) { 1579 werr = err; 1580 continue; 1581 } 1582 } 1583 btrfs_free_path(path); 1584 return werr; 1585 } 1586 1587 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 1588 { 1589 struct btrfs_block_group_cache *block_group; 1590 int readonly = 0; 1591 1592 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 1593 if (!block_group || block_group->ro) 1594 readonly = 1; 1595 if (block_group) 1596 btrfs_put_block_group(block_group); 1597 return readonly; 1598 } 1599 1600 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 1601 u64 total_bytes, u64 bytes_used, 1602 struct btrfs_space_info **space_info) 1603 { 1604 struct btrfs_space_info *found; 1605 1606 found = __find_space_info(info, flags); 1607 if (found) { 1608 spin_lock(&found->lock); 1609 found->total_bytes += total_bytes; 1610 found->bytes_used += bytes_used; 1611 found->full = 0; 1612 spin_unlock(&found->lock); 1613 *space_info = found; 1614 return 0; 1615 } 1616 found = kzalloc(sizeof(*found), GFP_NOFS); 1617 if (!found) 1618 return -ENOMEM; 1619 1620 INIT_LIST_HEAD(&found->block_groups); 1621 init_rwsem(&found->groups_sem); 1622 spin_lock_init(&found->lock); 1623 found->flags = flags; 1624 found->total_bytes = total_bytes; 1625 found->bytes_used = bytes_used; 1626 found->bytes_pinned = 0; 1627 found->bytes_reserved = 0; 1628 found->bytes_readonly = 0; 1629 found->bytes_delalloc = 0; 1630 found->full = 0; 1631 found->force_alloc = 0; 1632 *space_info = found; 1633 list_add_rcu(&found->list, &info->space_info); 1634 return 0; 1635 } 1636 1637 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 1638 { 1639 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | 1640 BTRFS_BLOCK_GROUP_RAID1 | 1641 BTRFS_BLOCK_GROUP_RAID10 | 1642 BTRFS_BLOCK_GROUP_DUP); 1643 if (extra_flags) { 1644 if (flags & BTRFS_BLOCK_GROUP_DATA) 1645 fs_info->avail_data_alloc_bits |= extra_flags; 1646 if (flags & BTRFS_BLOCK_GROUP_METADATA) 1647 fs_info->avail_metadata_alloc_bits |= extra_flags; 1648 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 1649 fs_info->avail_system_alloc_bits |= extra_flags; 1650 } 1651 } 1652 1653 static void set_block_group_readonly(struct btrfs_block_group_cache *cache) 1654 { 1655 spin_lock(&cache->space_info->lock); 1656 spin_lock(&cache->lock); 1657 if (!cache->ro) { 1658 cache->space_info->bytes_readonly += cache->key.offset - 1659 btrfs_block_group_used(&cache->item); 1660 cache->ro = 1; 1661 } 1662 spin_unlock(&cache->lock); 1663 spin_unlock(&cache->space_info->lock); 1664 } 1665 1666 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 1667 { 1668 u64 num_devices = root->fs_info->fs_devices->rw_devices; 1669 1670 if (num_devices == 1) 1671 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 1672 if (num_devices < 4) 1673 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 1674 1675 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 1676 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 1677 BTRFS_BLOCK_GROUP_RAID10))) { 1678 flags &= ~BTRFS_BLOCK_GROUP_DUP; 1679 } 1680 1681 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 1682 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 1683 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 1684 } 1685 1686 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 1687 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 1688 (flags & BTRFS_BLOCK_GROUP_RAID10) | 1689 (flags & BTRFS_BLOCK_GROUP_DUP))) 1690 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 1691 return flags; 1692 } 1693 1694 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data) 1695 { 1696 struct btrfs_fs_info *info = root->fs_info; 1697 u64 alloc_profile; 1698 1699 if (data) { 1700 alloc_profile = info->avail_data_alloc_bits & 1701 info->data_alloc_profile; 1702 data = BTRFS_BLOCK_GROUP_DATA | alloc_profile; 1703 } else if (root == root->fs_info->chunk_root) { 1704 alloc_profile = info->avail_system_alloc_bits & 1705 info->system_alloc_profile; 1706 data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile; 1707 } else { 1708 alloc_profile = info->avail_metadata_alloc_bits & 1709 info->metadata_alloc_profile; 1710 data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile; 1711 } 1712 1713 return btrfs_reduce_alloc_profile(root, data); 1714 } 1715 1716 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 1717 { 1718 u64 alloc_target; 1719 1720 alloc_target = btrfs_get_alloc_profile(root, 1); 1721 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 1722 alloc_target); 1723 } 1724 1725 /* 1726 * for now this just makes sure we have at least 5% of our metadata space free 1727 * for use. 1728 */ 1729 int btrfs_check_metadata_free_space(struct btrfs_root *root) 1730 { 1731 struct btrfs_fs_info *info = root->fs_info; 1732 struct btrfs_space_info *meta_sinfo; 1733 u64 alloc_target, thresh; 1734 int committed = 0, ret; 1735 1736 /* get the space info for where the metadata will live */ 1737 alloc_target = btrfs_get_alloc_profile(root, 0); 1738 meta_sinfo = __find_space_info(info, alloc_target); 1739 1740 again: 1741 spin_lock(&meta_sinfo->lock); 1742 if (!meta_sinfo->full) 1743 thresh = meta_sinfo->total_bytes * 80; 1744 else 1745 thresh = meta_sinfo->total_bytes * 95; 1746 1747 do_div(thresh, 100); 1748 1749 if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved + 1750 meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) { 1751 struct btrfs_trans_handle *trans; 1752 if (!meta_sinfo->full) { 1753 meta_sinfo->force_alloc = 1; 1754 spin_unlock(&meta_sinfo->lock); 1755 1756 trans = btrfs_start_transaction(root, 1); 1757 if (!trans) 1758 return -ENOMEM; 1759 1760 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 1761 2 * 1024 * 1024, alloc_target, 0); 1762 btrfs_end_transaction(trans, root); 1763 goto again; 1764 } 1765 spin_unlock(&meta_sinfo->lock); 1766 1767 if (!committed) { 1768 committed = 1; 1769 trans = btrfs_join_transaction(root, 1); 1770 if (!trans) 1771 return -ENOMEM; 1772 ret = btrfs_commit_transaction(trans, root); 1773 if (ret) 1774 return ret; 1775 goto again; 1776 } 1777 return -ENOSPC; 1778 } 1779 spin_unlock(&meta_sinfo->lock); 1780 1781 return 0; 1782 } 1783 1784 /* 1785 * This will check the space that the inode allocates from to make sure we have 1786 * enough space for bytes. 1787 */ 1788 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode, 1789 u64 bytes) 1790 { 1791 struct btrfs_space_info *data_sinfo; 1792 int ret = 0, committed = 0; 1793 1794 /* make sure bytes are sectorsize aligned */ 1795 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 1796 1797 data_sinfo = BTRFS_I(inode)->space_info; 1798 again: 1799 /* make sure we have enough space to handle the data first */ 1800 spin_lock(&data_sinfo->lock); 1801 if (data_sinfo->total_bytes - data_sinfo->bytes_used - 1802 data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved - 1803 data_sinfo->bytes_pinned - data_sinfo->bytes_readonly - 1804 data_sinfo->bytes_may_use < bytes) { 1805 struct btrfs_trans_handle *trans; 1806 1807 /* 1808 * if we don't have enough free bytes in this space then we need 1809 * to alloc a new chunk. 1810 */ 1811 if (!data_sinfo->full) { 1812 u64 alloc_target; 1813 1814 data_sinfo->force_alloc = 1; 1815 spin_unlock(&data_sinfo->lock); 1816 1817 alloc_target = btrfs_get_alloc_profile(root, 1); 1818 trans = btrfs_start_transaction(root, 1); 1819 if (!trans) 1820 return -ENOMEM; 1821 1822 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 1823 bytes + 2 * 1024 * 1024, 1824 alloc_target, 0); 1825 btrfs_end_transaction(trans, root); 1826 if (ret) 1827 return ret; 1828 goto again; 1829 } 1830 spin_unlock(&data_sinfo->lock); 1831 1832 /* commit the current transaction and try again */ 1833 if (!committed) { 1834 committed = 1; 1835 trans = btrfs_join_transaction(root, 1); 1836 if (!trans) 1837 return -ENOMEM; 1838 ret = btrfs_commit_transaction(trans, root); 1839 if (ret) 1840 return ret; 1841 goto again; 1842 } 1843 1844 printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes" 1845 ", %llu bytes_used, %llu bytes_reserved, " 1846 "%llu bytes_pinned, %llu bytes_readonly, %llu may use" 1847 "%llu total\n", (unsigned long long)bytes, 1848 (unsigned long long)data_sinfo->bytes_delalloc, 1849 (unsigned long long)data_sinfo->bytes_used, 1850 (unsigned long long)data_sinfo->bytes_reserved, 1851 (unsigned long long)data_sinfo->bytes_pinned, 1852 (unsigned long long)data_sinfo->bytes_readonly, 1853 (unsigned long long)data_sinfo->bytes_may_use, 1854 (unsigned long long)data_sinfo->total_bytes); 1855 return -ENOSPC; 1856 } 1857 data_sinfo->bytes_may_use += bytes; 1858 BTRFS_I(inode)->reserved_bytes += bytes; 1859 spin_unlock(&data_sinfo->lock); 1860 1861 return btrfs_check_metadata_free_space(root); 1862 } 1863 1864 /* 1865 * if there was an error for whatever reason after calling 1866 * btrfs_check_data_free_space, call this so we can cleanup the counters. 1867 */ 1868 void btrfs_free_reserved_data_space(struct btrfs_root *root, 1869 struct inode *inode, u64 bytes) 1870 { 1871 struct btrfs_space_info *data_sinfo; 1872 1873 /* make sure bytes are sectorsize aligned */ 1874 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 1875 1876 data_sinfo = BTRFS_I(inode)->space_info; 1877 spin_lock(&data_sinfo->lock); 1878 data_sinfo->bytes_may_use -= bytes; 1879 BTRFS_I(inode)->reserved_bytes -= bytes; 1880 spin_unlock(&data_sinfo->lock); 1881 } 1882 1883 /* called when we are adding a delalloc extent to the inode's io_tree */ 1884 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode, 1885 u64 bytes) 1886 { 1887 struct btrfs_space_info *data_sinfo; 1888 1889 /* get the space info for where this inode will be storing its data */ 1890 data_sinfo = BTRFS_I(inode)->space_info; 1891 1892 /* make sure we have enough space to handle the data first */ 1893 spin_lock(&data_sinfo->lock); 1894 data_sinfo->bytes_delalloc += bytes; 1895 1896 /* 1897 * we are adding a delalloc extent without calling 1898 * btrfs_check_data_free_space first. This happens on a weird 1899 * writepage condition, but shouldn't hurt our accounting 1900 */ 1901 if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) { 1902 data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes; 1903 BTRFS_I(inode)->reserved_bytes = 0; 1904 } else { 1905 data_sinfo->bytes_may_use -= bytes; 1906 BTRFS_I(inode)->reserved_bytes -= bytes; 1907 } 1908 1909 spin_unlock(&data_sinfo->lock); 1910 } 1911 1912 /* called when we are clearing an delalloc extent from the inode's io_tree */ 1913 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode, 1914 u64 bytes) 1915 { 1916 struct btrfs_space_info *info; 1917 1918 info = BTRFS_I(inode)->space_info; 1919 1920 spin_lock(&info->lock); 1921 info->bytes_delalloc -= bytes; 1922 spin_unlock(&info->lock); 1923 } 1924 1925 static void force_metadata_allocation(struct btrfs_fs_info *info) 1926 { 1927 struct list_head *head = &info->space_info; 1928 struct btrfs_space_info *found; 1929 1930 rcu_read_lock(); 1931 list_for_each_entry_rcu(found, head, list) { 1932 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 1933 found->force_alloc = 1; 1934 } 1935 rcu_read_unlock(); 1936 } 1937 1938 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 1939 struct btrfs_root *extent_root, u64 alloc_bytes, 1940 u64 flags, int force) 1941 { 1942 struct btrfs_space_info *space_info; 1943 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1944 u64 thresh; 1945 int ret = 0; 1946 1947 mutex_lock(&fs_info->chunk_mutex); 1948 1949 flags = btrfs_reduce_alloc_profile(extent_root, flags); 1950 1951 space_info = __find_space_info(extent_root->fs_info, flags); 1952 if (!space_info) { 1953 ret = update_space_info(extent_root->fs_info, flags, 1954 0, 0, &space_info); 1955 BUG_ON(ret); 1956 } 1957 BUG_ON(!space_info); 1958 1959 spin_lock(&space_info->lock); 1960 if (space_info->force_alloc) { 1961 force = 1; 1962 space_info->force_alloc = 0; 1963 } 1964 if (space_info->full) { 1965 spin_unlock(&space_info->lock); 1966 goto out; 1967 } 1968 1969 thresh = space_info->total_bytes - space_info->bytes_readonly; 1970 thresh = div_factor(thresh, 6); 1971 if (!force && 1972 (space_info->bytes_used + space_info->bytes_pinned + 1973 space_info->bytes_reserved + alloc_bytes) < thresh) { 1974 spin_unlock(&space_info->lock); 1975 goto out; 1976 } 1977 spin_unlock(&space_info->lock); 1978 1979 /* 1980 * if we're doing a data chunk, go ahead and make sure that 1981 * we keep a reasonable number of metadata chunks allocated in the 1982 * FS as well. 1983 */ 1984 if (flags & BTRFS_BLOCK_GROUP_DATA) { 1985 fs_info->data_chunk_allocations++; 1986 if (!(fs_info->data_chunk_allocations % 1987 fs_info->metadata_ratio)) 1988 force_metadata_allocation(fs_info); 1989 } 1990 1991 ret = btrfs_alloc_chunk(trans, extent_root, flags); 1992 if (ret) 1993 space_info->full = 1; 1994 out: 1995 mutex_unlock(&extent_root->fs_info->chunk_mutex); 1996 return ret; 1997 } 1998 1999 static int update_block_group(struct btrfs_trans_handle *trans, 2000 struct btrfs_root *root, 2001 u64 bytenr, u64 num_bytes, int alloc, 2002 int mark_free) 2003 { 2004 struct btrfs_block_group_cache *cache; 2005 struct btrfs_fs_info *info = root->fs_info; 2006 u64 total = num_bytes; 2007 u64 old_val; 2008 u64 byte_in_group; 2009 2010 while (total) { 2011 cache = btrfs_lookup_block_group(info, bytenr); 2012 if (!cache) 2013 return -1; 2014 byte_in_group = bytenr - cache->key.objectid; 2015 WARN_ON(byte_in_group > cache->key.offset); 2016 2017 spin_lock(&cache->space_info->lock); 2018 spin_lock(&cache->lock); 2019 cache->dirty = 1; 2020 old_val = btrfs_block_group_used(&cache->item); 2021 num_bytes = min(total, cache->key.offset - byte_in_group); 2022 if (alloc) { 2023 old_val += num_bytes; 2024 cache->space_info->bytes_used += num_bytes; 2025 if (cache->ro) 2026 cache->space_info->bytes_readonly -= num_bytes; 2027 btrfs_set_block_group_used(&cache->item, old_val); 2028 spin_unlock(&cache->lock); 2029 spin_unlock(&cache->space_info->lock); 2030 } else { 2031 old_val -= num_bytes; 2032 cache->space_info->bytes_used -= num_bytes; 2033 if (cache->ro) 2034 cache->space_info->bytes_readonly += num_bytes; 2035 btrfs_set_block_group_used(&cache->item, old_val); 2036 spin_unlock(&cache->lock); 2037 spin_unlock(&cache->space_info->lock); 2038 if (mark_free) { 2039 int ret; 2040 2041 ret = btrfs_discard_extent(root, bytenr, 2042 num_bytes); 2043 WARN_ON(ret); 2044 2045 ret = btrfs_add_free_space(cache, bytenr, 2046 num_bytes); 2047 WARN_ON(ret); 2048 } 2049 } 2050 btrfs_put_block_group(cache); 2051 total -= num_bytes; 2052 bytenr += num_bytes; 2053 } 2054 return 0; 2055 } 2056 2057 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 2058 { 2059 struct btrfs_block_group_cache *cache; 2060 u64 bytenr; 2061 2062 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 2063 if (!cache) 2064 return 0; 2065 2066 bytenr = cache->key.objectid; 2067 btrfs_put_block_group(cache); 2068 2069 return bytenr; 2070 } 2071 2072 int btrfs_update_pinned_extents(struct btrfs_root *root, 2073 u64 bytenr, u64 num, int pin) 2074 { 2075 u64 len; 2076 struct btrfs_block_group_cache *cache; 2077 struct btrfs_fs_info *fs_info = root->fs_info; 2078 2079 if (pin) { 2080 set_extent_dirty(&fs_info->pinned_extents, 2081 bytenr, bytenr + num - 1, GFP_NOFS); 2082 } else { 2083 clear_extent_dirty(&fs_info->pinned_extents, 2084 bytenr, bytenr + num - 1, GFP_NOFS); 2085 } 2086 2087 while (num > 0) { 2088 cache = btrfs_lookup_block_group(fs_info, bytenr); 2089 BUG_ON(!cache); 2090 len = min(num, cache->key.offset - 2091 (bytenr - cache->key.objectid)); 2092 if (pin) { 2093 spin_lock(&cache->space_info->lock); 2094 spin_lock(&cache->lock); 2095 cache->pinned += len; 2096 cache->space_info->bytes_pinned += len; 2097 spin_unlock(&cache->lock); 2098 spin_unlock(&cache->space_info->lock); 2099 fs_info->total_pinned += len; 2100 } else { 2101 spin_lock(&cache->space_info->lock); 2102 spin_lock(&cache->lock); 2103 cache->pinned -= len; 2104 cache->space_info->bytes_pinned -= len; 2105 spin_unlock(&cache->lock); 2106 spin_unlock(&cache->space_info->lock); 2107 fs_info->total_pinned -= len; 2108 if (cache->cached) 2109 btrfs_add_free_space(cache, bytenr, len); 2110 } 2111 btrfs_put_block_group(cache); 2112 bytenr += len; 2113 num -= len; 2114 } 2115 return 0; 2116 } 2117 2118 static int update_reserved_extents(struct btrfs_root *root, 2119 u64 bytenr, u64 num, int reserve) 2120 { 2121 u64 len; 2122 struct btrfs_block_group_cache *cache; 2123 struct btrfs_fs_info *fs_info = root->fs_info; 2124 2125 while (num > 0) { 2126 cache = btrfs_lookup_block_group(fs_info, bytenr); 2127 BUG_ON(!cache); 2128 len = min(num, cache->key.offset - 2129 (bytenr - cache->key.objectid)); 2130 2131 spin_lock(&cache->space_info->lock); 2132 spin_lock(&cache->lock); 2133 if (reserve) { 2134 cache->reserved += len; 2135 cache->space_info->bytes_reserved += len; 2136 } else { 2137 cache->reserved -= len; 2138 cache->space_info->bytes_reserved -= len; 2139 } 2140 spin_unlock(&cache->lock); 2141 spin_unlock(&cache->space_info->lock); 2142 btrfs_put_block_group(cache); 2143 bytenr += len; 2144 num -= len; 2145 } 2146 return 0; 2147 } 2148 2149 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy) 2150 { 2151 u64 last = 0; 2152 u64 start; 2153 u64 end; 2154 struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents; 2155 int ret; 2156 2157 while (1) { 2158 ret = find_first_extent_bit(pinned_extents, last, 2159 &start, &end, EXTENT_DIRTY); 2160 if (ret) 2161 break; 2162 set_extent_dirty(copy, start, end, GFP_NOFS); 2163 last = end + 1; 2164 } 2165 return 0; 2166 } 2167 2168 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 2169 struct btrfs_root *root, 2170 struct extent_io_tree *unpin) 2171 { 2172 u64 start; 2173 u64 end; 2174 int ret; 2175 2176 while (1) { 2177 ret = find_first_extent_bit(unpin, 0, &start, &end, 2178 EXTENT_DIRTY); 2179 if (ret) 2180 break; 2181 2182 ret = btrfs_discard_extent(root, start, end + 1 - start); 2183 2184 /* unlocks the pinned mutex */ 2185 btrfs_update_pinned_extents(root, start, end + 1 - start, 0); 2186 clear_extent_dirty(unpin, start, end, GFP_NOFS); 2187 2188 cond_resched(); 2189 } 2190 return ret; 2191 } 2192 2193 static int pin_down_bytes(struct btrfs_trans_handle *trans, 2194 struct btrfs_root *root, 2195 struct btrfs_path *path, 2196 u64 bytenr, u64 num_bytes, int is_data, 2197 struct extent_buffer **must_clean) 2198 { 2199 int err = 0; 2200 struct extent_buffer *buf; 2201 2202 if (is_data) 2203 goto pinit; 2204 2205 buf = btrfs_find_tree_block(root, bytenr, num_bytes); 2206 if (!buf) 2207 goto pinit; 2208 2209 /* we can reuse a block if it hasn't been written 2210 * and it is from this transaction. We can't 2211 * reuse anything from the tree log root because 2212 * it has tiny sub-transactions. 2213 */ 2214 if (btrfs_buffer_uptodate(buf, 0) && 2215 btrfs_try_tree_lock(buf)) { 2216 u64 header_owner = btrfs_header_owner(buf); 2217 u64 header_transid = btrfs_header_generation(buf); 2218 if (header_owner != BTRFS_TREE_LOG_OBJECTID && 2219 header_owner != BTRFS_TREE_RELOC_OBJECTID && 2220 header_owner != BTRFS_DATA_RELOC_TREE_OBJECTID && 2221 header_transid == trans->transid && 2222 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 2223 *must_clean = buf; 2224 return 1; 2225 } 2226 btrfs_tree_unlock(buf); 2227 } 2228 free_extent_buffer(buf); 2229 pinit: 2230 btrfs_set_path_blocking(path); 2231 /* unlocks the pinned mutex */ 2232 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1); 2233 2234 BUG_ON(err < 0); 2235 return 0; 2236 } 2237 2238 /* 2239 * remove an extent from the root, returns 0 on success 2240 */ 2241 static int __free_extent(struct btrfs_trans_handle *trans, 2242 struct btrfs_root *root, 2243 u64 bytenr, u64 num_bytes, u64 parent, 2244 u64 root_objectid, u64 ref_generation, 2245 u64 owner_objectid, int pin, int mark_free, 2246 int refs_to_drop) 2247 { 2248 struct btrfs_path *path; 2249 struct btrfs_key key; 2250 struct btrfs_fs_info *info = root->fs_info; 2251 struct btrfs_root *extent_root = info->extent_root; 2252 struct extent_buffer *leaf; 2253 int ret; 2254 int extent_slot = 0; 2255 int found_extent = 0; 2256 int num_to_del = 1; 2257 struct btrfs_extent_item *ei; 2258 u32 refs; 2259 2260 key.objectid = bytenr; 2261 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 2262 key.offset = num_bytes; 2263 path = btrfs_alloc_path(); 2264 if (!path) 2265 return -ENOMEM; 2266 2267 path->reada = 1; 2268 path->leave_spinning = 1; 2269 ret = lookup_extent_backref(trans, extent_root, path, 2270 bytenr, parent, root_objectid, 2271 ref_generation, owner_objectid, 1); 2272 if (ret == 0) { 2273 struct btrfs_key found_key; 2274 extent_slot = path->slots[0]; 2275 while (extent_slot > 0) { 2276 extent_slot--; 2277 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2278 extent_slot); 2279 if (found_key.objectid != bytenr) 2280 break; 2281 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 2282 found_key.offset == num_bytes) { 2283 found_extent = 1; 2284 break; 2285 } 2286 if (path->slots[0] - extent_slot > 5) 2287 break; 2288 } 2289 if (!found_extent) { 2290 ret = remove_extent_backref(trans, extent_root, path, 2291 refs_to_drop); 2292 BUG_ON(ret); 2293 btrfs_release_path(extent_root, path); 2294 path->leave_spinning = 1; 2295 ret = btrfs_search_slot(trans, extent_root, 2296 &key, path, -1, 1); 2297 if (ret) { 2298 printk(KERN_ERR "umm, got %d back from search" 2299 ", was looking for %llu\n", ret, 2300 (unsigned long long)bytenr); 2301 btrfs_print_leaf(extent_root, path->nodes[0]); 2302 } 2303 BUG_ON(ret); 2304 extent_slot = path->slots[0]; 2305 } 2306 } else { 2307 btrfs_print_leaf(extent_root, path->nodes[0]); 2308 WARN_ON(1); 2309 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 2310 "parent %llu root %llu gen %llu owner %llu\n", 2311 (unsigned long long)bytenr, 2312 (unsigned long long)parent, 2313 (unsigned long long)root_objectid, 2314 (unsigned long long)ref_generation, 2315 (unsigned long long)owner_objectid); 2316 } 2317 2318 leaf = path->nodes[0]; 2319 ei = btrfs_item_ptr(leaf, extent_slot, 2320 struct btrfs_extent_item); 2321 refs = btrfs_extent_refs(leaf, ei); 2322 2323 /* 2324 * we're not allowed to delete the extent item if there 2325 * are other delayed ref updates pending 2326 */ 2327 2328 BUG_ON(refs < refs_to_drop); 2329 refs -= refs_to_drop; 2330 btrfs_set_extent_refs(leaf, ei, refs); 2331 btrfs_mark_buffer_dirty(leaf); 2332 2333 if (refs == 0 && found_extent && 2334 path->slots[0] == extent_slot + 1) { 2335 struct btrfs_extent_ref *ref; 2336 ref = btrfs_item_ptr(leaf, path->slots[0], 2337 struct btrfs_extent_ref); 2338 BUG_ON(btrfs_ref_num_refs(leaf, ref) != refs_to_drop); 2339 /* if the back ref and the extent are next to each other 2340 * they get deleted below in one shot 2341 */ 2342 path->slots[0] = extent_slot; 2343 num_to_del = 2; 2344 } else if (found_extent) { 2345 /* otherwise delete the extent back ref */ 2346 ret = remove_extent_backref(trans, extent_root, path, 2347 refs_to_drop); 2348 BUG_ON(ret); 2349 /* if refs are 0, we need to setup the path for deletion */ 2350 if (refs == 0) { 2351 btrfs_release_path(extent_root, path); 2352 path->leave_spinning = 1; 2353 ret = btrfs_search_slot(trans, extent_root, &key, path, 2354 -1, 1); 2355 BUG_ON(ret); 2356 } 2357 } 2358 2359 if (refs == 0) { 2360 u64 super_used; 2361 u64 root_used; 2362 struct extent_buffer *must_clean = NULL; 2363 2364 if (pin) { 2365 ret = pin_down_bytes(trans, root, path, 2366 bytenr, num_bytes, 2367 owner_objectid >= BTRFS_FIRST_FREE_OBJECTID, 2368 &must_clean); 2369 if (ret > 0) 2370 mark_free = 1; 2371 BUG_ON(ret < 0); 2372 } 2373 2374 /* block accounting for super block */ 2375 spin_lock(&info->delalloc_lock); 2376 super_used = btrfs_super_bytes_used(&info->super_copy); 2377 btrfs_set_super_bytes_used(&info->super_copy, 2378 super_used - num_bytes); 2379 2380 /* block accounting for root item */ 2381 root_used = btrfs_root_used(&root->root_item); 2382 btrfs_set_root_used(&root->root_item, 2383 root_used - num_bytes); 2384 spin_unlock(&info->delalloc_lock); 2385 2386 /* 2387 * it is going to be very rare for someone to be waiting 2388 * on the block we're freeing. del_items might need to 2389 * schedule, so rather than get fancy, just force it 2390 * to blocking here 2391 */ 2392 if (must_clean) 2393 btrfs_set_lock_blocking(must_clean); 2394 2395 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 2396 num_to_del); 2397 BUG_ON(ret); 2398 btrfs_release_path(extent_root, path); 2399 2400 if (must_clean) { 2401 clean_tree_block(NULL, root, must_clean); 2402 btrfs_tree_unlock(must_clean); 2403 free_extent_buffer(must_clean); 2404 } 2405 2406 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 2407 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 2408 BUG_ON(ret); 2409 } else { 2410 invalidate_mapping_pages(info->btree_inode->i_mapping, 2411 bytenr >> PAGE_CACHE_SHIFT, 2412 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 2413 } 2414 2415 ret = update_block_group(trans, root, bytenr, num_bytes, 0, 2416 mark_free); 2417 BUG_ON(ret); 2418 } 2419 btrfs_free_path(path); 2420 return ret; 2421 } 2422 2423 /* 2424 * remove an extent from the root, returns 0 on success 2425 */ 2426 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2427 struct btrfs_root *root, 2428 u64 bytenr, u64 num_bytes, u64 parent, 2429 u64 root_objectid, u64 ref_generation, 2430 u64 owner_objectid, int pin, 2431 int refs_to_drop) 2432 { 2433 WARN_ON(num_bytes < root->sectorsize); 2434 2435 /* 2436 * if metadata always pin 2437 * if data pin when any transaction has committed this 2438 */ 2439 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID || 2440 ref_generation != trans->transid) 2441 pin = 1; 2442 2443 if (ref_generation != trans->transid) 2444 pin = 1; 2445 2446 return __free_extent(trans, root, bytenr, num_bytes, parent, 2447 root_objectid, ref_generation, 2448 owner_objectid, pin, pin == 0, refs_to_drop); 2449 } 2450 2451 /* 2452 * when we free an extent, it is possible (and likely) that we free the last 2453 * delayed ref for that extent as well. This searches the delayed ref tree for 2454 * a given extent, and if there are no other delayed refs to be processed, it 2455 * removes it from the tree. 2456 */ 2457 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 2458 struct btrfs_root *root, u64 bytenr) 2459 { 2460 struct btrfs_delayed_ref_head *head; 2461 struct btrfs_delayed_ref_root *delayed_refs; 2462 struct btrfs_delayed_ref_node *ref; 2463 struct rb_node *node; 2464 int ret; 2465 2466 delayed_refs = &trans->transaction->delayed_refs; 2467 spin_lock(&delayed_refs->lock); 2468 head = btrfs_find_delayed_ref_head(trans, bytenr); 2469 if (!head) 2470 goto out; 2471 2472 node = rb_prev(&head->node.rb_node); 2473 if (!node) 2474 goto out; 2475 2476 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2477 2478 /* there are still entries for this ref, we can't drop it */ 2479 if (ref->bytenr == bytenr) 2480 goto out; 2481 2482 /* 2483 * waiting for the lock here would deadlock. If someone else has it 2484 * locked they are already in the process of dropping it anyway 2485 */ 2486 if (!mutex_trylock(&head->mutex)) 2487 goto out; 2488 2489 /* 2490 * at this point we have a head with no other entries. Go 2491 * ahead and process it. 2492 */ 2493 head->node.in_tree = 0; 2494 rb_erase(&head->node.rb_node, &delayed_refs->root); 2495 2496 delayed_refs->num_entries--; 2497 2498 /* 2499 * we don't take a ref on the node because we're removing it from the 2500 * tree, so we just steal the ref the tree was holding. 2501 */ 2502 delayed_refs->num_heads--; 2503 if (list_empty(&head->cluster)) 2504 delayed_refs->num_heads_ready--; 2505 2506 list_del_init(&head->cluster); 2507 spin_unlock(&delayed_refs->lock); 2508 2509 ret = run_one_delayed_ref(trans, root->fs_info->tree_root, 2510 &head->node, head->must_insert_reserved); 2511 BUG_ON(ret); 2512 btrfs_put_delayed_ref(&head->node); 2513 return 0; 2514 out: 2515 spin_unlock(&delayed_refs->lock); 2516 return 0; 2517 } 2518 2519 int btrfs_free_extent(struct btrfs_trans_handle *trans, 2520 struct btrfs_root *root, 2521 u64 bytenr, u64 num_bytes, u64 parent, 2522 u64 root_objectid, u64 ref_generation, 2523 u64 owner_objectid, int pin) 2524 { 2525 int ret; 2526 2527 /* 2528 * tree log blocks never actually go into the extent allocation 2529 * tree, just update pinning info and exit early. 2530 * 2531 * data extents referenced by the tree log do need to have 2532 * their reference counts bumped. 2533 */ 2534 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID && 2535 owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 2536 /* unlocks the pinned mutex */ 2537 btrfs_update_pinned_extents(root, bytenr, num_bytes, 1); 2538 update_reserved_extents(root, bytenr, num_bytes, 0); 2539 ret = 0; 2540 } else { 2541 ret = btrfs_add_delayed_ref(trans, bytenr, num_bytes, parent, 2542 root_objectid, ref_generation, 2543 owner_objectid, 2544 BTRFS_DROP_DELAYED_REF, 1); 2545 BUG_ON(ret); 2546 ret = check_ref_cleanup(trans, root, bytenr); 2547 BUG_ON(ret); 2548 } 2549 return ret; 2550 } 2551 2552 static u64 stripe_align(struct btrfs_root *root, u64 val) 2553 { 2554 u64 mask = ((u64)root->stripesize - 1); 2555 u64 ret = (val + mask) & ~mask; 2556 return ret; 2557 } 2558 2559 /* 2560 * walks the btree of allocated extents and find a hole of a given size. 2561 * The key ins is changed to record the hole: 2562 * ins->objectid == block start 2563 * ins->flags = BTRFS_EXTENT_ITEM_KEY 2564 * ins->offset == number of blocks 2565 * Any available blocks before search_start are skipped. 2566 */ 2567 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 2568 struct btrfs_root *orig_root, 2569 u64 num_bytes, u64 empty_size, 2570 u64 search_start, u64 search_end, 2571 u64 hint_byte, struct btrfs_key *ins, 2572 u64 exclude_start, u64 exclude_nr, 2573 int data) 2574 { 2575 int ret = 0; 2576 struct btrfs_root *root = orig_root->fs_info->extent_root; 2577 struct btrfs_free_cluster *last_ptr = NULL; 2578 struct btrfs_block_group_cache *block_group = NULL; 2579 int empty_cluster = 2 * 1024 * 1024; 2580 int allowed_chunk_alloc = 0; 2581 struct btrfs_space_info *space_info; 2582 int last_ptr_loop = 0; 2583 int loop = 0; 2584 2585 WARN_ON(num_bytes < root->sectorsize); 2586 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 2587 ins->objectid = 0; 2588 ins->offset = 0; 2589 2590 space_info = __find_space_info(root->fs_info, data); 2591 2592 if (orig_root->ref_cows || empty_size) 2593 allowed_chunk_alloc = 1; 2594 2595 if (data & BTRFS_BLOCK_GROUP_METADATA) { 2596 last_ptr = &root->fs_info->meta_alloc_cluster; 2597 if (!btrfs_test_opt(root, SSD)) 2598 empty_cluster = 64 * 1024; 2599 } 2600 2601 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) { 2602 last_ptr = &root->fs_info->data_alloc_cluster; 2603 } 2604 2605 if (last_ptr) { 2606 spin_lock(&last_ptr->lock); 2607 if (last_ptr->block_group) 2608 hint_byte = last_ptr->window_start; 2609 spin_unlock(&last_ptr->lock); 2610 } 2611 2612 search_start = max(search_start, first_logical_byte(root, 0)); 2613 search_start = max(search_start, hint_byte); 2614 2615 if (!last_ptr) { 2616 empty_cluster = 0; 2617 loop = 1; 2618 } 2619 2620 if (search_start == hint_byte) { 2621 block_group = btrfs_lookup_block_group(root->fs_info, 2622 search_start); 2623 if (block_group && block_group_bits(block_group, data)) { 2624 down_read(&space_info->groups_sem); 2625 if (list_empty(&block_group->list) || 2626 block_group->ro) { 2627 /* 2628 * someone is removing this block group, 2629 * we can't jump into the have_block_group 2630 * target because our list pointers are not 2631 * valid 2632 */ 2633 btrfs_put_block_group(block_group); 2634 up_read(&space_info->groups_sem); 2635 } else 2636 goto have_block_group; 2637 } else if (block_group) { 2638 btrfs_put_block_group(block_group); 2639 } 2640 } 2641 2642 search: 2643 down_read(&space_info->groups_sem); 2644 list_for_each_entry(block_group, &space_info->block_groups, list) { 2645 u64 offset; 2646 2647 atomic_inc(&block_group->count); 2648 search_start = block_group->key.objectid; 2649 2650 have_block_group: 2651 if (unlikely(!block_group->cached)) { 2652 mutex_lock(&block_group->cache_mutex); 2653 ret = cache_block_group(root, block_group); 2654 mutex_unlock(&block_group->cache_mutex); 2655 if (ret) { 2656 btrfs_put_block_group(block_group); 2657 break; 2658 } 2659 } 2660 2661 if (unlikely(block_group->ro)) 2662 goto loop; 2663 2664 if (last_ptr) { 2665 /* 2666 * the refill lock keeps out other 2667 * people trying to start a new cluster 2668 */ 2669 spin_lock(&last_ptr->refill_lock); 2670 if (last_ptr->block_group && 2671 (last_ptr->block_group->ro || 2672 !block_group_bits(last_ptr->block_group, data))) { 2673 offset = 0; 2674 goto refill_cluster; 2675 } 2676 2677 offset = btrfs_alloc_from_cluster(block_group, last_ptr, 2678 num_bytes, search_start); 2679 if (offset) { 2680 /* we have a block, we're done */ 2681 spin_unlock(&last_ptr->refill_lock); 2682 goto checks; 2683 } 2684 2685 spin_lock(&last_ptr->lock); 2686 /* 2687 * whoops, this cluster doesn't actually point to 2688 * this block group. Get a ref on the block 2689 * group is does point to and try again 2690 */ 2691 if (!last_ptr_loop && last_ptr->block_group && 2692 last_ptr->block_group != block_group) { 2693 2694 btrfs_put_block_group(block_group); 2695 block_group = last_ptr->block_group; 2696 atomic_inc(&block_group->count); 2697 spin_unlock(&last_ptr->lock); 2698 spin_unlock(&last_ptr->refill_lock); 2699 2700 last_ptr_loop = 1; 2701 search_start = block_group->key.objectid; 2702 /* 2703 * we know this block group is properly 2704 * in the list because 2705 * btrfs_remove_block_group, drops the 2706 * cluster before it removes the block 2707 * group from the list 2708 */ 2709 goto have_block_group; 2710 } 2711 spin_unlock(&last_ptr->lock); 2712 refill_cluster: 2713 /* 2714 * this cluster didn't work out, free it and 2715 * start over 2716 */ 2717 btrfs_return_cluster_to_free_space(NULL, last_ptr); 2718 2719 last_ptr_loop = 0; 2720 2721 /* allocate a cluster in this block group */ 2722 ret = btrfs_find_space_cluster(trans, 2723 block_group, last_ptr, 2724 offset, num_bytes, 2725 empty_cluster + empty_size); 2726 if (ret == 0) { 2727 /* 2728 * now pull our allocation out of this 2729 * cluster 2730 */ 2731 offset = btrfs_alloc_from_cluster(block_group, 2732 last_ptr, num_bytes, 2733 search_start); 2734 if (offset) { 2735 /* we found one, proceed */ 2736 spin_unlock(&last_ptr->refill_lock); 2737 goto checks; 2738 } 2739 } 2740 /* 2741 * at this point we either didn't find a cluster 2742 * or we weren't able to allocate a block from our 2743 * cluster. Free the cluster we've been trying 2744 * to use, and go to the next block group 2745 */ 2746 if (loop < 2) { 2747 btrfs_return_cluster_to_free_space(NULL, 2748 last_ptr); 2749 spin_unlock(&last_ptr->refill_lock); 2750 goto loop; 2751 } 2752 spin_unlock(&last_ptr->refill_lock); 2753 } 2754 2755 offset = btrfs_find_space_for_alloc(block_group, search_start, 2756 num_bytes, empty_size); 2757 if (!offset) 2758 goto loop; 2759 checks: 2760 search_start = stripe_align(root, offset); 2761 2762 /* move on to the next group */ 2763 if (search_start + num_bytes >= search_end) { 2764 btrfs_add_free_space(block_group, offset, num_bytes); 2765 goto loop; 2766 } 2767 2768 /* move on to the next group */ 2769 if (search_start + num_bytes > 2770 block_group->key.objectid + block_group->key.offset) { 2771 btrfs_add_free_space(block_group, offset, num_bytes); 2772 goto loop; 2773 } 2774 2775 if (exclude_nr > 0 && 2776 (search_start + num_bytes > exclude_start && 2777 search_start < exclude_start + exclude_nr)) { 2778 search_start = exclude_start + exclude_nr; 2779 2780 btrfs_add_free_space(block_group, offset, num_bytes); 2781 /* 2782 * if search_start is still in this block group 2783 * then we just re-search this block group 2784 */ 2785 if (search_start >= block_group->key.objectid && 2786 search_start < (block_group->key.objectid + 2787 block_group->key.offset)) 2788 goto have_block_group; 2789 goto loop; 2790 } 2791 2792 ins->objectid = search_start; 2793 ins->offset = num_bytes; 2794 2795 if (offset < search_start) 2796 btrfs_add_free_space(block_group, offset, 2797 search_start - offset); 2798 BUG_ON(offset > search_start); 2799 2800 /* we are all good, lets return */ 2801 break; 2802 loop: 2803 btrfs_put_block_group(block_group); 2804 } 2805 up_read(&space_info->groups_sem); 2806 2807 /* loop == 0, try to find a clustered alloc in every block group 2808 * loop == 1, try again after forcing a chunk allocation 2809 * loop == 2, set empty_size and empty_cluster to 0 and try again 2810 */ 2811 if (!ins->objectid && loop < 3 && 2812 (empty_size || empty_cluster || allowed_chunk_alloc)) { 2813 if (loop >= 2) { 2814 empty_size = 0; 2815 empty_cluster = 0; 2816 } 2817 2818 if (allowed_chunk_alloc) { 2819 ret = do_chunk_alloc(trans, root, num_bytes + 2820 2 * 1024 * 1024, data, 1); 2821 allowed_chunk_alloc = 0; 2822 } else { 2823 space_info->force_alloc = 1; 2824 } 2825 2826 if (loop < 3) { 2827 loop++; 2828 goto search; 2829 } 2830 ret = -ENOSPC; 2831 } else if (!ins->objectid) { 2832 ret = -ENOSPC; 2833 } 2834 2835 /* we found what we needed */ 2836 if (ins->objectid) { 2837 if (!(data & BTRFS_BLOCK_GROUP_DATA)) 2838 trans->block_group = block_group->key.objectid; 2839 2840 btrfs_put_block_group(block_group); 2841 ret = 0; 2842 } 2843 2844 return ret; 2845 } 2846 2847 static void dump_space_info(struct btrfs_space_info *info, u64 bytes) 2848 { 2849 struct btrfs_block_group_cache *cache; 2850 2851 printk(KERN_INFO "space_info has %llu free, is %sfull\n", 2852 (unsigned long long)(info->total_bytes - info->bytes_used - 2853 info->bytes_pinned - info->bytes_reserved), 2854 (info->full) ? "" : "not "); 2855 printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu," 2856 " may_use=%llu, used=%llu\n", 2857 (unsigned long long)info->total_bytes, 2858 (unsigned long long)info->bytes_pinned, 2859 (unsigned long long)info->bytes_delalloc, 2860 (unsigned long long)info->bytes_may_use, 2861 (unsigned long long)info->bytes_used); 2862 2863 down_read(&info->groups_sem); 2864 list_for_each_entry(cache, &info->block_groups, list) { 2865 spin_lock(&cache->lock); 2866 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 2867 "%llu pinned %llu reserved\n", 2868 (unsigned long long)cache->key.objectid, 2869 (unsigned long long)cache->key.offset, 2870 (unsigned long long)btrfs_block_group_used(&cache->item), 2871 (unsigned long long)cache->pinned, 2872 (unsigned long long)cache->reserved); 2873 btrfs_dump_free_space(cache, bytes); 2874 spin_unlock(&cache->lock); 2875 } 2876 up_read(&info->groups_sem); 2877 } 2878 2879 static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans, 2880 struct btrfs_root *root, 2881 u64 num_bytes, u64 min_alloc_size, 2882 u64 empty_size, u64 hint_byte, 2883 u64 search_end, struct btrfs_key *ins, 2884 u64 data) 2885 { 2886 int ret; 2887 u64 search_start = 0; 2888 struct btrfs_fs_info *info = root->fs_info; 2889 2890 data = btrfs_get_alloc_profile(root, data); 2891 again: 2892 /* 2893 * the only place that sets empty_size is btrfs_realloc_node, which 2894 * is not called recursively on allocations 2895 */ 2896 if (empty_size || root->ref_cows) { 2897 if (!(data & BTRFS_BLOCK_GROUP_METADATA)) { 2898 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 2899 2 * 1024 * 1024, 2900 BTRFS_BLOCK_GROUP_METADATA | 2901 (info->metadata_alloc_profile & 2902 info->avail_metadata_alloc_bits), 0); 2903 } 2904 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 2905 num_bytes + 2 * 1024 * 1024, data, 0); 2906 } 2907 2908 WARN_ON(num_bytes < root->sectorsize); 2909 ret = find_free_extent(trans, root, num_bytes, empty_size, 2910 search_start, search_end, hint_byte, ins, 2911 trans->alloc_exclude_start, 2912 trans->alloc_exclude_nr, data); 2913 2914 if (ret == -ENOSPC && num_bytes > min_alloc_size) { 2915 num_bytes = num_bytes >> 1; 2916 num_bytes = num_bytes & ~(root->sectorsize - 1); 2917 num_bytes = max(num_bytes, min_alloc_size); 2918 do_chunk_alloc(trans, root->fs_info->extent_root, 2919 num_bytes, data, 1); 2920 goto again; 2921 } 2922 if (ret) { 2923 struct btrfs_space_info *sinfo; 2924 2925 sinfo = __find_space_info(root->fs_info, data); 2926 printk(KERN_ERR "btrfs allocation failed flags %llu, " 2927 "wanted %llu\n", (unsigned long long)data, 2928 (unsigned long long)num_bytes); 2929 dump_space_info(sinfo, num_bytes); 2930 BUG(); 2931 } 2932 2933 return ret; 2934 } 2935 2936 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) 2937 { 2938 struct btrfs_block_group_cache *cache; 2939 int ret = 0; 2940 2941 cache = btrfs_lookup_block_group(root->fs_info, start); 2942 if (!cache) { 2943 printk(KERN_ERR "Unable to find block group for %llu\n", 2944 (unsigned long long)start); 2945 return -ENOSPC; 2946 } 2947 2948 ret = btrfs_discard_extent(root, start, len); 2949 2950 btrfs_add_free_space(cache, start, len); 2951 btrfs_put_block_group(cache); 2952 update_reserved_extents(root, start, len, 0); 2953 2954 return ret; 2955 } 2956 2957 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 2958 struct btrfs_root *root, 2959 u64 num_bytes, u64 min_alloc_size, 2960 u64 empty_size, u64 hint_byte, 2961 u64 search_end, struct btrfs_key *ins, 2962 u64 data) 2963 { 2964 int ret; 2965 ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size, 2966 empty_size, hint_byte, search_end, ins, 2967 data); 2968 update_reserved_extents(root, ins->objectid, ins->offset, 1); 2969 return ret; 2970 } 2971 2972 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, 2973 struct btrfs_root *root, u64 parent, 2974 u64 root_objectid, u64 ref_generation, 2975 u64 owner, struct btrfs_key *ins, 2976 int ref_mod) 2977 { 2978 int ret; 2979 u64 super_used; 2980 u64 root_used; 2981 u64 num_bytes = ins->offset; 2982 u32 sizes[2]; 2983 struct btrfs_fs_info *info = root->fs_info; 2984 struct btrfs_root *extent_root = info->extent_root; 2985 struct btrfs_extent_item *extent_item; 2986 struct btrfs_extent_ref *ref; 2987 struct btrfs_path *path; 2988 struct btrfs_key keys[2]; 2989 2990 if (parent == 0) 2991 parent = ins->objectid; 2992 2993 /* block accounting for super block */ 2994 spin_lock(&info->delalloc_lock); 2995 super_used = btrfs_super_bytes_used(&info->super_copy); 2996 btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes); 2997 2998 /* block accounting for root item */ 2999 root_used = btrfs_root_used(&root->root_item); 3000 btrfs_set_root_used(&root->root_item, root_used + num_bytes); 3001 spin_unlock(&info->delalloc_lock); 3002 3003 memcpy(&keys[0], ins, sizeof(*ins)); 3004 keys[1].objectid = ins->objectid; 3005 keys[1].type = BTRFS_EXTENT_REF_KEY; 3006 keys[1].offset = parent; 3007 sizes[0] = sizeof(*extent_item); 3008 sizes[1] = sizeof(*ref); 3009 3010 path = btrfs_alloc_path(); 3011 BUG_ON(!path); 3012 3013 path->leave_spinning = 1; 3014 ret = btrfs_insert_empty_items(trans, extent_root, path, keys, 3015 sizes, 2); 3016 BUG_ON(ret); 3017 3018 extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3019 struct btrfs_extent_item); 3020 btrfs_set_extent_refs(path->nodes[0], extent_item, ref_mod); 3021 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3022 struct btrfs_extent_ref); 3023 3024 btrfs_set_ref_root(path->nodes[0], ref, root_objectid); 3025 btrfs_set_ref_generation(path->nodes[0], ref, ref_generation); 3026 btrfs_set_ref_objectid(path->nodes[0], ref, owner); 3027 btrfs_set_ref_num_refs(path->nodes[0], ref, ref_mod); 3028 3029 btrfs_mark_buffer_dirty(path->nodes[0]); 3030 3031 trans->alloc_exclude_start = 0; 3032 trans->alloc_exclude_nr = 0; 3033 btrfs_free_path(path); 3034 3035 if (ret) 3036 goto out; 3037 3038 ret = update_block_group(trans, root, ins->objectid, 3039 ins->offset, 1, 0); 3040 if (ret) { 3041 printk(KERN_ERR "btrfs update block group failed for %llu " 3042 "%llu\n", (unsigned long long)ins->objectid, 3043 (unsigned long long)ins->offset); 3044 BUG(); 3045 } 3046 out: 3047 return ret; 3048 } 3049 3050 int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans, 3051 struct btrfs_root *root, u64 parent, 3052 u64 root_objectid, u64 ref_generation, 3053 u64 owner, struct btrfs_key *ins) 3054 { 3055 int ret; 3056 3057 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) 3058 return 0; 3059 3060 ret = btrfs_add_delayed_ref(trans, ins->objectid, 3061 ins->offset, parent, root_objectid, 3062 ref_generation, owner, 3063 BTRFS_ADD_DELAYED_EXTENT, 0); 3064 BUG_ON(ret); 3065 return ret; 3066 } 3067 3068 /* 3069 * this is used by the tree logging recovery code. It records that 3070 * an extent has been allocated and makes sure to clear the free 3071 * space cache bits as well 3072 */ 3073 int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans, 3074 struct btrfs_root *root, u64 parent, 3075 u64 root_objectid, u64 ref_generation, 3076 u64 owner, struct btrfs_key *ins) 3077 { 3078 int ret; 3079 struct btrfs_block_group_cache *block_group; 3080 3081 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 3082 mutex_lock(&block_group->cache_mutex); 3083 cache_block_group(root, block_group); 3084 mutex_unlock(&block_group->cache_mutex); 3085 3086 ret = btrfs_remove_free_space(block_group, ins->objectid, 3087 ins->offset); 3088 BUG_ON(ret); 3089 btrfs_put_block_group(block_group); 3090 ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid, 3091 ref_generation, owner, ins, 1); 3092 return ret; 3093 } 3094 3095 /* 3096 * finds a free extent and does all the dirty work required for allocation 3097 * returns the key for the extent through ins, and a tree buffer for 3098 * the first block of the extent through buf. 3099 * 3100 * returns 0 if everything worked, non-zero otherwise. 3101 */ 3102 int btrfs_alloc_extent(struct btrfs_trans_handle *trans, 3103 struct btrfs_root *root, 3104 u64 num_bytes, u64 parent, u64 min_alloc_size, 3105 u64 root_objectid, u64 ref_generation, 3106 u64 owner_objectid, u64 empty_size, u64 hint_byte, 3107 u64 search_end, struct btrfs_key *ins, u64 data) 3108 { 3109 int ret; 3110 ret = __btrfs_reserve_extent(trans, root, num_bytes, 3111 min_alloc_size, empty_size, hint_byte, 3112 search_end, ins, data); 3113 BUG_ON(ret); 3114 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 3115 ret = btrfs_add_delayed_ref(trans, ins->objectid, 3116 ins->offset, parent, root_objectid, 3117 ref_generation, owner_objectid, 3118 BTRFS_ADD_DELAYED_EXTENT, 0); 3119 BUG_ON(ret); 3120 } 3121 update_reserved_extents(root, ins->objectid, ins->offset, 1); 3122 return ret; 3123 } 3124 3125 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 3126 struct btrfs_root *root, 3127 u64 bytenr, u32 blocksize, 3128 int level) 3129 { 3130 struct extent_buffer *buf; 3131 3132 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 3133 if (!buf) 3134 return ERR_PTR(-ENOMEM); 3135 btrfs_set_header_generation(buf, trans->transid); 3136 btrfs_set_buffer_lockdep_class(buf, level); 3137 btrfs_tree_lock(buf); 3138 clean_tree_block(trans, root, buf); 3139 3140 btrfs_set_lock_blocking(buf); 3141 btrfs_set_buffer_uptodate(buf); 3142 3143 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 3144 set_extent_dirty(&root->dirty_log_pages, buf->start, 3145 buf->start + buf->len - 1, GFP_NOFS); 3146 } else { 3147 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 3148 buf->start + buf->len - 1, GFP_NOFS); 3149 } 3150 trans->blocks_used++; 3151 /* this returns a buffer locked for blocking */ 3152 return buf; 3153 } 3154 3155 /* 3156 * helper function to allocate a block for a given tree 3157 * returns the tree buffer or NULL. 3158 */ 3159 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 3160 struct btrfs_root *root, 3161 u32 blocksize, u64 parent, 3162 u64 root_objectid, 3163 u64 ref_generation, 3164 int level, 3165 u64 hint, 3166 u64 empty_size) 3167 { 3168 struct btrfs_key ins; 3169 int ret; 3170 struct extent_buffer *buf; 3171 3172 ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize, 3173 root_objectid, ref_generation, level, 3174 empty_size, hint, (u64)-1, &ins, 0); 3175 if (ret) { 3176 BUG_ON(ret > 0); 3177 return ERR_PTR(ret); 3178 } 3179 3180 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 3181 blocksize, level); 3182 return buf; 3183 } 3184 3185 int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans, 3186 struct btrfs_root *root, struct extent_buffer *leaf) 3187 { 3188 u64 leaf_owner; 3189 u64 leaf_generation; 3190 struct refsort *sorted; 3191 struct btrfs_key key; 3192 struct btrfs_file_extent_item *fi; 3193 int i; 3194 int nritems; 3195 int ret; 3196 int refi = 0; 3197 int slot; 3198 3199 BUG_ON(!btrfs_is_leaf(leaf)); 3200 nritems = btrfs_header_nritems(leaf); 3201 leaf_owner = btrfs_header_owner(leaf); 3202 leaf_generation = btrfs_header_generation(leaf); 3203 3204 sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS); 3205 /* we do this loop twice. The first time we build a list 3206 * of the extents we have a reference on, then we sort the list 3207 * by bytenr. The second time around we actually do the 3208 * extent freeing. 3209 */ 3210 for (i = 0; i < nritems; i++) { 3211 u64 disk_bytenr; 3212 cond_resched(); 3213 3214 btrfs_item_key_to_cpu(leaf, &key, i); 3215 3216 /* only extents have references, skip everything else */ 3217 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3218 continue; 3219 3220 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3221 3222 /* inline extents live in the btree, they don't have refs */ 3223 if (btrfs_file_extent_type(leaf, fi) == 3224 BTRFS_FILE_EXTENT_INLINE) 3225 continue; 3226 3227 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 3228 3229 /* holes don't have refs */ 3230 if (disk_bytenr == 0) 3231 continue; 3232 3233 sorted[refi].bytenr = disk_bytenr; 3234 sorted[refi].slot = i; 3235 refi++; 3236 } 3237 3238 if (refi == 0) 3239 goto out; 3240 3241 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL); 3242 3243 for (i = 0; i < refi; i++) { 3244 u64 disk_bytenr; 3245 3246 disk_bytenr = sorted[i].bytenr; 3247 slot = sorted[i].slot; 3248 3249 cond_resched(); 3250 3251 btrfs_item_key_to_cpu(leaf, &key, slot); 3252 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3253 continue; 3254 3255 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 3256 3257 ret = btrfs_free_extent(trans, root, disk_bytenr, 3258 btrfs_file_extent_disk_num_bytes(leaf, fi), 3259 leaf->start, leaf_owner, leaf_generation, 3260 key.objectid, 0); 3261 BUG_ON(ret); 3262 3263 atomic_inc(&root->fs_info->throttle_gen); 3264 wake_up(&root->fs_info->transaction_throttle); 3265 cond_resched(); 3266 } 3267 out: 3268 kfree(sorted); 3269 return 0; 3270 } 3271 3272 static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans, 3273 struct btrfs_root *root, 3274 struct btrfs_leaf_ref *ref) 3275 { 3276 int i; 3277 int ret; 3278 struct btrfs_extent_info *info; 3279 struct refsort *sorted; 3280 3281 if (ref->nritems == 0) 3282 return 0; 3283 3284 sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS); 3285 for (i = 0; i < ref->nritems; i++) { 3286 sorted[i].bytenr = ref->extents[i].bytenr; 3287 sorted[i].slot = i; 3288 } 3289 sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL); 3290 3291 /* 3292 * the items in the ref were sorted when the ref was inserted 3293 * into the ref cache, so this is already in order 3294 */ 3295 for (i = 0; i < ref->nritems; i++) { 3296 info = ref->extents + sorted[i].slot; 3297 ret = btrfs_free_extent(trans, root, info->bytenr, 3298 info->num_bytes, ref->bytenr, 3299 ref->owner, ref->generation, 3300 info->objectid, 0); 3301 3302 atomic_inc(&root->fs_info->throttle_gen); 3303 wake_up(&root->fs_info->transaction_throttle); 3304 cond_resched(); 3305 3306 BUG_ON(ret); 3307 info++; 3308 } 3309 3310 kfree(sorted); 3311 return 0; 3312 } 3313 3314 static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans, 3315 struct btrfs_root *root, u64 start, 3316 u64 len, u32 *refs) 3317 { 3318 int ret; 3319 3320 ret = btrfs_lookup_extent_ref(trans, root, start, len, refs); 3321 BUG_ON(ret); 3322 3323 #if 0 /* some debugging code in case we see problems here */ 3324 /* if the refs count is one, it won't get increased again. But 3325 * if the ref count is > 1, someone may be decreasing it at 3326 * the same time we are. 3327 */ 3328 if (*refs != 1) { 3329 struct extent_buffer *eb = NULL; 3330 eb = btrfs_find_create_tree_block(root, start, len); 3331 if (eb) 3332 btrfs_tree_lock(eb); 3333 3334 mutex_lock(&root->fs_info->alloc_mutex); 3335 ret = lookup_extent_ref(NULL, root, start, len, refs); 3336 BUG_ON(ret); 3337 mutex_unlock(&root->fs_info->alloc_mutex); 3338 3339 if (eb) { 3340 btrfs_tree_unlock(eb); 3341 free_extent_buffer(eb); 3342 } 3343 if (*refs == 1) { 3344 printk(KERN_ERR "btrfs block %llu went down to one " 3345 "during drop_snap\n", (unsigned long long)start); 3346 } 3347 3348 } 3349 #endif 3350 3351 cond_resched(); 3352 return ret; 3353 } 3354 3355 /* 3356 * this is used while deleting old snapshots, and it drops the refs 3357 * on a whole subtree starting from a level 1 node. 3358 * 3359 * The idea is to sort all the leaf pointers, and then drop the 3360 * ref on all the leaves in order. Most of the time the leaves 3361 * will have ref cache entries, so no leaf IOs will be required to 3362 * find the extents they have references on. 3363 * 3364 * For each leaf, any references it has are also dropped in order 3365 * 3366 * This ends up dropping the references in something close to optimal 3367 * order for reading and modifying the extent allocation tree. 3368 */ 3369 static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans, 3370 struct btrfs_root *root, 3371 struct btrfs_path *path) 3372 { 3373 u64 bytenr; 3374 u64 root_owner; 3375 u64 root_gen; 3376 struct extent_buffer *eb = path->nodes[1]; 3377 struct extent_buffer *leaf; 3378 struct btrfs_leaf_ref *ref; 3379 struct refsort *sorted = NULL; 3380 int nritems = btrfs_header_nritems(eb); 3381 int ret; 3382 int i; 3383 int refi = 0; 3384 int slot = path->slots[1]; 3385 u32 blocksize = btrfs_level_size(root, 0); 3386 u32 refs; 3387 3388 if (nritems == 0) 3389 goto out; 3390 3391 root_owner = btrfs_header_owner(eb); 3392 root_gen = btrfs_header_generation(eb); 3393 sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS); 3394 3395 /* 3396 * step one, sort all the leaf pointers so we don't scribble 3397 * randomly into the extent allocation tree 3398 */ 3399 for (i = slot; i < nritems; i++) { 3400 sorted[refi].bytenr = btrfs_node_blockptr(eb, i); 3401 sorted[refi].slot = i; 3402 refi++; 3403 } 3404 3405 /* 3406 * nritems won't be zero, but if we're picking up drop_snapshot 3407 * after a crash, slot might be > 0, so double check things 3408 * just in case. 3409 */ 3410 if (refi == 0) 3411 goto out; 3412 3413 sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL); 3414 3415 /* 3416 * the first loop frees everything the leaves point to 3417 */ 3418 for (i = 0; i < refi; i++) { 3419 u64 ptr_gen; 3420 3421 bytenr = sorted[i].bytenr; 3422 3423 /* 3424 * check the reference count on this leaf. If it is > 1 3425 * we just decrement it below and don't update any 3426 * of the refs the leaf points to. 3427 */ 3428 ret = drop_snap_lookup_refcount(trans, root, bytenr, 3429 blocksize, &refs); 3430 BUG_ON(ret); 3431 if (refs != 1) 3432 continue; 3433 3434 ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot); 3435 3436 /* 3437 * the leaf only had one reference, which means the 3438 * only thing pointing to this leaf is the snapshot 3439 * we're deleting. It isn't possible for the reference 3440 * count to increase again later 3441 * 3442 * The reference cache is checked for the leaf, 3443 * and if found we'll be able to drop any refs held by 3444 * the leaf without needing to read it in. 3445 */ 3446 ref = btrfs_lookup_leaf_ref(root, bytenr); 3447 if (ref && ref->generation != ptr_gen) { 3448 btrfs_free_leaf_ref(root, ref); 3449 ref = NULL; 3450 } 3451 if (ref) { 3452 ret = cache_drop_leaf_ref(trans, root, ref); 3453 BUG_ON(ret); 3454 btrfs_remove_leaf_ref(root, ref); 3455 btrfs_free_leaf_ref(root, ref); 3456 } else { 3457 /* 3458 * the leaf wasn't in the reference cache, so 3459 * we have to read it. 3460 */ 3461 leaf = read_tree_block(root, bytenr, blocksize, 3462 ptr_gen); 3463 ret = btrfs_drop_leaf_ref(trans, root, leaf); 3464 BUG_ON(ret); 3465 free_extent_buffer(leaf); 3466 } 3467 atomic_inc(&root->fs_info->throttle_gen); 3468 wake_up(&root->fs_info->transaction_throttle); 3469 cond_resched(); 3470 } 3471 3472 /* 3473 * run through the loop again to free the refs on the leaves. 3474 * This is faster than doing it in the loop above because 3475 * the leaves are likely to be clustered together. We end up 3476 * working in nice chunks on the extent allocation tree. 3477 */ 3478 for (i = 0; i < refi; i++) { 3479 bytenr = sorted[i].bytenr; 3480 ret = btrfs_free_extent(trans, root, bytenr, 3481 blocksize, eb->start, 3482 root_owner, root_gen, 0, 1); 3483 BUG_ON(ret); 3484 3485 atomic_inc(&root->fs_info->throttle_gen); 3486 wake_up(&root->fs_info->transaction_throttle); 3487 cond_resched(); 3488 } 3489 out: 3490 kfree(sorted); 3491 3492 /* 3493 * update the path to show we've processed the entire level 1 3494 * node. This will get saved into the root's drop_snapshot_progress 3495 * field so these drops are not repeated again if this transaction 3496 * commits. 3497 */ 3498 path->slots[1] = nritems; 3499 return 0; 3500 } 3501 3502 /* 3503 * helper function for drop_snapshot, this walks down the tree dropping ref 3504 * counts as it goes. 3505 */ 3506 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 3507 struct btrfs_root *root, 3508 struct btrfs_path *path, int *level) 3509 { 3510 u64 root_owner; 3511 u64 root_gen; 3512 u64 bytenr; 3513 u64 ptr_gen; 3514 struct extent_buffer *next; 3515 struct extent_buffer *cur; 3516 struct extent_buffer *parent; 3517 u32 blocksize; 3518 int ret; 3519 u32 refs; 3520 3521 WARN_ON(*level < 0); 3522 WARN_ON(*level >= BTRFS_MAX_LEVEL); 3523 ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start, 3524 path->nodes[*level]->len, &refs); 3525 BUG_ON(ret); 3526 if (refs > 1) 3527 goto out; 3528 3529 /* 3530 * walk down to the last node level and free all the leaves 3531 */ 3532 while (*level >= 0) { 3533 WARN_ON(*level < 0); 3534 WARN_ON(*level >= BTRFS_MAX_LEVEL); 3535 cur = path->nodes[*level]; 3536 3537 if (btrfs_header_level(cur) != *level) 3538 WARN_ON(1); 3539 3540 if (path->slots[*level] >= 3541 btrfs_header_nritems(cur)) 3542 break; 3543 3544 /* the new code goes down to level 1 and does all the 3545 * leaves pointed to that node in bulk. So, this check 3546 * for level 0 will always be false. 3547 * 3548 * But, the disk format allows the drop_snapshot_progress 3549 * field in the root to leave things in a state where 3550 * a leaf will need cleaning up here. If someone crashes 3551 * with the old code and then boots with the new code, 3552 * we might find a leaf here. 3553 */ 3554 if (*level == 0) { 3555 ret = btrfs_drop_leaf_ref(trans, root, cur); 3556 BUG_ON(ret); 3557 break; 3558 } 3559 3560 /* 3561 * once we get to level one, process the whole node 3562 * at once, including everything below it. 3563 */ 3564 if (*level == 1) { 3565 ret = drop_level_one_refs(trans, root, path); 3566 BUG_ON(ret); 3567 break; 3568 } 3569 3570 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 3571 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 3572 blocksize = btrfs_level_size(root, *level - 1); 3573 3574 ret = drop_snap_lookup_refcount(trans, root, bytenr, 3575 blocksize, &refs); 3576 BUG_ON(ret); 3577 3578 /* 3579 * if there is more than one reference, we don't need 3580 * to read that node to drop any references it has. We 3581 * just drop the ref we hold on that node and move on to the 3582 * next slot in this level. 3583 */ 3584 if (refs != 1) { 3585 parent = path->nodes[*level]; 3586 root_owner = btrfs_header_owner(parent); 3587 root_gen = btrfs_header_generation(parent); 3588 path->slots[*level]++; 3589 3590 ret = btrfs_free_extent(trans, root, bytenr, 3591 blocksize, parent->start, 3592 root_owner, root_gen, 3593 *level - 1, 1); 3594 BUG_ON(ret); 3595 3596 atomic_inc(&root->fs_info->throttle_gen); 3597 wake_up(&root->fs_info->transaction_throttle); 3598 cond_resched(); 3599 3600 continue; 3601 } 3602 3603 /* 3604 * we need to keep freeing things in the next level down. 3605 * read the block and loop around to process it 3606 */ 3607 next = read_tree_block(root, bytenr, blocksize, ptr_gen); 3608 WARN_ON(*level <= 0); 3609 if (path->nodes[*level-1]) 3610 free_extent_buffer(path->nodes[*level-1]); 3611 path->nodes[*level-1] = next; 3612 *level = btrfs_header_level(next); 3613 path->slots[*level] = 0; 3614 cond_resched(); 3615 } 3616 out: 3617 WARN_ON(*level < 0); 3618 WARN_ON(*level >= BTRFS_MAX_LEVEL); 3619 3620 if (path->nodes[*level] == root->node) { 3621 parent = path->nodes[*level]; 3622 bytenr = path->nodes[*level]->start; 3623 } else { 3624 parent = path->nodes[*level + 1]; 3625 bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]); 3626 } 3627 3628 blocksize = btrfs_level_size(root, *level); 3629 root_owner = btrfs_header_owner(parent); 3630 root_gen = btrfs_header_generation(parent); 3631 3632 /* 3633 * cleanup and free the reference on the last node 3634 * we processed 3635 */ 3636 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 3637 parent->start, root_owner, root_gen, 3638 *level, 1); 3639 free_extent_buffer(path->nodes[*level]); 3640 path->nodes[*level] = NULL; 3641 3642 *level += 1; 3643 BUG_ON(ret); 3644 3645 cond_resched(); 3646 return 0; 3647 } 3648 3649 /* 3650 * helper function for drop_subtree, this function is similar to 3651 * walk_down_tree. The main difference is that it checks reference 3652 * counts while tree blocks are locked. 3653 */ 3654 static noinline int walk_down_subtree(struct btrfs_trans_handle *trans, 3655 struct btrfs_root *root, 3656 struct btrfs_path *path, int *level) 3657 { 3658 struct extent_buffer *next; 3659 struct extent_buffer *cur; 3660 struct extent_buffer *parent; 3661 u64 bytenr; 3662 u64 ptr_gen; 3663 u32 blocksize; 3664 u32 refs; 3665 int ret; 3666 3667 cur = path->nodes[*level]; 3668 ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len, 3669 &refs); 3670 BUG_ON(ret); 3671 if (refs > 1) 3672 goto out; 3673 3674 while (*level >= 0) { 3675 cur = path->nodes[*level]; 3676 if (*level == 0) { 3677 ret = btrfs_drop_leaf_ref(trans, root, cur); 3678 BUG_ON(ret); 3679 clean_tree_block(trans, root, cur); 3680 break; 3681 } 3682 if (path->slots[*level] >= btrfs_header_nritems(cur)) { 3683 clean_tree_block(trans, root, cur); 3684 break; 3685 } 3686 3687 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 3688 blocksize = btrfs_level_size(root, *level - 1); 3689 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 3690 3691 next = read_tree_block(root, bytenr, blocksize, ptr_gen); 3692 btrfs_tree_lock(next); 3693 btrfs_set_lock_blocking(next); 3694 3695 ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize, 3696 &refs); 3697 BUG_ON(ret); 3698 if (refs > 1) { 3699 parent = path->nodes[*level]; 3700 ret = btrfs_free_extent(trans, root, bytenr, 3701 blocksize, parent->start, 3702 btrfs_header_owner(parent), 3703 btrfs_header_generation(parent), 3704 *level - 1, 1); 3705 BUG_ON(ret); 3706 path->slots[*level]++; 3707 btrfs_tree_unlock(next); 3708 free_extent_buffer(next); 3709 continue; 3710 } 3711 3712 *level = btrfs_header_level(next); 3713 path->nodes[*level] = next; 3714 path->slots[*level] = 0; 3715 path->locks[*level] = 1; 3716 cond_resched(); 3717 } 3718 out: 3719 parent = path->nodes[*level + 1]; 3720 bytenr = path->nodes[*level]->start; 3721 blocksize = path->nodes[*level]->len; 3722 3723 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 3724 parent->start, btrfs_header_owner(parent), 3725 btrfs_header_generation(parent), *level, 1); 3726 BUG_ON(ret); 3727 3728 if (path->locks[*level]) { 3729 btrfs_tree_unlock(path->nodes[*level]); 3730 path->locks[*level] = 0; 3731 } 3732 free_extent_buffer(path->nodes[*level]); 3733 path->nodes[*level] = NULL; 3734 *level += 1; 3735 cond_resched(); 3736 return 0; 3737 } 3738 3739 /* 3740 * helper for dropping snapshots. This walks back up the tree in the path 3741 * to find the first node higher up where we haven't yet gone through 3742 * all the slots 3743 */ 3744 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 3745 struct btrfs_root *root, 3746 struct btrfs_path *path, 3747 int *level, int max_level) 3748 { 3749 u64 root_owner; 3750 u64 root_gen; 3751 struct btrfs_root_item *root_item = &root->root_item; 3752 int i; 3753 int slot; 3754 int ret; 3755 3756 for (i = *level; i < max_level && path->nodes[i]; i++) { 3757 slot = path->slots[i]; 3758 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { 3759 struct extent_buffer *node; 3760 struct btrfs_disk_key disk_key; 3761 3762 /* 3763 * there is more work to do in this level. 3764 * Update the drop_progress marker to reflect 3765 * the work we've done so far, and then bump 3766 * the slot number 3767 */ 3768 node = path->nodes[i]; 3769 path->slots[i]++; 3770 *level = i; 3771 WARN_ON(*level == 0); 3772 btrfs_node_key(node, &disk_key, path->slots[i]); 3773 memcpy(&root_item->drop_progress, 3774 &disk_key, sizeof(disk_key)); 3775 root_item->drop_level = i; 3776 return 0; 3777 } else { 3778 struct extent_buffer *parent; 3779 3780 /* 3781 * this whole node is done, free our reference 3782 * on it and go up one level 3783 */ 3784 if (path->nodes[*level] == root->node) 3785 parent = path->nodes[*level]; 3786 else 3787 parent = path->nodes[*level + 1]; 3788 3789 root_owner = btrfs_header_owner(parent); 3790 root_gen = btrfs_header_generation(parent); 3791 3792 clean_tree_block(trans, root, path->nodes[*level]); 3793 ret = btrfs_free_extent(trans, root, 3794 path->nodes[*level]->start, 3795 path->nodes[*level]->len, 3796 parent->start, root_owner, 3797 root_gen, *level, 1); 3798 BUG_ON(ret); 3799 if (path->locks[*level]) { 3800 btrfs_tree_unlock(path->nodes[*level]); 3801 path->locks[*level] = 0; 3802 } 3803 free_extent_buffer(path->nodes[*level]); 3804 path->nodes[*level] = NULL; 3805 *level = i + 1; 3806 } 3807 } 3808 return 1; 3809 } 3810 3811 /* 3812 * drop the reference count on the tree rooted at 'snap'. This traverses 3813 * the tree freeing any blocks that have a ref count of zero after being 3814 * decremented. 3815 */ 3816 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root 3817 *root) 3818 { 3819 int ret = 0; 3820 int wret; 3821 int level; 3822 struct btrfs_path *path; 3823 int i; 3824 int orig_level; 3825 int update_count; 3826 struct btrfs_root_item *root_item = &root->root_item; 3827 3828 WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex)); 3829 path = btrfs_alloc_path(); 3830 BUG_ON(!path); 3831 3832 level = btrfs_header_level(root->node); 3833 orig_level = level; 3834 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 3835 path->nodes[level] = root->node; 3836 extent_buffer_get(root->node); 3837 path->slots[level] = 0; 3838 } else { 3839 struct btrfs_key key; 3840 struct btrfs_disk_key found_key; 3841 struct extent_buffer *node; 3842 3843 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 3844 level = root_item->drop_level; 3845 path->lowest_level = level; 3846 wret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3847 if (wret < 0) { 3848 ret = wret; 3849 goto out; 3850 } 3851 node = path->nodes[level]; 3852 btrfs_node_key(node, &found_key, path->slots[level]); 3853 WARN_ON(memcmp(&found_key, &root_item->drop_progress, 3854 sizeof(found_key))); 3855 /* 3856 * unlock our path, this is safe because only this 3857 * function is allowed to delete this snapshot 3858 */ 3859 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 3860 if (path->nodes[i] && path->locks[i]) { 3861 path->locks[i] = 0; 3862 btrfs_tree_unlock(path->nodes[i]); 3863 } 3864 } 3865 } 3866 while (1) { 3867 unsigned long update; 3868 wret = walk_down_tree(trans, root, path, &level); 3869 if (wret > 0) 3870 break; 3871 if (wret < 0) 3872 ret = wret; 3873 3874 wret = walk_up_tree(trans, root, path, &level, 3875 BTRFS_MAX_LEVEL); 3876 if (wret > 0) 3877 break; 3878 if (wret < 0) 3879 ret = wret; 3880 if (trans->transaction->in_commit || 3881 trans->transaction->delayed_refs.flushing) { 3882 ret = -EAGAIN; 3883 break; 3884 } 3885 atomic_inc(&root->fs_info->throttle_gen); 3886 wake_up(&root->fs_info->transaction_throttle); 3887 for (update_count = 0; update_count < 16; update_count++) { 3888 update = trans->delayed_ref_updates; 3889 trans->delayed_ref_updates = 0; 3890 if (update) 3891 btrfs_run_delayed_refs(trans, root, update); 3892 else 3893 break; 3894 } 3895 } 3896 for (i = 0; i <= orig_level; i++) { 3897 if (path->nodes[i]) { 3898 free_extent_buffer(path->nodes[i]); 3899 path->nodes[i] = NULL; 3900 } 3901 } 3902 out: 3903 btrfs_free_path(path); 3904 return ret; 3905 } 3906 3907 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3908 struct btrfs_root *root, 3909 struct extent_buffer *node, 3910 struct extent_buffer *parent) 3911 { 3912 struct btrfs_path *path; 3913 int level; 3914 int parent_level; 3915 int ret = 0; 3916 int wret; 3917 3918 path = btrfs_alloc_path(); 3919 BUG_ON(!path); 3920 3921 btrfs_assert_tree_locked(parent); 3922 parent_level = btrfs_header_level(parent); 3923 extent_buffer_get(parent); 3924 path->nodes[parent_level] = parent; 3925 path->slots[parent_level] = btrfs_header_nritems(parent); 3926 3927 btrfs_assert_tree_locked(node); 3928 level = btrfs_header_level(node); 3929 extent_buffer_get(node); 3930 path->nodes[level] = node; 3931 path->slots[level] = 0; 3932 3933 while (1) { 3934 wret = walk_down_subtree(trans, root, path, &level); 3935 if (wret < 0) 3936 ret = wret; 3937 if (wret != 0) 3938 break; 3939 3940 wret = walk_up_tree(trans, root, path, &level, parent_level); 3941 if (wret < 0) 3942 ret = wret; 3943 if (wret != 0) 3944 break; 3945 } 3946 3947 btrfs_free_path(path); 3948 return ret; 3949 } 3950 3951 static unsigned long calc_ra(unsigned long start, unsigned long last, 3952 unsigned long nr) 3953 { 3954 return min(last, start + nr - 1); 3955 } 3956 3957 static noinline int relocate_inode_pages(struct inode *inode, u64 start, 3958 u64 len) 3959 { 3960 u64 page_start; 3961 u64 page_end; 3962 unsigned long first_index; 3963 unsigned long last_index; 3964 unsigned long i; 3965 struct page *page; 3966 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3967 struct file_ra_state *ra; 3968 struct btrfs_ordered_extent *ordered; 3969 unsigned int total_read = 0; 3970 unsigned int total_dirty = 0; 3971 int ret = 0; 3972 3973 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3974 3975 mutex_lock(&inode->i_mutex); 3976 first_index = start >> PAGE_CACHE_SHIFT; 3977 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; 3978 3979 /* make sure the dirty trick played by the caller work */ 3980 ret = invalidate_inode_pages2_range(inode->i_mapping, 3981 first_index, last_index); 3982 if (ret) 3983 goto out_unlock; 3984 3985 file_ra_state_init(ra, inode->i_mapping); 3986 3987 for (i = first_index ; i <= last_index; i++) { 3988 if (total_read % ra->ra_pages == 0) { 3989 btrfs_force_ra(inode->i_mapping, ra, NULL, i, 3990 calc_ra(i, last_index, ra->ra_pages)); 3991 } 3992 total_read++; 3993 again: 3994 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) 3995 BUG_ON(1); 3996 page = grab_cache_page(inode->i_mapping, i); 3997 if (!page) { 3998 ret = -ENOMEM; 3999 goto out_unlock; 4000 } 4001 if (!PageUptodate(page)) { 4002 btrfs_readpage(NULL, page); 4003 lock_page(page); 4004 if (!PageUptodate(page)) { 4005 unlock_page(page); 4006 page_cache_release(page); 4007 ret = -EIO; 4008 goto out_unlock; 4009 } 4010 } 4011 wait_on_page_writeback(page); 4012 4013 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 4014 page_end = page_start + PAGE_CACHE_SIZE - 1; 4015 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4016 4017 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4018 if (ordered) { 4019 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4020 unlock_page(page); 4021 page_cache_release(page); 4022 btrfs_start_ordered_extent(inode, ordered, 1); 4023 btrfs_put_ordered_extent(ordered); 4024 goto again; 4025 } 4026 set_page_extent_mapped(page); 4027 4028 if (i == first_index) 4029 set_extent_bits(io_tree, page_start, page_end, 4030 EXTENT_BOUNDARY, GFP_NOFS); 4031 btrfs_set_extent_delalloc(inode, page_start, page_end); 4032 4033 set_page_dirty(page); 4034 total_dirty++; 4035 4036 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4037 unlock_page(page); 4038 page_cache_release(page); 4039 } 4040 4041 out_unlock: 4042 kfree(ra); 4043 mutex_unlock(&inode->i_mutex); 4044 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); 4045 return ret; 4046 } 4047 4048 static noinline int relocate_data_extent(struct inode *reloc_inode, 4049 struct btrfs_key *extent_key, 4050 u64 offset) 4051 { 4052 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 4053 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; 4054 struct extent_map *em; 4055 u64 start = extent_key->objectid - offset; 4056 u64 end = start + extent_key->offset - 1; 4057 4058 em = alloc_extent_map(GFP_NOFS); 4059 BUG_ON(!em || IS_ERR(em)); 4060 4061 em->start = start; 4062 em->len = extent_key->offset; 4063 em->block_len = extent_key->offset; 4064 em->block_start = extent_key->objectid; 4065 em->bdev = root->fs_info->fs_devices->latest_bdev; 4066 set_bit(EXTENT_FLAG_PINNED, &em->flags); 4067 4068 /* setup extent map to cheat btrfs_readpage */ 4069 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 4070 while (1) { 4071 int ret; 4072 spin_lock(&em_tree->lock); 4073 ret = add_extent_mapping(em_tree, em); 4074 spin_unlock(&em_tree->lock); 4075 if (ret != -EEXIST) { 4076 free_extent_map(em); 4077 break; 4078 } 4079 btrfs_drop_extent_cache(reloc_inode, start, end, 0); 4080 } 4081 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 4082 4083 return relocate_inode_pages(reloc_inode, start, extent_key->offset); 4084 } 4085 4086 struct btrfs_ref_path { 4087 u64 extent_start; 4088 u64 nodes[BTRFS_MAX_LEVEL]; 4089 u64 root_objectid; 4090 u64 root_generation; 4091 u64 owner_objectid; 4092 u32 num_refs; 4093 int lowest_level; 4094 int current_level; 4095 int shared_level; 4096 4097 struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; 4098 u64 new_nodes[BTRFS_MAX_LEVEL]; 4099 }; 4100 4101 struct disk_extent { 4102 u64 ram_bytes; 4103 u64 disk_bytenr; 4104 u64 disk_num_bytes; 4105 u64 offset; 4106 u64 num_bytes; 4107 u8 compression; 4108 u8 encryption; 4109 u16 other_encoding; 4110 }; 4111 4112 static int is_cowonly_root(u64 root_objectid) 4113 { 4114 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 4115 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 4116 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 4117 root_objectid == BTRFS_DEV_TREE_OBJECTID || 4118 root_objectid == BTRFS_TREE_LOG_OBJECTID || 4119 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 4120 return 1; 4121 return 0; 4122 } 4123 4124 static noinline int __next_ref_path(struct btrfs_trans_handle *trans, 4125 struct btrfs_root *extent_root, 4126 struct btrfs_ref_path *ref_path, 4127 int first_time) 4128 { 4129 struct extent_buffer *leaf; 4130 struct btrfs_path *path; 4131 struct btrfs_extent_ref *ref; 4132 struct btrfs_key key; 4133 struct btrfs_key found_key; 4134 u64 bytenr; 4135 u32 nritems; 4136 int level; 4137 int ret = 1; 4138 4139 path = btrfs_alloc_path(); 4140 if (!path) 4141 return -ENOMEM; 4142 4143 if (first_time) { 4144 ref_path->lowest_level = -1; 4145 ref_path->current_level = -1; 4146 ref_path->shared_level = -1; 4147 goto walk_up; 4148 } 4149 walk_down: 4150 level = ref_path->current_level - 1; 4151 while (level >= -1) { 4152 u64 parent; 4153 if (level < ref_path->lowest_level) 4154 break; 4155 4156 if (level >= 0) 4157 bytenr = ref_path->nodes[level]; 4158 else 4159 bytenr = ref_path->extent_start; 4160 BUG_ON(bytenr == 0); 4161 4162 parent = ref_path->nodes[level + 1]; 4163 ref_path->nodes[level + 1] = 0; 4164 ref_path->current_level = level; 4165 BUG_ON(parent == 0); 4166 4167 key.objectid = bytenr; 4168 key.offset = parent + 1; 4169 key.type = BTRFS_EXTENT_REF_KEY; 4170 4171 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 4172 if (ret < 0) 4173 goto out; 4174 BUG_ON(ret == 0); 4175 4176 leaf = path->nodes[0]; 4177 nritems = btrfs_header_nritems(leaf); 4178 if (path->slots[0] >= nritems) { 4179 ret = btrfs_next_leaf(extent_root, path); 4180 if (ret < 0) 4181 goto out; 4182 if (ret > 0) 4183 goto next; 4184 leaf = path->nodes[0]; 4185 } 4186 4187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4188 if (found_key.objectid == bytenr && 4189 found_key.type == BTRFS_EXTENT_REF_KEY) { 4190 if (level < ref_path->shared_level) 4191 ref_path->shared_level = level; 4192 goto found; 4193 } 4194 next: 4195 level--; 4196 btrfs_release_path(extent_root, path); 4197 cond_resched(); 4198 } 4199 /* reached lowest level */ 4200 ret = 1; 4201 goto out; 4202 walk_up: 4203 level = ref_path->current_level; 4204 while (level < BTRFS_MAX_LEVEL - 1) { 4205 u64 ref_objectid; 4206 4207 if (level >= 0) 4208 bytenr = ref_path->nodes[level]; 4209 else 4210 bytenr = ref_path->extent_start; 4211 4212 BUG_ON(bytenr == 0); 4213 4214 key.objectid = bytenr; 4215 key.offset = 0; 4216 key.type = BTRFS_EXTENT_REF_KEY; 4217 4218 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 4219 if (ret < 0) 4220 goto out; 4221 4222 leaf = path->nodes[0]; 4223 nritems = btrfs_header_nritems(leaf); 4224 if (path->slots[0] >= nritems) { 4225 ret = btrfs_next_leaf(extent_root, path); 4226 if (ret < 0) 4227 goto out; 4228 if (ret > 0) { 4229 /* the extent was freed by someone */ 4230 if (ref_path->lowest_level == level) 4231 goto out; 4232 btrfs_release_path(extent_root, path); 4233 goto walk_down; 4234 } 4235 leaf = path->nodes[0]; 4236 } 4237 4238 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4239 if (found_key.objectid != bytenr || 4240 found_key.type != BTRFS_EXTENT_REF_KEY) { 4241 /* the extent was freed by someone */ 4242 if (ref_path->lowest_level == level) { 4243 ret = 1; 4244 goto out; 4245 } 4246 btrfs_release_path(extent_root, path); 4247 goto walk_down; 4248 } 4249 found: 4250 ref = btrfs_item_ptr(leaf, path->slots[0], 4251 struct btrfs_extent_ref); 4252 ref_objectid = btrfs_ref_objectid(leaf, ref); 4253 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4254 if (first_time) { 4255 level = (int)ref_objectid; 4256 BUG_ON(level >= BTRFS_MAX_LEVEL); 4257 ref_path->lowest_level = level; 4258 ref_path->current_level = level; 4259 ref_path->nodes[level] = bytenr; 4260 } else { 4261 WARN_ON(ref_objectid != level); 4262 } 4263 } else { 4264 WARN_ON(level != -1); 4265 } 4266 first_time = 0; 4267 4268 if (ref_path->lowest_level == level) { 4269 ref_path->owner_objectid = ref_objectid; 4270 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); 4271 } 4272 4273 /* 4274 * the block is tree root or the block isn't in reference 4275 * counted tree. 4276 */ 4277 if (found_key.objectid == found_key.offset || 4278 is_cowonly_root(btrfs_ref_root(leaf, ref))) { 4279 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 4280 ref_path->root_generation = 4281 btrfs_ref_generation(leaf, ref); 4282 if (level < 0) { 4283 /* special reference from the tree log */ 4284 ref_path->nodes[0] = found_key.offset; 4285 ref_path->current_level = 0; 4286 } 4287 ret = 0; 4288 goto out; 4289 } 4290 4291 level++; 4292 BUG_ON(ref_path->nodes[level] != 0); 4293 ref_path->nodes[level] = found_key.offset; 4294 ref_path->current_level = level; 4295 4296 /* 4297 * the reference was created in the running transaction, 4298 * no need to continue walking up. 4299 */ 4300 if (btrfs_ref_generation(leaf, ref) == trans->transid) { 4301 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 4302 ref_path->root_generation = 4303 btrfs_ref_generation(leaf, ref); 4304 ret = 0; 4305 goto out; 4306 } 4307 4308 btrfs_release_path(extent_root, path); 4309 cond_resched(); 4310 } 4311 /* reached max tree level, but no tree root found. */ 4312 BUG(); 4313 out: 4314 btrfs_free_path(path); 4315 return ret; 4316 } 4317 4318 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, 4319 struct btrfs_root *extent_root, 4320 struct btrfs_ref_path *ref_path, 4321 u64 extent_start) 4322 { 4323 memset(ref_path, 0, sizeof(*ref_path)); 4324 ref_path->extent_start = extent_start; 4325 4326 return __next_ref_path(trans, extent_root, ref_path, 1); 4327 } 4328 4329 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, 4330 struct btrfs_root *extent_root, 4331 struct btrfs_ref_path *ref_path) 4332 { 4333 return __next_ref_path(trans, extent_root, ref_path, 0); 4334 } 4335 4336 static noinline int get_new_locations(struct inode *reloc_inode, 4337 struct btrfs_key *extent_key, 4338 u64 offset, int no_fragment, 4339 struct disk_extent **extents, 4340 int *nr_extents) 4341 { 4342 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 4343 struct btrfs_path *path; 4344 struct btrfs_file_extent_item *fi; 4345 struct extent_buffer *leaf; 4346 struct disk_extent *exts = *extents; 4347 struct btrfs_key found_key; 4348 u64 cur_pos; 4349 u64 last_byte; 4350 u32 nritems; 4351 int nr = 0; 4352 int max = *nr_extents; 4353 int ret; 4354 4355 WARN_ON(!no_fragment && *extents); 4356 if (!exts) { 4357 max = 1; 4358 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); 4359 if (!exts) 4360 return -ENOMEM; 4361 } 4362 4363 path = btrfs_alloc_path(); 4364 BUG_ON(!path); 4365 4366 cur_pos = extent_key->objectid - offset; 4367 last_byte = extent_key->objectid + extent_key->offset; 4368 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, 4369 cur_pos, 0); 4370 if (ret < 0) 4371 goto out; 4372 if (ret > 0) { 4373 ret = -ENOENT; 4374 goto out; 4375 } 4376 4377 while (1) { 4378 leaf = path->nodes[0]; 4379 nritems = btrfs_header_nritems(leaf); 4380 if (path->slots[0] >= nritems) { 4381 ret = btrfs_next_leaf(root, path); 4382 if (ret < 0) 4383 goto out; 4384 if (ret > 0) 4385 break; 4386 leaf = path->nodes[0]; 4387 } 4388 4389 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4390 if (found_key.offset != cur_pos || 4391 found_key.type != BTRFS_EXTENT_DATA_KEY || 4392 found_key.objectid != reloc_inode->i_ino) 4393 break; 4394 4395 fi = btrfs_item_ptr(leaf, path->slots[0], 4396 struct btrfs_file_extent_item); 4397 if (btrfs_file_extent_type(leaf, fi) != 4398 BTRFS_FILE_EXTENT_REG || 4399 btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 4400 break; 4401 4402 if (nr == max) { 4403 struct disk_extent *old = exts; 4404 max *= 2; 4405 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); 4406 memcpy(exts, old, sizeof(*exts) * nr); 4407 if (old != *extents) 4408 kfree(old); 4409 } 4410 4411 exts[nr].disk_bytenr = 4412 btrfs_file_extent_disk_bytenr(leaf, fi); 4413 exts[nr].disk_num_bytes = 4414 btrfs_file_extent_disk_num_bytes(leaf, fi); 4415 exts[nr].offset = btrfs_file_extent_offset(leaf, fi); 4416 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 4417 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 4418 exts[nr].compression = btrfs_file_extent_compression(leaf, fi); 4419 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); 4420 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, 4421 fi); 4422 BUG_ON(exts[nr].offset > 0); 4423 BUG_ON(exts[nr].compression || exts[nr].encryption); 4424 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); 4425 4426 cur_pos += exts[nr].num_bytes; 4427 nr++; 4428 4429 if (cur_pos + offset >= last_byte) 4430 break; 4431 4432 if (no_fragment) { 4433 ret = 1; 4434 goto out; 4435 } 4436 path->slots[0]++; 4437 } 4438 4439 BUG_ON(cur_pos + offset > last_byte); 4440 if (cur_pos + offset < last_byte) { 4441 ret = -ENOENT; 4442 goto out; 4443 } 4444 ret = 0; 4445 out: 4446 btrfs_free_path(path); 4447 if (ret) { 4448 if (exts != *extents) 4449 kfree(exts); 4450 } else { 4451 *extents = exts; 4452 *nr_extents = nr; 4453 } 4454 return ret; 4455 } 4456 4457 static noinline int replace_one_extent(struct btrfs_trans_handle *trans, 4458 struct btrfs_root *root, 4459 struct btrfs_path *path, 4460 struct btrfs_key *extent_key, 4461 struct btrfs_key *leaf_key, 4462 struct btrfs_ref_path *ref_path, 4463 struct disk_extent *new_extents, 4464 int nr_extents) 4465 { 4466 struct extent_buffer *leaf; 4467 struct btrfs_file_extent_item *fi; 4468 struct inode *inode = NULL; 4469 struct btrfs_key key; 4470 u64 lock_start = 0; 4471 u64 lock_end = 0; 4472 u64 num_bytes; 4473 u64 ext_offset; 4474 u64 search_end = (u64)-1; 4475 u32 nritems; 4476 int nr_scaned = 0; 4477 int extent_locked = 0; 4478 int extent_type; 4479 int ret; 4480 4481 memcpy(&key, leaf_key, sizeof(key)); 4482 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 4483 if (key.objectid < ref_path->owner_objectid || 4484 (key.objectid == ref_path->owner_objectid && 4485 key.type < BTRFS_EXTENT_DATA_KEY)) { 4486 key.objectid = ref_path->owner_objectid; 4487 key.type = BTRFS_EXTENT_DATA_KEY; 4488 key.offset = 0; 4489 } 4490 } 4491 4492 while (1) { 4493 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4494 if (ret < 0) 4495 goto out; 4496 4497 leaf = path->nodes[0]; 4498 nritems = btrfs_header_nritems(leaf); 4499 next: 4500 if (extent_locked && ret > 0) { 4501 /* 4502 * the file extent item was modified by someone 4503 * before the extent got locked. 4504 */ 4505 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4506 lock_end, GFP_NOFS); 4507 extent_locked = 0; 4508 } 4509 4510 if (path->slots[0] >= nritems) { 4511 if (++nr_scaned > 2) 4512 break; 4513 4514 BUG_ON(extent_locked); 4515 ret = btrfs_next_leaf(root, path); 4516 if (ret < 0) 4517 goto out; 4518 if (ret > 0) 4519 break; 4520 leaf = path->nodes[0]; 4521 nritems = btrfs_header_nritems(leaf); 4522 } 4523 4524 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4525 4526 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 4527 if ((key.objectid > ref_path->owner_objectid) || 4528 (key.objectid == ref_path->owner_objectid && 4529 key.type > BTRFS_EXTENT_DATA_KEY) || 4530 key.offset >= search_end) 4531 break; 4532 } 4533 4534 if (inode && key.objectid != inode->i_ino) { 4535 BUG_ON(extent_locked); 4536 btrfs_release_path(root, path); 4537 mutex_unlock(&inode->i_mutex); 4538 iput(inode); 4539 inode = NULL; 4540 continue; 4541 } 4542 4543 if (key.type != BTRFS_EXTENT_DATA_KEY) { 4544 path->slots[0]++; 4545 ret = 1; 4546 goto next; 4547 } 4548 fi = btrfs_item_ptr(leaf, path->slots[0], 4549 struct btrfs_file_extent_item); 4550 extent_type = btrfs_file_extent_type(leaf, fi); 4551 if ((extent_type != BTRFS_FILE_EXTENT_REG && 4552 extent_type != BTRFS_FILE_EXTENT_PREALLOC) || 4553 (btrfs_file_extent_disk_bytenr(leaf, fi) != 4554 extent_key->objectid)) { 4555 path->slots[0]++; 4556 ret = 1; 4557 goto next; 4558 } 4559 4560 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 4561 ext_offset = btrfs_file_extent_offset(leaf, fi); 4562 4563 if (search_end == (u64)-1) { 4564 search_end = key.offset - ext_offset + 4565 btrfs_file_extent_ram_bytes(leaf, fi); 4566 } 4567 4568 if (!extent_locked) { 4569 lock_start = key.offset; 4570 lock_end = lock_start + num_bytes - 1; 4571 } else { 4572 if (lock_start > key.offset || 4573 lock_end + 1 < key.offset + num_bytes) { 4574 unlock_extent(&BTRFS_I(inode)->io_tree, 4575 lock_start, lock_end, GFP_NOFS); 4576 extent_locked = 0; 4577 } 4578 } 4579 4580 if (!inode) { 4581 btrfs_release_path(root, path); 4582 4583 inode = btrfs_iget_locked(root->fs_info->sb, 4584 key.objectid, root); 4585 if (inode->i_state & I_NEW) { 4586 BTRFS_I(inode)->root = root; 4587 BTRFS_I(inode)->location.objectid = 4588 key.objectid; 4589 BTRFS_I(inode)->location.type = 4590 BTRFS_INODE_ITEM_KEY; 4591 BTRFS_I(inode)->location.offset = 0; 4592 btrfs_read_locked_inode(inode); 4593 unlock_new_inode(inode); 4594 } 4595 /* 4596 * some code call btrfs_commit_transaction while 4597 * holding the i_mutex, so we can't use mutex_lock 4598 * here. 4599 */ 4600 if (is_bad_inode(inode) || 4601 !mutex_trylock(&inode->i_mutex)) { 4602 iput(inode); 4603 inode = NULL; 4604 key.offset = (u64)-1; 4605 goto skip; 4606 } 4607 } 4608 4609 if (!extent_locked) { 4610 struct btrfs_ordered_extent *ordered; 4611 4612 btrfs_release_path(root, path); 4613 4614 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4615 lock_end, GFP_NOFS); 4616 ordered = btrfs_lookup_first_ordered_extent(inode, 4617 lock_end); 4618 if (ordered && 4619 ordered->file_offset <= lock_end && 4620 ordered->file_offset + ordered->len > lock_start) { 4621 unlock_extent(&BTRFS_I(inode)->io_tree, 4622 lock_start, lock_end, GFP_NOFS); 4623 btrfs_start_ordered_extent(inode, ordered, 1); 4624 btrfs_put_ordered_extent(ordered); 4625 key.offset += num_bytes; 4626 goto skip; 4627 } 4628 if (ordered) 4629 btrfs_put_ordered_extent(ordered); 4630 4631 extent_locked = 1; 4632 continue; 4633 } 4634 4635 if (nr_extents == 1) { 4636 /* update extent pointer in place */ 4637 btrfs_set_file_extent_disk_bytenr(leaf, fi, 4638 new_extents[0].disk_bytenr); 4639 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 4640 new_extents[0].disk_num_bytes); 4641 btrfs_mark_buffer_dirty(leaf); 4642 4643 btrfs_drop_extent_cache(inode, key.offset, 4644 key.offset + num_bytes - 1, 0); 4645 4646 ret = btrfs_inc_extent_ref(trans, root, 4647 new_extents[0].disk_bytenr, 4648 new_extents[0].disk_num_bytes, 4649 leaf->start, 4650 root->root_key.objectid, 4651 trans->transid, 4652 key.objectid); 4653 BUG_ON(ret); 4654 4655 ret = btrfs_free_extent(trans, root, 4656 extent_key->objectid, 4657 extent_key->offset, 4658 leaf->start, 4659 btrfs_header_owner(leaf), 4660 btrfs_header_generation(leaf), 4661 key.objectid, 0); 4662 BUG_ON(ret); 4663 4664 btrfs_release_path(root, path); 4665 key.offset += num_bytes; 4666 } else { 4667 BUG_ON(1); 4668 #if 0 4669 u64 alloc_hint; 4670 u64 extent_len; 4671 int i; 4672 /* 4673 * drop old extent pointer at first, then insert the 4674 * new pointers one bye one 4675 */ 4676 btrfs_release_path(root, path); 4677 ret = btrfs_drop_extents(trans, root, inode, key.offset, 4678 key.offset + num_bytes, 4679 key.offset, &alloc_hint); 4680 BUG_ON(ret); 4681 4682 for (i = 0; i < nr_extents; i++) { 4683 if (ext_offset >= new_extents[i].num_bytes) { 4684 ext_offset -= new_extents[i].num_bytes; 4685 continue; 4686 } 4687 extent_len = min(new_extents[i].num_bytes - 4688 ext_offset, num_bytes); 4689 4690 ret = btrfs_insert_empty_item(trans, root, 4691 path, &key, 4692 sizeof(*fi)); 4693 BUG_ON(ret); 4694 4695 leaf = path->nodes[0]; 4696 fi = btrfs_item_ptr(leaf, path->slots[0], 4697 struct btrfs_file_extent_item); 4698 btrfs_set_file_extent_generation(leaf, fi, 4699 trans->transid); 4700 btrfs_set_file_extent_type(leaf, fi, 4701 BTRFS_FILE_EXTENT_REG); 4702 btrfs_set_file_extent_disk_bytenr(leaf, fi, 4703 new_extents[i].disk_bytenr); 4704 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 4705 new_extents[i].disk_num_bytes); 4706 btrfs_set_file_extent_ram_bytes(leaf, fi, 4707 new_extents[i].ram_bytes); 4708 4709 btrfs_set_file_extent_compression(leaf, fi, 4710 new_extents[i].compression); 4711 btrfs_set_file_extent_encryption(leaf, fi, 4712 new_extents[i].encryption); 4713 btrfs_set_file_extent_other_encoding(leaf, fi, 4714 new_extents[i].other_encoding); 4715 4716 btrfs_set_file_extent_num_bytes(leaf, fi, 4717 extent_len); 4718 ext_offset += new_extents[i].offset; 4719 btrfs_set_file_extent_offset(leaf, fi, 4720 ext_offset); 4721 btrfs_mark_buffer_dirty(leaf); 4722 4723 btrfs_drop_extent_cache(inode, key.offset, 4724 key.offset + extent_len - 1, 0); 4725 4726 ret = btrfs_inc_extent_ref(trans, root, 4727 new_extents[i].disk_bytenr, 4728 new_extents[i].disk_num_bytes, 4729 leaf->start, 4730 root->root_key.objectid, 4731 trans->transid, key.objectid); 4732 BUG_ON(ret); 4733 btrfs_release_path(root, path); 4734 4735 inode_add_bytes(inode, extent_len); 4736 4737 ext_offset = 0; 4738 num_bytes -= extent_len; 4739 key.offset += extent_len; 4740 4741 if (num_bytes == 0) 4742 break; 4743 } 4744 BUG_ON(i >= nr_extents); 4745 #endif 4746 } 4747 4748 if (extent_locked) { 4749 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4750 lock_end, GFP_NOFS); 4751 extent_locked = 0; 4752 } 4753 skip: 4754 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && 4755 key.offset >= search_end) 4756 break; 4757 4758 cond_resched(); 4759 } 4760 ret = 0; 4761 out: 4762 btrfs_release_path(root, path); 4763 if (inode) { 4764 mutex_unlock(&inode->i_mutex); 4765 if (extent_locked) { 4766 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 4767 lock_end, GFP_NOFS); 4768 } 4769 iput(inode); 4770 } 4771 return ret; 4772 } 4773 4774 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, 4775 struct btrfs_root *root, 4776 struct extent_buffer *buf, u64 orig_start) 4777 { 4778 int level; 4779 int ret; 4780 4781 BUG_ON(btrfs_header_generation(buf) != trans->transid); 4782 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 4783 4784 level = btrfs_header_level(buf); 4785 if (level == 0) { 4786 struct btrfs_leaf_ref *ref; 4787 struct btrfs_leaf_ref *orig_ref; 4788 4789 orig_ref = btrfs_lookup_leaf_ref(root, orig_start); 4790 if (!orig_ref) 4791 return -ENOENT; 4792 4793 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); 4794 if (!ref) { 4795 btrfs_free_leaf_ref(root, orig_ref); 4796 return -ENOMEM; 4797 } 4798 4799 ref->nritems = orig_ref->nritems; 4800 memcpy(ref->extents, orig_ref->extents, 4801 sizeof(ref->extents[0]) * ref->nritems); 4802 4803 btrfs_free_leaf_ref(root, orig_ref); 4804 4805 ref->root_gen = trans->transid; 4806 ref->bytenr = buf->start; 4807 ref->owner = btrfs_header_owner(buf); 4808 ref->generation = btrfs_header_generation(buf); 4809 4810 ret = btrfs_add_leaf_ref(root, ref, 0); 4811 WARN_ON(ret); 4812 btrfs_free_leaf_ref(root, ref); 4813 } 4814 return 0; 4815 } 4816 4817 static noinline int invalidate_extent_cache(struct btrfs_root *root, 4818 struct extent_buffer *leaf, 4819 struct btrfs_block_group_cache *group, 4820 struct btrfs_root *target_root) 4821 { 4822 struct btrfs_key key; 4823 struct inode *inode = NULL; 4824 struct btrfs_file_extent_item *fi; 4825 u64 num_bytes; 4826 u64 skip_objectid = 0; 4827 u32 nritems; 4828 u32 i; 4829 4830 nritems = btrfs_header_nritems(leaf); 4831 for (i = 0; i < nritems; i++) { 4832 btrfs_item_key_to_cpu(leaf, &key, i); 4833 if (key.objectid == skip_objectid || 4834 key.type != BTRFS_EXTENT_DATA_KEY) 4835 continue; 4836 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 4837 if (btrfs_file_extent_type(leaf, fi) == 4838 BTRFS_FILE_EXTENT_INLINE) 4839 continue; 4840 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 4841 continue; 4842 if (!inode || inode->i_ino != key.objectid) { 4843 iput(inode); 4844 inode = btrfs_ilookup(target_root->fs_info->sb, 4845 key.objectid, target_root, 1); 4846 } 4847 if (!inode) { 4848 skip_objectid = key.objectid; 4849 continue; 4850 } 4851 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 4852 4853 lock_extent(&BTRFS_I(inode)->io_tree, key.offset, 4854 key.offset + num_bytes - 1, GFP_NOFS); 4855 btrfs_drop_extent_cache(inode, key.offset, 4856 key.offset + num_bytes - 1, 1); 4857 unlock_extent(&BTRFS_I(inode)->io_tree, key.offset, 4858 key.offset + num_bytes - 1, GFP_NOFS); 4859 cond_resched(); 4860 } 4861 iput(inode); 4862 return 0; 4863 } 4864 4865 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, 4866 struct btrfs_root *root, 4867 struct extent_buffer *leaf, 4868 struct btrfs_block_group_cache *group, 4869 struct inode *reloc_inode) 4870 { 4871 struct btrfs_key key; 4872 struct btrfs_key extent_key; 4873 struct btrfs_file_extent_item *fi; 4874 struct btrfs_leaf_ref *ref; 4875 struct disk_extent *new_extent; 4876 u64 bytenr; 4877 u64 num_bytes; 4878 u32 nritems; 4879 u32 i; 4880 int ext_index; 4881 int nr_extent; 4882 int ret; 4883 4884 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); 4885 BUG_ON(!new_extent); 4886 4887 ref = btrfs_lookup_leaf_ref(root, leaf->start); 4888 BUG_ON(!ref); 4889 4890 ext_index = -1; 4891 nritems = btrfs_header_nritems(leaf); 4892 for (i = 0; i < nritems; i++) { 4893 btrfs_item_key_to_cpu(leaf, &key, i); 4894 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 4895 continue; 4896 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 4897 if (btrfs_file_extent_type(leaf, fi) == 4898 BTRFS_FILE_EXTENT_INLINE) 4899 continue; 4900 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 4901 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 4902 if (bytenr == 0) 4903 continue; 4904 4905 ext_index++; 4906 if (bytenr >= group->key.objectid + group->key.offset || 4907 bytenr + num_bytes <= group->key.objectid) 4908 continue; 4909 4910 extent_key.objectid = bytenr; 4911 extent_key.offset = num_bytes; 4912 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4913 nr_extent = 1; 4914 ret = get_new_locations(reloc_inode, &extent_key, 4915 group->key.objectid, 1, 4916 &new_extent, &nr_extent); 4917 if (ret > 0) 4918 continue; 4919 BUG_ON(ret < 0); 4920 4921 BUG_ON(ref->extents[ext_index].bytenr != bytenr); 4922 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); 4923 ref->extents[ext_index].bytenr = new_extent->disk_bytenr; 4924 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; 4925 4926 btrfs_set_file_extent_disk_bytenr(leaf, fi, 4927 new_extent->disk_bytenr); 4928 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 4929 new_extent->disk_num_bytes); 4930 btrfs_mark_buffer_dirty(leaf); 4931 4932 ret = btrfs_inc_extent_ref(trans, root, 4933 new_extent->disk_bytenr, 4934 new_extent->disk_num_bytes, 4935 leaf->start, 4936 root->root_key.objectid, 4937 trans->transid, key.objectid); 4938 BUG_ON(ret); 4939 4940 ret = btrfs_free_extent(trans, root, 4941 bytenr, num_bytes, leaf->start, 4942 btrfs_header_owner(leaf), 4943 btrfs_header_generation(leaf), 4944 key.objectid, 0); 4945 BUG_ON(ret); 4946 cond_resched(); 4947 } 4948 kfree(new_extent); 4949 BUG_ON(ext_index + 1 != ref->nritems); 4950 btrfs_free_leaf_ref(root, ref); 4951 return 0; 4952 } 4953 4954 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, 4955 struct btrfs_root *root) 4956 { 4957 struct btrfs_root *reloc_root; 4958 int ret; 4959 4960 if (root->reloc_root) { 4961 reloc_root = root->reloc_root; 4962 root->reloc_root = NULL; 4963 list_add(&reloc_root->dead_list, 4964 &root->fs_info->dead_reloc_roots); 4965 4966 btrfs_set_root_bytenr(&reloc_root->root_item, 4967 reloc_root->node->start); 4968 btrfs_set_root_level(&root->root_item, 4969 btrfs_header_level(reloc_root->node)); 4970 memset(&reloc_root->root_item.drop_progress, 0, 4971 sizeof(struct btrfs_disk_key)); 4972 reloc_root->root_item.drop_level = 0; 4973 4974 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4975 &reloc_root->root_key, 4976 &reloc_root->root_item); 4977 BUG_ON(ret); 4978 } 4979 return 0; 4980 } 4981 4982 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) 4983 { 4984 struct btrfs_trans_handle *trans; 4985 struct btrfs_root *reloc_root; 4986 struct btrfs_root *prev_root = NULL; 4987 struct list_head dead_roots; 4988 int ret; 4989 unsigned long nr; 4990 4991 INIT_LIST_HEAD(&dead_roots); 4992 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); 4993 4994 while (!list_empty(&dead_roots)) { 4995 reloc_root = list_entry(dead_roots.prev, 4996 struct btrfs_root, dead_list); 4997 list_del_init(&reloc_root->dead_list); 4998 4999 BUG_ON(reloc_root->commit_root != NULL); 5000 while (1) { 5001 trans = btrfs_join_transaction(root, 1); 5002 BUG_ON(!trans); 5003 5004 mutex_lock(&root->fs_info->drop_mutex); 5005 ret = btrfs_drop_snapshot(trans, reloc_root); 5006 if (ret != -EAGAIN) 5007 break; 5008 mutex_unlock(&root->fs_info->drop_mutex); 5009 5010 nr = trans->blocks_used; 5011 ret = btrfs_end_transaction(trans, root); 5012 BUG_ON(ret); 5013 btrfs_btree_balance_dirty(root, nr); 5014 } 5015 5016 free_extent_buffer(reloc_root->node); 5017 5018 ret = btrfs_del_root(trans, root->fs_info->tree_root, 5019 &reloc_root->root_key); 5020 BUG_ON(ret); 5021 mutex_unlock(&root->fs_info->drop_mutex); 5022 5023 nr = trans->blocks_used; 5024 ret = btrfs_end_transaction(trans, root); 5025 BUG_ON(ret); 5026 btrfs_btree_balance_dirty(root, nr); 5027 5028 kfree(prev_root); 5029 prev_root = reloc_root; 5030 } 5031 if (prev_root) { 5032 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); 5033 kfree(prev_root); 5034 } 5035 return 0; 5036 } 5037 5038 int btrfs_add_dead_reloc_root(struct btrfs_root *root) 5039 { 5040 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); 5041 return 0; 5042 } 5043 5044 int btrfs_cleanup_reloc_trees(struct btrfs_root *root) 5045 { 5046 struct btrfs_root *reloc_root; 5047 struct btrfs_trans_handle *trans; 5048 struct btrfs_key location; 5049 int found; 5050 int ret; 5051 5052 mutex_lock(&root->fs_info->tree_reloc_mutex); 5053 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); 5054 BUG_ON(ret); 5055 found = !list_empty(&root->fs_info->dead_reloc_roots); 5056 mutex_unlock(&root->fs_info->tree_reloc_mutex); 5057 5058 if (found) { 5059 trans = btrfs_start_transaction(root, 1); 5060 BUG_ON(!trans); 5061 ret = btrfs_commit_transaction(trans, root); 5062 BUG_ON(ret); 5063 } 5064 5065 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 5066 location.offset = (u64)-1; 5067 location.type = BTRFS_ROOT_ITEM_KEY; 5068 5069 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 5070 BUG_ON(!reloc_root); 5071 btrfs_orphan_cleanup(reloc_root); 5072 return 0; 5073 } 5074 5075 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, 5076 struct btrfs_root *root) 5077 { 5078 struct btrfs_root *reloc_root; 5079 struct extent_buffer *eb; 5080 struct btrfs_root_item *root_item; 5081 struct btrfs_key root_key; 5082 int ret; 5083 5084 BUG_ON(!root->ref_cows); 5085 if (root->reloc_root) 5086 return 0; 5087 5088 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 5089 BUG_ON(!root_item); 5090 5091 ret = btrfs_copy_root(trans, root, root->commit_root, 5092 &eb, BTRFS_TREE_RELOC_OBJECTID); 5093 BUG_ON(ret); 5094 5095 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 5096 root_key.offset = root->root_key.objectid; 5097 root_key.type = BTRFS_ROOT_ITEM_KEY; 5098 5099 memcpy(root_item, &root->root_item, sizeof(root_item)); 5100 btrfs_set_root_refs(root_item, 0); 5101 btrfs_set_root_bytenr(root_item, eb->start); 5102 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 5103 btrfs_set_root_generation(root_item, trans->transid); 5104 5105 btrfs_tree_unlock(eb); 5106 free_extent_buffer(eb); 5107 5108 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 5109 &root_key, root_item); 5110 BUG_ON(ret); 5111 kfree(root_item); 5112 5113 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 5114 &root_key); 5115 BUG_ON(!reloc_root); 5116 reloc_root->last_trans = trans->transid; 5117 reloc_root->commit_root = NULL; 5118 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; 5119 5120 root->reloc_root = reloc_root; 5121 return 0; 5122 } 5123 5124 /* 5125 * Core function of space balance. 5126 * 5127 * The idea is using reloc trees to relocate tree blocks in reference 5128 * counted roots. There is one reloc tree for each subvol, and all 5129 * reloc trees share same root key objectid. Reloc trees are snapshots 5130 * of the latest committed roots of subvols (root->commit_root). 5131 * 5132 * To relocate a tree block referenced by a subvol, there are two steps. 5133 * COW the block through subvol's reloc tree, then update block pointer 5134 * in the subvol to point to the new block. Since all reloc trees share 5135 * same root key objectid, doing special handing for tree blocks owned 5136 * by them is easy. Once a tree block has been COWed in one reloc tree, 5137 * we can use the resulting new block directly when the same block is 5138 * required to COW again through other reloc trees. By this way, relocated 5139 * tree blocks are shared between reloc trees, so they are also shared 5140 * between subvols. 5141 */ 5142 static noinline int relocate_one_path(struct btrfs_trans_handle *trans, 5143 struct btrfs_root *root, 5144 struct btrfs_path *path, 5145 struct btrfs_key *first_key, 5146 struct btrfs_ref_path *ref_path, 5147 struct btrfs_block_group_cache *group, 5148 struct inode *reloc_inode) 5149 { 5150 struct btrfs_root *reloc_root; 5151 struct extent_buffer *eb = NULL; 5152 struct btrfs_key *keys; 5153 u64 *nodes; 5154 int level; 5155 int shared_level; 5156 int lowest_level = 0; 5157 int ret; 5158 5159 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 5160 lowest_level = ref_path->owner_objectid; 5161 5162 if (!root->ref_cows) { 5163 path->lowest_level = lowest_level; 5164 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); 5165 BUG_ON(ret < 0); 5166 path->lowest_level = 0; 5167 btrfs_release_path(root, path); 5168 return 0; 5169 } 5170 5171 mutex_lock(&root->fs_info->tree_reloc_mutex); 5172 ret = init_reloc_tree(trans, root); 5173 BUG_ON(ret); 5174 reloc_root = root->reloc_root; 5175 5176 shared_level = ref_path->shared_level; 5177 ref_path->shared_level = BTRFS_MAX_LEVEL - 1; 5178 5179 keys = ref_path->node_keys; 5180 nodes = ref_path->new_nodes; 5181 memset(&keys[shared_level + 1], 0, 5182 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); 5183 memset(&nodes[shared_level + 1], 0, 5184 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); 5185 5186 if (nodes[lowest_level] == 0) { 5187 path->lowest_level = lowest_level; 5188 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 5189 0, 1); 5190 BUG_ON(ret); 5191 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { 5192 eb = path->nodes[level]; 5193 if (!eb || eb == reloc_root->node) 5194 break; 5195 nodes[level] = eb->start; 5196 if (level == 0) 5197 btrfs_item_key_to_cpu(eb, &keys[level], 0); 5198 else 5199 btrfs_node_key_to_cpu(eb, &keys[level], 0); 5200 } 5201 if (nodes[0] && 5202 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5203 eb = path->nodes[0]; 5204 ret = replace_extents_in_leaf(trans, reloc_root, eb, 5205 group, reloc_inode); 5206 BUG_ON(ret); 5207 } 5208 btrfs_release_path(reloc_root, path); 5209 } else { 5210 ret = btrfs_merge_path(trans, reloc_root, keys, nodes, 5211 lowest_level); 5212 BUG_ON(ret); 5213 } 5214 5215 /* 5216 * replace tree blocks in the fs tree with tree blocks in 5217 * the reloc tree. 5218 */ 5219 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); 5220 BUG_ON(ret < 0); 5221 5222 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5223 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 5224 0, 0); 5225 BUG_ON(ret); 5226 extent_buffer_get(path->nodes[0]); 5227 eb = path->nodes[0]; 5228 btrfs_release_path(reloc_root, path); 5229 ret = invalidate_extent_cache(reloc_root, eb, group, root); 5230 BUG_ON(ret); 5231 free_extent_buffer(eb); 5232 } 5233 5234 mutex_unlock(&root->fs_info->tree_reloc_mutex); 5235 path->lowest_level = 0; 5236 return 0; 5237 } 5238 5239 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, 5240 struct btrfs_root *root, 5241 struct btrfs_path *path, 5242 struct btrfs_key *first_key, 5243 struct btrfs_ref_path *ref_path) 5244 { 5245 int ret; 5246 5247 ret = relocate_one_path(trans, root, path, first_key, 5248 ref_path, NULL, NULL); 5249 BUG_ON(ret); 5250 5251 return 0; 5252 } 5253 5254 static noinline int del_extent_zero(struct btrfs_trans_handle *trans, 5255 struct btrfs_root *extent_root, 5256 struct btrfs_path *path, 5257 struct btrfs_key *extent_key) 5258 { 5259 int ret; 5260 5261 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); 5262 if (ret) 5263 goto out; 5264 ret = btrfs_del_item(trans, extent_root, path); 5265 out: 5266 btrfs_release_path(extent_root, path); 5267 return ret; 5268 } 5269 5270 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, 5271 struct btrfs_ref_path *ref_path) 5272 { 5273 struct btrfs_key root_key; 5274 5275 root_key.objectid = ref_path->root_objectid; 5276 root_key.type = BTRFS_ROOT_ITEM_KEY; 5277 if (is_cowonly_root(ref_path->root_objectid)) 5278 root_key.offset = 0; 5279 else 5280 root_key.offset = (u64)-1; 5281 5282 return btrfs_read_fs_root_no_name(fs_info, &root_key); 5283 } 5284 5285 static noinline int relocate_one_extent(struct btrfs_root *extent_root, 5286 struct btrfs_path *path, 5287 struct btrfs_key *extent_key, 5288 struct btrfs_block_group_cache *group, 5289 struct inode *reloc_inode, int pass) 5290 { 5291 struct btrfs_trans_handle *trans; 5292 struct btrfs_root *found_root; 5293 struct btrfs_ref_path *ref_path = NULL; 5294 struct disk_extent *new_extents = NULL; 5295 int nr_extents = 0; 5296 int loops; 5297 int ret; 5298 int level; 5299 struct btrfs_key first_key; 5300 u64 prev_block = 0; 5301 5302 5303 trans = btrfs_start_transaction(extent_root, 1); 5304 BUG_ON(!trans); 5305 5306 if (extent_key->objectid == 0) { 5307 ret = del_extent_zero(trans, extent_root, path, extent_key); 5308 goto out; 5309 } 5310 5311 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); 5312 if (!ref_path) { 5313 ret = -ENOMEM; 5314 goto out; 5315 } 5316 5317 for (loops = 0; ; loops++) { 5318 if (loops == 0) { 5319 ret = btrfs_first_ref_path(trans, extent_root, ref_path, 5320 extent_key->objectid); 5321 } else { 5322 ret = btrfs_next_ref_path(trans, extent_root, ref_path); 5323 } 5324 if (ret < 0) 5325 goto out; 5326 if (ret > 0) 5327 break; 5328 5329 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || 5330 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) 5331 continue; 5332 5333 found_root = read_ref_root(extent_root->fs_info, ref_path); 5334 BUG_ON(!found_root); 5335 /* 5336 * for reference counted tree, only process reference paths 5337 * rooted at the latest committed root. 5338 */ 5339 if (found_root->ref_cows && 5340 ref_path->root_generation != found_root->root_key.offset) 5341 continue; 5342 5343 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5344 if (pass == 0) { 5345 /* 5346 * copy data extents to new locations 5347 */ 5348 u64 group_start = group->key.objectid; 5349 ret = relocate_data_extent(reloc_inode, 5350 extent_key, 5351 group_start); 5352 if (ret < 0) 5353 goto out; 5354 break; 5355 } 5356 level = 0; 5357 } else { 5358 level = ref_path->owner_objectid; 5359 } 5360 5361 if (prev_block != ref_path->nodes[level]) { 5362 struct extent_buffer *eb; 5363 u64 block_start = ref_path->nodes[level]; 5364 u64 block_size = btrfs_level_size(found_root, level); 5365 5366 eb = read_tree_block(found_root, block_start, 5367 block_size, 0); 5368 btrfs_tree_lock(eb); 5369 BUG_ON(level != btrfs_header_level(eb)); 5370 5371 if (level == 0) 5372 btrfs_item_key_to_cpu(eb, &first_key, 0); 5373 else 5374 btrfs_node_key_to_cpu(eb, &first_key, 0); 5375 5376 btrfs_tree_unlock(eb); 5377 free_extent_buffer(eb); 5378 prev_block = block_start; 5379 } 5380 5381 mutex_lock(&extent_root->fs_info->trans_mutex); 5382 btrfs_record_root_in_trans(found_root); 5383 mutex_unlock(&extent_root->fs_info->trans_mutex); 5384 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 5385 /* 5386 * try to update data extent references while 5387 * keeping metadata shared between snapshots. 5388 */ 5389 if (pass == 1) { 5390 ret = relocate_one_path(trans, found_root, 5391 path, &first_key, ref_path, 5392 group, reloc_inode); 5393 if (ret < 0) 5394 goto out; 5395 continue; 5396 } 5397 /* 5398 * use fallback method to process the remaining 5399 * references. 5400 */ 5401 if (!new_extents) { 5402 u64 group_start = group->key.objectid; 5403 new_extents = kmalloc(sizeof(*new_extents), 5404 GFP_NOFS); 5405 nr_extents = 1; 5406 ret = get_new_locations(reloc_inode, 5407 extent_key, 5408 group_start, 1, 5409 &new_extents, 5410 &nr_extents); 5411 if (ret) 5412 goto out; 5413 } 5414 ret = replace_one_extent(trans, found_root, 5415 path, extent_key, 5416 &first_key, ref_path, 5417 new_extents, nr_extents); 5418 } else { 5419 ret = relocate_tree_block(trans, found_root, path, 5420 &first_key, ref_path); 5421 } 5422 if (ret < 0) 5423 goto out; 5424 } 5425 ret = 0; 5426 out: 5427 btrfs_end_transaction(trans, extent_root); 5428 kfree(new_extents); 5429 kfree(ref_path); 5430 return ret; 5431 } 5432 5433 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 5434 { 5435 u64 num_devices; 5436 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 5437 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 5438 5439 num_devices = root->fs_info->fs_devices->rw_devices; 5440 if (num_devices == 1) { 5441 stripped |= BTRFS_BLOCK_GROUP_DUP; 5442 stripped = flags & ~stripped; 5443 5444 /* turn raid0 into single device chunks */ 5445 if (flags & BTRFS_BLOCK_GROUP_RAID0) 5446 return stripped; 5447 5448 /* turn mirroring into duplication */ 5449 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 5450 BTRFS_BLOCK_GROUP_RAID10)) 5451 return stripped | BTRFS_BLOCK_GROUP_DUP; 5452 return flags; 5453 } else { 5454 /* they already had raid on here, just return */ 5455 if (flags & stripped) 5456 return flags; 5457 5458 stripped |= BTRFS_BLOCK_GROUP_DUP; 5459 stripped = flags & ~stripped; 5460 5461 /* switch duplicated blocks with raid1 */ 5462 if (flags & BTRFS_BLOCK_GROUP_DUP) 5463 return stripped | BTRFS_BLOCK_GROUP_RAID1; 5464 5465 /* turn single device chunks into raid0 */ 5466 return stripped | BTRFS_BLOCK_GROUP_RAID0; 5467 } 5468 return flags; 5469 } 5470 5471 static int __alloc_chunk_for_shrink(struct btrfs_root *root, 5472 struct btrfs_block_group_cache *shrink_block_group, 5473 int force) 5474 { 5475 struct btrfs_trans_handle *trans; 5476 u64 new_alloc_flags; 5477 u64 calc; 5478 5479 spin_lock(&shrink_block_group->lock); 5480 if (btrfs_block_group_used(&shrink_block_group->item) > 0) { 5481 spin_unlock(&shrink_block_group->lock); 5482 5483 trans = btrfs_start_transaction(root, 1); 5484 spin_lock(&shrink_block_group->lock); 5485 5486 new_alloc_flags = update_block_group_flags(root, 5487 shrink_block_group->flags); 5488 if (new_alloc_flags != shrink_block_group->flags) { 5489 calc = 5490 btrfs_block_group_used(&shrink_block_group->item); 5491 } else { 5492 calc = shrink_block_group->key.offset; 5493 } 5494 spin_unlock(&shrink_block_group->lock); 5495 5496 do_chunk_alloc(trans, root->fs_info->extent_root, 5497 calc + 2 * 1024 * 1024, new_alloc_flags, force); 5498 5499 btrfs_end_transaction(trans, root); 5500 } else 5501 spin_unlock(&shrink_block_group->lock); 5502 return 0; 5503 } 5504 5505 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 5506 struct btrfs_root *root, 5507 u64 objectid, u64 size) 5508 { 5509 struct btrfs_path *path; 5510 struct btrfs_inode_item *item; 5511 struct extent_buffer *leaf; 5512 int ret; 5513 5514 path = btrfs_alloc_path(); 5515 if (!path) 5516 return -ENOMEM; 5517 5518 path->leave_spinning = 1; 5519 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 5520 if (ret) 5521 goto out; 5522 5523 leaf = path->nodes[0]; 5524 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 5525 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 5526 btrfs_set_inode_generation(leaf, item, 1); 5527 btrfs_set_inode_size(leaf, item, size); 5528 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 5529 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS); 5530 btrfs_mark_buffer_dirty(leaf); 5531 btrfs_release_path(root, path); 5532 out: 5533 btrfs_free_path(path); 5534 return ret; 5535 } 5536 5537 static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 5538 struct btrfs_block_group_cache *group) 5539 { 5540 struct inode *inode = NULL; 5541 struct btrfs_trans_handle *trans; 5542 struct btrfs_root *root; 5543 struct btrfs_key root_key; 5544 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 5545 int err = 0; 5546 5547 root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 5548 root_key.type = BTRFS_ROOT_ITEM_KEY; 5549 root_key.offset = (u64)-1; 5550 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 5551 if (IS_ERR(root)) 5552 return ERR_CAST(root); 5553 5554 trans = btrfs_start_transaction(root, 1); 5555 BUG_ON(!trans); 5556 5557 err = btrfs_find_free_objectid(trans, root, objectid, &objectid); 5558 if (err) 5559 goto out; 5560 5561 err = __insert_orphan_inode(trans, root, objectid, group->key.offset); 5562 BUG_ON(err); 5563 5564 err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0, 5565 group->key.offset, 0, group->key.offset, 5566 0, 0, 0); 5567 BUG_ON(err); 5568 5569 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); 5570 if (inode->i_state & I_NEW) { 5571 BTRFS_I(inode)->root = root; 5572 BTRFS_I(inode)->location.objectid = objectid; 5573 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5574 BTRFS_I(inode)->location.offset = 0; 5575 btrfs_read_locked_inode(inode); 5576 unlock_new_inode(inode); 5577 BUG_ON(is_bad_inode(inode)); 5578 } else { 5579 BUG_ON(1); 5580 } 5581 BTRFS_I(inode)->index_cnt = group->key.objectid; 5582 5583 err = btrfs_orphan_add(trans, inode); 5584 out: 5585 btrfs_end_transaction(trans, root); 5586 if (err) { 5587 if (inode) 5588 iput(inode); 5589 inode = ERR_PTR(err); 5590 } 5591 return inode; 5592 } 5593 5594 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 5595 { 5596 5597 struct btrfs_ordered_sum *sums; 5598 struct btrfs_sector_sum *sector_sum; 5599 struct btrfs_ordered_extent *ordered; 5600 struct btrfs_root *root = BTRFS_I(inode)->root; 5601 struct list_head list; 5602 size_t offset; 5603 int ret; 5604 u64 disk_bytenr; 5605 5606 INIT_LIST_HEAD(&list); 5607 5608 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 5609 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 5610 5611 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 5612 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 5613 disk_bytenr + len - 1, &list); 5614 5615 while (!list_empty(&list)) { 5616 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 5617 list_del_init(&sums->list); 5618 5619 sector_sum = sums->sums; 5620 sums->bytenr = ordered->start; 5621 5622 offset = 0; 5623 while (offset < sums->len) { 5624 sector_sum->bytenr += ordered->start - disk_bytenr; 5625 sector_sum++; 5626 offset += root->sectorsize; 5627 } 5628 5629 btrfs_add_ordered_sum(inode, ordered, sums); 5630 } 5631 btrfs_put_ordered_extent(ordered); 5632 return 0; 5633 } 5634 5635 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start) 5636 { 5637 struct btrfs_trans_handle *trans; 5638 struct btrfs_path *path; 5639 struct btrfs_fs_info *info = root->fs_info; 5640 struct extent_buffer *leaf; 5641 struct inode *reloc_inode; 5642 struct btrfs_block_group_cache *block_group; 5643 struct btrfs_key key; 5644 u64 skipped; 5645 u64 cur_byte; 5646 u64 total_found; 5647 u32 nritems; 5648 int ret; 5649 int progress; 5650 int pass = 0; 5651 5652 root = root->fs_info->extent_root; 5653 5654 block_group = btrfs_lookup_block_group(info, group_start); 5655 BUG_ON(!block_group); 5656 5657 printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n", 5658 (unsigned long long)block_group->key.objectid, 5659 (unsigned long long)block_group->flags); 5660 5661 path = btrfs_alloc_path(); 5662 BUG_ON(!path); 5663 5664 reloc_inode = create_reloc_inode(info, block_group); 5665 BUG_ON(IS_ERR(reloc_inode)); 5666 5667 __alloc_chunk_for_shrink(root, block_group, 1); 5668 set_block_group_readonly(block_group); 5669 5670 btrfs_start_delalloc_inodes(info->tree_root); 5671 btrfs_wait_ordered_extents(info->tree_root, 0); 5672 again: 5673 skipped = 0; 5674 total_found = 0; 5675 progress = 0; 5676 key.objectid = block_group->key.objectid; 5677 key.offset = 0; 5678 key.type = 0; 5679 cur_byte = key.objectid; 5680 5681 trans = btrfs_start_transaction(info->tree_root, 1); 5682 btrfs_commit_transaction(trans, info->tree_root); 5683 5684 mutex_lock(&root->fs_info->cleaner_mutex); 5685 btrfs_clean_old_snapshots(info->tree_root); 5686 btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1); 5687 mutex_unlock(&root->fs_info->cleaner_mutex); 5688 5689 trans = btrfs_start_transaction(info->tree_root, 1); 5690 btrfs_commit_transaction(trans, info->tree_root); 5691 5692 while (1) { 5693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5694 if (ret < 0) 5695 goto out; 5696 next: 5697 leaf = path->nodes[0]; 5698 nritems = btrfs_header_nritems(leaf); 5699 if (path->slots[0] >= nritems) { 5700 ret = btrfs_next_leaf(root, path); 5701 if (ret < 0) 5702 goto out; 5703 if (ret == 1) { 5704 ret = 0; 5705 break; 5706 } 5707 leaf = path->nodes[0]; 5708 nritems = btrfs_header_nritems(leaf); 5709 } 5710 5711 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5712 5713 if (key.objectid >= block_group->key.objectid + 5714 block_group->key.offset) 5715 break; 5716 5717 if (progress && need_resched()) { 5718 btrfs_release_path(root, path); 5719 cond_resched(); 5720 progress = 0; 5721 continue; 5722 } 5723 progress = 1; 5724 5725 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY || 5726 key.objectid + key.offset <= cur_byte) { 5727 path->slots[0]++; 5728 goto next; 5729 } 5730 5731 total_found++; 5732 cur_byte = key.objectid + key.offset; 5733 btrfs_release_path(root, path); 5734 5735 __alloc_chunk_for_shrink(root, block_group, 0); 5736 ret = relocate_one_extent(root, path, &key, block_group, 5737 reloc_inode, pass); 5738 BUG_ON(ret < 0); 5739 if (ret > 0) 5740 skipped++; 5741 5742 key.objectid = cur_byte; 5743 key.type = 0; 5744 key.offset = 0; 5745 } 5746 5747 btrfs_release_path(root, path); 5748 5749 if (pass == 0) { 5750 btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1); 5751 invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1); 5752 } 5753 5754 if (total_found > 0) { 5755 printk(KERN_INFO "btrfs found %llu extents in pass %d\n", 5756 (unsigned long long)total_found, pass); 5757 pass++; 5758 if (total_found == skipped && pass > 2) { 5759 iput(reloc_inode); 5760 reloc_inode = create_reloc_inode(info, block_group); 5761 pass = 0; 5762 } 5763 goto again; 5764 } 5765 5766 /* delete reloc_inode */ 5767 iput(reloc_inode); 5768 5769 /* unpin extents in this range */ 5770 trans = btrfs_start_transaction(info->tree_root, 1); 5771 btrfs_commit_transaction(trans, info->tree_root); 5772 5773 spin_lock(&block_group->lock); 5774 WARN_ON(block_group->pinned > 0); 5775 WARN_ON(block_group->reserved > 0); 5776 WARN_ON(btrfs_block_group_used(&block_group->item) > 0); 5777 spin_unlock(&block_group->lock); 5778 btrfs_put_block_group(block_group); 5779 ret = 0; 5780 out: 5781 btrfs_free_path(path); 5782 return ret; 5783 } 5784 5785 static int find_first_block_group(struct btrfs_root *root, 5786 struct btrfs_path *path, struct btrfs_key *key) 5787 { 5788 int ret = 0; 5789 struct btrfs_key found_key; 5790 struct extent_buffer *leaf; 5791 int slot; 5792 5793 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 5794 if (ret < 0) 5795 goto out; 5796 5797 while (1) { 5798 slot = path->slots[0]; 5799 leaf = path->nodes[0]; 5800 if (slot >= btrfs_header_nritems(leaf)) { 5801 ret = btrfs_next_leaf(root, path); 5802 if (ret == 0) 5803 continue; 5804 if (ret < 0) 5805 goto out; 5806 break; 5807 } 5808 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5809 5810 if (found_key.objectid >= key->objectid && 5811 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 5812 ret = 0; 5813 goto out; 5814 } 5815 path->slots[0]++; 5816 } 5817 ret = -ENOENT; 5818 out: 5819 return ret; 5820 } 5821 5822 int btrfs_free_block_groups(struct btrfs_fs_info *info) 5823 { 5824 struct btrfs_block_group_cache *block_group; 5825 struct btrfs_space_info *space_info; 5826 struct rb_node *n; 5827 5828 spin_lock(&info->block_group_cache_lock); 5829 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 5830 block_group = rb_entry(n, struct btrfs_block_group_cache, 5831 cache_node); 5832 rb_erase(&block_group->cache_node, 5833 &info->block_group_cache_tree); 5834 spin_unlock(&info->block_group_cache_lock); 5835 5836 btrfs_remove_free_space_cache(block_group); 5837 down_write(&block_group->space_info->groups_sem); 5838 list_del(&block_group->list); 5839 up_write(&block_group->space_info->groups_sem); 5840 5841 WARN_ON(atomic_read(&block_group->count) != 1); 5842 kfree(block_group); 5843 5844 spin_lock(&info->block_group_cache_lock); 5845 } 5846 spin_unlock(&info->block_group_cache_lock); 5847 5848 /* now that all the block groups are freed, go through and 5849 * free all the space_info structs. This is only called during 5850 * the final stages of unmount, and so we know nobody is 5851 * using them. We call synchronize_rcu() once before we start, 5852 * just to be on the safe side. 5853 */ 5854 synchronize_rcu(); 5855 5856 while(!list_empty(&info->space_info)) { 5857 space_info = list_entry(info->space_info.next, 5858 struct btrfs_space_info, 5859 list); 5860 5861 list_del(&space_info->list); 5862 kfree(space_info); 5863 } 5864 return 0; 5865 } 5866 5867 int btrfs_read_block_groups(struct btrfs_root *root) 5868 { 5869 struct btrfs_path *path; 5870 int ret; 5871 struct btrfs_block_group_cache *cache; 5872 struct btrfs_fs_info *info = root->fs_info; 5873 struct btrfs_space_info *space_info; 5874 struct btrfs_key key; 5875 struct btrfs_key found_key; 5876 struct extent_buffer *leaf; 5877 5878 root = info->extent_root; 5879 key.objectid = 0; 5880 key.offset = 0; 5881 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 5882 path = btrfs_alloc_path(); 5883 if (!path) 5884 return -ENOMEM; 5885 5886 while (1) { 5887 ret = find_first_block_group(root, path, &key); 5888 if (ret > 0) { 5889 ret = 0; 5890 goto error; 5891 } 5892 if (ret != 0) 5893 goto error; 5894 5895 leaf = path->nodes[0]; 5896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5897 cache = kzalloc(sizeof(*cache), GFP_NOFS); 5898 if (!cache) { 5899 ret = -ENOMEM; 5900 break; 5901 } 5902 5903 atomic_set(&cache->count, 1); 5904 spin_lock_init(&cache->lock); 5905 spin_lock_init(&cache->tree_lock); 5906 mutex_init(&cache->cache_mutex); 5907 INIT_LIST_HEAD(&cache->list); 5908 INIT_LIST_HEAD(&cache->cluster_list); 5909 read_extent_buffer(leaf, &cache->item, 5910 btrfs_item_ptr_offset(leaf, path->slots[0]), 5911 sizeof(cache->item)); 5912 memcpy(&cache->key, &found_key, sizeof(found_key)); 5913 5914 key.objectid = found_key.objectid + found_key.offset; 5915 btrfs_release_path(root, path); 5916 cache->flags = btrfs_block_group_flags(&cache->item); 5917 5918 ret = update_space_info(info, cache->flags, found_key.offset, 5919 btrfs_block_group_used(&cache->item), 5920 &space_info); 5921 BUG_ON(ret); 5922 cache->space_info = space_info; 5923 down_write(&space_info->groups_sem); 5924 list_add_tail(&cache->list, &space_info->block_groups); 5925 up_write(&space_info->groups_sem); 5926 5927 ret = btrfs_add_block_group_cache(root->fs_info, cache); 5928 BUG_ON(ret); 5929 5930 set_avail_alloc_bits(root->fs_info, cache->flags); 5931 if (btrfs_chunk_readonly(root, cache->key.objectid)) 5932 set_block_group_readonly(cache); 5933 } 5934 ret = 0; 5935 error: 5936 btrfs_free_path(path); 5937 return ret; 5938 } 5939 5940 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 5941 struct btrfs_root *root, u64 bytes_used, 5942 u64 type, u64 chunk_objectid, u64 chunk_offset, 5943 u64 size) 5944 { 5945 int ret; 5946 struct btrfs_root *extent_root; 5947 struct btrfs_block_group_cache *cache; 5948 5949 extent_root = root->fs_info->extent_root; 5950 5951 root->fs_info->last_trans_log_full_commit = trans->transid; 5952 5953 cache = kzalloc(sizeof(*cache), GFP_NOFS); 5954 if (!cache) 5955 return -ENOMEM; 5956 5957 cache->key.objectid = chunk_offset; 5958 cache->key.offset = size; 5959 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 5960 atomic_set(&cache->count, 1); 5961 spin_lock_init(&cache->lock); 5962 spin_lock_init(&cache->tree_lock); 5963 mutex_init(&cache->cache_mutex); 5964 INIT_LIST_HEAD(&cache->list); 5965 INIT_LIST_HEAD(&cache->cluster_list); 5966 5967 btrfs_set_block_group_used(&cache->item, bytes_used); 5968 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 5969 cache->flags = type; 5970 btrfs_set_block_group_flags(&cache->item, type); 5971 5972 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 5973 &cache->space_info); 5974 BUG_ON(ret); 5975 down_write(&cache->space_info->groups_sem); 5976 list_add_tail(&cache->list, &cache->space_info->block_groups); 5977 up_write(&cache->space_info->groups_sem); 5978 5979 ret = btrfs_add_block_group_cache(root->fs_info, cache); 5980 BUG_ON(ret); 5981 5982 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 5983 sizeof(cache->item)); 5984 BUG_ON(ret); 5985 5986 set_avail_alloc_bits(extent_root->fs_info, type); 5987 5988 return 0; 5989 } 5990 5991 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 5992 struct btrfs_root *root, u64 group_start) 5993 { 5994 struct btrfs_path *path; 5995 struct btrfs_block_group_cache *block_group; 5996 struct btrfs_free_cluster *cluster; 5997 struct btrfs_key key; 5998 int ret; 5999 6000 root = root->fs_info->extent_root; 6001 6002 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 6003 BUG_ON(!block_group); 6004 BUG_ON(!block_group->ro); 6005 6006 memcpy(&key, &block_group->key, sizeof(key)); 6007 6008 /* make sure this block group isn't part of an allocation cluster */ 6009 cluster = &root->fs_info->data_alloc_cluster; 6010 spin_lock(&cluster->refill_lock); 6011 btrfs_return_cluster_to_free_space(block_group, cluster); 6012 spin_unlock(&cluster->refill_lock); 6013 6014 /* 6015 * make sure this block group isn't part of a metadata 6016 * allocation cluster 6017 */ 6018 cluster = &root->fs_info->meta_alloc_cluster; 6019 spin_lock(&cluster->refill_lock); 6020 btrfs_return_cluster_to_free_space(block_group, cluster); 6021 spin_unlock(&cluster->refill_lock); 6022 6023 path = btrfs_alloc_path(); 6024 BUG_ON(!path); 6025 6026 spin_lock(&root->fs_info->block_group_cache_lock); 6027 rb_erase(&block_group->cache_node, 6028 &root->fs_info->block_group_cache_tree); 6029 spin_unlock(&root->fs_info->block_group_cache_lock); 6030 btrfs_remove_free_space_cache(block_group); 6031 down_write(&block_group->space_info->groups_sem); 6032 /* 6033 * we must use list_del_init so people can check to see if they 6034 * are still on the list after taking the semaphore 6035 */ 6036 list_del_init(&block_group->list); 6037 up_write(&block_group->space_info->groups_sem); 6038 6039 spin_lock(&block_group->space_info->lock); 6040 block_group->space_info->total_bytes -= block_group->key.offset; 6041 block_group->space_info->bytes_readonly -= block_group->key.offset; 6042 spin_unlock(&block_group->space_info->lock); 6043 block_group->space_info->full = 0; 6044 6045 btrfs_put_block_group(block_group); 6046 btrfs_put_block_group(block_group); 6047 6048 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 6049 if (ret > 0) 6050 ret = -EIO; 6051 if (ret < 0) 6052 goto out; 6053 6054 ret = btrfs_del_item(trans, root, path); 6055 out: 6056 btrfs_free_path(path); 6057 return ret; 6058 } 6059