xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 77a87824)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 /*
64  * Control how reservations are dealt with.
65  *
66  * RESERVE_FREE - freeing a reservation.
67  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68  *   ENOSPC accounting
69  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70  *   bytes_may_use as the ENOSPC accounting is done elsewhere
71  */
72 enum {
73 	RESERVE_FREE = 0,
74 	RESERVE_ALLOC = 1,
75 	RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77 
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 			      struct btrfs_root *root, u64 bytenr,
80 			      u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 				struct btrfs_root *root,
83 				struct btrfs_delayed_ref_node *node, u64 parent,
84 				u64 root_objectid, u64 owner_objectid,
85 				u64 owner_offset, int refs_to_drop,
86 				struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 static int __reserve_metadata_bytes(struct btrfs_root *root,
115 				    struct btrfs_space_info *space_info,
116 				    u64 orig_bytes,
117 				    enum btrfs_reserve_flush_enum flush);
118 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
119 				     struct btrfs_space_info *space_info,
120 				     u64 num_bytes);
121 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
122 				     struct btrfs_space_info *space_info,
123 				     u64 num_bytes);
124 
125 static noinline int
126 block_group_cache_done(struct btrfs_block_group_cache *cache)
127 {
128 	smp_mb();
129 	return cache->cached == BTRFS_CACHE_FINISHED ||
130 		cache->cached == BTRFS_CACHE_ERROR;
131 }
132 
133 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
134 {
135 	return (cache->flags & bits) == bits;
136 }
137 
138 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
139 {
140 	atomic_inc(&cache->count);
141 }
142 
143 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
144 {
145 	if (atomic_dec_and_test(&cache->count)) {
146 		WARN_ON(cache->pinned > 0);
147 		WARN_ON(cache->reserved > 0);
148 		kfree(cache->free_space_ctl);
149 		kfree(cache);
150 	}
151 }
152 
153 /*
154  * this adds the block group to the fs_info rb tree for the block group
155  * cache
156  */
157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
158 				struct btrfs_block_group_cache *block_group)
159 {
160 	struct rb_node **p;
161 	struct rb_node *parent = NULL;
162 	struct btrfs_block_group_cache *cache;
163 
164 	spin_lock(&info->block_group_cache_lock);
165 	p = &info->block_group_cache_tree.rb_node;
166 
167 	while (*p) {
168 		parent = *p;
169 		cache = rb_entry(parent, struct btrfs_block_group_cache,
170 				 cache_node);
171 		if (block_group->key.objectid < cache->key.objectid) {
172 			p = &(*p)->rb_left;
173 		} else if (block_group->key.objectid > cache->key.objectid) {
174 			p = &(*p)->rb_right;
175 		} else {
176 			spin_unlock(&info->block_group_cache_lock);
177 			return -EEXIST;
178 		}
179 	}
180 
181 	rb_link_node(&block_group->cache_node, parent, p);
182 	rb_insert_color(&block_group->cache_node,
183 			&info->block_group_cache_tree);
184 
185 	if (info->first_logical_byte > block_group->key.objectid)
186 		info->first_logical_byte = block_group->key.objectid;
187 
188 	spin_unlock(&info->block_group_cache_lock);
189 
190 	return 0;
191 }
192 
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group_cache *
198 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
199 			      int contains)
200 {
201 	struct btrfs_block_group_cache *cache, *ret = NULL;
202 	struct rb_node *n;
203 	u64 end, start;
204 
205 	spin_lock(&info->block_group_cache_lock);
206 	n = info->block_group_cache_tree.rb_node;
207 
208 	while (n) {
209 		cache = rb_entry(n, struct btrfs_block_group_cache,
210 				 cache_node);
211 		end = cache->key.objectid + cache->key.offset - 1;
212 		start = cache->key.objectid;
213 
214 		if (bytenr < start) {
215 			if (!contains && (!ret || start < ret->key.objectid))
216 				ret = cache;
217 			n = n->rb_left;
218 		} else if (bytenr > start) {
219 			if (contains && bytenr <= end) {
220 				ret = cache;
221 				break;
222 			}
223 			n = n->rb_right;
224 		} else {
225 			ret = cache;
226 			break;
227 		}
228 	}
229 	if (ret) {
230 		btrfs_get_block_group(ret);
231 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
232 			info->first_logical_byte = ret->key.objectid;
233 	}
234 	spin_unlock(&info->block_group_cache_lock);
235 
236 	return ret;
237 }
238 
239 static int add_excluded_extent(struct btrfs_root *root,
240 			       u64 start, u64 num_bytes)
241 {
242 	u64 end = start + num_bytes - 1;
243 	set_extent_bits(&root->fs_info->freed_extents[0],
244 			start, end, EXTENT_UPTODATE);
245 	set_extent_bits(&root->fs_info->freed_extents[1],
246 			start, end, EXTENT_UPTODATE);
247 	return 0;
248 }
249 
250 static void free_excluded_extents(struct btrfs_root *root,
251 				  struct btrfs_block_group_cache *cache)
252 {
253 	u64 start, end;
254 
255 	start = cache->key.objectid;
256 	end = start + cache->key.offset - 1;
257 
258 	clear_extent_bits(&root->fs_info->freed_extents[0],
259 			  start, end, EXTENT_UPTODATE);
260 	clear_extent_bits(&root->fs_info->freed_extents[1],
261 			  start, end, EXTENT_UPTODATE);
262 }
263 
264 static int exclude_super_stripes(struct btrfs_root *root,
265 				 struct btrfs_block_group_cache *cache)
266 {
267 	u64 bytenr;
268 	u64 *logical;
269 	int stripe_len;
270 	int i, nr, ret;
271 
272 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
273 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
274 		cache->bytes_super += stripe_len;
275 		ret = add_excluded_extent(root, cache->key.objectid,
276 					  stripe_len);
277 		if (ret)
278 			return ret;
279 	}
280 
281 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
282 		bytenr = btrfs_sb_offset(i);
283 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
284 				       cache->key.objectid, bytenr,
285 				       0, &logical, &nr, &stripe_len);
286 		if (ret)
287 			return ret;
288 
289 		while (nr--) {
290 			u64 start, len;
291 
292 			if (logical[nr] > cache->key.objectid +
293 			    cache->key.offset)
294 				continue;
295 
296 			if (logical[nr] + stripe_len <= cache->key.objectid)
297 				continue;
298 
299 			start = logical[nr];
300 			if (start < cache->key.objectid) {
301 				start = cache->key.objectid;
302 				len = (logical[nr] + stripe_len) - start;
303 			} else {
304 				len = min_t(u64, stripe_len,
305 					    cache->key.objectid +
306 					    cache->key.offset - start);
307 			}
308 
309 			cache->bytes_super += len;
310 			ret = add_excluded_extent(root, start, len);
311 			if (ret) {
312 				kfree(logical);
313 				return ret;
314 			}
315 		}
316 
317 		kfree(logical);
318 	}
319 	return 0;
320 }
321 
322 static struct btrfs_caching_control *
323 get_caching_control(struct btrfs_block_group_cache *cache)
324 {
325 	struct btrfs_caching_control *ctl;
326 
327 	spin_lock(&cache->lock);
328 	if (!cache->caching_ctl) {
329 		spin_unlock(&cache->lock);
330 		return NULL;
331 	}
332 
333 	ctl = cache->caching_ctl;
334 	atomic_inc(&ctl->count);
335 	spin_unlock(&cache->lock);
336 	return ctl;
337 }
338 
339 static void put_caching_control(struct btrfs_caching_control *ctl)
340 {
341 	if (atomic_dec_and_test(&ctl->count))
342 		kfree(ctl);
343 }
344 
345 #ifdef CONFIG_BTRFS_DEBUG
346 static void fragment_free_space(struct btrfs_root *root,
347 				struct btrfs_block_group_cache *block_group)
348 {
349 	u64 start = block_group->key.objectid;
350 	u64 len = block_group->key.offset;
351 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
352 		root->nodesize : root->sectorsize;
353 	u64 step = chunk << 1;
354 
355 	while (len > chunk) {
356 		btrfs_remove_free_space(block_group, start, chunk);
357 		start += step;
358 		if (len < step)
359 			len = 0;
360 		else
361 			len -= step;
362 	}
363 }
364 #endif
365 
366 /*
367  * this is only called by cache_block_group, since we could have freed extents
368  * we need to check the pinned_extents for any extents that can't be used yet
369  * since their free space will be released as soon as the transaction commits.
370  */
371 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
372 		       struct btrfs_fs_info *info, u64 start, u64 end)
373 {
374 	u64 extent_start, extent_end, size, total_added = 0;
375 	int ret;
376 
377 	while (start < end) {
378 		ret = find_first_extent_bit(info->pinned_extents, start,
379 					    &extent_start, &extent_end,
380 					    EXTENT_DIRTY | EXTENT_UPTODATE,
381 					    NULL);
382 		if (ret)
383 			break;
384 
385 		if (extent_start <= start) {
386 			start = extent_end + 1;
387 		} else if (extent_start > start && extent_start < end) {
388 			size = extent_start - start;
389 			total_added += size;
390 			ret = btrfs_add_free_space(block_group, start,
391 						   size);
392 			BUG_ON(ret); /* -ENOMEM or logic error */
393 			start = extent_end + 1;
394 		} else {
395 			break;
396 		}
397 	}
398 
399 	if (start < end) {
400 		size = end - start;
401 		total_added += size;
402 		ret = btrfs_add_free_space(block_group, start, size);
403 		BUG_ON(ret); /* -ENOMEM or logic error */
404 	}
405 
406 	return total_added;
407 }
408 
409 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
410 {
411 	struct btrfs_block_group_cache *block_group;
412 	struct btrfs_fs_info *fs_info;
413 	struct btrfs_root *extent_root;
414 	struct btrfs_path *path;
415 	struct extent_buffer *leaf;
416 	struct btrfs_key key;
417 	u64 total_found = 0;
418 	u64 last = 0;
419 	u32 nritems;
420 	int ret;
421 	bool wakeup = true;
422 
423 	block_group = caching_ctl->block_group;
424 	fs_info = block_group->fs_info;
425 	extent_root = fs_info->extent_root;
426 
427 	path = btrfs_alloc_path();
428 	if (!path)
429 		return -ENOMEM;
430 
431 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
432 
433 #ifdef CONFIG_BTRFS_DEBUG
434 	/*
435 	 * If we're fragmenting we don't want to make anybody think we can
436 	 * allocate from this block group until we've had a chance to fragment
437 	 * the free space.
438 	 */
439 	if (btrfs_should_fragment_free_space(extent_root, block_group))
440 		wakeup = false;
441 #endif
442 	/*
443 	 * We don't want to deadlock with somebody trying to allocate a new
444 	 * extent for the extent root while also trying to search the extent
445 	 * root to add free space.  So we skip locking and search the commit
446 	 * root, since its read-only
447 	 */
448 	path->skip_locking = 1;
449 	path->search_commit_root = 1;
450 	path->reada = READA_FORWARD;
451 
452 	key.objectid = last;
453 	key.offset = 0;
454 	key.type = BTRFS_EXTENT_ITEM_KEY;
455 
456 next:
457 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
458 	if (ret < 0)
459 		goto out;
460 
461 	leaf = path->nodes[0];
462 	nritems = btrfs_header_nritems(leaf);
463 
464 	while (1) {
465 		if (btrfs_fs_closing(fs_info) > 1) {
466 			last = (u64)-1;
467 			break;
468 		}
469 
470 		if (path->slots[0] < nritems) {
471 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
472 		} else {
473 			ret = find_next_key(path, 0, &key);
474 			if (ret)
475 				break;
476 
477 			if (need_resched() ||
478 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
479 				if (wakeup)
480 					caching_ctl->progress = last;
481 				btrfs_release_path(path);
482 				up_read(&fs_info->commit_root_sem);
483 				mutex_unlock(&caching_ctl->mutex);
484 				cond_resched();
485 				mutex_lock(&caching_ctl->mutex);
486 				down_read(&fs_info->commit_root_sem);
487 				goto next;
488 			}
489 
490 			ret = btrfs_next_leaf(extent_root, path);
491 			if (ret < 0)
492 				goto out;
493 			if (ret)
494 				break;
495 			leaf = path->nodes[0];
496 			nritems = btrfs_header_nritems(leaf);
497 			continue;
498 		}
499 
500 		if (key.objectid < last) {
501 			key.objectid = last;
502 			key.offset = 0;
503 			key.type = BTRFS_EXTENT_ITEM_KEY;
504 
505 			if (wakeup)
506 				caching_ctl->progress = last;
507 			btrfs_release_path(path);
508 			goto next;
509 		}
510 
511 		if (key.objectid < block_group->key.objectid) {
512 			path->slots[0]++;
513 			continue;
514 		}
515 
516 		if (key.objectid >= block_group->key.objectid +
517 		    block_group->key.offset)
518 			break;
519 
520 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
521 		    key.type == BTRFS_METADATA_ITEM_KEY) {
522 			total_found += add_new_free_space(block_group,
523 							  fs_info, last,
524 							  key.objectid);
525 			if (key.type == BTRFS_METADATA_ITEM_KEY)
526 				last = key.objectid +
527 					fs_info->tree_root->nodesize;
528 			else
529 				last = key.objectid + key.offset;
530 
531 			if (total_found > CACHING_CTL_WAKE_UP) {
532 				total_found = 0;
533 				if (wakeup)
534 					wake_up(&caching_ctl->wait);
535 			}
536 		}
537 		path->slots[0]++;
538 	}
539 	ret = 0;
540 
541 	total_found += add_new_free_space(block_group, fs_info, last,
542 					  block_group->key.objectid +
543 					  block_group->key.offset);
544 	caching_ctl->progress = (u64)-1;
545 
546 out:
547 	btrfs_free_path(path);
548 	return ret;
549 }
550 
551 static noinline void caching_thread(struct btrfs_work *work)
552 {
553 	struct btrfs_block_group_cache *block_group;
554 	struct btrfs_fs_info *fs_info;
555 	struct btrfs_caching_control *caching_ctl;
556 	struct btrfs_root *extent_root;
557 	int ret;
558 
559 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
560 	block_group = caching_ctl->block_group;
561 	fs_info = block_group->fs_info;
562 	extent_root = fs_info->extent_root;
563 
564 	mutex_lock(&caching_ctl->mutex);
565 	down_read(&fs_info->commit_root_sem);
566 
567 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
568 		ret = load_free_space_tree(caching_ctl);
569 	else
570 		ret = load_extent_tree_free(caching_ctl);
571 
572 	spin_lock(&block_group->lock);
573 	block_group->caching_ctl = NULL;
574 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
575 	spin_unlock(&block_group->lock);
576 
577 #ifdef CONFIG_BTRFS_DEBUG
578 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
579 		u64 bytes_used;
580 
581 		spin_lock(&block_group->space_info->lock);
582 		spin_lock(&block_group->lock);
583 		bytes_used = block_group->key.offset -
584 			btrfs_block_group_used(&block_group->item);
585 		block_group->space_info->bytes_used += bytes_used >> 1;
586 		spin_unlock(&block_group->lock);
587 		spin_unlock(&block_group->space_info->lock);
588 		fragment_free_space(extent_root, block_group);
589 	}
590 #endif
591 
592 	caching_ctl->progress = (u64)-1;
593 
594 	up_read(&fs_info->commit_root_sem);
595 	free_excluded_extents(fs_info->extent_root, block_group);
596 	mutex_unlock(&caching_ctl->mutex);
597 
598 	wake_up(&caching_ctl->wait);
599 
600 	put_caching_control(caching_ctl);
601 	btrfs_put_block_group(block_group);
602 }
603 
604 static int cache_block_group(struct btrfs_block_group_cache *cache,
605 			     int load_cache_only)
606 {
607 	DEFINE_WAIT(wait);
608 	struct btrfs_fs_info *fs_info = cache->fs_info;
609 	struct btrfs_caching_control *caching_ctl;
610 	int ret = 0;
611 
612 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
613 	if (!caching_ctl)
614 		return -ENOMEM;
615 
616 	INIT_LIST_HEAD(&caching_ctl->list);
617 	mutex_init(&caching_ctl->mutex);
618 	init_waitqueue_head(&caching_ctl->wait);
619 	caching_ctl->block_group = cache;
620 	caching_ctl->progress = cache->key.objectid;
621 	atomic_set(&caching_ctl->count, 1);
622 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
623 			caching_thread, NULL, NULL);
624 
625 	spin_lock(&cache->lock);
626 	/*
627 	 * This should be a rare occasion, but this could happen I think in the
628 	 * case where one thread starts to load the space cache info, and then
629 	 * some other thread starts a transaction commit which tries to do an
630 	 * allocation while the other thread is still loading the space cache
631 	 * info.  The previous loop should have kept us from choosing this block
632 	 * group, but if we've moved to the state where we will wait on caching
633 	 * block groups we need to first check if we're doing a fast load here,
634 	 * so we can wait for it to finish, otherwise we could end up allocating
635 	 * from a block group who's cache gets evicted for one reason or
636 	 * another.
637 	 */
638 	while (cache->cached == BTRFS_CACHE_FAST) {
639 		struct btrfs_caching_control *ctl;
640 
641 		ctl = cache->caching_ctl;
642 		atomic_inc(&ctl->count);
643 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
644 		spin_unlock(&cache->lock);
645 
646 		schedule();
647 
648 		finish_wait(&ctl->wait, &wait);
649 		put_caching_control(ctl);
650 		spin_lock(&cache->lock);
651 	}
652 
653 	if (cache->cached != BTRFS_CACHE_NO) {
654 		spin_unlock(&cache->lock);
655 		kfree(caching_ctl);
656 		return 0;
657 	}
658 	WARN_ON(cache->caching_ctl);
659 	cache->caching_ctl = caching_ctl;
660 	cache->cached = BTRFS_CACHE_FAST;
661 	spin_unlock(&cache->lock);
662 
663 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
664 		mutex_lock(&caching_ctl->mutex);
665 		ret = load_free_space_cache(fs_info, cache);
666 
667 		spin_lock(&cache->lock);
668 		if (ret == 1) {
669 			cache->caching_ctl = NULL;
670 			cache->cached = BTRFS_CACHE_FINISHED;
671 			cache->last_byte_to_unpin = (u64)-1;
672 			caching_ctl->progress = (u64)-1;
673 		} else {
674 			if (load_cache_only) {
675 				cache->caching_ctl = NULL;
676 				cache->cached = BTRFS_CACHE_NO;
677 			} else {
678 				cache->cached = BTRFS_CACHE_STARTED;
679 				cache->has_caching_ctl = 1;
680 			}
681 		}
682 		spin_unlock(&cache->lock);
683 #ifdef CONFIG_BTRFS_DEBUG
684 		if (ret == 1 &&
685 		    btrfs_should_fragment_free_space(fs_info->extent_root,
686 						     cache)) {
687 			u64 bytes_used;
688 
689 			spin_lock(&cache->space_info->lock);
690 			spin_lock(&cache->lock);
691 			bytes_used = cache->key.offset -
692 				btrfs_block_group_used(&cache->item);
693 			cache->space_info->bytes_used += bytes_used >> 1;
694 			spin_unlock(&cache->lock);
695 			spin_unlock(&cache->space_info->lock);
696 			fragment_free_space(fs_info->extent_root, cache);
697 		}
698 #endif
699 		mutex_unlock(&caching_ctl->mutex);
700 
701 		wake_up(&caching_ctl->wait);
702 		if (ret == 1) {
703 			put_caching_control(caching_ctl);
704 			free_excluded_extents(fs_info->extent_root, cache);
705 			return 0;
706 		}
707 	} else {
708 		/*
709 		 * We're either using the free space tree or no caching at all.
710 		 * Set cached to the appropriate value and wakeup any waiters.
711 		 */
712 		spin_lock(&cache->lock);
713 		if (load_cache_only) {
714 			cache->caching_ctl = NULL;
715 			cache->cached = BTRFS_CACHE_NO;
716 		} else {
717 			cache->cached = BTRFS_CACHE_STARTED;
718 			cache->has_caching_ctl = 1;
719 		}
720 		spin_unlock(&cache->lock);
721 		wake_up(&caching_ctl->wait);
722 	}
723 
724 	if (load_cache_only) {
725 		put_caching_control(caching_ctl);
726 		return 0;
727 	}
728 
729 	down_write(&fs_info->commit_root_sem);
730 	atomic_inc(&caching_ctl->count);
731 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
732 	up_write(&fs_info->commit_root_sem);
733 
734 	btrfs_get_block_group(cache);
735 
736 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
737 
738 	return ret;
739 }
740 
741 /*
742  * return the block group that starts at or after bytenr
743  */
744 static struct btrfs_block_group_cache *
745 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
746 {
747 	struct btrfs_block_group_cache *cache;
748 
749 	cache = block_group_cache_tree_search(info, bytenr, 0);
750 
751 	return cache;
752 }
753 
754 /*
755  * return the block group that contains the given bytenr
756  */
757 struct btrfs_block_group_cache *btrfs_lookup_block_group(
758 						 struct btrfs_fs_info *info,
759 						 u64 bytenr)
760 {
761 	struct btrfs_block_group_cache *cache;
762 
763 	cache = block_group_cache_tree_search(info, bytenr, 1);
764 
765 	return cache;
766 }
767 
768 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
769 						  u64 flags)
770 {
771 	struct list_head *head = &info->space_info;
772 	struct btrfs_space_info *found;
773 
774 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
775 
776 	rcu_read_lock();
777 	list_for_each_entry_rcu(found, head, list) {
778 		if (found->flags & flags) {
779 			rcu_read_unlock();
780 			return found;
781 		}
782 	}
783 	rcu_read_unlock();
784 	return NULL;
785 }
786 
787 /*
788  * after adding space to the filesystem, we need to clear the full flags
789  * on all the space infos.
790  */
791 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
792 {
793 	struct list_head *head = &info->space_info;
794 	struct btrfs_space_info *found;
795 
796 	rcu_read_lock();
797 	list_for_each_entry_rcu(found, head, list)
798 		found->full = 0;
799 	rcu_read_unlock();
800 }
801 
802 /* simple helper to search for an existing data extent at a given offset */
803 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
804 {
805 	int ret;
806 	struct btrfs_key key;
807 	struct btrfs_path *path;
808 
809 	path = btrfs_alloc_path();
810 	if (!path)
811 		return -ENOMEM;
812 
813 	key.objectid = start;
814 	key.offset = len;
815 	key.type = BTRFS_EXTENT_ITEM_KEY;
816 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
817 				0, 0);
818 	btrfs_free_path(path);
819 	return ret;
820 }
821 
822 /*
823  * helper function to lookup reference count and flags of a tree block.
824  *
825  * the head node for delayed ref is used to store the sum of all the
826  * reference count modifications queued up in the rbtree. the head
827  * node may also store the extent flags to set. This way you can check
828  * to see what the reference count and extent flags would be if all of
829  * the delayed refs are not processed.
830  */
831 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
832 			     struct btrfs_root *root, u64 bytenr,
833 			     u64 offset, int metadata, u64 *refs, u64 *flags)
834 {
835 	struct btrfs_delayed_ref_head *head;
836 	struct btrfs_delayed_ref_root *delayed_refs;
837 	struct btrfs_path *path;
838 	struct btrfs_extent_item *ei;
839 	struct extent_buffer *leaf;
840 	struct btrfs_key key;
841 	u32 item_size;
842 	u64 num_refs;
843 	u64 extent_flags;
844 	int ret;
845 
846 	/*
847 	 * If we don't have skinny metadata, don't bother doing anything
848 	 * different
849 	 */
850 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
851 		offset = root->nodesize;
852 		metadata = 0;
853 	}
854 
855 	path = btrfs_alloc_path();
856 	if (!path)
857 		return -ENOMEM;
858 
859 	if (!trans) {
860 		path->skip_locking = 1;
861 		path->search_commit_root = 1;
862 	}
863 
864 search_again:
865 	key.objectid = bytenr;
866 	key.offset = offset;
867 	if (metadata)
868 		key.type = BTRFS_METADATA_ITEM_KEY;
869 	else
870 		key.type = BTRFS_EXTENT_ITEM_KEY;
871 
872 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
873 				&key, path, 0, 0);
874 	if (ret < 0)
875 		goto out_free;
876 
877 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
878 		if (path->slots[0]) {
879 			path->slots[0]--;
880 			btrfs_item_key_to_cpu(path->nodes[0], &key,
881 					      path->slots[0]);
882 			if (key.objectid == bytenr &&
883 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
884 			    key.offset == root->nodesize)
885 				ret = 0;
886 		}
887 	}
888 
889 	if (ret == 0) {
890 		leaf = path->nodes[0];
891 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
892 		if (item_size >= sizeof(*ei)) {
893 			ei = btrfs_item_ptr(leaf, path->slots[0],
894 					    struct btrfs_extent_item);
895 			num_refs = btrfs_extent_refs(leaf, ei);
896 			extent_flags = btrfs_extent_flags(leaf, ei);
897 		} else {
898 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
899 			struct btrfs_extent_item_v0 *ei0;
900 			BUG_ON(item_size != sizeof(*ei0));
901 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
902 					     struct btrfs_extent_item_v0);
903 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
904 			/* FIXME: this isn't correct for data */
905 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 #else
907 			BUG();
908 #endif
909 		}
910 		BUG_ON(num_refs == 0);
911 	} else {
912 		num_refs = 0;
913 		extent_flags = 0;
914 		ret = 0;
915 	}
916 
917 	if (!trans)
918 		goto out;
919 
920 	delayed_refs = &trans->transaction->delayed_refs;
921 	spin_lock(&delayed_refs->lock);
922 	head = btrfs_find_delayed_ref_head(trans, bytenr);
923 	if (head) {
924 		if (!mutex_trylock(&head->mutex)) {
925 			atomic_inc(&head->node.refs);
926 			spin_unlock(&delayed_refs->lock);
927 
928 			btrfs_release_path(path);
929 
930 			/*
931 			 * Mutex was contended, block until it's released and try
932 			 * again
933 			 */
934 			mutex_lock(&head->mutex);
935 			mutex_unlock(&head->mutex);
936 			btrfs_put_delayed_ref(&head->node);
937 			goto search_again;
938 		}
939 		spin_lock(&head->lock);
940 		if (head->extent_op && head->extent_op->update_flags)
941 			extent_flags |= head->extent_op->flags_to_set;
942 		else
943 			BUG_ON(num_refs == 0);
944 
945 		num_refs += head->node.ref_mod;
946 		spin_unlock(&head->lock);
947 		mutex_unlock(&head->mutex);
948 	}
949 	spin_unlock(&delayed_refs->lock);
950 out:
951 	WARN_ON(num_refs == 0);
952 	if (refs)
953 		*refs = num_refs;
954 	if (flags)
955 		*flags = extent_flags;
956 out_free:
957 	btrfs_free_path(path);
958 	return ret;
959 }
960 
961 /*
962  * Back reference rules.  Back refs have three main goals:
963  *
964  * 1) differentiate between all holders of references to an extent so that
965  *    when a reference is dropped we can make sure it was a valid reference
966  *    before freeing the extent.
967  *
968  * 2) Provide enough information to quickly find the holders of an extent
969  *    if we notice a given block is corrupted or bad.
970  *
971  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
972  *    maintenance.  This is actually the same as #2, but with a slightly
973  *    different use case.
974  *
975  * There are two kinds of back refs. The implicit back refs is optimized
976  * for pointers in non-shared tree blocks. For a given pointer in a block,
977  * back refs of this kind provide information about the block's owner tree
978  * and the pointer's key. These information allow us to find the block by
979  * b-tree searching. The full back refs is for pointers in tree blocks not
980  * referenced by their owner trees. The location of tree block is recorded
981  * in the back refs. Actually the full back refs is generic, and can be
982  * used in all cases the implicit back refs is used. The major shortcoming
983  * of the full back refs is its overhead. Every time a tree block gets
984  * COWed, we have to update back refs entry for all pointers in it.
985  *
986  * For a newly allocated tree block, we use implicit back refs for
987  * pointers in it. This means most tree related operations only involve
988  * implicit back refs. For a tree block created in old transaction, the
989  * only way to drop a reference to it is COW it. So we can detect the
990  * event that tree block loses its owner tree's reference and do the
991  * back refs conversion.
992  *
993  * When a tree block is COWed through a tree, there are four cases:
994  *
995  * The reference count of the block is one and the tree is the block's
996  * owner tree. Nothing to do in this case.
997  *
998  * The reference count of the block is one and the tree is not the
999  * block's owner tree. In this case, full back refs is used for pointers
1000  * in the block. Remove these full back refs, add implicit back refs for
1001  * every pointers in the new block.
1002  *
1003  * The reference count of the block is greater than one and the tree is
1004  * the block's owner tree. In this case, implicit back refs is used for
1005  * pointers in the block. Add full back refs for every pointers in the
1006  * block, increase lower level extents' reference counts. The original
1007  * implicit back refs are entailed to the new block.
1008  *
1009  * The reference count of the block is greater than one and the tree is
1010  * not the block's owner tree. Add implicit back refs for every pointer in
1011  * the new block, increase lower level extents' reference count.
1012  *
1013  * Back Reference Key composing:
1014  *
1015  * The key objectid corresponds to the first byte in the extent,
1016  * The key type is used to differentiate between types of back refs.
1017  * There are different meanings of the key offset for different types
1018  * of back refs.
1019  *
1020  * File extents can be referenced by:
1021  *
1022  * - multiple snapshots, subvolumes, or different generations in one subvol
1023  * - different files inside a single subvolume
1024  * - different offsets inside a file (bookend extents in file.c)
1025  *
1026  * The extent ref structure for the implicit back refs has fields for:
1027  *
1028  * - Objectid of the subvolume root
1029  * - objectid of the file holding the reference
1030  * - original offset in the file
1031  * - how many bookend extents
1032  *
1033  * The key offset for the implicit back refs is hash of the first
1034  * three fields.
1035  *
1036  * The extent ref structure for the full back refs has field for:
1037  *
1038  * - number of pointers in the tree leaf
1039  *
1040  * The key offset for the implicit back refs is the first byte of
1041  * the tree leaf
1042  *
1043  * When a file extent is allocated, The implicit back refs is used.
1044  * the fields are filled in:
1045  *
1046  *     (root_key.objectid, inode objectid, offset in file, 1)
1047  *
1048  * When a file extent is removed file truncation, we find the
1049  * corresponding implicit back refs and check the following fields:
1050  *
1051  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1052  *
1053  * Btree extents can be referenced by:
1054  *
1055  * - Different subvolumes
1056  *
1057  * Both the implicit back refs and the full back refs for tree blocks
1058  * only consist of key. The key offset for the implicit back refs is
1059  * objectid of block's owner tree. The key offset for the full back refs
1060  * is the first byte of parent block.
1061  *
1062  * When implicit back refs is used, information about the lowest key and
1063  * level of the tree block are required. These information are stored in
1064  * tree block info structure.
1065  */
1066 
1067 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1068 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1069 				  struct btrfs_root *root,
1070 				  struct btrfs_path *path,
1071 				  u64 owner, u32 extra_size)
1072 {
1073 	struct btrfs_extent_item *item;
1074 	struct btrfs_extent_item_v0 *ei0;
1075 	struct btrfs_extent_ref_v0 *ref0;
1076 	struct btrfs_tree_block_info *bi;
1077 	struct extent_buffer *leaf;
1078 	struct btrfs_key key;
1079 	struct btrfs_key found_key;
1080 	u32 new_size = sizeof(*item);
1081 	u64 refs;
1082 	int ret;
1083 
1084 	leaf = path->nodes[0];
1085 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1086 
1087 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1088 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1089 			     struct btrfs_extent_item_v0);
1090 	refs = btrfs_extent_refs_v0(leaf, ei0);
1091 
1092 	if (owner == (u64)-1) {
1093 		while (1) {
1094 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 				ret = btrfs_next_leaf(root, path);
1096 				if (ret < 0)
1097 					return ret;
1098 				BUG_ON(ret > 0); /* Corruption */
1099 				leaf = path->nodes[0];
1100 			}
1101 			btrfs_item_key_to_cpu(leaf, &found_key,
1102 					      path->slots[0]);
1103 			BUG_ON(key.objectid != found_key.objectid);
1104 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1105 				path->slots[0]++;
1106 				continue;
1107 			}
1108 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1109 					      struct btrfs_extent_ref_v0);
1110 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1111 			break;
1112 		}
1113 	}
1114 	btrfs_release_path(path);
1115 
1116 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1117 		new_size += sizeof(*bi);
1118 
1119 	new_size -= sizeof(*ei0);
1120 	ret = btrfs_search_slot(trans, root, &key, path,
1121 				new_size + extra_size, 1);
1122 	if (ret < 0)
1123 		return ret;
1124 	BUG_ON(ret); /* Corruption */
1125 
1126 	btrfs_extend_item(root, path, new_size);
1127 
1128 	leaf = path->nodes[0];
1129 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1130 	btrfs_set_extent_refs(leaf, item, refs);
1131 	/* FIXME: get real generation */
1132 	btrfs_set_extent_generation(leaf, item, 0);
1133 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1134 		btrfs_set_extent_flags(leaf, item,
1135 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1136 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1137 		bi = (struct btrfs_tree_block_info *)(item + 1);
1138 		/* FIXME: get first key of the block */
1139 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1140 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1141 	} else {
1142 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1143 	}
1144 	btrfs_mark_buffer_dirty(leaf);
1145 	return 0;
1146 }
1147 #endif
1148 
1149 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 	u32 high_crc = ~(u32)0;
1152 	u32 low_crc = ~(u32)0;
1153 	__le64 lenum;
1154 
1155 	lenum = cpu_to_le64(root_objectid);
1156 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1157 	lenum = cpu_to_le64(owner);
1158 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1159 	lenum = cpu_to_le64(offset);
1160 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161 
1162 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1163 }
1164 
1165 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1166 				     struct btrfs_extent_data_ref *ref)
1167 {
1168 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1169 				    btrfs_extent_data_ref_objectid(leaf, ref),
1170 				    btrfs_extent_data_ref_offset(leaf, ref));
1171 }
1172 
1173 static int match_extent_data_ref(struct extent_buffer *leaf,
1174 				 struct btrfs_extent_data_ref *ref,
1175 				 u64 root_objectid, u64 owner, u64 offset)
1176 {
1177 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1178 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1179 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1180 		return 0;
1181 	return 1;
1182 }
1183 
1184 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1185 					   struct btrfs_root *root,
1186 					   struct btrfs_path *path,
1187 					   u64 bytenr, u64 parent,
1188 					   u64 root_objectid,
1189 					   u64 owner, u64 offset)
1190 {
1191 	struct btrfs_key key;
1192 	struct btrfs_extent_data_ref *ref;
1193 	struct extent_buffer *leaf;
1194 	u32 nritems;
1195 	int ret;
1196 	int recow;
1197 	int err = -ENOENT;
1198 
1199 	key.objectid = bytenr;
1200 	if (parent) {
1201 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1202 		key.offset = parent;
1203 	} else {
1204 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1205 		key.offset = hash_extent_data_ref(root_objectid,
1206 						  owner, offset);
1207 	}
1208 again:
1209 	recow = 0;
1210 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1211 	if (ret < 0) {
1212 		err = ret;
1213 		goto fail;
1214 	}
1215 
1216 	if (parent) {
1217 		if (!ret)
1218 			return 0;
1219 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1221 		btrfs_release_path(path);
1222 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1223 		if (ret < 0) {
1224 			err = ret;
1225 			goto fail;
1226 		}
1227 		if (!ret)
1228 			return 0;
1229 #endif
1230 		goto fail;
1231 	}
1232 
1233 	leaf = path->nodes[0];
1234 	nritems = btrfs_header_nritems(leaf);
1235 	while (1) {
1236 		if (path->slots[0] >= nritems) {
1237 			ret = btrfs_next_leaf(root, path);
1238 			if (ret < 0)
1239 				err = ret;
1240 			if (ret)
1241 				goto fail;
1242 
1243 			leaf = path->nodes[0];
1244 			nritems = btrfs_header_nritems(leaf);
1245 			recow = 1;
1246 		}
1247 
1248 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 		if (key.objectid != bytenr ||
1250 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1251 			goto fail;
1252 
1253 		ref = btrfs_item_ptr(leaf, path->slots[0],
1254 				     struct btrfs_extent_data_ref);
1255 
1256 		if (match_extent_data_ref(leaf, ref, root_objectid,
1257 					  owner, offset)) {
1258 			if (recow) {
1259 				btrfs_release_path(path);
1260 				goto again;
1261 			}
1262 			err = 0;
1263 			break;
1264 		}
1265 		path->slots[0]++;
1266 	}
1267 fail:
1268 	return err;
1269 }
1270 
1271 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1272 					   struct btrfs_root *root,
1273 					   struct btrfs_path *path,
1274 					   u64 bytenr, u64 parent,
1275 					   u64 root_objectid, u64 owner,
1276 					   u64 offset, int refs_to_add)
1277 {
1278 	struct btrfs_key key;
1279 	struct extent_buffer *leaf;
1280 	u32 size;
1281 	u32 num_refs;
1282 	int ret;
1283 
1284 	key.objectid = bytenr;
1285 	if (parent) {
1286 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1287 		key.offset = parent;
1288 		size = sizeof(struct btrfs_shared_data_ref);
1289 	} else {
1290 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1291 		key.offset = hash_extent_data_ref(root_objectid,
1292 						  owner, offset);
1293 		size = sizeof(struct btrfs_extent_data_ref);
1294 	}
1295 
1296 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1297 	if (ret && ret != -EEXIST)
1298 		goto fail;
1299 
1300 	leaf = path->nodes[0];
1301 	if (parent) {
1302 		struct btrfs_shared_data_ref *ref;
1303 		ref = btrfs_item_ptr(leaf, path->slots[0],
1304 				     struct btrfs_shared_data_ref);
1305 		if (ret == 0) {
1306 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1307 		} else {
1308 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1309 			num_refs += refs_to_add;
1310 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1311 		}
1312 	} else {
1313 		struct btrfs_extent_data_ref *ref;
1314 		while (ret == -EEXIST) {
1315 			ref = btrfs_item_ptr(leaf, path->slots[0],
1316 					     struct btrfs_extent_data_ref);
1317 			if (match_extent_data_ref(leaf, ref, root_objectid,
1318 						  owner, offset))
1319 				break;
1320 			btrfs_release_path(path);
1321 			key.offset++;
1322 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1323 						      size);
1324 			if (ret && ret != -EEXIST)
1325 				goto fail;
1326 
1327 			leaf = path->nodes[0];
1328 		}
1329 		ref = btrfs_item_ptr(leaf, path->slots[0],
1330 				     struct btrfs_extent_data_ref);
1331 		if (ret == 0) {
1332 			btrfs_set_extent_data_ref_root(leaf, ref,
1333 						       root_objectid);
1334 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1335 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1336 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1337 		} else {
1338 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1339 			num_refs += refs_to_add;
1340 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1341 		}
1342 	}
1343 	btrfs_mark_buffer_dirty(leaf);
1344 	ret = 0;
1345 fail:
1346 	btrfs_release_path(path);
1347 	return ret;
1348 }
1349 
1350 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1351 					   struct btrfs_root *root,
1352 					   struct btrfs_path *path,
1353 					   int refs_to_drop, int *last_ref)
1354 {
1355 	struct btrfs_key key;
1356 	struct btrfs_extent_data_ref *ref1 = NULL;
1357 	struct btrfs_shared_data_ref *ref2 = NULL;
1358 	struct extent_buffer *leaf;
1359 	u32 num_refs = 0;
1360 	int ret = 0;
1361 
1362 	leaf = path->nodes[0];
1363 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1364 
1365 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1366 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1367 				      struct btrfs_extent_data_ref);
1368 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1369 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1370 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1371 				      struct btrfs_shared_data_ref);
1372 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1375 		struct btrfs_extent_ref_v0 *ref0;
1376 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 				      struct btrfs_extent_ref_v0);
1378 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1379 #endif
1380 	} else {
1381 		BUG();
1382 	}
1383 
1384 	BUG_ON(num_refs < refs_to_drop);
1385 	num_refs -= refs_to_drop;
1386 
1387 	if (num_refs == 0) {
1388 		ret = btrfs_del_item(trans, root, path);
1389 		*last_ref = 1;
1390 	} else {
1391 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1392 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1393 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1394 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1395 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1396 		else {
1397 			struct btrfs_extent_ref_v0 *ref0;
1398 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1399 					struct btrfs_extent_ref_v0);
1400 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1401 		}
1402 #endif
1403 		btrfs_mark_buffer_dirty(leaf);
1404 	}
1405 	return ret;
1406 }
1407 
1408 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1409 					  struct btrfs_extent_inline_ref *iref)
1410 {
1411 	struct btrfs_key key;
1412 	struct extent_buffer *leaf;
1413 	struct btrfs_extent_data_ref *ref1;
1414 	struct btrfs_shared_data_ref *ref2;
1415 	u32 num_refs = 0;
1416 
1417 	leaf = path->nodes[0];
1418 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1419 	if (iref) {
1420 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1421 		    BTRFS_EXTENT_DATA_REF_KEY) {
1422 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1423 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1424 		} else {
1425 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1426 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1427 		}
1428 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1429 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1430 				      struct btrfs_extent_data_ref);
1431 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1432 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1433 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1434 				      struct btrfs_shared_data_ref);
1435 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1436 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1437 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1438 		struct btrfs_extent_ref_v0 *ref0;
1439 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1440 				      struct btrfs_extent_ref_v0);
1441 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1442 #endif
1443 	} else {
1444 		WARN_ON(1);
1445 	}
1446 	return num_refs;
1447 }
1448 
1449 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1450 					  struct btrfs_root *root,
1451 					  struct btrfs_path *path,
1452 					  u64 bytenr, u64 parent,
1453 					  u64 root_objectid)
1454 {
1455 	struct btrfs_key key;
1456 	int ret;
1457 
1458 	key.objectid = bytenr;
1459 	if (parent) {
1460 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1461 		key.offset = parent;
1462 	} else {
1463 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1464 		key.offset = root_objectid;
1465 	}
1466 
1467 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1468 	if (ret > 0)
1469 		ret = -ENOENT;
1470 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1471 	if (ret == -ENOENT && parent) {
1472 		btrfs_release_path(path);
1473 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1474 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1475 		if (ret > 0)
1476 			ret = -ENOENT;
1477 	}
1478 #endif
1479 	return ret;
1480 }
1481 
1482 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1483 					  struct btrfs_root *root,
1484 					  struct btrfs_path *path,
1485 					  u64 bytenr, u64 parent,
1486 					  u64 root_objectid)
1487 {
1488 	struct btrfs_key key;
1489 	int ret;
1490 
1491 	key.objectid = bytenr;
1492 	if (parent) {
1493 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1494 		key.offset = parent;
1495 	} else {
1496 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1497 		key.offset = root_objectid;
1498 	}
1499 
1500 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1501 	btrfs_release_path(path);
1502 	return ret;
1503 }
1504 
1505 static inline int extent_ref_type(u64 parent, u64 owner)
1506 {
1507 	int type;
1508 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		if (parent > 0)
1510 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1511 		else
1512 			type = BTRFS_TREE_BLOCK_REF_KEY;
1513 	} else {
1514 		if (parent > 0)
1515 			type = BTRFS_SHARED_DATA_REF_KEY;
1516 		else
1517 			type = BTRFS_EXTENT_DATA_REF_KEY;
1518 	}
1519 	return type;
1520 }
1521 
1522 static int find_next_key(struct btrfs_path *path, int level,
1523 			 struct btrfs_key *key)
1524 
1525 {
1526 	for (; level < BTRFS_MAX_LEVEL; level++) {
1527 		if (!path->nodes[level])
1528 			break;
1529 		if (path->slots[level] + 1 >=
1530 		    btrfs_header_nritems(path->nodes[level]))
1531 			continue;
1532 		if (level == 0)
1533 			btrfs_item_key_to_cpu(path->nodes[level], key,
1534 					      path->slots[level] + 1);
1535 		else
1536 			btrfs_node_key_to_cpu(path->nodes[level], key,
1537 					      path->slots[level] + 1);
1538 		return 0;
1539 	}
1540 	return 1;
1541 }
1542 
1543 /*
1544  * look for inline back ref. if back ref is found, *ref_ret is set
1545  * to the address of inline back ref, and 0 is returned.
1546  *
1547  * if back ref isn't found, *ref_ret is set to the address where it
1548  * should be inserted, and -ENOENT is returned.
1549  *
1550  * if insert is true and there are too many inline back refs, the path
1551  * points to the extent item, and -EAGAIN is returned.
1552  *
1553  * NOTE: inline back refs are ordered in the same way that back ref
1554  *	 items in the tree are ordered.
1555  */
1556 static noinline_for_stack
1557 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1558 				 struct btrfs_root *root,
1559 				 struct btrfs_path *path,
1560 				 struct btrfs_extent_inline_ref **ref_ret,
1561 				 u64 bytenr, u64 num_bytes,
1562 				 u64 parent, u64 root_objectid,
1563 				 u64 owner, u64 offset, int insert)
1564 {
1565 	struct btrfs_key key;
1566 	struct extent_buffer *leaf;
1567 	struct btrfs_extent_item *ei;
1568 	struct btrfs_extent_inline_ref *iref;
1569 	u64 flags;
1570 	u64 item_size;
1571 	unsigned long ptr;
1572 	unsigned long end;
1573 	int extra_size;
1574 	int type;
1575 	int want;
1576 	int ret;
1577 	int err = 0;
1578 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1579 						 SKINNY_METADATA);
1580 
1581 	key.objectid = bytenr;
1582 	key.type = BTRFS_EXTENT_ITEM_KEY;
1583 	key.offset = num_bytes;
1584 
1585 	want = extent_ref_type(parent, owner);
1586 	if (insert) {
1587 		extra_size = btrfs_extent_inline_ref_size(want);
1588 		path->keep_locks = 1;
1589 	} else
1590 		extra_size = -1;
1591 
1592 	/*
1593 	 * Owner is our parent level, so we can just add one to get the level
1594 	 * for the block we are interested in.
1595 	 */
1596 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1597 		key.type = BTRFS_METADATA_ITEM_KEY;
1598 		key.offset = owner;
1599 	}
1600 
1601 again:
1602 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1603 	if (ret < 0) {
1604 		err = ret;
1605 		goto out;
1606 	}
1607 
1608 	/*
1609 	 * We may be a newly converted file system which still has the old fat
1610 	 * extent entries for metadata, so try and see if we have one of those.
1611 	 */
1612 	if (ret > 0 && skinny_metadata) {
1613 		skinny_metadata = false;
1614 		if (path->slots[0]) {
1615 			path->slots[0]--;
1616 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1617 					      path->slots[0]);
1618 			if (key.objectid == bytenr &&
1619 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1620 			    key.offset == num_bytes)
1621 				ret = 0;
1622 		}
1623 		if (ret) {
1624 			key.objectid = bytenr;
1625 			key.type = BTRFS_EXTENT_ITEM_KEY;
1626 			key.offset = num_bytes;
1627 			btrfs_release_path(path);
1628 			goto again;
1629 		}
1630 	}
1631 
1632 	if (ret && !insert) {
1633 		err = -ENOENT;
1634 		goto out;
1635 	} else if (WARN_ON(ret)) {
1636 		err = -EIO;
1637 		goto out;
1638 	}
1639 
1640 	leaf = path->nodes[0];
1641 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1643 	if (item_size < sizeof(*ei)) {
1644 		if (!insert) {
1645 			err = -ENOENT;
1646 			goto out;
1647 		}
1648 		ret = convert_extent_item_v0(trans, root, path, owner,
1649 					     extra_size);
1650 		if (ret < 0) {
1651 			err = ret;
1652 			goto out;
1653 		}
1654 		leaf = path->nodes[0];
1655 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1656 	}
1657 #endif
1658 	BUG_ON(item_size < sizeof(*ei));
1659 
1660 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1661 	flags = btrfs_extent_flags(leaf, ei);
1662 
1663 	ptr = (unsigned long)(ei + 1);
1664 	end = (unsigned long)ei + item_size;
1665 
1666 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1667 		ptr += sizeof(struct btrfs_tree_block_info);
1668 		BUG_ON(ptr > end);
1669 	}
1670 
1671 	err = -ENOENT;
1672 	while (1) {
1673 		if (ptr >= end) {
1674 			WARN_ON(ptr > end);
1675 			break;
1676 		}
1677 		iref = (struct btrfs_extent_inline_ref *)ptr;
1678 		type = btrfs_extent_inline_ref_type(leaf, iref);
1679 		if (want < type)
1680 			break;
1681 		if (want > type) {
1682 			ptr += btrfs_extent_inline_ref_size(type);
1683 			continue;
1684 		}
1685 
1686 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1687 			struct btrfs_extent_data_ref *dref;
1688 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1689 			if (match_extent_data_ref(leaf, dref, root_objectid,
1690 						  owner, offset)) {
1691 				err = 0;
1692 				break;
1693 			}
1694 			if (hash_extent_data_ref_item(leaf, dref) <
1695 			    hash_extent_data_ref(root_objectid, owner, offset))
1696 				break;
1697 		} else {
1698 			u64 ref_offset;
1699 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1700 			if (parent > 0) {
1701 				if (parent == ref_offset) {
1702 					err = 0;
1703 					break;
1704 				}
1705 				if (ref_offset < parent)
1706 					break;
1707 			} else {
1708 				if (root_objectid == ref_offset) {
1709 					err = 0;
1710 					break;
1711 				}
1712 				if (ref_offset < root_objectid)
1713 					break;
1714 			}
1715 		}
1716 		ptr += btrfs_extent_inline_ref_size(type);
1717 	}
1718 	if (err == -ENOENT && insert) {
1719 		if (item_size + extra_size >=
1720 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1721 			err = -EAGAIN;
1722 			goto out;
1723 		}
1724 		/*
1725 		 * To add new inline back ref, we have to make sure
1726 		 * there is no corresponding back ref item.
1727 		 * For simplicity, we just do not add new inline back
1728 		 * ref if there is any kind of item for this block
1729 		 */
1730 		if (find_next_key(path, 0, &key) == 0 &&
1731 		    key.objectid == bytenr &&
1732 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1733 			err = -EAGAIN;
1734 			goto out;
1735 		}
1736 	}
1737 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1738 out:
1739 	if (insert) {
1740 		path->keep_locks = 0;
1741 		btrfs_unlock_up_safe(path, 1);
1742 	}
1743 	return err;
1744 }
1745 
1746 /*
1747  * helper to add new inline back ref
1748  */
1749 static noinline_for_stack
1750 void setup_inline_extent_backref(struct btrfs_root *root,
1751 				 struct btrfs_path *path,
1752 				 struct btrfs_extent_inline_ref *iref,
1753 				 u64 parent, u64 root_objectid,
1754 				 u64 owner, u64 offset, int refs_to_add,
1755 				 struct btrfs_delayed_extent_op *extent_op)
1756 {
1757 	struct extent_buffer *leaf;
1758 	struct btrfs_extent_item *ei;
1759 	unsigned long ptr;
1760 	unsigned long end;
1761 	unsigned long item_offset;
1762 	u64 refs;
1763 	int size;
1764 	int type;
1765 
1766 	leaf = path->nodes[0];
1767 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1768 	item_offset = (unsigned long)iref - (unsigned long)ei;
1769 
1770 	type = extent_ref_type(parent, owner);
1771 	size = btrfs_extent_inline_ref_size(type);
1772 
1773 	btrfs_extend_item(root, path, size);
1774 
1775 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 	refs = btrfs_extent_refs(leaf, ei);
1777 	refs += refs_to_add;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	ptr = (unsigned long)ei + item_offset;
1783 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1784 	if (ptr < end - size)
1785 		memmove_extent_buffer(leaf, ptr + size, ptr,
1786 				      end - size - ptr);
1787 
1788 	iref = (struct btrfs_extent_inline_ref *)ptr;
1789 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		struct btrfs_extent_data_ref *dref;
1792 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1794 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1795 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1796 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1797 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1798 		struct btrfs_shared_data_ref *sref;
1799 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1800 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1801 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1802 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1803 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1804 	} else {
1805 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1806 	}
1807 	btrfs_mark_buffer_dirty(leaf);
1808 }
1809 
1810 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1811 				 struct btrfs_root *root,
1812 				 struct btrfs_path *path,
1813 				 struct btrfs_extent_inline_ref **ref_ret,
1814 				 u64 bytenr, u64 num_bytes, u64 parent,
1815 				 u64 root_objectid, u64 owner, u64 offset)
1816 {
1817 	int ret;
1818 
1819 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1820 					   bytenr, num_bytes, parent,
1821 					   root_objectid, owner, offset, 0);
1822 	if (ret != -ENOENT)
1823 		return ret;
1824 
1825 	btrfs_release_path(path);
1826 	*ref_ret = NULL;
1827 
1828 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1829 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1830 					    root_objectid);
1831 	} else {
1832 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1833 					     root_objectid, owner, offset);
1834 	}
1835 	return ret;
1836 }
1837 
1838 /*
1839  * helper to update/remove inline back ref
1840  */
1841 static noinline_for_stack
1842 void update_inline_extent_backref(struct btrfs_root *root,
1843 				  struct btrfs_path *path,
1844 				  struct btrfs_extent_inline_ref *iref,
1845 				  int refs_to_mod,
1846 				  struct btrfs_delayed_extent_op *extent_op,
1847 				  int *last_ref)
1848 {
1849 	struct extent_buffer *leaf;
1850 	struct btrfs_extent_item *ei;
1851 	struct btrfs_extent_data_ref *dref = NULL;
1852 	struct btrfs_shared_data_ref *sref = NULL;
1853 	unsigned long ptr;
1854 	unsigned long end;
1855 	u32 item_size;
1856 	int size;
1857 	int type;
1858 	u64 refs;
1859 
1860 	leaf = path->nodes[0];
1861 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1862 	refs = btrfs_extent_refs(leaf, ei);
1863 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1864 	refs += refs_to_mod;
1865 	btrfs_set_extent_refs(leaf, ei, refs);
1866 	if (extent_op)
1867 		__run_delayed_extent_op(extent_op, leaf, ei);
1868 
1869 	type = btrfs_extent_inline_ref_type(leaf, iref);
1870 
1871 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1873 		refs = btrfs_extent_data_ref_count(leaf, dref);
1874 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1875 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1876 		refs = btrfs_shared_data_ref_count(leaf, sref);
1877 	} else {
1878 		refs = 1;
1879 		BUG_ON(refs_to_mod != -1);
1880 	}
1881 
1882 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1883 	refs += refs_to_mod;
1884 
1885 	if (refs > 0) {
1886 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1887 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1888 		else
1889 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1890 	} else {
1891 		*last_ref = 1;
1892 		size =  btrfs_extent_inline_ref_size(type);
1893 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1894 		ptr = (unsigned long)iref;
1895 		end = (unsigned long)ei + item_size;
1896 		if (ptr + size < end)
1897 			memmove_extent_buffer(leaf, ptr, ptr + size,
1898 					      end - ptr - size);
1899 		item_size -= size;
1900 		btrfs_truncate_item(root, path, item_size, 1);
1901 	}
1902 	btrfs_mark_buffer_dirty(leaf);
1903 }
1904 
1905 static noinline_for_stack
1906 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1907 				 struct btrfs_root *root,
1908 				 struct btrfs_path *path,
1909 				 u64 bytenr, u64 num_bytes, u64 parent,
1910 				 u64 root_objectid, u64 owner,
1911 				 u64 offset, int refs_to_add,
1912 				 struct btrfs_delayed_extent_op *extent_op)
1913 {
1914 	struct btrfs_extent_inline_ref *iref;
1915 	int ret;
1916 
1917 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1918 					   bytenr, num_bytes, parent,
1919 					   root_objectid, owner, offset, 1);
1920 	if (ret == 0) {
1921 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1922 		update_inline_extent_backref(root, path, iref,
1923 					     refs_to_add, extent_op, NULL);
1924 	} else if (ret == -ENOENT) {
1925 		setup_inline_extent_backref(root, path, iref, parent,
1926 					    root_objectid, owner, offset,
1927 					    refs_to_add, extent_op);
1928 		ret = 0;
1929 	}
1930 	return ret;
1931 }
1932 
1933 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1934 				 struct btrfs_root *root,
1935 				 struct btrfs_path *path,
1936 				 u64 bytenr, u64 parent, u64 root_objectid,
1937 				 u64 owner, u64 offset, int refs_to_add)
1938 {
1939 	int ret;
1940 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1941 		BUG_ON(refs_to_add != 1);
1942 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1943 					    parent, root_objectid);
1944 	} else {
1945 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1946 					     parent, root_objectid,
1947 					     owner, offset, refs_to_add);
1948 	}
1949 	return ret;
1950 }
1951 
1952 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1953 				 struct btrfs_root *root,
1954 				 struct btrfs_path *path,
1955 				 struct btrfs_extent_inline_ref *iref,
1956 				 int refs_to_drop, int is_data, int *last_ref)
1957 {
1958 	int ret = 0;
1959 
1960 	BUG_ON(!is_data && refs_to_drop != 1);
1961 	if (iref) {
1962 		update_inline_extent_backref(root, path, iref,
1963 					     -refs_to_drop, NULL, last_ref);
1964 	} else if (is_data) {
1965 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1966 					     last_ref);
1967 	} else {
1968 		*last_ref = 1;
1969 		ret = btrfs_del_item(trans, root, path);
1970 	}
1971 	return ret;
1972 }
1973 
1974 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1975 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1976 			       u64 *discarded_bytes)
1977 {
1978 	int j, ret = 0;
1979 	u64 bytes_left, end;
1980 	u64 aligned_start = ALIGN(start, 1 << 9);
1981 
1982 	if (WARN_ON(start != aligned_start)) {
1983 		len -= aligned_start - start;
1984 		len = round_down(len, 1 << 9);
1985 		start = aligned_start;
1986 	}
1987 
1988 	*discarded_bytes = 0;
1989 
1990 	if (!len)
1991 		return 0;
1992 
1993 	end = start + len;
1994 	bytes_left = len;
1995 
1996 	/* Skip any superblocks on this device. */
1997 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1998 		u64 sb_start = btrfs_sb_offset(j);
1999 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2000 		u64 size = sb_start - start;
2001 
2002 		if (!in_range(sb_start, start, bytes_left) &&
2003 		    !in_range(sb_end, start, bytes_left) &&
2004 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2005 			continue;
2006 
2007 		/*
2008 		 * Superblock spans beginning of range.  Adjust start and
2009 		 * try again.
2010 		 */
2011 		if (sb_start <= start) {
2012 			start += sb_end - start;
2013 			if (start > end) {
2014 				bytes_left = 0;
2015 				break;
2016 			}
2017 			bytes_left = end - start;
2018 			continue;
2019 		}
2020 
2021 		if (size) {
2022 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2023 						   GFP_NOFS, 0);
2024 			if (!ret)
2025 				*discarded_bytes += size;
2026 			else if (ret != -EOPNOTSUPP)
2027 				return ret;
2028 		}
2029 
2030 		start = sb_end;
2031 		if (start > end) {
2032 			bytes_left = 0;
2033 			break;
2034 		}
2035 		bytes_left = end - start;
2036 	}
2037 
2038 	if (bytes_left) {
2039 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2040 					   GFP_NOFS, 0);
2041 		if (!ret)
2042 			*discarded_bytes += bytes_left;
2043 	}
2044 	return ret;
2045 }
2046 
2047 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2048 			 u64 num_bytes, u64 *actual_bytes)
2049 {
2050 	int ret;
2051 	u64 discarded_bytes = 0;
2052 	struct btrfs_bio *bbio = NULL;
2053 
2054 
2055 	/*
2056 	 * Avoid races with device replace and make sure our bbio has devices
2057 	 * associated to its stripes that don't go away while we are discarding.
2058 	 */
2059 	btrfs_bio_counter_inc_blocked(root->fs_info);
2060 	/* Tell the block device(s) that the sectors can be discarded */
2061 	ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2062 			      bytenr, &num_bytes, &bbio, 0);
2063 	/* Error condition is -ENOMEM */
2064 	if (!ret) {
2065 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2066 		int i;
2067 
2068 
2069 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2070 			u64 bytes;
2071 			if (!stripe->dev->can_discard)
2072 				continue;
2073 
2074 			ret = btrfs_issue_discard(stripe->dev->bdev,
2075 						  stripe->physical,
2076 						  stripe->length,
2077 						  &bytes);
2078 			if (!ret)
2079 				discarded_bytes += bytes;
2080 			else if (ret != -EOPNOTSUPP)
2081 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2082 
2083 			/*
2084 			 * Just in case we get back EOPNOTSUPP for some reason,
2085 			 * just ignore the return value so we don't screw up
2086 			 * people calling discard_extent.
2087 			 */
2088 			ret = 0;
2089 		}
2090 		btrfs_put_bbio(bbio);
2091 	}
2092 	btrfs_bio_counter_dec(root->fs_info);
2093 
2094 	if (actual_bytes)
2095 		*actual_bytes = discarded_bytes;
2096 
2097 
2098 	if (ret == -EOPNOTSUPP)
2099 		ret = 0;
2100 	return ret;
2101 }
2102 
2103 /* Can return -ENOMEM */
2104 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 			 struct btrfs_root *root,
2106 			 u64 bytenr, u64 num_bytes, u64 parent,
2107 			 u64 root_objectid, u64 owner, u64 offset)
2108 {
2109 	int ret;
2110 	struct btrfs_fs_info *fs_info = root->fs_info;
2111 
2112 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2113 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2114 
2115 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2116 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2117 					num_bytes,
2118 					parent, root_objectid, (int)owner,
2119 					BTRFS_ADD_DELAYED_REF, NULL);
2120 	} else {
2121 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2122 					num_bytes, parent, root_objectid,
2123 					owner, offset, 0,
2124 					BTRFS_ADD_DELAYED_REF, NULL);
2125 	}
2126 	return ret;
2127 }
2128 
2129 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2130 				  struct btrfs_root *root,
2131 				  struct btrfs_delayed_ref_node *node,
2132 				  u64 parent, u64 root_objectid,
2133 				  u64 owner, u64 offset, int refs_to_add,
2134 				  struct btrfs_delayed_extent_op *extent_op)
2135 {
2136 	struct btrfs_fs_info *fs_info = root->fs_info;
2137 	struct btrfs_path *path;
2138 	struct extent_buffer *leaf;
2139 	struct btrfs_extent_item *item;
2140 	struct btrfs_key key;
2141 	u64 bytenr = node->bytenr;
2142 	u64 num_bytes = node->num_bytes;
2143 	u64 refs;
2144 	int ret;
2145 
2146 	path = btrfs_alloc_path();
2147 	if (!path)
2148 		return -ENOMEM;
2149 
2150 	path->reada = READA_FORWARD;
2151 	path->leave_spinning = 1;
2152 	/* this will setup the path even if it fails to insert the back ref */
2153 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2154 					   bytenr, num_bytes, parent,
2155 					   root_objectid, owner, offset,
2156 					   refs_to_add, extent_op);
2157 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2158 		goto out;
2159 
2160 	/*
2161 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2162 	 * inline extent ref, so just update the reference count and add a
2163 	 * normal backref.
2164 	 */
2165 	leaf = path->nodes[0];
2166 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2167 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2168 	refs = btrfs_extent_refs(leaf, item);
2169 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2170 	if (extent_op)
2171 		__run_delayed_extent_op(extent_op, leaf, item);
2172 
2173 	btrfs_mark_buffer_dirty(leaf);
2174 	btrfs_release_path(path);
2175 
2176 	path->reada = READA_FORWARD;
2177 	path->leave_spinning = 1;
2178 	/* now insert the actual backref */
2179 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2180 				    path, bytenr, parent, root_objectid,
2181 				    owner, offset, refs_to_add);
2182 	if (ret)
2183 		btrfs_abort_transaction(trans, root, ret);
2184 out:
2185 	btrfs_free_path(path);
2186 	return ret;
2187 }
2188 
2189 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2190 				struct btrfs_root *root,
2191 				struct btrfs_delayed_ref_node *node,
2192 				struct btrfs_delayed_extent_op *extent_op,
2193 				int insert_reserved)
2194 {
2195 	int ret = 0;
2196 	struct btrfs_delayed_data_ref *ref;
2197 	struct btrfs_key ins;
2198 	u64 parent = 0;
2199 	u64 ref_root = 0;
2200 	u64 flags = 0;
2201 
2202 	ins.objectid = node->bytenr;
2203 	ins.offset = node->num_bytes;
2204 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2205 
2206 	ref = btrfs_delayed_node_to_data_ref(node);
2207 	trace_run_delayed_data_ref(node, ref, node->action);
2208 
2209 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2210 		parent = ref->parent;
2211 	ref_root = ref->root;
2212 
2213 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2214 		if (extent_op)
2215 			flags |= extent_op->flags_to_set;
2216 		ret = alloc_reserved_file_extent(trans, root,
2217 						 parent, ref_root, flags,
2218 						 ref->objectid, ref->offset,
2219 						 &ins, node->ref_mod);
2220 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2221 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2222 					     ref_root, ref->objectid,
2223 					     ref->offset, node->ref_mod,
2224 					     extent_op);
2225 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 		ret = __btrfs_free_extent(trans, root, node, parent,
2227 					  ref_root, ref->objectid,
2228 					  ref->offset, node->ref_mod,
2229 					  extent_op);
2230 	} else {
2231 		BUG();
2232 	}
2233 	return ret;
2234 }
2235 
2236 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2237 				    struct extent_buffer *leaf,
2238 				    struct btrfs_extent_item *ei)
2239 {
2240 	u64 flags = btrfs_extent_flags(leaf, ei);
2241 	if (extent_op->update_flags) {
2242 		flags |= extent_op->flags_to_set;
2243 		btrfs_set_extent_flags(leaf, ei, flags);
2244 	}
2245 
2246 	if (extent_op->update_key) {
2247 		struct btrfs_tree_block_info *bi;
2248 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2249 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2250 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2251 	}
2252 }
2253 
2254 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2255 				 struct btrfs_root *root,
2256 				 struct btrfs_delayed_ref_node *node,
2257 				 struct btrfs_delayed_extent_op *extent_op)
2258 {
2259 	struct btrfs_key key;
2260 	struct btrfs_path *path;
2261 	struct btrfs_extent_item *ei;
2262 	struct extent_buffer *leaf;
2263 	u32 item_size;
2264 	int ret;
2265 	int err = 0;
2266 	int metadata = !extent_op->is_data;
2267 
2268 	if (trans->aborted)
2269 		return 0;
2270 
2271 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2272 		metadata = 0;
2273 
2274 	path = btrfs_alloc_path();
2275 	if (!path)
2276 		return -ENOMEM;
2277 
2278 	key.objectid = node->bytenr;
2279 
2280 	if (metadata) {
2281 		key.type = BTRFS_METADATA_ITEM_KEY;
2282 		key.offset = extent_op->level;
2283 	} else {
2284 		key.type = BTRFS_EXTENT_ITEM_KEY;
2285 		key.offset = node->num_bytes;
2286 	}
2287 
2288 again:
2289 	path->reada = READA_FORWARD;
2290 	path->leave_spinning = 1;
2291 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2292 				path, 0, 1);
2293 	if (ret < 0) {
2294 		err = ret;
2295 		goto out;
2296 	}
2297 	if (ret > 0) {
2298 		if (metadata) {
2299 			if (path->slots[0] > 0) {
2300 				path->slots[0]--;
2301 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2302 						      path->slots[0]);
2303 				if (key.objectid == node->bytenr &&
2304 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2305 				    key.offset == node->num_bytes)
2306 					ret = 0;
2307 			}
2308 			if (ret > 0) {
2309 				btrfs_release_path(path);
2310 				metadata = 0;
2311 
2312 				key.objectid = node->bytenr;
2313 				key.offset = node->num_bytes;
2314 				key.type = BTRFS_EXTENT_ITEM_KEY;
2315 				goto again;
2316 			}
2317 		} else {
2318 			err = -EIO;
2319 			goto out;
2320 		}
2321 	}
2322 
2323 	leaf = path->nodes[0];
2324 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2326 	if (item_size < sizeof(*ei)) {
2327 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2328 					     path, (u64)-1, 0);
2329 		if (ret < 0) {
2330 			err = ret;
2331 			goto out;
2332 		}
2333 		leaf = path->nodes[0];
2334 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 	}
2336 #endif
2337 	BUG_ON(item_size < sizeof(*ei));
2338 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2339 	__run_delayed_extent_op(extent_op, leaf, ei);
2340 
2341 	btrfs_mark_buffer_dirty(leaf);
2342 out:
2343 	btrfs_free_path(path);
2344 	return err;
2345 }
2346 
2347 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2348 				struct btrfs_root *root,
2349 				struct btrfs_delayed_ref_node *node,
2350 				struct btrfs_delayed_extent_op *extent_op,
2351 				int insert_reserved)
2352 {
2353 	int ret = 0;
2354 	struct btrfs_delayed_tree_ref *ref;
2355 	struct btrfs_key ins;
2356 	u64 parent = 0;
2357 	u64 ref_root = 0;
2358 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2359 						 SKINNY_METADATA);
2360 
2361 	ref = btrfs_delayed_node_to_tree_ref(node);
2362 	trace_run_delayed_tree_ref(node, ref, node->action);
2363 
2364 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2365 		parent = ref->parent;
2366 	ref_root = ref->root;
2367 
2368 	ins.objectid = node->bytenr;
2369 	if (skinny_metadata) {
2370 		ins.offset = ref->level;
2371 		ins.type = BTRFS_METADATA_ITEM_KEY;
2372 	} else {
2373 		ins.offset = node->num_bytes;
2374 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2375 	}
2376 
2377 	BUG_ON(node->ref_mod != 1);
2378 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2379 		BUG_ON(!extent_op || !extent_op->update_flags);
2380 		ret = alloc_reserved_tree_block(trans, root,
2381 						parent, ref_root,
2382 						extent_op->flags_to_set,
2383 						&extent_op->key,
2384 						ref->level, &ins);
2385 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2386 		ret = __btrfs_inc_extent_ref(trans, root, node,
2387 					     parent, ref_root,
2388 					     ref->level, 0, 1,
2389 					     extent_op);
2390 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2391 		ret = __btrfs_free_extent(trans, root, node,
2392 					  parent, ref_root,
2393 					  ref->level, 0, 1, extent_op);
2394 	} else {
2395 		BUG();
2396 	}
2397 	return ret;
2398 }
2399 
2400 /* helper function to actually process a single delayed ref entry */
2401 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2402 			       struct btrfs_root *root,
2403 			       struct btrfs_delayed_ref_node *node,
2404 			       struct btrfs_delayed_extent_op *extent_op,
2405 			       int insert_reserved)
2406 {
2407 	int ret = 0;
2408 
2409 	if (trans->aborted) {
2410 		if (insert_reserved)
2411 			btrfs_pin_extent(root, node->bytenr,
2412 					 node->num_bytes, 1);
2413 		return 0;
2414 	}
2415 
2416 	if (btrfs_delayed_ref_is_head(node)) {
2417 		struct btrfs_delayed_ref_head *head;
2418 		/*
2419 		 * we've hit the end of the chain and we were supposed
2420 		 * to insert this extent into the tree.  But, it got
2421 		 * deleted before we ever needed to insert it, so all
2422 		 * we have to do is clean up the accounting
2423 		 */
2424 		BUG_ON(extent_op);
2425 		head = btrfs_delayed_node_to_head(node);
2426 		trace_run_delayed_ref_head(node, head, node->action);
2427 
2428 		if (insert_reserved) {
2429 			btrfs_pin_extent(root, node->bytenr,
2430 					 node->num_bytes, 1);
2431 			if (head->is_data) {
2432 				ret = btrfs_del_csums(trans, root,
2433 						      node->bytenr,
2434 						      node->num_bytes);
2435 			}
2436 		}
2437 
2438 		/* Also free its reserved qgroup space */
2439 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2440 					      head->qgroup_ref_root,
2441 					      head->qgroup_reserved);
2442 		return ret;
2443 	}
2444 
2445 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2446 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2448 					   insert_reserved);
2449 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2450 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2451 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2452 					   insert_reserved);
2453 	else
2454 		BUG();
2455 	return ret;
2456 }
2457 
2458 static inline struct btrfs_delayed_ref_node *
2459 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2460 {
2461 	struct btrfs_delayed_ref_node *ref;
2462 
2463 	if (list_empty(&head->ref_list))
2464 		return NULL;
2465 
2466 	/*
2467 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2468 	 * This is to prevent a ref count from going down to zero, which deletes
2469 	 * the extent item from the extent tree, when there still are references
2470 	 * to add, which would fail because they would not find the extent item.
2471 	 */
2472 	list_for_each_entry(ref, &head->ref_list, list) {
2473 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2474 			return ref;
2475 	}
2476 
2477 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2478 			  list);
2479 }
2480 
2481 /*
2482  * Returns 0 on success or if called with an already aborted transaction.
2483  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2484  */
2485 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2486 					     struct btrfs_root *root,
2487 					     unsigned long nr)
2488 {
2489 	struct btrfs_delayed_ref_root *delayed_refs;
2490 	struct btrfs_delayed_ref_node *ref;
2491 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2492 	struct btrfs_delayed_extent_op *extent_op;
2493 	struct btrfs_fs_info *fs_info = root->fs_info;
2494 	ktime_t start = ktime_get();
2495 	int ret;
2496 	unsigned long count = 0;
2497 	unsigned long actual_count = 0;
2498 	int must_insert_reserved = 0;
2499 
2500 	delayed_refs = &trans->transaction->delayed_refs;
2501 	while (1) {
2502 		if (!locked_ref) {
2503 			if (count >= nr)
2504 				break;
2505 
2506 			spin_lock(&delayed_refs->lock);
2507 			locked_ref = btrfs_select_ref_head(trans);
2508 			if (!locked_ref) {
2509 				spin_unlock(&delayed_refs->lock);
2510 				break;
2511 			}
2512 
2513 			/* grab the lock that says we are going to process
2514 			 * all the refs for this head */
2515 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2516 			spin_unlock(&delayed_refs->lock);
2517 			/*
2518 			 * we may have dropped the spin lock to get the head
2519 			 * mutex lock, and that might have given someone else
2520 			 * time to free the head.  If that's true, it has been
2521 			 * removed from our list and we can move on.
2522 			 */
2523 			if (ret == -EAGAIN) {
2524 				locked_ref = NULL;
2525 				count++;
2526 				continue;
2527 			}
2528 		}
2529 
2530 		/*
2531 		 * We need to try and merge add/drops of the same ref since we
2532 		 * can run into issues with relocate dropping the implicit ref
2533 		 * and then it being added back again before the drop can
2534 		 * finish.  If we merged anything we need to re-loop so we can
2535 		 * get a good ref.
2536 		 * Or we can get node references of the same type that weren't
2537 		 * merged when created due to bumps in the tree mod seq, and
2538 		 * we need to merge them to prevent adding an inline extent
2539 		 * backref before dropping it (triggering a BUG_ON at
2540 		 * insert_inline_extent_backref()).
2541 		 */
2542 		spin_lock(&locked_ref->lock);
2543 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2544 					 locked_ref);
2545 
2546 		/*
2547 		 * locked_ref is the head node, so we have to go one
2548 		 * node back for any delayed ref updates
2549 		 */
2550 		ref = select_delayed_ref(locked_ref);
2551 
2552 		if (ref && ref->seq &&
2553 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2554 			spin_unlock(&locked_ref->lock);
2555 			btrfs_delayed_ref_unlock(locked_ref);
2556 			spin_lock(&delayed_refs->lock);
2557 			locked_ref->processing = 0;
2558 			delayed_refs->num_heads_ready++;
2559 			spin_unlock(&delayed_refs->lock);
2560 			locked_ref = NULL;
2561 			cond_resched();
2562 			count++;
2563 			continue;
2564 		}
2565 
2566 		/*
2567 		 * record the must insert reserved flag before we
2568 		 * drop the spin lock.
2569 		 */
2570 		must_insert_reserved = locked_ref->must_insert_reserved;
2571 		locked_ref->must_insert_reserved = 0;
2572 
2573 		extent_op = locked_ref->extent_op;
2574 		locked_ref->extent_op = NULL;
2575 
2576 		if (!ref) {
2577 
2578 
2579 			/* All delayed refs have been processed, Go ahead
2580 			 * and send the head node to run_one_delayed_ref,
2581 			 * so that any accounting fixes can happen
2582 			 */
2583 			ref = &locked_ref->node;
2584 
2585 			if (extent_op && must_insert_reserved) {
2586 				btrfs_free_delayed_extent_op(extent_op);
2587 				extent_op = NULL;
2588 			}
2589 
2590 			if (extent_op) {
2591 				spin_unlock(&locked_ref->lock);
2592 				ret = run_delayed_extent_op(trans, root,
2593 							    ref, extent_op);
2594 				btrfs_free_delayed_extent_op(extent_op);
2595 
2596 				if (ret) {
2597 					/*
2598 					 * Need to reset must_insert_reserved if
2599 					 * there was an error so the abort stuff
2600 					 * can cleanup the reserved space
2601 					 * properly.
2602 					 */
2603 					if (must_insert_reserved)
2604 						locked_ref->must_insert_reserved = 1;
2605 					locked_ref->processing = 0;
2606 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2607 					btrfs_delayed_ref_unlock(locked_ref);
2608 					return ret;
2609 				}
2610 				continue;
2611 			}
2612 
2613 			/*
2614 			 * Need to drop our head ref lock and re-acquire the
2615 			 * delayed ref lock and then re-check to make sure
2616 			 * nobody got added.
2617 			 */
2618 			spin_unlock(&locked_ref->lock);
2619 			spin_lock(&delayed_refs->lock);
2620 			spin_lock(&locked_ref->lock);
2621 			if (!list_empty(&locked_ref->ref_list) ||
2622 			    locked_ref->extent_op) {
2623 				spin_unlock(&locked_ref->lock);
2624 				spin_unlock(&delayed_refs->lock);
2625 				continue;
2626 			}
2627 			ref->in_tree = 0;
2628 			delayed_refs->num_heads--;
2629 			rb_erase(&locked_ref->href_node,
2630 				 &delayed_refs->href_root);
2631 			spin_unlock(&delayed_refs->lock);
2632 		} else {
2633 			actual_count++;
2634 			ref->in_tree = 0;
2635 			list_del(&ref->list);
2636 		}
2637 		atomic_dec(&delayed_refs->num_entries);
2638 
2639 		if (!btrfs_delayed_ref_is_head(ref)) {
2640 			/*
2641 			 * when we play the delayed ref, also correct the
2642 			 * ref_mod on head
2643 			 */
2644 			switch (ref->action) {
2645 			case BTRFS_ADD_DELAYED_REF:
2646 			case BTRFS_ADD_DELAYED_EXTENT:
2647 				locked_ref->node.ref_mod -= ref->ref_mod;
2648 				break;
2649 			case BTRFS_DROP_DELAYED_REF:
2650 				locked_ref->node.ref_mod += ref->ref_mod;
2651 				break;
2652 			default:
2653 				WARN_ON(1);
2654 			}
2655 		}
2656 		spin_unlock(&locked_ref->lock);
2657 
2658 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2659 					  must_insert_reserved);
2660 
2661 		btrfs_free_delayed_extent_op(extent_op);
2662 		if (ret) {
2663 			locked_ref->processing = 0;
2664 			btrfs_delayed_ref_unlock(locked_ref);
2665 			btrfs_put_delayed_ref(ref);
2666 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2667 			return ret;
2668 		}
2669 
2670 		/*
2671 		 * If this node is a head, that means all the refs in this head
2672 		 * have been dealt with, and we will pick the next head to deal
2673 		 * with, so we must unlock the head and drop it from the cluster
2674 		 * list before we release it.
2675 		 */
2676 		if (btrfs_delayed_ref_is_head(ref)) {
2677 			if (locked_ref->is_data &&
2678 			    locked_ref->total_ref_mod < 0) {
2679 				spin_lock(&delayed_refs->lock);
2680 				delayed_refs->pending_csums -= ref->num_bytes;
2681 				spin_unlock(&delayed_refs->lock);
2682 			}
2683 			btrfs_delayed_ref_unlock(locked_ref);
2684 			locked_ref = NULL;
2685 		}
2686 		btrfs_put_delayed_ref(ref);
2687 		count++;
2688 		cond_resched();
2689 	}
2690 
2691 	/*
2692 	 * We don't want to include ref heads since we can have empty ref heads
2693 	 * and those will drastically skew our runtime down since we just do
2694 	 * accounting, no actual extent tree updates.
2695 	 */
2696 	if (actual_count > 0) {
2697 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2698 		u64 avg;
2699 
2700 		/*
2701 		 * We weigh the current average higher than our current runtime
2702 		 * to avoid large swings in the average.
2703 		 */
2704 		spin_lock(&delayed_refs->lock);
2705 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2706 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2707 		spin_unlock(&delayed_refs->lock);
2708 	}
2709 	return 0;
2710 }
2711 
2712 #ifdef SCRAMBLE_DELAYED_REFS
2713 /*
2714  * Normally delayed refs get processed in ascending bytenr order. This
2715  * correlates in most cases to the order added. To expose dependencies on this
2716  * order, we start to process the tree in the middle instead of the beginning
2717  */
2718 static u64 find_middle(struct rb_root *root)
2719 {
2720 	struct rb_node *n = root->rb_node;
2721 	struct btrfs_delayed_ref_node *entry;
2722 	int alt = 1;
2723 	u64 middle;
2724 	u64 first = 0, last = 0;
2725 
2726 	n = rb_first(root);
2727 	if (n) {
2728 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2729 		first = entry->bytenr;
2730 	}
2731 	n = rb_last(root);
2732 	if (n) {
2733 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 		last = entry->bytenr;
2735 	}
2736 	n = root->rb_node;
2737 
2738 	while (n) {
2739 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2740 		WARN_ON(!entry->in_tree);
2741 
2742 		middle = entry->bytenr;
2743 
2744 		if (alt)
2745 			n = n->rb_left;
2746 		else
2747 			n = n->rb_right;
2748 
2749 		alt = 1 - alt;
2750 	}
2751 	return middle;
2752 }
2753 #endif
2754 
2755 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2756 {
2757 	u64 num_bytes;
2758 
2759 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2760 			     sizeof(struct btrfs_extent_inline_ref));
2761 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2762 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2763 
2764 	/*
2765 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2766 	 * closer to what we're really going to want to use.
2767 	 */
2768 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2769 }
2770 
2771 /*
2772  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2773  * would require to store the csums for that many bytes.
2774  */
2775 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2776 {
2777 	u64 csum_size;
2778 	u64 num_csums_per_leaf;
2779 	u64 num_csums;
2780 
2781 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2782 	num_csums_per_leaf = div64_u64(csum_size,
2783 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2784 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2785 	num_csums += num_csums_per_leaf - 1;
2786 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2787 	return num_csums;
2788 }
2789 
2790 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2791 				       struct btrfs_root *root)
2792 {
2793 	struct btrfs_block_rsv *global_rsv;
2794 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2795 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2796 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2797 	u64 num_bytes, num_dirty_bgs_bytes;
2798 	int ret = 0;
2799 
2800 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2801 	num_heads = heads_to_leaves(root, num_heads);
2802 	if (num_heads > 1)
2803 		num_bytes += (num_heads - 1) * root->nodesize;
2804 	num_bytes <<= 1;
2805 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2806 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2807 							     num_dirty_bgs);
2808 	global_rsv = &root->fs_info->global_block_rsv;
2809 
2810 	/*
2811 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2812 	 * wiggle room since running delayed refs can create more delayed refs.
2813 	 */
2814 	if (global_rsv->space_info->full) {
2815 		num_dirty_bgs_bytes <<= 1;
2816 		num_bytes <<= 1;
2817 	}
2818 
2819 	spin_lock(&global_rsv->lock);
2820 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2821 		ret = 1;
2822 	spin_unlock(&global_rsv->lock);
2823 	return ret;
2824 }
2825 
2826 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2827 				       struct btrfs_root *root)
2828 {
2829 	struct btrfs_fs_info *fs_info = root->fs_info;
2830 	u64 num_entries =
2831 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2832 	u64 avg_runtime;
2833 	u64 val;
2834 
2835 	smp_mb();
2836 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2837 	val = num_entries * avg_runtime;
2838 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2839 		return 1;
2840 	if (val >= NSEC_PER_SEC / 2)
2841 		return 2;
2842 
2843 	return btrfs_check_space_for_delayed_refs(trans, root);
2844 }
2845 
2846 struct async_delayed_refs {
2847 	struct btrfs_root *root;
2848 	u64 transid;
2849 	int count;
2850 	int error;
2851 	int sync;
2852 	struct completion wait;
2853 	struct btrfs_work work;
2854 };
2855 
2856 static void delayed_ref_async_start(struct btrfs_work *work)
2857 {
2858 	struct async_delayed_refs *async;
2859 	struct btrfs_trans_handle *trans;
2860 	int ret;
2861 
2862 	async = container_of(work, struct async_delayed_refs, work);
2863 
2864 	/* if the commit is already started, we don't need to wait here */
2865 	if (btrfs_transaction_blocked(async->root->fs_info))
2866 		goto done;
2867 
2868 	trans = btrfs_join_transaction(async->root);
2869 	if (IS_ERR(trans)) {
2870 		async->error = PTR_ERR(trans);
2871 		goto done;
2872 	}
2873 
2874 	/*
2875 	 * trans->sync means that when we call end_transaction, we won't
2876 	 * wait on delayed refs
2877 	 */
2878 	trans->sync = true;
2879 
2880 	/* Don't bother flushing if we got into a different transaction */
2881 	if (trans->transid > async->transid)
2882 		goto end;
2883 
2884 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2885 	if (ret)
2886 		async->error = ret;
2887 end:
2888 	ret = btrfs_end_transaction(trans, async->root);
2889 	if (ret && !async->error)
2890 		async->error = ret;
2891 done:
2892 	if (async->sync)
2893 		complete(&async->wait);
2894 	else
2895 		kfree(async);
2896 }
2897 
2898 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2899 				 unsigned long count, u64 transid, int wait)
2900 {
2901 	struct async_delayed_refs *async;
2902 	int ret;
2903 
2904 	async = kmalloc(sizeof(*async), GFP_NOFS);
2905 	if (!async)
2906 		return -ENOMEM;
2907 
2908 	async->root = root->fs_info->tree_root;
2909 	async->count = count;
2910 	async->error = 0;
2911 	async->transid = transid;
2912 	if (wait)
2913 		async->sync = 1;
2914 	else
2915 		async->sync = 0;
2916 	init_completion(&async->wait);
2917 
2918 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2919 			delayed_ref_async_start, NULL, NULL);
2920 
2921 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2922 
2923 	if (wait) {
2924 		wait_for_completion(&async->wait);
2925 		ret = async->error;
2926 		kfree(async);
2927 		return ret;
2928 	}
2929 	return 0;
2930 }
2931 
2932 /*
2933  * this starts processing the delayed reference count updates and
2934  * extent insertions we have queued up so far.  count can be
2935  * 0, which means to process everything in the tree at the start
2936  * of the run (but not newly added entries), or it can be some target
2937  * number you'd like to process.
2938  *
2939  * Returns 0 on success or if called with an aborted transaction
2940  * Returns <0 on error and aborts the transaction
2941  */
2942 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2943 			   struct btrfs_root *root, unsigned long count)
2944 {
2945 	struct rb_node *node;
2946 	struct btrfs_delayed_ref_root *delayed_refs;
2947 	struct btrfs_delayed_ref_head *head;
2948 	int ret;
2949 	int run_all = count == (unsigned long)-1;
2950 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2951 
2952 	/* We'll clean this up in btrfs_cleanup_transaction */
2953 	if (trans->aborted)
2954 		return 0;
2955 
2956 	if (root->fs_info->creating_free_space_tree)
2957 		return 0;
2958 
2959 	if (root == root->fs_info->extent_root)
2960 		root = root->fs_info->tree_root;
2961 
2962 	delayed_refs = &trans->transaction->delayed_refs;
2963 	if (count == 0)
2964 		count = atomic_read(&delayed_refs->num_entries) * 2;
2965 
2966 again:
2967 #ifdef SCRAMBLE_DELAYED_REFS
2968 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2969 #endif
2970 	trans->can_flush_pending_bgs = false;
2971 	ret = __btrfs_run_delayed_refs(trans, root, count);
2972 	if (ret < 0) {
2973 		btrfs_abort_transaction(trans, root, ret);
2974 		return ret;
2975 	}
2976 
2977 	if (run_all) {
2978 		if (!list_empty(&trans->new_bgs))
2979 			btrfs_create_pending_block_groups(trans, root);
2980 
2981 		spin_lock(&delayed_refs->lock);
2982 		node = rb_first(&delayed_refs->href_root);
2983 		if (!node) {
2984 			spin_unlock(&delayed_refs->lock);
2985 			goto out;
2986 		}
2987 		count = (unsigned long)-1;
2988 
2989 		while (node) {
2990 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2991 					href_node);
2992 			if (btrfs_delayed_ref_is_head(&head->node)) {
2993 				struct btrfs_delayed_ref_node *ref;
2994 
2995 				ref = &head->node;
2996 				atomic_inc(&ref->refs);
2997 
2998 				spin_unlock(&delayed_refs->lock);
2999 				/*
3000 				 * Mutex was contended, block until it's
3001 				 * released and try again
3002 				 */
3003 				mutex_lock(&head->mutex);
3004 				mutex_unlock(&head->mutex);
3005 
3006 				btrfs_put_delayed_ref(ref);
3007 				cond_resched();
3008 				goto again;
3009 			} else {
3010 				WARN_ON(1);
3011 			}
3012 			node = rb_next(node);
3013 		}
3014 		spin_unlock(&delayed_refs->lock);
3015 		cond_resched();
3016 		goto again;
3017 	}
3018 out:
3019 	assert_qgroups_uptodate(trans);
3020 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3021 	return 0;
3022 }
3023 
3024 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3025 				struct btrfs_root *root,
3026 				u64 bytenr, u64 num_bytes, u64 flags,
3027 				int level, int is_data)
3028 {
3029 	struct btrfs_delayed_extent_op *extent_op;
3030 	int ret;
3031 
3032 	extent_op = btrfs_alloc_delayed_extent_op();
3033 	if (!extent_op)
3034 		return -ENOMEM;
3035 
3036 	extent_op->flags_to_set = flags;
3037 	extent_op->update_flags = true;
3038 	extent_op->update_key = false;
3039 	extent_op->is_data = is_data ? true : false;
3040 	extent_op->level = level;
3041 
3042 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3043 					  num_bytes, extent_op);
3044 	if (ret)
3045 		btrfs_free_delayed_extent_op(extent_op);
3046 	return ret;
3047 }
3048 
3049 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3050 				      struct btrfs_root *root,
3051 				      struct btrfs_path *path,
3052 				      u64 objectid, u64 offset, u64 bytenr)
3053 {
3054 	struct btrfs_delayed_ref_head *head;
3055 	struct btrfs_delayed_ref_node *ref;
3056 	struct btrfs_delayed_data_ref *data_ref;
3057 	struct btrfs_delayed_ref_root *delayed_refs;
3058 	int ret = 0;
3059 
3060 	delayed_refs = &trans->transaction->delayed_refs;
3061 	spin_lock(&delayed_refs->lock);
3062 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3063 	if (!head) {
3064 		spin_unlock(&delayed_refs->lock);
3065 		return 0;
3066 	}
3067 
3068 	if (!mutex_trylock(&head->mutex)) {
3069 		atomic_inc(&head->node.refs);
3070 		spin_unlock(&delayed_refs->lock);
3071 
3072 		btrfs_release_path(path);
3073 
3074 		/*
3075 		 * Mutex was contended, block until it's released and let
3076 		 * caller try again
3077 		 */
3078 		mutex_lock(&head->mutex);
3079 		mutex_unlock(&head->mutex);
3080 		btrfs_put_delayed_ref(&head->node);
3081 		return -EAGAIN;
3082 	}
3083 	spin_unlock(&delayed_refs->lock);
3084 
3085 	spin_lock(&head->lock);
3086 	list_for_each_entry(ref, &head->ref_list, list) {
3087 		/* If it's a shared ref we know a cross reference exists */
3088 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 			ret = 1;
3090 			break;
3091 		}
3092 
3093 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3094 
3095 		/*
3096 		 * If our ref doesn't match the one we're currently looking at
3097 		 * then we have a cross reference.
3098 		 */
3099 		if (data_ref->root != root->root_key.objectid ||
3100 		    data_ref->objectid != objectid ||
3101 		    data_ref->offset != offset) {
3102 			ret = 1;
3103 			break;
3104 		}
3105 	}
3106 	spin_unlock(&head->lock);
3107 	mutex_unlock(&head->mutex);
3108 	return ret;
3109 }
3110 
3111 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3112 					struct btrfs_root *root,
3113 					struct btrfs_path *path,
3114 					u64 objectid, u64 offset, u64 bytenr)
3115 {
3116 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3117 	struct extent_buffer *leaf;
3118 	struct btrfs_extent_data_ref *ref;
3119 	struct btrfs_extent_inline_ref *iref;
3120 	struct btrfs_extent_item *ei;
3121 	struct btrfs_key key;
3122 	u32 item_size;
3123 	int ret;
3124 
3125 	key.objectid = bytenr;
3126 	key.offset = (u64)-1;
3127 	key.type = BTRFS_EXTENT_ITEM_KEY;
3128 
3129 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 	if (ret < 0)
3131 		goto out;
3132 	BUG_ON(ret == 0); /* Corruption */
3133 
3134 	ret = -ENOENT;
3135 	if (path->slots[0] == 0)
3136 		goto out;
3137 
3138 	path->slots[0]--;
3139 	leaf = path->nodes[0];
3140 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141 
3142 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3143 		goto out;
3144 
3145 	ret = 1;
3146 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 	if (item_size < sizeof(*ei)) {
3149 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 		goto out;
3151 	}
3152 #endif
3153 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3154 
3155 	if (item_size != sizeof(*ei) +
3156 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 		goto out;
3158 
3159 	if (btrfs_extent_generation(leaf, ei) <=
3160 	    btrfs_root_last_snapshot(&root->root_item))
3161 		goto out;
3162 
3163 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 	    BTRFS_EXTENT_DATA_REF_KEY)
3166 		goto out;
3167 
3168 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 	if (btrfs_extent_refs(leaf, ei) !=
3170 	    btrfs_extent_data_ref_count(leaf, ref) ||
3171 	    btrfs_extent_data_ref_root(leaf, ref) !=
3172 	    root->root_key.objectid ||
3173 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 		goto out;
3176 
3177 	ret = 0;
3178 out:
3179 	return ret;
3180 }
3181 
3182 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3183 			  struct btrfs_root *root,
3184 			  u64 objectid, u64 offset, u64 bytenr)
3185 {
3186 	struct btrfs_path *path;
3187 	int ret;
3188 	int ret2;
3189 
3190 	path = btrfs_alloc_path();
3191 	if (!path)
3192 		return -ENOENT;
3193 
3194 	do {
3195 		ret = check_committed_ref(trans, root, path, objectid,
3196 					  offset, bytenr);
3197 		if (ret && ret != -ENOENT)
3198 			goto out;
3199 
3200 		ret2 = check_delayed_ref(trans, root, path, objectid,
3201 					 offset, bytenr);
3202 	} while (ret2 == -EAGAIN);
3203 
3204 	if (ret2 && ret2 != -ENOENT) {
3205 		ret = ret2;
3206 		goto out;
3207 	}
3208 
3209 	if (ret != -ENOENT || ret2 != -ENOENT)
3210 		ret = 0;
3211 out:
3212 	btrfs_free_path(path);
3213 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3214 		WARN_ON(ret > 0);
3215 	return ret;
3216 }
3217 
3218 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3219 			   struct btrfs_root *root,
3220 			   struct extent_buffer *buf,
3221 			   int full_backref, int inc)
3222 {
3223 	u64 bytenr;
3224 	u64 num_bytes;
3225 	u64 parent;
3226 	u64 ref_root;
3227 	u32 nritems;
3228 	struct btrfs_key key;
3229 	struct btrfs_file_extent_item *fi;
3230 	int i;
3231 	int level;
3232 	int ret = 0;
3233 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3234 			    u64, u64, u64, u64, u64, u64);
3235 
3236 
3237 	if (btrfs_test_is_dummy_root(root))
3238 		return 0;
3239 
3240 	ref_root = btrfs_header_owner(buf);
3241 	nritems = btrfs_header_nritems(buf);
3242 	level = btrfs_header_level(buf);
3243 
3244 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3245 		return 0;
3246 
3247 	if (inc)
3248 		process_func = btrfs_inc_extent_ref;
3249 	else
3250 		process_func = btrfs_free_extent;
3251 
3252 	if (full_backref)
3253 		parent = buf->start;
3254 	else
3255 		parent = 0;
3256 
3257 	for (i = 0; i < nritems; i++) {
3258 		if (level == 0) {
3259 			btrfs_item_key_to_cpu(buf, &key, i);
3260 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3261 				continue;
3262 			fi = btrfs_item_ptr(buf, i,
3263 					    struct btrfs_file_extent_item);
3264 			if (btrfs_file_extent_type(buf, fi) ==
3265 			    BTRFS_FILE_EXTENT_INLINE)
3266 				continue;
3267 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3268 			if (bytenr == 0)
3269 				continue;
3270 
3271 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3272 			key.offset -= btrfs_file_extent_offset(buf, fi);
3273 			ret = process_func(trans, root, bytenr, num_bytes,
3274 					   parent, ref_root, key.objectid,
3275 					   key.offset);
3276 			if (ret)
3277 				goto fail;
3278 		} else {
3279 			bytenr = btrfs_node_blockptr(buf, i);
3280 			num_bytes = root->nodesize;
3281 			ret = process_func(trans, root, bytenr, num_bytes,
3282 					   parent, ref_root, level - 1, 0);
3283 			if (ret)
3284 				goto fail;
3285 		}
3286 	}
3287 	return 0;
3288 fail:
3289 	return ret;
3290 }
3291 
3292 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3293 		  struct extent_buffer *buf, int full_backref)
3294 {
3295 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3296 }
3297 
3298 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3299 		  struct extent_buffer *buf, int full_backref)
3300 {
3301 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3302 }
3303 
3304 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3305 				 struct btrfs_root *root,
3306 				 struct btrfs_path *path,
3307 				 struct btrfs_block_group_cache *cache)
3308 {
3309 	int ret;
3310 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3311 	unsigned long bi;
3312 	struct extent_buffer *leaf;
3313 
3314 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3315 	if (ret) {
3316 		if (ret > 0)
3317 			ret = -ENOENT;
3318 		goto fail;
3319 	}
3320 
3321 	leaf = path->nodes[0];
3322 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3323 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3324 	btrfs_mark_buffer_dirty(leaf);
3325 fail:
3326 	btrfs_release_path(path);
3327 	return ret;
3328 
3329 }
3330 
3331 static struct btrfs_block_group_cache *
3332 next_block_group(struct btrfs_root *root,
3333 		 struct btrfs_block_group_cache *cache)
3334 {
3335 	struct rb_node *node;
3336 
3337 	spin_lock(&root->fs_info->block_group_cache_lock);
3338 
3339 	/* If our block group was removed, we need a full search. */
3340 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3341 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3342 
3343 		spin_unlock(&root->fs_info->block_group_cache_lock);
3344 		btrfs_put_block_group(cache);
3345 		cache = btrfs_lookup_first_block_group(root->fs_info,
3346 						       next_bytenr);
3347 		return cache;
3348 	}
3349 	node = rb_next(&cache->cache_node);
3350 	btrfs_put_block_group(cache);
3351 	if (node) {
3352 		cache = rb_entry(node, struct btrfs_block_group_cache,
3353 				 cache_node);
3354 		btrfs_get_block_group(cache);
3355 	} else
3356 		cache = NULL;
3357 	spin_unlock(&root->fs_info->block_group_cache_lock);
3358 	return cache;
3359 }
3360 
3361 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3362 			    struct btrfs_trans_handle *trans,
3363 			    struct btrfs_path *path)
3364 {
3365 	struct btrfs_root *root = block_group->fs_info->tree_root;
3366 	struct inode *inode = NULL;
3367 	u64 alloc_hint = 0;
3368 	int dcs = BTRFS_DC_ERROR;
3369 	u64 num_pages = 0;
3370 	int retries = 0;
3371 	int ret = 0;
3372 
3373 	/*
3374 	 * If this block group is smaller than 100 megs don't bother caching the
3375 	 * block group.
3376 	 */
3377 	if (block_group->key.offset < (100 * SZ_1M)) {
3378 		spin_lock(&block_group->lock);
3379 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 		spin_unlock(&block_group->lock);
3381 		return 0;
3382 	}
3383 
3384 	if (trans->aborted)
3385 		return 0;
3386 again:
3387 	inode = lookup_free_space_inode(root, block_group, path);
3388 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 		ret = PTR_ERR(inode);
3390 		btrfs_release_path(path);
3391 		goto out;
3392 	}
3393 
3394 	if (IS_ERR(inode)) {
3395 		BUG_ON(retries);
3396 		retries++;
3397 
3398 		if (block_group->ro)
3399 			goto out_free;
3400 
3401 		ret = create_free_space_inode(root, trans, block_group, path);
3402 		if (ret)
3403 			goto out_free;
3404 		goto again;
3405 	}
3406 
3407 	/* We've already setup this transaction, go ahead and exit */
3408 	if (block_group->cache_generation == trans->transid &&
3409 	    i_size_read(inode)) {
3410 		dcs = BTRFS_DC_SETUP;
3411 		goto out_put;
3412 	}
3413 
3414 	/*
3415 	 * We want to set the generation to 0, that way if anything goes wrong
3416 	 * from here on out we know not to trust this cache when we load up next
3417 	 * time.
3418 	 */
3419 	BTRFS_I(inode)->generation = 0;
3420 	ret = btrfs_update_inode(trans, root, inode);
3421 	if (ret) {
3422 		/*
3423 		 * So theoretically we could recover from this, simply set the
3424 		 * super cache generation to 0 so we know to invalidate the
3425 		 * cache, but then we'd have to keep track of the block groups
3426 		 * that fail this way so we know we _have_ to reset this cache
3427 		 * before the next commit or risk reading stale cache.  So to
3428 		 * limit our exposure to horrible edge cases lets just abort the
3429 		 * transaction, this only happens in really bad situations
3430 		 * anyway.
3431 		 */
3432 		btrfs_abort_transaction(trans, root, ret);
3433 		goto out_put;
3434 	}
3435 	WARN_ON(ret);
3436 
3437 	if (i_size_read(inode) > 0) {
3438 		ret = btrfs_check_trunc_cache_free_space(root,
3439 					&root->fs_info->global_block_rsv);
3440 		if (ret)
3441 			goto out_put;
3442 
3443 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3444 		if (ret)
3445 			goto out_put;
3446 	}
3447 
3448 	spin_lock(&block_group->lock);
3449 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3450 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3451 		/*
3452 		 * don't bother trying to write stuff out _if_
3453 		 * a) we're not cached,
3454 		 * b) we're with nospace_cache mount option.
3455 		 */
3456 		dcs = BTRFS_DC_WRITTEN;
3457 		spin_unlock(&block_group->lock);
3458 		goto out_put;
3459 	}
3460 	spin_unlock(&block_group->lock);
3461 
3462 	/*
3463 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3464 	 * skip doing the setup, we've already cleared the cache so we're safe.
3465 	 */
3466 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3467 		ret = -ENOSPC;
3468 		goto out_put;
3469 	}
3470 
3471 	/*
3472 	 * Try to preallocate enough space based on how big the block group is.
3473 	 * Keep in mind this has to include any pinned space which could end up
3474 	 * taking up quite a bit since it's not folded into the other space
3475 	 * cache.
3476 	 */
3477 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3478 	if (!num_pages)
3479 		num_pages = 1;
3480 
3481 	num_pages *= 16;
3482 	num_pages *= PAGE_SIZE;
3483 
3484 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3485 	if (ret)
3486 		goto out_put;
3487 
3488 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3489 					      num_pages, num_pages,
3490 					      &alloc_hint);
3491 	/*
3492 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3493 	 * of metadata or split extents when writing the cache out, which means
3494 	 * we can enospc if we are heavily fragmented in addition to just normal
3495 	 * out of space conditions.  So if we hit this just skip setting up any
3496 	 * other block groups for this transaction, maybe we'll unpin enough
3497 	 * space the next time around.
3498 	 */
3499 	if (!ret)
3500 		dcs = BTRFS_DC_SETUP;
3501 	else if (ret == -ENOSPC)
3502 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3503 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3504 
3505 out_put:
3506 	iput(inode);
3507 out_free:
3508 	btrfs_release_path(path);
3509 out:
3510 	spin_lock(&block_group->lock);
3511 	if (!ret && dcs == BTRFS_DC_SETUP)
3512 		block_group->cache_generation = trans->transid;
3513 	block_group->disk_cache_state = dcs;
3514 	spin_unlock(&block_group->lock);
3515 
3516 	return ret;
3517 }
3518 
3519 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3520 			    struct btrfs_root *root)
3521 {
3522 	struct btrfs_block_group_cache *cache, *tmp;
3523 	struct btrfs_transaction *cur_trans = trans->transaction;
3524 	struct btrfs_path *path;
3525 
3526 	if (list_empty(&cur_trans->dirty_bgs) ||
3527 	    !btrfs_test_opt(root, SPACE_CACHE))
3528 		return 0;
3529 
3530 	path = btrfs_alloc_path();
3531 	if (!path)
3532 		return -ENOMEM;
3533 
3534 	/* Could add new block groups, use _safe just in case */
3535 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3536 				 dirty_list) {
3537 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3538 			cache_save_setup(cache, trans, path);
3539 	}
3540 
3541 	btrfs_free_path(path);
3542 	return 0;
3543 }
3544 
3545 /*
3546  * transaction commit does final block group cache writeback during a
3547  * critical section where nothing is allowed to change the FS.  This is
3548  * required in order for the cache to actually match the block group,
3549  * but can introduce a lot of latency into the commit.
3550  *
3551  * So, btrfs_start_dirty_block_groups is here to kick off block group
3552  * cache IO.  There's a chance we'll have to redo some of it if the
3553  * block group changes again during the commit, but it greatly reduces
3554  * the commit latency by getting rid of the easy block groups while
3555  * we're still allowing others to join the commit.
3556  */
3557 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3558 				   struct btrfs_root *root)
3559 {
3560 	struct btrfs_block_group_cache *cache;
3561 	struct btrfs_transaction *cur_trans = trans->transaction;
3562 	int ret = 0;
3563 	int should_put;
3564 	struct btrfs_path *path = NULL;
3565 	LIST_HEAD(dirty);
3566 	struct list_head *io = &cur_trans->io_bgs;
3567 	int num_started = 0;
3568 	int loops = 0;
3569 
3570 	spin_lock(&cur_trans->dirty_bgs_lock);
3571 	if (list_empty(&cur_trans->dirty_bgs)) {
3572 		spin_unlock(&cur_trans->dirty_bgs_lock);
3573 		return 0;
3574 	}
3575 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3576 	spin_unlock(&cur_trans->dirty_bgs_lock);
3577 
3578 again:
3579 	/*
3580 	 * make sure all the block groups on our dirty list actually
3581 	 * exist
3582 	 */
3583 	btrfs_create_pending_block_groups(trans, root);
3584 
3585 	if (!path) {
3586 		path = btrfs_alloc_path();
3587 		if (!path)
3588 			return -ENOMEM;
3589 	}
3590 
3591 	/*
3592 	 * cache_write_mutex is here only to save us from balance or automatic
3593 	 * removal of empty block groups deleting this block group while we are
3594 	 * writing out the cache
3595 	 */
3596 	mutex_lock(&trans->transaction->cache_write_mutex);
3597 	while (!list_empty(&dirty)) {
3598 		cache = list_first_entry(&dirty,
3599 					 struct btrfs_block_group_cache,
3600 					 dirty_list);
3601 		/*
3602 		 * this can happen if something re-dirties a block
3603 		 * group that is already under IO.  Just wait for it to
3604 		 * finish and then do it all again
3605 		 */
3606 		if (!list_empty(&cache->io_list)) {
3607 			list_del_init(&cache->io_list);
3608 			btrfs_wait_cache_io(root, trans, cache,
3609 					    &cache->io_ctl, path,
3610 					    cache->key.objectid);
3611 			btrfs_put_block_group(cache);
3612 		}
3613 
3614 
3615 		/*
3616 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3617 		 * if it should update the cache_state.  Don't delete
3618 		 * until after we wait.
3619 		 *
3620 		 * Since we're not running in the commit critical section
3621 		 * we need the dirty_bgs_lock to protect from update_block_group
3622 		 */
3623 		spin_lock(&cur_trans->dirty_bgs_lock);
3624 		list_del_init(&cache->dirty_list);
3625 		spin_unlock(&cur_trans->dirty_bgs_lock);
3626 
3627 		should_put = 1;
3628 
3629 		cache_save_setup(cache, trans, path);
3630 
3631 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3632 			cache->io_ctl.inode = NULL;
3633 			ret = btrfs_write_out_cache(root, trans, cache, path);
3634 			if (ret == 0 && cache->io_ctl.inode) {
3635 				num_started++;
3636 				should_put = 0;
3637 
3638 				/*
3639 				 * the cache_write_mutex is protecting
3640 				 * the io_list
3641 				 */
3642 				list_add_tail(&cache->io_list, io);
3643 			} else {
3644 				/*
3645 				 * if we failed to write the cache, the
3646 				 * generation will be bad and life goes on
3647 				 */
3648 				ret = 0;
3649 			}
3650 		}
3651 		if (!ret) {
3652 			ret = write_one_cache_group(trans, root, path, cache);
3653 			/*
3654 			 * Our block group might still be attached to the list
3655 			 * of new block groups in the transaction handle of some
3656 			 * other task (struct btrfs_trans_handle->new_bgs). This
3657 			 * means its block group item isn't yet in the extent
3658 			 * tree. If this happens ignore the error, as we will
3659 			 * try again later in the critical section of the
3660 			 * transaction commit.
3661 			 */
3662 			if (ret == -ENOENT) {
3663 				ret = 0;
3664 				spin_lock(&cur_trans->dirty_bgs_lock);
3665 				if (list_empty(&cache->dirty_list)) {
3666 					list_add_tail(&cache->dirty_list,
3667 						      &cur_trans->dirty_bgs);
3668 					btrfs_get_block_group(cache);
3669 				}
3670 				spin_unlock(&cur_trans->dirty_bgs_lock);
3671 			} else if (ret) {
3672 				btrfs_abort_transaction(trans, root, ret);
3673 			}
3674 		}
3675 
3676 		/* if its not on the io list, we need to put the block group */
3677 		if (should_put)
3678 			btrfs_put_block_group(cache);
3679 
3680 		if (ret)
3681 			break;
3682 
3683 		/*
3684 		 * Avoid blocking other tasks for too long. It might even save
3685 		 * us from writing caches for block groups that are going to be
3686 		 * removed.
3687 		 */
3688 		mutex_unlock(&trans->transaction->cache_write_mutex);
3689 		mutex_lock(&trans->transaction->cache_write_mutex);
3690 	}
3691 	mutex_unlock(&trans->transaction->cache_write_mutex);
3692 
3693 	/*
3694 	 * go through delayed refs for all the stuff we've just kicked off
3695 	 * and then loop back (just once)
3696 	 */
3697 	ret = btrfs_run_delayed_refs(trans, root, 0);
3698 	if (!ret && loops == 0) {
3699 		loops++;
3700 		spin_lock(&cur_trans->dirty_bgs_lock);
3701 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3702 		/*
3703 		 * dirty_bgs_lock protects us from concurrent block group
3704 		 * deletes too (not just cache_write_mutex).
3705 		 */
3706 		if (!list_empty(&dirty)) {
3707 			spin_unlock(&cur_trans->dirty_bgs_lock);
3708 			goto again;
3709 		}
3710 		spin_unlock(&cur_trans->dirty_bgs_lock);
3711 	}
3712 
3713 	btrfs_free_path(path);
3714 	return ret;
3715 }
3716 
3717 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3718 				   struct btrfs_root *root)
3719 {
3720 	struct btrfs_block_group_cache *cache;
3721 	struct btrfs_transaction *cur_trans = trans->transaction;
3722 	int ret = 0;
3723 	int should_put;
3724 	struct btrfs_path *path;
3725 	struct list_head *io = &cur_trans->io_bgs;
3726 	int num_started = 0;
3727 
3728 	path = btrfs_alloc_path();
3729 	if (!path)
3730 		return -ENOMEM;
3731 
3732 	/*
3733 	 * Even though we are in the critical section of the transaction commit,
3734 	 * we can still have concurrent tasks adding elements to this
3735 	 * transaction's list of dirty block groups. These tasks correspond to
3736 	 * endio free space workers started when writeback finishes for a
3737 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3738 	 * allocate new block groups as a result of COWing nodes of the root
3739 	 * tree when updating the free space inode. The writeback for the space
3740 	 * caches is triggered by an earlier call to
3741 	 * btrfs_start_dirty_block_groups() and iterations of the following
3742 	 * loop.
3743 	 * Also we want to do the cache_save_setup first and then run the
3744 	 * delayed refs to make sure we have the best chance at doing this all
3745 	 * in one shot.
3746 	 */
3747 	spin_lock(&cur_trans->dirty_bgs_lock);
3748 	while (!list_empty(&cur_trans->dirty_bgs)) {
3749 		cache = list_first_entry(&cur_trans->dirty_bgs,
3750 					 struct btrfs_block_group_cache,
3751 					 dirty_list);
3752 
3753 		/*
3754 		 * this can happen if cache_save_setup re-dirties a block
3755 		 * group that is already under IO.  Just wait for it to
3756 		 * finish and then do it all again
3757 		 */
3758 		if (!list_empty(&cache->io_list)) {
3759 			spin_unlock(&cur_trans->dirty_bgs_lock);
3760 			list_del_init(&cache->io_list);
3761 			btrfs_wait_cache_io(root, trans, cache,
3762 					    &cache->io_ctl, path,
3763 					    cache->key.objectid);
3764 			btrfs_put_block_group(cache);
3765 			spin_lock(&cur_trans->dirty_bgs_lock);
3766 		}
3767 
3768 		/*
3769 		 * don't remove from the dirty list until after we've waited
3770 		 * on any pending IO
3771 		 */
3772 		list_del_init(&cache->dirty_list);
3773 		spin_unlock(&cur_trans->dirty_bgs_lock);
3774 		should_put = 1;
3775 
3776 		cache_save_setup(cache, trans, path);
3777 
3778 		if (!ret)
3779 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3780 
3781 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3782 			cache->io_ctl.inode = NULL;
3783 			ret = btrfs_write_out_cache(root, trans, cache, path);
3784 			if (ret == 0 && cache->io_ctl.inode) {
3785 				num_started++;
3786 				should_put = 0;
3787 				list_add_tail(&cache->io_list, io);
3788 			} else {
3789 				/*
3790 				 * if we failed to write the cache, the
3791 				 * generation will be bad and life goes on
3792 				 */
3793 				ret = 0;
3794 			}
3795 		}
3796 		if (!ret) {
3797 			ret = write_one_cache_group(trans, root, path, cache);
3798 			/*
3799 			 * One of the free space endio workers might have
3800 			 * created a new block group while updating a free space
3801 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3802 			 * and hasn't released its transaction handle yet, in
3803 			 * which case the new block group is still attached to
3804 			 * its transaction handle and its creation has not
3805 			 * finished yet (no block group item in the extent tree
3806 			 * yet, etc). If this is the case, wait for all free
3807 			 * space endio workers to finish and retry. This is a
3808 			 * a very rare case so no need for a more efficient and
3809 			 * complex approach.
3810 			 */
3811 			if (ret == -ENOENT) {
3812 				wait_event(cur_trans->writer_wait,
3813 				   atomic_read(&cur_trans->num_writers) == 1);
3814 				ret = write_one_cache_group(trans, root, path,
3815 							    cache);
3816 			}
3817 			if (ret)
3818 				btrfs_abort_transaction(trans, root, ret);
3819 		}
3820 
3821 		/* if its not on the io list, we need to put the block group */
3822 		if (should_put)
3823 			btrfs_put_block_group(cache);
3824 		spin_lock(&cur_trans->dirty_bgs_lock);
3825 	}
3826 	spin_unlock(&cur_trans->dirty_bgs_lock);
3827 
3828 	while (!list_empty(io)) {
3829 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3830 					 io_list);
3831 		list_del_init(&cache->io_list);
3832 		btrfs_wait_cache_io(root, trans, cache,
3833 				    &cache->io_ctl, path, cache->key.objectid);
3834 		btrfs_put_block_group(cache);
3835 	}
3836 
3837 	btrfs_free_path(path);
3838 	return ret;
3839 }
3840 
3841 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3842 {
3843 	struct btrfs_block_group_cache *block_group;
3844 	int readonly = 0;
3845 
3846 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3847 	if (!block_group || block_group->ro)
3848 		readonly = 1;
3849 	if (block_group)
3850 		btrfs_put_block_group(block_group);
3851 	return readonly;
3852 }
3853 
3854 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3855 {
3856 	struct btrfs_block_group_cache *bg;
3857 	bool ret = true;
3858 
3859 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3860 	if (!bg)
3861 		return false;
3862 
3863 	spin_lock(&bg->lock);
3864 	if (bg->ro)
3865 		ret = false;
3866 	else
3867 		atomic_inc(&bg->nocow_writers);
3868 	spin_unlock(&bg->lock);
3869 
3870 	/* no put on block group, done by btrfs_dec_nocow_writers */
3871 	if (!ret)
3872 		btrfs_put_block_group(bg);
3873 
3874 	return ret;
3875 
3876 }
3877 
3878 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3879 {
3880 	struct btrfs_block_group_cache *bg;
3881 
3882 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3883 	ASSERT(bg);
3884 	if (atomic_dec_and_test(&bg->nocow_writers))
3885 		wake_up_atomic_t(&bg->nocow_writers);
3886 	/*
3887 	 * Once for our lookup and once for the lookup done by a previous call
3888 	 * to btrfs_inc_nocow_writers()
3889 	 */
3890 	btrfs_put_block_group(bg);
3891 	btrfs_put_block_group(bg);
3892 }
3893 
3894 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3895 {
3896 	schedule();
3897 	return 0;
3898 }
3899 
3900 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3901 {
3902 	wait_on_atomic_t(&bg->nocow_writers,
3903 			 btrfs_wait_nocow_writers_atomic_t,
3904 			 TASK_UNINTERRUPTIBLE);
3905 }
3906 
3907 static const char *alloc_name(u64 flags)
3908 {
3909 	switch (flags) {
3910 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3911 		return "mixed";
3912 	case BTRFS_BLOCK_GROUP_METADATA:
3913 		return "metadata";
3914 	case BTRFS_BLOCK_GROUP_DATA:
3915 		return "data";
3916 	case BTRFS_BLOCK_GROUP_SYSTEM:
3917 		return "system";
3918 	default:
3919 		WARN_ON(1);
3920 		return "invalid-combination";
3921 	};
3922 }
3923 
3924 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3925 			     u64 total_bytes, u64 bytes_used,
3926 			     u64 bytes_readonly,
3927 			     struct btrfs_space_info **space_info)
3928 {
3929 	struct btrfs_space_info *found;
3930 	int i;
3931 	int factor;
3932 	int ret;
3933 
3934 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3935 		     BTRFS_BLOCK_GROUP_RAID10))
3936 		factor = 2;
3937 	else
3938 		factor = 1;
3939 
3940 	found = __find_space_info(info, flags);
3941 	if (found) {
3942 		spin_lock(&found->lock);
3943 		found->total_bytes += total_bytes;
3944 		found->disk_total += total_bytes * factor;
3945 		found->bytes_used += bytes_used;
3946 		found->disk_used += bytes_used * factor;
3947 		found->bytes_readonly += bytes_readonly;
3948 		if (total_bytes > 0)
3949 			found->full = 0;
3950 		space_info_add_new_bytes(info, found, total_bytes -
3951 					 bytes_used - bytes_readonly);
3952 		spin_unlock(&found->lock);
3953 		*space_info = found;
3954 		return 0;
3955 	}
3956 	found = kzalloc(sizeof(*found), GFP_NOFS);
3957 	if (!found)
3958 		return -ENOMEM;
3959 
3960 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3961 	if (ret) {
3962 		kfree(found);
3963 		return ret;
3964 	}
3965 
3966 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3967 		INIT_LIST_HEAD(&found->block_groups[i]);
3968 	init_rwsem(&found->groups_sem);
3969 	spin_lock_init(&found->lock);
3970 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3971 	found->total_bytes = total_bytes;
3972 	found->disk_total = total_bytes * factor;
3973 	found->bytes_used = bytes_used;
3974 	found->disk_used = bytes_used * factor;
3975 	found->bytes_pinned = 0;
3976 	found->bytes_reserved = 0;
3977 	found->bytes_readonly = bytes_readonly;
3978 	found->bytes_may_use = 0;
3979 	found->full = 0;
3980 	found->max_extent_size = 0;
3981 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3982 	found->chunk_alloc = 0;
3983 	found->flush = 0;
3984 	init_waitqueue_head(&found->wait);
3985 	INIT_LIST_HEAD(&found->ro_bgs);
3986 	INIT_LIST_HEAD(&found->tickets);
3987 	INIT_LIST_HEAD(&found->priority_tickets);
3988 
3989 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3990 				    info->space_info_kobj, "%s",
3991 				    alloc_name(found->flags));
3992 	if (ret) {
3993 		kfree(found);
3994 		return ret;
3995 	}
3996 
3997 	*space_info = found;
3998 	list_add_rcu(&found->list, &info->space_info);
3999 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4000 		info->data_sinfo = found;
4001 
4002 	return ret;
4003 }
4004 
4005 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4006 {
4007 	u64 extra_flags = chunk_to_extended(flags) &
4008 				BTRFS_EXTENDED_PROFILE_MASK;
4009 
4010 	write_seqlock(&fs_info->profiles_lock);
4011 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4012 		fs_info->avail_data_alloc_bits |= extra_flags;
4013 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4014 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4015 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4016 		fs_info->avail_system_alloc_bits |= extra_flags;
4017 	write_sequnlock(&fs_info->profiles_lock);
4018 }
4019 
4020 /*
4021  * returns target flags in extended format or 0 if restripe for this
4022  * chunk_type is not in progress
4023  *
4024  * should be called with either volume_mutex or balance_lock held
4025  */
4026 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4027 {
4028 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4029 	u64 target = 0;
4030 
4031 	if (!bctl)
4032 		return 0;
4033 
4034 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4035 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4036 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4037 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4038 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4039 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4040 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4041 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4042 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4043 	}
4044 
4045 	return target;
4046 }
4047 
4048 /*
4049  * @flags: available profiles in extended format (see ctree.h)
4050  *
4051  * Returns reduced profile in chunk format.  If profile changing is in
4052  * progress (either running or paused) picks the target profile (if it's
4053  * already available), otherwise falls back to plain reducing.
4054  */
4055 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4056 {
4057 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4058 	u64 target;
4059 	u64 raid_type;
4060 	u64 allowed = 0;
4061 
4062 	/*
4063 	 * see if restripe for this chunk_type is in progress, if so
4064 	 * try to reduce to the target profile
4065 	 */
4066 	spin_lock(&root->fs_info->balance_lock);
4067 	target = get_restripe_target(root->fs_info, flags);
4068 	if (target) {
4069 		/* pick target profile only if it's already available */
4070 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4071 			spin_unlock(&root->fs_info->balance_lock);
4072 			return extended_to_chunk(target);
4073 		}
4074 	}
4075 	spin_unlock(&root->fs_info->balance_lock);
4076 
4077 	/* First, mask out the RAID levels which aren't possible */
4078 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4079 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4080 			allowed |= btrfs_raid_group[raid_type];
4081 	}
4082 	allowed &= flags;
4083 
4084 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4085 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4086 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4087 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4088 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4089 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4090 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4091 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4092 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4093 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4094 
4095 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4096 
4097 	return extended_to_chunk(flags | allowed);
4098 }
4099 
4100 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4101 {
4102 	unsigned seq;
4103 	u64 flags;
4104 
4105 	do {
4106 		flags = orig_flags;
4107 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4108 
4109 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4110 			flags |= root->fs_info->avail_data_alloc_bits;
4111 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4112 			flags |= root->fs_info->avail_system_alloc_bits;
4113 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4114 			flags |= root->fs_info->avail_metadata_alloc_bits;
4115 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4116 
4117 	return btrfs_reduce_alloc_profile(root, flags);
4118 }
4119 
4120 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4121 {
4122 	u64 flags;
4123 	u64 ret;
4124 
4125 	if (data)
4126 		flags = BTRFS_BLOCK_GROUP_DATA;
4127 	else if (root == root->fs_info->chunk_root)
4128 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4129 	else
4130 		flags = BTRFS_BLOCK_GROUP_METADATA;
4131 
4132 	ret = get_alloc_profile(root, flags);
4133 	return ret;
4134 }
4135 
4136 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4137 {
4138 	struct btrfs_space_info *data_sinfo;
4139 	struct btrfs_root *root = BTRFS_I(inode)->root;
4140 	struct btrfs_fs_info *fs_info = root->fs_info;
4141 	u64 used;
4142 	int ret = 0;
4143 	int need_commit = 2;
4144 	int have_pinned_space;
4145 
4146 	/* make sure bytes are sectorsize aligned */
4147 	bytes = ALIGN(bytes, root->sectorsize);
4148 
4149 	if (btrfs_is_free_space_inode(inode)) {
4150 		need_commit = 0;
4151 		ASSERT(current->journal_info);
4152 	}
4153 
4154 	data_sinfo = fs_info->data_sinfo;
4155 	if (!data_sinfo)
4156 		goto alloc;
4157 
4158 again:
4159 	/* make sure we have enough space to handle the data first */
4160 	spin_lock(&data_sinfo->lock);
4161 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4162 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4163 		data_sinfo->bytes_may_use;
4164 
4165 	if (used + bytes > data_sinfo->total_bytes) {
4166 		struct btrfs_trans_handle *trans;
4167 
4168 		/*
4169 		 * if we don't have enough free bytes in this space then we need
4170 		 * to alloc a new chunk.
4171 		 */
4172 		if (!data_sinfo->full) {
4173 			u64 alloc_target;
4174 
4175 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4176 			spin_unlock(&data_sinfo->lock);
4177 alloc:
4178 			alloc_target = btrfs_get_alloc_profile(root, 1);
4179 			/*
4180 			 * It is ugly that we don't call nolock join
4181 			 * transaction for the free space inode case here.
4182 			 * But it is safe because we only do the data space
4183 			 * reservation for the free space cache in the
4184 			 * transaction context, the common join transaction
4185 			 * just increase the counter of the current transaction
4186 			 * handler, doesn't try to acquire the trans_lock of
4187 			 * the fs.
4188 			 */
4189 			trans = btrfs_join_transaction(root);
4190 			if (IS_ERR(trans))
4191 				return PTR_ERR(trans);
4192 
4193 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4194 					     alloc_target,
4195 					     CHUNK_ALLOC_NO_FORCE);
4196 			btrfs_end_transaction(trans, root);
4197 			if (ret < 0) {
4198 				if (ret != -ENOSPC)
4199 					return ret;
4200 				else {
4201 					have_pinned_space = 1;
4202 					goto commit_trans;
4203 				}
4204 			}
4205 
4206 			if (!data_sinfo)
4207 				data_sinfo = fs_info->data_sinfo;
4208 
4209 			goto again;
4210 		}
4211 
4212 		/*
4213 		 * If we don't have enough pinned space to deal with this
4214 		 * allocation, and no removed chunk in current transaction,
4215 		 * don't bother committing the transaction.
4216 		 */
4217 		have_pinned_space = percpu_counter_compare(
4218 			&data_sinfo->total_bytes_pinned,
4219 			used + bytes - data_sinfo->total_bytes);
4220 		spin_unlock(&data_sinfo->lock);
4221 
4222 		/* commit the current transaction and try again */
4223 commit_trans:
4224 		if (need_commit &&
4225 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4226 			need_commit--;
4227 
4228 			if (need_commit > 0) {
4229 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4230 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4231 			}
4232 
4233 			trans = btrfs_join_transaction(root);
4234 			if (IS_ERR(trans))
4235 				return PTR_ERR(trans);
4236 			if (have_pinned_space >= 0 ||
4237 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4238 				     &trans->transaction->flags) ||
4239 			    need_commit > 0) {
4240 				ret = btrfs_commit_transaction(trans, root);
4241 				if (ret)
4242 					return ret;
4243 				/*
4244 				 * The cleaner kthread might still be doing iput
4245 				 * operations. Wait for it to finish so that
4246 				 * more space is released.
4247 				 */
4248 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4249 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4250 				goto again;
4251 			} else {
4252 				btrfs_end_transaction(trans, root);
4253 			}
4254 		}
4255 
4256 		trace_btrfs_space_reservation(root->fs_info,
4257 					      "space_info:enospc",
4258 					      data_sinfo->flags, bytes, 1);
4259 		return -ENOSPC;
4260 	}
4261 	data_sinfo->bytes_may_use += bytes;
4262 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4263 				      data_sinfo->flags, bytes, 1);
4264 	spin_unlock(&data_sinfo->lock);
4265 
4266 	return ret;
4267 }
4268 
4269 /*
4270  * New check_data_free_space() with ability for precious data reservation
4271  * Will replace old btrfs_check_data_free_space(), but for patch split,
4272  * add a new function first and then replace it.
4273  */
4274 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4275 {
4276 	struct btrfs_root *root = BTRFS_I(inode)->root;
4277 	int ret;
4278 
4279 	/* align the range */
4280 	len = round_up(start + len, root->sectorsize) -
4281 	      round_down(start, root->sectorsize);
4282 	start = round_down(start, root->sectorsize);
4283 
4284 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4285 	if (ret < 0)
4286 		return ret;
4287 
4288 	/*
4289 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4290 	 *
4291 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4292 	 * range, but don't impact performance on quota disable case.
4293 	 */
4294 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4295 	return ret;
4296 }
4297 
4298 /*
4299  * Called if we need to clear a data reservation for this inode
4300  * Normally in a error case.
4301  *
4302  * This one will *NOT* use accurate qgroup reserved space API, just for case
4303  * which we can't sleep and is sure it won't affect qgroup reserved space.
4304  * Like clear_bit_hook().
4305  */
4306 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4307 					    u64 len)
4308 {
4309 	struct btrfs_root *root = BTRFS_I(inode)->root;
4310 	struct btrfs_space_info *data_sinfo;
4311 
4312 	/* Make sure the range is aligned to sectorsize */
4313 	len = round_up(start + len, root->sectorsize) -
4314 	      round_down(start, root->sectorsize);
4315 	start = round_down(start, root->sectorsize);
4316 
4317 	data_sinfo = root->fs_info->data_sinfo;
4318 	spin_lock(&data_sinfo->lock);
4319 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4320 		data_sinfo->bytes_may_use = 0;
4321 	else
4322 		data_sinfo->bytes_may_use -= len;
4323 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4324 				      data_sinfo->flags, len, 0);
4325 	spin_unlock(&data_sinfo->lock);
4326 }
4327 
4328 /*
4329  * Called if we need to clear a data reservation for this inode
4330  * Normally in a error case.
4331  *
4332  * This one will handle the per-inode data rsv map for accurate reserved
4333  * space framework.
4334  */
4335 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4336 {
4337 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4338 	btrfs_qgroup_free_data(inode, start, len);
4339 }
4340 
4341 static void force_metadata_allocation(struct btrfs_fs_info *info)
4342 {
4343 	struct list_head *head = &info->space_info;
4344 	struct btrfs_space_info *found;
4345 
4346 	rcu_read_lock();
4347 	list_for_each_entry_rcu(found, head, list) {
4348 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4349 			found->force_alloc = CHUNK_ALLOC_FORCE;
4350 	}
4351 	rcu_read_unlock();
4352 }
4353 
4354 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4355 {
4356 	return (global->size << 1);
4357 }
4358 
4359 static int should_alloc_chunk(struct btrfs_root *root,
4360 			      struct btrfs_space_info *sinfo, int force)
4361 {
4362 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4363 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4364 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4365 	u64 thresh;
4366 
4367 	if (force == CHUNK_ALLOC_FORCE)
4368 		return 1;
4369 
4370 	/*
4371 	 * We need to take into account the global rsv because for all intents
4372 	 * and purposes it's used space.  Don't worry about locking the
4373 	 * global_rsv, it doesn't change except when the transaction commits.
4374 	 */
4375 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4376 		num_allocated += calc_global_rsv_need_space(global_rsv);
4377 
4378 	/*
4379 	 * in limited mode, we want to have some free space up to
4380 	 * about 1% of the FS size.
4381 	 */
4382 	if (force == CHUNK_ALLOC_LIMITED) {
4383 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4384 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4385 
4386 		if (num_bytes - num_allocated < thresh)
4387 			return 1;
4388 	}
4389 
4390 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4391 		return 0;
4392 	return 1;
4393 }
4394 
4395 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4396 {
4397 	u64 num_dev;
4398 
4399 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4400 		    BTRFS_BLOCK_GROUP_RAID0 |
4401 		    BTRFS_BLOCK_GROUP_RAID5 |
4402 		    BTRFS_BLOCK_GROUP_RAID6))
4403 		num_dev = root->fs_info->fs_devices->rw_devices;
4404 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4405 		num_dev = 2;
4406 	else
4407 		num_dev = 1;	/* DUP or single */
4408 
4409 	return num_dev;
4410 }
4411 
4412 /*
4413  * If @is_allocation is true, reserve space in the system space info necessary
4414  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4415  * removing a chunk.
4416  */
4417 void check_system_chunk(struct btrfs_trans_handle *trans,
4418 			struct btrfs_root *root,
4419 			u64 type)
4420 {
4421 	struct btrfs_space_info *info;
4422 	u64 left;
4423 	u64 thresh;
4424 	int ret = 0;
4425 	u64 num_devs;
4426 
4427 	/*
4428 	 * Needed because we can end up allocating a system chunk and for an
4429 	 * atomic and race free space reservation in the chunk block reserve.
4430 	 */
4431 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4432 
4433 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4434 	spin_lock(&info->lock);
4435 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4436 		info->bytes_reserved - info->bytes_readonly -
4437 		info->bytes_may_use;
4438 	spin_unlock(&info->lock);
4439 
4440 	num_devs = get_profile_num_devs(root, type);
4441 
4442 	/* num_devs device items to update and 1 chunk item to add or remove */
4443 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4444 		btrfs_calc_trans_metadata_size(root, 1);
4445 
4446 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4447 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4448 			left, thresh, type);
4449 		dump_space_info(info, 0, 0);
4450 	}
4451 
4452 	if (left < thresh) {
4453 		u64 flags;
4454 
4455 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4456 		/*
4457 		 * Ignore failure to create system chunk. We might end up not
4458 		 * needing it, as we might not need to COW all nodes/leafs from
4459 		 * the paths we visit in the chunk tree (they were already COWed
4460 		 * or created in the current transaction for example).
4461 		 */
4462 		ret = btrfs_alloc_chunk(trans, root, flags);
4463 	}
4464 
4465 	if (!ret) {
4466 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4467 					  &root->fs_info->chunk_block_rsv,
4468 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4469 		if (!ret)
4470 			trans->chunk_bytes_reserved += thresh;
4471 	}
4472 }
4473 
4474 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4475 			  struct btrfs_root *extent_root, u64 flags, int force)
4476 {
4477 	struct btrfs_space_info *space_info;
4478 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4479 	int wait_for_alloc = 0;
4480 	int ret = 0;
4481 
4482 	/* Don't re-enter if we're already allocating a chunk */
4483 	if (trans->allocating_chunk)
4484 		return -ENOSPC;
4485 
4486 	space_info = __find_space_info(extent_root->fs_info, flags);
4487 	if (!space_info) {
4488 		ret = update_space_info(extent_root->fs_info, flags,
4489 					0, 0, 0, &space_info);
4490 		BUG_ON(ret); /* -ENOMEM */
4491 	}
4492 	BUG_ON(!space_info); /* Logic error */
4493 
4494 again:
4495 	spin_lock(&space_info->lock);
4496 	if (force < space_info->force_alloc)
4497 		force = space_info->force_alloc;
4498 	if (space_info->full) {
4499 		if (should_alloc_chunk(extent_root, space_info, force))
4500 			ret = -ENOSPC;
4501 		else
4502 			ret = 0;
4503 		spin_unlock(&space_info->lock);
4504 		return ret;
4505 	}
4506 
4507 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4508 		spin_unlock(&space_info->lock);
4509 		return 0;
4510 	} else if (space_info->chunk_alloc) {
4511 		wait_for_alloc = 1;
4512 	} else {
4513 		space_info->chunk_alloc = 1;
4514 	}
4515 
4516 	spin_unlock(&space_info->lock);
4517 
4518 	mutex_lock(&fs_info->chunk_mutex);
4519 
4520 	/*
4521 	 * The chunk_mutex is held throughout the entirety of a chunk
4522 	 * allocation, so once we've acquired the chunk_mutex we know that the
4523 	 * other guy is done and we need to recheck and see if we should
4524 	 * allocate.
4525 	 */
4526 	if (wait_for_alloc) {
4527 		mutex_unlock(&fs_info->chunk_mutex);
4528 		wait_for_alloc = 0;
4529 		goto again;
4530 	}
4531 
4532 	trans->allocating_chunk = true;
4533 
4534 	/*
4535 	 * If we have mixed data/metadata chunks we want to make sure we keep
4536 	 * allocating mixed chunks instead of individual chunks.
4537 	 */
4538 	if (btrfs_mixed_space_info(space_info))
4539 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4540 
4541 	/*
4542 	 * if we're doing a data chunk, go ahead and make sure that
4543 	 * we keep a reasonable number of metadata chunks allocated in the
4544 	 * FS as well.
4545 	 */
4546 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4547 		fs_info->data_chunk_allocations++;
4548 		if (!(fs_info->data_chunk_allocations %
4549 		      fs_info->metadata_ratio))
4550 			force_metadata_allocation(fs_info);
4551 	}
4552 
4553 	/*
4554 	 * Check if we have enough space in SYSTEM chunk because we may need
4555 	 * to update devices.
4556 	 */
4557 	check_system_chunk(trans, extent_root, flags);
4558 
4559 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4560 	trans->allocating_chunk = false;
4561 
4562 	spin_lock(&space_info->lock);
4563 	if (ret < 0 && ret != -ENOSPC)
4564 		goto out;
4565 	if (ret)
4566 		space_info->full = 1;
4567 	else
4568 		ret = 1;
4569 
4570 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4571 out:
4572 	space_info->chunk_alloc = 0;
4573 	spin_unlock(&space_info->lock);
4574 	mutex_unlock(&fs_info->chunk_mutex);
4575 	/*
4576 	 * When we allocate a new chunk we reserve space in the chunk block
4577 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4578 	 * add new nodes/leafs to it if we end up needing to do it when
4579 	 * inserting the chunk item and updating device items as part of the
4580 	 * second phase of chunk allocation, performed by
4581 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4582 	 * large number of new block groups to create in our transaction
4583 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4584 	 * in extreme cases - like having a single transaction create many new
4585 	 * block groups when starting to write out the free space caches of all
4586 	 * the block groups that were made dirty during the lifetime of the
4587 	 * transaction.
4588 	 */
4589 	if (trans->can_flush_pending_bgs &&
4590 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4591 		btrfs_create_pending_block_groups(trans, trans->root);
4592 		btrfs_trans_release_chunk_metadata(trans);
4593 	}
4594 	return ret;
4595 }
4596 
4597 static int can_overcommit(struct btrfs_root *root,
4598 			  struct btrfs_space_info *space_info, u64 bytes,
4599 			  enum btrfs_reserve_flush_enum flush)
4600 {
4601 	struct btrfs_block_rsv *global_rsv;
4602 	u64 profile;
4603 	u64 space_size;
4604 	u64 avail;
4605 	u64 used;
4606 
4607 	/* Don't overcommit when in mixed mode. */
4608 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4609 		return 0;
4610 
4611 	BUG_ON(root->fs_info == NULL);
4612 	global_rsv = &root->fs_info->global_block_rsv;
4613 	profile = btrfs_get_alloc_profile(root, 0);
4614 	used = space_info->bytes_used + space_info->bytes_reserved +
4615 		space_info->bytes_pinned + space_info->bytes_readonly;
4616 
4617 	/*
4618 	 * We only want to allow over committing if we have lots of actual space
4619 	 * free, but if we don't have enough space to handle the global reserve
4620 	 * space then we could end up having a real enospc problem when trying
4621 	 * to allocate a chunk or some other such important allocation.
4622 	 */
4623 	spin_lock(&global_rsv->lock);
4624 	space_size = calc_global_rsv_need_space(global_rsv);
4625 	spin_unlock(&global_rsv->lock);
4626 	if (used + space_size >= space_info->total_bytes)
4627 		return 0;
4628 
4629 	used += space_info->bytes_may_use;
4630 
4631 	spin_lock(&root->fs_info->free_chunk_lock);
4632 	avail = root->fs_info->free_chunk_space;
4633 	spin_unlock(&root->fs_info->free_chunk_lock);
4634 
4635 	/*
4636 	 * If we have dup, raid1 or raid10 then only half of the free
4637 	 * space is actually useable.  For raid56, the space info used
4638 	 * doesn't include the parity drive, so we don't have to
4639 	 * change the math
4640 	 */
4641 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4642 		       BTRFS_BLOCK_GROUP_RAID1 |
4643 		       BTRFS_BLOCK_GROUP_RAID10))
4644 		avail >>= 1;
4645 
4646 	/*
4647 	 * If we aren't flushing all things, let us overcommit up to
4648 	 * 1/2th of the space. If we can flush, don't let us overcommit
4649 	 * too much, let it overcommit up to 1/8 of the space.
4650 	 */
4651 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4652 		avail >>= 3;
4653 	else
4654 		avail >>= 1;
4655 
4656 	if (used + bytes < space_info->total_bytes + avail)
4657 		return 1;
4658 	return 0;
4659 }
4660 
4661 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4662 					 unsigned long nr_pages, int nr_items)
4663 {
4664 	struct super_block *sb = root->fs_info->sb;
4665 
4666 	if (down_read_trylock(&sb->s_umount)) {
4667 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4668 		up_read(&sb->s_umount);
4669 	} else {
4670 		/*
4671 		 * We needn't worry the filesystem going from r/w to r/o though
4672 		 * we don't acquire ->s_umount mutex, because the filesystem
4673 		 * should guarantee the delalloc inodes list be empty after
4674 		 * the filesystem is readonly(all dirty pages are written to
4675 		 * the disk).
4676 		 */
4677 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4678 		if (!current->journal_info)
4679 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4680 						 0, (u64)-1);
4681 	}
4682 }
4683 
4684 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4685 {
4686 	u64 bytes;
4687 	int nr;
4688 
4689 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4690 	nr = (int)div64_u64(to_reclaim, bytes);
4691 	if (!nr)
4692 		nr = 1;
4693 	return nr;
4694 }
4695 
4696 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4697 
4698 /*
4699  * shrink metadata reservation for delalloc
4700  */
4701 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4702 			    bool wait_ordered)
4703 {
4704 	struct btrfs_block_rsv *block_rsv;
4705 	struct btrfs_space_info *space_info;
4706 	struct btrfs_trans_handle *trans;
4707 	u64 delalloc_bytes;
4708 	u64 max_reclaim;
4709 	long time_left;
4710 	unsigned long nr_pages;
4711 	int loops;
4712 	int items;
4713 	enum btrfs_reserve_flush_enum flush;
4714 
4715 	/* Calc the number of the pages we need flush for space reservation */
4716 	items = calc_reclaim_items_nr(root, to_reclaim);
4717 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4718 
4719 	trans = (struct btrfs_trans_handle *)current->journal_info;
4720 	block_rsv = &root->fs_info->delalloc_block_rsv;
4721 	space_info = block_rsv->space_info;
4722 
4723 	delalloc_bytes = percpu_counter_sum_positive(
4724 						&root->fs_info->delalloc_bytes);
4725 	if (delalloc_bytes == 0) {
4726 		if (trans)
4727 			return;
4728 		if (wait_ordered)
4729 			btrfs_wait_ordered_roots(root->fs_info, items,
4730 						 0, (u64)-1);
4731 		return;
4732 	}
4733 
4734 	loops = 0;
4735 	while (delalloc_bytes && loops < 3) {
4736 		max_reclaim = min(delalloc_bytes, to_reclaim);
4737 		nr_pages = max_reclaim >> PAGE_SHIFT;
4738 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4739 		/*
4740 		 * We need to wait for the async pages to actually start before
4741 		 * we do anything.
4742 		 */
4743 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4744 		if (!max_reclaim)
4745 			goto skip_async;
4746 
4747 		if (max_reclaim <= nr_pages)
4748 			max_reclaim = 0;
4749 		else
4750 			max_reclaim -= nr_pages;
4751 
4752 		wait_event(root->fs_info->async_submit_wait,
4753 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4754 			   (int)max_reclaim);
4755 skip_async:
4756 		if (!trans)
4757 			flush = BTRFS_RESERVE_FLUSH_ALL;
4758 		else
4759 			flush = BTRFS_RESERVE_NO_FLUSH;
4760 		spin_lock(&space_info->lock);
4761 		if (can_overcommit(root, space_info, orig, flush)) {
4762 			spin_unlock(&space_info->lock);
4763 			break;
4764 		}
4765 		if (list_empty(&space_info->tickets) &&
4766 		    list_empty(&space_info->priority_tickets)) {
4767 			spin_unlock(&space_info->lock);
4768 			break;
4769 		}
4770 		spin_unlock(&space_info->lock);
4771 
4772 		loops++;
4773 		if (wait_ordered && !trans) {
4774 			btrfs_wait_ordered_roots(root->fs_info, items,
4775 						 0, (u64)-1);
4776 		} else {
4777 			time_left = schedule_timeout_killable(1);
4778 			if (time_left)
4779 				break;
4780 		}
4781 		delalloc_bytes = percpu_counter_sum_positive(
4782 						&root->fs_info->delalloc_bytes);
4783 	}
4784 }
4785 
4786 /**
4787  * maybe_commit_transaction - possibly commit the transaction if its ok to
4788  * @root - the root we're allocating for
4789  * @bytes - the number of bytes we want to reserve
4790  * @force - force the commit
4791  *
4792  * This will check to make sure that committing the transaction will actually
4793  * get us somewhere and then commit the transaction if it does.  Otherwise it
4794  * will return -ENOSPC.
4795  */
4796 static int may_commit_transaction(struct btrfs_root *root,
4797 				  struct btrfs_space_info *space_info,
4798 				  u64 bytes, int force)
4799 {
4800 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4801 	struct btrfs_trans_handle *trans;
4802 
4803 	trans = (struct btrfs_trans_handle *)current->journal_info;
4804 	if (trans)
4805 		return -EAGAIN;
4806 
4807 	if (force)
4808 		goto commit;
4809 
4810 	/* See if there is enough pinned space to make this reservation */
4811 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4812 				   bytes) >= 0)
4813 		goto commit;
4814 
4815 	/*
4816 	 * See if there is some space in the delayed insertion reservation for
4817 	 * this reservation.
4818 	 */
4819 	if (space_info != delayed_rsv->space_info)
4820 		return -ENOSPC;
4821 
4822 	spin_lock(&delayed_rsv->lock);
4823 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4824 				   bytes - delayed_rsv->size) >= 0) {
4825 		spin_unlock(&delayed_rsv->lock);
4826 		return -ENOSPC;
4827 	}
4828 	spin_unlock(&delayed_rsv->lock);
4829 
4830 commit:
4831 	trans = btrfs_join_transaction(root);
4832 	if (IS_ERR(trans))
4833 		return -ENOSPC;
4834 
4835 	return btrfs_commit_transaction(trans, root);
4836 }
4837 
4838 struct reserve_ticket {
4839 	u64 bytes;
4840 	int error;
4841 	struct list_head list;
4842 	wait_queue_head_t wait;
4843 };
4844 
4845 static int flush_space(struct btrfs_root *root,
4846 		       struct btrfs_space_info *space_info, u64 num_bytes,
4847 		       u64 orig_bytes, int state)
4848 {
4849 	struct btrfs_trans_handle *trans;
4850 	int nr;
4851 	int ret = 0;
4852 
4853 	switch (state) {
4854 	case FLUSH_DELAYED_ITEMS_NR:
4855 	case FLUSH_DELAYED_ITEMS:
4856 		if (state == FLUSH_DELAYED_ITEMS_NR)
4857 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4858 		else
4859 			nr = -1;
4860 
4861 		trans = btrfs_join_transaction(root);
4862 		if (IS_ERR(trans)) {
4863 			ret = PTR_ERR(trans);
4864 			break;
4865 		}
4866 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4867 		btrfs_end_transaction(trans, root);
4868 		break;
4869 	case FLUSH_DELALLOC:
4870 	case FLUSH_DELALLOC_WAIT:
4871 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4872 				state == FLUSH_DELALLOC_WAIT);
4873 		break;
4874 	case ALLOC_CHUNK:
4875 		trans = btrfs_join_transaction(root);
4876 		if (IS_ERR(trans)) {
4877 			ret = PTR_ERR(trans);
4878 			break;
4879 		}
4880 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4881 				     btrfs_get_alloc_profile(root, 0),
4882 				     CHUNK_ALLOC_NO_FORCE);
4883 		btrfs_end_transaction(trans, root);
4884 		if (ret == -ENOSPC)
4885 			ret = 0;
4886 		break;
4887 	case COMMIT_TRANS:
4888 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4889 		break;
4890 	default:
4891 		ret = -ENOSPC;
4892 		break;
4893 	}
4894 
4895 	trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4896 				orig_bytes, state, ret);
4897 	return ret;
4898 }
4899 
4900 static inline u64
4901 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4902 				 struct btrfs_space_info *space_info)
4903 {
4904 	struct reserve_ticket *ticket;
4905 	u64 used;
4906 	u64 expected;
4907 	u64 to_reclaim = 0;
4908 
4909 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4910 	if (can_overcommit(root, space_info, to_reclaim,
4911 			   BTRFS_RESERVE_FLUSH_ALL))
4912 		return 0;
4913 
4914 	list_for_each_entry(ticket, &space_info->tickets, list)
4915 		to_reclaim += ticket->bytes;
4916 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4917 		to_reclaim += ticket->bytes;
4918 	if (to_reclaim)
4919 		return to_reclaim;
4920 
4921 	used = space_info->bytes_used + space_info->bytes_reserved +
4922 	       space_info->bytes_pinned + space_info->bytes_readonly +
4923 	       space_info->bytes_may_use;
4924 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4925 		expected = div_factor_fine(space_info->total_bytes, 95);
4926 	else
4927 		expected = div_factor_fine(space_info->total_bytes, 90);
4928 
4929 	if (used > expected)
4930 		to_reclaim = used - expected;
4931 	else
4932 		to_reclaim = 0;
4933 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4934 				     space_info->bytes_reserved);
4935 	return to_reclaim;
4936 }
4937 
4938 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4939 					struct btrfs_root *root, u64 used)
4940 {
4941 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4942 
4943 	/* If we're just plain full then async reclaim just slows us down. */
4944 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4945 		return 0;
4946 
4947 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4948 		return 0;
4949 
4950 	return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4951 		!test_bit(BTRFS_FS_STATE_REMOUNTING,
4952 			  &root->fs_info->fs_state));
4953 }
4954 
4955 static void wake_all_tickets(struct list_head *head)
4956 {
4957 	struct reserve_ticket *ticket;
4958 
4959 	while (!list_empty(head)) {
4960 		ticket = list_first_entry(head, struct reserve_ticket, list);
4961 		list_del_init(&ticket->list);
4962 		ticket->error = -ENOSPC;
4963 		wake_up(&ticket->wait);
4964 	}
4965 }
4966 
4967 /*
4968  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4969  * will loop and continuously try to flush as long as we are making progress.
4970  * We count progress as clearing off tickets each time we have to loop.
4971  */
4972 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4973 {
4974 	struct reserve_ticket *last_ticket = NULL;
4975 	struct btrfs_fs_info *fs_info;
4976 	struct btrfs_space_info *space_info;
4977 	u64 to_reclaim;
4978 	int flush_state;
4979 	int commit_cycles = 0;
4980 
4981 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4982 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4983 
4984 	spin_lock(&space_info->lock);
4985 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4986 						      space_info);
4987 	if (!to_reclaim) {
4988 		space_info->flush = 0;
4989 		spin_unlock(&space_info->lock);
4990 		return;
4991 	}
4992 	last_ticket = list_first_entry(&space_info->tickets,
4993 				       struct reserve_ticket, list);
4994 	spin_unlock(&space_info->lock);
4995 
4996 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4997 	do {
4998 		struct reserve_ticket *ticket;
4999 		int ret;
5000 
5001 		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5002 			    to_reclaim, flush_state);
5003 		spin_lock(&space_info->lock);
5004 		if (list_empty(&space_info->tickets)) {
5005 			space_info->flush = 0;
5006 			spin_unlock(&space_info->lock);
5007 			return;
5008 		}
5009 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5010 							      space_info);
5011 		ticket = list_first_entry(&space_info->tickets,
5012 					  struct reserve_ticket, list);
5013 		if (last_ticket == ticket) {
5014 			flush_state++;
5015 		} else {
5016 			last_ticket = ticket;
5017 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5018 			if (commit_cycles)
5019 				commit_cycles--;
5020 		}
5021 
5022 		if (flush_state > COMMIT_TRANS) {
5023 			commit_cycles++;
5024 			if (commit_cycles > 2) {
5025 				wake_all_tickets(&space_info->tickets);
5026 				space_info->flush = 0;
5027 			} else {
5028 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5029 			}
5030 		}
5031 		spin_unlock(&space_info->lock);
5032 	} while (flush_state <= COMMIT_TRANS);
5033 }
5034 
5035 void btrfs_init_async_reclaim_work(struct work_struct *work)
5036 {
5037 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5038 }
5039 
5040 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5041 					    struct btrfs_space_info *space_info,
5042 					    struct reserve_ticket *ticket)
5043 {
5044 	u64 to_reclaim;
5045 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5046 
5047 	spin_lock(&space_info->lock);
5048 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5049 						      space_info);
5050 	if (!to_reclaim) {
5051 		spin_unlock(&space_info->lock);
5052 		return;
5053 	}
5054 	spin_unlock(&space_info->lock);
5055 
5056 	do {
5057 		flush_space(fs_info->fs_root, space_info, to_reclaim,
5058 			    to_reclaim, flush_state);
5059 		flush_state++;
5060 		spin_lock(&space_info->lock);
5061 		if (ticket->bytes == 0) {
5062 			spin_unlock(&space_info->lock);
5063 			return;
5064 		}
5065 		spin_unlock(&space_info->lock);
5066 
5067 		/*
5068 		 * Priority flushers can't wait on delalloc without
5069 		 * deadlocking.
5070 		 */
5071 		if (flush_state == FLUSH_DELALLOC ||
5072 		    flush_state == FLUSH_DELALLOC_WAIT)
5073 			flush_state = ALLOC_CHUNK;
5074 	} while (flush_state < COMMIT_TRANS);
5075 }
5076 
5077 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5078 			       struct btrfs_space_info *space_info,
5079 			       struct reserve_ticket *ticket, u64 orig_bytes)
5080 
5081 {
5082 	DEFINE_WAIT(wait);
5083 	int ret = 0;
5084 
5085 	spin_lock(&space_info->lock);
5086 	while (ticket->bytes > 0 && ticket->error == 0) {
5087 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5088 		if (ret) {
5089 			ret = -EINTR;
5090 			break;
5091 		}
5092 		spin_unlock(&space_info->lock);
5093 
5094 		schedule();
5095 
5096 		finish_wait(&ticket->wait, &wait);
5097 		spin_lock(&space_info->lock);
5098 	}
5099 	if (!ret)
5100 		ret = ticket->error;
5101 	if (!list_empty(&ticket->list))
5102 		list_del_init(&ticket->list);
5103 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5104 		u64 num_bytes = orig_bytes - ticket->bytes;
5105 		space_info->bytes_may_use -= num_bytes;
5106 		trace_btrfs_space_reservation(fs_info, "space_info",
5107 					      space_info->flags, num_bytes, 0);
5108 	}
5109 	spin_unlock(&space_info->lock);
5110 
5111 	return ret;
5112 }
5113 
5114 /**
5115  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5116  * @root - the root we're allocating for
5117  * @space_info - the space info we want to allocate from
5118  * @orig_bytes - the number of bytes we want
5119  * @flush - whether or not we can flush to make our reservation
5120  *
5121  * This will reserve orig_bytes number of bytes from the space info associated
5122  * with the block_rsv.  If there is not enough space it will make an attempt to
5123  * flush out space to make room.  It will do this by flushing delalloc if
5124  * possible or committing the transaction.  If flush is 0 then no attempts to
5125  * regain reservations will be made and this will fail if there is not enough
5126  * space already.
5127  */
5128 static int __reserve_metadata_bytes(struct btrfs_root *root,
5129 				    struct btrfs_space_info *space_info,
5130 				    u64 orig_bytes,
5131 				    enum btrfs_reserve_flush_enum flush)
5132 {
5133 	struct reserve_ticket ticket;
5134 	u64 used;
5135 	int ret = 0;
5136 
5137 	ASSERT(orig_bytes);
5138 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5139 
5140 	spin_lock(&space_info->lock);
5141 	ret = -ENOSPC;
5142 	used = space_info->bytes_used + space_info->bytes_reserved +
5143 		space_info->bytes_pinned + space_info->bytes_readonly +
5144 		space_info->bytes_may_use;
5145 
5146 	/*
5147 	 * If we have enough space then hooray, make our reservation and carry
5148 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5149 	 * If not things get more complicated.
5150 	 */
5151 	if (used + orig_bytes <= space_info->total_bytes) {
5152 		space_info->bytes_may_use += orig_bytes;
5153 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5154 					      space_info->flags, orig_bytes,
5155 					      1);
5156 		ret = 0;
5157 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5158 		space_info->bytes_may_use += orig_bytes;
5159 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5160 					      space_info->flags, orig_bytes,
5161 					      1);
5162 		ret = 0;
5163 	}
5164 
5165 	/*
5166 	 * If we couldn't make a reservation then setup our reservation ticket
5167 	 * and kick the async worker if it's not already running.
5168 	 *
5169 	 * If we are a priority flusher then we just need to add our ticket to
5170 	 * the list and we will do our own flushing further down.
5171 	 */
5172 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5173 		ticket.bytes = orig_bytes;
5174 		ticket.error = 0;
5175 		init_waitqueue_head(&ticket.wait);
5176 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5177 			list_add_tail(&ticket.list, &space_info->tickets);
5178 			if (!space_info->flush) {
5179 				space_info->flush = 1;
5180 				trace_btrfs_trigger_flush(root->fs_info,
5181 							  space_info->flags,
5182 							  orig_bytes, flush,
5183 							  "enospc");
5184 				queue_work(system_unbound_wq,
5185 					   &root->fs_info->async_reclaim_work);
5186 			}
5187 		} else {
5188 			list_add_tail(&ticket.list,
5189 				      &space_info->priority_tickets);
5190 		}
5191 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5192 		used += orig_bytes;
5193 		/*
5194 		 * We will do the space reservation dance during log replay,
5195 		 * which means we won't have fs_info->fs_root set, so don't do
5196 		 * the async reclaim as we will panic.
5197 		 */
5198 		if (!root->fs_info->log_root_recovering &&
5199 		    need_do_async_reclaim(space_info, root, used) &&
5200 		    !work_busy(&root->fs_info->async_reclaim_work)) {
5201 			trace_btrfs_trigger_flush(root->fs_info,
5202 						  space_info->flags,
5203 						  orig_bytes, flush,
5204 						  "preempt");
5205 			queue_work(system_unbound_wq,
5206 				   &root->fs_info->async_reclaim_work);
5207 		}
5208 	}
5209 	spin_unlock(&space_info->lock);
5210 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5211 		return ret;
5212 
5213 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5214 		return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5215 					   orig_bytes);
5216 
5217 	ret = 0;
5218 	priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5219 	spin_lock(&space_info->lock);
5220 	if (ticket.bytes) {
5221 		if (ticket.bytes < orig_bytes) {
5222 			u64 num_bytes = orig_bytes - ticket.bytes;
5223 			space_info->bytes_may_use -= num_bytes;
5224 			trace_btrfs_space_reservation(root->fs_info,
5225 					"space_info", space_info->flags,
5226 					num_bytes, 0);
5227 
5228 		}
5229 		list_del_init(&ticket.list);
5230 		ret = -ENOSPC;
5231 	}
5232 	spin_unlock(&space_info->lock);
5233 	ASSERT(list_empty(&ticket.list));
5234 	return ret;
5235 }
5236 
5237 /**
5238  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5239  * @root - the root we're allocating for
5240  * @block_rsv - the block_rsv we're allocating for
5241  * @orig_bytes - the number of bytes we want
5242  * @flush - whether or not we can flush to make our reservation
5243  *
5244  * This will reserve orgi_bytes number of bytes from the space info associated
5245  * with the block_rsv.  If there is not enough space it will make an attempt to
5246  * flush out space to make room.  It will do this by flushing delalloc if
5247  * possible or committing the transaction.  If flush is 0 then no attempts to
5248  * regain reservations will be made and this will fail if there is not enough
5249  * space already.
5250  */
5251 static int reserve_metadata_bytes(struct btrfs_root *root,
5252 				  struct btrfs_block_rsv *block_rsv,
5253 				  u64 orig_bytes,
5254 				  enum btrfs_reserve_flush_enum flush)
5255 {
5256 	int ret;
5257 
5258 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5259 				       flush);
5260 	if (ret == -ENOSPC &&
5261 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5262 		struct btrfs_block_rsv *global_rsv =
5263 			&root->fs_info->global_block_rsv;
5264 
5265 		if (block_rsv != global_rsv &&
5266 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5267 			ret = 0;
5268 	}
5269 	if (ret == -ENOSPC)
5270 		trace_btrfs_space_reservation(root->fs_info,
5271 					      "space_info:enospc",
5272 					      block_rsv->space_info->flags,
5273 					      orig_bytes, 1);
5274 	return ret;
5275 }
5276 
5277 static struct btrfs_block_rsv *get_block_rsv(
5278 					const struct btrfs_trans_handle *trans,
5279 					const struct btrfs_root *root)
5280 {
5281 	struct btrfs_block_rsv *block_rsv = NULL;
5282 
5283 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5284 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5285 	     (root == root->fs_info->uuid_root))
5286 		block_rsv = trans->block_rsv;
5287 
5288 	if (!block_rsv)
5289 		block_rsv = root->block_rsv;
5290 
5291 	if (!block_rsv)
5292 		block_rsv = &root->fs_info->empty_block_rsv;
5293 
5294 	return block_rsv;
5295 }
5296 
5297 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5298 			       u64 num_bytes)
5299 {
5300 	int ret = -ENOSPC;
5301 	spin_lock(&block_rsv->lock);
5302 	if (block_rsv->reserved >= num_bytes) {
5303 		block_rsv->reserved -= num_bytes;
5304 		if (block_rsv->reserved < block_rsv->size)
5305 			block_rsv->full = 0;
5306 		ret = 0;
5307 	}
5308 	spin_unlock(&block_rsv->lock);
5309 	return ret;
5310 }
5311 
5312 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5313 				u64 num_bytes, int update_size)
5314 {
5315 	spin_lock(&block_rsv->lock);
5316 	block_rsv->reserved += num_bytes;
5317 	if (update_size)
5318 		block_rsv->size += num_bytes;
5319 	else if (block_rsv->reserved >= block_rsv->size)
5320 		block_rsv->full = 1;
5321 	spin_unlock(&block_rsv->lock);
5322 }
5323 
5324 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5325 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5326 			     int min_factor)
5327 {
5328 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5329 	u64 min_bytes;
5330 
5331 	if (global_rsv->space_info != dest->space_info)
5332 		return -ENOSPC;
5333 
5334 	spin_lock(&global_rsv->lock);
5335 	min_bytes = div_factor(global_rsv->size, min_factor);
5336 	if (global_rsv->reserved < min_bytes + num_bytes) {
5337 		spin_unlock(&global_rsv->lock);
5338 		return -ENOSPC;
5339 	}
5340 	global_rsv->reserved -= num_bytes;
5341 	if (global_rsv->reserved < global_rsv->size)
5342 		global_rsv->full = 0;
5343 	spin_unlock(&global_rsv->lock);
5344 
5345 	block_rsv_add_bytes(dest, num_bytes, 1);
5346 	return 0;
5347 }
5348 
5349 /*
5350  * This is for space we already have accounted in space_info->bytes_may_use, so
5351  * basically when we're returning space from block_rsv's.
5352  */
5353 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5354 				     struct btrfs_space_info *space_info,
5355 				     u64 num_bytes)
5356 {
5357 	struct reserve_ticket *ticket;
5358 	struct list_head *head;
5359 	u64 used;
5360 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5361 	bool check_overcommit = false;
5362 
5363 	spin_lock(&space_info->lock);
5364 	head = &space_info->priority_tickets;
5365 
5366 	/*
5367 	 * If we are over our limit then we need to check and see if we can
5368 	 * overcommit, and if we can't then we just need to free up our space
5369 	 * and not satisfy any requests.
5370 	 */
5371 	used = space_info->bytes_used + space_info->bytes_reserved +
5372 		space_info->bytes_pinned + space_info->bytes_readonly +
5373 		space_info->bytes_may_use;
5374 	if (used - num_bytes >= space_info->total_bytes)
5375 		check_overcommit = true;
5376 again:
5377 	while (!list_empty(head) && num_bytes) {
5378 		ticket = list_first_entry(head, struct reserve_ticket,
5379 					  list);
5380 		/*
5381 		 * We use 0 bytes because this space is already reserved, so
5382 		 * adding the ticket space would be a double count.
5383 		 */
5384 		if (check_overcommit &&
5385 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5386 				    flush))
5387 			break;
5388 		if (num_bytes >= ticket->bytes) {
5389 			list_del_init(&ticket->list);
5390 			num_bytes -= ticket->bytes;
5391 			ticket->bytes = 0;
5392 			wake_up(&ticket->wait);
5393 		} else {
5394 			ticket->bytes -= num_bytes;
5395 			num_bytes = 0;
5396 		}
5397 	}
5398 
5399 	if (num_bytes && head == &space_info->priority_tickets) {
5400 		head = &space_info->tickets;
5401 		flush = BTRFS_RESERVE_FLUSH_ALL;
5402 		goto again;
5403 	}
5404 	space_info->bytes_may_use -= num_bytes;
5405 	trace_btrfs_space_reservation(fs_info, "space_info",
5406 				      space_info->flags, num_bytes, 0);
5407 	spin_unlock(&space_info->lock);
5408 }
5409 
5410 /*
5411  * This is for newly allocated space that isn't accounted in
5412  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5413  * we use this helper.
5414  */
5415 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5416 				     struct btrfs_space_info *space_info,
5417 				     u64 num_bytes)
5418 {
5419 	struct reserve_ticket *ticket;
5420 	struct list_head *head = &space_info->priority_tickets;
5421 
5422 again:
5423 	while (!list_empty(head) && num_bytes) {
5424 		ticket = list_first_entry(head, struct reserve_ticket,
5425 					  list);
5426 		if (num_bytes >= ticket->bytes) {
5427 			trace_btrfs_space_reservation(fs_info, "space_info",
5428 						      space_info->flags,
5429 						      ticket->bytes, 1);
5430 			list_del_init(&ticket->list);
5431 			num_bytes -= ticket->bytes;
5432 			space_info->bytes_may_use += ticket->bytes;
5433 			ticket->bytes = 0;
5434 			wake_up(&ticket->wait);
5435 		} else {
5436 			trace_btrfs_space_reservation(fs_info, "space_info",
5437 						      space_info->flags,
5438 						      num_bytes, 1);
5439 			space_info->bytes_may_use += num_bytes;
5440 			ticket->bytes -= num_bytes;
5441 			num_bytes = 0;
5442 		}
5443 	}
5444 
5445 	if (num_bytes && head == &space_info->priority_tickets) {
5446 		head = &space_info->tickets;
5447 		goto again;
5448 	}
5449 }
5450 
5451 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5452 				    struct btrfs_block_rsv *block_rsv,
5453 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5454 {
5455 	struct btrfs_space_info *space_info = block_rsv->space_info;
5456 
5457 	spin_lock(&block_rsv->lock);
5458 	if (num_bytes == (u64)-1)
5459 		num_bytes = block_rsv->size;
5460 	block_rsv->size -= num_bytes;
5461 	if (block_rsv->reserved >= block_rsv->size) {
5462 		num_bytes = block_rsv->reserved - block_rsv->size;
5463 		block_rsv->reserved = block_rsv->size;
5464 		block_rsv->full = 1;
5465 	} else {
5466 		num_bytes = 0;
5467 	}
5468 	spin_unlock(&block_rsv->lock);
5469 
5470 	if (num_bytes > 0) {
5471 		if (dest) {
5472 			spin_lock(&dest->lock);
5473 			if (!dest->full) {
5474 				u64 bytes_to_add;
5475 
5476 				bytes_to_add = dest->size - dest->reserved;
5477 				bytes_to_add = min(num_bytes, bytes_to_add);
5478 				dest->reserved += bytes_to_add;
5479 				if (dest->reserved >= dest->size)
5480 					dest->full = 1;
5481 				num_bytes -= bytes_to_add;
5482 			}
5483 			spin_unlock(&dest->lock);
5484 		}
5485 		if (num_bytes)
5486 			space_info_add_old_bytes(fs_info, space_info,
5487 						 num_bytes);
5488 	}
5489 }
5490 
5491 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5492 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5493 			    int update_size)
5494 {
5495 	int ret;
5496 
5497 	ret = block_rsv_use_bytes(src, num_bytes);
5498 	if (ret)
5499 		return ret;
5500 
5501 	block_rsv_add_bytes(dst, num_bytes, update_size);
5502 	return 0;
5503 }
5504 
5505 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5506 {
5507 	memset(rsv, 0, sizeof(*rsv));
5508 	spin_lock_init(&rsv->lock);
5509 	rsv->type = type;
5510 }
5511 
5512 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5513 					      unsigned short type)
5514 {
5515 	struct btrfs_block_rsv *block_rsv;
5516 	struct btrfs_fs_info *fs_info = root->fs_info;
5517 
5518 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5519 	if (!block_rsv)
5520 		return NULL;
5521 
5522 	btrfs_init_block_rsv(block_rsv, type);
5523 	block_rsv->space_info = __find_space_info(fs_info,
5524 						  BTRFS_BLOCK_GROUP_METADATA);
5525 	return block_rsv;
5526 }
5527 
5528 void btrfs_free_block_rsv(struct btrfs_root *root,
5529 			  struct btrfs_block_rsv *rsv)
5530 {
5531 	if (!rsv)
5532 		return;
5533 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5534 	kfree(rsv);
5535 }
5536 
5537 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5538 {
5539 	kfree(rsv);
5540 }
5541 
5542 int btrfs_block_rsv_add(struct btrfs_root *root,
5543 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5544 			enum btrfs_reserve_flush_enum flush)
5545 {
5546 	int ret;
5547 
5548 	if (num_bytes == 0)
5549 		return 0;
5550 
5551 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5552 	if (!ret) {
5553 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5554 		return 0;
5555 	}
5556 
5557 	return ret;
5558 }
5559 
5560 int btrfs_block_rsv_check(struct btrfs_root *root,
5561 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5562 {
5563 	u64 num_bytes = 0;
5564 	int ret = -ENOSPC;
5565 
5566 	if (!block_rsv)
5567 		return 0;
5568 
5569 	spin_lock(&block_rsv->lock);
5570 	num_bytes = div_factor(block_rsv->size, min_factor);
5571 	if (block_rsv->reserved >= num_bytes)
5572 		ret = 0;
5573 	spin_unlock(&block_rsv->lock);
5574 
5575 	return ret;
5576 }
5577 
5578 int btrfs_block_rsv_refill(struct btrfs_root *root,
5579 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5580 			   enum btrfs_reserve_flush_enum flush)
5581 {
5582 	u64 num_bytes = 0;
5583 	int ret = -ENOSPC;
5584 
5585 	if (!block_rsv)
5586 		return 0;
5587 
5588 	spin_lock(&block_rsv->lock);
5589 	num_bytes = min_reserved;
5590 	if (block_rsv->reserved >= num_bytes)
5591 		ret = 0;
5592 	else
5593 		num_bytes -= block_rsv->reserved;
5594 	spin_unlock(&block_rsv->lock);
5595 
5596 	if (!ret)
5597 		return 0;
5598 
5599 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5600 	if (!ret) {
5601 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5602 		return 0;
5603 	}
5604 
5605 	return ret;
5606 }
5607 
5608 void btrfs_block_rsv_release(struct btrfs_root *root,
5609 			     struct btrfs_block_rsv *block_rsv,
5610 			     u64 num_bytes)
5611 {
5612 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5613 	if (global_rsv == block_rsv ||
5614 	    block_rsv->space_info != global_rsv->space_info)
5615 		global_rsv = NULL;
5616 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5617 				num_bytes);
5618 }
5619 
5620 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5621 {
5622 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5623 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5624 	u64 num_bytes;
5625 
5626 	/*
5627 	 * The global block rsv is based on the size of the extent tree, the
5628 	 * checksum tree and the root tree.  If the fs is empty we want to set
5629 	 * it to a minimal amount for safety.
5630 	 */
5631 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5632 		btrfs_root_used(&fs_info->csum_root->root_item) +
5633 		btrfs_root_used(&fs_info->tree_root->root_item);
5634 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5635 
5636 	spin_lock(&sinfo->lock);
5637 	spin_lock(&block_rsv->lock);
5638 
5639 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5640 
5641 	if (block_rsv->reserved < block_rsv->size) {
5642 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5643 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5644 			sinfo->bytes_may_use;
5645 		if (sinfo->total_bytes > num_bytes) {
5646 			num_bytes = sinfo->total_bytes - num_bytes;
5647 			num_bytes = min(num_bytes,
5648 					block_rsv->size - block_rsv->reserved);
5649 			block_rsv->reserved += num_bytes;
5650 			sinfo->bytes_may_use += num_bytes;
5651 			trace_btrfs_space_reservation(fs_info, "space_info",
5652 						      sinfo->flags, num_bytes,
5653 						      1);
5654 		}
5655 	} else if (block_rsv->reserved > block_rsv->size) {
5656 		num_bytes = block_rsv->reserved - block_rsv->size;
5657 		sinfo->bytes_may_use -= num_bytes;
5658 		trace_btrfs_space_reservation(fs_info, "space_info",
5659 				      sinfo->flags, num_bytes, 0);
5660 		block_rsv->reserved = block_rsv->size;
5661 	}
5662 
5663 	if (block_rsv->reserved == block_rsv->size)
5664 		block_rsv->full = 1;
5665 	else
5666 		block_rsv->full = 0;
5667 
5668 	spin_unlock(&block_rsv->lock);
5669 	spin_unlock(&sinfo->lock);
5670 }
5671 
5672 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5673 {
5674 	struct btrfs_space_info *space_info;
5675 
5676 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5677 	fs_info->chunk_block_rsv.space_info = space_info;
5678 
5679 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5680 	fs_info->global_block_rsv.space_info = space_info;
5681 	fs_info->delalloc_block_rsv.space_info = space_info;
5682 	fs_info->trans_block_rsv.space_info = space_info;
5683 	fs_info->empty_block_rsv.space_info = space_info;
5684 	fs_info->delayed_block_rsv.space_info = space_info;
5685 
5686 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5687 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5688 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5689 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5690 	if (fs_info->quota_root)
5691 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5692 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5693 
5694 	update_global_block_rsv(fs_info);
5695 }
5696 
5697 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5698 {
5699 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5700 				(u64)-1);
5701 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5702 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5703 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5704 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5705 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5706 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5707 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5708 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5709 }
5710 
5711 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5712 				  struct btrfs_root *root)
5713 {
5714 	if (!trans->block_rsv)
5715 		return;
5716 
5717 	if (!trans->bytes_reserved)
5718 		return;
5719 
5720 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5721 				      trans->transid, trans->bytes_reserved, 0);
5722 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5723 	trans->bytes_reserved = 0;
5724 }
5725 
5726 /*
5727  * To be called after all the new block groups attached to the transaction
5728  * handle have been created (btrfs_create_pending_block_groups()).
5729  */
5730 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5731 {
5732 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5733 
5734 	if (!trans->chunk_bytes_reserved)
5735 		return;
5736 
5737 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5738 
5739 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5740 				trans->chunk_bytes_reserved);
5741 	trans->chunk_bytes_reserved = 0;
5742 }
5743 
5744 /* Can only return 0 or -ENOSPC */
5745 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5746 				  struct inode *inode)
5747 {
5748 	struct btrfs_root *root = BTRFS_I(inode)->root;
5749 	/*
5750 	 * We always use trans->block_rsv here as we will have reserved space
5751 	 * for our orphan when starting the transaction, using get_block_rsv()
5752 	 * here will sometimes make us choose the wrong block rsv as we could be
5753 	 * doing a reloc inode for a non refcounted root.
5754 	 */
5755 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5756 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5757 
5758 	/*
5759 	 * We need to hold space in order to delete our orphan item once we've
5760 	 * added it, so this takes the reservation so we can release it later
5761 	 * when we are truly done with the orphan item.
5762 	 */
5763 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5764 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5765 				      btrfs_ino(inode), num_bytes, 1);
5766 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5767 }
5768 
5769 void btrfs_orphan_release_metadata(struct inode *inode)
5770 {
5771 	struct btrfs_root *root = BTRFS_I(inode)->root;
5772 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5773 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5774 				      btrfs_ino(inode), num_bytes, 0);
5775 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5776 }
5777 
5778 /*
5779  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5780  * root: the root of the parent directory
5781  * rsv: block reservation
5782  * items: the number of items that we need do reservation
5783  * qgroup_reserved: used to return the reserved size in qgroup
5784  *
5785  * This function is used to reserve the space for snapshot/subvolume
5786  * creation and deletion. Those operations are different with the
5787  * common file/directory operations, they change two fs/file trees
5788  * and root tree, the number of items that the qgroup reserves is
5789  * different with the free space reservation. So we can not use
5790  * the space reservation mechanism in start_transaction().
5791  */
5792 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5793 				     struct btrfs_block_rsv *rsv,
5794 				     int items,
5795 				     u64 *qgroup_reserved,
5796 				     bool use_global_rsv)
5797 {
5798 	u64 num_bytes;
5799 	int ret;
5800 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5801 
5802 	if (root->fs_info->quota_enabled) {
5803 		/* One for parent inode, two for dir entries */
5804 		num_bytes = 3 * root->nodesize;
5805 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5806 		if (ret)
5807 			return ret;
5808 	} else {
5809 		num_bytes = 0;
5810 	}
5811 
5812 	*qgroup_reserved = num_bytes;
5813 
5814 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5815 	rsv->space_info = __find_space_info(root->fs_info,
5816 					    BTRFS_BLOCK_GROUP_METADATA);
5817 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5818 				  BTRFS_RESERVE_FLUSH_ALL);
5819 
5820 	if (ret == -ENOSPC && use_global_rsv)
5821 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5822 
5823 	if (ret && *qgroup_reserved)
5824 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5825 
5826 	return ret;
5827 }
5828 
5829 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5830 				      struct btrfs_block_rsv *rsv,
5831 				      u64 qgroup_reserved)
5832 {
5833 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5834 }
5835 
5836 /**
5837  * drop_outstanding_extent - drop an outstanding extent
5838  * @inode: the inode we're dropping the extent for
5839  * @num_bytes: the number of bytes we're releasing.
5840  *
5841  * This is called when we are freeing up an outstanding extent, either called
5842  * after an error or after an extent is written.  This will return the number of
5843  * reserved extents that need to be freed.  This must be called with
5844  * BTRFS_I(inode)->lock held.
5845  */
5846 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5847 {
5848 	unsigned drop_inode_space = 0;
5849 	unsigned dropped_extents = 0;
5850 	unsigned num_extents = 0;
5851 
5852 	num_extents = (unsigned)div64_u64(num_bytes +
5853 					  BTRFS_MAX_EXTENT_SIZE - 1,
5854 					  BTRFS_MAX_EXTENT_SIZE);
5855 	ASSERT(num_extents);
5856 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5857 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5858 
5859 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5860 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5861 			       &BTRFS_I(inode)->runtime_flags))
5862 		drop_inode_space = 1;
5863 
5864 	/*
5865 	 * If we have more or the same amount of outstanding extents than we have
5866 	 * reserved then we need to leave the reserved extents count alone.
5867 	 */
5868 	if (BTRFS_I(inode)->outstanding_extents >=
5869 	    BTRFS_I(inode)->reserved_extents)
5870 		return drop_inode_space;
5871 
5872 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5873 		BTRFS_I(inode)->outstanding_extents;
5874 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5875 	return dropped_extents + drop_inode_space;
5876 }
5877 
5878 /**
5879  * calc_csum_metadata_size - return the amount of metadata space that must be
5880  *	reserved/freed for the given bytes.
5881  * @inode: the inode we're manipulating
5882  * @num_bytes: the number of bytes in question
5883  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5884  *
5885  * This adjusts the number of csum_bytes in the inode and then returns the
5886  * correct amount of metadata that must either be reserved or freed.  We
5887  * calculate how many checksums we can fit into one leaf and then divide the
5888  * number of bytes that will need to be checksumed by this value to figure out
5889  * how many checksums will be required.  If we are adding bytes then the number
5890  * may go up and we will return the number of additional bytes that must be
5891  * reserved.  If it is going down we will return the number of bytes that must
5892  * be freed.
5893  *
5894  * This must be called with BTRFS_I(inode)->lock held.
5895  */
5896 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5897 				   int reserve)
5898 {
5899 	struct btrfs_root *root = BTRFS_I(inode)->root;
5900 	u64 old_csums, num_csums;
5901 
5902 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5903 	    BTRFS_I(inode)->csum_bytes == 0)
5904 		return 0;
5905 
5906 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5907 	if (reserve)
5908 		BTRFS_I(inode)->csum_bytes += num_bytes;
5909 	else
5910 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5911 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5912 
5913 	/* No change, no need to reserve more */
5914 	if (old_csums == num_csums)
5915 		return 0;
5916 
5917 	if (reserve)
5918 		return btrfs_calc_trans_metadata_size(root,
5919 						      num_csums - old_csums);
5920 
5921 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5922 }
5923 
5924 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5925 {
5926 	struct btrfs_root *root = BTRFS_I(inode)->root;
5927 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5928 	u64 to_reserve = 0;
5929 	u64 csum_bytes;
5930 	unsigned nr_extents = 0;
5931 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5932 	int ret = 0;
5933 	bool delalloc_lock = true;
5934 	u64 to_free = 0;
5935 	unsigned dropped;
5936 	bool release_extra = false;
5937 
5938 	/* If we are a free space inode we need to not flush since we will be in
5939 	 * the middle of a transaction commit.  We also don't need the delalloc
5940 	 * mutex since we won't race with anybody.  We need this mostly to make
5941 	 * lockdep shut its filthy mouth.
5942 	 *
5943 	 * If we have a transaction open (can happen if we call truncate_block
5944 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5945 	 */
5946 	if (btrfs_is_free_space_inode(inode)) {
5947 		flush = BTRFS_RESERVE_NO_FLUSH;
5948 		delalloc_lock = false;
5949 	} else if (current->journal_info) {
5950 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5951 	}
5952 
5953 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5954 	    btrfs_transaction_in_commit(root->fs_info))
5955 		schedule_timeout(1);
5956 
5957 	if (delalloc_lock)
5958 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5959 
5960 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5961 
5962 	spin_lock(&BTRFS_I(inode)->lock);
5963 	nr_extents = (unsigned)div64_u64(num_bytes +
5964 					 BTRFS_MAX_EXTENT_SIZE - 1,
5965 					 BTRFS_MAX_EXTENT_SIZE);
5966 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5967 
5968 	nr_extents = 0;
5969 	if (BTRFS_I(inode)->outstanding_extents >
5970 	    BTRFS_I(inode)->reserved_extents)
5971 		nr_extents += BTRFS_I(inode)->outstanding_extents -
5972 			BTRFS_I(inode)->reserved_extents;
5973 
5974 	/* We always want to reserve a slot for updating the inode. */
5975 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5976 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5977 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5978 	spin_unlock(&BTRFS_I(inode)->lock);
5979 
5980 	if (root->fs_info->quota_enabled) {
5981 		ret = btrfs_qgroup_reserve_meta(root,
5982 				nr_extents * root->nodesize);
5983 		if (ret)
5984 			goto out_fail;
5985 	}
5986 
5987 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5988 	if (unlikely(ret)) {
5989 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5990 		goto out_fail;
5991 	}
5992 
5993 	spin_lock(&BTRFS_I(inode)->lock);
5994 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5995 			     &BTRFS_I(inode)->runtime_flags)) {
5996 		to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5997 		release_extra = true;
5998 	}
5999 	BTRFS_I(inode)->reserved_extents += nr_extents;
6000 	spin_unlock(&BTRFS_I(inode)->lock);
6001 
6002 	if (delalloc_lock)
6003 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6004 
6005 	if (to_reserve)
6006 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6007 					      btrfs_ino(inode), to_reserve, 1);
6008 	if (release_extra)
6009 		btrfs_block_rsv_release(root, block_rsv,
6010 					btrfs_calc_trans_metadata_size(root,
6011 								       1));
6012 	return 0;
6013 
6014 out_fail:
6015 	spin_lock(&BTRFS_I(inode)->lock);
6016 	dropped = drop_outstanding_extent(inode, num_bytes);
6017 	/*
6018 	 * If the inodes csum_bytes is the same as the original
6019 	 * csum_bytes then we know we haven't raced with any free()ers
6020 	 * so we can just reduce our inodes csum bytes and carry on.
6021 	 */
6022 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6023 		calc_csum_metadata_size(inode, num_bytes, 0);
6024 	} else {
6025 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6026 		u64 bytes;
6027 
6028 		/*
6029 		 * This is tricky, but first we need to figure out how much we
6030 		 * freed from any free-ers that occurred during this
6031 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6032 		 * before we dropped our lock, and then call the free for the
6033 		 * number of bytes that were freed while we were trying our
6034 		 * reservation.
6035 		 */
6036 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6037 		BTRFS_I(inode)->csum_bytes = csum_bytes;
6038 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6039 
6040 
6041 		/*
6042 		 * Now we need to see how much we would have freed had we not
6043 		 * been making this reservation and our ->csum_bytes were not
6044 		 * artificially inflated.
6045 		 */
6046 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6047 		bytes = csum_bytes - orig_csum_bytes;
6048 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6049 
6050 		/*
6051 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6052 		 * more than to_free then we would have freed more space had we
6053 		 * not had an artificially high ->csum_bytes, so we need to free
6054 		 * the remainder.  If bytes is the same or less then we don't
6055 		 * need to do anything, the other free-ers did the correct
6056 		 * thing.
6057 		 */
6058 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6059 		if (bytes > to_free)
6060 			to_free = bytes - to_free;
6061 		else
6062 			to_free = 0;
6063 	}
6064 	spin_unlock(&BTRFS_I(inode)->lock);
6065 	if (dropped)
6066 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6067 
6068 	if (to_free) {
6069 		btrfs_block_rsv_release(root, block_rsv, to_free);
6070 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6071 					      btrfs_ino(inode), to_free, 0);
6072 	}
6073 	if (delalloc_lock)
6074 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6075 	return ret;
6076 }
6077 
6078 /**
6079  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6080  * @inode: the inode to release the reservation for
6081  * @num_bytes: the number of bytes we're releasing
6082  *
6083  * This will release the metadata reservation for an inode.  This can be called
6084  * once we complete IO for a given set of bytes to release their metadata
6085  * reservations.
6086  */
6087 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6088 {
6089 	struct btrfs_root *root = BTRFS_I(inode)->root;
6090 	u64 to_free = 0;
6091 	unsigned dropped;
6092 
6093 	num_bytes = ALIGN(num_bytes, root->sectorsize);
6094 	spin_lock(&BTRFS_I(inode)->lock);
6095 	dropped = drop_outstanding_extent(inode, num_bytes);
6096 
6097 	if (num_bytes)
6098 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6099 	spin_unlock(&BTRFS_I(inode)->lock);
6100 	if (dropped > 0)
6101 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6102 
6103 	if (btrfs_test_is_dummy_root(root))
6104 		return;
6105 
6106 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
6107 				      btrfs_ino(inode), to_free, 0);
6108 
6109 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6110 				to_free);
6111 }
6112 
6113 /**
6114  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6115  * delalloc
6116  * @inode: inode we're writing to
6117  * @start: start range we are writing to
6118  * @len: how long the range we are writing to
6119  *
6120  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6121  *
6122  * This will do the following things
6123  *
6124  * o reserve space in data space info for num bytes
6125  *   and reserve precious corresponding qgroup space
6126  *   (Done in check_data_free_space)
6127  *
6128  * o reserve space for metadata space, based on the number of outstanding
6129  *   extents and how much csums will be needed
6130  *   also reserve metadata space in a per root over-reserve method.
6131  * o add to the inodes->delalloc_bytes
6132  * o add it to the fs_info's delalloc inodes list.
6133  *   (Above 3 all done in delalloc_reserve_metadata)
6134  *
6135  * Return 0 for success
6136  * Return <0 for error(-ENOSPC or -EQUOT)
6137  */
6138 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6139 {
6140 	int ret;
6141 
6142 	ret = btrfs_check_data_free_space(inode, start, len);
6143 	if (ret < 0)
6144 		return ret;
6145 	ret = btrfs_delalloc_reserve_metadata(inode, len);
6146 	if (ret < 0)
6147 		btrfs_free_reserved_data_space(inode, start, len);
6148 	return ret;
6149 }
6150 
6151 /**
6152  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6153  * @inode: inode we're releasing space for
6154  * @start: start position of the space already reserved
6155  * @len: the len of the space already reserved
6156  *
6157  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6158  * called in the case that we don't need the metadata AND data reservations
6159  * anymore.  So if there is an error or we insert an inline extent.
6160  *
6161  * This function will release the metadata space that was not used and will
6162  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6163  * list if there are no delalloc bytes left.
6164  * Also it will handle the qgroup reserved space.
6165  */
6166 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6167 {
6168 	btrfs_delalloc_release_metadata(inode, len);
6169 	btrfs_free_reserved_data_space(inode, start, len);
6170 }
6171 
6172 static int update_block_group(struct btrfs_trans_handle *trans,
6173 			      struct btrfs_root *root, u64 bytenr,
6174 			      u64 num_bytes, int alloc)
6175 {
6176 	struct btrfs_block_group_cache *cache = NULL;
6177 	struct btrfs_fs_info *info = root->fs_info;
6178 	u64 total = num_bytes;
6179 	u64 old_val;
6180 	u64 byte_in_group;
6181 	int factor;
6182 
6183 	/* block accounting for super block */
6184 	spin_lock(&info->delalloc_root_lock);
6185 	old_val = btrfs_super_bytes_used(info->super_copy);
6186 	if (alloc)
6187 		old_val += num_bytes;
6188 	else
6189 		old_val -= num_bytes;
6190 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6191 	spin_unlock(&info->delalloc_root_lock);
6192 
6193 	while (total) {
6194 		cache = btrfs_lookup_block_group(info, bytenr);
6195 		if (!cache)
6196 			return -ENOENT;
6197 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6198 				    BTRFS_BLOCK_GROUP_RAID1 |
6199 				    BTRFS_BLOCK_GROUP_RAID10))
6200 			factor = 2;
6201 		else
6202 			factor = 1;
6203 		/*
6204 		 * If this block group has free space cache written out, we
6205 		 * need to make sure to load it if we are removing space.  This
6206 		 * is because we need the unpinning stage to actually add the
6207 		 * space back to the block group, otherwise we will leak space.
6208 		 */
6209 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6210 			cache_block_group(cache, 1);
6211 
6212 		byte_in_group = bytenr - cache->key.objectid;
6213 		WARN_ON(byte_in_group > cache->key.offset);
6214 
6215 		spin_lock(&cache->space_info->lock);
6216 		spin_lock(&cache->lock);
6217 
6218 		if (btrfs_test_opt(root, SPACE_CACHE) &&
6219 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6220 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6221 
6222 		old_val = btrfs_block_group_used(&cache->item);
6223 		num_bytes = min(total, cache->key.offset - byte_in_group);
6224 		if (alloc) {
6225 			old_val += num_bytes;
6226 			btrfs_set_block_group_used(&cache->item, old_val);
6227 			cache->reserved -= num_bytes;
6228 			cache->space_info->bytes_reserved -= num_bytes;
6229 			cache->space_info->bytes_used += num_bytes;
6230 			cache->space_info->disk_used += num_bytes * factor;
6231 			spin_unlock(&cache->lock);
6232 			spin_unlock(&cache->space_info->lock);
6233 		} else {
6234 			old_val -= num_bytes;
6235 			btrfs_set_block_group_used(&cache->item, old_val);
6236 			cache->pinned += num_bytes;
6237 			cache->space_info->bytes_pinned += num_bytes;
6238 			cache->space_info->bytes_used -= num_bytes;
6239 			cache->space_info->disk_used -= num_bytes * factor;
6240 			spin_unlock(&cache->lock);
6241 			spin_unlock(&cache->space_info->lock);
6242 
6243 			trace_btrfs_space_reservation(root->fs_info, "pinned",
6244 						      cache->space_info->flags,
6245 						      num_bytes, 1);
6246 			set_extent_dirty(info->pinned_extents,
6247 					 bytenr, bytenr + num_bytes - 1,
6248 					 GFP_NOFS | __GFP_NOFAIL);
6249 		}
6250 
6251 		spin_lock(&trans->transaction->dirty_bgs_lock);
6252 		if (list_empty(&cache->dirty_list)) {
6253 			list_add_tail(&cache->dirty_list,
6254 				      &trans->transaction->dirty_bgs);
6255 				trans->transaction->num_dirty_bgs++;
6256 			btrfs_get_block_group(cache);
6257 		}
6258 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6259 
6260 		/*
6261 		 * No longer have used bytes in this block group, queue it for
6262 		 * deletion. We do this after adding the block group to the
6263 		 * dirty list to avoid races between cleaner kthread and space
6264 		 * cache writeout.
6265 		 */
6266 		if (!alloc && old_val == 0) {
6267 			spin_lock(&info->unused_bgs_lock);
6268 			if (list_empty(&cache->bg_list)) {
6269 				btrfs_get_block_group(cache);
6270 				list_add_tail(&cache->bg_list,
6271 					      &info->unused_bgs);
6272 			}
6273 			spin_unlock(&info->unused_bgs_lock);
6274 		}
6275 
6276 		btrfs_put_block_group(cache);
6277 		total -= num_bytes;
6278 		bytenr += num_bytes;
6279 	}
6280 	return 0;
6281 }
6282 
6283 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6284 {
6285 	struct btrfs_block_group_cache *cache;
6286 	u64 bytenr;
6287 
6288 	spin_lock(&root->fs_info->block_group_cache_lock);
6289 	bytenr = root->fs_info->first_logical_byte;
6290 	spin_unlock(&root->fs_info->block_group_cache_lock);
6291 
6292 	if (bytenr < (u64)-1)
6293 		return bytenr;
6294 
6295 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6296 	if (!cache)
6297 		return 0;
6298 
6299 	bytenr = cache->key.objectid;
6300 	btrfs_put_block_group(cache);
6301 
6302 	return bytenr;
6303 }
6304 
6305 static int pin_down_extent(struct btrfs_root *root,
6306 			   struct btrfs_block_group_cache *cache,
6307 			   u64 bytenr, u64 num_bytes, int reserved)
6308 {
6309 	spin_lock(&cache->space_info->lock);
6310 	spin_lock(&cache->lock);
6311 	cache->pinned += num_bytes;
6312 	cache->space_info->bytes_pinned += num_bytes;
6313 	if (reserved) {
6314 		cache->reserved -= num_bytes;
6315 		cache->space_info->bytes_reserved -= num_bytes;
6316 	}
6317 	spin_unlock(&cache->lock);
6318 	spin_unlock(&cache->space_info->lock);
6319 
6320 	trace_btrfs_space_reservation(root->fs_info, "pinned",
6321 				      cache->space_info->flags, num_bytes, 1);
6322 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6323 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6324 	return 0;
6325 }
6326 
6327 /*
6328  * this function must be called within transaction
6329  */
6330 int btrfs_pin_extent(struct btrfs_root *root,
6331 		     u64 bytenr, u64 num_bytes, int reserved)
6332 {
6333 	struct btrfs_block_group_cache *cache;
6334 
6335 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6336 	BUG_ON(!cache); /* Logic error */
6337 
6338 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6339 
6340 	btrfs_put_block_group(cache);
6341 	return 0;
6342 }
6343 
6344 /*
6345  * this function must be called within transaction
6346  */
6347 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6348 				    u64 bytenr, u64 num_bytes)
6349 {
6350 	struct btrfs_block_group_cache *cache;
6351 	int ret;
6352 
6353 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6354 	if (!cache)
6355 		return -EINVAL;
6356 
6357 	/*
6358 	 * pull in the free space cache (if any) so that our pin
6359 	 * removes the free space from the cache.  We have load_only set
6360 	 * to one because the slow code to read in the free extents does check
6361 	 * the pinned extents.
6362 	 */
6363 	cache_block_group(cache, 1);
6364 
6365 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6366 
6367 	/* remove us from the free space cache (if we're there at all) */
6368 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6369 	btrfs_put_block_group(cache);
6370 	return ret;
6371 }
6372 
6373 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6374 {
6375 	int ret;
6376 	struct btrfs_block_group_cache *block_group;
6377 	struct btrfs_caching_control *caching_ctl;
6378 
6379 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6380 	if (!block_group)
6381 		return -EINVAL;
6382 
6383 	cache_block_group(block_group, 0);
6384 	caching_ctl = get_caching_control(block_group);
6385 
6386 	if (!caching_ctl) {
6387 		/* Logic error */
6388 		BUG_ON(!block_group_cache_done(block_group));
6389 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6390 	} else {
6391 		mutex_lock(&caching_ctl->mutex);
6392 
6393 		if (start >= caching_ctl->progress) {
6394 			ret = add_excluded_extent(root, start, num_bytes);
6395 		} else if (start + num_bytes <= caching_ctl->progress) {
6396 			ret = btrfs_remove_free_space(block_group,
6397 						      start, num_bytes);
6398 		} else {
6399 			num_bytes = caching_ctl->progress - start;
6400 			ret = btrfs_remove_free_space(block_group,
6401 						      start, num_bytes);
6402 			if (ret)
6403 				goto out_lock;
6404 
6405 			num_bytes = (start + num_bytes) -
6406 				caching_ctl->progress;
6407 			start = caching_ctl->progress;
6408 			ret = add_excluded_extent(root, start, num_bytes);
6409 		}
6410 out_lock:
6411 		mutex_unlock(&caching_ctl->mutex);
6412 		put_caching_control(caching_ctl);
6413 	}
6414 	btrfs_put_block_group(block_group);
6415 	return ret;
6416 }
6417 
6418 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6419 				 struct extent_buffer *eb)
6420 {
6421 	struct btrfs_file_extent_item *item;
6422 	struct btrfs_key key;
6423 	int found_type;
6424 	int i;
6425 
6426 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6427 		return 0;
6428 
6429 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6430 		btrfs_item_key_to_cpu(eb, &key, i);
6431 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6432 			continue;
6433 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6434 		found_type = btrfs_file_extent_type(eb, item);
6435 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6436 			continue;
6437 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6438 			continue;
6439 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6440 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6441 		__exclude_logged_extent(log, key.objectid, key.offset);
6442 	}
6443 
6444 	return 0;
6445 }
6446 
6447 static void
6448 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6449 {
6450 	atomic_inc(&bg->reservations);
6451 }
6452 
6453 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6454 					const u64 start)
6455 {
6456 	struct btrfs_block_group_cache *bg;
6457 
6458 	bg = btrfs_lookup_block_group(fs_info, start);
6459 	ASSERT(bg);
6460 	if (atomic_dec_and_test(&bg->reservations))
6461 		wake_up_atomic_t(&bg->reservations);
6462 	btrfs_put_block_group(bg);
6463 }
6464 
6465 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6466 {
6467 	schedule();
6468 	return 0;
6469 }
6470 
6471 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6472 {
6473 	struct btrfs_space_info *space_info = bg->space_info;
6474 
6475 	ASSERT(bg->ro);
6476 
6477 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6478 		return;
6479 
6480 	/*
6481 	 * Our block group is read only but before we set it to read only,
6482 	 * some task might have had allocated an extent from it already, but it
6483 	 * has not yet created a respective ordered extent (and added it to a
6484 	 * root's list of ordered extents).
6485 	 * Therefore wait for any task currently allocating extents, since the
6486 	 * block group's reservations counter is incremented while a read lock
6487 	 * on the groups' semaphore is held and decremented after releasing
6488 	 * the read access on that semaphore and creating the ordered extent.
6489 	 */
6490 	down_write(&space_info->groups_sem);
6491 	up_write(&space_info->groups_sem);
6492 
6493 	wait_on_atomic_t(&bg->reservations,
6494 			 btrfs_wait_bg_reservations_atomic_t,
6495 			 TASK_UNINTERRUPTIBLE);
6496 }
6497 
6498 /**
6499  * btrfs_update_reserved_bytes - update the block_group and space info counters
6500  * @cache:	The cache we are manipulating
6501  * @num_bytes:	The number of bytes in question
6502  * @reserve:	One of the reservation enums
6503  * @delalloc:   The blocks are allocated for the delalloc write
6504  *
6505  * This is called by the allocator when it reserves space, or by somebody who is
6506  * freeing space that was never actually used on disk.  For example if you
6507  * reserve some space for a new leaf in transaction A and before transaction A
6508  * commits you free that leaf, you call this with reserve set to 0 in order to
6509  * clear the reservation.
6510  *
6511  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6512  * ENOSPC accounting.  For data we handle the reservation through clearing the
6513  * delalloc bits in the io_tree.  We have to do this since we could end up
6514  * allocating less disk space for the amount of data we have reserved in the
6515  * case of compression.
6516  *
6517  * If this is a reservation and the block group has become read only we cannot
6518  * make the reservation and return -EAGAIN, otherwise this function always
6519  * succeeds.
6520  */
6521 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6522 				       u64 num_bytes, int reserve, int delalloc)
6523 {
6524 	struct btrfs_space_info *space_info = cache->space_info;
6525 	int ret = 0;
6526 
6527 	spin_lock(&space_info->lock);
6528 	spin_lock(&cache->lock);
6529 	if (reserve != RESERVE_FREE) {
6530 		if (cache->ro) {
6531 			ret = -EAGAIN;
6532 		} else {
6533 			cache->reserved += num_bytes;
6534 			space_info->bytes_reserved += num_bytes;
6535 			if (reserve == RESERVE_ALLOC) {
6536 				trace_btrfs_space_reservation(cache->fs_info,
6537 						"space_info", space_info->flags,
6538 						num_bytes, 0);
6539 				space_info->bytes_may_use -= num_bytes;
6540 			}
6541 
6542 			if (delalloc)
6543 				cache->delalloc_bytes += num_bytes;
6544 		}
6545 	} else {
6546 		if (cache->ro)
6547 			space_info->bytes_readonly += num_bytes;
6548 		cache->reserved -= num_bytes;
6549 		space_info->bytes_reserved -= num_bytes;
6550 
6551 		if (delalloc)
6552 			cache->delalloc_bytes -= num_bytes;
6553 	}
6554 	spin_unlock(&cache->lock);
6555 	spin_unlock(&space_info->lock);
6556 	return ret;
6557 }
6558 
6559 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6560 				struct btrfs_root *root)
6561 {
6562 	struct btrfs_fs_info *fs_info = root->fs_info;
6563 	struct btrfs_caching_control *next;
6564 	struct btrfs_caching_control *caching_ctl;
6565 	struct btrfs_block_group_cache *cache;
6566 
6567 	down_write(&fs_info->commit_root_sem);
6568 
6569 	list_for_each_entry_safe(caching_ctl, next,
6570 				 &fs_info->caching_block_groups, list) {
6571 		cache = caching_ctl->block_group;
6572 		if (block_group_cache_done(cache)) {
6573 			cache->last_byte_to_unpin = (u64)-1;
6574 			list_del_init(&caching_ctl->list);
6575 			put_caching_control(caching_ctl);
6576 		} else {
6577 			cache->last_byte_to_unpin = caching_ctl->progress;
6578 		}
6579 	}
6580 
6581 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6582 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6583 	else
6584 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6585 
6586 	up_write(&fs_info->commit_root_sem);
6587 
6588 	update_global_block_rsv(fs_info);
6589 }
6590 
6591 /*
6592  * Returns the free cluster for the given space info and sets empty_cluster to
6593  * what it should be based on the mount options.
6594  */
6595 static struct btrfs_free_cluster *
6596 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6597 		   u64 *empty_cluster)
6598 {
6599 	struct btrfs_free_cluster *ret = NULL;
6600 	bool ssd = btrfs_test_opt(root, SSD);
6601 
6602 	*empty_cluster = 0;
6603 	if (btrfs_mixed_space_info(space_info))
6604 		return ret;
6605 
6606 	if (ssd)
6607 		*empty_cluster = SZ_2M;
6608 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6609 		ret = &root->fs_info->meta_alloc_cluster;
6610 		if (!ssd)
6611 			*empty_cluster = SZ_64K;
6612 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6613 		ret = &root->fs_info->data_alloc_cluster;
6614 	}
6615 
6616 	return ret;
6617 }
6618 
6619 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6620 			      const bool return_free_space)
6621 {
6622 	struct btrfs_fs_info *fs_info = root->fs_info;
6623 	struct btrfs_block_group_cache *cache = NULL;
6624 	struct btrfs_space_info *space_info;
6625 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6626 	struct btrfs_free_cluster *cluster = NULL;
6627 	u64 len;
6628 	u64 total_unpinned = 0;
6629 	u64 empty_cluster = 0;
6630 	bool readonly;
6631 
6632 	while (start <= end) {
6633 		readonly = false;
6634 		if (!cache ||
6635 		    start >= cache->key.objectid + cache->key.offset) {
6636 			if (cache)
6637 				btrfs_put_block_group(cache);
6638 			total_unpinned = 0;
6639 			cache = btrfs_lookup_block_group(fs_info, start);
6640 			BUG_ON(!cache); /* Logic error */
6641 
6642 			cluster = fetch_cluster_info(root,
6643 						     cache->space_info,
6644 						     &empty_cluster);
6645 			empty_cluster <<= 1;
6646 		}
6647 
6648 		len = cache->key.objectid + cache->key.offset - start;
6649 		len = min(len, end + 1 - start);
6650 
6651 		if (start < cache->last_byte_to_unpin) {
6652 			len = min(len, cache->last_byte_to_unpin - start);
6653 			if (return_free_space)
6654 				btrfs_add_free_space(cache, start, len);
6655 		}
6656 
6657 		start += len;
6658 		total_unpinned += len;
6659 		space_info = cache->space_info;
6660 
6661 		/*
6662 		 * If this space cluster has been marked as fragmented and we've
6663 		 * unpinned enough in this block group to potentially allow a
6664 		 * cluster to be created inside of it go ahead and clear the
6665 		 * fragmented check.
6666 		 */
6667 		if (cluster && cluster->fragmented &&
6668 		    total_unpinned > empty_cluster) {
6669 			spin_lock(&cluster->lock);
6670 			cluster->fragmented = 0;
6671 			spin_unlock(&cluster->lock);
6672 		}
6673 
6674 		spin_lock(&space_info->lock);
6675 		spin_lock(&cache->lock);
6676 		cache->pinned -= len;
6677 		space_info->bytes_pinned -= len;
6678 
6679 		trace_btrfs_space_reservation(fs_info, "pinned",
6680 					      space_info->flags, len, 0);
6681 		space_info->max_extent_size = 0;
6682 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6683 		if (cache->ro) {
6684 			space_info->bytes_readonly += len;
6685 			readonly = true;
6686 		}
6687 		spin_unlock(&cache->lock);
6688 		if (!readonly && return_free_space &&
6689 		    global_rsv->space_info == space_info) {
6690 			u64 to_add = len;
6691 			WARN_ON(!return_free_space);
6692 			spin_lock(&global_rsv->lock);
6693 			if (!global_rsv->full) {
6694 				to_add = min(len, global_rsv->size -
6695 					     global_rsv->reserved);
6696 				global_rsv->reserved += to_add;
6697 				space_info->bytes_may_use += to_add;
6698 				if (global_rsv->reserved >= global_rsv->size)
6699 					global_rsv->full = 1;
6700 				trace_btrfs_space_reservation(fs_info,
6701 							      "space_info",
6702 							      space_info->flags,
6703 							      to_add, 1);
6704 				len -= to_add;
6705 			}
6706 			spin_unlock(&global_rsv->lock);
6707 			/* Add to any tickets we may have */
6708 			if (len)
6709 				space_info_add_new_bytes(fs_info, space_info,
6710 							 len);
6711 		}
6712 		spin_unlock(&space_info->lock);
6713 	}
6714 
6715 	if (cache)
6716 		btrfs_put_block_group(cache);
6717 	return 0;
6718 }
6719 
6720 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6721 			       struct btrfs_root *root)
6722 {
6723 	struct btrfs_fs_info *fs_info = root->fs_info;
6724 	struct btrfs_block_group_cache *block_group, *tmp;
6725 	struct list_head *deleted_bgs;
6726 	struct extent_io_tree *unpin;
6727 	u64 start;
6728 	u64 end;
6729 	int ret;
6730 
6731 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6732 		unpin = &fs_info->freed_extents[1];
6733 	else
6734 		unpin = &fs_info->freed_extents[0];
6735 
6736 	while (!trans->aborted) {
6737 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6738 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6739 					    EXTENT_DIRTY, NULL);
6740 		if (ret) {
6741 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6742 			break;
6743 		}
6744 
6745 		if (btrfs_test_opt(root, DISCARD))
6746 			ret = btrfs_discard_extent(root, start,
6747 						   end + 1 - start, NULL);
6748 
6749 		clear_extent_dirty(unpin, start, end);
6750 		unpin_extent_range(root, start, end, true);
6751 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752 		cond_resched();
6753 	}
6754 
6755 	/*
6756 	 * Transaction is finished.  We don't need the lock anymore.  We
6757 	 * do need to clean up the block groups in case of a transaction
6758 	 * abort.
6759 	 */
6760 	deleted_bgs = &trans->transaction->deleted_bgs;
6761 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6762 		u64 trimmed = 0;
6763 
6764 		ret = -EROFS;
6765 		if (!trans->aborted)
6766 			ret = btrfs_discard_extent(root,
6767 						   block_group->key.objectid,
6768 						   block_group->key.offset,
6769 						   &trimmed);
6770 
6771 		list_del_init(&block_group->bg_list);
6772 		btrfs_put_block_group_trimming(block_group);
6773 		btrfs_put_block_group(block_group);
6774 
6775 		if (ret) {
6776 			const char *errstr = btrfs_decode_error(ret);
6777 			btrfs_warn(fs_info,
6778 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6779 				   ret, errstr);
6780 		}
6781 	}
6782 
6783 	return 0;
6784 }
6785 
6786 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6787 			     u64 owner, u64 root_objectid)
6788 {
6789 	struct btrfs_space_info *space_info;
6790 	u64 flags;
6791 
6792 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6793 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6794 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6795 		else
6796 			flags = BTRFS_BLOCK_GROUP_METADATA;
6797 	} else {
6798 		flags = BTRFS_BLOCK_GROUP_DATA;
6799 	}
6800 
6801 	space_info = __find_space_info(fs_info, flags);
6802 	BUG_ON(!space_info); /* Logic bug */
6803 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6804 }
6805 
6806 
6807 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6808 				struct btrfs_root *root,
6809 				struct btrfs_delayed_ref_node *node, u64 parent,
6810 				u64 root_objectid, u64 owner_objectid,
6811 				u64 owner_offset, int refs_to_drop,
6812 				struct btrfs_delayed_extent_op *extent_op)
6813 {
6814 	struct btrfs_key key;
6815 	struct btrfs_path *path;
6816 	struct btrfs_fs_info *info = root->fs_info;
6817 	struct btrfs_root *extent_root = info->extent_root;
6818 	struct extent_buffer *leaf;
6819 	struct btrfs_extent_item *ei;
6820 	struct btrfs_extent_inline_ref *iref;
6821 	int ret;
6822 	int is_data;
6823 	int extent_slot = 0;
6824 	int found_extent = 0;
6825 	int num_to_del = 1;
6826 	u32 item_size;
6827 	u64 refs;
6828 	u64 bytenr = node->bytenr;
6829 	u64 num_bytes = node->num_bytes;
6830 	int last_ref = 0;
6831 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6832 						 SKINNY_METADATA);
6833 
6834 	path = btrfs_alloc_path();
6835 	if (!path)
6836 		return -ENOMEM;
6837 
6838 	path->reada = READA_FORWARD;
6839 	path->leave_spinning = 1;
6840 
6841 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6842 	BUG_ON(!is_data && refs_to_drop != 1);
6843 
6844 	if (is_data)
6845 		skinny_metadata = 0;
6846 
6847 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6848 				    bytenr, num_bytes, parent,
6849 				    root_objectid, owner_objectid,
6850 				    owner_offset);
6851 	if (ret == 0) {
6852 		extent_slot = path->slots[0];
6853 		while (extent_slot >= 0) {
6854 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6855 					      extent_slot);
6856 			if (key.objectid != bytenr)
6857 				break;
6858 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6859 			    key.offset == num_bytes) {
6860 				found_extent = 1;
6861 				break;
6862 			}
6863 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6864 			    key.offset == owner_objectid) {
6865 				found_extent = 1;
6866 				break;
6867 			}
6868 			if (path->slots[0] - extent_slot > 5)
6869 				break;
6870 			extent_slot--;
6871 		}
6872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6873 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6874 		if (found_extent && item_size < sizeof(*ei))
6875 			found_extent = 0;
6876 #endif
6877 		if (!found_extent) {
6878 			BUG_ON(iref);
6879 			ret = remove_extent_backref(trans, extent_root, path,
6880 						    NULL, refs_to_drop,
6881 						    is_data, &last_ref);
6882 			if (ret) {
6883 				btrfs_abort_transaction(trans, extent_root, ret);
6884 				goto out;
6885 			}
6886 			btrfs_release_path(path);
6887 			path->leave_spinning = 1;
6888 
6889 			key.objectid = bytenr;
6890 			key.type = BTRFS_EXTENT_ITEM_KEY;
6891 			key.offset = num_bytes;
6892 
6893 			if (!is_data && skinny_metadata) {
6894 				key.type = BTRFS_METADATA_ITEM_KEY;
6895 				key.offset = owner_objectid;
6896 			}
6897 
6898 			ret = btrfs_search_slot(trans, extent_root,
6899 						&key, path, -1, 1);
6900 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6901 				/*
6902 				 * Couldn't find our skinny metadata item,
6903 				 * see if we have ye olde extent item.
6904 				 */
6905 				path->slots[0]--;
6906 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6907 						      path->slots[0]);
6908 				if (key.objectid == bytenr &&
6909 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6910 				    key.offset == num_bytes)
6911 					ret = 0;
6912 			}
6913 
6914 			if (ret > 0 && skinny_metadata) {
6915 				skinny_metadata = false;
6916 				key.objectid = bytenr;
6917 				key.type = BTRFS_EXTENT_ITEM_KEY;
6918 				key.offset = num_bytes;
6919 				btrfs_release_path(path);
6920 				ret = btrfs_search_slot(trans, extent_root,
6921 							&key, path, -1, 1);
6922 			}
6923 
6924 			if (ret) {
6925 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6926 					ret, bytenr);
6927 				if (ret > 0)
6928 					btrfs_print_leaf(extent_root,
6929 							 path->nodes[0]);
6930 			}
6931 			if (ret < 0) {
6932 				btrfs_abort_transaction(trans, extent_root, ret);
6933 				goto out;
6934 			}
6935 			extent_slot = path->slots[0];
6936 		}
6937 	} else if (WARN_ON(ret == -ENOENT)) {
6938 		btrfs_print_leaf(extent_root, path->nodes[0]);
6939 		btrfs_err(info,
6940 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6941 			bytenr, parent, root_objectid, owner_objectid,
6942 			owner_offset);
6943 		btrfs_abort_transaction(trans, extent_root, ret);
6944 		goto out;
6945 	} else {
6946 		btrfs_abort_transaction(trans, extent_root, ret);
6947 		goto out;
6948 	}
6949 
6950 	leaf = path->nodes[0];
6951 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6952 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6953 	if (item_size < sizeof(*ei)) {
6954 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6955 		ret = convert_extent_item_v0(trans, extent_root, path,
6956 					     owner_objectid, 0);
6957 		if (ret < 0) {
6958 			btrfs_abort_transaction(trans, extent_root, ret);
6959 			goto out;
6960 		}
6961 
6962 		btrfs_release_path(path);
6963 		path->leave_spinning = 1;
6964 
6965 		key.objectid = bytenr;
6966 		key.type = BTRFS_EXTENT_ITEM_KEY;
6967 		key.offset = num_bytes;
6968 
6969 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6970 					-1, 1);
6971 		if (ret) {
6972 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6973 				ret, bytenr);
6974 			btrfs_print_leaf(extent_root, path->nodes[0]);
6975 		}
6976 		if (ret < 0) {
6977 			btrfs_abort_transaction(trans, extent_root, ret);
6978 			goto out;
6979 		}
6980 
6981 		extent_slot = path->slots[0];
6982 		leaf = path->nodes[0];
6983 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6984 	}
6985 #endif
6986 	BUG_ON(item_size < sizeof(*ei));
6987 	ei = btrfs_item_ptr(leaf, extent_slot,
6988 			    struct btrfs_extent_item);
6989 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6990 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6991 		struct btrfs_tree_block_info *bi;
6992 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6993 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6994 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6995 	}
6996 
6997 	refs = btrfs_extent_refs(leaf, ei);
6998 	if (refs < refs_to_drop) {
6999 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7000 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
7001 		ret = -EINVAL;
7002 		btrfs_abort_transaction(trans, extent_root, ret);
7003 		goto out;
7004 	}
7005 	refs -= refs_to_drop;
7006 
7007 	if (refs > 0) {
7008 		if (extent_op)
7009 			__run_delayed_extent_op(extent_op, leaf, ei);
7010 		/*
7011 		 * In the case of inline back ref, reference count will
7012 		 * be updated by remove_extent_backref
7013 		 */
7014 		if (iref) {
7015 			BUG_ON(!found_extent);
7016 		} else {
7017 			btrfs_set_extent_refs(leaf, ei, refs);
7018 			btrfs_mark_buffer_dirty(leaf);
7019 		}
7020 		if (found_extent) {
7021 			ret = remove_extent_backref(trans, extent_root, path,
7022 						    iref, refs_to_drop,
7023 						    is_data, &last_ref);
7024 			if (ret) {
7025 				btrfs_abort_transaction(trans, extent_root, ret);
7026 				goto out;
7027 			}
7028 		}
7029 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7030 				 root_objectid);
7031 	} else {
7032 		if (found_extent) {
7033 			BUG_ON(is_data && refs_to_drop !=
7034 			       extent_data_ref_count(path, iref));
7035 			if (iref) {
7036 				BUG_ON(path->slots[0] != extent_slot);
7037 			} else {
7038 				BUG_ON(path->slots[0] != extent_slot + 1);
7039 				path->slots[0] = extent_slot;
7040 				num_to_del = 2;
7041 			}
7042 		}
7043 
7044 		last_ref = 1;
7045 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7046 				      num_to_del);
7047 		if (ret) {
7048 			btrfs_abort_transaction(trans, extent_root, ret);
7049 			goto out;
7050 		}
7051 		btrfs_release_path(path);
7052 
7053 		if (is_data) {
7054 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7055 			if (ret) {
7056 				btrfs_abort_transaction(trans, extent_root, ret);
7057 				goto out;
7058 			}
7059 		}
7060 
7061 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7062 					     num_bytes);
7063 		if (ret) {
7064 			btrfs_abort_transaction(trans, extent_root, ret);
7065 			goto out;
7066 		}
7067 
7068 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7069 		if (ret) {
7070 			btrfs_abort_transaction(trans, extent_root, ret);
7071 			goto out;
7072 		}
7073 	}
7074 	btrfs_release_path(path);
7075 
7076 out:
7077 	btrfs_free_path(path);
7078 	return ret;
7079 }
7080 
7081 /*
7082  * when we free an block, it is possible (and likely) that we free the last
7083  * delayed ref for that extent as well.  This searches the delayed ref tree for
7084  * a given extent, and if there are no other delayed refs to be processed, it
7085  * removes it from the tree.
7086  */
7087 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7088 				      struct btrfs_root *root, u64 bytenr)
7089 {
7090 	struct btrfs_delayed_ref_head *head;
7091 	struct btrfs_delayed_ref_root *delayed_refs;
7092 	int ret = 0;
7093 
7094 	delayed_refs = &trans->transaction->delayed_refs;
7095 	spin_lock(&delayed_refs->lock);
7096 	head = btrfs_find_delayed_ref_head(trans, bytenr);
7097 	if (!head)
7098 		goto out_delayed_unlock;
7099 
7100 	spin_lock(&head->lock);
7101 	if (!list_empty(&head->ref_list))
7102 		goto out;
7103 
7104 	if (head->extent_op) {
7105 		if (!head->must_insert_reserved)
7106 			goto out;
7107 		btrfs_free_delayed_extent_op(head->extent_op);
7108 		head->extent_op = NULL;
7109 	}
7110 
7111 	/*
7112 	 * waiting for the lock here would deadlock.  If someone else has it
7113 	 * locked they are already in the process of dropping it anyway
7114 	 */
7115 	if (!mutex_trylock(&head->mutex))
7116 		goto out;
7117 
7118 	/*
7119 	 * at this point we have a head with no other entries.  Go
7120 	 * ahead and process it.
7121 	 */
7122 	head->node.in_tree = 0;
7123 	rb_erase(&head->href_node, &delayed_refs->href_root);
7124 
7125 	atomic_dec(&delayed_refs->num_entries);
7126 
7127 	/*
7128 	 * we don't take a ref on the node because we're removing it from the
7129 	 * tree, so we just steal the ref the tree was holding.
7130 	 */
7131 	delayed_refs->num_heads--;
7132 	if (head->processing == 0)
7133 		delayed_refs->num_heads_ready--;
7134 	head->processing = 0;
7135 	spin_unlock(&head->lock);
7136 	spin_unlock(&delayed_refs->lock);
7137 
7138 	BUG_ON(head->extent_op);
7139 	if (head->must_insert_reserved)
7140 		ret = 1;
7141 
7142 	mutex_unlock(&head->mutex);
7143 	btrfs_put_delayed_ref(&head->node);
7144 	return ret;
7145 out:
7146 	spin_unlock(&head->lock);
7147 
7148 out_delayed_unlock:
7149 	spin_unlock(&delayed_refs->lock);
7150 	return 0;
7151 }
7152 
7153 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7154 			   struct btrfs_root *root,
7155 			   struct extent_buffer *buf,
7156 			   u64 parent, int last_ref)
7157 {
7158 	int pin = 1;
7159 	int ret;
7160 
7161 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7162 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7163 					buf->start, buf->len,
7164 					parent, root->root_key.objectid,
7165 					btrfs_header_level(buf),
7166 					BTRFS_DROP_DELAYED_REF, NULL);
7167 		BUG_ON(ret); /* -ENOMEM */
7168 	}
7169 
7170 	if (!last_ref)
7171 		return;
7172 
7173 	if (btrfs_header_generation(buf) == trans->transid) {
7174 		struct btrfs_block_group_cache *cache;
7175 
7176 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7177 			ret = check_ref_cleanup(trans, root, buf->start);
7178 			if (!ret)
7179 				goto out;
7180 		}
7181 
7182 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7183 
7184 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7185 			pin_down_extent(root, cache, buf->start, buf->len, 1);
7186 			btrfs_put_block_group(cache);
7187 			goto out;
7188 		}
7189 
7190 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7191 
7192 		btrfs_add_free_space(cache, buf->start, buf->len);
7193 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
7194 		btrfs_put_block_group(cache);
7195 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7196 		pin = 0;
7197 	}
7198 out:
7199 	if (pin)
7200 		add_pinned_bytes(root->fs_info, buf->len,
7201 				 btrfs_header_level(buf),
7202 				 root->root_key.objectid);
7203 
7204 	/*
7205 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7206 	 * anymore.
7207 	 */
7208 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7209 }
7210 
7211 /* Can return -ENOMEM */
7212 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7213 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7214 		      u64 owner, u64 offset)
7215 {
7216 	int ret;
7217 	struct btrfs_fs_info *fs_info = root->fs_info;
7218 
7219 	if (btrfs_test_is_dummy_root(root))
7220 		return 0;
7221 
7222 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7223 
7224 	/*
7225 	 * tree log blocks never actually go into the extent allocation
7226 	 * tree, just update pinning info and exit early.
7227 	 */
7228 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7229 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7230 		/* unlocks the pinned mutex */
7231 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7232 		ret = 0;
7233 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7234 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7235 					num_bytes,
7236 					parent, root_objectid, (int)owner,
7237 					BTRFS_DROP_DELAYED_REF, NULL);
7238 	} else {
7239 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7240 						num_bytes,
7241 						parent, root_objectid, owner,
7242 						offset, 0,
7243 						BTRFS_DROP_DELAYED_REF, NULL);
7244 	}
7245 	return ret;
7246 }
7247 
7248 /*
7249  * when we wait for progress in the block group caching, its because
7250  * our allocation attempt failed at least once.  So, we must sleep
7251  * and let some progress happen before we try again.
7252  *
7253  * This function will sleep at least once waiting for new free space to
7254  * show up, and then it will check the block group free space numbers
7255  * for our min num_bytes.  Another option is to have it go ahead
7256  * and look in the rbtree for a free extent of a given size, but this
7257  * is a good start.
7258  *
7259  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7260  * any of the information in this block group.
7261  */
7262 static noinline void
7263 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7264 				u64 num_bytes)
7265 {
7266 	struct btrfs_caching_control *caching_ctl;
7267 
7268 	caching_ctl = get_caching_control(cache);
7269 	if (!caching_ctl)
7270 		return;
7271 
7272 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7273 		   (cache->free_space_ctl->free_space >= num_bytes));
7274 
7275 	put_caching_control(caching_ctl);
7276 }
7277 
7278 static noinline int
7279 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7280 {
7281 	struct btrfs_caching_control *caching_ctl;
7282 	int ret = 0;
7283 
7284 	caching_ctl = get_caching_control(cache);
7285 	if (!caching_ctl)
7286 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7287 
7288 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7289 	if (cache->cached == BTRFS_CACHE_ERROR)
7290 		ret = -EIO;
7291 	put_caching_control(caching_ctl);
7292 	return ret;
7293 }
7294 
7295 int __get_raid_index(u64 flags)
7296 {
7297 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7298 		return BTRFS_RAID_RAID10;
7299 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7300 		return BTRFS_RAID_RAID1;
7301 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7302 		return BTRFS_RAID_DUP;
7303 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7304 		return BTRFS_RAID_RAID0;
7305 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7306 		return BTRFS_RAID_RAID5;
7307 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7308 		return BTRFS_RAID_RAID6;
7309 
7310 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7311 }
7312 
7313 int get_block_group_index(struct btrfs_block_group_cache *cache)
7314 {
7315 	return __get_raid_index(cache->flags);
7316 }
7317 
7318 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7319 	[BTRFS_RAID_RAID10]	= "raid10",
7320 	[BTRFS_RAID_RAID1]	= "raid1",
7321 	[BTRFS_RAID_DUP]	= "dup",
7322 	[BTRFS_RAID_RAID0]	= "raid0",
7323 	[BTRFS_RAID_SINGLE]	= "single",
7324 	[BTRFS_RAID_RAID5]	= "raid5",
7325 	[BTRFS_RAID_RAID6]	= "raid6",
7326 };
7327 
7328 static const char *get_raid_name(enum btrfs_raid_types type)
7329 {
7330 	if (type >= BTRFS_NR_RAID_TYPES)
7331 		return NULL;
7332 
7333 	return btrfs_raid_type_names[type];
7334 }
7335 
7336 enum btrfs_loop_type {
7337 	LOOP_CACHING_NOWAIT = 0,
7338 	LOOP_CACHING_WAIT = 1,
7339 	LOOP_ALLOC_CHUNK = 2,
7340 	LOOP_NO_EMPTY_SIZE = 3,
7341 };
7342 
7343 static inline void
7344 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7345 		       int delalloc)
7346 {
7347 	if (delalloc)
7348 		down_read(&cache->data_rwsem);
7349 }
7350 
7351 static inline void
7352 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7353 		       int delalloc)
7354 {
7355 	btrfs_get_block_group(cache);
7356 	if (delalloc)
7357 		down_read(&cache->data_rwsem);
7358 }
7359 
7360 static struct btrfs_block_group_cache *
7361 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7362 		   struct btrfs_free_cluster *cluster,
7363 		   int delalloc)
7364 {
7365 	struct btrfs_block_group_cache *used_bg = NULL;
7366 
7367 	spin_lock(&cluster->refill_lock);
7368 	while (1) {
7369 		used_bg = cluster->block_group;
7370 		if (!used_bg)
7371 			return NULL;
7372 
7373 		if (used_bg == block_group)
7374 			return used_bg;
7375 
7376 		btrfs_get_block_group(used_bg);
7377 
7378 		if (!delalloc)
7379 			return used_bg;
7380 
7381 		if (down_read_trylock(&used_bg->data_rwsem))
7382 			return used_bg;
7383 
7384 		spin_unlock(&cluster->refill_lock);
7385 
7386 		down_read(&used_bg->data_rwsem);
7387 
7388 		spin_lock(&cluster->refill_lock);
7389 		if (used_bg == cluster->block_group)
7390 			return used_bg;
7391 
7392 		up_read(&used_bg->data_rwsem);
7393 		btrfs_put_block_group(used_bg);
7394 	}
7395 }
7396 
7397 static inline void
7398 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7399 			 int delalloc)
7400 {
7401 	if (delalloc)
7402 		up_read(&cache->data_rwsem);
7403 	btrfs_put_block_group(cache);
7404 }
7405 
7406 /*
7407  * walks the btree of allocated extents and find a hole of a given size.
7408  * The key ins is changed to record the hole:
7409  * ins->objectid == start position
7410  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7411  * ins->offset == the size of the hole.
7412  * Any available blocks before search_start are skipped.
7413  *
7414  * If there is no suitable free space, we will record the max size of
7415  * the free space extent currently.
7416  */
7417 static noinline int find_free_extent(struct btrfs_root *orig_root,
7418 				     u64 num_bytes, u64 empty_size,
7419 				     u64 hint_byte, struct btrfs_key *ins,
7420 				     u64 flags, int delalloc)
7421 {
7422 	int ret = 0;
7423 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7424 	struct btrfs_free_cluster *last_ptr = NULL;
7425 	struct btrfs_block_group_cache *block_group = NULL;
7426 	u64 search_start = 0;
7427 	u64 max_extent_size = 0;
7428 	u64 empty_cluster = 0;
7429 	struct btrfs_space_info *space_info;
7430 	int loop = 0;
7431 	int index = __get_raid_index(flags);
7432 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7433 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7434 	bool failed_cluster_refill = false;
7435 	bool failed_alloc = false;
7436 	bool use_cluster = true;
7437 	bool have_caching_bg = false;
7438 	bool orig_have_caching_bg = false;
7439 	bool full_search = false;
7440 
7441 	WARN_ON(num_bytes < root->sectorsize);
7442 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7443 	ins->objectid = 0;
7444 	ins->offset = 0;
7445 
7446 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7447 
7448 	space_info = __find_space_info(root->fs_info, flags);
7449 	if (!space_info) {
7450 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7451 		return -ENOSPC;
7452 	}
7453 
7454 	/*
7455 	 * If our free space is heavily fragmented we may not be able to make
7456 	 * big contiguous allocations, so instead of doing the expensive search
7457 	 * for free space, simply return ENOSPC with our max_extent_size so we
7458 	 * can go ahead and search for a more manageable chunk.
7459 	 *
7460 	 * If our max_extent_size is large enough for our allocation simply
7461 	 * disable clustering since we will likely not be able to find enough
7462 	 * space to create a cluster and induce latency trying.
7463 	 */
7464 	if (unlikely(space_info->max_extent_size)) {
7465 		spin_lock(&space_info->lock);
7466 		if (space_info->max_extent_size &&
7467 		    num_bytes > space_info->max_extent_size) {
7468 			ins->offset = space_info->max_extent_size;
7469 			spin_unlock(&space_info->lock);
7470 			return -ENOSPC;
7471 		} else if (space_info->max_extent_size) {
7472 			use_cluster = false;
7473 		}
7474 		spin_unlock(&space_info->lock);
7475 	}
7476 
7477 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7478 	if (last_ptr) {
7479 		spin_lock(&last_ptr->lock);
7480 		if (last_ptr->block_group)
7481 			hint_byte = last_ptr->window_start;
7482 		if (last_ptr->fragmented) {
7483 			/*
7484 			 * We still set window_start so we can keep track of the
7485 			 * last place we found an allocation to try and save
7486 			 * some time.
7487 			 */
7488 			hint_byte = last_ptr->window_start;
7489 			use_cluster = false;
7490 		}
7491 		spin_unlock(&last_ptr->lock);
7492 	}
7493 
7494 	search_start = max(search_start, first_logical_byte(root, 0));
7495 	search_start = max(search_start, hint_byte);
7496 	if (search_start == hint_byte) {
7497 		block_group = btrfs_lookup_block_group(root->fs_info,
7498 						       search_start);
7499 		/*
7500 		 * we don't want to use the block group if it doesn't match our
7501 		 * allocation bits, or if its not cached.
7502 		 *
7503 		 * However if we are re-searching with an ideal block group
7504 		 * picked out then we don't care that the block group is cached.
7505 		 */
7506 		if (block_group && block_group_bits(block_group, flags) &&
7507 		    block_group->cached != BTRFS_CACHE_NO) {
7508 			down_read(&space_info->groups_sem);
7509 			if (list_empty(&block_group->list) ||
7510 			    block_group->ro) {
7511 				/*
7512 				 * someone is removing this block group,
7513 				 * we can't jump into the have_block_group
7514 				 * target because our list pointers are not
7515 				 * valid
7516 				 */
7517 				btrfs_put_block_group(block_group);
7518 				up_read(&space_info->groups_sem);
7519 			} else {
7520 				index = get_block_group_index(block_group);
7521 				btrfs_lock_block_group(block_group, delalloc);
7522 				goto have_block_group;
7523 			}
7524 		} else if (block_group) {
7525 			btrfs_put_block_group(block_group);
7526 		}
7527 	}
7528 search:
7529 	have_caching_bg = false;
7530 	if (index == 0 || index == __get_raid_index(flags))
7531 		full_search = true;
7532 	down_read(&space_info->groups_sem);
7533 	list_for_each_entry(block_group, &space_info->block_groups[index],
7534 			    list) {
7535 		u64 offset;
7536 		int cached;
7537 
7538 		btrfs_grab_block_group(block_group, delalloc);
7539 		search_start = block_group->key.objectid;
7540 
7541 		/*
7542 		 * this can happen if we end up cycling through all the
7543 		 * raid types, but we want to make sure we only allocate
7544 		 * for the proper type.
7545 		 */
7546 		if (!block_group_bits(block_group, flags)) {
7547 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7548 				BTRFS_BLOCK_GROUP_RAID1 |
7549 				BTRFS_BLOCK_GROUP_RAID5 |
7550 				BTRFS_BLOCK_GROUP_RAID6 |
7551 				BTRFS_BLOCK_GROUP_RAID10;
7552 
7553 			/*
7554 			 * if they asked for extra copies and this block group
7555 			 * doesn't provide them, bail.  This does allow us to
7556 			 * fill raid0 from raid1.
7557 			 */
7558 			if ((flags & extra) && !(block_group->flags & extra))
7559 				goto loop;
7560 		}
7561 
7562 have_block_group:
7563 		cached = block_group_cache_done(block_group);
7564 		if (unlikely(!cached)) {
7565 			have_caching_bg = true;
7566 			ret = cache_block_group(block_group, 0);
7567 			BUG_ON(ret < 0);
7568 			ret = 0;
7569 		}
7570 
7571 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7572 			goto loop;
7573 		if (unlikely(block_group->ro))
7574 			goto loop;
7575 
7576 		/*
7577 		 * Ok we want to try and use the cluster allocator, so
7578 		 * lets look there
7579 		 */
7580 		if (last_ptr && use_cluster) {
7581 			struct btrfs_block_group_cache *used_block_group;
7582 			unsigned long aligned_cluster;
7583 			/*
7584 			 * the refill lock keeps out other
7585 			 * people trying to start a new cluster
7586 			 */
7587 			used_block_group = btrfs_lock_cluster(block_group,
7588 							      last_ptr,
7589 							      delalloc);
7590 			if (!used_block_group)
7591 				goto refill_cluster;
7592 
7593 			if (used_block_group != block_group &&
7594 			    (used_block_group->ro ||
7595 			     !block_group_bits(used_block_group, flags)))
7596 				goto release_cluster;
7597 
7598 			offset = btrfs_alloc_from_cluster(used_block_group,
7599 						last_ptr,
7600 						num_bytes,
7601 						used_block_group->key.objectid,
7602 						&max_extent_size);
7603 			if (offset) {
7604 				/* we have a block, we're done */
7605 				spin_unlock(&last_ptr->refill_lock);
7606 				trace_btrfs_reserve_extent_cluster(root,
7607 						used_block_group,
7608 						search_start, num_bytes);
7609 				if (used_block_group != block_group) {
7610 					btrfs_release_block_group(block_group,
7611 								  delalloc);
7612 					block_group = used_block_group;
7613 				}
7614 				goto checks;
7615 			}
7616 
7617 			WARN_ON(last_ptr->block_group != used_block_group);
7618 release_cluster:
7619 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7620 			 * set up a new clusters, so lets just skip it
7621 			 * and let the allocator find whatever block
7622 			 * it can find.  If we reach this point, we
7623 			 * will have tried the cluster allocator
7624 			 * plenty of times and not have found
7625 			 * anything, so we are likely way too
7626 			 * fragmented for the clustering stuff to find
7627 			 * anything.
7628 			 *
7629 			 * However, if the cluster is taken from the
7630 			 * current block group, release the cluster
7631 			 * first, so that we stand a better chance of
7632 			 * succeeding in the unclustered
7633 			 * allocation.  */
7634 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7635 			    used_block_group != block_group) {
7636 				spin_unlock(&last_ptr->refill_lock);
7637 				btrfs_release_block_group(used_block_group,
7638 							  delalloc);
7639 				goto unclustered_alloc;
7640 			}
7641 
7642 			/*
7643 			 * this cluster didn't work out, free it and
7644 			 * start over
7645 			 */
7646 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7647 
7648 			if (used_block_group != block_group)
7649 				btrfs_release_block_group(used_block_group,
7650 							  delalloc);
7651 refill_cluster:
7652 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7653 				spin_unlock(&last_ptr->refill_lock);
7654 				goto unclustered_alloc;
7655 			}
7656 
7657 			aligned_cluster = max_t(unsigned long,
7658 						empty_cluster + empty_size,
7659 					      block_group->full_stripe_len);
7660 
7661 			/* allocate a cluster in this block group */
7662 			ret = btrfs_find_space_cluster(root, block_group,
7663 						       last_ptr, search_start,
7664 						       num_bytes,
7665 						       aligned_cluster);
7666 			if (ret == 0) {
7667 				/*
7668 				 * now pull our allocation out of this
7669 				 * cluster
7670 				 */
7671 				offset = btrfs_alloc_from_cluster(block_group,
7672 							last_ptr,
7673 							num_bytes,
7674 							search_start,
7675 							&max_extent_size);
7676 				if (offset) {
7677 					/* we found one, proceed */
7678 					spin_unlock(&last_ptr->refill_lock);
7679 					trace_btrfs_reserve_extent_cluster(root,
7680 						block_group, search_start,
7681 						num_bytes);
7682 					goto checks;
7683 				}
7684 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7685 				   && !failed_cluster_refill) {
7686 				spin_unlock(&last_ptr->refill_lock);
7687 
7688 				failed_cluster_refill = true;
7689 				wait_block_group_cache_progress(block_group,
7690 				       num_bytes + empty_cluster + empty_size);
7691 				goto have_block_group;
7692 			}
7693 
7694 			/*
7695 			 * at this point we either didn't find a cluster
7696 			 * or we weren't able to allocate a block from our
7697 			 * cluster.  Free the cluster we've been trying
7698 			 * to use, and go to the next block group
7699 			 */
7700 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701 			spin_unlock(&last_ptr->refill_lock);
7702 			goto loop;
7703 		}
7704 
7705 unclustered_alloc:
7706 		/*
7707 		 * We are doing an unclustered alloc, set the fragmented flag so
7708 		 * we don't bother trying to setup a cluster again until we get
7709 		 * more space.
7710 		 */
7711 		if (unlikely(last_ptr)) {
7712 			spin_lock(&last_ptr->lock);
7713 			last_ptr->fragmented = 1;
7714 			spin_unlock(&last_ptr->lock);
7715 		}
7716 		spin_lock(&block_group->free_space_ctl->tree_lock);
7717 		if (cached &&
7718 		    block_group->free_space_ctl->free_space <
7719 		    num_bytes + empty_cluster + empty_size) {
7720 			if (block_group->free_space_ctl->free_space >
7721 			    max_extent_size)
7722 				max_extent_size =
7723 					block_group->free_space_ctl->free_space;
7724 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7725 			goto loop;
7726 		}
7727 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7728 
7729 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7730 						    num_bytes, empty_size,
7731 						    &max_extent_size);
7732 		/*
7733 		 * If we didn't find a chunk, and we haven't failed on this
7734 		 * block group before, and this block group is in the middle of
7735 		 * caching and we are ok with waiting, then go ahead and wait
7736 		 * for progress to be made, and set failed_alloc to true.
7737 		 *
7738 		 * If failed_alloc is true then we've already waited on this
7739 		 * block group once and should move on to the next block group.
7740 		 */
7741 		if (!offset && !failed_alloc && !cached &&
7742 		    loop > LOOP_CACHING_NOWAIT) {
7743 			wait_block_group_cache_progress(block_group,
7744 						num_bytes + empty_size);
7745 			failed_alloc = true;
7746 			goto have_block_group;
7747 		} else if (!offset) {
7748 			goto loop;
7749 		}
7750 checks:
7751 		search_start = ALIGN(offset, root->stripesize);
7752 
7753 		/* move on to the next group */
7754 		if (search_start + num_bytes >
7755 		    block_group->key.objectid + block_group->key.offset) {
7756 			btrfs_add_free_space(block_group, offset, num_bytes);
7757 			goto loop;
7758 		}
7759 
7760 		if (offset < search_start)
7761 			btrfs_add_free_space(block_group, offset,
7762 					     search_start - offset);
7763 		BUG_ON(offset > search_start);
7764 
7765 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7766 						  alloc_type, delalloc);
7767 		if (ret == -EAGAIN) {
7768 			btrfs_add_free_space(block_group, offset, num_bytes);
7769 			goto loop;
7770 		}
7771 		btrfs_inc_block_group_reservations(block_group);
7772 
7773 		/* we are all good, lets return */
7774 		ins->objectid = search_start;
7775 		ins->offset = num_bytes;
7776 
7777 		trace_btrfs_reserve_extent(orig_root, block_group,
7778 					   search_start, num_bytes);
7779 		btrfs_release_block_group(block_group, delalloc);
7780 		break;
7781 loop:
7782 		failed_cluster_refill = false;
7783 		failed_alloc = false;
7784 		BUG_ON(index != get_block_group_index(block_group));
7785 		btrfs_release_block_group(block_group, delalloc);
7786 	}
7787 	up_read(&space_info->groups_sem);
7788 
7789 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7790 		&& !orig_have_caching_bg)
7791 		orig_have_caching_bg = true;
7792 
7793 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7794 		goto search;
7795 
7796 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7797 		goto search;
7798 
7799 	/*
7800 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7801 	 *			caching kthreads as we move along
7802 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7803 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7804 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7805 	 *			again
7806 	 */
7807 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7808 		index = 0;
7809 		if (loop == LOOP_CACHING_NOWAIT) {
7810 			/*
7811 			 * We want to skip the LOOP_CACHING_WAIT step if we
7812 			 * don't have any uncached bgs and we've already done a
7813 			 * full search through.
7814 			 */
7815 			if (orig_have_caching_bg || !full_search)
7816 				loop = LOOP_CACHING_WAIT;
7817 			else
7818 				loop = LOOP_ALLOC_CHUNK;
7819 		} else {
7820 			loop++;
7821 		}
7822 
7823 		if (loop == LOOP_ALLOC_CHUNK) {
7824 			struct btrfs_trans_handle *trans;
7825 			int exist = 0;
7826 
7827 			trans = current->journal_info;
7828 			if (trans)
7829 				exist = 1;
7830 			else
7831 				trans = btrfs_join_transaction(root);
7832 
7833 			if (IS_ERR(trans)) {
7834 				ret = PTR_ERR(trans);
7835 				goto out;
7836 			}
7837 
7838 			ret = do_chunk_alloc(trans, root, flags,
7839 					     CHUNK_ALLOC_FORCE);
7840 
7841 			/*
7842 			 * If we can't allocate a new chunk we've already looped
7843 			 * through at least once, move on to the NO_EMPTY_SIZE
7844 			 * case.
7845 			 */
7846 			if (ret == -ENOSPC)
7847 				loop = LOOP_NO_EMPTY_SIZE;
7848 
7849 			/*
7850 			 * Do not bail out on ENOSPC since we
7851 			 * can do more things.
7852 			 */
7853 			if (ret < 0 && ret != -ENOSPC)
7854 				btrfs_abort_transaction(trans,
7855 							root, ret);
7856 			else
7857 				ret = 0;
7858 			if (!exist)
7859 				btrfs_end_transaction(trans, root);
7860 			if (ret)
7861 				goto out;
7862 		}
7863 
7864 		if (loop == LOOP_NO_EMPTY_SIZE) {
7865 			/*
7866 			 * Don't loop again if we already have no empty_size and
7867 			 * no empty_cluster.
7868 			 */
7869 			if (empty_size == 0 &&
7870 			    empty_cluster == 0) {
7871 				ret = -ENOSPC;
7872 				goto out;
7873 			}
7874 			empty_size = 0;
7875 			empty_cluster = 0;
7876 		}
7877 
7878 		goto search;
7879 	} else if (!ins->objectid) {
7880 		ret = -ENOSPC;
7881 	} else if (ins->objectid) {
7882 		if (!use_cluster && last_ptr) {
7883 			spin_lock(&last_ptr->lock);
7884 			last_ptr->window_start = ins->objectid;
7885 			spin_unlock(&last_ptr->lock);
7886 		}
7887 		ret = 0;
7888 	}
7889 out:
7890 	if (ret == -ENOSPC) {
7891 		spin_lock(&space_info->lock);
7892 		space_info->max_extent_size = max_extent_size;
7893 		spin_unlock(&space_info->lock);
7894 		ins->offset = max_extent_size;
7895 	}
7896 	return ret;
7897 }
7898 
7899 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7900 			    int dump_block_groups)
7901 {
7902 	struct btrfs_block_group_cache *cache;
7903 	int index = 0;
7904 
7905 	spin_lock(&info->lock);
7906 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7907 	       info->flags,
7908 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7909 	       info->bytes_reserved - info->bytes_readonly,
7910 	       (info->full) ? "" : "not ");
7911 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7912 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7913 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7914 	       info->bytes_reserved, info->bytes_may_use,
7915 	       info->bytes_readonly);
7916 	spin_unlock(&info->lock);
7917 
7918 	if (!dump_block_groups)
7919 		return;
7920 
7921 	down_read(&info->groups_sem);
7922 again:
7923 	list_for_each_entry(cache, &info->block_groups[index], list) {
7924 		spin_lock(&cache->lock);
7925 		printk(KERN_INFO "BTRFS: "
7926 			   "block group %llu has %llu bytes, "
7927 			   "%llu used %llu pinned %llu reserved %s\n",
7928 		       cache->key.objectid, cache->key.offset,
7929 		       btrfs_block_group_used(&cache->item), cache->pinned,
7930 		       cache->reserved, cache->ro ? "[readonly]" : "");
7931 		btrfs_dump_free_space(cache, bytes);
7932 		spin_unlock(&cache->lock);
7933 	}
7934 	if (++index < BTRFS_NR_RAID_TYPES)
7935 		goto again;
7936 	up_read(&info->groups_sem);
7937 }
7938 
7939 int btrfs_reserve_extent(struct btrfs_root *root,
7940 			 u64 num_bytes, u64 min_alloc_size,
7941 			 u64 empty_size, u64 hint_byte,
7942 			 struct btrfs_key *ins, int is_data, int delalloc)
7943 {
7944 	bool final_tried = num_bytes == min_alloc_size;
7945 	u64 flags;
7946 	int ret;
7947 
7948 	flags = btrfs_get_alloc_profile(root, is_data);
7949 again:
7950 	WARN_ON(num_bytes < root->sectorsize);
7951 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7952 			       flags, delalloc);
7953 	if (!ret && !is_data) {
7954 		btrfs_dec_block_group_reservations(root->fs_info,
7955 						   ins->objectid);
7956 	} else if (ret == -ENOSPC) {
7957 		if (!final_tried && ins->offset) {
7958 			num_bytes = min(num_bytes >> 1, ins->offset);
7959 			num_bytes = round_down(num_bytes, root->sectorsize);
7960 			num_bytes = max(num_bytes, min_alloc_size);
7961 			if (num_bytes == min_alloc_size)
7962 				final_tried = true;
7963 			goto again;
7964 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7965 			struct btrfs_space_info *sinfo;
7966 
7967 			sinfo = __find_space_info(root->fs_info, flags);
7968 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7969 				flags, num_bytes);
7970 			if (sinfo)
7971 				dump_space_info(sinfo, num_bytes, 1);
7972 		}
7973 	}
7974 
7975 	return ret;
7976 }
7977 
7978 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7979 					u64 start, u64 len,
7980 					int pin, int delalloc)
7981 {
7982 	struct btrfs_block_group_cache *cache;
7983 	int ret = 0;
7984 
7985 	cache = btrfs_lookup_block_group(root->fs_info, start);
7986 	if (!cache) {
7987 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7988 			start);
7989 		return -ENOSPC;
7990 	}
7991 
7992 	if (pin)
7993 		pin_down_extent(root, cache, start, len, 1);
7994 	else {
7995 		if (btrfs_test_opt(root, DISCARD))
7996 			ret = btrfs_discard_extent(root, start, len, NULL);
7997 		btrfs_add_free_space(cache, start, len);
7998 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7999 		trace_btrfs_reserved_extent_free(root, start, len);
8000 	}
8001 
8002 	btrfs_put_block_group(cache);
8003 	return ret;
8004 }
8005 
8006 int btrfs_free_reserved_extent(struct btrfs_root *root,
8007 			       u64 start, u64 len, int delalloc)
8008 {
8009 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8010 }
8011 
8012 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8013 				       u64 start, u64 len)
8014 {
8015 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8016 }
8017 
8018 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8019 				      struct btrfs_root *root,
8020 				      u64 parent, u64 root_objectid,
8021 				      u64 flags, u64 owner, u64 offset,
8022 				      struct btrfs_key *ins, int ref_mod)
8023 {
8024 	int ret;
8025 	struct btrfs_fs_info *fs_info = root->fs_info;
8026 	struct btrfs_extent_item *extent_item;
8027 	struct btrfs_extent_inline_ref *iref;
8028 	struct btrfs_path *path;
8029 	struct extent_buffer *leaf;
8030 	int type;
8031 	u32 size;
8032 
8033 	if (parent > 0)
8034 		type = BTRFS_SHARED_DATA_REF_KEY;
8035 	else
8036 		type = BTRFS_EXTENT_DATA_REF_KEY;
8037 
8038 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8039 
8040 	path = btrfs_alloc_path();
8041 	if (!path)
8042 		return -ENOMEM;
8043 
8044 	path->leave_spinning = 1;
8045 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8046 				      ins, size);
8047 	if (ret) {
8048 		btrfs_free_path(path);
8049 		return ret;
8050 	}
8051 
8052 	leaf = path->nodes[0];
8053 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8054 				     struct btrfs_extent_item);
8055 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8056 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8057 	btrfs_set_extent_flags(leaf, extent_item,
8058 			       flags | BTRFS_EXTENT_FLAG_DATA);
8059 
8060 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8061 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8062 	if (parent > 0) {
8063 		struct btrfs_shared_data_ref *ref;
8064 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8065 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8066 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8067 	} else {
8068 		struct btrfs_extent_data_ref *ref;
8069 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8070 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8071 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8072 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8073 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8074 	}
8075 
8076 	btrfs_mark_buffer_dirty(path->nodes[0]);
8077 	btrfs_free_path(path);
8078 
8079 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8080 					  ins->offset);
8081 	if (ret)
8082 		return ret;
8083 
8084 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8085 	if (ret) { /* -ENOENT, logic error */
8086 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8087 			ins->objectid, ins->offset);
8088 		BUG();
8089 	}
8090 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8091 	return ret;
8092 }
8093 
8094 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8095 				     struct btrfs_root *root,
8096 				     u64 parent, u64 root_objectid,
8097 				     u64 flags, struct btrfs_disk_key *key,
8098 				     int level, struct btrfs_key *ins)
8099 {
8100 	int ret;
8101 	struct btrfs_fs_info *fs_info = root->fs_info;
8102 	struct btrfs_extent_item *extent_item;
8103 	struct btrfs_tree_block_info *block_info;
8104 	struct btrfs_extent_inline_ref *iref;
8105 	struct btrfs_path *path;
8106 	struct extent_buffer *leaf;
8107 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8108 	u64 num_bytes = ins->offset;
8109 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8110 						 SKINNY_METADATA);
8111 
8112 	if (!skinny_metadata)
8113 		size += sizeof(*block_info);
8114 
8115 	path = btrfs_alloc_path();
8116 	if (!path) {
8117 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8118 						   root->nodesize);
8119 		return -ENOMEM;
8120 	}
8121 
8122 	path->leave_spinning = 1;
8123 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8124 				      ins, size);
8125 	if (ret) {
8126 		btrfs_free_path(path);
8127 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8128 						   root->nodesize);
8129 		return ret;
8130 	}
8131 
8132 	leaf = path->nodes[0];
8133 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8134 				     struct btrfs_extent_item);
8135 	btrfs_set_extent_refs(leaf, extent_item, 1);
8136 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8137 	btrfs_set_extent_flags(leaf, extent_item,
8138 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8139 
8140 	if (skinny_metadata) {
8141 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8142 		num_bytes = root->nodesize;
8143 	} else {
8144 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8145 		btrfs_set_tree_block_key(leaf, block_info, key);
8146 		btrfs_set_tree_block_level(leaf, block_info, level);
8147 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8148 	}
8149 
8150 	if (parent > 0) {
8151 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8152 		btrfs_set_extent_inline_ref_type(leaf, iref,
8153 						 BTRFS_SHARED_BLOCK_REF_KEY);
8154 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8155 	} else {
8156 		btrfs_set_extent_inline_ref_type(leaf, iref,
8157 						 BTRFS_TREE_BLOCK_REF_KEY);
8158 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8159 	}
8160 
8161 	btrfs_mark_buffer_dirty(leaf);
8162 	btrfs_free_path(path);
8163 
8164 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8165 					  num_bytes);
8166 	if (ret)
8167 		return ret;
8168 
8169 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8170 				 1);
8171 	if (ret) { /* -ENOENT, logic error */
8172 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8173 			ins->objectid, ins->offset);
8174 		BUG();
8175 	}
8176 
8177 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8178 	return ret;
8179 }
8180 
8181 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8182 				     struct btrfs_root *root,
8183 				     u64 root_objectid, u64 owner,
8184 				     u64 offset, u64 ram_bytes,
8185 				     struct btrfs_key *ins)
8186 {
8187 	int ret;
8188 
8189 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190 
8191 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8192 					 ins->offset, 0,
8193 					 root_objectid, owner, offset,
8194 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8195 					 NULL);
8196 	return ret;
8197 }
8198 
8199 /*
8200  * this is used by the tree logging recovery code.  It records that
8201  * an extent has been allocated and makes sure to clear the free
8202  * space cache bits as well
8203  */
8204 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8205 				   struct btrfs_root *root,
8206 				   u64 root_objectid, u64 owner, u64 offset,
8207 				   struct btrfs_key *ins)
8208 {
8209 	int ret;
8210 	struct btrfs_block_group_cache *block_group;
8211 
8212 	/*
8213 	 * Mixed block groups will exclude before processing the log so we only
8214 	 * need to do the exclude dance if this fs isn't mixed.
8215 	 */
8216 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8217 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8218 		if (ret)
8219 			return ret;
8220 	}
8221 
8222 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8223 	if (!block_group)
8224 		return -EINVAL;
8225 
8226 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8227 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
8228 	BUG_ON(ret); /* logic error */
8229 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8230 					 0, owner, offset, ins, 1);
8231 	btrfs_put_block_group(block_group);
8232 	return ret;
8233 }
8234 
8235 static struct extent_buffer *
8236 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8237 		      u64 bytenr, int level)
8238 {
8239 	struct extent_buffer *buf;
8240 
8241 	buf = btrfs_find_create_tree_block(root, bytenr);
8242 	if (IS_ERR(buf))
8243 		return buf;
8244 
8245 	btrfs_set_header_generation(buf, trans->transid);
8246 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8247 	btrfs_tree_lock(buf);
8248 	clean_tree_block(trans, root->fs_info, buf);
8249 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8250 
8251 	btrfs_set_lock_blocking(buf);
8252 	set_extent_buffer_uptodate(buf);
8253 
8254 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8255 		buf->log_index = root->log_transid % 2;
8256 		/*
8257 		 * we allow two log transactions at a time, use different
8258 		 * EXENT bit to differentiate dirty pages.
8259 		 */
8260 		if (buf->log_index == 0)
8261 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8262 					buf->start + buf->len - 1, GFP_NOFS);
8263 		else
8264 			set_extent_new(&root->dirty_log_pages, buf->start,
8265 					buf->start + buf->len - 1);
8266 	} else {
8267 		buf->log_index = -1;
8268 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8269 			 buf->start + buf->len - 1, GFP_NOFS);
8270 	}
8271 	trans->dirty = true;
8272 	/* this returns a buffer locked for blocking */
8273 	return buf;
8274 }
8275 
8276 static struct btrfs_block_rsv *
8277 use_block_rsv(struct btrfs_trans_handle *trans,
8278 	      struct btrfs_root *root, u32 blocksize)
8279 {
8280 	struct btrfs_block_rsv *block_rsv;
8281 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8282 	int ret;
8283 	bool global_updated = false;
8284 
8285 	block_rsv = get_block_rsv(trans, root);
8286 
8287 	if (unlikely(block_rsv->size == 0))
8288 		goto try_reserve;
8289 again:
8290 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8291 	if (!ret)
8292 		return block_rsv;
8293 
8294 	if (block_rsv->failfast)
8295 		return ERR_PTR(ret);
8296 
8297 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8298 		global_updated = true;
8299 		update_global_block_rsv(root->fs_info);
8300 		goto again;
8301 	}
8302 
8303 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8304 		static DEFINE_RATELIMIT_STATE(_rs,
8305 				DEFAULT_RATELIMIT_INTERVAL * 10,
8306 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8307 		if (__ratelimit(&_rs))
8308 			WARN(1, KERN_DEBUG
8309 				"BTRFS: block rsv returned %d\n", ret);
8310 	}
8311 try_reserve:
8312 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8313 				     BTRFS_RESERVE_NO_FLUSH);
8314 	if (!ret)
8315 		return block_rsv;
8316 	/*
8317 	 * If we couldn't reserve metadata bytes try and use some from
8318 	 * the global reserve if its space type is the same as the global
8319 	 * reservation.
8320 	 */
8321 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8322 	    block_rsv->space_info == global_rsv->space_info) {
8323 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8324 		if (!ret)
8325 			return global_rsv;
8326 	}
8327 	return ERR_PTR(ret);
8328 }
8329 
8330 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8331 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8332 {
8333 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8334 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8335 }
8336 
8337 /*
8338  * finds a free extent and does all the dirty work required for allocation
8339  * returns the tree buffer or an ERR_PTR on error.
8340  */
8341 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8342 					struct btrfs_root *root,
8343 					u64 parent, u64 root_objectid,
8344 					struct btrfs_disk_key *key, int level,
8345 					u64 hint, u64 empty_size)
8346 {
8347 	struct btrfs_key ins;
8348 	struct btrfs_block_rsv *block_rsv;
8349 	struct extent_buffer *buf;
8350 	struct btrfs_delayed_extent_op *extent_op;
8351 	u64 flags = 0;
8352 	int ret;
8353 	u32 blocksize = root->nodesize;
8354 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8355 						 SKINNY_METADATA);
8356 
8357 	if (btrfs_test_is_dummy_root(root)) {
8358 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8359 					    level);
8360 		if (!IS_ERR(buf))
8361 			root->alloc_bytenr += blocksize;
8362 		return buf;
8363 	}
8364 
8365 	block_rsv = use_block_rsv(trans, root, blocksize);
8366 	if (IS_ERR(block_rsv))
8367 		return ERR_CAST(block_rsv);
8368 
8369 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
8370 				   empty_size, hint, &ins, 0, 0);
8371 	if (ret)
8372 		goto out_unuse;
8373 
8374 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8375 	if (IS_ERR(buf)) {
8376 		ret = PTR_ERR(buf);
8377 		goto out_free_reserved;
8378 	}
8379 
8380 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8381 		if (parent == 0)
8382 			parent = ins.objectid;
8383 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8384 	} else
8385 		BUG_ON(parent > 0);
8386 
8387 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8388 		extent_op = btrfs_alloc_delayed_extent_op();
8389 		if (!extent_op) {
8390 			ret = -ENOMEM;
8391 			goto out_free_buf;
8392 		}
8393 		if (key)
8394 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8395 		else
8396 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8397 		extent_op->flags_to_set = flags;
8398 		extent_op->update_key = skinny_metadata ? false : true;
8399 		extent_op->update_flags = true;
8400 		extent_op->is_data = false;
8401 		extent_op->level = level;
8402 
8403 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8404 						 ins.objectid, ins.offset,
8405 						 parent, root_objectid, level,
8406 						 BTRFS_ADD_DELAYED_EXTENT,
8407 						 extent_op);
8408 		if (ret)
8409 			goto out_free_delayed;
8410 	}
8411 	return buf;
8412 
8413 out_free_delayed:
8414 	btrfs_free_delayed_extent_op(extent_op);
8415 out_free_buf:
8416 	free_extent_buffer(buf);
8417 out_free_reserved:
8418 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8419 out_unuse:
8420 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8421 	return ERR_PTR(ret);
8422 }
8423 
8424 struct walk_control {
8425 	u64 refs[BTRFS_MAX_LEVEL];
8426 	u64 flags[BTRFS_MAX_LEVEL];
8427 	struct btrfs_key update_progress;
8428 	int stage;
8429 	int level;
8430 	int shared_level;
8431 	int update_ref;
8432 	int keep_locks;
8433 	int reada_slot;
8434 	int reada_count;
8435 	int for_reloc;
8436 };
8437 
8438 #define DROP_REFERENCE	1
8439 #define UPDATE_BACKREF	2
8440 
8441 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8442 				     struct btrfs_root *root,
8443 				     struct walk_control *wc,
8444 				     struct btrfs_path *path)
8445 {
8446 	u64 bytenr;
8447 	u64 generation;
8448 	u64 refs;
8449 	u64 flags;
8450 	u32 nritems;
8451 	u32 blocksize;
8452 	struct btrfs_key key;
8453 	struct extent_buffer *eb;
8454 	int ret;
8455 	int slot;
8456 	int nread = 0;
8457 
8458 	if (path->slots[wc->level] < wc->reada_slot) {
8459 		wc->reada_count = wc->reada_count * 2 / 3;
8460 		wc->reada_count = max(wc->reada_count, 2);
8461 	} else {
8462 		wc->reada_count = wc->reada_count * 3 / 2;
8463 		wc->reada_count = min_t(int, wc->reada_count,
8464 					BTRFS_NODEPTRS_PER_BLOCK(root));
8465 	}
8466 
8467 	eb = path->nodes[wc->level];
8468 	nritems = btrfs_header_nritems(eb);
8469 	blocksize = root->nodesize;
8470 
8471 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8472 		if (nread >= wc->reada_count)
8473 			break;
8474 
8475 		cond_resched();
8476 		bytenr = btrfs_node_blockptr(eb, slot);
8477 		generation = btrfs_node_ptr_generation(eb, slot);
8478 
8479 		if (slot == path->slots[wc->level])
8480 			goto reada;
8481 
8482 		if (wc->stage == UPDATE_BACKREF &&
8483 		    generation <= root->root_key.offset)
8484 			continue;
8485 
8486 		/* We don't lock the tree block, it's OK to be racy here */
8487 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8488 					       wc->level - 1, 1, &refs,
8489 					       &flags);
8490 		/* We don't care about errors in readahead. */
8491 		if (ret < 0)
8492 			continue;
8493 		BUG_ON(refs == 0);
8494 
8495 		if (wc->stage == DROP_REFERENCE) {
8496 			if (refs == 1)
8497 				goto reada;
8498 
8499 			if (wc->level == 1 &&
8500 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8501 				continue;
8502 			if (!wc->update_ref ||
8503 			    generation <= root->root_key.offset)
8504 				continue;
8505 			btrfs_node_key_to_cpu(eb, &key, slot);
8506 			ret = btrfs_comp_cpu_keys(&key,
8507 						  &wc->update_progress);
8508 			if (ret < 0)
8509 				continue;
8510 		} else {
8511 			if (wc->level == 1 &&
8512 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8513 				continue;
8514 		}
8515 reada:
8516 		readahead_tree_block(root, bytenr);
8517 		nread++;
8518 	}
8519 	wc->reada_slot = slot;
8520 }
8521 
8522 /*
8523  * These may not be seen by the usual inc/dec ref code so we have to
8524  * add them here.
8525  */
8526 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8527 				     struct btrfs_root *root, u64 bytenr,
8528 				     u64 num_bytes)
8529 {
8530 	struct btrfs_qgroup_extent_record *qrecord;
8531 	struct btrfs_delayed_ref_root *delayed_refs;
8532 
8533 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8534 	if (!qrecord)
8535 		return -ENOMEM;
8536 
8537 	qrecord->bytenr = bytenr;
8538 	qrecord->num_bytes = num_bytes;
8539 	qrecord->old_roots = NULL;
8540 
8541 	delayed_refs = &trans->transaction->delayed_refs;
8542 	spin_lock(&delayed_refs->lock);
8543 	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8544 		kfree(qrecord);
8545 	spin_unlock(&delayed_refs->lock);
8546 
8547 	return 0;
8548 }
8549 
8550 static int account_leaf_items(struct btrfs_trans_handle *trans,
8551 			      struct btrfs_root *root,
8552 			      struct extent_buffer *eb)
8553 {
8554 	int nr = btrfs_header_nritems(eb);
8555 	int i, extent_type, ret;
8556 	struct btrfs_key key;
8557 	struct btrfs_file_extent_item *fi;
8558 	u64 bytenr, num_bytes;
8559 
8560 	/* We can be called directly from walk_up_proc() */
8561 	if (!root->fs_info->quota_enabled)
8562 		return 0;
8563 
8564 	for (i = 0; i < nr; i++) {
8565 		btrfs_item_key_to_cpu(eb, &key, i);
8566 
8567 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8568 			continue;
8569 
8570 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8571 		/* filter out non qgroup-accountable extents  */
8572 		extent_type = btrfs_file_extent_type(eb, fi);
8573 
8574 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8575 			continue;
8576 
8577 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8578 		if (!bytenr)
8579 			continue;
8580 
8581 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8582 
8583 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8584 		if (ret)
8585 			return ret;
8586 	}
8587 	return 0;
8588 }
8589 
8590 /*
8591  * Walk up the tree from the bottom, freeing leaves and any interior
8592  * nodes which have had all slots visited. If a node (leaf or
8593  * interior) is freed, the node above it will have it's slot
8594  * incremented. The root node will never be freed.
8595  *
8596  * At the end of this function, we should have a path which has all
8597  * slots incremented to the next position for a search. If we need to
8598  * read a new node it will be NULL and the node above it will have the
8599  * correct slot selected for a later read.
8600  *
8601  * If we increment the root nodes slot counter past the number of
8602  * elements, 1 is returned to signal completion of the search.
8603  */
8604 static int adjust_slots_upwards(struct btrfs_root *root,
8605 				struct btrfs_path *path, int root_level)
8606 {
8607 	int level = 0;
8608 	int nr, slot;
8609 	struct extent_buffer *eb;
8610 
8611 	if (root_level == 0)
8612 		return 1;
8613 
8614 	while (level <= root_level) {
8615 		eb = path->nodes[level];
8616 		nr = btrfs_header_nritems(eb);
8617 		path->slots[level]++;
8618 		slot = path->slots[level];
8619 		if (slot >= nr || level == 0) {
8620 			/*
8621 			 * Don't free the root -  we will detect this
8622 			 * condition after our loop and return a
8623 			 * positive value for caller to stop walking the tree.
8624 			 */
8625 			if (level != root_level) {
8626 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8627 				path->locks[level] = 0;
8628 
8629 				free_extent_buffer(eb);
8630 				path->nodes[level] = NULL;
8631 				path->slots[level] = 0;
8632 			}
8633 		} else {
8634 			/*
8635 			 * We have a valid slot to walk back down
8636 			 * from. Stop here so caller can process these
8637 			 * new nodes.
8638 			 */
8639 			break;
8640 		}
8641 
8642 		level++;
8643 	}
8644 
8645 	eb = path->nodes[root_level];
8646 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8647 		return 1;
8648 
8649 	return 0;
8650 }
8651 
8652 /*
8653  * root_eb is the subtree root and is locked before this function is called.
8654  */
8655 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8656 				  struct btrfs_root *root,
8657 				  struct extent_buffer *root_eb,
8658 				  u64 root_gen,
8659 				  int root_level)
8660 {
8661 	int ret = 0;
8662 	int level;
8663 	struct extent_buffer *eb = root_eb;
8664 	struct btrfs_path *path = NULL;
8665 
8666 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8667 	BUG_ON(root_eb == NULL);
8668 
8669 	if (!root->fs_info->quota_enabled)
8670 		return 0;
8671 
8672 	if (!extent_buffer_uptodate(root_eb)) {
8673 		ret = btrfs_read_buffer(root_eb, root_gen);
8674 		if (ret)
8675 			goto out;
8676 	}
8677 
8678 	if (root_level == 0) {
8679 		ret = account_leaf_items(trans, root, root_eb);
8680 		goto out;
8681 	}
8682 
8683 	path = btrfs_alloc_path();
8684 	if (!path)
8685 		return -ENOMEM;
8686 
8687 	/*
8688 	 * Walk down the tree.  Missing extent blocks are filled in as
8689 	 * we go. Metadata is accounted every time we read a new
8690 	 * extent block.
8691 	 *
8692 	 * When we reach a leaf, we account for file extent items in it,
8693 	 * walk back up the tree (adjusting slot pointers as we go)
8694 	 * and restart the search process.
8695 	 */
8696 	extent_buffer_get(root_eb); /* For path */
8697 	path->nodes[root_level] = root_eb;
8698 	path->slots[root_level] = 0;
8699 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8700 walk_down:
8701 	level = root_level;
8702 	while (level >= 0) {
8703 		if (path->nodes[level] == NULL) {
8704 			int parent_slot;
8705 			u64 child_gen;
8706 			u64 child_bytenr;
8707 
8708 			/* We need to get child blockptr/gen from
8709 			 * parent before we can read it. */
8710 			eb = path->nodes[level + 1];
8711 			parent_slot = path->slots[level + 1];
8712 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8713 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8714 
8715 			eb = read_tree_block(root, child_bytenr, child_gen);
8716 			if (IS_ERR(eb)) {
8717 				ret = PTR_ERR(eb);
8718 				goto out;
8719 			} else if (!extent_buffer_uptodate(eb)) {
8720 				free_extent_buffer(eb);
8721 				ret = -EIO;
8722 				goto out;
8723 			}
8724 
8725 			path->nodes[level] = eb;
8726 			path->slots[level] = 0;
8727 
8728 			btrfs_tree_read_lock(eb);
8729 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8730 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8731 
8732 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8733 							root->nodesize);
8734 			if (ret)
8735 				goto out;
8736 		}
8737 
8738 		if (level == 0) {
8739 			ret = account_leaf_items(trans, root, path->nodes[level]);
8740 			if (ret)
8741 				goto out;
8742 
8743 			/* Nonzero return here means we completed our search */
8744 			ret = adjust_slots_upwards(root, path, root_level);
8745 			if (ret)
8746 				break;
8747 
8748 			/* Restart search with new slots */
8749 			goto walk_down;
8750 		}
8751 
8752 		level--;
8753 	}
8754 
8755 	ret = 0;
8756 out:
8757 	btrfs_free_path(path);
8758 
8759 	return ret;
8760 }
8761 
8762 /*
8763  * helper to process tree block while walking down the tree.
8764  *
8765  * when wc->stage == UPDATE_BACKREF, this function updates
8766  * back refs for pointers in the block.
8767  *
8768  * NOTE: return value 1 means we should stop walking down.
8769  */
8770 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8771 				   struct btrfs_root *root,
8772 				   struct btrfs_path *path,
8773 				   struct walk_control *wc, int lookup_info)
8774 {
8775 	int level = wc->level;
8776 	struct extent_buffer *eb = path->nodes[level];
8777 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8778 	int ret;
8779 
8780 	if (wc->stage == UPDATE_BACKREF &&
8781 	    btrfs_header_owner(eb) != root->root_key.objectid)
8782 		return 1;
8783 
8784 	/*
8785 	 * when reference count of tree block is 1, it won't increase
8786 	 * again. once full backref flag is set, we never clear it.
8787 	 */
8788 	if (lookup_info &&
8789 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8790 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8791 		BUG_ON(!path->locks[level]);
8792 		ret = btrfs_lookup_extent_info(trans, root,
8793 					       eb->start, level, 1,
8794 					       &wc->refs[level],
8795 					       &wc->flags[level]);
8796 		BUG_ON(ret == -ENOMEM);
8797 		if (ret)
8798 			return ret;
8799 		BUG_ON(wc->refs[level] == 0);
8800 	}
8801 
8802 	if (wc->stage == DROP_REFERENCE) {
8803 		if (wc->refs[level] > 1)
8804 			return 1;
8805 
8806 		if (path->locks[level] && !wc->keep_locks) {
8807 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8808 			path->locks[level] = 0;
8809 		}
8810 		return 0;
8811 	}
8812 
8813 	/* wc->stage == UPDATE_BACKREF */
8814 	if (!(wc->flags[level] & flag)) {
8815 		BUG_ON(!path->locks[level]);
8816 		ret = btrfs_inc_ref(trans, root, eb, 1);
8817 		BUG_ON(ret); /* -ENOMEM */
8818 		ret = btrfs_dec_ref(trans, root, eb, 0);
8819 		BUG_ON(ret); /* -ENOMEM */
8820 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8821 						  eb->len, flag,
8822 						  btrfs_header_level(eb), 0);
8823 		BUG_ON(ret); /* -ENOMEM */
8824 		wc->flags[level] |= flag;
8825 	}
8826 
8827 	/*
8828 	 * the block is shared by multiple trees, so it's not good to
8829 	 * keep the tree lock
8830 	 */
8831 	if (path->locks[level] && level > 0) {
8832 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8833 		path->locks[level] = 0;
8834 	}
8835 	return 0;
8836 }
8837 
8838 /*
8839  * helper to process tree block pointer.
8840  *
8841  * when wc->stage == DROP_REFERENCE, this function checks
8842  * reference count of the block pointed to. if the block
8843  * is shared and we need update back refs for the subtree
8844  * rooted at the block, this function changes wc->stage to
8845  * UPDATE_BACKREF. if the block is shared and there is no
8846  * need to update back, this function drops the reference
8847  * to the block.
8848  *
8849  * NOTE: return value 1 means we should stop walking down.
8850  */
8851 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8852 				 struct btrfs_root *root,
8853 				 struct btrfs_path *path,
8854 				 struct walk_control *wc, int *lookup_info)
8855 {
8856 	u64 bytenr;
8857 	u64 generation;
8858 	u64 parent;
8859 	u32 blocksize;
8860 	struct btrfs_key key;
8861 	struct extent_buffer *next;
8862 	int level = wc->level;
8863 	int reada = 0;
8864 	int ret = 0;
8865 	bool need_account = false;
8866 
8867 	generation = btrfs_node_ptr_generation(path->nodes[level],
8868 					       path->slots[level]);
8869 	/*
8870 	 * if the lower level block was created before the snapshot
8871 	 * was created, we know there is no need to update back refs
8872 	 * for the subtree
8873 	 */
8874 	if (wc->stage == UPDATE_BACKREF &&
8875 	    generation <= root->root_key.offset) {
8876 		*lookup_info = 1;
8877 		return 1;
8878 	}
8879 
8880 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8881 	blocksize = root->nodesize;
8882 
8883 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8884 	if (!next) {
8885 		next = btrfs_find_create_tree_block(root, bytenr);
8886 		if (IS_ERR(next))
8887 			return PTR_ERR(next);
8888 
8889 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8890 					       level - 1);
8891 		reada = 1;
8892 	}
8893 	btrfs_tree_lock(next);
8894 	btrfs_set_lock_blocking(next);
8895 
8896 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8897 				       &wc->refs[level - 1],
8898 				       &wc->flags[level - 1]);
8899 	if (ret < 0) {
8900 		btrfs_tree_unlock(next);
8901 		return ret;
8902 	}
8903 
8904 	if (unlikely(wc->refs[level - 1] == 0)) {
8905 		btrfs_err(root->fs_info, "Missing references.");
8906 		BUG();
8907 	}
8908 	*lookup_info = 0;
8909 
8910 	if (wc->stage == DROP_REFERENCE) {
8911 		if (wc->refs[level - 1] > 1) {
8912 			need_account = true;
8913 			if (level == 1 &&
8914 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8915 				goto skip;
8916 
8917 			if (!wc->update_ref ||
8918 			    generation <= root->root_key.offset)
8919 				goto skip;
8920 
8921 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8922 					      path->slots[level]);
8923 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8924 			if (ret < 0)
8925 				goto skip;
8926 
8927 			wc->stage = UPDATE_BACKREF;
8928 			wc->shared_level = level - 1;
8929 		}
8930 	} else {
8931 		if (level == 1 &&
8932 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8933 			goto skip;
8934 	}
8935 
8936 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8937 		btrfs_tree_unlock(next);
8938 		free_extent_buffer(next);
8939 		next = NULL;
8940 		*lookup_info = 1;
8941 	}
8942 
8943 	if (!next) {
8944 		if (reada && level == 1)
8945 			reada_walk_down(trans, root, wc, path);
8946 		next = read_tree_block(root, bytenr, generation);
8947 		if (IS_ERR(next)) {
8948 			return PTR_ERR(next);
8949 		} else if (!extent_buffer_uptodate(next)) {
8950 			free_extent_buffer(next);
8951 			return -EIO;
8952 		}
8953 		btrfs_tree_lock(next);
8954 		btrfs_set_lock_blocking(next);
8955 	}
8956 
8957 	level--;
8958 	BUG_ON(level != btrfs_header_level(next));
8959 	path->nodes[level] = next;
8960 	path->slots[level] = 0;
8961 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8962 	wc->level = level;
8963 	if (wc->level == 1)
8964 		wc->reada_slot = 0;
8965 	return 0;
8966 skip:
8967 	wc->refs[level - 1] = 0;
8968 	wc->flags[level - 1] = 0;
8969 	if (wc->stage == DROP_REFERENCE) {
8970 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8971 			parent = path->nodes[level]->start;
8972 		} else {
8973 			BUG_ON(root->root_key.objectid !=
8974 			       btrfs_header_owner(path->nodes[level]));
8975 			parent = 0;
8976 		}
8977 
8978 		if (need_account) {
8979 			ret = account_shared_subtree(trans, root, next,
8980 						     generation, level - 1);
8981 			if (ret) {
8982 				btrfs_err_rl(root->fs_info,
8983 					"Error "
8984 					"%d accounting shared subtree. Quota "
8985 					"is out of sync, rescan required.",
8986 					ret);
8987 			}
8988 		}
8989 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8990 				root->root_key.objectid, level - 1, 0);
8991 		BUG_ON(ret); /* -ENOMEM */
8992 	}
8993 	btrfs_tree_unlock(next);
8994 	free_extent_buffer(next);
8995 	*lookup_info = 1;
8996 	return 1;
8997 }
8998 
8999 /*
9000  * helper to process tree block while walking up the tree.
9001  *
9002  * when wc->stage == DROP_REFERENCE, this function drops
9003  * reference count on the block.
9004  *
9005  * when wc->stage == UPDATE_BACKREF, this function changes
9006  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9007  * to UPDATE_BACKREF previously while processing the block.
9008  *
9009  * NOTE: return value 1 means we should stop walking up.
9010  */
9011 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9012 				 struct btrfs_root *root,
9013 				 struct btrfs_path *path,
9014 				 struct walk_control *wc)
9015 {
9016 	int ret;
9017 	int level = wc->level;
9018 	struct extent_buffer *eb = path->nodes[level];
9019 	u64 parent = 0;
9020 
9021 	if (wc->stage == UPDATE_BACKREF) {
9022 		BUG_ON(wc->shared_level < level);
9023 		if (level < wc->shared_level)
9024 			goto out;
9025 
9026 		ret = find_next_key(path, level + 1, &wc->update_progress);
9027 		if (ret > 0)
9028 			wc->update_ref = 0;
9029 
9030 		wc->stage = DROP_REFERENCE;
9031 		wc->shared_level = -1;
9032 		path->slots[level] = 0;
9033 
9034 		/*
9035 		 * check reference count again if the block isn't locked.
9036 		 * we should start walking down the tree again if reference
9037 		 * count is one.
9038 		 */
9039 		if (!path->locks[level]) {
9040 			BUG_ON(level == 0);
9041 			btrfs_tree_lock(eb);
9042 			btrfs_set_lock_blocking(eb);
9043 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9044 
9045 			ret = btrfs_lookup_extent_info(trans, root,
9046 						       eb->start, level, 1,
9047 						       &wc->refs[level],
9048 						       &wc->flags[level]);
9049 			if (ret < 0) {
9050 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9051 				path->locks[level] = 0;
9052 				return ret;
9053 			}
9054 			BUG_ON(wc->refs[level] == 0);
9055 			if (wc->refs[level] == 1) {
9056 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9057 				path->locks[level] = 0;
9058 				return 1;
9059 			}
9060 		}
9061 	}
9062 
9063 	/* wc->stage == DROP_REFERENCE */
9064 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9065 
9066 	if (wc->refs[level] == 1) {
9067 		if (level == 0) {
9068 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9069 				ret = btrfs_dec_ref(trans, root, eb, 1);
9070 			else
9071 				ret = btrfs_dec_ref(trans, root, eb, 0);
9072 			BUG_ON(ret); /* -ENOMEM */
9073 			ret = account_leaf_items(trans, root, eb);
9074 			if (ret) {
9075 				btrfs_err_rl(root->fs_info,
9076 					"error "
9077 					"%d accounting leaf items. Quota "
9078 					"is out of sync, rescan required.",
9079 					ret);
9080 			}
9081 		}
9082 		/* make block locked assertion in clean_tree_block happy */
9083 		if (!path->locks[level] &&
9084 		    btrfs_header_generation(eb) == trans->transid) {
9085 			btrfs_tree_lock(eb);
9086 			btrfs_set_lock_blocking(eb);
9087 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9088 		}
9089 		clean_tree_block(trans, root->fs_info, eb);
9090 	}
9091 
9092 	if (eb == root->node) {
9093 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9094 			parent = eb->start;
9095 		else
9096 			BUG_ON(root->root_key.objectid !=
9097 			       btrfs_header_owner(eb));
9098 	} else {
9099 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9100 			parent = path->nodes[level + 1]->start;
9101 		else
9102 			BUG_ON(root->root_key.objectid !=
9103 			       btrfs_header_owner(path->nodes[level + 1]));
9104 	}
9105 
9106 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9107 out:
9108 	wc->refs[level] = 0;
9109 	wc->flags[level] = 0;
9110 	return 0;
9111 }
9112 
9113 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9114 				   struct btrfs_root *root,
9115 				   struct btrfs_path *path,
9116 				   struct walk_control *wc)
9117 {
9118 	int level = wc->level;
9119 	int lookup_info = 1;
9120 	int ret;
9121 
9122 	while (level >= 0) {
9123 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9124 		if (ret > 0)
9125 			break;
9126 
9127 		if (level == 0)
9128 			break;
9129 
9130 		if (path->slots[level] >=
9131 		    btrfs_header_nritems(path->nodes[level]))
9132 			break;
9133 
9134 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9135 		if (ret > 0) {
9136 			path->slots[level]++;
9137 			continue;
9138 		} else if (ret < 0)
9139 			return ret;
9140 		level = wc->level;
9141 	}
9142 	return 0;
9143 }
9144 
9145 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9146 				 struct btrfs_root *root,
9147 				 struct btrfs_path *path,
9148 				 struct walk_control *wc, int max_level)
9149 {
9150 	int level = wc->level;
9151 	int ret;
9152 
9153 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9154 	while (level < max_level && path->nodes[level]) {
9155 		wc->level = level;
9156 		if (path->slots[level] + 1 <
9157 		    btrfs_header_nritems(path->nodes[level])) {
9158 			path->slots[level]++;
9159 			return 0;
9160 		} else {
9161 			ret = walk_up_proc(trans, root, path, wc);
9162 			if (ret > 0)
9163 				return 0;
9164 
9165 			if (path->locks[level]) {
9166 				btrfs_tree_unlock_rw(path->nodes[level],
9167 						     path->locks[level]);
9168 				path->locks[level] = 0;
9169 			}
9170 			free_extent_buffer(path->nodes[level]);
9171 			path->nodes[level] = NULL;
9172 			level++;
9173 		}
9174 	}
9175 	return 1;
9176 }
9177 
9178 /*
9179  * drop a subvolume tree.
9180  *
9181  * this function traverses the tree freeing any blocks that only
9182  * referenced by the tree.
9183  *
9184  * when a shared tree block is found. this function decreases its
9185  * reference count by one. if update_ref is true, this function
9186  * also make sure backrefs for the shared block and all lower level
9187  * blocks are properly updated.
9188  *
9189  * If called with for_reloc == 0, may exit early with -EAGAIN
9190  */
9191 int btrfs_drop_snapshot(struct btrfs_root *root,
9192 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9193 			 int for_reloc)
9194 {
9195 	struct btrfs_path *path;
9196 	struct btrfs_trans_handle *trans;
9197 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9198 	struct btrfs_root_item *root_item = &root->root_item;
9199 	struct walk_control *wc;
9200 	struct btrfs_key key;
9201 	int err = 0;
9202 	int ret;
9203 	int level;
9204 	bool root_dropped = false;
9205 
9206 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9207 
9208 	path = btrfs_alloc_path();
9209 	if (!path) {
9210 		err = -ENOMEM;
9211 		goto out;
9212 	}
9213 
9214 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9215 	if (!wc) {
9216 		btrfs_free_path(path);
9217 		err = -ENOMEM;
9218 		goto out;
9219 	}
9220 
9221 	trans = btrfs_start_transaction(tree_root, 0);
9222 	if (IS_ERR(trans)) {
9223 		err = PTR_ERR(trans);
9224 		goto out_free;
9225 	}
9226 
9227 	if (block_rsv)
9228 		trans->block_rsv = block_rsv;
9229 
9230 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9231 		level = btrfs_header_level(root->node);
9232 		path->nodes[level] = btrfs_lock_root_node(root);
9233 		btrfs_set_lock_blocking(path->nodes[level]);
9234 		path->slots[level] = 0;
9235 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9236 		memset(&wc->update_progress, 0,
9237 		       sizeof(wc->update_progress));
9238 	} else {
9239 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9240 		memcpy(&wc->update_progress, &key,
9241 		       sizeof(wc->update_progress));
9242 
9243 		level = root_item->drop_level;
9244 		BUG_ON(level == 0);
9245 		path->lowest_level = level;
9246 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9247 		path->lowest_level = 0;
9248 		if (ret < 0) {
9249 			err = ret;
9250 			goto out_end_trans;
9251 		}
9252 		WARN_ON(ret > 0);
9253 
9254 		/*
9255 		 * unlock our path, this is safe because only this
9256 		 * function is allowed to delete this snapshot
9257 		 */
9258 		btrfs_unlock_up_safe(path, 0);
9259 
9260 		level = btrfs_header_level(root->node);
9261 		while (1) {
9262 			btrfs_tree_lock(path->nodes[level]);
9263 			btrfs_set_lock_blocking(path->nodes[level]);
9264 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9265 
9266 			ret = btrfs_lookup_extent_info(trans, root,
9267 						path->nodes[level]->start,
9268 						level, 1, &wc->refs[level],
9269 						&wc->flags[level]);
9270 			if (ret < 0) {
9271 				err = ret;
9272 				goto out_end_trans;
9273 			}
9274 			BUG_ON(wc->refs[level] == 0);
9275 
9276 			if (level == root_item->drop_level)
9277 				break;
9278 
9279 			btrfs_tree_unlock(path->nodes[level]);
9280 			path->locks[level] = 0;
9281 			WARN_ON(wc->refs[level] != 1);
9282 			level--;
9283 		}
9284 	}
9285 
9286 	wc->level = level;
9287 	wc->shared_level = -1;
9288 	wc->stage = DROP_REFERENCE;
9289 	wc->update_ref = update_ref;
9290 	wc->keep_locks = 0;
9291 	wc->for_reloc = for_reloc;
9292 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9293 
9294 	while (1) {
9295 
9296 		ret = walk_down_tree(trans, root, path, wc);
9297 		if (ret < 0) {
9298 			err = ret;
9299 			break;
9300 		}
9301 
9302 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9303 		if (ret < 0) {
9304 			err = ret;
9305 			break;
9306 		}
9307 
9308 		if (ret > 0) {
9309 			BUG_ON(wc->stage != DROP_REFERENCE);
9310 			break;
9311 		}
9312 
9313 		if (wc->stage == DROP_REFERENCE) {
9314 			level = wc->level;
9315 			btrfs_node_key(path->nodes[level],
9316 				       &root_item->drop_progress,
9317 				       path->slots[level]);
9318 			root_item->drop_level = level;
9319 		}
9320 
9321 		BUG_ON(wc->level == 0);
9322 		if (btrfs_should_end_transaction(trans, tree_root) ||
9323 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9324 			ret = btrfs_update_root(trans, tree_root,
9325 						&root->root_key,
9326 						root_item);
9327 			if (ret) {
9328 				btrfs_abort_transaction(trans, tree_root, ret);
9329 				err = ret;
9330 				goto out_end_trans;
9331 			}
9332 
9333 			btrfs_end_transaction_throttle(trans, tree_root);
9334 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9335 				pr_debug("BTRFS: drop snapshot early exit\n");
9336 				err = -EAGAIN;
9337 				goto out_free;
9338 			}
9339 
9340 			trans = btrfs_start_transaction(tree_root, 0);
9341 			if (IS_ERR(trans)) {
9342 				err = PTR_ERR(trans);
9343 				goto out_free;
9344 			}
9345 			if (block_rsv)
9346 				trans->block_rsv = block_rsv;
9347 		}
9348 	}
9349 	btrfs_release_path(path);
9350 	if (err)
9351 		goto out_end_trans;
9352 
9353 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9354 	if (ret) {
9355 		btrfs_abort_transaction(trans, tree_root, ret);
9356 		goto out_end_trans;
9357 	}
9358 
9359 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9360 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9361 				      NULL, NULL);
9362 		if (ret < 0) {
9363 			btrfs_abort_transaction(trans, tree_root, ret);
9364 			err = ret;
9365 			goto out_end_trans;
9366 		} else if (ret > 0) {
9367 			/* if we fail to delete the orphan item this time
9368 			 * around, it'll get picked up the next time.
9369 			 *
9370 			 * The most common failure here is just -ENOENT.
9371 			 */
9372 			btrfs_del_orphan_item(trans, tree_root,
9373 					      root->root_key.objectid);
9374 		}
9375 	}
9376 
9377 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9378 		btrfs_add_dropped_root(trans, root);
9379 	} else {
9380 		free_extent_buffer(root->node);
9381 		free_extent_buffer(root->commit_root);
9382 		btrfs_put_fs_root(root);
9383 	}
9384 	root_dropped = true;
9385 out_end_trans:
9386 	btrfs_end_transaction_throttle(trans, tree_root);
9387 out_free:
9388 	kfree(wc);
9389 	btrfs_free_path(path);
9390 out:
9391 	/*
9392 	 * So if we need to stop dropping the snapshot for whatever reason we
9393 	 * need to make sure to add it back to the dead root list so that we
9394 	 * keep trying to do the work later.  This also cleans up roots if we
9395 	 * don't have it in the radix (like when we recover after a power fail
9396 	 * or unmount) so we don't leak memory.
9397 	 */
9398 	if (!for_reloc && root_dropped == false)
9399 		btrfs_add_dead_root(root);
9400 	if (err && err != -EAGAIN)
9401 		btrfs_handle_fs_error(root->fs_info, err, NULL);
9402 	return err;
9403 }
9404 
9405 /*
9406  * drop subtree rooted at tree block 'node'.
9407  *
9408  * NOTE: this function will unlock and release tree block 'node'
9409  * only used by relocation code
9410  */
9411 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9412 			struct btrfs_root *root,
9413 			struct extent_buffer *node,
9414 			struct extent_buffer *parent)
9415 {
9416 	struct btrfs_path *path;
9417 	struct walk_control *wc;
9418 	int level;
9419 	int parent_level;
9420 	int ret = 0;
9421 	int wret;
9422 
9423 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9424 
9425 	path = btrfs_alloc_path();
9426 	if (!path)
9427 		return -ENOMEM;
9428 
9429 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9430 	if (!wc) {
9431 		btrfs_free_path(path);
9432 		return -ENOMEM;
9433 	}
9434 
9435 	btrfs_assert_tree_locked(parent);
9436 	parent_level = btrfs_header_level(parent);
9437 	extent_buffer_get(parent);
9438 	path->nodes[parent_level] = parent;
9439 	path->slots[parent_level] = btrfs_header_nritems(parent);
9440 
9441 	btrfs_assert_tree_locked(node);
9442 	level = btrfs_header_level(node);
9443 	path->nodes[level] = node;
9444 	path->slots[level] = 0;
9445 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9446 
9447 	wc->refs[parent_level] = 1;
9448 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9449 	wc->level = level;
9450 	wc->shared_level = -1;
9451 	wc->stage = DROP_REFERENCE;
9452 	wc->update_ref = 0;
9453 	wc->keep_locks = 1;
9454 	wc->for_reloc = 1;
9455 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9456 
9457 	while (1) {
9458 		wret = walk_down_tree(trans, root, path, wc);
9459 		if (wret < 0) {
9460 			ret = wret;
9461 			break;
9462 		}
9463 
9464 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9465 		if (wret < 0)
9466 			ret = wret;
9467 		if (wret != 0)
9468 			break;
9469 	}
9470 
9471 	kfree(wc);
9472 	btrfs_free_path(path);
9473 	return ret;
9474 }
9475 
9476 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9477 {
9478 	u64 num_devices;
9479 	u64 stripped;
9480 
9481 	/*
9482 	 * if restripe for this chunk_type is on pick target profile and
9483 	 * return, otherwise do the usual balance
9484 	 */
9485 	stripped = get_restripe_target(root->fs_info, flags);
9486 	if (stripped)
9487 		return extended_to_chunk(stripped);
9488 
9489 	num_devices = root->fs_info->fs_devices->rw_devices;
9490 
9491 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9492 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9493 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9494 
9495 	if (num_devices == 1) {
9496 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9497 		stripped = flags & ~stripped;
9498 
9499 		/* turn raid0 into single device chunks */
9500 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9501 			return stripped;
9502 
9503 		/* turn mirroring into duplication */
9504 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9505 			     BTRFS_BLOCK_GROUP_RAID10))
9506 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9507 	} else {
9508 		/* they already had raid on here, just return */
9509 		if (flags & stripped)
9510 			return flags;
9511 
9512 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9513 		stripped = flags & ~stripped;
9514 
9515 		/* switch duplicated blocks with raid1 */
9516 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9517 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9518 
9519 		/* this is drive concat, leave it alone */
9520 	}
9521 
9522 	return flags;
9523 }
9524 
9525 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9526 {
9527 	struct btrfs_space_info *sinfo = cache->space_info;
9528 	u64 num_bytes;
9529 	u64 min_allocable_bytes;
9530 	int ret = -ENOSPC;
9531 
9532 	/*
9533 	 * We need some metadata space and system metadata space for
9534 	 * allocating chunks in some corner cases until we force to set
9535 	 * it to be readonly.
9536 	 */
9537 	if ((sinfo->flags &
9538 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9539 	    !force)
9540 		min_allocable_bytes = SZ_1M;
9541 	else
9542 		min_allocable_bytes = 0;
9543 
9544 	spin_lock(&sinfo->lock);
9545 	spin_lock(&cache->lock);
9546 
9547 	if (cache->ro) {
9548 		cache->ro++;
9549 		ret = 0;
9550 		goto out;
9551 	}
9552 
9553 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9554 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9555 
9556 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9557 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9558 	    min_allocable_bytes <= sinfo->total_bytes) {
9559 		sinfo->bytes_readonly += num_bytes;
9560 		cache->ro++;
9561 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9562 		ret = 0;
9563 	}
9564 out:
9565 	spin_unlock(&cache->lock);
9566 	spin_unlock(&sinfo->lock);
9567 	return ret;
9568 }
9569 
9570 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9571 			     struct btrfs_block_group_cache *cache)
9572 
9573 {
9574 	struct btrfs_trans_handle *trans;
9575 	u64 alloc_flags;
9576 	int ret;
9577 
9578 again:
9579 	trans = btrfs_join_transaction(root);
9580 	if (IS_ERR(trans))
9581 		return PTR_ERR(trans);
9582 
9583 	/*
9584 	 * we're not allowed to set block groups readonly after the dirty
9585 	 * block groups cache has started writing.  If it already started,
9586 	 * back off and let this transaction commit
9587 	 */
9588 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9589 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9590 		u64 transid = trans->transid;
9591 
9592 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9593 		btrfs_end_transaction(trans, root);
9594 
9595 		ret = btrfs_wait_for_commit(root, transid);
9596 		if (ret)
9597 			return ret;
9598 		goto again;
9599 	}
9600 
9601 	/*
9602 	 * if we are changing raid levels, try to allocate a corresponding
9603 	 * block group with the new raid level.
9604 	 */
9605 	alloc_flags = update_block_group_flags(root, cache->flags);
9606 	if (alloc_flags != cache->flags) {
9607 		ret = do_chunk_alloc(trans, root, alloc_flags,
9608 				     CHUNK_ALLOC_FORCE);
9609 		/*
9610 		 * ENOSPC is allowed here, we may have enough space
9611 		 * already allocated at the new raid level to
9612 		 * carry on
9613 		 */
9614 		if (ret == -ENOSPC)
9615 			ret = 0;
9616 		if (ret < 0)
9617 			goto out;
9618 	}
9619 
9620 	ret = inc_block_group_ro(cache, 0);
9621 	if (!ret)
9622 		goto out;
9623 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9624 	ret = do_chunk_alloc(trans, root, alloc_flags,
9625 			     CHUNK_ALLOC_FORCE);
9626 	if (ret < 0)
9627 		goto out;
9628 	ret = inc_block_group_ro(cache, 0);
9629 out:
9630 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9631 		alloc_flags = update_block_group_flags(root, cache->flags);
9632 		lock_chunks(root->fs_info->chunk_root);
9633 		check_system_chunk(trans, root, alloc_flags);
9634 		unlock_chunks(root->fs_info->chunk_root);
9635 	}
9636 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9637 
9638 	btrfs_end_transaction(trans, root);
9639 	return ret;
9640 }
9641 
9642 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9643 			    struct btrfs_root *root, u64 type)
9644 {
9645 	u64 alloc_flags = get_alloc_profile(root, type);
9646 	return do_chunk_alloc(trans, root, alloc_flags,
9647 			      CHUNK_ALLOC_FORCE);
9648 }
9649 
9650 /*
9651  * helper to account the unused space of all the readonly block group in the
9652  * space_info. takes mirrors into account.
9653  */
9654 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9655 {
9656 	struct btrfs_block_group_cache *block_group;
9657 	u64 free_bytes = 0;
9658 	int factor;
9659 
9660 	/* It's df, we don't care if it's racy */
9661 	if (list_empty(&sinfo->ro_bgs))
9662 		return 0;
9663 
9664 	spin_lock(&sinfo->lock);
9665 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9666 		spin_lock(&block_group->lock);
9667 
9668 		if (!block_group->ro) {
9669 			spin_unlock(&block_group->lock);
9670 			continue;
9671 		}
9672 
9673 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9674 					  BTRFS_BLOCK_GROUP_RAID10 |
9675 					  BTRFS_BLOCK_GROUP_DUP))
9676 			factor = 2;
9677 		else
9678 			factor = 1;
9679 
9680 		free_bytes += (block_group->key.offset -
9681 			       btrfs_block_group_used(&block_group->item)) *
9682 			       factor;
9683 
9684 		spin_unlock(&block_group->lock);
9685 	}
9686 	spin_unlock(&sinfo->lock);
9687 
9688 	return free_bytes;
9689 }
9690 
9691 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9692 			      struct btrfs_block_group_cache *cache)
9693 {
9694 	struct btrfs_space_info *sinfo = cache->space_info;
9695 	u64 num_bytes;
9696 
9697 	BUG_ON(!cache->ro);
9698 
9699 	spin_lock(&sinfo->lock);
9700 	spin_lock(&cache->lock);
9701 	if (!--cache->ro) {
9702 		num_bytes = cache->key.offset - cache->reserved -
9703 			    cache->pinned - cache->bytes_super -
9704 			    btrfs_block_group_used(&cache->item);
9705 		sinfo->bytes_readonly -= num_bytes;
9706 		list_del_init(&cache->ro_list);
9707 	}
9708 	spin_unlock(&cache->lock);
9709 	spin_unlock(&sinfo->lock);
9710 }
9711 
9712 /*
9713  * checks to see if its even possible to relocate this block group.
9714  *
9715  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9716  * ok to go ahead and try.
9717  */
9718 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9719 {
9720 	struct btrfs_block_group_cache *block_group;
9721 	struct btrfs_space_info *space_info;
9722 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9723 	struct btrfs_device *device;
9724 	struct btrfs_trans_handle *trans;
9725 	u64 min_free;
9726 	u64 dev_min = 1;
9727 	u64 dev_nr = 0;
9728 	u64 target;
9729 	int debug;
9730 	int index;
9731 	int full = 0;
9732 	int ret = 0;
9733 
9734 	debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9735 
9736 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9737 
9738 	/* odd, couldn't find the block group, leave it alone */
9739 	if (!block_group) {
9740 		if (debug)
9741 			btrfs_warn(root->fs_info,
9742 				   "can't find block group for bytenr %llu",
9743 				   bytenr);
9744 		return -1;
9745 	}
9746 
9747 	min_free = btrfs_block_group_used(&block_group->item);
9748 
9749 	/* no bytes used, we're good */
9750 	if (!min_free)
9751 		goto out;
9752 
9753 	space_info = block_group->space_info;
9754 	spin_lock(&space_info->lock);
9755 
9756 	full = space_info->full;
9757 
9758 	/*
9759 	 * if this is the last block group we have in this space, we can't
9760 	 * relocate it unless we're able to allocate a new chunk below.
9761 	 *
9762 	 * Otherwise, we need to make sure we have room in the space to handle
9763 	 * all of the extents from this block group.  If we can, we're good
9764 	 */
9765 	if ((space_info->total_bytes != block_group->key.offset) &&
9766 	    (space_info->bytes_used + space_info->bytes_reserved +
9767 	     space_info->bytes_pinned + space_info->bytes_readonly +
9768 	     min_free < space_info->total_bytes)) {
9769 		spin_unlock(&space_info->lock);
9770 		goto out;
9771 	}
9772 	spin_unlock(&space_info->lock);
9773 
9774 	/*
9775 	 * ok we don't have enough space, but maybe we have free space on our
9776 	 * devices to allocate new chunks for relocation, so loop through our
9777 	 * alloc devices and guess if we have enough space.  if this block
9778 	 * group is going to be restriped, run checks against the target
9779 	 * profile instead of the current one.
9780 	 */
9781 	ret = -1;
9782 
9783 	/*
9784 	 * index:
9785 	 *      0: raid10
9786 	 *      1: raid1
9787 	 *      2: dup
9788 	 *      3: raid0
9789 	 *      4: single
9790 	 */
9791 	target = get_restripe_target(root->fs_info, block_group->flags);
9792 	if (target) {
9793 		index = __get_raid_index(extended_to_chunk(target));
9794 	} else {
9795 		/*
9796 		 * this is just a balance, so if we were marked as full
9797 		 * we know there is no space for a new chunk
9798 		 */
9799 		if (full) {
9800 			if (debug)
9801 				btrfs_warn(root->fs_info,
9802 					"no space to alloc new chunk for block group %llu",
9803 					block_group->key.objectid);
9804 			goto out;
9805 		}
9806 
9807 		index = get_block_group_index(block_group);
9808 	}
9809 
9810 	if (index == BTRFS_RAID_RAID10) {
9811 		dev_min = 4;
9812 		/* Divide by 2 */
9813 		min_free >>= 1;
9814 	} else if (index == BTRFS_RAID_RAID1) {
9815 		dev_min = 2;
9816 	} else if (index == BTRFS_RAID_DUP) {
9817 		/* Multiply by 2 */
9818 		min_free <<= 1;
9819 	} else if (index == BTRFS_RAID_RAID0) {
9820 		dev_min = fs_devices->rw_devices;
9821 		min_free = div64_u64(min_free, dev_min);
9822 	}
9823 
9824 	/* We need to do this so that we can look at pending chunks */
9825 	trans = btrfs_join_transaction(root);
9826 	if (IS_ERR(trans)) {
9827 		ret = PTR_ERR(trans);
9828 		goto out;
9829 	}
9830 
9831 	mutex_lock(&root->fs_info->chunk_mutex);
9832 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9833 		u64 dev_offset;
9834 
9835 		/*
9836 		 * check to make sure we can actually find a chunk with enough
9837 		 * space to fit our block group in.
9838 		 */
9839 		if (device->total_bytes > device->bytes_used + min_free &&
9840 		    !device->is_tgtdev_for_dev_replace) {
9841 			ret = find_free_dev_extent(trans, device, min_free,
9842 						   &dev_offset, NULL);
9843 			if (!ret)
9844 				dev_nr++;
9845 
9846 			if (dev_nr >= dev_min)
9847 				break;
9848 
9849 			ret = -1;
9850 		}
9851 	}
9852 	if (debug && ret == -1)
9853 		btrfs_warn(root->fs_info,
9854 			"no space to allocate a new chunk for block group %llu",
9855 			block_group->key.objectid);
9856 	mutex_unlock(&root->fs_info->chunk_mutex);
9857 	btrfs_end_transaction(trans, root);
9858 out:
9859 	btrfs_put_block_group(block_group);
9860 	return ret;
9861 }
9862 
9863 static int find_first_block_group(struct btrfs_root *root,
9864 		struct btrfs_path *path, struct btrfs_key *key)
9865 {
9866 	int ret = 0;
9867 	struct btrfs_key found_key;
9868 	struct extent_buffer *leaf;
9869 	int slot;
9870 
9871 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9872 	if (ret < 0)
9873 		goto out;
9874 
9875 	while (1) {
9876 		slot = path->slots[0];
9877 		leaf = path->nodes[0];
9878 		if (slot >= btrfs_header_nritems(leaf)) {
9879 			ret = btrfs_next_leaf(root, path);
9880 			if (ret == 0)
9881 				continue;
9882 			if (ret < 0)
9883 				goto out;
9884 			break;
9885 		}
9886 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9887 
9888 		if (found_key.objectid >= key->objectid &&
9889 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9890 			ret = 0;
9891 			goto out;
9892 		}
9893 		path->slots[0]++;
9894 	}
9895 out:
9896 	return ret;
9897 }
9898 
9899 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9900 {
9901 	struct btrfs_block_group_cache *block_group;
9902 	u64 last = 0;
9903 
9904 	while (1) {
9905 		struct inode *inode;
9906 
9907 		block_group = btrfs_lookup_first_block_group(info, last);
9908 		while (block_group) {
9909 			spin_lock(&block_group->lock);
9910 			if (block_group->iref)
9911 				break;
9912 			spin_unlock(&block_group->lock);
9913 			block_group = next_block_group(info->tree_root,
9914 						       block_group);
9915 		}
9916 		if (!block_group) {
9917 			if (last == 0)
9918 				break;
9919 			last = 0;
9920 			continue;
9921 		}
9922 
9923 		inode = block_group->inode;
9924 		block_group->iref = 0;
9925 		block_group->inode = NULL;
9926 		spin_unlock(&block_group->lock);
9927 		iput(inode);
9928 		last = block_group->key.objectid + block_group->key.offset;
9929 		btrfs_put_block_group(block_group);
9930 	}
9931 }
9932 
9933 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9934 {
9935 	struct btrfs_block_group_cache *block_group;
9936 	struct btrfs_space_info *space_info;
9937 	struct btrfs_caching_control *caching_ctl;
9938 	struct rb_node *n;
9939 
9940 	down_write(&info->commit_root_sem);
9941 	while (!list_empty(&info->caching_block_groups)) {
9942 		caching_ctl = list_entry(info->caching_block_groups.next,
9943 					 struct btrfs_caching_control, list);
9944 		list_del(&caching_ctl->list);
9945 		put_caching_control(caching_ctl);
9946 	}
9947 	up_write(&info->commit_root_sem);
9948 
9949 	spin_lock(&info->unused_bgs_lock);
9950 	while (!list_empty(&info->unused_bgs)) {
9951 		block_group = list_first_entry(&info->unused_bgs,
9952 					       struct btrfs_block_group_cache,
9953 					       bg_list);
9954 		list_del_init(&block_group->bg_list);
9955 		btrfs_put_block_group(block_group);
9956 	}
9957 	spin_unlock(&info->unused_bgs_lock);
9958 
9959 	spin_lock(&info->block_group_cache_lock);
9960 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9961 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9962 				       cache_node);
9963 		rb_erase(&block_group->cache_node,
9964 			 &info->block_group_cache_tree);
9965 		RB_CLEAR_NODE(&block_group->cache_node);
9966 		spin_unlock(&info->block_group_cache_lock);
9967 
9968 		down_write(&block_group->space_info->groups_sem);
9969 		list_del(&block_group->list);
9970 		up_write(&block_group->space_info->groups_sem);
9971 
9972 		if (block_group->cached == BTRFS_CACHE_STARTED)
9973 			wait_block_group_cache_done(block_group);
9974 
9975 		/*
9976 		 * We haven't cached this block group, which means we could
9977 		 * possibly have excluded extents on this block group.
9978 		 */
9979 		if (block_group->cached == BTRFS_CACHE_NO ||
9980 		    block_group->cached == BTRFS_CACHE_ERROR)
9981 			free_excluded_extents(info->extent_root, block_group);
9982 
9983 		btrfs_remove_free_space_cache(block_group);
9984 		btrfs_put_block_group(block_group);
9985 
9986 		spin_lock(&info->block_group_cache_lock);
9987 	}
9988 	spin_unlock(&info->block_group_cache_lock);
9989 
9990 	/* now that all the block groups are freed, go through and
9991 	 * free all the space_info structs.  This is only called during
9992 	 * the final stages of unmount, and so we know nobody is
9993 	 * using them.  We call synchronize_rcu() once before we start,
9994 	 * just to be on the safe side.
9995 	 */
9996 	synchronize_rcu();
9997 
9998 	release_global_block_rsv(info);
9999 
10000 	while (!list_empty(&info->space_info)) {
10001 		int i;
10002 
10003 		space_info = list_entry(info->space_info.next,
10004 					struct btrfs_space_info,
10005 					list);
10006 
10007 		/*
10008 		 * Do not hide this behind enospc_debug, this is actually
10009 		 * important and indicates a real bug if this happens.
10010 		 */
10011 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10012 			    space_info->bytes_reserved > 0 ||
10013 			    space_info->bytes_may_use > 0))
10014 			dump_space_info(space_info, 0, 0);
10015 		list_del(&space_info->list);
10016 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10017 			struct kobject *kobj;
10018 			kobj = space_info->block_group_kobjs[i];
10019 			space_info->block_group_kobjs[i] = NULL;
10020 			if (kobj) {
10021 				kobject_del(kobj);
10022 				kobject_put(kobj);
10023 			}
10024 		}
10025 		kobject_del(&space_info->kobj);
10026 		kobject_put(&space_info->kobj);
10027 	}
10028 	return 0;
10029 }
10030 
10031 static void __link_block_group(struct btrfs_space_info *space_info,
10032 			       struct btrfs_block_group_cache *cache)
10033 {
10034 	int index = get_block_group_index(cache);
10035 	bool first = false;
10036 
10037 	down_write(&space_info->groups_sem);
10038 	if (list_empty(&space_info->block_groups[index]))
10039 		first = true;
10040 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10041 	up_write(&space_info->groups_sem);
10042 
10043 	if (first) {
10044 		struct raid_kobject *rkobj;
10045 		int ret;
10046 
10047 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10048 		if (!rkobj)
10049 			goto out_err;
10050 		rkobj->raid_type = index;
10051 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10052 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10053 				  "%s", get_raid_name(index));
10054 		if (ret) {
10055 			kobject_put(&rkobj->kobj);
10056 			goto out_err;
10057 		}
10058 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10059 	}
10060 
10061 	return;
10062 out_err:
10063 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10064 }
10065 
10066 static struct btrfs_block_group_cache *
10067 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10068 {
10069 	struct btrfs_block_group_cache *cache;
10070 
10071 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10072 	if (!cache)
10073 		return NULL;
10074 
10075 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10076 					GFP_NOFS);
10077 	if (!cache->free_space_ctl) {
10078 		kfree(cache);
10079 		return NULL;
10080 	}
10081 
10082 	cache->key.objectid = start;
10083 	cache->key.offset = size;
10084 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10085 
10086 	cache->sectorsize = root->sectorsize;
10087 	cache->fs_info = root->fs_info;
10088 	cache->full_stripe_len = btrfs_full_stripe_len(root,
10089 					       &root->fs_info->mapping_tree,
10090 					       start);
10091 	set_free_space_tree_thresholds(cache);
10092 
10093 	atomic_set(&cache->count, 1);
10094 	spin_lock_init(&cache->lock);
10095 	init_rwsem(&cache->data_rwsem);
10096 	INIT_LIST_HEAD(&cache->list);
10097 	INIT_LIST_HEAD(&cache->cluster_list);
10098 	INIT_LIST_HEAD(&cache->bg_list);
10099 	INIT_LIST_HEAD(&cache->ro_list);
10100 	INIT_LIST_HEAD(&cache->dirty_list);
10101 	INIT_LIST_HEAD(&cache->io_list);
10102 	btrfs_init_free_space_ctl(cache);
10103 	atomic_set(&cache->trimming, 0);
10104 	mutex_init(&cache->free_space_lock);
10105 
10106 	return cache;
10107 }
10108 
10109 int btrfs_read_block_groups(struct btrfs_root *root)
10110 {
10111 	struct btrfs_path *path;
10112 	int ret;
10113 	struct btrfs_block_group_cache *cache;
10114 	struct btrfs_fs_info *info = root->fs_info;
10115 	struct btrfs_space_info *space_info;
10116 	struct btrfs_key key;
10117 	struct btrfs_key found_key;
10118 	struct extent_buffer *leaf;
10119 	int need_clear = 0;
10120 	u64 cache_gen;
10121 
10122 	root = info->extent_root;
10123 	key.objectid = 0;
10124 	key.offset = 0;
10125 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10126 	path = btrfs_alloc_path();
10127 	if (!path)
10128 		return -ENOMEM;
10129 	path->reada = READA_FORWARD;
10130 
10131 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10132 	if (btrfs_test_opt(root, SPACE_CACHE) &&
10133 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10134 		need_clear = 1;
10135 	if (btrfs_test_opt(root, CLEAR_CACHE))
10136 		need_clear = 1;
10137 
10138 	while (1) {
10139 		ret = find_first_block_group(root, path, &key);
10140 		if (ret > 0)
10141 			break;
10142 		if (ret != 0)
10143 			goto error;
10144 
10145 		leaf = path->nodes[0];
10146 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10147 
10148 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
10149 						       found_key.offset);
10150 		if (!cache) {
10151 			ret = -ENOMEM;
10152 			goto error;
10153 		}
10154 
10155 		if (need_clear) {
10156 			/*
10157 			 * When we mount with old space cache, we need to
10158 			 * set BTRFS_DC_CLEAR and set dirty flag.
10159 			 *
10160 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10161 			 *    truncate the old free space cache inode and
10162 			 *    setup a new one.
10163 			 * b) Setting 'dirty flag' makes sure that we flush
10164 			 *    the new space cache info onto disk.
10165 			 */
10166 			if (btrfs_test_opt(root, SPACE_CACHE))
10167 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10168 		}
10169 
10170 		read_extent_buffer(leaf, &cache->item,
10171 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10172 				   sizeof(cache->item));
10173 		cache->flags = btrfs_block_group_flags(&cache->item);
10174 
10175 		key.objectid = found_key.objectid + found_key.offset;
10176 		btrfs_release_path(path);
10177 
10178 		/*
10179 		 * We need to exclude the super stripes now so that the space
10180 		 * info has super bytes accounted for, otherwise we'll think
10181 		 * we have more space than we actually do.
10182 		 */
10183 		ret = exclude_super_stripes(root, cache);
10184 		if (ret) {
10185 			/*
10186 			 * We may have excluded something, so call this just in
10187 			 * case.
10188 			 */
10189 			free_excluded_extents(root, cache);
10190 			btrfs_put_block_group(cache);
10191 			goto error;
10192 		}
10193 
10194 		/*
10195 		 * check for two cases, either we are full, and therefore
10196 		 * don't need to bother with the caching work since we won't
10197 		 * find any space, or we are empty, and we can just add all
10198 		 * the space in and be done with it.  This saves us _alot_ of
10199 		 * time, particularly in the full case.
10200 		 */
10201 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10202 			cache->last_byte_to_unpin = (u64)-1;
10203 			cache->cached = BTRFS_CACHE_FINISHED;
10204 			free_excluded_extents(root, cache);
10205 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10206 			cache->last_byte_to_unpin = (u64)-1;
10207 			cache->cached = BTRFS_CACHE_FINISHED;
10208 			add_new_free_space(cache, root->fs_info,
10209 					   found_key.objectid,
10210 					   found_key.objectid +
10211 					   found_key.offset);
10212 			free_excluded_extents(root, cache);
10213 		}
10214 
10215 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
10216 		if (ret) {
10217 			btrfs_remove_free_space_cache(cache);
10218 			btrfs_put_block_group(cache);
10219 			goto error;
10220 		}
10221 
10222 		trace_btrfs_add_block_group(root->fs_info, cache, 0);
10223 		ret = update_space_info(info, cache->flags, found_key.offset,
10224 					btrfs_block_group_used(&cache->item),
10225 					cache->bytes_super, &space_info);
10226 		if (ret) {
10227 			btrfs_remove_free_space_cache(cache);
10228 			spin_lock(&info->block_group_cache_lock);
10229 			rb_erase(&cache->cache_node,
10230 				 &info->block_group_cache_tree);
10231 			RB_CLEAR_NODE(&cache->cache_node);
10232 			spin_unlock(&info->block_group_cache_lock);
10233 			btrfs_put_block_group(cache);
10234 			goto error;
10235 		}
10236 
10237 		cache->space_info = space_info;
10238 
10239 		__link_block_group(space_info, cache);
10240 
10241 		set_avail_alloc_bits(root->fs_info, cache->flags);
10242 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10243 			inc_block_group_ro(cache, 1);
10244 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10245 			spin_lock(&info->unused_bgs_lock);
10246 			/* Should always be true but just in case. */
10247 			if (list_empty(&cache->bg_list)) {
10248 				btrfs_get_block_group(cache);
10249 				list_add_tail(&cache->bg_list,
10250 					      &info->unused_bgs);
10251 			}
10252 			spin_unlock(&info->unused_bgs_lock);
10253 		}
10254 	}
10255 
10256 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10257 		if (!(get_alloc_profile(root, space_info->flags) &
10258 		      (BTRFS_BLOCK_GROUP_RAID10 |
10259 		       BTRFS_BLOCK_GROUP_RAID1 |
10260 		       BTRFS_BLOCK_GROUP_RAID5 |
10261 		       BTRFS_BLOCK_GROUP_RAID6 |
10262 		       BTRFS_BLOCK_GROUP_DUP)))
10263 			continue;
10264 		/*
10265 		 * avoid allocating from un-mirrored block group if there are
10266 		 * mirrored block groups.
10267 		 */
10268 		list_for_each_entry(cache,
10269 				&space_info->block_groups[BTRFS_RAID_RAID0],
10270 				list)
10271 			inc_block_group_ro(cache, 1);
10272 		list_for_each_entry(cache,
10273 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10274 				list)
10275 			inc_block_group_ro(cache, 1);
10276 	}
10277 
10278 	init_global_block_rsv(info);
10279 	ret = 0;
10280 error:
10281 	btrfs_free_path(path);
10282 	return ret;
10283 }
10284 
10285 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10286 				       struct btrfs_root *root)
10287 {
10288 	struct btrfs_block_group_cache *block_group, *tmp;
10289 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10290 	struct btrfs_block_group_item item;
10291 	struct btrfs_key key;
10292 	int ret = 0;
10293 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10294 
10295 	trans->can_flush_pending_bgs = false;
10296 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10297 		if (ret)
10298 			goto next;
10299 
10300 		spin_lock(&block_group->lock);
10301 		memcpy(&item, &block_group->item, sizeof(item));
10302 		memcpy(&key, &block_group->key, sizeof(key));
10303 		spin_unlock(&block_group->lock);
10304 
10305 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10306 					sizeof(item));
10307 		if (ret)
10308 			btrfs_abort_transaction(trans, extent_root, ret);
10309 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10310 					       key.objectid, key.offset);
10311 		if (ret)
10312 			btrfs_abort_transaction(trans, extent_root, ret);
10313 		add_block_group_free_space(trans, root->fs_info, block_group);
10314 		/* already aborted the transaction if it failed. */
10315 next:
10316 		list_del_init(&block_group->bg_list);
10317 	}
10318 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10319 }
10320 
10321 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10322 			   struct btrfs_root *root, u64 bytes_used,
10323 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10324 			   u64 size)
10325 {
10326 	int ret;
10327 	struct btrfs_root *extent_root;
10328 	struct btrfs_block_group_cache *cache;
10329 	extent_root = root->fs_info->extent_root;
10330 
10331 	btrfs_set_log_full_commit(root->fs_info, trans);
10332 
10333 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10334 	if (!cache)
10335 		return -ENOMEM;
10336 
10337 	btrfs_set_block_group_used(&cache->item, bytes_used);
10338 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10339 	btrfs_set_block_group_flags(&cache->item, type);
10340 
10341 	cache->flags = type;
10342 	cache->last_byte_to_unpin = (u64)-1;
10343 	cache->cached = BTRFS_CACHE_FINISHED;
10344 	cache->needs_free_space = 1;
10345 	ret = exclude_super_stripes(root, cache);
10346 	if (ret) {
10347 		/*
10348 		 * We may have excluded something, so call this just in
10349 		 * case.
10350 		 */
10351 		free_excluded_extents(root, cache);
10352 		btrfs_put_block_group(cache);
10353 		return ret;
10354 	}
10355 
10356 	add_new_free_space(cache, root->fs_info, chunk_offset,
10357 			   chunk_offset + size);
10358 
10359 	free_excluded_extents(root, cache);
10360 
10361 #ifdef CONFIG_BTRFS_DEBUG
10362 	if (btrfs_should_fragment_free_space(root, cache)) {
10363 		u64 new_bytes_used = size - bytes_used;
10364 
10365 		bytes_used += new_bytes_used >> 1;
10366 		fragment_free_space(root, cache);
10367 	}
10368 #endif
10369 	/*
10370 	 * Call to ensure the corresponding space_info object is created and
10371 	 * assigned to our block group, but don't update its counters just yet.
10372 	 * We want our bg to be added to the rbtree with its ->space_info set.
10373 	 */
10374 	ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10375 				&cache->space_info);
10376 	if (ret) {
10377 		btrfs_remove_free_space_cache(cache);
10378 		btrfs_put_block_group(cache);
10379 		return ret;
10380 	}
10381 
10382 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10383 	if (ret) {
10384 		btrfs_remove_free_space_cache(cache);
10385 		btrfs_put_block_group(cache);
10386 		return ret;
10387 	}
10388 
10389 	/*
10390 	 * Now that our block group has its ->space_info set and is inserted in
10391 	 * the rbtree, update the space info's counters.
10392 	 */
10393 	trace_btrfs_add_block_group(root->fs_info, cache, 1);
10394 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10395 				cache->bytes_super, &cache->space_info);
10396 	if (ret) {
10397 		btrfs_remove_free_space_cache(cache);
10398 		spin_lock(&root->fs_info->block_group_cache_lock);
10399 		rb_erase(&cache->cache_node,
10400 			 &root->fs_info->block_group_cache_tree);
10401 		RB_CLEAR_NODE(&cache->cache_node);
10402 		spin_unlock(&root->fs_info->block_group_cache_lock);
10403 		btrfs_put_block_group(cache);
10404 		return ret;
10405 	}
10406 	update_global_block_rsv(root->fs_info);
10407 
10408 	__link_block_group(cache->space_info, cache);
10409 
10410 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10411 
10412 	set_avail_alloc_bits(extent_root->fs_info, type);
10413 	return 0;
10414 }
10415 
10416 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10417 {
10418 	u64 extra_flags = chunk_to_extended(flags) &
10419 				BTRFS_EXTENDED_PROFILE_MASK;
10420 
10421 	write_seqlock(&fs_info->profiles_lock);
10422 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10423 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10424 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10425 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10426 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10427 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10428 	write_sequnlock(&fs_info->profiles_lock);
10429 }
10430 
10431 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10432 			     struct btrfs_root *root, u64 group_start,
10433 			     struct extent_map *em)
10434 {
10435 	struct btrfs_path *path;
10436 	struct btrfs_block_group_cache *block_group;
10437 	struct btrfs_free_cluster *cluster;
10438 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10439 	struct btrfs_key key;
10440 	struct inode *inode;
10441 	struct kobject *kobj = NULL;
10442 	int ret;
10443 	int index;
10444 	int factor;
10445 	struct btrfs_caching_control *caching_ctl = NULL;
10446 	bool remove_em;
10447 
10448 	root = root->fs_info->extent_root;
10449 
10450 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10451 	BUG_ON(!block_group);
10452 	BUG_ON(!block_group->ro);
10453 
10454 	/*
10455 	 * Free the reserved super bytes from this block group before
10456 	 * remove it.
10457 	 */
10458 	free_excluded_extents(root, block_group);
10459 
10460 	memcpy(&key, &block_group->key, sizeof(key));
10461 	index = get_block_group_index(block_group);
10462 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10463 				  BTRFS_BLOCK_GROUP_RAID1 |
10464 				  BTRFS_BLOCK_GROUP_RAID10))
10465 		factor = 2;
10466 	else
10467 		factor = 1;
10468 
10469 	/* make sure this block group isn't part of an allocation cluster */
10470 	cluster = &root->fs_info->data_alloc_cluster;
10471 	spin_lock(&cluster->refill_lock);
10472 	btrfs_return_cluster_to_free_space(block_group, cluster);
10473 	spin_unlock(&cluster->refill_lock);
10474 
10475 	/*
10476 	 * make sure this block group isn't part of a metadata
10477 	 * allocation cluster
10478 	 */
10479 	cluster = &root->fs_info->meta_alloc_cluster;
10480 	spin_lock(&cluster->refill_lock);
10481 	btrfs_return_cluster_to_free_space(block_group, cluster);
10482 	spin_unlock(&cluster->refill_lock);
10483 
10484 	path = btrfs_alloc_path();
10485 	if (!path) {
10486 		ret = -ENOMEM;
10487 		goto out;
10488 	}
10489 
10490 	/*
10491 	 * get the inode first so any iput calls done for the io_list
10492 	 * aren't the final iput (no unlinks allowed now)
10493 	 */
10494 	inode = lookup_free_space_inode(tree_root, block_group, path);
10495 
10496 	mutex_lock(&trans->transaction->cache_write_mutex);
10497 	/*
10498 	 * make sure our free spache cache IO is done before remove the
10499 	 * free space inode
10500 	 */
10501 	spin_lock(&trans->transaction->dirty_bgs_lock);
10502 	if (!list_empty(&block_group->io_list)) {
10503 		list_del_init(&block_group->io_list);
10504 
10505 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10506 
10507 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10508 		btrfs_wait_cache_io(root, trans, block_group,
10509 				    &block_group->io_ctl, path,
10510 				    block_group->key.objectid);
10511 		btrfs_put_block_group(block_group);
10512 		spin_lock(&trans->transaction->dirty_bgs_lock);
10513 	}
10514 
10515 	if (!list_empty(&block_group->dirty_list)) {
10516 		list_del_init(&block_group->dirty_list);
10517 		btrfs_put_block_group(block_group);
10518 	}
10519 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10520 	mutex_unlock(&trans->transaction->cache_write_mutex);
10521 
10522 	if (!IS_ERR(inode)) {
10523 		ret = btrfs_orphan_add(trans, inode);
10524 		if (ret) {
10525 			btrfs_add_delayed_iput(inode);
10526 			goto out;
10527 		}
10528 		clear_nlink(inode);
10529 		/* One for the block groups ref */
10530 		spin_lock(&block_group->lock);
10531 		if (block_group->iref) {
10532 			block_group->iref = 0;
10533 			block_group->inode = NULL;
10534 			spin_unlock(&block_group->lock);
10535 			iput(inode);
10536 		} else {
10537 			spin_unlock(&block_group->lock);
10538 		}
10539 		/* One for our lookup ref */
10540 		btrfs_add_delayed_iput(inode);
10541 	}
10542 
10543 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10544 	key.offset = block_group->key.objectid;
10545 	key.type = 0;
10546 
10547 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10548 	if (ret < 0)
10549 		goto out;
10550 	if (ret > 0)
10551 		btrfs_release_path(path);
10552 	if (ret == 0) {
10553 		ret = btrfs_del_item(trans, tree_root, path);
10554 		if (ret)
10555 			goto out;
10556 		btrfs_release_path(path);
10557 	}
10558 
10559 	spin_lock(&root->fs_info->block_group_cache_lock);
10560 	rb_erase(&block_group->cache_node,
10561 		 &root->fs_info->block_group_cache_tree);
10562 	RB_CLEAR_NODE(&block_group->cache_node);
10563 
10564 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10565 		root->fs_info->first_logical_byte = (u64)-1;
10566 	spin_unlock(&root->fs_info->block_group_cache_lock);
10567 
10568 	down_write(&block_group->space_info->groups_sem);
10569 	/*
10570 	 * we must use list_del_init so people can check to see if they
10571 	 * are still on the list after taking the semaphore
10572 	 */
10573 	list_del_init(&block_group->list);
10574 	if (list_empty(&block_group->space_info->block_groups[index])) {
10575 		kobj = block_group->space_info->block_group_kobjs[index];
10576 		block_group->space_info->block_group_kobjs[index] = NULL;
10577 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10578 	}
10579 	up_write(&block_group->space_info->groups_sem);
10580 	if (kobj) {
10581 		kobject_del(kobj);
10582 		kobject_put(kobj);
10583 	}
10584 
10585 	if (block_group->has_caching_ctl)
10586 		caching_ctl = get_caching_control(block_group);
10587 	if (block_group->cached == BTRFS_CACHE_STARTED)
10588 		wait_block_group_cache_done(block_group);
10589 	if (block_group->has_caching_ctl) {
10590 		down_write(&root->fs_info->commit_root_sem);
10591 		if (!caching_ctl) {
10592 			struct btrfs_caching_control *ctl;
10593 
10594 			list_for_each_entry(ctl,
10595 				    &root->fs_info->caching_block_groups, list)
10596 				if (ctl->block_group == block_group) {
10597 					caching_ctl = ctl;
10598 					atomic_inc(&caching_ctl->count);
10599 					break;
10600 				}
10601 		}
10602 		if (caching_ctl)
10603 			list_del_init(&caching_ctl->list);
10604 		up_write(&root->fs_info->commit_root_sem);
10605 		if (caching_ctl) {
10606 			/* Once for the caching bgs list and once for us. */
10607 			put_caching_control(caching_ctl);
10608 			put_caching_control(caching_ctl);
10609 		}
10610 	}
10611 
10612 	spin_lock(&trans->transaction->dirty_bgs_lock);
10613 	if (!list_empty(&block_group->dirty_list)) {
10614 		WARN_ON(1);
10615 	}
10616 	if (!list_empty(&block_group->io_list)) {
10617 		WARN_ON(1);
10618 	}
10619 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10620 	btrfs_remove_free_space_cache(block_group);
10621 
10622 	spin_lock(&block_group->space_info->lock);
10623 	list_del_init(&block_group->ro_list);
10624 
10625 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10626 		WARN_ON(block_group->space_info->total_bytes
10627 			< block_group->key.offset);
10628 		WARN_ON(block_group->space_info->bytes_readonly
10629 			< block_group->key.offset);
10630 		WARN_ON(block_group->space_info->disk_total
10631 			< block_group->key.offset * factor);
10632 	}
10633 	block_group->space_info->total_bytes -= block_group->key.offset;
10634 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10635 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10636 
10637 	spin_unlock(&block_group->space_info->lock);
10638 
10639 	memcpy(&key, &block_group->key, sizeof(key));
10640 
10641 	lock_chunks(root);
10642 	if (!list_empty(&em->list)) {
10643 		/* We're in the transaction->pending_chunks list. */
10644 		free_extent_map(em);
10645 	}
10646 	spin_lock(&block_group->lock);
10647 	block_group->removed = 1;
10648 	/*
10649 	 * At this point trimming can't start on this block group, because we
10650 	 * removed the block group from the tree fs_info->block_group_cache_tree
10651 	 * so no one can't find it anymore and even if someone already got this
10652 	 * block group before we removed it from the rbtree, they have already
10653 	 * incremented block_group->trimming - if they didn't, they won't find
10654 	 * any free space entries because we already removed them all when we
10655 	 * called btrfs_remove_free_space_cache().
10656 	 *
10657 	 * And we must not remove the extent map from the fs_info->mapping_tree
10658 	 * to prevent the same logical address range and physical device space
10659 	 * ranges from being reused for a new block group. This is because our
10660 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10661 	 * completely transactionless, so while it is trimming a range the
10662 	 * currently running transaction might finish and a new one start,
10663 	 * allowing for new block groups to be created that can reuse the same
10664 	 * physical device locations unless we take this special care.
10665 	 *
10666 	 * There may also be an implicit trim operation if the file system
10667 	 * is mounted with -odiscard. The same protections must remain
10668 	 * in place until the extents have been discarded completely when
10669 	 * the transaction commit has completed.
10670 	 */
10671 	remove_em = (atomic_read(&block_group->trimming) == 0);
10672 	/*
10673 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10674 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10675 	 * before checking block_group->removed).
10676 	 */
10677 	if (!remove_em) {
10678 		/*
10679 		 * Our em might be in trans->transaction->pending_chunks which
10680 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10681 		 * and so is the fs_info->pinned_chunks list.
10682 		 *
10683 		 * So at this point we must be holding the chunk_mutex to avoid
10684 		 * any races with chunk allocation (more specifically at
10685 		 * volumes.c:contains_pending_extent()), to ensure it always
10686 		 * sees the em, either in the pending_chunks list or in the
10687 		 * pinned_chunks list.
10688 		 */
10689 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10690 	}
10691 	spin_unlock(&block_group->lock);
10692 
10693 	if (remove_em) {
10694 		struct extent_map_tree *em_tree;
10695 
10696 		em_tree = &root->fs_info->mapping_tree.map_tree;
10697 		write_lock(&em_tree->lock);
10698 		/*
10699 		 * The em might be in the pending_chunks list, so make sure the
10700 		 * chunk mutex is locked, since remove_extent_mapping() will
10701 		 * delete us from that list.
10702 		 */
10703 		remove_extent_mapping(em_tree, em);
10704 		write_unlock(&em_tree->lock);
10705 		/* once for the tree */
10706 		free_extent_map(em);
10707 	}
10708 
10709 	unlock_chunks(root);
10710 
10711 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10712 	if (ret)
10713 		goto out;
10714 
10715 	btrfs_put_block_group(block_group);
10716 	btrfs_put_block_group(block_group);
10717 
10718 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10719 	if (ret > 0)
10720 		ret = -EIO;
10721 	if (ret < 0)
10722 		goto out;
10723 
10724 	ret = btrfs_del_item(trans, root, path);
10725 out:
10726 	btrfs_free_path(path);
10727 	return ret;
10728 }
10729 
10730 struct btrfs_trans_handle *
10731 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10732 				     const u64 chunk_offset)
10733 {
10734 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10735 	struct extent_map *em;
10736 	struct map_lookup *map;
10737 	unsigned int num_items;
10738 
10739 	read_lock(&em_tree->lock);
10740 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10741 	read_unlock(&em_tree->lock);
10742 	ASSERT(em && em->start == chunk_offset);
10743 
10744 	/*
10745 	 * We need to reserve 3 + N units from the metadata space info in order
10746 	 * to remove a block group (done at btrfs_remove_chunk() and at
10747 	 * btrfs_remove_block_group()), which are used for:
10748 	 *
10749 	 * 1 unit for adding the free space inode's orphan (located in the tree
10750 	 * of tree roots).
10751 	 * 1 unit for deleting the block group item (located in the extent
10752 	 * tree).
10753 	 * 1 unit for deleting the free space item (located in tree of tree
10754 	 * roots).
10755 	 * N units for deleting N device extent items corresponding to each
10756 	 * stripe (located in the device tree).
10757 	 *
10758 	 * In order to remove a block group we also need to reserve units in the
10759 	 * system space info in order to update the chunk tree (update one or
10760 	 * more device items and remove one chunk item), but this is done at
10761 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10762 	 */
10763 	map = em->map_lookup;
10764 	num_items = 3 + map->num_stripes;
10765 	free_extent_map(em);
10766 
10767 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10768 							   num_items, 1);
10769 }
10770 
10771 /*
10772  * Process the unused_bgs list and remove any that don't have any allocated
10773  * space inside of them.
10774  */
10775 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10776 {
10777 	struct btrfs_block_group_cache *block_group;
10778 	struct btrfs_space_info *space_info;
10779 	struct btrfs_root *root = fs_info->extent_root;
10780 	struct btrfs_trans_handle *trans;
10781 	int ret = 0;
10782 
10783 	if (!fs_info->open)
10784 		return;
10785 
10786 	spin_lock(&fs_info->unused_bgs_lock);
10787 	while (!list_empty(&fs_info->unused_bgs)) {
10788 		u64 start, end;
10789 		int trimming;
10790 
10791 		block_group = list_first_entry(&fs_info->unused_bgs,
10792 					       struct btrfs_block_group_cache,
10793 					       bg_list);
10794 		list_del_init(&block_group->bg_list);
10795 
10796 		space_info = block_group->space_info;
10797 
10798 		if (ret || btrfs_mixed_space_info(space_info)) {
10799 			btrfs_put_block_group(block_group);
10800 			continue;
10801 		}
10802 		spin_unlock(&fs_info->unused_bgs_lock);
10803 
10804 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10805 
10806 		/* Don't want to race with allocators so take the groups_sem */
10807 		down_write(&space_info->groups_sem);
10808 		spin_lock(&block_group->lock);
10809 		if (block_group->reserved ||
10810 		    btrfs_block_group_used(&block_group->item) ||
10811 		    block_group->ro ||
10812 		    list_is_singular(&block_group->list)) {
10813 			/*
10814 			 * We want to bail if we made new allocations or have
10815 			 * outstanding allocations in this block group.  We do
10816 			 * the ro check in case balance is currently acting on
10817 			 * this block group.
10818 			 */
10819 			spin_unlock(&block_group->lock);
10820 			up_write(&space_info->groups_sem);
10821 			goto next;
10822 		}
10823 		spin_unlock(&block_group->lock);
10824 
10825 		/* We don't want to force the issue, only flip if it's ok. */
10826 		ret = inc_block_group_ro(block_group, 0);
10827 		up_write(&space_info->groups_sem);
10828 		if (ret < 0) {
10829 			ret = 0;
10830 			goto next;
10831 		}
10832 
10833 		/*
10834 		 * Want to do this before we do anything else so we can recover
10835 		 * properly if we fail to join the transaction.
10836 		 */
10837 		trans = btrfs_start_trans_remove_block_group(fs_info,
10838 						     block_group->key.objectid);
10839 		if (IS_ERR(trans)) {
10840 			btrfs_dec_block_group_ro(root, block_group);
10841 			ret = PTR_ERR(trans);
10842 			goto next;
10843 		}
10844 
10845 		/*
10846 		 * We could have pending pinned extents for this block group,
10847 		 * just delete them, we don't care about them anymore.
10848 		 */
10849 		start = block_group->key.objectid;
10850 		end = start + block_group->key.offset - 1;
10851 		/*
10852 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10853 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10854 		 * another task might be running finish_extent_commit() for the
10855 		 * previous transaction N - 1, and have seen a range belonging
10856 		 * to the block group in freed_extents[] before we were able to
10857 		 * clear the whole block group range from freed_extents[]. This
10858 		 * means that task can lookup for the block group after we
10859 		 * unpinned it from freed_extents[] and removed it, leading to
10860 		 * a BUG_ON() at btrfs_unpin_extent_range().
10861 		 */
10862 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10863 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10864 				  EXTENT_DIRTY);
10865 		if (ret) {
10866 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10867 			btrfs_dec_block_group_ro(root, block_group);
10868 			goto end_trans;
10869 		}
10870 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10871 				  EXTENT_DIRTY);
10872 		if (ret) {
10873 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10874 			btrfs_dec_block_group_ro(root, block_group);
10875 			goto end_trans;
10876 		}
10877 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10878 
10879 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10880 		spin_lock(&space_info->lock);
10881 		spin_lock(&block_group->lock);
10882 
10883 		space_info->bytes_pinned -= block_group->pinned;
10884 		space_info->bytes_readonly += block_group->pinned;
10885 		percpu_counter_add(&space_info->total_bytes_pinned,
10886 				   -block_group->pinned);
10887 		block_group->pinned = 0;
10888 
10889 		spin_unlock(&block_group->lock);
10890 		spin_unlock(&space_info->lock);
10891 
10892 		/* DISCARD can flip during remount */
10893 		trimming = btrfs_test_opt(root, DISCARD);
10894 
10895 		/* Implicit trim during transaction commit. */
10896 		if (trimming)
10897 			btrfs_get_block_group_trimming(block_group);
10898 
10899 		/*
10900 		 * Btrfs_remove_chunk will abort the transaction if things go
10901 		 * horribly wrong.
10902 		 */
10903 		ret = btrfs_remove_chunk(trans, root,
10904 					 block_group->key.objectid);
10905 
10906 		if (ret) {
10907 			if (trimming)
10908 				btrfs_put_block_group_trimming(block_group);
10909 			goto end_trans;
10910 		}
10911 
10912 		/*
10913 		 * If we're not mounted with -odiscard, we can just forget
10914 		 * about this block group. Otherwise we'll need to wait
10915 		 * until transaction commit to do the actual discard.
10916 		 */
10917 		if (trimming) {
10918 			spin_lock(&fs_info->unused_bgs_lock);
10919 			/*
10920 			 * A concurrent scrub might have added us to the list
10921 			 * fs_info->unused_bgs, so use a list_move operation
10922 			 * to add the block group to the deleted_bgs list.
10923 			 */
10924 			list_move(&block_group->bg_list,
10925 				  &trans->transaction->deleted_bgs);
10926 			spin_unlock(&fs_info->unused_bgs_lock);
10927 			btrfs_get_block_group(block_group);
10928 		}
10929 end_trans:
10930 		btrfs_end_transaction(trans, root);
10931 next:
10932 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10933 		btrfs_put_block_group(block_group);
10934 		spin_lock(&fs_info->unused_bgs_lock);
10935 	}
10936 	spin_unlock(&fs_info->unused_bgs_lock);
10937 }
10938 
10939 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10940 {
10941 	struct btrfs_space_info *space_info;
10942 	struct btrfs_super_block *disk_super;
10943 	u64 features;
10944 	u64 flags;
10945 	int mixed = 0;
10946 	int ret;
10947 
10948 	disk_super = fs_info->super_copy;
10949 	if (!btrfs_super_root(disk_super))
10950 		return -EINVAL;
10951 
10952 	features = btrfs_super_incompat_flags(disk_super);
10953 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10954 		mixed = 1;
10955 
10956 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10957 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10958 	if (ret)
10959 		goto out;
10960 
10961 	if (mixed) {
10962 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10963 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10964 	} else {
10965 		flags = BTRFS_BLOCK_GROUP_METADATA;
10966 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10967 		if (ret)
10968 			goto out;
10969 
10970 		flags = BTRFS_BLOCK_GROUP_DATA;
10971 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10972 	}
10973 out:
10974 	return ret;
10975 }
10976 
10977 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10978 {
10979 	return unpin_extent_range(root, start, end, false);
10980 }
10981 
10982 /*
10983  * It used to be that old block groups would be left around forever.
10984  * Iterating over them would be enough to trim unused space.  Since we
10985  * now automatically remove them, we also need to iterate over unallocated
10986  * space.
10987  *
10988  * We don't want a transaction for this since the discard may take a
10989  * substantial amount of time.  We don't require that a transaction be
10990  * running, but we do need to take a running transaction into account
10991  * to ensure that we're not discarding chunks that were released in
10992  * the current transaction.
10993  *
10994  * Holding the chunks lock will prevent other threads from allocating
10995  * or releasing chunks, but it won't prevent a running transaction
10996  * from committing and releasing the memory that the pending chunks
10997  * list head uses.  For that, we need to take a reference to the
10998  * transaction.
10999  */
11000 static int btrfs_trim_free_extents(struct btrfs_device *device,
11001 				   u64 minlen, u64 *trimmed)
11002 {
11003 	u64 start = 0, len = 0;
11004 	int ret;
11005 
11006 	*trimmed = 0;
11007 
11008 	/* Not writeable = nothing to do. */
11009 	if (!device->writeable)
11010 		return 0;
11011 
11012 	/* No free space = nothing to do. */
11013 	if (device->total_bytes <= device->bytes_used)
11014 		return 0;
11015 
11016 	ret = 0;
11017 
11018 	while (1) {
11019 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11020 		struct btrfs_transaction *trans;
11021 		u64 bytes;
11022 
11023 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11024 		if (ret)
11025 			return ret;
11026 
11027 		down_read(&fs_info->commit_root_sem);
11028 
11029 		spin_lock(&fs_info->trans_lock);
11030 		trans = fs_info->running_transaction;
11031 		if (trans)
11032 			atomic_inc(&trans->use_count);
11033 		spin_unlock(&fs_info->trans_lock);
11034 
11035 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11036 						 &start, &len);
11037 		if (trans)
11038 			btrfs_put_transaction(trans);
11039 
11040 		if (ret) {
11041 			up_read(&fs_info->commit_root_sem);
11042 			mutex_unlock(&fs_info->chunk_mutex);
11043 			if (ret == -ENOSPC)
11044 				ret = 0;
11045 			break;
11046 		}
11047 
11048 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11049 		up_read(&fs_info->commit_root_sem);
11050 		mutex_unlock(&fs_info->chunk_mutex);
11051 
11052 		if (ret)
11053 			break;
11054 
11055 		start += len;
11056 		*trimmed += bytes;
11057 
11058 		if (fatal_signal_pending(current)) {
11059 			ret = -ERESTARTSYS;
11060 			break;
11061 		}
11062 
11063 		cond_resched();
11064 	}
11065 
11066 	return ret;
11067 }
11068 
11069 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11070 {
11071 	struct btrfs_fs_info *fs_info = root->fs_info;
11072 	struct btrfs_block_group_cache *cache = NULL;
11073 	struct btrfs_device *device;
11074 	struct list_head *devices;
11075 	u64 group_trimmed;
11076 	u64 start;
11077 	u64 end;
11078 	u64 trimmed = 0;
11079 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11080 	int ret = 0;
11081 
11082 	/*
11083 	 * try to trim all FS space, our block group may start from non-zero.
11084 	 */
11085 	if (range->len == total_bytes)
11086 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11087 	else
11088 		cache = btrfs_lookup_block_group(fs_info, range->start);
11089 
11090 	while (cache) {
11091 		if (cache->key.objectid >= (range->start + range->len)) {
11092 			btrfs_put_block_group(cache);
11093 			break;
11094 		}
11095 
11096 		start = max(range->start, cache->key.objectid);
11097 		end = min(range->start + range->len,
11098 				cache->key.objectid + cache->key.offset);
11099 
11100 		if (end - start >= range->minlen) {
11101 			if (!block_group_cache_done(cache)) {
11102 				ret = cache_block_group(cache, 0);
11103 				if (ret) {
11104 					btrfs_put_block_group(cache);
11105 					break;
11106 				}
11107 				ret = wait_block_group_cache_done(cache);
11108 				if (ret) {
11109 					btrfs_put_block_group(cache);
11110 					break;
11111 				}
11112 			}
11113 			ret = btrfs_trim_block_group(cache,
11114 						     &group_trimmed,
11115 						     start,
11116 						     end,
11117 						     range->minlen);
11118 
11119 			trimmed += group_trimmed;
11120 			if (ret) {
11121 				btrfs_put_block_group(cache);
11122 				break;
11123 			}
11124 		}
11125 
11126 		cache = next_block_group(fs_info->tree_root, cache);
11127 	}
11128 
11129 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11130 	devices = &root->fs_info->fs_devices->alloc_list;
11131 	list_for_each_entry(device, devices, dev_alloc_list) {
11132 		ret = btrfs_trim_free_extents(device, range->minlen,
11133 					      &group_trimmed);
11134 		if (ret)
11135 			break;
11136 
11137 		trimmed += group_trimmed;
11138 	}
11139 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11140 
11141 	range->len = trimmed;
11142 	return ret;
11143 }
11144 
11145 /*
11146  * btrfs_{start,end}_write_no_snapshoting() are similar to
11147  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11148  * data into the page cache through nocow before the subvolume is snapshoted,
11149  * but flush the data into disk after the snapshot creation, or to prevent
11150  * operations while snapshoting is ongoing and that cause the snapshot to be
11151  * inconsistent (writes followed by expanding truncates for example).
11152  */
11153 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11154 {
11155 	percpu_counter_dec(&root->subv_writers->counter);
11156 	/*
11157 	 * Make sure counter is updated before we wake up waiters.
11158 	 */
11159 	smp_mb();
11160 	if (waitqueue_active(&root->subv_writers->wait))
11161 		wake_up(&root->subv_writers->wait);
11162 }
11163 
11164 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11165 {
11166 	if (atomic_read(&root->will_be_snapshoted))
11167 		return 0;
11168 
11169 	percpu_counter_inc(&root->subv_writers->counter);
11170 	/*
11171 	 * Make sure counter is updated before we check for snapshot creation.
11172 	 */
11173 	smp_mb();
11174 	if (atomic_read(&root->will_be_snapshoted)) {
11175 		btrfs_end_write_no_snapshoting(root);
11176 		return 0;
11177 	}
11178 	return 1;
11179 }
11180 
11181 static int wait_snapshoting_atomic_t(atomic_t *a)
11182 {
11183 	schedule();
11184 	return 0;
11185 }
11186 
11187 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11188 {
11189 	while (true) {
11190 		int ret;
11191 
11192 		ret = btrfs_start_write_no_snapshoting(root);
11193 		if (ret)
11194 			break;
11195 		wait_on_atomic_t(&root->will_be_snapshoted,
11196 				 wait_snapshoting_atomic_t,
11197 				 TASK_UNINTERRUPTIBLE);
11198 	}
11199 }
11200