1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 91 int ret; 92 struct btrfs_key key; 93 struct btrfs_path *path; 94 95 path = btrfs_alloc_path(); 96 if (!path) 97 return -ENOMEM; 98 99 key.objectid = start; 100 key.offset = len; 101 key.type = BTRFS_EXTENT_ITEM_KEY; 102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 103 btrfs_free_path(path); 104 return ret; 105 } 106 107 /* 108 * helper function to lookup reference count and flags of a tree block. 109 * 110 * the head node for delayed ref is used to store the sum of all the 111 * reference count modifications queued up in the rbtree. the head 112 * node may also store the extent flags to set. This way you can check 113 * to see what the reference count and extent flags would be if all of 114 * the delayed refs are not processed. 115 */ 116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 117 struct btrfs_fs_info *fs_info, u64 bytenr, 118 u64 offset, int metadata, u64 *refs, u64 *flags) 119 { 120 struct btrfs_root *extent_root; 121 struct btrfs_delayed_ref_head *head; 122 struct btrfs_delayed_ref_root *delayed_refs; 123 struct btrfs_path *path; 124 struct btrfs_extent_item *ei; 125 struct extent_buffer *leaf; 126 struct btrfs_key key; 127 u32 item_size; 128 u64 num_refs; 129 u64 extent_flags; 130 int ret; 131 132 /* 133 * If we don't have skinny metadata, don't bother doing anything 134 * different 135 */ 136 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 137 offset = fs_info->nodesize; 138 metadata = 0; 139 } 140 141 path = btrfs_alloc_path(); 142 if (!path) 143 return -ENOMEM; 144 145 if (!trans) { 146 path->skip_locking = 1; 147 path->search_commit_root = 1; 148 } 149 150 search_again: 151 key.objectid = bytenr; 152 key.offset = offset; 153 if (metadata) 154 key.type = BTRFS_METADATA_ITEM_KEY; 155 else 156 key.type = BTRFS_EXTENT_ITEM_KEY; 157 158 extent_root = btrfs_extent_root(fs_info, bytenr); 159 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 160 if (ret < 0) 161 goto out_free; 162 163 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 164 if (path->slots[0]) { 165 path->slots[0]--; 166 btrfs_item_key_to_cpu(path->nodes[0], &key, 167 path->slots[0]); 168 if (key.objectid == bytenr && 169 key.type == BTRFS_EXTENT_ITEM_KEY && 170 key.offset == fs_info->nodesize) 171 ret = 0; 172 } 173 } 174 175 if (ret == 0) { 176 leaf = path->nodes[0]; 177 item_size = btrfs_item_size(leaf, path->slots[0]); 178 if (item_size >= sizeof(*ei)) { 179 ei = btrfs_item_ptr(leaf, path->slots[0], 180 struct btrfs_extent_item); 181 num_refs = btrfs_extent_refs(leaf, ei); 182 extent_flags = btrfs_extent_flags(leaf, ei); 183 } else { 184 ret = -EINVAL; 185 btrfs_print_v0_err(fs_info); 186 if (trans) 187 btrfs_abort_transaction(trans, ret); 188 else 189 btrfs_handle_fs_error(fs_info, ret, NULL); 190 191 goto out_free; 192 } 193 194 BUG_ON(num_refs == 0); 195 } else { 196 num_refs = 0; 197 extent_flags = 0; 198 ret = 0; 199 } 200 201 if (!trans) 202 goto out; 203 204 delayed_refs = &trans->transaction->delayed_refs; 205 spin_lock(&delayed_refs->lock); 206 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 207 if (head) { 208 if (!mutex_trylock(&head->mutex)) { 209 refcount_inc(&head->refs); 210 spin_unlock(&delayed_refs->lock); 211 212 btrfs_release_path(path); 213 214 /* 215 * Mutex was contended, block until it's released and try 216 * again 217 */ 218 mutex_lock(&head->mutex); 219 mutex_unlock(&head->mutex); 220 btrfs_put_delayed_ref_head(head); 221 goto search_again; 222 } 223 spin_lock(&head->lock); 224 if (head->extent_op && head->extent_op->update_flags) 225 extent_flags |= head->extent_op->flags_to_set; 226 else 227 BUG_ON(num_refs == 0); 228 229 num_refs += head->ref_mod; 230 spin_unlock(&head->lock); 231 mutex_unlock(&head->mutex); 232 } 233 spin_unlock(&delayed_refs->lock); 234 out: 235 WARN_ON(num_refs == 0); 236 if (refs) 237 *refs = num_refs; 238 if (flags) 239 *flags = extent_flags; 240 out_free: 241 btrfs_free_path(path); 242 return ret; 243 } 244 245 /* 246 * Back reference rules. Back refs have three main goals: 247 * 248 * 1) differentiate between all holders of references to an extent so that 249 * when a reference is dropped we can make sure it was a valid reference 250 * before freeing the extent. 251 * 252 * 2) Provide enough information to quickly find the holders of an extent 253 * if we notice a given block is corrupted or bad. 254 * 255 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 256 * maintenance. This is actually the same as #2, but with a slightly 257 * different use case. 258 * 259 * There are two kinds of back refs. The implicit back refs is optimized 260 * for pointers in non-shared tree blocks. For a given pointer in a block, 261 * back refs of this kind provide information about the block's owner tree 262 * and the pointer's key. These information allow us to find the block by 263 * b-tree searching. The full back refs is for pointers in tree blocks not 264 * referenced by their owner trees. The location of tree block is recorded 265 * in the back refs. Actually the full back refs is generic, and can be 266 * used in all cases the implicit back refs is used. The major shortcoming 267 * of the full back refs is its overhead. Every time a tree block gets 268 * COWed, we have to update back refs entry for all pointers in it. 269 * 270 * For a newly allocated tree block, we use implicit back refs for 271 * pointers in it. This means most tree related operations only involve 272 * implicit back refs. For a tree block created in old transaction, the 273 * only way to drop a reference to it is COW it. So we can detect the 274 * event that tree block loses its owner tree's reference and do the 275 * back refs conversion. 276 * 277 * When a tree block is COWed through a tree, there are four cases: 278 * 279 * The reference count of the block is one and the tree is the block's 280 * owner tree. Nothing to do in this case. 281 * 282 * The reference count of the block is one and the tree is not the 283 * block's owner tree. In this case, full back refs is used for pointers 284 * in the block. Remove these full back refs, add implicit back refs for 285 * every pointers in the new block. 286 * 287 * The reference count of the block is greater than one and the tree is 288 * the block's owner tree. In this case, implicit back refs is used for 289 * pointers in the block. Add full back refs for every pointers in the 290 * block, increase lower level extents' reference counts. The original 291 * implicit back refs are entailed to the new block. 292 * 293 * The reference count of the block is greater than one and the tree is 294 * not the block's owner tree. Add implicit back refs for every pointer in 295 * the new block, increase lower level extents' reference count. 296 * 297 * Back Reference Key composing: 298 * 299 * The key objectid corresponds to the first byte in the extent, 300 * The key type is used to differentiate between types of back refs. 301 * There are different meanings of the key offset for different types 302 * of back refs. 303 * 304 * File extents can be referenced by: 305 * 306 * - multiple snapshots, subvolumes, or different generations in one subvol 307 * - different files inside a single subvolume 308 * - different offsets inside a file (bookend extents in file.c) 309 * 310 * The extent ref structure for the implicit back refs has fields for: 311 * 312 * - Objectid of the subvolume root 313 * - objectid of the file holding the reference 314 * - original offset in the file 315 * - how many bookend extents 316 * 317 * The key offset for the implicit back refs is hash of the first 318 * three fields. 319 * 320 * The extent ref structure for the full back refs has field for: 321 * 322 * - number of pointers in the tree leaf 323 * 324 * The key offset for the implicit back refs is the first byte of 325 * the tree leaf 326 * 327 * When a file extent is allocated, The implicit back refs is used. 328 * the fields are filled in: 329 * 330 * (root_key.objectid, inode objectid, offset in file, 1) 331 * 332 * When a file extent is removed file truncation, we find the 333 * corresponding implicit back refs and check the following fields: 334 * 335 * (btrfs_header_owner(leaf), inode objectid, offset in file) 336 * 337 * Btree extents can be referenced by: 338 * 339 * - Different subvolumes 340 * 341 * Both the implicit back refs and the full back refs for tree blocks 342 * only consist of key. The key offset for the implicit back refs is 343 * objectid of block's owner tree. The key offset for the full back refs 344 * is the first byte of parent block. 345 * 346 * When implicit back refs is used, information about the lowest key and 347 * level of the tree block are required. These information are stored in 348 * tree block info structure. 349 */ 350 351 /* 352 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 353 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 354 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 355 */ 356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 357 struct btrfs_extent_inline_ref *iref, 358 enum btrfs_inline_ref_type is_data) 359 { 360 int type = btrfs_extent_inline_ref_type(eb, iref); 361 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 362 363 if (type == BTRFS_TREE_BLOCK_REF_KEY || 364 type == BTRFS_SHARED_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_DATA_REF_KEY || 366 type == BTRFS_EXTENT_DATA_REF_KEY) { 367 if (is_data == BTRFS_REF_TYPE_BLOCK) { 368 if (type == BTRFS_TREE_BLOCK_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(eb->fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 btrfs_print_leaf((struct extent_buffer *)eb); 400 btrfs_err(eb->fs_info, 401 "eb %llu iref 0x%lx invalid extent inline ref type %d", 402 eb->start, (unsigned long)iref, type); 403 WARN_ON(1); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 622 btrfs_print_v0_err(trans->fs_info); 623 btrfs_abort_transaction(trans, -EINVAL); 624 return -EINVAL; 625 } else { 626 BUG(); 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 658 if (iref) { 659 /* 660 * If type is invalid, we should have bailed out earlier than 661 * this call. 662 */ 663 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 664 ASSERT(type != BTRFS_REF_TYPE_INVALID); 665 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 666 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 667 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 668 } else { 669 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 670 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 671 } 672 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 673 ref1 = btrfs_item_ptr(leaf, path->slots[0], 674 struct btrfs_extent_data_ref); 675 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 676 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 677 ref2 = btrfs_item_ptr(leaf, path->slots[0], 678 struct btrfs_shared_data_ref); 679 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 680 } else { 681 WARN_ON(1); 682 } 683 return num_refs; 684 } 685 686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 687 struct btrfs_path *path, 688 u64 bytenr, u64 parent, 689 u64 root_objectid) 690 { 691 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 692 struct btrfs_key key; 693 int ret; 694 695 key.objectid = bytenr; 696 if (parent) { 697 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 698 key.offset = parent; 699 } else { 700 key.type = BTRFS_TREE_BLOCK_REF_KEY; 701 key.offset = root_objectid; 702 } 703 704 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 705 if (ret > 0) 706 ret = -ENOENT; 707 return ret; 708 } 709 710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 711 struct btrfs_path *path, 712 u64 bytenr, u64 parent, 713 u64 root_objectid) 714 { 715 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 716 struct btrfs_key key; 717 int ret; 718 719 key.objectid = bytenr; 720 if (parent) { 721 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 722 key.offset = parent; 723 } else { 724 key.type = BTRFS_TREE_BLOCK_REF_KEY; 725 key.offset = root_objectid; 726 } 727 728 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 729 btrfs_release_path(path); 730 return ret; 731 } 732 733 static inline int extent_ref_type(u64 parent, u64 owner) 734 { 735 int type; 736 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 737 if (parent > 0) 738 type = BTRFS_SHARED_BLOCK_REF_KEY; 739 else 740 type = BTRFS_TREE_BLOCK_REF_KEY; 741 } else { 742 if (parent > 0) 743 type = BTRFS_SHARED_DATA_REF_KEY; 744 else 745 type = BTRFS_EXTENT_DATA_REF_KEY; 746 } 747 return type; 748 } 749 750 static int find_next_key(struct btrfs_path *path, int level, 751 struct btrfs_key *key) 752 753 { 754 for (; level < BTRFS_MAX_LEVEL; level++) { 755 if (!path->nodes[level]) 756 break; 757 if (path->slots[level] + 1 >= 758 btrfs_header_nritems(path->nodes[level])) 759 continue; 760 if (level == 0) 761 btrfs_item_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 else 764 btrfs_node_key_to_cpu(path->nodes[level], key, 765 path->slots[level] + 1); 766 return 0; 767 } 768 return 1; 769 } 770 771 /* 772 * look for inline back ref. if back ref is found, *ref_ret is set 773 * to the address of inline back ref, and 0 is returned. 774 * 775 * if back ref isn't found, *ref_ret is set to the address where it 776 * should be inserted, and -ENOENT is returned. 777 * 778 * if insert is true and there are too many inline back refs, the path 779 * points to the extent item, and -EAGAIN is returned. 780 * 781 * NOTE: inline back refs are ordered in the same way that back ref 782 * items in the tree are ordered. 783 */ 784 static noinline_for_stack 785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 786 struct btrfs_path *path, 787 struct btrfs_extent_inline_ref **ref_ret, 788 u64 bytenr, u64 num_bytes, 789 u64 parent, u64 root_objectid, 790 u64 owner, u64 offset, int insert) 791 { 792 struct btrfs_fs_info *fs_info = trans->fs_info; 793 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 794 struct btrfs_key key; 795 struct extent_buffer *leaf; 796 struct btrfs_extent_item *ei; 797 struct btrfs_extent_inline_ref *iref; 798 u64 flags; 799 u64 item_size; 800 unsigned long ptr; 801 unsigned long end; 802 int extra_size; 803 int type; 804 int want; 805 int ret; 806 int err = 0; 807 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 808 int needed; 809 810 key.objectid = bytenr; 811 key.type = BTRFS_EXTENT_ITEM_KEY; 812 key.offset = num_bytes; 813 814 want = extent_ref_type(parent, owner); 815 if (insert) { 816 extra_size = btrfs_extent_inline_ref_size(want); 817 path->search_for_extension = 1; 818 path->keep_locks = 1; 819 } else 820 extra_size = -1; 821 822 /* 823 * Owner is our level, so we can just add one to get the level for the 824 * block we are interested in. 825 */ 826 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 827 key.type = BTRFS_METADATA_ITEM_KEY; 828 key.offset = owner; 829 } 830 831 again: 832 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 833 if (ret < 0) { 834 err = ret; 835 goto out; 836 } 837 838 /* 839 * We may be a newly converted file system which still has the old fat 840 * extent entries for metadata, so try and see if we have one of those. 841 */ 842 if (ret > 0 && skinny_metadata) { 843 skinny_metadata = false; 844 if (path->slots[0]) { 845 path->slots[0]--; 846 btrfs_item_key_to_cpu(path->nodes[0], &key, 847 path->slots[0]); 848 if (key.objectid == bytenr && 849 key.type == BTRFS_EXTENT_ITEM_KEY && 850 key.offset == num_bytes) 851 ret = 0; 852 } 853 if (ret) { 854 key.objectid = bytenr; 855 key.type = BTRFS_EXTENT_ITEM_KEY; 856 key.offset = num_bytes; 857 btrfs_release_path(path); 858 goto again; 859 } 860 } 861 862 if (ret && !insert) { 863 err = -ENOENT; 864 goto out; 865 } else if (WARN_ON(ret)) { 866 err = -EIO; 867 goto out; 868 } 869 870 leaf = path->nodes[0]; 871 item_size = btrfs_item_size(leaf, path->slots[0]); 872 if (unlikely(item_size < sizeof(*ei))) { 873 err = -EINVAL; 874 btrfs_print_v0_err(fs_info); 875 btrfs_abort_transaction(trans, err); 876 goto out; 877 } 878 879 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 880 flags = btrfs_extent_flags(leaf, ei); 881 882 ptr = (unsigned long)(ei + 1); 883 end = (unsigned long)ei + item_size; 884 885 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 886 ptr += sizeof(struct btrfs_tree_block_info); 887 BUG_ON(ptr > end); 888 } 889 890 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 891 needed = BTRFS_REF_TYPE_DATA; 892 else 893 needed = BTRFS_REF_TYPE_BLOCK; 894 895 err = -ENOENT; 896 while (1) { 897 if (ptr >= end) { 898 if (ptr > end) { 899 err = -EUCLEAN; 900 btrfs_print_leaf(path->nodes[0]); 901 btrfs_crit(fs_info, 902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 903 path->slots[0], root_objectid, owner, offset, parent); 904 } 905 break; 906 } 907 iref = (struct btrfs_extent_inline_ref *)ptr; 908 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 909 if (type == BTRFS_REF_TYPE_INVALID) { 910 err = -EUCLEAN; 911 goto out; 912 } 913 914 if (want < type) 915 break; 916 if (want > type) { 917 ptr += btrfs_extent_inline_ref_size(type); 918 continue; 919 } 920 921 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 922 struct btrfs_extent_data_ref *dref; 923 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 924 if (match_extent_data_ref(leaf, dref, root_objectid, 925 owner, offset)) { 926 err = 0; 927 break; 928 } 929 if (hash_extent_data_ref_item(leaf, dref) < 930 hash_extent_data_ref(root_objectid, owner, offset)) 931 break; 932 } else { 933 u64 ref_offset; 934 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 935 if (parent > 0) { 936 if (parent == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < parent) 941 break; 942 } else { 943 if (root_objectid == ref_offset) { 944 err = 0; 945 break; 946 } 947 if (ref_offset < root_objectid) 948 break; 949 } 950 } 951 ptr += btrfs_extent_inline_ref_size(type); 952 } 953 if (err == -ENOENT && insert) { 954 if (item_size + extra_size >= 955 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 956 err = -EAGAIN; 957 goto out; 958 } 959 /* 960 * To add new inline back ref, we have to make sure 961 * there is no corresponding back ref item. 962 * For simplicity, we just do not add new inline back 963 * ref if there is any kind of item for this block 964 */ 965 if (find_next_key(path, 0, &key) == 0 && 966 key.objectid == bytenr && 967 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 968 err = -EAGAIN; 969 goto out; 970 } 971 } 972 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 973 out: 974 if (insert) { 975 path->keep_locks = 0; 976 path->search_for_extension = 0; 977 btrfs_unlock_up_safe(path, 1); 978 } 979 return err; 980 } 981 982 /* 983 * helper to add new inline back ref 984 */ 985 static noinline_for_stack 986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 987 struct btrfs_path *path, 988 struct btrfs_extent_inline_ref *iref, 989 u64 parent, u64 root_objectid, 990 u64 owner, u64 offset, int refs_to_add, 991 struct btrfs_delayed_extent_op *extent_op) 992 { 993 struct extent_buffer *leaf; 994 struct btrfs_extent_item *ei; 995 unsigned long ptr; 996 unsigned long end; 997 unsigned long item_offset; 998 u64 refs; 999 int size; 1000 int type; 1001 1002 leaf = path->nodes[0]; 1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1004 item_offset = (unsigned long)iref - (unsigned long)ei; 1005 1006 type = extent_ref_type(parent, owner); 1007 size = btrfs_extent_inline_ref_size(type); 1008 1009 btrfs_extend_item(path, size); 1010 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 refs = btrfs_extent_refs(leaf, ei); 1013 refs += refs_to_add; 1014 btrfs_set_extent_refs(leaf, ei, refs); 1015 if (extent_op) 1016 __run_delayed_extent_op(extent_op, leaf, ei); 1017 1018 ptr = (unsigned long)ei + item_offset; 1019 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1020 if (ptr < end - size) 1021 memmove_extent_buffer(leaf, ptr + size, ptr, 1022 end - size - ptr); 1023 1024 iref = (struct btrfs_extent_inline_ref *)ptr; 1025 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1026 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1027 struct btrfs_extent_data_ref *dref; 1028 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1029 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1030 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1031 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1032 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1033 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1034 struct btrfs_shared_data_ref *sref; 1035 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1036 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1037 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1038 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1039 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1040 } else { 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1042 } 1043 btrfs_mark_buffer_dirty(leaf); 1044 } 1045 1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1047 struct btrfs_path *path, 1048 struct btrfs_extent_inline_ref **ref_ret, 1049 u64 bytenr, u64 num_bytes, u64 parent, 1050 u64 root_objectid, u64 owner, u64 offset) 1051 { 1052 int ret; 1053 1054 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1055 num_bytes, parent, root_objectid, 1056 owner, offset, 0); 1057 if (ret != -ENOENT) 1058 return ret; 1059 1060 btrfs_release_path(path); 1061 *ref_ret = NULL; 1062 1063 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1064 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1065 root_objectid); 1066 } else { 1067 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1068 root_objectid, owner, offset); 1069 } 1070 return ret; 1071 } 1072 1073 /* 1074 * helper to update/remove inline back ref 1075 */ 1076 static noinline_for_stack 1077 void update_inline_extent_backref(struct btrfs_path *path, 1078 struct btrfs_extent_inline_ref *iref, 1079 int refs_to_mod, 1080 struct btrfs_delayed_extent_op *extent_op) 1081 { 1082 struct extent_buffer *leaf = path->nodes[0]; 1083 struct btrfs_extent_item *ei; 1084 struct btrfs_extent_data_ref *dref = NULL; 1085 struct btrfs_shared_data_ref *sref = NULL; 1086 unsigned long ptr; 1087 unsigned long end; 1088 u32 item_size; 1089 int size; 1090 int type; 1091 u64 refs; 1092 1093 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1094 refs = btrfs_extent_refs(leaf, ei); 1095 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1096 refs += refs_to_mod; 1097 btrfs_set_extent_refs(leaf, ei, refs); 1098 if (extent_op) 1099 __run_delayed_extent_op(extent_op, leaf, ei); 1100 1101 /* 1102 * If type is invalid, we should have bailed out after 1103 * lookup_inline_extent_backref(). 1104 */ 1105 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1106 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1107 1108 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1110 refs = btrfs_extent_data_ref_count(leaf, dref); 1111 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1112 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1113 refs = btrfs_shared_data_ref_count(leaf, sref); 1114 } else { 1115 refs = 1; 1116 BUG_ON(refs_to_mod != -1); 1117 } 1118 1119 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1120 refs += refs_to_mod; 1121 1122 if (refs > 0) { 1123 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1124 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1125 else 1126 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1127 } else { 1128 size = btrfs_extent_inline_ref_size(type); 1129 item_size = btrfs_item_size(leaf, path->slots[0]); 1130 ptr = (unsigned long)iref; 1131 end = (unsigned long)ei + item_size; 1132 if (ptr + size < end) 1133 memmove_extent_buffer(leaf, ptr, ptr + size, 1134 end - ptr - size); 1135 item_size -= size; 1136 btrfs_truncate_item(path, item_size, 1); 1137 } 1138 btrfs_mark_buffer_dirty(leaf); 1139 } 1140 1141 static noinline_for_stack 1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1143 struct btrfs_path *path, 1144 u64 bytenr, u64 num_bytes, u64 parent, 1145 u64 root_objectid, u64 owner, 1146 u64 offset, int refs_to_add, 1147 struct btrfs_delayed_extent_op *extent_op) 1148 { 1149 struct btrfs_extent_inline_ref *iref; 1150 int ret; 1151 1152 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1153 num_bytes, parent, root_objectid, 1154 owner, offset, 1); 1155 if (ret == 0) { 1156 /* 1157 * We're adding refs to a tree block we already own, this 1158 * should not happen at all. 1159 */ 1160 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1161 btrfs_crit(trans->fs_info, 1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1163 bytenr, num_bytes, root_objectid); 1164 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1165 WARN_ON(1); 1166 btrfs_crit(trans->fs_info, 1167 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1168 btrfs_print_leaf(path->nodes[0]); 1169 } 1170 return -EUCLEAN; 1171 } 1172 update_inline_extent_backref(path, iref, refs_to_add, extent_op); 1173 } else if (ret == -ENOENT) { 1174 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1175 root_objectid, owner, offset, 1176 refs_to_add, extent_op); 1177 ret = 0; 1178 } 1179 return ret; 1180 } 1181 1182 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 struct btrfs_extent_inline_ref *iref, 1186 int refs_to_drop, int is_data) 1187 { 1188 int ret = 0; 1189 1190 BUG_ON(!is_data && refs_to_drop != 1); 1191 if (iref) 1192 update_inline_extent_backref(path, iref, -refs_to_drop, NULL); 1193 else if (is_data) 1194 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1195 else 1196 ret = btrfs_del_item(trans, root, path); 1197 return ret; 1198 } 1199 1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1201 u64 *discarded_bytes) 1202 { 1203 int j, ret = 0; 1204 u64 bytes_left, end; 1205 u64 aligned_start = ALIGN(start, 1 << 9); 1206 1207 if (WARN_ON(start != aligned_start)) { 1208 len -= aligned_start - start; 1209 len = round_down(len, 1 << 9); 1210 start = aligned_start; 1211 } 1212 1213 *discarded_bytes = 0; 1214 1215 if (!len) 1216 return 0; 1217 1218 end = start + len; 1219 bytes_left = len; 1220 1221 /* Skip any superblocks on this device. */ 1222 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1223 u64 sb_start = btrfs_sb_offset(j); 1224 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1225 u64 size = sb_start - start; 1226 1227 if (!in_range(sb_start, start, bytes_left) && 1228 !in_range(sb_end, start, bytes_left) && 1229 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1230 continue; 1231 1232 /* 1233 * Superblock spans beginning of range. Adjust start and 1234 * try again. 1235 */ 1236 if (sb_start <= start) { 1237 start += sb_end - start; 1238 if (start > end) { 1239 bytes_left = 0; 1240 break; 1241 } 1242 bytes_left = end - start; 1243 continue; 1244 } 1245 1246 if (size) { 1247 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1248 GFP_NOFS); 1249 if (!ret) 1250 *discarded_bytes += size; 1251 else if (ret != -EOPNOTSUPP) 1252 return ret; 1253 } 1254 1255 start = sb_end; 1256 if (start > end) { 1257 bytes_left = 0; 1258 break; 1259 } 1260 bytes_left = end - start; 1261 } 1262 1263 if (bytes_left) { 1264 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1265 GFP_NOFS); 1266 if (!ret) 1267 *discarded_bytes += bytes_left; 1268 } 1269 return ret; 1270 } 1271 1272 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1273 { 1274 struct btrfs_device *dev = stripe->dev; 1275 struct btrfs_fs_info *fs_info = dev->fs_info; 1276 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1277 u64 phys = stripe->physical; 1278 u64 len = stripe->length; 1279 u64 discarded = 0; 1280 int ret = 0; 1281 1282 /* Zone reset on a zoned filesystem */ 1283 if (btrfs_can_zone_reset(dev, phys, len)) { 1284 u64 src_disc; 1285 1286 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1287 if (ret) 1288 goto out; 1289 1290 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1291 dev != dev_replace->srcdev) 1292 goto out; 1293 1294 src_disc = discarded; 1295 1296 /* Send to replace target as well */ 1297 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1298 &discarded); 1299 discarded += src_disc; 1300 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1301 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1302 } else { 1303 ret = 0; 1304 *bytes = 0; 1305 } 1306 1307 out: 1308 *bytes = discarded; 1309 return ret; 1310 } 1311 1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1313 u64 num_bytes, u64 *actual_bytes) 1314 { 1315 int ret = 0; 1316 u64 discarded_bytes = 0; 1317 u64 end = bytenr + num_bytes; 1318 u64 cur = bytenr; 1319 1320 /* 1321 * Avoid races with device replace and make sure the devices in the 1322 * stripes don't go away while we are discarding. 1323 */ 1324 btrfs_bio_counter_inc_blocked(fs_info); 1325 while (cur < end) { 1326 struct btrfs_discard_stripe *stripes; 1327 unsigned int num_stripes; 1328 int i; 1329 1330 num_bytes = end - cur; 1331 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1332 if (IS_ERR(stripes)) { 1333 ret = PTR_ERR(stripes); 1334 if (ret == -EOPNOTSUPP) 1335 ret = 0; 1336 break; 1337 } 1338 1339 for (i = 0; i < num_stripes; i++) { 1340 struct btrfs_discard_stripe *stripe = stripes + i; 1341 u64 bytes; 1342 1343 if (!stripe->dev->bdev) { 1344 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1345 continue; 1346 } 1347 1348 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1349 &stripe->dev->dev_state)) 1350 continue; 1351 1352 ret = do_discard_extent(stripe, &bytes); 1353 if (ret) { 1354 /* 1355 * Keep going if discard is not supported by the 1356 * device. 1357 */ 1358 if (ret != -EOPNOTSUPP) 1359 break; 1360 ret = 0; 1361 } else { 1362 discarded_bytes += bytes; 1363 } 1364 } 1365 kfree(stripes); 1366 if (ret) 1367 break; 1368 cur += num_bytes; 1369 } 1370 btrfs_bio_counter_dec(fs_info); 1371 if (actual_bytes) 1372 *actual_bytes = discarded_bytes; 1373 return ret; 1374 } 1375 1376 /* Can return -ENOMEM */ 1377 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1378 struct btrfs_ref *generic_ref) 1379 { 1380 struct btrfs_fs_info *fs_info = trans->fs_info; 1381 int ret; 1382 1383 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1384 generic_ref->action); 1385 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1386 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1387 1388 if (generic_ref->type == BTRFS_REF_METADATA) 1389 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1390 else 1391 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1392 1393 btrfs_ref_tree_mod(fs_info, generic_ref); 1394 1395 return ret; 1396 } 1397 1398 /* 1399 * __btrfs_inc_extent_ref - insert backreference for a given extent 1400 * 1401 * The counterpart is in __btrfs_free_extent(), with examples and more details 1402 * how it works. 1403 * 1404 * @trans: Handle of transaction 1405 * 1406 * @node: The delayed ref node used to get the bytenr/length for 1407 * extent whose references are incremented. 1408 * 1409 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1410 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1411 * bytenr of the parent block. Since new extents are always 1412 * created with indirect references, this will only be the case 1413 * when relocating a shared extent. In that case, root_objectid 1414 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1415 * be 0 1416 * 1417 * @root_objectid: The id of the root where this modification has originated, 1418 * this can be either one of the well-known metadata trees or 1419 * the subvolume id which references this extent. 1420 * 1421 * @owner: For data extents it is the inode number of the owning file. 1422 * For metadata extents this parameter holds the level in the 1423 * tree of the extent. 1424 * 1425 * @offset: For metadata extents the offset is ignored and is currently 1426 * always passed as 0. For data extents it is the fileoffset 1427 * this extent belongs to. 1428 * 1429 * @refs_to_add Number of references to add 1430 * 1431 * @extent_op Pointer to a structure, holding information necessary when 1432 * updating a tree block's flags 1433 * 1434 */ 1435 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_delayed_ref_node *node, 1437 u64 parent, u64 root_objectid, 1438 u64 owner, u64 offset, int refs_to_add, 1439 struct btrfs_delayed_extent_op *extent_op) 1440 { 1441 struct btrfs_path *path; 1442 struct extent_buffer *leaf; 1443 struct btrfs_extent_item *item; 1444 struct btrfs_key key; 1445 u64 bytenr = node->bytenr; 1446 u64 num_bytes = node->num_bytes; 1447 u64 refs; 1448 int ret; 1449 1450 path = btrfs_alloc_path(); 1451 if (!path) 1452 return -ENOMEM; 1453 1454 /* this will setup the path even if it fails to insert the back ref */ 1455 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1456 parent, root_objectid, owner, 1457 offset, refs_to_add, extent_op); 1458 if ((ret < 0 && ret != -EAGAIN) || !ret) 1459 goto out; 1460 1461 /* 1462 * Ok we had -EAGAIN which means we didn't have space to insert and 1463 * inline extent ref, so just update the reference count and add a 1464 * normal backref. 1465 */ 1466 leaf = path->nodes[0]; 1467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1468 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1469 refs = btrfs_extent_refs(leaf, item); 1470 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1471 if (extent_op) 1472 __run_delayed_extent_op(extent_op, leaf, item); 1473 1474 btrfs_mark_buffer_dirty(leaf); 1475 btrfs_release_path(path); 1476 1477 /* now insert the actual backref */ 1478 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1479 BUG_ON(refs_to_add != 1); 1480 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1481 root_objectid); 1482 } else { 1483 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1484 root_objectid, owner, offset, 1485 refs_to_add); 1486 } 1487 if (ret) 1488 btrfs_abort_transaction(trans, ret); 1489 out: 1490 btrfs_free_path(path); 1491 return ret; 1492 } 1493 1494 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1495 struct btrfs_delayed_ref_node *node, 1496 struct btrfs_delayed_extent_op *extent_op, 1497 int insert_reserved) 1498 { 1499 int ret = 0; 1500 struct btrfs_delayed_data_ref *ref; 1501 struct btrfs_key ins; 1502 u64 parent = 0; 1503 u64 ref_root = 0; 1504 u64 flags = 0; 1505 1506 ins.objectid = node->bytenr; 1507 ins.offset = node->num_bytes; 1508 ins.type = BTRFS_EXTENT_ITEM_KEY; 1509 1510 ref = btrfs_delayed_node_to_data_ref(node); 1511 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1512 1513 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1514 parent = ref->parent; 1515 ref_root = ref->root; 1516 1517 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1518 if (extent_op) 1519 flags |= extent_op->flags_to_set; 1520 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1521 flags, ref->objectid, 1522 ref->offset, &ins, 1523 node->ref_mod); 1524 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1525 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1526 ref->objectid, ref->offset, 1527 node->ref_mod, extent_op); 1528 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1529 ret = __btrfs_free_extent(trans, node, parent, 1530 ref_root, ref->objectid, 1531 ref->offset, node->ref_mod, 1532 extent_op); 1533 } else { 1534 BUG(); 1535 } 1536 return ret; 1537 } 1538 1539 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1540 struct extent_buffer *leaf, 1541 struct btrfs_extent_item *ei) 1542 { 1543 u64 flags = btrfs_extent_flags(leaf, ei); 1544 if (extent_op->update_flags) { 1545 flags |= extent_op->flags_to_set; 1546 btrfs_set_extent_flags(leaf, ei, flags); 1547 } 1548 1549 if (extent_op->update_key) { 1550 struct btrfs_tree_block_info *bi; 1551 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1552 bi = (struct btrfs_tree_block_info *)(ei + 1); 1553 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1554 } 1555 } 1556 1557 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1558 struct btrfs_delayed_ref_head *head, 1559 struct btrfs_delayed_extent_op *extent_op) 1560 { 1561 struct btrfs_fs_info *fs_info = trans->fs_info; 1562 struct btrfs_root *root; 1563 struct btrfs_key key; 1564 struct btrfs_path *path; 1565 struct btrfs_extent_item *ei; 1566 struct extent_buffer *leaf; 1567 u32 item_size; 1568 int ret; 1569 int err = 0; 1570 int metadata = 1; 1571 1572 if (TRANS_ABORTED(trans)) 1573 return 0; 1574 1575 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1576 metadata = 0; 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 key.objectid = head->bytenr; 1583 1584 if (metadata) { 1585 key.type = BTRFS_METADATA_ITEM_KEY; 1586 key.offset = extent_op->level; 1587 } else { 1588 key.type = BTRFS_EXTENT_ITEM_KEY; 1589 key.offset = head->num_bytes; 1590 } 1591 1592 root = btrfs_extent_root(fs_info, key.objectid); 1593 again: 1594 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1595 if (ret < 0) { 1596 err = ret; 1597 goto out; 1598 } 1599 if (ret > 0) { 1600 if (metadata) { 1601 if (path->slots[0] > 0) { 1602 path->slots[0]--; 1603 btrfs_item_key_to_cpu(path->nodes[0], &key, 1604 path->slots[0]); 1605 if (key.objectid == head->bytenr && 1606 key.type == BTRFS_EXTENT_ITEM_KEY && 1607 key.offset == head->num_bytes) 1608 ret = 0; 1609 } 1610 if (ret > 0) { 1611 btrfs_release_path(path); 1612 metadata = 0; 1613 1614 key.objectid = head->bytenr; 1615 key.offset = head->num_bytes; 1616 key.type = BTRFS_EXTENT_ITEM_KEY; 1617 goto again; 1618 } 1619 } else { 1620 err = -EIO; 1621 goto out; 1622 } 1623 } 1624 1625 leaf = path->nodes[0]; 1626 item_size = btrfs_item_size(leaf, path->slots[0]); 1627 1628 if (unlikely(item_size < sizeof(*ei))) { 1629 err = -EINVAL; 1630 btrfs_print_v0_err(fs_info); 1631 btrfs_abort_transaction(trans, err); 1632 goto out; 1633 } 1634 1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1636 __run_delayed_extent_op(extent_op, leaf, ei); 1637 1638 btrfs_mark_buffer_dirty(leaf); 1639 out: 1640 btrfs_free_path(path); 1641 return err; 1642 } 1643 1644 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1645 struct btrfs_delayed_ref_node *node, 1646 struct btrfs_delayed_extent_op *extent_op, 1647 int insert_reserved) 1648 { 1649 int ret = 0; 1650 struct btrfs_delayed_tree_ref *ref; 1651 u64 parent = 0; 1652 u64 ref_root = 0; 1653 1654 ref = btrfs_delayed_node_to_tree_ref(node); 1655 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1656 1657 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1658 parent = ref->parent; 1659 ref_root = ref->root; 1660 1661 if (node->ref_mod != 1) { 1662 btrfs_err(trans->fs_info, 1663 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1664 node->bytenr, node->ref_mod, node->action, ref_root, 1665 parent); 1666 return -EIO; 1667 } 1668 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1669 BUG_ON(!extent_op || !extent_op->update_flags); 1670 ret = alloc_reserved_tree_block(trans, node, extent_op); 1671 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1672 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1673 ref->level, 0, 1, extent_op); 1674 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1675 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1676 ref->level, 0, 1, extent_op); 1677 } else { 1678 BUG(); 1679 } 1680 return ret; 1681 } 1682 1683 /* helper function to actually process a single delayed ref entry */ 1684 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1685 struct btrfs_delayed_ref_node *node, 1686 struct btrfs_delayed_extent_op *extent_op, 1687 int insert_reserved) 1688 { 1689 int ret = 0; 1690 1691 if (TRANS_ABORTED(trans)) { 1692 if (insert_reserved) 1693 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1694 return 0; 1695 } 1696 1697 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1698 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1699 ret = run_delayed_tree_ref(trans, node, extent_op, 1700 insert_reserved); 1701 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1702 node->type == BTRFS_SHARED_DATA_REF_KEY) 1703 ret = run_delayed_data_ref(trans, node, extent_op, 1704 insert_reserved); 1705 else 1706 BUG(); 1707 if (ret && insert_reserved) 1708 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1709 return ret; 1710 } 1711 1712 static inline struct btrfs_delayed_ref_node * 1713 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1714 { 1715 struct btrfs_delayed_ref_node *ref; 1716 1717 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1718 return NULL; 1719 1720 /* 1721 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1722 * This is to prevent a ref count from going down to zero, which deletes 1723 * the extent item from the extent tree, when there still are references 1724 * to add, which would fail because they would not find the extent item. 1725 */ 1726 if (!list_empty(&head->ref_add_list)) 1727 return list_first_entry(&head->ref_add_list, 1728 struct btrfs_delayed_ref_node, add_list); 1729 1730 ref = rb_entry(rb_first_cached(&head->ref_tree), 1731 struct btrfs_delayed_ref_node, ref_node); 1732 ASSERT(list_empty(&ref->add_list)); 1733 return ref; 1734 } 1735 1736 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1737 struct btrfs_delayed_ref_head *head) 1738 { 1739 spin_lock(&delayed_refs->lock); 1740 head->processing = 0; 1741 delayed_refs->num_heads_ready++; 1742 spin_unlock(&delayed_refs->lock); 1743 btrfs_delayed_ref_unlock(head); 1744 } 1745 1746 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1747 struct btrfs_delayed_ref_head *head) 1748 { 1749 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1750 1751 if (!extent_op) 1752 return NULL; 1753 1754 if (head->must_insert_reserved) { 1755 head->extent_op = NULL; 1756 btrfs_free_delayed_extent_op(extent_op); 1757 return NULL; 1758 } 1759 return extent_op; 1760 } 1761 1762 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1763 struct btrfs_delayed_ref_head *head) 1764 { 1765 struct btrfs_delayed_extent_op *extent_op; 1766 int ret; 1767 1768 extent_op = cleanup_extent_op(head); 1769 if (!extent_op) 1770 return 0; 1771 head->extent_op = NULL; 1772 spin_unlock(&head->lock); 1773 ret = run_delayed_extent_op(trans, head, extent_op); 1774 btrfs_free_delayed_extent_op(extent_op); 1775 return ret ? ret : 1; 1776 } 1777 1778 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1779 struct btrfs_delayed_ref_root *delayed_refs, 1780 struct btrfs_delayed_ref_head *head) 1781 { 1782 int nr_items = 1; /* Dropping this ref head update. */ 1783 1784 /* 1785 * We had csum deletions accounted for in our delayed refs rsv, we need 1786 * to drop the csum leaves for this update from our delayed_refs_rsv. 1787 */ 1788 if (head->total_ref_mod < 0 && head->is_data) { 1789 spin_lock(&delayed_refs->lock); 1790 delayed_refs->pending_csums -= head->num_bytes; 1791 spin_unlock(&delayed_refs->lock); 1792 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1793 } 1794 1795 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1796 } 1797 1798 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1799 struct btrfs_delayed_ref_head *head) 1800 { 1801 1802 struct btrfs_fs_info *fs_info = trans->fs_info; 1803 struct btrfs_delayed_ref_root *delayed_refs; 1804 int ret; 1805 1806 delayed_refs = &trans->transaction->delayed_refs; 1807 1808 ret = run_and_cleanup_extent_op(trans, head); 1809 if (ret < 0) { 1810 unselect_delayed_ref_head(delayed_refs, head); 1811 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1812 return ret; 1813 } else if (ret) { 1814 return ret; 1815 } 1816 1817 /* 1818 * Need to drop our head ref lock and re-acquire the delayed ref lock 1819 * and then re-check to make sure nobody got added. 1820 */ 1821 spin_unlock(&head->lock); 1822 spin_lock(&delayed_refs->lock); 1823 spin_lock(&head->lock); 1824 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1825 spin_unlock(&head->lock); 1826 spin_unlock(&delayed_refs->lock); 1827 return 1; 1828 } 1829 btrfs_delete_ref_head(delayed_refs, head); 1830 spin_unlock(&head->lock); 1831 spin_unlock(&delayed_refs->lock); 1832 1833 if (head->must_insert_reserved) { 1834 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1835 if (head->is_data) { 1836 struct btrfs_root *csum_root; 1837 1838 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1839 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1840 head->num_bytes); 1841 } 1842 } 1843 1844 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1845 1846 trace_run_delayed_ref_head(fs_info, head, 0); 1847 btrfs_delayed_ref_unlock(head); 1848 btrfs_put_delayed_ref_head(head); 1849 return ret; 1850 } 1851 1852 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1853 struct btrfs_trans_handle *trans) 1854 { 1855 struct btrfs_delayed_ref_root *delayed_refs = 1856 &trans->transaction->delayed_refs; 1857 struct btrfs_delayed_ref_head *head = NULL; 1858 int ret; 1859 1860 spin_lock(&delayed_refs->lock); 1861 head = btrfs_select_ref_head(delayed_refs); 1862 if (!head) { 1863 spin_unlock(&delayed_refs->lock); 1864 return head; 1865 } 1866 1867 /* 1868 * Grab the lock that says we are going to process all the refs for 1869 * this head 1870 */ 1871 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1872 spin_unlock(&delayed_refs->lock); 1873 1874 /* 1875 * We may have dropped the spin lock to get the head mutex lock, and 1876 * that might have given someone else time to free the head. If that's 1877 * true, it has been removed from our list and we can move on. 1878 */ 1879 if (ret == -EAGAIN) 1880 head = ERR_PTR(-EAGAIN); 1881 1882 return head; 1883 } 1884 1885 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1886 struct btrfs_delayed_ref_head *locked_ref, 1887 unsigned long *run_refs) 1888 { 1889 struct btrfs_fs_info *fs_info = trans->fs_info; 1890 struct btrfs_delayed_ref_root *delayed_refs; 1891 struct btrfs_delayed_extent_op *extent_op; 1892 struct btrfs_delayed_ref_node *ref; 1893 int must_insert_reserved = 0; 1894 int ret; 1895 1896 delayed_refs = &trans->transaction->delayed_refs; 1897 1898 lockdep_assert_held(&locked_ref->mutex); 1899 lockdep_assert_held(&locked_ref->lock); 1900 1901 while ((ref = select_delayed_ref(locked_ref))) { 1902 if (ref->seq && 1903 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1904 spin_unlock(&locked_ref->lock); 1905 unselect_delayed_ref_head(delayed_refs, locked_ref); 1906 return -EAGAIN; 1907 } 1908 1909 (*run_refs)++; 1910 ref->in_tree = 0; 1911 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1912 RB_CLEAR_NODE(&ref->ref_node); 1913 if (!list_empty(&ref->add_list)) 1914 list_del(&ref->add_list); 1915 /* 1916 * When we play the delayed ref, also correct the ref_mod on 1917 * head 1918 */ 1919 switch (ref->action) { 1920 case BTRFS_ADD_DELAYED_REF: 1921 case BTRFS_ADD_DELAYED_EXTENT: 1922 locked_ref->ref_mod -= ref->ref_mod; 1923 break; 1924 case BTRFS_DROP_DELAYED_REF: 1925 locked_ref->ref_mod += ref->ref_mod; 1926 break; 1927 default: 1928 WARN_ON(1); 1929 } 1930 atomic_dec(&delayed_refs->num_entries); 1931 1932 /* 1933 * Record the must_insert_reserved flag before we drop the 1934 * spin lock. 1935 */ 1936 must_insert_reserved = locked_ref->must_insert_reserved; 1937 locked_ref->must_insert_reserved = 0; 1938 1939 extent_op = locked_ref->extent_op; 1940 locked_ref->extent_op = NULL; 1941 spin_unlock(&locked_ref->lock); 1942 1943 ret = run_one_delayed_ref(trans, ref, extent_op, 1944 must_insert_reserved); 1945 1946 btrfs_free_delayed_extent_op(extent_op); 1947 if (ret) { 1948 unselect_delayed_ref_head(delayed_refs, locked_ref); 1949 btrfs_put_delayed_ref(ref); 1950 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1951 ret); 1952 return ret; 1953 } 1954 1955 btrfs_put_delayed_ref(ref); 1956 cond_resched(); 1957 1958 spin_lock(&locked_ref->lock); 1959 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1960 } 1961 1962 return 0; 1963 } 1964 1965 /* 1966 * Returns 0 on success or if called with an already aborted transaction. 1967 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1968 */ 1969 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1970 unsigned long nr) 1971 { 1972 struct btrfs_fs_info *fs_info = trans->fs_info; 1973 struct btrfs_delayed_ref_root *delayed_refs; 1974 struct btrfs_delayed_ref_head *locked_ref = NULL; 1975 ktime_t start = ktime_get(); 1976 int ret; 1977 unsigned long count = 0; 1978 unsigned long actual_count = 0; 1979 1980 delayed_refs = &trans->transaction->delayed_refs; 1981 do { 1982 if (!locked_ref) { 1983 locked_ref = btrfs_obtain_ref_head(trans); 1984 if (IS_ERR_OR_NULL(locked_ref)) { 1985 if (PTR_ERR(locked_ref) == -EAGAIN) { 1986 continue; 1987 } else { 1988 break; 1989 } 1990 } 1991 count++; 1992 } 1993 /* 1994 * We need to try and merge add/drops of the same ref since we 1995 * can run into issues with relocate dropping the implicit ref 1996 * and then it being added back again before the drop can 1997 * finish. If we merged anything we need to re-loop so we can 1998 * get a good ref. 1999 * Or we can get node references of the same type that weren't 2000 * merged when created due to bumps in the tree mod seq, and 2001 * we need to merge them to prevent adding an inline extent 2002 * backref before dropping it (triggering a BUG_ON at 2003 * insert_inline_extent_backref()). 2004 */ 2005 spin_lock(&locked_ref->lock); 2006 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2007 2008 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2009 &actual_count); 2010 if (ret < 0 && ret != -EAGAIN) { 2011 /* 2012 * Error, btrfs_run_delayed_refs_for_head already 2013 * unlocked everything so just bail out 2014 */ 2015 return ret; 2016 } else if (!ret) { 2017 /* 2018 * Success, perform the usual cleanup of a processed 2019 * head 2020 */ 2021 ret = cleanup_ref_head(trans, locked_ref); 2022 if (ret > 0 ) { 2023 /* We dropped our lock, we need to loop. */ 2024 ret = 0; 2025 continue; 2026 } else if (ret) { 2027 return ret; 2028 } 2029 } 2030 2031 /* 2032 * Either success case or btrfs_run_delayed_refs_for_head 2033 * returned -EAGAIN, meaning we need to select another head 2034 */ 2035 2036 locked_ref = NULL; 2037 cond_resched(); 2038 } while ((nr != -1 && count < nr) || locked_ref); 2039 2040 /* 2041 * We don't want to include ref heads since we can have empty ref heads 2042 * and those will drastically skew our runtime down since we just do 2043 * accounting, no actual extent tree updates. 2044 */ 2045 if (actual_count > 0) { 2046 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2047 u64 avg; 2048 2049 /* 2050 * We weigh the current average higher than our current runtime 2051 * to avoid large swings in the average. 2052 */ 2053 spin_lock(&delayed_refs->lock); 2054 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2055 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2056 spin_unlock(&delayed_refs->lock); 2057 } 2058 return 0; 2059 } 2060 2061 #ifdef SCRAMBLE_DELAYED_REFS 2062 /* 2063 * Normally delayed refs get processed in ascending bytenr order. This 2064 * correlates in most cases to the order added. To expose dependencies on this 2065 * order, we start to process the tree in the middle instead of the beginning 2066 */ 2067 static u64 find_middle(struct rb_root *root) 2068 { 2069 struct rb_node *n = root->rb_node; 2070 struct btrfs_delayed_ref_node *entry; 2071 int alt = 1; 2072 u64 middle; 2073 u64 first = 0, last = 0; 2074 2075 n = rb_first(root); 2076 if (n) { 2077 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2078 first = entry->bytenr; 2079 } 2080 n = rb_last(root); 2081 if (n) { 2082 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2083 last = entry->bytenr; 2084 } 2085 n = root->rb_node; 2086 2087 while (n) { 2088 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2089 WARN_ON(!entry->in_tree); 2090 2091 middle = entry->bytenr; 2092 2093 if (alt) 2094 n = n->rb_left; 2095 else 2096 n = n->rb_right; 2097 2098 alt = 1 - alt; 2099 } 2100 return middle; 2101 } 2102 #endif 2103 2104 /* 2105 * this starts processing the delayed reference count updates and 2106 * extent insertions we have queued up so far. count can be 2107 * 0, which means to process everything in the tree at the start 2108 * of the run (but not newly added entries), or it can be some target 2109 * number you'd like to process. 2110 * 2111 * Returns 0 on success or if called with an aborted transaction 2112 * Returns <0 on error and aborts the transaction 2113 */ 2114 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2115 unsigned long count) 2116 { 2117 struct btrfs_fs_info *fs_info = trans->fs_info; 2118 struct rb_node *node; 2119 struct btrfs_delayed_ref_root *delayed_refs; 2120 struct btrfs_delayed_ref_head *head; 2121 int ret; 2122 int run_all = count == (unsigned long)-1; 2123 2124 /* We'll clean this up in btrfs_cleanup_transaction */ 2125 if (TRANS_ABORTED(trans)) 2126 return 0; 2127 2128 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2129 return 0; 2130 2131 delayed_refs = &trans->transaction->delayed_refs; 2132 if (count == 0) 2133 count = delayed_refs->num_heads_ready; 2134 2135 again: 2136 #ifdef SCRAMBLE_DELAYED_REFS 2137 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2138 #endif 2139 ret = __btrfs_run_delayed_refs(trans, count); 2140 if (ret < 0) { 2141 btrfs_abort_transaction(trans, ret); 2142 return ret; 2143 } 2144 2145 if (run_all) { 2146 btrfs_create_pending_block_groups(trans); 2147 2148 spin_lock(&delayed_refs->lock); 2149 node = rb_first_cached(&delayed_refs->href_root); 2150 if (!node) { 2151 spin_unlock(&delayed_refs->lock); 2152 goto out; 2153 } 2154 head = rb_entry(node, struct btrfs_delayed_ref_head, 2155 href_node); 2156 refcount_inc(&head->refs); 2157 spin_unlock(&delayed_refs->lock); 2158 2159 /* Mutex was contended, block until it's released and retry. */ 2160 mutex_lock(&head->mutex); 2161 mutex_unlock(&head->mutex); 2162 2163 btrfs_put_delayed_ref_head(head); 2164 cond_resched(); 2165 goto again; 2166 } 2167 out: 2168 return 0; 2169 } 2170 2171 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2172 struct extent_buffer *eb, u64 flags, 2173 int level) 2174 { 2175 struct btrfs_delayed_extent_op *extent_op; 2176 int ret; 2177 2178 extent_op = btrfs_alloc_delayed_extent_op(); 2179 if (!extent_op) 2180 return -ENOMEM; 2181 2182 extent_op->flags_to_set = flags; 2183 extent_op->update_flags = true; 2184 extent_op->update_key = false; 2185 extent_op->level = level; 2186 2187 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2188 if (ret) 2189 btrfs_free_delayed_extent_op(extent_op); 2190 return ret; 2191 } 2192 2193 static noinline int check_delayed_ref(struct btrfs_root *root, 2194 struct btrfs_path *path, 2195 u64 objectid, u64 offset, u64 bytenr) 2196 { 2197 struct btrfs_delayed_ref_head *head; 2198 struct btrfs_delayed_ref_node *ref; 2199 struct btrfs_delayed_data_ref *data_ref; 2200 struct btrfs_delayed_ref_root *delayed_refs; 2201 struct btrfs_transaction *cur_trans; 2202 struct rb_node *node; 2203 int ret = 0; 2204 2205 spin_lock(&root->fs_info->trans_lock); 2206 cur_trans = root->fs_info->running_transaction; 2207 if (cur_trans) 2208 refcount_inc(&cur_trans->use_count); 2209 spin_unlock(&root->fs_info->trans_lock); 2210 if (!cur_trans) 2211 return 0; 2212 2213 delayed_refs = &cur_trans->delayed_refs; 2214 spin_lock(&delayed_refs->lock); 2215 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2216 if (!head) { 2217 spin_unlock(&delayed_refs->lock); 2218 btrfs_put_transaction(cur_trans); 2219 return 0; 2220 } 2221 2222 if (!mutex_trylock(&head->mutex)) { 2223 refcount_inc(&head->refs); 2224 spin_unlock(&delayed_refs->lock); 2225 2226 btrfs_release_path(path); 2227 2228 /* 2229 * Mutex was contended, block until it's released and let 2230 * caller try again 2231 */ 2232 mutex_lock(&head->mutex); 2233 mutex_unlock(&head->mutex); 2234 btrfs_put_delayed_ref_head(head); 2235 btrfs_put_transaction(cur_trans); 2236 return -EAGAIN; 2237 } 2238 spin_unlock(&delayed_refs->lock); 2239 2240 spin_lock(&head->lock); 2241 /* 2242 * XXX: We should replace this with a proper search function in the 2243 * future. 2244 */ 2245 for (node = rb_first_cached(&head->ref_tree); node; 2246 node = rb_next(node)) { 2247 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2248 /* If it's a shared ref we know a cross reference exists */ 2249 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2250 ret = 1; 2251 break; 2252 } 2253 2254 data_ref = btrfs_delayed_node_to_data_ref(ref); 2255 2256 /* 2257 * If our ref doesn't match the one we're currently looking at 2258 * then we have a cross reference. 2259 */ 2260 if (data_ref->root != root->root_key.objectid || 2261 data_ref->objectid != objectid || 2262 data_ref->offset != offset) { 2263 ret = 1; 2264 break; 2265 } 2266 } 2267 spin_unlock(&head->lock); 2268 mutex_unlock(&head->mutex); 2269 btrfs_put_transaction(cur_trans); 2270 return ret; 2271 } 2272 2273 static noinline int check_committed_ref(struct btrfs_root *root, 2274 struct btrfs_path *path, 2275 u64 objectid, u64 offset, u64 bytenr, 2276 bool strict) 2277 { 2278 struct btrfs_fs_info *fs_info = root->fs_info; 2279 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2280 struct extent_buffer *leaf; 2281 struct btrfs_extent_data_ref *ref; 2282 struct btrfs_extent_inline_ref *iref; 2283 struct btrfs_extent_item *ei; 2284 struct btrfs_key key; 2285 u32 item_size; 2286 int type; 2287 int ret; 2288 2289 key.objectid = bytenr; 2290 key.offset = (u64)-1; 2291 key.type = BTRFS_EXTENT_ITEM_KEY; 2292 2293 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2294 if (ret < 0) 2295 goto out; 2296 BUG_ON(ret == 0); /* Corruption */ 2297 2298 ret = -ENOENT; 2299 if (path->slots[0] == 0) 2300 goto out; 2301 2302 path->slots[0]--; 2303 leaf = path->nodes[0]; 2304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2305 2306 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2307 goto out; 2308 2309 ret = 1; 2310 item_size = btrfs_item_size(leaf, path->slots[0]); 2311 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2312 2313 /* If extent item has more than 1 inline ref then it's shared */ 2314 if (item_size != sizeof(*ei) + 2315 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2316 goto out; 2317 2318 /* 2319 * If extent created before last snapshot => it's shared unless the 2320 * snapshot has been deleted. Use the heuristic if strict is false. 2321 */ 2322 if (!strict && 2323 (btrfs_extent_generation(leaf, ei) <= 2324 btrfs_root_last_snapshot(&root->root_item))) 2325 goto out; 2326 2327 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2328 2329 /* If this extent has SHARED_DATA_REF then it's shared */ 2330 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2331 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2332 goto out; 2333 2334 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2335 if (btrfs_extent_refs(leaf, ei) != 2336 btrfs_extent_data_ref_count(leaf, ref) || 2337 btrfs_extent_data_ref_root(leaf, ref) != 2338 root->root_key.objectid || 2339 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2340 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2341 goto out; 2342 2343 ret = 0; 2344 out: 2345 return ret; 2346 } 2347 2348 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2349 u64 bytenr, bool strict, struct btrfs_path *path) 2350 { 2351 int ret; 2352 2353 do { 2354 ret = check_committed_ref(root, path, objectid, 2355 offset, bytenr, strict); 2356 if (ret && ret != -ENOENT) 2357 goto out; 2358 2359 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2360 } while (ret == -EAGAIN); 2361 2362 out: 2363 btrfs_release_path(path); 2364 if (btrfs_is_data_reloc_root(root)) 2365 WARN_ON(ret > 0); 2366 return ret; 2367 } 2368 2369 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2370 struct btrfs_root *root, 2371 struct extent_buffer *buf, 2372 int full_backref, int inc) 2373 { 2374 struct btrfs_fs_info *fs_info = root->fs_info; 2375 u64 bytenr; 2376 u64 num_bytes; 2377 u64 parent; 2378 u64 ref_root; 2379 u32 nritems; 2380 struct btrfs_key key; 2381 struct btrfs_file_extent_item *fi; 2382 struct btrfs_ref generic_ref = { 0 }; 2383 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2384 int i; 2385 int action; 2386 int level; 2387 int ret = 0; 2388 2389 if (btrfs_is_testing(fs_info)) 2390 return 0; 2391 2392 ref_root = btrfs_header_owner(buf); 2393 nritems = btrfs_header_nritems(buf); 2394 level = btrfs_header_level(buf); 2395 2396 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2397 return 0; 2398 2399 if (full_backref) 2400 parent = buf->start; 2401 else 2402 parent = 0; 2403 if (inc) 2404 action = BTRFS_ADD_DELAYED_REF; 2405 else 2406 action = BTRFS_DROP_DELAYED_REF; 2407 2408 for (i = 0; i < nritems; i++) { 2409 if (level == 0) { 2410 btrfs_item_key_to_cpu(buf, &key, i); 2411 if (key.type != BTRFS_EXTENT_DATA_KEY) 2412 continue; 2413 fi = btrfs_item_ptr(buf, i, 2414 struct btrfs_file_extent_item); 2415 if (btrfs_file_extent_type(buf, fi) == 2416 BTRFS_FILE_EXTENT_INLINE) 2417 continue; 2418 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2419 if (bytenr == 0) 2420 continue; 2421 2422 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2423 key.offset -= btrfs_file_extent_offset(buf, fi); 2424 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2425 num_bytes, parent); 2426 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2427 key.offset, root->root_key.objectid, 2428 for_reloc); 2429 if (inc) 2430 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2431 else 2432 ret = btrfs_free_extent(trans, &generic_ref); 2433 if (ret) 2434 goto fail; 2435 } else { 2436 bytenr = btrfs_node_blockptr(buf, i); 2437 num_bytes = fs_info->nodesize; 2438 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2439 num_bytes, parent); 2440 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2441 root->root_key.objectid, for_reloc); 2442 if (inc) 2443 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2444 else 2445 ret = btrfs_free_extent(trans, &generic_ref); 2446 if (ret) 2447 goto fail; 2448 } 2449 } 2450 return 0; 2451 fail: 2452 return ret; 2453 } 2454 2455 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2456 struct extent_buffer *buf, int full_backref) 2457 { 2458 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2459 } 2460 2461 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2462 struct extent_buffer *buf, int full_backref) 2463 { 2464 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2465 } 2466 2467 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2468 { 2469 struct btrfs_fs_info *fs_info = root->fs_info; 2470 u64 flags; 2471 u64 ret; 2472 2473 if (data) 2474 flags = BTRFS_BLOCK_GROUP_DATA; 2475 else if (root == fs_info->chunk_root) 2476 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2477 else 2478 flags = BTRFS_BLOCK_GROUP_METADATA; 2479 2480 ret = btrfs_get_alloc_profile(fs_info, flags); 2481 return ret; 2482 } 2483 2484 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2485 { 2486 struct rb_node *leftmost; 2487 u64 bytenr = 0; 2488 2489 read_lock(&fs_info->block_group_cache_lock); 2490 /* Get the block group with the lowest logical start address. */ 2491 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2492 if (leftmost) { 2493 struct btrfs_block_group *bg; 2494 2495 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2496 bytenr = bg->start; 2497 } 2498 read_unlock(&fs_info->block_group_cache_lock); 2499 2500 return bytenr; 2501 } 2502 2503 static int pin_down_extent(struct btrfs_trans_handle *trans, 2504 struct btrfs_block_group *cache, 2505 u64 bytenr, u64 num_bytes, int reserved) 2506 { 2507 struct btrfs_fs_info *fs_info = cache->fs_info; 2508 2509 spin_lock(&cache->space_info->lock); 2510 spin_lock(&cache->lock); 2511 cache->pinned += num_bytes; 2512 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2513 num_bytes); 2514 if (reserved) { 2515 cache->reserved -= num_bytes; 2516 cache->space_info->bytes_reserved -= num_bytes; 2517 } 2518 spin_unlock(&cache->lock); 2519 spin_unlock(&cache->space_info->lock); 2520 2521 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2522 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2523 return 0; 2524 } 2525 2526 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2527 u64 bytenr, u64 num_bytes, int reserved) 2528 { 2529 struct btrfs_block_group *cache; 2530 2531 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2532 BUG_ON(!cache); /* Logic error */ 2533 2534 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2535 2536 btrfs_put_block_group(cache); 2537 return 0; 2538 } 2539 2540 /* 2541 * this function must be called within transaction 2542 */ 2543 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2544 u64 bytenr, u64 num_bytes) 2545 { 2546 struct btrfs_block_group *cache; 2547 int ret; 2548 2549 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2550 if (!cache) 2551 return -EINVAL; 2552 2553 /* 2554 * pull in the free space cache (if any) so that our pin 2555 * removes the free space from the cache. We have load_only set 2556 * to one because the slow code to read in the free extents does check 2557 * the pinned extents. 2558 */ 2559 btrfs_cache_block_group(cache, 1); 2560 /* 2561 * Make sure we wait until the cache is completely built in case it is 2562 * missing or is invalid and therefore needs to be rebuilt. 2563 */ 2564 ret = btrfs_wait_block_group_cache_done(cache); 2565 if (ret) 2566 goto out; 2567 2568 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2569 2570 /* remove us from the free space cache (if we're there at all) */ 2571 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2572 out: 2573 btrfs_put_block_group(cache); 2574 return ret; 2575 } 2576 2577 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2578 u64 start, u64 num_bytes) 2579 { 2580 int ret; 2581 struct btrfs_block_group *block_group; 2582 2583 block_group = btrfs_lookup_block_group(fs_info, start); 2584 if (!block_group) 2585 return -EINVAL; 2586 2587 btrfs_cache_block_group(block_group, 1); 2588 /* 2589 * Make sure we wait until the cache is completely built in case it is 2590 * missing or is invalid and therefore needs to be rebuilt. 2591 */ 2592 ret = btrfs_wait_block_group_cache_done(block_group); 2593 if (ret) 2594 goto out; 2595 2596 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2597 out: 2598 btrfs_put_block_group(block_group); 2599 return ret; 2600 } 2601 2602 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2603 { 2604 struct btrfs_fs_info *fs_info = eb->fs_info; 2605 struct btrfs_file_extent_item *item; 2606 struct btrfs_key key; 2607 int found_type; 2608 int i; 2609 int ret = 0; 2610 2611 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2612 return 0; 2613 2614 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2615 btrfs_item_key_to_cpu(eb, &key, i); 2616 if (key.type != BTRFS_EXTENT_DATA_KEY) 2617 continue; 2618 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2619 found_type = btrfs_file_extent_type(eb, item); 2620 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2621 continue; 2622 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2623 continue; 2624 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2625 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2626 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2627 if (ret) 2628 break; 2629 } 2630 2631 return ret; 2632 } 2633 2634 static void 2635 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2636 { 2637 atomic_inc(&bg->reservations); 2638 } 2639 2640 /* 2641 * Returns the free cluster for the given space info and sets empty_cluster to 2642 * what it should be based on the mount options. 2643 */ 2644 static struct btrfs_free_cluster * 2645 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2646 struct btrfs_space_info *space_info, u64 *empty_cluster) 2647 { 2648 struct btrfs_free_cluster *ret = NULL; 2649 2650 *empty_cluster = 0; 2651 if (btrfs_mixed_space_info(space_info)) 2652 return ret; 2653 2654 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2655 ret = &fs_info->meta_alloc_cluster; 2656 if (btrfs_test_opt(fs_info, SSD)) 2657 *empty_cluster = SZ_2M; 2658 else 2659 *empty_cluster = SZ_64K; 2660 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2661 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2662 *empty_cluster = SZ_2M; 2663 ret = &fs_info->data_alloc_cluster; 2664 } 2665 2666 return ret; 2667 } 2668 2669 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2670 u64 start, u64 end, 2671 const bool return_free_space) 2672 { 2673 struct btrfs_block_group *cache = NULL; 2674 struct btrfs_space_info *space_info; 2675 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2676 struct btrfs_free_cluster *cluster = NULL; 2677 u64 len; 2678 u64 total_unpinned = 0; 2679 u64 empty_cluster = 0; 2680 bool readonly; 2681 2682 while (start <= end) { 2683 readonly = false; 2684 if (!cache || 2685 start >= cache->start + cache->length) { 2686 if (cache) 2687 btrfs_put_block_group(cache); 2688 total_unpinned = 0; 2689 cache = btrfs_lookup_block_group(fs_info, start); 2690 BUG_ON(!cache); /* Logic error */ 2691 2692 cluster = fetch_cluster_info(fs_info, 2693 cache->space_info, 2694 &empty_cluster); 2695 empty_cluster <<= 1; 2696 } 2697 2698 len = cache->start + cache->length - start; 2699 len = min(len, end + 1 - start); 2700 2701 down_read(&fs_info->commit_root_sem); 2702 if (start < cache->last_byte_to_unpin && return_free_space) { 2703 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2704 2705 btrfs_add_free_space(cache, start, add_len); 2706 } 2707 up_read(&fs_info->commit_root_sem); 2708 2709 start += len; 2710 total_unpinned += len; 2711 space_info = cache->space_info; 2712 2713 /* 2714 * If this space cluster has been marked as fragmented and we've 2715 * unpinned enough in this block group to potentially allow a 2716 * cluster to be created inside of it go ahead and clear the 2717 * fragmented check. 2718 */ 2719 if (cluster && cluster->fragmented && 2720 total_unpinned > empty_cluster) { 2721 spin_lock(&cluster->lock); 2722 cluster->fragmented = 0; 2723 spin_unlock(&cluster->lock); 2724 } 2725 2726 spin_lock(&space_info->lock); 2727 spin_lock(&cache->lock); 2728 cache->pinned -= len; 2729 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2730 space_info->max_extent_size = 0; 2731 if (cache->ro) { 2732 space_info->bytes_readonly += len; 2733 readonly = true; 2734 } else if (btrfs_is_zoned(fs_info)) { 2735 /* Need reset before reusing in a zoned block group */ 2736 space_info->bytes_zone_unusable += len; 2737 readonly = true; 2738 } 2739 spin_unlock(&cache->lock); 2740 if (!readonly && return_free_space && 2741 global_rsv->space_info == space_info) { 2742 spin_lock(&global_rsv->lock); 2743 if (!global_rsv->full) { 2744 u64 to_add = min(len, global_rsv->size - 2745 global_rsv->reserved); 2746 2747 global_rsv->reserved += to_add; 2748 btrfs_space_info_update_bytes_may_use(fs_info, 2749 space_info, to_add); 2750 if (global_rsv->reserved >= global_rsv->size) 2751 global_rsv->full = 1; 2752 len -= to_add; 2753 } 2754 spin_unlock(&global_rsv->lock); 2755 } 2756 /* Add to any tickets we may have */ 2757 if (!readonly && return_free_space && len) 2758 btrfs_try_granting_tickets(fs_info, space_info); 2759 spin_unlock(&space_info->lock); 2760 } 2761 2762 if (cache) 2763 btrfs_put_block_group(cache); 2764 return 0; 2765 } 2766 2767 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2768 { 2769 struct btrfs_fs_info *fs_info = trans->fs_info; 2770 struct btrfs_block_group *block_group, *tmp; 2771 struct list_head *deleted_bgs; 2772 struct extent_io_tree *unpin; 2773 u64 start; 2774 u64 end; 2775 int ret; 2776 2777 unpin = &trans->transaction->pinned_extents; 2778 2779 while (!TRANS_ABORTED(trans)) { 2780 struct extent_state *cached_state = NULL; 2781 2782 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2783 ret = find_first_extent_bit(unpin, 0, &start, &end, 2784 EXTENT_DIRTY, &cached_state); 2785 if (ret) { 2786 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2787 break; 2788 } 2789 2790 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2791 ret = btrfs_discard_extent(fs_info, start, 2792 end + 1 - start, NULL); 2793 2794 clear_extent_dirty(unpin, start, end, &cached_state); 2795 unpin_extent_range(fs_info, start, end, true); 2796 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2797 free_extent_state(cached_state); 2798 cond_resched(); 2799 } 2800 2801 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2802 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2803 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2804 } 2805 2806 /* 2807 * Transaction is finished. We don't need the lock anymore. We 2808 * do need to clean up the block groups in case of a transaction 2809 * abort. 2810 */ 2811 deleted_bgs = &trans->transaction->deleted_bgs; 2812 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2813 u64 trimmed = 0; 2814 2815 ret = -EROFS; 2816 if (!TRANS_ABORTED(trans)) 2817 ret = btrfs_discard_extent(fs_info, 2818 block_group->start, 2819 block_group->length, 2820 &trimmed); 2821 2822 list_del_init(&block_group->bg_list); 2823 btrfs_unfreeze_block_group(block_group); 2824 btrfs_put_block_group(block_group); 2825 2826 if (ret) { 2827 const char *errstr = btrfs_decode_error(ret); 2828 btrfs_warn(fs_info, 2829 "discard failed while removing blockgroup: errno=%d %s", 2830 ret, errstr); 2831 } 2832 } 2833 2834 return 0; 2835 } 2836 2837 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2838 u64 bytenr, u64 num_bytes, bool is_data) 2839 { 2840 int ret; 2841 2842 if (is_data) { 2843 struct btrfs_root *csum_root; 2844 2845 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2846 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2847 if (ret) { 2848 btrfs_abort_transaction(trans, ret); 2849 return ret; 2850 } 2851 } 2852 2853 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2854 if (ret) { 2855 btrfs_abort_transaction(trans, ret); 2856 return ret; 2857 } 2858 2859 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2860 if (ret) 2861 btrfs_abort_transaction(trans, ret); 2862 2863 return ret; 2864 } 2865 2866 /* 2867 * Drop one or more refs of @node. 2868 * 2869 * 1. Locate the extent refs. 2870 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2871 * Locate it, then reduce the refs number or remove the ref line completely. 2872 * 2873 * 2. Update the refs count in EXTENT/METADATA_ITEM 2874 * 2875 * Inline backref case: 2876 * 2877 * in extent tree we have: 2878 * 2879 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2880 * refs 2 gen 6 flags DATA 2881 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2882 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2883 * 2884 * This function gets called with: 2885 * 2886 * node->bytenr = 13631488 2887 * node->num_bytes = 1048576 2888 * root_objectid = FS_TREE 2889 * owner_objectid = 257 2890 * owner_offset = 0 2891 * refs_to_drop = 1 2892 * 2893 * Then we should get some like: 2894 * 2895 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2896 * refs 1 gen 6 flags DATA 2897 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2898 * 2899 * Keyed backref case: 2900 * 2901 * in extent tree we have: 2902 * 2903 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2904 * refs 754 gen 6 flags DATA 2905 * [...] 2906 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2907 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2908 * 2909 * This function get called with: 2910 * 2911 * node->bytenr = 13631488 2912 * node->num_bytes = 1048576 2913 * root_objectid = FS_TREE 2914 * owner_objectid = 866 2915 * owner_offset = 0 2916 * refs_to_drop = 1 2917 * 2918 * Then we should get some like: 2919 * 2920 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2921 * refs 753 gen 6 flags DATA 2922 * 2923 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2924 */ 2925 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2926 struct btrfs_delayed_ref_node *node, u64 parent, 2927 u64 root_objectid, u64 owner_objectid, 2928 u64 owner_offset, int refs_to_drop, 2929 struct btrfs_delayed_extent_op *extent_op) 2930 { 2931 struct btrfs_fs_info *info = trans->fs_info; 2932 struct btrfs_key key; 2933 struct btrfs_path *path; 2934 struct btrfs_root *extent_root; 2935 struct extent_buffer *leaf; 2936 struct btrfs_extent_item *ei; 2937 struct btrfs_extent_inline_ref *iref; 2938 int ret; 2939 int is_data; 2940 int extent_slot = 0; 2941 int found_extent = 0; 2942 int num_to_del = 1; 2943 u32 item_size; 2944 u64 refs; 2945 u64 bytenr = node->bytenr; 2946 u64 num_bytes = node->num_bytes; 2947 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2948 2949 extent_root = btrfs_extent_root(info, bytenr); 2950 ASSERT(extent_root); 2951 2952 path = btrfs_alloc_path(); 2953 if (!path) 2954 return -ENOMEM; 2955 2956 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2957 2958 if (!is_data && refs_to_drop != 1) { 2959 btrfs_crit(info, 2960 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2961 node->bytenr, refs_to_drop); 2962 ret = -EINVAL; 2963 btrfs_abort_transaction(trans, ret); 2964 goto out; 2965 } 2966 2967 if (is_data) 2968 skinny_metadata = false; 2969 2970 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2971 parent, root_objectid, owner_objectid, 2972 owner_offset); 2973 if (ret == 0) { 2974 /* 2975 * Either the inline backref or the SHARED_DATA_REF/ 2976 * SHARED_BLOCK_REF is found 2977 * 2978 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2979 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2980 */ 2981 extent_slot = path->slots[0]; 2982 while (extent_slot >= 0) { 2983 btrfs_item_key_to_cpu(path->nodes[0], &key, 2984 extent_slot); 2985 if (key.objectid != bytenr) 2986 break; 2987 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2988 key.offset == num_bytes) { 2989 found_extent = 1; 2990 break; 2991 } 2992 if (key.type == BTRFS_METADATA_ITEM_KEY && 2993 key.offset == owner_objectid) { 2994 found_extent = 1; 2995 break; 2996 } 2997 2998 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2999 if (path->slots[0] - extent_slot > 5) 3000 break; 3001 extent_slot--; 3002 } 3003 3004 if (!found_extent) { 3005 if (iref) { 3006 btrfs_crit(info, 3007 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3008 btrfs_abort_transaction(trans, -EUCLEAN); 3009 goto err_dump; 3010 } 3011 /* Must be SHARED_* item, remove the backref first */ 3012 ret = remove_extent_backref(trans, extent_root, path, 3013 NULL, refs_to_drop, is_data); 3014 if (ret) { 3015 btrfs_abort_transaction(trans, ret); 3016 goto out; 3017 } 3018 btrfs_release_path(path); 3019 3020 /* Slow path to locate EXTENT/METADATA_ITEM */ 3021 key.objectid = bytenr; 3022 key.type = BTRFS_EXTENT_ITEM_KEY; 3023 key.offset = num_bytes; 3024 3025 if (!is_data && skinny_metadata) { 3026 key.type = BTRFS_METADATA_ITEM_KEY; 3027 key.offset = owner_objectid; 3028 } 3029 3030 ret = btrfs_search_slot(trans, extent_root, 3031 &key, path, -1, 1); 3032 if (ret > 0 && skinny_metadata && path->slots[0]) { 3033 /* 3034 * Couldn't find our skinny metadata item, 3035 * see if we have ye olde extent item. 3036 */ 3037 path->slots[0]--; 3038 btrfs_item_key_to_cpu(path->nodes[0], &key, 3039 path->slots[0]); 3040 if (key.objectid == bytenr && 3041 key.type == BTRFS_EXTENT_ITEM_KEY && 3042 key.offset == num_bytes) 3043 ret = 0; 3044 } 3045 3046 if (ret > 0 && skinny_metadata) { 3047 skinny_metadata = false; 3048 key.objectid = bytenr; 3049 key.type = BTRFS_EXTENT_ITEM_KEY; 3050 key.offset = num_bytes; 3051 btrfs_release_path(path); 3052 ret = btrfs_search_slot(trans, extent_root, 3053 &key, path, -1, 1); 3054 } 3055 3056 if (ret) { 3057 btrfs_err(info, 3058 "umm, got %d back from search, was looking for %llu", 3059 ret, bytenr); 3060 if (ret > 0) 3061 btrfs_print_leaf(path->nodes[0]); 3062 } 3063 if (ret < 0) { 3064 btrfs_abort_transaction(trans, ret); 3065 goto out; 3066 } 3067 extent_slot = path->slots[0]; 3068 } 3069 } else if (WARN_ON(ret == -ENOENT)) { 3070 btrfs_print_leaf(path->nodes[0]); 3071 btrfs_err(info, 3072 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3073 bytenr, parent, root_objectid, owner_objectid, 3074 owner_offset); 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } else { 3078 btrfs_abort_transaction(trans, ret); 3079 goto out; 3080 } 3081 3082 leaf = path->nodes[0]; 3083 item_size = btrfs_item_size(leaf, extent_slot); 3084 if (unlikely(item_size < sizeof(*ei))) { 3085 ret = -EINVAL; 3086 btrfs_print_v0_err(info); 3087 btrfs_abort_transaction(trans, ret); 3088 goto out; 3089 } 3090 ei = btrfs_item_ptr(leaf, extent_slot, 3091 struct btrfs_extent_item); 3092 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3093 key.type == BTRFS_EXTENT_ITEM_KEY) { 3094 struct btrfs_tree_block_info *bi; 3095 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3096 btrfs_crit(info, 3097 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3098 key.objectid, key.type, key.offset, 3099 owner_objectid, item_size, 3100 sizeof(*ei) + sizeof(*bi)); 3101 btrfs_abort_transaction(trans, -EUCLEAN); 3102 goto err_dump; 3103 } 3104 bi = (struct btrfs_tree_block_info *)(ei + 1); 3105 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3106 } 3107 3108 refs = btrfs_extent_refs(leaf, ei); 3109 if (refs < refs_to_drop) { 3110 btrfs_crit(info, 3111 "trying to drop %d refs but we only have %llu for bytenr %llu", 3112 refs_to_drop, refs, bytenr); 3113 btrfs_abort_transaction(trans, -EUCLEAN); 3114 goto err_dump; 3115 } 3116 refs -= refs_to_drop; 3117 3118 if (refs > 0) { 3119 if (extent_op) 3120 __run_delayed_extent_op(extent_op, leaf, ei); 3121 /* 3122 * In the case of inline back ref, reference count will 3123 * be updated by remove_extent_backref 3124 */ 3125 if (iref) { 3126 if (!found_extent) { 3127 btrfs_crit(info, 3128 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3129 btrfs_abort_transaction(trans, -EUCLEAN); 3130 goto err_dump; 3131 } 3132 } else { 3133 btrfs_set_extent_refs(leaf, ei, refs); 3134 btrfs_mark_buffer_dirty(leaf); 3135 } 3136 if (found_extent) { 3137 ret = remove_extent_backref(trans, extent_root, path, 3138 iref, refs_to_drop, is_data); 3139 if (ret) { 3140 btrfs_abort_transaction(trans, ret); 3141 goto out; 3142 } 3143 } 3144 } else { 3145 /* In this branch refs == 1 */ 3146 if (found_extent) { 3147 if (is_data && refs_to_drop != 3148 extent_data_ref_count(path, iref)) { 3149 btrfs_crit(info, 3150 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3151 extent_data_ref_count(path, iref), 3152 refs_to_drop); 3153 btrfs_abort_transaction(trans, -EUCLEAN); 3154 goto err_dump; 3155 } 3156 if (iref) { 3157 if (path->slots[0] != extent_slot) { 3158 btrfs_crit(info, 3159 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3160 key.objectid, key.type, 3161 key.offset); 3162 btrfs_abort_transaction(trans, -EUCLEAN); 3163 goto err_dump; 3164 } 3165 } else { 3166 /* 3167 * No inline ref, we must be at SHARED_* item, 3168 * And it's single ref, it must be: 3169 * | extent_slot ||extent_slot + 1| 3170 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3171 */ 3172 if (path->slots[0] != extent_slot + 1) { 3173 btrfs_crit(info, 3174 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3175 btrfs_abort_transaction(trans, -EUCLEAN); 3176 goto err_dump; 3177 } 3178 path->slots[0] = extent_slot; 3179 num_to_del = 2; 3180 } 3181 } 3182 3183 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3184 num_to_del); 3185 if (ret) { 3186 btrfs_abort_transaction(trans, ret); 3187 goto out; 3188 } 3189 btrfs_release_path(path); 3190 3191 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3192 } 3193 btrfs_release_path(path); 3194 3195 out: 3196 btrfs_free_path(path); 3197 return ret; 3198 err_dump: 3199 /* 3200 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3201 * dump for debug build. 3202 */ 3203 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3204 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3205 path->slots[0], extent_slot); 3206 btrfs_print_leaf(path->nodes[0]); 3207 } 3208 3209 btrfs_free_path(path); 3210 return -EUCLEAN; 3211 } 3212 3213 /* 3214 * when we free an block, it is possible (and likely) that we free the last 3215 * delayed ref for that extent as well. This searches the delayed ref tree for 3216 * a given extent, and if there are no other delayed refs to be processed, it 3217 * removes it from the tree. 3218 */ 3219 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3220 u64 bytenr) 3221 { 3222 struct btrfs_delayed_ref_head *head; 3223 struct btrfs_delayed_ref_root *delayed_refs; 3224 int ret = 0; 3225 3226 delayed_refs = &trans->transaction->delayed_refs; 3227 spin_lock(&delayed_refs->lock); 3228 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3229 if (!head) 3230 goto out_delayed_unlock; 3231 3232 spin_lock(&head->lock); 3233 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3234 goto out; 3235 3236 if (cleanup_extent_op(head) != NULL) 3237 goto out; 3238 3239 /* 3240 * waiting for the lock here would deadlock. If someone else has it 3241 * locked they are already in the process of dropping it anyway 3242 */ 3243 if (!mutex_trylock(&head->mutex)) 3244 goto out; 3245 3246 btrfs_delete_ref_head(delayed_refs, head); 3247 head->processing = 0; 3248 3249 spin_unlock(&head->lock); 3250 spin_unlock(&delayed_refs->lock); 3251 3252 BUG_ON(head->extent_op); 3253 if (head->must_insert_reserved) 3254 ret = 1; 3255 3256 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3257 mutex_unlock(&head->mutex); 3258 btrfs_put_delayed_ref_head(head); 3259 return ret; 3260 out: 3261 spin_unlock(&head->lock); 3262 3263 out_delayed_unlock: 3264 spin_unlock(&delayed_refs->lock); 3265 return 0; 3266 } 3267 3268 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3269 u64 root_id, 3270 struct extent_buffer *buf, 3271 u64 parent, int last_ref) 3272 { 3273 struct btrfs_fs_info *fs_info = trans->fs_info; 3274 struct btrfs_ref generic_ref = { 0 }; 3275 int ret; 3276 3277 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3278 buf->start, buf->len, parent); 3279 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3280 root_id, 0, false); 3281 3282 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3283 btrfs_ref_tree_mod(fs_info, &generic_ref); 3284 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3285 BUG_ON(ret); /* -ENOMEM */ 3286 } 3287 3288 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3289 struct btrfs_block_group *cache; 3290 bool must_pin = false; 3291 3292 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3293 ret = check_ref_cleanup(trans, buf->start); 3294 if (!ret) { 3295 btrfs_redirty_list_add(trans->transaction, buf); 3296 goto out; 3297 } 3298 } 3299 3300 cache = btrfs_lookup_block_group(fs_info, buf->start); 3301 3302 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3303 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3304 btrfs_put_block_group(cache); 3305 goto out; 3306 } 3307 3308 /* 3309 * If this is a leaf and there are tree mod log users, we may 3310 * have recorded mod log operations that point to this leaf. 3311 * So we must make sure no one reuses this leaf's extent before 3312 * mod log operations are applied to a node, otherwise after 3313 * rewinding a node using the mod log operations we get an 3314 * inconsistent btree, as the leaf's extent may now be used as 3315 * a node or leaf for another different btree. 3316 * We are safe from races here because at this point no other 3317 * node or root points to this extent buffer, so if after this 3318 * check a new tree mod log user joins, it will not be able to 3319 * find a node pointing to this leaf and record operations that 3320 * point to this leaf. 3321 */ 3322 if (btrfs_header_level(buf) == 0 && 3323 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3324 must_pin = true; 3325 3326 if (must_pin || btrfs_is_zoned(fs_info)) { 3327 btrfs_redirty_list_add(trans->transaction, buf); 3328 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3329 btrfs_put_block_group(cache); 3330 goto out; 3331 } 3332 3333 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3334 3335 btrfs_add_free_space(cache, buf->start, buf->len); 3336 btrfs_free_reserved_bytes(cache, buf->len, 0); 3337 btrfs_put_block_group(cache); 3338 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3339 } 3340 out: 3341 if (last_ref) { 3342 /* 3343 * Deleting the buffer, clear the corrupt flag since it doesn't 3344 * matter anymore. 3345 */ 3346 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3347 } 3348 } 3349 3350 /* Can return -ENOMEM */ 3351 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3352 { 3353 struct btrfs_fs_info *fs_info = trans->fs_info; 3354 int ret; 3355 3356 if (btrfs_is_testing(fs_info)) 3357 return 0; 3358 3359 /* 3360 * tree log blocks never actually go into the extent allocation 3361 * tree, just update pinning info and exit early. 3362 */ 3363 if ((ref->type == BTRFS_REF_METADATA && 3364 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3365 (ref->type == BTRFS_REF_DATA && 3366 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3367 /* unlocks the pinned mutex */ 3368 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3369 ret = 0; 3370 } else if (ref->type == BTRFS_REF_METADATA) { 3371 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3372 } else { 3373 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3374 } 3375 3376 if (!((ref->type == BTRFS_REF_METADATA && 3377 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3378 (ref->type == BTRFS_REF_DATA && 3379 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3380 btrfs_ref_tree_mod(fs_info, ref); 3381 3382 return ret; 3383 } 3384 3385 enum btrfs_loop_type { 3386 LOOP_CACHING_NOWAIT, 3387 LOOP_CACHING_WAIT, 3388 LOOP_ALLOC_CHUNK, 3389 LOOP_NO_EMPTY_SIZE, 3390 }; 3391 3392 static inline void 3393 btrfs_lock_block_group(struct btrfs_block_group *cache, 3394 int delalloc) 3395 { 3396 if (delalloc) 3397 down_read(&cache->data_rwsem); 3398 } 3399 3400 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3401 int delalloc) 3402 { 3403 btrfs_get_block_group(cache); 3404 if (delalloc) 3405 down_read(&cache->data_rwsem); 3406 } 3407 3408 static struct btrfs_block_group *btrfs_lock_cluster( 3409 struct btrfs_block_group *block_group, 3410 struct btrfs_free_cluster *cluster, 3411 int delalloc) 3412 __acquires(&cluster->refill_lock) 3413 { 3414 struct btrfs_block_group *used_bg = NULL; 3415 3416 spin_lock(&cluster->refill_lock); 3417 while (1) { 3418 used_bg = cluster->block_group; 3419 if (!used_bg) 3420 return NULL; 3421 3422 if (used_bg == block_group) 3423 return used_bg; 3424 3425 btrfs_get_block_group(used_bg); 3426 3427 if (!delalloc) 3428 return used_bg; 3429 3430 if (down_read_trylock(&used_bg->data_rwsem)) 3431 return used_bg; 3432 3433 spin_unlock(&cluster->refill_lock); 3434 3435 /* We should only have one-level nested. */ 3436 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3437 3438 spin_lock(&cluster->refill_lock); 3439 if (used_bg == cluster->block_group) 3440 return used_bg; 3441 3442 up_read(&used_bg->data_rwsem); 3443 btrfs_put_block_group(used_bg); 3444 } 3445 } 3446 3447 static inline void 3448 btrfs_release_block_group(struct btrfs_block_group *cache, 3449 int delalloc) 3450 { 3451 if (delalloc) 3452 up_read(&cache->data_rwsem); 3453 btrfs_put_block_group(cache); 3454 } 3455 3456 enum btrfs_extent_allocation_policy { 3457 BTRFS_EXTENT_ALLOC_CLUSTERED, 3458 BTRFS_EXTENT_ALLOC_ZONED, 3459 }; 3460 3461 /* 3462 * Structure used internally for find_free_extent() function. Wraps needed 3463 * parameters. 3464 */ 3465 struct find_free_extent_ctl { 3466 /* Basic allocation info */ 3467 u64 ram_bytes; 3468 u64 num_bytes; 3469 u64 min_alloc_size; 3470 u64 empty_size; 3471 u64 flags; 3472 int delalloc; 3473 3474 /* Where to start the search inside the bg */ 3475 u64 search_start; 3476 3477 /* For clustered allocation */ 3478 u64 empty_cluster; 3479 struct btrfs_free_cluster *last_ptr; 3480 bool use_cluster; 3481 3482 bool have_caching_bg; 3483 bool orig_have_caching_bg; 3484 3485 /* Allocation is called for tree-log */ 3486 bool for_treelog; 3487 3488 /* Allocation is called for data relocation */ 3489 bool for_data_reloc; 3490 3491 /* RAID index, converted from flags */ 3492 int index; 3493 3494 /* 3495 * Current loop number, check find_free_extent_update_loop() for details 3496 */ 3497 int loop; 3498 3499 /* 3500 * Whether we're refilling a cluster, if true we need to re-search 3501 * current block group but don't try to refill the cluster again. 3502 */ 3503 bool retry_clustered; 3504 3505 /* 3506 * Whether we're updating free space cache, if true we need to re-search 3507 * current block group but don't try updating free space cache again. 3508 */ 3509 bool retry_unclustered; 3510 3511 /* If current block group is cached */ 3512 int cached; 3513 3514 /* Max contiguous hole found */ 3515 u64 max_extent_size; 3516 3517 /* Total free space from free space cache, not always contiguous */ 3518 u64 total_free_space; 3519 3520 /* Found result */ 3521 u64 found_offset; 3522 3523 /* Hint where to start looking for an empty space */ 3524 u64 hint_byte; 3525 3526 /* Allocation policy */ 3527 enum btrfs_extent_allocation_policy policy; 3528 }; 3529 3530 3531 /* 3532 * Helper function for find_free_extent(). 3533 * 3534 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3535 * Return -EAGAIN to inform caller that we need to re-search this block group 3536 * Return >0 to inform caller that we find nothing 3537 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3538 */ 3539 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3540 struct find_free_extent_ctl *ffe_ctl, 3541 struct btrfs_block_group **cluster_bg_ret) 3542 { 3543 struct btrfs_block_group *cluster_bg; 3544 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3545 u64 aligned_cluster; 3546 u64 offset; 3547 int ret; 3548 3549 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3550 if (!cluster_bg) 3551 goto refill_cluster; 3552 if (cluster_bg != bg && (cluster_bg->ro || 3553 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3554 goto release_cluster; 3555 3556 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3557 ffe_ctl->num_bytes, cluster_bg->start, 3558 &ffe_ctl->max_extent_size); 3559 if (offset) { 3560 /* We have a block, we're done */ 3561 spin_unlock(&last_ptr->refill_lock); 3562 trace_btrfs_reserve_extent_cluster(cluster_bg, 3563 ffe_ctl->search_start, ffe_ctl->num_bytes); 3564 *cluster_bg_ret = cluster_bg; 3565 ffe_ctl->found_offset = offset; 3566 return 0; 3567 } 3568 WARN_ON(last_ptr->block_group != cluster_bg); 3569 3570 release_cluster: 3571 /* 3572 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3573 * lets just skip it and let the allocator find whatever block it can 3574 * find. If we reach this point, we will have tried the cluster 3575 * allocator plenty of times and not have found anything, so we are 3576 * likely way too fragmented for the clustering stuff to find anything. 3577 * 3578 * However, if the cluster is taken from the current block group, 3579 * release the cluster first, so that we stand a better chance of 3580 * succeeding in the unclustered allocation. 3581 */ 3582 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3583 spin_unlock(&last_ptr->refill_lock); 3584 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3585 return -ENOENT; 3586 } 3587 3588 /* This cluster didn't work out, free it and start over */ 3589 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3590 3591 if (cluster_bg != bg) 3592 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3593 3594 refill_cluster: 3595 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3596 spin_unlock(&last_ptr->refill_lock); 3597 return -ENOENT; 3598 } 3599 3600 aligned_cluster = max_t(u64, 3601 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3602 bg->full_stripe_len); 3603 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3604 ffe_ctl->num_bytes, aligned_cluster); 3605 if (ret == 0) { 3606 /* Now pull our allocation out of this cluster */ 3607 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3608 ffe_ctl->num_bytes, ffe_ctl->search_start, 3609 &ffe_ctl->max_extent_size); 3610 if (offset) { 3611 /* We found one, proceed */ 3612 spin_unlock(&last_ptr->refill_lock); 3613 trace_btrfs_reserve_extent_cluster(bg, 3614 ffe_ctl->search_start, 3615 ffe_ctl->num_bytes); 3616 ffe_ctl->found_offset = offset; 3617 return 0; 3618 } 3619 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3620 !ffe_ctl->retry_clustered) { 3621 spin_unlock(&last_ptr->refill_lock); 3622 3623 ffe_ctl->retry_clustered = true; 3624 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3625 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3626 return -EAGAIN; 3627 } 3628 /* 3629 * At this point we either didn't find a cluster or we weren't able to 3630 * allocate a block from our cluster. Free the cluster we've been 3631 * trying to use, and go to the next block group. 3632 */ 3633 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3634 spin_unlock(&last_ptr->refill_lock); 3635 return 1; 3636 } 3637 3638 /* 3639 * Return >0 to inform caller that we find nothing 3640 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3641 * Return -EAGAIN to inform caller that we need to re-search this block group 3642 */ 3643 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3644 struct find_free_extent_ctl *ffe_ctl) 3645 { 3646 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3647 u64 offset; 3648 3649 /* 3650 * We are doing an unclustered allocation, set the fragmented flag so 3651 * we don't bother trying to setup a cluster again until we get more 3652 * space. 3653 */ 3654 if (unlikely(last_ptr)) { 3655 spin_lock(&last_ptr->lock); 3656 last_ptr->fragmented = 1; 3657 spin_unlock(&last_ptr->lock); 3658 } 3659 if (ffe_ctl->cached) { 3660 struct btrfs_free_space_ctl *free_space_ctl; 3661 3662 free_space_ctl = bg->free_space_ctl; 3663 spin_lock(&free_space_ctl->tree_lock); 3664 if (free_space_ctl->free_space < 3665 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3666 ffe_ctl->empty_size) { 3667 ffe_ctl->total_free_space = max_t(u64, 3668 ffe_ctl->total_free_space, 3669 free_space_ctl->free_space); 3670 spin_unlock(&free_space_ctl->tree_lock); 3671 return 1; 3672 } 3673 spin_unlock(&free_space_ctl->tree_lock); 3674 } 3675 3676 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3677 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3678 &ffe_ctl->max_extent_size); 3679 3680 /* 3681 * If we didn't find a chunk, and we haven't failed on this block group 3682 * before, and this block group is in the middle of caching and we are 3683 * ok with waiting, then go ahead and wait for progress to be made, and 3684 * set @retry_unclustered to true. 3685 * 3686 * If @retry_unclustered is true then we've already waited on this 3687 * block group once and should move on to the next block group. 3688 */ 3689 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3690 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3691 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3692 ffe_ctl->empty_size); 3693 ffe_ctl->retry_unclustered = true; 3694 return -EAGAIN; 3695 } else if (!offset) { 3696 return 1; 3697 } 3698 ffe_ctl->found_offset = offset; 3699 return 0; 3700 } 3701 3702 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3703 struct find_free_extent_ctl *ffe_ctl, 3704 struct btrfs_block_group **bg_ret) 3705 { 3706 int ret; 3707 3708 /* We want to try and use the cluster allocator, so lets look there */ 3709 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3710 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3711 if (ret >= 0 || ret == -EAGAIN) 3712 return ret; 3713 /* ret == -ENOENT case falls through */ 3714 } 3715 3716 return find_free_extent_unclustered(block_group, ffe_ctl); 3717 } 3718 3719 /* 3720 * Tree-log block group locking 3721 * ============================ 3722 * 3723 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3724 * indicates the starting address of a block group, which is reserved only 3725 * for tree-log metadata. 3726 * 3727 * Lock nesting 3728 * ============ 3729 * 3730 * space_info::lock 3731 * block_group::lock 3732 * fs_info::treelog_bg_lock 3733 */ 3734 3735 /* 3736 * Simple allocator for sequential-only block group. It only allows sequential 3737 * allocation. No need to play with trees. This function also reserves the 3738 * bytes as in btrfs_add_reserved_bytes. 3739 */ 3740 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3741 struct find_free_extent_ctl *ffe_ctl, 3742 struct btrfs_block_group **bg_ret) 3743 { 3744 struct btrfs_fs_info *fs_info = block_group->fs_info; 3745 struct btrfs_space_info *space_info = block_group->space_info; 3746 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3747 u64 start = block_group->start; 3748 u64 num_bytes = ffe_ctl->num_bytes; 3749 u64 avail; 3750 u64 bytenr = block_group->start; 3751 u64 log_bytenr; 3752 u64 data_reloc_bytenr; 3753 int ret = 0; 3754 bool skip = false; 3755 3756 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3757 3758 /* 3759 * Do not allow non-tree-log blocks in the dedicated tree-log block 3760 * group, and vice versa. 3761 */ 3762 spin_lock(&fs_info->treelog_bg_lock); 3763 log_bytenr = fs_info->treelog_bg; 3764 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3765 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3766 skip = true; 3767 spin_unlock(&fs_info->treelog_bg_lock); 3768 if (skip) 3769 return 1; 3770 3771 /* 3772 * Do not allow non-relocation blocks in the dedicated relocation block 3773 * group, and vice versa. 3774 */ 3775 spin_lock(&fs_info->relocation_bg_lock); 3776 data_reloc_bytenr = fs_info->data_reloc_bg; 3777 if (data_reloc_bytenr && 3778 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3779 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3780 skip = true; 3781 spin_unlock(&fs_info->relocation_bg_lock); 3782 if (skip) 3783 return 1; 3784 3785 /* Check RO and no space case before trying to activate it */ 3786 spin_lock(&block_group->lock); 3787 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3788 ret = 1; 3789 /* 3790 * May need to clear fs_info->{treelog,data_reloc}_bg. 3791 * Return the error after taking the locks. 3792 */ 3793 } 3794 spin_unlock(&block_group->lock); 3795 3796 if (!ret && !btrfs_zone_activate(block_group)) { 3797 ret = 1; 3798 /* 3799 * May need to clear fs_info->{treelog,data_reloc}_bg. 3800 * Return the error after taking the locks. 3801 */ 3802 } 3803 3804 spin_lock(&space_info->lock); 3805 spin_lock(&block_group->lock); 3806 spin_lock(&fs_info->treelog_bg_lock); 3807 spin_lock(&fs_info->relocation_bg_lock); 3808 3809 if (ret) 3810 goto out; 3811 3812 ASSERT(!ffe_ctl->for_treelog || 3813 block_group->start == fs_info->treelog_bg || 3814 fs_info->treelog_bg == 0); 3815 ASSERT(!ffe_ctl->for_data_reloc || 3816 block_group->start == fs_info->data_reloc_bg || 3817 fs_info->data_reloc_bg == 0); 3818 3819 if (block_group->ro || block_group->zoned_data_reloc_ongoing) { 3820 ret = 1; 3821 goto out; 3822 } 3823 3824 /* 3825 * Do not allow currently using block group to be tree-log dedicated 3826 * block group. 3827 */ 3828 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3829 (block_group->used || block_group->reserved)) { 3830 ret = 1; 3831 goto out; 3832 } 3833 3834 /* 3835 * Do not allow currently used block group to be the data relocation 3836 * dedicated block group. 3837 */ 3838 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3839 (block_group->used || block_group->reserved)) { 3840 ret = 1; 3841 goto out; 3842 } 3843 3844 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3845 avail = block_group->zone_capacity - block_group->alloc_offset; 3846 if (avail < num_bytes) { 3847 if (ffe_ctl->max_extent_size < avail) { 3848 /* 3849 * With sequential allocator, free space is always 3850 * contiguous 3851 */ 3852 ffe_ctl->max_extent_size = avail; 3853 ffe_ctl->total_free_space = avail; 3854 } 3855 ret = 1; 3856 goto out; 3857 } 3858 3859 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3860 fs_info->treelog_bg = block_group->start; 3861 3862 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3863 fs_info->data_reloc_bg = block_group->start; 3864 3865 ffe_ctl->found_offset = start + block_group->alloc_offset; 3866 block_group->alloc_offset += num_bytes; 3867 spin_lock(&ctl->tree_lock); 3868 ctl->free_space -= num_bytes; 3869 spin_unlock(&ctl->tree_lock); 3870 3871 /* 3872 * We do not check if found_offset is aligned to stripesize. The 3873 * address is anyway rewritten when using zone append writing. 3874 */ 3875 3876 ffe_ctl->search_start = ffe_ctl->found_offset; 3877 3878 out: 3879 if (ret && ffe_ctl->for_treelog) 3880 fs_info->treelog_bg = 0; 3881 if (ret && ffe_ctl->for_data_reloc && 3882 fs_info->data_reloc_bg == block_group->start) { 3883 /* 3884 * Do not allow further allocations from this block group. 3885 * Compared to increasing the ->ro, setting the 3886 * ->zoned_data_reloc_ongoing flag still allows nocow 3887 * writers to come in. See btrfs_inc_nocow_writers(). 3888 * 3889 * We need to disable an allocation to avoid an allocation of 3890 * regular (non-relocation data) extent. With mix of relocation 3891 * extents and regular extents, we can dispatch WRITE commands 3892 * (for relocation extents) and ZONE APPEND commands (for 3893 * regular extents) at the same time to the same zone, which 3894 * easily break the write pointer. 3895 */ 3896 block_group->zoned_data_reloc_ongoing = 1; 3897 fs_info->data_reloc_bg = 0; 3898 } 3899 spin_unlock(&fs_info->relocation_bg_lock); 3900 spin_unlock(&fs_info->treelog_bg_lock); 3901 spin_unlock(&block_group->lock); 3902 spin_unlock(&space_info->lock); 3903 return ret; 3904 } 3905 3906 static int do_allocation(struct btrfs_block_group *block_group, 3907 struct find_free_extent_ctl *ffe_ctl, 3908 struct btrfs_block_group **bg_ret) 3909 { 3910 switch (ffe_ctl->policy) { 3911 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3912 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3913 case BTRFS_EXTENT_ALLOC_ZONED: 3914 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3915 default: 3916 BUG(); 3917 } 3918 } 3919 3920 static void release_block_group(struct btrfs_block_group *block_group, 3921 struct find_free_extent_ctl *ffe_ctl, 3922 int delalloc) 3923 { 3924 switch (ffe_ctl->policy) { 3925 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3926 ffe_ctl->retry_clustered = false; 3927 ffe_ctl->retry_unclustered = false; 3928 break; 3929 case BTRFS_EXTENT_ALLOC_ZONED: 3930 /* Nothing to do */ 3931 break; 3932 default: 3933 BUG(); 3934 } 3935 3936 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3937 ffe_ctl->index); 3938 btrfs_release_block_group(block_group, delalloc); 3939 } 3940 3941 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3942 struct btrfs_key *ins) 3943 { 3944 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3945 3946 if (!ffe_ctl->use_cluster && last_ptr) { 3947 spin_lock(&last_ptr->lock); 3948 last_ptr->window_start = ins->objectid; 3949 spin_unlock(&last_ptr->lock); 3950 } 3951 } 3952 3953 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3954 struct btrfs_key *ins) 3955 { 3956 switch (ffe_ctl->policy) { 3957 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3958 found_extent_clustered(ffe_ctl, ins); 3959 break; 3960 case BTRFS_EXTENT_ALLOC_ZONED: 3961 /* Nothing to do */ 3962 break; 3963 default: 3964 BUG(); 3965 } 3966 } 3967 3968 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3969 struct find_free_extent_ctl *ffe_ctl) 3970 { 3971 /* If we can activate new zone, just allocate a chunk and use it */ 3972 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3973 return 0; 3974 3975 /* 3976 * We already reached the max active zones. Try to finish one block 3977 * group to make a room for a new block group. This is only possible 3978 * for a data block group because btrfs_zone_finish() may need to wait 3979 * for a running transaction which can cause a deadlock for metadata 3980 * allocation. 3981 */ 3982 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3983 int ret = btrfs_zone_finish_one_bg(fs_info); 3984 3985 if (ret == 1) 3986 return 0; 3987 else if (ret < 0) 3988 return ret; 3989 } 3990 3991 /* 3992 * If we have enough free space left in an already active block group 3993 * and we can't activate any other zone now, do not allow allocating a 3994 * new chunk and let find_free_extent() retry with a smaller size. 3995 */ 3996 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3997 return -ENOSPC; 3998 3999 /* 4000 * Even min_alloc_size is not left in any block groups. Since we cannot 4001 * activate a new block group, allocating it may not help. Let's tell a 4002 * caller to try again and hope it progress something by writing some 4003 * parts of the region. That is only possible for data block groups, 4004 * where a part of the region can be written. 4005 */ 4006 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4007 return -EAGAIN; 4008 4009 /* 4010 * We cannot activate a new block group and no enough space left in any 4011 * block groups. So, allocating a new block group may not help. But, 4012 * there is nothing to do anyway, so let's go with it. 4013 */ 4014 return 0; 4015 } 4016 4017 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4018 struct find_free_extent_ctl *ffe_ctl) 4019 { 4020 switch (ffe_ctl->policy) { 4021 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4022 return 0; 4023 case BTRFS_EXTENT_ALLOC_ZONED: 4024 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4025 default: 4026 BUG(); 4027 } 4028 } 4029 4030 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 4031 { 4032 switch (ffe_ctl->policy) { 4033 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4034 /* 4035 * If we can't allocate a new chunk we've already looped through 4036 * at least once, move on to the NO_EMPTY_SIZE case. 4037 */ 4038 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 4039 return 0; 4040 case BTRFS_EXTENT_ALLOC_ZONED: 4041 /* Give up here */ 4042 return -ENOSPC; 4043 default: 4044 BUG(); 4045 } 4046 } 4047 4048 /* 4049 * Return >0 means caller needs to re-search for free extent 4050 * Return 0 means we have the needed free extent. 4051 * Return <0 means we failed to locate any free extent. 4052 */ 4053 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4054 struct btrfs_key *ins, 4055 struct find_free_extent_ctl *ffe_ctl, 4056 bool full_search) 4057 { 4058 struct btrfs_root *root = fs_info->chunk_root; 4059 int ret; 4060 4061 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4062 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4063 ffe_ctl->orig_have_caching_bg = true; 4064 4065 if (ins->objectid) { 4066 found_extent(ffe_ctl, ins); 4067 return 0; 4068 } 4069 4070 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4071 return 1; 4072 4073 ffe_ctl->index++; 4074 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4075 return 1; 4076 4077 /* 4078 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4079 * caching kthreads as we move along 4080 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4081 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4082 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4083 * again 4084 */ 4085 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4086 ffe_ctl->index = 0; 4087 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4088 /* 4089 * We want to skip the LOOP_CACHING_WAIT step if we 4090 * don't have any uncached bgs and we've already done a 4091 * full search through. 4092 */ 4093 if (ffe_ctl->orig_have_caching_bg || !full_search) 4094 ffe_ctl->loop = LOOP_CACHING_WAIT; 4095 else 4096 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4097 } else { 4098 ffe_ctl->loop++; 4099 } 4100 4101 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4102 struct btrfs_trans_handle *trans; 4103 int exist = 0; 4104 4105 /*Check if allocation policy allows to create a new chunk */ 4106 ret = can_allocate_chunk(fs_info, ffe_ctl); 4107 if (ret) 4108 return ret; 4109 4110 trans = current->journal_info; 4111 if (trans) 4112 exist = 1; 4113 else 4114 trans = btrfs_join_transaction(root); 4115 4116 if (IS_ERR(trans)) { 4117 ret = PTR_ERR(trans); 4118 return ret; 4119 } 4120 4121 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4122 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4123 4124 /* Do not bail out on ENOSPC since we can do more. */ 4125 if (ret == -ENOSPC) 4126 ret = chunk_allocation_failed(ffe_ctl); 4127 else if (ret < 0) 4128 btrfs_abort_transaction(trans, ret); 4129 else 4130 ret = 0; 4131 if (!exist) 4132 btrfs_end_transaction(trans); 4133 if (ret) 4134 return ret; 4135 } 4136 4137 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4138 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4139 return -ENOSPC; 4140 4141 /* 4142 * Don't loop again if we already have no empty_size and 4143 * no empty_cluster. 4144 */ 4145 if (ffe_ctl->empty_size == 0 && 4146 ffe_ctl->empty_cluster == 0) 4147 return -ENOSPC; 4148 ffe_ctl->empty_size = 0; 4149 ffe_ctl->empty_cluster = 0; 4150 } 4151 return 1; 4152 } 4153 return -ENOSPC; 4154 } 4155 4156 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4157 struct find_free_extent_ctl *ffe_ctl, 4158 struct btrfs_space_info *space_info, 4159 struct btrfs_key *ins) 4160 { 4161 /* 4162 * If our free space is heavily fragmented we may not be able to make 4163 * big contiguous allocations, so instead of doing the expensive search 4164 * for free space, simply return ENOSPC with our max_extent_size so we 4165 * can go ahead and search for a more manageable chunk. 4166 * 4167 * If our max_extent_size is large enough for our allocation simply 4168 * disable clustering since we will likely not be able to find enough 4169 * space to create a cluster and induce latency trying. 4170 */ 4171 if (space_info->max_extent_size) { 4172 spin_lock(&space_info->lock); 4173 if (space_info->max_extent_size && 4174 ffe_ctl->num_bytes > space_info->max_extent_size) { 4175 ins->offset = space_info->max_extent_size; 4176 spin_unlock(&space_info->lock); 4177 return -ENOSPC; 4178 } else if (space_info->max_extent_size) { 4179 ffe_ctl->use_cluster = false; 4180 } 4181 spin_unlock(&space_info->lock); 4182 } 4183 4184 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4185 &ffe_ctl->empty_cluster); 4186 if (ffe_ctl->last_ptr) { 4187 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4188 4189 spin_lock(&last_ptr->lock); 4190 if (last_ptr->block_group) 4191 ffe_ctl->hint_byte = last_ptr->window_start; 4192 if (last_ptr->fragmented) { 4193 /* 4194 * We still set window_start so we can keep track of the 4195 * last place we found an allocation to try and save 4196 * some time. 4197 */ 4198 ffe_ctl->hint_byte = last_ptr->window_start; 4199 ffe_ctl->use_cluster = false; 4200 } 4201 spin_unlock(&last_ptr->lock); 4202 } 4203 4204 return 0; 4205 } 4206 4207 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4208 struct find_free_extent_ctl *ffe_ctl, 4209 struct btrfs_space_info *space_info, 4210 struct btrfs_key *ins) 4211 { 4212 switch (ffe_ctl->policy) { 4213 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4214 return prepare_allocation_clustered(fs_info, ffe_ctl, 4215 space_info, ins); 4216 case BTRFS_EXTENT_ALLOC_ZONED: 4217 if (ffe_ctl->for_treelog) { 4218 spin_lock(&fs_info->treelog_bg_lock); 4219 if (fs_info->treelog_bg) 4220 ffe_ctl->hint_byte = fs_info->treelog_bg; 4221 spin_unlock(&fs_info->treelog_bg_lock); 4222 } 4223 if (ffe_ctl->for_data_reloc) { 4224 spin_lock(&fs_info->relocation_bg_lock); 4225 if (fs_info->data_reloc_bg) 4226 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4227 spin_unlock(&fs_info->relocation_bg_lock); 4228 } 4229 return 0; 4230 default: 4231 BUG(); 4232 } 4233 } 4234 4235 /* 4236 * walks the btree of allocated extents and find a hole of a given size. 4237 * The key ins is changed to record the hole: 4238 * ins->objectid == start position 4239 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4240 * ins->offset == the size of the hole. 4241 * Any available blocks before search_start are skipped. 4242 * 4243 * If there is no suitable free space, we will record the max size of 4244 * the free space extent currently. 4245 * 4246 * The overall logic and call chain: 4247 * 4248 * find_free_extent() 4249 * |- Iterate through all block groups 4250 * | |- Get a valid block group 4251 * | |- Try to do clustered allocation in that block group 4252 * | |- Try to do unclustered allocation in that block group 4253 * | |- Check if the result is valid 4254 * | | |- If valid, then exit 4255 * | |- Jump to next block group 4256 * | 4257 * |- Push harder to find free extents 4258 * |- If not found, re-iterate all block groups 4259 */ 4260 static noinline int find_free_extent(struct btrfs_root *root, 4261 struct btrfs_key *ins, 4262 struct find_free_extent_ctl *ffe_ctl) 4263 { 4264 struct btrfs_fs_info *fs_info = root->fs_info; 4265 int ret = 0; 4266 int cache_block_group_error = 0; 4267 struct btrfs_block_group *block_group = NULL; 4268 struct btrfs_space_info *space_info; 4269 bool full_search = false; 4270 4271 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4272 4273 ffe_ctl->search_start = 0; 4274 /* For clustered allocation */ 4275 ffe_ctl->empty_cluster = 0; 4276 ffe_ctl->last_ptr = NULL; 4277 ffe_ctl->use_cluster = true; 4278 ffe_ctl->have_caching_bg = false; 4279 ffe_ctl->orig_have_caching_bg = false; 4280 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4281 ffe_ctl->loop = 0; 4282 /* For clustered allocation */ 4283 ffe_ctl->retry_clustered = false; 4284 ffe_ctl->retry_unclustered = false; 4285 ffe_ctl->cached = 0; 4286 ffe_ctl->max_extent_size = 0; 4287 ffe_ctl->total_free_space = 0; 4288 ffe_ctl->found_offset = 0; 4289 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4290 4291 if (btrfs_is_zoned(fs_info)) 4292 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4293 4294 ins->type = BTRFS_EXTENT_ITEM_KEY; 4295 ins->objectid = 0; 4296 ins->offset = 0; 4297 4298 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4299 ffe_ctl->flags); 4300 4301 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4302 if (!space_info) { 4303 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4304 return -ENOSPC; 4305 } 4306 4307 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4308 if (ret < 0) 4309 return ret; 4310 4311 ffe_ctl->search_start = max(ffe_ctl->search_start, 4312 first_logical_byte(fs_info)); 4313 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4314 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4315 block_group = btrfs_lookup_block_group(fs_info, 4316 ffe_ctl->search_start); 4317 /* 4318 * we don't want to use the block group if it doesn't match our 4319 * allocation bits, or if its not cached. 4320 * 4321 * However if we are re-searching with an ideal block group 4322 * picked out then we don't care that the block group is cached. 4323 */ 4324 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4325 block_group->cached != BTRFS_CACHE_NO) { 4326 down_read(&space_info->groups_sem); 4327 if (list_empty(&block_group->list) || 4328 block_group->ro) { 4329 /* 4330 * someone is removing this block group, 4331 * we can't jump into the have_block_group 4332 * target because our list pointers are not 4333 * valid 4334 */ 4335 btrfs_put_block_group(block_group); 4336 up_read(&space_info->groups_sem); 4337 } else { 4338 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4339 block_group->flags); 4340 btrfs_lock_block_group(block_group, 4341 ffe_ctl->delalloc); 4342 goto have_block_group; 4343 } 4344 } else if (block_group) { 4345 btrfs_put_block_group(block_group); 4346 } 4347 } 4348 search: 4349 ffe_ctl->have_caching_bg = false; 4350 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4351 ffe_ctl->index == 0) 4352 full_search = true; 4353 down_read(&space_info->groups_sem); 4354 list_for_each_entry(block_group, 4355 &space_info->block_groups[ffe_ctl->index], list) { 4356 struct btrfs_block_group *bg_ret; 4357 4358 /* If the block group is read-only, we can skip it entirely. */ 4359 if (unlikely(block_group->ro)) { 4360 if (ffe_ctl->for_treelog) 4361 btrfs_clear_treelog_bg(block_group); 4362 if (ffe_ctl->for_data_reloc) 4363 btrfs_clear_data_reloc_bg(block_group); 4364 continue; 4365 } 4366 4367 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4368 ffe_ctl->search_start = block_group->start; 4369 4370 /* 4371 * this can happen if we end up cycling through all the 4372 * raid types, but we want to make sure we only allocate 4373 * for the proper type. 4374 */ 4375 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4376 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4377 BTRFS_BLOCK_GROUP_RAID1_MASK | 4378 BTRFS_BLOCK_GROUP_RAID56_MASK | 4379 BTRFS_BLOCK_GROUP_RAID10; 4380 4381 /* 4382 * if they asked for extra copies and this block group 4383 * doesn't provide them, bail. This does allow us to 4384 * fill raid0 from raid1. 4385 */ 4386 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4387 goto loop; 4388 4389 /* 4390 * This block group has different flags than we want. 4391 * It's possible that we have MIXED_GROUP flag but no 4392 * block group is mixed. Just skip such block group. 4393 */ 4394 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4395 continue; 4396 } 4397 4398 have_block_group: 4399 ffe_ctl->cached = btrfs_block_group_done(block_group); 4400 if (unlikely(!ffe_ctl->cached)) { 4401 ffe_ctl->have_caching_bg = true; 4402 ret = btrfs_cache_block_group(block_group, 0); 4403 4404 /* 4405 * If we get ENOMEM here or something else we want to 4406 * try other block groups, because it may not be fatal. 4407 * However if we can't find anything else we need to 4408 * save our return here so that we return the actual 4409 * error that caused problems, not ENOSPC. 4410 */ 4411 if (ret < 0) { 4412 if (!cache_block_group_error) 4413 cache_block_group_error = ret; 4414 ret = 0; 4415 goto loop; 4416 } 4417 ret = 0; 4418 } 4419 4420 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4421 goto loop; 4422 4423 bg_ret = NULL; 4424 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4425 if (ret == 0) { 4426 if (bg_ret && bg_ret != block_group) { 4427 btrfs_release_block_group(block_group, 4428 ffe_ctl->delalloc); 4429 block_group = bg_ret; 4430 } 4431 } else if (ret == -EAGAIN) { 4432 goto have_block_group; 4433 } else if (ret > 0) { 4434 goto loop; 4435 } 4436 4437 /* Checks */ 4438 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4439 fs_info->stripesize); 4440 4441 /* move on to the next group */ 4442 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4443 block_group->start + block_group->length) { 4444 btrfs_add_free_space_unused(block_group, 4445 ffe_ctl->found_offset, 4446 ffe_ctl->num_bytes); 4447 goto loop; 4448 } 4449 4450 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4451 btrfs_add_free_space_unused(block_group, 4452 ffe_ctl->found_offset, 4453 ffe_ctl->search_start - ffe_ctl->found_offset); 4454 4455 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4456 ffe_ctl->num_bytes, 4457 ffe_ctl->delalloc); 4458 if (ret == -EAGAIN) { 4459 btrfs_add_free_space_unused(block_group, 4460 ffe_ctl->found_offset, 4461 ffe_ctl->num_bytes); 4462 goto loop; 4463 } 4464 btrfs_inc_block_group_reservations(block_group); 4465 4466 /* we are all good, lets return */ 4467 ins->objectid = ffe_ctl->search_start; 4468 ins->offset = ffe_ctl->num_bytes; 4469 4470 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4471 ffe_ctl->num_bytes); 4472 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4473 break; 4474 loop: 4475 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4476 cond_resched(); 4477 } 4478 up_read(&space_info->groups_sem); 4479 4480 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4481 if (ret > 0) 4482 goto search; 4483 4484 if (ret == -ENOSPC && !cache_block_group_error) { 4485 /* 4486 * Use ffe_ctl->total_free_space as fallback if we can't find 4487 * any contiguous hole. 4488 */ 4489 if (!ffe_ctl->max_extent_size) 4490 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4491 spin_lock(&space_info->lock); 4492 space_info->max_extent_size = ffe_ctl->max_extent_size; 4493 spin_unlock(&space_info->lock); 4494 ins->offset = ffe_ctl->max_extent_size; 4495 } else if (ret == -ENOSPC) { 4496 ret = cache_block_group_error; 4497 } 4498 return ret; 4499 } 4500 4501 /* 4502 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4503 * hole that is at least as big as @num_bytes. 4504 * 4505 * @root - The root that will contain this extent 4506 * 4507 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4508 * is used for accounting purposes. This value differs 4509 * from @num_bytes only in the case of compressed extents. 4510 * 4511 * @num_bytes - Number of bytes to allocate on-disk. 4512 * 4513 * @min_alloc_size - Indicates the minimum amount of space that the 4514 * allocator should try to satisfy. In some cases 4515 * @num_bytes may be larger than what is required and if 4516 * the filesystem is fragmented then allocation fails. 4517 * However, the presence of @min_alloc_size gives a 4518 * chance to try and satisfy the smaller allocation. 4519 * 4520 * @empty_size - A hint that you plan on doing more COW. This is the 4521 * size in bytes the allocator should try to find free 4522 * next to the block it returns. This is just a hint and 4523 * may be ignored by the allocator. 4524 * 4525 * @hint_byte - Hint to the allocator to start searching above the byte 4526 * address passed. It might be ignored. 4527 * 4528 * @ins - This key is modified to record the found hole. It will 4529 * have the following values: 4530 * ins->objectid == start position 4531 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4532 * ins->offset == the size of the hole. 4533 * 4534 * @is_data - Boolean flag indicating whether an extent is 4535 * allocated for data (true) or metadata (false) 4536 * 4537 * @delalloc - Boolean flag indicating whether this allocation is for 4538 * delalloc or not. If 'true' data_rwsem of block groups 4539 * is going to be acquired. 4540 * 4541 * 4542 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4543 * case -ENOSPC is returned then @ins->offset will contain the size of the 4544 * largest available hole the allocator managed to find. 4545 */ 4546 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4547 u64 num_bytes, u64 min_alloc_size, 4548 u64 empty_size, u64 hint_byte, 4549 struct btrfs_key *ins, int is_data, int delalloc) 4550 { 4551 struct btrfs_fs_info *fs_info = root->fs_info; 4552 struct find_free_extent_ctl ffe_ctl = {}; 4553 bool final_tried = num_bytes == min_alloc_size; 4554 u64 flags; 4555 int ret; 4556 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4557 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4558 4559 flags = get_alloc_profile_by_root(root, is_data); 4560 again: 4561 WARN_ON(num_bytes < fs_info->sectorsize); 4562 4563 ffe_ctl.ram_bytes = ram_bytes; 4564 ffe_ctl.num_bytes = num_bytes; 4565 ffe_ctl.min_alloc_size = min_alloc_size; 4566 ffe_ctl.empty_size = empty_size; 4567 ffe_ctl.flags = flags; 4568 ffe_ctl.delalloc = delalloc; 4569 ffe_ctl.hint_byte = hint_byte; 4570 ffe_ctl.for_treelog = for_treelog; 4571 ffe_ctl.for_data_reloc = for_data_reloc; 4572 4573 ret = find_free_extent(root, ins, &ffe_ctl); 4574 if (!ret && !is_data) { 4575 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4576 } else if (ret == -ENOSPC) { 4577 if (!final_tried && ins->offset) { 4578 num_bytes = min(num_bytes >> 1, ins->offset); 4579 num_bytes = round_down(num_bytes, 4580 fs_info->sectorsize); 4581 num_bytes = max(num_bytes, min_alloc_size); 4582 ram_bytes = num_bytes; 4583 if (num_bytes == min_alloc_size) 4584 final_tried = true; 4585 goto again; 4586 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4587 struct btrfs_space_info *sinfo; 4588 4589 sinfo = btrfs_find_space_info(fs_info, flags); 4590 btrfs_err(fs_info, 4591 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4592 flags, num_bytes, for_treelog, for_data_reloc); 4593 if (sinfo) 4594 btrfs_dump_space_info(fs_info, sinfo, 4595 num_bytes, 1); 4596 } 4597 } 4598 4599 return ret; 4600 } 4601 4602 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4603 u64 start, u64 len, int delalloc) 4604 { 4605 struct btrfs_block_group *cache; 4606 4607 cache = btrfs_lookup_block_group(fs_info, start); 4608 if (!cache) { 4609 btrfs_err(fs_info, "Unable to find block group for %llu", 4610 start); 4611 return -ENOSPC; 4612 } 4613 4614 btrfs_add_free_space(cache, start, len); 4615 btrfs_free_reserved_bytes(cache, len, delalloc); 4616 trace_btrfs_reserved_extent_free(fs_info, start, len); 4617 4618 btrfs_put_block_group(cache); 4619 return 0; 4620 } 4621 4622 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4623 u64 len) 4624 { 4625 struct btrfs_block_group *cache; 4626 int ret = 0; 4627 4628 cache = btrfs_lookup_block_group(trans->fs_info, start); 4629 if (!cache) { 4630 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4631 start); 4632 return -ENOSPC; 4633 } 4634 4635 ret = pin_down_extent(trans, cache, start, len, 1); 4636 btrfs_put_block_group(cache); 4637 return ret; 4638 } 4639 4640 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4641 u64 num_bytes) 4642 { 4643 struct btrfs_fs_info *fs_info = trans->fs_info; 4644 int ret; 4645 4646 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4647 if (ret) 4648 return ret; 4649 4650 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4651 if (ret) { 4652 ASSERT(!ret); 4653 btrfs_err(fs_info, "update block group failed for %llu %llu", 4654 bytenr, num_bytes); 4655 return ret; 4656 } 4657 4658 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4659 return 0; 4660 } 4661 4662 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4663 u64 parent, u64 root_objectid, 4664 u64 flags, u64 owner, u64 offset, 4665 struct btrfs_key *ins, int ref_mod) 4666 { 4667 struct btrfs_fs_info *fs_info = trans->fs_info; 4668 struct btrfs_root *extent_root; 4669 int ret; 4670 struct btrfs_extent_item *extent_item; 4671 struct btrfs_extent_inline_ref *iref; 4672 struct btrfs_path *path; 4673 struct extent_buffer *leaf; 4674 int type; 4675 u32 size; 4676 4677 if (parent > 0) 4678 type = BTRFS_SHARED_DATA_REF_KEY; 4679 else 4680 type = BTRFS_EXTENT_DATA_REF_KEY; 4681 4682 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4683 4684 path = btrfs_alloc_path(); 4685 if (!path) 4686 return -ENOMEM; 4687 4688 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4689 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4690 if (ret) { 4691 btrfs_free_path(path); 4692 return ret; 4693 } 4694 4695 leaf = path->nodes[0]; 4696 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4697 struct btrfs_extent_item); 4698 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4699 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4700 btrfs_set_extent_flags(leaf, extent_item, 4701 flags | BTRFS_EXTENT_FLAG_DATA); 4702 4703 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4704 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4705 if (parent > 0) { 4706 struct btrfs_shared_data_ref *ref; 4707 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4708 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4709 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4710 } else { 4711 struct btrfs_extent_data_ref *ref; 4712 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4713 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4714 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4715 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4716 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4717 } 4718 4719 btrfs_mark_buffer_dirty(path->nodes[0]); 4720 btrfs_free_path(path); 4721 4722 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4723 } 4724 4725 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4726 struct btrfs_delayed_ref_node *node, 4727 struct btrfs_delayed_extent_op *extent_op) 4728 { 4729 struct btrfs_fs_info *fs_info = trans->fs_info; 4730 struct btrfs_root *extent_root; 4731 int ret; 4732 struct btrfs_extent_item *extent_item; 4733 struct btrfs_key extent_key; 4734 struct btrfs_tree_block_info *block_info; 4735 struct btrfs_extent_inline_ref *iref; 4736 struct btrfs_path *path; 4737 struct extent_buffer *leaf; 4738 struct btrfs_delayed_tree_ref *ref; 4739 u32 size = sizeof(*extent_item) + sizeof(*iref); 4740 u64 flags = extent_op->flags_to_set; 4741 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4742 4743 ref = btrfs_delayed_node_to_tree_ref(node); 4744 4745 extent_key.objectid = node->bytenr; 4746 if (skinny_metadata) { 4747 extent_key.offset = ref->level; 4748 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4749 } else { 4750 extent_key.offset = node->num_bytes; 4751 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4752 size += sizeof(*block_info); 4753 } 4754 4755 path = btrfs_alloc_path(); 4756 if (!path) 4757 return -ENOMEM; 4758 4759 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4760 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4761 size); 4762 if (ret) { 4763 btrfs_free_path(path); 4764 return ret; 4765 } 4766 4767 leaf = path->nodes[0]; 4768 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4769 struct btrfs_extent_item); 4770 btrfs_set_extent_refs(leaf, extent_item, 1); 4771 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4772 btrfs_set_extent_flags(leaf, extent_item, 4773 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4774 4775 if (skinny_metadata) { 4776 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4777 } else { 4778 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4779 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4780 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4781 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4782 } 4783 4784 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4785 btrfs_set_extent_inline_ref_type(leaf, iref, 4786 BTRFS_SHARED_BLOCK_REF_KEY); 4787 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4788 } else { 4789 btrfs_set_extent_inline_ref_type(leaf, iref, 4790 BTRFS_TREE_BLOCK_REF_KEY); 4791 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4792 } 4793 4794 btrfs_mark_buffer_dirty(leaf); 4795 btrfs_free_path(path); 4796 4797 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4798 } 4799 4800 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4801 struct btrfs_root *root, u64 owner, 4802 u64 offset, u64 ram_bytes, 4803 struct btrfs_key *ins) 4804 { 4805 struct btrfs_ref generic_ref = { 0 }; 4806 4807 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4808 4809 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4810 ins->objectid, ins->offset, 0); 4811 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4812 offset, 0, false); 4813 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4814 4815 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4816 } 4817 4818 /* 4819 * this is used by the tree logging recovery code. It records that 4820 * an extent has been allocated and makes sure to clear the free 4821 * space cache bits as well 4822 */ 4823 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4824 u64 root_objectid, u64 owner, u64 offset, 4825 struct btrfs_key *ins) 4826 { 4827 struct btrfs_fs_info *fs_info = trans->fs_info; 4828 int ret; 4829 struct btrfs_block_group *block_group; 4830 struct btrfs_space_info *space_info; 4831 4832 /* 4833 * Mixed block groups will exclude before processing the log so we only 4834 * need to do the exclude dance if this fs isn't mixed. 4835 */ 4836 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4837 ret = __exclude_logged_extent(fs_info, ins->objectid, 4838 ins->offset); 4839 if (ret) 4840 return ret; 4841 } 4842 4843 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4844 if (!block_group) 4845 return -EINVAL; 4846 4847 space_info = block_group->space_info; 4848 spin_lock(&space_info->lock); 4849 spin_lock(&block_group->lock); 4850 space_info->bytes_reserved += ins->offset; 4851 block_group->reserved += ins->offset; 4852 spin_unlock(&block_group->lock); 4853 spin_unlock(&space_info->lock); 4854 4855 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4856 offset, ins, 1); 4857 if (ret) 4858 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4859 btrfs_put_block_group(block_group); 4860 return ret; 4861 } 4862 4863 static struct extent_buffer * 4864 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4865 u64 bytenr, int level, u64 owner, 4866 enum btrfs_lock_nesting nest) 4867 { 4868 struct btrfs_fs_info *fs_info = root->fs_info; 4869 struct extent_buffer *buf; 4870 4871 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4872 if (IS_ERR(buf)) 4873 return buf; 4874 4875 /* 4876 * Extra safety check in case the extent tree is corrupted and extent 4877 * allocator chooses to use a tree block which is already used and 4878 * locked. 4879 */ 4880 if (buf->lock_owner == current->pid) { 4881 btrfs_err_rl(fs_info, 4882 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4883 buf->start, btrfs_header_owner(buf), current->pid); 4884 free_extent_buffer(buf); 4885 return ERR_PTR(-EUCLEAN); 4886 } 4887 4888 /* 4889 * This needs to stay, because we could allocate a freed block from an 4890 * old tree into a new tree, so we need to make sure this new block is 4891 * set to the appropriate level and owner. 4892 */ 4893 btrfs_set_buffer_lockdep_class(owner, buf, level); 4894 __btrfs_tree_lock(buf, nest); 4895 btrfs_clean_tree_block(buf); 4896 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4897 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4898 4899 set_extent_buffer_uptodate(buf); 4900 4901 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4902 btrfs_set_header_level(buf, level); 4903 btrfs_set_header_bytenr(buf, buf->start); 4904 btrfs_set_header_generation(buf, trans->transid); 4905 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4906 btrfs_set_header_owner(buf, owner); 4907 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4908 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4909 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4910 buf->log_index = root->log_transid % 2; 4911 /* 4912 * we allow two log transactions at a time, use different 4913 * EXTENT bit to differentiate dirty pages. 4914 */ 4915 if (buf->log_index == 0) 4916 set_extent_dirty(&root->dirty_log_pages, buf->start, 4917 buf->start + buf->len - 1, GFP_NOFS); 4918 else 4919 set_extent_new(&root->dirty_log_pages, buf->start, 4920 buf->start + buf->len - 1); 4921 } else { 4922 buf->log_index = -1; 4923 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4924 buf->start + buf->len - 1, GFP_NOFS); 4925 } 4926 /* this returns a buffer locked for blocking */ 4927 return buf; 4928 } 4929 4930 /* 4931 * finds a free extent and does all the dirty work required for allocation 4932 * returns the tree buffer or an ERR_PTR on error. 4933 */ 4934 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4935 struct btrfs_root *root, 4936 u64 parent, u64 root_objectid, 4937 const struct btrfs_disk_key *key, 4938 int level, u64 hint, 4939 u64 empty_size, 4940 enum btrfs_lock_nesting nest) 4941 { 4942 struct btrfs_fs_info *fs_info = root->fs_info; 4943 struct btrfs_key ins; 4944 struct btrfs_block_rsv *block_rsv; 4945 struct extent_buffer *buf; 4946 struct btrfs_delayed_extent_op *extent_op; 4947 struct btrfs_ref generic_ref = { 0 }; 4948 u64 flags = 0; 4949 int ret; 4950 u32 blocksize = fs_info->nodesize; 4951 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4952 4953 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4954 if (btrfs_is_testing(fs_info)) { 4955 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4956 level, root_objectid, nest); 4957 if (!IS_ERR(buf)) 4958 root->alloc_bytenr += blocksize; 4959 return buf; 4960 } 4961 #endif 4962 4963 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4964 if (IS_ERR(block_rsv)) 4965 return ERR_CAST(block_rsv); 4966 4967 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4968 empty_size, hint, &ins, 0, 0); 4969 if (ret) 4970 goto out_unuse; 4971 4972 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4973 root_objectid, nest); 4974 if (IS_ERR(buf)) { 4975 ret = PTR_ERR(buf); 4976 goto out_free_reserved; 4977 } 4978 4979 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4980 if (parent == 0) 4981 parent = ins.objectid; 4982 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4983 } else 4984 BUG_ON(parent > 0); 4985 4986 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4987 extent_op = btrfs_alloc_delayed_extent_op(); 4988 if (!extent_op) { 4989 ret = -ENOMEM; 4990 goto out_free_buf; 4991 } 4992 if (key) 4993 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4994 else 4995 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4996 extent_op->flags_to_set = flags; 4997 extent_op->update_key = skinny_metadata ? false : true; 4998 extent_op->update_flags = true; 4999 extent_op->level = level; 5000 5001 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5002 ins.objectid, ins.offset, parent); 5003 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5004 root->root_key.objectid, false); 5005 btrfs_ref_tree_mod(fs_info, &generic_ref); 5006 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5007 if (ret) 5008 goto out_free_delayed; 5009 } 5010 return buf; 5011 5012 out_free_delayed: 5013 btrfs_free_delayed_extent_op(extent_op); 5014 out_free_buf: 5015 btrfs_tree_unlock(buf); 5016 free_extent_buffer(buf); 5017 out_free_reserved: 5018 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5019 out_unuse: 5020 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5021 return ERR_PTR(ret); 5022 } 5023 5024 struct walk_control { 5025 u64 refs[BTRFS_MAX_LEVEL]; 5026 u64 flags[BTRFS_MAX_LEVEL]; 5027 struct btrfs_key update_progress; 5028 struct btrfs_key drop_progress; 5029 int drop_level; 5030 int stage; 5031 int level; 5032 int shared_level; 5033 int update_ref; 5034 int keep_locks; 5035 int reada_slot; 5036 int reada_count; 5037 int restarted; 5038 }; 5039 5040 #define DROP_REFERENCE 1 5041 #define UPDATE_BACKREF 2 5042 5043 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5044 struct btrfs_root *root, 5045 struct walk_control *wc, 5046 struct btrfs_path *path) 5047 { 5048 struct btrfs_fs_info *fs_info = root->fs_info; 5049 u64 bytenr; 5050 u64 generation; 5051 u64 refs; 5052 u64 flags; 5053 u32 nritems; 5054 struct btrfs_key key; 5055 struct extent_buffer *eb; 5056 int ret; 5057 int slot; 5058 int nread = 0; 5059 5060 if (path->slots[wc->level] < wc->reada_slot) { 5061 wc->reada_count = wc->reada_count * 2 / 3; 5062 wc->reada_count = max(wc->reada_count, 2); 5063 } else { 5064 wc->reada_count = wc->reada_count * 3 / 2; 5065 wc->reada_count = min_t(int, wc->reada_count, 5066 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5067 } 5068 5069 eb = path->nodes[wc->level]; 5070 nritems = btrfs_header_nritems(eb); 5071 5072 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5073 if (nread >= wc->reada_count) 5074 break; 5075 5076 cond_resched(); 5077 bytenr = btrfs_node_blockptr(eb, slot); 5078 generation = btrfs_node_ptr_generation(eb, slot); 5079 5080 if (slot == path->slots[wc->level]) 5081 goto reada; 5082 5083 if (wc->stage == UPDATE_BACKREF && 5084 generation <= root->root_key.offset) 5085 continue; 5086 5087 /* We don't lock the tree block, it's OK to be racy here */ 5088 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5089 wc->level - 1, 1, &refs, 5090 &flags); 5091 /* We don't care about errors in readahead. */ 5092 if (ret < 0) 5093 continue; 5094 BUG_ON(refs == 0); 5095 5096 if (wc->stage == DROP_REFERENCE) { 5097 if (refs == 1) 5098 goto reada; 5099 5100 if (wc->level == 1 && 5101 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5102 continue; 5103 if (!wc->update_ref || 5104 generation <= root->root_key.offset) 5105 continue; 5106 btrfs_node_key_to_cpu(eb, &key, slot); 5107 ret = btrfs_comp_cpu_keys(&key, 5108 &wc->update_progress); 5109 if (ret < 0) 5110 continue; 5111 } else { 5112 if (wc->level == 1 && 5113 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5114 continue; 5115 } 5116 reada: 5117 btrfs_readahead_node_child(eb, slot); 5118 nread++; 5119 } 5120 wc->reada_slot = slot; 5121 } 5122 5123 /* 5124 * helper to process tree block while walking down the tree. 5125 * 5126 * when wc->stage == UPDATE_BACKREF, this function updates 5127 * back refs for pointers in the block. 5128 * 5129 * NOTE: return value 1 means we should stop walking down. 5130 */ 5131 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5132 struct btrfs_root *root, 5133 struct btrfs_path *path, 5134 struct walk_control *wc, int lookup_info) 5135 { 5136 struct btrfs_fs_info *fs_info = root->fs_info; 5137 int level = wc->level; 5138 struct extent_buffer *eb = path->nodes[level]; 5139 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5140 int ret; 5141 5142 if (wc->stage == UPDATE_BACKREF && 5143 btrfs_header_owner(eb) != root->root_key.objectid) 5144 return 1; 5145 5146 /* 5147 * when reference count of tree block is 1, it won't increase 5148 * again. once full backref flag is set, we never clear it. 5149 */ 5150 if (lookup_info && 5151 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5152 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5153 BUG_ON(!path->locks[level]); 5154 ret = btrfs_lookup_extent_info(trans, fs_info, 5155 eb->start, level, 1, 5156 &wc->refs[level], 5157 &wc->flags[level]); 5158 BUG_ON(ret == -ENOMEM); 5159 if (ret) 5160 return ret; 5161 BUG_ON(wc->refs[level] == 0); 5162 } 5163 5164 if (wc->stage == DROP_REFERENCE) { 5165 if (wc->refs[level] > 1) 5166 return 1; 5167 5168 if (path->locks[level] && !wc->keep_locks) { 5169 btrfs_tree_unlock_rw(eb, path->locks[level]); 5170 path->locks[level] = 0; 5171 } 5172 return 0; 5173 } 5174 5175 /* wc->stage == UPDATE_BACKREF */ 5176 if (!(wc->flags[level] & flag)) { 5177 BUG_ON(!path->locks[level]); 5178 ret = btrfs_inc_ref(trans, root, eb, 1); 5179 BUG_ON(ret); /* -ENOMEM */ 5180 ret = btrfs_dec_ref(trans, root, eb, 0); 5181 BUG_ON(ret); /* -ENOMEM */ 5182 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5183 btrfs_header_level(eb)); 5184 BUG_ON(ret); /* -ENOMEM */ 5185 wc->flags[level] |= flag; 5186 } 5187 5188 /* 5189 * the block is shared by multiple trees, so it's not good to 5190 * keep the tree lock 5191 */ 5192 if (path->locks[level] && level > 0) { 5193 btrfs_tree_unlock_rw(eb, path->locks[level]); 5194 path->locks[level] = 0; 5195 } 5196 return 0; 5197 } 5198 5199 /* 5200 * This is used to verify a ref exists for this root to deal with a bug where we 5201 * would have a drop_progress key that hadn't been updated properly. 5202 */ 5203 static int check_ref_exists(struct btrfs_trans_handle *trans, 5204 struct btrfs_root *root, u64 bytenr, u64 parent, 5205 int level) 5206 { 5207 struct btrfs_path *path; 5208 struct btrfs_extent_inline_ref *iref; 5209 int ret; 5210 5211 path = btrfs_alloc_path(); 5212 if (!path) 5213 return -ENOMEM; 5214 5215 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5216 root->fs_info->nodesize, parent, 5217 root->root_key.objectid, level, 0); 5218 btrfs_free_path(path); 5219 if (ret == -ENOENT) 5220 return 0; 5221 if (ret < 0) 5222 return ret; 5223 return 1; 5224 } 5225 5226 /* 5227 * helper to process tree block pointer. 5228 * 5229 * when wc->stage == DROP_REFERENCE, this function checks 5230 * reference count of the block pointed to. if the block 5231 * is shared and we need update back refs for the subtree 5232 * rooted at the block, this function changes wc->stage to 5233 * UPDATE_BACKREF. if the block is shared and there is no 5234 * need to update back, this function drops the reference 5235 * to the block. 5236 * 5237 * NOTE: return value 1 means we should stop walking down. 5238 */ 5239 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5240 struct btrfs_root *root, 5241 struct btrfs_path *path, 5242 struct walk_control *wc, int *lookup_info) 5243 { 5244 struct btrfs_fs_info *fs_info = root->fs_info; 5245 u64 bytenr; 5246 u64 generation; 5247 u64 parent; 5248 struct btrfs_key key; 5249 struct btrfs_key first_key; 5250 struct btrfs_ref ref = { 0 }; 5251 struct extent_buffer *next; 5252 int level = wc->level; 5253 int reada = 0; 5254 int ret = 0; 5255 bool need_account = false; 5256 5257 generation = btrfs_node_ptr_generation(path->nodes[level], 5258 path->slots[level]); 5259 /* 5260 * if the lower level block was created before the snapshot 5261 * was created, we know there is no need to update back refs 5262 * for the subtree 5263 */ 5264 if (wc->stage == UPDATE_BACKREF && 5265 generation <= root->root_key.offset) { 5266 *lookup_info = 1; 5267 return 1; 5268 } 5269 5270 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5271 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5272 path->slots[level]); 5273 5274 next = find_extent_buffer(fs_info, bytenr); 5275 if (!next) { 5276 next = btrfs_find_create_tree_block(fs_info, bytenr, 5277 root->root_key.objectid, level - 1); 5278 if (IS_ERR(next)) 5279 return PTR_ERR(next); 5280 reada = 1; 5281 } 5282 btrfs_tree_lock(next); 5283 5284 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5285 &wc->refs[level - 1], 5286 &wc->flags[level - 1]); 5287 if (ret < 0) 5288 goto out_unlock; 5289 5290 if (unlikely(wc->refs[level - 1] == 0)) { 5291 btrfs_err(fs_info, "Missing references."); 5292 ret = -EIO; 5293 goto out_unlock; 5294 } 5295 *lookup_info = 0; 5296 5297 if (wc->stage == DROP_REFERENCE) { 5298 if (wc->refs[level - 1] > 1) { 5299 need_account = true; 5300 if (level == 1 && 5301 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5302 goto skip; 5303 5304 if (!wc->update_ref || 5305 generation <= root->root_key.offset) 5306 goto skip; 5307 5308 btrfs_node_key_to_cpu(path->nodes[level], &key, 5309 path->slots[level]); 5310 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5311 if (ret < 0) 5312 goto skip; 5313 5314 wc->stage = UPDATE_BACKREF; 5315 wc->shared_level = level - 1; 5316 } 5317 } else { 5318 if (level == 1 && 5319 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5320 goto skip; 5321 } 5322 5323 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5324 btrfs_tree_unlock(next); 5325 free_extent_buffer(next); 5326 next = NULL; 5327 *lookup_info = 1; 5328 } 5329 5330 if (!next) { 5331 if (reada && level == 1) 5332 reada_walk_down(trans, root, wc, path); 5333 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5334 generation, level - 1, &first_key); 5335 if (IS_ERR(next)) { 5336 return PTR_ERR(next); 5337 } else if (!extent_buffer_uptodate(next)) { 5338 free_extent_buffer(next); 5339 return -EIO; 5340 } 5341 btrfs_tree_lock(next); 5342 } 5343 5344 level--; 5345 ASSERT(level == btrfs_header_level(next)); 5346 if (level != btrfs_header_level(next)) { 5347 btrfs_err(root->fs_info, "mismatched level"); 5348 ret = -EIO; 5349 goto out_unlock; 5350 } 5351 path->nodes[level] = next; 5352 path->slots[level] = 0; 5353 path->locks[level] = BTRFS_WRITE_LOCK; 5354 wc->level = level; 5355 if (wc->level == 1) 5356 wc->reada_slot = 0; 5357 return 0; 5358 skip: 5359 wc->refs[level - 1] = 0; 5360 wc->flags[level - 1] = 0; 5361 if (wc->stage == DROP_REFERENCE) { 5362 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5363 parent = path->nodes[level]->start; 5364 } else { 5365 ASSERT(root->root_key.objectid == 5366 btrfs_header_owner(path->nodes[level])); 5367 if (root->root_key.objectid != 5368 btrfs_header_owner(path->nodes[level])) { 5369 btrfs_err(root->fs_info, 5370 "mismatched block owner"); 5371 ret = -EIO; 5372 goto out_unlock; 5373 } 5374 parent = 0; 5375 } 5376 5377 /* 5378 * If we had a drop_progress we need to verify the refs are set 5379 * as expected. If we find our ref then we know that from here 5380 * on out everything should be correct, and we can clear the 5381 * ->restarted flag. 5382 */ 5383 if (wc->restarted) { 5384 ret = check_ref_exists(trans, root, bytenr, parent, 5385 level - 1); 5386 if (ret < 0) 5387 goto out_unlock; 5388 if (ret == 0) 5389 goto no_delete; 5390 ret = 0; 5391 wc->restarted = 0; 5392 } 5393 5394 /* 5395 * Reloc tree doesn't contribute to qgroup numbers, and we have 5396 * already accounted them at merge time (replace_path), 5397 * thus we could skip expensive subtree trace here. 5398 */ 5399 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5400 need_account) { 5401 ret = btrfs_qgroup_trace_subtree(trans, next, 5402 generation, level - 1); 5403 if (ret) { 5404 btrfs_err_rl(fs_info, 5405 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5406 ret); 5407 } 5408 } 5409 5410 /* 5411 * We need to update the next key in our walk control so we can 5412 * update the drop_progress key accordingly. We don't care if 5413 * find_next_key doesn't find a key because that means we're at 5414 * the end and are going to clean up now. 5415 */ 5416 wc->drop_level = level; 5417 find_next_key(path, level, &wc->drop_progress); 5418 5419 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5420 fs_info->nodesize, parent); 5421 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5422 0, false); 5423 ret = btrfs_free_extent(trans, &ref); 5424 if (ret) 5425 goto out_unlock; 5426 } 5427 no_delete: 5428 *lookup_info = 1; 5429 ret = 1; 5430 5431 out_unlock: 5432 btrfs_tree_unlock(next); 5433 free_extent_buffer(next); 5434 5435 return ret; 5436 } 5437 5438 /* 5439 * helper to process tree block while walking up the tree. 5440 * 5441 * when wc->stage == DROP_REFERENCE, this function drops 5442 * reference count on the block. 5443 * 5444 * when wc->stage == UPDATE_BACKREF, this function changes 5445 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5446 * to UPDATE_BACKREF previously while processing the block. 5447 * 5448 * NOTE: return value 1 means we should stop walking up. 5449 */ 5450 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5451 struct btrfs_root *root, 5452 struct btrfs_path *path, 5453 struct walk_control *wc) 5454 { 5455 struct btrfs_fs_info *fs_info = root->fs_info; 5456 int ret; 5457 int level = wc->level; 5458 struct extent_buffer *eb = path->nodes[level]; 5459 u64 parent = 0; 5460 5461 if (wc->stage == UPDATE_BACKREF) { 5462 BUG_ON(wc->shared_level < level); 5463 if (level < wc->shared_level) 5464 goto out; 5465 5466 ret = find_next_key(path, level + 1, &wc->update_progress); 5467 if (ret > 0) 5468 wc->update_ref = 0; 5469 5470 wc->stage = DROP_REFERENCE; 5471 wc->shared_level = -1; 5472 path->slots[level] = 0; 5473 5474 /* 5475 * check reference count again if the block isn't locked. 5476 * we should start walking down the tree again if reference 5477 * count is one. 5478 */ 5479 if (!path->locks[level]) { 5480 BUG_ON(level == 0); 5481 btrfs_tree_lock(eb); 5482 path->locks[level] = BTRFS_WRITE_LOCK; 5483 5484 ret = btrfs_lookup_extent_info(trans, fs_info, 5485 eb->start, level, 1, 5486 &wc->refs[level], 5487 &wc->flags[level]); 5488 if (ret < 0) { 5489 btrfs_tree_unlock_rw(eb, path->locks[level]); 5490 path->locks[level] = 0; 5491 return ret; 5492 } 5493 BUG_ON(wc->refs[level] == 0); 5494 if (wc->refs[level] == 1) { 5495 btrfs_tree_unlock_rw(eb, path->locks[level]); 5496 path->locks[level] = 0; 5497 return 1; 5498 } 5499 } 5500 } 5501 5502 /* wc->stage == DROP_REFERENCE */ 5503 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5504 5505 if (wc->refs[level] == 1) { 5506 if (level == 0) { 5507 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5508 ret = btrfs_dec_ref(trans, root, eb, 1); 5509 else 5510 ret = btrfs_dec_ref(trans, root, eb, 0); 5511 BUG_ON(ret); /* -ENOMEM */ 5512 if (is_fstree(root->root_key.objectid)) { 5513 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5514 if (ret) { 5515 btrfs_err_rl(fs_info, 5516 "error %d accounting leaf items, quota is out of sync, rescan required", 5517 ret); 5518 } 5519 } 5520 } 5521 /* make block locked assertion in btrfs_clean_tree_block happy */ 5522 if (!path->locks[level] && 5523 btrfs_header_generation(eb) == trans->transid) { 5524 btrfs_tree_lock(eb); 5525 path->locks[level] = BTRFS_WRITE_LOCK; 5526 } 5527 btrfs_clean_tree_block(eb); 5528 } 5529 5530 if (eb == root->node) { 5531 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5532 parent = eb->start; 5533 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5534 goto owner_mismatch; 5535 } else { 5536 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5537 parent = path->nodes[level + 1]->start; 5538 else if (root->root_key.objectid != 5539 btrfs_header_owner(path->nodes[level + 1])) 5540 goto owner_mismatch; 5541 } 5542 5543 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5544 wc->refs[level] == 1); 5545 out: 5546 wc->refs[level] = 0; 5547 wc->flags[level] = 0; 5548 return 0; 5549 5550 owner_mismatch: 5551 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5552 btrfs_header_owner(eb), root->root_key.objectid); 5553 return -EUCLEAN; 5554 } 5555 5556 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5557 struct btrfs_root *root, 5558 struct btrfs_path *path, 5559 struct walk_control *wc) 5560 { 5561 int level = wc->level; 5562 int lookup_info = 1; 5563 int ret; 5564 5565 while (level >= 0) { 5566 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5567 if (ret > 0) 5568 break; 5569 5570 if (level == 0) 5571 break; 5572 5573 if (path->slots[level] >= 5574 btrfs_header_nritems(path->nodes[level])) 5575 break; 5576 5577 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5578 if (ret > 0) { 5579 path->slots[level]++; 5580 continue; 5581 } else if (ret < 0) 5582 return ret; 5583 level = wc->level; 5584 } 5585 return 0; 5586 } 5587 5588 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5589 struct btrfs_root *root, 5590 struct btrfs_path *path, 5591 struct walk_control *wc, int max_level) 5592 { 5593 int level = wc->level; 5594 int ret; 5595 5596 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5597 while (level < max_level && path->nodes[level]) { 5598 wc->level = level; 5599 if (path->slots[level] + 1 < 5600 btrfs_header_nritems(path->nodes[level])) { 5601 path->slots[level]++; 5602 return 0; 5603 } else { 5604 ret = walk_up_proc(trans, root, path, wc); 5605 if (ret > 0) 5606 return 0; 5607 if (ret < 0) 5608 return ret; 5609 5610 if (path->locks[level]) { 5611 btrfs_tree_unlock_rw(path->nodes[level], 5612 path->locks[level]); 5613 path->locks[level] = 0; 5614 } 5615 free_extent_buffer(path->nodes[level]); 5616 path->nodes[level] = NULL; 5617 level++; 5618 } 5619 } 5620 return 1; 5621 } 5622 5623 /* 5624 * drop a subvolume tree. 5625 * 5626 * this function traverses the tree freeing any blocks that only 5627 * referenced by the tree. 5628 * 5629 * when a shared tree block is found. this function decreases its 5630 * reference count by one. if update_ref is true, this function 5631 * also make sure backrefs for the shared block and all lower level 5632 * blocks are properly updated. 5633 * 5634 * If called with for_reloc == 0, may exit early with -EAGAIN 5635 */ 5636 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5637 { 5638 struct btrfs_fs_info *fs_info = root->fs_info; 5639 struct btrfs_path *path; 5640 struct btrfs_trans_handle *trans; 5641 struct btrfs_root *tree_root = fs_info->tree_root; 5642 struct btrfs_root_item *root_item = &root->root_item; 5643 struct walk_control *wc; 5644 struct btrfs_key key; 5645 int err = 0; 5646 int ret; 5647 int level; 5648 bool root_dropped = false; 5649 bool unfinished_drop = false; 5650 5651 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5652 5653 path = btrfs_alloc_path(); 5654 if (!path) { 5655 err = -ENOMEM; 5656 goto out; 5657 } 5658 5659 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5660 if (!wc) { 5661 btrfs_free_path(path); 5662 err = -ENOMEM; 5663 goto out; 5664 } 5665 5666 /* 5667 * Use join to avoid potential EINTR from transaction start. See 5668 * wait_reserve_ticket and the whole reservation callchain. 5669 */ 5670 if (for_reloc) 5671 trans = btrfs_join_transaction(tree_root); 5672 else 5673 trans = btrfs_start_transaction(tree_root, 0); 5674 if (IS_ERR(trans)) { 5675 err = PTR_ERR(trans); 5676 goto out_free; 5677 } 5678 5679 err = btrfs_run_delayed_items(trans); 5680 if (err) 5681 goto out_end_trans; 5682 5683 /* 5684 * This will help us catch people modifying the fs tree while we're 5685 * dropping it. It is unsafe to mess with the fs tree while it's being 5686 * dropped as we unlock the root node and parent nodes as we walk down 5687 * the tree, assuming nothing will change. If something does change 5688 * then we'll have stale information and drop references to blocks we've 5689 * already dropped. 5690 */ 5691 set_bit(BTRFS_ROOT_DELETING, &root->state); 5692 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5693 5694 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5695 level = btrfs_header_level(root->node); 5696 path->nodes[level] = btrfs_lock_root_node(root); 5697 path->slots[level] = 0; 5698 path->locks[level] = BTRFS_WRITE_LOCK; 5699 memset(&wc->update_progress, 0, 5700 sizeof(wc->update_progress)); 5701 } else { 5702 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5703 memcpy(&wc->update_progress, &key, 5704 sizeof(wc->update_progress)); 5705 5706 level = btrfs_root_drop_level(root_item); 5707 BUG_ON(level == 0); 5708 path->lowest_level = level; 5709 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5710 path->lowest_level = 0; 5711 if (ret < 0) { 5712 err = ret; 5713 goto out_end_trans; 5714 } 5715 WARN_ON(ret > 0); 5716 5717 /* 5718 * unlock our path, this is safe because only this 5719 * function is allowed to delete this snapshot 5720 */ 5721 btrfs_unlock_up_safe(path, 0); 5722 5723 level = btrfs_header_level(root->node); 5724 while (1) { 5725 btrfs_tree_lock(path->nodes[level]); 5726 path->locks[level] = BTRFS_WRITE_LOCK; 5727 5728 ret = btrfs_lookup_extent_info(trans, fs_info, 5729 path->nodes[level]->start, 5730 level, 1, &wc->refs[level], 5731 &wc->flags[level]); 5732 if (ret < 0) { 5733 err = ret; 5734 goto out_end_trans; 5735 } 5736 BUG_ON(wc->refs[level] == 0); 5737 5738 if (level == btrfs_root_drop_level(root_item)) 5739 break; 5740 5741 btrfs_tree_unlock(path->nodes[level]); 5742 path->locks[level] = 0; 5743 WARN_ON(wc->refs[level] != 1); 5744 level--; 5745 } 5746 } 5747 5748 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5749 wc->level = level; 5750 wc->shared_level = -1; 5751 wc->stage = DROP_REFERENCE; 5752 wc->update_ref = update_ref; 5753 wc->keep_locks = 0; 5754 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5755 5756 while (1) { 5757 5758 ret = walk_down_tree(trans, root, path, wc); 5759 if (ret < 0) { 5760 err = ret; 5761 break; 5762 } 5763 5764 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5765 if (ret < 0) { 5766 err = ret; 5767 break; 5768 } 5769 5770 if (ret > 0) { 5771 BUG_ON(wc->stage != DROP_REFERENCE); 5772 break; 5773 } 5774 5775 if (wc->stage == DROP_REFERENCE) { 5776 wc->drop_level = wc->level; 5777 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5778 &wc->drop_progress, 5779 path->slots[wc->drop_level]); 5780 } 5781 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5782 &wc->drop_progress); 5783 btrfs_set_root_drop_level(root_item, wc->drop_level); 5784 5785 BUG_ON(wc->level == 0); 5786 if (btrfs_should_end_transaction(trans) || 5787 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5788 ret = btrfs_update_root(trans, tree_root, 5789 &root->root_key, 5790 root_item); 5791 if (ret) { 5792 btrfs_abort_transaction(trans, ret); 5793 err = ret; 5794 goto out_end_trans; 5795 } 5796 5797 btrfs_end_transaction_throttle(trans); 5798 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5799 btrfs_debug(fs_info, 5800 "drop snapshot early exit"); 5801 err = -EAGAIN; 5802 goto out_free; 5803 } 5804 5805 /* 5806 * Use join to avoid potential EINTR from transaction 5807 * start. See wait_reserve_ticket and the whole 5808 * reservation callchain. 5809 */ 5810 if (for_reloc) 5811 trans = btrfs_join_transaction(tree_root); 5812 else 5813 trans = btrfs_start_transaction(tree_root, 0); 5814 if (IS_ERR(trans)) { 5815 err = PTR_ERR(trans); 5816 goto out_free; 5817 } 5818 } 5819 } 5820 btrfs_release_path(path); 5821 if (err) 5822 goto out_end_trans; 5823 5824 ret = btrfs_del_root(trans, &root->root_key); 5825 if (ret) { 5826 btrfs_abort_transaction(trans, ret); 5827 err = ret; 5828 goto out_end_trans; 5829 } 5830 5831 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5832 ret = btrfs_find_root(tree_root, &root->root_key, path, 5833 NULL, NULL); 5834 if (ret < 0) { 5835 btrfs_abort_transaction(trans, ret); 5836 err = ret; 5837 goto out_end_trans; 5838 } else if (ret > 0) { 5839 /* if we fail to delete the orphan item this time 5840 * around, it'll get picked up the next time. 5841 * 5842 * The most common failure here is just -ENOENT. 5843 */ 5844 btrfs_del_orphan_item(trans, tree_root, 5845 root->root_key.objectid); 5846 } 5847 } 5848 5849 /* 5850 * This subvolume is going to be completely dropped, and won't be 5851 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5852 * commit transaction time. So free it here manually. 5853 */ 5854 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5855 btrfs_qgroup_free_meta_all_pertrans(root); 5856 5857 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5858 btrfs_add_dropped_root(trans, root); 5859 else 5860 btrfs_put_root(root); 5861 root_dropped = true; 5862 out_end_trans: 5863 btrfs_end_transaction_throttle(trans); 5864 out_free: 5865 kfree(wc); 5866 btrfs_free_path(path); 5867 out: 5868 /* 5869 * We were an unfinished drop root, check to see if there are any 5870 * pending, and if not clear and wake up any waiters. 5871 */ 5872 if (!err && unfinished_drop) 5873 btrfs_maybe_wake_unfinished_drop(fs_info); 5874 5875 /* 5876 * So if we need to stop dropping the snapshot for whatever reason we 5877 * need to make sure to add it back to the dead root list so that we 5878 * keep trying to do the work later. This also cleans up roots if we 5879 * don't have it in the radix (like when we recover after a power fail 5880 * or unmount) so we don't leak memory. 5881 */ 5882 if (!for_reloc && !root_dropped) 5883 btrfs_add_dead_root(root); 5884 return err; 5885 } 5886 5887 /* 5888 * drop subtree rooted at tree block 'node'. 5889 * 5890 * NOTE: this function will unlock and release tree block 'node' 5891 * only used by relocation code 5892 */ 5893 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5894 struct btrfs_root *root, 5895 struct extent_buffer *node, 5896 struct extent_buffer *parent) 5897 { 5898 struct btrfs_fs_info *fs_info = root->fs_info; 5899 struct btrfs_path *path; 5900 struct walk_control *wc; 5901 int level; 5902 int parent_level; 5903 int ret = 0; 5904 int wret; 5905 5906 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5907 5908 path = btrfs_alloc_path(); 5909 if (!path) 5910 return -ENOMEM; 5911 5912 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5913 if (!wc) { 5914 btrfs_free_path(path); 5915 return -ENOMEM; 5916 } 5917 5918 btrfs_assert_tree_write_locked(parent); 5919 parent_level = btrfs_header_level(parent); 5920 atomic_inc(&parent->refs); 5921 path->nodes[parent_level] = parent; 5922 path->slots[parent_level] = btrfs_header_nritems(parent); 5923 5924 btrfs_assert_tree_write_locked(node); 5925 level = btrfs_header_level(node); 5926 path->nodes[level] = node; 5927 path->slots[level] = 0; 5928 path->locks[level] = BTRFS_WRITE_LOCK; 5929 5930 wc->refs[parent_level] = 1; 5931 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5932 wc->level = level; 5933 wc->shared_level = -1; 5934 wc->stage = DROP_REFERENCE; 5935 wc->update_ref = 0; 5936 wc->keep_locks = 1; 5937 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5938 5939 while (1) { 5940 wret = walk_down_tree(trans, root, path, wc); 5941 if (wret < 0) { 5942 ret = wret; 5943 break; 5944 } 5945 5946 wret = walk_up_tree(trans, root, path, wc, parent_level); 5947 if (wret < 0) 5948 ret = wret; 5949 if (wret != 0) 5950 break; 5951 } 5952 5953 kfree(wc); 5954 btrfs_free_path(path); 5955 return ret; 5956 } 5957 5958 /* 5959 * helper to account the unused space of all the readonly block group in the 5960 * space_info. takes mirrors into account. 5961 */ 5962 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5963 { 5964 struct btrfs_block_group *block_group; 5965 u64 free_bytes = 0; 5966 int factor; 5967 5968 /* It's df, we don't care if it's racy */ 5969 if (list_empty(&sinfo->ro_bgs)) 5970 return 0; 5971 5972 spin_lock(&sinfo->lock); 5973 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5974 spin_lock(&block_group->lock); 5975 5976 if (!block_group->ro) { 5977 spin_unlock(&block_group->lock); 5978 continue; 5979 } 5980 5981 factor = btrfs_bg_type_to_factor(block_group->flags); 5982 free_bytes += (block_group->length - 5983 block_group->used) * factor; 5984 5985 spin_unlock(&block_group->lock); 5986 } 5987 spin_unlock(&sinfo->lock); 5988 5989 return free_bytes; 5990 } 5991 5992 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5993 u64 start, u64 end) 5994 { 5995 return unpin_extent_range(fs_info, start, end, false); 5996 } 5997 5998 /* 5999 * It used to be that old block groups would be left around forever. 6000 * Iterating over them would be enough to trim unused space. Since we 6001 * now automatically remove them, we also need to iterate over unallocated 6002 * space. 6003 * 6004 * We don't want a transaction for this since the discard may take a 6005 * substantial amount of time. We don't require that a transaction be 6006 * running, but we do need to take a running transaction into account 6007 * to ensure that we're not discarding chunks that were released or 6008 * allocated in the current transaction. 6009 * 6010 * Holding the chunks lock will prevent other threads from allocating 6011 * or releasing chunks, but it won't prevent a running transaction 6012 * from committing and releasing the memory that the pending chunks 6013 * list head uses. For that, we need to take a reference to the 6014 * transaction and hold the commit root sem. We only need to hold 6015 * it while performing the free space search since we have already 6016 * held back allocations. 6017 */ 6018 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6019 { 6020 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6021 int ret; 6022 6023 *trimmed = 0; 6024 6025 /* Discard not supported = nothing to do. */ 6026 if (!bdev_max_discard_sectors(device->bdev)) 6027 return 0; 6028 6029 /* Not writable = nothing to do. */ 6030 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6031 return 0; 6032 6033 /* No free space = nothing to do. */ 6034 if (device->total_bytes <= device->bytes_used) 6035 return 0; 6036 6037 ret = 0; 6038 6039 while (1) { 6040 struct btrfs_fs_info *fs_info = device->fs_info; 6041 u64 bytes; 6042 6043 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6044 if (ret) 6045 break; 6046 6047 find_first_clear_extent_bit(&device->alloc_state, start, 6048 &start, &end, 6049 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6050 6051 /* Check if there are any CHUNK_* bits left */ 6052 if (start > device->total_bytes) { 6053 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6054 btrfs_warn_in_rcu(fs_info, 6055 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6056 start, end - start + 1, 6057 rcu_str_deref(device->name), 6058 device->total_bytes); 6059 mutex_unlock(&fs_info->chunk_mutex); 6060 ret = 0; 6061 break; 6062 } 6063 6064 /* Ensure we skip the reserved space on each device. */ 6065 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6066 6067 /* 6068 * If find_first_clear_extent_bit find a range that spans the 6069 * end of the device it will set end to -1, in this case it's up 6070 * to the caller to trim the value to the size of the device. 6071 */ 6072 end = min(end, device->total_bytes - 1); 6073 6074 len = end - start + 1; 6075 6076 /* We didn't find any extents */ 6077 if (!len) { 6078 mutex_unlock(&fs_info->chunk_mutex); 6079 ret = 0; 6080 break; 6081 } 6082 6083 ret = btrfs_issue_discard(device->bdev, start, len, 6084 &bytes); 6085 if (!ret) 6086 set_extent_bits(&device->alloc_state, start, 6087 start + bytes - 1, 6088 CHUNK_TRIMMED); 6089 mutex_unlock(&fs_info->chunk_mutex); 6090 6091 if (ret) 6092 break; 6093 6094 start += len; 6095 *trimmed += bytes; 6096 6097 if (fatal_signal_pending(current)) { 6098 ret = -ERESTARTSYS; 6099 break; 6100 } 6101 6102 cond_resched(); 6103 } 6104 6105 return ret; 6106 } 6107 6108 /* 6109 * Trim the whole filesystem by: 6110 * 1) trimming the free space in each block group 6111 * 2) trimming the unallocated space on each device 6112 * 6113 * This will also continue trimming even if a block group or device encounters 6114 * an error. The return value will be the last error, or 0 if nothing bad 6115 * happens. 6116 */ 6117 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6118 { 6119 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6120 struct btrfs_block_group *cache = NULL; 6121 struct btrfs_device *device; 6122 u64 group_trimmed; 6123 u64 range_end = U64_MAX; 6124 u64 start; 6125 u64 end; 6126 u64 trimmed = 0; 6127 u64 bg_failed = 0; 6128 u64 dev_failed = 0; 6129 int bg_ret = 0; 6130 int dev_ret = 0; 6131 int ret = 0; 6132 6133 if (range->start == U64_MAX) 6134 return -EINVAL; 6135 6136 /* 6137 * Check range overflow if range->len is set. 6138 * The default range->len is U64_MAX. 6139 */ 6140 if (range->len != U64_MAX && 6141 check_add_overflow(range->start, range->len, &range_end)) 6142 return -EINVAL; 6143 6144 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6145 for (; cache; cache = btrfs_next_block_group(cache)) { 6146 if (cache->start >= range_end) { 6147 btrfs_put_block_group(cache); 6148 break; 6149 } 6150 6151 start = max(range->start, cache->start); 6152 end = min(range_end, cache->start + cache->length); 6153 6154 if (end - start >= range->minlen) { 6155 if (!btrfs_block_group_done(cache)) { 6156 ret = btrfs_cache_block_group(cache, 0); 6157 if (ret) { 6158 bg_failed++; 6159 bg_ret = ret; 6160 continue; 6161 } 6162 ret = btrfs_wait_block_group_cache_done(cache); 6163 if (ret) { 6164 bg_failed++; 6165 bg_ret = ret; 6166 continue; 6167 } 6168 } 6169 ret = btrfs_trim_block_group(cache, 6170 &group_trimmed, 6171 start, 6172 end, 6173 range->minlen); 6174 6175 trimmed += group_trimmed; 6176 if (ret) { 6177 bg_failed++; 6178 bg_ret = ret; 6179 continue; 6180 } 6181 } 6182 } 6183 6184 if (bg_failed) 6185 btrfs_warn(fs_info, 6186 "failed to trim %llu block group(s), last error %d", 6187 bg_failed, bg_ret); 6188 6189 mutex_lock(&fs_devices->device_list_mutex); 6190 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6191 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6192 continue; 6193 6194 ret = btrfs_trim_free_extents(device, &group_trimmed); 6195 if (ret) { 6196 dev_failed++; 6197 dev_ret = ret; 6198 break; 6199 } 6200 6201 trimmed += group_trimmed; 6202 } 6203 mutex_unlock(&fs_devices->device_list_mutex); 6204 6205 if (dev_failed) 6206 btrfs_warn(fs_info, 6207 "failed to trim %llu device(s), last error %d", 6208 dev_failed, dev_ret); 6209 range->len = trimmed; 6210 if (bg_ret) 6211 return bg_ret; 6212 return dev_ret; 6213 } 6214