1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include "hash.h" 30 #include "tree-log.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "free-space-tree.h" 38 #include "math.h" 39 #include "sysfs.h" 40 #include "qgroup.h" 41 42 #undef SCRAMBLE_DELAYED_REFS 43 44 /* 45 * control flags for do_chunk_alloc's force field 46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 47 * if we really need one. 48 * 49 * CHUNK_ALLOC_LIMITED means to only try and allocate one 50 * if we have very few chunks already allocated. This is 51 * used as part of the clustering code to help make sure 52 * we have a good pool of storage to cluster in, without 53 * filling the FS with empty chunks 54 * 55 * CHUNK_ALLOC_FORCE means it must try to allocate one 56 * 57 */ 58 enum { 59 CHUNK_ALLOC_NO_FORCE = 0, 60 CHUNK_ALLOC_LIMITED = 1, 61 CHUNK_ALLOC_FORCE = 2, 62 }; 63 64 static int update_block_group(struct btrfs_trans_handle *trans, 65 struct btrfs_fs_info *fs_info, u64 bytenr, 66 u64 num_bytes, int alloc); 67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 68 struct btrfs_fs_info *fs_info, 69 struct btrfs_delayed_ref_node *node, u64 parent, 70 u64 root_objectid, u64 owner_objectid, 71 u64 owner_offset, int refs_to_drop, 72 struct btrfs_delayed_extent_op *extra_op); 73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 74 struct extent_buffer *leaf, 75 struct btrfs_extent_item *ei); 76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 77 struct btrfs_fs_info *fs_info, 78 u64 parent, u64 root_objectid, 79 u64 flags, u64 owner, u64 offset, 80 struct btrfs_key *ins, int ref_mod); 81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 82 struct btrfs_fs_info *fs_info, 83 u64 parent, u64 root_objectid, 84 u64 flags, struct btrfs_disk_key *key, 85 int level, struct btrfs_key *ins); 86 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 87 struct btrfs_fs_info *fs_info, u64 flags, 88 int force); 89 static int find_next_key(struct btrfs_path *path, int level, 90 struct btrfs_key *key); 91 static void dump_space_info(struct btrfs_fs_info *fs_info, 92 struct btrfs_space_info *info, u64 bytes, 93 int dump_block_groups); 94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 95 u64 ram_bytes, u64 num_bytes, int delalloc); 96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 97 u64 num_bytes, int delalloc); 98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 99 u64 num_bytes); 100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 101 struct btrfs_space_info *space_info, 102 u64 orig_bytes, 103 enum btrfs_reserve_flush_enum flush, 104 bool system_chunk); 105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_space_info *space_info, 107 u64 num_bytes); 108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_space_info *space_info, 110 u64 num_bytes); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 136 /* 137 * If not empty, someone is still holding mutex of 138 * full_stripe_lock, which can only be released by caller. 139 * And it will definitely cause use-after-free when caller 140 * tries to release full stripe lock. 141 * 142 * No better way to resolve, but only to warn. 143 */ 144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 145 kfree(cache->free_space_ctl); 146 kfree(cache); 147 } 148 } 149 150 /* 151 * this adds the block group to the fs_info rb tree for the block group 152 * cache 153 */ 154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 155 struct btrfs_block_group_cache *block_group) 156 { 157 struct rb_node **p; 158 struct rb_node *parent = NULL; 159 struct btrfs_block_group_cache *cache; 160 161 spin_lock(&info->block_group_cache_lock); 162 p = &info->block_group_cache_tree.rb_node; 163 164 while (*p) { 165 parent = *p; 166 cache = rb_entry(parent, struct btrfs_block_group_cache, 167 cache_node); 168 if (block_group->key.objectid < cache->key.objectid) { 169 p = &(*p)->rb_left; 170 } else if (block_group->key.objectid > cache->key.objectid) { 171 p = &(*p)->rb_right; 172 } else { 173 spin_unlock(&info->block_group_cache_lock); 174 return -EEXIST; 175 } 176 } 177 178 rb_link_node(&block_group->cache_node, parent, p); 179 rb_insert_color(&block_group->cache_node, 180 &info->block_group_cache_tree); 181 182 if (info->first_logical_byte > block_group->key.objectid) 183 info->first_logical_byte = block_group->key.objectid; 184 185 spin_unlock(&info->block_group_cache_lock); 186 187 return 0; 188 } 189 190 /* 191 * This will return the block group at or after bytenr if contains is 0, else 192 * it will return the block group that contains the bytenr 193 */ 194 static struct btrfs_block_group_cache * 195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 196 int contains) 197 { 198 struct btrfs_block_group_cache *cache, *ret = NULL; 199 struct rb_node *n; 200 u64 end, start; 201 202 spin_lock(&info->block_group_cache_lock); 203 n = info->block_group_cache_tree.rb_node; 204 205 while (n) { 206 cache = rb_entry(n, struct btrfs_block_group_cache, 207 cache_node); 208 end = cache->key.objectid + cache->key.offset - 1; 209 start = cache->key.objectid; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->key.objectid)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 229 info->first_logical_byte = ret->key.objectid; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 237 u64 start, u64 num_bytes) 238 { 239 u64 end = start + num_bytes - 1; 240 set_extent_bits(&fs_info->freed_extents[0], 241 start, end, EXTENT_UPTODATE); 242 set_extent_bits(&fs_info->freed_extents[1], 243 start, end, EXTENT_UPTODATE); 244 return 0; 245 } 246 247 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 248 struct btrfs_block_group_cache *cache) 249 { 250 u64 start, end; 251 252 start = cache->key.objectid; 253 end = start + cache->key.offset - 1; 254 255 clear_extent_bits(&fs_info->freed_extents[0], 256 start, end, EXTENT_UPTODATE); 257 clear_extent_bits(&fs_info->freed_extents[1], 258 start, end, EXTENT_UPTODATE); 259 } 260 261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 262 struct btrfs_block_group_cache *cache) 263 { 264 u64 bytenr; 265 u64 *logical; 266 int stripe_len; 267 int i, nr, ret; 268 269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 271 cache->bytes_super += stripe_len; 272 ret = add_excluded_extent(fs_info, cache->key.objectid, 273 stripe_len); 274 if (ret) 275 return ret; 276 } 277 278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 279 bytenr = btrfs_sb_offset(i); 280 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 281 bytenr, 0, &logical, &nr, &stripe_len); 282 if (ret) 283 return ret; 284 285 while (nr--) { 286 u64 start, len; 287 288 if (logical[nr] > cache->key.objectid + 289 cache->key.offset) 290 continue; 291 292 if (logical[nr] + stripe_len <= cache->key.objectid) 293 continue; 294 295 start = logical[nr]; 296 if (start < cache->key.objectid) { 297 start = cache->key.objectid; 298 len = (logical[nr] + stripe_len) - start; 299 } else { 300 len = min_t(u64, stripe_len, 301 cache->key.objectid + 302 cache->key.offset - start); 303 } 304 305 cache->bytes_super += len; 306 ret = add_excluded_extent(fs_info, start, len); 307 if (ret) { 308 kfree(logical); 309 return ret; 310 } 311 } 312 313 kfree(logical); 314 } 315 return 0; 316 } 317 318 static struct btrfs_caching_control * 319 get_caching_control(struct btrfs_block_group_cache *cache) 320 { 321 struct btrfs_caching_control *ctl; 322 323 spin_lock(&cache->lock); 324 if (!cache->caching_ctl) { 325 spin_unlock(&cache->lock); 326 return NULL; 327 } 328 329 ctl = cache->caching_ctl; 330 refcount_inc(&ctl->count); 331 spin_unlock(&cache->lock); 332 return ctl; 333 } 334 335 static void put_caching_control(struct btrfs_caching_control *ctl) 336 { 337 if (refcount_dec_and_test(&ctl->count)) 338 kfree(ctl); 339 } 340 341 #ifdef CONFIG_BTRFS_DEBUG 342 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 343 { 344 struct btrfs_fs_info *fs_info = block_group->fs_info; 345 u64 start = block_group->key.objectid; 346 u64 len = block_group->key.offset; 347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 348 fs_info->nodesize : fs_info->sectorsize; 349 u64 step = chunk << 1; 350 351 while (len > chunk) { 352 btrfs_remove_free_space(block_group, start, chunk); 353 start += step; 354 if (len < step) 355 len = 0; 356 else 357 len -= step; 358 } 359 } 360 #endif 361 362 /* 363 * this is only called by cache_block_group, since we could have freed extents 364 * we need to check the pinned_extents for any extents that can't be used yet 365 * since their free space will be released as soon as the transaction commits. 366 */ 367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 368 struct btrfs_fs_info *info, u64 start, u64 end) 369 { 370 u64 extent_start, extent_end, size, total_added = 0; 371 int ret; 372 373 while (start < end) { 374 ret = find_first_extent_bit(info->pinned_extents, start, 375 &extent_start, &extent_end, 376 EXTENT_DIRTY | EXTENT_UPTODATE, 377 NULL); 378 if (ret) 379 break; 380 381 if (extent_start <= start) { 382 start = extent_end + 1; 383 } else if (extent_start > start && extent_start < end) { 384 size = extent_start - start; 385 total_added += size; 386 ret = btrfs_add_free_space(block_group, start, 387 size); 388 BUG_ON(ret); /* -ENOMEM or logic error */ 389 start = extent_end + 1; 390 } else { 391 break; 392 } 393 } 394 395 if (start < end) { 396 size = end - start; 397 total_added += size; 398 ret = btrfs_add_free_space(block_group, start, size); 399 BUG_ON(ret); /* -ENOMEM or logic error */ 400 } 401 402 return total_added; 403 } 404 405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 406 { 407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 408 struct btrfs_fs_info *fs_info = block_group->fs_info; 409 struct btrfs_root *extent_root = fs_info->extent_root; 410 struct btrfs_path *path; 411 struct extent_buffer *leaf; 412 struct btrfs_key key; 413 u64 total_found = 0; 414 u64 last = 0; 415 u32 nritems; 416 int ret; 417 bool wakeup = true; 418 419 path = btrfs_alloc_path(); 420 if (!path) 421 return -ENOMEM; 422 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 424 425 #ifdef CONFIG_BTRFS_DEBUG 426 /* 427 * If we're fragmenting we don't want to make anybody think we can 428 * allocate from this block group until we've had a chance to fragment 429 * the free space. 430 */ 431 if (btrfs_should_fragment_free_space(block_group)) 432 wakeup = false; 433 #endif 434 /* 435 * We don't want to deadlock with somebody trying to allocate a new 436 * extent for the extent root while also trying to search the extent 437 * root to add free space. So we skip locking and search the commit 438 * root, since its read-only 439 */ 440 path->skip_locking = 1; 441 path->search_commit_root = 1; 442 path->reada = READA_FORWARD; 443 444 key.objectid = last; 445 key.offset = 0; 446 key.type = BTRFS_EXTENT_ITEM_KEY; 447 448 next: 449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 450 if (ret < 0) 451 goto out; 452 453 leaf = path->nodes[0]; 454 nritems = btrfs_header_nritems(leaf); 455 456 while (1) { 457 if (btrfs_fs_closing(fs_info) > 1) { 458 last = (u64)-1; 459 break; 460 } 461 462 if (path->slots[0] < nritems) { 463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 464 } else { 465 ret = find_next_key(path, 0, &key); 466 if (ret) 467 break; 468 469 if (need_resched() || 470 rwsem_is_contended(&fs_info->commit_root_sem)) { 471 if (wakeup) 472 caching_ctl->progress = last; 473 btrfs_release_path(path); 474 up_read(&fs_info->commit_root_sem); 475 mutex_unlock(&caching_ctl->mutex); 476 cond_resched(); 477 mutex_lock(&caching_ctl->mutex); 478 down_read(&fs_info->commit_root_sem); 479 goto next; 480 } 481 482 ret = btrfs_next_leaf(extent_root, path); 483 if (ret < 0) 484 goto out; 485 if (ret) 486 break; 487 leaf = path->nodes[0]; 488 nritems = btrfs_header_nritems(leaf); 489 continue; 490 } 491 492 if (key.objectid < last) { 493 key.objectid = last; 494 key.offset = 0; 495 key.type = BTRFS_EXTENT_ITEM_KEY; 496 497 if (wakeup) 498 caching_ctl->progress = last; 499 btrfs_release_path(path); 500 goto next; 501 } 502 503 if (key.objectid < block_group->key.objectid) { 504 path->slots[0]++; 505 continue; 506 } 507 508 if (key.objectid >= block_group->key.objectid + 509 block_group->key.offset) 510 break; 511 512 if (key.type == BTRFS_EXTENT_ITEM_KEY || 513 key.type == BTRFS_METADATA_ITEM_KEY) { 514 total_found += add_new_free_space(block_group, 515 fs_info, last, 516 key.objectid); 517 if (key.type == BTRFS_METADATA_ITEM_KEY) 518 last = key.objectid + 519 fs_info->nodesize; 520 else 521 last = key.objectid + key.offset; 522 523 if (total_found > CACHING_CTL_WAKE_UP) { 524 total_found = 0; 525 if (wakeup) 526 wake_up(&caching_ctl->wait); 527 } 528 } 529 path->slots[0]++; 530 } 531 ret = 0; 532 533 total_found += add_new_free_space(block_group, fs_info, last, 534 block_group->key.objectid + 535 block_group->key.offset); 536 caching_ctl->progress = (u64)-1; 537 538 out: 539 btrfs_free_path(path); 540 return ret; 541 } 542 543 static noinline void caching_thread(struct btrfs_work *work) 544 { 545 struct btrfs_block_group_cache *block_group; 546 struct btrfs_fs_info *fs_info; 547 struct btrfs_caching_control *caching_ctl; 548 struct btrfs_root *extent_root; 549 int ret; 550 551 caching_ctl = container_of(work, struct btrfs_caching_control, work); 552 block_group = caching_ctl->block_group; 553 fs_info = block_group->fs_info; 554 extent_root = fs_info->extent_root; 555 556 mutex_lock(&caching_ctl->mutex); 557 down_read(&fs_info->commit_root_sem); 558 559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 560 ret = load_free_space_tree(caching_ctl); 561 else 562 ret = load_extent_tree_free(caching_ctl); 563 564 spin_lock(&block_group->lock); 565 block_group->caching_ctl = NULL; 566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 567 spin_unlock(&block_group->lock); 568 569 #ifdef CONFIG_BTRFS_DEBUG 570 if (btrfs_should_fragment_free_space(block_group)) { 571 u64 bytes_used; 572 573 spin_lock(&block_group->space_info->lock); 574 spin_lock(&block_group->lock); 575 bytes_used = block_group->key.offset - 576 btrfs_block_group_used(&block_group->item); 577 block_group->space_info->bytes_used += bytes_used >> 1; 578 spin_unlock(&block_group->lock); 579 spin_unlock(&block_group->space_info->lock); 580 fragment_free_space(block_group); 581 } 582 #endif 583 584 caching_ctl->progress = (u64)-1; 585 586 up_read(&fs_info->commit_root_sem); 587 free_excluded_extents(fs_info, block_group); 588 mutex_unlock(&caching_ctl->mutex); 589 590 wake_up(&caching_ctl->wait); 591 592 put_caching_control(caching_ctl); 593 btrfs_put_block_group(block_group); 594 } 595 596 static int cache_block_group(struct btrfs_block_group_cache *cache, 597 int load_cache_only) 598 { 599 DEFINE_WAIT(wait); 600 struct btrfs_fs_info *fs_info = cache->fs_info; 601 struct btrfs_caching_control *caching_ctl; 602 int ret = 0; 603 604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 605 if (!caching_ctl) 606 return -ENOMEM; 607 608 INIT_LIST_HEAD(&caching_ctl->list); 609 mutex_init(&caching_ctl->mutex); 610 init_waitqueue_head(&caching_ctl->wait); 611 caching_ctl->block_group = cache; 612 caching_ctl->progress = cache->key.objectid; 613 refcount_set(&caching_ctl->count, 1); 614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 615 caching_thread, NULL, NULL); 616 617 spin_lock(&cache->lock); 618 /* 619 * This should be a rare occasion, but this could happen I think in the 620 * case where one thread starts to load the space cache info, and then 621 * some other thread starts a transaction commit which tries to do an 622 * allocation while the other thread is still loading the space cache 623 * info. The previous loop should have kept us from choosing this block 624 * group, but if we've moved to the state where we will wait on caching 625 * block groups we need to first check if we're doing a fast load here, 626 * so we can wait for it to finish, otherwise we could end up allocating 627 * from a block group who's cache gets evicted for one reason or 628 * another. 629 */ 630 while (cache->cached == BTRFS_CACHE_FAST) { 631 struct btrfs_caching_control *ctl; 632 633 ctl = cache->caching_ctl; 634 refcount_inc(&ctl->count); 635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 636 spin_unlock(&cache->lock); 637 638 schedule(); 639 640 finish_wait(&ctl->wait, &wait); 641 put_caching_control(ctl); 642 spin_lock(&cache->lock); 643 } 644 645 if (cache->cached != BTRFS_CACHE_NO) { 646 spin_unlock(&cache->lock); 647 kfree(caching_ctl); 648 return 0; 649 } 650 WARN_ON(cache->caching_ctl); 651 cache->caching_ctl = caching_ctl; 652 cache->cached = BTRFS_CACHE_FAST; 653 spin_unlock(&cache->lock); 654 655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 656 mutex_lock(&caching_ctl->mutex); 657 ret = load_free_space_cache(fs_info, cache); 658 659 spin_lock(&cache->lock); 660 if (ret == 1) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_FINISHED; 663 cache->last_byte_to_unpin = (u64)-1; 664 caching_ctl->progress = (u64)-1; 665 } else { 666 if (load_cache_only) { 667 cache->caching_ctl = NULL; 668 cache->cached = BTRFS_CACHE_NO; 669 } else { 670 cache->cached = BTRFS_CACHE_STARTED; 671 cache->has_caching_ctl = 1; 672 } 673 } 674 spin_unlock(&cache->lock); 675 #ifdef CONFIG_BTRFS_DEBUG 676 if (ret == 1 && 677 btrfs_should_fragment_free_space(cache)) { 678 u64 bytes_used; 679 680 spin_lock(&cache->space_info->lock); 681 spin_lock(&cache->lock); 682 bytes_used = cache->key.offset - 683 btrfs_block_group_used(&cache->item); 684 cache->space_info->bytes_used += bytes_used >> 1; 685 spin_unlock(&cache->lock); 686 spin_unlock(&cache->space_info->lock); 687 fragment_free_space(cache); 688 } 689 #endif 690 mutex_unlock(&caching_ctl->mutex); 691 692 wake_up(&caching_ctl->wait); 693 if (ret == 1) { 694 put_caching_control(caching_ctl); 695 free_excluded_extents(fs_info, cache); 696 return 0; 697 } 698 } else { 699 /* 700 * We're either using the free space tree or no caching at all. 701 * Set cached to the appropriate value and wakeup any waiters. 702 */ 703 spin_lock(&cache->lock); 704 if (load_cache_only) { 705 cache->caching_ctl = NULL; 706 cache->cached = BTRFS_CACHE_NO; 707 } else { 708 cache->cached = BTRFS_CACHE_STARTED; 709 cache->has_caching_ctl = 1; 710 } 711 spin_unlock(&cache->lock); 712 wake_up(&caching_ctl->wait); 713 } 714 715 if (load_cache_only) { 716 put_caching_control(caching_ctl); 717 return 0; 718 } 719 720 down_write(&fs_info->commit_root_sem); 721 refcount_inc(&caching_ctl->count); 722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 723 up_write(&fs_info->commit_root_sem); 724 725 btrfs_get_block_group(cache); 726 727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 728 729 return ret; 730 } 731 732 /* 733 * return the block group that starts at or after bytenr 734 */ 735 static struct btrfs_block_group_cache * 736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 737 { 738 return block_group_cache_tree_search(info, bytenr, 0); 739 } 740 741 /* 742 * return the block group that contains the given bytenr 743 */ 744 struct btrfs_block_group_cache *btrfs_lookup_block_group( 745 struct btrfs_fs_info *info, 746 u64 bytenr) 747 { 748 return block_group_cache_tree_search(info, bytenr, 1); 749 } 750 751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 752 u64 flags) 753 { 754 struct list_head *head = &info->space_info; 755 struct btrfs_space_info *found; 756 757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 758 759 rcu_read_lock(); 760 list_for_each_entry_rcu(found, head, list) { 761 if (found->flags & flags) { 762 rcu_read_unlock(); 763 return found; 764 } 765 } 766 rcu_read_unlock(); 767 return NULL; 768 } 769 770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 771 u64 owner, u64 root_objectid) 772 { 773 struct btrfs_space_info *space_info; 774 u64 flags; 775 776 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 778 flags = BTRFS_BLOCK_GROUP_SYSTEM; 779 else 780 flags = BTRFS_BLOCK_GROUP_METADATA; 781 } else { 782 flags = BTRFS_BLOCK_GROUP_DATA; 783 } 784 785 space_info = __find_space_info(fs_info, flags); 786 ASSERT(space_info); 787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 788 } 789 790 /* 791 * after adding space to the filesystem, we need to clear the full flags 792 * on all the space infos. 793 */ 794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 795 { 796 struct list_head *head = &info->space_info; 797 struct btrfs_space_info *found; 798 799 rcu_read_lock(); 800 list_for_each_entry_rcu(found, head, list) 801 found->full = 0; 802 rcu_read_unlock(); 803 } 804 805 /* simple helper to search for an existing data extent at a given offset */ 806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 807 { 808 int ret; 809 struct btrfs_key key; 810 struct btrfs_path *path; 811 812 path = btrfs_alloc_path(); 813 if (!path) 814 return -ENOMEM; 815 816 key.objectid = start; 817 key.offset = len; 818 key.type = BTRFS_EXTENT_ITEM_KEY; 819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 820 btrfs_free_path(path); 821 return ret; 822 } 823 824 /* 825 * helper function to lookup reference count and flags of a tree block. 826 * 827 * the head node for delayed ref is used to store the sum of all the 828 * reference count modifications queued up in the rbtree. the head 829 * node may also store the extent flags to set. This way you can check 830 * to see what the reference count and extent flags would be if all of 831 * the delayed refs are not processed. 832 */ 833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 834 struct btrfs_fs_info *fs_info, u64 bytenr, 835 u64 offset, int metadata, u64 *refs, u64 *flags) 836 { 837 struct btrfs_delayed_ref_head *head; 838 struct btrfs_delayed_ref_root *delayed_refs; 839 struct btrfs_path *path; 840 struct btrfs_extent_item *ei; 841 struct extent_buffer *leaf; 842 struct btrfs_key key; 843 u32 item_size; 844 u64 num_refs; 845 u64 extent_flags; 846 int ret; 847 848 /* 849 * If we don't have skinny metadata, don't bother doing anything 850 * different 851 */ 852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 853 offset = fs_info->nodesize; 854 metadata = 0; 855 } 856 857 path = btrfs_alloc_path(); 858 if (!path) 859 return -ENOMEM; 860 861 if (!trans) { 862 path->skip_locking = 1; 863 path->search_commit_root = 1; 864 } 865 866 search_again: 867 key.objectid = bytenr; 868 key.offset = offset; 869 if (metadata) 870 key.type = BTRFS_METADATA_ITEM_KEY; 871 else 872 key.type = BTRFS_EXTENT_ITEM_KEY; 873 874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 875 if (ret < 0) 876 goto out_free; 877 878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 879 if (path->slots[0]) { 880 path->slots[0]--; 881 btrfs_item_key_to_cpu(path->nodes[0], &key, 882 path->slots[0]); 883 if (key.objectid == bytenr && 884 key.type == BTRFS_EXTENT_ITEM_KEY && 885 key.offset == fs_info->nodesize) 886 ret = 0; 887 } 888 } 889 890 if (ret == 0) { 891 leaf = path->nodes[0]; 892 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 893 if (item_size >= sizeof(*ei)) { 894 ei = btrfs_item_ptr(leaf, path->slots[0], 895 struct btrfs_extent_item); 896 num_refs = btrfs_extent_refs(leaf, ei); 897 extent_flags = btrfs_extent_flags(leaf, ei); 898 } else { 899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 900 struct btrfs_extent_item_v0 *ei0; 901 BUG_ON(item_size != sizeof(*ei0)); 902 ei0 = btrfs_item_ptr(leaf, path->slots[0], 903 struct btrfs_extent_item_v0); 904 num_refs = btrfs_extent_refs_v0(leaf, ei0); 905 /* FIXME: this isn't correct for data */ 906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 907 #else 908 BUG(); 909 #endif 910 } 911 BUG_ON(num_refs == 0); 912 } else { 913 num_refs = 0; 914 extent_flags = 0; 915 ret = 0; 916 } 917 918 if (!trans) 919 goto out; 920 921 delayed_refs = &trans->transaction->delayed_refs; 922 spin_lock(&delayed_refs->lock); 923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 924 if (head) { 925 if (!mutex_trylock(&head->mutex)) { 926 refcount_inc(&head->node.refs); 927 spin_unlock(&delayed_refs->lock); 928 929 btrfs_release_path(path); 930 931 /* 932 * Mutex was contended, block until it's released and try 933 * again 934 */ 935 mutex_lock(&head->mutex); 936 mutex_unlock(&head->mutex); 937 btrfs_put_delayed_ref(&head->node); 938 goto search_again; 939 } 940 spin_lock(&head->lock); 941 if (head->extent_op && head->extent_op->update_flags) 942 extent_flags |= head->extent_op->flags_to_set; 943 else 944 BUG_ON(num_refs == 0); 945 946 num_refs += head->node.ref_mod; 947 spin_unlock(&head->lock); 948 mutex_unlock(&head->mutex); 949 } 950 spin_unlock(&delayed_refs->lock); 951 out: 952 WARN_ON(num_refs == 0); 953 if (refs) 954 *refs = num_refs; 955 if (flags) 956 *flags = extent_flags; 957 out_free: 958 btrfs_free_path(path); 959 return ret; 960 } 961 962 /* 963 * Back reference rules. Back refs have three main goals: 964 * 965 * 1) differentiate between all holders of references to an extent so that 966 * when a reference is dropped we can make sure it was a valid reference 967 * before freeing the extent. 968 * 969 * 2) Provide enough information to quickly find the holders of an extent 970 * if we notice a given block is corrupted or bad. 971 * 972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 973 * maintenance. This is actually the same as #2, but with a slightly 974 * different use case. 975 * 976 * There are two kinds of back refs. The implicit back refs is optimized 977 * for pointers in non-shared tree blocks. For a given pointer in a block, 978 * back refs of this kind provide information about the block's owner tree 979 * and the pointer's key. These information allow us to find the block by 980 * b-tree searching. The full back refs is for pointers in tree blocks not 981 * referenced by their owner trees. The location of tree block is recorded 982 * in the back refs. Actually the full back refs is generic, and can be 983 * used in all cases the implicit back refs is used. The major shortcoming 984 * of the full back refs is its overhead. Every time a tree block gets 985 * COWed, we have to update back refs entry for all pointers in it. 986 * 987 * For a newly allocated tree block, we use implicit back refs for 988 * pointers in it. This means most tree related operations only involve 989 * implicit back refs. For a tree block created in old transaction, the 990 * only way to drop a reference to it is COW it. So we can detect the 991 * event that tree block loses its owner tree's reference and do the 992 * back refs conversion. 993 * 994 * When a tree block is COWed through a tree, there are four cases: 995 * 996 * The reference count of the block is one and the tree is the block's 997 * owner tree. Nothing to do in this case. 998 * 999 * The reference count of the block is one and the tree is not the 1000 * block's owner tree. In this case, full back refs is used for pointers 1001 * in the block. Remove these full back refs, add implicit back refs for 1002 * every pointers in the new block. 1003 * 1004 * The reference count of the block is greater than one and the tree is 1005 * the block's owner tree. In this case, implicit back refs is used for 1006 * pointers in the block. Add full back refs for every pointers in the 1007 * block, increase lower level extents' reference counts. The original 1008 * implicit back refs are entailed to the new block. 1009 * 1010 * The reference count of the block is greater than one and the tree is 1011 * not the block's owner tree. Add implicit back refs for every pointer in 1012 * the new block, increase lower level extents' reference count. 1013 * 1014 * Back Reference Key composing: 1015 * 1016 * The key objectid corresponds to the first byte in the extent, 1017 * The key type is used to differentiate between types of back refs. 1018 * There are different meanings of the key offset for different types 1019 * of back refs. 1020 * 1021 * File extents can be referenced by: 1022 * 1023 * - multiple snapshots, subvolumes, or different generations in one subvol 1024 * - different files inside a single subvolume 1025 * - different offsets inside a file (bookend extents in file.c) 1026 * 1027 * The extent ref structure for the implicit back refs has fields for: 1028 * 1029 * - Objectid of the subvolume root 1030 * - objectid of the file holding the reference 1031 * - original offset in the file 1032 * - how many bookend extents 1033 * 1034 * The key offset for the implicit back refs is hash of the first 1035 * three fields. 1036 * 1037 * The extent ref structure for the full back refs has field for: 1038 * 1039 * - number of pointers in the tree leaf 1040 * 1041 * The key offset for the implicit back refs is the first byte of 1042 * the tree leaf 1043 * 1044 * When a file extent is allocated, The implicit back refs is used. 1045 * the fields are filled in: 1046 * 1047 * (root_key.objectid, inode objectid, offset in file, 1) 1048 * 1049 * When a file extent is removed file truncation, we find the 1050 * corresponding implicit back refs and check the following fields: 1051 * 1052 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1053 * 1054 * Btree extents can be referenced by: 1055 * 1056 * - Different subvolumes 1057 * 1058 * Both the implicit back refs and the full back refs for tree blocks 1059 * only consist of key. The key offset for the implicit back refs is 1060 * objectid of block's owner tree. The key offset for the full back refs 1061 * is the first byte of parent block. 1062 * 1063 * When implicit back refs is used, information about the lowest key and 1064 * level of the tree block are required. These information are stored in 1065 * tree block info structure. 1066 */ 1067 1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1070 struct btrfs_fs_info *fs_info, 1071 struct btrfs_path *path, 1072 u64 owner, u32 extra_size) 1073 { 1074 struct btrfs_root *root = fs_info->extent_root; 1075 struct btrfs_extent_item *item; 1076 struct btrfs_extent_item_v0 *ei0; 1077 struct btrfs_extent_ref_v0 *ref0; 1078 struct btrfs_tree_block_info *bi; 1079 struct extent_buffer *leaf; 1080 struct btrfs_key key; 1081 struct btrfs_key found_key; 1082 u32 new_size = sizeof(*item); 1083 u64 refs; 1084 int ret; 1085 1086 leaf = path->nodes[0]; 1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1088 1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1090 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1091 struct btrfs_extent_item_v0); 1092 refs = btrfs_extent_refs_v0(leaf, ei0); 1093 1094 if (owner == (u64)-1) { 1095 while (1) { 1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1097 ret = btrfs_next_leaf(root, path); 1098 if (ret < 0) 1099 return ret; 1100 BUG_ON(ret > 0); /* Corruption */ 1101 leaf = path->nodes[0]; 1102 } 1103 btrfs_item_key_to_cpu(leaf, &found_key, 1104 path->slots[0]); 1105 BUG_ON(key.objectid != found_key.objectid); 1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1107 path->slots[0]++; 1108 continue; 1109 } 1110 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_extent_ref_v0); 1112 owner = btrfs_ref_objectid_v0(leaf, ref0); 1113 break; 1114 } 1115 } 1116 btrfs_release_path(path); 1117 1118 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1119 new_size += sizeof(*bi); 1120 1121 new_size -= sizeof(*ei0); 1122 ret = btrfs_search_slot(trans, root, &key, path, 1123 new_size + extra_size, 1); 1124 if (ret < 0) 1125 return ret; 1126 BUG_ON(ret); /* Corruption */ 1127 1128 btrfs_extend_item(fs_info, path, new_size); 1129 1130 leaf = path->nodes[0]; 1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1132 btrfs_set_extent_refs(leaf, item, refs); 1133 /* FIXME: get real generation */ 1134 btrfs_set_extent_generation(leaf, item, 0); 1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1136 btrfs_set_extent_flags(leaf, item, 1137 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1138 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1139 bi = (struct btrfs_tree_block_info *)(item + 1); 1140 /* FIXME: get first key of the block */ 1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1142 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1143 } else { 1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1145 } 1146 btrfs_mark_buffer_dirty(leaf); 1147 return 0; 1148 } 1149 #endif 1150 1151 /* 1152 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1153 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1154 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1155 */ 1156 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1157 struct btrfs_extent_inline_ref *iref, 1158 enum btrfs_inline_ref_type is_data) 1159 { 1160 int type = btrfs_extent_inline_ref_type(eb, iref); 1161 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1162 1163 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1164 type == BTRFS_SHARED_BLOCK_REF_KEY || 1165 type == BTRFS_SHARED_DATA_REF_KEY || 1166 type == BTRFS_EXTENT_DATA_REF_KEY) { 1167 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1168 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1169 return type; 1170 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1171 ASSERT(eb->fs_info); 1172 /* 1173 * Every shared one has parent tree 1174 * block, which must be aligned to 1175 * nodesize. 1176 */ 1177 if (offset && 1178 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1179 return type; 1180 } 1181 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1182 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1183 return type; 1184 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1185 ASSERT(eb->fs_info); 1186 /* 1187 * Every shared one has parent tree 1188 * block, which must be aligned to 1189 * nodesize. 1190 */ 1191 if (offset && 1192 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1193 return type; 1194 } 1195 } else { 1196 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1197 return type; 1198 } 1199 } 1200 1201 btrfs_print_leaf((struct extent_buffer *)eb); 1202 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1203 eb->start, type); 1204 WARN_ON(1); 1205 1206 return BTRFS_REF_TYPE_INVALID; 1207 } 1208 1209 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1210 { 1211 u32 high_crc = ~(u32)0; 1212 u32 low_crc = ~(u32)0; 1213 __le64 lenum; 1214 1215 lenum = cpu_to_le64(root_objectid); 1216 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1217 lenum = cpu_to_le64(owner); 1218 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1219 lenum = cpu_to_le64(offset); 1220 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1221 1222 return ((u64)high_crc << 31) ^ (u64)low_crc; 1223 } 1224 1225 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1226 struct btrfs_extent_data_ref *ref) 1227 { 1228 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1229 btrfs_extent_data_ref_objectid(leaf, ref), 1230 btrfs_extent_data_ref_offset(leaf, ref)); 1231 } 1232 1233 static int match_extent_data_ref(struct extent_buffer *leaf, 1234 struct btrfs_extent_data_ref *ref, 1235 u64 root_objectid, u64 owner, u64 offset) 1236 { 1237 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1238 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1239 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1240 return 0; 1241 return 1; 1242 } 1243 1244 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1245 struct btrfs_fs_info *fs_info, 1246 struct btrfs_path *path, 1247 u64 bytenr, u64 parent, 1248 u64 root_objectid, 1249 u64 owner, u64 offset) 1250 { 1251 struct btrfs_root *root = fs_info->extent_root; 1252 struct btrfs_key key; 1253 struct btrfs_extent_data_ref *ref; 1254 struct extent_buffer *leaf; 1255 u32 nritems; 1256 int ret; 1257 int recow; 1258 int err = -ENOENT; 1259 1260 key.objectid = bytenr; 1261 if (parent) { 1262 key.type = BTRFS_SHARED_DATA_REF_KEY; 1263 key.offset = parent; 1264 } else { 1265 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1266 key.offset = hash_extent_data_ref(root_objectid, 1267 owner, offset); 1268 } 1269 again: 1270 recow = 0; 1271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1272 if (ret < 0) { 1273 err = ret; 1274 goto fail; 1275 } 1276 1277 if (parent) { 1278 if (!ret) 1279 return 0; 1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1281 key.type = BTRFS_EXTENT_REF_V0_KEY; 1282 btrfs_release_path(path); 1283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1284 if (ret < 0) { 1285 err = ret; 1286 goto fail; 1287 } 1288 if (!ret) 1289 return 0; 1290 #endif 1291 goto fail; 1292 } 1293 1294 leaf = path->nodes[0]; 1295 nritems = btrfs_header_nritems(leaf); 1296 while (1) { 1297 if (path->slots[0] >= nritems) { 1298 ret = btrfs_next_leaf(root, path); 1299 if (ret < 0) 1300 err = ret; 1301 if (ret) 1302 goto fail; 1303 1304 leaf = path->nodes[0]; 1305 nritems = btrfs_header_nritems(leaf); 1306 recow = 1; 1307 } 1308 1309 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1310 if (key.objectid != bytenr || 1311 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1312 goto fail; 1313 1314 ref = btrfs_item_ptr(leaf, path->slots[0], 1315 struct btrfs_extent_data_ref); 1316 1317 if (match_extent_data_ref(leaf, ref, root_objectid, 1318 owner, offset)) { 1319 if (recow) { 1320 btrfs_release_path(path); 1321 goto again; 1322 } 1323 err = 0; 1324 break; 1325 } 1326 path->slots[0]++; 1327 } 1328 fail: 1329 return err; 1330 } 1331 1332 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1333 struct btrfs_fs_info *fs_info, 1334 struct btrfs_path *path, 1335 u64 bytenr, u64 parent, 1336 u64 root_objectid, u64 owner, 1337 u64 offset, int refs_to_add) 1338 { 1339 struct btrfs_root *root = fs_info->extent_root; 1340 struct btrfs_key key; 1341 struct extent_buffer *leaf; 1342 u32 size; 1343 u32 num_refs; 1344 int ret; 1345 1346 key.objectid = bytenr; 1347 if (parent) { 1348 key.type = BTRFS_SHARED_DATA_REF_KEY; 1349 key.offset = parent; 1350 size = sizeof(struct btrfs_shared_data_ref); 1351 } else { 1352 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1353 key.offset = hash_extent_data_ref(root_objectid, 1354 owner, offset); 1355 size = sizeof(struct btrfs_extent_data_ref); 1356 } 1357 1358 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1359 if (ret && ret != -EEXIST) 1360 goto fail; 1361 1362 leaf = path->nodes[0]; 1363 if (parent) { 1364 struct btrfs_shared_data_ref *ref; 1365 ref = btrfs_item_ptr(leaf, path->slots[0], 1366 struct btrfs_shared_data_ref); 1367 if (ret == 0) { 1368 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1369 } else { 1370 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1371 num_refs += refs_to_add; 1372 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1373 } 1374 } else { 1375 struct btrfs_extent_data_ref *ref; 1376 while (ret == -EEXIST) { 1377 ref = btrfs_item_ptr(leaf, path->slots[0], 1378 struct btrfs_extent_data_ref); 1379 if (match_extent_data_ref(leaf, ref, root_objectid, 1380 owner, offset)) 1381 break; 1382 btrfs_release_path(path); 1383 key.offset++; 1384 ret = btrfs_insert_empty_item(trans, root, path, &key, 1385 size); 1386 if (ret && ret != -EEXIST) 1387 goto fail; 1388 1389 leaf = path->nodes[0]; 1390 } 1391 ref = btrfs_item_ptr(leaf, path->slots[0], 1392 struct btrfs_extent_data_ref); 1393 if (ret == 0) { 1394 btrfs_set_extent_data_ref_root(leaf, ref, 1395 root_objectid); 1396 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1397 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1398 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1399 } else { 1400 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1401 num_refs += refs_to_add; 1402 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1403 } 1404 } 1405 btrfs_mark_buffer_dirty(leaf); 1406 ret = 0; 1407 fail: 1408 btrfs_release_path(path); 1409 return ret; 1410 } 1411 1412 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1413 struct btrfs_fs_info *fs_info, 1414 struct btrfs_path *path, 1415 int refs_to_drop, int *last_ref) 1416 { 1417 struct btrfs_key key; 1418 struct btrfs_extent_data_ref *ref1 = NULL; 1419 struct btrfs_shared_data_ref *ref2 = NULL; 1420 struct extent_buffer *leaf; 1421 u32 num_refs = 0; 1422 int ret = 0; 1423 1424 leaf = path->nodes[0]; 1425 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1426 1427 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1428 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1429 struct btrfs_extent_data_ref); 1430 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1431 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1432 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1433 struct btrfs_shared_data_ref); 1434 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1435 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1436 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1437 struct btrfs_extent_ref_v0 *ref0; 1438 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1439 struct btrfs_extent_ref_v0); 1440 num_refs = btrfs_ref_count_v0(leaf, ref0); 1441 #endif 1442 } else { 1443 BUG(); 1444 } 1445 1446 BUG_ON(num_refs < refs_to_drop); 1447 num_refs -= refs_to_drop; 1448 1449 if (num_refs == 0) { 1450 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1451 *last_ref = 1; 1452 } else { 1453 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1454 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1455 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1456 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1457 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1458 else { 1459 struct btrfs_extent_ref_v0 *ref0; 1460 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1461 struct btrfs_extent_ref_v0); 1462 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1463 } 1464 #endif 1465 btrfs_mark_buffer_dirty(leaf); 1466 } 1467 return ret; 1468 } 1469 1470 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1471 struct btrfs_extent_inline_ref *iref) 1472 { 1473 struct btrfs_key key; 1474 struct extent_buffer *leaf; 1475 struct btrfs_extent_data_ref *ref1; 1476 struct btrfs_shared_data_ref *ref2; 1477 u32 num_refs = 0; 1478 int type; 1479 1480 leaf = path->nodes[0]; 1481 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1482 if (iref) { 1483 /* 1484 * If type is invalid, we should have bailed out earlier than 1485 * this call. 1486 */ 1487 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1488 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1489 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1490 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1491 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1492 } else { 1493 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1494 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1495 } 1496 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1497 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1498 struct btrfs_extent_data_ref); 1499 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1500 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1501 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1502 struct btrfs_shared_data_ref); 1503 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1504 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1505 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1506 struct btrfs_extent_ref_v0 *ref0; 1507 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1508 struct btrfs_extent_ref_v0); 1509 num_refs = btrfs_ref_count_v0(leaf, ref0); 1510 #endif 1511 } else { 1512 WARN_ON(1); 1513 } 1514 return num_refs; 1515 } 1516 1517 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1518 struct btrfs_fs_info *fs_info, 1519 struct btrfs_path *path, 1520 u64 bytenr, u64 parent, 1521 u64 root_objectid) 1522 { 1523 struct btrfs_root *root = fs_info->extent_root; 1524 struct btrfs_key key; 1525 int ret; 1526 1527 key.objectid = bytenr; 1528 if (parent) { 1529 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1530 key.offset = parent; 1531 } else { 1532 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1533 key.offset = root_objectid; 1534 } 1535 1536 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1537 if (ret > 0) 1538 ret = -ENOENT; 1539 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1540 if (ret == -ENOENT && parent) { 1541 btrfs_release_path(path); 1542 key.type = BTRFS_EXTENT_REF_V0_KEY; 1543 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1544 if (ret > 0) 1545 ret = -ENOENT; 1546 } 1547 #endif 1548 return ret; 1549 } 1550 1551 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1552 struct btrfs_fs_info *fs_info, 1553 struct btrfs_path *path, 1554 u64 bytenr, u64 parent, 1555 u64 root_objectid) 1556 { 1557 struct btrfs_key key; 1558 int ret; 1559 1560 key.objectid = bytenr; 1561 if (parent) { 1562 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1563 key.offset = parent; 1564 } else { 1565 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1566 key.offset = root_objectid; 1567 } 1568 1569 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1570 path, &key, 0); 1571 btrfs_release_path(path); 1572 return ret; 1573 } 1574 1575 static inline int extent_ref_type(u64 parent, u64 owner) 1576 { 1577 int type; 1578 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1579 if (parent > 0) 1580 type = BTRFS_SHARED_BLOCK_REF_KEY; 1581 else 1582 type = BTRFS_TREE_BLOCK_REF_KEY; 1583 } else { 1584 if (parent > 0) 1585 type = BTRFS_SHARED_DATA_REF_KEY; 1586 else 1587 type = BTRFS_EXTENT_DATA_REF_KEY; 1588 } 1589 return type; 1590 } 1591 1592 static int find_next_key(struct btrfs_path *path, int level, 1593 struct btrfs_key *key) 1594 1595 { 1596 for (; level < BTRFS_MAX_LEVEL; level++) { 1597 if (!path->nodes[level]) 1598 break; 1599 if (path->slots[level] + 1 >= 1600 btrfs_header_nritems(path->nodes[level])) 1601 continue; 1602 if (level == 0) 1603 btrfs_item_key_to_cpu(path->nodes[level], key, 1604 path->slots[level] + 1); 1605 else 1606 btrfs_node_key_to_cpu(path->nodes[level], key, 1607 path->slots[level] + 1); 1608 return 0; 1609 } 1610 return 1; 1611 } 1612 1613 /* 1614 * look for inline back ref. if back ref is found, *ref_ret is set 1615 * to the address of inline back ref, and 0 is returned. 1616 * 1617 * if back ref isn't found, *ref_ret is set to the address where it 1618 * should be inserted, and -ENOENT is returned. 1619 * 1620 * if insert is true and there are too many inline back refs, the path 1621 * points to the extent item, and -EAGAIN is returned. 1622 * 1623 * NOTE: inline back refs are ordered in the same way that back ref 1624 * items in the tree are ordered. 1625 */ 1626 static noinline_for_stack 1627 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1628 struct btrfs_fs_info *fs_info, 1629 struct btrfs_path *path, 1630 struct btrfs_extent_inline_ref **ref_ret, 1631 u64 bytenr, u64 num_bytes, 1632 u64 parent, u64 root_objectid, 1633 u64 owner, u64 offset, int insert) 1634 { 1635 struct btrfs_root *root = fs_info->extent_root; 1636 struct btrfs_key key; 1637 struct extent_buffer *leaf; 1638 struct btrfs_extent_item *ei; 1639 struct btrfs_extent_inline_ref *iref; 1640 u64 flags; 1641 u64 item_size; 1642 unsigned long ptr; 1643 unsigned long end; 1644 int extra_size; 1645 int type; 1646 int want; 1647 int ret; 1648 int err = 0; 1649 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1650 int needed; 1651 1652 key.objectid = bytenr; 1653 key.type = BTRFS_EXTENT_ITEM_KEY; 1654 key.offset = num_bytes; 1655 1656 want = extent_ref_type(parent, owner); 1657 if (insert) { 1658 extra_size = btrfs_extent_inline_ref_size(want); 1659 path->keep_locks = 1; 1660 } else 1661 extra_size = -1; 1662 1663 /* 1664 * Owner is our parent level, so we can just add one to get the level 1665 * for the block we are interested in. 1666 */ 1667 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1668 key.type = BTRFS_METADATA_ITEM_KEY; 1669 key.offset = owner; 1670 } 1671 1672 again: 1673 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1674 if (ret < 0) { 1675 err = ret; 1676 goto out; 1677 } 1678 1679 /* 1680 * We may be a newly converted file system which still has the old fat 1681 * extent entries for metadata, so try and see if we have one of those. 1682 */ 1683 if (ret > 0 && skinny_metadata) { 1684 skinny_metadata = false; 1685 if (path->slots[0]) { 1686 path->slots[0]--; 1687 btrfs_item_key_to_cpu(path->nodes[0], &key, 1688 path->slots[0]); 1689 if (key.objectid == bytenr && 1690 key.type == BTRFS_EXTENT_ITEM_KEY && 1691 key.offset == num_bytes) 1692 ret = 0; 1693 } 1694 if (ret) { 1695 key.objectid = bytenr; 1696 key.type = BTRFS_EXTENT_ITEM_KEY; 1697 key.offset = num_bytes; 1698 btrfs_release_path(path); 1699 goto again; 1700 } 1701 } 1702 1703 if (ret && !insert) { 1704 err = -ENOENT; 1705 goto out; 1706 } else if (WARN_ON(ret)) { 1707 err = -EIO; 1708 goto out; 1709 } 1710 1711 leaf = path->nodes[0]; 1712 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1713 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1714 if (item_size < sizeof(*ei)) { 1715 if (!insert) { 1716 err = -ENOENT; 1717 goto out; 1718 } 1719 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1720 extra_size); 1721 if (ret < 0) { 1722 err = ret; 1723 goto out; 1724 } 1725 leaf = path->nodes[0]; 1726 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1727 } 1728 #endif 1729 BUG_ON(item_size < sizeof(*ei)); 1730 1731 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1732 flags = btrfs_extent_flags(leaf, ei); 1733 1734 ptr = (unsigned long)(ei + 1); 1735 end = (unsigned long)ei + item_size; 1736 1737 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1738 ptr += sizeof(struct btrfs_tree_block_info); 1739 BUG_ON(ptr > end); 1740 } 1741 1742 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1743 needed = BTRFS_REF_TYPE_DATA; 1744 else 1745 needed = BTRFS_REF_TYPE_BLOCK; 1746 1747 err = -ENOENT; 1748 while (1) { 1749 if (ptr >= end) { 1750 WARN_ON(ptr > end); 1751 break; 1752 } 1753 iref = (struct btrfs_extent_inline_ref *)ptr; 1754 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1755 if (type == BTRFS_REF_TYPE_INVALID) { 1756 err = -EINVAL; 1757 goto out; 1758 } 1759 1760 if (want < type) 1761 break; 1762 if (want > type) { 1763 ptr += btrfs_extent_inline_ref_size(type); 1764 continue; 1765 } 1766 1767 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1768 struct btrfs_extent_data_ref *dref; 1769 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1770 if (match_extent_data_ref(leaf, dref, root_objectid, 1771 owner, offset)) { 1772 err = 0; 1773 break; 1774 } 1775 if (hash_extent_data_ref_item(leaf, dref) < 1776 hash_extent_data_ref(root_objectid, owner, offset)) 1777 break; 1778 } else { 1779 u64 ref_offset; 1780 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1781 if (parent > 0) { 1782 if (parent == ref_offset) { 1783 err = 0; 1784 break; 1785 } 1786 if (ref_offset < parent) 1787 break; 1788 } else { 1789 if (root_objectid == ref_offset) { 1790 err = 0; 1791 break; 1792 } 1793 if (ref_offset < root_objectid) 1794 break; 1795 } 1796 } 1797 ptr += btrfs_extent_inline_ref_size(type); 1798 } 1799 if (err == -ENOENT && insert) { 1800 if (item_size + extra_size >= 1801 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1802 err = -EAGAIN; 1803 goto out; 1804 } 1805 /* 1806 * To add new inline back ref, we have to make sure 1807 * there is no corresponding back ref item. 1808 * For simplicity, we just do not add new inline back 1809 * ref if there is any kind of item for this block 1810 */ 1811 if (find_next_key(path, 0, &key) == 0 && 1812 key.objectid == bytenr && 1813 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1814 err = -EAGAIN; 1815 goto out; 1816 } 1817 } 1818 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1819 out: 1820 if (insert) { 1821 path->keep_locks = 0; 1822 btrfs_unlock_up_safe(path, 1); 1823 } 1824 return err; 1825 } 1826 1827 /* 1828 * helper to add new inline back ref 1829 */ 1830 static noinline_for_stack 1831 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1832 struct btrfs_path *path, 1833 struct btrfs_extent_inline_ref *iref, 1834 u64 parent, u64 root_objectid, 1835 u64 owner, u64 offset, int refs_to_add, 1836 struct btrfs_delayed_extent_op *extent_op) 1837 { 1838 struct extent_buffer *leaf; 1839 struct btrfs_extent_item *ei; 1840 unsigned long ptr; 1841 unsigned long end; 1842 unsigned long item_offset; 1843 u64 refs; 1844 int size; 1845 int type; 1846 1847 leaf = path->nodes[0]; 1848 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1849 item_offset = (unsigned long)iref - (unsigned long)ei; 1850 1851 type = extent_ref_type(parent, owner); 1852 size = btrfs_extent_inline_ref_size(type); 1853 1854 btrfs_extend_item(fs_info, path, size); 1855 1856 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1857 refs = btrfs_extent_refs(leaf, ei); 1858 refs += refs_to_add; 1859 btrfs_set_extent_refs(leaf, ei, refs); 1860 if (extent_op) 1861 __run_delayed_extent_op(extent_op, leaf, ei); 1862 1863 ptr = (unsigned long)ei + item_offset; 1864 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1865 if (ptr < end - size) 1866 memmove_extent_buffer(leaf, ptr + size, ptr, 1867 end - size - ptr); 1868 1869 iref = (struct btrfs_extent_inline_ref *)ptr; 1870 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1871 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1872 struct btrfs_extent_data_ref *dref; 1873 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1874 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1875 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1876 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1877 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1878 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1879 struct btrfs_shared_data_ref *sref; 1880 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1881 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1882 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1883 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1884 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1885 } else { 1886 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1887 } 1888 btrfs_mark_buffer_dirty(leaf); 1889 } 1890 1891 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1892 struct btrfs_fs_info *fs_info, 1893 struct btrfs_path *path, 1894 struct btrfs_extent_inline_ref **ref_ret, 1895 u64 bytenr, u64 num_bytes, u64 parent, 1896 u64 root_objectid, u64 owner, u64 offset) 1897 { 1898 int ret; 1899 1900 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1901 bytenr, num_bytes, parent, 1902 root_objectid, owner, offset, 0); 1903 if (ret != -ENOENT) 1904 return ret; 1905 1906 btrfs_release_path(path); 1907 *ref_ret = NULL; 1908 1909 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1910 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1911 parent, root_objectid); 1912 } else { 1913 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1914 parent, root_objectid, owner, 1915 offset); 1916 } 1917 return ret; 1918 } 1919 1920 /* 1921 * helper to update/remove inline back ref 1922 */ 1923 static noinline_for_stack 1924 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1925 struct btrfs_path *path, 1926 struct btrfs_extent_inline_ref *iref, 1927 int refs_to_mod, 1928 struct btrfs_delayed_extent_op *extent_op, 1929 int *last_ref) 1930 { 1931 struct extent_buffer *leaf; 1932 struct btrfs_extent_item *ei; 1933 struct btrfs_extent_data_ref *dref = NULL; 1934 struct btrfs_shared_data_ref *sref = NULL; 1935 unsigned long ptr; 1936 unsigned long end; 1937 u32 item_size; 1938 int size; 1939 int type; 1940 u64 refs; 1941 1942 leaf = path->nodes[0]; 1943 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1944 refs = btrfs_extent_refs(leaf, ei); 1945 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1946 refs += refs_to_mod; 1947 btrfs_set_extent_refs(leaf, ei, refs); 1948 if (extent_op) 1949 __run_delayed_extent_op(extent_op, leaf, ei); 1950 1951 /* 1952 * If type is invalid, we should have bailed out after 1953 * lookup_inline_extent_backref(). 1954 */ 1955 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1956 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1957 1958 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1959 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1960 refs = btrfs_extent_data_ref_count(leaf, dref); 1961 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1962 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1963 refs = btrfs_shared_data_ref_count(leaf, sref); 1964 } else { 1965 refs = 1; 1966 BUG_ON(refs_to_mod != -1); 1967 } 1968 1969 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1970 refs += refs_to_mod; 1971 1972 if (refs > 0) { 1973 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1974 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1975 else 1976 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1977 } else { 1978 *last_ref = 1; 1979 size = btrfs_extent_inline_ref_size(type); 1980 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1981 ptr = (unsigned long)iref; 1982 end = (unsigned long)ei + item_size; 1983 if (ptr + size < end) 1984 memmove_extent_buffer(leaf, ptr, ptr + size, 1985 end - ptr - size); 1986 item_size -= size; 1987 btrfs_truncate_item(fs_info, path, item_size, 1); 1988 } 1989 btrfs_mark_buffer_dirty(leaf); 1990 } 1991 1992 static noinline_for_stack 1993 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1994 struct btrfs_fs_info *fs_info, 1995 struct btrfs_path *path, 1996 u64 bytenr, u64 num_bytes, u64 parent, 1997 u64 root_objectid, u64 owner, 1998 u64 offset, int refs_to_add, 1999 struct btrfs_delayed_extent_op *extent_op) 2000 { 2001 struct btrfs_extent_inline_ref *iref; 2002 int ret; 2003 2004 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 2005 bytenr, num_bytes, parent, 2006 root_objectid, owner, offset, 1); 2007 if (ret == 0) { 2008 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 2009 update_inline_extent_backref(fs_info, path, iref, 2010 refs_to_add, extent_op, NULL); 2011 } else if (ret == -ENOENT) { 2012 setup_inline_extent_backref(fs_info, path, iref, parent, 2013 root_objectid, owner, offset, 2014 refs_to_add, extent_op); 2015 ret = 0; 2016 } 2017 return ret; 2018 } 2019 2020 static int insert_extent_backref(struct btrfs_trans_handle *trans, 2021 struct btrfs_fs_info *fs_info, 2022 struct btrfs_path *path, 2023 u64 bytenr, u64 parent, u64 root_objectid, 2024 u64 owner, u64 offset, int refs_to_add) 2025 { 2026 int ret; 2027 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2028 BUG_ON(refs_to_add != 1); 2029 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2030 parent, root_objectid); 2031 } else { 2032 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2033 parent, root_objectid, 2034 owner, offset, refs_to_add); 2035 } 2036 return ret; 2037 } 2038 2039 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2040 struct btrfs_fs_info *fs_info, 2041 struct btrfs_path *path, 2042 struct btrfs_extent_inline_ref *iref, 2043 int refs_to_drop, int is_data, int *last_ref) 2044 { 2045 int ret = 0; 2046 2047 BUG_ON(!is_data && refs_to_drop != 1); 2048 if (iref) { 2049 update_inline_extent_backref(fs_info, path, iref, 2050 -refs_to_drop, NULL, last_ref); 2051 } else if (is_data) { 2052 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2053 last_ref); 2054 } else { 2055 *last_ref = 1; 2056 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2057 } 2058 return ret; 2059 } 2060 2061 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2062 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2063 u64 *discarded_bytes) 2064 { 2065 int j, ret = 0; 2066 u64 bytes_left, end; 2067 u64 aligned_start = ALIGN(start, 1 << 9); 2068 2069 if (WARN_ON(start != aligned_start)) { 2070 len -= aligned_start - start; 2071 len = round_down(len, 1 << 9); 2072 start = aligned_start; 2073 } 2074 2075 *discarded_bytes = 0; 2076 2077 if (!len) 2078 return 0; 2079 2080 end = start + len; 2081 bytes_left = len; 2082 2083 /* Skip any superblocks on this device. */ 2084 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2085 u64 sb_start = btrfs_sb_offset(j); 2086 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2087 u64 size = sb_start - start; 2088 2089 if (!in_range(sb_start, start, bytes_left) && 2090 !in_range(sb_end, start, bytes_left) && 2091 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2092 continue; 2093 2094 /* 2095 * Superblock spans beginning of range. Adjust start and 2096 * try again. 2097 */ 2098 if (sb_start <= start) { 2099 start += sb_end - start; 2100 if (start > end) { 2101 bytes_left = 0; 2102 break; 2103 } 2104 bytes_left = end - start; 2105 continue; 2106 } 2107 2108 if (size) { 2109 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2110 GFP_NOFS, 0); 2111 if (!ret) 2112 *discarded_bytes += size; 2113 else if (ret != -EOPNOTSUPP) 2114 return ret; 2115 } 2116 2117 start = sb_end; 2118 if (start > end) { 2119 bytes_left = 0; 2120 break; 2121 } 2122 bytes_left = end - start; 2123 } 2124 2125 if (bytes_left) { 2126 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2127 GFP_NOFS, 0); 2128 if (!ret) 2129 *discarded_bytes += bytes_left; 2130 } 2131 return ret; 2132 } 2133 2134 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2135 u64 num_bytes, u64 *actual_bytes) 2136 { 2137 int ret; 2138 u64 discarded_bytes = 0; 2139 struct btrfs_bio *bbio = NULL; 2140 2141 2142 /* 2143 * Avoid races with device replace and make sure our bbio has devices 2144 * associated to its stripes that don't go away while we are discarding. 2145 */ 2146 btrfs_bio_counter_inc_blocked(fs_info); 2147 /* Tell the block device(s) that the sectors can be discarded */ 2148 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2149 &bbio, 0); 2150 /* Error condition is -ENOMEM */ 2151 if (!ret) { 2152 struct btrfs_bio_stripe *stripe = bbio->stripes; 2153 int i; 2154 2155 2156 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2157 u64 bytes; 2158 if (!stripe->dev->can_discard) 2159 continue; 2160 2161 ret = btrfs_issue_discard(stripe->dev->bdev, 2162 stripe->physical, 2163 stripe->length, 2164 &bytes); 2165 if (!ret) 2166 discarded_bytes += bytes; 2167 else if (ret != -EOPNOTSUPP) 2168 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2169 2170 /* 2171 * Just in case we get back EOPNOTSUPP for some reason, 2172 * just ignore the return value so we don't screw up 2173 * people calling discard_extent. 2174 */ 2175 ret = 0; 2176 } 2177 btrfs_put_bbio(bbio); 2178 } 2179 btrfs_bio_counter_dec(fs_info); 2180 2181 if (actual_bytes) 2182 *actual_bytes = discarded_bytes; 2183 2184 2185 if (ret == -EOPNOTSUPP) 2186 ret = 0; 2187 return ret; 2188 } 2189 2190 /* Can return -ENOMEM */ 2191 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2192 struct btrfs_fs_info *fs_info, 2193 u64 bytenr, u64 num_bytes, u64 parent, 2194 u64 root_objectid, u64 owner, u64 offset) 2195 { 2196 int old_ref_mod, new_ref_mod; 2197 int ret; 2198 2199 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2200 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2201 2202 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2203 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2204 num_bytes, parent, 2205 root_objectid, (int)owner, 2206 BTRFS_ADD_DELAYED_REF, NULL, 2207 &old_ref_mod, &new_ref_mod); 2208 } else { 2209 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2210 num_bytes, parent, 2211 root_objectid, owner, offset, 2212 0, BTRFS_ADD_DELAYED_REF, 2213 &old_ref_mod, &new_ref_mod); 2214 } 2215 2216 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2217 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2218 2219 return ret; 2220 } 2221 2222 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2223 struct btrfs_fs_info *fs_info, 2224 struct btrfs_delayed_ref_node *node, 2225 u64 parent, u64 root_objectid, 2226 u64 owner, u64 offset, int refs_to_add, 2227 struct btrfs_delayed_extent_op *extent_op) 2228 { 2229 struct btrfs_path *path; 2230 struct extent_buffer *leaf; 2231 struct btrfs_extent_item *item; 2232 struct btrfs_key key; 2233 u64 bytenr = node->bytenr; 2234 u64 num_bytes = node->num_bytes; 2235 u64 refs; 2236 int ret; 2237 2238 path = btrfs_alloc_path(); 2239 if (!path) 2240 return -ENOMEM; 2241 2242 path->reada = READA_FORWARD; 2243 path->leave_spinning = 1; 2244 /* this will setup the path even if it fails to insert the back ref */ 2245 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2246 num_bytes, parent, root_objectid, 2247 owner, offset, 2248 refs_to_add, extent_op); 2249 if ((ret < 0 && ret != -EAGAIN) || !ret) 2250 goto out; 2251 2252 /* 2253 * Ok we had -EAGAIN which means we didn't have space to insert and 2254 * inline extent ref, so just update the reference count and add a 2255 * normal backref. 2256 */ 2257 leaf = path->nodes[0]; 2258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2259 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2260 refs = btrfs_extent_refs(leaf, item); 2261 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2262 if (extent_op) 2263 __run_delayed_extent_op(extent_op, leaf, item); 2264 2265 btrfs_mark_buffer_dirty(leaf); 2266 btrfs_release_path(path); 2267 2268 path->reada = READA_FORWARD; 2269 path->leave_spinning = 1; 2270 /* now insert the actual backref */ 2271 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2272 root_objectid, owner, offset, refs_to_add); 2273 if (ret) 2274 btrfs_abort_transaction(trans, ret); 2275 out: 2276 btrfs_free_path(path); 2277 return ret; 2278 } 2279 2280 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2281 struct btrfs_fs_info *fs_info, 2282 struct btrfs_delayed_ref_node *node, 2283 struct btrfs_delayed_extent_op *extent_op, 2284 int insert_reserved) 2285 { 2286 int ret = 0; 2287 struct btrfs_delayed_data_ref *ref; 2288 struct btrfs_key ins; 2289 u64 parent = 0; 2290 u64 ref_root = 0; 2291 u64 flags = 0; 2292 2293 ins.objectid = node->bytenr; 2294 ins.offset = node->num_bytes; 2295 ins.type = BTRFS_EXTENT_ITEM_KEY; 2296 2297 ref = btrfs_delayed_node_to_data_ref(node); 2298 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2299 2300 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2301 parent = ref->parent; 2302 ref_root = ref->root; 2303 2304 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2305 if (extent_op) 2306 flags |= extent_op->flags_to_set; 2307 ret = alloc_reserved_file_extent(trans, fs_info, 2308 parent, ref_root, flags, 2309 ref->objectid, ref->offset, 2310 &ins, node->ref_mod); 2311 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2312 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2313 ref_root, ref->objectid, 2314 ref->offset, node->ref_mod, 2315 extent_op); 2316 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2317 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2318 ref_root, ref->objectid, 2319 ref->offset, node->ref_mod, 2320 extent_op); 2321 } else { 2322 BUG(); 2323 } 2324 return ret; 2325 } 2326 2327 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2328 struct extent_buffer *leaf, 2329 struct btrfs_extent_item *ei) 2330 { 2331 u64 flags = btrfs_extent_flags(leaf, ei); 2332 if (extent_op->update_flags) { 2333 flags |= extent_op->flags_to_set; 2334 btrfs_set_extent_flags(leaf, ei, flags); 2335 } 2336 2337 if (extent_op->update_key) { 2338 struct btrfs_tree_block_info *bi; 2339 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2340 bi = (struct btrfs_tree_block_info *)(ei + 1); 2341 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2342 } 2343 } 2344 2345 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2346 struct btrfs_fs_info *fs_info, 2347 struct btrfs_delayed_ref_node *node, 2348 struct btrfs_delayed_extent_op *extent_op) 2349 { 2350 struct btrfs_key key; 2351 struct btrfs_path *path; 2352 struct btrfs_extent_item *ei; 2353 struct extent_buffer *leaf; 2354 u32 item_size; 2355 int ret; 2356 int err = 0; 2357 int metadata = !extent_op->is_data; 2358 2359 if (trans->aborted) 2360 return 0; 2361 2362 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2363 metadata = 0; 2364 2365 path = btrfs_alloc_path(); 2366 if (!path) 2367 return -ENOMEM; 2368 2369 key.objectid = node->bytenr; 2370 2371 if (metadata) { 2372 key.type = BTRFS_METADATA_ITEM_KEY; 2373 key.offset = extent_op->level; 2374 } else { 2375 key.type = BTRFS_EXTENT_ITEM_KEY; 2376 key.offset = node->num_bytes; 2377 } 2378 2379 again: 2380 path->reada = READA_FORWARD; 2381 path->leave_spinning = 1; 2382 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2383 if (ret < 0) { 2384 err = ret; 2385 goto out; 2386 } 2387 if (ret > 0) { 2388 if (metadata) { 2389 if (path->slots[0] > 0) { 2390 path->slots[0]--; 2391 btrfs_item_key_to_cpu(path->nodes[0], &key, 2392 path->slots[0]); 2393 if (key.objectid == node->bytenr && 2394 key.type == BTRFS_EXTENT_ITEM_KEY && 2395 key.offset == node->num_bytes) 2396 ret = 0; 2397 } 2398 if (ret > 0) { 2399 btrfs_release_path(path); 2400 metadata = 0; 2401 2402 key.objectid = node->bytenr; 2403 key.offset = node->num_bytes; 2404 key.type = BTRFS_EXTENT_ITEM_KEY; 2405 goto again; 2406 } 2407 } else { 2408 err = -EIO; 2409 goto out; 2410 } 2411 } 2412 2413 leaf = path->nodes[0]; 2414 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2415 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2416 if (item_size < sizeof(*ei)) { 2417 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2418 if (ret < 0) { 2419 err = ret; 2420 goto out; 2421 } 2422 leaf = path->nodes[0]; 2423 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2424 } 2425 #endif 2426 BUG_ON(item_size < sizeof(*ei)); 2427 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2428 __run_delayed_extent_op(extent_op, leaf, ei); 2429 2430 btrfs_mark_buffer_dirty(leaf); 2431 out: 2432 btrfs_free_path(path); 2433 return err; 2434 } 2435 2436 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2437 struct btrfs_fs_info *fs_info, 2438 struct btrfs_delayed_ref_node *node, 2439 struct btrfs_delayed_extent_op *extent_op, 2440 int insert_reserved) 2441 { 2442 int ret = 0; 2443 struct btrfs_delayed_tree_ref *ref; 2444 struct btrfs_key ins; 2445 u64 parent = 0; 2446 u64 ref_root = 0; 2447 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2448 2449 ref = btrfs_delayed_node_to_tree_ref(node); 2450 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2451 2452 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2453 parent = ref->parent; 2454 ref_root = ref->root; 2455 2456 ins.objectid = node->bytenr; 2457 if (skinny_metadata) { 2458 ins.offset = ref->level; 2459 ins.type = BTRFS_METADATA_ITEM_KEY; 2460 } else { 2461 ins.offset = node->num_bytes; 2462 ins.type = BTRFS_EXTENT_ITEM_KEY; 2463 } 2464 2465 if (node->ref_mod != 1) { 2466 btrfs_err(fs_info, 2467 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2468 node->bytenr, node->ref_mod, node->action, ref_root, 2469 parent); 2470 return -EIO; 2471 } 2472 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2473 BUG_ON(!extent_op || !extent_op->update_flags); 2474 ret = alloc_reserved_tree_block(trans, fs_info, 2475 parent, ref_root, 2476 extent_op->flags_to_set, 2477 &extent_op->key, 2478 ref->level, &ins); 2479 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2480 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2481 parent, ref_root, 2482 ref->level, 0, 1, 2483 extent_op); 2484 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2485 ret = __btrfs_free_extent(trans, fs_info, node, 2486 parent, ref_root, 2487 ref->level, 0, 1, extent_op); 2488 } else { 2489 BUG(); 2490 } 2491 return ret; 2492 } 2493 2494 /* helper function to actually process a single delayed ref entry */ 2495 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2496 struct btrfs_fs_info *fs_info, 2497 struct btrfs_delayed_ref_node *node, 2498 struct btrfs_delayed_extent_op *extent_op, 2499 int insert_reserved) 2500 { 2501 int ret = 0; 2502 2503 if (trans->aborted) { 2504 if (insert_reserved) 2505 btrfs_pin_extent(fs_info, node->bytenr, 2506 node->num_bytes, 1); 2507 return 0; 2508 } 2509 2510 if (btrfs_delayed_ref_is_head(node)) { 2511 struct btrfs_delayed_ref_head *head; 2512 /* 2513 * we've hit the end of the chain and we were supposed 2514 * to insert this extent into the tree. But, it got 2515 * deleted before we ever needed to insert it, so all 2516 * we have to do is clean up the accounting 2517 */ 2518 BUG_ON(extent_op); 2519 head = btrfs_delayed_node_to_head(node); 2520 trace_run_delayed_ref_head(fs_info, node, head, node->action); 2521 2522 if (head->total_ref_mod < 0) { 2523 struct btrfs_block_group_cache *cache; 2524 2525 cache = btrfs_lookup_block_group(fs_info, node->bytenr); 2526 ASSERT(cache); 2527 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2528 -node->num_bytes); 2529 btrfs_put_block_group(cache); 2530 } 2531 2532 if (insert_reserved) { 2533 btrfs_pin_extent(fs_info, node->bytenr, 2534 node->num_bytes, 1); 2535 if (head->is_data) { 2536 ret = btrfs_del_csums(trans, fs_info, 2537 node->bytenr, 2538 node->num_bytes); 2539 } 2540 } 2541 2542 /* Also free its reserved qgroup space */ 2543 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2544 head->qgroup_reserved); 2545 return ret; 2546 } 2547 2548 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2549 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2550 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2551 insert_reserved); 2552 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2553 node->type == BTRFS_SHARED_DATA_REF_KEY) 2554 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2555 insert_reserved); 2556 else 2557 BUG(); 2558 return ret; 2559 } 2560 2561 static inline struct btrfs_delayed_ref_node * 2562 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2563 { 2564 struct btrfs_delayed_ref_node *ref; 2565 2566 if (list_empty(&head->ref_list)) 2567 return NULL; 2568 2569 /* 2570 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2571 * This is to prevent a ref count from going down to zero, which deletes 2572 * the extent item from the extent tree, when there still are references 2573 * to add, which would fail because they would not find the extent item. 2574 */ 2575 if (!list_empty(&head->ref_add_list)) 2576 return list_first_entry(&head->ref_add_list, 2577 struct btrfs_delayed_ref_node, add_list); 2578 2579 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, 2580 list); 2581 ASSERT(list_empty(&ref->add_list)); 2582 return ref; 2583 } 2584 2585 /* 2586 * Returns 0 on success or if called with an already aborted transaction. 2587 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2588 */ 2589 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2590 struct btrfs_fs_info *fs_info, 2591 unsigned long nr) 2592 { 2593 struct btrfs_delayed_ref_root *delayed_refs; 2594 struct btrfs_delayed_ref_node *ref; 2595 struct btrfs_delayed_ref_head *locked_ref = NULL; 2596 struct btrfs_delayed_extent_op *extent_op; 2597 ktime_t start = ktime_get(); 2598 int ret; 2599 unsigned long count = 0; 2600 unsigned long actual_count = 0; 2601 int must_insert_reserved = 0; 2602 2603 delayed_refs = &trans->transaction->delayed_refs; 2604 while (1) { 2605 if (!locked_ref) { 2606 if (count >= nr) 2607 break; 2608 2609 spin_lock(&delayed_refs->lock); 2610 locked_ref = btrfs_select_ref_head(trans); 2611 if (!locked_ref) { 2612 spin_unlock(&delayed_refs->lock); 2613 break; 2614 } 2615 2616 /* grab the lock that says we are going to process 2617 * all the refs for this head */ 2618 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2619 spin_unlock(&delayed_refs->lock); 2620 /* 2621 * we may have dropped the spin lock to get the head 2622 * mutex lock, and that might have given someone else 2623 * time to free the head. If that's true, it has been 2624 * removed from our list and we can move on. 2625 */ 2626 if (ret == -EAGAIN) { 2627 locked_ref = NULL; 2628 count++; 2629 continue; 2630 } 2631 } 2632 2633 /* 2634 * We need to try and merge add/drops of the same ref since we 2635 * can run into issues with relocate dropping the implicit ref 2636 * and then it being added back again before the drop can 2637 * finish. If we merged anything we need to re-loop so we can 2638 * get a good ref. 2639 * Or we can get node references of the same type that weren't 2640 * merged when created due to bumps in the tree mod seq, and 2641 * we need to merge them to prevent adding an inline extent 2642 * backref before dropping it (triggering a BUG_ON at 2643 * insert_inline_extent_backref()). 2644 */ 2645 spin_lock(&locked_ref->lock); 2646 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2647 locked_ref); 2648 2649 /* 2650 * locked_ref is the head node, so we have to go one 2651 * node back for any delayed ref updates 2652 */ 2653 ref = select_delayed_ref(locked_ref); 2654 2655 if (ref && ref->seq && 2656 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2657 spin_unlock(&locked_ref->lock); 2658 spin_lock(&delayed_refs->lock); 2659 locked_ref->processing = 0; 2660 delayed_refs->num_heads_ready++; 2661 spin_unlock(&delayed_refs->lock); 2662 btrfs_delayed_ref_unlock(locked_ref); 2663 locked_ref = NULL; 2664 cond_resched(); 2665 count++; 2666 continue; 2667 } 2668 2669 /* 2670 * record the must insert reserved flag before we 2671 * drop the spin lock. 2672 */ 2673 must_insert_reserved = locked_ref->must_insert_reserved; 2674 locked_ref->must_insert_reserved = 0; 2675 2676 extent_op = locked_ref->extent_op; 2677 locked_ref->extent_op = NULL; 2678 2679 if (!ref) { 2680 2681 2682 /* All delayed refs have been processed, Go ahead 2683 * and send the head node to run_one_delayed_ref, 2684 * so that any accounting fixes can happen 2685 */ 2686 ref = &locked_ref->node; 2687 2688 if (extent_op && must_insert_reserved) { 2689 btrfs_free_delayed_extent_op(extent_op); 2690 extent_op = NULL; 2691 } 2692 2693 if (extent_op) { 2694 spin_unlock(&locked_ref->lock); 2695 ret = run_delayed_extent_op(trans, fs_info, 2696 ref, extent_op); 2697 btrfs_free_delayed_extent_op(extent_op); 2698 2699 if (ret) { 2700 /* 2701 * Need to reset must_insert_reserved if 2702 * there was an error so the abort stuff 2703 * can cleanup the reserved space 2704 * properly. 2705 */ 2706 if (must_insert_reserved) 2707 locked_ref->must_insert_reserved = 1; 2708 spin_lock(&delayed_refs->lock); 2709 locked_ref->processing = 0; 2710 delayed_refs->num_heads_ready++; 2711 spin_unlock(&delayed_refs->lock); 2712 btrfs_debug(fs_info, 2713 "run_delayed_extent_op returned %d", 2714 ret); 2715 btrfs_delayed_ref_unlock(locked_ref); 2716 return ret; 2717 } 2718 continue; 2719 } 2720 2721 /* 2722 * Need to drop our head ref lock and re-acquire the 2723 * delayed ref lock and then re-check to make sure 2724 * nobody got added. 2725 */ 2726 spin_unlock(&locked_ref->lock); 2727 spin_lock(&delayed_refs->lock); 2728 spin_lock(&locked_ref->lock); 2729 if (!list_empty(&locked_ref->ref_list) || 2730 locked_ref->extent_op) { 2731 spin_unlock(&locked_ref->lock); 2732 spin_unlock(&delayed_refs->lock); 2733 continue; 2734 } 2735 ref->in_tree = 0; 2736 delayed_refs->num_heads--; 2737 rb_erase(&locked_ref->href_node, 2738 &delayed_refs->href_root); 2739 spin_unlock(&delayed_refs->lock); 2740 } else { 2741 actual_count++; 2742 ref->in_tree = 0; 2743 list_del(&ref->list); 2744 if (!list_empty(&ref->add_list)) 2745 list_del(&ref->add_list); 2746 } 2747 atomic_dec(&delayed_refs->num_entries); 2748 2749 if (!btrfs_delayed_ref_is_head(ref)) { 2750 /* 2751 * when we play the delayed ref, also correct the 2752 * ref_mod on head 2753 */ 2754 switch (ref->action) { 2755 case BTRFS_ADD_DELAYED_REF: 2756 case BTRFS_ADD_DELAYED_EXTENT: 2757 locked_ref->node.ref_mod -= ref->ref_mod; 2758 break; 2759 case BTRFS_DROP_DELAYED_REF: 2760 locked_ref->node.ref_mod += ref->ref_mod; 2761 break; 2762 default: 2763 WARN_ON(1); 2764 } 2765 } 2766 spin_unlock(&locked_ref->lock); 2767 2768 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2769 must_insert_reserved); 2770 2771 btrfs_free_delayed_extent_op(extent_op); 2772 if (ret) { 2773 spin_lock(&delayed_refs->lock); 2774 locked_ref->processing = 0; 2775 delayed_refs->num_heads_ready++; 2776 spin_unlock(&delayed_refs->lock); 2777 btrfs_delayed_ref_unlock(locked_ref); 2778 btrfs_put_delayed_ref(ref); 2779 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2780 ret); 2781 return ret; 2782 } 2783 2784 /* 2785 * If this node is a head, that means all the refs in this head 2786 * have been dealt with, and we will pick the next head to deal 2787 * with, so we must unlock the head and drop it from the cluster 2788 * list before we release it. 2789 */ 2790 if (btrfs_delayed_ref_is_head(ref)) { 2791 if (locked_ref->is_data && 2792 locked_ref->total_ref_mod < 0) { 2793 spin_lock(&delayed_refs->lock); 2794 delayed_refs->pending_csums -= ref->num_bytes; 2795 spin_unlock(&delayed_refs->lock); 2796 } 2797 btrfs_delayed_ref_unlock(locked_ref); 2798 locked_ref = NULL; 2799 } 2800 btrfs_put_delayed_ref(ref); 2801 count++; 2802 cond_resched(); 2803 } 2804 2805 /* 2806 * We don't want to include ref heads since we can have empty ref heads 2807 * and those will drastically skew our runtime down since we just do 2808 * accounting, no actual extent tree updates. 2809 */ 2810 if (actual_count > 0) { 2811 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2812 u64 avg; 2813 2814 /* 2815 * We weigh the current average higher than our current runtime 2816 * to avoid large swings in the average. 2817 */ 2818 spin_lock(&delayed_refs->lock); 2819 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2820 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2821 spin_unlock(&delayed_refs->lock); 2822 } 2823 return 0; 2824 } 2825 2826 #ifdef SCRAMBLE_DELAYED_REFS 2827 /* 2828 * Normally delayed refs get processed in ascending bytenr order. This 2829 * correlates in most cases to the order added. To expose dependencies on this 2830 * order, we start to process the tree in the middle instead of the beginning 2831 */ 2832 static u64 find_middle(struct rb_root *root) 2833 { 2834 struct rb_node *n = root->rb_node; 2835 struct btrfs_delayed_ref_node *entry; 2836 int alt = 1; 2837 u64 middle; 2838 u64 first = 0, last = 0; 2839 2840 n = rb_first(root); 2841 if (n) { 2842 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2843 first = entry->bytenr; 2844 } 2845 n = rb_last(root); 2846 if (n) { 2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2848 last = entry->bytenr; 2849 } 2850 n = root->rb_node; 2851 2852 while (n) { 2853 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2854 WARN_ON(!entry->in_tree); 2855 2856 middle = entry->bytenr; 2857 2858 if (alt) 2859 n = n->rb_left; 2860 else 2861 n = n->rb_right; 2862 2863 alt = 1 - alt; 2864 } 2865 return middle; 2866 } 2867 #endif 2868 2869 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2870 { 2871 u64 num_bytes; 2872 2873 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2874 sizeof(struct btrfs_extent_inline_ref)); 2875 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2876 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2877 2878 /* 2879 * We don't ever fill up leaves all the way so multiply by 2 just to be 2880 * closer to what we're really going to want to use. 2881 */ 2882 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2883 } 2884 2885 /* 2886 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2887 * would require to store the csums for that many bytes. 2888 */ 2889 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2890 { 2891 u64 csum_size; 2892 u64 num_csums_per_leaf; 2893 u64 num_csums; 2894 2895 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2896 num_csums_per_leaf = div64_u64(csum_size, 2897 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2898 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2899 num_csums += num_csums_per_leaf - 1; 2900 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2901 return num_csums; 2902 } 2903 2904 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2905 struct btrfs_fs_info *fs_info) 2906 { 2907 struct btrfs_block_rsv *global_rsv; 2908 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2909 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2910 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2911 u64 num_bytes, num_dirty_bgs_bytes; 2912 int ret = 0; 2913 2914 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2915 num_heads = heads_to_leaves(fs_info, num_heads); 2916 if (num_heads > 1) 2917 num_bytes += (num_heads - 1) * fs_info->nodesize; 2918 num_bytes <<= 1; 2919 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2920 fs_info->nodesize; 2921 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2922 num_dirty_bgs); 2923 global_rsv = &fs_info->global_block_rsv; 2924 2925 /* 2926 * If we can't allocate any more chunks lets make sure we have _lots_ of 2927 * wiggle room since running delayed refs can create more delayed refs. 2928 */ 2929 if (global_rsv->space_info->full) { 2930 num_dirty_bgs_bytes <<= 1; 2931 num_bytes <<= 1; 2932 } 2933 2934 spin_lock(&global_rsv->lock); 2935 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2936 ret = 1; 2937 spin_unlock(&global_rsv->lock); 2938 return ret; 2939 } 2940 2941 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2942 struct btrfs_fs_info *fs_info) 2943 { 2944 u64 num_entries = 2945 atomic_read(&trans->transaction->delayed_refs.num_entries); 2946 u64 avg_runtime; 2947 u64 val; 2948 2949 smp_mb(); 2950 avg_runtime = fs_info->avg_delayed_ref_runtime; 2951 val = num_entries * avg_runtime; 2952 if (val >= NSEC_PER_SEC) 2953 return 1; 2954 if (val >= NSEC_PER_SEC / 2) 2955 return 2; 2956 2957 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2958 } 2959 2960 struct async_delayed_refs { 2961 struct btrfs_root *root; 2962 u64 transid; 2963 int count; 2964 int error; 2965 int sync; 2966 struct completion wait; 2967 struct btrfs_work work; 2968 }; 2969 2970 static inline struct async_delayed_refs * 2971 to_async_delayed_refs(struct btrfs_work *work) 2972 { 2973 return container_of(work, struct async_delayed_refs, work); 2974 } 2975 2976 static void delayed_ref_async_start(struct btrfs_work *work) 2977 { 2978 struct async_delayed_refs *async = to_async_delayed_refs(work); 2979 struct btrfs_trans_handle *trans; 2980 struct btrfs_fs_info *fs_info = async->root->fs_info; 2981 int ret; 2982 2983 /* if the commit is already started, we don't need to wait here */ 2984 if (btrfs_transaction_blocked(fs_info)) 2985 goto done; 2986 2987 trans = btrfs_join_transaction(async->root); 2988 if (IS_ERR(trans)) { 2989 async->error = PTR_ERR(trans); 2990 goto done; 2991 } 2992 2993 /* 2994 * trans->sync means that when we call end_transaction, we won't 2995 * wait on delayed refs 2996 */ 2997 trans->sync = true; 2998 2999 /* Don't bother flushing if we got into a different transaction */ 3000 if (trans->transid > async->transid) 3001 goto end; 3002 3003 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 3004 if (ret) 3005 async->error = ret; 3006 end: 3007 ret = btrfs_end_transaction(trans); 3008 if (ret && !async->error) 3009 async->error = ret; 3010 done: 3011 if (async->sync) 3012 complete(&async->wait); 3013 else 3014 kfree(async); 3015 } 3016 3017 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3018 unsigned long count, u64 transid, int wait) 3019 { 3020 struct async_delayed_refs *async; 3021 int ret; 3022 3023 async = kmalloc(sizeof(*async), GFP_NOFS); 3024 if (!async) 3025 return -ENOMEM; 3026 3027 async->root = fs_info->tree_root; 3028 async->count = count; 3029 async->error = 0; 3030 async->transid = transid; 3031 if (wait) 3032 async->sync = 1; 3033 else 3034 async->sync = 0; 3035 init_completion(&async->wait); 3036 3037 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3038 delayed_ref_async_start, NULL, NULL); 3039 3040 btrfs_queue_work(fs_info->extent_workers, &async->work); 3041 3042 if (wait) { 3043 wait_for_completion(&async->wait); 3044 ret = async->error; 3045 kfree(async); 3046 return ret; 3047 } 3048 return 0; 3049 } 3050 3051 /* 3052 * this starts processing the delayed reference count updates and 3053 * extent insertions we have queued up so far. count can be 3054 * 0, which means to process everything in the tree at the start 3055 * of the run (but not newly added entries), or it can be some target 3056 * number you'd like to process. 3057 * 3058 * Returns 0 on success or if called with an aborted transaction 3059 * Returns <0 on error and aborts the transaction 3060 */ 3061 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3062 struct btrfs_fs_info *fs_info, unsigned long count) 3063 { 3064 struct rb_node *node; 3065 struct btrfs_delayed_ref_root *delayed_refs; 3066 struct btrfs_delayed_ref_head *head; 3067 int ret; 3068 int run_all = count == (unsigned long)-1; 3069 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3070 3071 /* We'll clean this up in btrfs_cleanup_transaction */ 3072 if (trans->aborted) 3073 return 0; 3074 3075 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3076 return 0; 3077 3078 delayed_refs = &trans->transaction->delayed_refs; 3079 if (count == 0) 3080 count = atomic_read(&delayed_refs->num_entries) * 2; 3081 3082 again: 3083 #ifdef SCRAMBLE_DELAYED_REFS 3084 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3085 #endif 3086 trans->can_flush_pending_bgs = false; 3087 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 3088 if (ret < 0) { 3089 btrfs_abort_transaction(trans, ret); 3090 return ret; 3091 } 3092 3093 if (run_all) { 3094 if (!list_empty(&trans->new_bgs)) 3095 btrfs_create_pending_block_groups(trans, fs_info); 3096 3097 spin_lock(&delayed_refs->lock); 3098 node = rb_first(&delayed_refs->href_root); 3099 if (!node) { 3100 spin_unlock(&delayed_refs->lock); 3101 goto out; 3102 } 3103 3104 while (node) { 3105 head = rb_entry(node, struct btrfs_delayed_ref_head, 3106 href_node); 3107 if (btrfs_delayed_ref_is_head(&head->node)) { 3108 struct btrfs_delayed_ref_node *ref; 3109 3110 ref = &head->node; 3111 refcount_inc(&ref->refs); 3112 3113 spin_unlock(&delayed_refs->lock); 3114 /* 3115 * Mutex was contended, block until it's 3116 * released and try again 3117 */ 3118 mutex_lock(&head->mutex); 3119 mutex_unlock(&head->mutex); 3120 3121 btrfs_put_delayed_ref(ref); 3122 cond_resched(); 3123 goto again; 3124 } else { 3125 WARN_ON(1); 3126 } 3127 node = rb_next(node); 3128 } 3129 spin_unlock(&delayed_refs->lock); 3130 cond_resched(); 3131 goto again; 3132 } 3133 out: 3134 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3135 return 0; 3136 } 3137 3138 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3139 struct btrfs_fs_info *fs_info, 3140 u64 bytenr, u64 num_bytes, u64 flags, 3141 int level, int is_data) 3142 { 3143 struct btrfs_delayed_extent_op *extent_op; 3144 int ret; 3145 3146 extent_op = btrfs_alloc_delayed_extent_op(); 3147 if (!extent_op) 3148 return -ENOMEM; 3149 3150 extent_op->flags_to_set = flags; 3151 extent_op->update_flags = true; 3152 extent_op->update_key = false; 3153 extent_op->is_data = is_data ? true : false; 3154 extent_op->level = level; 3155 3156 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3157 num_bytes, extent_op); 3158 if (ret) 3159 btrfs_free_delayed_extent_op(extent_op); 3160 return ret; 3161 } 3162 3163 static noinline int check_delayed_ref(struct btrfs_root *root, 3164 struct btrfs_path *path, 3165 u64 objectid, u64 offset, u64 bytenr) 3166 { 3167 struct btrfs_delayed_ref_head *head; 3168 struct btrfs_delayed_ref_node *ref; 3169 struct btrfs_delayed_data_ref *data_ref; 3170 struct btrfs_delayed_ref_root *delayed_refs; 3171 struct btrfs_transaction *cur_trans; 3172 int ret = 0; 3173 3174 cur_trans = root->fs_info->running_transaction; 3175 if (!cur_trans) 3176 return 0; 3177 3178 delayed_refs = &cur_trans->delayed_refs; 3179 spin_lock(&delayed_refs->lock); 3180 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3181 if (!head) { 3182 spin_unlock(&delayed_refs->lock); 3183 return 0; 3184 } 3185 3186 if (!mutex_trylock(&head->mutex)) { 3187 refcount_inc(&head->node.refs); 3188 spin_unlock(&delayed_refs->lock); 3189 3190 btrfs_release_path(path); 3191 3192 /* 3193 * Mutex was contended, block until it's released and let 3194 * caller try again 3195 */ 3196 mutex_lock(&head->mutex); 3197 mutex_unlock(&head->mutex); 3198 btrfs_put_delayed_ref(&head->node); 3199 return -EAGAIN; 3200 } 3201 spin_unlock(&delayed_refs->lock); 3202 3203 spin_lock(&head->lock); 3204 list_for_each_entry(ref, &head->ref_list, list) { 3205 /* If it's a shared ref we know a cross reference exists */ 3206 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3207 ret = 1; 3208 break; 3209 } 3210 3211 data_ref = btrfs_delayed_node_to_data_ref(ref); 3212 3213 /* 3214 * If our ref doesn't match the one we're currently looking at 3215 * then we have a cross reference. 3216 */ 3217 if (data_ref->root != root->root_key.objectid || 3218 data_ref->objectid != objectid || 3219 data_ref->offset != offset) { 3220 ret = 1; 3221 break; 3222 } 3223 } 3224 spin_unlock(&head->lock); 3225 mutex_unlock(&head->mutex); 3226 return ret; 3227 } 3228 3229 static noinline int check_committed_ref(struct btrfs_root *root, 3230 struct btrfs_path *path, 3231 u64 objectid, u64 offset, u64 bytenr) 3232 { 3233 struct btrfs_fs_info *fs_info = root->fs_info; 3234 struct btrfs_root *extent_root = fs_info->extent_root; 3235 struct extent_buffer *leaf; 3236 struct btrfs_extent_data_ref *ref; 3237 struct btrfs_extent_inline_ref *iref; 3238 struct btrfs_extent_item *ei; 3239 struct btrfs_key key; 3240 u32 item_size; 3241 int type; 3242 int ret; 3243 3244 key.objectid = bytenr; 3245 key.offset = (u64)-1; 3246 key.type = BTRFS_EXTENT_ITEM_KEY; 3247 3248 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3249 if (ret < 0) 3250 goto out; 3251 BUG_ON(ret == 0); /* Corruption */ 3252 3253 ret = -ENOENT; 3254 if (path->slots[0] == 0) 3255 goto out; 3256 3257 path->slots[0]--; 3258 leaf = path->nodes[0]; 3259 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3260 3261 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3262 goto out; 3263 3264 ret = 1; 3265 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3267 if (item_size < sizeof(*ei)) { 3268 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3269 goto out; 3270 } 3271 #endif 3272 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3273 3274 if (item_size != sizeof(*ei) + 3275 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3276 goto out; 3277 3278 if (btrfs_extent_generation(leaf, ei) <= 3279 btrfs_root_last_snapshot(&root->root_item)) 3280 goto out; 3281 3282 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3283 3284 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3285 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3286 goto out; 3287 3288 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3289 if (btrfs_extent_refs(leaf, ei) != 3290 btrfs_extent_data_ref_count(leaf, ref) || 3291 btrfs_extent_data_ref_root(leaf, ref) != 3292 root->root_key.objectid || 3293 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3294 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3295 goto out; 3296 3297 ret = 0; 3298 out: 3299 return ret; 3300 } 3301 3302 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3303 u64 bytenr) 3304 { 3305 struct btrfs_path *path; 3306 int ret; 3307 int ret2; 3308 3309 path = btrfs_alloc_path(); 3310 if (!path) 3311 return -ENOENT; 3312 3313 do { 3314 ret = check_committed_ref(root, path, objectid, 3315 offset, bytenr); 3316 if (ret && ret != -ENOENT) 3317 goto out; 3318 3319 ret2 = check_delayed_ref(root, path, objectid, 3320 offset, bytenr); 3321 } while (ret2 == -EAGAIN); 3322 3323 if (ret2 && ret2 != -ENOENT) { 3324 ret = ret2; 3325 goto out; 3326 } 3327 3328 if (ret != -ENOENT || ret2 != -ENOENT) 3329 ret = 0; 3330 out: 3331 btrfs_free_path(path); 3332 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3333 WARN_ON(ret > 0); 3334 return ret; 3335 } 3336 3337 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3338 struct btrfs_root *root, 3339 struct extent_buffer *buf, 3340 int full_backref, int inc) 3341 { 3342 struct btrfs_fs_info *fs_info = root->fs_info; 3343 u64 bytenr; 3344 u64 num_bytes; 3345 u64 parent; 3346 u64 ref_root; 3347 u32 nritems; 3348 struct btrfs_key key; 3349 struct btrfs_file_extent_item *fi; 3350 int i; 3351 int level; 3352 int ret = 0; 3353 int (*process_func)(struct btrfs_trans_handle *, 3354 struct btrfs_fs_info *, 3355 u64, u64, u64, u64, u64, u64); 3356 3357 3358 if (btrfs_is_testing(fs_info)) 3359 return 0; 3360 3361 ref_root = btrfs_header_owner(buf); 3362 nritems = btrfs_header_nritems(buf); 3363 level = btrfs_header_level(buf); 3364 3365 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3366 return 0; 3367 3368 if (inc) 3369 process_func = btrfs_inc_extent_ref; 3370 else 3371 process_func = btrfs_free_extent; 3372 3373 if (full_backref) 3374 parent = buf->start; 3375 else 3376 parent = 0; 3377 3378 for (i = 0; i < nritems; i++) { 3379 if (level == 0) { 3380 btrfs_item_key_to_cpu(buf, &key, i); 3381 if (key.type != BTRFS_EXTENT_DATA_KEY) 3382 continue; 3383 fi = btrfs_item_ptr(buf, i, 3384 struct btrfs_file_extent_item); 3385 if (btrfs_file_extent_type(buf, fi) == 3386 BTRFS_FILE_EXTENT_INLINE) 3387 continue; 3388 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3389 if (bytenr == 0) 3390 continue; 3391 3392 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3393 key.offset -= btrfs_file_extent_offset(buf, fi); 3394 ret = process_func(trans, fs_info, bytenr, num_bytes, 3395 parent, ref_root, key.objectid, 3396 key.offset); 3397 if (ret) 3398 goto fail; 3399 } else { 3400 bytenr = btrfs_node_blockptr(buf, i); 3401 num_bytes = fs_info->nodesize; 3402 ret = process_func(trans, fs_info, bytenr, num_bytes, 3403 parent, ref_root, level - 1, 0); 3404 if (ret) 3405 goto fail; 3406 } 3407 } 3408 return 0; 3409 fail: 3410 return ret; 3411 } 3412 3413 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3414 struct extent_buffer *buf, int full_backref) 3415 { 3416 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3417 } 3418 3419 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3420 struct extent_buffer *buf, int full_backref) 3421 { 3422 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3423 } 3424 3425 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3426 struct btrfs_fs_info *fs_info, 3427 struct btrfs_path *path, 3428 struct btrfs_block_group_cache *cache) 3429 { 3430 int ret; 3431 struct btrfs_root *extent_root = fs_info->extent_root; 3432 unsigned long bi; 3433 struct extent_buffer *leaf; 3434 3435 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3436 if (ret) { 3437 if (ret > 0) 3438 ret = -ENOENT; 3439 goto fail; 3440 } 3441 3442 leaf = path->nodes[0]; 3443 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3444 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3445 btrfs_mark_buffer_dirty(leaf); 3446 fail: 3447 btrfs_release_path(path); 3448 return ret; 3449 3450 } 3451 3452 static struct btrfs_block_group_cache * 3453 next_block_group(struct btrfs_fs_info *fs_info, 3454 struct btrfs_block_group_cache *cache) 3455 { 3456 struct rb_node *node; 3457 3458 spin_lock(&fs_info->block_group_cache_lock); 3459 3460 /* If our block group was removed, we need a full search. */ 3461 if (RB_EMPTY_NODE(&cache->cache_node)) { 3462 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3463 3464 spin_unlock(&fs_info->block_group_cache_lock); 3465 btrfs_put_block_group(cache); 3466 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3467 } 3468 node = rb_next(&cache->cache_node); 3469 btrfs_put_block_group(cache); 3470 if (node) { 3471 cache = rb_entry(node, struct btrfs_block_group_cache, 3472 cache_node); 3473 btrfs_get_block_group(cache); 3474 } else 3475 cache = NULL; 3476 spin_unlock(&fs_info->block_group_cache_lock); 3477 return cache; 3478 } 3479 3480 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3481 struct btrfs_trans_handle *trans, 3482 struct btrfs_path *path) 3483 { 3484 struct btrfs_fs_info *fs_info = block_group->fs_info; 3485 struct btrfs_root *root = fs_info->tree_root; 3486 struct inode *inode = NULL; 3487 struct extent_changeset *data_reserved = NULL; 3488 u64 alloc_hint = 0; 3489 int dcs = BTRFS_DC_ERROR; 3490 u64 num_pages = 0; 3491 int retries = 0; 3492 int ret = 0; 3493 3494 /* 3495 * If this block group is smaller than 100 megs don't bother caching the 3496 * block group. 3497 */ 3498 if (block_group->key.offset < (100 * SZ_1M)) { 3499 spin_lock(&block_group->lock); 3500 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3501 spin_unlock(&block_group->lock); 3502 return 0; 3503 } 3504 3505 if (trans->aborted) 3506 return 0; 3507 again: 3508 inode = lookup_free_space_inode(fs_info, block_group, path); 3509 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3510 ret = PTR_ERR(inode); 3511 btrfs_release_path(path); 3512 goto out; 3513 } 3514 3515 if (IS_ERR(inode)) { 3516 BUG_ON(retries); 3517 retries++; 3518 3519 if (block_group->ro) 3520 goto out_free; 3521 3522 ret = create_free_space_inode(fs_info, trans, block_group, 3523 path); 3524 if (ret) 3525 goto out_free; 3526 goto again; 3527 } 3528 3529 /* We've already setup this transaction, go ahead and exit */ 3530 if (block_group->cache_generation == trans->transid && 3531 i_size_read(inode)) { 3532 dcs = BTRFS_DC_SETUP; 3533 goto out_put; 3534 } 3535 3536 /* 3537 * We want to set the generation to 0, that way if anything goes wrong 3538 * from here on out we know not to trust this cache when we load up next 3539 * time. 3540 */ 3541 BTRFS_I(inode)->generation = 0; 3542 ret = btrfs_update_inode(trans, root, inode); 3543 if (ret) { 3544 /* 3545 * So theoretically we could recover from this, simply set the 3546 * super cache generation to 0 so we know to invalidate the 3547 * cache, but then we'd have to keep track of the block groups 3548 * that fail this way so we know we _have_ to reset this cache 3549 * before the next commit or risk reading stale cache. So to 3550 * limit our exposure to horrible edge cases lets just abort the 3551 * transaction, this only happens in really bad situations 3552 * anyway. 3553 */ 3554 btrfs_abort_transaction(trans, ret); 3555 goto out_put; 3556 } 3557 WARN_ON(ret); 3558 3559 if (i_size_read(inode) > 0) { 3560 ret = btrfs_check_trunc_cache_free_space(fs_info, 3561 &fs_info->global_block_rsv); 3562 if (ret) 3563 goto out_put; 3564 3565 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3566 if (ret) 3567 goto out_put; 3568 } 3569 3570 spin_lock(&block_group->lock); 3571 if (block_group->cached != BTRFS_CACHE_FINISHED || 3572 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3573 /* 3574 * don't bother trying to write stuff out _if_ 3575 * a) we're not cached, 3576 * b) we're with nospace_cache mount option, 3577 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3578 */ 3579 dcs = BTRFS_DC_WRITTEN; 3580 spin_unlock(&block_group->lock); 3581 goto out_put; 3582 } 3583 spin_unlock(&block_group->lock); 3584 3585 /* 3586 * We hit an ENOSPC when setting up the cache in this transaction, just 3587 * skip doing the setup, we've already cleared the cache so we're safe. 3588 */ 3589 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3590 ret = -ENOSPC; 3591 goto out_put; 3592 } 3593 3594 /* 3595 * Try to preallocate enough space based on how big the block group is. 3596 * Keep in mind this has to include any pinned space which could end up 3597 * taking up quite a bit since it's not folded into the other space 3598 * cache. 3599 */ 3600 num_pages = div_u64(block_group->key.offset, SZ_256M); 3601 if (!num_pages) 3602 num_pages = 1; 3603 3604 num_pages *= 16; 3605 num_pages *= PAGE_SIZE; 3606 3607 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3608 if (ret) 3609 goto out_put; 3610 3611 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3612 num_pages, num_pages, 3613 &alloc_hint); 3614 /* 3615 * Our cache requires contiguous chunks so that we don't modify a bunch 3616 * of metadata or split extents when writing the cache out, which means 3617 * we can enospc if we are heavily fragmented in addition to just normal 3618 * out of space conditions. So if we hit this just skip setting up any 3619 * other block groups for this transaction, maybe we'll unpin enough 3620 * space the next time around. 3621 */ 3622 if (!ret) 3623 dcs = BTRFS_DC_SETUP; 3624 else if (ret == -ENOSPC) 3625 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3626 3627 out_put: 3628 iput(inode); 3629 out_free: 3630 btrfs_release_path(path); 3631 out: 3632 spin_lock(&block_group->lock); 3633 if (!ret && dcs == BTRFS_DC_SETUP) 3634 block_group->cache_generation = trans->transid; 3635 block_group->disk_cache_state = dcs; 3636 spin_unlock(&block_group->lock); 3637 3638 extent_changeset_free(data_reserved); 3639 return ret; 3640 } 3641 3642 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3643 struct btrfs_fs_info *fs_info) 3644 { 3645 struct btrfs_block_group_cache *cache, *tmp; 3646 struct btrfs_transaction *cur_trans = trans->transaction; 3647 struct btrfs_path *path; 3648 3649 if (list_empty(&cur_trans->dirty_bgs) || 3650 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3651 return 0; 3652 3653 path = btrfs_alloc_path(); 3654 if (!path) 3655 return -ENOMEM; 3656 3657 /* Could add new block groups, use _safe just in case */ 3658 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3659 dirty_list) { 3660 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3661 cache_save_setup(cache, trans, path); 3662 } 3663 3664 btrfs_free_path(path); 3665 return 0; 3666 } 3667 3668 /* 3669 * transaction commit does final block group cache writeback during a 3670 * critical section where nothing is allowed to change the FS. This is 3671 * required in order for the cache to actually match the block group, 3672 * but can introduce a lot of latency into the commit. 3673 * 3674 * So, btrfs_start_dirty_block_groups is here to kick off block group 3675 * cache IO. There's a chance we'll have to redo some of it if the 3676 * block group changes again during the commit, but it greatly reduces 3677 * the commit latency by getting rid of the easy block groups while 3678 * we're still allowing others to join the commit. 3679 */ 3680 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3681 struct btrfs_fs_info *fs_info) 3682 { 3683 struct btrfs_block_group_cache *cache; 3684 struct btrfs_transaction *cur_trans = trans->transaction; 3685 int ret = 0; 3686 int should_put; 3687 struct btrfs_path *path = NULL; 3688 LIST_HEAD(dirty); 3689 struct list_head *io = &cur_trans->io_bgs; 3690 int num_started = 0; 3691 int loops = 0; 3692 3693 spin_lock(&cur_trans->dirty_bgs_lock); 3694 if (list_empty(&cur_trans->dirty_bgs)) { 3695 spin_unlock(&cur_trans->dirty_bgs_lock); 3696 return 0; 3697 } 3698 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3699 spin_unlock(&cur_trans->dirty_bgs_lock); 3700 3701 again: 3702 /* 3703 * make sure all the block groups on our dirty list actually 3704 * exist 3705 */ 3706 btrfs_create_pending_block_groups(trans, fs_info); 3707 3708 if (!path) { 3709 path = btrfs_alloc_path(); 3710 if (!path) 3711 return -ENOMEM; 3712 } 3713 3714 /* 3715 * cache_write_mutex is here only to save us from balance or automatic 3716 * removal of empty block groups deleting this block group while we are 3717 * writing out the cache 3718 */ 3719 mutex_lock(&trans->transaction->cache_write_mutex); 3720 while (!list_empty(&dirty)) { 3721 cache = list_first_entry(&dirty, 3722 struct btrfs_block_group_cache, 3723 dirty_list); 3724 /* 3725 * this can happen if something re-dirties a block 3726 * group that is already under IO. Just wait for it to 3727 * finish and then do it all again 3728 */ 3729 if (!list_empty(&cache->io_list)) { 3730 list_del_init(&cache->io_list); 3731 btrfs_wait_cache_io(trans, cache, path); 3732 btrfs_put_block_group(cache); 3733 } 3734 3735 3736 /* 3737 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3738 * if it should update the cache_state. Don't delete 3739 * until after we wait. 3740 * 3741 * Since we're not running in the commit critical section 3742 * we need the dirty_bgs_lock to protect from update_block_group 3743 */ 3744 spin_lock(&cur_trans->dirty_bgs_lock); 3745 list_del_init(&cache->dirty_list); 3746 spin_unlock(&cur_trans->dirty_bgs_lock); 3747 3748 should_put = 1; 3749 3750 cache_save_setup(cache, trans, path); 3751 3752 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3753 cache->io_ctl.inode = NULL; 3754 ret = btrfs_write_out_cache(fs_info, trans, 3755 cache, path); 3756 if (ret == 0 && cache->io_ctl.inode) { 3757 num_started++; 3758 should_put = 0; 3759 3760 /* 3761 * the cache_write_mutex is protecting 3762 * the io_list 3763 */ 3764 list_add_tail(&cache->io_list, io); 3765 } else { 3766 /* 3767 * if we failed to write the cache, the 3768 * generation will be bad and life goes on 3769 */ 3770 ret = 0; 3771 } 3772 } 3773 if (!ret) { 3774 ret = write_one_cache_group(trans, fs_info, 3775 path, cache); 3776 /* 3777 * Our block group might still be attached to the list 3778 * of new block groups in the transaction handle of some 3779 * other task (struct btrfs_trans_handle->new_bgs). This 3780 * means its block group item isn't yet in the extent 3781 * tree. If this happens ignore the error, as we will 3782 * try again later in the critical section of the 3783 * transaction commit. 3784 */ 3785 if (ret == -ENOENT) { 3786 ret = 0; 3787 spin_lock(&cur_trans->dirty_bgs_lock); 3788 if (list_empty(&cache->dirty_list)) { 3789 list_add_tail(&cache->dirty_list, 3790 &cur_trans->dirty_bgs); 3791 btrfs_get_block_group(cache); 3792 } 3793 spin_unlock(&cur_trans->dirty_bgs_lock); 3794 } else if (ret) { 3795 btrfs_abort_transaction(trans, ret); 3796 } 3797 } 3798 3799 /* if its not on the io list, we need to put the block group */ 3800 if (should_put) 3801 btrfs_put_block_group(cache); 3802 3803 if (ret) 3804 break; 3805 3806 /* 3807 * Avoid blocking other tasks for too long. It might even save 3808 * us from writing caches for block groups that are going to be 3809 * removed. 3810 */ 3811 mutex_unlock(&trans->transaction->cache_write_mutex); 3812 mutex_lock(&trans->transaction->cache_write_mutex); 3813 } 3814 mutex_unlock(&trans->transaction->cache_write_mutex); 3815 3816 /* 3817 * go through delayed refs for all the stuff we've just kicked off 3818 * and then loop back (just once) 3819 */ 3820 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3821 if (!ret && loops == 0) { 3822 loops++; 3823 spin_lock(&cur_trans->dirty_bgs_lock); 3824 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3825 /* 3826 * dirty_bgs_lock protects us from concurrent block group 3827 * deletes too (not just cache_write_mutex). 3828 */ 3829 if (!list_empty(&dirty)) { 3830 spin_unlock(&cur_trans->dirty_bgs_lock); 3831 goto again; 3832 } 3833 spin_unlock(&cur_trans->dirty_bgs_lock); 3834 } else if (ret < 0) { 3835 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3836 } 3837 3838 btrfs_free_path(path); 3839 return ret; 3840 } 3841 3842 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3843 struct btrfs_fs_info *fs_info) 3844 { 3845 struct btrfs_block_group_cache *cache; 3846 struct btrfs_transaction *cur_trans = trans->transaction; 3847 int ret = 0; 3848 int should_put; 3849 struct btrfs_path *path; 3850 struct list_head *io = &cur_trans->io_bgs; 3851 int num_started = 0; 3852 3853 path = btrfs_alloc_path(); 3854 if (!path) 3855 return -ENOMEM; 3856 3857 /* 3858 * Even though we are in the critical section of the transaction commit, 3859 * we can still have concurrent tasks adding elements to this 3860 * transaction's list of dirty block groups. These tasks correspond to 3861 * endio free space workers started when writeback finishes for a 3862 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3863 * allocate new block groups as a result of COWing nodes of the root 3864 * tree when updating the free space inode. The writeback for the space 3865 * caches is triggered by an earlier call to 3866 * btrfs_start_dirty_block_groups() and iterations of the following 3867 * loop. 3868 * Also we want to do the cache_save_setup first and then run the 3869 * delayed refs to make sure we have the best chance at doing this all 3870 * in one shot. 3871 */ 3872 spin_lock(&cur_trans->dirty_bgs_lock); 3873 while (!list_empty(&cur_trans->dirty_bgs)) { 3874 cache = list_first_entry(&cur_trans->dirty_bgs, 3875 struct btrfs_block_group_cache, 3876 dirty_list); 3877 3878 /* 3879 * this can happen if cache_save_setup re-dirties a block 3880 * group that is already under IO. Just wait for it to 3881 * finish and then do it all again 3882 */ 3883 if (!list_empty(&cache->io_list)) { 3884 spin_unlock(&cur_trans->dirty_bgs_lock); 3885 list_del_init(&cache->io_list); 3886 btrfs_wait_cache_io(trans, cache, path); 3887 btrfs_put_block_group(cache); 3888 spin_lock(&cur_trans->dirty_bgs_lock); 3889 } 3890 3891 /* 3892 * don't remove from the dirty list until after we've waited 3893 * on any pending IO 3894 */ 3895 list_del_init(&cache->dirty_list); 3896 spin_unlock(&cur_trans->dirty_bgs_lock); 3897 should_put = 1; 3898 3899 cache_save_setup(cache, trans, path); 3900 3901 if (!ret) 3902 ret = btrfs_run_delayed_refs(trans, fs_info, 3903 (unsigned long) -1); 3904 3905 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3906 cache->io_ctl.inode = NULL; 3907 ret = btrfs_write_out_cache(fs_info, trans, 3908 cache, path); 3909 if (ret == 0 && cache->io_ctl.inode) { 3910 num_started++; 3911 should_put = 0; 3912 list_add_tail(&cache->io_list, io); 3913 } else { 3914 /* 3915 * if we failed to write the cache, the 3916 * generation will be bad and life goes on 3917 */ 3918 ret = 0; 3919 } 3920 } 3921 if (!ret) { 3922 ret = write_one_cache_group(trans, fs_info, 3923 path, cache); 3924 /* 3925 * One of the free space endio workers might have 3926 * created a new block group while updating a free space 3927 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3928 * and hasn't released its transaction handle yet, in 3929 * which case the new block group is still attached to 3930 * its transaction handle and its creation has not 3931 * finished yet (no block group item in the extent tree 3932 * yet, etc). If this is the case, wait for all free 3933 * space endio workers to finish and retry. This is a 3934 * a very rare case so no need for a more efficient and 3935 * complex approach. 3936 */ 3937 if (ret == -ENOENT) { 3938 wait_event(cur_trans->writer_wait, 3939 atomic_read(&cur_trans->num_writers) == 1); 3940 ret = write_one_cache_group(trans, fs_info, 3941 path, cache); 3942 } 3943 if (ret) 3944 btrfs_abort_transaction(trans, ret); 3945 } 3946 3947 /* if its not on the io list, we need to put the block group */ 3948 if (should_put) 3949 btrfs_put_block_group(cache); 3950 spin_lock(&cur_trans->dirty_bgs_lock); 3951 } 3952 spin_unlock(&cur_trans->dirty_bgs_lock); 3953 3954 while (!list_empty(io)) { 3955 cache = list_first_entry(io, struct btrfs_block_group_cache, 3956 io_list); 3957 list_del_init(&cache->io_list); 3958 btrfs_wait_cache_io(trans, cache, path); 3959 btrfs_put_block_group(cache); 3960 } 3961 3962 btrfs_free_path(path); 3963 return ret; 3964 } 3965 3966 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3967 { 3968 struct btrfs_block_group_cache *block_group; 3969 int readonly = 0; 3970 3971 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3972 if (!block_group || block_group->ro) 3973 readonly = 1; 3974 if (block_group) 3975 btrfs_put_block_group(block_group); 3976 return readonly; 3977 } 3978 3979 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3980 { 3981 struct btrfs_block_group_cache *bg; 3982 bool ret = true; 3983 3984 bg = btrfs_lookup_block_group(fs_info, bytenr); 3985 if (!bg) 3986 return false; 3987 3988 spin_lock(&bg->lock); 3989 if (bg->ro) 3990 ret = false; 3991 else 3992 atomic_inc(&bg->nocow_writers); 3993 spin_unlock(&bg->lock); 3994 3995 /* no put on block group, done by btrfs_dec_nocow_writers */ 3996 if (!ret) 3997 btrfs_put_block_group(bg); 3998 3999 return ret; 4000 4001 } 4002 4003 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 4004 { 4005 struct btrfs_block_group_cache *bg; 4006 4007 bg = btrfs_lookup_block_group(fs_info, bytenr); 4008 ASSERT(bg); 4009 if (atomic_dec_and_test(&bg->nocow_writers)) 4010 wake_up_atomic_t(&bg->nocow_writers); 4011 /* 4012 * Once for our lookup and once for the lookup done by a previous call 4013 * to btrfs_inc_nocow_writers() 4014 */ 4015 btrfs_put_block_group(bg); 4016 btrfs_put_block_group(bg); 4017 } 4018 4019 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 4020 { 4021 schedule(); 4022 return 0; 4023 } 4024 4025 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4026 { 4027 wait_on_atomic_t(&bg->nocow_writers, 4028 btrfs_wait_nocow_writers_atomic_t, 4029 TASK_UNINTERRUPTIBLE); 4030 } 4031 4032 static const char *alloc_name(u64 flags) 4033 { 4034 switch (flags) { 4035 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4036 return "mixed"; 4037 case BTRFS_BLOCK_GROUP_METADATA: 4038 return "metadata"; 4039 case BTRFS_BLOCK_GROUP_DATA: 4040 return "data"; 4041 case BTRFS_BLOCK_GROUP_SYSTEM: 4042 return "system"; 4043 default: 4044 WARN_ON(1); 4045 return "invalid-combination"; 4046 }; 4047 } 4048 4049 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4050 struct btrfs_space_info **new) 4051 { 4052 4053 struct btrfs_space_info *space_info; 4054 int i; 4055 int ret; 4056 4057 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4058 if (!space_info) 4059 return -ENOMEM; 4060 4061 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4062 GFP_KERNEL); 4063 if (ret) { 4064 kfree(space_info); 4065 return ret; 4066 } 4067 4068 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4069 INIT_LIST_HEAD(&space_info->block_groups[i]); 4070 init_rwsem(&space_info->groups_sem); 4071 spin_lock_init(&space_info->lock); 4072 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4073 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4074 init_waitqueue_head(&space_info->wait); 4075 INIT_LIST_HEAD(&space_info->ro_bgs); 4076 INIT_LIST_HEAD(&space_info->tickets); 4077 INIT_LIST_HEAD(&space_info->priority_tickets); 4078 4079 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4080 info->space_info_kobj, "%s", 4081 alloc_name(space_info->flags)); 4082 if (ret) { 4083 percpu_counter_destroy(&space_info->total_bytes_pinned); 4084 kfree(space_info); 4085 return ret; 4086 } 4087 4088 *new = space_info; 4089 list_add_rcu(&space_info->list, &info->space_info); 4090 if (flags & BTRFS_BLOCK_GROUP_DATA) 4091 info->data_sinfo = space_info; 4092 4093 return ret; 4094 } 4095 4096 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4097 u64 total_bytes, u64 bytes_used, 4098 u64 bytes_readonly, 4099 struct btrfs_space_info **space_info) 4100 { 4101 struct btrfs_space_info *found; 4102 int factor; 4103 4104 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4105 BTRFS_BLOCK_GROUP_RAID10)) 4106 factor = 2; 4107 else 4108 factor = 1; 4109 4110 found = __find_space_info(info, flags); 4111 ASSERT(found); 4112 spin_lock(&found->lock); 4113 found->total_bytes += total_bytes; 4114 found->disk_total += total_bytes * factor; 4115 found->bytes_used += bytes_used; 4116 found->disk_used += bytes_used * factor; 4117 found->bytes_readonly += bytes_readonly; 4118 if (total_bytes > 0) 4119 found->full = 0; 4120 space_info_add_new_bytes(info, found, total_bytes - 4121 bytes_used - bytes_readonly); 4122 spin_unlock(&found->lock); 4123 *space_info = found; 4124 } 4125 4126 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4127 { 4128 u64 extra_flags = chunk_to_extended(flags) & 4129 BTRFS_EXTENDED_PROFILE_MASK; 4130 4131 write_seqlock(&fs_info->profiles_lock); 4132 if (flags & BTRFS_BLOCK_GROUP_DATA) 4133 fs_info->avail_data_alloc_bits |= extra_flags; 4134 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4135 fs_info->avail_metadata_alloc_bits |= extra_flags; 4136 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4137 fs_info->avail_system_alloc_bits |= extra_flags; 4138 write_sequnlock(&fs_info->profiles_lock); 4139 } 4140 4141 /* 4142 * returns target flags in extended format or 0 if restripe for this 4143 * chunk_type is not in progress 4144 * 4145 * should be called with either volume_mutex or balance_lock held 4146 */ 4147 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4148 { 4149 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4150 u64 target = 0; 4151 4152 if (!bctl) 4153 return 0; 4154 4155 if (flags & BTRFS_BLOCK_GROUP_DATA && 4156 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4157 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4158 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4159 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4160 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4161 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4162 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4163 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4164 } 4165 4166 return target; 4167 } 4168 4169 /* 4170 * @flags: available profiles in extended format (see ctree.h) 4171 * 4172 * Returns reduced profile in chunk format. If profile changing is in 4173 * progress (either running or paused) picks the target profile (if it's 4174 * already available), otherwise falls back to plain reducing. 4175 */ 4176 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4177 { 4178 u64 num_devices = fs_info->fs_devices->rw_devices; 4179 u64 target; 4180 u64 raid_type; 4181 u64 allowed = 0; 4182 4183 /* 4184 * see if restripe for this chunk_type is in progress, if so 4185 * try to reduce to the target profile 4186 */ 4187 spin_lock(&fs_info->balance_lock); 4188 target = get_restripe_target(fs_info, flags); 4189 if (target) { 4190 /* pick target profile only if it's already available */ 4191 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4192 spin_unlock(&fs_info->balance_lock); 4193 return extended_to_chunk(target); 4194 } 4195 } 4196 spin_unlock(&fs_info->balance_lock); 4197 4198 /* First, mask out the RAID levels which aren't possible */ 4199 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4200 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4201 allowed |= btrfs_raid_group[raid_type]; 4202 } 4203 allowed &= flags; 4204 4205 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4206 allowed = BTRFS_BLOCK_GROUP_RAID6; 4207 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4208 allowed = BTRFS_BLOCK_GROUP_RAID5; 4209 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4210 allowed = BTRFS_BLOCK_GROUP_RAID10; 4211 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4212 allowed = BTRFS_BLOCK_GROUP_RAID1; 4213 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4214 allowed = BTRFS_BLOCK_GROUP_RAID0; 4215 4216 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4217 4218 return extended_to_chunk(flags | allowed); 4219 } 4220 4221 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4222 { 4223 unsigned seq; 4224 u64 flags; 4225 4226 do { 4227 flags = orig_flags; 4228 seq = read_seqbegin(&fs_info->profiles_lock); 4229 4230 if (flags & BTRFS_BLOCK_GROUP_DATA) 4231 flags |= fs_info->avail_data_alloc_bits; 4232 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4233 flags |= fs_info->avail_system_alloc_bits; 4234 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4235 flags |= fs_info->avail_metadata_alloc_bits; 4236 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4237 4238 return btrfs_reduce_alloc_profile(fs_info, flags); 4239 } 4240 4241 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4242 { 4243 struct btrfs_fs_info *fs_info = root->fs_info; 4244 u64 flags; 4245 u64 ret; 4246 4247 if (data) 4248 flags = BTRFS_BLOCK_GROUP_DATA; 4249 else if (root == fs_info->chunk_root) 4250 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4251 else 4252 flags = BTRFS_BLOCK_GROUP_METADATA; 4253 4254 ret = get_alloc_profile(fs_info, flags); 4255 return ret; 4256 } 4257 4258 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4259 { 4260 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4261 } 4262 4263 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4264 { 4265 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4266 } 4267 4268 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4269 { 4270 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4271 } 4272 4273 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4274 bool may_use_included) 4275 { 4276 ASSERT(s_info); 4277 return s_info->bytes_used + s_info->bytes_reserved + 4278 s_info->bytes_pinned + s_info->bytes_readonly + 4279 (may_use_included ? s_info->bytes_may_use : 0); 4280 } 4281 4282 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4283 { 4284 struct btrfs_root *root = inode->root; 4285 struct btrfs_fs_info *fs_info = root->fs_info; 4286 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4287 u64 used; 4288 int ret = 0; 4289 int need_commit = 2; 4290 int have_pinned_space; 4291 4292 /* make sure bytes are sectorsize aligned */ 4293 bytes = ALIGN(bytes, fs_info->sectorsize); 4294 4295 if (btrfs_is_free_space_inode(inode)) { 4296 need_commit = 0; 4297 ASSERT(current->journal_info); 4298 } 4299 4300 again: 4301 /* make sure we have enough space to handle the data first */ 4302 spin_lock(&data_sinfo->lock); 4303 used = btrfs_space_info_used(data_sinfo, true); 4304 4305 if (used + bytes > data_sinfo->total_bytes) { 4306 struct btrfs_trans_handle *trans; 4307 4308 /* 4309 * if we don't have enough free bytes in this space then we need 4310 * to alloc a new chunk. 4311 */ 4312 if (!data_sinfo->full) { 4313 u64 alloc_target; 4314 4315 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4316 spin_unlock(&data_sinfo->lock); 4317 4318 alloc_target = btrfs_data_alloc_profile(fs_info); 4319 /* 4320 * It is ugly that we don't call nolock join 4321 * transaction for the free space inode case here. 4322 * But it is safe because we only do the data space 4323 * reservation for the free space cache in the 4324 * transaction context, the common join transaction 4325 * just increase the counter of the current transaction 4326 * handler, doesn't try to acquire the trans_lock of 4327 * the fs. 4328 */ 4329 trans = btrfs_join_transaction(root); 4330 if (IS_ERR(trans)) 4331 return PTR_ERR(trans); 4332 4333 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4334 CHUNK_ALLOC_NO_FORCE); 4335 btrfs_end_transaction(trans); 4336 if (ret < 0) { 4337 if (ret != -ENOSPC) 4338 return ret; 4339 else { 4340 have_pinned_space = 1; 4341 goto commit_trans; 4342 } 4343 } 4344 4345 goto again; 4346 } 4347 4348 /* 4349 * If we don't have enough pinned space to deal with this 4350 * allocation, and no removed chunk in current transaction, 4351 * don't bother committing the transaction. 4352 */ 4353 have_pinned_space = percpu_counter_compare( 4354 &data_sinfo->total_bytes_pinned, 4355 used + bytes - data_sinfo->total_bytes); 4356 spin_unlock(&data_sinfo->lock); 4357 4358 /* commit the current transaction and try again */ 4359 commit_trans: 4360 if (need_commit && 4361 !atomic_read(&fs_info->open_ioctl_trans)) { 4362 need_commit--; 4363 4364 if (need_commit > 0) { 4365 btrfs_start_delalloc_roots(fs_info, 0, -1); 4366 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4367 (u64)-1); 4368 } 4369 4370 trans = btrfs_join_transaction(root); 4371 if (IS_ERR(trans)) 4372 return PTR_ERR(trans); 4373 if (have_pinned_space >= 0 || 4374 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4375 &trans->transaction->flags) || 4376 need_commit > 0) { 4377 ret = btrfs_commit_transaction(trans); 4378 if (ret) 4379 return ret; 4380 /* 4381 * The cleaner kthread might still be doing iput 4382 * operations. Wait for it to finish so that 4383 * more space is released. 4384 */ 4385 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4386 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4387 goto again; 4388 } else { 4389 btrfs_end_transaction(trans); 4390 } 4391 } 4392 4393 trace_btrfs_space_reservation(fs_info, 4394 "space_info:enospc", 4395 data_sinfo->flags, bytes, 1); 4396 return -ENOSPC; 4397 } 4398 data_sinfo->bytes_may_use += bytes; 4399 trace_btrfs_space_reservation(fs_info, "space_info", 4400 data_sinfo->flags, bytes, 1); 4401 spin_unlock(&data_sinfo->lock); 4402 4403 return ret; 4404 } 4405 4406 int btrfs_check_data_free_space(struct inode *inode, 4407 struct extent_changeset **reserved, u64 start, u64 len) 4408 { 4409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4410 int ret; 4411 4412 /* align the range */ 4413 len = round_up(start + len, fs_info->sectorsize) - 4414 round_down(start, fs_info->sectorsize); 4415 start = round_down(start, fs_info->sectorsize); 4416 4417 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4418 if (ret < 0) 4419 return ret; 4420 4421 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4422 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4423 if (ret < 0) 4424 btrfs_free_reserved_data_space_noquota(inode, start, len); 4425 else 4426 ret = 0; 4427 return ret; 4428 } 4429 4430 /* 4431 * Called if we need to clear a data reservation for this inode 4432 * Normally in a error case. 4433 * 4434 * This one will *NOT* use accurate qgroup reserved space API, just for case 4435 * which we can't sleep and is sure it won't affect qgroup reserved space. 4436 * Like clear_bit_hook(). 4437 */ 4438 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4439 u64 len) 4440 { 4441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4442 struct btrfs_space_info *data_sinfo; 4443 4444 /* Make sure the range is aligned to sectorsize */ 4445 len = round_up(start + len, fs_info->sectorsize) - 4446 round_down(start, fs_info->sectorsize); 4447 start = round_down(start, fs_info->sectorsize); 4448 4449 data_sinfo = fs_info->data_sinfo; 4450 spin_lock(&data_sinfo->lock); 4451 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4452 data_sinfo->bytes_may_use = 0; 4453 else 4454 data_sinfo->bytes_may_use -= len; 4455 trace_btrfs_space_reservation(fs_info, "space_info", 4456 data_sinfo->flags, len, 0); 4457 spin_unlock(&data_sinfo->lock); 4458 } 4459 4460 /* 4461 * Called if we need to clear a data reservation for this inode 4462 * Normally in a error case. 4463 * 4464 * This one will handle the per-inode data rsv map for accurate reserved 4465 * space framework. 4466 */ 4467 void btrfs_free_reserved_data_space(struct inode *inode, 4468 struct extent_changeset *reserved, u64 start, u64 len) 4469 { 4470 struct btrfs_root *root = BTRFS_I(inode)->root; 4471 4472 /* Make sure the range is aligned to sectorsize */ 4473 len = round_up(start + len, root->fs_info->sectorsize) - 4474 round_down(start, root->fs_info->sectorsize); 4475 start = round_down(start, root->fs_info->sectorsize); 4476 4477 btrfs_free_reserved_data_space_noquota(inode, start, len); 4478 btrfs_qgroup_free_data(inode, reserved, start, len); 4479 } 4480 4481 static void force_metadata_allocation(struct btrfs_fs_info *info) 4482 { 4483 struct list_head *head = &info->space_info; 4484 struct btrfs_space_info *found; 4485 4486 rcu_read_lock(); 4487 list_for_each_entry_rcu(found, head, list) { 4488 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4489 found->force_alloc = CHUNK_ALLOC_FORCE; 4490 } 4491 rcu_read_unlock(); 4492 } 4493 4494 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4495 { 4496 return (global->size << 1); 4497 } 4498 4499 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4500 struct btrfs_space_info *sinfo, int force) 4501 { 4502 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4503 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4504 u64 thresh; 4505 4506 if (force == CHUNK_ALLOC_FORCE) 4507 return 1; 4508 4509 /* 4510 * We need to take into account the global rsv because for all intents 4511 * and purposes it's used space. Don't worry about locking the 4512 * global_rsv, it doesn't change except when the transaction commits. 4513 */ 4514 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4515 bytes_used += calc_global_rsv_need_space(global_rsv); 4516 4517 /* 4518 * in limited mode, we want to have some free space up to 4519 * about 1% of the FS size. 4520 */ 4521 if (force == CHUNK_ALLOC_LIMITED) { 4522 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4523 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4524 4525 if (sinfo->total_bytes - bytes_used < thresh) 4526 return 1; 4527 } 4528 4529 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4530 return 0; 4531 return 1; 4532 } 4533 4534 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4535 { 4536 u64 num_dev; 4537 4538 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4539 BTRFS_BLOCK_GROUP_RAID0 | 4540 BTRFS_BLOCK_GROUP_RAID5 | 4541 BTRFS_BLOCK_GROUP_RAID6)) 4542 num_dev = fs_info->fs_devices->rw_devices; 4543 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4544 num_dev = 2; 4545 else 4546 num_dev = 1; /* DUP or single */ 4547 4548 return num_dev; 4549 } 4550 4551 /* 4552 * If @is_allocation is true, reserve space in the system space info necessary 4553 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4554 * removing a chunk. 4555 */ 4556 void check_system_chunk(struct btrfs_trans_handle *trans, 4557 struct btrfs_fs_info *fs_info, u64 type) 4558 { 4559 struct btrfs_space_info *info; 4560 u64 left; 4561 u64 thresh; 4562 int ret = 0; 4563 u64 num_devs; 4564 4565 /* 4566 * Needed because we can end up allocating a system chunk and for an 4567 * atomic and race free space reservation in the chunk block reserve. 4568 */ 4569 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4570 4571 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4572 spin_lock(&info->lock); 4573 left = info->total_bytes - btrfs_space_info_used(info, true); 4574 spin_unlock(&info->lock); 4575 4576 num_devs = get_profile_num_devs(fs_info, type); 4577 4578 /* num_devs device items to update and 1 chunk item to add or remove */ 4579 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4580 btrfs_calc_trans_metadata_size(fs_info, 1); 4581 4582 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4583 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4584 left, thresh, type); 4585 dump_space_info(fs_info, info, 0, 0); 4586 } 4587 4588 if (left < thresh) { 4589 u64 flags = btrfs_system_alloc_profile(fs_info); 4590 4591 /* 4592 * Ignore failure to create system chunk. We might end up not 4593 * needing it, as we might not need to COW all nodes/leafs from 4594 * the paths we visit in the chunk tree (they were already COWed 4595 * or created in the current transaction for example). 4596 */ 4597 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4598 } 4599 4600 if (!ret) { 4601 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4602 &fs_info->chunk_block_rsv, 4603 thresh, BTRFS_RESERVE_NO_FLUSH); 4604 if (!ret) 4605 trans->chunk_bytes_reserved += thresh; 4606 } 4607 } 4608 4609 /* 4610 * If force is CHUNK_ALLOC_FORCE: 4611 * - return 1 if it successfully allocates a chunk, 4612 * - return errors including -ENOSPC otherwise. 4613 * If force is NOT CHUNK_ALLOC_FORCE: 4614 * - return 0 if it doesn't need to allocate a new chunk, 4615 * - return 1 if it successfully allocates a chunk, 4616 * - return errors including -ENOSPC otherwise. 4617 */ 4618 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4619 struct btrfs_fs_info *fs_info, u64 flags, int force) 4620 { 4621 struct btrfs_space_info *space_info; 4622 int wait_for_alloc = 0; 4623 int ret = 0; 4624 4625 /* Don't re-enter if we're already allocating a chunk */ 4626 if (trans->allocating_chunk) 4627 return -ENOSPC; 4628 4629 space_info = __find_space_info(fs_info, flags); 4630 if (!space_info) { 4631 ret = create_space_info(fs_info, flags, &space_info); 4632 if (ret) 4633 return ret; 4634 } 4635 4636 again: 4637 spin_lock(&space_info->lock); 4638 if (force < space_info->force_alloc) 4639 force = space_info->force_alloc; 4640 if (space_info->full) { 4641 if (should_alloc_chunk(fs_info, space_info, force)) 4642 ret = -ENOSPC; 4643 else 4644 ret = 0; 4645 spin_unlock(&space_info->lock); 4646 return ret; 4647 } 4648 4649 if (!should_alloc_chunk(fs_info, space_info, force)) { 4650 spin_unlock(&space_info->lock); 4651 return 0; 4652 } else if (space_info->chunk_alloc) { 4653 wait_for_alloc = 1; 4654 } else { 4655 space_info->chunk_alloc = 1; 4656 } 4657 4658 spin_unlock(&space_info->lock); 4659 4660 mutex_lock(&fs_info->chunk_mutex); 4661 4662 /* 4663 * The chunk_mutex is held throughout the entirety of a chunk 4664 * allocation, so once we've acquired the chunk_mutex we know that the 4665 * other guy is done and we need to recheck and see if we should 4666 * allocate. 4667 */ 4668 if (wait_for_alloc) { 4669 mutex_unlock(&fs_info->chunk_mutex); 4670 wait_for_alloc = 0; 4671 goto again; 4672 } 4673 4674 trans->allocating_chunk = true; 4675 4676 /* 4677 * If we have mixed data/metadata chunks we want to make sure we keep 4678 * allocating mixed chunks instead of individual chunks. 4679 */ 4680 if (btrfs_mixed_space_info(space_info)) 4681 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4682 4683 /* 4684 * if we're doing a data chunk, go ahead and make sure that 4685 * we keep a reasonable number of metadata chunks allocated in the 4686 * FS as well. 4687 */ 4688 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4689 fs_info->data_chunk_allocations++; 4690 if (!(fs_info->data_chunk_allocations % 4691 fs_info->metadata_ratio)) 4692 force_metadata_allocation(fs_info); 4693 } 4694 4695 /* 4696 * Check if we have enough space in SYSTEM chunk because we may need 4697 * to update devices. 4698 */ 4699 check_system_chunk(trans, fs_info, flags); 4700 4701 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4702 trans->allocating_chunk = false; 4703 4704 spin_lock(&space_info->lock); 4705 if (ret < 0 && ret != -ENOSPC) 4706 goto out; 4707 if (ret) 4708 space_info->full = 1; 4709 else 4710 ret = 1; 4711 4712 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4713 out: 4714 space_info->chunk_alloc = 0; 4715 spin_unlock(&space_info->lock); 4716 mutex_unlock(&fs_info->chunk_mutex); 4717 /* 4718 * When we allocate a new chunk we reserve space in the chunk block 4719 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4720 * add new nodes/leafs to it if we end up needing to do it when 4721 * inserting the chunk item and updating device items as part of the 4722 * second phase of chunk allocation, performed by 4723 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4724 * large number of new block groups to create in our transaction 4725 * handle's new_bgs list to avoid exhausting the chunk block reserve 4726 * in extreme cases - like having a single transaction create many new 4727 * block groups when starting to write out the free space caches of all 4728 * the block groups that were made dirty during the lifetime of the 4729 * transaction. 4730 */ 4731 if (trans->can_flush_pending_bgs && 4732 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4733 btrfs_create_pending_block_groups(trans, fs_info); 4734 btrfs_trans_release_chunk_metadata(trans); 4735 } 4736 return ret; 4737 } 4738 4739 static int can_overcommit(struct btrfs_fs_info *fs_info, 4740 struct btrfs_space_info *space_info, u64 bytes, 4741 enum btrfs_reserve_flush_enum flush, 4742 bool system_chunk) 4743 { 4744 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4745 u64 profile; 4746 u64 space_size; 4747 u64 avail; 4748 u64 used; 4749 4750 /* Don't overcommit when in mixed mode. */ 4751 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4752 return 0; 4753 4754 if (system_chunk) 4755 profile = btrfs_system_alloc_profile(fs_info); 4756 else 4757 profile = btrfs_metadata_alloc_profile(fs_info); 4758 4759 used = btrfs_space_info_used(space_info, false); 4760 4761 /* 4762 * We only want to allow over committing if we have lots of actual space 4763 * free, but if we don't have enough space to handle the global reserve 4764 * space then we could end up having a real enospc problem when trying 4765 * to allocate a chunk or some other such important allocation. 4766 */ 4767 spin_lock(&global_rsv->lock); 4768 space_size = calc_global_rsv_need_space(global_rsv); 4769 spin_unlock(&global_rsv->lock); 4770 if (used + space_size >= space_info->total_bytes) 4771 return 0; 4772 4773 used += space_info->bytes_may_use; 4774 4775 avail = atomic64_read(&fs_info->free_chunk_space); 4776 4777 /* 4778 * If we have dup, raid1 or raid10 then only half of the free 4779 * space is actually useable. For raid56, the space info used 4780 * doesn't include the parity drive, so we don't have to 4781 * change the math 4782 */ 4783 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4784 BTRFS_BLOCK_GROUP_RAID1 | 4785 BTRFS_BLOCK_GROUP_RAID10)) 4786 avail >>= 1; 4787 4788 /* 4789 * If we aren't flushing all things, let us overcommit up to 4790 * 1/2th of the space. If we can flush, don't let us overcommit 4791 * too much, let it overcommit up to 1/8 of the space. 4792 */ 4793 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4794 avail >>= 3; 4795 else 4796 avail >>= 1; 4797 4798 if (used + bytes < space_info->total_bytes + avail) 4799 return 1; 4800 return 0; 4801 } 4802 4803 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4804 unsigned long nr_pages, int nr_items) 4805 { 4806 struct super_block *sb = fs_info->sb; 4807 4808 if (down_read_trylock(&sb->s_umount)) { 4809 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4810 up_read(&sb->s_umount); 4811 } else { 4812 /* 4813 * We needn't worry the filesystem going from r/w to r/o though 4814 * we don't acquire ->s_umount mutex, because the filesystem 4815 * should guarantee the delalloc inodes list be empty after 4816 * the filesystem is readonly(all dirty pages are written to 4817 * the disk). 4818 */ 4819 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4820 if (!current->journal_info) 4821 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4822 } 4823 } 4824 4825 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4826 u64 to_reclaim) 4827 { 4828 u64 bytes; 4829 u64 nr; 4830 4831 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4832 nr = div64_u64(to_reclaim, bytes); 4833 if (!nr) 4834 nr = 1; 4835 return nr; 4836 } 4837 4838 #define EXTENT_SIZE_PER_ITEM SZ_256K 4839 4840 /* 4841 * shrink metadata reservation for delalloc 4842 */ 4843 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4844 u64 orig, bool wait_ordered) 4845 { 4846 struct btrfs_block_rsv *block_rsv; 4847 struct btrfs_space_info *space_info; 4848 struct btrfs_trans_handle *trans; 4849 u64 delalloc_bytes; 4850 u64 max_reclaim; 4851 u64 items; 4852 long time_left; 4853 unsigned long nr_pages; 4854 int loops; 4855 enum btrfs_reserve_flush_enum flush; 4856 4857 /* Calc the number of the pages we need flush for space reservation */ 4858 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4859 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4860 4861 trans = (struct btrfs_trans_handle *)current->journal_info; 4862 block_rsv = &fs_info->delalloc_block_rsv; 4863 space_info = block_rsv->space_info; 4864 4865 delalloc_bytes = percpu_counter_sum_positive( 4866 &fs_info->delalloc_bytes); 4867 if (delalloc_bytes == 0) { 4868 if (trans) 4869 return; 4870 if (wait_ordered) 4871 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4872 return; 4873 } 4874 4875 loops = 0; 4876 while (delalloc_bytes && loops < 3) { 4877 max_reclaim = min(delalloc_bytes, to_reclaim); 4878 nr_pages = max_reclaim >> PAGE_SHIFT; 4879 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4880 /* 4881 * We need to wait for the async pages to actually start before 4882 * we do anything. 4883 */ 4884 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4885 if (!max_reclaim) 4886 goto skip_async; 4887 4888 if (max_reclaim <= nr_pages) 4889 max_reclaim = 0; 4890 else 4891 max_reclaim -= nr_pages; 4892 4893 wait_event(fs_info->async_submit_wait, 4894 atomic_read(&fs_info->async_delalloc_pages) <= 4895 (int)max_reclaim); 4896 skip_async: 4897 if (!trans) 4898 flush = BTRFS_RESERVE_FLUSH_ALL; 4899 else 4900 flush = BTRFS_RESERVE_NO_FLUSH; 4901 spin_lock(&space_info->lock); 4902 if (list_empty(&space_info->tickets) && 4903 list_empty(&space_info->priority_tickets)) { 4904 spin_unlock(&space_info->lock); 4905 break; 4906 } 4907 spin_unlock(&space_info->lock); 4908 4909 loops++; 4910 if (wait_ordered && !trans) { 4911 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4912 } else { 4913 time_left = schedule_timeout_killable(1); 4914 if (time_left) 4915 break; 4916 } 4917 delalloc_bytes = percpu_counter_sum_positive( 4918 &fs_info->delalloc_bytes); 4919 } 4920 } 4921 4922 /** 4923 * maybe_commit_transaction - possibly commit the transaction if its ok to 4924 * @root - the root we're allocating for 4925 * @bytes - the number of bytes we want to reserve 4926 * @force - force the commit 4927 * 4928 * This will check to make sure that committing the transaction will actually 4929 * get us somewhere and then commit the transaction if it does. Otherwise it 4930 * will return -ENOSPC. 4931 */ 4932 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4933 struct btrfs_space_info *space_info, 4934 u64 bytes, int force) 4935 { 4936 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4937 struct btrfs_trans_handle *trans; 4938 4939 trans = (struct btrfs_trans_handle *)current->journal_info; 4940 if (trans) 4941 return -EAGAIN; 4942 4943 if (force) 4944 goto commit; 4945 4946 /* See if there is enough pinned space to make this reservation */ 4947 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4948 bytes) >= 0) 4949 goto commit; 4950 4951 /* 4952 * See if there is some space in the delayed insertion reservation for 4953 * this reservation. 4954 */ 4955 if (space_info != delayed_rsv->space_info) 4956 return -ENOSPC; 4957 4958 spin_lock(&delayed_rsv->lock); 4959 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4960 bytes - delayed_rsv->size) < 0) { 4961 spin_unlock(&delayed_rsv->lock); 4962 return -ENOSPC; 4963 } 4964 spin_unlock(&delayed_rsv->lock); 4965 4966 commit: 4967 trans = btrfs_join_transaction(fs_info->extent_root); 4968 if (IS_ERR(trans)) 4969 return -ENOSPC; 4970 4971 return btrfs_commit_transaction(trans); 4972 } 4973 4974 struct reserve_ticket { 4975 u64 bytes; 4976 int error; 4977 struct list_head list; 4978 wait_queue_head_t wait; 4979 }; 4980 4981 /* 4982 * Try to flush some data based on policy set by @state. This is only advisory 4983 * and may fail for various reasons. The caller is supposed to examine the 4984 * state of @space_info to detect the outcome. 4985 */ 4986 static void flush_space(struct btrfs_fs_info *fs_info, 4987 struct btrfs_space_info *space_info, u64 num_bytes, 4988 int state) 4989 { 4990 struct btrfs_root *root = fs_info->extent_root; 4991 struct btrfs_trans_handle *trans; 4992 int nr; 4993 int ret = 0; 4994 4995 switch (state) { 4996 case FLUSH_DELAYED_ITEMS_NR: 4997 case FLUSH_DELAYED_ITEMS: 4998 if (state == FLUSH_DELAYED_ITEMS_NR) 4999 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 5000 else 5001 nr = -1; 5002 5003 trans = btrfs_join_transaction(root); 5004 if (IS_ERR(trans)) { 5005 ret = PTR_ERR(trans); 5006 break; 5007 } 5008 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 5009 btrfs_end_transaction(trans); 5010 break; 5011 case FLUSH_DELALLOC: 5012 case FLUSH_DELALLOC_WAIT: 5013 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 5014 state == FLUSH_DELALLOC_WAIT); 5015 break; 5016 case ALLOC_CHUNK: 5017 trans = btrfs_join_transaction(root); 5018 if (IS_ERR(trans)) { 5019 ret = PTR_ERR(trans); 5020 break; 5021 } 5022 ret = do_chunk_alloc(trans, fs_info, 5023 btrfs_metadata_alloc_profile(fs_info), 5024 CHUNK_ALLOC_NO_FORCE); 5025 btrfs_end_transaction(trans); 5026 if (ret > 0 || ret == -ENOSPC) 5027 ret = 0; 5028 break; 5029 case COMMIT_TRANS: 5030 ret = may_commit_transaction(fs_info, space_info, 5031 num_bytes, 0); 5032 break; 5033 default: 5034 ret = -ENOSPC; 5035 break; 5036 } 5037 5038 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5039 ret); 5040 return; 5041 } 5042 5043 static inline u64 5044 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5045 struct btrfs_space_info *space_info, 5046 bool system_chunk) 5047 { 5048 struct reserve_ticket *ticket; 5049 u64 used; 5050 u64 expected; 5051 u64 to_reclaim = 0; 5052 5053 list_for_each_entry(ticket, &space_info->tickets, list) 5054 to_reclaim += ticket->bytes; 5055 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5056 to_reclaim += ticket->bytes; 5057 if (to_reclaim) 5058 return to_reclaim; 5059 5060 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5061 if (can_overcommit(fs_info, space_info, to_reclaim, 5062 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5063 return 0; 5064 5065 used = btrfs_space_info_used(space_info, true); 5066 5067 if (can_overcommit(fs_info, space_info, SZ_1M, 5068 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5069 expected = div_factor_fine(space_info->total_bytes, 95); 5070 else 5071 expected = div_factor_fine(space_info->total_bytes, 90); 5072 5073 if (used > expected) 5074 to_reclaim = used - expected; 5075 else 5076 to_reclaim = 0; 5077 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5078 space_info->bytes_reserved); 5079 return to_reclaim; 5080 } 5081 5082 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5083 struct btrfs_space_info *space_info, 5084 u64 used, bool system_chunk) 5085 { 5086 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5087 5088 /* If we're just plain full then async reclaim just slows us down. */ 5089 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5090 return 0; 5091 5092 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5093 system_chunk)) 5094 return 0; 5095 5096 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5097 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5098 } 5099 5100 static void wake_all_tickets(struct list_head *head) 5101 { 5102 struct reserve_ticket *ticket; 5103 5104 while (!list_empty(head)) { 5105 ticket = list_first_entry(head, struct reserve_ticket, list); 5106 list_del_init(&ticket->list); 5107 ticket->error = -ENOSPC; 5108 wake_up(&ticket->wait); 5109 } 5110 } 5111 5112 /* 5113 * This is for normal flushers, we can wait all goddamned day if we want to. We 5114 * will loop and continuously try to flush as long as we are making progress. 5115 * We count progress as clearing off tickets each time we have to loop. 5116 */ 5117 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5118 { 5119 struct btrfs_fs_info *fs_info; 5120 struct btrfs_space_info *space_info; 5121 u64 to_reclaim; 5122 int flush_state; 5123 int commit_cycles = 0; 5124 u64 last_tickets_id; 5125 5126 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5127 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5128 5129 spin_lock(&space_info->lock); 5130 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5131 false); 5132 if (!to_reclaim) { 5133 space_info->flush = 0; 5134 spin_unlock(&space_info->lock); 5135 return; 5136 } 5137 last_tickets_id = space_info->tickets_id; 5138 spin_unlock(&space_info->lock); 5139 5140 flush_state = FLUSH_DELAYED_ITEMS_NR; 5141 do { 5142 flush_space(fs_info, space_info, to_reclaim, flush_state); 5143 spin_lock(&space_info->lock); 5144 if (list_empty(&space_info->tickets)) { 5145 space_info->flush = 0; 5146 spin_unlock(&space_info->lock); 5147 return; 5148 } 5149 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5150 space_info, 5151 false); 5152 if (last_tickets_id == space_info->tickets_id) { 5153 flush_state++; 5154 } else { 5155 last_tickets_id = space_info->tickets_id; 5156 flush_state = FLUSH_DELAYED_ITEMS_NR; 5157 if (commit_cycles) 5158 commit_cycles--; 5159 } 5160 5161 if (flush_state > COMMIT_TRANS) { 5162 commit_cycles++; 5163 if (commit_cycles > 2) { 5164 wake_all_tickets(&space_info->tickets); 5165 space_info->flush = 0; 5166 } else { 5167 flush_state = FLUSH_DELAYED_ITEMS_NR; 5168 } 5169 } 5170 spin_unlock(&space_info->lock); 5171 } while (flush_state <= COMMIT_TRANS); 5172 } 5173 5174 void btrfs_init_async_reclaim_work(struct work_struct *work) 5175 { 5176 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5177 } 5178 5179 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5180 struct btrfs_space_info *space_info, 5181 struct reserve_ticket *ticket) 5182 { 5183 u64 to_reclaim; 5184 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5185 5186 spin_lock(&space_info->lock); 5187 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5188 false); 5189 if (!to_reclaim) { 5190 spin_unlock(&space_info->lock); 5191 return; 5192 } 5193 spin_unlock(&space_info->lock); 5194 5195 do { 5196 flush_space(fs_info, space_info, to_reclaim, flush_state); 5197 flush_state++; 5198 spin_lock(&space_info->lock); 5199 if (ticket->bytes == 0) { 5200 spin_unlock(&space_info->lock); 5201 return; 5202 } 5203 spin_unlock(&space_info->lock); 5204 5205 /* 5206 * Priority flushers can't wait on delalloc without 5207 * deadlocking. 5208 */ 5209 if (flush_state == FLUSH_DELALLOC || 5210 flush_state == FLUSH_DELALLOC_WAIT) 5211 flush_state = ALLOC_CHUNK; 5212 } while (flush_state < COMMIT_TRANS); 5213 } 5214 5215 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5216 struct btrfs_space_info *space_info, 5217 struct reserve_ticket *ticket, u64 orig_bytes) 5218 5219 { 5220 DEFINE_WAIT(wait); 5221 int ret = 0; 5222 5223 spin_lock(&space_info->lock); 5224 while (ticket->bytes > 0 && ticket->error == 0) { 5225 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5226 if (ret) { 5227 ret = -EINTR; 5228 break; 5229 } 5230 spin_unlock(&space_info->lock); 5231 5232 schedule(); 5233 5234 finish_wait(&ticket->wait, &wait); 5235 spin_lock(&space_info->lock); 5236 } 5237 if (!ret) 5238 ret = ticket->error; 5239 if (!list_empty(&ticket->list)) 5240 list_del_init(&ticket->list); 5241 if (ticket->bytes && ticket->bytes < orig_bytes) { 5242 u64 num_bytes = orig_bytes - ticket->bytes; 5243 space_info->bytes_may_use -= num_bytes; 5244 trace_btrfs_space_reservation(fs_info, "space_info", 5245 space_info->flags, num_bytes, 0); 5246 } 5247 spin_unlock(&space_info->lock); 5248 5249 return ret; 5250 } 5251 5252 /** 5253 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5254 * @root - the root we're allocating for 5255 * @space_info - the space info we want to allocate from 5256 * @orig_bytes - the number of bytes we want 5257 * @flush - whether or not we can flush to make our reservation 5258 * 5259 * This will reserve orig_bytes number of bytes from the space info associated 5260 * with the block_rsv. If there is not enough space it will make an attempt to 5261 * flush out space to make room. It will do this by flushing delalloc if 5262 * possible or committing the transaction. If flush is 0 then no attempts to 5263 * regain reservations will be made and this will fail if there is not enough 5264 * space already. 5265 */ 5266 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5267 struct btrfs_space_info *space_info, 5268 u64 orig_bytes, 5269 enum btrfs_reserve_flush_enum flush, 5270 bool system_chunk) 5271 { 5272 struct reserve_ticket ticket; 5273 u64 used; 5274 int ret = 0; 5275 5276 ASSERT(orig_bytes); 5277 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5278 5279 spin_lock(&space_info->lock); 5280 ret = -ENOSPC; 5281 used = btrfs_space_info_used(space_info, true); 5282 5283 /* 5284 * If we have enough space then hooray, make our reservation and carry 5285 * on. If not see if we can overcommit, and if we can, hooray carry on. 5286 * If not things get more complicated. 5287 */ 5288 if (used + orig_bytes <= space_info->total_bytes) { 5289 space_info->bytes_may_use += orig_bytes; 5290 trace_btrfs_space_reservation(fs_info, "space_info", 5291 space_info->flags, orig_bytes, 1); 5292 ret = 0; 5293 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5294 system_chunk)) { 5295 space_info->bytes_may_use += orig_bytes; 5296 trace_btrfs_space_reservation(fs_info, "space_info", 5297 space_info->flags, orig_bytes, 1); 5298 ret = 0; 5299 } 5300 5301 /* 5302 * If we couldn't make a reservation then setup our reservation ticket 5303 * and kick the async worker if it's not already running. 5304 * 5305 * If we are a priority flusher then we just need to add our ticket to 5306 * the list and we will do our own flushing further down. 5307 */ 5308 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5309 ticket.bytes = orig_bytes; 5310 ticket.error = 0; 5311 init_waitqueue_head(&ticket.wait); 5312 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5313 list_add_tail(&ticket.list, &space_info->tickets); 5314 if (!space_info->flush) { 5315 space_info->flush = 1; 5316 trace_btrfs_trigger_flush(fs_info, 5317 space_info->flags, 5318 orig_bytes, flush, 5319 "enospc"); 5320 queue_work(system_unbound_wq, 5321 &fs_info->async_reclaim_work); 5322 } 5323 } else { 5324 list_add_tail(&ticket.list, 5325 &space_info->priority_tickets); 5326 } 5327 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5328 used += orig_bytes; 5329 /* 5330 * We will do the space reservation dance during log replay, 5331 * which means we won't have fs_info->fs_root set, so don't do 5332 * the async reclaim as we will panic. 5333 */ 5334 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5335 need_do_async_reclaim(fs_info, space_info, 5336 used, system_chunk) && 5337 !work_busy(&fs_info->async_reclaim_work)) { 5338 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5339 orig_bytes, flush, "preempt"); 5340 queue_work(system_unbound_wq, 5341 &fs_info->async_reclaim_work); 5342 } 5343 } 5344 spin_unlock(&space_info->lock); 5345 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5346 return ret; 5347 5348 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5349 return wait_reserve_ticket(fs_info, space_info, &ticket, 5350 orig_bytes); 5351 5352 ret = 0; 5353 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5354 spin_lock(&space_info->lock); 5355 if (ticket.bytes) { 5356 if (ticket.bytes < orig_bytes) { 5357 u64 num_bytes = orig_bytes - ticket.bytes; 5358 space_info->bytes_may_use -= num_bytes; 5359 trace_btrfs_space_reservation(fs_info, "space_info", 5360 space_info->flags, 5361 num_bytes, 0); 5362 5363 } 5364 list_del_init(&ticket.list); 5365 ret = -ENOSPC; 5366 } 5367 spin_unlock(&space_info->lock); 5368 ASSERT(list_empty(&ticket.list)); 5369 return ret; 5370 } 5371 5372 /** 5373 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5374 * @root - the root we're allocating for 5375 * @block_rsv - the block_rsv we're allocating for 5376 * @orig_bytes - the number of bytes we want 5377 * @flush - whether or not we can flush to make our reservation 5378 * 5379 * This will reserve orgi_bytes number of bytes from the space info associated 5380 * with the block_rsv. If there is not enough space it will make an attempt to 5381 * flush out space to make room. It will do this by flushing delalloc if 5382 * possible or committing the transaction. If flush is 0 then no attempts to 5383 * regain reservations will be made and this will fail if there is not enough 5384 * space already. 5385 */ 5386 static int reserve_metadata_bytes(struct btrfs_root *root, 5387 struct btrfs_block_rsv *block_rsv, 5388 u64 orig_bytes, 5389 enum btrfs_reserve_flush_enum flush) 5390 { 5391 struct btrfs_fs_info *fs_info = root->fs_info; 5392 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5393 int ret; 5394 bool system_chunk = (root == fs_info->chunk_root); 5395 5396 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5397 orig_bytes, flush, system_chunk); 5398 if (ret == -ENOSPC && 5399 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5400 if (block_rsv != global_rsv && 5401 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5402 ret = 0; 5403 } 5404 if (ret == -ENOSPC) 5405 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5406 block_rsv->space_info->flags, 5407 orig_bytes, 1); 5408 return ret; 5409 } 5410 5411 static struct btrfs_block_rsv *get_block_rsv( 5412 const struct btrfs_trans_handle *trans, 5413 const struct btrfs_root *root) 5414 { 5415 struct btrfs_fs_info *fs_info = root->fs_info; 5416 struct btrfs_block_rsv *block_rsv = NULL; 5417 5418 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5419 (root == fs_info->csum_root && trans->adding_csums) || 5420 (root == fs_info->uuid_root)) 5421 block_rsv = trans->block_rsv; 5422 5423 if (!block_rsv) 5424 block_rsv = root->block_rsv; 5425 5426 if (!block_rsv) 5427 block_rsv = &fs_info->empty_block_rsv; 5428 5429 return block_rsv; 5430 } 5431 5432 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5433 u64 num_bytes) 5434 { 5435 int ret = -ENOSPC; 5436 spin_lock(&block_rsv->lock); 5437 if (block_rsv->reserved >= num_bytes) { 5438 block_rsv->reserved -= num_bytes; 5439 if (block_rsv->reserved < block_rsv->size) 5440 block_rsv->full = 0; 5441 ret = 0; 5442 } 5443 spin_unlock(&block_rsv->lock); 5444 return ret; 5445 } 5446 5447 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5448 u64 num_bytes, int update_size) 5449 { 5450 spin_lock(&block_rsv->lock); 5451 block_rsv->reserved += num_bytes; 5452 if (update_size) 5453 block_rsv->size += num_bytes; 5454 else if (block_rsv->reserved >= block_rsv->size) 5455 block_rsv->full = 1; 5456 spin_unlock(&block_rsv->lock); 5457 } 5458 5459 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5460 struct btrfs_block_rsv *dest, u64 num_bytes, 5461 int min_factor) 5462 { 5463 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5464 u64 min_bytes; 5465 5466 if (global_rsv->space_info != dest->space_info) 5467 return -ENOSPC; 5468 5469 spin_lock(&global_rsv->lock); 5470 min_bytes = div_factor(global_rsv->size, min_factor); 5471 if (global_rsv->reserved < min_bytes + num_bytes) { 5472 spin_unlock(&global_rsv->lock); 5473 return -ENOSPC; 5474 } 5475 global_rsv->reserved -= num_bytes; 5476 if (global_rsv->reserved < global_rsv->size) 5477 global_rsv->full = 0; 5478 spin_unlock(&global_rsv->lock); 5479 5480 block_rsv_add_bytes(dest, num_bytes, 1); 5481 return 0; 5482 } 5483 5484 /* 5485 * This is for space we already have accounted in space_info->bytes_may_use, so 5486 * basically when we're returning space from block_rsv's. 5487 */ 5488 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5489 struct btrfs_space_info *space_info, 5490 u64 num_bytes) 5491 { 5492 struct reserve_ticket *ticket; 5493 struct list_head *head; 5494 u64 used; 5495 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5496 bool check_overcommit = false; 5497 5498 spin_lock(&space_info->lock); 5499 head = &space_info->priority_tickets; 5500 5501 /* 5502 * If we are over our limit then we need to check and see if we can 5503 * overcommit, and if we can't then we just need to free up our space 5504 * and not satisfy any requests. 5505 */ 5506 used = btrfs_space_info_used(space_info, true); 5507 if (used - num_bytes >= space_info->total_bytes) 5508 check_overcommit = true; 5509 again: 5510 while (!list_empty(head) && num_bytes) { 5511 ticket = list_first_entry(head, struct reserve_ticket, 5512 list); 5513 /* 5514 * We use 0 bytes because this space is already reserved, so 5515 * adding the ticket space would be a double count. 5516 */ 5517 if (check_overcommit && 5518 !can_overcommit(fs_info, space_info, 0, flush, false)) 5519 break; 5520 if (num_bytes >= ticket->bytes) { 5521 list_del_init(&ticket->list); 5522 num_bytes -= ticket->bytes; 5523 ticket->bytes = 0; 5524 space_info->tickets_id++; 5525 wake_up(&ticket->wait); 5526 } else { 5527 ticket->bytes -= num_bytes; 5528 num_bytes = 0; 5529 } 5530 } 5531 5532 if (num_bytes && head == &space_info->priority_tickets) { 5533 head = &space_info->tickets; 5534 flush = BTRFS_RESERVE_FLUSH_ALL; 5535 goto again; 5536 } 5537 space_info->bytes_may_use -= num_bytes; 5538 trace_btrfs_space_reservation(fs_info, "space_info", 5539 space_info->flags, num_bytes, 0); 5540 spin_unlock(&space_info->lock); 5541 } 5542 5543 /* 5544 * This is for newly allocated space that isn't accounted in 5545 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5546 * we use this helper. 5547 */ 5548 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5549 struct btrfs_space_info *space_info, 5550 u64 num_bytes) 5551 { 5552 struct reserve_ticket *ticket; 5553 struct list_head *head = &space_info->priority_tickets; 5554 5555 again: 5556 while (!list_empty(head) && num_bytes) { 5557 ticket = list_first_entry(head, struct reserve_ticket, 5558 list); 5559 if (num_bytes >= ticket->bytes) { 5560 trace_btrfs_space_reservation(fs_info, "space_info", 5561 space_info->flags, 5562 ticket->bytes, 1); 5563 list_del_init(&ticket->list); 5564 num_bytes -= ticket->bytes; 5565 space_info->bytes_may_use += ticket->bytes; 5566 ticket->bytes = 0; 5567 space_info->tickets_id++; 5568 wake_up(&ticket->wait); 5569 } else { 5570 trace_btrfs_space_reservation(fs_info, "space_info", 5571 space_info->flags, 5572 num_bytes, 1); 5573 space_info->bytes_may_use += num_bytes; 5574 ticket->bytes -= num_bytes; 5575 num_bytes = 0; 5576 } 5577 } 5578 5579 if (num_bytes && head == &space_info->priority_tickets) { 5580 head = &space_info->tickets; 5581 goto again; 5582 } 5583 } 5584 5585 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5586 struct btrfs_block_rsv *block_rsv, 5587 struct btrfs_block_rsv *dest, u64 num_bytes) 5588 { 5589 struct btrfs_space_info *space_info = block_rsv->space_info; 5590 5591 spin_lock(&block_rsv->lock); 5592 if (num_bytes == (u64)-1) 5593 num_bytes = block_rsv->size; 5594 block_rsv->size -= num_bytes; 5595 if (block_rsv->reserved >= block_rsv->size) { 5596 num_bytes = block_rsv->reserved - block_rsv->size; 5597 block_rsv->reserved = block_rsv->size; 5598 block_rsv->full = 1; 5599 } else { 5600 num_bytes = 0; 5601 } 5602 spin_unlock(&block_rsv->lock); 5603 5604 if (num_bytes > 0) { 5605 if (dest) { 5606 spin_lock(&dest->lock); 5607 if (!dest->full) { 5608 u64 bytes_to_add; 5609 5610 bytes_to_add = dest->size - dest->reserved; 5611 bytes_to_add = min(num_bytes, bytes_to_add); 5612 dest->reserved += bytes_to_add; 5613 if (dest->reserved >= dest->size) 5614 dest->full = 1; 5615 num_bytes -= bytes_to_add; 5616 } 5617 spin_unlock(&dest->lock); 5618 } 5619 if (num_bytes) 5620 space_info_add_old_bytes(fs_info, space_info, 5621 num_bytes); 5622 } 5623 } 5624 5625 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5626 struct btrfs_block_rsv *dst, u64 num_bytes, 5627 int update_size) 5628 { 5629 int ret; 5630 5631 ret = block_rsv_use_bytes(src, num_bytes); 5632 if (ret) 5633 return ret; 5634 5635 block_rsv_add_bytes(dst, num_bytes, update_size); 5636 return 0; 5637 } 5638 5639 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5640 { 5641 memset(rsv, 0, sizeof(*rsv)); 5642 spin_lock_init(&rsv->lock); 5643 rsv->type = type; 5644 } 5645 5646 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5647 unsigned short type) 5648 { 5649 struct btrfs_block_rsv *block_rsv; 5650 5651 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5652 if (!block_rsv) 5653 return NULL; 5654 5655 btrfs_init_block_rsv(block_rsv, type); 5656 block_rsv->space_info = __find_space_info(fs_info, 5657 BTRFS_BLOCK_GROUP_METADATA); 5658 return block_rsv; 5659 } 5660 5661 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5662 struct btrfs_block_rsv *rsv) 5663 { 5664 if (!rsv) 5665 return; 5666 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5667 kfree(rsv); 5668 } 5669 5670 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5671 { 5672 kfree(rsv); 5673 } 5674 5675 int btrfs_block_rsv_add(struct btrfs_root *root, 5676 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5677 enum btrfs_reserve_flush_enum flush) 5678 { 5679 int ret; 5680 5681 if (num_bytes == 0) 5682 return 0; 5683 5684 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5685 if (!ret) { 5686 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5687 return 0; 5688 } 5689 5690 return ret; 5691 } 5692 5693 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5694 { 5695 u64 num_bytes = 0; 5696 int ret = -ENOSPC; 5697 5698 if (!block_rsv) 5699 return 0; 5700 5701 spin_lock(&block_rsv->lock); 5702 num_bytes = div_factor(block_rsv->size, min_factor); 5703 if (block_rsv->reserved >= num_bytes) 5704 ret = 0; 5705 spin_unlock(&block_rsv->lock); 5706 5707 return ret; 5708 } 5709 5710 int btrfs_block_rsv_refill(struct btrfs_root *root, 5711 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5712 enum btrfs_reserve_flush_enum flush) 5713 { 5714 u64 num_bytes = 0; 5715 int ret = -ENOSPC; 5716 5717 if (!block_rsv) 5718 return 0; 5719 5720 spin_lock(&block_rsv->lock); 5721 num_bytes = min_reserved; 5722 if (block_rsv->reserved >= num_bytes) 5723 ret = 0; 5724 else 5725 num_bytes -= block_rsv->reserved; 5726 spin_unlock(&block_rsv->lock); 5727 5728 if (!ret) 5729 return 0; 5730 5731 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5732 if (!ret) { 5733 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5734 return 0; 5735 } 5736 5737 return ret; 5738 } 5739 5740 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5741 struct btrfs_block_rsv *block_rsv, 5742 u64 num_bytes) 5743 { 5744 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5745 5746 if (global_rsv == block_rsv || 5747 block_rsv->space_info != global_rsv->space_info) 5748 global_rsv = NULL; 5749 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5750 } 5751 5752 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5753 { 5754 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5755 struct btrfs_space_info *sinfo = block_rsv->space_info; 5756 u64 num_bytes; 5757 5758 /* 5759 * The global block rsv is based on the size of the extent tree, the 5760 * checksum tree and the root tree. If the fs is empty we want to set 5761 * it to a minimal amount for safety. 5762 */ 5763 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5764 btrfs_root_used(&fs_info->csum_root->root_item) + 5765 btrfs_root_used(&fs_info->tree_root->root_item); 5766 num_bytes = max_t(u64, num_bytes, SZ_16M); 5767 5768 spin_lock(&sinfo->lock); 5769 spin_lock(&block_rsv->lock); 5770 5771 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5772 5773 if (block_rsv->reserved < block_rsv->size) { 5774 num_bytes = btrfs_space_info_used(sinfo, true); 5775 if (sinfo->total_bytes > num_bytes) { 5776 num_bytes = sinfo->total_bytes - num_bytes; 5777 num_bytes = min(num_bytes, 5778 block_rsv->size - block_rsv->reserved); 5779 block_rsv->reserved += num_bytes; 5780 sinfo->bytes_may_use += num_bytes; 5781 trace_btrfs_space_reservation(fs_info, "space_info", 5782 sinfo->flags, num_bytes, 5783 1); 5784 } 5785 } else if (block_rsv->reserved > block_rsv->size) { 5786 num_bytes = block_rsv->reserved - block_rsv->size; 5787 sinfo->bytes_may_use -= num_bytes; 5788 trace_btrfs_space_reservation(fs_info, "space_info", 5789 sinfo->flags, num_bytes, 0); 5790 block_rsv->reserved = block_rsv->size; 5791 } 5792 5793 if (block_rsv->reserved == block_rsv->size) 5794 block_rsv->full = 1; 5795 else 5796 block_rsv->full = 0; 5797 5798 spin_unlock(&block_rsv->lock); 5799 spin_unlock(&sinfo->lock); 5800 } 5801 5802 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5803 { 5804 struct btrfs_space_info *space_info; 5805 5806 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5807 fs_info->chunk_block_rsv.space_info = space_info; 5808 5809 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5810 fs_info->global_block_rsv.space_info = space_info; 5811 fs_info->delalloc_block_rsv.space_info = space_info; 5812 fs_info->trans_block_rsv.space_info = space_info; 5813 fs_info->empty_block_rsv.space_info = space_info; 5814 fs_info->delayed_block_rsv.space_info = space_info; 5815 5816 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5817 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5818 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5819 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5820 if (fs_info->quota_root) 5821 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5822 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5823 5824 update_global_block_rsv(fs_info); 5825 } 5826 5827 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5828 { 5829 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5830 (u64)-1); 5831 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5832 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5833 WARN_ON(fs_info->trans_block_rsv.size > 0); 5834 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5835 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5836 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5837 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5838 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5839 } 5840 5841 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5842 struct btrfs_fs_info *fs_info) 5843 { 5844 if (!trans->block_rsv) 5845 return; 5846 5847 if (!trans->bytes_reserved) 5848 return; 5849 5850 trace_btrfs_space_reservation(fs_info, "transaction", 5851 trans->transid, trans->bytes_reserved, 0); 5852 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5853 trans->bytes_reserved); 5854 trans->bytes_reserved = 0; 5855 } 5856 5857 /* 5858 * To be called after all the new block groups attached to the transaction 5859 * handle have been created (btrfs_create_pending_block_groups()). 5860 */ 5861 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5862 { 5863 struct btrfs_fs_info *fs_info = trans->fs_info; 5864 5865 if (!trans->chunk_bytes_reserved) 5866 return; 5867 5868 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5869 5870 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5871 trans->chunk_bytes_reserved); 5872 trans->chunk_bytes_reserved = 0; 5873 } 5874 5875 /* Can only return 0 or -ENOSPC */ 5876 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5877 struct btrfs_inode *inode) 5878 { 5879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5880 struct btrfs_root *root = inode->root; 5881 /* 5882 * We always use trans->block_rsv here as we will have reserved space 5883 * for our orphan when starting the transaction, using get_block_rsv() 5884 * here will sometimes make us choose the wrong block rsv as we could be 5885 * doing a reloc inode for a non refcounted root. 5886 */ 5887 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5888 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5889 5890 /* 5891 * We need to hold space in order to delete our orphan item once we've 5892 * added it, so this takes the reservation so we can release it later 5893 * when we are truly done with the orphan item. 5894 */ 5895 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5896 5897 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5898 num_bytes, 1); 5899 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5900 } 5901 5902 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5903 { 5904 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5905 struct btrfs_root *root = inode->root; 5906 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5907 5908 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5909 num_bytes, 0); 5910 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5911 } 5912 5913 /* 5914 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5915 * root: the root of the parent directory 5916 * rsv: block reservation 5917 * items: the number of items that we need do reservation 5918 * qgroup_reserved: used to return the reserved size in qgroup 5919 * 5920 * This function is used to reserve the space for snapshot/subvolume 5921 * creation and deletion. Those operations are different with the 5922 * common file/directory operations, they change two fs/file trees 5923 * and root tree, the number of items that the qgroup reserves is 5924 * different with the free space reservation. So we can not use 5925 * the space reservation mechanism in start_transaction(). 5926 */ 5927 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5928 struct btrfs_block_rsv *rsv, 5929 int items, 5930 u64 *qgroup_reserved, 5931 bool use_global_rsv) 5932 { 5933 u64 num_bytes; 5934 int ret; 5935 struct btrfs_fs_info *fs_info = root->fs_info; 5936 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5937 5938 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5939 /* One for parent inode, two for dir entries */ 5940 num_bytes = 3 * fs_info->nodesize; 5941 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true); 5942 if (ret) 5943 return ret; 5944 } else { 5945 num_bytes = 0; 5946 } 5947 5948 *qgroup_reserved = num_bytes; 5949 5950 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5951 rsv->space_info = __find_space_info(fs_info, 5952 BTRFS_BLOCK_GROUP_METADATA); 5953 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5954 BTRFS_RESERVE_FLUSH_ALL); 5955 5956 if (ret == -ENOSPC && use_global_rsv) 5957 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5958 5959 if (ret && *qgroup_reserved) 5960 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5961 5962 return ret; 5963 } 5964 5965 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 5966 struct btrfs_block_rsv *rsv) 5967 { 5968 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5969 } 5970 5971 /** 5972 * drop_outstanding_extent - drop an outstanding extent 5973 * @inode: the inode we're dropping the extent for 5974 * @num_bytes: the number of bytes we're releasing. 5975 * 5976 * This is called when we are freeing up an outstanding extent, either called 5977 * after an error or after an extent is written. This will return the number of 5978 * reserved extents that need to be freed. This must be called with 5979 * BTRFS_I(inode)->lock held. 5980 */ 5981 static unsigned drop_outstanding_extent(struct btrfs_inode *inode, 5982 u64 num_bytes) 5983 { 5984 unsigned drop_inode_space = 0; 5985 unsigned dropped_extents = 0; 5986 unsigned num_extents; 5987 5988 num_extents = count_max_extents(num_bytes); 5989 ASSERT(num_extents); 5990 ASSERT(inode->outstanding_extents >= num_extents); 5991 inode->outstanding_extents -= num_extents; 5992 5993 if (inode->outstanding_extents == 0 && 5994 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5995 &inode->runtime_flags)) 5996 drop_inode_space = 1; 5997 5998 /* 5999 * If we have more or the same amount of outstanding extents than we have 6000 * reserved then we need to leave the reserved extents count alone. 6001 */ 6002 if (inode->outstanding_extents >= inode->reserved_extents) 6003 return drop_inode_space; 6004 6005 dropped_extents = inode->reserved_extents - inode->outstanding_extents; 6006 inode->reserved_extents -= dropped_extents; 6007 return dropped_extents + drop_inode_space; 6008 } 6009 6010 /** 6011 * calc_csum_metadata_size - return the amount of metadata space that must be 6012 * reserved/freed for the given bytes. 6013 * @inode: the inode we're manipulating 6014 * @num_bytes: the number of bytes in question 6015 * @reserve: 1 if we are reserving space, 0 if we are freeing space 6016 * 6017 * This adjusts the number of csum_bytes in the inode and then returns the 6018 * correct amount of metadata that must either be reserved or freed. We 6019 * calculate how many checksums we can fit into one leaf and then divide the 6020 * number of bytes that will need to be checksumed by this value to figure out 6021 * how many checksums will be required. If we are adding bytes then the number 6022 * may go up and we will return the number of additional bytes that must be 6023 * reserved. If it is going down we will return the number of bytes that must 6024 * be freed. 6025 * 6026 * This must be called with BTRFS_I(inode)->lock held. 6027 */ 6028 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes, 6029 int reserve) 6030 { 6031 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6032 u64 old_csums, num_csums; 6033 6034 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0) 6035 return 0; 6036 6037 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 6038 if (reserve) 6039 inode->csum_bytes += num_bytes; 6040 else 6041 inode->csum_bytes -= num_bytes; 6042 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 6043 6044 /* No change, no need to reserve more */ 6045 if (old_csums == num_csums) 6046 return 0; 6047 6048 if (reserve) 6049 return btrfs_calc_trans_metadata_size(fs_info, 6050 num_csums - old_csums); 6051 6052 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums); 6053 } 6054 6055 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6056 { 6057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6058 struct btrfs_root *root = inode->root; 6059 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv; 6060 u64 to_reserve = 0; 6061 u64 csum_bytes; 6062 unsigned nr_extents; 6063 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6064 int ret = 0; 6065 bool delalloc_lock = true; 6066 u64 to_free = 0; 6067 unsigned dropped; 6068 bool release_extra = false; 6069 6070 /* If we are a free space inode we need to not flush since we will be in 6071 * the middle of a transaction commit. We also don't need the delalloc 6072 * mutex since we won't race with anybody. We need this mostly to make 6073 * lockdep shut its filthy mouth. 6074 * 6075 * If we have a transaction open (can happen if we call truncate_block 6076 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6077 */ 6078 if (btrfs_is_free_space_inode(inode)) { 6079 flush = BTRFS_RESERVE_NO_FLUSH; 6080 delalloc_lock = false; 6081 } else if (current->journal_info) { 6082 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6083 } 6084 6085 if (flush != BTRFS_RESERVE_NO_FLUSH && 6086 btrfs_transaction_in_commit(fs_info)) 6087 schedule_timeout(1); 6088 6089 if (delalloc_lock) 6090 mutex_lock(&inode->delalloc_mutex); 6091 6092 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6093 6094 spin_lock(&inode->lock); 6095 nr_extents = count_max_extents(num_bytes); 6096 inode->outstanding_extents += nr_extents; 6097 6098 nr_extents = 0; 6099 if (inode->outstanding_extents > inode->reserved_extents) 6100 nr_extents += inode->outstanding_extents - 6101 inode->reserved_extents; 6102 6103 /* We always want to reserve a slot for updating the inode. */ 6104 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1); 6105 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 6106 csum_bytes = inode->csum_bytes; 6107 spin_unlock(&inode->lock); 6108 6109 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6110 ret = btrfs_qgroup_reserve_meta(root, 6111 nr_extents * fs_info->nodesize, true); 6112 if (ret) 6113 goto out_fail; 6114 } 6115 6116 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 6117 if (unlikely(ret)) { 6118 btrfs_qgroup_free_meta(root, 6119 nr_extents * fs_info->nodesize); 6120 goto out_fail; 6121 } 6122 6123 spin_lock(&inode->lock); 6124 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 6125 &inode->runtime_flags)) { 6126 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1); 6127 release_extra = true; 6128 } 6129 inode->reserved_extents += nr_extents; 6130 spin_unlock(&inode->lock); 6131 6132 if (delalloc_lock) 6133 mutex_unlock(&inode->delalloc_mutex); 6134 6135 if (to_reserve) 6136 trace_btrfs_space_reservation(fs_info, "delalloc", 6137 btrfs_ino(inode), to_reserve, 1); 6138 if (release_extra) 6139 btrfs_block_rsv_release(fs_info, block_rsv, 6140 btrfs_calc_trans_metadata_size(fs_info, 1)); 6141 return 0; 6142 6143 out_fail: 6144 spin_lock(&inode->lock); 6145 dropped = drop_outstanding_extent(inode, num_bytes); 6146 /* 6147 * If the inodes csum_bytes is the same as the original 6148 * csum_bytes then we know we haven't raced with any free()ers 6149 * so we can just reduce our inodes csum bytes and carry on. 6150 */ 6151 if (inode->csum_bytes == csum_bytes) { 6152 calc_csum_metadata_size(inode, num_bytes, 0); 6153 } else { 6154 u64 orig_csum_bytes = inode->csum_bytes; 6155 u64 bytes; 6156 6157 /* 6158 * This is tricky, but first we need to figure out how much we 6159 * freed from any free-ers that occurred during this 6160 * reservation, so we reset ->csum_bytes to the csum_bytes 6161 * before we dropped our lock, and then call the free for the 6162 * number of bytes that were freed while we were trying our 6163 * reservation. 6164 */ 6165 bytes = csum_bytes - inode->csum_bytes; 6166 inode->csum_bytes = csum_bytes; 6167 to_free = calc_csum_metadata_size(inode, bytes, 0); 6168 6169 6170 /* 6171 * Now we need to see how much we would have freed had we not 6172 * been making this reservation and our ->csum_bytes were not 6173 * artificially inflated. 6174 */ 6175 inode->csum_bytes = csum_bytes - num_bytes; 6176 bytes = csum_bytes - orig_csum_bytes; 6177 bytes = calc_csum_metadata_size(inode, bytes, 0); 6178 6179 /* 6180 * Now reset ->csum_bytes to what it should be. If bytes is 6181 * more than to_free then we would have freed more space had we 6182 * not had an artificially high ->csum_bytes, so we need to free 6183 * the remainder. If bytes is the same or less then we don't 6184 * need to do anything, the other free-ers did the correct 6185 * thing. 6186 */ 6187 inode->csum_bytes = orig_csum_bytes - num_bytes; 6188 if (bytes > to_free) 6189 to_free = bytes - to_free; 6190 else 6191 to_free = 0; 6192 } 6193 spin_unlock(&inode->lock); 6194 if (dropped) 6195 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6196 6197 if (to_free) { 6198 btrfs_block_rsv_release(fs_info, block_rsv, to_free); 6199 trace_btrfs_space_reservation(fs_info, "delalloc", 6200 btrfs_ino(inode), to_free, 0); 6201 } 6202 if (delalloc_lock) 6203 mutex_unlock(&inode->delalloc_mutex); 6204 return ret; 6205 } 6206 6207 /** 6208 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6209 * @inode: the inode to release the reservation for 6210 * @num_bytes: the number of bytes we're releasing 6211 * 6212 * This will release the metadata reservation for an inode. This can be called 6213 * once we complete IO for a given set of bytes to release their metadata 6214 * reservations. 6215 */ 6216 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes) 6217 { 6218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6219 u64 to_free = 0; 6220 unsigned dropped; 6221 6222 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6223 spin_lock(&inode->lock); 6224 dropped = drop_outstanding_extent(inode, num_bytes); 6225 6226 if (num_bytes) 6227 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6228 spin_unlock(&inode->lock); 6229 if (dropped > 0) 6230 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6231 6232 if (btrfs_is_testing(fs_info)) 6233 return; 6234 6235 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode), 6236 to_free, 0); 6237 6238 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free); 6239 } 6240 6241 /** 6242 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6243 * delalloc 6244 * @inode: inode we're writing to 6245 * @start: start range we are writing to 6246 * @len: how long the range we are writing to 6247 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6248 * current reservation. 6249 * 6250 * This will do the following things 6251 * 6252 * o reserve space in data space info for num bytes 6253 * and reserve precious corresponding qgroup space 6254 * (Done in check_data_free_space) 6255 * 6256 * o reserve space for metadata space, based on the number of outstanding 6257 * extents and how much csums will be needed 6258 * also reserve metadata space in a per root over-reserve method. 6259 * o add to the inodes->delalloc_bytes 6260 * o add it to the fs_info's delalloc inodes list. 6261 * (Above 3 all done in delalloc_reserve_metadata) 6262 * 6263 * Return 0 for success 6264 * Return <0 for error(-ENOSPC or -EQUOT) 6265 */ 6266 int btrfs_delalloc_reserve_space(struct inode *inode, 6267 struct extent_changeset **reserved, u64 start, u64 len) 6268 { 6269 int ret; 6270 6271 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6272 if (ret < 0) 6273 return ret; 6274 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6275 if (ret < 0) 6276 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6277 return ret; 6278 } 6279 6280 /** 6281 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6282 * @inode: inode we're releasing space for 6283 * @start: start position of the space already reserved 6284 * @len: the len of the space already reserved 6285 * 6286 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6287 * called in the case that we don't need the metadata AND data reservations 6288 * anymore. So if there is an error or we insert an inline extent. 6289 * 6290 * This function will release the metadata space that was not used and will 6291 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6292 * list if there are no delalloc bytes left. 6293 * Also it will handle the qgroup reserved space. 6294 */ 6295 void btrfs_delalloc_release_space(struct inode *inode, 6296 struct extent_changeset *reserved, u64 start, u64 len) 6297 { 6298 btrfs_delalloc_release_metadata(BTRFS_I(inode), len); 6299 btrfs_free_reserved_data_space(inode, reserved, start, len); 6300 } 6301 6302 static int update_block_group(struct btrfs_trans_handle *trans, 6303 struct btrfs_fs_info *info, u64 bytenr, 6304 u64 num_bytes, int alloc) 6305 { 6306 struct btrfs_block_group_cache *cache = NULL; 6307 u64 total = num_bytes; 6308 u64 old_val; 6309 u64 byte_in_group; 6310 int factor; 6311 6312 /* block accounting for super block */ 6313 spin_lock(&info->delalloc_root_lock); 6314 old_val = btrfs_super_bytes_used(info->super_copy); 6315 if (alloc) 6316 old_val += num_bytes; 6317 else 6318 old_val -= num_bytes; 6319 btrfs_set_super_bytes_used(info->super_copy, old_val); 6320 spin_unlock(&info->delalloc_root_lock); 6321 6322 while (total) { 6323 cache = btrfs_lookup_block_group(info, bytenr); 6324 if (!cache) 6325 return -ENOENT; 6326 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6327 BTRFS_BLOCK_GROUP_RAID1 | 6328 BTRFS_BLOCK_GROUP_RAID10)) 6329 factor = 2; 6330 else 6331 factor = 1; 6332 /* 6333 * If this block group has free space cache written out, we 6334 * need to make sure to load it if we are removing space. This 6335 * is because we need the unpinning stage to actually add the 6336 * space back to the block group, otherwise we will leak space. 6337 */ 6338 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6339 cache_block_group(cache, 1); 6340 6341 byte_in_group = bytenr - cache->key.objectid; 6342 WARN_ON(byte_in_group > cache->key.offset); 6343 6344 spin_lock(&cache->space_info->lock); 6345 spin_lock(&cache->lock); 6346 6347 if (btrfs_test_opt(info, SPACE_CACHE) && 6348 cache->disk_cache_state < BTRFS_DC_CLEAR) 6349 cache->disk_cache_state = BTRFS_DC_CLEAR; 6350 6351 old_val = btrfs_block_group_used(&cache->item); 6352 num_bytes = min(total, cache->key.offset - byte_in_group); 6353 if (alloc) { 6354 old_val += num_bytes; 6355 btrfs_set_block_group_used(&cache->item, old_val); 6356 cache->reserved -= num_bytes; 6357 cache->space_info->bytes_reserved -= num_bytes; 6358 cache->space_info->bytes_used += num_bytes; 6359 cache->space_info->disk_used += num_bytes * factor; 6360 spin_unlock(&cache->lock); 6361 spin_unlock(&cache->space_info->lock); 6362 } else { 6363 old_val -= num_bytes; 6364 btrfs_set_block_group_used(&cache->item, old_val); 6365 cache->pinned += num_bytes; 6366 cache->space_info->bytes_pinned += num_bytes; 6367 cache->space_info->bytes_used -= num_bytes; 6368 cache->space_info->disk_used -= num_bytes * factor; 6369 spin_unlock(&cache->lock); 6370 spin_unlock(&cache->space_info->lock); 6371 6372 trace_btrfs_space_reservation(info, "pinned", 6373 cache->space_info->flags, 6374 num_bytes, 1); 6375 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6376 num_bytes); 6377 set_extent_dirty(info->pinned_extents, 6378 bytenr, bytenr + num_bytes - 1, 6379 GFP_NOFS | __GFP_NOFAIL); 6380 } 6381 6382 spin_lock(&trans->transaction->dirty_bgs_lock); 6383 if (list_empty(&cache->dirty_list)) { 6384 list_add_tail(&cache->dirty_list, 6385 &trans->transaction->dirty_bgs); 6386 trans->transaction->num_dirty_bgs++; 6387 btrfs_get_block_group(cache); 6388 } 6389 spin_unlock(&trans->transaction->dirty_bgs_lock); 6390 6391 /* 6392 * No longer have used bytes in this block group, queue it for 6393 * deletion. We do this after adding the block group to the 6394 * dirty list to avoid races between cleaner kthread and space 6395 * cache writeout. 6396 */ 6397 if (!alloc && old_val == 0) { 6398 spin_lock(&info->unused_bgs_lock); 6399 if (list_empty(&cache->bg_list)) { 6400 btrfs_get_block_group(cache); 6401 list_add_tail(&cache->bg_list, 6402 &info->unused_bgs); 6403 } 6404 spin_unlock(&info->unused_bgs_lock); 6405 } 6406 6407 btrfs_put_block_group(cache); 6408 total -= num_bytes; 6409 bytenr += num_bytes; 6410 } 6411 return 0; 6412 } 6413 6414 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6415 { 6416 struct btrfs_block_group_cache *cache; 6417 u64 bytenr; 6418 6419 spin_lock(&fs_info->block_group_cache_lock); 6420 bytenr = fs_info->first_logical_byte; 6421 spin_unlock(&fs_info->block_group_cache_lock); 6422 6423 if (bytenr < (u64)-1) 6424 return bytenr; 6425 6426 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6427 if (!cache) 6428 return 0; 6429 6430 bytenr = cache->key.objectid; 6431 btrfs_put_block_group(cache); 6432 6433 return bytenr; 6434 } 6435 6436 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6437 struct btrfs_block_group_cache *cache, 6438 u64 bytenr, u64 num_bytes, int reserved) 6439 { 6440 spin_lock(&cache->space_info->lock); 6441 spin_lock(&cache->lock); 6442 cache->pinned += num_bytes; 6443 cache->space_info->bytes_pinned += num_bytes; 6444 if (reserved) { 6445 cache->reserved -= num_bytes; 6446 cache->space_info->bytes_reserved -= num_bytes; 6447 } 6448 spin_unlock(&cache->lock); 6449 spin_unlock(&cache->space_info->lock); 6450 6451 trace_btrfs_space_reservation(fs_info, "pinned", 6452 cache->space_info->flags, num_bytes, 1); 6453 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6454 set_extent_dirty(fs_info->pinned_extents, bytenr, 6455 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6456 return 0; 6457 } 6458 6459 /* 6460 * this function must be called within transaction 6461 */ 6462 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6463 u64 bytenr, u64 num_bytes, int reserved) 6464 { 6465 struct btrfs_block_group_cache *cache; 6466 6467 cache = btrfs_lookup_block_group(fs_info, bytenr); 6468 BUG_ON(!cache); /* Logic error */ 6469 6470 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6471 6472 btrfs_put_block_group(cache); 6473 return 0; 6474 } 6475 6476 /* 6477 * this function must be called within transaction 6478 */ 6479 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6480 u64 bytenr, u64 num_bytes) 6481 { 6482 struct btrfs_block_group_cache *cache; 6483 int ret; 6484 6485 cache = btrfs_lookup_block_group(fs_info, bytenr); 6486 if (!cache) 6487 return -EINVAL; 6488 6489 /* 6490 * pull in the free space cache (if any) so that our pin 6491 * removes the free space from the cache. We have load_only set 6492 * to one because the slow code to read in the free extents does check 6493 * the pinned extents. 6494 */ 6495 cache_block_group(cache, 1); 6496 6497 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6498 6499 /* remove us from the free space cache (if we're there at all) */ 6500 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6501 btrfs_put_block_group(cache); 6502 return ret; 6503 } 6504 6505 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6506 u64 start, u64 num_bytes) 6507 { 6508 int ret; 6509 struct btrfs_block_group_cache *block_group; 6510 struct btrfs_caching_control *caching_ctl; 6511 6512 block_group = btrfs_lookup_block_group(fs_info, start); 6513 if (!block_group) 6514 return -EINVAL; 6515 6516 cache_block_group(block_group, 0); 6517 caching_ctl = get_caching_control(block_group); 6518 6519 if (!caching_ctl) { 6520 /* Logic error */ 6521 BUG_ON(!block_group_cache_done(block_group)); 6522 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6523 } else { 6524 mutex_lock(&caching_ctl->mutex); 6525 6526 if (start >= caching_ctl->progress) { 6527 ret = add_excluded_extent(fs_info, start, num_bytes); 6528 } else if (start + num_bytes <= caching_ctl->progress) { 6529 ret = btrfs_remove_free_space(block_group, 6530 start, num_bytes); 6531 } else { 6532 num_bytes = caching_ctl->progress - start; 6533 ret = btrfs_remove_free_space(block_group, 6534 start, num_bytes); 6535 if (ret) 6536 goto out_lock; 6537 6538 num_bytes = (start + num_bytes) - 6539 caching_ctl->progress; 6540 start = caching_ctl->progress; 6541 ret = add_excluded_extent(fs_info, start, num_bytes); 6542 } 6543 out_lock: 6544 mutex_unlock(&caching_ctl->mutex); 6545 put_caching_control(caching_ctl); 6546 } 6547 btrfs_put_block_group(block_group); 6548 return ret; 6549 } 6550 6551 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6552 struct extent_buffer *eb) 6553 { 6554 struct btrfs_file_extent_item *item; 6555 struct btrfs_key key; 6556 int found_type; 6557 int i; 6558 6559 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6560 return 0; 6561 6562 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6563 btrfs_item_key_to_cpu(eb, &key, i); 6564 if (key.type != BTRFS_EXTENT_DATA_KEY) 6565 continue; 6566 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6567 found_type = btrfs_file_extent_type(eb, item); 6568 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6569 continue; 6570 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6571 continue; 6572 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6573 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6574 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6575 } 6576 6577 return 0; 6578 } 6579 6580 static void 6581 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6582 { 6583 atomic_inc(&bg->reservations); 6584 } 6585 6586 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6587 const u64 start) 6588 { 6589 struct btrfs_block_group_cache *bg; 6590 6591 bg = btrfs_lookup_block_group(fs_info, start); 6592 ASSERT(bg); 6593 if (atomic_dec_and_test(&bg->reservations)) 6594 wake_up_atomic_t(&bg->reservations); 6595 btrfs_put_block_group(bg); 6596 } 6597 6598 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6599 { 6600 schedule(); 6601 return 0; 6602 } 6603 6604 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6605 { 6606 struct btrfs_space_info *space_info = bg->space_info; 6607 6608 ASSERT(bg->ro); 6609 6610 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6611 return; 6612 6613 /* 6614 * Our block group is read only but before we set it to read only, 6615 * some task might have had allocated an extent from it already, but it 6616 * has not yet created a respective ordered extent (and added it to a 6617 * root's list of ordered extents). 6618 * Therefore wait for any task currently allocating extents, since the 6619 * block group's reservations counter is incremented while a read lock 6620 * on the groups' semaphore is held and decremented after releasing 6621 * the read access on that semaphore and creating the ordered extent. 6622 */ 6623 down_write(&space_info->groups_sem); 6624 up_write(&space_info->groups_sem); 6625 6626 wait_on_atomic_t(&bg->reservations, 6627 btrfs_wait_bg_reservations_atomic_t, 6628 TASK_UNINTERRUPTIBLE); 6629 } 6630 6631 /** 6632 * btrfs_add_reserved_bytes - update the block_group and space info counters 6633 * @cache: The cache we are manipulating 6634 * @ram_bytes: The number of bytes of file content, and will be same to 6635 * @num_bytes except for the compress path. 6636 * @num_bytes: The number of bytes in question 6637 * @delalloc: The blocks are allocated for the delalloc write 6638 * 6639 * This is called by the allocator when it reserves space. If this is a 6640 * reservation and the block group has become read only we cannot make the 6641 * reservation and return -EAGAIN, otherwise this function always succeeds. 6642 */ 6643 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6644 u64 ram_bytes, u64 num_bytes, int delalloc) 6645 { 6646 struct btrfs_space_info *space_info = cache->space_info; 6647 int ret = 0; 6648 6649 spin_lock(&space_info->lock); 6650 spin_lock(&cache->lock); 6651 if (cache->ro) { 6652 ret = -EAGAIN; 6653 } else { 6654 cache->reserved += num_bytes; 6655 space_info->bytes_reserved += num_bytes; 6656 6657 trace_btrfs_space_reservation(cache->fs_info, 6658 "space_info", space_info->flags, 6659 ram_bytes, 0); 6660 space_info->bytes_may_use -= ram_bytes; 6661 if (delalloc) 6662 cache->delalloc_bytes += num_bytes; 6663 } 6664 spin_unlock(&cache->lock); 6665 spin_unlock(&space_info->lock); 6666 return ret; 6667 } 6668 6669 /** 6670 * btrfs_free_reserved_bytes - update the block_group and space info counters 6671 * @cache: The cache we are manipulating 6672 * @num_bytes: The number of bytes in question 6673 * @delalloc: The blocks are allocated for the delalloc write 6674 * 6675 * This is called by somebody who is freeing space that was never actually used 6676 * on disk. For example if you reserve some space for a new leaf in transaction 6677 * A and before transaction A commits you free that leaf, you call this with 6678 * reserve set to 0 in order to clear the reservation. 6679 */ 6680 6681 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6682 u64 num_bytes, int delalloc) 6683 { 6684 struct btrfs_space_info *space_info = cache->space_info; 6685 int ret = 0; 6686 6687 spin_lock(&space_info->lock); 6688 spin_lock(&cache->lock); 6689 if (cache->ro) 6690 space_info->bytes_readonly += num_bytes; 6691 cache->reserved -= num_bytes; 6692 space_info->bytes_reserved -= num_bytes; 6693 6694 if (delalloc) 6695 cache->delalloc_bytes -= num_bytes; 6696 spin_unlock(&cache->lock); 6697 spin_unlock(&space_info->lock); 6698 return ret; 6699 } 6700 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6701 { 6702 struct btrfs_caching_control *next; 6703 struct btrfs_caching_control *caching_ctl; 6704 struct btrfs_block_group_cache *cache; 6705 6706 down_write(&fs_info->commit_root_sem); 6707 6708 list_for_each_entry_safe(caching_ctl, next, 6709 &fs_info->caching_block_groups, list) { 6710 cache = caching_ctl->block_group; 6711 if (block_group_cache_done(cache)) { 6712 cache->last_byte_to_unpin = (u64)-1; 6713 list_del_init(&caching_ctl->list); 6714 put_caching_control(caching_ctl); 6715 } else { 6716 cache->last_byte_to_unpin = caching_ctl->progress; 6717 } 6718 } 6719 6720 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6721 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6722 else 6723 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6724 6725 up_write(&fs_info->commit_root_sem); 6726 6727 update_global_block_rsv(fs_info); 6728 } 6729 6730 /* 6731 * Returns the free cluster for the given space info and sets empty_cluster to 6732 * what it should be based on the mount options. 6733 */ 6734 static struct btrfs_free_cluster * 6735 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6736 struct btrfs_space_info *space_info, u64 *empty_cluster) 6737 { 6738 struct btrfs_free_cluster *ret = NULL; 6739 6740 *empty_cluster = 0; 6741 if (btrfs_mixed_space_info(space_info)) 6742 return ret; 6743 6744 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6745 ret = &fs_info->meta_alloc_cluster; 6746 if (btrfs_test_opt(fs_info, SSD)) 6747 *empty_cluster = SZ_2M; 6748 else 6749 *empty_cluster = SZ_64K; 6750 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6751 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6752 *empty_cluster = SZ_2M; 6753 ret = &fs_info->data_alloc_cluster; 6754 } 6755 6756 return ret; 6757 } 6758 6759 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6760 u64 start, u64 end, 6761 const bool return_free_space) 6762 { 6763 struct btrfs_block_group_cache *cache = NULL; 6764 struct btrfs_space_info *space_info; 6765 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6766 struct btrfs_free_cluster *cluster = NULL; 6767 u64 len; 6768 u64 total_unpinned = 0; 6769 u64 empty_cluster = 0; 6770 bool readonly; 6771 6772 while (start <= end) { 6773 readonly = false; 6774 if (!cache || 6775 start >= cache->key.objectid + cache->key.offset) { 6776 if (cache) 6777 btrfs_put_block_group(cache); 6778 total_unpinned = 0; 6779 cache = btrfs_lookup_block_group(fs_info, start); 6780 BUG_ON(!cache); /* Logic error */ 6781 6782 cluster = fetch_cluster_info(fs_info, 6783 cache->space_info, 6784 &empty_cluster); 6785 empty_cluster <<= 1; 6786 } 6787 6788 len = cache->key.objectid + cache->key.offset - start; 6789 len = min(len, end + 1 - start); 6790 6791 if (start < cache->last_byte_to_unpin) { 6792 len = min(len, cache->last_byte_to_unpin - start); 6793 if (return_free_space) 6794 btrfs_add_free_space(cache, start, len); 6795 } 6796 6797 start += len; 6798 total_unpinned += len; 6799 space_info = cache->space_info; 6800 6801 /* 6802 * If this space cluster has been marked as fragmented and we've 6803 * unpinned enough in this block group to potentially allow a 6804 * cluster to be created inside of it go ahead and clear the 6805 * fragmented check. 6806 */ 6807 if (cluster && cluster->fragmented && 6808 total_unpinned > empty_cluster) { 6809 spin_lock(&cluster->lock); 6810 cluster->fragmented = 0; 6811 spin_unlock(&cluster->lock); 6812 } 6813 6814 spin_lock(&space_info->lock); 6815 spin_lock(&cache->lock); 6816 cache->pinned -= len; 6817 space_info->bytes_pinned -= len; 6818 6819 trace_btrfs_space_reservation(fs_info, "pinned", 6820 space_info->flags, len, 0); 6821 space_info->max_extent_size = 0; 6822 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6823 if (cache->ro) { 6824 space_info->bytes_readonly += len; 6825 readonly = true; 6826 } 6827 spin_unlock(&cache->lock); 6828 if (!readonly && return_free_space && 6829 global_rsv->space_info == space_info) { 6830 u64 to_add = len; 6831 6832 spin_lock(&global_rsv->lock); 6833 if (!global_rsv->full) { 6834 to_add = min(len, global_rsv->size - 6835 global_rsv->reserved); 6836 global_rsv->reserved += to_add; 6837 space_info->bytes_may_use += to_add; 6838 if (global_rsv->reserved >= global_rsv->size) 6839 global_rsv->full = 1; 6840 trace_btrfs_space_reservation(fs_info, 6841 "space_info", 6842 space_info->flags, 6843 to_add, 1); 6844 len -= to_add; 6845 } 6846 spin_unlock(&global_rsv->lock); 6847 /* Add to any tickets we may have */ 6848 if (len) 6849 space_info_add_new_bytes(fs_info, space_info, 6850 len); 6851 } 6852 spin_unlock(&space_info->lock); 6853 } 6854 6855 if (cache) 6856 btrfs_put_block_group(cache); 6857 return 0; 6858 } 6859 6860 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6861 struct btrfs_fs_info *fs_info) 6862 { 6863 struct btrfs_block_group_cache *block_group, *tmp; 6864 struct list_head *deleted_bgs; 6865 struct extent_io_tree *unpin; 6866 u64 start; 6867 u64 end; 6868 int ret; 6869 6870 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6871 unpin = &fs_info->freed_extents[1]; 6872 else 6873 unpin = &fs_info->freed_extents[0]; 6874 6875 while (!trans->aborted) { 6876 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6877 ret = find_first_extent_bit(unpin, 0, &start, &end, 6878 EXTENT_DIRTY, NULL); 6879 if (ret) { 6880 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6881 break; 6882 } 6883 6884 if (btrfs_test_opt(fs_info, DISCARD)) 6885 ret = btrfs_discard_extent(fs_info, start, 6886 end + 1 - start, NULL); 6887 6888 clear_extent_dirty(unpin, start, end); 6889 unpin_extent_range(fs_info, start, end, true); 6890 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6891 cond_resched(); 6892 } 6893 6894 /* 6895 * Transaction is finished. We don't need the lock anymore. We 6896 * do need to clean up the block groups in case of a transaction 6897 * abort. 6898 */ 6899 deleted_bgs = &trans->transaction->deleted_bgs; 6900 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6901 u64 trimmed = 0; 6902 6903 ret = -EROFS; 6904 if (!trans->aborted) 6905 ret = btrfs_discard_extent(fs_info, 6906 block_group->key.objectid, 6907 block_group->key.offset, 6908 &trimmed); 6909 6910 list_del_init(&block_group->bg_list); 6911 btrfs_put_block_group_trimming(block_group); 6912 btrfs_put_block_group(block_group); 6913 6914 if (ret) { 6915 const char *errstr = btrfs_decode_error(ret); 6916 btrfs_warn(fs_info, 6917 "discard failed while removing blockgroup: errno=%d %s", 6918 ret, errstr); 6919 } 6920 } 6921 6922 return 0; 6923 } 6924 6925 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6926 struct btrfs_fs_info *info, 6927 struct btrfs_delayed_ref_node *node, u64 parent, 6928 u64 root_objectid, u64 owner_objectid, 6929 u64 owner_offset, int refs_to_drop, 6930 struct btrfs_delayed_extent_op *extent_op) 6931 { 6932 struct btrfs_key key; 6933 struct btrfs_path *path; 6934 struct btrfs_root *extent_root = info->extent_root; 6935 struct extent_buffer *leaf; 6936 struct btrfs_extent_item *ei; 6937 struct btrfs_extent_inline_ref *iref; 6938 int ret; 6939 int is_data; 6940 int extent_slot = 0; 6941 int found_extent = 0; 6942 int num_to_del = 1; 6943 u32 item_size; 6944 u64 refs; 6945 u64 bytenr = node->bytenr; 6946 u64 num_bytes = node->num_bytes; 6947 int last_ref = 0; 6948 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6949 6950 path = btrfs_alloc_path(); 6951 if (!path) 6952 return -ENOMEM; 6953 6954 path->reada = READA_FORWARD; 6955 path->leave_spinning = 1; 6956 6957 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6958 BUG_ON(!is_data && refs_to_drop != 1); 6959 6960 if (is_data) 6961 skinny_metadata = 0; 6962 6963 ret = lookup_extent_backref(trans, info, path, &iref, 6964 bytenr, num_bytes, parent, 6965 root_objectid, owner_objectid, 6966 owner_offset); 6967 if (ret == 0) { 6968 extent_slot = path->slots[0]; 6969 while (extent_slot >= 0) { 6970 btrfs_item_key_to_cpu(path->nodes[0], &key, 6971 extent_slot); 6972 if (key.objectid != bytenr) 6973 break; 6974 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6975 key.offset == num_bytes) { 6976 found_extent = 1; 6977 break; 6978 } 6979 if (key.type == BTRFS_METADATA_ITEM_KEY && 6980 key.offset == owner_objectid) { 6981 found_extent = 1; 6982 break; 6983 } 6984 if (path->slots[0] - extent_slot > 5) 6985 break; 6986 extent_slot--; 6987 } 6988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6989 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6990 if (found_extent && item_size < sizeof(*ei)) 6991 found_extent = 0; 6992 #endif 6993 if (!found_extent) { 6994 BUG_ON(iref); 6995 ret = remove_extent_backref(trans, info, path, NULL, 6996 refs_to_drop, 6997 is_data, &last_ref); 6998 if (ret) { 6999 btrfs_abort_transaction(trans, ret); 7000 goto out; 7001 } 7002 btrfs_release_path(path); 7003 path->leave_spinning = 1; 7004 7005 key.objectid = bytenr; 7006 key.type = BTRFS_EXTENT_ITEM_KEY; 7007 key.offset = num_bytes; 7008 7009 if (!is_data && skinny_metadata) { 7010 key.type = BTRFS_METADATA_ITEM_KEY; 7011 key.offset = owner_objectid; 7012 } 7013 7014 ret = btrfs_search_slot(trans, extent_root, 7015 &key, path, -1, 1); 7016 if (ret > 0 && skinny_metadata && path->slots[0]) { 7017 /* 7018 * Couldn't find our skinny metadata item, 7019 * see if we have ye olde extent item. 7020 */ 7021 path->slots[0]--; 7022 btrfs_item_key_to_cpu(path->nodes[0], &key, 7023 path->slots[0]); 7024 if (key.objectid == bytenr && 7025 key.type == BTRFS_EXTENT_ITEM_KEY && 7026 key.offset == num_bytes) 7027 ret = 0; 7028 } 7029 7030 if (ret > 0 && skinny_metadata) { 7031 skinny_metadata = false; 7032 key.objectid = bytenr; 7033 key.type = BTRFS_EXTENT_ITEM_KEY; 7034 key.offset = num_bytes; 7035 btrfs_release_path(path); 7036 ret = btrfs_search_slot(trans, extent_root, 7037 &key, path, -1, 1); 7038 } 7039 7040 if (ret) { 7041 btrfs_err(info, 7042 "umm, got %d back from search, was looking for %llu", 7043 ret, bytenr); 7044 if (ret > 0) 7045 btrfs_print_leaf(path->nodes[0]); 7046 } 7047 if (ret < 0) { 7048 btrfs_abort_transaction(trans, ret); 7049 goto out; 7050 } 7051 extent_slot = path->slots[0]; 7052 } 7053 } else if (WARN_ON(ret == -ENOENT)) { 7054 btrfs_print_leaf(path->nodes[0]); 7055 btrfs_err(info, 7056 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 7057 bytenr, parent, root_objectid, owner_objectid, 7058 owner_offset); 7059 btrfs_abort_transaction(trans, ret); 7060 goto out; 7061 } else { 7062 btrfs_abort_transaction(trans, ret); 7063 goto out; 7064 } 7065 7066 leaf = path->nodes[0]; 7067 item_size = btrfs_item_size_nr(leaf, extent_slot); 7068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 7069 if (item_size < sizeof(*ei)) { 7070 BUG_ON(found_extent || extent_slot != path->slots[0]); 7071 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 7072 0); 7073 if (ret < 0) { 7074 btrfs_abort_transaction(trans, ret); 7075 goto out; 7076 } 7077 7078 btrfs_release_path(path); 7079 path->leave_spinning = 1; 7080 7081 key.objectid = bytenr; 7082 key.type = BTRFS_EXTENT_ITEM_KEY; 7083 key.offset = num_bytes; 7084 7085 ret = btrfs_search_slot(trans, extent_root, &key, path, 7086 -1, 1); 7087 if (ret) { 7088 btrfs_err(info, 7089 "umm, got %d back from search, was looking for %llu", 7090 ret, bytenr); 7091 btrfs_print_leaf(path->nodes[0]); 7092 } 7093 if (ret < 0) { 7094 btrfs_abort_transaction(trans, ret); 7095 goto out; 7096 } 7097 7098 extent_slot = path->slots[0]; 7099 leaf = path->nodes[0]; 7100 item_size = btrfs_item_size_nr(leaf, extent_slot); 7101 } 7102 #endif 7103 BUG_ON(item_size < sizeof(*ei)); 7104 ei = btrfs_item_ptr(leaf, extent_slot, 7105 struct btrfs_extent_item); 7106 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7107 key.type == BTRFS_EXTENT_ITEM_KEY) { 7108 struct btrfs_tree_block_info *bi; 7109 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7110 bi = (struct btrfs_tree_block_info *)(ei + 1); 7111 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7112 } 7113 7114 refs = btrfs_extent_refs(leaf, ei); 7115 if (refs < refs_to_drop) { 7116 btrfs_err(info, 7117 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7118 refs_to_drop, refs, bytenr); 7119 ret = -EINVAL; 7120 btrfs_abort_transaction(trans, ret); 7121 goto out; 7122 } 7123 refs -= refs_to_drop; 7124 7125 if (refs > 0) { 7126 if (extent_op) 7127 __run_delayed_extent_op(extent_op, leaf, ei); 7128 /* 7129 * In the case of inline back ref, reference count will 7130 * be updated by remove_extent_backref 7131 */ 7132 if (iref) { 7133 BUG_ON(!found_extent); 7134 } else { 7135 btrfs_set_extent_refs(leaf, ei, refs); 7136 btrfs_mark_buffer_dirty(leaf); 7137 } 7138 if (found_extent) { 7139 ret = remove_extent_backref(trans, info, path, 7140 iref, refs_to_drop, 7141 is_data, &last_ref); 7142 if (ret) { 7143 btrfs_abort_transaction(trans, ret); 7144 goto out; 7145 } 7146 } 7147 } else { 7148 if (found_extent) { 7149 BUG_ON(is_data && refs_to_drop != 7150 extent_data_ref_count(path, iref)); 7151 if (iref) { 7152 BUG_ON(path->slots[0] != extent_slot); 7153 } else { 7154 BUG_ON(path->slots[0] != extent_slot + 1); 7155 path->slots[0] = extent_slot; 7156 num_to_del = 2; 7157 } 7158 } 7159 7160 last_ref = 1; 7161 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7162 num_to_del); 7163 if (ret) { 7164 btrfs_abort_transaction(trans, ret); 7165 goto out; 7166 } 7167 btrfs_release_path(path); 7168 7169 if (is_data) { 7170 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7171 if (ret) { 7172 btrfs_abort_transaction(trans, ret); 7173 goto out; 7174 } 7175 } 7176 7177 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7178 if (ret) { 7179 btrfs_abort_transaction(trans, ret); 7180 goto out; 7181 } 7182 7183 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7184 if (ret) { 7185 btrfs_abort_transaction(trans, ret); 7186 goto out; 7187 } 7188 } 7189 btrfs_release_path(path); 7190 7191 out: 7192 btrfs_free_path(path); 7193 return ret; 7194 } 7195 7196 /* 7197 * when we free an block, it is possible (and likely) that we free the last 7198 * delayed ref for that extent as well. This searches the delayed ref tree for 7199 * a given extent, and if there are no other delayed refs to be processed, it 7200 * removes it from the tree. 7201 */ 7202 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7203 u64 bytenr) 7204 { 7205 struct btrfs_delayed_ref_head *head; 7206 struct btrfs_delayed_ref_root *delayed_refs; 7207 int ret = 0; 7208 7209 delayed_refs = &trans->transaction->delayed_refs; 7210 spin_lock(&delayed_refs->lock); 7211 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7212 if (!head) 7213 goto out_delayed_unlock; 7214 7215 spin_lock(&head->lock); 7216 if (!list_empty(&head->ref_list)) 7217 goto out; 7218 7219 if (head->extent_op) { 7220 if (!head->must_insert_reserved) 7221 goto out; 7222 btrfs_free_delayed_extent_op(head->extent_op); 7223 head->extent_op = NULL; 7224 } 7225 7226 /* 7227 * waiting for the lock here would deadlock. If someone else has it 7228 * locked they are already in the process of dropping it anyway 7229 */ 7230 if (!mutex_trylock(&head->mutex)) 7231 goto out; 7232 7233 /* 7234 * at this point we have a head with no other entries. Go 7235 * ahead and process it. 7236 */ 7237 head->node.in_tree = 0; 7238 rb_erase(&head->href_node, &delayed_refs->href_root); 7239 7240 atomic_dec(&delayed_refs->num_entries); 7241 7242 /* 7243 * we don't take a ref on the node because we're removing it from the 7244 * tree, so we just steal the ref the tree was holding. 7245 */ 7246 delayed_refs->num_heads--; 7247 if (head->processing == 0) 7248 delayed_refs->num_heads_ready--; 7249 head->processing = 0; 7250 spin_unlock(&head->lock); 7251 spin_unlock(&delayed_refs->lock); 7252 7253 BUG_ON(head->extent_op); 7254 if (head->must_insert_reserved) 7255 ret = 1; 7256 7257 mutex_unlock(&head->mutex); 7258 btrfs_put_delayed_ref(&head->node); 7259 return ret; 7260 out: 7261 spin_unlock(&head->lock); 7262 7263 out_delayed_unlock: 7264 spin_unlock(&delayed_refs->lock); 7265 return 0; 7266 } 7267 7268 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7269 struct btrfs_root *root, 7270 struct extent_buffer *buf, 7271 u64 parent, int last_ref) 7272 { 7273 struct btrfs_fs_info *fs_info = root->fs_info; 7274 int pin = 1; 7275 int ret; 7276 7277 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7278 int old_ref_mod, new_ref_mod; 7279 7280 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7281 buf->len, parent, 7282 root->root_key.objectid, 7283 btrfs_header_level(buf), 7284 BTRFS_DROP_DELAYED_REF, NULL, 7285 &old_ref_mod, &new_ref_mod); 7286 BUG_ON(ret); /* -ENOMEM */ 7287 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7288 } 7289 7290 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7291 struct btrfs_block_group_cache *cache; 7292 7293 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7294 ret = check_ref_cleanup(trans, buf->start); 7295 if (!ret) 7296 goto out; 7297 } 7298 7299 pin = 0; 7300 cache = btrfs_lookup_block_group(fs_info, buf->start); 7301 7302 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7303 pin_down_extent(fs_info, cache, buf->start, 7304 buf->len, 1); 7305 btrfs_put_block_group(cache); 7306 goto out; 7307 } 7308 7309 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7310 7311 btrfs_add_free_space(cache, buf->start, buf->len); 7312 btrfs_free_reserved_bytes(cache, buf->len, 0); 7313 btrfs_put_block_group(cache); 7314 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7315 } 7316 out: 7317 if (pin) 7318 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7319 root->root_key.objectid); 7320 7321 if (last_ref) { 7322 /* 7323 * Deleting the buffer, clear the corrupt flag since it doesn't 7324 * matter anymore. 7325 */ 7326 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7327 } 7328 } 7329 7330 /* Can return -ENOMEM */ 7331 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7332 struct btrfs_fs_info *fs_info, 7333 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7334 u64 owner, u64 offset) 7335 { 7336 int old_ref_mod, new_ref_mod; 7337 int ret; 7338 7339 if (btrfs_is_testing(fs_info)) 7340 return 0; 7341 7342 7343 /* 7344 * tree log blocks never actually go into the extent allocation 7345 * tree, just update pinning info and exit early. 7346 */ 7347 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7348 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7349 /* unlocks the pinned mutex */ 7350 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7351 old_ref_mod = new_ref_mod = 0; 7352 ret = 0; 7353 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7354 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7355 num_bytes, parent, 7356 root_objectid, (int)owner, 7357 BTRFS_DROP_DELAYED_REF, NULL, 7358 &old_ref_mod, &new_ref_mod); 7359 } else { 7360 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7361 num_bytes, parent, 7362 root_objectid, owner, offset, 7363 0, BTRFS_DROP_DELAYED_REF, 7364 &old_ref_mod, &new_ref_mod); 7365 } 7366 7367 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7368 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7369 7370 return ret; 7371 } 7372 7373 /* 7374 * when we wait for progress in the block group caching, its because 7375 * our allocation attempt failed at least once. So, we must sleep 7376 * and let some progress happen before we try again. 7377 * 7378 * This function will sleep at least once waiting for new free space to 7379 * show up, and then it will check the block group free space numbers 7380 * for our min num_bytes. Another option is to have it go ahead 7381 * and look in the rbtree for a free extent of a given size, but this 7382 * is a good start. 7383 * 7384 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7385 * any of the information in this block group. 7386 */ 7387 static noinline void 7388 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7389 u64 num_bytes) 7390 { 7391 struct btrfs_caching_control *caching_ctl; 7392 7393 caching_ctl = get_caching_control(cache); 7394 if (!caching_ctl) 7395 return; 7396 7397 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7398 (cache->free_space_ctl->free_space >= num_bytes)); 7399 7400 put_caching_control(caching_ctl); 7401 } 7402 7403 static noinline int 7404 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7405 { 7406 struct btrfs_caching_control *caching_ctl; 7407 int ret = 0; 7408 7409 caching_ctl = get_caching_control(cache); 7410 if (!caching_ctl) 7411 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7412 7413 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7414 if (cache->cached == BTRFS_CACHE_ERROR) 7415 ret = -EIO; 7416 put_caching_control(caching_ctl); 7417 return ret; 7418 } 7419 7420 int __get_raid_index(u64 flags) 7421 { 7422 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7423 return BTRFS_RAID_RAID10; 7424 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7425 return BTRFS_RAID_RAID1; 7426 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7427 return BTRFS_RAID_DUP; 7428 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7429 return BTRFS_RAID_RAID0; 7430 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7431 return BTRFS_RAID_RAID5; 7432 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7433 return BTRFS_RAID_RAID6; 7434 7435 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7436 } 7437 7438 int get_block_group_index(struct btrfs_block_group_cache *cache) 7439 { 7440 return __get_raid_index(cache->flags); 7441 } 7442 7443 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7444 [BTRFS_RAID_RAID10] = "raid10", 7445 [BTRFS_RAID_RAID1] = "raid1", 7446 [BTRFS_RAID_DUP] = "dup", 7447 [BTRFS_RAID_RAID0] = "raid0", 7448 [BTRFS_RAID_SINGLE] = "single", 7449 [BTRFS_RAID_RAID5] = "raid5", 7450 [BTRFS_RAID_RAID6] = "raid6", 7451 }; 7452 7453 static const char *get_raid_name(enum btrfs_raid_types type) 7454 { 7455 if (type >= BTRFS_NR_RAID_TYPES) 7456 return NULL; 7457 7458 return btrfs_raid_type_names[type]; 7459 } 7460 7461 enum btrfs_loop_type { 7462 LOOP_CACHING_NOWAIT = 0, 7463 LOOP_CACHING_WAIT = 1, 7464 LOOP_ALLOC_CHUNK = 2, 7465 LOOP_NO_EMPTY_SIZE = 3, 7466 }; 7467 7468 static inline void 7469 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7470 int delalloc) 7471 { 7472 if (delalloc) 7473 down_read(&cache->data_rwsem); 7474 } 7475 7476 static inline void 7477 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7478 int delalloc) 7479 { 7480 btrfs_get_block_group(cache); 7481 if (delalloc) 7482 down_read(&cache->data_rwsem); 7483 } 7484 7485 static struct btrfs_block_group_cache * 7486 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7487 struct btrfs_free_cluster *cluster, 7488 int delalloc) 7489 { 7490 struct btrfs_block_group_cache *used_bg = NULL; 7491 7492 spin_lock(&cluster->refill_lock); 7493 while (1) { 7494 used_bg = cluster->block_group; 7495 if (!used_bg) 7496 return NULL; 7497 7498 if (used_bg == block_group) 7499 return used_bg; 7500 7501 btrfs_get_block_group(used_bg); 7502 7503 if (!delalloc) 7504 return used_bg; 7505 7506 if (down_read_trylock(&used_bg->data_rwsem)) 7507 return used_bg; 7508 7509 spin_unlock(&cluster->refill_lock); 7510 7511 /* We should only have one-level nested. */ 7512 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7513 7514 spin_lock(&cluster->refill_lock); 7515 if (used_bg == cluster->block_group) 7516 return used_bg; 7517 7518 up_read(&used_bg->data_rwsem); 7519 btrfs_put_block_group(used_bg); 7520 } 7521 } 7522 7523 static inline void 7524 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7525 int delalloc) 7526 { 7527 if (delalloc) 7528 up_read(&cache->data_rwsem); 7529 btrfs_put_block_group(cache); 7530 } 7531 7532 /* 7533 * walks the btree of allocated extents and find a hole of a given size. 7534 * The key ins is changed to record the hole: 7535 * ins->objectid == start position 7536 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7537 * ins->offset == the size of the hole. 7538 * Any available blocks before search_start are skipped. 7539 * 7540 * If there is no suitable free space, we will record the max size of 7541 * the free space extent currently. 7542 */ 7543 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7544 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7545 u64 hint_byte, struct btrfs_key *ins, 7546 u64 flags, int delalloc) 7547 { 7548 int ret = 0; 7549 struct btrfs_root *root = fs_info->extent_root; 7550 struct btrfs_free_cluster *last_ptr = NULL; 7551 struct btrfs_block_group_cache *block_group = NULL; 7552 u64 search_start = 0; 7553 u64 max_extent_size = 0; 7554 u64 empty_cluster = 0; 7555 struct btrfs_space_info *space_info; 7556 int loop = 0; 7557 int index = __get_raid_index(flags); 7558 bool failed_cluster_refill = false; 7559 bool failed_alloc = false; 7560 bool use_cluster = true; 7561 bool have_caching_bg = false; 7562 bool orig_have_caching_bg = false; 7563 bool full_search = false; 7564 7565 WARN_ON(num_bytes < fs_info->sectorsize); 7566 ins->type = BTRFS_EXTENT_ITEM_KEY; 7567 ins->objectid = 0; 7568 ins->offset = 0; 7569 7570 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7571 7572 space_info = __find_space_info(fs_info, flags); 7573 if (!space_info) { 7574 btrfs_err(fs_info, "No space info for %llu", flags); 7575 return -ENOSPC; 7576 } 7577 7578 /* 7579 * If our free space is heavily fragmented we may not be able to make 7580 * big contiguous allocations, so instead of doing the expensive search 7581 * for free space, simply return ENOSPC with our max_extent_size so we 7582 * can go ahead and search for a more manageable chunk. 7583 * 7584 * If our max_extent_size is large enough for our allocation simply 7585 * disable clustering since we will likely not be able to find enough 7586 * space to create a cluster and induce latency trying. 7587 */ 7588 if (unlikely(space_info->max_extent_size)) { 7589 spin_lock(&space_info->lock); 7590 if (space_info->max_extent_size && 7591 num_bytes > space_info->max_extent_size) { 7592 ins->offset = space_info->max_extent_size; 7593 spin_unlock(&space_info->lock); 7594 return -ENOSPC; 7595 } else if (space_info->max_extent_size) { 7596 use_cluster = false; 7597 } 7598 spin_unlock(&space_info->lock); 7599 } 7600 7601 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7602 if (last_ptr) { 7603 spin_lock(&last_ptr->lock); 7604 if (last_ptr->block_group) 7605 hint_byte = last_ptr->window_start; 7606 if (last_ptr->fragmented) { 7607 /* 7608 * We still set window_start so we can keep track of the 7609 * last place we found an allocation to try and save 7610 * some time. 7611 */ 7612 hint_byte = last_ptr->window_start; 7613 use_cluster = false; 7614 } 7615 spin_unlock(&last_ptr->lock); 7616 } 7617 7618 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7619 search_start = max(search_start, hint_byte); 7620 if (search_start == hint_byte) { 7621 block_group = btrfs_lookup_block_group(fs_info, search_start); 7622 /* 7623 * we don't want to use the block group if it doesn't match our 7624 * allocation bits, or if its not cached. 7625 * 7626 * However if we are re-searching with an ideal block group 7627 * picked out then we don't care that the block group is cached. 7628 */ 7629 if (block_group && block_group_bits(block_group, flags) && 7630 block_group->cached != BTRFS_CACHE_NO) { 7631 down_read(&space_info->groups_sem); 7632 if (list_empty(&block_group->list) || 7633 block_group->ro) { 7634 /* 7635 * someone is removing this block group, 7636 * we can't jump into the have_block_group 7637 * target because our list pointers are not 7638 * valid 7639 */ 7640 btrfs_put_block_group(block_group); 7641 up_read(&space_info->groups_sem); 7642 } else { 7643 index = get_block_group_index(block_group); 7644 btrfs_lock_block_group(block_group, delalloc); 7645 goto have_block_group; 7646 } 7647 } else if (block_group) { 7648 btrfs_put_block_group(block_group); 7649 } 7650 } 7651 search: 7652 have_caching_bg = false; 7653 if (index == 0 || index == __get_raid_index(flags)) 7654 full_search = true; 7655 down_read(&space_info->groups_sem); 7656 list_for_each_entry(block_group, &space_info->block_groups[index], 7657 list) { 7658 u64 offset; 7659 int cached; 7660 7661 /* If the block group is read-only, we can skip it entirely. */ 7662 if (unlikely(block_group->ro)) 7663 continue; 7664 7665 btrfs_grab_block_group(block_group, delalloc); 7666 search_start = block_group->key.objectid; 7667 7668 /* 7669 * this can happen if we end up cycling through all the 7670 * raid types, but we want to make sure we only allocate 7671 * for the proper type. 7672 */ 7673 if (!block_group_bits(block_group, flags)) { 7674 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7675 BTRFS_BLOCK_GROUP_RAID1 | 7676 BTRFS_BLOCK_GROUP_RAID5 | 7677 BTRFS_BLOCK_GROUP_RAID6 | 7678 BTRFS_BLOCK_GROUP_RAID10; 7679 7680 /* 7681 * if they asked for extra copies and this block group 7682 * doesn't provide them, bail. This does allow us to 7683 * fill raid0 from raid1. 7684 */ 7685 if ((flags & extra) && !(block_group->flags & extra)) 7686 goto loop; 7687 } 7688 7689 have_block_group: 7690 cached = block_group_cache_done(block_group); 7691 if (unlikely(!cached)) { 7692 have_caching_bg = true; 7693 ret = cache_block_group(block_group, 0); 7694 BUG_ON(ret < 0); 7695 ret = 0; 7696 } 7697 7698 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7699 goto loop; 7700 7701 /* 7702 * Ok we want to try and use the cluster allocator, so 7703 * lets look there 7704 */ 7705 if (last_ptr && use_cluster) { 7706 struct btrfs_block_group_cache *used_block_group; 7707 unsigned long aligned_cluster; 7708 /* 7709 * the refill lock keeps out other 7710 * people trying to start a new cluster 7711 */ 7712 used_block_group = btrfs_lock_cluster(block_group, 7713 last_ptr, 7714 delalloc); 7715 if (!used_block_group) 7716 goto refill_cluster; 7717 7718 if (used_block_group != block_group && 7719 (used_block_group->ro || 7720 !block_group_bits(used_block_group, flags))) 7721 goto release_cluster; 7722 7723 offset = btrfs_alloc_from_cluster(used_block_group, 7724 last_ptr, 7725 num_bytes, 7726 used_block_group->key.objectid, 7727 &max_extent_size); 7728 if (offset) { 7729 /* we have a block, we're done */ 7730 spin_unlock(&last_ptr->refill_lock); 7731 trace_btrfs_reserve_extent_cluster(fs_info, 7732 used_block_group, 7733 search_start, num_bytes); 7734 if (used_block_group != block_group) { 7735 btrfs_release_block_group(block_group, 7736 delalloc); 7737 block_group = used_block_group; 7738 } 7739 goto checks; 7740 } 7741 7742 WARN_ON(last_ptr->block_group != used_block_group); 7743 release_cluster: 7744 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7745 * set up a new clusters, so lets just skip it 7746 * and let the allocator find whatever block 7747 * it can find. If we reach this point, we 7748 * will have tried the cluster allocator 7749 * plenty of times and not have found 7750 * anything, so we are likely way too 7751 * fragmented for the clustering stuff to find 7752 * anything. 7753 * 7754 * However, if the cluster is taken from the 7755 * current block group, release the cluster 7756 * first, so that we stand a better chance of 7757 * succeeding in the unclustered 7758 * allocation. */ 7759 if (loop >= LOOP_NO_EMPTY_SIZE && 7760 used_block_group != block_group) { 7761 spin_unlock(&last_ptr->refill_lock); 7762 btrfs_release_block_group(used_block_group, 7763 delalloc); 7764 goto unclustered_alloc; 7765 } 7766 7767 /* 7768 * this cluster didn't work out, free it and 7769 * start over 7770 */ 7771 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7772 7773 if (used_block_group != block_group) 7774 btrfs_release_block_group(used_block_group, 7775 delalloc); 7776 refill_cluster: 7777 if (loop >= LOOP_NO_EMPTY_SIZE) { 7778 spin_unlock(&last_ptr->refill_lock); 7779 goto unclustered_alloc; 7780 } 7781 7782 aligned_cluster = max_t(unsigned long, 7783 empty_cluster + empty_size, 7784 block_group->full_stripe_len); 7785 7786 /* allocate a cluster in this block group */ 7787 ret = btrfs_find_space_cluster(fs_info, block_group, 7788 last_ptr, search_start, 7789 num_bytes, 7790 aligned_cluster); 7791 if (ret == 0) { 7792 /* 7793 * now pull our allocation out of this 7794 * cluster 7795 */ 7796 offset = btrfs_alloc_from_cluster(block_group, 7797 last_ptr, 7798 num_bytes, 7799 search_start, 7800 &max_extent_size); 7801 if (offset) { 7802 /* we found one, proceed */ 7803 spin_unlock(&last_ptr->refill_lock); 7804 trace_btrfs_reserve_extent_cluster(fs_info, 7805 block_group, search_start, 7806 num_bytes); 7807 goto checks; 7808 } 7809 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7810 && !failed_cluster_refill) { 7811 spin_unlock(&last_ptr->refill_lock); 7812 7813 failed_cluster_refill = true; 7814 wait_block_group_cache_progress(block_group, 7815 num_bytes + empty_cluster + empty_size); 7816 goto have_block_group; 7817 } 7818 7819 /* 7820 * at this point we either didn't find a cluster 7821 * or we weren't able to allocate a block from our 7822 * cluster. Free the cluster we've been trying 7823 * to use, and go to the next block group 7824 */ 7825 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7826 spin_unlock(&last_ptr->refill_lock); 7827 goto loop; 7828 } 7829 7830 unclustered_alloc: 7831 /* 7832 * We are doing an unclustered alloc, set the fragmented flag so 7833 * we don't bother trying to setup a cluster again until we get 7834 * more space. 7835 */ 7836 if (unlikely(last_ptr)) { 7837 spin_lock(&last_ptr->lock); 7838 last_ptr->fragmented = 1; 7839 spin_unlock(&last_ptr->lock); 7840 } 7841 if (cached) { 7842 struct btrfs_free_space_ctl *ctl = 7843 block_group->free_space_ctl; 7844 7845 spin_lock(&ctl->tree_lock); 7846 if (ctl->free_space < 7847 num_bytes + empty_cluster + empty_size) { 7848 if (ctl->free_space > max_extent_size) 7849 max_extent_size = ctl->free_space; 7850 spin_unlock(&ctl->tree_lock); 7851 goto loop; 7852 } 7853 spin_unlock(&ctl->tree_lock); 7854 } 7855 7856 offset = btrfs_find_space_for_alloc(block_group, search_start, 7857 num_bytes, empty_size, 7858 &max_extent_size); 7859 /* 7860 * If we didn't find a chunk, and we haven't failed on this 7861 * block group before, and this block group is in the middle of 7862 * caching and we are ok with waiting, then go ahead and wait 7863 * for progress to be made, and set failed_alloc to true. 7864 * 7865 * If failed_alloc is true then we've already waited on this 7866 * block group once and should move on to the next block group. 7867 */ 7868 if (!offset && !failed_alloc && !cached && 7869 loop > LOOP_CACHING_NOWAIT) { 7870 wait_block_group_cache_progress(block_group, 7871 num_bytes + empty_size); 7872 failed_alloc = true; 7873 goto have_block_group; 7874 } else if (!offset) { 7875 goto loop; 7876 } 7877 checks: 7878 search_start = ALIGN(offset, fs_info->stripesize); 7879 7880 /* move on to the next group */ 7881 if (search_start + num_bytes > 7882 block_group->key.objectid + block_group->key.offset) { 7883 btrfs_add_free_space(block_group, offset, num_bytes); 7884 goto loop; 7885 } 7886 7887 if (offset < search_start) 7888 btrfs_add_free_space(block_group, offset, 7889 search_start - offset); 7890 BUG_ON(offset > search_start); 7891 7892 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7893 num_bytes, delalloc); 7894 if (ret == -EAGAIN) { 7895 btrfs_add_free_space(block_group, offset, num_bytes); 7896 goto loop; 7897 } 7898 btrfs_inc_block_group_reservations(block_group); 7899 7900 /* we are all good, lets return */ 7901 ins->objectid = search_start; 7902 ins->offset = num_bytes; 7903 7904 trace_btrfs_reserve_extent(fs_info, block_group, 7905 search_start, num_bytes); 7906 btrfs_release_block_group(block_group, delalloc); 7907 break; 7908 loop: 7909 failed_cluster_refill = false; 7910 failed_alloc = false; 7911 BUG_ON(index != get_block_group_index(block_group)); 7912 btrfs_release_block_group(block_group, delalloc); 7913 cond_resched(); 7914 } 7915 up_read(&space_info->groups_sem); 7916 7917 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7918 && !orig_have_caching_bg) 7919 orig_have_caching_bg = true; 7920 7921 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7922 goto search; 7923 7924 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7925 goto search; 7926 7927 /* 7928 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7929 * caching kthreads as we move along 7930 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7931 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7932 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7933 * again 7934 */ 7935 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7936 index = 0; 7937 if (loop == LOOP_CACHING_NOWAIT) { 7938 /* 7939 * We want to skip the LOOP_CACHING_WAIT step if we 7940 * don't have any uncached bgs and we've already done a 7941 * full search through. 7942 */ 7943 if (orig_have_caching_bg || !full_search) 7944 loop = LOOP_CACHING_WAIT; 7945 else 7946 loop = LOOP_ALLOC_CHUNK; 7947 } else { 7948 loop++; 7949 } 7950 7951 if (loop == LOOP_ALLOC_CHUNK) { 7952 struct btrfs_trans_handle *trans; 7953 int exist = 0; 7954 7955 trans = current->journal_info; 7956 if (trans) 7957 exist = 1; 7958 else 7959 trans = btrfs_join_transaction(root); 7960 7961 if (IS_ERR(trans)) { 7962 ret = PTR_ERR(trans); 7963 goto out; 7964 } 7965 7966 ret = do_chunk_alloc(trans, fs_info, flags, 7967 CHUNK_ALLOC_FORCE); 7968 7969 /* 7970 * If we can't allocate a new chunk we've already looped 7971 * through at least once, move on to the NO_EMPTY_SIZE 7972 * case. 7973 */ 7974 if (ret == -ENOSPC) 7975 loop = LOOP_NO_EMPTY_SIZE; 7976 7977 /* 7978 * Do not bail out on ENOSPC since we 7979 * can do more things. 7980 */ 7981 if (ret < 0 && ret != -ENOSPC) 7982 btrfs_abort_transaction(trans, ret); 7983 else 7984 ret = 0; 7985 if (!exist) 7986 btrfs_end_transaction(trans); 7987 if (ret) 7988 goto out; 7989 } 7990 7991 if (loop == LOOP_NO_EMPTY_SIZE) { 7992 /* 7993 * Don't loop again if we already have no empty_size and 7994 * no empty_cluster. 7995 */ 7996 if (empty_size == 0 && 7997 empty_cluster == 0) { 7998 ret = -ENOSPC; 7999 goto out; 8000 } 8001 empty_size = 0; 8002 empty_cluster = 0; 8003 } 8004 8005 goto search; 8006 } else if (!ins->objectid) { 8007 ret = -ENOSPC; 8008 } else if (ins->objectid) { 8009 if (!use_cluster && last_ptr) { 8010 spin_lock(&last_ptr->lock); 8011 last_ptr->window_start = ins->objectid; 8012 spin_unlock(&last_ptr->lock); 8013 } 8014 ret = 0; 8015 } 8016 out: 8017 if (ret == -ENOSPC) { 8018 spin_lock(&space_info->lock); 8019 space_info->max_extent_size = max_extent_size; 8020 spin_unlock(&space_info->lock); 8021 ins->offset = max_extent_size; 8022 } 8023 return ret; 8024 } 8025 8026 static void dump_space_info(struct btrfs_fs_info *fs_info, 8027 struct btrfs_space_info *info, u64 bytes, 8028 int dump_block_groups) 8029 { 8030 struct btrfs_block_group_cache *cache; 8031 int index = 0; 8032 8033 spin_lock(&info->lock); 8034 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 8035 info->flags, 8036 info->total_bytes - btrfs_space_info_used(info, true), 8037 info->full ? "" : "not "); 8038 btrfs_info(fs_info, 8039 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 8040 info->total_bytes, info->bytes_used, info->bytes_pinned, 8041 info->bytes_reserved, info->bytes_may_use, 8042 info->bytes_readonly); 8043 spin_unlock(&info->lock); 8044 8045 if (!dump_block_groups) 8046 return; 8047 8048 down_read(&info->groups_sem); 8049 again: 8050 list_for_each_entry(cache, &info->block_groups[index], list) { 8051 spin_lock(&cache->lock); 8052 btrfs_info(fs_info, 8053 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 8054 cache->key.objectid, cache->key.offset, 8055 btrfs_block_group_used(&cache->item), cache->pinned, 8056 cache->reserved, cache->ro ? "[readonly]" : ""); 8057 btrfs_dump_free_space(cache, bytes); 8058 spin_unlock(&cache->lock); 8059 } 8060 if (++index < BTRFS_NR_RAID_TYPES) 8061 goto again; 8062 up_read(&info->groups_sem); 8063 } 8064 8065 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8066 u64 num_bytes, u64 min_alloc_size, 8067 u64 empty_size, u64 hint_byte, 8068 struct btrfs_key *ins, int is_data, int delalloc) 8069 { 8070 struct btrfs_fs_info *fs_info = root->fs_info; 8071 bool final_tried = num_bytes == min_alloc_size; 8072 u64 flags; 8073 int ret; 8074 8075 flags = get_alloc_profile_by_root(root, is_data); 8076 again: 8077 WARN_ON(num_bytes < fs_info->sectorsize); 8078 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8079 hint_byte, ins, flags, delalloc); 8080 if (!ret && !is_data) { 8081 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8082 } else if (ret == -ENOSPC) { 8083 if (!final_tried && ins->offset) { 8084 num_bytes = min(num_bytes >> 1, ins->offset); 8085 num_bytes = round_down(num_bytes, 8086 fs_info->sectorsize); 8087 num_bytes = max(num_bytes, min_alloc_size); 8088 ram_bytes = num_bytes; 8089 if (num_bytes == min_alloc_size) 8090 final_tried = true; 8091 goto again; 8092 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8093 struct btrfs_space_info *sinfo; 8094 8095 sinfo = __find_space_info(fs_info, flags); 8096 btrfs_err(fs_info, 8097 "allocation failed flags %llu, wanted %llu", 8098 flags, num_bytes); 8099 if (sinfo) 8100 dump_space_info(fs_info, sinfo, num_bytes, 1); 8101 } 8102 } 8103 8104 return ret; 8105 } 8106 8107 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8108 u64 start, u64 len, 8109 int pin, int delalloc) 8110 { 8111 struct btrfs_block_group_cache *cache; 8112 int ret = 0; 8113 8114 cache = btrfs_lookup_block_group(fs_info, start); 8115 if (!cache) { 8116 btrfs_err(fs_info, "Unable to find block group for %llu", 8117 start); 8118 return -ENOSPC; 8119 } 8120 8121 if (pin) 8122 pin_down_extent(fs_info, cache, start, len, 1); 8123 else { 8124 if (btrfs_test_opt(fs_info, DISCARD)) 8125 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8126 btrfs_add_free_space(cache, start, len); 8127 btrfs_free_reserved_bytes(cache, len, delalloc); 8128 trace_btrfs_reserved_extent_free(fs_info, start, len); 8129 } 8130 8131 btrfs_put_block_group(cache); 8132 return ret; 8133 } 8134 8135 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8136 u64 start, u64 len, int delalloc) 8137 { 8138 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8139 } 8140 8141 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8142 u64 start, u64 len) 8143 { 8144 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8145 } 8146 8147 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8148 struct btrfs_fs_info *fs_info, 8149 u64 parent, u64 root_objectid, 8150 u64 flags, u64 owner, u64 offset, 8151 struct btrfs_key *ins, int ref_mod) 8152 { 8153 int ret; 8154 struct btrfs_extent_item *extent_item; 8155 struct btrfs_extent_inline_ref *iref; 8156 struct btrfs_path *path; 8157 struct extent_buffer *leaf; 8158 int type; 8159 u32 size; 8160 8161 if (parent > 0) 8162 type = BTRFS_SHARED_DATA_REF_KEY; 8163 else 8164 type = BTRFS_EXTENT_DATA_REF_KEY; 8165 8166 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8167 8168 path = btrfs_alloc_path(); 8169 if (!path) 8170 return -ENOMEM; 8171 8172 path->leave_spinning = 1; 8173 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8174 ins, size); 8175 if (ret) { 8176 btrfs_free_path(path); 8177 return ret; 8178 } 8179 8180 leaf = path->nodes[0]; 8181 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8182 struct btrfs_extent_item); 8183 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8184 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8185 btrfs_set_extent_flags(leaf, extent_item, 8186 flags | BTRFS_EXTENT_FLAG_DATA); 8187 8188 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8189 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8190 if (parent > 0) { 8191 struct btrfs_shared_data_ref *ref; 8192 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8193 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8194 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8195 } else { 8196 struct btrfs_extent_data_ref *ref; 8197 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8198 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8199 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8200 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8201 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8202 } 8203 8204 btrfs_mark_buffer_dirty(path->nodes[0]); 8205 btrfs_free_path(path); 8206 8207 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8208 ins->offset); 8209 if (ret) 8210 return ret; 8211 8212 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8213 if (ret) { /* -ENOENT, logic error */ 8214 btrfs_err(fs_info, "update block group failed for %llu %llu", 8215 ins->objectid, ins->offset); 8216 BUG(); 8217 } 8218 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8219 return ret; 8220 } 8221 8222 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8223 struct btrfs_fs_info *fs_info, 8224 u64 parent, u64 root_objectid, 8225 u64 flags, struct btrfs_disk_key *key, 8226 int level, struct btrfs_key *ins) 8227 { 8228 int ret; 8229 struct btrfs_extent_item *extent_item; 8230 struct btrfs_tree_block_info *block_info; 8231 struct btrfs_extent_inline_ref *iref; 8232 struct btrfs_path *path; 8233 struct extent_buffer *leaf; 8234 u32 size = sizeof(*extent_item) + sizeof(*iref); 8235 u64 num_bytes = ins->offset; 8236 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8237 8238 if (!skinny_metadata) 8239 size += sizeof(*block_info); 8240 8241 path = btrfs_alloc_path(); 8242 if (!path) { 8243 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8244 fs_info->nodesize); 8245 return -ENOMEM; 8246 } 8247 8248 path->leave_spinning = 1; 8249 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8250 ins, size); 8251 if (ret) { 8252 btrfs_free_path(path); 8253 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8254 fs_info->nodesize); 8255 return ret; 8256 } 8257 8258 leaf = path->nodes[0]; 8259 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8260 struct btrfs_extent_item); 8261 btrfs_set_extent_refs(leaf, extent_item, 1); 8262 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8263 btrfs_set_extent_flags(leaf, extent_item, 8264 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8265 8266 if (skinny_metadata) { 8267 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8268 num_bytes = fs_info->nodesize; 8269 } else { 8270 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8271 btrfs_set_tree_block_key(leaf, block_info, key); 8272 btrfs_set_tree_block_level(leaf, block_info, level); 8273 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8274 } 8275 8276 if (parent > 0) { 8277 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8278 btrfs_set_extent_inline_ref_type(leaf, iref, 8279 BTRFS_SHARED_BLOCK_REF_KEY); 8280 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8281 } else { 8282 btrfs_set_extent_inline_ref_type(leaf, iref, 8283 BTRFS_TREE_BLOCK_REF_KEY); 8284 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8285 } 8286 8287 btrfs_mark_buffer_dirty(leaf); 8288 btrfs_free_path(path); 8289 8290 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8291 num_bytes); 8292 if (ret) 8293 return ret; 8294 8295 ret = update_block_group(trans, fs_info, ins->objectid, 8296 fs_info->nodesize, 1); 8297 if (ret) { /* -ENOENT, logic error */ 8298 btrfs_err(fs_info, "update block group failed for %llu %llu", 8299 ins->objectid, ins->offset); 8300 BUG(); 8301 } 8302 8303 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8304 fs_info->nodesize); 8305 return ret; 8306 } 8307 8308 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8309 u64 root_objectid, u64 owner, 8310 u64 offset, u64 ram_bytes, 8311 struct btrfs_key *ins) 8312 { 8313 struct btrfs_fs_info *fs_info = trans->fs_info; 8314 int ret; 8315 8316 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8317 8318 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8319 ins->offset, 0, root_objectid, owner, 8320 offset, ram_bytes, 8321 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8322 return ret; 8323 } 8324 8325 /* 8326 * this is used by the tree logging recovery code. It records that 8327 * an extent has been allocated and makes sure to clear the free 8328 * space cache bits as well 8329 */ 8330 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8331 struct btrfs_fs_info *fs_info, 8332 u64 root_objectid, u64 owner, u64 offset, 8333 struct btrfs_key *ins) 8334 { 8335 int ret; 8336 struct btrfs_block_group_cache *block_group; 8337 struct btrfs_space_info *space_info; 8338 8339 /* 8340 * Mixed block groups will exclude before processing the log so we only 8341 * need to do the exclude dance if this fs isn't mixed. 8342 */ 8343 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8344 ret = __exclude_logged_extent(fs_info, ins->objectid, 8345 ins->offset); 8346 if (ret) 8347 return ret; 8348 } 8349 8350 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8351 if (!block_group) 8352 return -EINVAL; 8353 8354 space_info = block_group->space_info; 8355 spin_lock(&space_info->lock); 8356 spin_lock(&block_group->lock); 8357 space_info->bytes_reserved += ins->offset; 8358 block_group->reserved += ins->offset; 8359 spin_unlock(&block_group->lock); 8360 spin_unlock(&space_info->lock); 8361 8362 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8363 0, owner, offset, ins, 1); 8364 btrfs_put_block_group(block_group); 8365 return ret; 8366 } 8367 8368 static struct extent_buffer * 8369 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8370 u64 bytenr, int level) 8371 { 8372 struct btrfs_fs_info *fs_info = root->fs_info; 8373 struct extent_buffer *buf; 8374 8375 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8376 if (IS_ERR(buf)) 8377 return buf; 8378 8379 btrfs_set_header_generation(buf, trans->transid); 8380 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8381 btrfs_tree_lock(buf); 8382 clean_tree_block(fs_info, buf); 8383 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8384 8385 btrfs_set_lock_blocking(buf); 8386 set_extent_buffer_uptodate(buf); 8387 8388 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8389 buf->log_index = root->log_transid % 2; 8390 /* 8391 * we allow two log transactions at a time, use different 8392 * EXENT bit to differentiate dirty pages. 8393 */ 8394 if (buf->log_index == 0) 8395 set_extent_dirty(&root->dirty_log_pages, buf->start, 8396 buf->start + buf->len - 1, GFP_NOFS); 8397 else 8398 set_extent_new(&root->dirty_log_pages, buf->start, 8399 buf->start + buf->len - 1); 8400 } else { 8401 buf->log_index = -1; 8402 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8403 buf->start + buf->len - 1, GFP_NOFS); 8404 } 8405 trans->dirty = true; 8406 /* this returns a buffer locked for blocking */ 8407 return buf; 8408 } 8409 8410 static struct btrfs_block_rsv * 8411 use_block_rsv(struct btrfs_trans_handle *trans, 8412 struct btrfs_root *root, u32 blocksize) 8413 { 8414 struct btrfs_fs_info *fs_info = root->fs_info; 8415 struct btrfs_block_rsv *block_rsv; 8416 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8417 int ret; 8418 bool global_updated = false; 8419 8420 block_rsv = get_block_rsv(trans, root); 8421 8422 if (unlikely(block_rsv->size == 0)) 8423 goto try_reserve; 8424 again: 8425 ret = block_rsv_use_bytes(block_rsv, blocksize); 8426 if (!ret) 8427 return block_rsv; 8428 8429 if (block_rsv->failfast) 8430 return ERR_PTR(ret); 8431 8432 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8433 global_updated = true; 8434 update_global_block_rsv(fs_info); 8435 goto again; 8436 } 8437 8438 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8439 static DEFINE_RATELIMIT_STATE(_rs, 8440 DEFAULT_RATELIMIT_INTERVAL * 10, 8441 /*DEFAULT_RATELIMIT_BURST*/ 1); 8442 if (__ratelimit(&_rs)) 8443 WARN(1, KERN_DEBUG 8444 "BTRFS: block rsv returned %d\n", ret); 8445 } 8446 try_reserve: 8447 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8448 BTRFS_RESERVE_NO_FLUSH); 8449 if (!ret) 8450 return block_rsv; 8451 /* 8452 * If we couldn't reserve metadata bytes try and use some from 8453 * the global reserve if its space type is the same as the global 8454 * reservation. 8455 */ 8456 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8457 block_rsv->space_info == global_rsv->space_info) { 8458 ret = block_rsv_use_bytes(global_rsv, blocksize); 8459 if (!ret) 8460 return global_rsv; 8461 } 8462 return ERR_PTR(ret); 8463 } 8464 8465 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8466 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8467 { 8468 block_rsv_add_bytes(block_rsv, blocksize, 0); 8469 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8470 } 8471 8472 /* 8473 * finds a free extent and does all the dirty work required for allocation 8474 * returns the tree buffer or an ERR_PTR on error. 8475 */ 8476 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8477 struct btrfs_root *root, 8478 u64 parent, u64 root_objectid, 8479 const struct btrfs_disk_key *key, 8480 int level, u64 hint, 8481 u64 empty_size) 8482 { 8483 struct btrfs_fs_info *fs_info = root->fs_info; 8484 struct btrfs_key ins; 8485 struct btrfs_block_rsv *block_rsv; 8486 struct extent_buffer *buf; 8487 struct btrfs_delayed_extent_op *extent_op; 8488 u64 flags = 0; 8489 int ret; 8490 u32 blocksize = fs_info->nodesize; 8491 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8492 8493 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8494 if (btrfs_is_testing(fs_info)) { 8495 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8496 level); 8497 if (!IS_ERR(buf)) 8498 root->alloc_bytenr += blocksize; 8499 return buf; 8500 } 8501 #endif 8502 8503 block_rsv = use_block_rsv(trans, root, blocksize); 8504 if (IS_ERR(block_rsv)) 8505 return ERR_CAST(block_rsv); 8506 8507 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8508 empty_size, hint, &ins, 0, 0); 8509 if (ret) 8510 goto out_unuse; 8511 8512 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8513 if (IS_ERR(buf)) { 8514 ret = PTR_ERR(buf); 8515 goto out_free_reserved; 8516 } 8517 8518 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8519 if (parent == 0) 8520 parent = ins.objectid; 8521 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8522 } else 8523 BUG_ON(parent > 0); 8524 8525 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8526 extent_op = btrfs_alloc_delayed_extent_op(); 8527 if (!extent_op) { 8528 ret = -ENOMEM; 8529 goto out_free_buf; 8530 } 8531 if (key) 8532 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8533 else 8534 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8535 extent_op->flags_to_set = flags; 8536 extent_op->update_key = skinny_metadata ? false : true; 8537 extent_op->update_flags = true; 8538 extent_op->is_data = false; 8539 extent_op->level = level; 8540 8541 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8542 ins.offset, parent, 8543 root_objectid, level, 8544 BTRFS_ADD_DELAYED_EXTENT, 8545 extent_op, NULL, NULL); 8546 if (ret) 8547 goto out_free_delayed; 8548 } 8549 return buf; 8550 8551 out_free_delayed: 8552 btrfs_free_delayed_extent_op(extent_op); 8553 out_free_buf: 8554 free_extent_buffer(buf); 8555 out_free_reserved: 8556 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8557 out_unuse: 8558 unuse_block_rsv(fs_info, block_rsv, blocksize); 8559 return ERR_PTR(ret); 8560 } 8561 8562 struct walk_control { 8563 u64 refs[BTRFS_MAX_LEVEL]; 8564 u64 flags[BTRFS_MAX_LEVEL]; 8565 struct btrfs_key update_progress; 8566 int stage; 8567 int level; 8568 int shared_level; 8569 int update_ref; 8570 int keep_locks; 8571 int reada_slot; 8572 int reada_count; 8573 int for_reloc; 8574 }; 8575 8576 #define DROP_REFERENCE 1 8577 #define UPDATE_BACKREF 2 8578 8579 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8580 struct btrfs_root *root, 8581 struct walk_control *wc, 8582 struct btrfs_path *path) 8583 { 8584 struct btrfs_fs_info *fs_info = root->fs_info; 8585 u64 bytenr; 8586 u64 generation; 8587 u64 refs; 8588 u64 flags; 8589 u32 nritems; 8590 struct btrfs_key key; 8591 struct extent_buffer *eb; 8592 int ret; 8593 int slot; 8594 int nread = 0; 8595 8596 if (path->slots[wc->level] < wc->reada_slot) { 8597 wc->reada_count = wc->reada_count * 2 / 3; 8598 wc->reada_count = max(wc->reada_count, 2); 8599 } else { 8600 wc->reada_count = wc->reada_count * 3 / 2; 8601 wc->reada_count = min_t(int, wc->reada_count, 8602 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8603 } 8604 8605 eb = path->nodes[wc->level]; 8606 nritems = btrfs_header_nritems(eb); 8607 8608 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8609 if (nread >= wc->reada_count) 8610 break; 8611 8612 cond_resched(); 8613 bytenr = btrfs_node_blockptr(eb, slot); 8614 generation = btrfs_node_ptr_generation(eb, slot); 8615 8616 if (slot == path->slots[wc->level]) 8617 goto reada; 8618 8619 if (wc->stage == UPDATE_BACKREF && 8620 generation <= root->root_key.offset) 8621 continue; 8622 8623 /* We don't lock the tree block, it's OK to be racy here */ 8624 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8625 wc->level - 1, 1, &refs, 8626 &flags); 8627 /* We don't care about errors in readahead. */ 8628 if (ret < 0) 8629 continue; 8630 BUG_ON(refs == 0); 8631 8632 if (wc->stage == DROP_REFERENCE) { 8633 if (refs == 1) 8634 goto reada; 8635 8636 if (wc->level == 1 && 8637 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8638 continue; 8639 if (!wc->update_ref || 8640 generation <= root->root_key.offset) 8641 continue; 8642 btrfs_node_key_to_cpu(eb, &key, slot); 8643 ret = btrfs_comp_cpu_keys(&key, 8644 &wc->update_progress); 8645 if (ret < 0) 8646 continue; 8647 } else { 8648 if (wc->level == 1 && 8649 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8650 continue; 8651 } 8652 reada: 8653 readahead_tree_block(fs_info, bytenr); 8654 nread++; 8655 } 8656 wc->reada_slot = slot; 8657 } 8658 8659 /* 8660 * helper to process tree block while walking down the tree. 8661 * 8662 * when wc->stage == UPDATE_BACKREF, this function updates 8663 * back refs for pointers in the block. 8664 * 8665 * NOTE: return value 1 means we should stop walking down. 8666 */ 8667 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8668 struct btrfs_root *root, 8669 struct btrfs_path *path, 8670 struct walk_control *wc, int lookup_info) 8671 { 8672 struct btrfs_fs_info *fs_info = root->fs_info; 8673 int level = wc->level; 8674 struct extent_buffer *eb = path->nodes[level]; 8675 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8676 int ret; 8677 8678 if (wc->stage == UPDATE_BACKREF && 8679 btrfs_header_owner(eb) != root->root_key.objectid) 8680 return 1; 8681 8682 /* 8683 * when reference count of tree block is 1, it won't increase 8684 * again. once full backref flag is set, we never clear it. 8685 */ 8686 if (lookup_info && 8687 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8688 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8689 BUG_ON(!path->locks[level]); 8690 ret = btrfs_lookup_extent_info(trans, fs_info, 8691 eb->start, level, 1, 8692 &wc->refs[level], 8693 &wc->flags[level]); 8694 BUG_ON(ret == -ENOMEM); 8695 if (ret) 8696 return ret; 8697 BUG_ON(wc->refs[level] == 0); 8698 } 8699 8700 if (wc->stage == DROP_REFERENCE) { 8701 if (wc->refs[level] > 1) 8702 return 1; 8703 8704 if (path->locks[level] && !wc->keep_locks) { 8705 btrfs_tree_unlock_rw(eb, path->locks[level]); 8706 path->locks[level] = 0; 8707 } 8708 return 0; 8709 } 8710 8711 /* wc->stage == UPDATE_BACKREF */ 8712 if (!(wc->flags[level] & flag)) { 8713 BUG_ON(!path->locks[level]); 8714 ret = btrfs_inc_ref(trans, root, eb, 1); 8715 BUG_ON(ret); /* -ENOMEM */ 8716 ret = btrfs_dec_ref(trans, root, eb, 0); 8717 BUG_ON(ret); /* -ENOMEM */ 8718 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8719 eb->len, flag, 8720 btrfs_header_level(eb), 0); 8721 BUG_ON(ret); /* -ENOMEM */ 8722 wc->flags[level] |= flag; 8723 } 8724 8725 /* 8726 * the block is shared by multiple trees, so it's not good to 8727 * keep the tree lock 8728 */ 8729 if (path->locks[level] && level > 0) { 8730 btrfs_tree_unlock_rw(eb, path->locks[level]); 8731 path->locks[level] = 0; 8732 } 8733 return 0; 8734 } 8735 8736 /* 8737 * helper to process tree block pointer. 8738 * 8739 * when wc->stage == DROP_REFERENCE, this function checks 8740 * reference count of the block pointed to. if the block 8741 * is shared and we need update back refs for the subtree 8742 * rooted at the block, this function changes wc->stage to 8743 * UPDATE_BACKREF. if the block is shared and there is no 8744 * need to update back, this function drops the reference 8745 * to the block. 8746 * 8747 * NOTE: return value 1 means we should stop walking down. 8748 */ 8749 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8750 struct btrfs_root *root, 8751 struct btrfs_path *path, 8752 struct walk_control *wc, int *lookup_info) 8753 { 8754 struct btrfs_fs_info *fs_info = root->fs_info; 8755 u64 bytenr; 8756 u64 generation; 8757 u64 parent; 8758 u32 blocksize; 8759 struct btrfs_key key; 8760 struct extent_buffer *next; 8761 int level = wc->level; 8762 int reada = 0; 8763 int ret = 0; 8764 bool need_account = false; 8765 8766 generation = btrfs_node_ptr_generation(path->nodes[level], 8767 path->slots[level]); 8768 /* 8769 * if the lower level block was created before the snapshot 8770 * was created, we know there is no need to update back refs 8771 * for the subtree 8772 */ 8773 if (wc->stage == UPDATE_BACKREF && 8774 generation <= root->root_key.offset) { 8775 *lookup_info = 1; 8776 return 1; 8777 } 8778 8779 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8780 blocksize = fs_info->nodesize; 8781 8782 next = find_extent_buffer(fs_info, bytenr); 8783 if (!next) { 8784 next = btrfs_find_create_tree_block(fs_info, bytenr); 8785 if (IS_ERR(next)) 8786 return PTR_ERR(next); 8787 8788 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8789 level - 1); 8790 reada = 1; 8791 } 8792 btrfs_tree_lock(next); 8793 btrfs_set_lock_blocking(next); 8794 8795 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8796 &wc->refs[level - 1], 8797 &wc->flags[level - 1]); 8798 if (ret < 0) 8799 goto out_unlock; 8800 8801 if (unlikely(wc->refs[level - 1] == 0)) { 8802 btrfs_err(fs_info, "Missing references."); 8803 ret = -EIO; 8804 goto out_unlock; 8805 } 8806 *lookup_info = 0; 8807 8808 if (wc->stage == DROP_REFERENCE) { 8809 if (wc->refs[level - 1] > 1) { 8810 need_account = true; 8811 if (level == 1 && 8812 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8813 goto skip; 8814 8815 if (!wc->update_ref || 8816 generation <= root->root_key.offset) 8817 goto skip; 8818 8819 btrfs_node_key_to_cpu(path->nodes[level], &key, 8820 path->slots[level]); 8821 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8822 if (ret < 0) 8823 goto skip; 8824 8825 wc->stage = UPDATE_BACKREF; 8826 wc->shared_level = level - 1; 8827 } 8828 } else { 8829 if (level == 1 && 8830 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8831 goto skip; 8832 } 8833 8834 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8835 btrfs_tree_unlock(next); 8836 free_extent_buffer(next); 8837 next = NULL; 8838 *lookup_info = 1; 8839 } 8840 8841 if (!next) { 8842 if (reada && level == 1) 8843 reada_walk_down(trans, root, wc, path); 8844 next = read_tree_block(fs_info, bytenr, generation); 8845 if (IS_ERR(next)) { 8846 return PTR_ERR(next); 8847 } else if (!extent_buffer_uptodate(next)) { 8848 free_extent_buffer(next); 8849 return -EIO; 8850 } 8851 btrfs_tree_lock(next); 8852 btrfs_set_lock_blocking(next); 8853 } 8854 8855 level--; 8856 ASSERT(level == btrfs_header_level(next)); 8857 if (level != btrfs_header_level(next)) { 8858 btrfs_err(root->fs_info, "mismatched level"); 8859 ret = -EIO; 8860 goto out_unlock; 8861 } 8862 path->nodes[level] = next; 8863 path->slots[level] = 0; 8864 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8865 wc->level = level; 8866 if (wc->level == 1) 8867 wc->reada_slot = 0; 8868 return 0; 8869 skip: 8870 wc->refs[level - 1] = 0; 8871 wc->flags[level - 1] = 0; 8872 if (wc->stage == DROP_REFERENCE) { 8873 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8874 parent = path->nodes[level]->start; 8875 } else { 8876 ASSERT(root->root_key.objectid == 8877 btrfs_header_owner(path->nodes[level])); 8878 if (root->root_key.objectid != 8879 btrfs_header_owner(path->nodes[level])) { 8880 btrfs_err(root->fs_info, 8881 "mismatched block owner"); 8882 ret = -EIO; 8883 goto out_unlock; 8884 } 8885 parent = 0; 8886 } 8887 8888 if (need_account) { 8889 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8890 generation, level - 1); 8891 if (ret) { 8892 btrfs_err_rl(fs_info, 8893 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8894 ret); 8895 } 8896 } 8897 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize, 8898 parent, root->root_key.objectid, 8899 level - 1, 0); 8900 if (ret) 8901 goto out_unlock; 8902 } 8903 8904 *lookup_info = 1; 8905 ret = 1; 8906 8907 out_unlock: 8908 btrfs_tree_unlock(next); 8909 free_extent_buffer(next); 8910 8911 return ret; 8912 } 8913 8914 /* 8915 * helper to process tree block while walking up the tree. 8916 * 8917 * when wc->stage == DROP_REFERENCE, this function drops 8918 * reference count on the block. 8919 * 8920 * when wc->stage == UPDATE_BACKREF, this function changes 8921 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8922 * to UPDATE_BACKREF previously while processing the block. 8923 * 8924 * NOTE: return value 1 means we should stop walking up. 8925 */ 8926 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8927 struct btrfs_root *root, 8928 struct btrfs_path *path, 8929 struct walk_control *wc) 8930 { 8931 struct btrfs_fs_info *fs_info = root->fs_info; 8932 int ret; 8933 int level = wc->level; 8934 struct extent_buffer *eb = path->nodes[level]; 8935 u64 parent = 0; 8936 8937 if (wc->stage == UPDATE_BACKREF) { 8938 BUG_ON(wc->shared_level < level); 8939 if (level < wc->shared_level) 8940 goto out; 8941 8942 ret = find_next_key(path, level + 1, &wc->update_progress); 8943 if (ret > 0) 8944 wc->update_ref = 0; 8945 8946 wc->stage = DROP_REFERENCE; 8947 wc->shared_level = -1; 8948 path->slots[level] = 0; 8949 8950 /* 8951 * check reference count again if the block isn't locked. 8952 * we should start walking down the tree again if reference 8953 * count is one. 8954 */ 8955 if (!path->locks[level]) { 8956 BUG_ON(level == 0); 8957 btrfs_tree_lock(eb); 8958 btrfs_set_lock_blocking(eb); 8959 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8960 8961 ret = btrfs_lookup_extent_info(trans, fs_info, 8962 eb->start, level, 1, 8963 &wc->refs[level], 8964 &wc->flags[level]); 8965 if (ret < 0) { 8966 btrfs_tree_unlock_rw(eb, path->locks[level]); 8967 path->locks[level] = 0; 8968 return ret; 8969 } 8970 BUG_ON(wc->refs[level] == 0); 8971 if (wc->refs[level] == 1) { 8972 btrfs_tree_unlock_rw(eb, path->locks[level]); 8973 path->locks[level] = 0; 8974 return 1; 8975 } 8976 } 8977 } 8978 8979 /* wc->stage == DROP_REFERENCE */ 8980 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8981 8982 if (wc->refs[level] == 1) { 8983 if (level == 0) { 8984 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8985 ret = btrfs_dec_ref(trans, root, eb, 1); 8986 else 8987 ret = btrfs_dec_ref(trans, root, eb, 0); 8988 BUG_ON(ret); /* -ENOMEM */ 8989 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8990 if (ret) { 8991 btrfs_err_rl(fs_info, 8992 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8993 ret); 8994 } 8995 } 8996 /* make block locked assertion in clean_tree_block happy */ 8997 if (!path->locks[level] && 8998 btrfs_header_generation(eb) == trans->transid) { 8999 btrfs_tree_lock(eb); 9000 btrfs_set_lock_blocking(eb); 9001 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9002 } 9003 clean_tree_block(fs_info, eb); 9004 } 9005 9006 if (eb == root->node) { 9007 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9008 parent = eb->start; 9009 else 9010 BUG_ON(root->root_key.objectid != 9011 btrfs_header_owner(eb)); 9012 } else { 9013 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9014 parent = path->nodes[level + 1]->start; 9015 else 9016 BUG_ON(root->root_key.objectid != 9017 btrfs_header_owner(path->nodes[level + 1])); 9018 } 9019 9020 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9021 out: 9022 wc->refs[level] = 0; 9023 wc->flags[level] = 0; 9024 return 0; 9025 } 9026 9027 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9028 struct btrfs_root *root, 9029 struct btrfs_path *path, 9030 struct walk_control *wc) 9031 { 9032 int level = wc->level; 9033 int lookup_info = 1; 9034 int ret; 9035 9036 while (level >= 0) { 9037 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9038 if (ret > 0) 9039 break; 9040 9041 if (level == 0) 9042 break; 9043 9044 if (path->slots[level] >= 9045 btrfs_header_nritems(path->nodes[level])) 9046 break; 9047 9048 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9049 if (ret > 0) { 9050 path->slots[level]++; 9051 continue; 9052 } else if (ret < 0) 9053 return ret; 9054 level = wc->level; 9055 } 9056 return 0; 9057 } 9058 9059 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9060 struct btrfs_root *root, 9061 struct btrfs_path *path, 9062 struct walk_control *wc, int max_level) 9063 { 9064 int level = wc->level; 9065 int ret; 9066 9067 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9068 while (level < max_level && path->nodes[level]) { 9069 wc->level = level; 9070 if (path->slots[level] + 1 < 9071 btrfs_header_nritems(path->nodes[level])) { 9072 path->slots[level]++; 9073 return 0; 9074 } else { 9075 ret = walk_up_proc(trans, root, path, wc); 9076 if (ret > 0) 9077 return 0; 9078 9079 if (path->locks[level]) { 9080 btrfs_tree_unlock_rw(path->nodes[level], 9081 path->locks[level]); 9082 path->locks[level] = 0; 9083 } 9084 free_extent_buffer(path->nodes[level]); 9085 path->nodes[level] = NULL; 9086 level++; 9087 } 9088 } 9089 return 1; 9090 } 9091 9092 /* 9093 * drop a subvolume tree. 9094 * 9095 * this function traverses the tree freeing any blocks that only 9096 * referenced by the tree. 9097 * 9098 * when a shared tree block is found. this function decreases its 9099 * reference count by one. if update_ref is true, this function 9100 * also make sure backrefs for the shared block and all lower level 9101 * blocks are properly updated. 9102 * 9103 * If called with for_reloc == 0, may exit early with -EAGAIN 9104 */ 9105 int btrfs_drop_snapshot(struct btrfs_root *root, 9106 struct btrfs_block_rsv *block_rsv, int update_ref, 9107 int for_reloc) 9108 { 9109 struct btrfs_fs_info *fs_info = root->fs_info; 9110 struct btrfs_path *path; 9111 struct btrfs_trans_handle *trans; 9112 struct btrfs_root *tree_root = fs_info->tree_root; 9113 struct btrfs_root_item *root_item = &root->root_item; 9114 struct walk_control *wc; 9115 struct btrfs_key key; 9116 int err = 0; 9117 int ret; 9118 int level; 9119 bool root_dropped = false; 9120 9121 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9122 9123 path = btrfs_alloc_path(); 9124 if (!path) { 9125 err = -ENOMEM; 9126 goto out; 9127 } 9128 9129 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9130 if (!wc) { 9131 btrfs_free_path(path); 9132 err = -ENOMEM; 9133 goto out; 9134 } 9135 9136 trans = btrfs_start_transaction(tree_root, 0); 9137 if (IS_ERR(trans)) { 9138 err = PTR_ERR(trans); 9139 goto out_free; 9140 } 9141 9142 if (block_rsv) 9143 trans->block_rsv = block_rsv; 9144 9145 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9146 level = btrfs_header_level(root->node); 9147 path->nodes[level] = btrfs_lock_root_node(root); 9148 btrfs_set_lock_blocking(path->nodes[level]); 9149 path->slots[level] = 0; 9150 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9151 memset(&wc->update_progress, 0, 9152 sizeof(wc->update_progress)); 9153 } else { 9154 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9155 memcpy(&wc->update_progress, &key, 9156 sizeof(wc->update_progress)); 9157 9158 level = root_item->drop_level; 9159 BUG_ON(level == 0); 9160 path->lowest_level = level; 9161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9162 path->lowest_level = 0; 9163 if (ret < 0) { 9164 err = ret; 9165 goto out_end_trans; 9166 } 9167 WARN_ON(ret > 0); 9168 9169 /* 9170 * unlock our path, this is safe because only this 9171 * function is allowed to delete this snapshot 9172 */ 9173 btrfs_unlock_up_safe(path, 0); 9174 9175 level = btrfs_header_level(root->node); 9176 while (1) { 9177 btrfs_tree_lock(path->nodes[level]); 9178 btrfs_set_lock_blocking(path->nodes[level]); 9179 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9180 9181 ret = btrfs_lookup_extent_info(trans, fs_info, 9182 path->nodes[level]->start, 9183 level, 1, &wc->refs[level], 9184 &wc->flags[level]); 9185 if (ret < 0) { 9186 err = ret; 9187 goto out_end_trans; 9188 } 9189 BUG_ON(wc->refs[level] == 0); 9190 9191 if (level == root_item->drop_level) 9192 break; 9193 9194 btrfs_tree_unlock(path->nodes[level]); 9195 path->locks[level] = 0; 9196 WARN_ON(wc->refs[level] != 1); 9197 level--; 9198 } 9199 } 9200 9201 wc->level = level; 9202 wc->shared_level = -1; 9203 wc->stage = DROP_REFERENCE; 9204 wc->update_ref = update_ref; 9205 wc->keep_locks = 0; 9206 wc->for_reloc = for_reloc; 9207 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9208 9209 while (1) { 9210 9211 ret = walk_down_tree(trans, root, path, wc); 9212 if (ret < 0) { 9213 err = ret; 9214 break; 9215 } 9216 9217 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9218 if (ret < 0) { 9219 err = ret; 9220 break; 9221 } 9222 9223 if (ret > 0) { 9224 BUG_ON(wc->stage != DROP_REFERENCE); 9225 break; 9226 } 9227 9228 if (wc->stage == DROP_REFERENCE) { 9229 level = wc->level; 9230 btrfs_node_key(path->nodes[level], 9231 &root_item->drop_progress, 9232 path->slots[level]); 9233 root_item->drop_level = level; 9234 } 9235 9236 BUG_ON(wc->level == 0); 9237 if (btrfs_should_end_transaction(trans) || 9238 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9239 ret = btrfs_update_root(trans, tree_root, 9240 &root->root_key, 9241 root_item); 9242 if (ret) { 9243 btrfs_abort_transaction(trans, ret); 9244 err = ret; 9245 goto out_end_trans; 9246 } 9247 9248 btrfs_end_transaction_throttle(trans); 9249 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9250 btrfs_debug(fs_info, 9251 "drop snapshot early exit"); 9252 err = -EAGAIN; 9253 goto out_free; 9254 } 9255 9256 trans = btrfs_start_transaction(tree_root, 0); 9257 if (IS_ERR(trans)) { 9258 err = PTR_ERR(trans); 9259 goto out_free; 9260 } 9261 if (block_rsv) 9262 trans->block_rsv = block_rsv; 9263 } 9264 } 9265 btrfs_release_path(path); 9266 if (err) 9267 goto out_end_trans; 9268 9269 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9270 if (ret) { 9271 btrfs_abort_transaction(trans, ret); 9272 goto out_end_trans; 9273 } 9274 9275 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9276 ret = btrfs_find_root(tree_root, &root->root_key, path, 9277 NULL, NULL); 9278 if (ret < 0) { 9279 btrfs_abort_transaction(trans, ret); 9280 err = ret; 9281 goto out_end_trans; 9282 } else if (ret > 0) { 9283 /* if we fail to delete the orphan item this time 9284 * around, it'll get picked up the next time. 9285 * 9286 * The most common failure here is just -ENOENT. 9287 */ 9288 btrfs_del_orphan_item(trans, tree_root, 9289 root->root_key.objectid); 9290 } 9291 } 9292 9293 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9294 btrfs_add_dropped_root(trans, root); 9295 } else { 9296 free_extent_buffer(root->node); 9297 free_extent_buffer(root->commit_root); 9298 btrfs_put_fs_root(root); 9299 } 9300 root_dropped = true; 9301 out_end_trans: 9302 btrfs_end_transaction_throttle(trans); 9303 out_free: 9304 kfree(wc); 9305 btrfs_free_path(path); 9306 out: 9307 /* 9308 * So if we need to stop dropping the snapshot for whatever reason we 9309 * need to make sure to add it back to the dead root list so that we 9310 * keep trying to do the work later. This also cleans up roots if we 9311 * don't have it in the radix (like when we recover after a power fail 9312 * or unmount) so we don't leak memory. 9313 */ 9314 if (!for_reloc && root_dropped == false) 9315 btrfs_add_dead_root(root); 9316 if (err && err != -EAGAIN) 9317 btrfs_handle_fs_error(fs_info, err, NULL); 9318 return err; 9319 } 9320 9321 /* 9322 * drop subtree rooted at tree block 'node'. 9323 * 9324 * NOTE: this function will unlock and release tree block 'node' 9325 * only used by relocation code 9326 */ 9327 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9328 struct btrfs_root *root, 9329 struct extent_buffer *node, 9330 struct extent_buffer *parent) 9331 { 9332 struct btrfs_fs_info *fs_info = root->fs_info; 9333 struct btrfs_path *path; 9334 struct walk_control *wc; 9335 int level; 9336 int parent_level; 9337 int ret = 0; 9338 int wret; 9339 9340 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9341 9342 path = btrfs_alloc_path(); 9343 if (!path) 9344 return -ENOMEM; 9345 9346 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9347 if (!wc) { 9348 btrfs_free_path(path); 9349 return -ENOMEM; 9350 } 9351 9352 btrfs_assert_tree_locked(parent); 9353 parent_level = btrfs_header_level(parent); 9354 extent_buffer_get(parent); 9355 path->nodes[parent_level] = parent; 9356 path->slots[parent_level] = btrfs_header_nritems(parent); 9357 9358 btrfs_assert_tree_locked(node); 9359 level = btrfs_header_level(node); 9360 path->nodes[level] = node; 9361 path->slots[level] = 0; 9362 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9363 9364 wc->refs[parent_level] = 1; 9365 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9366 wc->level = level; 9367 wc->shared_level = -1; 9368 wc->stage = DROP_REFERENCE; 9369 wc->update_ref = 0; 9370 wc->keep_locks = 1; 9371 wc->for_reloc = 1; 9372 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9373 9374 while (1) { 9375 wret = walk_down_tree(trans, root, path, wc); 9376 if (wret < 0) { 9377 ret = wret; 9378 break; 9379 } 9380 9381 wret = walk_up_tree(trans, root, path, wc, parent_level); 9382 if (wret < 0) 9383 ret = wret; 9384 if (wret != 0) 9385 break; 9386 } 9387 9388 kfree(wc); 9389 btrfs_free_path(path); 9390 return ret; 9391 } 9392 9393 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9394 { 9395 u64 num_devices; 9396 u64 stripped; 9397 9398 /* 9399 * if restripe for this chunk_type is on pick target profile and 9400 * return, otherwise do the usual balance 9401 */ 9402 stripped = get_restripe_target(fs_info, flags); 9403 if (stripped) 9404 return extended_to_chunk(stripped); 9405 9406 num_devices = fs_info->fs_devices->rw_devices; 9407 9408 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9409 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9410 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9411 9412 if (num_devices == 1) { 9413 stripped |= BTRFS_BLOCK_GROUP_DUP; 9414 stripped = flags & ~stripped; 9415 9416 /* turn raid0 into single device chunks */ 9417 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9418 return stripped; 9419 9420 /* turn mirroring into duplication */ 9421 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9422 BTRFS_BLOCK_GROUP_RAID10)) 9423 return stripped | BTRFS_BLOCK_GROUP_DUP; 9424 } else { 9425 /* they already had raid on here, just return */ 9426 if (flags & stripped) 9427 return flags; 9428 9429 stripped |= BTRFS_BLOCK_GROUP_DUP; 9430 stripped = flags & ~stripped; 9431 9432 /* switch duplicated blocks with raid1 */ 9433 if (flags & BTRFS_BLOCK_GROUP_DUP) 9434 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9435 9436 /* this is drive concat, leave it alone */ 9437 } 9438 9439 return flags; 9440 } 9441 9442 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9443 { 9444 struct btrfs_space_info *sinfo = cache->space_info; 9445 u64 num_bytes; 9446 u64 min_allocable_bytes; 9447 int ret = -ENOSPC; 9448 9449 /* 9450 * We need some metadata space and system metadata space for 9451 * allocating chunks in some corner cases until we force to set 9452 * it to be readonly. 9453 */ 9454 if ((sinfo->flags & 9455 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9456 !force) 9457 min_allocable_bytes = SZ_1M; 9458 else 9459 min_allocable_bytes = 0; 9460 9461 spin_lock(&sinfo->lock); 9462 spin_lock(&cache->lock); 9463 9464 if (cache->ro) { 9465 cache->ro++; 9466 ret = 0; 9467 goto out; 9468 } 9469 9470 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9471 cache->bytes_super - btrfs_block_group_used(&cache->item); 9472 9473 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9474 min_allocable_bytes <= sinfo->total_bytes) { 9475 sinfo->bytes_readonly += num_bytes; 9476 cache->ro++; 9477 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9478 ret = 0; 9479 } 9480 out: 9481 spin_unlock(&cache->lock); 9482 spin_unlock(&sinfo->lock); 9483 return ret; 9484 } 9485 9486 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9487 struct btrfs_block_group_cache *cache) 9488 9489 { 9490 struct btrfs_trans_handle *trans; 9491 u64 alloc_flags; 9492 int ret; 9493 9494 again: 9495 trans = btrfs_join_transaction(fs_info->extent_root); 9496 if (IS_ERR(trans)) 9497 return PTR_ERR(trans); 9498 9499 /* 9500 * we're not allowed to set block groups readonly after the dirty 9501 * block groups cache has started writing. If it already started, 9502 * back off and let this transaction commit 9503 */ 9504 mutex_lock(&fs_info->ro_block_group_mutex); 9505 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9506 u64 transid = trans->transid; 9507 9508 mutex_unlock(&fs_info->ro_block_group_mutex); 9509 btrfs_end_transaction(trans); 9510 9511 ret = btrfs_wait_for_commit(fs_info, transid); 9512 if (ret) 9513 return ret; 9514 goto again; 9515 } 9516 9517 /* 9518 * if we are changing raid levels, try to allocate a corresponding 9519 * block group with the new raid level. 9520 */ 9521 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9522 if (alloc_flags != cache->flags) { 9523 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9524 CHUNK_ALLOC_FORCE); 9525 /* 9526 * ENOSPC is allowed here, we may have enough space 9527 * already allocated at the new raid level to 9528 * carry on 9529 */ 9530 if (ret == -ENOSPC) 9531 ret = 0; 9532 if (ret < 0) 9533 goto out; 9534 } 9535 9536 ret = inc_block_group_ro(cache, 0); 9537 if (!ret) 9538 goto out; 9539 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9540 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9541 CHUNK_ALLOC_FORCE); 9542 if (ret < 0) 9543 goto out; 9544 ret = inc_block_group_ro(cache, 0); 9545 out: 9546 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9547 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9548 mutex_lock(&fs_info->chunk_mutex); 9549 check_system_chunk(trans, fs_info, alloc_flags); 9550 mutex_unlock(&fs_info->chunk_mutex); 9551 } 9552 mutex_unlock(&fs_info->ro_block_group_mutex); 9553 9554 btrfs_end_transaction(trans); 9555 return ret; 9556 } 9557 9558 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9559 struct btrfs_fs_info *fs_info, u64 type) 9560 { 9561 u64 alloc_flags = get_alloc_profile(fs_info, type); 9562 9563 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9564 } 9565 9566 /* 9567 * helper to account the unused space of all the readonly block group in the 9568 * space_info. takes mirrors into account. 9569 */ 9570 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9571 { 9572 struct btrfs_block_group_cache *block_group; 9573 u64 free_bytes = 0; 9574 int factor; 9575 9576 /* It's df, we don't care if it's racy */ 9577 if (list_empty(&sinfo->ro_bgs)) 9578 return 0; 9579 9580 spin_lock(&sinfo->lock); 9581 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9582 spin_lock(&block_group->lock); 9583 9584 if (!block_group->ro) { 9585 spin_unlock(&block_group->lock); 9586 continue; 9587 } 9588 9589 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9590 BTRFS_BLOCK_GROUP_RAID10 | 9591 BTRFS_BLOCK_GROUP_DUP)) 9592 factor = 2; 9593 else 9594 factor = 1; 9595 9596 free_bytes += (block_group->key.offset - 9597 btrfs_block_group_used(&block_group->item)) * 9598 factor; 9599 9600 spin_unlock(&block_group->lock); 9601 } 9602 spin_unlock(&sinfo->lock); 9603 9604 return free_bytes; 9605 } 9606 9607 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9608 { 9609 struct btrfs_space_info *sinfo = cache->space_info; 9610 u64 num_bytes; 9611 9612 BUG_ON(!cache->ro); 9613 9614 spin_lock(&sinfo->lock); 9615 spin_lock(&cache->lock); 9616 if (!--cache->ro) { 9617 num_bytes = cache->key.offset - cache->reserved - 9618 cache->pinned - cache->bytes_super - 9619 btrfs_block_group_used(&cache->item); 9620 sinfo->bytes_readonly -= num_bytes; 9621 list_del_init(&cache->ro_list); 9622 } 9623 spin_unlock(&cache->lock); 9624 spin_unlock(&sinfo->lock); 9625 } 9626 9627 /* 9628 * checks to see if its even possible to relocate this block group. 9629 * 9630 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9631 * ok to go ahead and try. 9632 */ 9633 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9634 { 9635 struct btrfs_root *root = fs_info->extent_root; 9636 struct btrfs_block_group_cache *block_group; 9637 struct btrfs_space_info *space_info; 9638 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9639 struct btrfs_device *device; 9640 struct btrfs_trans_handle *trans; 9641 u64 min_free; 9642 u64 dev_min = 1; 9643 u64 dev_nr = 0; 9644 u64 target; 9645 int debug; 9646 int index; 9647 int full = 0; 9648 int ret = 0; 9649 9650 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9651 9652 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9653 9654 /* odd, couldn't find the block group, leave it alone */ 9655 if (!block_group) { 9656 if (debug) 9657 btrfs_warn(fs_info, 9658 "can't find block group for bytenr %llu", 9659 bytenr); 9660 return -1; 9661 } 9662 9663 min_free = btrfs_block_group_used(&block_group->item); 9664 9665 /* no bytes used, we're good */ 9666 if (!min_free) 9667 goto out; 9668 9669 space_info = block_group->space_info; 9670 spin_lock(&space_info->lock); 9671 9672 full = space_info->full; 9673 9674 /* 9675 * if this is the last block group we have in this space, we can't 9676 * relocate it unless we're able to allocate a new chunk below. 9677 * 9678 * Otherwise, we need to make sure we have room in the space to handle 9679 * all of the extents from this block group. If we can, we're good 9680 */ 9681 if ((space_info->total_bytes != block_group->key.offset) && 9682 (btrfs_space_info_used(space_info, false) + min_free < 9683 space_info->total_bytes)) { 9684 spin_unlock(&space_info->lock); 9685 goto out; 9686 } 9687 spin_unlock(&space_info->lock); 9688 9689 /* 9690 * ok we don't have enough space, but maybe we have free space on our 9691 * devices to allocate new chunks for relocation, so loop through our 9692 * alloc devices and guess if we have enough space. if this block 9693 * group is going to be restriped, run checks against the target 9694 * profile instead of the current one. 9695 */ 9696 ret = -1; 9697 9698 /* 9699 * index: 9700 * 0: raid10 9701 * 1: raid1 9702 * 2: dup 9703 * 3: raid0 9704 * 4: single 9705 */ 9706 target = get_restripe_target(fs_info, block_group->flags); 9707 if (target) { 9708 index = __get_raid_index(extended_to_chunk(target)); 9709 } else { 9710 /* 9711 * this is just a balance, so if we were marked as full 9712 * we know there is no space for a new chunk 9713 */ 9714 if (full) { 9715 if (debug) 9716 btrfs_warn(fs_info, 9717 "no space to alloc new chunk for block group %llu", 9718 block_group->key.objectid); 9719 goto out; 9720 } 9721 9722 index = get_block_group_index(block_group); 9723 } 9724 9725 if (index == BTRFS_RAID_RAID10) { 9726 dev_min = 4; 9727 /* Divide by 2 */ 9728 min_free >>= 1; 9729 } else if (index == BTRFS_RAID_RAID1) { 9730 dev_min = 2; 9731 } else if (index == BTRFS_RAID_DUP) { 9732 /* Multiply by 2 */ 9733 min_free <<= 1; 9734 } else if (index == BTRFS_RAID_RAID0) { 9735 dev_min = fs_devices->rw_devices; 9736 min_free = div64_u64(min_free, dev_min); 9737 } 9738 9739 /* We need to do this so that we can look at pending chunks */ 9740 trans = btrfs_join_transaction(root); 9741 if (IS_ERR(trans)) { 9742 ret = PTR_ERR(trans); 9743 goto out; 9744 } 9745 9746 mutex_lock(&fs_info->chunk_mutex); 9747 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9748 u64 dev_offset; 9749 9750 /* 9751 * check to make sure we can actually find a chunk with enough 9752 * space to fit our block group in. 9753 */ 9754 if (device->total_bytes > device->bytes_used + min_free && 9755 !device->is_tgtdev_for_dev_replace) { 9756 ret = find_free_dev_extent(trans, device, min_free, 9757 &dev_offset, NULL); 9758 if (!ret) 9759 dev_nr++; 9760 9761 if (dev_nr >= dev_min) 9762 break; 9763 9764 ret = -1; 9765 } 9766 } 9767 if (debug && ret == -1) 9768 btrfs_warn(fs_info, 9769 "no space to allocate a new chunk for block group %llu", 9770 block_group->key.objectid); 9771 mutex_unlock(&fs_info->chunk_mutex); 9772 btrfs_end_transaction(trans); 9773 out: 9774 btrfs_put_block_group(block_group); 9775 return ret; 9776 } 9777 9778 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9779 struct btrfs_path *path, 9780 struct btrfs_key *key) 9781 { 9782 struct btrfs_root *root = fs_info->extent_root; 9783 int ret = 0; 9784 struct btrfs_key found_key; 9785 struct extent_buffer *leaf; 9786 int slot; 9787 9788 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9789 if (ret < 0) 9790 goto out; 9791 9792 while (1) { 9793 slot = path->slots[0]; 9794 leaf = path->nodes[0]; 9795 if (slot >= btrfs_header_nritems(leaf)) { 9796 ret = btrfs_next_leaf(root, path); 9797 if (ret == 0) 9798 continue; 9799 if (ret < 0) 9800 goto out; 9801 break; 9802 } 9803 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9804 9805 if (found_key.objectid >= key->objectid && 9806 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9807 struct extent_map_tree *em_tree; 9808 struct extent_map *em; 9809 9810 em_tree = &root->fs_info->mapping_tree.map_tree; 9811 read_lock(&em_tree->lock); 9812 em = lookup_extent_mapping(em_tree, found_key.objectid, 9813 found_key.offset); 9814 read_unlock(&em_tree->lock); 9815 if (!em) { 9816 btrfs_err(fs_info, 9817 "logical %llu len %llu found bg but no related chunk", 9818 found_key.objectid, found_key.offset); 9819 ret = -ENOENT; 9820 } else { 9821 ret = 0; 9822 } 9823 free_extent_map(em); 9824 goto out; 9825 } 9826 path->slots[0]++; 9827 } 9828 out: 9829 return ret; 9830 } 9831 9832 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9833 { 9834 struct btrfs_block_group_cache *block_group; 9835 u64 last = 0; 9836 9837 while (1) { 9838 struct inode *inode; 9839 9840 block_group = btrfs_lookup_first_block_group(info, last); 9841 while (block_group) { 9842 spin_lock(&block_group->lock); 9843 if (block_group->iref) 9844 break; 9845 spin_unlock(&block_group->lock); 9846 block_group = next_block_group(info, block_group); 9847 } 9848 if (!block_group) { 9849 if (last == 0) 9850 break; 9851 last = 0; 9852 continue; 9853 } 9854 9855 inode = block_group->inode; 9856 block_group->iref = 0; 9857 block_group->inode = NULL; 9858 spin_unlock(&block_group->lock); 9859 ASSERT(block_group->io_ctl.inode == NULL); 9860 iput(inode); 9861 last = block_group->key.objectid + block_group->key.offset; 9862 btrfs_put_block_group(block_group); 9863 } 9864 } 9865 9866 /* 9867 * Must be called only after stopping all workers, since we could have block 9868 * group caching kthreads running, and therefore they could race with us if we 9869 * freed the block groups before stopping them. 9870 */ 9871 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9872 { 9873 struct btrfs_block_group_cache *block_group; 9874 struct btrfs_space_info *space_info; 9875 struct btrfs_caching_control *caching_ctl; 9876 struct rb_node *n; 9877 9878 down_write(&info->commit_root_sem); 9879 while (!list_empty(&info->caching_block_groups)) { 9880 caching_ctl = list_entry(info->caching_block_groups.next, 9881 struct btrfs_caching_control, list); 9882 list_del(&caching_ctl->list); 9883 put_caching_control(caching_ctl); 9884 } 9885 up_write(&info->commit_root_sem); 9886 9887 spin_lock(&info->unused_bgs_lock); 9888 while (!list_empty(&info->unused_bgs)) { 9889 block_group = list_first_entry(&info->unused_bgs, 9890 struct btrfs_block_group_cache, 9891 bg_list); 9892 list_del_init(&block_group->bg_list); 9893 btrfs_put_block_group(block_group); 9894 } 9895 spin_unlock(&info->unused_bgs_lock); 9896 9897 spin_lock(&info->block_group_cache_lock); 9898 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9899 block_group = rb_entry(n, struct btrfs_block_group_cache, 9900 cache_node); 9901 rb_erase(&block_group->cache_node, 9902 &info->block_group_cache_tree); 9903 RB_CLEAR_NODE(&block_group->cache_node); 9904 spin_unlock(&info->block_group_cache_lock); 9905 9906 down_write(&block_group->space_info->groups_sem); 9907 list_del(&block_group->list); 9908 up_write(&block_group->space_info->groups_sem); 9909 9910 /* 9911 * We haven't cached this block group, which means we could 9912 * possibly have excluded extents on this block group. 9913 */ 9914 if (block_group->cached == BTRFS_CACHE_NO || 9915 block_group->cached == BTRFS_CACHE_ERROR) 9916 free_excluded_extents(info, block_group); 9917 9918 btrfs_remove_free_space_cache(block_group); 9919 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9920 ASSERT(list_empty(&block_group->dirty_list)); 9921 ASSERT(list_empty(&block_group->io_list)); 9922 ASSERT(list_empty(&block_group->bg_list)); 9923 ASSERT(atomic_read(&block_group->count) == 1); 9924 btrfs_put_block_group(block_group); 9925 9926 spin_lock(&info->block_group_cache_lock); 9927 } 9928 spin_unlock(&info->block_group_cache_lock); 9929 9930 /* now that all the block groups are freed, go through and 9931 * free all the space_info structs. This is only called during 9932 * the final stages of unmount, and so we know nobody is 9933 * using them. We call synchronize_rcu() once before we start, 9934 * just to be on the safe side. 9935 */ 9936 synchronize_rcu(); 9937 9938 release_global_block_rsv(info); 9939 9940 while (!list_empty(&info->space_info)) { 9941 int i; 9942 9943 space_info = list_entry(info->space_info.next, 9944 struct btrfs_space_info, 9945 list); 9946 9947 /* 9948 * Do not hide this behind enospc_debug, this is actually 9949 * important and indicates a real bug if this happens. 9950 */ 9951 if (WARN_ON(space_info->bytes_pinned > 0 || 9952 space_info->bytes_reserved > 0 || 9953 space_info->bytes_may_use > 0)) 9954 dump_space_info(info, space_info, 0, 0); 9955 list_del(&space_info->list); 9956 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9957 struct kobject *kobj; 9958 kobj = space_info->block_group_kobjs[i]; 9959 space_info->block_group_kobjs[i] = NULL; 9960 if (kobj) { 9961 kobject_del(kobj); 9962 kobject_put(kobj); 9963 } 9964 } 9965 kobject_del(&space_info->kobj); 9966 kobject_put(&space_info->kobj); 9967 } 9968 return 0; 9969 } 9970 9971 static void __link_block_group(struct btrfs_space_info *space_info, 9972 struct btrfs_block_group_cache *cache) 9973 { 9974 int index = get_block_group_index(cache); 9975 bool first = false; 9976 9977 down_write(&space_info->groups_sem); 9978 if (list_empty(&space_info->block_groups[index])) 9979 first = true; 9980 list_add_tail(&cache->list, &space_info->block_groups[index]); 9981 up_write(&space_info->groups_sem); 9982 9983 if (first) { 9984 struct raid_kobject *rkobj; 9985 int ret; 9986 9987 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9988 if (!rkobj) 9989 goto out_err; 9990 rkobj->raid_type = index; 9991 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9992 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9993 "%s", get_raid_name(index)); 9994 if (ret) { 9995 kobject_put(&rkobj->kobj); 9996 goto out_err; 9997 } 9998 space_info->block_group_kobjs[index] = &rkobj->kobj; 9999 } 10000 10001 return; 10002 out_err: 10003 btrfs_warn(cache->fs_info, 10004 "failed to add kobject for block cache, ignoring"); 10005 } 10006 10007 static struct btrfs_block_group_cache * 10008 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 10009 u64 start, u64 size) 10010 { 10011 struct btrfs_block_group_cache *cache; 10012 10013 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10014 if (!cache) 10015 return NULL; 10016 10017 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10018 GFP_NOFS); 10019 if (!cache->free_space_ctl) { 10020 kfree(cache); 10021 return NULL; 10022 } 10023 10024 cache->key.objectid = start; 10025 cache->key.offset = size; 10026 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10027 10028 cache->fs_info = fs_info; 10029 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 10030 set_free_space_tree_thresholds(cache); 10031 10032 atomic_set(&cache->count, 1); 10033 spin_lock_init(&cache->lock); 10034 init_rwsem(&cache->data_rwsem); 10035 INIT_LIST_HEAD(&cache->list); 10036 INIT_LIST_HEAD(&cache->cluster_list); 10037 INIT_LIST_HEAD(&cache->bg_list); 10038 INIT_LIST_HEAD(&cache->ro_list); 10039 INIT_LIST_HEAD(&cache->dirty_list); 10040 INIT_LIST_HEAD(&cache->io_list); 10041 btrfs_init_free_space_ctl(cache); 10042 atomic_set(&cache->trimming, 0); 10043 mutex_init(&cache->free_space_lock); 10044 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10045 10046 return cache; 10047 } 10048 10049 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10050 { 10051 struct btrfs_path *path; 10052 int ret; 10053 struct btrfs_block_group_cache *cache; 10054 struct btrfs_space_info *space_info; 10055 struct btrfs_key key; 10056 struct btrfs_key found_key; 10057 struct extent_buffer *leaf; 10058 int need_clear = 0; 10059 u64 cache_gen; 10060 u64 feature; 10061 int mixed; 10062 10063 feature = btrfs_super_incompat_flags(info->super_copy); 10064 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10065 10066 key.objectid = 0; 10067 key.offset = 0; 10068 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10069 path = btrfs_alloc_path(); 10070 if (!path) 10071 return -ENOMEM; 10072 path->reada = READA_FORWARD; 10073 10074 cache_gen = btrfs_super_cache_generation(info->super_copy); 10075 if (btrfs_test_opt(info, SPACE_CACHE) && 10076 btrfs_super_generation(info->super_copy) != cache_gen) 10077 need_clear = 1; 10078 if (btrfs_test_opt(info, CLEAR_CACHE)) 10079 need_clear = 1; 10080 10081 while (1) { 10082 ret = find_first_block_group(info, path, &key); 10083 if (ret > 0) 10084 break; 10085 if (ret != 0) 10086 goto error; 10087 10088 leaf = path->nodes[0]; 10089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10090 10091 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10092 found_key.offset); 10093 if (!cache) { 10094 ret = -ENOMEM; 10095 goto error; 10096 } 10097 10098 if (need_clear) { 10099 /* 10100 * When we mount with old space cache, we need to 10101 * set BTRFS_DC_CLEAR and set dirty flag. 10102 * 10103 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10104 * truncate the old free space cache inode and 10105 * setup a new one. 10106 * b) Setting 'dirty flag' makes sure that we flush 10107 * the new space cache info onto disk. 10108 */ 10109 if (btrfs_test_opt(info, SPACE_CACHE)) 10110 cache->disk_cache_state = BTRFS_DC_CLEAR; 10111 } 10112 10113 read_extent_buffer(leaf, &cache->item, 10114 btrfs_item_ptr_offset(leaf, path->slots[0]), 10115 sizeof(cache->item)); 10116 cache->flags = btrfs_block_group_flags(&cache->item); 10117 if (!mixed && 10118 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10119 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10120 btrfs_err(info, 10121 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10122 cache->key.objectid); 10123 ret = -EINVAL; 10124 goto error; 10125 } 10126 10127 key.objectid = found_key.objectid + found_key.offset; 10128 btrfs_release_path(path); 10129 10130 /* 10131 * We need to exclude the super stripes now so that the space 10132 * info has super bytes accounted for, otherwise we'll think 10133 * we have more space than we actually do. 10134 */ 10135 ret = exclude_super_stripes(info, cache); 10136 if (ret) { 10137 /* 10138 * We may have excluded something, so call this just in 10139 * case. 10140 */ 10141 free_excluded_extents(info, cache); 10142 btrfs_put_block_group(cache); 10143 goto error; 10144 } 10145 10146 /* 10147 * check for two cases, either we are full, and therefore 10148 * don't need to bother with the caching work since we won't 10149 * find any space, or we are empty, and we can just add all 10150 * the space in and be done with it. This saves us _alot_ of 10151 * time, particularly in the full case. 10152 */ 10153 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10154 cache->last_byte_to_unpin = (u64)-1; 10155 cache->cached = BTRFS_CACHE_FINISHED; 10156 free_excluded_extents(info, cache); 10157 } else if (btrfs_block_group_used(&cache->item) == 0) { 10158 cache->last_byte_to_unpin = (u64)-1; 10159 cache->cached = BTRFS_CACHE_FINISHED; 10160 add_new_free_space(cache, info, 10161 found_key.objectid, 10162 found_key.objectid + 10163 found_key.offset); 10164 free_excluded_extents(info, cache); 10165 } 10166 10167 ret = btrfs_add_block_group_cache(info, cache); 10168 if (ret) { 10169 btrfs_remove_free_space_cache(cache); 10170 btrfs_put_block_group(cache); 10171 goto error; 10172 } 10173 10174 trace_btrfs_add_block_group(info, cache, 0); 10175 update_space_info(info, cache->flags, found_key.offset, 10176 btrfs_block_group_used(&cache->item), 10177 cache->bytes_super, &space_info); 10178 10179 cache->space_info = space_info; 10180 10181 __link_block_group(space_info, cache); 10182 10183 set_avail_alloc_bits(info, cache->flags); 10184 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10185 inc_block_group_ro(cache, 1); 10186 } else if (btrfs_block_group_used(&cache->item) == 0) { 10187 spin_lock(&info->unused_bgs_lock); 10188 /* Should always be true but just in case. */ 10189 if (list_empty(&cache->bg_list)) { 10190 btrfs_get_block_group(cache); 10191 list_add_tail(&cache->bg_list, 10192 &info->unused_bgs); 10193 } 10194 spin_unlock(&info->unused_bgs_lock); 10195 } 10196 } 10197 10198 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10199 if (!(get_alloc_profile(info, space_info->flags) & 10200 (BTRFS_BLOCK_GROUP_RAID10 | 10201 BTRFS_BLOCK_GROUP_RAID1 | 10202 BTRFS_BLOCK_GROUP_RAID5 | 10203 BTRFS_BLOCK_GROUP_RAID6 | 10204 BTRFS_BLOCK_GROUP_DUP))) 10205 continue; 10206 /* 10207 * avoid allocating from un-mirrored block group if there are 10208 * mirrored block groups. 10209 */ 10210 list_for_each_entry(cache, 10211 &space_info->block_groups[BTRFS_RAID_RAID0], 10212 list) 10213 inc_block_group_ro(cache, 1); 10214 list_for_each_entry(cache, 10215 &space_info->block_groups[BTRFS_RAID_SINGLE], 10216 list) 10217 inc_block_group_ro(cache, 1); 10218 } 10219 10220 init_global_block_rsv(info); 10221 ret = 0; 10222 error: 10223 btrfs_free_path(path); 10224 return ret; 10225 } 10226 10227 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10228 struct btrfs_fs_info *fs_info) 10229 { 10230 struct btrfs_block_group_cache *block_group, *tmp; 10231 struct btrfs_root *extent_root = fs_info->extent_root; 10232 struct btrfs_block_group_item item; 10233 struct btrfs_key key; 10234 int ret = 0; 10235 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10236 10237 trans->can_flush_pending_bgs = false; 10238 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10239 if (ret) 10240 goto next; 10241 10242 spin_lock(&block_group->lock); 10243 memcpy(&item, &block_group->item, sizeof(item)); 10244 memcpy(&key, &block_group->key, sizeof(key)); 10245 spin_unlock(&block_group->lock); 10246 10247 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10248 sizeof(item)); 10249 if (ret) 10250 btrfs_abort_transaction(trans, ret); 10251 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10252 key.offset); 10253 if (ret) 10254 btrfs_abort_transaction(trans, ret); 10255 add_block_group_free_space(trans, fs_info, block_group); 10256 /* already aborted the transaction if it failed. */ 10257 next: 10258 list_del_init(&block_group->bg_list); 10259 } 10260 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10261 } 10262 10263 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10264 struct btrfs_fs_info *fs_info, u64 bytes_used, 10265 u64 type, u64 chunk_offset, u64 size) 10266 { 10267 struct btrfs_block_group_cache *cache; 10268 int ret; 10269 10270 btrfs_set_log_full_commit(fs_info, trans); 10271 10272 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10273 if (!cache) 10274 return -ENOMEM; 10275 10276 btrfs_set_block_group_used(&cache->item, bytes_used); 10277 btrfs_set_block_group_chunk_objectid(&cache->item, 10278 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10279 btrfs_set_block_group_flags(&cache->item, type); 10280 10281 cache->flags = type; 10282 cache->last_byte_to_unpin = (u64)-1; 10283 cache->cached = BTRFS_CACHE_FINISHED; 10284 cache->needs_free_space = 1; 10285 ret = exclude_super_stripes(fs_info, cache); 10286 if (ret) { 10287 /* 10288 * We may have excluded something, so call this just in 10289 * case. 10290 */ 10291 free_excluded_extents(fs_info, cache); 10292 btrfs_put_block_group(cache); 10293 return ret; 10294 } 10295 10296 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10297 10298 free_excluded_extents(fs_info, cache); 10299 10300 #ifdef CONFIG_BTRFS_DEBUG 10301 if (btrfs_should_fragment_free_space(cache)) { 10302 u64 new_bytes_used = size - bytes_used; 10303 10304 bytes_used += new_bytes_used >> 1; 10305 fragment_free_space(cache); 10306 } 10307 #endif 10308 /* 10309 * Ensure the corresponding space_info object is created and 10310 * assigned to our block group. We want our bg to be added to the rbtree 10311 * with its ->space_info set. 10312 */ 10313 cache->space_info = __find_space_info(fs_info, cache->flags); 10314 if (!cache->space_info) { 10315 ret = create_space_info(fs_info, cache->flags, 10316 &cache->space_info); 10317 if (ret) { 10318 btrfs_remove_free_space_cache(cache); 10319 btrfs_put_block_group(cache); 10320 return ret; 10321 } 10322 } 10323 10324 ret = btrfs_add_block_group_cache(fs_info, cache); 10325 if (ret) { 10326 btrfs_remove_free_space_cache(cache); 10327 btrfs_put_block_group(cache); 10328 return ret; 10329 } 10330 10331 /* 10332 * Now that our block group has its ->space_info set and is inserted in 10333 * the rbtree, update the space info's counters. 10334 */ 10335 trace_btrfs_add_block_group(fs_info, cache, 1); 10336 update_space_info(fs_info, cache->flags, size, bytes_used, 10337 cache->bytes_super, &cache->space_info); 10338 update_global_block_rsv(fs_info); 10339 10340 __link_block_group(cache->space_info, cache); 10341 10342 list_add_tail(&cache->bg_list, &trans->new_bgs); 10343 10344 set_avail_alloc_bits(fs_info, type); 10345 return 0; 10346 } 10347 10348 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10349 { 10350 u64 extra_flags = chunk_to_extended(flags) & 10351 BTRFS_EXTENDED_PROFILE_MASK; 10352 10353 write_seqlock(&fs_info->profiles_lock); 10354 if (flags & BTRFS_BLOCK_GROUP_DATA) 10355 fs_info->avail_data_alloc_bits &= ~extra_flags; 10356 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10357 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10358 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10359 fs_info->avail_system_alloc_bits &= ~extra_flags; 10360 write_sequnlock(&fs_info->profiles_lock); 10361 } 10362 10363 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10364 struct btrfs_fs_info *fs_info, u64 group_start, 10365 struct extent_map *em) 10366 { 10367 struct btrfs_root *root = fs_info->extent_root; 10368 struct btrfs_path *path; 10369 struct btrfs_block_group_cache *block_group; 10370 struct btrfs_free_cluster *cluster; 10371 struct btrfs_root *tree_root = fs_info->tree_root; 10372 struct btrfs_key key; 10373 struct inode *inode; 10374 struct kobject *kobj = NULL; 10375 int ret; 10376 int index; 10377 int factor; 10378 struct btrfs_caching_control *caching_ctl = NULL; 10379 bool remove_em; 10380 10381 block_group = btrfs_lookup_block_group(fs_info, group_start); 10382 BUG_ON(!block_group); 10383 BUG_ON(!block_group->ro); 10384 10385 /* 10386 * Free the reserved super bytes from this block group before 10387 * remove it. 10388 */ 10389 free_excluded_extents(fs_info, block_group); 10390 10391 memcpy(&key, &block_group->key, sizeof(key)); 10392 index = get_block_group_index(block_group); 10393 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10394 BTRFS_BLOCK_GROUP_RAID1 | 10395 BTRFS_BLOCK_GROUP_RAID10)) 10396 factor = 2; 10397 else 10398 factor = 1; 10399 10400 /* make sure this block group isn't part of an allocation cluster */ 10401 cluster = &fs_info->data_alloc_cluster; 10402 spin_lock(&cluster->refill_lock); 10403 btrfs_return_cluster_to_free_space(block_group, cluster); 10404 spin_unlock(&cluster->refill_lock); 10405 10406 /* 10407 * make sure this block group isn't part of a metadata 10408 * allocation cluster 10409 */ 10410 cluster = &fs_info->meta_alloc_cluster; 10411 spin_lock(&cluster->refill_lock); 10412 btrfs_return_cluster_to_free_space(block_group, cluster); 10413 spin_unlock(&cluster->refill_lock); 10414 10415 path = btrfs_alloc_path(); 10416 if (!path) { 10417 ret = -ENOMEM; 10418 goto out; 10419 } 10420 10421 /* 10422 * get the inode first so any iput calls done for the io_list 10423 * aren't the final iput (no unlinks allowed now) 10424 */ 10425 inode = lookup_free_space_inode(fs_info, block_group, path); 10426 10427 mutex_lock(&trans->transaction->cache_write_mutex); 10428 /* 10429 * make sure our free spache cache IO is done before remove the 10430 * free space inode 10431 */ 10432 spin_lock(&trans->transaction->dirty_bgs_lock); 10433 if (!list_empty(&block_group->io_list)) { 10434 list_del_init(&block_group->io_list); 10435 10436 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10437 10438 spin_unlock(&trans->transaction->dirty_bgs_lock); 10439 btrfs_wait_cache_io(trans, block_group, path); 10440 btrfs_put_block_group(block_group); 10441 spin_lock(&trans->transaction->dirty_bgs_lock); 10442 } 10443 10444 if (!list_empty(&block_group->dirty_list)) { 10445 list_del_init(&block_group->dirty_list); 10446 btrfs_put_block_group(block_group); 10447 } 10448 spin_unlock(&trans->transaction->dirty_bgs_lock); 10449 mutex_unlock(&trans->transaction->cache_write_mutex); 10450 10451 if (!IS_ERR(inode)) { 10452 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10453 if (ret) { 10454 btrfs_add_delayed_iput(inode); 10455 goto out; 10456 } 10457 clear_nlink(inode); 10458 /* One for the block groups ref */ 10459 spin_lock(&block_group->lock); 10460 if (block_group->iref) { 10461 block_group->iref = 0; 10462 block_group->inode = NULL; 10463 spin_unlock(&block_group->lock); 10464 iput(inode); 10465 } else { 10466 spin_unlock(&block_group->lock); 10467 } 10468 /* One for our lookup ref */ 10469 btrfs_add_delayed_iput(inode); 10470 } 10471 10472 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10473 key.offset = block_group->key.objectid; 10474 key.type = 0; 10475 10476 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10477 if (ret < 0) 10478 goto out; 10479 if (ret > 0) 10480 btrfs_release_path(path); 10481 if (ret == 0) { 10482 ret = btrfs_del_item(trans, tree_root, path); 10483 if (ret) 10484 goto out; 10485 btrfs_release_path(path); 10486 } 10487 10488 spin_lock(&fs_info->block_group_cache_lock); 10489 rb_erase(&block_group->cache_node, 10490 &fs_info->block_group_cache_tree); 10491 RB_CLEAR_NODE(&block_group->cache_node); 10492 10493 if (fs_info->first_logical_byte == block_group->key.objectid) 10494 fs_info->first_logical_byte = (u64)-1; 10495 spin_unlock(&fs_info->block_group_cache_lock); 10496 10497 down_write(&block_group->space_info->groups_sem); 10498 /* 10499 * we must use list_del_init so people can check to see if they 10500 * are still on the list after taking the semaphore 10501 */ 10502 list_del_init(&block_group->list); 10503 if (list_empty(&block_group->space_info->block_groups[index])) { 10504 kobj = block_group->space_info->block_group_kobjs[index]; 10505 block_group->space_info->block_group_kobjs[index] = NULL; 10506 clear_avail_alloc_bits(fs_info, block_group->flags); 10507 } 10508 up_write(&block_group->space_info->groups_sem); 10509 if (kobj) { 10510 kobject_del(kobj); 10511 kobject_put(kobj); 10512 } 10513 10514 if (block_group->has_caching_ctl) 10515 caching_ctl = get_caching_control(block_group); 10516 if (block_group->cached == BTRFS_CACHE_STARTED) 10517 wait_block_group_cache_done(block_group); 10518 if (block_group->has_caching_ctl) { 10519 down_write(&fs_info->commit_root_sem); 10520 if (!caching_ctl) { 10521 struct btrfs_caching_control *ctl; 10522 10523 list_for_each_entry(ctl, 10524 &fs_info->caching_block_groups, list) 10525 if (ctl->block_group == block_group) { 10526 caching_ctl = ctl; 10527 refcount_inc(&caching_ctl->count); 10528 break; 10529 } 10530 } 10531 if (caching_ctl) 10532 list_del_init(&caching_ctl->list); 10533 up_write(&fs_info->commit_root_sem); 10534 if (caching_ctl) { 10535 /* Once for the caching bgs list and once for us. */ 10536 put_caching_control(caching_ctl); 10537 put_caching_control(caching_ctl); 10538 } 10539 } 10540 10541 spin_lock(&trans->transaction->dirty_bgs_lock); 10542 if (!list_empty(&block_group->dirty_list)) { 10543 WARN_ON(1); 10544 } 10545 if (!list_empty(&block_group->io_list)) { 10546 WARN_ON(1); 10547 } 10548 spin_unlock(&trans->transaction->dirty_bgs_lock); 10549 btrfs_remove_free_space_cache(block_group); 10550 10551 spin_lock(&block_group->space_info->lock); 10552 list_del_init(&block_group->ro_list); 10553 10554 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10555 WARN_ON(block_group->space_info->total_bytes 10556 < block_group->key.offset); 10557 WARN_ON(block_group->space_info->bytes_readonly 10558 < block_group->key.offset); 10559 WARN_ON(block_group->space_info->disk_total 10560 < block_group->key.offset * factor); 10561 } 10562 block_group->space_info->total_bytes -= block_group->key.offset; 10563 block_group->space_info->bytes_readonly -= block_group->key.offset; 10564 block_group->space_info->disk_total -= block_group->key.offset * factor; 10565 10566 spin_unlock(&block_group->space_info->lock); 10567 10568 memcpy(&key, &block_group->key, sizeof(key)); 10569 10570 mutex_lock(&fs_info->chunk_mutex); 10571 if (!list_empty(&em->list)) { 10572 /* We're in the transaction->pending_chunks list. */ 10573 free_extent_map(em); 10574 } 10575 spin_lock(&block_group->lock); 10576 block_group->removed = 1; 10577 /* 10578 * At this point trimming can't start on this block group, because we 10579 * removed the block group from the tree fs_info->block_group_cache_tree 10580 * so no one can't find it anymore and even if someone already got this 10581 * block group before we removed it from the rbtree, they have already 10582 * incremented block_group->trimming - if they didn't, they won't find 10583 * any free space entries because we already removed them all when we 10584 * called btrfs_remove_free_space_cache(). 10585 * 10586 * And we must not remove the extent map from the fs_info->mapping_tree 10587 * to prevent the same logical address range and physical device space 10588 * ranges from being reused for a new block group. This is because our 10589 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10590 * completely transactionless, so while it is trimming a range the 10591 * currently running transaction might finish and a new one start, 10592 * allowing for new block groups to be created that can reuse the same 10593 * physical device locations unless we take this special care. 10594 * 10595 * There may also be an implicit trim operation if the file system 10596 * is mounted with -odiscard. The same protections must remain 10597 * in place until the extents have been discarded completely when 10598 * the transaction commit has completed. 10599 */ 10600 remove_em = (atomic_read(&block_group->trimming) == 0); 10601 /* 10602 * Make sure a trimmer task always sees the em in the pinned_chunks list 10603 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10604 * before checking block_group->removed). 10605 */ 10606 if (!remove_em) { 10607 /* 10608 * Our em might be in trans->transaction->pending_chunks which 10609 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10610 * and so is the fs_info->pinned_chunks list. 10611 * 10612 * So at this point we must be holding the chunk_mutex to avoid 10613 * any races with chunk allocation (more specifically at 10614 * volumes.c:contains_pending_extent()), to ensure it always 10615 * sees the em, either in the pending_chunks list or in the 10616 * pinned_chunks list. 10617 */ 10618 list_move_tail(&em->list, &fs_info->pinned_chunks); 10619 } 10620 spin_unlock(&block_group->lock); 10621 10622 if (remove_em) { 10623 struct extent_map_tree *em_tree; 10624 10625 em_tree = &fs_info->mapping_tree.map_tree; 10626 write_lock(&em_tree->lock); 10627 /* 10628 * The em might be in the pending_chunks list, so make sure the 10629 * chunk mutex is locked, since remove_extent_mapping() will 10630 * delete us from that list. 10631 */ 10632 remove_extent_mapping(em_tree, em); 10633 write_unlock(&em_tree->lock); 10634 /* once for the tree */ 10635 free_extent_map(em); 10636 } 10637 10638 mutex_unlock(&fs_info->chunk_mutex); 10639 10640 ret = remove_block_group_free_space(trans, fs_info, block_group); 10641 if (ret) 10642 goto out; 10643 10644 btrfs_put_block_group(block_group); 10645 btrfs_put_block_group(block_group); 10646 10647 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10648 if (ret > 0) 10649 ret = -EIO; 10650 if (ret < 0) 10651 goto out; 10652 10653 ret = btrfs_del_item(trans, root, path); 10654 out: 10655 btrfs_free_path(path); 10656 return ret; 10657 } 10658 10659 struct btrfs_trans_handle * 10660 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10661 const u64 chunk_offset) 10662 { 10663 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10664 struct extent_map *em; 10665 struct map_lookup *map; 10666 unsigned int num_items; 10667 10668 read_lock(&em_tree->lock); 10669 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10670 read_unlock(&em_tree->lock); 10671 ASSERT(em && em->start == chunk_offset); 10672 10673 /* 10674 * We need to reserve 3 + N units from the metadata space info in order 10675 * to remove a block group (done at btrfs_remove_chunk() and at 10676 * btrfs_remove_block_group()), which are used for: 10677 * 10678 * 1 unit for adding the free space inode's orphan (located in the tree 10679 * of tree roots). 10680 * 1 unit for deleting the block group item (located in the extent 10681 * tree). 10682 * 1 unit for deleting the free space item (located in tree of tree 10683 * roots). 10684 * N units for deleting N device extent items corresponding to each 10685 * stripe (located in the device tree). 10686 * 10687 * In order to remove a block group we also need to reserve units in the 10688 * system space info in order to update the chunk tree (update one or 10689 * more device items and remove one chunk item), but this is done at 10690 * btrfs_remove_chunk() through a call to check_system_chunk(). 10691 */ 10692 map = em->map_lookup; 10693 num_items = 3 + map->num_stripes; 10694 free_extent_map(em); 10695 10696 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10697 num_items, 1); 10698 } 10699 10700 /* 10701 * Process the unused_bgs list and remove any that don't have any allocated 10702 * space inside of them. 10703 */ 10704 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10705 { 10706 struct btrfs_block_group_cache *block_group; 10707 struct btrfs_space_info *space_info; 10708 struct btrfs_trans_handle *trans; 10709 int ret = 0; 10710 10711 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10712 return; 10713 10714 spin_lock(&fs_info->unused_bgs_lock); 10715 while (!list_empty(&fs_info->unused_bgs)) { 10716 u64 start, end; 10717 int trimming; 10718 10719 block_group = list_first_entry(&fs_info->unused_bgs, 10720 struct btrfs_block_group_cache, 10721 bg_list); 10722 list_del_init(&block_group->bg_list); 10723 10724 space_info = block_group->space_info; 10725 10726 if (ret || btrfs_mixed_space_info(space_info)) { 10727 btrfs_put_block_group(block_group); 10728 continue; 10729 } 10730 spin_unlock(&fs_info->unused_bgs_lock); 10731 10732 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10733 10734 /* Don't want to race with allocators so take the groups_sem */ 10735 down_write(&space_info->groups_sem); 10736 spin_lock(&block_group->lock); 10737 if (block_group->reserved || 10738 btrfs_block_group_used(&block_group->item) || 10739 block_group->ro || 10740 list_is_singular(&block_group->list)) { 10741 /* 10742 * We want to bail if we made new allocations or have 10743 * outstanding allocations in this block group. We do 10744 * the ro check in case balance is currently acting on 10745 * this block group. 10746 */ 10747 spin_unlock(&block_group->lock); 10748 up_write(&space_info->groups_sem); 10749 goto next; 10750 } 10751 spin_unlock(&block_group->lock); 10752 10753 /* We don't want to force the issue, only flip if it's ok. */ 10754 ret = inc_block_group_ro(block_group, 0); 10755 up_write(&space_info->groups_sem); 10756 if (ret < 0) { 10757 ret = 0; 10758 goto next; 10759 } 10760 10761 /* 10762 * Want to do this before we do anything else so we can recover 10763 * properly if we fail to join the transaction. 10764 */ 10765 trans = btrfs_start_trans_remove_block_group(fs_info, 10766 block_group->key.objectid); 10767 if (IS_ERR(trans)) { 10768 btrfs_dec_block_group_ro(block_group); 10769 ret = PTR_ERR(trans); 10770 goto next; 10771 } 10772 10773 /* 10774 * We could have pending pinned extents for this block group, 10775 * just delete them, we don't care about them anymore. 10776 */ 10777 start = block_group->key.objectid; 10778 end = start + block_group->key.offset - 1; 10779 /* 10780 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10781 * btrfs_finish_extent_commit(). If we are at transaction N, 10782 * another task might be running finish_extent_commit() for the 10783 * previous transaction N - 1, and have seen a range belonging 10784 * to the block group in freed_extents[] before we were able to 10785 * clear the whole block group range from freed_extents[]. This 10786 * means that task can lookup for the block group after we 10787 * unpinned it from freed_extents[] and removed it, leading to 10788 * a BUG_ON() at btrfs_unpin_extent_range(). 10789 */ 10790 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10791 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10792 EXTENT_DIRTY); 10793 if (ret) { 10794 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10795 btrfs_dec_block_group_ro(block_group); 10796 goto end_trans; 10797 } 10798 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10799 EXTENT_DIRTY); 10800 if (ret) { 10801 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10802 btrfs_dec_block_group_ro(block_group); 10803 goto end_trans; 10804 } 10805 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10806 10807 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10808 spin_lock(&space_info->lock); 10809 spin_lock(&block_group->lock); 10810 10811 space_info->bytes_pinned -= block_group->pinned; 10812 space_info->bytes_readonly += block_group->pinned; 10813 percpu_counter_add(&space_info->total_bytes_pinned, 10814 -block_group->pinned); 10815 block_group->pinned = 0; 10816 10817 spin_unlock(&block_group->lock); 10818 spin_unlock(&space_info->lock); 10819 10820 /* DISCARD can flip during remount */ 10821 trimming = btrfs_test_opt(fs_info, DISCARD); 10822 10823 /* Implicit trim during transaction commit. */ 10824 if (trimming) 10825 btrfs_get_block_group_trimming(block_group); 10826 10827 /* 10828 * Btrfs_remove_chunk will abort the transaction if things go 10829 * horribly wrong. 10830 */ 10831 ret = btrfs_remove_chunk(trans, fs_info, 10832 block_group->key.objectid); 10833 10834 if (ret) { 10835 if (trimming) 10836 btrfs_put_block_group_trimming(block_group); 10837 goto end_trans; 10838 } 10839 10840 /* 10841 * If we're not mounted with -odiscard, we can just forget 10842 * about this block group. Otherwise we'll need to wait 10843 * until transaction commit to do the actual discard. 10844 */ 10845 if (trimming) { 10846 spin_lock(&fs_info->unused_bgs_lock); 10847 /* 10848 * A concurrent scrub might have added us to the list 10849 * fs_info->unused_bgs, so use a list_move operation 10850 * to add the block group to the deleted_bgs list. 10851 */ 10852 list_move(&block_group->bg_list, 10853 &trans->transaction->deleted_bgs); 10854 spin_unlock(&fs_info->unused_bgs_lock); 10855 btrfs_get_block_group(block_group); 10856 } 10857 end_trans: 10858 btrfs_end_transaction(trans); 10859 next: 10860 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10861 btrfs_put_block_group(block_group); 10862 spin_lock(&fs_info->unused_bgs_lock); 10863 } 10864 spin_unlock(&fs_info->unused_bgs_lock); 10865 } 10866 10867 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10868 { 10869 struct btrfs_space_info *space_info; 10870 struct btrfs_super_block *disk_super; 10871 u64 features; 10872 u64 flags; 10873 int mixed = 0; 10874 int ret; 10875 10876 disk_super = fs_info->super_copy; 10877 if (!btrfs_super_root(disk_super)) 10878 return -EINVAL; 10879 10880 features = btrfs_super_incompat_flags(disk_super); 10881 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10882 mixed = 1; 10883 10884 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10885 ret = create_space_info(fs_info, flags, &space_info); 10886 if (ret) 10887 goto out; 10888 10889 if (mixed) { 10890 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10891 ret = create_space_info(fs_info, flags, &space_info); 10892 } else { 10893 flags = BTRFS_BLOCK_GROUP_METADATA; 10894 ret = create_space_info(fs_info, flags, &space_info); 10895 if (ret) 10896 goto out; 10897 10898 flags = BTRFS_BLOCK_GROUP_DATA; 10899 ret = create_space_info(fs_info, flags, &space_info); 10900 } 10901 out: 10902 return ret; 10903 } 10904 10905 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10906 u64 start, u64 end) 10907 { 10908 return unpin_extent_range(fs_info, start, end, false); 10909 } 10910 10911 /* 10912 * It used to be that old block groups would be left around forever. 10913 * Iterating over them would be enough to trim unused space. Since we 10914 * now automatically remove them, we also need to iterate over unallocated 10915 * space. 10916 * 10917 * We don't want a transaction for this since the discard may take a 10918 * substantial amount of time. We don't require that a transaction be 10919 * running, but we do need to take a running transaction into account 10920 * to ensure that we're not discarding chunks that were released in 10921 * the current transaction. 10922 * 10923 * Holding the chunks lock will prevent other threads from allocating 10924 * or releasing chunks, but it won't prevent a running transaction 10925 * from committing and releasing the memory that the pending chunks 10926 * list head uses. For that, we need to take a reference to the 10927 * transaction. 10928 */ 10929 static int btrfs_trim_free_extents(struct btrfs_device *device, 10930 u64 minlen, u64 *trimmed) 10931 { 10932 u64 start = 0, len = 0; 10933 int ret; 10934 10935 *trimmed = 0; 10936 10937 /* Not writeable = nothing to do. */ 10938 if (!device->writeable) 10939 return 0; 10940 10941 /* No free space = nothing to do. */ 10942 if (device->total_bytes <= device->bytes_used) 10943 return 0; 10944 10945 ret = 0; 10946 10947 while (1) { 10948 struct btrfs_fs_info *fs_info = device->fs_info; 10949 struct btrfs_transaction *trans; 10950 u64 bytes; 10951 10952 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10953 if (ret) 10954 return ret; 10955 10956 down_read(&fs_info->commit_root_sem); 10957 10958 spin_lock(&fs_info->trans_lock); 10959 trans = fs_info->running_transaction; 10960 if (trans) 10961 refcount_inc(&trans->use_count); 10962 spin_unlock(&fs_info->trans_lock); 10963 10964 ret = find_free_dev_extent_start(trans, device, minlen, start, 10965 &start, &len); 10966 if (trans) 10967 btrfs_put_transaction(trans); 10968 10969 if (ret) { 10970 up_read(&fs_info->commit_root_sem); 10971 mutex_unlock(&fs_info->chunk_mutex); 10972 if (ret == -ENOSPC) 10973 ret = 0; 10974 break; 10975 } 10976 10977 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10978 up_read(&fs_info->commit_root_sem); 10979 mutex_unlock(&fs_info->chunk_mutex); 10980 10981 if (ret) 10982 break; 10983 10984 start += len; 10985 *trimmed += bytes; 10986 10987 if (fatal_signal_pending(current)) { 10988 ret = -ERESTARTSYS; 10989 break; 10990 } 10991 10992 cond_resched(); 10993 } 10994 10995 return ret; 10996 } 10997 10998 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10999 { 11000 struct btrfs_block_group_cache *cache = NULL; 11001 struct btrfs_device *device; 11002 struct list_head *devices; 11003 u64 group_trimmed; 11004 u64 start; 11005 u64 end; 11006 u64 trimmed = 0; 11007 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11008 int ret = 0; 11009 11010 /* 11011 * try to trim all FS space, our block group may start from non-zero. 11012 */ 11013 if (range->len == total_bytes) 11014 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11015 else 11016 cache = btrfs_lookup_block_group(fs_info, range->start); 11017 11018 while (cache) { 11019 if (cache->key.objectid >= (range->start + range->len)) { 11020 btrfs_put_block_group(cache); 11021 break; 11022 } 11023 11024 start = max(range->start, cache->key.objectid); 11025 end = min(range->start + range->len, 11026 cache->key.objectid + cache->key.offset); 11027 11028 if (end - start >= range->minlen) { 11029 if (!block_group_cache_done(cache)) { 11030 ret = cache_block_group(cache, 0); 11031 if (ret) { 11032 btrfs_put_block_group(cache); 11033 break; 11034 } 11035 ret = wait_block_group_cache_done(cache); 11036 if (ret) { 11037 btrfs_put_block_group(cache); 11038 break; 11039 } 11040 } 11041 ret = btrfs_trim_block_group(cache, 11042 &group_trimmed, 11043 start, 11044 end, 11045 range->minlen); 11046 11047 trimmed += group_trimmed; 11048 if (ret) { 11049 btrfs_put_block_group(cache); 11050 break; 11051 } 11052 } 11053 11054 cache = next_block_group(fs_info, cache); 11055 } 11056 11057 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11058 devices = &fs_info->fs_devices->alloc_list; 11059 list_for_each_entry(device, devices, dev_alloc_list) { 11060 ret = btrfs_trim_free_extents(device, range->minlen, 11061 &group_trimmed); 11062 if (ret) 11063 break; 11064 11065 trimmed += group_trimmed; 11066 } 11067 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11068 11069 range->len = trimmed; 11070 return ret; 11071 } 11072 11073 /* 11074 * btrfs_{start,end}_write_no_snapshotting() are similar to 11075 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11076 * data into the page cache through nocow before the subvolume is snapshoted, 11077 * but flush the data into disk after the snapshot creation, or to prevent 11078 * operations while snapshotting is ongoing and that cause the snapshot to be 11079 * inconsistent (writes followed by expanding truncates for example). 11080 */ 11081 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11082 { 11083 percpu_counter_dec(&root->subv_writers->counter); 11084 /* 11085 * Make sure counter is updated before we wake up waiters. 11086 */ 11087 smp_mb(); 11088 if (waitqueue_active(&root->subv_writers->wait)) 11089 wake_up(&root->subv_writers->wait); 11090 } 11091 11092 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11093 { 11094 if (atomic_read(&root->will_be_snapshotted)) 11095 return 0; 11096 11097 percpu_counter_inc(&root->subv_writers->counter); 11098 /* 11099 * Make sure counter is updated before we check for snapshot creation. 11100 */ 11101 smp_mb(); 11102 if (atomic_read(&root->will_be_snapshotted)) { 11103 btrfs_end_write_no_snapshotting(root); 11104 return 0; 11105 } 11106 return 1; 11107 } 11108 11109 static int wait_snapshotting_atomic_t(atomic_t *a) 11110 { 11111 schedule(); 11112 return 0; 11113 } 11114 11115 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11116 { 11117 while (true) { 11118 int ret; 11119 11120 ret = btrfs_start_write_no_snapshotting(root); 11121 if (ret) 11122 break; 11123 wait_on_atomic_t(&root->will_be_snapshotted, 11124 wait_snapshotting_atomic_t, 11125 TASK_UNINTERRUPTIBLE); 11126 } 11127 } 11128