1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op, 85 int no_quota); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (cache->cached != BTRFS_CACHE_STARTED) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 /* We're loading it the fast way, so we don't have a caching_ctl. */ 324 if (!cache->caching_ctl) { 325 spin_unlock(&cache->lock); 326 return NULL; 327 } 328 329 ctl = cache->caching_ctl; 330 atomic_inc(&ctl->count); 331 spin_unlock(&cache->lock); 332 return ctl; 333 } 334 335 static void put_caching_control(struct btrfs_caching_control *ctl) 336 { 337 if (atomic_dec_and_test(&ctl->count)) 338 kfree(ctl); 339 } 340 341 /* 342 * this is only called by cache_block_group, since we could have freed extents 343 * we need to check the pinned_extents for any extents that can't be used yet 344 * since their free space will be released as soon as the transaction commits. 345 */ 346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 347 struct btrfs_fs_info *info, u64 start, u64 end) 348 { 349 u64 extent_start, extent_end, size, total_added = 0; 350 int ret; 351 352 while (start < end) { 353 ret = find_first_extent_bit(info->pinned_extents, start, 354 &extent_start, &extent_end, 355 EXTENT_DIRTY | EXTENT_UPTODATE, 356 NULL); 357 if (ret) 358 break; 359 360 if (extent_start <= start) { 361 start = extent_end + 1; 362 } else if (extent_start > start && extent_start < end) { 363 size = extent_start - start; 364 total_added += size; 365 ret = btrfs_add_free_space(block_group, start, 366 size); 367 BUG_ON(ret); /* -ENOMEM or logic error */ 368 start = extent_end + 1; 369 } else { 370 break; 371 } 372 } 373 374 if (start < end) { 375 size = end - start; 376 total_added += size; 377 ret = btrfs_add_free_space(block_group, start, size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 } 380 381 return total_added; 382 } 383 384 static noinline void caching_thread(struct btrfs_work *work) 385 { 386 struct btrfs_block_group_cache *block_group; 387 struct btrfs_fs_info *fs_info; 388 struct btrfs_caching_control *caching_ctl; 389 struct btrfs_root *extent_root; 390 struct btrfs_path *path; 391 struct extent_buffer *leaf; 392 struct btrfs_key key; 393 u64 total_found = 0; 394 u64 last = 0; 395 u32 nritems; 396 int ret = -ENOMEM; 397 398 caching_ctl = container_of(work, struct btrfs_caching_control, work); 399 block_group = caching_ctl->block_group; 400 fs_info = block_group->fs_info; 401 extent_root = fs_info->extent_root; 402 403 path = btrfs_alloc_path(); 404 if (!path) 405 goto out; 406 407 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 408 409 /* 410 * We don't want to deadlock with somebody trying to allocate a new 411 * extent for the extent root while also trying to search the extent 412 * root to add free space. So we skip locking and search the commit 413 * root, since its read-only 414 */ 415 path->skip_locking = 1; 416 path->search_commit_root = 1; 417 path->reada = 1; 418 419 key.objectid = last; 420 key.offset = 0; 421 key.type = BTRFS_EXTENT_ITEM_KEY; 422 again: 423 mutex_lock(&caching_ctl->mutex); 424 /* need to make sure the commit_root doesn't disappear */ 425 down_read(&fs_info->commit_root_sem); 426 427 next: 428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 429 if (ret < 0) 430 goto err; 431 432 leaf = path->nodes[0]; 433 nritems = btrfs_header_nritems(leaf); 434 435 while (1) { 436 if (btrfs_fs_closing(fs_info) > 1) { 437 last = (u64)-1; 438 break; 439 } 440 441 if (path->slots[0] < nritems) { 442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 443 } else { 444 ret = find_next_key(path, 0, &key); 445 if (ret) 446 break; 447 448 if (need_resched() || 449 rwsem_is_contended(&fs_info->commit_root_sem)) { 450 caching_ctl->progress = last; 451 btrfs_release_path(path); 452 up_read(&fs_info->commit_root_sem); 453 mutex_unlock(&caching_ctl->mutex); 454 cond_resched(); 455 goto again; 456 } 457 458 ret = btrfs_next_leaf(extent_root, path); 459 if (ret < 0) 460 goto err; 461 if (ret) 462 break; 463 leaf = path->nodes[0]; 464 nritems = btrfs_header_nritems(leaf); 465 continue; 466 } 467 468 if (key.objectid < last) { 469 key.objectid = last; 470 key.offset = 0; 471 key.type = BTRFS_EXTENT_ITEM_KEY; 472 473 caching_ctl->progress = last; 474 btrfs_release_path(path); 475 goto next; 476 } 477 478 if (key.objectid < block_group->key.objectid) { 479 path->slots[0]++; 480 continue; 481 } 482 483 if (key.objectid >= block_group->key.objectid + 484 block_group->key.offset) 485 break; 486 487 if (key.type == BTRFS_EXTENT_ITEM_KEY || 488 key.type == BTRFS_METADATA_ITEM_KEY) { 489 total_found += add_new_free_space(block_group, 490 fs_info, last, 491 key.objectid); 492 if (key.type == BTRFS_METADATA_ITEM_KEY) 493 last = key.objectid + 494 fs_info->tree_root->nodesize; 495 else 496 last = key.objectid + key.offset; 497 498 if (total_found > (1024 * 1024 * 2)) { 499 total_found = 0; 500 wake_up(&caching_ctl->wait); 501 } 502 } 503 path->slots[0]++; 504 } 505 ret = 0; 506 507 total_found += add_new_free_space(block_group, fs_info, last, 508 block_group->key.objectid + 509 block_group->key.offset); 510 caching_ctl->progress = (u64)-1; 511 512 spin_lock(&block_group->lock); 513 block_group->caching_ctl = NULL; 514 block_group->cached = BTRFS_CACHE_FINISHED; 515 spin_unlock(&block_group->lock); 516 517 err: 518 btrfs_free_path(path); 519 up_read(&fs_info->commit_root_sem); 520 521 free_excluded_extents(extent_root, block_group); 522 523 mutex_unlock(&caching_ctl->mutex); 524 out: 525 if (ret) { 526 spin_lock(&block_group->lock); 527 block_group->caching_ctl = NULL; 528 block_group->cached = BTRFS_CACHE_ERROR; 529 spin_unlock(&block_group->lock); 530 } 531 wake_up(&caching_ctl->wait); 532 533 put_caching_control(caching_ctl); 534 btrfs_put_block_group(block_group); 535 } 536 537 static int cache_block_group(struct btrfs_block_group_cache *cache, 538 int load_cache_only) 539 { 540 DEFINE_WAIT(wait); 541 struct btrfs_fs_info *fs_info = cache->fs_info; 542 struct btrfs_caching_control *caching_ctl; 543 int ret = 0; 544 545 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 546 if (!caching_ctl) 547 return -ENOMEM; 548 549 INIT_LIST_HEAD(&caching_ctl->list); 550 mutex_init(&caching_ctl->mutex); 551 init_waitqueue_head(&caching_ctl->wait); 552 caching_ctl->block_group = cache; 553 caching_ctl->progress = cache->key.objectid; 554 atomic_set(&caching_ctl->count, 1); 555 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 556 caching_thread, NULL, NULL); 557 558 spin_lock(&cache->lock); 559 /* 560 * This should be a rare occasion, but this could happen I think in the 561 * case where one thread starts to load the space cache info, and then 562 * some other thread starts a transaction commit which tries to do an 563 * allocation while the other thread is still loading the space cache 564 * info. The previous loop should have kept us from choosing this block 565 * group, but if we've moved to the state where we will wait on caching 566 * block groups we need to first check if we're doing a fast load here, 567 * so we can wait for it to finish, otherwise we could end up allocating 568 * from a block group who's cache gets evicted for one reason or 569 * another. 570 */ 571 while (cache->cached == BTRFS_CACHE_FAST) { 572 struct btrfs_caching_control *ctl; 573 574 ctl = cache->caching_ctl; 575 atomic_inc(&ctl->count); 576 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 577 spin_unlock(&cache->lock); 578 579 schedule(); 580 581 finish_wait(&ctl->wait, &wait); 582 put_caching_control(ctl); 583 spin_lock(&cache->lock); 584 } 585 586 if (cache->cached != BTRFS_CACHE_NO) { 587 spin_unlock(&cache->lock); 588 kfree(caching_ctl); 589 return 0; 590 } 591 WARN_ON(cache->caching_ctl); 592 cache->caching_ctl = caching_ctl; 593 cache->cached = BTRFS_CACHE_FAST; 594 spin_unlock(&cache->lock); 595 596 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 597 ret = load_free_space_cache(fs_info, cache); 598 599 spin_lock(&cache->lock); 600 if (ret == 1) { 601 cache->caching_ctl = NULL; 602 cache->cached = BTRFS_CACHE_FINISHED; 603 cache->last_byte_to_unpin = (u64)-1; 604 } else { 605 if (load_cache_only) { 606 cache->caching_ctl = NULL; 607 cache->cached = BTRFS_CACHE_NO; 608 } else { 609 cache->cached = BTRFS_CACHE_STARTED; 610 } 611 } 612 spin_unlock(&cache->lock); 613 wake_up(&caching_ctl->wait); 614 if (ret == 1) { 615 put_caching_control(caching_ctl); 616 free_excluded_extents(fs_info->extent_root, cache); 617 return 0; 618 } 619 } else { 620 /* 621 * We are not going to do the fast caching, set cached to the 622 * appropriate value and wakeup any waiters. 623 */ 624 spin_lock(&cache->lock); 625 if (load_cache_only) { 626 cache->caching_ctl = NULL; 627 cache->cached = BTRFS_CACHE_NO; 628 } else { 629 cache->cached = BTRFS_CACHE_STARTED; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1320 struct btrfs_path *path, 1321 struct btrfs_extent_inline_ref *iref) 1322 { 1323 struct btrfs_key key; 1324 struct extent_buffer *leaf; 1325 struct btrfs_extent_data_ref *ref1; 1326 struct btrfs_shared_data_ref *ref2; 1327 u32 num_refs = 0; 1328 1329 leaf = path->nodes[0]; 1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1331 if (iref) { 1332 if (btrfs_extent_inline_ref_type(leaf, iref) == 1333 BTRFS_EXTENT_DATA_REF_KEY) { 1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1336 } else { 1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1339 } 1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1341 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_extent_data_ref); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1345 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1346 struct btrfs_shared_data_ref); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1350 struct btrfs_extent_ref_v0 *ref0; 1351 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1352 struct btrfs_extent_ref_v0); 1353 num_refs = btrfs_ref_count_v0(leaf, ref0); 1354 #endif 1355 } else { 1356 WARN_ON(1); 1357 } 1358 return num_refs; 1359 } 1360 1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1362 struct btrfs_root *root, 1363 struct btrfs_path *path, 1364 u64 bytenr, u64 parent, 1365 u64 root_objectid) 1366 { 1367 struct btrfs_key key; 1368 int ret; 1369 1370 key.objectid = bytenr; 1371 if (parent) { 1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1373 key.offset = parent; 1374 } else { 1375 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1376 key.offset = root_objectid; 1377 } 1378 1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1380 if (ret > 0) 1381 ret = -ENOENT; 1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1383 if (ret == -ENOENT && parent) { 1384 btrfs_release_path(path); 1385 key.type = BTRFS_EXTENT_REF_V0_KEY; 1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1387 if (ret > 0) 1388 ret = -ENOENT; 1389 } 1390 #endif 1391 return ret; 1392 } 1393 1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1395 struct btrfs_root *root, 1396 struct btrfs_path *path, 1397 u64 bytenr, u64 parent, 1398 u64 root_objectid) 1399 { 1400 struct btrfs_key key; 1401 int ret; 1402 1403 key.objectid = bytenr; 1404 if (parent) { 1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1406 key.offset = parent; 1407 } else { 1408 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1409 key.offset = root_objectid; 1410 } 1411 1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1413 btrfs_release_path(path); 1414 return ret; 1415 } 1416 1417 static inline int extent_ref_type(u64 parent, u64 owner) 1418 { 1419 int type; 1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1421 if (parent > 0) 1422 type = BTRFS_SHARED_BLOCK_REF_KEY; 1423 else 1424 type = BTRFS_TREE_BLOCK_REF_KEY; 1425 } else { 1426 if (parent > 0) 1427 type = BTRFS_SHARED_DATA_REF_KEY; 1428 else 1429 type = BTRFS_EXTENT_DATA_REF_KEY; 1430 } 1431 return type; 1432 } 1433 1434 static int find_next_key(struct btrfs_path *path, int level, 1435 struct btrfs_key *key) 1436 1437 { 1438 for (; level < BTRFS_MAX_LEVEL; level++) { 1439 if (!path->nodes[level]) 1440 break; 1441 if (path->slots[level] + 1 >= 1442 btrfs_header_nritems(path->nodes[level])) 1443 continue; 1444 if (level == 0) 1445 btrfs_item_key_to_cpu(path->nodes[level], key, 1446 path->slots[level] + 1); 1447 else 1448 btrfs_node_key_to_cpu(path->nodes[level], key, 1449 path->slots[level] + 1); 1450 return 0; 1451 } 1452 return 1; 1453 } 1454 1455 /* 1456 * look for inline back ref. if back ref is found, *ref_ret is set 1457 * to the address of inline back ref, and 0 is returned. 1458 * 1459 * if back ref isn't found, *ref_ret is set to the address where it 1460 * should be inserted, and -ENOENT is returned. 1461 * 1462 * if insert is true and there are too many inline back refs, the path 1463 * points to the extent item, and -EAGAIN is returned. 1464 * 1465 * NOTE: inline back refs are ordered in the same way that back ref 1466 * items in the tree are ordered. 1467 */ 1468 static noinline_for_stack 1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1470 struct btrfs_root *root, 1471 struct btrfs_path *path, 1472 struct btrfs_extent_inline_ref **ref_ret, 1473 u64 bytenr, u64 num_bytes, 1474 u64 parent, u64 root_objectid, 1475 u64 owner, u64 offset, int insert) 1476 { 1477 struct btrfs_key key; 1478 struct extent_buffer *leaf; 1479 struct btrfs_extent_item *ei; 1480 struct btrfs_extent_inline_ref *iref; 1481 u64 flags; 1482 u64 item_size; 1483 unsigned long ptr; 1484 unsigned long end; 1485 int extra_size; 1486 int type; 1487 int want; 1488 int ret; 1489 int err = 0; 1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1491 SKINNY_METADATA); 1492 1493 key.objectid = bytenr; 1494 key.type = BTRFS_EXTENT_ITEM_KEY; 1495 key.offset = num_bytes; 1496 1497 want = extent_ref_type(parent, owner); 1498 if (insert) { 1499 extra_size = btrfs_extent_inline_ref_size(want); 1500 path->keep_locks = 1; 1501 } else 1502 extra_size = -1; 1503 1504 /* 1505 * Owner is our parent level, so we can just add one to get the level 1506 * for the block we are interested in. 1507 */ 1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1509 key.type = BTRFS_METADATA_ITEM_KEY; 1510 key.offset = owner; 1511 } 1512 1513 again: 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1515 if (ret < 0) { 1516 err = ret; 1517 goto out; 1518 } 1519 1520 /* 1521 * We may be a newly converted file system which still has the old fat 1522 * extent entries for metadata, so try and see if we have one of those. 1523 */ 1524 if (ret > 0 && skinny_metadata) { 1525 skinny_metadata = false; 1526 if (path->slots[0]) { 1527 path->slots[0]--; 1528 btrfs_item_key_to_cpu(path->nodes[0], &key, 1529 path->slots[0]); 1530 if (key.objectid == bytenr && 1531 key.type == BTRFS_EXTENT_ITEM_KEY && 1532 key.offset == num_bytes) 1533 ret = 0; 1534 } 1535 if (ret) { 1536 key.objectid = bytenr; 1537 key.type = BTRFS_EXTENT_ITEM_KEY; 1538 key.offset = num_bytes; 1539 btrfs_release_path(path); 1540 goto again; 1541 } 1542 } 1543 1544 if (ret && !insert) { 1545 err = -ENOENT; 1546 goto out; 1547 } else if (WARN_ON(ret)) { 1548 err = -EIO; 1549 goto out; 1550 } 1551 1552 leaf = path->nodes[0]; 1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1555 if (item_size < sizeof(*ei)) { 1556 if (!insert) { 1557 err = -ENOENT; 1558 goto out; 1559 } 1560 ret = convert_extent_item_v0(trans, root, path, owner, 1561 extra_size); 1562 if (ret < 0) { 1563 err = ret; 1564 goto out; 1565 } 1566 leaf = path->nodes[0]; 1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1568 } 1569 #endif 1570 BUG_ON(item_size < sizeof(*ei)); 1571 1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1573 flags = btrfs_extent_flags(leaf, ei); 1574 1575 ptr = (unsigned long)(ei + 1); 1576 end = (unsigned long)ei + item_size; 1577 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1579 ptr += sizeof(struct btrfs_tree_block_info); 1580 BUG_ON(ptr > end); 1581 } 1582 1583 err = -ENOENT; 1584 while (1) { 1585 if (ptr >= end) { 1586 WARN_ON(ptr > end); 1587 break; 1588 } 1589 iref = (struct btrfs_extent_inline_ref *)ptr; 1590 type = btrfs_extent_inline_ref_type(leaf, iref); 1591 if (want < type) 1592 break; 1593 if (want > type) { 1594 ptr += btrfs_extent_inline_ref_size(type); 1595 continue; 1596 } 1597 1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1599 struct btrfs_extent_data_ref *dref; 1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1601 if (match_extent_data_ref(leaf, dref, root_objectid, 1602 owner, offset)) { 1603 err = 0; 1604 break; 1605 } 1606 if (hash_extent_data_ref_item(leaf, dref) < 1607 hash_extent_data_ref(root_objectid, owner, offset)) 1608 break; 1609 } else { 1610 u64 ref_offset; 1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1612 if (parent > 0) { 1613 if (parent == ref_offset) { 1614 err = 0; 1615 break; 1616 } 1617 if (ref_offset < parent) 1618 break; 1619 } else { 1620 if (root_objectid == ref_offset) { 1621 err = 0; 1622 break; 1623 } 1624 if (ref_offset < root_objectid) 1625 break; 1626 } 1627 } 1628 ptr += btrfs_extent_inline_ref_size(type); 1629 } 1630 if (err == -ENOENT && insert) { 1631 if (item_size + extra_size >= 1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1633 err = -EAGAIN; 1634 goto out; 1635 } 1636 /* 1637 * To add new inline back ref, we have to make sure 1638 * there is no corresponding back ref item. 1639 * For simplicity, we just do not add new inline back 1640 * ref if there is any kind of item for this block 1641 */ 1642 if (find_next_key(path, 0, &key) == 0 && 1643 key.objectid == bytenr && 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1645 err = -EAGAIN; 1646 goto out; 1647 } 1648 } 1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1650 out: 1651 if (insert) { 1652 path->keep_locks = 0; 1653 btrfs_unlock_up_safe(path, 1); 1654 } 1655 return err; 1656 } 1657 1658 /* 1659 * helper to add new inline back ref 1660 */ 1661 static noinline_for_stack 1662 void setup_inline_extent_backref(struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref *iref, 1665 u64 parent, u64 root_objectid, 1666 u64 owner, u64 offset, int refs_to_add, 1667 struct btrfs_delayed_extent_op *extent_op) 1668 { 1669 struct extent_buffer *leaf; 1670 struct btrfs_extent_item *ei; 1671 unsigned long ptr; 1672 unsigned long end; 1673 unsigned long item_offset; 1674 u64 refs; 1675 int size; 1676 int type; 1677 1678 leaf = path->nodes[0]; 1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1680 item_offset = (unsigned long)iref - (unsigned long)ei; 1681 1682 type = extent_ref_type(parent, owner); 1683 size = btrfs_extent_inline_ref_size(type); 1684 1685 btrfs_extend_item(root, path, size); 1686 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 refs = btrfs_extent_refs(leaf, ei); 1689 refs += refs_to_add; 1690 btrfs_set_extent_refs(leaf, ei, refs); 1691 if (extent_op) 1692 __run_delayed_extent_op(extent_op, leaf, ei); 1693 1694 ptr = (unsigned long)ei + item_offset; 1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1696 if (ptr < end - size) 1697 memmove_extent_buffer(leaf, ptr + size, ptr, 1698 end - size - ptr); 1699 1700 iref = (struct btrfs_extent_inline_ref *)ptr; 1701 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1703 struct btrfs_extent_data_ref *dref; 1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1710 struct btrfs_shared_data_ref *sref; 1711 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1716 } else { 1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1718 } 1719 btrfs_mark_buffer_dirty(leaf); 1720 } 1721 1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1723 struct btrfs_root *root, 1724 struct btrfs_path *path, 1725 struct btrfs_extent_inline_ref **ref_ret, 1726 u64 bytenr, u64 num_bytes, u64 parent, 1727 u64 root_objectid, u64 owner, u64 offset) 1728 { 1729 int ret; 1730 1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1732 bytenr, num_bytes, parent, 1733 root_objectid, owner, offset, 0); 1734 if (ret != -ENOENT) 1735 return ret; 1736 1737 btrfs_release_path(path); 1738 *ref_ret = NULL; 1739 1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1742 root_objectid); 1743 } else { 1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1745 root_objectid, owner, offset); 1746 } 1747 return ret; 1748 } 1749 1750 /* 1751 * helper to update/remove inline back ref 1752 */ 1753 static noinline_for_stack 1754 void update_inline_extent_backref(struct btrfs_root *root, 1755 struct btrfs_path *path, 1756 struct btrfs_extent_inline_ref *iref, 1757 int refs_to_mod, 1758 struct btrfs_delayed_extent_op *extent_op, 1759 int *last_ref) 1760 { 1761 struct extent_buffer *leaf; 1762 struct btrfs_extent_item *ei; 1763 struct btrfs_extent_data_ref *dref = NULL; 1764 struct btrfs_shared_data_ref *sref = NULL; 1765 unsigned long ptr; 1766 unsigned long end; 1767 u32 item_size; 1768 int size; 1769 int type; 1770 u64 refs; 1771 1772 leaf = path->nodes[0]; 1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1774 refs = btrfs_extent_refs(leaf, ei); 1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1776 refs += refs_to_mod; 1777 btrfs_set_extent_refs(leaf, ei, refs); 1778 if (extent_op) 1779 __run_delayed_extent_op(extent_op, leaf, ei); 1780 1781 type = btrfs_extent_inline_ref_type(leaf, iref); 1782 1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1785 refs = btrfs_extent_data_ref_count(leaf, dref); 1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1787 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1788 refs = btrfs_shared_data_ref_count(leaf, sref); 1789 } else { 1790 refs = 1; 1791 BUG_ON(refs_to_mod != -1); 1792 } 1793 1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1795 refs += refs_to_mod; 1796 1797 if (refs > 0) { 1798 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1799 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1800 else 1801 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1802 } else { 1803 *last_ref = 1; 1804 size = btrfs_extent_inline_ref_size(type); 1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1806 ptr = (unsigned long)iref; 1807 end = (unsigned long)ei + item_size; 1808 if (ptr + size < end) 1809 memmove_extent_buffer(leaf, ptr, ptr + size, 1810 end - ptr - size); 1811 item_size -= size; 1812 btrfs_truncate_item(root, path, item_size, 1); 1813 } 1814 btrfs_mark_buffer_dirty(leaf); 1815 } 1816 1817 static noinline_for_stack 1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 struct btrfs_path *path, 1821 u64 bytenr, u64 num_bytes, u64 parent, 1822 u64 root_objectid, u64 owner, 1823 u64 offset, int refs_to_add, 1824 struct btrfs_delayed_extent_op *extent_op) 1825 { 1826 struct btrfs_extent_inline_ref *iref; 1827 int ret; 1828 1829 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1830 bytenr, num_bytes, parent, 1831 root_objectid, owner, offset, 1); 1832 if (ret == 0) { 1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1834 update_inline_extent_backref(root, path, iref, 1835 refs_to_add, extent_op, NULL); 1836 } else if (ret == -ENOENT) { 1837 setup_inline_extent_backref(root, path, iref, parent, 1838 root_objectid, owner, offset, 1839 refs_to_add, extent_op); 1840 ret = 0; 1841 } 1842 return ret; 1843 } 1844 1845 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1846 struct btrfs_root *root, 1847 struct btrfs_path *path, 1848 u64 bytenr, u64 parent, u64 root_objectid, 1849 u64 owner, u64 offset, int refs_to_add) 1850 { 1851 int ret; 1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1853 BUG_ON(refs_to_add != 1); 1854 ret = insert_tree_block_ref(trans, root, path, bytenr, 1855 parent, root_objectid); 1856 } else { 1857 ret = insert_extent_data_ref(trans, root, path, bytenr, 1858 parent, root_objectid, 1859 owner, offset, refs_to_add); 1860 } 1861 return ret; 1862 } 1863 1864 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1865 struct btrfs_root *root, 1866 struct btrfs_path *path, 1867 struct btrfs_extent_inline_ref *iref, 1868 int refs_to_drop, int is_data, int *last_ref) 1869 { 1870 int ret = 0; 1871 1872 BUG_ON(!is_data && refs_to_drop != 1); 1873 if (iref) { 1874 update_inline_extent_backref(root, path, iref, 1875 -refs_to_drop, NULL, last_ref); 1876 } else if (is_data) { 1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1878 last_ref); 1879 } else { 1880 *last_ref = 1; 1881 ret = btrfs_del_item(trans, root, path); 1882 } 1883 return ret; 1884 } 1885 1886 static int btrfs_issue_discard(struct block_device *bdev, 1887 u64 start, u64 len) 1888 { 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1890 } 1891 1892 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1893 u64 num_bytes, u64 *actual_bytes) 1894 { 1895 int ret; 1896 u64 discarded_bytes = 0; 1897 struct btrfs_bio *bbio = NULL; 1898 1899 1900 /* Tell the block device(s) that the sectors can be discarded */ 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1902 bytenr, &num_bytes, &bbio, 0); 1903 /* Error condition is -ENOMEM */ 1904 if (!ret) { 1905 struct btrfs_bio_stripe *stripe = bbio->stripes; 1906 int i; 1907 1908 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1910 if (!stripe->dev->can_discard) 1911 continue; 1912 1913 ret = btrfs_issue_discard(stripe->dev->bdev, 1914 stripe->physical, 1915 stripe->length); 1916 if (!ret) 1917 discarded_bytes += stripe->length; 1918 else if (ret != -EOPNOTSUPP) 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1920 1921 /* 1922 * Just in case we get back EOPNOTSUPP for some reason, 1923 * just ignore the return value so we don't screw up 1924 * people calling discard_extent. 1925 */ 1926 ret = 0; 1927 } 1928 kfree(bbio); 1929 } 1930 1931 if (actual_bytes) 1932 *actual_bytes = discarded_bytes; 1933 1934 1935 if (ret == -EOPNOTSUPP) 1936 ret = 0; 1937 return ret; 1938 } 1939 1940 /* Can return -ENOMEM */ 1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 u64 bytenr, u64 num_bytes, u64 parent, 1944 u64 root_objectid, u64 owner, u64 offset, 1945 int no_quota) 1946 { 1947 int ret; 1948 struct btrfs_fs_info *fs_info = root->fs_info; 1949 1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1951 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1952 1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1955 num_bytes, 1956 parent, root_objectid, (int)owner, 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1958 } else { 1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1960 num_bytes, 1961 parent, root_objectid, owner, offset, 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1963 } 1964 return ret; 1965 } 1966 1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1968 struct btrfs_root *root, 1969 u64 bytenr, u64 num_bytes, 1970 u64 parent, u64 root_objectid, 1971 u64 owner, u64 offset, int refs_to_add, 1972 int no_quota, 1973 struct btrfs_delayed_extent_op *extent_op) 1974 { 1975 struct btrfs_fs_info *fs_info = root->fs_info; 1976 struct btrfs_path *path; 1977 struct extent_buffer *leaf; 1978 struct btrfs_extent_item *item; 1979 struct btrfs_key key; 1980 u64 refs; 1981 int ret; 1982 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL; 1983 1984 path = btrfs_alloc_path(); 1985 if (!path) 1986 return -ENOMEM; 1987 1988 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1989 no_quota = 1; 1990 1991 path->reada = 1; 1992 path->leave_spinning = 1; 1993 /* this will setup the path even if it fails to insert the back ref */ 1994 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1995 bytenr, num_bytes, parent, 1996 root_objectid, owner, offset, 1997 refs_to_add, extent_op); 1998 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota)) 1999 goto out; 2000 /* 2001 * Ok we were able to insert an inline extent and it appears to be a new 2002 * reference, deal with the qgroup accounting. 2003 */ 2004 if (!ret && !no_quota) { 2005 ASSERT(root->fs_info->quota_enabled); 2006 leaf = path->nodes[0]; 2007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2008 item = btrfs_item_ptr(leaf, path->slots[0], 2009 struct btrfs_extent_item); 2010 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add) 2011 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2012 btrfs_release_path(path); 2013 2014 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2015 bytenr, num_bytes, type, 0); 2016 goto out; 2017 } 2018 2019 /* 2020 * Ok we had -EAGAIN which means we didn't have space to insert and 2021 * inline extent ref, so just update the reference count and add a 2022 * normal backref. 2023 */ 2024 leaf = path->nodes[0]; 2025 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2026 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2027 refs = btrfs_extent_refs(leaf, item); 2028 if (refs) 2029 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2030 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2031 if (extent_op) 2032 __run_delayed_extent_op(extent_op, leaf, item); 2033 2034 btrfs_mark_buffer_dirty(leaf); 2035 btrfs_release_path(path); 2036 2037 if (!no_quota) { 2038 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2039 bytenr, num_bytes, type, 0); 2040 if (ret) 2041 goto out; 2042 } 2043 2044 path->reada = 1; 2045 path->leave_spinning = 1; 2046 /* now insert the actual backref */ 2047 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2048 path, bytenr, parent, root_objectid, 2049 owner, offset, refs_to_add); 2050 if (ret) 2051 btrfs_abort_transaction(trans, root, ret); 2052 out: 2053 btrfs_free_path(path); 2054 return ret; 2055 } 2056 2057 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2058 struct btrfs_root *root, 2059 struct btrfs_delayed_ref_node *node, 2060 struct btrfs_delayed_extent_op *extent_op, 2061 int insert_reserved) 2062 { 2063 int ret = 0; 2064 struct btrfs_delayed_data_ref *ref; 2065 struct btrfs_key ins; 2066 u64 parent = 0; 2067 u64 ref_root = 0; 2068 u64 flags = 0; 2069 2070 ins.objectid = node->bytenr; 2071 ins.offset = node->num_bytes; 2072 ins.type = BTRFS_EXTENT_ITEM_KEY; 2073 2074 ref = btrfs_delayed_node_to_data_ref(node); 2075 trace_run_delayed_data_ref(node, ref, node->action); 2076 2077 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2078 parent = ref->parent; 2079 ref_root = ref->root; 2080 2081 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2082 if (extent_op) 2083 flags |= extent_op->flags_to_set; 2084 ret = alloc_reserved_file_extent(trans, root, 2085 parent, ref_root, flags, 2086 ref->objectid, ref->offset, 2087 &ins, node->ref_mod); 2088 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2089 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2090 node->num_bytes, parent, 2091 ref_root, ref->objectid, 2092 ref->offset, node->ref_mod, 2093 node->no_quota, extent_op); 2094 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2095 ret = __btrfs_free_extent(trans, root, node->bytenr, 2096 node->num_bytes, parent, 2097 ref_root, ref->objectid, 2098 ref->offset, node->ref_mod, 2099 extent_op, node->no_quota); 2100 } else { 2101 BUG(); 2102 } 2103 return ret; 2104 } 2105 2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2107 struct extent_buffer *leaf, 2108 struct btrfs_extent_item *ei) 2109 { 2110 u64 flags = btrfs_extent_flags(leaf, ei); 2111 if (extent_op->update_flags) { 2112 flags |= extent_op->flags_to_set; 2113 btrfs_set_extent_flags(leaf, ei, flags); 2114 } 2115 2116 if (extent_op->update_key) { 2117 struct btrfs_tree_block_info *bi; 2118 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2119 bi = (struct btrfs_tree_block_info *)(ei + 1); 2120 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2121 } 2122 } 2123 2124 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2125 struct btrfs_root *root, 2126 struct btrfs_delayed_ref_node *node, 2127 struct btrfs_delayed_extent_op *extent_op) 2128 { 2129 struct btrfs_key key; 2130 struct btrfs_path *path; 2131 struct btrfs_extent_item *ei; 2132 struct extent_buffer *leaf; 2133 u32 item_size; 2134 int ret; 2135 int err = 0; 2136 int metadata = !extent_op->is_data; 2137 2138 if (trans->aborted) 2139 return 0; 2140 2141 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2142 metadata = 0; 2143 2144 path = btrfs_alloc_path(); 2145 if (!path) 2146 return -ENOMEM; 2147 2148 key.objectid = node->bytenr; 2149 2150 if (metadata) { 2151 key.type = BTRFS_METADATA_ITEM_KEY; 2152 key.offset = extent_op->level; 2153 } else { 2154 key.type = BTRFS_EXTENT_ITEM_KEY; 2155 key.offset = node->num_bytes; 2156 } 2157 2158 again: 2159 path->reada = 1; 2160 path->leave_spinning = 1; 2161 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2162 path, 0, 1); 2163 if (ret < 0) { 2164 err = ret; 2165 goto out; 2166 } 2167 if (ret > 0) { 2168 if (metadata) { 2169 if (path->slots[0] > 0) { 2170 path->slots[0]--; 2171 btrfs_item_key_to_cpu(path->nodes[0], &key, 2172 path->slots[0]); 2173 if (key.objectid == node->bytenr && 2174 key.type == BTRFS_EXTENT_ITEM_KEY && 2175 key.offset == node->num_bytes) 2176 ret = 0; 2177 } 2178 if (ret > 0) { 2179 btrfs_release_path(path); 2180 metadata = 0; 2181 2182 key.objectid = node->bytenr; 2183 key.offset = node->num_bytes; 2184 key.type = BTRFS_EXTENT_ITEM_KEY; 2185 goto again; 2186 } 2187 } else { 2188 err = -EIO; 2189 goto out; 2190 } 2191 } 2192 2193 leaf = path->nodes[0]; 2194 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2196 if (item_size < sizeof(*ei)) { 2197 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2198 path, (u64)-1, 0); 2199 if (ret < 0) { 2200 err = ret; 2201 goto out; 2202 } 2203 leaf = path->nodes[0]; 2204 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2205 } 2206 #endif 2207 BUG_ON(item_size < sizeof(*ei)); 2208 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2209 __run_delayed_extent_op(extent_op, leaf, ei); 2210 2211 btrfs_mark_buffer_dirty(leaf); 2212 out: 2213 btrfs_free_path(path); 2214 return err; 2215 } 2216 2217 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2218 struct btrfs_root *root, 2219 struct btrfs_delayed_ref_node *node, 2220 struct btrfs_delayed_extent_op *extent_op, 2221 int insert_reserved) 2222 { 2223 int ret = 0; 2224 struct btrfs_delayed_tree_ref *ref; 2225 struct btrfs_key ins; 2226 u64 parent = 0; 2227 u64 ref_root = 0; 2228 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2229 SKINNY_METADATA); 2230 2231 ref = btrfs_delayed_node_to_tree_ref(node); 2232 trace_run_delayed_tree_ref(node, ref, node->action); 2233 2234 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2235 parent = ref->parent; 2236 ref_root = ref->root; 2237 2238 ins.objectid = node->bytenr; 2239 if (skinny_metadata) { 2240 ins.offset = ref->level; 2241 ins.type = BTRFS_METADATA_ITEM_KEY; 2242 } else { 2243 ins.offset = node->num_bytes; 2244 ins.type = BTRFS_EXTENT_ITEM_KEY; 2245 } 2246 2247 BUG_ON(node->ref_mod != 1); 2248 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2249 BUG_ON(!extent_op || !extent_op->update_flags); 2250 ret = alloc_reserved_tree_block(trans, root, 2251 parent, ref_root, 2252 extent_op->flags_to_set, 2253 &extent_op->key, 2254 ref->level, &ins, 2255 node->no_quota); 2256 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2257 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2258 node->num_bytes, parent, ref_root, 2259 ref->level, 0, 1, node->no_quota, 2260 extent_op); 2261 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2262 ret = __btrfs_free_extent(trans, root, node->bytenr, 2263 node->num_bytes, parent, ref_root, 2264 ref->level, 0, 1, extent_op, 2265 node->no_quota); 2266 } else { 2267 BUG(); 2268 } 2269 return ret; 2270 } 2271 2272 /* helper function to actually process a single delayed ref entry */ 2273 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2274 struct btrfs_root *root, 2275 struct btrfs_delayed_ref_node *node, 2276 struct btrfs_delayed_extent_op *extent_op, 2277 int insert_reserved) 2278 { 2279 int ret = 0; 2280 2281 if (trans->aborted) { 2282 if (insert_reserved) 2283 btrfs_pin_extent(root, node->bytenr, 2284 node->num_bytes, 1); 2285 return 0; 2286 } 2287 2288 if (btrfs_delayed_ref_is_head(node)) { 2289 struct btrfs_delayed_ref_head *head; 2290 /* 2291 * we've hit the end of the chain and we were supposed 2292 * to insert this extent into the tree. But, it got 2293 * deleted before we ever needed to insert it, so all 2294 * we have to do is clean up the accounting 2295 */ 2296 BUG_ON(extent_op); 2297 head = btrfs_delayed_node_to_head(node); 2298 trace_run_delayed_ref_head(node, head, node->action); 2299 2300 if (insert_reserved) { 2301 btrfs_pin_extent(root, node->bytenr, 2302 node->num_bytes, 1); 2303 if (head->is_data) { 2304 ret = btrfs_del_csums(trans, root, 2305 node->bytenr, 2306 node->num_bytes); 2307 } 2308 } 2309 return ret; 2310 } 2311 2312 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2313 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2314 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2315 insert_reserved); 2316 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2317 node->type == BTRFS_SHARED_DATA_REF_KEY) 2318 ret = run_delayed_data_ref(trans, root, node, extent_op, 2319 insert_reserved); 2320 else 2321 BUG(); 2322 return ret; 2323 } 2324 2325 static noinline struct btrfs_delayed_ref_node * 2326 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2327 { 2328 struct rb_node *node; 2329 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2330 2331 /* 2332 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2333 * this prevents ref count from going down to zero when 2334 * there still are pending delayed ref. 2335 */ 2336 node = rb_first(&head->ref_root); 2337 while (node) { 2338 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2339 rb_node); 2340 if (ref->action == BTRFS_ADD_DELAYED_REF) 2341 return ref; 2342 else if (last == NULL) 2343 last = ref; 2344 node = rb_next(node); 2345 } 2346 return last; 2347 } 2348 2349 /* 2350 * Returns 0 on success or if called with an already aborted transaction. 2351 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2352 */ 2353 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2354 struct btrfs_root *root, 2355 unsigned long nr) 2356 { 2357 struct btrfs_delayed_ref_root *delayed_refs; 2358 struct btrfs_delayed_ref_node *ref; 2359 struct btrfs_delayed_ref_head *locked_ref = NULL; 2360 struct btrfs_delayed_extent_op *extent_op; 2361 struct btrfs_fs_info *fs_info = root->fs_info; 2362 ktime_t start = ktime_get(); 2363 int ret; 2364 unsigned long count = 0; 2365 unsigned long actual_count = 0; 2366 int must_insert_reserved = 0; 2367 2368 delayed_refs = &trans->transaction->delayed_refs; 2369 while (1) { 2370 if (!locked_ref) { 2371 if (count >= nr) 2372 break; 2373 2374 spin_lock(&delayed_refs->lock); 2375 locked_ref = btrfs_select_ref_head(trans); 2376 if (!locked_ref) { 2377 spin_unlock(&delayed_refs->lock); 2378 break; 2379 } 2380 2381 /* grab the lock that says we are going to process 2382 * all the refs for this head */ 2383 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2384 spin_unlock(&delayed_refs->lock); 2385 /* 2386 * we may have dropped the spin lock to get the head 2387 * mutex lock, and that might have given someone else 2388 * time to free the head. If that's true, it has been 2389 * removed from our list and we can move on. 2390 */ 2391 if (ret == -EAGAIN) { 2392 locked_ref = NULL; 2393 count++; 2394 continue; 2395 } 2396 } 2397 2398 /* 2399 * We need to try and merge add/drops of the same ref since we 2400 * can run into issues with relocate dropping the implicit ref 2401 * and then it being added back again before the drop can 2402 * finish. If we merged anything we need to re-loop so we can 2403 * get a good ref. 2404 */ 2405 spin_lock(&locked_ref->lock); 2406 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2407 locked_ref); 2408 2409 /* 2410 * locked_ref is the head node, so we have to go one 2411 * node back for any delayed ref updates 2412 */ 2413 ref = select_delayed_ref(locked_ref); 2414 2415 if (ref && ref->seq && 2416 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2417 spin_unlock(&locked_ref->lock); 2418 btrfs_delayed_ref_unlock(locked_ref); 2419 spin_lock(&delayed_refs->lock); 2420 locked_ref->processing = 0; 2421 delayed_refs->num_heads_ready++; 2422 spin_unlock(&delayed_refs->lock); 2423 locked_ref = NULL; 2424 cond_resched(); 2425 count++; 2426 continue; 2427 } 2428 2429 /* 2430 * record the must insert reserved flag before we 2431 * drop the spin lock. 2432 */ 2433 must_insert_reserved = locked_ref->must_insert_reserved; 2434 locked_ref->must_insert_reserved = 0; 2435 2436 extent_op = locked_ref->extent_op; 2437 locked_ref->extent_op = NULL; 2438 2439 if (!ref) { 2440 2441 2442 /* All delayed refs have been processed, Go ahead 2443 * and send the head node to run_one_delayed_ref, 2444 * so that any accounting fixes can happen 2445 */ 2446 ref = &locked_ref->node; 2447 2448 if (extent_op && must_insert_reserved) { 2449 btrfs_free_delayed_extent_op(extent_op); 2450 extent_op = NULL; 2451 } 2452 2453 if (extent_op) { 2454 spin_unlock(&locked_ref->lock); 2455 ret = run_delayed_extent_op(trans, root, 2456 ref, extent_op); 2457 btrfs_free_delayed_extent_op(extent_op); 2458 2459 if (ret) { 2460 /* 2461 * Need to reset must_insert_reserved if 2462 * there was an error so the abort stuff 2463 * can cleanup the reserved space 2464 * properly. 2465 */ 2466 if (must_insert_reserved) 2467 locked_ref->must_insert_reserved = 1; 2468 locked_ref->processing = 0; 2469 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2470 btrfs_delayed_ref_unlock(locked_ref); 2471 return ret; 2472 } 2473 continue; 2474 } 2475 2476 /* 2477 * Need to drop our head ref lock and re-aqcuire the 2478 * delayed ref lock and then re-check to make sure 2479 * nobody got added. 2480 */ 2481 spin_unlock(&locked_ref->lock); 2482 spin_lock(&delayed_refs->lock); 2483 spin_lock(&locked_ref->lock); 2484 if (rb_first(&locked_ref->ref_root) || 2485 locked_ref->extent_op) { 2486 spin_unlock(&locked_ref->lock); 2487 spin_unlock(&delayed_refs->lock); 2488 continue; 2489 } 2490 ref->in_tree = 0; 2491 delayed_refs->num_heads--; 2492 rb_erase(&locked_ref->href_node, 2493 &delayed_refs->href_root); 2494 spin_unlock(&delayed_refs->lock); 2495 } else { 2496 actual_count++; 2497 ref->in_tree = 0; 2498 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2499 } 2500 atomic_dec(&delayed_refs->num_entries); 2501 2502 if (!btrfs_delayed_ref_is_head(ref)) { 2503 /* 2504 * when we play the delayed ref, also correct the 2505 * ref_mod on head 2506 */ 2507 switch (ref->action) { 2508 case BTRFS_ADD_DELAYED_REF: 2509 case BTRFS_ADD_DELAYED_EXTENT: 2510 locked_ref->node.ref_mod -= ref->ref_mod; 2511 break; 2512 case BTRFS_DROP_DELAYED_REF: 2513 locked_ref->node.ref_mod += ref->ref_mod; 2514 break; 2515 default: 2516 WARN_ON(1); 2517 } 2518 } 2519 spin_unlock(&locked_ref->lock); 2520 2521 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2522 must_insert_reserved); 2523 2524 btrfs_free_delayed_extent_op(extent_op); 2525 if (ret) { 2526 locked_ref->processing = 0; 2527 btrfs_delayed_ref_unlock(locked_ref); 2528 btrfs_put_delayed_ref(ref); 2529 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2530 return ret; 2531 } 2532 2533 /* 2534 * If this node is a head, that means all the refs in this head 2535 * have been dealt with, and we will pick the next head to deal 2536 * with, so we must unlock the head and drop it from the cluster 2537 * list before we release it. 2538 */ 2539 if (btrfs_delayed_ref_is_head(ref)) { 2540 btrfs_delayed_ref_unlock(locked_ref); 2541 locked_ref = NULL; 2542 } 2543 btrfs_put_delayed_ref(ref); 2544 count++; 2545 cond_resched(); 2546 } 2547 2548 /* 2549 * We don't want to include ref heads since we can have empty ref heads 2550 * and those will drastically skew our runtime down since we just do 2551 * accounting, no actual extent tree updates. 2552 */ 2553 if (actual_count > 0) { 2554 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2555 u64 avg; 2556 2557 /* 2558 * We weigh the current average higher than our current runtime 2559 * to avoid large swings in the average. 2560 */ 2561 spin_lock(&delayed_refs->lock); 2562 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2563 avg = div64_u64(avg, 4); 2564 fs_info->avg_delayed_ref_runtime = avg; 2565 spin_unlock(&delayed_refs->lock); 2566 } 2567 return 0; 2568 } 2569 2570 #ifdef SCRAMBLE_DELAYED_REFS 2571 /* 2572 * Normally delayed refs get processed in ascending bytenr order. This 2573 * correlates in most cases to the order added. To expose dependencies on this 2574 * order, we start to process the tree in the middle instead of the beginning 2575 */ 2576 static u64 find_middle(struct rb_root *root) 2577 { 2578 struct rb_node *n = root->rb_node; 2579 struct btrfs_delayed_ref_node *entry; 2580 int alt = 1; 2581 u64 middle; 2582 u64 first = 0, last = 0; 2583 2584 n = rb_first(root); 2585 if (n) { 2586 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2587 first = entry->bytenr; 2588 } 2589 n = rb_last(root); 2590 if (n) { 2591 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2592 last = entry->bytenr; 2593 } 2594 n = root->rb_node; 2595 2596 while (n) { 2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2598 WARN_ON(!entry->in_tree); 2599 2600 middle = entry->bytenr; 2601 2602 if (alt) 2603 n = n->rb_left; 2604 else 2605 n = n->rb_right; 2606 2607 alt = 1 - alt; 2608 } 2609 return middle; 2610 } 2611 #endif 2612 2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2614 { 2615 u64 num_bytes; 2616 2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2618 sizeof(struct btrfs_extent_inline_ref)); 2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2621 2622 /* 2623 * We don't ever fill up leaves all the way so multiply by 2 just to be 2624 * closer to what we're really going to want to ouse. 2625 */ 2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2627 } 2628 2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2630 struct btrfs_root *root) 2631 { 2632 struct btrfs_block_rsv *global_rsv; 2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2634 u64 num_bytes; 2635 int ret = 0; 2636 2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2638 num_heads = heads_to_leaves(root, num_heads); 2639 if (num_heads > 1) 2640 num_bytes += (num_heads - 1) * root->nodesize; 2641 num_bytes <<= 1; 2642 global_rsv = &root->fs_info->global_block_rsv; 2643 2644 /* 2645 * If we can't allocate any more chunks lets make sure we have _lots_ of 2646 * wiggle room since running delayed refs can create more delayed refs. 2647 */ 2648 if (global_rsv->space_info->full) 2649 num_bytes <<= 1; 2650 2651 spin_lock(&global_rsv->lock); 2652 if (global_rsv->reserved <= num_bytes) 2653 ret = 1; 2654 spin_unlock(&global_rsv->lock); 2655 return ret; 2656 } 2657 2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2659 struct btrfs_root *root) 2660 { 2661 struct btrfs_fs_info *fs_info = root->fs_info; 2662 u64 num_entries = 2663 atomic_read(&trans->transaction->delayed_refs.num_entries); 2664 u64 avg_runtime; 2665 u64 val; 2666 2667 smp_mb(); 2668 avg_runtime = fs_info->avg_delayed_ref_runtime; 2669 val = num_entries * avg_runtime; 2670 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2671 return 1; 2672 if (val >= NSEC_PER_SEC / 2) 2673 return 2; 2674 2675 return btrfs_check_space_for_delayed_refs(trans, root); 2676 } 2677 2678 struct async_delayed_refs { 2679 struct btrfs_root *root; 2680 int count; 2681 int error; 2682 int sync; 2683 struct completion wait; 2684 struct btrfs_work work; 2685 }; 2686 2687 static void delayed_ref_async_start(struct btrfs_work *work) 2688 { 2689 struct async_delayed_refs *async; 2690 struct btrfs_trans_handle *trans; 2691 int ret; 2692 2693 async = container_of(work, struct async_delayed_refs, work); 2694 2695 trans = btrfs_join_transaction(async->root); 2696 if (IS_ERR(trans)) { 2697 async->error = PTR_ERR(trans); 2698 goto done; 2699 } 2700 2701 /* 2702 * trans->sync means that when we call end_transaciton, we won't 2703 * wait on delayed refs 2704 */ 2705 trans->sync = true; 2706 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2707 if (ret) 2708 async->error = ret; 2709 2710 ret = btrfs_end_transaction(trans, async->root); 2711 if (ret && !async->error) 2712 async->error = ret; 2713 done: 2714 if (async->sync) 2715 complete(&async->wait); 2716 else 2717 kfree(async); 2718 } 2719 2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2721 unsigned long count, int wait) 2722 { 2723 struct async_delayed_refs *async; 2724 int ret; 2725 2726 async = kmalloc(sizeof(*async), GFP_NOFS); 2727 if (!async) 2728 return -ENOMEM; 2729 2730 async->root = root->fs_info->tree_root; 2731 async->count = count; 2732 async->error = 0; 2733 if (wait) 2734 async->sync = 1; 2735 else 2736 async->sync = 0; 2737 init_completion(&async->wait); 2738 2739 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2740 delayed_ref_async_start, NULL, NULL); 2741 2742 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2743 2744 if (wait) { 2745 wait_for_completion(&async->wait); 2746 ret = async->error; 2747 kfree(async); 2748 return ret; 2749 } 2750 return 0; 2751 } 2752 2753 /* 2754 * this starts processing the delayed reference count updates and 2755 * extent insertions we have queued up so far. count can be 2756 * 0, which means to process everything in the tree at the start 2757 * of the run (but not newly added entries), or it can be some target 2758 * number you'd like to process. 2759 * 2760 * Returns 0 on success or if called with an aborted transaction 2761 * Returns <0 on error and aborts the transaction 2762 */ 2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, unsigned long count) 2765 { 2766 struct rb_node *node; 2767 struct btrfs_delayed_ref_root *delayed_refs; 2768 struct btrfs_delayed_ref_head *head; 2769 int ret; 2770 int run_all = count == (unsigned long)-1; 2771 int run_most = 0; 2772 2773 /* We'll clean this up in btrfs_cleanup_transaction */ 2774 if (trans->aborted) 2775 return 0; 2776 2777 if (root == root->fs_info->extent_root) 2778 root = root->fs_info->tree_root; 2779 2780 delayed_refs = &trans->transaction->delayed_refs; 2781 if (count == 0) { 2782 count = atomic_read(&delayed_refs->num_entries) * 2; 2783 run_most = 1; 2784 } 2785 2786 again: 2787 #ifdef SCRAMBLE_DELAYED_REFS 2788 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2789 #endif 2790 ret = __btrfs_run_delayed_refs(trans, root, count); 2791 if (ret < 0) { 2792 btrfs_abort_transaction(trans, root, ret); 2793 return ret; 2794 } 2795 2796 if (run_all) { 2797 if (!list_empty(&trans->new_bgs)) 2798 btrfs_create_pending_block_groups(trans, root); 2799 2800 spin_lock(&delayed_refs->lock); 2801 node = rb_first(&delayed_refs->href_root); 2802 if (!node) { 2803 spin_unlock(&delayed_refs->lock); 2804 goto out; 2805 } 2806 count = (unsigned long)-1; 2807 2808 while (node) { 2809 head = rb_entry(node, struct btrfs_delayed_ref_head, 2810 href_node); 2811 if (btrfs_delayed_ref_is_head(&head->node)) { 2812 struct btrfs_delayed_ref_node *ref; 2813 2814 ref = &head->node; 2815 atomic_inc(&ref->refs); 2816 2817 spin_unlock(&delayed_refs->lock); 2818 /* 2819 * Mutex was contended, block until it's 2820 * released and try again 2821 */ 2822 mutex_lock(&head->mutex); 2823 mutex_unlock(&head->mutex); 2824 2825 btrfs_put_delayed_ref(ref); 2826 cond_resched(); 2827 goto again; 2828 } else { 2829 WARN_ON(1); 2830 } 2831 node = rb_next(node); 2832 } 2833 spin_unlock(&delayed_refs->lock); 2834 cond_resched(); 2835 goto again; 2836 } 2837 out: 2838 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info); 2839 if (ret) 2840 return ret; 2841 assert_qgroups_uptodate(trans); 2842 return 0; 2843 } 2844 2845 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2846 struct btrfs_root *root, 2847 u64 bytenr, u64 num_bytes, u64 flags, 2848 int level, int is_data) 2849 { 2850 struct btrfs_delayed_extent_op *extent_op; 2851 int ret; 2852 2853 extent_op = btrfs_alloc_delayed_extent_op(); 2854 if (!extent_op) 2855 return -ENOMEM; 2856 2857 extent_op->flags_to_set = flags; 2858 extent_op->update_flags = 1; 2859 extent_op->update_key = 0; 2860 extent_op->is_data = is_data ? 1 : 0; 2861 extent_op->level = level; 2862 2863 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2864 num_bytes, extent_op); 2865 if (ret) 2866 btrfs_free_delayed_extent_op(extent_op); 2867 return ret; 2868 } 2869 2870 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2871 struct btrfs_root *root, 2872 struct btrfs_path *path, 2873 u64 objectid, u64 offset, u64 bytenr) 2874 { 2875 struct btrfs_delayed_ref_head *head; 2876 struct btrfs_delayed_ref_node *ref; 2877 struct btrfs_delayed_data_ref *data_ref; 2878 struct btrfs_delayed_ref_root *delayed_refs; 2879 struct rb_node *node; 2880 int ret = 0; 2881 2882 delayed_refs = &trans->transaction->delayed_refs; 2883 spin_lock(&delayed_refs->lock); 2884 head = btrfs_find_delayed_ref_head(trans, bytenr); 2885 if (!head) { 2886 spin_unlock(&delayed_refs->lock); 2887 return 0; 2888 } 2889 2890 if (!mutex_trylock(&head->mutex)) { 2891 atomic_inc(&head->node.refs); 2892 spin_unlock(&delayed_refs->lock); 2893 2894 btrfs_release_path(path); 2895 2896 /* 2897 * Mutex was contended, block until it's released and let 2898 * caller try again 2899 */ 2900 mutex_lock(&head->mutex); 2901 mutex_unlock(&head->mutex); 2902 btrfs_put_delayed_ref(&head->node); 2903 return -EAGAIN; 2904 } 2905 spin_unlock(&delayed_refs->lock); 2906 2907 spin_lock(&head->lock); 2908 node = rb_first(&head->ref_root); 2909 while (node) { 2910 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2911 node = rb_next(node); 2912 2913 /* If it's a shared ref we know a cross reference exists */ 2914 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2915 ret = 1; 2916 break; 2917 } 2918 2919 data_ref = btrfs_delayed_node_to_data_ref(ref); 2920 2921 /* 2922 * If our ref doesn't match the one we're currently looking at 2923 * then we have a cross reference. 2924 */ 2925 if (data_ref->root != root->root_key.objectid || 2926 data_ref->objectid != objectid || 2927 data_ref->offset != offset) { 2928 ret = 1; 2929 break; 2930 } 2931 } 2932 spin_unlock(&head->lock); 2933 mutex_unlock(&head->mutex); 2934 return ret; 2935 } 2936 2937 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2938 struct btrfs_root *root, 2939 struct btrfs_path *path, 2940 u64 objectid, u64 offset, u64 bytenr) 2941 { 2942 struct btrfs_root *extent_root = root->fs_info->extent_root; 2943 struct extent_buffer *leaf; 2944 struct btrfs_extent_data_ref *ref; 2945 struct btrfs_extent_inline_ref *iref; 2946 struct btrfs_extent_item *ei; 2947 struct btrfs_key key; 2948 u32 item_size; 2949 int ret; 2950 2951 key.objectid = bytenr; 2952 key.offset = (u64)-1; 2953 key.type = BTRFS_EXTENT_ITEM_KEY; 2954 2955 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2956 if (ret < 0) 2957 goto out; 2958 BUG_ON(ret == 0); /* Corruption */ 2959 2960 ret = -ENOENT; 2961 if (path->slots[0] == 0) 2962 goto out; 2963 2964 path->slots[0]--; 2965 leaf = path->nodes[0]; 2966 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2967 2968 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2969 goto out; 2970 2971 ret = 1; 2972 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2974 if (item_size < sizeof(*ei)) { 2975 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2976 goto out; 2977 } 2978 #endif 2979 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2980 2981 if (item_size != sizeof(*ei) + 2982 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2983 goto out; 2984 2985 if (btrfs_extent_generation(leaf, ei) <= 2986 btrfs_root_last_snapshot(&root->root_item)) 2987 goto out; 2988 2989 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2990 if (btrfs_extent_inline_ref_type(leaf, iref) != 2991 BTRFS_EXTENT_DATA_REF_KEY) 2992 goto out; 2993 2994 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2995 if (btrfs_extent_refs(leaf, ei) != 2996 btrfs_extent_data_ref_count(leaf, ref) || 2997 btrfs_extent_data_ref_root(leaf, ref) != 2998 root->root_key.objectid || 2999 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3000 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3001 goto out; 3002 3003 ret = 0; 3004 out: 3005 return ret; 3006 } 3007 3008 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3009 struct btrfs_root *root, 3010 u64 objectid, u64 offset, u64 bytenr) 3011 { 3012 struct btrfs_path *path; 3013 int ret; 3014 int ret2; 3015 3016 path = btrfs_alloc_path(); 3017 if (!path) 3018 return -ENOENT; 3019 3020 do { 3021 ret = check_committed_ref(trans, root, path, objectid, 3022 offset, bytenr); 3023 if (ret && ret != -ENOENT) 3024 goto out; 3025 3026 ret2 = check_delayed_ref(trans, root, path, objectid, 3027 offset, bytenr); 3028 } while (ret2 == -EAGAIN); 3029 3030 if (ret2 && ret2 != -ENOENT) { 3031 ret = ret2; 3032 goto out; 3033 } 3034 3035 if (ret != -ENOENT || ret2 != -ENOENT) 3036 ret = 0; 3037 out: 3038 btrfs_free_path(path); 3039 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3040 WARN_ON(ret > 0); 3041 return ret; 3042 } 3043 3044 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3045 struct btrfs_root *root, 3046 struct extent_buffer *buf, 3047 int full_backref, int inc) 3048 { 3049 u64 bytenr; 3050 u64 num_bytes; 3051 u64 parent; 3052 u64 ref_root; 3053 u32 nritems; 3054 struct btrfs_key key; 3055 struct btrfs_file_extent_item *fi; 3056 int i; 3057 int level; 3058 int ret = 0; 3059 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3060 u64, u64, u64, u64, u64, u64, int); 3061 3062 3063 if (btrfs_test_is_dummy_root(root)) 3064 return 0; 3065 3066 ref_root = btrfs_header_owner(buf); 3067 nritems = btrfs_header_nritems(buf); 3068 level = btrfs_header_level(buf); 3069 3070 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3071 return 0; 3072 3073 if (inc) 3074 process_func = btrfs_inc_extent_ref; 3075 else 3076 process_func = btrfs_free_extent; 3077 3078 if (full_backref) 3079 parent = buf->start; 3080 else 3081 parent = 0; 3082 3083 for (i = 0; i < nritems; i++) { 3084 if (level == 0) { 3085 btrfs_item_key_to_cpu(buf, &key, i); 3086 if (key.type != BTRFS_EXTENT_DATA_KEY) 3087 continue; 3088 fi = btrfs_item_ptr(buf, i, 3089 struct btrfs_file_extent_item); 3090 if (btrfs_file_extent_type(buf, fi) == 3091 BTRFS_FILE_EXTENT_INLINE) 3092 continue; 3093 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3094 if (bytenr == 0) 3095 continue; 3096 3097 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3098 key.offset -= btrfs_file_extent_offset(buf, fi); 3099 ret = process_func(trans, root, bytenr, num_bytes, 3100 parent, ref_root, key.objectid, 3101 key.offset, 1); 3102 if (ret) 3103 goto fail; 3104 } else { 3105 bytenr = btrfs_node_blockptr(buf, i); 3106 num_bytes = root->nodesize; 3107 ret = process_func(trans, root, bytenr, num_bytes, 3108 parent, ref_root, level - 1, 0, 3109 1); 3110 if (ret) 3111 goto fail; 3112 } 3113 } 3114 return 0; 3115 fail: 3116 return ret; 3117 } 3118 3119 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3120 struct extent_buffer *buf, int full_backref) 3121 { 3122 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3123 } 3124 3125 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3126 struct extent_buffer *buf, int full_backref) 3127 { 3128 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3129 } 3130 3131 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, 3133 struct btrfs_path *path, 3134 struct btrfs_block_group_cache *cache) 3135 { 3136 int ret; 3137 struct btrfs_root *extent_root = root->fs_info->extent_root; 3138 unsigned long bi; 3139 struct extent_buffer *leaf; 3140 3141 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3142 if (ret < 0) 3143 goto fail; 3144 BUG_ON(ret); /* Corruption */ 3145 3146 leaf = path->nodes[0]; 3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3149 btrfs_mark_buffer_dirty(leaf); 3150 btrfs_release_path(path); 3151 fail: 3152 if (ret) { 3153 btrfs_abort_transaction(trans, root, ret); 3154 return ret; 3155 } 3156 return 0; 3157 3158 } 3159 3160 static struct btrfs_block_group_cache * 3161 next_block_group(struct btrfs_root *root, 3162 struct btrfs_block_group_cache *cache) 3163 { 3164 struct rb_node *node; 3165 spin_lock(&root->fs_info->block_group_cache_lock); 3166 node = rb_next(&cache->cache_node); 3167 btrfs_put_block_group(cache); 3168 if (node) { 3169 cache = rb_entry(node, struct btrfs_block_group_cache, 3170 cache_node); 3171 btrfs_get_block_group(cache); 3172 } else 3173 cache = NULL; 3174 spin_unlock(&root->fs_info->block_group_cache_lock); 3175 return cache; 3176 } 3177 3178 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3179 struct btrfs_trans_handle *trans, 3180 struct btrfs_path *path) 3181 { 3182 struct btrfs_root *root = block_group->fs_info->tree_root; 3183 struct inode *inode = NULL; 3184 u64 alloc_hint = 0; 3185 int dcs = BTRFS_DC_ERROR; 3186 int num_pages = 0; 3187 int retries = 0; 3188 int ret = 0; 3189 3190 /* 3191 * If this block group is smaller than 100 megs don't bother caching the 3192 * block group. 3193 */ 3194 if (block_group->key.offset < (100 * 1024 * 1024)) { 3195 spin_lock(&block_group->lock); 3196 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3197 spin_unlock(&block_group->lock); 3198 return 0; 3199 } 3200 3201 again: 3202 inode = lookup_free_space_inode(root, block_group, path); 3203 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3204 ret = PTR_ERR(inode); 3205 btrfs_release_path(path); 3206 goto out; 3207 } 3208 3209 if (IS_ERR(inode)) { 3210 BUG_ON(retries); 3211 retries++; 3212 3213 if (block_group->ro) 3214 goto out_free; 3215 3216 ret = create_free_space_inode(root, trans, block_group, path); 3217 if (ret) 3218 goto out_free; 3219 goto again; 3220 } 3221 3222 /* We've already setup this transaction, go ahead and exit */ 3223 if (block_group->cache_generation == trans->transid && 3224 i_size_read(inode)) { 3225 dcs = BTRFS_DC_SETUP; 3226 goto out_put; 3227 } 3228 3229 /* 3230 * We want to set the generation to 0, that way if anything goes wrong 3231 * from here on out we know not to trust this cache when we load up next 3232 * time. 3233 */ 3234 BTRFS_I(inode)->generation = 0; 3235 ret = btrfs_update_inode(trans, root, inode); 3236 WARN_ON(ret); 3237 3238 if (i_size_read(inode) > 0) { 3239 ret = btrfs_check_trunc_cache_free_space(root, 3240 &root->fs_info->global_block_rsv); 3241 if (ret) 3242 goto out_put; 3243 3244 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3245 if (ret) 3246 goto out_put; 3247 } 3248 3249 spin_lock(&block_group->lock); 3250 if (block_group->cached != BTRFS_CACHE_FINISHED || 3251 !btrfs_test_opt(root, SPACE_CACHE) || 3252 block_group->delalloc_bytes) { 3253 /* 3254 * don't bother trying to write stuff out _if_ 3255 * a) we're not cached, 3256 * b) we're with nospace_cache mount option. 3257 */ 3258 dcs = BTRFS_DC_WRITTEN; 3259 spin_unlock(&block_group->lock); 3260 goto out_put; 3261 } 3262 spin_unlock(&block_group->lock); 3263 3264 /* 3265 * Try to preallocate enough space based on how big the block group is. 3266 * Keep in mind this has to include any pinned space which could end up 3267 * taking up quite a bit since it's not folded into the other space 3268 * cache. 3269 */ 3270 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3271 if (!num_pages) 3272 num_pages = 1; 3273 3274 num_pages *= 16; 3275 num_pages *= PAGE_CACHE_SIZE; 3276 3277 ret = btrfs_check_data_free_space(inode, num_pages); 3278 if (ret) 3279 goto out_put; 3280 3281 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3282 num_pages, num_pages, 3283 &alloc_hint); 3284 if (!ret) 3285 dcs = BTRFS_DC_SETUP; 3286 btrfs_free_reserved_data_space(inode, num_pages); 3287 3288 out_put: 3289 iput(inode); 3290 out_free: 3291 btrfs_release_path(path); 3292 out: 3293 spin_lock(&block_group->lock); 3294 if (!ret && dcs == BTRFS_DC_SETUP) 3295 block_group->cache_generation = trans->transid; 3296 block_group->disk_cache_state = dcs; 3297 spin_unlock(&block_group->lock); 3298 3299 return ret; 3300 } 3301 3302 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3303 struct btrfs_root *root) 3304 { 3305 struct btrfs_block_group_cache *cache; 3306 int err = 0; 3307 struct btrfs_path *path; 3308 u64 last = 0; 3309 3310 path = btrfs_alloc_path(); 3311 if (!path) 3312 return -ENOMEM; 3313 3314 again: 3315 while (1) { 3316 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3317 while (cache) { 3318 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3319 break; 3320 cache = next_block_group(root, cache); 3321 } 3322 if (!cache) { 3323 if (last == 0) 3324 break; 3325 last = 0; 3326 continue; 3327 } 3328 err = cache_save_setup(cache, trans, path); 3329 last = cache->key.objectid + cache->key.offset; 3330 btrfs_put_block_group(cache); 3331 } 3332 3333 while (1) { 3334 if (last == 0) { 3335 err = btrfs_run_delayed_refs(trans, root, 3336 (unsigned long)-1); 3337 if (err) /* File system offline */ 3338 goto out; 3339 } 3340 3341 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3342 while (cache) { 3343 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3344 btrfs_put_block_group(cache); 3345 goto again; 3346 } 3347 3348 if (cache->dirty) 3349 break; 3350 cache = next_block_group(root, cache); 3351 } 3352 if (!cache) { 3353 if (last == 0) 3354 break; 3355 last = 0; 3356 continue; 3357 } 3358 3359 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3360 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3361 cache->dirty = 0; 3362 last = cache->key.objectid + cache->key.offset; 3363 3364 err = write_one_cache_group(trans, root, path, cache); 3365 btrfs_put_block_group(cache); 3366 if (err) /* File system offline */ 3367 goto out; 3368 } 3369 3370 while (1) { 3371 /* 3372 * I don't think this is needed since we're just marking our 3373 * preallocated extent as written, but just in case it can't 3374 * hurt. 3375 */ 3376 if (last == 0) { 3377 err = btrfs_run_delayed_refs(trans, root, 3378 (unsigned long)-1); 3379 if (err) /* File system offline */ 3380 goto out; 3381 } 3382 3383 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3384 while (cache) { 3385 /* 3386 * Really this shouldn't happen, but it could if we 3387 * couldn't write the entire preallocated extent and 3388 * splitting the extent resulted in a new block. 3389 */ 3390 if (cache->dirty) { 3391 btrfs_put_block_group(cache); 3392 goto again; 3393 } 3394 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3395 break; 3396 cache = next_block_group(root, cache); 3397 } 3398 if (!cache) { 3399 if (last == 0) 3400 break; 3401 last = 0; 3402 continue; 3403 } 3404 3405 err = btrfs_write_out_cache(root, trans, cache, path); 3406 3407 /* 3408 * If we didn't have an error then the cache state is still 3409 * NEED_WRITE, so we can set it to WRITTEN. 3410 */ 3411 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3412 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3413 last = cache->key.objectid + cache->key.offset; 3414 btrfs_put_block_group(cache); 3415 } 3416 out: 3417 3418 btrfs_free_path(path); 3419 return err; 3420 } 3421 3422 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3423 { 3424 struct btrfs_block_group_cache *block_group; 3425 int readonly = 0; 3426 3427 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3428 if (!block_group || block_group->ro) 3429 readonly = 1; 3430 if (block_group) 3431 btrfs_put_block_group(block_group); 3432 return readonly; 3433 } 3434 3435 static const char *alloc_name(u64 flags) 3436 { 3437 switch (flags) { 3438 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3439 return "mixed"; 3440 case BTRFS_BLOCK_GROUP_METADATA: 3441 return "metadata"; 3442 case BTRFS_BLOCK_GROUP_DATA: 3443 return "data"; 3444 case BTRFS_BLOCK_GROUP_SYSTEM: 3445 return "system"; 3446 default: 3447 WARN_ON(1); 3448 return "invalid-combination"; 3449 }; 3450 } 3451 3452 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3453 u64 total_bytes, u64 bytes_used, 3454 struct btrfs_space_info **space_info) 3455 { 3456 struct btrfs_space_info *found; 3457 int i; 3458 int factor; 3459 int ret; 3460 3461 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3462 BTRFS_BLOCK_GROUP_RAID10)) 3463 factor = 2; 3464 else 3465 factor = 1; 3466 3467 found = __find_space_info(info, flags); 3468 if (found) { 3469 spin_lock(&found->lock); 3470 found->total_bytes += total_bytes; 3471 found->disk_total += total_bytes * factor; 3472 found->bytes_used += bytes_used; 3473 found->disk_used += bytes_used * factor; 3474 found->full = 0; 3475 spin_unlock(&found->lock); 3476 *space_info = found; 3477 return 0; 3478 } 3479 found = kzalloc(sizeof(*found), GFP_NOFS); 3480 if (!found) 3481 return -ENOMEM; 3482 3483 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3484 if (ret) { 3485 kfree(found); 3486 return ret; 3487 } 3488 3489 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3490 INIT_LIST_HEAD(&found->block_groups[i]); 3491 init_rwsem(&found->groups_sem); 3492 spin_lock_init(&found->lock); 3493 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3494 found->total_bytes = total_bytes; 3495 found->disk_total = total_bytes * factor; 3496 found->bytes_used = bytes_used; 3497 found->disk_used = bytes_used * factor; 3498 found->bytes_pinned = 0; 3499 found->bytes_reserved = 0; 3500 found->bytes_readonly = 0; 3501 found->bytes_may_use = 0; 3502 found->full = 0; 3503 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3504 found->chunk_alloc = 0; 3505 found->flush = 0; 3506 init_waitqueue_head(&found->wait); 3507 3508 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3509 info->space_info_kobj, "%s", 3510 alloc_name(found->flags)); 3511 if (ret) { 3512 kfree(found); 3513 return ret; 3514 } 3515 3516 *space_info = found; 3517 list_add_rcu(&found->list, &info->space_info); 3518 if (flags & BTRFS_BLOCK_GROUP_DATA) 3519 info->data_sinfo = found; 3520 3521 return ret; 3522 } 3523 3524 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3525 { 3526 u64 extra_flags = chunk_to_extended(flags) & 3527 BTRFS_EXTENDED_PROFILE_MASK; 3528 3529 write_seqlock(&fs_info->profiles_lock); 3530 if (flags & BTRFS_BLOCK_GROUP_DATA) 3531 fs_info->avail_data_alloc_bits |= extra_flags; 3532 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3533 fs_info->avail_metadata_alloc_bits |= extra_flags; 3534 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3535 fs_info->avail_system_alloc_bits |= extra_flags; 3536 write_sequnlock(&fs_info->profiles_lock); 3537 } 3538 3539 /* 3540 * returns target flags in extended format or 0 if restripe for this 3541 * chunk_type is not in progress 3542 * 3543 * should be called with either volume_mutex or balance_lock held 3544 */ 3545 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3546 { 3547 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3548 u64 target = 0; 3549 3550 if (!bctl) 3551 return 0; 3552 3553 if (flags & BTRFS_BLOCK_GROUP_DATA && 3554 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3555 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3556 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3557 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3558 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3559 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3560 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3561 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3562 } 3563 3564 return target; 3565 } 3566 3567 /* 3568 * @flags: available profiles in extended format (see ctree.h) 3569 * 3570 * Returns reduced profile in chunk format. If profile changing is in 3571 * progress (either running or paused) picks the target profile (if it's 3572 * already available), otherwise falls back to plain reducing. 3573 */ 3574 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3575 { 3576 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3577 u64 target; 3578 u64 tmp; 3579 3580 /* 3581 * see if restripe for this chunk_type is in progress, if so 3582 * try to reduce to the target profile 3583 */ 3584 spin_lock(&root->fs_info->balance_lock); 3585 target = get_restripe_target(root->fs_info, flags); 3586 if (target) { 3587 /* pick target profile only if it's already available */ 3588 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3589 spin_unlock(&root->fs_info->balance_lock); 3590 return extended_to_chunk(target); 3591 } 3592 } 3593 spin_unlock(&root->fs_info->balance_lock); 3594 3595 /* First, mask out the RAID levels which aren't possible */ 3596 if (num_devices == 1) 3597 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3598 BTRFS_BLOCK_GROUP_RAID5); 3599 if (num_devices < 3) 3600 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3601 if (num_devices < 4) 3602 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3603 3604 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3605 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3606 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3607 flags &= ~tmp; 3608 3609 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3610 tmp = BTRFS_BLOCK_GROUP_RAID6; 3611 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3612 tmp = BTRFS_BLOCK_GROUP_RAID5; 3613 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3614 tmp = BTRFS_BLOCK_GROUP_RAID10; 3615 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3616 tmp = BTRFS_BLOCK_GROUP_RAID1; 3617 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3618 tmp = BTRFS_BLOCK_GROUP_RAID0; 3619 3620 return extended_to_chunk(flags | tmp); 3621 } 3622 3623 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3624 { 3625 unsigned seq; 3626 u64 flags; 3627 3628 do { 3629 flags = orig_flags; 3630 seq = read_seqbegin(&root->fs_info->profiles_lock); 3631 3632 if (flags & BTRFS_BLOCK_GROUP_DATA) 3633 flags |= root->fs_info->avail_data_alloc_bits; 3634 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3635 flags |= root->fs_info->avail_system_alloc_bits; 3636 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3637 flags |= root->fs_info->avail_metadata_alloc_bits; 3638 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3639 3640 return btrfs_reduce_alloc_profile(root, flags); 3641 } 3642 3643 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3644 { 3645 u64 flags; 3646 u64 ret; 3647 3648 if (data) 3649 flags = BTRFS_BLOCK_GROUP_DATA; 3650 else if (root == root->fs_info->chunk_root) 3651 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3652 else 3653 flags = BTRFS_BLOCK_GROUP_METADATA; 3654 3655 ret = get_alloc_profile(root, flags); 3656 return ret; 3657 } 3658 3659 /* 3660 * This will check the space that the inode allocates from to make sure we have 3661 * enough space for bytes. 3662 */ 3663 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3664 { 3665 struct btrfs_space_info *data_sinfo; 3666 struct btrfs_root *root = BTRFS_I(inode)->root; 3667 struct btrfs_fs_info *fs_info = root->fs_info; 3668 u64 used; 3669 int ret = 0, committed = 0, alloc_chunk = 1; 3670 3671 /* make sure bytes are sectorsize aligned */ 3672 bytes = ALIGN(bytes, root->sectorsize); 3673 3674 if (btrfs_is_free_space_inode(inode)) { 3675 committed = 1; 3676 ASSERT(current->journal_info); 3677 } 3678 3679 data_sinfo = fs_info->data_sinfo; 3680 if (!data_sinfo) 3681 goto alloc; 3682 3683 again: 3684 /* make sure we have enough space to handle the data first */ 3685 spin_lock(&data_sinfo->lock); 3686 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3687 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3688 data_sinfo->bytes_may_use; 3689 3690 if (used + bytes > data_sinfo->total_bytes) { 3691 struct btrfs_trans_handle *trans; 3692 3693 /* 3694 * if we don't have enough free bytes in this space then we need 3695 * to alloc a new chunk. 3696 */ 3697 if (!data_sinfo->full && alloc_chunk) { 3698 u64 alloc_target; 3699 3700 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3701 spin_unlock(&data_sinfo->lock); 3702 alloc: 3703 alloc_target = btrfs_get_alloc_profile(root, 1); 3704 /* 3705 * It is ugly that we don't call nolock join 3706 * transaction for the free space inode case here. 3707 * But it is safe because we only do the data space 3708 * reservation for the free space cache in the 3709 * transaction context, the common join transaction 3710 * just increase the counter of the current transaction 3711 * handler, doesn't try to acquire the trans_lock of 3712 * the fs. 3713 */ 3714 trans = btrfs_join_transaction(root); 3715 if (IS_ERR(trans)) 3716 return PTR_ERR(trans); 3717 3718 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3719 alloc_target, 3720 CHUNK_ALLOC_NO_FORCE); 3721 btrfs_end_transaction(trans, root); 3722 if (ret < 0) { 3723 if (ret != -ENOSPC) 3724 return ret; 3725 else 3726 goto commit_trans; 3727 } 3728 3729 if (!data_sinfo) 3730 data_sinfo = fs_info->data_sinfo; 3731 3732 goto again; 3733 } 3734 3735 /* 3736 * If we don't have enough pinned space to deal with this 3737 * allocation don't bother committing the transaction. 3738 */ 3739 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3740 bytes) < 0) 3741 committed = 1; 3742 spin_unlock(&data_sinfo->lock); 3743 3744 /* commit the current transaction and try again */ 3745 commit_trans: 3746 if (!committed && 3747 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3748 committed = 1; 3749 3750 trans = btrfs_join_transaction(root); 3751 if (IS_ERR(trans)) 3752 return PTR_ERR(trans); 3753 ret = btrfs_commit_transaction(trans, root); 3754 if (ret) 3755 return ret; 3756 goto again; 3757 } 3758 3759 trace_btrfs_space_reservation(root->fs_info, 3760 "space_info:enospc", 3761 data_sinfo->flags, bytes, 1); 3762 return -ENOSPC; 3763 } 3764 data_sinfo->bytes_may_use += bytes; 3765 trace_btrfs_space_reservation(root->fs_info, "space_info", 3766 data_sinfo->flags, bytes, 1); 3767 spin_unlock(&data_sinfo->lock); 3768 3769 return 0; 3770 } 3771 3772 /* 3773 * Called if we need to clear a data reservation for this inode. 3774 */ 3775 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3776 { 3777 struct btrfs_root *root = BTRFS_I(inode)->root; 3778 struct btrfs_space_info *data_sinfo; 3779 3780 /* make sure bytes are sectorsize aligned */ 3781 bytes = ALIGN(bytes, root->sectorsize); 3782 3783 data_sinfo = root->fs_info->data_sinfo; 3784 spin_lock(&data_sinfo->lock); 3785 WARN_ON(data_sinfo->bytes_may_use < bytes); 3786 data_sinfo->bytes_may_use -= bytes; 3787 trace_btrfs_space_reservation(root->fs_info, "space_info", 3788 data_sinfo->flags, bytes, 0); 3789 spin_unlock(&data_sinfo->lock); 3790 } 3791 3792 static void force_metadata_allocation(struct btrfs_fs_info *info) 3793 { 3794 struct list_head *head = &info->space_info; 3795 struct btrfs_space_info *found; 3796 3797 rcu_read_lock(); 3798 list_for_each_entry_rcu(found, head, list) { 3799 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3800 found->force_alloc = CHUNK_ALLOC_FORCE; 3801 } 3802 rcu_read_unlock(); 3803 } 3804 3805 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3806 { 3807 return (global->size << 1); 3808 } 3809 3810 static int should_alloc_chunk(struct btrfs_root *root, 3811 struct btrfs_space_info *sinfo, int force) 3812 { 3813 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3814 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3815 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3816 u64 thresh; 3817 3818 if (force == CHUNK_ALLOC_FORCE) 3819 return 1; 3820 3821 /* 3822 * We need to take into account the global rsv because for all intents 3823 * and purposes it's used space. Don't worry about locking the 3824 * global_rsv, it doesn't change except when the transaction commits. 3825 */ 3826 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3827 num_allocated += calc_global_rsv_need_space(global_rsv); 3828 3829 /* 3830 * in limited mode, we want to have some free space up to 3831 * about 1% of the FS size. 3832 */ 3833 if (force == CHUNK_ALLOC_LIMITED) { 3834 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3835 thresh = max_t(u64, 64 * 1024 * 1024, 3836 div_factor_fine(thresh, 1)); 3837 3838 if (num_bytes - num_allocated < thresh) 3839 return 1; 3840 } 3841 3842 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3843 return 0; 3844 return 1; 3845 } 3846 3847 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3848 { 3849 u64 num_dev; 3850 3851 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3852 BTRFS_BLOCK_GROUP_RAID0 | 3853 BTRFS_BLOCK_GROUP_RAID5 | 3854 BTRFS_BLOCK_GROUP_RAID6)) 3855 num_dev = root->fs_info->fs_devices->rw_devices; 3856 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3857 num_dev = 2; 3858 else 3859 num_dev = 1; /* DUP or single */ 3860 3861 /* metadata for updaing devices and chunk tree */ 3862 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3863 } 3864 3865 static void check_system_chunk(struct btrfs_trans_handle *trans, 3866 struct btrfs_root *root, u64 type) 3867 { 3868 struct btrfs_space_info *info; 3869 u64 left; 3870 u64 thresh; 3871 3872 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3873 spin_lock(&info->lock); 3874 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3875 info->bytes_reserved - info->bytes_readonly; 3876 spin_unlock(&info->lock); 3877 3878 thresh = get_system_chunk_thresh(root, type); 3879 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3880 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3881 left, thresh, type); 3882 dump_space_info(info, 0, 0); 3883 } 3884 3885 if (left < thresh) { 3886 u64 flags; 3887 3888 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3889 btrfs_alloc_chunk(trans, root, flags); 3890 } 3891 } 3892 3893 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3894 struct btrfs_root *extent_root, u64 flags, int force) 3895 { 3896 struct btrfs_space_info *space_info; 3897 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3898 int wait_for_alloc = 0; 3899 int ret = 0; 3900 3901 /* Don't re-enter if we're already allocating a chunk */ 3902 if (trans->allocating_chunk) 3903 return -ENOSPC; 3904 3905 space_info = __find_space_info(extent_root->fs_info, flags); 3906 if (!space_info) { 3907 ret = update_space_info(extent_root->fs_info, flags, 3908 0, 0, &space_info); 3909 BUG_ON(ret); /* -ENOMEM */ 3910 } 3911 BUG_ON(!space_info); /* Logic error */ 3912 3913 again: 3914 spin_lock(&space_info->lock); 3915 if (force < space_info->force_alloc) 3916 force = space_info->force_alloc; 3917 if (space_info->full) { 3918 if (should_alloc_chunk(extent_root, space_info, force)) 3919 ret = -ENOSPC; 3920 else 3921 ret = 0; 3922 spin_unlock(&space_info->lock); 3923 return ret; 3924 } 3925 3926 if (!should_alloc_chunk(extent_root, space_info, force)) { 3927 spin_unlock(&space_info->lock); 3928 return 0; 3929 } else if (space_info->chunk_alloc) { 3930 wait_for_alloc = 1; 3931 } else { 3932 space_info->chunk_alloc = 1; 3933 } 3934 3935 spin_unlock(&space_info->lock); 3936 3937 mutex_lock(&fs_info->chunk_mutex); 3938 3939 /* 3940 * The chunk_mutex is held throughout the entirety of a chunk 3941 * allocation, so once we've acquired the chunk_mutex we know that the 3942 * other guy is done and we need to recheck and see if we should 3943 * allocate. 3944 */ 3945 if (wait_for_alloc) { 3946 mutex_unlock(&fs_info->chunk_mutex); 3947 wait_for_alloc = 0; 3948 goto again; 3949 } 3950 3951 trans->allocating_chunk = true; 3952 3953 /* 3954 * If we have mixed data/metadata chunks we want to make sure we keep 3955 * allocating mixed chunks instead of individual chunks. 3956 */ 3957 if (btrfs_mixed_space_info(space_info)) 3958 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3959 3960 /* 3961 * if we're doing a data chunk, go ahead and make sure that 3962 * we keep a reasonable number of metadata chunks allocated in the 3963 * FS as well. 3964 */ 3965 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3966 fs_info->data_chunk_allocations++; 3967 if (!(fs_info->data_chunk_allocations % 3968 fs_info->metadata_ratio)) 3969 force_metadata_allocation(fs_info); 3970 } 3971 3972 /* 3973 * Check if we have enough space in SYSTEM chunk because we may need 3974 * to update devices. 3975 */ 3976 check_system_chunk(trans, extent_root, flags); 3977 3978 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3979 trans->allocating_chunk = false; 3980 3981 spin_lock(&space_info->lock); 3982 if (ret < 0 && ret != -ENOSPC) 3983 goto out; 3984 if (ret) 3985 space_info->full = 1; 3986 else 3987 ret = 1; 3988 3989 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3990 out: 3991 space_info->chunk_alloc = 0; 3992 spin_unlock(&space_info->lock); 3993 mutex_unlock(&fs_info->chunk_mutex); 3994 return ret; 3995 } 3996 3997 static int can_overcommit(struct btrfs_root *root, 3998 struct btrfs_space_info *space_info, u64 bytes, 3999 enum btrfs_reserve_flush_enum flush) 4000 { 4001 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4002 u64 profile = btrfs_get_alloc_profile(root, 0); 4003 u64 space_size; 4004 u64 avail; 4005 u64 used; 4006 4007 used = space_info->bytes_used + space_info->bytes_reserved + 4008 space_info->bytes_pinned + space_info->bytes_readonly; 4009 4010 /* 4011 * We only want to allow over committing if we have lots of actual space 4012 * free, but if we don't have enough space to handle the global reserve 4013 * space then we could end up having a real enospc problem when trying 4014 * to allocate a chunk or some other such important allocation. 4015 */ 4016 spin_lock(&global_rsv->lock); 4017 space_size = calc_global_rsv_need_space(global_rsv); 4018 spin_unlock(&global_rsv->lock); 4019 if (used + space_size >= space_info->total_bytes) 4020 return 0; 4021 4022 used += space_info->bytes_may_use; 4023 4024 spin_lock(&root->fs_info->free_chunk_lock); 4025 avail = root->fs_info->free_chunk_space; 4026 spin_unlock(&root->fs_info->free_chunk_lock); 4027 4028 /* 4029 * If we have dup, raid1 or raid10 then only half of the free 4030 * space is actually useable. For raid56, the space info used 4031 * doesn't include the parity drive, so we don't have to 4032 * change the math 4033 */ 4034 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4035 BTRFS_BLOCK_GROUP_RAID1 | 4036 BTRFS_BLOCK_GROUP_RAID10)) 4037 avail >>= 1; 4038 4039 /* 4040 * If we aren't flushing all things, let us overcommit up to 4041 * 1/2th of the space. If we can flush, don't let us overcommit 4042 * too much, let it overcommit up to 1/8 of the space. 4043 */ 4044 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4045 avail >>= 3; 4046 else 4047 avail >>= 1; 4048 4049 if (used + bytes < space_info->total_bytes + avail) 4050 return 1; 4051 return 0; 4052 } 4053 4054 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4055 unsigned long nr_pages, int nr_items) 4056 { 4057 struct super_block *sb = root->fs_info->sb; 4058 4059 if (down_read_trylock(&sb->s_umount)) { 4060 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4061 up_read(&sb->s_umount); 4062 } else { 4063 /* 4064 * We needn't worry the filesystem going from r/w to r/o though 4065 * we don't acquire ->s_umount mutex, because the filesystem 4066 * should guarantee the delalloc inodes list be empty after 4067 * the filesystem is readonly(all dirty pages are written to 4068 * the disk). 4069 */ 4070 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4071 if (!current->journal_info) 4072 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4073 } 4074 } 4075 4076 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4077 { 4078 u64 bytes; 4079 int nr; 4080 4081 bytes = btrfs_calc_trans_metadata_size(root, 1); 4082 nr = (int)div64_u64(to_reclaim, bytes); 4083 if (!nr) 4084 nr = 1; 4085 return nr; 4086 } 4087 4088 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4089 4090 /* 4091 * shrink metadata reservation for delalloc 4092 */ 4093 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4094 bool wait_ordered) 4095 { 4096 struct btrfs_block_rsv *block_rsv; 4097 struct btrfs_space_info *space_info; 4098 struct btrfs_trans_handle *trans; 4099 u64 delalloc_bytes; 4100 u64 max_reclaim; 4101 long time_left; 4102 unsigned long nr_pages; 4103 int loops; 4104 int items; 4105 enum btrfs_reserve_flush_enum flush; 4106 4107 /* Calc the number of the pages we need flush for space reservation */ 4108 items = calc_reclaim_items_nr(root, to_reclaim); 4109 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4110 4111 trans = (struct btrfs_trans_handle *)current->journal_info; 4112 block_rsv = &root->fs_info->delalloc_block_rsv; 4113 space_info = block_rsv->space_info; 4114 4115 delalloc_bytes = percpu_counter_sum_positive( 4116 &root->fs_info->delalloc_bytes); 4117 if (delalloc_bytes == 0) { 4118 if (trans) 4119 return; 4120 if (wait_ordered) 4121 btrfs_wait_ordered_roots(root->fs_info, items); 4122 return; 4123 } 4124 4125 loops = 0; 4126 while (delalloc_bytes && loops < 3) { 4127 max_reclaim = min(delalloc_bytes, to_reclaim); 4128 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4129 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4130 /* 4131 * We need to wait for the async pages to actually start before 4132 * we do anything. 4133 */ 4134 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4135 if (!max_reclaim) 4136 goto skip_async; 4137 4138 if (max_reclaim <= nr_pages) 4139 max_reclaim = 0; 4140 else 4141 max_reclaim -= nr_pages; 4142 4143 wait_event(root->fs_info->async_submit_wait, 4144 atomic_read(&root->fs_info->async_delalloc_pages) <= 4145 (int)max_reclaim); 4146 skip_async: 4147 if (!trans) 4148 flush = BTRFS_RESERVE_FLUSH_ALL; 4149 else 4150 flush = BTRFS_RESERVE_NO_FLUSH; 4151 spin_lock(&space_info->lock); 4152 if (can_overcommit(root, space_info, orig, flush)) { 4153 spin_unlock(&space_info->lock); 4154 break; 4155 } 4156 spin_unlock(&space_info->lock); 4157 4158 loops++; 4159 if (wait_ordered && !trans) { 4160 btrfs_wait_ordered_roots(root->fs_info, items); 4161 } else { 4162 time_left = schedule_timeout_killable(1); 4163 if (time_left) 4164 break; 4165 } 4166 delalloc_bytes = percpu_counter_sum_positive( 4167 &root->fs_info->delalloc_bytes); 4168 } 4169 } 4170 4171 /** 4172 * maybe_commit_transaction - possibly commit the transaction if its ok to 4173 * @root - the root we're allocating for 4174 * @bytes - the number of bytes we want to reserve 4175 * @force - force the commit 4176 * 4177 * This will check to make sure that committing the transaction will actually 4178 * get us somewhere and then commit the transaction if it does. Otherwise it 4179 * will return -ENOSPC. 4180 */ 4181 static int may_commit_transaction(struct btrfs_root *root, 4182 struct btrfs_space_info *space_info, 4183 u64 bytes, int force) 4184 { 4185 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4186 struct btrfs_trans_handle *trans; 4187 4188 trans = (struct btrfs_trans_handle *)current->journal_info; 4189 if (trans) 4190 return -EAGAIN; 4191 4192 if (force) 4193 goto commit; 4194 4195 /* See if there is enough pinned space to make this reservation */ 4196 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4197 bytes) >= 0) 4198 goto commit; 4199 4200 /* 4201 * See if there is some space in the delayed insertion reservation for 4202 * this reservation. 4203 */ 4204 if (space_info != delayed_rsv->space_info) 4205 return -ENOSPC; 4206 4207 spin_lock(&delayed_rsv->lock); 4208 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4209 bytes - delayed_rsv->size) >= 0) { 4210 spin_unlock(&delayed_rsv->lock); 4211 return -ENOSPC; 4212 } 4213 spin_unlock(&delayed_rsv->lock); 4214 4215 commit: 4216 trans = btrfs_join_transaction(root); 4217 if (IS_ERR(trans)) 4218 return -ENOSPC; 4219 4220 return btrfs_commit_transaction(trans, root); 4221 } 4222 4223 enum flush_state { 4224 FLUSH_DELAYED_ITEMS_NR = 1, 4225 FLUSH_DELAYED_ITEMS = 2, 4226 FLUSH_DELALLOC = 3, 4227 FLUSH_DELALLOC_WAIT = 4, 4228 ALLOC_CHUNK = 5, 4229 COMMIT_TRANS = 6, 4230 }; 4231 4232 static int flush_space(struct btrfs_root *root, 4233 struct btrfs_space_info *space_info, u64 num_bytes, 4234 u64 orig_bytes, int state) 4235 { 4236 struct btrfs_trans_handle *trans; 4237 int nr; 4238 int ret = 0; 4239 4240 switch (state) { 4241 case FLUSH_DELAYED_ITEMS_NR: 4242 case FLUSH_DELAYED_ITEMS: 4243 if (state == FLUSH_DELAYED_ITEMS_NR) 4244 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4245 else 4246 nr = -1; 4247 4248 trans = btrfs_join_transaction(root); 4249 if (IS_ERR(trans)) { 4250 ret = PTR_ERR(trans); 4251 break; 4252 } 4253 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4254 btrfs_end_transaction(trans, root); 4255 break; 4256 case FLUSH_DELALLOC: 4257 case FLUSH_DELALLOC_WAIT: 4258 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4259 state == FLUSH_DELALLOC_WAIT); 4260 break; 4261 case ALLOC_CHUNK: 4262 trans = btrfs_join_transaction(root); 4263 if (IS_ERR(trans)) { 4264 ret = PTR_ERR(trans); 4265 break; 4266 } 4267 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4268 btrfs_get_alloc_profile(root, 0), 4269 CHUNK_ALLOC_NO_FORCE); 4270 btrfs_end_transaction(trans, root); 4271 if (ret == -ENOSPC) 4272 ret = 0; 4273 break; 4274 case COMMIT_TRANS: 4275 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4276 break; 4277 default: 4278 ret = -ENOSPC; 4279 break; 4280 } 4281 4282 return ret; 4283 } 4284 4285 static inline u64 4286 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4287 struct btrfs_space_info *space_info) 4288 { 4289 u64 used; 4290 u64 expected; 4291 u64 to_reclaim; 4292 4293 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4294 16 * 1024 * 1024); 4295 spin_lock(&space_info->lock); 4296 if (can_overcommit(root, space_info, to_reclaim, 4297 BTRFS_RESERVE_FLUSH_ALL)) { 4298 to_reclaim = 0; 4299 goto out; 4300 } 4301 4302 used = space_info->bytes_used + space_info->bytes_reserved + 4303 space_info->bytes_pinned + space_info->bytes_readonly + 4304 space_info->bytes_may_use; 4305 if (can_overcommit(root, space_info, 1024 * 1024, 4306 BTRFS_RESERVE_FLUSH_ALL)) 4307 expected = div_factor_fine(space_info->total_bytes, 95); 4308 else 4309 expected = div_factor_fine(space_info->total_bytes, 90); 4310 4311 if (used > expected) 4312 to_reclaim = used - expected; 4313 else 4314 to_reclaim = 0; 4315 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4316 space_info->bytes_reserved); 4317 out: 4318 spin_unlock(&space_info->lock); 4319 4320 return to_reclaim; 4321 } 4322 4323 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4324 struct btrfs_fs_info *fs_info, u64 used) 4325 { 4326 return (used >= div_factor_fine(space_info->total_bytes, 98) && 4327 !btrfs_fs_closing(fs_info) && 4328 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4329 } 4330 4331 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4332 struct btrfs_fs_info *fs_info, 4333 int flush_state) 4334 { 4335 u64 used; 4336 4337 spin_lock(&space_info->lock); 4338 /* 4339 * We run out of space and have not got any free space via flush_space, 4340 * so don't bother doing async reclaim. 4341 */ 4342 if (flush_state > COMMIT_TRANS && space_info->full) { 4343 spin_unlock(&space_info->lock); 4344 return 0; 4345 } 4346 4347 used = space_info->bytes_used + space_info->bytes_reserved + 4348 space_info->bytes_pinned + space_info->bytes_readonly + 4349 space_info->bytes_may_use; 4350 if (need_do_async_reclaim(space_info, fs_info, used)) { 4351 spin_unlock(&space_info->lock); 4352 return 1; 4353 } 4354 spin_unlock(&space_info->lock); 4355 4356 return 0; 4357 } 4358 4359 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4360 { 4361 struct btrfs_fs_info *fs_info; 4362 struct btrfs_space_info *space_info; 4363 u64 to_reclaim; 4364 int flush_state; 4365 4366 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4367 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4368 4369 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4370 space_info); 4371 if (!to_reclaim) 4372 return; 4373 4374 flush_state = FLUSH_DELAYED_ITEMS_NR; 4375 do { 4376 flush_space(fs_info->fs_root, space_info, to_reclaim, 4377 to_reclaim, flush_state); 4378 flush_state++; 4379 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4380 flush_state)) 4381 return; 4382 } while (flush_state <= COMMIT_TRANS); 4383 4384 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state)) 4385 queue_work(system_unbound_wq, work); 4386 } 4387 4388 void btrfs_init_async_reclaim_work(struct work_struct *work) 4389 { 4390 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4391 } 4392 4393 /** 4394 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4395 * @root - the root we're allocating for 4396 * @block_rsv - the block_rsv we're allocating for 4397 * @orig_bytes - the number of bytes we want 4398 * @flush - whether or not we can flush to make our reservation 4399 * 4400 * This will reserve orgi_bytes number of bytes from the space info associated 4401 * with the block_rsv. If there is not enough space it will make an attempt to 4402 * flush out space to make room. It will do this by flushing delalloc if 4403 * possible or committing the transaction. If flush is 0 then no attempts to 4404 * regain reservations will be made and this will fail if there is not enough 4405 * space already. 4406 */ 4407 static int reserve_metadata_bytes(struct btrfs_root *root, 4408 struct btrfs_block_rsv *block_rsv, 4409 u64 orig_bytes, 4410 enum btrfs_reserve_flush_enum flush) 4411 { 4412 struct btrfs_space_info *space_info = block_rsv->space_info; 4413 u64 used; 4414 u64 num_bytes = orig_bytes; 4415 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4416 int ret = 0; 4417 bool flushing = false; 4418 4419 again: 4420 ret = 0; 4421 spin_lock(&space_info->lock); 4422 /* 4423 * We only want to wait if somebody other than us is flushing and we 4424 * are actually allowed to flush all things. 4425 */ 4426 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4427 space_info->flush) { 4428 spin_unlock(&space_info->lock); 4429 /* 4430 * If we have a trans handle we can't wait because the flusher 4431 * may have to commit the transaction, which would mean we would 4432 * deadlock since we are waiting for the flusher to finish, but 4433 * hold the current transaction open. 4434 */ 4435 if (current->journal_info) 4436 return -EAGAIN; 4437 ret = wait_event_killable(space_info->wait, !space_info->flush); 4438 /* Must have been killed, return */ 4439 if (ret) 4440 return -EINTR; 4441 4442 spin_lock(&space_info->lock); 4443 } 4444 4445 ret = -ENOSPC; 4446 used = space_info->bytes_used + space_info->bytes_reserved + 4447 space_info->bytes_pinned + space_info->bytes_readonly + 4448 space_info->bytes_may_use; 4449 4450 /* 4451 * The idea here is that we've not already over-reserved the block group 4452 * then we can go ahead and save our reservation first and then start 4453 * flushing if we need to. Otherwise if we've already overcommitted 4454 * lets start flushing stuff first and then come back and try to make 4455 * our reservation. 4456 */ 4457 if (used <= space_info->total_bytes) { 4458 if (used + orig_bytes <= space_info->total_bytes) { 4459 space_info->bytes_may_use += orig_bytes; 4460 trace_btrfs_space_reservation(root->fs_info, 4461 "space_info", space_info->flags, orig_bytes, 1); 4462 ret = 0; 4463 } else { 4464 /* 4465 * Ok set num_bytes to orig_bytes since we aren't 4466 * overocmmitted, this way we only try and reclaim what 4467 * we need. 4468 */ 4469 num_bytes = orig_bytes; 4470 } 4471 } else { 4472 /* 4473 * Ok we're over committed, set num_bytes to the overcommitted 4474 * amount plus the amount of bytes that we need for this 4475 * reservation. 4476 */ 4477 num_bytes = used - space_info->total_bytes + 4478 (orig_bytes * 2); 4479 } 4480 4481 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4482 space_info->bytes_may_use += orig_bytes; 4483 trace_btrfs_space_reservation(root->fs_info, "space_info", 4484 space_info->flags, orig_bytes, 4485 1); 4486 ret = 0; 4487 } 4488 4489 /* 4490 * Couldn't make our reservation, save our place so while we're trying 4491 * to reclaim space we can actually use it instead of somebody else 4492 * stealing it from us. 4493 * 4494 * We make the other tasks wait for the flush only when we can flush 4495 * all things. 4496 */ 4497 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4498 flushing = true; 4499 space_info->flush = 1; 4500 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4501 used += orig_bytes; 4502 /* 4503 * We will do the space reservation dance during log replay, 4504 * which means we won't have fs_info->fs_root set, so don't do 4505 * the async reclaim as we will panic. 4506 */ 4507 if (!root->fs_info->log_root_recovering && 4508 need_do_async_reclaim(space_info, root->fs_info, used) && 4509 !work_busy(&root->fs_info->async_reclaim_work)) 4510 queue_work(system_unbound_wq, 4511 &root->fs_info->async_reclaim_work); 4512 } 4513 spin_unlock(&space_info->lock); 4514 4515 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4516 goto out; 4517 4518 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4519 flush_state); 4520 flush_state++; 4521 4522 /* 4523 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4524 * would happen. So skip delalloc flush. 4525 */ 4526 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4527 (flush_state == FLUSH_DELALLOC || 4528 flush_state == FLUSH_DELALLOC_WAIT)) 4529 flush_state = ALLOC_CHUNK; 4530 4531 if (!ret) 4532 goto again; 4533 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4534 flush_state < COMMIT_TRANS) 4535 goto again; 4536 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4537 flush_state <= COMMIT_TRANS) 4538 goto again; 4539 4540 out: 4541 if (ret == -ENOSPC && 4542 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4543 struct btrfs_block_rsv *global_rsv = 4544 &root->fs_info->global_block_rsv; 4545 4546 if (block_rsv != global_rsv && 4547 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4548 ret = 0; 4549 } 4550 if (ret == -ENOSPC) 4551 trace_btrfs_space_reservation(root->fs_info, 4552 "space_info:enospc", 4553 space_info->flags, orig_bytes, 1); 4554 if (flushing) { 4555 spin_lock(&space_info->lock); 4556 space_info->flush = 0; 4557 wake_up_all(&space_info->wait); 4558 spin_unlock(&space_info->lock); 4559 } 4560 return ret; 4561 } 4562 4563 static struct btrfs_block_rsv *get_block_rsv( 4564 const struct btrfs_trans_handle *trans, 4565 const struct btrfs_root *root) 4566 { 4567 struct btrfs_block_rsv *block_rsv = NULL; 4568 4569 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4570 block_rsv = trans->block_rsv; 4571 4572 if (root == root->fs_info->csum_root && trans->adding_csums) 4573 block_rsv = trans->block_rsv; 4574 4575 if (root == root->fs_info->uuid_root) 4576 block_rsv = trans->block_rsv; 4577 4578 if (!block_rsv) 4579 block_rsv = root->block_rsv; 4580 4581 if (!block_rsv) 4582 block_rsv = &root->fs_info->empty_block_rsv; 4583 4584 return block_rsv; 4585 } 4586 4587 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4588 u64 num_bytes) 4589 { 4590 int ret = -ENOSPC; 4591 spin_lock(&block_rsv->lock); 4592 if (block_rsv->reserved >= num_bytes) { 4593 block_rsv->reserved -= num_bytes; 4594 if (block_rsv->reserved < block_rsv->size) 4595 block_rsv->full = 0; 4596 ret = 0; 4597 } 4598 spin_unlock(&block_rsv->lock); 4599 return ret; 4600 } 4601 4602 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4603 u64 num_bytes, int update_size) 4604 { 4605 spin_lock(&block_rsv->lock); 4606 block_rsv->reserved += num_bytes; 4607 if (update_size) 4608 block_rsv->size += num_bytes; 4609 else if (block_rsv->reserved >= block_rsv->size) 4610 block_rsv->full = 1; 4611 spin_unlock(&block_rsv->lock); 4612 } 4613 4614 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4615 struct btrfs_block_rsv *dest, u64 num_bytes, 4616 int min_factor) 4617 { 4618 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4619 u64 min_bytes; 4620 4621 if (global_rsv->space_info != dest->space_info) 4622 return -ENOSPC; 4623 4624 spin_lock(&global_rsv->lock); 4625 min_bytes = div_factor(global_rsv->size, min_factor); 4626 if (global_rsv->reserved < min_bytes + num_bytes) { 4627 spin_unlock(&global_rsv->lock); 4628 return -ENOSPC; 4629 } 4630 global_rsv->reserved -= num_bytes; 4631 if (global_rsv->reserved < global_rsv->size) 4632 global_rsv->full = 0; 4633 spin_unlock(&global_rsv->lock); 4634 4635 block_rsv_add_bytes(dest, num_bytes, 1); 4636 return 0; 4637 } 4638 4639 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4640 struct btrfs_block_rsv *block_rsv, 4641 struct btrfs_block_rsv *dest, u64 num_bytes) 4642 { 4643 struct btrfs_space_info *space_info = block_rsv->space_info; 4644 4645 spin_lock(&block_rsv->lock); 4646 if (num_bytes == (u64)-1) 4647 num_bytes = block_rsv->size; 4648 block_rsv->size -= num_bytes; 4649 if (block_rsv->reserved >= block_rsv->size) { 4650 num_bytes = block_rsv->reserved - block_rsv->size; 4651 block_rsv->reserved = block_rsv->size; 4652 block_rsv->full = 1; 4653 } else { 4654 num_bytes = 0; 4655 } 4656 spin_unlock(&block_rsv->lock); 4657 4658 if (num_bytes > 0) { 4659 if (dest) { 4660 spin_lock(&dest->lock); 4661 if (!dest->full) { 4662 u64 bytes_to_add; 4663 4664 bytes_to_add = dest->size - dest->reserved; 4665 bytes_to_add = min(num_bytes, bytes_to_add); 4666 dest->reserved += bytes_to_add; 4667 if (dest->reserved >= dest->size) 4668 dest->full = 1; 4669 num_bytes -= bytes_to_add; 4670 } 4671 spin_unlock(&dest->lock); 4672 } 4673 if (num_bytes) { 4674 spin_lock(&space_info->lock); 4675 space_info->bytes_may_use -= num_bytes; 4676 trace_btrfs_space_reservation(fs_info, "space_info", 4677 space_info->flags, num_bytes, 0); 4678 spin_unlock(&space_info->lock); 4679 } 4680 } 4681 } 4682 4683 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4684 struct btrfs_block_rsv *dst, u64 num_bytes) 4685 { 4686 int ret; 4687 4688 ret = block_rsv_use_bytes(src, num_bytes); 4689 if (ret) 4690 return ret; 4691 4692 block_rsv_add_bytes(dst, num_bytes, 1); 4693 return 0; 4694 } 4695 4696 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4697 { 4698 memset(rsv, 0, sizeof(*rsv)); 4699 spin_lock_init(&rsv->lock); 4700 rsv->type = type; 4701 } 4702 4703 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4704 unsigned short type) 4705 { 4706 struct btrfs_block_rsv *block_rsv; 4707 struct btrfs_fs_info *fs_info = root->fs_info; 4708 4709 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4710 if (!block_rsv) 4711 return NULL; 4712 4713 btrfs_init_block_rsv(block_rsv, type); 4714 block_rsv->space_info = __find_space_info(fs_info, 4715 BTRFS_BLOCK_GROUP_METADATA); 4716 return block_rsv; 4717 } 4718 4719 void btrfs_free_block_rsv(struct btrfs_root *root, 4720 struct btrfs_block_rsv *rsv) 4721 { 4722 if (!rsv) 4723 return; 4724 btrfs_block_rsv_release(root, rsv, (u64)-1); 4725 kfree(rsv); 4726 } 4727 4728 int btrfs_block_rsv_add(struct btrfs_root *root, 4729 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4730 enum btrfs_reserve_flush_enum flush) 4731 { 4732 int ret; 4733 4734 if (num_bytes == 0) 4735 return 0; 4736 4737 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4738 if (!ret) { 4739 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4740 return 0; 4741 } 4742 4743 return ret; 4744 } 4745 4746 int btrfs_block_rsv_check(struct btrfs_root *root, 4747 struct btrfs_block_rsv *block_rsv, int min_factor) 4748 { 4749 u64 num_bytes = 0; 4750 int ret = -ENOSPC; 4751 4752 if (!block_rsv) 4753 return 0; 4754 4755 spin_lock(&block_rsv->lock); 4756 num_bytes = div_factor(block_rsv->size, min_factor); 4757 if (block_rsv->reserved >= num_bytes) 4758 ret = 0; 4759 spin_unlock(&block_rsv->lock); 4760 4761 return ret; 4762 } 4763 4764 int btrfs_block_rsv_refill(struct btrfs_root *root, 4765 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4766 enum btrfs_reserve_flush_enum flush) 4767 { 4768 u64 num_bytes = 0; 4769 int ret = -ENOSPC; 4770 4771 if (!block_rsv) 4772 return 0; 4773 4774 spin_lock(&block_rsv->lock); 4775 num_bytes = min_reserved; 4776 if (block_rsv->reserved >= num_bytes) 4777 ret = 0; 4778 else 4779 num_bytes -= block_rsv->reserved; 4780 spin_unlock(&block_rsv->lock); 4781 4782 if (!ret) 4783 return 0; 4784 4785 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4786 if (!ret) { 4787 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4788 return 0; 4789 } 4790 4791 return ret; 4792 } 4793 4794 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4795 struct btrfs_block_rsv *dst_rsv, 4796 u64 num_bytes) 4797 { 4798 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4799 } 4800 4801 void btrfs_block_rsv_release(struct btrfs_root *root, 4802 struct btrfs_block_rsv *block_rsv, 4803 u64 num_bytes) 4804 { 4805 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4806 if (global_rsv == block_rsv || 4807 block_rsv->space_info != global_rsv->space_info) 4808 global_rsv = NULL; 4809 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4810 num_bytes); 4811 } 4812 4813 /* 4814 * helper to calculate size of global block reservation. 4815 * the desired value is sum of space used by extent tree, 4816 * checksum tree and root tree 4817 */ 4818 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4819 { 4820 struct btrfs_space_info *sinfo; 4821 u64 num_bytes; 4822 u64 meta_used; 4823 u64 data_used; 4824 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4825 4826 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4827 spin_lock(&sinfo->lock); 4828 data_used = sinfo->bytes_used; 4829 spin_unlock(&sinfo->lock); 4830 4831 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4832 spin_lock(&sinfo->lock); 4833 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4834 data_used = 0; 4835 meta_used = sinfo->bytes_used; 4836 spin_unlock(&sinfo->lock); 4837 4838 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4839 csum_size * 2; 4840 num_bytes += div64_u64(data_used + meta_used, 50); 4841 4842 if (num_bytes * 3 > meta_used) 4843 num_bytes = div64_u64(meta_used, 3); 4844 4845 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 4846 } 4847 4848 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4849 { 4850 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4851 struct btrfs_space_info *sinfo = block_rsv->space_info; 4852 u64 num_bytes; 4853 4854 num_bytes = calc_global_metadata_size(fs_info); 4855 4856 spin_lock(&sinfo->lock); 4857 spin_lock(&block_rsv->lock); 4858 4859 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4860 4861 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4862 sinfo->bytes_reserved + sinfo->bytes_readonly + 4863 sinfo->bytes_may_use; 4864 4865 if (sinfo->total_bytes > num_bytes) { 4866 num_bytes = sinfo->total_bytes - num_bytes; 4867 block_rsv->reserved += num_bytes; 4868 sinfo->bytes_may_use += num_bytes; 4869 trace_btrfs_space_reservation(fs_info, "space_info", 4870 sinfo->flags, num_bytes, 1); 4871 } 4872 4873 if (block_rsv->reserved >= block_rsv->size) { 4874 num_bytes = block_rsv->reserved - block_rsv->size; 4875 sinfo->bytes_may_use -= num_bytes; 4876 trace_btrfs_space_reservation(fs_info, "space_info", 4877 sinfo->flags, num_bytes, 0); 4878 block_rsv->reserved = block_rsv->size; 4879 block_rsv->full = 1; 4880 } 4881 4882 spin_unlock(&block_rsv->lock); 4883 spin_unlock(&sinfo->lock); 4884 } 4885 4886 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4887 { 4888 struct btrfs_space_info *space_info; 4889 4890 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4891 fs_info->chunk_block_rsv.space_info = space_info; 4892 4893 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4894 fs_info->global_block_rsv.space_info = space_info; 4895 fs_info->delalloc_block_rsv.space_info = space_info; 4896 fs_info->trans_block_rsv.space_info = space_info; 4897 fs_info->empty_block_rsv.space_info = space_info; 4898 fs_info->delayed_block_rsv.space_info = space_info; 4899 4900 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4901 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4902 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4903 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4904 if (fs_info->quota_root) 4905 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4906 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4907 4908 update_global_block_rsv(fs_info); 4909 } 4910 4911 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4912 { 4913 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4914 (u64)-1); 4915 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4916 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4917 WARN_ON(fs_info->trans_block_rsv.size > 0); 4918 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4919 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4920 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4921 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4922 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4923 } 4924 4925 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4926 struct btrfs_root *root) 4927 { 4928 if (!trans->block_rsv) 4929 return; 4930 4931 if (!trans->bytes_reserved) 4932 return; 4933 4934 trace_btrfs_space_reservation(root->fs_info, "transaction", 4935 trans->transid, trans->bytes_reserved, 0); 4936 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4937 trans->bytes_reserved = 0; 4938 } 4939 4940 /* Can only return 0 or -ENOSPC */ 4941 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4942 struct inode *inode) 4943 { 4944 struct btrfs_root *root = BTRFS_I(inode)->root; 4945 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4946 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4947 4948 /* 4949 * We need to hold space in order to delete our orphan item once we've 4950 * added it, so this takes the reservation so we can release it later 4951 * when we are truly done with the orphan item. 4952 */ 4953 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4954 trace_btrfs_space_reservation(root->fs_info, "orphan", 4955 btrfs_ino(inode), num_bytes, 1); 4956 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4957 } 4958 4959 void btrfs_orphan_release_metadata(struct inode *inode) 4960 { 4961 struct btrfs_root *root = BTRFS_I(inode)->root; 4962 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4963 trace_btrfs_space_reservation(root->fs_info, "orphan", 4964 btrfs_ino(inode), num_bytes, 0); 4965 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4966 } 4967 4968 /* 4969 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4970 * root: the root of the parent directory 4971 * rsv: block reservation 4972 * items: the number of items that we need do reservation 4973 * qgroup_reserved: used to return the reserved size in qgroup 4974 * 4975 * This function is used to reserve the space for snapshot/subvolume 4976 * creation and deletion. Those operations are different with the 4977 * common file/directory operations, they change two fs/file trees 4978 * and root tree, the number of items that the qgroup reserves is 4979 * different with the free space reservation. So we can not use 4980 * the space reseravtion mechanism in start_transaction(). 4981 */ 4982 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4983 struct btrfs_block_rsv *rsv, 4984 int items, 4985 u64 *qgroup_reserved, 4986 bool use_global_rsv) 4987 { 4988 u64 num_bytes; 4989 int ret; 4990 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4991 4992 if (root->fs_info->quota_enabled) { 4993 /* One for parent inode, two for dir entries */ 4994 num_bytes = 3 * root->nodesize; 4995 ret = btrfs_qgroup_reserve(root, num_bytes); 4996 if (ret) 4997 return ret; 4998 } else { 4999 num_bytes = 0; 5000 } 5001 5002 *qgroup_reserved = num_bytes; 5003 5004 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5005 rsv->space_info = __find_space_info(root->fs_info, 5006 BTRFS_BLOCK_GROUP_METADATA); 5007 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5008 BTRFS_RESERVE_FLUSH_ALL); 5009 5010 if (ret == -ENOSPC && use_global_rsv) 5011 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5012 5013 if (ret) { 5014 if (*qgroup_reserved) 5015 btrfs_qgroup_free(root, *qgroup_reserved); 5016 } 5017 5018 return ret; 5019 } 5020 5021 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5022 struct btrfs_block_rsv *rsv, 5023 u64 qgroup_reserved) 5024 { 5025 btrfs_block_rsv_release(root, rsv, (u64)-1); 5026 if (qgroup_reserved) 5027 btrfs_qgroup_free(root, qgroup_reserved); 5028 } 5029 5030 /** 5031 * drop_outstanding_extent - drop an outstanding extent 5032 * @inode: the inode we're dropping the extent for 5033 * 5034 * This is called when we are freeing up an outstanding extent, either called 5035 * after an error or after an extent is written. This will return the number of 5036 * reserved extents that need to be freed. This must be called with 5037 * BTRFS_I(inode)->lock held. 5038 */ 5039 static unsigned drop_outstanding_extent(struct inode *inode) 5040 { 5041 unsigned drop_inode_space = 0; 5042 unsigned dropped_extents = 0; 5043 5044 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 5045 BTRFS_I(inode)->outstanding_extents--; 5046 5047 if (BTRFS_I(inode)->outstanding_extents == 0 && 5048 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5049 &BTRFS_I(inode)->runtime_flags)) 5050 drop_inode_space = 1; 5051 5052 /* 5053 * If we have more or the same amount of outsanding extents than we have 5054 * reserved then we need to leave the reserved extents count alone. 5055 */ 5056 if (BTRFS_I(inode)->outstanding_extents >= 5057 BTRFS_I(inode)->reserved_extents) 5058 return drop_inode_space; 5059 5060 dropped_extents = BTRFS_I(inode)->reserved_extents - 5061 BTRFS_I(inode)->outstanding_extents; 5062 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5063 return dropped_extents + drop_inode_space; 5064 } 5065 5066 /** 5067 * calc_csum_metadata_size - return the amount of metada space that must be 5068 * reserved/free'd for the given bytes. 5069 * @inode: the inode we're manipulating 5070 * @num_bytes: the number of bytes in question 5071 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5072 * 5073 * This adjusts the number of csum_bytes in the inode and then returns the 5074 * correct amount of metadata that must either be reserved or freed. We 5075 * calculate how many checksums we can fit into one leaf and then divide the 5076 * number of bytes that will need to be checksumed by this value to figure out 5077 * how many checksums will be required. If we are adding bytes then the number 5078 * may go up and we will return the number of additional bytes that must be 5079 * reserved. If it is going down we will return the number of bytes that must 5080 * be freed. 5081 * 5082 * This must be called with BTRFS_I(inode)->lock held. 5083 */ 5084 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5085 int reserve) 5086 { 5087 struct btrfs_root *root = BTRFS_I(inode)->root; 5088 u64 csum_size; 5089 int num_csums_per_leaf; 5090 int num_csums; 5091 int old_csums; 5092 5093 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5094 BTRFS_I(inode)->csum_bytes == 0) 5095 return 0; 5096 5097 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 5098 if (reserve) 5099 BTRFS_I(inode)->csum_bytes += num_bytes; 5100 else 5101 BTRFS_I(inode)->csum_bytes -= num_bytes; 5102 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 5103 num_csums_per_leaf = (int)div64_u64(csum_size, 5104 sizeof(struct btrfs_csum_item) + 5105 sizeof(struct btrfs_disk_key)); 5106 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 5107 num_csums = num_csums + num_csums_per_leaf - 1; 5108 num_csums = num_csums / num_csums_per_leaf; 5109 5110 old_csums = old_csums + num_csums_per_leaf - 1; 5111 old_csums = old_csums / num_csums_per_leaf; 5112 5113 /* No change, no need to reserve more */ 5114 if (old_csums == num_csums) 5115 return 0; 5116 5117 if (reserve) 5118 return btrfs_calc_trans_metadata_size(root, 5119 num_csums - old_csums); 5120 5121 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5122 } 5123 5124 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5125 { 5126 struct btrfs_root *root = BTRFS_I(inode)->root; 5127 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5128 u64 to_reserve = 0; 5129 u64 csum_bytes; 5130 unsigned nr_extents = 0; 5131 int extra_reserve = 0; 5132 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5133 int ret = 0; 5134 bool delalloc_lock = true; 5135 u64 to_free = 0; 5136 unsigned dropped; 5137 5138 /* If we are a free space inode we need to not flush since we will be in 5139 * the middle of a transaction commit. We also don't need the delalloc 5140 * mutex since we won't race with anybody. We need this mostly to make 5141 * lockdep shut its filthy mouth. 5142 */ 5143 if (btrfs_is_free_space_inode(inode)) { 5144 flush = BTRFS_RESERVE_NO_FLUSH; 5145 delalloc_lock = false; 5146 } 5147 5148 if (flush != BTRFS_RESERVE_NO_FLUSH && 5149 btrfs_transaction_in_commit(root->fs_info)) 5150 schedule_timeout(1); 5151 5152 if (delalloc_lock) 5153 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5154 5155 num_bytes = ALIGN(num_bytes, root->sectorsize); 5156 5157 spin_lock(&BTRFS_I(inode)->lock); 5158 BTRFS_I(inode)->outstanding_extents++; 5159 5160 if (BTRFS_I(inode)->outstanding_extents > 5161 BTRFS_I(inode)->reserved_extents) 5162 nr_extents = BTRFS_I(inode)->outstanding_extents - 5163 BTRFS_I(inode)->reserved_extents; 5164 5165 /* 5166 * Add an item to reserve for updating the inode when we complete the 5167 * delalloc io. 5168 */ 5169 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5170 &BTRFS_I(inode)->runtime_flags)) { 5171 nr_extents++; 5172 extra_reserve = 1; 5173 } 5174 5175 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5176 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5177 csum_bytes = BTRFS_I(inode)->csum_bytes; 5178 spin_unlock(&BTRFS_I(inode)->lock); 5179 5180 if (root->fs_info->quota_enabled) { 5181 ret = btrfs_qgroup_reserve(root, num_bytes + 5182 nr_extents * root->nodesize); 5183 if (ret) 5184 goto out_fail; 5185 } 5186 5187 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5188 if (unlikely(ret)) { 5189 if (root->fs_info->quota_enabled) 5190 btrfs_qgroup_free(root, num_bytes + 5191 nr_extents * root->nodesize); 5192 goto out_fail; 5193 } 5194 5195 spin_lock(&BTRFS_I(inode)->lock); 5196 if (extra_reserve) { 5197 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5198 &BTRFS_I(inode)->runtime_flags); 5199 nr_extents--; 5200 } 5201 BTRFS_I(inode)->reserved_extents += nr_extents; 5202 spin_unlock(&BTRFS_I(inode)->lock); 5203 5204 if (delalloc_lock) 5205 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5206 5207 if (to_reserve) 5208 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5209 btrfs_ino(inode), to_reserve, 1); 5210 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5211 5212 return 0; 5213 5214 out_fail: 5215 spin_lock(&BTRFS_I(inode)->lock); 5216 dropped = drop_outstanding_extent(inode); 5217 /* 5218 * If the inodes csum_bytes is the same as the original 5219 * csum_bytes then we know we haven't raced with any free()ers 5220 * so we can just reduce our inodes csum bytes and carry on. 5221 */ 5222 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5223 calc_csum_metadata_size(inode, num_bytes, 0); 5224 } else { 5225 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5226 u64 bytes; 5227 5228 /* 5229 * This is tricky, but first we need to figure out how much we 5230 * free'd from any free-ers that occured during this 5231 * reservation, so we reset ->csum_bytes to the csum_bytes 5232 * before we dropped our lock, and then call the free for the 5233 * number of bytes that were freed while we were trying our 5234 * reservation. 5235 */ 5236 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5237 BTRFS_I(inode)->csum_bytes = csum_bytes; 5238 to_free = calc_csum_metadata_size(inode, bytes, 0); 5239 5240 5241 /* 5242 * Now we need to see how much we would have freed had we not 5243 * been making this reservation and our ->csum_bytes were not 5244 * artificially inflated. 5245 */ 5246 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5247 bytes = csum_bytes - orig_csum_bytes; 5248 bytes = calc_csum_metadata_size(inode, bytes, 0); 5249 5250 /* 5251 * Now reset ->csum_bytes to what it should be. If bytes is 5252 * more than to_free then we would have free'd more space had we 5253 * not had an artificially high ->csum_bytes, so we need to free 5254 * the remainder. If bytes is the same or less then we don't 5255 * need to do anything, the other free-ers did the correct 5256 * thing. 5257 */ 5258 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5259 if (bytes > to_free) 5260 to_free = bytes - to_free; 5261 else 5262 to_free = 0; 5263 } 5264 spin_unlock(&BTRFS_I(inode)->lock); 5265 if (dropped) 5266 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5267 5268 if (to_free) { 5269 btrfs_block_rsv_release(root, block_rsv, to_free); 5270 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5271 btrfs_ino(inode), to_free, 0); 5272 } 5273 if (delalloc_lock) 5274 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5275 return ret; 5276 } 5277 5278 /** 5279 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5280 * @inode: the inode to release the reservation for 5281 * @num_bytes: the number of bytes we're releasing 5282 * 5283 * This will release the metadata reservation for an inode. This can be called 5284 * once we complete IO for a given set of bytes to release their metadata 5285 * reservations. 5286 */ 5287 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5288 { 5289 struct btrfs_root *root = BTRFS_I(inode)->root; 5290 u64 to_free = 0; 5291 unsigned dropped; 5292 5293 num_bytes = ALIGN(num_bytes, root->sectorsize); 5294 spin_lock(&BTRFS_I(inode)->lock); 5295 dropped = drop_outstanding_extent(inode); 5296 5297 if (num_bytes) 5298 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5299 spin_unlock(&BTRFS_I(inode)->lock); 5300 if (dropped > 0) 5301 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5302 5303 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5304 btrfs_ino(inode), to_free, 0); 5305 if (root->fs_info->quota_enabled) { 5306 btrfs_qgroup_free(root, num_bytes + 5307 dropped * root->nodesize); 5308 } 5309 5310 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5311 to_free); 5312 } 5313 5314 /** 5315 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5316 * @inode: inode we're writing to 5317 * @num_bytes: the number of bytes we want to allocate 5318 * 5319 * This will do the following things 5320 * 5321 * o reserve space in the data space info for num_bytes 5322 * o reserve space in the metadata space info based on number of outstanding 5323 * extents and how much csums will be needed 5324 * o add to the inodes ->delalloc_bytes 5325 * o add it to the fs_info's delalloc inodes list. 5326 * 5327 * This will return 0 for success and -ENOSPC if there is no space left. 5328 */ 5329 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5330 { 5331 int ret; 5332 5333 ret = btrfs_check_data_free_space(inode, num_bytes); 5334 if (ret) 5335 return ret; 5336 5337 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5338 if (ret) { 5339 btrfs_free_reserved_data_space(inode, num_bytes); 5340 return ret; 5341 } 5342 5343 return 0; 5344 } 5345 5346 /** 5347 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5348 * @inode: inode we're releasing space for 5349 * @num_bytes: the number of bytes we want to free up 5350 * 5351 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5352 * called in the case that we don't need the metadata AND data reservations 5353 * anymore. So if there is an error or we insert an inline extent. 5354 * 5355 * This function will release the metadata space that was not used and will 5356 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5357 * list if there are no delalloc bytes left. 5358 */ 5359 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5360 { 5361 btrfs_delalloc_release_metadata(inode, num_bytes); 5362 btrfs_free_reserved_data_space(inode, num_bytes); 5363 } 5364 5365 static int update_block_group(struct btrfs_root *root, 5366 u64 bytenr, u64 num_bytes, int alloc) 5367 { 5368 struct btrfs_block_group_cache *cache = NULL; 5369 struct btrfs_fs_info *info = root->fs_info; 5370 u64 total = num_bytes; 5371 u64 old_val; 5372 u64 byte_in_group; 5373 int factor; 5374 5375 /* block accounting for super block */ 5376 spin_lock(&info->delalloc_root_lock); 5377 old_val = btrfs_super_bytes_used(info->super_copy); 5378 if (alloc) 5379 old_val += num_bytes; 5380 else 5381 old_val -= num_bytes; 5382 btrfs_set_super_bytes_used(info->super_copy, old_val); 5383 spin_unlock(&info->delalloc_root_lock); 5384 5385 while (total) { 5386 cache = btrfs_lookup_block_group(info, bytenr); 5387 if (!cache) 5388 return -ENOENT; 5389 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5390 BTRFS_BLOCK_GROUP_RAID1 | 5391 BTRFS_BLOCK_GROUP_RAID10)) 5392 factor = 2; 5393 else 5394 factor = 1; 5395 /* 5396 * If this block group has free space cache written out, we 5397 * need to make sure to load it if we are removing space. This 5398 * is because we need the unpinning stage to actually add the 5399 * space back to the block group, otherwise we will leak space. 5400 */ 5401 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5402 cache_block_group(cache, 1); 5403 5404 byte_in_group = bytenr - cache->key.objectid; 5405 WARN_ON(byte_in_group > cache->key.offset); 5406 5407 spin_lock(&cache->space_info->lock); 5408 spin_lock(&cache->lock); 5409 5410 if (btrfs_test_opt(root, SPACE_CACHE) && 5411 cache->disk_cache_state < BTRFS_DC_CLEAR) 5412 cache->disk_cache_state = BTRFS_DC_CLEAR; 5413 5414 cache->dirty = 1; 5415 old_val = btrfs_block_group_used(&cache->item); 5416 num_bytes = min(total, cache->key.offset - byte_in_group); 5417 if (alloc) { 5418 old_val += num_bytes; 5419 btrfs_set_block_group_used(&cache->item, old_val); 5420 cache->reserved -= num_bytes; 5421 cache->space_info->bytes_reserved -= num_bytes; 5422 cache->space_info->bytes_used += num_bytes; 5423 cache->space_info->disk_used += num_bytes * factor; 5424 spin_unlock(&cache->lock); 5425 spin_unlock(&cache->space_info->lock); 5426 } else { 5427 old_val -= num_bytes; 5428 5429 /* 5430 * No longer have used bytes in this block group, queue 5431 * it for deletion. 5432 */ 5433 if (old_val == 0) { 5434 spin_lock(&info->unused_bgs_lock); 5435 if (list_empty(&cache->bg_list)) { 5436 btrfs_get_block_group(cache); 5437 list_add_tail(&cache->bg_list, 5438 &info->unused_bgs); 5439 } 5440 spin_unlock(&info->unused_bgs_lock); 5441 } 5442 btrfs_set_block_group_used(&cache->item, old_val); 5443 cache->pinned += num_bytes; 5444 cache->space_info->bytes_pinned += num_bytes; 5445 cache->space_info->bytes_used -= num_bytes; 5446 cache->space_info->disk_used -= num_bytes * factor; 5447 spin_unlock(&cache->lock); 5448 spin_unlock(&cache->space_info->lock); 5449 5450 set_extent_dirty(info->pinned_extents, 5451 bytenr, bytenr + num_bytes - 1, 5452 GFP_NOFS | __GFP_NOFAIL); 5453 } 5454 btrfs_put_block_group(cache); 5455 total -= num_bytes; 5456 bytenr += num_bytes; 5457 } 5458 return 0; 5459 } 5460 5461 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5462 { 5463 struct btrfs_block_group_cache *cache; 5464 u64 bytenr; 5465 5466 spin_lock(&root->fs_info->block_group_cache_lock); 5467 bytenr = root->fs_info->first_logical_byte; 5468 spin_unlock(&root->fs_info->block_group_cache_lock); 5469 5470 if (bytenr < (u64)-1) 5471 return bytenr; 5472 5473 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5474 if (!cache) 5475 return 0; 5476 5477 bytenr = cache->key.objectid; 5478 btrfs_put_block_group(cache); 5479 5480 return bytenr; 5481 } 5482 5483 static int pin_down_extent(struct btrfs_root *root, 5484 struct btrfs_block_group_cache *cache, 5485 u64 bytenr, u64 num_bytes, int reserved) 5486 { 5487 spin_lock(&cache->space_info->lock); 5488 spin_lock(&cache->lock); 5489 cache->pinned += num_bytes; 5490 cache->space_info->bytes_pinned += num_bytes; 5491 if (reserved) { 5492 cache->reserved -= num_bytes; 5493 cache->space_info->bytes_reserved -= num_bytes; 5494 } 5495 spin_unlock(&cache->lock); 5496 spin_unlock(&cache->space_info->lock); 5497 5498 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5499 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5500 if (reserved) 5501 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5502 return 0; 5503 } 5504 5505 /* 5506 * this function must be called within transaction 5507 */ 5508 int btrfs_pin_extent(struct btrfs_root *root, 5509 u64 bytenr, u64 num_bytes, int reserved) 5510 { 5511 struct btrfs_block_group_cache *cache; 5512 5513 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5514 BUG_ON(!cache); /* Logic error */ 5515 5516 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5517 5518 btrfs_put_block_group(cache); 5519 return 0; 5520 } 5521 5522 /* 5523 * this function must be called within transaction 5524 */ 5525 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5526 u64 bytenr, u64 num_bytes) 5527 { 5528 struct btrfs_block_group_cache *cache; 5529 int ret; 5530 5531 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5532 if (!cache) 5533 return -EINVAL; 5534 5535 /* 5536 * pull in the free space cache (if any) so that our pin 5537 * removes the free space from the cache. We have load_only set 5538 * to one because the slow code to read in the free extents does check 5539 * the pinned extents. 5540 */ 5541 cache_block_group(cache, 1); 5542 5543 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5544 5545 /* remove us from the free space cache (if we're there at all) */ 5546 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5547 btrfs_put_block_group(cache); 5548 return ret; 5549 } 5550 5551 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5552 { 5553 int ret; 5554 struct btrfs_block_group_cache *block_group; 5555 struct btrfs_caching_control *caching_ctl; 5556 5557 block_group = btrfs_lookup_block_group(root->fs_info, start); 5558 if (!block_group) 5559 return -EINVAL; 5560 5561 cache_block_group(block_group, 0); 5562 caching_ctl = get_caching_control(block_group); 5563 5564 if (!caching_ctl) { 5565 /* Logic error */ 5566 BUG_ON(!block_group_cache_done(block_group)); 5567 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5568 } else { 5569 mutex_lock(&caching_ctl->mutex); 5570 5571 if (start >= caching_ctl->progress) { 5572 ret = add_excluded_extent(root, start, num_bytes); 5573 } else if (start + num_bytes <= caching_ctl->progress) { 5574 ret = btrfs_remove_free_space(block_group, 5575 start, num_bytes); 5576 } else { 5577 num_bytes = caching_ctl->progress - start; 5578 ret = btrfs_remove_free_space(block_group, 5579 start, num_bytes); 5580 if (ret) 5581 goto out_lock; 5582 5583 num_bytes = (start + num_bytes) - 5584 caching_ctl->progress; 5585 start = caching_ctl->progress; 5586 ret = add_excluded_extent(root, start, num_bytes); 5587 } 5588 out_lock: 5589 mutex_unlock(&caching_ctl->mutex); 5590 put_caching_control(caching_ctl); 5591 } 5592 btrfs_put_block_group(block_group); 5593 return ret; 5594 } 5595 5596 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5597 struct extent_buffer *eb) 5598 { 5599 struct btrfs_file_extent_item *item; 5600 struct btrfs_key key; 5601 int found_type; 5602 int i; 5603 5604 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5605 return 0; 5606 5607 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5608 btrfs_item_key_to_cpu(eb, &key, i); 5609 if (key.type != BTRFS_EXTENT_DATA_KEY) 5610 continue; 5611 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5612 found_type = btrfs_file_extent_type(eb, item); 5613 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5614 continue; 5615 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5616 continue; 5617 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5618 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5619 __exclude_logged_extent(log, key.objectid, key.offset); 5620 } 5621 5622 return 0; 5623 } 5624 5625 /** 5626 * btrfs_update_reserved_bytes - update the block_group and space info counters 5627 * @cache: The cache we are manipulating 5628 * @num_bytes: The number of bytes in question 5629 * @reserve: One of the reservation enums 5630 * @delalloc: The blocks are allocated for the delalloc write 5631 * 5632 * This is called by the allocator when it reserves space, or by somebody who is 5633 * freeing space that was never actually used on disk. For example if you 5634 * reserve some space for a new leaf in transaction A and before transaction A 5635 * commits you free that leaf, you call this with reserve set to 0 in order to 5636 * clear the reservation. 5637 * 5638 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5639 * ENOSPC accounting. For data we handle the reservation through clearing the 5640 * delalloc bits in the io_tree. We have to do this since we could end up 5641 * allocating less disk space for the amount of data we have reserved in the 5642 * case of compression. 5643 * 5644 * If this is a reservation and the block group has become read only we cannot 5645 * make the reservation and return -EAGAIN, otherwise this function always 5646 * succeeds. 5647 */ 5648 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5649 u64 num_bytes, int reserve, int delalloc) 5650 { 5651 struct btrfs_space_info *space_info = cache->space_info; 5652 int ret = 0; 5653 5654 spin_lock(&space_info->lock); 5655 spin_lock(&cache->lock); 5656 if (reserve != RESERVE_FREE) { 5657 if (cache->ro) { 5658 ret = -EAGAIN; 5659 } else { 5660 cache->reserved += num_bytes; 5661 space_info->bytes_reserved += num_bytes; 5662 if (reserve == RESERVE_ALLOC) { 5663 trace_btrfs_space_reservation(cache->fs_info, 5664 "space_info", space_info->flags, 5665 num_bytes, 0); 5666 space_info->bytes_may_use -= num_bytes; 5667 } 5668 5669 if (delalloc) 5670 cache->delalloc_bytes += num_bytes; 5671 } 5672 } else { 5673 if (cache->ro) 5674 space_info->bytes_readonly += num_bytes; 5675 cache->reserved -= num_bytes; 5676 space_info->bytes_reserved -= num_bytes; 5677 5678 if (delalloc) 5679 cache->delalloc_bytes -= num_bytes; 5680 } 5681 spin_unlock(&cache->lock); 5682 spin_unlock(&space_info->lock); 5683 return ret; 5684 } 5685 5686 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5687 struct btrfs_root *root) 5688 { 5689 struct btrfs_fs_info *fs_info = root->fs_info; 5690 struct btrfs_caching_control *next; 5691 struct btrfs_caching_control *caching_ctl; 5692 struct btrfs_block_group_cache *cache; 5693 5694 down_write(&fs_info->commit_root_sem); 5695 5696 list_for_each_entry_safe(caching_ctl, next, 5697 &fs_info->caching_block_groups, list) { 5698 cache = caching_ctl->block_group; 5699 if (block_group_cache_done(cache)) { 5700 cache->last_byte_to_unpin = (u64)-1; 5701 list_del_init(&caching_ctl->list); 5702 put_caching_control(caching_ctl); 5703 } else { 5704 cache->last_byte_to_unpin = caching_ctl->progress; 5705 } 5706 } 5707 5708 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5709 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5710 else 5711 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5712 5713 up_write(&fs_info->commit_root_sem); 5714 5715 update_global_block_rsv(fs_info); 5716 } 5717 5718 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5719 { 5720 struct btrfs_fs_info *fs_info = root->fs_info; 5721 struct btrfs_block_group_cache *cache = NULL; 5722 struct btrfs_space_info *space_info; 5723 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5724 u64 len; 5725 bool readonly; 5726 5727 while (start <= end) { 5728 readonly = false; 5729 if (!cache || 5730 start >= cache->key.objectid + cache->key.offset) { 5731 if (cache) 5732 btrfs_put_block_group(cache); 5733 cache = btrfs_lookup_block_group(fs_info, start); 5734 BUG_ON(!cache); /* Logic error */ 5735 } 5736 5737 len = cache->key.objectid + cache->key.offset - start; 5738 len = min(len, end + 1 - start); 5739 5740 if (start < cache->last_byte_to_unpin) { 5741 len = min(len, cache->last_byte_to_unpin - start); 5742 btrfs_add_free_space(cache, start, len); 5743 } 5744 5745 start += len; 5746 space_info = cache->space_info; 5747 5748 spin_lock(&space_info->lock); 5749 spin_lock(&cache->lock); 5750 cache->pinned -= len; 5751 space_info->bytes_pinned -= len; 5752 percpu_counter_add(&space_info->total_bytes_pinned, -len); 5753 if (cache->ro) { 5754 space_info->bytes_readonly += len; 5755 readonly = true; 5756 } 5757 spin_unlock(&cache->lock); 5758 if (!readonly && global_rsv->space_info == space_info) { 5759 spin_lock(&global_rsv->lock); 5760 if (!global_rsv->full) { 5761 len = min(len, global_rsv->size - 5762 global_rsv->reserved); 5763 global_rsv->reserved += len; 5764 space_info->bytes_may_use += len; 5765 if (global_rsv->reserved >= global_rsv->size) 5766 global_rsv->full = 1; 5767 } 5768 spin_unlock(&global_rsv->lock); 5769 } 5770 spin_unlock(&space_info->lock); 5771 } 5772 5773 if (cache) 5774 btrfs_put_block_group(cache); 5775 return 0; 5776 } 5777 5778 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5779 struct btrfs_root *root) 5780 { 5781 struct btrfs_fs_info *fs_info = root->fs_info; 5782 struct extent_io_tree *unpin; 5783 u64 start; 5784 u64 end; 5785 int ret; 5786 5787 if (trans->aborted) 5788 return 0; 5789 5790 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5791 unpin = &fs_info->freed_extents[1]; 5792 else 5793 unpin = &fs_info->freed_extents[0]; 5794 5795 while (1) { 5796 ret = find_first_extent_bit(unpin, 0, &start, &end, 5797 EXTENT_DIRTY, NULL); 5798 if (ret) 5799 break; 5800 5801 if (btrfs_test_opt(root, DISCARD)) 5802 ret = btrfs_discard_extent(root, start, 5803 end + 1 - start, NULL); 5804 5805 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5806 unpin_extent_range(root, start, end); 5807 cond_resched(); 5808 } 5809 5810 return 0; 5811 } 5812 5813 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5814 u64 owner, u64 root_objectid) 5815 { 5816 struct btrfs_space_info *space_info; 5817 u64 flags; 5818 5819 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5820 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5821 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5822 else 5823 flags = BTRFS_BLOCK_GROUP_METADATA; 5824 } else { 5825 flags = BTRFS_BLOCK_GROUP_DATA; 5826 } 5827 5828 space_info = __find_space_info(fs_info, flags); 5829 BUG_ON(!space_info); /* Logic bug */ 5830 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5831 } 5832 5833 5834 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5835 struct btrfs_root *root, 5836 u64 bytenr, u64 num_bytes, u64 parent, 5837 u64 root_objectid, u64 owner_objectid, 5838 u64 owner_offset, int refs_to_drop, 5839 struct btrfs_delayed_extent_op *extent_op, 5840 int no_quota) 5841 { 5842 struct btrfs_key key; 5843 struct btrfs_path *path; 5844 struct btrfs_fs_info *info = root->fs_info; 5845 struct btrfs_root *extent_root = info->extent_root; 5846 struct extent_buffer *leaf; 5847 struct btrfs_extent_item *ei; 5848 struct btrfs_extent_inline_ref *iref; 5849 int ret; 5850 int is_data; 5851 int extent_slot = 0; 5852 int found_extent = 0; 5853 int num_to_del = 1; 5854 u32 item_size; 5855 u64 refs; 5856 int last_ref = 0; 5857 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL; 5858 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5859 SKINNY_METADATA); 5860 5861 if (!info->quota_enabled || !is_fstree(root_objectid)) 5862 no_quota = 1; 5863 5864 path = btrfs_alloc_path(); 5865 if (!path) 5866 return -ENOMEM; 5867 5868 path->reada = 1; 5869 path->leave_spinning = 1; 5870 5871 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5872 BUG_ON(!is_data && refs_to_drop != 1); 5873 5874 if (is_data) 5875 skinny_metadata = 0; 5876 5877 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5878 bytenr, num_bytes, parent, 5879 root_objectid, owner_objectid, 5880 owner_offset); 5881 if (ret == 0) { 5882 extent_slot = path->slots[0]; 5883 while (extent_slot >= 0) { 5884 btrfs_item_key_to_cpu(path->nodes[0], &key, 5885 extent_slot); 5886 if (key.objectid != bytenr) 5887 break; 5888 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5889 key.offset == num_bytes) { 5890 found_extent = 1; 5891 break; 5892 } 5893 if (key.type == BTRFS_METADATA_ITEM_KEY && 5894 key.offset == owner_objectid) { 5895 found_extent = 1; 5896 break; 5897 } 5898 if (path->slots[0] - extent_slot > 5) 5899 break; 5900 extent_slot--; 5901 } 5902 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5903 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5904 if (found_extent && item_size < sizeof(*ei)) 5905 found_extent = 0; 5906 #endif 5907 if (!found_extent) { 5908 BUG_ON(iref); 5909 ret = remove_extent_backref(trans, extent_root, path, 5910 NULL, refs_to_drop, 5911 is_data, &last_ref); 5912 if (ret) { 5913 btrfs_abort_transaction(trans, extent_root, ret); 5914 goto out; 5915 } 5916 btrfs_release_path(path); 5917 path->leave_spinning = 1; 5918 5919 key.objectid = bytenr; 5920 key.type = BTRFS_EXTENT_ITEM_KEY; 5921 key.offset = num_bytes; 5922 5923 if (!is_data && skinny_metadata) { 5924 key.type = BTRFS_METADATA_ITEM_KEY; 5925 key.offset = owner_objectid; 5926 } 5927 5928 ret = btrfs_search_slot(trans, extent_root, 5929 &key, path, -1, 1); 5930 if (ret > 0 && skinny_metadata && path->slots[0]) { 5931 /* 5932 * Couldn't find our skinny metadata item, 5933 * see if we have ye olde extent item. 5934 */ 5935 path->slots[0]--; 5936 btrfs_item_key_to_cpu(path->nodes[0], &key, 5937 path->slots[0]); 5938 if (key.objectid == bytenr && 5939 key.type == BTRFS_EXTENT_ITEM_KEY && 5940 key.offset == num_bytes) 5941 ret = 0; 5942 } 5943 5944 if (ret > 0 && skinny_metadata) { 5945 skinny_metadata = false; 5946 key.objectid = bytenr; 5947 key.type = BTRFS_EXTENT_ITEM_KEY; 5948 key.offset = num_bytes; 5949 btrfs_release_path(path); 5950 ret = btrfs_search_slot(trans, extent_root, 5951 &key, path, -1, 1); 5952 } 5953 5954 if (ret) { 5955 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5956 ret, bytenr); 5957 if (ret > 0) 5958 btrfs_print_leaf(extent_root, 5959 path->nodes[0]); 5960 } 5961 if (ret < 0) { 5962 btrfs_abort_transaction(trans, extent_root, ret); 5963 goto out; 5964 } 5965 extent_slot = path->slots[0]; 5966 } 5967 } else if (WARN_ON(ret == -ENOENT)) { 5968 btrfs_print_leaf(extent_root, path->nodes[0]); 5969 btrfs_err(info, 5970 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5971 bytenr, parent, root_objectid, owner_objectid, 5972 owner_offset); 5973 btrfs_abort_transaction(trans, extent_root, ret); 5974 goto out; 5975 } else { 5976 btrfs_abort_transaction(trans, extent_root, ret); 5977 goto out; 5978 } 5979 5980 leaf = path->nodes[0]; 5981 item_size = btrfs_item_size_nr(leaf, extent_slot); 5982 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5983 if (item_size < sizeof(*ei)) { 5984 BUG_ON(found_extent || extent_slot != path->slots[0]); 5985 ret = convert_extent_item_v0(trans, extent_root, path, 5986 owner_objectid, 0); 5987 if (ret < 0) { 5988 btrfs_abort_transaction(trans, extent_root, ret); 5989 goto out; 5990 } 5991 5992 btrfs_release_path(path); 5993 path->leave_spinning = 1; 5994 5995 key.objectid = bytenr; 5996 key.type = BTRFS_EXTENT_ITEM_KEY; 5997 key.offset = num_bytes; 5998 5999 ret = btrfs_search_slot(trans, extent_root, &key, path, 6000 -1, 1); 6001 if (ret) { 6002 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6003 ret, bytenr); 6004 btrfs_print_leaf(extent_root, path->nodes[0]); 6005 } 6006 if (ret < 0) { 6007 btrfs_abort_transaction(trans, extent_root, ret); 6008 goto out; 6009 } 6010 6011 extent_slot = path->slots[0]; 6012 leaf = path->nodes[0]; 6013 item_size = btrfs_item_size_nr(leaf, extent_slot); 6014 } 6015 #endif 6016 BUG_ON(item_size < sizeof(*ei)); 6017 ei = btrfs_item_ptr(leaf, extent_slot, 6018 struct btrfs_extent_item); 6019 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6020 key.type == BTRFS_EXTENT_ITEM_KEY) { 6021 struct btrfs_tree_block_info *bi; 6022 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6023 bi = (struct btrfs_tree_block_info *)(ei + 1); 6024 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6025 } 6026 6027 refs = btrfs_extent_refs(leaf, ei); 6028 if (refs < refs_to_drop) { 6029 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6030 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6031 ret = -EINVAL; 6032 btrfs_abort_transaction(trans, extent_root, ret); 6033 goto out; 6034 } 6035 refs -= refs_to_drop; 6036 6037 if (refs > 0) { 6038 type = BTRFS_QGROUP_OPER_SUB_SHARED; 6039 if (extent_op) 6040 __run_delayed_extent_op(extent_op, leaf, ei); 6041 /* 6042 * In the case of inline back ref, reference count will 6043 * be updated by remove_extent_backref 6044 */ 6045 if (iref) { 6046 BUG_ON(!found_extent); 6047 } else { 6048 btrfs_set_extent_refs(leaf, ei, refs); 6049 btrfs_mark_buffer_dirty(leaf); 6050 } 6051 if (found_extent) { 6052 ret = remove_extent_backref(trans, extent_root, path, 6053 iref, refs_to_drop, 6054 is_data, &last_ref); 6055 if (ret) { 6056 btrfs_abort_transaction(trans, extent_root, ret); 6057 goto out; 6058 } 6059 } 6060 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6061 root_objectid); 6062 } else { 6063 if (found_extent) { 6064 BUG_ON(is_data && refs_to_drop != 6065 extent_data_ref_count(root, path, iref)); 6066 if (iref) { 6067 BUG_ON(path->slots[0] != extent_slot); 6068 } else { 6069 BUG_ON(path->slots[0] != extent_slot + 1); 6070 path->slots[0] = extent_slot; 6071 num_to_del = 2; 6072 } 6073 } 6074 6075 last_ref = 1; 6076 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6077 num_to_del); 6078 if (ret) { 6079 btrfs_abort_transaction(trans, extent_root, ret); 6080 goto out; 6081 } 6082 btrfs_release_path(path); 6083 6084 if (is_data) { 6085 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6086 if (ret) { 6087 btrfs_abort_transaction(trans, extent_root, ret); 6088 goto out; 6089 } 6090 } 6091 6092 ret = update_block_group(root, bytenr, num_bytes, 0); 6093 if (ret) { 6094 btrfs_abort_transaction(trans, extent_root, ret); 6095 goto out; 6096 } 6097 } 6098 btrfs_release_path(path); 6099 6100 /* Deal with the quota accounting */ 6101 if (!ret && last_ref && !no_quota) { 6102 int mod_seq = 0; 6103 6104 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID && 6105 type == BTRFS_QGROUP_OPER_SUB_SHARED) 6106 mod_seq = 1; 6107 6108 ret = btrfs_qgroup_record_ref(trans, info, root_objectid, 6109 bytenr, num_bytes, type, 6110 mod_seq); 6111 } 6112 out: 6113 btrfs_free_path(path); 6114 return ret; 6115 } 6116 6117 /* 6118 * when we free an block, it is possible (and likely) that we free the last 6119 * delayed ref for that extent as well. This searches the delayed ref tree for 6120 * a given extent, and if there are no other delayed refs to be processed, it 6121 * removes it from the tree. 6122 */ 6123 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6124 struct btrfs_root *root, u64 bytenr) 6125 { 6126 struct btrfs_delayed_ref_head *head; 6127 struct btrfs_delayed_ref_root *delayed_refs; 6128 int ret = 0; 6129 6130 delayed_refs = &trans->transaction->delayed_refs; 6131 spin_lock(&delayed_refs->lock); 6132 head = btrfs_find_delayed_ref_head(trans, bytenr); 6133 if (!head) 6134 goto out_delayed_unlock; 6135 6136 spin_lock(&head->lock); 6137 if (rb_first(&head->ref_root)) 6138 goto out; 6139 6140 if (head->extent_op) { 6141 if (!head->must_insert_reserved) 6142 goto out; 6143 btrfs_free_delayed_extent_op(head->extent_op); 6144 head->extent_op = NULL; 6145 } 6146 6147 /* 6148 * waiting for the lock here would deadlock. If someone else has it 6149 * locked they are already in the process of dropping it anyway 6150 */ 6151 if (!mutex_trylock(&head->mutex)) 6152 goto out; 6153 6154 /* 6155 * at this point we have a head with no other entries. Go 6156 * ahead and process it. 6157 */ 6158 head->node.in_tree = 0; 6159 rb_erase(&head->href_node, &delayed_refs->href_root); 6160 6161 atomic_dec(&delayed_refs->num_entries); 6162 6163 /* 6164 * we don't take a ref on the node because we're removing it from the 6165 * tree, so we just steal the ref the tree was holding. 6166 */ 6167 delayed_refs->num_heads--; 6168 if (head->processing == 0) 6169 delayed_refs->num_heads_ready--; 6170 head->processing = 0; 6171 spin_unlock(&head->lock); 6172 spin_unlock(&delayed_refs->lock); 6173 6174 BUG_ON(head->extent_op); 6175 if (head->must_insert_reserved) 6176 ret = 1; 6177 6178 mutex_unlock(&head->mutex); 6179 btrfs_put_delayed_ref(&head->node); 6180 return ret; 6181 out: 6182 spin_unlock(&head->lock); 6183 6184 out_delayed_unlock: 6185 spin_unlock(&delayed_refs->lock); 6186 return 0; 6187 } 6188 6189 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6190 struct btrfs_root *root, 6191 struct extent_buffer *buf, 6192 u64 parent, int last_ref) 6193 { 6194 struct btrfs_block_group_cache *cache = NULL; 6195 int pin = 1; 6196 int ret; 6197 6198 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6199 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6200 buf->start, buf->len, 6201 parent, root->root_key.objectid, 6202 btrfs_header_level(buf), 6203 BTRFS_DROP_DELAYED_REF, NULL, 0); 6204 BUG_ON(ret); /* -ENOMEM */ 6205 } 6206 6207 if (!last_ref) 6208 return; 6209 6210 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6211 6212 if (btrfs_header_generation(buf) == trans->transid) { 6213 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6214 ret = check_ref_cleanup(trans, root, buf->start); 6215 if (!ret) 6216 goto out; 6217 } 6218 6219 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6220 pin_down_extent(root, cache, buf->start, buf->len, 1); 6221 goto out; 6222 } 6223 6224 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6225 6226 btrfs_add_free_space(cache, buf->start, buf->len); 6227 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6228 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6229 pin = 0; 6230 } 6231 out: 6232 if (pin) 6233 add_pinned_bytes(root->fs_info, buf->len, 6234 btrfs_header_level(buf), 6235 root->root_key.objectid); 6236 6237 /* 6238 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6239 * anymore. 6240 */ 6241 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6242 btrfs_put_block_group(cache); 6243 } 6244 6245 /* Can return -ENOMEM */ 6246 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6247 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6248 u64 owner, u64 offset, int no_quota) 6249 { 6250 int ret; 6251 struct btrfs_fs_info *fs_info = root->fs_info; 6252 6253 if (btrfs_test_is_dummy_root(root)) 6254 return 0; 6255 6256 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6257 6258 /* 6259 * tree log blocks never actually go into the extent allocation 6260 * tree, just update pinning info and exit early. 6261 */ 6262 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6263 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6264 /* unlocks the pinned mutex */ 6265 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6266 ret = 0; 6267 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6268 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6269 num_bytes, 6270 parent, root_objectid, (int)owner, 6271 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6272 } else { 6273 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6274 num_bytes, 6275 parent, root_objectid, owner, 6276 offset, BTRFS_DROP_DELAYED_REF, 6277 NULL, no_quota); 6278 } 6279 return ret; 6280 } 6281 6282 /* 6283 * when we wait for progress in the block group caching, its because 6284 * our allocation attempt failed at least once. So, we must sleep 6285 * and let some progress happen before we try again. 6286 * 6287 * This function will sleep at least once waiting for new free space to 6288 * show up, and then it will check the block group free space numbers 6289 * for our min num_bytes. Another option is to have it go ahead 6290 * and look in the rbtree for a free extent of a given size, but this 6291 * is a good start. 6292 * 6293 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6294 * any of the information in this block group. 6295 */ 6296 static noinline void 6297 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6298 u64 num_bytes) 6299 { 6300 struct btrfs_caching_control *caching_ctl; 6301 6302 caching_ctl = get_caching_control(cache); 6303 if (!caching_ctl) 6304 return; 6305 6306 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6307 (cache->free_space_ctl->free_space >= num_bytes)); 6308 6309 put_caching_control(caching_ctl); 6310 } 6311 6312 static noinline int 6313 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6314 { 6315 struct btrfs_caching_control *caching_ctl; 6316 int ret = 0; 6317 6318 caching_ctl = get_caching_control(cache); 6319 if (!caching_ctl) 6320 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6321 6322 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6323 if (cache->cached == BTRFS_CACHE_ERROR) 6324 ret = -EIO; 6325 put_caching_control(caching_ctl); 6326 return ret; 6327 } 6328 6329 int __get_raid_index(u64 flags) 6330 { 6331 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6332 return BTRFS_RAID_RAID10; 6333 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6334 return BTRFS_RAID_RAID1; 6335 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6336 return BTRFS_RAID_DUP; 6337 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6338 return BTRFS_RAID_RAID0; 6339 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6340 return BTRFS_RAID_RAID5; 6341 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6342 return BTRFS_RAID_RAID6; 6343 6344 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6345 } 6346 6347 int get_block_group_index(struct btrfs_block_group_cache *cache) 6348 { 6349 return __get_raid_index(cache->flags); 6350 } 6351 6352 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6353 [BTRFS_RAID_RAID10] = "raid10", 6354 [BTRFS_RAID_RAID1] = "raid1", 6355 [BTRFS_RAID_DUP] = "dup", 6356 [BTRFS_RAID_RAID0] = "raid0", 6357 [BTRFS_RAID_SINGLE] = "single", 6358 [BTRFS_RAID_RAID5] = "raid5", 6359 [BTRFS_RAID_RAID6] = "raid6", 6360 }; 6361 6362 static const char *get_raid_name(enum btrfs_raid_types type) 6363 { 6364 if (type >= BTRFS_NR_RAID_TYPES) 6365 return NULL; 6366 6367 return btrfs_raid_type_names[type]; 6368 } 6369 6370 enum btrfs_loop_type { 6371 LOOP_CACHING_NOWAIT = 0, 6372 LOOP_CACHING_WAIT = 1, 6373 LOOP_ALLOC_CHUNK = 2, 6374 LOOP_NO_EMPTY_SIZE = 3, 6375 }; 6376 6377 static inline void 6378 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6379 int delalloc) 6380 { 6381 if (delalloc) 6382 down_read(&cache->data_rwsem); 6383 } 6384 6385 static inline void 6386 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6387 int delalloc) 6388 { 6389 btrfs_get_block_group(cache); 6390 if (delalloc) 6391 down_read(&cache->data_rwsem); 6392 } 6393 6394 static struct btrfs_block_group_cache * 6395 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6396 struct btrfs_free_cluster *cluster, 6397 int delalloc) 6398 { 6399 struct btrfs_block_group_cache *used_bg; 6400 bool locked = false; 6401 again: 6402 spin_lock(&cluster->refill_lock); 6403 if (locked) { 6404 if (used_bg == cluster->block_group) 6405 return used_bg; 6406 6407 up_read(&used_bg->data_rwsem); 6408 btrfs_put_block_group(used_bg); 6409 } 6410 6411 used_bg = cluster->block_group; 6412 if (!used_bg) 6413 return NULL; 6414 6415 if (used_bg == block_group) 6416 return used_bg; 6417 6418 btrfs_get_block_group(used_bg); 6419 6420 if (!delalloc) 6421 return used_bg; 6422 6423 if (down_read_trylock(&used_bg->data_rwsem)) 6424 return used_bg; 6425 6426 spin_unlock(&cluster->refill_lock); 6427 down_read(&used_bg->data_rwsem); 6428 locked = true; 6429 goto again; 6430 } 6431 6432 static inline void 6433 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6434 int delalloc) 6435 { 6436 if (delalloc) 6437 up_read(&cache->data_rwsem); 6438 btrfs_put_block_group(cache); 6439 } 6440 6441 /* 6442 * walks the btree of allocated extents and find a hole of a given size. 6443 * The key ins is changed to record the hole: 6444 * ins->objectid == start position 6445 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6446 * ins->offset == the size of the hole. 6447 * Any available blocks before search_start are skipped. 6448 * 6449 * If there is no suitable free space, we will record the max size of 6450 * the free space extent currently. 6451 */ 6452 static noinline int find_free_extent(struct btrfs_root *orig_root, 6453 u64 num_bytes, u64 empty_size, 6454 u64 hint_byte, struct btrfs_key *ins, 6455 u64 flags, int delalloc) 6456 { 6457 int ret = 0; 6458 struct btrfs_root *root = orig_root->fs_info->extent_root; 6459 struct btrfs_free_cluster *last_ptr = NULL; 6460 struct btrfs_block_group_cache *block_group = NULL; 6461 u64 search_start = 0; 6462 u64 max_extent_size = 0; 6463 int empty_cluster = 2 * 1024 * 1024; 6464 struct btrfs_space_info *space_info; 6465 int loop = 0; 6466 int index = __get_raid_index(flags); 6467 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6468 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6469 bool failed_cluster_refill = false; 6470 bool failed_alloc = false; 6471 bool use_cluster = true; 6472 bool have_caching_bg = false; 6473 6474 WARN_ON(num_bytes < root->sectorsize); 6475 ins->type = BTRFS_EXTENT_ITEM_KEY; 6476 ins->objectid = 0; 6477 ins->offset = 0; 6478 6479 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6480 6481 space_info = __find_space_info(root->fs_info, flags); 6482 if (!space_info) { 6483 btrfs_err(root->fs_info, "No space info for %llu", flags); 6484 return -ENOSPC; 6485 } 6486 6487 /* 6488 * If the space info is for both data and metadata it means we have a 6489 * small filesystem and we can't use the clustering stuff. 6490 */ 6491 if (btrfs_mixed_space_info(space_info)) 6492 use_cluster = false; 6493 6494 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6495 last_ptr = &root->fs_info->meta_alloc_cluster; 6496 if (!btrfs_test_opt(root, SSD)) 6497 empty_cluster = 64 * 1024; 6498 } 6499 6500 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6501 btrfs_test_opt(root, SSD)) { 6502 last_ptr = &root->fs_info->data_alloc_cluster; 6503 } 6504 6505 if (last_ptr) { 6506 spin_lock(&last_ptr->lock); 6507 if (last_ptr->block_group) 6508 hint_byte = last_ptr->window_start; 6509 spin_unlock(&last_ptr->lock); 6510 } 6511 6512 search_start = max(search_start, first_logical_byte(root, 0)); 6513 search_start = max(search_start, hint_byte); 6514 6515 if (!last_ptr) 6516 empty_cluster = 0; 6517 6518 if (search_start == hint_byte) { 6519 block_group = btrfs_lookup_block_group(root->fs_info, 6520 search_start); 6521 /* 6522 * we don't want to use the block group if it doesn't match our 6523 * allocation bits, or if its not cached. 6524 * 6525 * However if we are re-searching with an ideal block group 6526 * picked out then we don't care that the block group is cached. 6527 */ 6528 if (block_group && block_group_bits(block_group, flags) && 6529 block_group->cached != BTRFS_CACHE_NO) { 6530 down_read(&space_info->groups_sem); 6531 if (list_empty(&block_group->list) || 6532 block_group->ro) { 6533 /* 6534 * someone is removing this block group, 6535 * we can't jump into the have_block_group 6536 * target because our list pointers are not 6537 * valid 6538 */ 6539 btrfs_put_block_group(block_group); 6540 up_read(&space_info->groups_sem); 6541 } else { 6542 index = get_block_group_index(block_group); 6543 btrfs_lock_block_group(block_group, delalloc); 6544 goto have_block_group; 6545 } 6546 } else if (block_group) { 6547 btrfs_put_block_group(block_group); 6548 } 6549 } 6550 search: 6551 have_caching_bg = false; 6552 down_read(&space_info->groups_sem); 6553 list_for_each_entry(block_group, &space_info->block_groups[index], 6554 list) { 6555 u64 offset; 6556 int cached; 6557 6558 btrfs_grab_block_group(block_group, delalloc); 6559 search_start = block_group->key.objectid; 6560 6561 /* 6562 * this can happen if we end up cycling through all the 6563 * raid types, but we want to make sure we only allocate 6564 * for the proper type. 6565 */ 6566 if (!block_group_bits(block_group, flags)) { 6567 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6568 BTRFS_BLOCK_GROUP_RAID1 | 6569 BTRFS_BLOCK_GROUP_RAID5 | 6570 BTRFS_BLOCK_GROUP_RAID6 | 6571 BTRFS_BLOCK_GROUP_RAID10; 6572 6573 /* 6574 * if they asked for extra copies and this block group 6575 * doesn't provide them, bail. This does allow us to 6576 * fill raid0 from raid1. 6577 */ 6578 if ((flags & extra) && !(block_group->flags & extra)) 6579 goto loop; 6580 } 6581 6582 have_block_group: 6583 cached = block_group_cache_done(block_group); 6584 if (unlikely(!cached)) { 6585 ret = cache_block_group(block_group, 0); 6586 BUG_ON(ret < 0); 6587 ret = 0; 6588 } 6589 6590 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6591 goto loop; 6592 if (unlikely(block_group->ro)) 6593 goto loop; 6594 6595 /* 6596 * Ok we want to try and use the cluster allocator, so 6597 * lets look there 6598 */ 6599 if (last_ptr) { 6600 struct btrfs_block_group_cache *used_block_group; 6601 unsigned long aligned_cluster; 6602 /* 6603 * the refill lock keeps out other 6604 * people trying to start a new cluster 6605 */ 6606 used_block_group = btrfs_lock_cluster(block_group, 6607 last_ptr, 6608 delalloc); 6609 if (!used_block_group) 6610 goto refill_cluster; 6611 6612 if (used_block_group != block_group && 6613 (used_block_group->ro || 6614 !block_group_bits(used_block_group, flags))) 6615 goto release_cluster; 6616 6617 offset = btrfs_alloc_from_cluster(used_block_group, 6618 last_ptr, 6619 num_bytes, 6620 used_block_group->key.objectid, 6621 &max_extent_size); 6622 if (offset) { 6623 /* we have a block, we're done */ 6624 spin_unlock(&last_ptr->refill_lock); 6625 trace_btrfs_reserve_extent_cluster(root, 6626 used_block_group, 6627 search_start, num_bytes); 6628 if (used_block_group != block_group) { 6629 btrfs_release_block_group(block_group, 6630 delalloc); 6631 block_group = used_block_group; 6632 } 6633 goto checks; 6634 } 6635 6636 WARN_ON(last_ptr->block_group != used_block_group); 6637 release_cluster: 6638 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6639 * set up a new clusters, so lets just skip it 6640 * and let the allocator find whatever block 6641 * it can find. If we reach this point, we 6642 * will have tried the cluster allocator 6643 * plenty of times and not have found 6644 * anything, so we are likely way too 6645 * fragmented for the clustering stuff to find 6646 * anything. 6647 * 6648 * However, if the cluster is taken from the 6649 * current block group, release the cluster 6650 * first, so that we stand a better chance of 6651 * succeeding in the unclustered 6652 * allocation. */ 6653 if (loop >= LOOP_NO_EMPTY_SIZE && 6654 used_block_group != block_group) { 6655 spin_unlock(&last_ptr->refill_lock); 6656 btrfs_release_block_group(used_block_group, 6657 delalloc); 6658 goto unclustered_alloc; 6659 } 6660 6661 /* 6662 * this cluster didn't work out, free it and 6663 * start over 6664 */ 6665 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6666 6667 if (used_block_group != block_group) 6668 btrfs_release_block_group(used_block_group, 6669 delalloc); 6670 refill_cluster: 6671 if (loop >= LOOP_NO_EMPTY_SIZE) { 6672 spin_unlock(&last_ptr->refill_lock); 6673 goto unclustered_alloc; 6674 } 6675 6676 aligned_cluster = max_t(unsigned long, 6677 empty_cluster + empty_size, 6678 block_group->full_stripe_len); 6679 6680 /* allocate a cluster in this block group */ 6681 ret = btrfs_find_space_cluster(root, block_group, 6682 last_ptr, search_start, 6683 num_bytes, 6684 aligned_cluster); 6685 if (ret == 0) { 6686 /* 6687 * now pull our allocation out of this 6688 * cluster 6689 */ 6690 offset = btrfs_alloc_from_cluster(block_group, 6691 last_ptr, 6692 num_bytes, 6693 search_start, 6694 &max_extent_size); 6695 if (offset) { 6696 /* we found one, proceed */ 6697 spin_unlock(&last_ptr->refill_lock); 6698 trace_btrfs_reserve_extent_cluster(root, 6699 block_group, search_start, 6700 num_bytes); 6701 goto checks; 6702 } 6703 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6704 && !failed_cluster_refill) { 6705 spin_unlock(&last_ptr->refill_lock); 6706 6707 failed_cluster_refill = true; 6708 wait_block_group_cache_progress(block_group, 6709 num_bytes + empty_cluster + empty_size); 6710 goto have_block_group; 6711 } 6712 6713 /* 6714 * at this point we either didn't find a cluster 6715 * or we weren't able to allocate a block from our 6716 * cluster. Free the cluster we've been trying 6717 * to use, and go to the next block group 6718 */ 6719 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6720 spin_unlock(&last_ptr->refill_lock); 6721 goto loop; 6722 } 6723 6724 unclustered_alloc: 6725 spin_lock(&block_group->free_space_ctl->tree_lock); 6726 if (cached && 6727 block_group->free_space_ctl->free_space < 6728 num_bytes + empty_cluster + empty_size) { 6729 if (block_group->free_space_ctl->free_space > 6730 max_extent_size) 6731 max_extent_size = 6732 block_group->free_space_ctl->free_space; 6733 spin_unlock(&block_group->free_space_ctl->tree_lock); 6734 goto loop; 6735 } 6736 spin_unlock(&block_group->free_space_ctl->tree_lock); 6737 6738 offset = btrfs_find_space_for_alloc(block_group, search_start, 6739 num_bytes, empty_size, 6740 &max_extent_size); 6741 /* 6742 * If we didn't find a chunk, and we haven't failed on this 6743 * block group before, and this block group is in the middle of 6744 * caching and we are ok with waiting, then go ahead and wait 6745 * for progress to be made, and set failed_alloc to true. 6746 * 6747 * If failed_alloc is true then we've already waited on this 6748 * block group once and should move on to the next block group. 6749 */ 6750 if (!offset && !failed_alloc && !cached && 6751 loop > LOOP_CACHING_NOWAIT) { 6752 wait_block_group_cache_progress(block_group, 6753 num_bytes + empty_size); 6754 failed_alloc = true; 6755 goto have_block_group; 6756 } else if (!offset) { 6757 if (!cached) 6758 have_caching_bg = true; 6759 goto loop; 6760 } 6761 checks: 6762 search_start = ALIGN(offset, root->stripesize); 6763 6764 /* move on to the next group */ 6765 if (search_start + num_bytes > 6766 block_group->key.objectid + block_group->key.offset) { 6767 btrfs_add_free_space(block_group, offset, num_bytes); 6768 goto loop; 6769 } 6770 6771 if (offset < search_start) 6772 btrfs_add_free_space(block_group, offset, 6773 search_start - offset); 6774 BUG_ON(offset > search_start); 6775 6776 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 6777 alloc_type, delalloc); 6778 if (ret == -EAGAIN) { 6779 btrfs_add_free_space(block_group, offset, num_bytes); 6780 goto loop; 6781 } 6782 6783 /* we are all good, lets return */ 6784 ins->objectid = search_start; 6785 ins->offset = num_bytes; 6786 6787 trace_btrfs_reserve_extent(orig_root, block_group, 6788 search_start, num_bytes); 6789 btrfs_release_block_group(block_group, delalloc); 6790 break; 6791 loop: 6792 failed_cluster_refill = false; 6793 failed_alloc = false; 6794 BUG_ON(index != get_block_group_index(block_group)); 6795 btrfs_release_block_group(block_group, delalloc); 6796 } 6797 up_read(&space_info->groups_sem); 6798 6799 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6800 goto search; 6801 6802 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6803 goto search; 6804 6805 /* 6806 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6807 * caching kthreads as we move along 6808 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6809 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6810 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6811 * again 6812 */ 6813 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6814 index = 0; 6815 loop++; 6816 if (loop == LOOP_ALLOC_CHUNK) { 6817 struct btrfs_trans_handle *trans; 6818 int exist = 0; 6819 6820 trans = current->journal_info; 6821 if (trans) 6822 exist = 1; 6823 else 6824 trans = btrfs_join_transaction(root); 6825 6826 if (IS_ERR(trans)) { 6827 ret = PTR_ERR(trans); 6828 goto out; 6829 } 6830 6831 ret = do_chunk_alloc(trans, root, flags, 6832 CHUNK_ALLOC_FORCE); 6833 /* 6834 * Do not bail out on ENOSPC since we 6835 * can do more things. 6836 */ 6837 if (ret < 0 && ret != -ENOSPC) 6838 btrfs_abort_transaction(trans, 6839 root, ret); 6840 else 6841 ret = 0; 6842 if (!exist) 6843 btrfs_end_transaction(trans, root); 6844 if (ret) 6845 goto out; 6846 } 6847 6848 if (loop == LOOP_NO_EMPTY_SIZE) { 6849 empty_size = 0; 6850 empty_cluster = 0; 6851 } 6852 6853 goto search; 6854 } else if (!ins->objectid) { 6855 ret = -ENOSPC; 6856 } else if (ins->objectid) { 6857 ret = 0; 6858 } 6859 out: 6860 if (ret == -ENOSPC) 6861 ins->offset = max_extent_size; 6862 return ret; 6863 } 6864 6865 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6866 int dump_block_groups) 6867 { 6868 struct btrfs_block_group_cache *cache; 6869 int index = 0; 6870 6871 spin_lock(&info->lock); 6872 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 6873 info->flags, 6874 info->total_bytes - info->bytes_used - info->bytes_pinned - 6875 info->bytes_reserved - info->bytes_readonly, 6876 (info->full) ? "" : "not "); 6877 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 6878 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6879 info->total_bytes, info->bytes_used, info->bytes_pinned, 6880 info->bytes_reserved, info->bytes_may_use, 6881 info->bytes_readonly); 6882 spin_unlock(&info->lock); 6883 6884 if (!dump_block_groups) 6885 return; 6886 6887 down_read(&info->groups_sem); 6888 again: 6889 list_for_each_entry(cache, &info->block_groups[index], list) { 6890 spin_lock(&cache->lock); 6891 printk(KERN_INFO "BTRFS: " 6892 "block group %llu has %llu bytes, " 6893 "%llu used %llu pinned %llu reserved %s\n", 6894 cache->key.objectid, cache->key.offset, 6895 btrfs_block_group_used(&cache->item), cache->pinned, 6896 cache->reserved, cache->ro ? "[readonly]" : ""); 6897 btrfs_dump_free_space(cache, bytes); 6898 spin_unlock(&cache->lock); 6899 } 6900 if (++index < BTRFS_NR_RAID_TYPES) 6901 goto again; 6902 up_read(&info->groups_sem); 6903 } 6904 6905 int btrfs_reserve_extent(struct btrfs_root *root, 6906 u64 num_bytes, u64 min_alloc_size, 6907 u64 empty_size, u64 hint_byte, 6908 struct btrfs_key *ins, int is_data, int delalloc) 6909 { 6910 bool final_tried = false; 6911 u64 flags; 6912 int ret; 6913 6914 flags = btrfs_get_alloc_profile(root, is_data); 6915 again: 6916 WARN_ON(num_bytes < root->sectorsize); 6917 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6918 flags, delalloc); 6919 6920 if (ret == -ENOSPC) { 6921 if (!final_tried && ins->offset) { 6922 num_bytes = min(num_bytes >> 1, ins->offset); 6923 num_bytes = round_down(num_bytes, root->sectorsize); 6924 num_bytes = max(num_bytes, min_alloc_size); 6925 if (num_bytes == min_alloc_size) 6926 final_tried = true; 6927 goto again; 6928 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6929 struct btrfs_space_info *sinfo; 6930 6931 sinfo = __find_space_info(root->fs_info, flags); 6932 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6933 flags, num_bytes); 6934 if (sinfo) 6935 dump_space_info(sinfo, num_bytes, 1); 6936 } 6937 } 6938 6939 return ret; 6940 } 6941 6942 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6943 u64 start, u64 len, 6944 int pin, int delalloc) 6945 { 6946 struct btrfs_block_group_cache *cache; 6947 int ret = 0; 6948 6949 cache = btrfs_lookup_block_group(root->fs_info, start); 6950 if (!cache) { 6951 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6952 start); 6953 return -ENOSPC; 6954 } 6955 6956 if (btrfs_test_opt(root, DISCARD)) 6957 ret = btrfs_discard_extent(root, start, len, NULL); 6958 6959 if (pin) 6960 pin_down_extent(root, cache, start, len, 1); 6961 else { 6962 btrfs_add_free_space(cache, start, len); 6963 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 6964 } 6965 btrfs_put_block_group(cache); 6966 6967 trace_btrfs_reserved_extent_free(root, start, len); 6968 6969 return ret; 6970 } 6971 6972 int btrfs_free_reserved_extent(struct btrfs_root *root, 6973 u64 start, u64 len, int delalloc) 6974 { 6975 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 6976 } 6977 6978 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6979 u64 start, u64 len) 6980 { 6981 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 6982 } 6983 6984 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6985 struct btrfs_root *root, 6986 u64 parent, u64 root_objectid, 6987 u64 flags, u64 owner, u64 offset, 6988 struct btrfs_key *ins, int ref_mod) 6989 { 6990 int ret; 6991 struct btrfs_fs_info *fs_info = root->fs_info; 6992 struct btrfs_extent_item *extent_item; 6993 struct btrfs_extent_inline_ref *iref; 6994 struct btrfs_path *path; 6995 struct extent_buffer *leaf; 6996 int type; 6997 u32 size; 6998 6999 if (parent > 0) 7000 type = BTRFS_SHARED_DATA_REF_KEY; 7001 else 7002 type = BTRFS_EXTENT_DATA_REF_KEY; 7003 7004 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7005 7006 path = btrfs_alloc_path(); 7007 if (!path) 7008 return -ENOMEM; 7009 7010 path->leave_spinning = 1; 7011 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7012 ins, size); 7013 if (ret) { 7014 btrfs_free_path(path); 7015 return ret; 7016 } 7017 7018 leaf = path->nodes[0]; 7019 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7020 struct btrfs_extent_item); 7021 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7022 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7023 btrfs_set_extent_flags(leaf, extent_item, 7024 flags | BTRFS_EXTENT_FLAG_DATA); 7025 7026 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7027 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7028 if (parent > 0) { 7029 struct btrfs_shared_data_ref *ref; 7030 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7031 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7032 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7033 } else { 7034 struct btrfs_extent_data_ref *ref; 7035 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7036 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7037 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7038 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7039 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7040 } 7041 7042 btrfs_mark_buffer_dirty(path->nodes[0]); 7043 btrfs_free_path(path); 7044 7045 /* Always set parent to 0 here since its exclusive anyway. */ 7046 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7047 ins->objectid, ins->offset, 7048 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7049 if (ret) 7050 return ret; 7051 7052 ret = update_block_group(root, ins->objectid, ins->offset, 1); 7053 if (ret) { /* -ENOENT, logic error */ 7054 btrfs_err(fs_info, "update block group failed for %llu %llu", 7055 ins->objectid, ins->offset); 7056 BUG(); 7057 } 7058 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7059 return ret; 7060 } 7061 7062 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7063 struct btrfs_root *root, 7064 u64 parent, u64 root_objectid, 7065 u64 flags, struct btrfs_disk_key *key, 7066 int level, struct btrfs_key *ins, 7067 int no_quota) 7068 { 7069 int ret; 7070 struct btrfs_fs_info *fs_info = root->fs_info; 7071 struct btrfs_extent_item *extent_item; 7072 struct btrfs_tree_block_info *block_info; 7073 struct btrfs_extent_inline_ref *iref; 7074 struct btrfs_path *path; 7075 struct extent_buffer *leaf; 7076 u32 size = sizeof(*extent_item) + sizeof(*iref); 7077 u64 num_bytes = ins->offset; 7078 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7079 SKINNY_METADATA); 7080 7081 if (!skinny_metadata) 7082 size += sizeof(*block_info); 7083 7084 path = btrfs_alloc_path(); 7085 if (!path) { 7086 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7087 root->nodesize); 7088 return -ENOMEM; 7089 } 7090 7091 path->leave_spinning = 1; 7092 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7093 ins, size); 7094 if (ret) { 7095 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7096 root->nodesize); 7097 btrfs_free_path(path); 7098 return ret; 7099 } 7100 7101 leaf = path->nodes[0]; 7102 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7103 struct btrfs_extent_item); 7104 btrfs_set_extent_refs(leaf, extent_item, 1); 7105 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7106 btrfs_set_extent_flags(leaf, extent_item, 7107 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7108 7109 if (skinny_metadata) { 7110 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7111 num_bytes = root->nodesize; 7112 } else { 7113 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7114 btrfs_set_tree_block_key(leaf, block_info, key); 7115 btrfs_set_tree_block_level(leaf, block_info, level); 7116 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7117 } 7118 7119 if (parent > 0) { 7120 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7121 btrfs_set_extent_inline_ref_type(leaf, iref, 7122 BTRFS_SHARED_BLOCK_REF_KEY); 7123 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7124 } else { 7125 btrfs_set_extent_inline_ref_type(leaf, iref, 7126 BTRFS_TREE_BLOCK_REF_KEY); 7127 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7128 } 7129 7130 btrfs_mark_buffer_dirty(leaf); 7131 btrfs_free_path(path); 7132 7133 if (!no_quota) { 7134 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7135 ins->objectid, num_bytes, 7136 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7137 if (ret) 7138 return ret; 7139 } 7140 7141 ret = update_block_group(root, ins->objectid, root->nodesize, 1); 7142 if (ret) { /* -ENOENT, logic error */ 7143 btrfs_err(fs_info, "update block group failed for %llu %llu", 7144 ins->objectid, ins->offset); 7145 BUG(); 7146 } 7147 7148 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7149 return ret; 7150 } 7151 7152 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7153 struct btrfs_root *root, 7154 u64 root_objectid, u64 owner, 7155 u64 offset, struct btrfs_key *ins) 7156 { 7157 int ret; 7158 7159 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7160 7161 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7162 ins->offset, 0, 7163 root_objectid, owner, offset, 7164 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7165 return ret; 7166 } 7167 7168 /* 7169 * this is used by the tree logging recovery code. It records that 7170 * an extent has been allocated and makes sure to clear the free 7171 * space cache bits as well 7172 */ 7173 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7174 struct btrfs_root *root, 7175 u64 root_objectid, u64 owner, u64 offset, 7176 struct btrfs_key *ins) 7177 { 7178 int ret; 7179 struct btrfs_block_group_cache *block_group; 7180 7181 /* 7182 * Mixed block groups will exclude before processing the log so we only 7183 * need to do the exlude dance if this fs isn't mixed. 7184 */ 7185 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7186 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7187 if (ret) 7188 return ret; 7189 } 7190 7191 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7192 if (!block_group) 7193 return -EINVAL; 7194 7195 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7196 RESERVE_ALLOC_NO_ACCOUNT, 0); 7197 BUG_ON(ret); /* logic error */ 7198 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7199 0, owner, offset, ins, 1); 7200 btrfs_put_block_group(block_group); 7201 return ret; 7202 } 7203 7204 static struct extent_buffer * 7205 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7206 u64 bytenr, u32 blocksize, int level) 7207 { 7208 struct extent_buffer *buf; 7209 7210 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 7211 if (!buf) 7212 return ERR_PTR(-ENOMEM); 7213 btrfs_set_header_generation(buf, trans->transid); 7214 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7215 btrfs_tree_lock(buf); 7216 clean_tree_block(trans, root, buf); 7217 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7218 7219 btrfs_set_lock_blocking(buf); 7220 btrfs_set_buffer_uptodate(buf); 7221 7222 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7223 buf->log_index = root->log_transid % 2; 7224 /* 7225 * we allow two log transactions at a time, use different 7226 * EXENT bit to differentiate dirty pages. 7227 */ 7228 if (buf->log_index == 0) 7229 set_extent_dirty(&root->dirty_log_pages, buf->start, 7230 buf->start + buf->len - 1, GFP_NOFS); 7231 else 7232 set_extent_new(&root->dirty_log_pages, buf->start, 7233 buf->start + buf->len - 1, GFP_NOFS); 7234 } else { 7235 buf->log_index = -1; 7236 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7237 buf->start + buf->len - 1, GFP_NOFS); 7238 } 7239 trans->blocks_used++; 7240 /* this returns a buffer locked for blocking */ 7241 return buf; 7242 } 7243 7244 static struct btrfs_block_rsv * 7245 use_block_rsv(struct btrfs_trans_handle *trans, 7246 struct btrfs_root *root, u32 blocksize) 7247 { 7248 struct btrfs_block_rsv *block_rsv; 7249 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7250 int ret; 7251 bool global_updated = false; 7252 7253 block_rsv = get_block_rsv(trans, root); 7254 7255 if (unlikely(block_rsv->size == 0)) 7256 goto try_reserve; 7257 again: 7258 ret = block_rsv_use_bytes(block_rsv, blocksize); 7259 if (!ret) 7260 return block_rsv; 7261 7262 if (block_rsv->failfast) 7263 return ERR_PTR(ret); 7264 7265 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7266 global_updated = true; 7267 update_global_block_rsv(root->fs_info); 7268 goto again; 7269 } 7270 7271 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7272 static DEFINE_RATELIMIT_STATE(_rs, 7273 DEFAULT_RATELIMIT_INTERVAL * 10, 7274 /*DEFAULT_RATELIMIT_BURST*/ 1); 7275 if (__ratelimit(&_rs)) 7276 WARN(1, KERN_DEBUG 7277 "BTRFS: block rsv returned %d\n", ret); 7278 } 7279 try_reserve: 7280 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7281 BTRFS_RESERVE_NO_FLUSH); 7282 if (!ret) 7283 return block_rsv; 7284 /* 7285 * If we couldn't reserve metadata bytes try and use some from 7286 * the global reserve if its space type is the same as the global 7287 * reservation. 7288 */ 7289 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7290 block_rsv->space_info == global_rsv->space_info) { 7291 ret = block_rsv_use_bytes(global_rsv, blocksize); 7292 if (!ret) 7293 return global_rsv; 7294 } 7295 return ERR_PTR(ret); 7296 } 7297 7298 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7299 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7300 { 7301 block_rsv_add_bytes(block_rsv, blocksize, 0); 7302 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7303 } 7304 7305 /* 7306 * finds a free extent and does all the dirty work required for allocation 7307 * returns the key for the extent through ins, and a tree buffer for 7308 * the first block of the extent through buf. 7309 * 7310 * returns the tree buffer or NULL. 7311 */ 7312 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7313 struct btrfs_root *root, 7314 u64 parent, u64 root_objectid, 7315 struct btrfs_disk_key *key, int level, 7316 u64 hint, u64 empty_size) 7317 { 7318 struct btrfs_key ins; 7319 struct btrfs_block_rsv *block_rsv; 7320 struct extent_buffer *buf; 7321 u64 flags = 0; 7322 int ret; 7323 u32 blocksize = root->nodesize; 7324 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7325 SKINNY_METADATA); 7326 7327 if (btrfs_test_is_dummy_root(root)) { 7328 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7329 blocksize, level); 7330 if (!IS_ERR(buf)) 7331 root->alloc_bytenr += blocksize; 7332 return buf; 7333 } 7334 7335 block_rsv = use_block_rsv(trans, root, blocksize); 7336 if (IS_ERR(block_rsv)) 7337 return ERR_CAST(block_rsv); 7338 7339 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7340 empty_size, hint, &ins, 0, 0); 7341 if (ret) { 7342 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7343 return ERR_PTR(ret); 7344 } 7345 7346 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7347 blocksize, level); 7348 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7349 7350 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7351 if (parent == 0) 7352 parent = ins.objectid; 7353 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7354 } else 7355 BUG_ON(parent > 0); 7356 7357 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7358 struct btrfs_delayed_extent_op *extent_op; 7359 extent_op = btrfs_alloc_delayed_extent_op(); 7360 BUG_ON(!extent_op); /* -ENOMEM */ 7361 if (key) 7362 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7363 else 7364 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7365 extent_op->flags_to_set = flags; 7366 if (skinny_metadata) 7367 extent_op->update_key = 0; 7368 else 7369 extent_op->update_key = 1; 7370 extent_op->update_flags = 1; 7371 extent_op->is_data = 0; 7372 extent_op->level = level; 7373 7374 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7375 ins.objectid, 7376 ins.offset, parent, root_objectid, 7377 level, BTRFS_ADD_DELAYED_EXTENT, 7378 extent_op, 0); 7379 BUG_ON(ret); /* -ENOMEM */ 7380 } 7381 return buf; 7382 } 7383 7384 struct walk_control { 7385 u64 refs[BTRFS_MAX_LEVEL]; 7386 u64 flags[BTRFS_MAX_LEVEL]; 7387 struct btrfs_key update_progress; 7388 int stage; 7389 int level; 7390 int shared_level; 7391 int update_ref; 7392 int keep_locks; 7393 int reada_slot; 7394 int reada_count; 7395 int for_reloc; 7396 }; 7397 7398 #define DROP_REFERENCE 1 7399 #define UPDATE_BACKREF 2 7400 7401 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7402 struct btrfs_root *root, 7403 struct walk_control *wc, 7404 struct btrfs_path *path) 7405 { 7406 u64 bytenr; 7407 u64 generation; 7408 u64 refs; 7409 u64 flags; 7410 u32 nritems; 7411 u32 blocksize; 7412 struct btrfs_key key; 7413 struct extent_buffer *eb; 7414 int ret; 7415 int slot; 7416 int nread = 0; 7417 7418 if (path->slots[wc->level] < wc->reada_slot) { 7419 wc->reada_count = wc->reada_count * 2 / 3; 7420 wc->reada_count = max(wc->reada_count, 2); 7421 } else { 7422 wc->reada_count = wc->reada_count * 3 / 2; 7423 wc->reada_count = min_t(int, wc->reada_count, 7424 BTRFS_NODEPTRS_PER_BLOCK(root)); 7425 } 7426 7427 eb = path->nodes[wc->level]; 7428 nritems = btrfs_header_nritems(eb); 7429 blocksize = root->nodesize; 7430 7431 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7432 if (nread >= wc->reada_count) 7433 break; 7434 7435 cond_resched(); 7436 bytenr = btrfs_node_blockptr(eb, slot); 7437 generation = btrfs_node_ptr_generation(eb, slot); 7438 7439 if (slot == path->slots[wc->level]) 7440 goto reada; 7441 7442 if (wc->stage == UPDATE_BACKREF && 7443 generation <= root->root_key.offset) 7444 continue; 7445 7446 /* We don't lock the tree block, it's OK to be racy here */ 7447 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7448 wc->level - 1, 1, &refs, 7449 &flags); 7450 /* We don't care about errors in readahead. */ 7451 if (ret < 0) 7452 continue; 7453 BUG_ON(refs == 0); 7454 7455 if (wc->stage == DROP_REFERENCE) { 7456 if (refs == 1) 7457 goto reada; 7458 7459 if (wc->level == 1 && 7460 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7461 continue; 7462 if (!wc->update_ref || 7463 generation <= root->root_key.offset) 7464 continue; 7465 btrfs_node_key_to_cpu(eb, &key, slot); 7466 ret = btrfs_comp_cpu_keys(&key, 7467 &wc->update_progress); 7468 if (ret < 0) 7469 continue; 7470 } else { 7471 if (wc->level == 1 && 7472 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7473 continue; 7474 } 7475 reada: 7476 readahead_tree_block(root, bytenr, blocksize); 7477 nread++; 7478 } 7479 wc->reada_slot = slot; 7480 } 7481 7482 static int account_leaf_items(struct btrfs_trans_handle *trans, 7483 struct btrfs_root *root, 7484 struct extent_buffer *eb) 7485 { 7486 int nr = btrfs_header_nritems(eb); 7487 int i, extent_type, ret; 7488 struct btrfs_key key; 7489 struct btrfs_file_extent_item *fi; 7490 u64 bytenr, num_bytes; 7491 7492 for (i = 0; i < nr; i++) { 7493 btrfs_item_key_to_cpu(eb, &key, i); 7494 7495 if (key.type != BTRFS_EXTENT_DATA_KEY) 7496 continue; 7497 7498 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7499 /* filter out non qgroup-accountable extents */ 7500 extent_type = btrfs_file_extent_type(eb, fi); 7501 7502 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7503 continue; 7504 7505 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7506 if (!bytenr) 7507 continue; 7508 7509 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7510 7511 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7512 root->objectid, 7513 bytenr, num_bytes, 7514 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0); 7515 if (ret) 7516 return ret; 7517 } 7518 return 0; 7519 } 7520 7521 /* 7522 * Walk up the tree from the bottom, freeing leaves and any interior 7523 * nodes which have had all slots visited. If a node (leaf or 7524 * interior) is freed, the node above it will have it's slot 7525 * incremented. The root node will never be freed. 7526 * 7527 * At the end of this function, we should have a path which has all 7528 * slots incremented to the next position for a search. If we need to 7529 * read a new node it will be NULL and the node above it will have the 7530 * correct slot selected for a later read. 7531 * 7532 * If we increment the root nodes slot counter past the number of 7533 * elements, 1 is returned to signal completion of the search. 7534 */ 7535 static int adjust_slots_upwards(struct btrfs_root *root, 7536 struct btrfs_path *path, int root_level) 7537 { 7538 int level = 0; 7539 int nr, slot; 7540 struct extent_buffer *eb; 7541 7542 if (root_level == 0) 7543 return 1; 7544 7545 while (level <= root_level) { 7546 eb = path->nodes[level]; 7547 nr = btrfs_header_nritems(eb); 7548 path->slots[level]++; 7549 slot = path->slots[level]; 7550 if (slot >= nr || level == 0) { 7551 /* 7552 * Don't free the root - we will detect this 7553 * condition after our loop and return a 7554 * positive value for caller to stop walking the tree. 7555 */ 7556 if (level != root_level) { 7557 btrfs_tree_unlock_rw(eb, path->locks[level]); 7558 path->locks[level] = 0; 7559 7560 free_extent_buffer(eb); 7561 path->nodes[level] = NULL; 7562 path->slots[level] = 0; 7563 } 7564 } else { 7565 /* 7566 * We have a valid slot to walk back down 7567 * from. Stop here so caller can process these 7568 * new nodes. 7569 */ 7570 break; 7571 } 7572 7573 level++; 7574 } 7575 7576 eb = path->nodes[root_level]; 7577 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7578 return 1; 7579 7580 return 0; 7581 } 7582 7583 /* 7584 * root_eb is the subtree root and is locked before this function is called. 7585 */ 7586 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7587 struct btrfs_root *root, 7588 struct extent_buffer *root_eb, 7589 u64 root_gen, 7590 int root_level) 7591 { 7592 int ret = 0; 7593 int level; 7594 struct extent_buffer *eb = root_eb; 7595 struct btrfs_path *path = NULL; 7596 7597 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7598 BUG_ON(root_eb == NULL); 7599 7600 if (!root->fs_info->quota_enabled) 7601 return 0; 7602 7603 if (!extent_buffer_uptodate(root_eb)) { 7604 ret = btrfs_read_buffer(root_eb, root_gen); 7605 if (ret) 7606 goto out; 7607 } 7608 7609 if (root_level == 0) { 7610 ret = account_leaf_items(trans, root, root_eb); 7611 goto out; 7612 } 7613 7614 path = btrfs_alloc_path(); 7615 if (!path) 7616 return -ENOMEM; 7617 7618 /* 7619 * Walk down the tree. Missing extent blocks are filled in as 7620 * we go. Metadata is accounted every time we read a new 7621 * extent block. 7622 * 7623 * When we reach a leaf, we account for file extent items in it, 7624 * walk back up the tree (adjusting slot pointers as we go) 7625 * and restart the search process. 7626 */ 7627 extent_buffer_get(root_eb); /* For path */ 7628 path->nodes[root_level] = root_eb; 7629 path->slots[root_level] = 0; 7630 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7631 walk_down: 7632 level = root_level; 7633 while (level >= 0) { 7634 if (path->nodes[level] == NULL) { 7635 int parent_slot; 7636 u64 child_gen; 7637 u64 child_bytenr; 7638 7639 /* We need to get child blockptr/gen from 7640 * parent before we can read it. */ 7641 eb = path->nodes[level + 1]; 7642 parent_slot = path->slots[level + 1]; 7643 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7644 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7645 7646 eb = read_tree_block(root, child_bytenr, child_gen); 7647 if (!eb || !extent_buffer_uptodate(eb)) { 7648 ret = -EIO; 7649 goto out; 7650 } 7651 7652 path->nodes[level] = eb; 7653 path->slots[level] = 0; 7654 7655 btrfs_tree_read_lock(eb); 7656 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7657 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7658 7659 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7660 root->objectid, 7661 child_bytenr, 7662 root->nodesize, 7663 BTRFS_QGROUP_OPER_SUB_SUBTREE, 7664 0); 7665 if (ret) 7666 goto out; 7667 7668 } 7669 7670 if (level == 0) { 7671 ret = account_leaf_items(trans, root, path->nodes[level]); 7672 if (ret) 7673 goto out; 7674 7675 /* Nonzero return here means we completed our search */ 7676 ret = adjust_slots_upwards(root, path, root_level); 7677 if (ret) 7678 break; 7679 7680 /* Restart search with new slots */ 7681 goto walk_down; 7682 } 7683 7684 level--; 7685 } 7686 7687 ret = 0; 7688 out: 7689 btrfs_free_path(path); 7690 7691 return ret; 7692 } 7693 7694 /* 7695 * helper to process tree block while walking down the tree. 7696 * 7697 * when wc->stage == UPDATE_BACKREF, this function updates 7698 * back refs for pointers in the block. 7699 * 7700 * NOTE: return value 1 means we should stop walking down. 7701 */ 7702 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7703 struct btrfs_root *root, 7704 struct btrfs_path *path, 7705 struct walk_control *wc, int lookup_info) 7706 { 7707 int level = wc->level; 7708 struct extent_buffer *eb = path->nodes[level]; 7709 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7710 int ret; 7711 7712 if (wc->stage == UPDATE_BACKREF && 7713 btrfs_header_owner(eb) != root->root_key.objectid) 7714 return 1; 7715 7716 /* 7717 * when reference count of tree block is 1, it won't increase 7718 * again. once full backref flag is set, we never clear it. 7719 */ 7720 if (lookup_info && 7721 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7722 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7723 BUG_ON(!path->locks[level]); 7724 ret = btrfs_lookup_extent_info(trans, root, 7725 eb->start, level, 1, 7726 &wc->refs[level], 7727 &wc->flags[level]); 7728 BUG_ON(ret == -ENOMEM); 7729 if (ret) 7730 return ret; 7731 BUG_ON(wc->refs[level] == 0); 7732 } 7733 7734 if (wc->stage == DROP_REFERENCE) { 7735 if (wc->refs[level] > 1) 7736 return 1; 7737 7738 if (path->locks[level] && !wc->keep_locks) { 7739 btrfs_tree_unlock_rw(eb, path->locks[level]); 7740 path->locks[level] = 0; 7741 } 7742 return 0; 7743 } 7744 7745 /* wc->stage == UPDATE_BACKREF */ 7746 if (!(wc->flags[level] & flag)) { 7747 BUG_ON(!path->locks[level]); 7748 ret = btrfs_inc_ref(trans, root, eb, 1); 7749 BUG_ON(ret); /* -ENOMEM */ 7750 ret = btrfs_dec_ref(trans, root, eb, 0); 7751 BUG_ON(ret); /* -ENOMEM */ 7752 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7753 eb->len, flag, 7754 btrfs_header_level(eb), 0); 7755 BUG_ON(ret); /* -ENOMEM */ 7756 wc->flags[level] |= flag; 7757 } 7758 7759 /* 7760 * the block is shared by multiple trees, so it's not good to 7761 * keep the tree lock 7762 */ 7763 if (path->locks[level] && level > 0) { 7764 btrfs_tree_unlock_rw(eb, path->locks[level]); 7765 path->locks[level] = 0; 7766 } 7767 return 0; 7768 } 7769 7770 /* 7771 * helper to process tree block pointer. 7772 * 7773 * when wc->stage == DROP_REFERENCE, this function checks 7774 * reference count of the block pointed to. if the block 7775 * is shared and we need update back refs for the subtree 7776 * rooted at the block, this function changes wc->stage to 7777 * UPDATE_BACKREF. if the block is shared and there is no 7778 * need to update back, this function drops the reference 7779 * to the block. 7780 * 7781 * NOTE: return value 1 means we should stop walking down. 7782 */ 7783 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7784 struct btrfs_root *root, 7785 struct btrfs_path *path, 7786 struct walk_control *wc, int *lookup_info) 7787 { 7788 u64 bytenr; 7789 u64 generation; 7790 u64 parent; 7791 u32 blocksize; 7792 struct btrfs_key key; 7793 struct extent_buffer *next; 7794 int level = wc->level; 7795 int reada = 0; 7796 int ret = 0; 7797 bool need_account = false; 7798 7799 generation = btrfs_node_ptr_generation(path->nodes[level], 7800 path->slots[level]); 7801 /* 7802 * if the lower level block was created before the snapshot 7803 * was created, we know there is no need to update back refs 7804 * for the subtree 7805 */ 7806 if (wc->stage == UPDATE_BACKREF && 7807 generation <= root->root_key.offset) { 7808 *lookup_info = 1; 7809 return 1; 7810 } 7811 7812 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7813 blocksize = root->nodesize; 7814 7815 next = btrfs_find_tree_block(root, bytenr); 7816 if (!next) { 7817 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7818 if (!next) 7819 return -ENOMEM; 7820 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7821 level - 1); 7822 reada = 1; 7823 } 7824 btrfs_tree_lock(next); 7825 btrfs_set_lock_blocking(next); 7826 7827 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7828 &wc->refs[level - 1], 7829 &wc->flags[level - 1]); 7830 if (ret < 0) { 7831 btrfs_tree_unlock(next); 7832 return ret; 7833 } 7834 7835 if (unlikely(wc->refs[level - 1] == 0)) { 7836 btrfs_err(root->fs_info, "Missing references."); 7837 BUG(); 7838 } 7839 *lookup_info = 0; 7840 7841 if (wc->stage == DROP_REFERENCE) { 7842 if (wc->refs[level - 1] > 1) { 7843 need_account = true; 7844 if (level == 1 && 7845 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7846 goto skip; 7847 7848 if (!wc->update_ref || 7849 generation <= root->root_key.offset) 7850 goto skip; 7851 7852 btrfs_node_key_to_cpu(path->nodes[level], &key, 7853 path->slots[level]); 7854 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7855 if (ret < 0) 7856 goto skip; 7857 7858 wc->stage = UPDATE_BACKREF; 7859 wc->shared_level = level - 1; 7860 } 7861 } else { 7862 if (level == 1 && 7863 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7864 goto skip; 7865 } 7866 7867 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7868 btrfs_tree_unlock(next); 7869 free_extent_buffer(next); 7870 next = NULL; 7871 *lookup_info = 1; 7872 } 7873 7874 if (!next) { 7875 if (reada && level == 1) 7876 reada_walk_down(trans, root, wc, path); 7877 next = read_tree_block(root, bytenr, generation); 7878 if (!next || !extent_buffer_uptodate(next)) { 7879 free_extent_buffer(next); 7880 return -EIO; 7881 } 7882 btrfs_tree_lock(next); 7883 btrfs_set_lock_blocking(next); 7884 } 7885 7886 level--; 7887 BUG_ON(level != btrfs_header_level(next)); 7888 path->nodes[level] = next; 7889 path->slots[level] = 0; 7890 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7891 wc->level = level; 7892 if (wc->level == 1) 7893 wc->reada_slot = 0; 7894 return 0; 7895 skip: 7896 wc->refs[level - 1] = 0; 7897 wc->flags[level - 1] = 0; 7898 if (wc->stage == DROP_REFERENCE) { 7899 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7900 parent = path->nodes[level]->start; 7901 } else { 7902 BUG_ON(root->root_key.objectid != 7903 btrfs_header_owner(path->nodes[level])); 7904 parent = 0; 7905 } 7906 7907 if (need_account) { 7908 ret = account_shared_subtree(trans, root, next, 7909 generation, level - 1); 7910 if (ret) { 7911 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 7912 "%d accounting shared subtree. Quota " 7913 "is out of sync, rescan required.\n", 7914 root->fs_info->sb->s_id, ret); 7915 } 7916 } 7917 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7918 root->root_key.objectid, level - 1, 0, 0); 7919 BUG_ON(ret); /* -ENOMEM */ 7920 } 7921 btrfs_tree_unlock(next); 7922 free_extent_buffer(next); 7923 *lookup_info = 1; 7924 return 1; 7925 } 7926 7927 /* 7928 * helper to process tree block while walking up the tree. 7929 * 7930 * when wc->stage == DROP_REFERENCE, this function drops 7931 * reference count on the block. 7932 * 7933 * when wc->stage == UPDATE_BACKREF, this function changes 7934 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7935 * to UPDATE_BACKREF previously while processing the block. 7936 * 7937 * NOTE: return value 1 means we should stop walking up. 7938 */ 7939 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7940 struct btrfs_root *root, 7941 struct btrfs_path *path, 7942 struct walk_control *wc) 7943 { 7944 int ret; 7945 int level = wc->level; 7946 struct extent_buffer *eb = path->nodes[level]; 7947 u64 parent = 0; 7948 7949 if (wc->stage == UPDATE_BACKREF) { 7950 BUG_ON(wc->shared_level < level); 7951 if (level < wc->shared_level) 7952 goto out; 7953 7954 ret = find_next_key(path, level + 1, &wc->update_progress); 7955 if (ret > 0) 7956 wc->update_ref = 0; 7957 7958 wc->stage = DROP_REFERENCE; 7959 wc->shared_level = -1; 7960 path->slots[level] = 0; 7961 7962 /* 7963 * check reference count again if the block isn't locked. 7964 * we should start walking down the tree again if reference 7965 * count is one. 7966 */ 7967 if (!path->locks[level]) { 7968 BUG_ON(level == 0); 7969 btrfs_tree_lock(eb); 7970 btrfs_set_lock_blocking(eb); 7971 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7972 7973 ret = btrfs_lookup_extent_info(trans, root, 7974 eb->start, level, 1, 7975 &wc->refs[level], 7976 &wc->flags[level]); 7977 if (ret < 0) { 7978 btrfs_tree_unlock_rw(eb, path->locks[level]); 7979 path->locks[level] = 0; 7980 return ret; 7981 } 7982 BUG_ON(wc->refs[level] == 0); 7983 if (wc->refs[level] == 1) { 7984 btrfs_tree_unlock_rw(eb, path->locks[level]); 7985 path->locks[level] = 0; 7986 return 1; 7987 } 7988 } 7989 } 7990 7991 /* wc->stage == DROP_REFERENCE */ 7992 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7993 7994 if (wc->refs[level] == 1) { 7995 if (level == 0) { 7996 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7997 ret = btrfs_dec_ref(trans, root, eb, 1); 7998 else 7999 ret = btrfs_dec_ref(trans, root, eb, 0); 8000 BUG_ON(ret); /* -ENOMEM */ 8001 ret = account_leaf_items(trans, root, eb); 8002 if (ret) { 8003 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8004 "%d accounting leaf items. Quota " 8005 "is out of sync, rescan required.\n", 8006 root->fs_info->sb->s_id, ret); 8007 } 8008 } 8009 /* make block locked assertion in clean_tree_block happy */ 8010 if (!path->locks[level] && 8011 btrfs_header_generation(eb) == trans->transid) { 8012 btrfs_tree_lock(eb); 8013 btrfs_set_lock_blocking(eb); 8014 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8015 } 8016 clean_tree_block(trans, root, eb); 8017 } 8018 8019 if (eb == root->node) { 8020 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8021 parent = eb->start; 8022 else 8023 BUG_ON(root->root_key.objectid != 8024 btrfs_header_owner(eb)); 8025 } else { 8026 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8027 parent = path->nodes[level + 1]->start; 8028 else 8029 BUG_ON(root->root_key.objectid != 8030 btrfs_header_owner(path->nodes[level + 1])); 8031 } 8032 8033 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8034 out: 8035 wc->refs[level] = 0; 8036 wc->flags[level] = 0; 8037 return 0; 8038 } 8039 8040 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8041 struct btrfs_root *root, 8042 struct btrfs_path *path, 8043 struct walk_control *wc) 8044 { 8045 int level = wc->level; 8046 int lookup_info = 1; 8047 int ret; 8048 8049 while (level >= 0) { 8050 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8051 if (ret > 0) 8052 break; 8053 8054 if (level == 0) 8055 break; 8056 8057 if (path->slots[level] >= 8058 btrfs_header_nritems(path->nodes[level])) 8059 break; 8060 8061 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8062 if (ret > 0) { 8063 path->slots[level]++; 8064 continue; 8065 } else if (ret < 0) 8066 return ret; 8067 level = wc->level; 8068 } 8069 return 0; 8070 } 8071 8072 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8073 struct btrfs_root *root, 8074 struct btrfs_path *path, 8075 struct walk_control *wc, int max_level) 8076 { 8077 int level = wc->level; 8078 int ret; 8079 8080 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8081 while (level < max_level && path->nodes[level]) { 8082 wc->level = level; 8083 if (path->slots[level] + 1 < 8084 btrfs_header_nritems(path->nodes[level])) { 8085 path->slots[level]++; 8086 return 0; 8087 } else { 8088 ret = walk_up_proc(trans, root, path, wc); 8089 if (ret > 0) 8090 return 0; 8091 8092 if (path->locks[level]) { 8093 btrfs_tree_unlock_rw(path->nodes[level], 8094 path->locks[level]); 8095 path->locks[level] = 0; 8096 } 8097 free_extent_buffer(path->nodes[level]); 8098 path->nodes[level] = NULL; 8099 level++; 8100 } 8101 } 8102 return 1; 8103 } 8104 8105 /* 8106 * drop a subvolume tree. 8107 * 8108 * this function traverses the tree freeing any blocks that only 8109 * referenced by the tree. 8110 * 8111 * when a shared tree block is found. this function decreases its 8112 * reference count by one. if update_ref is true, this function 8113 * also make sure backrefs for the shared block and all lower level 8114 * blocks are properly updated. 8115 * 8116 * If called with for_reloc == 0, may exit early with -EAGAIN 8117 */ 8118 int btrfs_drop_snapshot(struct btrfs_root *root, 8119 struct btrfs_block_rsv *block_rsv, int update_ref, 8120 int for_reloc) 8121 { 8122 struct btrfs_path *path; 8123 struct btrfs_trans_handle *trans; 8124 struct btrfs_root *tree_root = root->fs_info->tree_root; 8125 struct btrfs_root_item *root_item = &root->root_item; 8126 struct walk_control *wc; 8127 struct btrfs_key key; 8128 int err = 0; 8129 int ret; 8130 int level; 8131 bool root_dropped = false; 8132 8133 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8134 8135 path = btrfs_alloc_path(); 8136 if (!path) { 8137 err = -ENOMEM; 8138 goto out; 8139 } 8140 8141 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8142 if (!wc) { 8143 btrfs_free_path(path); 8144 err = -ENOMEM; 8145 goto out; 8146 } 8147 8148 trans = btrfs_start_transaction(tree_root, 0); 8149 if (IS_ERR(trans)) { 8150 err = PTR_ERR(trans); 8151 goto out_free; 8152 } 8153 8154 if (block_rsv) 8155 trans->block_rsv = block_rsv; 8156 8157 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8158 level = btrfs_header_level(root->node); 8159 path->nodes[level] = btrfs_lock_root_node(root); 8160 btrfs_set_lock_blocking(path->nodes[level]); 8161 path->slots[level] = 0; 8162 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8163 memset(&wc->update_progress, 0, 8164 sizeof(wc->update_progress)); 8165 } else { 8166 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8167 memcpy(&wc->update_progress, &key, 8168 sizeof(wc->update_progress)); 8169 8170 level = root_item->drop_level; 8171 BUG_ON(level == 0); 8172 path->lowest_level = level; 8173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8174 path->lowest_level = 0; 8175 if (ret < 0) { 8176 err = ret; 8177 goto out_end_trans; 8178 } 8179 WARN_ON(ret > 0); 8180 8181 /* 8182 * unlock our path, this is safe because only this 8183 * function is allowed to delete this snapshot 8184 */ 8185 btrfs_unlock_up_safe(path, 0); 8186 8187 level = btrfs_header_level(root->node); 8188 while (1) { 8189 btrfs_tree_lock(path->nodes[level]); 8190 btrfs_set_lock_blocking(path->nodes[level]); 8191 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8192 8193 ret = btrfs_lookup_extent_info(trans, root, 8194 path->nodes[level]->start, 8195 level, 1, &wc->refs[level], 8196 &wc->flags[level]); 8197 if (ret < 0) { 8198 err = ret; 8199 goto out_end_trans; 8200 } 8201 BUG_ON(wc->refs[level] == 0); 8202 8203 if (level == root_item->drop_level) 8204 break; 8205 8206 btrfs_tree_unlock(path->nodes[level]); 8207 path->locks[level] = 0; 8208 WARN_ON(wc->refs[level] != 1); 8209 level--; 8210 } 8211 } 8212 8213 wc->level = level; 8214 wc->shared_level = -1; 8215 wc->stage = DROP_REFERENCE; 8216 wc->update_ref = update_ref; 8217 wc->keep_locks = 0; 8218 wc->for_reloc = for_reloc; 8219 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8220 8221 while (1) { 8222 8223 ret = walk_down_tree(trans, root, path, wc); 8224 if (ret < 0) { 8225 err = ret; 8226 break; 8227 } 8228 8229 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8230 if (ret < 0) { 8231 err = ret; 8232 break; 8233 } 8234 8235 if (ret > 0) { 8236 BUG_ON(wc->stage != DROP_REFERENCE); 8237 break; 8238 } 8239 8240 if (wc->stage == DROP_REFERENCE) { 8241 level = wc->level; 8242 btrfs_node_key(path->nodes[level], 8243 &root_item->drop_progress, 8244 path->slots[level]); 8245 root_item->drop_level = level; 8246 } 8247 8248 BUG_ON(wc->level == 0); 8249 if (btrfs_should_end_transaction(trans, tree_root) || 8250 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8251 ret = btrfs_update_root(trans, tree_root, 8252 &root->root_key, 8253 root_item); 8254 if (ret) { 8255 btrfs_abort_transaction(trans, tree_root, ret); 8256 err = ret; 8257 goto out_end_trans; 8258 } 8259 8260 /* 8261 * Qgroup update accounting is run from 8262 * delayed ref handling. This usually works 8263 * out because delayed refs are normally the 8264 * only way qgroup updates are added. However, 8265 * we may have added updates during our tree 8266 * walk so run qgroups here to make sure we 8267 * don't lose any updates. 8268 */ 8269 ret = btrfs_delayed_qgroup_accounting(trans, 8270 root->fs_info); 8271 if (ret) 8272 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8273 "running qgroup updates " 8274 "during snapshot delete. " 8275 "Quota is out of sync, " 8276 "rescan required.\n", ret); 8277 8278 btrfs_end_transaction_throttle(trans, tree_root); 8279 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8280 pr_debug("BTRFS: drop snapshot early exit\n"); 8281 err = -EAGAIN; 8282 goto out_free; 8283 } 8284 8285 trans = btrfs_start_transaction(tree_root, 0); 8286 if (IS_ERR(trans)) { 8287 err = PTR_ERR(trans); 8288 goto out_free; 8289 } 8290 if (block_rsv) 8291 trans->block_rsv = block_rsv; 8292 } 8293 } 8294 btrfs_release_path(path); 8295 if (err) 8296 goto out_end_trans; 8297 8298 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8299 if (ret) { 8300 btrfs_abort_transaction(trans, tree_root, ret); 8301 goto out_end_trans; 8302 } 8303 8304 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8305 ret = btrfs_find_root(tree_root, &root->root_key, path, 8306 NULL, NULL); 8307 if (ret < 0) { 8308 btrfs_abort_transaction(trans, tree_root, ret); 8309 err = ret; 8310 goto out_end_trans; 8311 } else if (ret > 0) { 8312 /* if we fail to delete the orphan item this time 8313 * around, it'll get picked up the next time. 8314 * 8315 * The most common failure here is just -ENOENT. 8316 */ 8317 btrfs_del_orphan_item(trans, tree_root, 8318 root->root_key.objectid); 8319 } 8320 } 8321 8322 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8323 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8324 } else { 8325 free_extent_buffer(root->node); 8326 free_extent_buffer(root->commit_root); 8327 btrfs_put_fs_root(root); 8328 } 8329 root_dropped = true; 8330 out_end_trans: 8331 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info); 8332 if (ret) 8333 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8334 "running qgroup updates " 8335 "during snapshot delete. " 8336 "Quota is out of sync, " 8337 "rescan required.\n", ret); 8338 8339 btrfs_end_transaction_throttle(trans, tree_root); 8340 out_free: 8341 kfree(wc); 8342 btrfs_free_path(path); 8343 out: 8344 /* 8345 * So if we need to stop dropping the snapshot for whatever reason we 8346 * need to make sure to add it back to the dead root list so that we 8347 * keep trying to do the work later. This also cleans up roots if we 8348 * don't have it in the radix (like when we recover after a power fail 8349 * or unmount) so we don't leak memory. 8350 */ 8351 if (!for_reloc && root_dropped == false) 8352 btrfs_add_dead_root(root); 8353 if (err && err != -EAGAIN) 8354 btrfs_std_error(root->fs_info, err); 8355 return err; 8356 } 8357 8358 /* 8359 * drop subtree rooted at tree block 'node'. 8360 * 8361 * NOTE: this function will unlock and release tree block 'node' 8362 * only used by relocation code 8363 */ 8364 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8365 struct btrfs_root *root, 8366 struct extent_buffer *node, 8367 struct extent_buffer *parent) 8368 { 8369 struct btrfs_path *path; 8370 struct walk_control *wc; 8371 int level; 8372 int parent_level; 8373 int ret = 0; 8374 int wret; 8375 8376 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8377 8378 path = btrfs_alloc_path(); 8379 if (!path) 8380 return -ENOMEM; 8381 8382 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8383 if (!wc) { 8384 btrfs_free_path(path); 8385 return -ENOMEM; 8386 } 8387 8388 btrfs_assert_tree_locked(parent); 8389 parent_level = btrfs_header_level(parent); 8390 extent_buffer_get(parent); 8391 path->nodes[parent_level] = parent; 8392 path->slots[parent_level] = btrfs_header_nritems(parent); 8393 8394 btrfs_assert_tree_locked(node); 8395 level = btrfs_header_level(node); 8396 path->nodes[level] = node; 8397 path->slots[level] = 0; 8398 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8399 8400 wc->refs[parent_level] = 1; 8401 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8402 wc->level = level; 8403 wc->shared_level = -1; 8404 wc->stage = DROP_REFERENCE; 8405 wc->update_ref = 0; 8406 wc->keep_locks = 1; 8407 wc->for_reloc = 1; 8408 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8409 8410 while (1) { 8411 wret = walk_down_tree(trans, root, path, wc); 8412 if (wret < 0) { 8413 ret = wret; 8414 break; 8415 } 8416 8417 wret = walk_up_tree(trans, root, path, wc, parent_level); 8418 if (wret < 0) 8419 ret = wret; 8420 if (wret != 0) 8421 break; 8422 } 8423 8424 kfree(wc); 8425 btrfs_free_path(path); 8426 return ret; 8427 } 8428 8429 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8430 { 8431 u64 num_devices; 8432 u64 stripped; 8433 8434 /* 8435 * if restripe for this chunk_type is on pick target profile and 8436 * return, otherwise do the usual balance 8437 */ 8438 stripped = get_restripe_target(root->fs_info, flags); 8439 if (stripped) 8440 return extended_to_chunk(stripped); 8441 8442 num_devices = root->fs_info->fs_devices->rw_devices; 8443 8444 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8445 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8446 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8447 8448 if (num_devices == 1) { 8449 stripped |= BTRFS_BLOCK_GROUP_DUP; 8450 stripped = flags & ~stripped; 8451 8452 /* turn raid0 into single device chunks */ 8453 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8454 return stripped; 8455 8456 /* turn mirroring into duplication */ 8457 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8458 BTRFS_BLOCK_GROUP_RAID10)) 8459 return stripped | BTRFS_BLOCK_GROUP_DUP; 8460 } else { 8461 /* they already had raid on here, just return */ 8462 if (flags & stripped) 8463 return flags; 8464 8465 stripped |= BTRFS_BLOCK_GROUP_DUP; 8466 stripped = flags & ~stripped; 8467 8468 /* switch duplicated blocks with raid1 */ 8469 if (flags & BTRFS_BLOCK_GROUP_DUP) 8470 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8471 8472 /* this is drive concat, leave it alone */ 8473 } 8474 8475 return flags; 8476 } 8477 8478 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8479 { 8480 struct btrfs_space_info *sinfo = cache->space_info; 8481 u64 num_bytes; 8482 u64 min_allocable_bytes; 8483 int ret = -ENOSPC; 8484 8485 8486 /* 8487 * We need some metadata space and system metadata space for 8488 * allocating chunks in some corner cases until we force to set 8489 * it to be readonly. 8490 */ 8491 if ((sinfo->flags & 8492 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8493 !force) 8494 min_allocable_bytes = 1 * 1024 * 1024; 8495 else 8496 min_allocable_bytes = 0; 8497 8498 spin_lock(&sinfo->lock); 8499 spin_lock(&cache->lock); 8500 8501 if (cache->ro) { 8502 ret = 0; 8503 goto out; 8504 } 8505 8506 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8507 cache->bytes_super - btrfs_block_group_used(&cache->item); 8508 8509 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8510 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8511 min_allocable_bytes <= sinfo->total_bytes) { 8512 sinfo->bytes_readonly += num_bytes; 8513 cache->ro = 1; 8514 ret = 0; 8515 } 8516 out: 8517 spin_unlock(&cache->lock); 8518 spin_unlock(&sinfo->lock); 8519 return ret; 8520 } 8521 8522 int btrfs_set_block_group_ro(struct btrfs_root *root, 8523 struct btrfs_block_group_cache *cache) 8524 8525 { 8526 struct btrfs_trans_handle *trans; 8527 u64 alloc_flags; 8528 int ret; 8529 8530 BUG_ON(cache->ro); 8531 8532 trans = btrfs_join_transaction(root); 8533 if (IS_ERR(trans)) 8534 return PTR_ERR(trans); 8535 8536 alloc_flags = update_block_group_flags(root, cache->flags); 8537 if (alloc_flags != cache->flags) { 8538 ret = do_chunk_alloc(trans, root, alloc_flags, 8539 CHUNK_ALLOC_FORCE); 8540 if (ret < 0) 8541 goto out; 8542 } 8543 8544 ret = set_block_group_ro(cache, 0); 8545 if (!ret) 8546 goto out; 8547 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8548 ret = do_chunk_alloc(trans, root, alloc_flags, 8549 CHUNK_ALLOC_FORCE); 8550 if (ret < 0) 8551 goto out; 8552 ret = set_block_group_ro(cache, 0); 8553 out: 8554 btrfs_end_transaction(trans, root); 8555 return ret; 8556 } 8557 8558 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8559 struct btrfs_root *root, u64 type) 8560 { 8561 u64 alloc_flags = get_alloc_profile(root, type); 8562 return do_chunk_alloc(trans, root, alloc_flags, 8563 CHUNK_ALLOC_FORCE); 8564 } 8565 8566 /* 8567 * helper to account the unused space of all the readonly block group in the 8568 * list. takes mirrors into account. 8569 */ 8570 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 8571 { 8572 struct btrfs_block_group_cache *block_group; 8573 u64 free_bytes = 0; 8574 int factor; 8575 8576 list_for_each_entry(block_group, groups_list, list) { 8577 spin_lock(&block_group->lock); 8578 8579 if (!block_group->ro) { 8580 spin_unlock(&block_group->lock); 8581 continue; 8582 } 8583 8584 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8585 BTRFS_BLOCK_GROUP_RAID10 | 8586 BTRFS_BLOCK_GROUP_DUP)) 8587 factor = 2; 8588 else 8589 factor = 1; 8590 8591 free_bytes += (block_group->key.offset - 8592 btrfs_block_group_used(&block_group->item)) * 8593 factor; 8594 8595 spin_unlock(&block_group->lock); 8596 } 8597 8598 return free_bytes; 8599 } 8600 8601 /* 8602 * helper to account the unused space of all the readonly block group in the 8603 * space_info. takes mirrors into account. 8604 */ 8605 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8606 { 8607 int i; 8608 u64 free_bytes = 0; 8609 8610 spin_lock(&sinfo->lock); 8611 8612 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8613 if (!list_empty(&sinfo->block_groups[i])) 8614 free_bytes += __btrfs_get_ro_block_group_free_space( 8615 &sinfo->block_groups[i]); 8616 8617 spin_unlock(&sinfo->lock); 8618 8619 return free_bytes; 8620 } 8621 8622 void btrfs_set_block_group_rw(struct btrfs_root *root, 8623 struct btrfs_block_group_cache *cache) 8624 { 8625 struct btrfs_space_info *sinfo = cache->space_info; 8626 u64 num_bytes; 8627 8628 BUG_ON(!cache->ro); 8629 8630 spin_lock(&sinfo->lock); 8631 spin_lock(&cache->lock); 8632 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8633 cache->bytes_super - btrfs_block_group_used(&cache->item); 8634 sinfo->bytes_readonly -= num_bytes; 8635 cache->ro = 0; 8636 spin_unlock(&cache->lock); 8637 spin_unlock(&sinfo->lock); 8638 } 8639 8640 /* 8641 * checks to see if its even possible to relocate this block group. 8642 * 8643 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8644 * ok to go ahead and try. 8645 */ 8646 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8647 { 8648 struct btrfs_block_group_cache *block_group; 8649 struct btrfs_space_info *space_info; 8650 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8651 struct btrfs_device *device; 8652 struct btrfs_trans_handle *trans; 8653 u64 min_free; 8654 u64 dev_min = 1; 8655 u64 dev_nr = 0; 8656 u64 target; 8657 int index; 8658 int full = 0; 8659 int ret = 0; 8660 8661 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8662 8663 /* odd, couldn't find the block group, leave it alone */ 8664 if (!block_group) 8665 return -1; 8666 8667 min_free = btrfs_block_group_used(&block_group->item); 8668 8669 /* no bytes used, we're good */ 8670 if (!min_free) 8671 goto out; 8672 8673 space_info = block_group->space_info; 8674 spin_lock(&space_info->lock); 8675 8676 full = space_info->full; 8677 8678 /* 8679 * if this is the last block group we have in this space, we can't 8680 * relocate it unless we're able to allocate a new chunk below. 8681 * 8682 * Otherwise, we need to make sure we have room in the space to handle 8683 * all of the extents from this block group. If we can, we're good 8684 */ 8685 if ((space_info->total_bytes != block_group->key.offset) && 8686 (space_info->bytes_used + space_info->bytes_reserved + 8687 space_info->bytes_pinned + space_info->bytes_readonly + 8688 min_free < space_info->total_bytes)) { 8689 spin_unlock(&space_info->lock); 8690 goto out; 8691 } 8692 spin_unlock(&space_info->lock); 8693 8694 /* 8695 * ok we don't have enough space, but maybe we have free space on our 8696 * devices to allocate new chunks for relocation, so loop through our 8697 * alloc devices and guess if we have enough space. if this block 8698 * group is going to be restriped, run checks against the target 8699 * profile instead of the current one. 8700 */ 8701 ret = -1; 8702 8703 /* 8704 * index: 8705 * 0: raid10 8706 * 1: raid1 8707 * 2: dup 8708 * 3: raid0 8709 * 4: single 8710 */ 8711 target = get_restripe_target(root->fs_info, block_group->flags); 8712 if (target) { 8713 index = __get_raid_index(extended_to_chunk(target)); 8714 } else { 8715 /* 8716 * this is just a balance, so if we were marked as full 8717 * we know there is no space for a new chunk 8718 */ 8719 if (full) 8720 goto out; 8721 8722 index = get_block_group_index(block_group); 8723 } 8724 8725 if (index == BTRFS_RAID_RAID10) { 8726 dev_min = 4; 8727 /* Divide by 2 */ 8728 min_free >>= 1; 8729 } else if (index == BTRFS_RAID_RAID1) { 8730 dev_min = 2; 8731 } else if (index == BTRFS_RAID_DUP) { 8732 /* Multiply by 2 */ 8733 min_free <<= 1; 8734 } else if (index == BTRFS_RAID_RAID0) { 8735 dev_min = fs_devices->rw_devices; 8736 do_div(min_free, dev_min); 8737 } 8738 8739 /* We need to do this so that we can look at pending chunks */ 8740 trans = btrfs_join_transaction(root); 8741 if (IS_ERR(trans)) { 8742 ret = PTR_ERR(trans); 8743 goto out; 8744 } 8745 8746 mutex_lock(&root->fs_info->chunk_mutex); 8747 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8748 u64 dev_offset; 8749 8750 /* 8751 * check to make sure we can actually find a chunk with enough 8752 * space to fit our block group in. 8753 */ 8754 if (device->total_bytes > device->bytes_used + min_free && 8755 !device->is_tgtdev_for_dev_replace) { 8756 ret = find_free_dev_extent(trans, device, min_free, 8757 &dev_offset, NULL); 8758 if (!ret) 8759 dev_nr++; 8760 8761 if (dev_nr >= dev_min) 8762 break; 8763 8764 ret = -1; 8765 } 8766 } 8767 mutex_unlock(&root->fs_info->chunk_mutex); 8768 btrfs_end_transaction(trans, root); 8769 out: 8770 btrfs_put_block_group(block_group); 8771 return ret; 8772 } 8773 8774 static int find_first_block_group(struct btrfs_root *root, 8775 struct btrfs_path *path, struct btrfs_key *key) 8776 { 8777 int ret = 0; 8778 struct btrfs_key found_key; 8779 struct extent_buffer *leaf; 8780 int slot; 8781 8782 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8783 if (ret < 0) 8784 goto out; 8785 8786 while (1) { 8787 slot = path->slots[0]; 8788 leaf = path->nodes[0]; 8789 if (slot >= btrfs_header_nritems(leaf)) { 8790 ret = btrfs_next_leaf(root, path); 8791 if (ret == 0) 8792 continue; 8793 if (ret < 0) 8794 goto out; 8795 break; 8796 } 8797 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8798 8799 if (found_key.objectid >= key->objectid && 8800 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8801 ret = 0; 8802 goto out; 8803 } 8804 path->slots[0]++; 8805 } 8806 out: 8807 return ret; 8808 } 8809 8810 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8811 { 8812 struct btrfs_block_group_cache *block_group; 8813 u64 last = 0; 8814 8815 while (1) { 8816 struct inode *inode; 8817 8818 block_group = btrfs_lookup_first_block_group(info, last); 8819 while (block_group) { 8820 spin_lock(&block_group->lock); 8821 if (block_group->iref) 8822 break; 8823 spin_unlock(&block_group->lock); 8824 block_group = next_block_group(info->tree_root, 8825 block_group); 8826 } 8827 if (!block_group) { 8828 if (last == 0) 8829 break; 8830 last = 0; 8831 continue; 8832 } 8833 8834 inode = block_group->inode; 8835 block_group->iref = 0; 8836 block_group->inode = NULL; 8837 spin_unlock(&block_group->lock); 8838 iput(inode); 8839 last = block_group->key.objectid + block_group->key.offset; 8840 btrfs_put_block_group(block_group); 8841 } 8842 } 8843 8844 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8845 { 8846 struct btrfs_block_group_cache *block_group; 8847 struct btrfs_space_info *space_info; 8848 struct btrfs_caching_control *caching_ctl; 8849 struct rb_node *n; 8850 8851 down_write(&info->commit_root_sem); 8852 while (!list_empty(&info->caching_block_groups)) { 8853 caching_ctl = list_entry(info->caching_block_groups.next, 8854 struct btrfs_caching_control, list); 8855 list_del(&caching_ctl->list); 8856 put_caching_control(caching_ctl); 8857 } 8858 up_write(&info->commit_root_sem); 8859 8860 spin_lock(&info->unused_bgs_lock); 8861 while (!list_empty(&info->unused_bgs)) { 8862 block_group = list_first_entry(&info->unused_bgs, 8863 struct btrfs_block_group_cache, 8864 bg_list); 8865 list_del_init(&block_group->bg_list); 8866 btrfs_put_block_group(block_group); 8867 } 8868 spin_unlock(&info->unused_bgs_lock); 8869 8870 spin_lock(&info->block_group_cache_lock); 8871 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8872 block_group = rb_entry(n, struct btrfs_block_group_cache, 8873 cache_node); 8874 rb_erase(&block_group->cache_node, 8875 &info->block_group_cache_tree); 8876 spin_unlock(&info->block_group_cache_lock); 8877 8878 down_write(&block_group->space_info->groups_sem); 8879 list_del(&block_group->list); 8880 up_write(&block_group->space_info->groups_sem); 8881 8882 if (block_group->cached == BTRFS_CACHE_STARTED) 8883 wait_block_group_cache_done(block_group); 8884 8885 /* 8886 * We haven't cached this block group, which means we could 8887 * possibly have excluded extents on this block group. 8888 */ 8889 if (block_group->cached == BTRFS_CACHE_NO || 8890 block_group->cached == BTRFS_CACHE_ERROR) 8891 free_excluded_extents(info->extent_root, block_group); 8892 8893 btrfs_remove_free_space_cache(block_group); 8894 btrfs_put_block_group(block_group); 8895 8896 spin_lock(&info->block_group_cache_lock); 8897 } 8898 spin_unlock(&info->block_group_cache_lock); 8899 8900 /* now that all the block groups are freed, go through and 8901 * free all the space_info structs. This is only called during 8902 * the final stages of unmount, and so we know nobody is 8903 * using them. We call synchronize_rcu() once before we start, 8904 * just to be on the safe side. 8905 */ 8906 synchronize_rcu(); 8907 8908 release_global_block_rsv(info); 8909 8910 while (!list_empty(&info->space_info)) { 8911 int i; 8912 8913 space_info = list_entry(info->space_info.next, 8914 struct btrfs_space_info, 8915 list); 8916 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8917 if (WARN_ON(space_info->bytes_pinned > 0 || 8918 space_info->bytes_reserved > 0 || 8919 space_info->bytes_may_use > 0)) { 8920 dump_space_info(space_info, 0, 0); 8921 } 8922 } 8923 list_del(&space_info->list); 8924 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 8925 struct kobject *kobj; 8926 kobj = space_info->block_group_kobjs[i]; 8927 space_info->block_group_kobjs[i] = NULL; 8928 if (kobj) { 8929 kobject_del(kobj); 8930 kobject_put(kobj); 8931 } 8932 } 8933 kobject_del(&space_info->kobj); 8934 kobject_put(&space_info->kobj); 8935 } 8936 return 0; 8937 } 8938 8939 static void __link_block_group(struct btrfs_space_info *space_info, 8940 struct btrfs_block_group_cache *cache) 8941 { 8942 int index = get_block_group_index(cache); 8943 bool first = false; 8944 8945 down_write(&space_info->groups_sem); 8946 if (list_empty(&space_info->block_groups[index])) 8947 first = true; 8948 list_add_tail(&cache->list, &space_info->block_groups[index]); 8949 up_write(&space_info->groups_sem); 8950 8951 if (first) { 8952 struct raid_kobject *rkobj; 8953 int ret; 8954 8955 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 8956 if (!rkobj) 8957 goto out_err; 8958 rkobj->raid_type = index; 8959 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 8960 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 8961 "%s", get_raid_name(index)); 8962 if (ret) { 8963 kobject_put(&rkobj->kobj); 8964 goto out_err; 8965 } 8966 space_info->block_group_kobjs[index] = &rkobj->kobj; 8967 } 8968 8969 return; 8970 out_err: 8971 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 8972 } 8973 8974 static struct btrfs_block_group_cache * 8975 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 8976 { 8977 struct btrfs_block_group_cache *cache; 8978 8979 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8980 if (!cache) 8981 return NULL; 8982 8983 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8984 GFP_NOFS); 8985 if (!cache->free_space_ctl) { 8986 kfree(cache); 8987 return NULL; 8988 } 8989 8990 cache->key.objectid = start; 8991 cache->key.offset = size; 8992 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8993 8994 cache->sectorsize = root->sectorsize; 8995 cache->fs_info = root->fs_info; 8996 cache->full_stripe_len = btrfs_full_stripe_len(root, 8997 &root->fs_info->mapping_tree, 8998 start); 8999 atomic_set(&cache->count, 1); 9000 spin_lock_init(&cache->lock); 9001 init_rwsem(&cache->data_rwsem); 9002 INIT_LIST_HEAD(&cache->list); 9003 INIT_LIST_HEAD(&cache->cluster_list); 9004 INIT_LIST_HEAD(&cache->bg_list); 9005 btrfs_init_free_space_ctl(cache); 9006 9007 return cache; 9008 } 9009 9010 int btrfs_read_block_groups(struct btrfs_root *root) 9011 { 9012 struct btrfs_path *path; 9013 int ret; 9014 struct btrfs_block_group_cache *cache; 9015 struct btrfs_fs_info *info = root->fs_info; 9016 struct btrfs_space_info *space_info; 9017 struct btrfs_key key; 9018 struct btrfs_key found_key; 9019 struct extent_buffer *leaf; 9020 int need_clear = 0; 9021 u64 cache_gen; 9022 9023 root = info->extent_root; 9024 key.objectid = 0; 9025 key.offset = 0; 9026 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9027 path = btrfs_alloc_path(); 9028 if (!path) 9029 return -ENOMEM; 9030 path->reada = 1; 9031 9032 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9033 if (btrfs_test_opt(root, SPACE_CACHE) && 9034 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9035 need_clear = 1; 9036 if (btrfs_test_opt(root, CLEAR_CACHE)) 9037 need_clear = 1; 9038 9039 while (1) { 9040 ret = find_first_block_group(root, path, &key); 9041 if (ret > 0) 9042 break; 9043 if (ret != 0) 9044 goto error; 9045 9046 leaf = path->nodes[0]; 9047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9048 9049 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9050 found_key.offset); 9051 if (!cache) { 9052 ret = -ENOMEM; 9053 goto error; 9054 } 9055 9056 if (need_clear) { 9057 /* 9058 * When we mount with old space cache, we need to 9059 * set BTRFS_DC_CLEAR and set dirty flag. 9060 * 9061 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9062 * truncate the old free space cache inode and 9063 * setup a new one. 9064 * b) Setting 'dirty flag' makes sure that we flush 9065 * the new space cache info onto disk. 9066 */ 9067 cache->disk_cache_state = BTRFS_DC_CLEAR; 9068 if (btrfs_test_opt(root, SPACE_CACHE)) 9069 cache->dirty = 1; 9070 } 9071 9072 read_extent_buffer(leaf, &cache->item, 9073 btrfs_item_ptr_offset(leaf, path->slots[0]), 9074 sizeof(cache->item)); 9075 cache->flags = btrfs_block_group_flags(&cache->item); 9076 9077 key.objectid = found_key.objectid + found_key.offset; 9078 btrfs_release_path(path); 9079 9080 /* 9081 * We need to exclude the super stripes now so that the space 9082 * info has super bytes accounted for, otherwise we'll think 9083 * we have more space than we actually do. 9084 */ 9085 ret = exclude_super_stripes(root, cache); 9086 if (ret) { 9087 /* 9088 * We may have excluded something, so call this just in 9089 * case. 9090 */ 9091 free_excluded_extents(root, cache); 9092 btrfs_put_block_group(cache); 9093 goto error; 9094 } 9095 9096 /* 9097 * check for two cases, either we are full, and therefore 9098 * don't need to bother with the caching work since we won't 9099 * find any space, or we are empty, and we can just add all 9100 * the space in and be done with it. This saves us _alot_ of 9101 * time, particularly in the full case. 9102 */ 9103 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9104 cache->last_byte_to_unpin = (u64)-1; 9105 cache->cached = BTRFS_CACHE_FINISHED; 9106 free_excluded_extents(root, cache); 9107 } else if (btrfs_block_group_used(&cache->item) == 0) { 9108 cache->last_byte_to_unpin = (u64)-1; 9109 cache->cached = BTRFS_CACHE_FINISHED; 9110 add_new_free_space(cache, root->fs_info, 9111 found_key.objectid, 9112 found_key.objectid + 9113 found_key.offset); 9114 free_excluded_extents(root, cache); 9115 } 9116 9117 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9118 if (ret) { 9119 btrfs_remove_free_space_cache(cache); 9120 btrfs_put_block_group(cache); 9121 goto error; 9122 } 9123 9124 ret = update_space_info(info, cache->flags, found_key.offset, 9125 btrfs_block_group_used(&cache->item), 9126 &space_info); 9127 if (ret) { 9128 btrfs_remove_free_space_cache(cache); 9129 spin_lock(&info->block_group_cache_lock); 9130 rb_erase(&cache->cache_node, 9131 &info->block_group_cache_tree); 9132 spin_unlock(&info->block_group_cache_lock); 9133 btrfs_put_block_group(cache); 9134 goto error; 9135 } 9136 9137 cache->space_info = space_info; 9138 spin_lock(&cache->space_info->lock); 9139 cache->space_info->bytes_readonly += cache->bytes_super; 9140 spin_unlock(&cache->space_info->lock); 9141 9142 __link_block_group(space_info, cache); 9143 9144 set_avail_alloc_bits(root->fs_info, cache->flags); 9145 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9146 set_block_group_ro(cache, 1); 9147 } else if (btrfs_block_group_used(&cache->item) == 0) { 9148 spin_lock(&info->unused_bgs_lock); 9149 /* Should always be true but just in case. */ 9150 if (list_empty(&cache->bg_list)) { 9151 btrfs_get_block_group(cache); 9152 list_add_tail(&cache->bg_list, 9153 &info->unused_bgs); 9154 } 9155 spin_unlock(&info->unused_bgs_lock); 9156 } 9157 } 9158 9159 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9160 if (!(get_alloc_profile(root, space_info->flags) & 9161 (BTRFS_BLOCK_GROUP_RAID10 | 9162 BTRFS_BLOCK_GROUP_RAID1 | 9163 BTRFS_BLOCK_GROUP_RAID5 | 9164 BTRFS_BLOCK_GROUP_RAID6 | 9165 BTRFS_BLOCK_GROUP_DUP))) 9166 continue; 9167 /* 9168 * avoid allocating from un-mirrored block group if there are 9169 * mirrored block groups. 9170 */ 9171 list_for_each_entry(cache, 9172 &space_info->block_groups[BTRFS_RAID_RAID0], 9173 list) 9174 set_block_group_ro(cache, 1); 9175 list_for_each_entry(cache, 9176 &space_info->block_groups[BTRFS_RAID_SINGLE], 9177 list) 9178 set_block_group_ro(cache, 1); 9179 } 9180 9181 init_global_block_rsv(info); 9182 ret = 0; 9183 error: 9184 btrfs_free_path(path); 9185 return ret; 9186 } 9187 9188 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9189 struct btrfs_root *root) 9190 { 9191 struct btrfs_block_group_cache *block_group, *tmp; 9192 struct btrfs_root *extent_root = root->fs_info->extent_root; 9193 struct btrfs_block_group_item item; 9194 struct btrfs_key key; 9195 int ret = 0; 9196 9197 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9198 list_del_init(&block_group->bg_list); 9199 if (ret) 9200 continue; 9201 9202 spin_lock(&block_group->lock); 9203 memcpy(&item, &block_group->item, sizeof(item)); 9204 memcpy(&key, &block_group->key, sizeof(key)); 9205 spin_unlock(&block_group->lock); 9206 9207 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9208 sizeof(item)); 9209 if (ret) 9210 btrfs_abort_transaction(trans, extent_root, ret); 9211 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9212 key.objectid, key.offset); 9213 if (ret) 9214 btrfs_abort_transaction(trans, extent_root, ret); 9215 } 9216 } 9217 9218 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9219 struct btrfs_root *root, u64 bytes_used, 9220 u64 type, u64 chunk_objectid, u64 chunk_offset, 9221 u64 size) 9222 { 9223 int ret; 9224 struct btrfs_root *extent_root; 9225 struct btrfs_block_group_cache *cache; 9226 9227 extent_root = root->fs_info->extent_root; 9228 9229 btrfs_set_log_full_commit(root->fs_info, trans); 9230 9231 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9232 if (!cache) 9233 return -ENOMEM; 9234 9235 btrfs_set_block_group_used(&cache->item, bytes_used); 9236 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9237 btrfs_set_block_group_flags(&cache->item, type); 9238 9239 cache->flags = type; 9240 cache->last_byte_to_unpin = (u64)-1; 9241 cache->cached = BTRFS_CACHE_FINISHED; 9242 ret = exclude_super_stripes(root, cache); 9243 if (ret) { 9244 /* 9245 * We may have excluded something, so call this just in 9246 * case. 9247 */ 9248 free_excluded_extents(root, cache); 9249 btrfs_put_block_group(cache); 9250 return ret; 9251 } 9252 9253 add_new_free_space(cache, root->fs_info, chunk_offset, 9254 chunk_offset + size); 9255 9256 free_excluded_extents(root, cache); 9257 9258 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9259 if (ret) { 9260 btrfs_remove_free_space_cache(cache); 9261 btrfs_put_block_group(cache); 9262 return ret; 9263 } 9264 9265 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9266 &cache->space_info); 9267 if (ret) { 9268 btrfs_remove_free_space_cache(cache); 9269 spin_lock(&root->fs_info->block_group_cache_lock); 9270 rb_erase(&cache->cache_node, 9271 &root->fs_info->block_group_cache_tree); 9272 spin_unlock(&root->fs_info->block_group_cache_lock); 9273 btrfs_put_block_group(cache); 9274 return ret; 9275 } 9276 update_global_block_rsv(root->fs_info); 9277 9278 spin_lock(&cache->space_info->lock); 9279 cache->space_info->bytes_readonly += cache->bytes_super; 9280 spin_unlock(&cache->space_info->lock); 9281 9282 __link_block_group(cache->space_info, cache); 9283 9284 list_add_tail(&cache->bg_list, &trans->new_bgs); 9285 9286 set_avail_alloc_bits(extent_root->fs_info, type); 9287 9288 return 0; 9289 } 9290 9291 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9292 { 9293 u64 extra_flags = chunk_to_extended(flags) & 9294 BTRFS_EXTENDED_PROFILE_MASK; 9295 9296 write_seqlock(&fs_info->profiles_lock); 9297 if (flags & BTRFS_BLOCK_GROUP_DATA) 9298 fs_info->avail_data_alloc_bits &= ~extra_flags; 9299 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9300 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9301 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9302 fs_info->avail_system_alloc_bits &= ~extra_flags; 9303 write_sequnlock(&fs_info->profiles_lock); 9304 } 9305 9306 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9307 struct btrfs_root *root, u64 group_start) 9308 { 9309 struct btrfs_path *path; 9310 struct btrfs_block_group_cache *block_group; 9311 struct btrfs_free_cluster *cluster; 9312 struct btrfs_root *tree_root = root->fs_info->tree_root; 9313 struct btrfs_key key; 9314 struct inode *inode; 9315 struct kobject *kobj = NULL; 9316 int ret; 9317 int index; 9318 int factor; 9319 9320 root = root->fs_info->extent_root; 9321 9322 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9323 BUG_ON(!block_group); 9324 BUG_ON(!block_group->ro); 9325 9326 /* 9327 * Free the reserved super bytes from this block group before 9328 * remove it. 9329 */ 9330 free_excluded_extents(root, block_group); 9331 9332 memcpy(&key, &block_group->key, sizeof(key)); 9333 index = get_block_group_index(block_group); 9334 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9335 BTRFS_BLOCK_GROUP_RAID1 | 9336 BTRFS_BLOCK_GROUP_RAID10)) 9337 factor = 2; 9338 else 9339 factor = 1; 9340 9341 /* make sure this block group isn't part of an allocation cluster */ 9342 cluster = &root->fs_info->data_alloc_cluster; 9343 spin_lock(&cluster->refill_lock); 9344 btrfs_return_cluster_to_free_space(block_group, cluster); 9345 spin_unlock(&cluster->refill_lock); 9346 9347 /* 9348 * make sure this block group isn't part of a metadata 9349 * allocation cluster 9350 */ 9351 cluster = &root->fs_info->meta_alloc_cluster; 9352 spin_lock(&cluster->refill_lock); 9353 btrfs_return_cluster_to_free_space(block_group, cluster); 9354 spin_unlock(&cluster->refill_lock); 9355 9356 path = btrfs_alloc_path(); 9357 if (!path) { 9358 ret = -ENOMEM; 9359 goto out; 9360 } 9361 9362 inode = lookup_free_space_inode(tree_root, block_group, path); 9363 if (!IS_ERR(inode)) { 9364 ret = btrfs_orphan_add(trans, inode); 9365 if (ret) { 9366 btrfs_add_delayed_iput(inode); 9367 goto out; 9368 } 9369 clear_nlink(inode); 9370 /* One for the block groups ref */ 9371 spin_lock(&block_group->lock); 9372 if (block_group->iref) { 9373 block_group->iref = 0; 9374 block_group->inode = NULL; 9375 spin_unlock(&block_group->lock); 9376 iput(inode); 9377 } else { 9378 spin_unlock(&block_group->lock); 9379 } 9380 /* One for our lookup ref */ 9381 btrfs_add_delayed_iput(inode); 9382 } 9383 9384 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9385 key.offset = block_group->key.objectid; 9386 key.type = 0; 9387 9388 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9389 if (ret < 0) 9390 goto out; 9391 if (ret > 0) 9392 btrfs_release_path(path); 9393 if (ret == 0) { 9394 ret = btrfs_del_item(trans, tree_root, path); 9395 if (ret) 9396 goto out; 9397 btrfs_release_path(path); 9398 } 9399 9400 spin_lock(&root->fs_info->block_group_cache_lock); 9401 rb_erase(&block_group->cache_node, 9402 &root->fs_info->block_group_cache_tree); 9403 9404 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9405 root->fs_info->first_logical_byte = (u64)-1; 9406 spin_unlock(&root->fs_info->block_group_cache_lock); 9407 9408 down_write(&block_group->space_info->groups_sem); 9409 /* 9410 * we must use list_del_init so people can check to see if they 9411 * are still on the list after taking the semaphore 9412 */ 9413 list_del_init(&block_group->list); 9414 if (list_empty(&block_group->space_info->block_groups[index])) { 9415 kobj = block_group->space_info->block_group_kobjs[index]; 9416 block_group->space_info->block_group_kobjs[index] = NULL; 9417 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9418 } 9419 up_write(&block_group->space_info->groups_sem); 9420 if (kobj) { 9421 kobject_del(kobj); 9422 kobject_put(kobj); 9423 } 9424 9425 if (block_group->cached == BTRFS_CACHE_STARTED) 9426 wait_block_group_cache_done(block_group); 9427 9428 btrfs_remove_free_space_cache(block_group); 9429 9430 spin_lock(&block_group->space_info->lock); 9431 block_group->space_info->total_bytes -= block_group->key.offset; 9432 block_group->space_info->bytes_readonly -= block_group->key.offset; 9433 block_group->space_info->disk_total -= block_group->key.offset * factor; 9434 spin_unlock(&block_group->space_info->lock); 9435 9436 memcpy(&key, &block_group->key, sizeof(key)); 9437 9438 btrfs_put_block_group(block_group); 9439 btrfs_put_block_group(block_group); 9440 9441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9442 if (ret > 0) 9443 ret = -EIO; 9444 if (ret < 0) 9445 goto out; 9446 9447 ret = btrfs_del_item(trans, root, path); 9448 out: 9449 btrfs_free_path(path); 9450 return ret; 9451 } 9452 9453 /* 9454 * Process the unused_bgs list and remove any that don't have any allocated 9455 * space inside of them. 9456 */ 9457 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9458 { 9459 struct btrfs_block_group_cache *block_group; 9460 struct btrfs_space_info *space_info; 9461 struct btrfs_root *root = fs_info->extent_root; 9462 struct btrfs_trans_handle *trans; 9463 int ret = 0; 9464 9465 if (!fs_info->open) 9466 return; 9467 9468 spin_lock(&fs_info->unused_bgs_lock); 9469 while (!list_empty(&fs_info->unused_bgs)) { 9470 u64 start, end; 9471 9472 block_group = list_first_entry(&fs_info->unused_bgs, 9473 struct btrfs_block_group_cache, 9474 bg_list); 9475 space_info = block_group->space_info; 9476 list_del_init(&block_group->bg_list); 9477 if (ret || btrfs_mixed_space_info(space_info)) { 9478 btrfs_put_block_group(block_group); 9479 continue; 9480 } 9481 spin_unlock(&fs_info->unused_bgs_lock); 9482 9483 /* Don't want to race with allocators so take the groups_sem */ 9484 down_write(&space_info->groups_sem); 9485 spin_lock(&block_group->lock); 9486 if (block_group->reserved || 9487 btrfs_block_group_used(&block_group->item) || 9488 block_group->ro) { 9489 /* 9490 * We want to bail if we made new allocations or have 9491 * outstanding allocations in this block group. We do 9492 * the ro check in case balance is currently acting on 9493 * this block group. 9494 */ 9495 spin_unlock(&block_group->lock); 9496 up_write(&space_info->groups_sem); 9497 goto next; 9498 } 9499 spin_unlock(&block_group->lock); 9500 9501 /* We don't want to force the issue, only flip if it's ok. */ 9502 ret = set_block_group_ro(block_group, 0); 9503 up_write(&space_info->groups_sem); 9504 if (ret < 0) { 9505 ret = 0; 9506 goto next; 9507 } 9508 9509 /* 9510 * Want to do this before we do anything else so we can recover 9511 * properly if we fail to join the transaction. 9512 */ 9513 trans = btrfs_join_transaction(root); 9514 if (IS_ERR(trans)) { 9515 btrfs_set_block_group_rw(root, block_group); 9516 ret = PTR_ERR(trans); 9517 goto next; 9518 } 9519 9520 /* 9521 * We could have pending pinned extents for this block group, 9522 * just delete them, we don't care about them anymore. 9523 */ 9524 start = block_group->key.objectid; 9525 end = start + block_group->key.offset - 1; 9526 clear_extent_bits(&fs_info->freed_extents[0], start, end, 9527 EXTENT_DIRTY, GFP_NOFS); 9528 clear_extent_bits(&fs_info->freed_extents[1], start, end, 9529 EXTENT_DIRTY, GFP_NOFS); 9530 9531 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9532 block_group->pinned = 0; 9533 9534 /* 9535 * Btrfs_remove_chunk will abort the transaction if things go 9536 * horribly wrong. 9537 */ 9538 ret = btrfs_remove_chunk(trans, root, 9539 block_group->key.objectid); 9540 btrfs_end_transaction(trans, root); 9541 next: 9542 btrfs_put_block_group(block_group); 9543 spin_lock(&fs_info->unused_bgs_lock); 9544 } 9545 spin_unlock(&fs_info->unused_bgs_lock); 9546 } 9547 9548 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 9549 { 9550 struct btrfs_space_info *space_info; 9551 struct btrfs_super_block *disk_super; 9552 u64 features; 9553 u64 flags; 9554 int mixed = 0; 9555 int ret; 9556 9557 disk_super = fs_info->super_copy; 9558 if (!btrfs_super_root(disk_super)) 9559 return 1; 9560 9561 features = btrfs_super_incompat_flags(disk_super); 9562 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 9563 mixed = 1; 9564 9565 flags = BTRFS_BLOCK_GROUP_SYSTEM; 9566 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9567 if (ret) 9568 goto out; 9569 9570 if (mixed) { 9571 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 9572 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9573 } else { 9574 flags = BTRFS_BLOCK_GROUP_METADATA; 9575 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9576 if (ret) 9577 goto out; 9578 9579 flags = BTRFS_BLOCK_GROUP_DATA; 9580 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9581 } 9582 out: 9583 return ret; 9584 } 9585 9586 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 9587 { 9588 return unpin_extent_range(root, start, end); 9589 } 9590 9591 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 9592 u64 num_bytes, u64 *actual_bytes) 9593 { 9594 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 9595 } 9596 9597 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 9598 { 9599 struct btrfs_fs_info *fs_info = root->fs_info; 9600 struct btrfs_block_group_cache *cache = NULL; 9601 u64 group_trimmed; 9602 u64 start; 9603 u64 end; 9604 u64 trimmed = 0; 9605 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 9606 int ret = 0; 9607 9608 /* 9609 * try to trim all FS space, our block group may start from non-zero. 9610 */ 9611 if (range->len == total_bytes) 9612 cache = btrfs_lookup_first_block_group(fs_info, range->start); 9613 else 9614 cache = btrfs_lookup_block_group(fs_info, range->start); 9615 9616 while (cache) { 9617 if (cache->key.objectid >= (range->start + range->len)) { 9618 btrfs_put_block_group(cache); 9619 break; 9620 } 9621 9622 start = max(range->start, cache->key.objectid); 9623 end = min(range->start + range->len, 9624 cache->key.objectid + cache->key.offset); 9625 9626 if (end - start >= range->minlen) { 9627 if (!block_group_cache_done(cache)) { 9628 ret = cache_block_group(cache, 0); 9629 if (ret) { 9630 btrfs_put_block_group(cache); 9631 break; 9632 } 9633 ret = wait_block_group_cache_done(cache); 9634 if (ret) { 9635 btrfs_put_block_group(cache); 9636 break; 9637 } 9638 } 9639 ret = btrfs_trim_block_group(cache, 9640 &group_trimmed, 9641 start, 9642 end, 9643 range->minlen); 9644 9645 trimmed += group_trimmed; 9646 if (ret) { 9647 btrfs_put_block_group(cache); 9648 break; 9649 } 9650 } 9651 9652 cache = next_block_group(fs_info->tree_root, cache); 9653 } 9654 9655 range->len = trimmed; 9656 return ret; 9657 } 9658 9659 /* 9660 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(), 9661 * they are used to prevent the some tasks writing data into the page cache 9662 * by nocow before the subvolume is snapshoted, but flush the data into 9663 * the disk after the snapshot creation. 9664 */ 9665 void btrfs_end_nocow_write(struct btrfs_root *root) 9666 { 9667 percpu_counter_dec(&root->subv_writers->counter); 9668 /* 9669 * Make sure counter is updated before we wake up 9670 * waiters. 9671 */ 9672 smp_mb(); 9673 if (waitqueue_active(&root->subv_writers->wait)) 9674 wake_up(&root->subv_writers->wait); 9675 } 9676 9677 int btrfs_start_nocow_write(struct btrfs_root *root) 9678 { 9679 if (atomic_read(&root->will_be_snapshoted)) 9680 return 0; 9681 9682 percpu_counter_inc(&root->subv_writers->counter); 9683 /* 9684 * Make sure counter is updated before we check for snapshot creation. 9685 */ 9686 smp_mb(); 9687 if (atomic_read(&root->will_be_snapshoted)) { 9688 btrfs_end_nocow_write(root); 9689 return 0; 9690 } 9691 return 1; 9692 } 9693