xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 64405360)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 
37 /*
38  * control flags for do_chunk_alloc's force field
39  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40  * if we really need one.
41  *
42  * CHUNK_ALLOC_LIMITED means to only try and allocate one
43  * if we have very few chunks already allocated.  This is
44  * used as part of the clustering code to help make sure
45  * we have a good pool of storage to cluster in, without
46  * filling the FS with empty chunks
47  *
48  * CHUNK_ALLOC_FORCE means it must try to allocate one
49  *
50  */
51 enum {
52 	CHUNK_ALLOC_NO_FORCE = 0,
53 	CHUNK_ALLOC_LIMITED = 1,
54 	CHUNK_ALLOC_FORCE = 2,
55 };
56 
57 /*
58  * Control how reservations are dealt with.
59  *
60  * RESERVE_FREE - freeing a reservation.
61  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62  *   ENOSPC accounting
63  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64  *   bytes_may_use as the ENOSPC accounting is done elsewhere
65  */
66 enum {
67 	RESERVE_FREE = 0,
68 	RESERVE_ALLOC = 1,
69 	RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71 
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 			      struct btrfs_root *root,
74 			      u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 				struct btrfs_root *root,
77 				u64 bytenr, u64 num_bytes, u64 parent,
78 				u64 root_objectid, u64 owner_objectid,
79 				u64 owner_offset, int refs_to_drop,
80 				struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 				    struct extent_buffer *leaf,
83 				    struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 				      struct btrfs_root *root,
86 				      u64 parent, u64 root_objectid,
87 				      u64 flags, u64 owner, u64 offset,
88 				      struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 				     struct btrfs_root *root,
91 				     u64 parent, u64 root_objectid,
92 				     u64 flags, struct btrfs_disk_key *key,
93 				     int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 			  struct btrfs_root *extent_root, u64 alloc_bytes,
96 			  u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 			 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 			    int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 				       u64 num_bytes, int reserve);
103 
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 	smp_mb();
108 	return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110 
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 	return (cache->flags & bits) == bits;
114 }
115 
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 	atomic_inc(&cache->count);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	if (atomic_dec_and_test(&cache->count)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 		kfree(cache->free_space_ctl);
127 		kfree(cache);
128 	}
129 }
130 
131 /*
132  * this adds the block group to the fs_info rb tree for the block group
133  * cache
134  */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 				struct btrfs_block_group_cache *block_group)
137 {
138 	struct rb_node **p;
139 	struct rb_node *parent = NULL;
140 	struct btrfs_block_group_cache *cache;
141 
142 	spin_lock(&info->block_group_cache_lock);
143 	p = &info->block_group_cache_tree.rb_node;
144 
145 	while (*p) {
146 		parent = *p;
147 		cache = rb_entry(parent, struct btrfs_block_group_cache,
148 				 cache_node);
149 		if (block_group->key.objectid < cache->key.objectid) {
150 			p = &(*p)->rb_left;
151 		} else if (block_group->key.objectid > cache->key.objectid) {
152 			p = &(*p)->rb_right;
153 		} else {
154 			spin_unlock(&info->block_group_cache_lock);
155 			return -EEXIST;
156 		}
157 	}
158 
159 	rb_link_node(&block_group->cache_node, parent, p);
160 	rb_insert_color(&block_group->cache_node,
161 			&info->block_group_cache_tree);
162 	spin_unlock(&info->block_group_cache_lock);
163 
164 	return 0;
165 }
166 
167 /*
168  * This will return the block group at or after bytenr if contains is 0, else
169  * it will return the block group that contains the bytenr
170  */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 			      int contains)
174 {
175 	struct btrfs_block_group_cache *cache, *ret = NULL;
176 	struct rb_node *n;
177 	u64 end, start;
178 
179 	spin_lock(&info->block_group_cache_lock);
180 	n = info->block_group_cache_tree.rb_node;
181 
182 	while (n) {
183 		cache = rb_entry(n, struct btrfs_block_group_cache,
184 				 cache_node);
185 		end = cache->key.objectid + cache->key.offset - 1;
186 		start = cache->key.objectid;
187 
188 		if (bytenr < start) {
189 			if (!contains && (!ret || start < ret->key.objectid))
190 				ret = cache;
191 			n = n->rb_left;
192 		} else if (bytenr > start) {
193 			if (contains && bytenr <= end) {
194 				ret = cache;
195 				break;
196 			}
197 			n = n->rb_right;
198 		} else {
199 			ret = cache;
200 			break;
201 		}
202 	}
203 	if (ret)
204 		btrfs_get_block_group(ret);
205 	spin_unlock(&info->block_group_cache_lock);
206 
207 	return ret;
208 }
209 
210 static int add_excluded_extent(struct btrfs_root *root,
211 			       u64 start, u64 num_bytes)
212 {
213 	u64 end = start + num_bytes - 1;
214 	set_extent_bits(&root->fs_info->freed_extents[0],
215 			start, end, EXTENT_UPTODATE, GFP_NOFS);
216 	set_extent_bits(&root->fs_info->freed_extents[1],
217 			start, end, EXTENT_UPTODATE, GFP_NOFS);
218 	return 0;
219 }
220 
221 static void free_excluded_extents(struct btrfs_root *root,
222 				  struct btrfs_block_group_cache *cache)
223 {
224 	u64 start, end;
225 
226 	start = cache->key.objectid;
227 	end = start + cache->key.offset - 1;
228 
229 	clear_extent_bits(&root->fs_info->freed_extents[0],
230 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
231 	clear_extent_bits(&root->fs_info->freed_extents[1],
232 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234 
235 static int exclude_super_stripes(struct btrfs_root *root,
236 				 struct btrfs_block_group_cache *cache)
237 {
238 	u64 bytenr;
239 	u64 *logical;
240 	int stripe_len;
241 	int i, nr, ret;
242 
243 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 		cache->bytes_super += stripe_len;
246 		ret = add_excluded_extent(root, cache->key.objectid,
247 					  stripe_len);
248 		BUG_ON(ret);
249 	}
250 
251 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 		bytenr = btrfs_sb_offset(i);
253 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 				       cache->key.objectid, bytenr,
255 				       0, &logical, &nr, &stripe_len);
256 		BUG_ON(ret);
257 
258 		while (nr--) {
259 			cache->bytes_super += stripe_len;
260 			ret = add_excluded_extent(root, logical[nr],
261 						  stripe_len);
262 			BUG_ON(ret);
263 		}
264 
265 		kfree(logical);
266 	}
267 	return 0;
268 }
269 
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 	struct btrfs_caching_control *ctl;
274 
275 	spin_lock(&cache->lock);
276 	if (cache->cached != BTRFS_CACHE_STARTED) {
277 		spin_unlock(&cache->lock);
278 		return NULL;
279 	}
280 
281 	/* We're loading it the fast way, so we don't have a caching_ctl. */
282 	if (!cache->caching_ctl) {
283 		spin_unlock(&cache->lock);
284 		return NULL;
285 	}
286 
287 	ctl = cache->caching_ctl;
288 	atomic_inc(&ctl->count);
289 	spin_unlock(&cache->lock);
290 	return ctl;
291 }
292 
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 	if (atomic_dec_and_test(&ctl->count))
296 		kfree(ctl);
297 }
298 
299 /*
300  * this is only called by cache_block_group, since we could have freed extents
301  * we need to check the pinned_extents for any extents that can't be used yet
302  * since their free space will be released as soon as the transaction commits.
303  */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 			      struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 	u64 extent_start, extent_end, size, total_added = 0;
308 	int ret;
309 
310 	while (start < end) {
311 		ret = find_first_extent_bit(info->pinned_extents, start,
312 					    &extent_start, &extent_end,
313 					    EXTENT_DIRTY | EXTENT_UPTODATE);
314 		if (ret)
315 			break;
316 
317 		if (extent_start <= start) {
318 			start = extent_end + 1;
319 		} else if (extent_start > start && extent_start < end) {
320 			size = extent_start - start;
321 			total_added += size;
322 			ret = btrfs_add_free_space(block_group, start,
323 						   size);
324 			BUG_ON(ret);
325 			start = extent_end + 1;
326 		} else {
327 			break;
328 		}
329 	}
330 
331 	if (start < end) {
332 		size = end - start;
333 		total_added += size;
334 		ret = btrfs_add_free_space(block_group, start, size);
335 		BUG_ON(ret);
336 	}
337 
338 	return total_added;
339 }
340 
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 	struct btrfs_block_group_cache *block_group;
344 	struct btrfs_fs_info *fs_info;
345 	struct btrfs_caching_control *caching_ctl;
346 	struct btrfs_root *extent_root;
347 	struct btrfs_path *path;
348 	struct extent_buffer *leaf;
349 	struct btrfs_key key;
350 	u64 total_found = 0;
351 	u64 last = 0;
352 	u32 nritems;
353 	int ret = 0;
354 
355 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 	block_group = caching_ctl->block_group;
357 	fs_info = block_group->fs_info;
358 	extent_root = fs_info->extent_root;
359 
360 	path = btrfs_alloc_path();
361 	if (!path)
362 		goto out;
363 
364 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365 
366 	/*
367 	 * We don't want to deadlock with somebody trying to allocate a new
368 	 * extent for the extent root while also trying to search the extent
369 	 * root to add free space.  So we skip locking and search the commit
370 	 * root, since its read-only
371 	 */
372 	path->skip_locking = 1;
373 	path->search_commit_root = 1;
374 	path->reada = 1;
375 
376 	key.objectid = last;
377 	key.offset = 0;
378 	key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 	mutex_lock(&caching_ctl->mutex);
381 	/* need to make sure the commit_root doesn't disappear */
382 	down_read(&fs_info->extent_commit_sem);
383 
384 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 	if (ret < 0)
386 		goto err;
387 
388 	leaf = path->nodes[0];
389 	nritems = btrfs_header_nritems(leaf);
390 
391 	while (1) {
392 		if (btrfs_fs_closing(fs_info) > 1) {
393 			last = (u64)-1;
394 			break;
395 		}
396 
397 		if (path->slots[0] < nritems) {
398 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 		} else {
400 			ret = find_next_key(path, 0, &key);
401 			if (ret)
402 				break;
403 
404 			if (need_resched() ||
405 			    btrfs_next_leaf(extent_root, path)) {
406 				caching_ctl->progress = last;
407 				btrfs_release_path(path);
408 				up_read(&fs_info->extent_commit_sem);
409 				mutex_unlock(&caching_ctl->mutex);
410 				cond_resched();
411 				goto again;
412 			}
413 			leaf = path->nodes[0];
414 			nritems = btrfs_header_nritems(leaf);
415 			continue;
416 		}
417 
418 		if (key.objectid < block_group->key.objectid) {
419 			path->slots[0]++;
420 			continue;
421 		}
422 
423 		if (key.objectid >= block_group->key.objectid +
424 		    block_group->key.offset)
425 			break;
426 
427 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 			total_found += add_new_free_space(block_group,
429 							  fs_info, last,
430 							  key.objectid);
431 			last = key.objectid + key.offset;
432 
433 			if (total_found > (1024 * 1024 * 2)) {
434 				total_found = 0;
435 				wake_up(&caching_ctl->wait);
436 			}
437 		}
438 		path->slots[0]++;
439 	}
440 	ret = 0;
441 
442 	total_found += add_new_free_space(block_group, fs_info, last,
443 					  block_group->key.objectid +
444 					  block_group->key.offset);
445 	caching_ctl->progress = (u64)-1;
446 
447 	spin_lock(&block_group->lock);
448 	block_group->caching_ctl = NULL;
449 	block_group->cached = BTRFS_CACHE_FINISHED;
450 	spin_unlock(&block_group->lock);
451 
452 err:
453 	btrfs_free_path(path);
454 	up_read(&fs_info->extent_commit_sem);
455 
456 	free_excluded_extents(extent_root, block_group);
457 
458 	mutex_unlock(&caching_ctl->mutex);
459 out:
460 	wake_up(&caching_ctl->wait);
461 
462 	put_caching_control(caching_ctl);
463 	btrfs_put_block_group(block_group);
464 }
465 
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 			     struct btrfs_trans_handle *trans,
468 			     struct btrfs_root *root,
469 			     int load_cache_only)
470 {
471 	DEFINE_WAIT(wait);
472 	struct btrfs_fs_info *fs_info = cache->fs_info;
473 	struct btrfs_caching_control *caching_ctl;
474 	int ret = 0;
475 
476 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 	BUG_ON(!caching_ctl);
478 
479 	INIT_LIST_HEAD(&caching_ctl->list);
480 	mutex_init(&caching_ctl->mutex);
481 	init_waitqueue_head(&caching_ctl->wait);
482 	caching_ctl->block_group = cache;
483 	caching_ctl->progress = cache->key.objectid;
484 	atomic_set(&caching_ctl->count, 1);
485 	caching_ctl->work.func = caching_thread;
486 
487 	spin_lock(&cache->lock);
488 	/*
489 	 * This should be a rare occasion, but this could happen I think in the
490 	 * case where one thread starts to load the space cache info, and then
491 	 * some other thread starts a transaction commit which tries to do an
492 	 * allocation while the other thread is still loading the space cache
493 	 * info.  The previous loop should have kept us from choosing this block
494 	 * group, but if we've moved to the state where we will wait on caching
495 	 * block groups we need to first check if we're doing a fast load here,
496 	 * so we can wait for it to finish, otherwise we could end up allocating
497 	 * from a block group who's cache gets evicted for one reason or
498 	 * another.
499 	 */
500 	while (cache->cached == BTRFS_CACHE_FAST) {
501 		struct btrfs_caching_control *ctl;
502 
503 		ctl = cache->caching_ctl;
504 		atomic_inc(&ctl->count);
505 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
506 		spin_unlock(&cache->lock);
507 
508 		schedule();
509 
510 		finish_wait(&ctl->wait, &wait);
511 		put_caching_control(ctl);
512 		spin_lock(&cache->lock);
513 	}
514 
515 	if (cache->cached != BTRFS_CACHE_NO) {
516 		spin_unlock(&cache->lock);
517 		kfree(caching_ctl);
518 		return 0;
519 	}
520 	WARN_ON(cache->caching_ctl);
521 	cache->caching_ctl = caching_ctl;
522 	cache->cached = BTRFS_CACHE_FAST;
523 	spin_unlock(&cache->lock);
524 
525 	/*
526 	 * We can't do the read from on-disk cache during a commit since we need
527 	 * to have the normal tree locking.  Also if we are currently trying to
528 	 * allocate blocks for the tree root we can't do the fast caching since
529 	 * we likely hold important locks.
530 	 */
531 	if (trans && (!trans->transaction->in_commit) &&
532 	    (root && root != root->fs_info->tree_root) &&
533 	    btrfs_test_opt(root, SPACE_CACHE)) {
534 		ret = load_free_space_cache(fs_info, cache);
535 
536 		spin_lock(&cache->lock);
537 		if (ret == 1) {
538 			cache->caching_ctl = NULL;
539 			cache->cached = BTRFS_CACHE_FINISHED;
540 			cache->last_byte_to_unpin = (u64)-1;
541 		} else {
542 			if (load_cache_only) {
543 				cache->caching_ctl = NULL;
544 				cache->cached = BTRFS_CACHE_NO;
545 			} else {
546 				cache->cached = BTRFS_CACHE_STARTED;
547 			}
548 		}
549 		spin_unlock(&cache->lock);
550 		wake_up(&caching_ctl->wait);
551 		if (ret == 1) {
552 			put_caching_control(caching_ctl);
553 			free_excluded_extents(fs_info->extent_root, cache);
554 			return 0;
555 		}
556 	} else {
557 		/*
558 		 * We are not going to do the fast caching, set cached to the
559 		 * appropriate value and wakeup any waiters.
560 		 */
561 		spin_lock(&cache->lock);
562 		if (load_cache_only) {
563 			cache->caching_ctl = NULL;
564 			cache->cached = BTRFS_CACHE_NO;
565 		} else {
566 			cache->cached = BTRFS_CACHE_STARTED;
567 		}
568 		spin_unlock(&cache->lock);
569 		wake_up(&caching_ctl->wait);
570 	}
571 
572 	if (load_cache_only) {
573 		put_caching_control(caching_ctl);
574 		return 0;
575 	}
576 
577 	down_write(&fs_info->extent_commit_sem);
578 	atomic_inc(&caching_ctl->count);
579 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
580 	up_write(&fs_info->extent_commit_sem);
581 
582 	btrfs_get_block_group(cache);
583 
584 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585 
586 	return ret;
587 }
588 
589 /*
590  * return the block group that starts at or after bytenr
591  */
592 static struct btrfs_block_group_cache *
593 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 {
595 	struct btrfs_block_group_cache *cache;
596 
597 	cache = block_group_cache_tree_search(info, bytenr, 0);
598 
599 	return cache;
600 }
601 
602 /*
603  * return the block group that contains the given bytenr
604  */
605 struct btrfs_block_group_cache *btrfs_lookup_block_group(
606 						 struct btrfs_fs_info *info,
607 						 u64 bytenr)
608 {
609 	struct btrfs_block_group_cache *cache;
610 
611 	cache = block_group_cache_tree_search(info, bytenr, 1);
612 
613 	return cache;
614 }
615 
616 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
617 						  u64 flags)
618 {
619 	struct list_head *head = &info->space_info;
620 	struct btrfs_space_info *found;
621 
622 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
623 
624 	rcu_read_lock();
625 	list_for_each_entry_rcu(found, head, list) {
626 		if (found->flags & flags) {
627 			rcu_read_unlock();
628 			return found;
629 		}
630 	}
631 	rcu_read_unlock();
632 	return NULL;
633 }
634 
635 /*
636  * after adding space to the filesystem, we need to clear the full flags
637  * on all the space infos.
638  */
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 {
641 	struct list_head *head = &info->space_info;
642 	struct btrfs_space_info *found;
643 
644 	rcu_read_lock();
645 	list_for_each_entry_rcu(found, head, list)
646 		found->full = 0;
647 	rcu_read_unlock();
648 }
649 
650 static u64 div_factor(u64 num, int factor)
651 {
652 	if (factor == 10)
653 		return num;
654 	num *= factor;
655 	do_div(num, 10);
656 	return num;
657 }
658 
659 static u64 div_factor_fine(u64 num, int factor)
660 {
661 	if (factor == 100)
662 		return num;
663 	num *= factor;
664 	do_div(num, 100);
665 	return num;
666 }
667 
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 			   u64 search_start, u64 search_hint, int owner)
670 {
671 	struct btrfs_block_group_cache *cache;
672 	u64 used;
673 	u64 last = max(search_hint, search_start);
674 	u64 group_start = 0;
675 	int full_search = 0;
676 	int factor = 9;
677 	int wrapped = 0;
678 again:
679 	while (1) {
680 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 		if (!cache)
682 			break;
683 
684 		spin_lock(&cache->lock);
685 		last = cache->key.objectid + cache->key.offset;
686 		used = btrfs_block_group_used(&cache->item);
687 
688 		if ((full_search || !cache->ro) &&
689 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 			if (used + cache->pinned + cache->reserved <
691 			    div_factor(cache->key.offset, factor)) {
692 				group_start = cache->key.objectid;
693 				spin_unlock(&cache->lock);
694 				btrfs_put_block_group(cache);
695 				goto found;
696 			}
697 		}
698 		spin_unlock(&cache->lock);
699 		btrfs_put_block_group(cache);
700 		cond_resched();
701 	}
702 	if (!wrapped) {
703 		last = search_start;
704 		wrapped = 1;
705 		goto again;
706 	}
707 	if (!full_search && factor < 10) {
708 		last = search_start;
709 		full_search = 1;
710 		factor = 10;
711 		goto again;
712 	}
713 found:
714 	return group_start;
715 }
716 
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
719 {
720 	int ret;
721 	struct btrfs_key key;
722 	struct btrfs_path *path;
723 
724 	path = btrfs_alloc_path();
725 	if (!path)
726 		return -ENOMEM;
727 
728 	key.objectid = start;
729 	key.offset = len;
730 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 				0, 0);
733 	btrfs_free_path(path);
734 	return ret;
735 }
736 
737 /*
738  * helper function to lookup reference count and flags of extent.
739  *
740  * the head node for delayed ref is used to store the sum of all the
741  * reference count modifications queued up in the rbtree. the head
742  * node may also store the extent flags to set. This way you can check
743  * to see what the reference count and extent flags would be if all of
744  * the delayed refs are not processed.
745  */
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 			     struct btrfs_root *root, u64 bytenr,
748 			     u64 num_bytes, u64 *refs, u64 *flags)
749 {
750 	struct btrfs_delayed_ref_head *head;
751 	struct btrfs_delayed_ref_root *delayed_refs;
752 	struct btrfs_path *path;
753 	struct btrfs_extent_item *ei;
754 	struct extent_buffer *leaf;
755 	struct btrfs_key key;
756 	u32 item_size;
757 	u64 num_refs;
758 	u64 extent_flags;
759 	int ret;
760 
761 	path = btrfs_alloc_path();
762 	if (!path)
763 		return -ENOMEM;
764 
765 	key.objectid = bytenr;
766 	key.type = BTRFS_EXTENT_ITEM_KEY;
767 	key.offset = num_bytes;
768 	if (!trans) {
769 		path->skip_locking = 1;
770 		path->search_commit_root = 1;
771 	}
772 again:
773 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 				&key, path, 0, 0);
775 	if (ret < 0)
776 		goto out_free;
777 
778 	if (ret == 0) {
779 		leaf = path->nodes[0];
780 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 		if (item_size >= sizeof(*ei)) {
782 			ei = btrfs_item_ptr(leaf, path->slots[0],
783 					    struct btrfs_extent_item);
784 			num_refs = btrfs_extent_refs(leaf, ei);
785 			extent_flags = btrfs_extent_flags(leaf, ei);
786 		} else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 			struct btrfs_extent_item_v0 *ei0;
789 			BUG_ON(item_size != sizeof(*ei0));
790 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 					     struct btrfs_extent_item_v0);
792 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 			/* FIXME: this isn't correct for data */
794 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 			BUG();
797 #endif
798 		}
799 		BUG_ON(num_refs == 0);
800 	} else {
801 		num_refs = 0;
802 		extent_flags = 0;
803 		ret = 0;
804 	}
805 
806 	if (!trans)
807 		goto out;
808 
809 	delayed_refs = &trans->transaction->delayed_refs;
810 	spin_lock(&delayed_refs->lock);
811 	head = btrfs_find_delayed_ref_head(trans, bytenr);
812 	if (head) {
813 		if (!mutex_trylock(&head->mutex)) {
814 			atomic_inc(&head->node.refs);
815 			spin_unlock(&delayed_refs->lock);
816 
817 			btrfs_release_path(path);
818 
819 			/*
820 			 * Mutex was contended, block until it's released and try
821 			 * again
822 			 */
823 			mutex_lock(&head->mutex);
824 			mutex_unlock(&head->mutex);
825 			btrfs_put_delayed_ref(&head->node);
826 			goto again;
827 		}
828 		if (head->extent_op && head->extent_op->update_flags)
829 			extent_flags |= head->extent_op->flags_to_set;
830 		else
831 			BUG_ON(num_refs == 0);
832 
833 		num_refs += head->node.ref_mod;
834 		mutex_unlock(&head->mutex);
835 	}
836 	spin_unlock(&delayed_refs->lock);
837 out:
838 	WARN_ON(num_refs == 0);
839 	if (refs)
840 		*refs = num_refs;
841 	if (flags)
842 		*flags = extent_flags;
843 out_free:
844 	btrfs_free_path(path);
845 	return ret;
846 }
847 
848 /*
849  * Back reference rules.  Back refs have three main goals:
850  *
851  * 1) differentiate between all holders of references to an extent so that
852  *    when a reference is dropped we can make sure it was a valid reference
853  *    before freeing the extent.
854  *
855  * 2) Provide enough information to quickly find the holders of an extent
856  *    if we notice a given block is corrupted or bad.
857  *
858  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859  *    maintenance.  This is actually the same as #2, but with a slightly
860  *    different use case.
861  *
862  * There are two kinds of back refs. The implicit back refs is optimized
863  * for pointers in non-shared tree blocks. For a given pointer in a block,
864  * back refs of this kind provide information about the block's owner tree
865  * and the pointer's key. These information allow us to find the block by
866  * b-tree searching. The full back refs is for pointers in tree blocks not
867  * referenced by their owner trees. The location of tree block is recorded
868  * in the back refs. Actually the full back refs is generic, and can be
869  * used in all cases the implicit back refs is used. The major shortcoming
870  * of the full back refs is its overhead. Every time a tree block gets
871  * COWed, we have to update back refs entry for all pointers in it.
872  *
873  * For a newly allocated tree block, we use implicit back refs for
874  * pointers in it. This means most tree related operations only involve
875  * implicit back refs. For a tree block created in old transaction, the
876  * only way to drop a reference to it is COW it. So we can detect the
877  * event that tree block loses its owner tree's reference and do the
878  * back refs conversion.
879  *
880  * When a tree block is COW'd through a tree, there are four cases:
881  *
882  * The reference count of the block is one and the tree is the block's
883  * owner tree. Nothing to do in this case.
884  *
885  * The reference count of the block is one and the tree is not the
886  * block's owner tree. In this case, full back refs is used for pointers
887  * in the block. Remove these full back refs, add implicit back refs for
888  * every pointers in the new block.
889  *
890  * The reference count of the block is greater than one and the tree is
891  * the block's owner tree. In this case, implicit back refs is used for
892  * pointers in the block. Add full back refs for every pointers in the
893  * block, increase lower level extents' reference counts. The original
894  * implicit back refs are entailed to the new block.
895  *
896  * The reference count of the block is greater than one and the tree is
897  * not the block's owner tree. Add implicit back refs for every pointer in
898  * the new block, increase lower level extents' reference count.
899  *
900  * Back Reference Key composing:
901  *
902  * The key objectid corresponds to the first byte in the extent,
903  * The key type is used to differentiate between types of back refs.
904  * There are different meanings of the key offset for different types
905  * of back refs.
906  *
907  * File extents can be referenced by:
908  *
909  * - multiple snapshots, subvolumes, or different generations in one subvol
910  * - different files inside a single subvolume
911  * - different offsets inside a file (bookend extents in file.c)
912  *
913  * The extent ref structure for the implicit back refs has fields for:
914  *
915  * - Objectid of the subvolume root
916  * - objectid of the file holding the reference
917  * - original offset in the file
918  * - how many bookend extents
919  *
920  * The key offset for the implicit back refs is hash of the first
921  * three fields.
922  *
923  * The extent ref structure for the full back refs has field for:
924  *
925  * - number of pointers in the tree leaf
926  *
927  * The key offset for the implicit back refs is the first byte of
928  * the tree leaf
929  *
930  * When a file extent is allocated, The implicit back refs is used.
931  * the fields are filled in:
932  *
933  *     (root_key.objectid, inode objectid, offset in file, 1)
934  *
935  * When a file extent is removed file truncation, we find the
936  * corresponding implicit back refs and check the following fields:
937  *
938  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
939  *
940  * Btree extents can be referenced by:
941  *
942  * - Different subvolumes
943  *
944  * Both the implicit back refs and the full back refs for tree blocks
945  * only consist of key. The key offset for the implicit back refs is
946  * objectid of block's owner tree. The key offset for the full back refs
947  * is the first byte of parent block.
948  *
949  * When implicit back refs is used, information about the lowest key and
950  * level of the tree block are required. These information are stored in
951  * tree block info structure.
952  */
953 
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 				  struct btrfs_root *root,
957 				  struct btrfs_path *path,
958 				  u64 owner, u32 extra_size)
959 {
960 	struct btrfs_extent_item *item;
961 	struct btrfs_extent_item_v0 *ei0;
962 	struct btrfs_extent_ref_v0 *ref0;
963 	struct btrfs_tree_block_info *bi;
964 	struct extent_buffer *leaf;
965 	struct btrfs_key key;
966 	struct btrfs_key found_key;
967 	u32 new_size = sizeof(*item);
968 	u64 refs;
969 	int ret;
970 
971 	leaf = path->nodes[0];
972 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973 
974 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 			     struct btrfs_extent_item_v0);
977 	refs = btrfs_extent_refs_v0(leaf, ei0);
978 
979 	if (owner == (u64)-1) {
980 		while (1) {
981 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 				ret = btrfs_next_leaf(root, path);
983 				if (ret < 0)
984 					return ret;
985 				BUG_ON(ret > 0);
986 				leaf = path->nodes[0];
987 			}
988 			btrfs_item_key_to_cpu(leaf, &found_key,
989 					      path->slots[0]);
990 			BUG_ON(key.objectid != found_key.objectid);
991 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 				path->slots[0]++;
993 				continue;
994 			}
995 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 					      struct btrfs_extent_ref_v0);
997 			owner = btrfs_ref_objectid_v0(leaf, ref0);
998 			break;
999 		}
1000 	}
1001 	btrfs_release_path(path);
1002 
1003 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 		new_size += sizeof(*bi);
1005 
1006 	new_size -= sizeof(*ei0);
1007 	ret = btrfs_search_slot(trans, root, &key, path,
1008 				new_size + extra_size, 1);
1009 	if (ret < 0)
1010 		return ret;
1011 	BUG_ON(ret);
1012 
1013 	ret = btrfs_extend_item(trans, root, path, new_size);
1014 
1015 	leaf = path->nodes[0];
1016 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 	btrfs_set_extent_refs(leaf, item, refs);
1018 	/* FIXME: get real generation */
1019 	btrfs_set_extent_generation(leaf, item, 0);
1020 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 		btrfs_set_extent_flags(leaf, item,
1022 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 		bi = (struct btrfs_tree_block_info *)(item + 1);
1025 		/* FIXME: get first key of the block */
1026 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 	} else {
1029 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 	}
1031 	btrfs_mark_buffer_dirty(leaf);
1032 	return 0;
1033 }
1034 #endif
1035 
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 {
1038 	u32 high_crc = ~(u32)0;
1039 	u32 low_crc = ~(u32)0;
1040 	__le64 lenum;
1041 
1042 	lenum = cpu_to_le64(root_objectid);
1043 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 	lenum = cpu_to_le64(owner);
1045 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 	lenum = cpu_to_le64(offset);
1047 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048 
1049 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1050 }
1051 
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 				     struct btrfs_extent_data_ref *ref)
1054 {
1055 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 				    btrfs_extent_data_ref_objectid(leaf, ref),
1057 				    btrfs_extent_data_ref_offset(leaf, ref));
1058 }
1059 
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 				 struct btrfs_extent_data_ref *ref,
1062 				 u64 root_objectid, u64 owner, u64 offset)
1063 {
1064 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 		return 0;
1068 	return 1;
1069 }
1070 
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 					   struct btrfs_root *root,
1073 					   struct btrfs_path *path,
1074 					   u64 bytenr, u64 parent,
1075 					   u64 root_objectid,
1076 					   u64 owner, u64 offset)
1077 {
1078 	struct btrfs_key key;
1079 	struct btrfs_extent_data_ref *ref;
1080 	struct extent_buffer *leaf;
1081 	u32 nritems;
1082 	int ret;
1083 	int recow;
1084 	int err = -ENOENT;
1085 
1086 	key.objectid = bytenr;
1087 	if (parent) {
1088 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 		key.offset = parent;
1090 	} else {
1091 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 		key.offset = hash_extent_data_ref(root_objectid,
1093 						  owner, offset);
1094 	}
1095 again:
1096 	recow = 0;
1097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 	if (ret < 0) {
1099 		err = ret;
1100 		goto fail;
1101 	}
1102 
1103 	if (parent) {
1104 		if (!ret)
1105 			return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 		btrfs_release_path(path);
1109 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 		if (ret < 0) {
1111 			err = ret;
1112 			goto fail;
1113 		}
1114 		if (!ret)
1115 			return 0;
1116 #endif
1117 		goto fail;
1118 	}
1119 
1120 	leaf = path->nodes[0];
1121 	nritems = btrfs_header_nritems(leaf);
1122 	while (1) {
1123 		if (path->slots[0] >= nritems) {
1124 			ret = btrfs_next_leaf(root, path);
1125 			if (ret < 0)
1126 				err = ret;
1127 			if (ret)
1128 				goto fail;
1129 
1130 			leaf = path->nodes[0];
1131 			nritems = btrfs_header_nritems(leaf);
1132 			recow = 1;
1133 		}
1134 
1135 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 		if (key.objectid != bytenr ||
1137 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 			goto fail;
1139 
1140 		ref = btrfs_item_ptr(leaf, path->slots[0],
1141 				     struct btrfs_extent_data_ref);
1142 
1143 		if (match_extent_data_ref(leaf, ref, root_objectid,
1144 					  owner, offset)) {
1145 			if (recow) {
1146 				btrfs_release_path(path);
1147 				goto again;
1148 			}
1149 			err = 0;
1150 			break;
1151 		}
1152 		path->slots[0]++;
1153 	}
1154 fail:
1155 	return err;
1156 }
1157 
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 					   struct btrfs_root *root,
1160 					   struct btrfs_path *path,
1161 					   u64 bytenr, u64 parent,
1162 					   u64 root_objectid, u64 owner,
1163 					   u64 offset, int refs_to_add)
1164 {
1165 	struct btrfs_key key;
1166 	struct extent_buffer *leaf;
1167 	u32 size;
1168 	u32 num_refs;
1169 	int ret;
1170 
1171 	key.objectid = bytenr;
1172 	if (parent) {
1173 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 		key.offset = parent;
1175 		size = sizeof(struct btrfs_shared_data_ref);
1176 	} else {
1177 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 		key.offset = hash_extent_data_ref(root_objectid,
1179 						  owner, offset);
1180 		size = sizeof(struct btrfs_extent_data_ref);
1181 	}
1182 
1183 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 	if (ret && ret != -EEXIST)
1185 		goto fail;
1186 
1187 	leaf = path->nodes[0];
1188 	if (parent) {
1189 		struct btrfs_shared_data_ref *ref;
1190 		ref = btrfs_item_ptr(leaf, path->slots[0],
1191 				     struct btrfs_shared_data_ref);
1192 		if (ret == 0) {
1193 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 		} else {
1195 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 			num_refs += refs_to_add;
1197 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 		}
1199 	} else {
1200 		struct btrfs_extent_data_ref *ref;
1201 		while (ret == -EEXIST) {
1202 			ref = btrfs_item_ptr(leaf, path->slots[0],
1203 					     struct btrfs_extent_data_ref);
1204 			if (match_extent_data_ref(leaf, ref, root_objectid,
1205 						  owner, offset))
1206 				break;
1207 			btrfs_release_path(path);
1208 			key.offset++;
1209 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 						      size);
1211 			if (ret && ret != -EEXIST)
1212 				goto fail;
1213 
1214 			leaf = path->nodes[0];
1215 		}
1216 		ref = btrfs_item_ptr(leaf, path->slots[0],
1217 				     struct btrfs_extent_data_ref);
1218 		if (ret == 0) {
1219 			btrfs_set_extent_data_ref_root(leaf, ref,
1220 						       root_objectid);
1221 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 		} else {
1225 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 			num_refs += refs_to_add;
1227 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1228 		}
1229 	}
1230 	btrfs_mark_buffer_dirty(leaf);
1231 	ret = 0;
1232 fail:
1233 	btrfs_release_path(path);
1234 	return ret;
1235 }
1236 
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 					   struct btrfs_root *root,
1239 					   struct btrfs_path *path,
1240 					   int refs_to_drop)
1241 {
1242 	struct btrfs_key key;
1243 	struct btrfs_extent_data_ref *ref1 = NULL;
1244 	struct btrfs_shared_data_ref *ref2 = NULL;
1245 	struct extent_buffer *leaf;
1246 	u32 num_refs = 0;
1247 	int ret = 0;
1248 
1249 	leaf = path->nodes[0];
1250 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 
1252 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 				      struct btrfs_extent_data_ref);
1255 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 				      struct btrfs_shared_data_ref);
1259 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 		struct btrfs_extent_ref_v0 *ref0;
1263 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 				      struct btrfs_extent_ref_v0);
1265 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 	} else {
1268 		BUG();
1269 	}
1270 
1271 	BUG_ON(num_refs < refs_to_drop);
1272 	num_refs -= refs_to_drop;
1273 
1274 	if (num_refs == 0) {
1275 		ret = btrfs_del_item(trans, root, path);
1276 	} else {
1277 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 		else {
1283 			struct btrfs_extent_ref_v0 *ref0;
1284 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 					struct btrfs_extent_ref_v0);
1286 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1287 		}
1288 #endif
1289 		btrfs_mark_buffer_dirty(leaf);
1290 	}
1291 	return ret;
1292 }
1293 
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 					  struct btrfs_path *path,
1296 					  struct btrfs_extent_inline_ref *iref)
1297 {
1298 	struct btrfs_key key;
1299 	struct extent_buffer *leaf;
1300 	struct btrfs_extent_data_ref *ref1;
1301 	struct btrfs_shared_data_ref *ref2;
1302 	u32 num_refs = 0;
1303 
1304 	leaf = path->nodes[0];
1305 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 	if (iref) {
1307 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 		    BTRFS_EXTENT_DATA_REF_KEY) {
1309 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 		} else {
1312 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 		}
1315 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 				      struct btrfs_extent_data_ref);
1318 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 				      struct btrfs_shared_data_ref);
1322 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 		struct btrfs_extent_ref_v0 *ref0;
1326 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 				      struct btrfs_extent_ref_v0);
1328 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 	} else {
1331 		WARN_ON(1);
1332 	}
1333 	return num_refs;
1334 }
1335 
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 					  struct btrfs_root *root,
1338 					  struct btrfs_path *path,
1339 					  u64 bytenr, u64 parent,
1340 					  u64 root_objectid)
1341 {
1342 	struct btrfs_key key;
1343 	int ret;
1344 
1345 	key.objectid = bytenr;
1346 	if (parent) {
1347 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 		key.offset = parent;
1349 	} else {
1350 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 		key.offset = root_objectid;
1352 	}
1353 
1354 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 	if (ret > 0)
1356 		ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 	if (ret == -ENOENT && parent) {
1359 		btrfs_release_path(path);
1360 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 		if (ret > 0)
1363 			ret = -ENOENT;
1364 	}
1365 #endif
1366 	return ret;
1367 }
1368 
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 					  struct btrfs_root *root,
1371 					  struct btrfs_path *path,
1372 					  u64 bytenr, u64 parent,
1373 					  u64 root_objectid)
1374 {
1375 	struct btrfs_key key;
1376 	int ret;
1377 
1378 	key.objectid = bytenr;
1379 	if (parent) {
1380 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 		key.offset = parent;
1382 	} else {
1383 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 		key.offset = root_objectid;
1385 	}
1386 
1387 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 	btrfs_release_path(path);
1389 	return ret;
1390 }
1391 
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1393 {
1394 	int type;
1395 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 		if (parent > 0)
1397 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 		else
1399 			type = BTRFS_TREE_BLOCK_REF_KEY;
1400 	} else {
1401 		if (parent > 0)
1402 			type = BTRFS_SHARED_DATA_REF_KEY;
1403 		else
1404 			type = BTRFS_EXTENT_DATA_REF_KEY;
1405 	}
1406 	return type;
1407 }
1408 
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 			 struct btrfs_key *key)
1411 
1412 {
1413 	for (; level < BTRFS_MAX_LEVEL; level++) {
1414 		if (!path->nodes[level])
1415 			break;
1416 		if (path->slots[level] + 1 >=
1417 		    btrfs_header_nritems(path->nodes[level]))
1418 			continue;
1419 		if (level == 0)
1420 			btrfs_item_key_to_cpu(path->nodes[level], key,
1421 					      path->slots[level] + 1);
1422 		else
1423 			btrfs_node_key_to_cpu(path->nodes[level], key,
1424 					      path->slots[level] + 1);
1425 		return 0;
1426 	}
1427 	return 1;
1428 }
1429 
1430 /*
1431  * look for inline back ref. if back ref is found, *ref_ret is set
1432  * to the address of inline back ref, and 0 is returned.
1433  *
1434  * if back ref isn't found, *ref_ret is set to the address where it
1435  * should be inserted, and -ENOENT is returned.
1436  *
1437  * if insert is true and there are too many inline back refs, the path
1438  * points to the extent item, and -EAGAIN is returned.
1439  *
1440  * NOTE: inline back refs are ordered in the same way that back ref
1441  *	 items in the tree are ordered.
1442  */
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 				 struct btrfs_root *root,
1446 				 struct btrfs_path *path,
1447 				 struct btrfs_extent_inline_ref **ref_ret,
1448 				 u64 bytenr, u64 num_bytes,
1449 				 u64 parent, u64 root_objectid,
1450 				 u64 owner, u64 offset, int insert)
1451 {
1452 	struct btrfs_key key;
1453 	struct extent_buffer *leaf;
1454 	struct btrfs_extent_item *ei;
1455 	struct btrfs_extent_inline_ref *iref;
1456 	u64 flags;
1457 	u64 item_size;
1458 	unsigned long ptr;
1459 	unsigned long end;
1460 	int extra_size;
1461 	int type;
1462 	int want;
1463 	int ret;
1464 	int err = 0;
1465 
1466 	key.objectid = bytenr;
1467 	key.type = BTRFS_EXTENT_ITEM_KEY;
1468 	key.offset = num_bytes;
1469 
1470 	want = extent_ref_type(parent, owner);
1471 	if (insert) {
1472 		extra_size = btrfs_extent_inline_ref_size(want);
1473 		path->keep_locks = 1;
1474 	} else
1475 		extra_size = -1;
1476 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 	if (ret < 0) {
1478 		err = ret;
1479 		goto out;
1480 	}
1481 	BUG_ON(ret);
1482 
1483 	leaf = path->nodes[0];
1484 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 	if (item_size < sizeof(*ei)) {
1487 		if (!insert) {
1488 			err = -ENOENT;
1489 			goto out;
1490 		}
1491 		ret = convert_extent_item_v0(trans, root, path, owner,
1492 					     extra_size);
1493 		if (ret < 0) {
1494 			err = ret;
1495 			goto out;
1496 		}
1497 		leaf = path->nodes[0];
1498 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1499 	}
1500 #endif
1501 	BUG_ON(item_size < sizeof(*ei));
1502 
1503 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 	flags = btrfs_extent_flags(leaf, ei);
1505 
1506 	ptr = (unsigned long)(ei + 1);
1507 	end = (unsigned long)ei + item_size;
1508 
1509 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 		ptr += sizeof(struct btrfs_tree_block_info);
1511 		BUG_ON(ptr > end);
1512 	} else {
1513 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1514 	}
1515 
1516 	err = -ENOENT;
1517 	while (1) {
1518 		if (ptr >= end) {
1519 			WARN_ON(ptr > end);
1520 			break;
1521 		}
1522 		iref = (struct btrfs_extent_inline_ref *)ptr;
1523 		type = btrfs_extent_inline_ref_type(leaf, iref);
1524 		if (want < type)
1525 			break;
1526 		if (want > type) {
1527 			ptr += btrfs_extent_inline_ref_size(type);
1528 			continue;
1529 		}
1530 
1531 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 			struct btrfs_extent_data_ref *dref;
1533 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 			if (match_extent_data_ref(leaf, dref, root_objectid,
1535 						  owner, offset)) {
1536 				err = 0;
1537 				break;
1538 			}
1539 			if (hash_extent_data_ref_item(leaf, dref) <
1540 			    hash_extent_data_ref(root_objectid, owner, offset))
1541 				break;
1542 		} else {
1543 			u64 ref_offset;
1544 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 			if (parent > 0) {
1546 				if (parent == ref_offset) {
1547 					err = 0;
1548 					break;
1549 				}
1550 				if (ref_offset < parent)
1551 					break;
1552 			} else {
1553 				if (root_objectid == ref_offset) {
1554 					err = 0;
1555 					break;
1556 				}
1557 				if (ref_offset < root_objectid)
1558 					break;
1559 			}
1560 		}
1561 		ptr += btrfs_extent_inline_ref_size(type);
1562 	}
1563 	if (err == -ENOENT && insert) {
1564 		if (item_size + extra_size >=
1565 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 			err = -EAGAIN;
1567 			goto out;
1568 		}
1569 		/*
1570 		 * To add new inline back ref, we have to make sure
1571 		 * there is no corresponding back ref item.
1572 		 * For simplicity, we just do not add new inline back
1573 		 * ref if there is any kind of item for this block
1574 		 */
1575 		if (find_next_key(path, 0, &key) == 0 &&
1576 		    key.objectid == bytenr &&
1577 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 			err = -EAGAIN;
1579 			goto out;
1580 		}
1581 	}
1582 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 	if (insert) {
1585 		path->keep_locks = 0;
1586 		btrfs_unlock_up_safe(path, 1);
1587 	}
1588 	return err;
1589 }
1590 
1591 /*
1592  * helper to add new inline back ref
1593  */
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 				struct btrfs_root *root,
1597 				struct btrfs_path *path,
1598 				struct btrfs_extent_inline_ref *iref,
1599 				u64 parent, u64 root_objectid,
1600 				u64 owner, u64 offset, int refs_to_add,
1601 				struct btrfs_delayed_extent_op *extent_op)
1602 {
1603 	struct extent_buffer *leaf;
1604 	struct btrfs_extent_item *ei;
1605 	unsigned long ptr;
1606 	unsigned long end;
1607 	unsigned long item_offset;
1608 	u64 refs;
1609 	int size;
1610 	int type;
1611 	int ret;
1612 
1613 	leaf = path->nodes[0];
1614 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 	item_offset = (unsigned long)iref - (unsigned long)ei;
1616 
1617 	type = extent_ref_type(parent, owner);
1618 	size = btrfs_extent_inline_ref_size(type);
1619 
1620 	ret = btrfs_extend_item(trans, root, path, size);
1621 
1622 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 	refs = btrfs_extent_refs(leaf, ei);
1624 	refs += refs_to_add;
1625 	btrfs_set_extent_refs(leaf, ei, refs);
1626 	if (extent_op)
1627 		__run_delayed_extent_op(extent_op, leaf, ei);
1628 
1629 	ptr = (unsigned long)ei + item_offset;
1630 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 	if (ptr < end - size)
1632 		memmove_extent_buffer(leaf, ptr + size, ptr,
1633 				      end - size - ptr);
1634 
1635 	iref = (struct btrfs_extent_inline_ref *)ptr;
1636 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 		struct btrfs_extent_data_ref *dref;
1639 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 		struct btrfs_shared_data_ref *sref;
1646 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 	} else {
1652 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1653 	}
1654 	btrfs_mark_buffer_dirty(leaf);
1655 	return 0;
1656 }
1657 
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 				 struct btrfs_root *root,
1660 				 struct btrfs_path *path,
1661 				 struct btrfs_extent_inline_ref **ref_ret,
1662 				 u64 bytenr, u64 num_bytes, u64 parent,
1663 				 u64 root_objectid, u64 owner, u64 offset)
1664 {
1665 	int ret;
1666 
1667 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 					   bytenr, num_bytes, parent,
1669 					   root_objectid, owner, offset, 0);
1670 	if (ret != -ENOENT)
1671 		return ret;
1672 
1673 	btrfs_release_path(path);
1674 	*ref_ret = NULL;
1675 
1676 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 					    root_objectid);
1679 	} else {
1680 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 					     root_objectid, owner, offset);
1682 	}
1683 	return ret;
1684 }
1685 
1686 /*
1687  * helper to update/remove inline back ref
1688  */
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 				 struct btrfs_root *root,
1692 				 struct btrfs_path *path,
1693 				 struct btrfs_extent_inline_ref *iref,
1694 				 int refs_to_mod,
1695 				 struct btrfs_delayed_extent_op *extent_op)
1696 {
1697 	struct extent_buffer *leaf;
1698 	struct btrfs_extent_item *ei;
1699 	struct btrfs_extent_data_ref *dref = NULL;
1700 	struct btrfs_shared_data_ref *sref = NULL;
1701 	unsigned long ptr;
1702 	unsigned long end;
1703 	u32 item_size;
1704 	int size;
1705 	int type;
1706 	int ret;
1707 	u64 refs;
1708 
1709 	leaf = path->nodes[0];
1710 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 	refs = btrfs_extent_refs(leaf, ei);
1712 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 	refs += refs_to_mod;
1714 	btrfs_set_extent_refs(leaf, ei, refs);
1715 	if (extent_op)
1716 		__run_delayed_extent_op(extent_op, leaf, ei);
1717 
1718 	type = btrfs_extent_inline_ref_type(leaf, iref);
1719 
1720 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 		refs = btrfs_extent_data_ref_count(leaf, dref);
1723 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 		refs = btrfs_shared_data_ref_count(leaf, sref);
1726 	} else {
1727 		refs = 1;
1728 		BUG_ON(refs_to_mod != -1);
1729 	}
1730 
1731 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 	refs += refs_to_mod;
1733 
1734 	if (refs > 0) {
1735 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 		else
1738 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 	} else {
1740 		size =  btrfs_extent_inline_ref_size(type);
1741 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 		ptr = (unsigned long)iref;
1743 		end = (unsigned long)ei + item_size;
1744 		if (ptr + size < end)
1745 			memmove_extent_buffer(leaf, ptr, ptr + size,
1746 					      end - ptr - size);
1747 		item_size -= size;
1748 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1749 	}
1750 	btrfs_mark_buffer_dirty(leaf);
1751 	return 0;
1752 }
1753 
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 				 struct btrfs_root *root,
1757 				 struct btrfs_path *path,
1758 				 u64 bytenr, u64 num_bytes, u64 parent,
1759 				 u64 root_objectid, u64 owner,
1760 				 u64 offset, int refs_to_add,
1761 				 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 	struct btrfs_extent_inline_ref *iref;
1764 	int ret;
1765 
1766 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 					   bytenr, num_bytes, parent,
1768 					   root_objectid, owner, offset, 1);
1769 	if (ret == 0) {
1770 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 		ret = update_inline_extent_backref(trans, root, path, iref,
1772 						   refs_to_add, extent_op);
1773 	} else if (ret == -ENOENT) {
1774 		ret = setup_inline_extent_backref(trans, root, path, iref,
1775 						  parent, root_objectid,
1776 						  owner, offset, refs_to_add,
1777 						  extent_op);
1778 	}
1779 	return ret;
1780 }
1781 
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 				 struct btrfs_root *root,
1784 				 struct btrfs_path *path,
1785 				 u64 bytenr, u64 parent, u64 root_objectid,
1786 				 u64 owner, u64 offset, int refs_to_add)
1787 {
1788 	int ret;
1789 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 		BUG_ON(refs_to_add != 1);
1791 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 					    parent, root_objectid);
1793 	} else {
1794 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 					     parent, root_objectid,
1796 					     owner, offset, refs_to_add);
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 				 struct btrfs_root *root,
1803 				 struct btrfs_path *path,
1804 				 struct btrfs_extent_inline_ref *iref,
1805 				 int refs_to_drop, int is_data)
1806 {
1807 	int ret;
1808 
1809 	BUG_ON(!is_data && refs_to_drop != 1);
1810 	if (iref) {
1811 		ret = update_inline_extent_backref(trans, root, path, iref,
1812 						   -refs_to_drop, NULL);
1813 	} else if (is_data) {
1814 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 	} else {
1816 		ret = btrfs_del_item(trans, root, path);
1817 	}
1818 	return ret;
1819 }
1820 
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 				u64 start, u64 len)
1823 {
1824 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1825 }
1826 
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 				u64 num_bytes, u64 *actual_bytes)
1829 {
1830 	int ret;
1831 	u64 discarded_bytes = 0;
1832 	struct btrfs_bio *bbio = NULL;
1833 
1834 
1835 	/* Tell the block device(s) that the sectors can be discarded */
1836 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 			      bytenr, &num_bytes, &bbio, 0);
1838 	if (!ret) {
1839 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 		int i;
1841 
1842 
1843 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 			if (!stripe->dev->can_discard)
1845 				continue;
1846 
1847 			ret = btrfs_issue_discard(stripe->dev->bdev,
1848 						  stripe->physical,
1849 						  stripe->length);
1850 			if (!ret)
1851 				discarded_bytes += stripe->length;
1852 			else if (ret != -EOPNOTSUPP)
1853 				break;
1854 
1855 			/*
1856 			 * Just in case we get back EOPNOTSUPP for some reason,
1857 			 * just ignore the return value so we don't screw up
1858 			 * people calling discard_extent.
1859 			 */
1860 			ret = 0;
1861 		}
1862 		kfree(bbio);
1863 	}
1864 
1865 	if (actual_bytes)
1866 		*actual_bytes = discarded_bytes;
1867 
1868 
1869 	return ret;
1870 }
1871 
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 			 struct btrfs_root *root,
1874 			 u64 bytenr, u64 num_bytes, u64 parent,
1875 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1876 {
1877 	int ret;
1878 	struct btrfs_fs_info *fs_info = root->fs_info;
1879 
1880 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1881 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1882 
1883 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1884 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1885 					num_bytes,
1886 					parent, root_objectid, (int)owner,
1887 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1888 	} else {
1889 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1890 					num_bytes,
1891 					parent, root_objectid, owner, offset,
1892 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1893 	}
1894 	return ret;
1895 }
1896 
1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1898 				  struct btrfs_root *root,
1899 				  u64 bytenr, u64 num_bytes,
1900 				  u64 parent, u64 root_objectid,
1901 				  u64 owner, u64 offset, int refs_to_add,
1902 				  struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 	struct btrfs_path *path;
1905 	struct extent_buffer *leaf;
1906 	struct btrfs_extent_item *item;
1907 	u64 refs;
1908 	int ret;
1909 	int err = 0;
1910 
1911 	path = btrfs_alloc_path();
1912 	if (!path)
1913 		return -ENOMEM;
1914 
1915 	path->reada = 1;
1916 	path->leave_spinning = 1;
1917 	/* this will setup the path even if it fails to insert the back ref */
1918 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1919 					   path, bytenr, num_bytes, parent,
1920 					   root_objectid, owner, offset,
1921 					   refs_to_add, extent_op);
1922 	if (ret == 0)
1923 		goto out;
1924 
1925 	if (ret != -EAGAIN) {
1926 		err = ret;
1927 		goto out;
1928 	}
1929 
1930 	leaf = path->nodes[0];
1931 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 	refs = btrfs_extent_refs(leaf, item);
1933 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1934 	if (extent_op)
1935 		__run_delayed_extent_op(extent_op, leaf, item);
1936 
1937 	btrfs_mark_buffer_dirty(leaf);
1938 	btrfs_release_path(path);
1939 
1940 	path->reada = 1;
1941 	path->leave_spinning = 1;
1942 
1943 	/* now insert the actual backref */
1944 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1945 				    path, bytenr, parent, root_objectid,
1946 				    owner, offset, refs_to_add);
1947 	BUG_ON(ret);
1948 out:
1949 	btrfs_free_path(path);
1950 	return err;
1951 }
1952 
1953 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1954 				struct btrfs_root *root,
1955 				struct btrfs_delayed_ref_node *node,
1956 				struct btrfs_delayed_extent_op *extent_op,
1957 				int insert_reserved)
1958 {
1959 	int ret = 0;
1960 	struct btrfs_delayed_data_ref *ref;
1961 	struct btrfs_key ins;
1962 	u64 parent = 0;
1963 	u64 ref_root = 0;
1964 	u64 flags = 0;
1965 
1966 	ins.objectid = node->bytenr;
1967 	ins.offset = node->num_bytes;
1968 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1969 
1970 	ref = btrfs_delayed_node_to_data_ref(node);
1971 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1972 		parent = ref->parent;
1973 	else
1974 		ref_root = ref->root;
1975 
1976 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1977 		if (extent_op) {
1978 			BUG_ON(extent_op->update_key);
1979 			flags |= extent_op->flags_to_set;
1980 		}
1981 		ret = alloc_reserved_file_extent(trans, root,
1982 						 parent, ref_root, flags,
1983 						 ref->objectid, ref->offset,
1984 						 &ins, node->ref_mod);
1985 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1986 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1987 					     node->num_bytes, parent,
1988 					     ref_root, ref->objectid,
1989 					     ref->offset, node->ref_mod,
1990 					     extent_op);
1991 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1992 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1993 					  node->num_bytes, parent,
1994 					  ref_root, ref->objectid,
1995 					  ref->offset, node->ref_mod,
1996 					  extent_op);
1997 	} else {
1998 		BUG();
1999 	}
2000 	return ret;
2001 }
2002 
2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2004 				    struct extent_buffer *leaf,
2005 				    struct btrfs_extent_item *ei)
2006 {
2007 	u64 flags = btrfs_extent_flags(leaf, ei);
2008 	if (extent_op->update_flags) {
2009 		flags |= extent_op->flags_to_set;
2010 		btrfs_set_extent_flags(leaf, ei, flags);
2011 	}
2012 
2013 	if (extent_op->update_key) {
2014 		struct btrfs_tree_block_info *bi;
2015 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2016 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2017 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2018 	}
2019 }
2020 
2021 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2022 				 struct btrfs_root *root,
2023 				 struct btrfs_delayed_ref_node *node,
2024 				 struct btrfs_delayed_extent_op *extent_op)
2025 {
2026 	struct btrfs_key key;
2027 	struct btrfs_path *path;
2028 	struct btrfs_extent_item *ei;
2029 	struct extent_buffer *leaf;
2030 	u32 item_size;
2031 	int ret;
2032 	int err = 0;
2033 
2034 	path = btrfs_alloc_path();
2035 	if (!path)
2036 		return -ENOMEM;
2037 
2038 	key.objectid = node->bytenr;
2039 	key.type = BTRFS_EXTENT_ITEM_KEY;
2040 	key.offset = node->num_bytes;
2041 
2042 	path->reada = 1;
2043 	path->leave_spinning = 1;
2044 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2045 				path, 0, 1);
2046 	if (ret < 0) {
2047 		err = ret;
2048 		goto out;
2049 	}
2050 	if (ret > 0) {
2051 		err = -EIO;
2052 		goto out;
2053 	}
2054 
2055 	leaf = path->nodes[0];
2056 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2058 	if (item_size < sizeof(*ei)) {
2059 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2060 					     path, (u64)-1, 0);
2061 		if (ret < 0) {
2062 			err = ret;
2063 			goto out;
2064 		}
2065 		leaf = path->nodes[0];
2066 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2067 	}
2068 #endif
2069 	BUG_ON(item_size < sizeof(*ei));
2070 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2071 	__run_delayed_extent_op(extent_op, leaf, ei);
2072 
2073 	btrfs_mark_buffer_dirty(leaf);
2074 out:
2075 	btrfs_free_path(path);
2076 	return err;
2077 }
2078 
2079 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2080 				struct btrfs_root *root,
2081 				struct btrfs_delayed_ref_node *node,
2082 				struct btrfs_delayed_extent_op *extent_op,
2083 				int insert_reserved)
2084 {
2085 	int ret = 0;
2086 	struct btrfs_delayed_tree_ref *ref;
2087 	struct btrfs_key ins;
2088 	u64 parent = 0;
2089 	u64 ref_root = 0;
2090 
2091 	ins.objectid = node->bytenr;
2092 	ins.offset = node->num_bytes;
2093 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2094 
2095 	ref = btrfs_delayed_node_to_tree_ref(node);
2096 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2097 		parent = ref->parent;
2098 	else
2099 		ref_root = ref->root;
2100 
2101 	BUG_ON(node->ref_mod != 1);
2102 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2103 		BUG_ON(!extent_op || !extent_op->update_flags ||
2104 		       !extent_op->update_key);
2105 		ret = alloc_reserved_tree_block(trans, root,
2106 						parent, ref_root,
2107 						extent_op->flags_to_set,
2108 						&extent_op->key,
2109 						ref->level, &ins);
2110 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2111 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2112 					     node->num_bytes, parent, ref_root,
2113 					     ref->level, 0, 1, extent_op);
2114 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2115 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2116 					  node->num_bytes, parent, ref_root,
2117 					  ref->level, 0, 1, extent_op);
2118 	} else {
2119 		BUG();
2120 	}
2121 	return ret;
2122 }
2123 
2124 /* helper function to actually process a single delayed ref entry */
2125 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2126 			       struct btrfs_root *root,
2127 			       struct btrfs_delayed_ref_node *node,
2128 			       struct btrfs_delayed_extent_op *extent_op,
2129 			       int insert_reserved)
2130 {
2131 	int ret;
2132 	if (btrfs_delayed_ref_is_head(node)) {
2133 		struct btrfs_delayed_ref_head *head;
2134 		/*
2135 		 * we've hit the end of the chain and we were supposed
2136 		 * to insert this extent into the tree.  But, it got
2137 		 * deleted before we ever needed to insert it, so all
2138 		 * we have to do is clean up the accounting
2139 		 */
2140 		BUG_ON(extent_op);
2141 		head = btrfs_delayed_node_to_head(node);
2142 		if (insert_reserved) {
2143 			btrfs_pin_extent(root, node->bytenr,
2144 					 node->num_bytes, 1);
2145 			if (head->is_data) {
2146 				ret = btrfs_del_csums(trans, root,
2147 						      node->bytenr,
2148 						      node->num_bytes);
2149 				BUG_ON(ret);
2150 			}
2151 		}
2152 		mutex_unlock(&head->mutex);
2153 		return 0;
2154 	}
2155 
2156 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2157 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2158 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2159 					   insert_reserved);
2160 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2161 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2162 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2163 					   insert_reserved);
2164 	else
2165 		BUG();
2166 	return ret;
2167 }
2168 
2169 static noinline struct btrfs_delayed_ref_node *
2170 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2171 {
2172 	struct rb_node *node;
2173 	struct btrfs_delayed_ref_node *ref;
2174 	int action = BTRFS_ADD_DELAYED_REF;
2175 again:
2176 	/*
2177 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2178 	 * this prevents ref count from going down to zero when
2179 	 * there still are pending delayed ref.
2180 	 */
2181 	node = rb_prev(&head->node.rb_node);
2182 	while (1) {
2183 		if (!node)
2184 			break;
2185 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2186 				rb_node);
2187 		if (ref->bytenr != head->node.bytenr)
2188 			break;
2189 		if (ref->action == action)
2190 			return ref;
2191 		node = rb_prev(node);
2192 	}
2193 	if (action == BTRFS_ADD_DELAYED_REF) {
2194 		action = BTRFS_DROP_DELAYED_REF;
2195 		goto again;
2196 	}
2197 	return NULL;
2198 }
2199 
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 				       struct btrfs_root *root,
2202 				       struct list_head *cluster)
2203 {
2204 	struct btrfs_delayed_ref_root *delayed_refs;
2205 	struct btrfs_delayed_ref_node *ref;
2206 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 	struct btrfs_delayed_extent_op *extent_op;
2208 	int ret;
2209 	int count = 0;
2210 	int must_insert_reserved = 0;
2211 
2212 	delayed_refs = &trans->transaction->delayed_refs;
2213 	while (1) {
2214 		if (!locked_ref) {
2215 			/* pick a new head ref from the cluster list */
2216 			if (list_empty(cluster))
2217 				break;
2218 
2219 			locked_ref = list_entry(cluster->next,
2220 				     struct btrfs_delayed_ref_head, cluster);
2221 
2222 			/* grab the lock that says we are going to process
2223 			 * all the refs for this head */
2224 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2225 
2226 			/*
2227 			 * we may have dropped the spin lock to get the head
2228 			 * mutex lock, and that might have given someone else
2229 			 * time to free the head.  If that's true, it has been
2230 			 * removed from our list and we can move on.
2231 			 */
2232 			if (ret == -EAGAIN) {
2233 				locked_ref = NULL;
2234 				count++;
2235 				continue;
2236 			}
2237 		}
2238 
2239 		/*
2240 		 * locked_ref is the head node, so we have to go one
2241 		 * node back for any delayed ref updates
2242 		 */
2243 		ref = select_delayed_ref(locked_ref);
2244 
2245 		if (ref && ref->seq &&
2246 		    btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2247 			/*
2248 			 * there are still refs with lower seq numbers in the
2249 			 * process of being added. Don't run this ref yet.
2250 			 */
2251 			list_del_init(&locked_ref->cluster);
2252 			mutex_unlock(&locked_ref->mutex);
2253 			locked_ref = NULL;
2254 			delayed_refs->num_heads_ready++;
2255 			spin_unlock(&delayed_refs->lock);
2256 			cond_resched();
2257 			spin_lock(&delayed_refs->lock);
2258 			continue;
2259 		}
2260 
2261 		/*
2262 		 * record the must insert reserved flag before we
2263 		 * drop the spin lock.
2264 		 */
2265 		must_insert_reserved = locked_ref->must_insert_reserved;
2266 		locked_ref->must_insert_reserved = 0;
2267 
2268 		extent_op = locked_ref->extent_op;
2269 		locked_ref->extent_op = NULL;
2270 
2271 		if (!ref) {
2272 			/* All delayed refs have been processed, Go ahead
2273 			 * and send the head node to run_one_delayed_ref,
2274 			 * so that any accounting fixes can happen
2275 			 */
2276 			ref = &locked_ref->node;
2277 
2278 			if (extent_op && must_insert_reserved) {
2279 				kfree(extent_op);
2280 				extent_op = NULL;
2281 			}
2282 
2283 			if (extent_op) {
2284 				spin_unlock(&delayed_refs->lock);
2285 
2286 				ret = run_delayed_extent_op(trans, root,
2287 							    ref, extent_op);
2288 				BUG_ON(ret);
2289 				kfree(extent_op);
2290 
2291 				goto next;
2292 			}
2293 
2294 			list_del_init(&locked_ref->cluster);
2295 			locked_ref = NULL;
2296 		}
2297 
2298 		ref->in_tree = 0;
2299 		rb_erase(&ref->rb_node, &delayed_refs->root);
2300 		delayed_refs->num_entries--;
2301 		/*
2302 		 * we modified num_entries, but as we're currently running
2303 		 * delayed refs, skip
2304 		 *     wake_up(&delayed_refs->seq_wait);
2305 		 * here.
2306 		 */
2307 		spin_unlock(&delayed_refs->lock);
2308 
2309 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2310 					  must_insert_reserved);
2311 		BUG_ON(ret);
2312 
2313 		btrfs_put_delayed_ref(ref);
2314 		kfree(extent_op);
2315 		count++;
2316 next:
2317 		do_chunk_alloc(trans, root->fs_info->extent_root,
2318 			       2 * 1024 * 1024,
2319 			       btrfs_get_alloc_profile(root, 0),
2320 			       CHUNK_ALLOC_NO_FORCE);
2321 		cond_resched();
2322 		spin_lock(&delayed_refs->lock);
2323 	}
2324 	return count;
2325 }
2326 
2327 
2328 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2329 			unsigned long num_refs)
2330 {
2331 	struct list_head *first_seq = delayed_refs->seq_head.next;
2332 
2333 	spin_unlock(&delayed_refs->lock);
2334 	pr_debug("waiting for more refs (num %ld, first %p)\n",
2335 		 num_refs, first_seq);
2336 	wait_event(delayed_refs->seq_wait,
2337 		   num_refs != delayed_refs->num_entries ||
2338 		   delayed_refs->seq_head.next != first_seq);
2339 	pr_debug("done waiting for more refs (num %ld, first %p)\n",
2340 		 delayed_refs->num_entries, delayed_refs->seq_head.next);
2341 	spin_lock(&delayed_refs->lock);
2342 }
2343 
2344 /*
2345  * this starts processing the delayed reference count updates and
2346  * extent insertions we have queued up so far.  count can be
2347  * 0, which means to process everything in the tree at the start
2348  * of the run (but not newly added entries), or it can be some target
2349  * number you'd like to process.
2350  */
2351 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2352 			   struct btrfs_root *root, unsigned long count)
2353 {
2354 	struct rb_node *node;
2355 	struct btrfs_delayed_ref_root *delayed_refs;
2356 	struct btrfs_delayed_ref_node *ref;
2357 	struct list_head cluster;
2358 	int ret;
2359 	u64 delayed_start;
2360 	int run_all = count == (unsigned long)-1;
2361 	int run_most = 0;
2362 	unsigned long num_refs = 0;
2363 	int consider_waiting;
2364 
2365 	if (root == root->fs_info->extent_root)
2366 		root = root->fs_info->tree_root;
2367 
2368 	do_chunk_alloc(trans, root->fs_info->extent_root,
2369 		       2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2370 		       CHUNK_ALLOC_NO_FORCE);
2371 
2372 	delayed_refs = &trans->transaction->delayed_refs;
2373 	INIT_LIST_HEAD(&cluster);
2374 again:
2375 	consider_waiting = 0;
2376 	spin_lock(&delayed_refs->lock);
2377 	if (count == 0) {
2378 		count = delayed_refs->num_entries * 2;
2379 		run_most = 1;
2380 	}
2381 	while (1) {
2382 		if (!(run_all || run_most) &&
2383 		    delayed_refs->num_heads_ready < 64)
2384 			break;
2385 
2386 		/*
2387 		 * go find something we can process in the rbtree.  We start at
2388 		 * the beginning of the tree, and then build a cluster
2389 		 * of refs to process starting at the first one we are able to
2390 		 * lock
2391 		 */
2392 		delayed_start = delayed_refs->run_delayed_start;
2393 		ret = btrfs_find_ref_cluster(trans, &cluster,
2394 					     delayed_refs->run_delayed_start);
2395 		if (ret)
2396 			break;
2397 
2398 		if (delayed_start >= delayed_refs->run_delayed_start) {
2399 			if (consider_waiting == 0) {
2400 				/*
2401 				 * btrfs_find_ref_cluster looped. let's do one
2402 				 * more cycle. if we don't run any delayed ref
2403 				 * during that cycle (because we can't because
2404 				 * all of them are blocked) and if the number of
2405 				 * refs doesn't change, we avoid busy waiting.
2406 				 */
2407 				consider_waiting = 1;
2408 				num_refs = delayed_refs->num_entries;
2409 			} else {
2410 				wait_for_more_refs(delayed_refs, num_refs);
2411 				/*
2412 				 * after waiting, things have changed. we
2413 				 * dropped the lock and someone else might have
2414 				 * run some refs, built new clusters and so on.
2415 				 * therefore, we restart staleness detection.
2416 				 */
2417 				consider_waiting = 0;
2418 			}
2419 		}
2420 
2421 		ret = run_clustered_refs(trans, root, &cluster);
2422 		BUG_ON(ret < 0);
2423 
2424 		count -= min_t(unsigned long, ret, count);
2425 
2426 		if (count == 0)
2427 			break;
2428 
2429 		if (ret || delayed_refs->run_delayed_start == 0) {
2430 			/* refs were run, let's reset staleness detection */
2431 			consider_waiting = 0;
2432 		}
2433 	}
2434 
2435 	if (run_all) {
2436 		node = rb_first(&delayed_refs->root);
2437 		if (!node)
2438 			goto out;
2439 		count = (unsigned long)-1;
2440 
2441 		while (node) {
2442 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2443 				       rb_node);
2444 			if (btrfs_delayed_ref_is_head(ref)) {
2445 				struct btrfs_delayed_ref_head *head;
2446 
2447 				head = btrfs_delayed_node_to_head(ref);
2448 				atomic_inc(&ref->refs);
2449 
2450 				spin_unlock(&delayed_refs->lock);
2451 				/*
2452 				 * Mutex was contended, block until it's
2453 				 * released and try again
2454 				 */
2455 				mutex_lock(&head->mutex);
2456 				mutex_unlock(&head->mutex);
2457 
2458 				btrfs_put_delayed_ref(ref);
2459 				cond_resched();
2460 				goto again;
2461 			}
2462 			node = rb_next(node);
2463 		}
2464 		spin_unlock(&delayed_refs->lock);
2465 		schedule_timeout(1);
2466 		goto again;
2467 	}
2468 out:
2469 	spin_unlock(&delayed_refs->lock);
2470 	return 0;
2471 }
2472 
2473 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2474 				struct btrfs_root *root,
2475 				u64 bytenr, u64 num_bytes, u64 flags,
2476 				int is_data)
2477 {
2478 	struct btrfs_delayed_extent_op *extent_op;
2479 	int ret;
2480 
2481 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2482 	if (!extent_op)
2483 		return -ENOMEM;
2484 
2485 	extent_op->flags_to_set = flags;
2486 	extent_op->update_flags = 1;
2487 	extent_op->update_key = 0;
2488 	extent_op->is_data = is_data ? 1 : 0;
2489 
2490 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2491 					  num_bytes, extent_op);
2492 	if (ret)
2493 		kfree(extent_op);
2494 	return ret;
2495 }
2496 
2497 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2498 				      struct btrfs_root *root,
2499 				      struct btrfs_path *path,
2500 				      u64 objectid, u64 offset, u64 bytenr)
2501 {
2502 	struct btrfs_delayed_ref_head *head;
2503 	struct btrfs_delayed_ref_node *ref;
2504 	struct btrfs_delayed_data_ref *data_ref;
2505 	struct btrfs_delayed_ref_root *delayed_refs;
2506 	struct rb_node *node;
2507 	int ret = 0;
2508 
2509 	ret = -ENOENT;
2510 	delayed_refs = &trans->transaction->delayed_refs;
2511 	spin_lock(&delayed_refs->lock);
2512 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2513 	if (!head)
2514 		goto out;
2515 
2516 	if (!mutex_trylock(&head->mutex)) {
2517 		atomic_inc(&head->node.refs);
2518 		spin_unlock(&delayed_refs->lock);
2519 
2520 		btrfs_release_path(path);
2521 
2522 		/*
2523 		 * Mutex was contended, block until it's released and let
2524 		 * caller try again
2525 		 */
2526 		mutex_lock(&head->mutex);
2527 		mutex_unlock(&head->mutex);
2528 		btrfs_put_delayed_ref(&head->node);
2529 		return -EAGAIN;
2530 	}
2531 
2532 	node = rb_prev(&head->node.rb_node);
2533 	if (!node)
2534 		goto out_unlock;
2535 
2536 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2537 
2538 	if (ref->bytenr != bytenr)
2539 		goto out_unlock;
2540 
2541 	ret = 1;
2542 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2543 		goto out_unlock;
2544 
2545 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2546 
2547 	node = rb_prev(node);
2548 	if (node) {
2549 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2550 		if (ref->bytenr == bytenr)
2551 			goto out_unlock;
2552 	}
2553 
2554 	if (data_ref->root != root->root_key.objectid ||
2555 	    data_ref->objectid != objectid || data_ref->offset != offset)
2556 		goto out_unlock;
2557 
2558 	ret = 0;
2559 out_unlock:
2560 	mutex_unlock(&head->mutex);
2561 out:
2562 	spin_unlock(&delayed_refs->lock);
2563 	return ret;
2564 }
2565 
2566 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2567 					struct btrfs_root *root,
2568 					struct btrfs_path *path,
2569 					u64 objectid, u64 offset, u64 bytenr)
2570 {
2571 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2572 	struct extent_buffer *leaf;
2573 	struct btrfs_extent_data_ref *ref;
2574 	struct btrfs_extent_inline_ref *iref;
2575 	struct btrfs_extent_item *ei;
2576 	struct btrfs_key key;
2577 	u32 item_size;
2578 	int ret;
2579 
2580 	key.objectid = bytenr;
2581 	key.offset = (u64)-1;
2582 	key.type = BTRFS_EXTENT_ITEM_KEY;
2583 
2584 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2585 	if (ret < 0)
2586 		goto out;
2587 	BUG_ON(ret == 0);
2588 
2589 	ret = -ENOENT;
2590 	if (path->slots[0] == 0)
2591 		goto out;
2592 
2593 	path->slots[0]--;
2594 	leaf = path->nodes[0];
2595 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2596 
2597 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2598 		goto out;
2599 
2600 	ret = 1;
2601 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2603 	if (item_size < sizeof(*ei)) {
2604 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2605 		goto out;
2606 	}
2607 #endif
2608 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2609 
2610 	if (item_size != sizeof(*ei) +
2611 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2612 		goto out;
2613 
2614 	if (btrfs_extent_generation(leaf, ei) <=
2615 	    btrfs_root_last_snapshot(&root->root_item))
2616 		goto out;
2617 
2618 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2619 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2620 	    BTRFS_EXTENT_DATA_REF_KEY)
2621 		goto out;
2622 
2623 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2624 	if (btrfs_extent_refs(leaf, ei) !=
2625 	    btrfs_extent_data_ref_count(leaf, ref) ||
2626 	    btrfs_extent_data_ref_root(leaf, ref) !=
2627 	    root->root_key.objectid ||
2628 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2629 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2630 		goto out;
2631 
2632 	ret = 0;
2633 out:
2634 	return ret;
2635 }
2636 
2637 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2638 			  struct btrfs_root *root,
2639 			  u64 objectid, u64 offset, u64 bytenr)
2640 {
2641 	struct btrfs_path *path;
2642 	int ret;
2643 	int ret2;
2644 
2645 	path = btrfs_alloc_path();
2646 	if (!path)
2647 		return -ENOENT;
2648 
2649 	do {
2650 		ret = check_committed_ref(trans, root, path, objectid,
2651 					  offset, bytenr);
2652 		if (ret && ret != -ENOENT)
2653 			goto out;
2654 
2655 		ret2 = check_delayed_ref(trans, root, path, objectid,
2656 					 offset, bytenr);
2657 	} while (ret2 == -EAGAIN);
2658 
2659 	if (ret2 && ret2 != -ENOENT) {
2660 		ret = ret2;
2661 		goto out;
2662 	}
2663 
2664 	if (ret != -ENOENT || ret2 != -ENOENT)
2665 		ret = 0;
2666 out:
2667 	btrfs_free_path(path);
2668 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2669 		WARN_ON(ret > 0);
2670 	return ret;
2671 }
2672 
2673 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2674 			   struct btrfs_root *root,
2675 			   struct extent_buffer *buf,
2676 			   int full_backref, int inc, int for_cow)
2677 {
2678 	u64 bytenr;
2679 	u64 num_bytes;
2680 	u64 parent;
2681 	u64 ref_root;
2682 	u32 nritems;
2683 	struct btrfs_key key;
2684 	struct btrfs_file_extent_item *fi;
2685 	int i;
2686 	int level;
2687 	int ret = 0;
2688 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2689 			    u64, u64, u64, u64, u64, u64, int);
2690 
2691 	ref_root = btrfs_header_owner(buf);
2692 	nritems = btrfs_header_nritems(buf);
2693 	level = btrfs_header_level(buf);
2694 
2695 	if (!root->ref_cows && level == 0)
2696 		return 0;
2697 
2698 	if (inc)
2699 		process_func = btrfs_inc_extent_ref;
2700 	else
2701 		process_func = btrfs_free_extent;
2702 
2703 	if (full_backref)
2704 		parent = buf->start;
2705 	else
2706 		parent = 0;
2707 
2708 	for (i = 0; i < nritems; i++) {
2709 		if (level == 0) {
2710 			btrfs_item_key_to_cpu(buf, &key, i);
2711 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2712 				continue;
2713 			fi = btrfs_item_ptr(buf, i,
2714 					    struct btrfs_file_extent_item);
2715 			if (btrfs_file_extent_type(buf, fi) ==
2716 			    BTRFS_FILE_EXTENT_INLINE)
2717 				continue;
2718 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2719 			if (bytenr == 0)
2720 				continue;
2721 
2722 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2723 			key.offset -= btrfs_file_extent_offset(buf, fi);
2724 			ret = process_func(trans, root, bytenr, num_bytes,
2725 					   parent, ref_root, key.objectid,
2726 					   key.offset, for_cow);
2727 			if (ret)
2728 				goto fail;
2729 		} else {
2730 			bytenr = btrfs_node_blockptr(buf, i);
2731 			num_bytes = btrfs_level_size(root, level - 1);
2732 			ret = process_func(trans, root, bytenr, num_bytes,
2733 					   parent, ref_root, level - 1, 0,
2734 					   for_cow);
2735 			if (ret)
2736 				goto fail;
2737 		}
2738 	}
2739 	return 0;
2740 fail:
2741 	BUG();
2742 	return ret;
2743 }
2744 
2745 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2746 		  struct extent_buffer *buf, int full_backref, int for_cow)
2747 {
2748 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2749 }
2750 
2751 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2752 		  struct extent_buffer *buf, int full_backref, int for_cow)
2753 {
2754 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2755 }
2756 
2757 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2758 				 struct btrfs_root *root,
2759 				 struct btrfs_path *path,
2760 				 struct btrfs_block_group_cache *cache)
2761 {
2762 	int ret;
2763 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2764 	unsigned long bi;
2765 	struct extent_buffer *leaf;
2766 
2767 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2768 	if (ret < 0)
2769 		goto fail;
2770 	BUG_ON(ret);
2771 
2772 	leaf = path->nodes[0];
2773 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2774 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2775 	btrfs_mark_buffer_dirty(leaf);
2776 	btrfs_release_path(path);
2777 fail:
2778 	if (ret)
2779 		return ret;
2780 	return 0;
2781 
2782 }
2783 
2784 static struct btrfs_block_group_cache *
2785 next_block_group(struct btrfs_root *root,
2786 		 struct btrfs_block_group_cache *cache)
2787 {
2788 	struct rb_node *node;
2789 	spin_lock(&root->fs_info->block_group_cache_lock);
2790 	node = rb_next(&cache->cache_node);
2791 	btrfs_put_block_group(cache);
2792 	if (node) {
2793 		cache = rb_entry(node, struct btrfs_block_group_cache,
2794 				 cache_node);
2795 		btrfs_get_block_group(cache);
2796 	} else
2797 		cache = NULL;
2798 	spin_unlock(&root->fs_info->block_group_cache_lock);
2799 	return cache;
2800 }
2801 
2802 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2803 			    struct btrfs_trans_handle *trans,
2804 			    struct btrfs_path *path)
2805 {
2806 	struct btrfs_root *root = block_group->fs_info->tree_root;
2807 	struct inode *inode = NULL;
2808 	u64 alloc_hint = 0;
2809 	int dcs = BTRFS_DC_ERROR;
2810 	int num_pages = 0;
2811 	int retries = 0;
2812 	int ret = 0;
2813 
2814 	/*
2815 	 * If this block group is smaller than 100 megs don't bother caching the
2816 	 * block group.
2817 	 */
2818 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2819 		spin_lock(&block_group->lock);
2820 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2821 		spin_unlock(&block_group->lock);
2822 		return 0;
2823 	}
2824 
2825 again:
2826 	inode = lookup_free_space_inode(root, block_group, path);
2827 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2828 		ret = PTR_ERR(inode);
2829 		btrfs_release_path(path);
2830 		goto out;
2831 	}
2832 
2833 	if (IS_ERR(inode)) {
2834 		BUG_ON(retries);
2835 		retries++;
2836 
2837 		if (block_group->ro)
2838 			goto out_free;
2839 
2840 		ret = create_free_space_inode(root, trans, block_group, path);
2841 		if (ret)
2842 			goto out_free;
2843 		goto again;
2844 	}
2845 
2846 	/* We've already setup this transaction, go ahead and exit */
2847 	if (block_group->cache_generation == trans->transid &&
2848 	    i_size_read(inode)) {
2849 		dcs = BTRFS_DC_SETUP;
2850 		goto out_put;
2851 	}
2852 
2853 	/*
2854 	 * We want to set the generation to 0, that way if anything goes wrong
2855 	 * from here on out we know not to trust this cache when we load up next
2856 	 * time.
2857 	 */
2858 	BTRFS_I(inode)->generation = 0;
2859 	ret = btrfs_update_inode(trans, root, inode);
2860 	WARN_ON(ret);
2861 
2862 	if (i_size_read(inode) > 0) {
2863 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2864 						      inode);
2865 		if (ret)
2866 			goto out_put;
2867 	}
2868 
2869 	spin_lock(&block_group->lock);
2870 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2871 		/* We're not cached, don't bother trying to write stuff out */
2872 		dcs = BTRFS_DC_WRITTEN;
2873 		spin_unlock(&block_group->lock);
2874 		goto out_put;
2875 	}
2876 	spin_unlock(&block_group->lock);
2877 
2878 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2879 	if (!num_pages)
2880 		num_pages = 1;
2881 
2882 	/*
2883 	 * Just to make absolutely sure we have enough space, we're going to
2884 	 * preallocate 12 pages worth of space for each block group.  In
2885 	 * practice we ought to use at most 8, but we need extra space so we can
2886 	 * add our header and have a terminator between the extents and the
2887 	 * bitmaps.
2888 	 */
2889 	num_pages *= 16;
2890 	num_pages *= PAGE_CACHE_SIZE;
2891 
2892 	ret = btrfs_check_data_free_space(inode, num_pages);
2893 	if (ret)
2894 		goto out_put;
2895 
2896 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2897 					      num_pages, num_pages,
2898 					      &alloc_hint);
2899 	if (!ret)
2900 		dcs = BTRFS_DC_SETUP;
2901 	btrfs_free_reserved_data_space(inode, num_pages);
2902 
2903 out_put:
2904 	iput(inode);
2905 out_free:
2906 	btrfs_release_path(path);
2907 out:
2908 	spin_lock(&block_group->lock);
2909 	if (!ret && dcs == BTRFS_DC_SETUP)
2910 		block_group->cache_generation = trans->transid;
2911 	block_group->disk_cache_state = dcs;
2912 	spin_unlock(&block_group->lock);
2913 
2914 	return ret;
2915 }
2916 
2917 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2918 				   struct btrfs_root *root)
2919 {
2920 	struct btrfs_block_group_cache *cache;
2921 	int err = 0;
2922 	struct btrfs_path *path;
2923 	u64 last = 0;
2924 
2925 	path = btrfs_alloc_path();
2926 	if (!path)
2927 		return -ENOMEM;
2928 
2929 again:
2930 	while (1) {
2931 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2932 		while (cache) {
2933 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2934 				break;
2935 			cache = next_block_group(root, cache);
2936 		}
2937 		if (!cache) {
2938 			if (last == 0)
2939 				break;
2940 			last = 0;
2941 			continue;
2942 		}
2943 		err = cache_save_setup(cache, trans, path);
2944 		last = cache->key.objectid + cache->key.offset;
2945 		btrfs_put_block_group(cache);
2946 	}
2947 
2948 	while (1) {
2949 		if (last == 0) {
2950 			err = btrfs_run_delayed_refs(trans, root,
2951 						     (unsigned long)-1);
2952 			BUG_ON(err);
2953 		}
2954 
2955 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2956 		while (cache) {
2957 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2958 				btrfs_put_block_group(cache);
2959 				goto again;
2960 			}
2961 
2962 			if (cache->dirty)
2963 				break;
2964 			cache = next_block_group(root, cache);
2965 		}
2966 		if (!cache) {
2967 			if (last == 0)
2968 				break;
2969 			last = 0;
2970 			continue;
2971 		}
2972 
2973 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2974 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2975 		cache->dirty = 0;
2976 		last = cache->key.objectid + cache->key.offset;
2977 
2978 		err = write_one_cache_group(trans, root, path, cache);
2979 		BUG_ON(err);
2980 		btrfs_put_block_group(cache);
2981 	}
2982 
2983 	while (1) {
2984 		/*
2985 		 * I don't think this is needed since we're just marking our
2986 		 * preallocated extent as written, but just in case it can't
2987 		 * hurt.
2988 		 */
2989 		if (last == 0) {
2990 			err = btrfs_run_delayed_refs(trans, root,
2991 						     (unsigned long)-1);
2992 			BUG_ON(err);
2993 		}
2994 
2995 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2996 		while (cache) {
2997 			/*
2998 			 * Really this shouldn't happen, but it could if we
2999 			 * couldn't write the entire preallocated extent and
3000 			 * splitting the extent resulted in a new block.
3001 			 */
3002 			if (cache->dirty) {
3003 				btrfs_put_block_group(cache);
3004 				goto again;
3005 			}
3006 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3007 				break;
3008 			cache = next_block_group(root, cache);
3009 		}
3010 		if (!cache) {
3011 			if (last == 0)
3012 				break;
3013 			last = 0;
3014 			continue;
3015 		}
3016 
3017 		btrfs_write_out_cache(root, trans, cache, path);
3018 
3019 		/*
3020 		 * If we didn't have an error then the cache state is still
3021 		 * NEED_WRITE, so we can set it to WRITTEN.
3022 		 */
3023 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3024 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3025 		last = cache->key.objectid + cache->key.offset;
3026 		btrfs_put_block_group(cache);
3027 	}
3028 
3029 	btrfs_free_path(path);
3030 	return 0;
3031 }
3032 
3033 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3034 {
3035 	struct btrfs_block_group_cache *block_group;
3036 	int readonly = 0;
3037 
3038 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3039 	if (!block_group || block_group->ro)
3040 		readonly = 1;
3041 	if (block_group)
3042 		btrfs_put_block_group(block_group);
3043 	return readonly;
3044 }
3045 
3046 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3047 			     u64 total_bytes, u64 bytes_used,
3048 			     struct btrfs_space_info **space_info)
3049 {
3050 	struct btrfs_space_info *found;
3051 	int i;
3052 	int factor;
3053 
3054 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3055 		     BTRFS_BLOCK_GROUP_RAID10))
3056 		factor = 2;
3057 	else
3058 		factor = 1;
3059 
3060 	found = __find_space_info(info, flags);
3061 	if (found) {
3062 		spin_lock(&found->lock);
3063 		found->total_bytes += total_bytes;
3064 		found->disk_total += total_bytes * factor;
3065 		found->bytes_used += bytes_used;
3066 		found->disk_used += bytes_used * factor;
3067 		found->full = 0;
3068 		spin_unlock(&found->lock);
3069 		*space_info = found;
3070 		return 0;
3071 	}
3072 	found = kzalloc(sizeof(*found), GFP_NOFS);
3073 	if (!found)
3074 		return -ENOMEM;
3075 
3076 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3077 		INIT_LIST_HEAD(&found->block_groups[i]);
3078 	init_rwsem(&found->groups_sem);
3079 	spin_lock_init(&found->lock);
3080 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3081 	found->total_bytes = total_bytes;
3082 	found->disk_total = total_bytes * factor;
3083 	found->bytes_used = bytes_used;
3084 	found->disk_used = bytes_used * factor;
3085 	found->bytes_pinned = 0;
3086 	found->bytes_reserved = 0;
3087 	found->bytes_readonly = 0;
3088 	found->bytes_may_use = 0;
3089 	found->full = 0;
3090 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3091 	found->chunk_alloc = 0;
3092 	found->flush = 0;
3093 	init_waitqueue_head(&found->wait);
3094 	*space_info = found;
3095 	list_add_rcu(&found->list, &info->space_info);
3096 	return 0;
3097 }
3098 
3099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3100 {
3101 	u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3102 
3103 	/* chunk -> extended profile */
3104 	if (extra_flags == 0)
3105 		extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3106 
3107 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3108 		fs_info->avail_data_alloc_bits |= extra_flags;
3109 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3110 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3111 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3112 		fs_info->avail_system_alloc_bits |= extra_flags;
3113 }
3114 
3115 /*
3116  * @flags: available profiles in extended format (see ctree.h)
3117  *
3118  * Returns reduced profile in chunk format.  If profile changing is in
3119  * progress (either running or paused) picks the target profile (if it's
3120  * already available), otherwise falls back to plain reducing.
3121  */
3122 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3123 {
3124 	/*
3125 	 * we add in the count of missing devices because we want
3126 	 * to make sure that any RAID levels on a degraded FS
3127 	 * continue to be honored.
3128 	 */
3129 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3130 		root->fs_info->fs_devices->missing_devices;
3131 
3132 	/* pick restriper's target profile if it's available */
3133 	spin_lock(&root->fs_info->balance_lock);
3134 	if (root->fs_info->balance_ctl) {
3135 		struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3136 		u64 tgt = 0;
3137 
3138 		if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3139 		    (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3140 		    (flags & bctl->data.target)) {
3141 			tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3142 		} else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3143 			   (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3144 			   (flags & bctl->sys.target)) {
3145 			tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3146 		} else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3147 			   (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3148 			   (flags & bctl->meta.target)) {
3149 			tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3150 		}
3151 
3152 		if (tgt) {
3153 			spin_unlock(&root->fs_info->balance_lock);
3154 			flags = tgt;
3155 			goto out;
3156 		}
3157 	}
3158 	spin_unlock(&root->fs_info->balance_lock);
3159 
3160 	if (num_devices == 1)
3161 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3162 	if (num_devices < 4)
3163 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3164 
3165 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3166 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3167 		      BTRFS_BLOCK_GROUP_RAID10))) {
3168 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3169 	}
3170 
3171 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3172 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3173 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3174 	}
3175 
3176 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3177 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3178 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3179 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3180 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3181 	}
3182 
3183 out:
3184 	/* extended -> chunk profile */
3185 	flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3186 	return flags;
3187 }
3188 
3189 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3190 {
3191 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3192 		flags |= root->fs_info->avail_data_alloc_bits;
3193 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3194 		flags |= root->fs_info->avail_system_alloc_bits;
3195 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3196 		flags |= root->fs_info->avail_metadata_alloc_bits;
3197 
3198 	return btrfs_reduce_alloc_profile(root, flags);
3199 }
3200 
3201 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3202 {
3203 	u64 flags;
3204 
3205 	if (data)
3206 		flags = BTRFS_BLOCK_GROUP_DATA;
3207 	else if (root == root->fs_info->chunk_root)
3208 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3209 	else
3210 		flags = BTRFS_BLOCK_GROUP_METADATA;
3211 
3212 	return get_alloc_profile(root, flags);
3213 }
3214 
3215 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3216 {
3217 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3218 						       BTRFS_BLOCK_GROUP_DATA);
3219 }
3220 
3221 /*
3222  * This will check the space that the inode allocates from to make sure we have
3223  * enough space for bytes.
3224  */
3225 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3226 {
3227 	struct btrfs_space_info *data_sinfo;
3228 	struct btrfs_root *root = BTRFS_I(inode)->root;
3229 	u64 used;
3230 	int ret = 0, committed = 0, alloc_chunk = 1;
3231 
3232 	/* make sure bytes are sectorsize aligned */
3233 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3234 
3235 	if (root == root->fs_info->tree_root ||
3236 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3237 		alloc_chunk = 0;
3238 		committed = 1;
3239 	}
3240 
3241 	data_sinfo = BTRFS_I(inode)->space_info;
3242 	if (!data_sinfo)
3243 		goto alloc;
3244 
3245 again:
3246 	/* make sure we have enough space to handle the data first */
3247 	spin_lock(&data_sinfo->lock);
3248 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3249 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3250 		data_sinfo->bytes_may_use;
3251 
3252 	if (used + bytes > data_sinfo->total_bytes) {
3253 		struct btrfs_trans_handle *trans;
3254 
3255 		/*
3256 		 * if we don't have enough free bytes in this space then we need
3257 		 * to alloc a new chunk.
3258 		 */
3259 		if (!data_sinfo->full && alloc_chunk) {
3260 			u64 alloc_target;
3261 
3262 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3263 			spin_unlock(&data_sinfo->lock);
3264 alloc:
3265 			alloc_target = btrfs_get_alloc_profile(root, 1);
3266 			trans = btrfs_join_transaction(root);
3267 			if (IS_ERR(trans))
3268 				return PTR_ERR(trans);
3269 
3270 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3271 					     bytes + 2 * 1024 * 1024,
3272 					     alloc_target,
3273 					     CHUNK_ALLOC_NO_FORCE);
3274 			btrfs_end_transaction(trans, root);
3275 			if (ret < 0) {
3276 				if (ret != -ENOSPC)
3277 					return ret;
3278 				else
3279 					goto commit_trans;
3280 			}
3281 
3282 			if (!data_sinfo) {
3283 				btrfs_set_inode_space_info(root, inode);
3284 				data_sinfo = BTRFS_I(inode)->space_info;
3285 			}
3286 			goto again;
3287 		}
3288 
3289 		/*
3290 		 * If we have less pinned bytes than we want to allocate then
3291 		 * don't bother committing the transaction, it won't help us.
3292 		 */
3293 		if (data_sinfo->bytes_pinned < bytes)
3294 			committed = 1;
3295 		spin_unlock(&data_sinfo->lock);
3296 
3297 		/* commit the current transaction and try again */
3298 commit_trans:
3299 		if (!committed &&
3300 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3301 			committed = 1;
3302 			trans = btrfs_join_transaction(root);
3303 			if (IS_ERR(trans))
3304 				return PTR_ERR(trans);
3305 			ret = btrfs_commit_transaction(trans, root);
3306 			if (ret)
3307 				return ret;
3308 			goto again;
3309 		}
3310 
3311 		return -ENOSPC;
3312 	}
3313 	data_sinfo->bytes_may_use += bytes;
3314 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3315 				      (u64)(unsigned long)data_sinfo,
3316 				      bytes, 1);
3317 	spin_unlock(&data_sinfo->lock);
3318 
3319 	return 0;
3320 }
3321 
3322 /*
3323  * Called if we need to clear a data reservation for this inode.
3324  */
3325 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3326 {
3327 	struct btrfs_root *root = BTRFS_I(inode)->root;
3328 	struct btrfs_space_info *data_sinfo;
3329 
3330 	/* make sure bytes are sectorsize aligned */
3331 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3332 
3333 	data_sinfo = BTRFS_I(inode)->space_info;
3334 	spin_lock(&data_sinfo->lock);
3335 	data_sinfo->bytes_may_use -= bytes;
3336 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3337 				      (u64)(unsigned long)data_sinfo,
3338 				      bytes, 0);
3339 	spin_unlock(&data_sinfo->lock);
3340 }
3341 
3342 static void force_metadata_allocation(struct btrfs_fs_info *info)
3343 {
3344 	struct list_head *head = &info->space_info;
3345 	struct btrfs_space_info *found;
3346 
3347 	rcu_read_lock();
3348 	list_for_each_entry_rcu(found, head, list) {
3349 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3350 			found->force_alloc = CHUNK_ALLOC_FORCE;
3351 	}
3352 	rcu_read_unlock();
3353 }
3354 
3355 static int should_alloc_chunk(struct btrfs_root *root,
3356 			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3357 			      int force)
3358 {
3359 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3360 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3361 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3362 	u64 thresh;
3363 
3364 	if (force == CHUNK_ALLOC_FORCE)
3365 		return 1;
3366 
3367 	/*
3368 	 * We need to take into account the global rsv because for all intents
3369 	 * and purposes it's used space.  Don't worry about locking the
3370 	 * global_rsv, it doesn't change except when the transaction commits.
3371 	 */
3372 	num_allocated += global_rsv->size;
3373 
3374 	/*
3375 	 * in limited mode, we want to have some free space up to
3376 	 * about 1% of the FS size.
3377 	 */
3378 	if (force == CHUNK_ALLOC_LIMITED) {
3379 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3380 		thresh = max_t(u64, 64 * 1024 * 1024,
3381 			       div_factor_fine(thresh, 1));
3382 
3383 		if (num_bytes - num_allocated < thresh)
3384 			return 1;
3385 	}
3386 	thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3387 
3388 	/* 256MB or 2% of the FS */
3389 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3390 	/* system chunks need a much small threshold */
3391 	if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3392 		thresh = 32 * 1024 * 1024;
3393 
3394 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3395 		return 0;
3396 	return 1;
3397 }
3398 
3399 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3400 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3401 			  u64 flags, int force)
3402 {
3403 	struct btrfs_space_info *space_info;
3404 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3405 	int wait_for_alloc = 0;
3406 	int ret = 0;
3407 
3408 	BUG_ON(!profile_is_valid(flags, 0));
3409 
3410 	space_info = __find_space_info(extent_root->fs_info, flags);
3411 	if (!space_info) {
3412 		ret = update_space_info(extent_root->fs_info, flags,
3413 					0, 0, &space_info);
3414 		BUG_ON(ret);
3415 	}
3416 	BUG_ON(!space_info);
3417 
3418 again:
3419 	spin_lock(&space_info->lock);
3420 	if (force < space_info->force_alloc)
3421 		force = space_info->force_alloc;
3422 	if (space_info->full) {
3423 		spin_unlock(&space_info->lock);
3424 		return 0;
3425 	}
3426 
3427 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3428 		spin_unlock(&space_info->lock);
3429 		return 0;
3430 	} else if (space_info->chunk_alloc) {
3431 		wait_for_alloc = 1;
3432 	} else {
3433 		space_info->chunk_alloc = 1;
3434 	}
3435 
3436 	spin_unlock(&space_info->lock);
3437 
3438 	mutex_lock(&fs_info->chunk_mutex);
3439 
3440 	/*
3441 	 * The chunk_mutex is held throughout the entirety of a chunk
3442 	 * allocation, so once we've acquired the chunk_mutex we know that the
3443 	 * other guy is done and we need to recheck and see if we should
3444 	 * allocate.
3445 	 */
3446 	if (wait_for_alloc) {
3447 		mutex_unlock(&fs_info->chunk_mutex);
3448 		wait_for_alloc = 0;
3449 		goto again;
3450 	}
3451 
3452 	/*
3453 	 * If we have mixed data/metadata chunks we want to make sure we keep
3454 	 * allocating mixed chunks instead of individual chunks.
3455 	 */
3456 	if (btrfs_mixed_space_info(space_info))
3457 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3458 
3459 	/*
3460 	 * if we're doing a data chunk, go ahead and make sure that
3461 	 * we keep a reasonable number of metadata chunks allocated in the
3462 	 * FS as well.
3463 	 */
3464 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3465 		fs_info->data_chunk_allocations++;
3466 		if (!(fs_info->data_chunk_allocations %
3467 		      fs_info->metadata_ratio))
3468 			force_metadata_allocation(fs_info);
3469 	}
3470 
3471 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3472 	if (ret < 0 && ret != -ENOSPC)
3473 		goto out;
3474 
3475 	spin_lock(&space_info->lock);
3476 	if (ret)
3477 		space_info->full = 1;
3478 	else
3479 		ret = 1;
3480 
3481 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3482 	space_info->chunk_alloc = 0;
3483 	spin_unlock(&space_info->lock);
3484 out:
3485 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3486 	return ret;
3487 }
3488 
3489 /*
3490  * shrink metadata reservation for delalloc
3491  */
3492 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3493 			   bool wait_ordered)
3494 {
3495 	struct btrfs_block_rsv *block_rsv;
3496 	struct btrfs_space_info *space_info;
3497 	struct btrfs_trans_handle *trans;
3498 	u64 reserved;
3499 	u64 max_reclaim;
3500 	u64 reclaimed = 0;
3501 	long time_left;
3502 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3503 	int loops = 0;
3504 	unsigned long progress;
3505 
3506 	trans = (struct btrfs_trans_handle *)current->journal_info;
3507 	block_rsv = &root->fs_info->delalloc_block_rsv;
3508 	space_info = block_rsv->space_info;
3509 
3510 	smp_mb();
3511 	reserved = space_info->bytes_may_use;
3512 	progress = space_info->reservation_progress;
3513 
3514 	if (reserved == 0)
3515 		return 0;
3516 
3517 	smp_mb();
3518 	if (root->fs_info->delalloc_bytes == 0) {
3519 		if (trans)
3520 			return 0;
3521 		btrfs_wait_ordered_extents(root, 0, 0);
3522 		return 0;
3523 	}
3524 
3525 	max_reclaim = min(reserved, to_reclaim);
3526 	nr_pages = max_t(unsigned long, nr_pages,
3527 			 max_reclaim >> PAGE_CACHE_SHIFT);
3528 	while (loops < 1024) {
3529 		/* have the flusher threads jump in and do some IO */
3530 		smp_mb();
3531 		nr_pages = min_t(unsigned long, nr_pages,
3532 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3533 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3534 						WB_REASON_FS_FREE_SPACE);
3535 
3536 		spin_lock(&space_info->lock);
3537 		if (reserved > space_info->bytes_may_use)
3538 			reclaimed += reserved - space_info->bytes_may_use;
3539 		reserved = space_info->bytes_may_use;
3540 		spin_unlock(&space_info->lock);
3541 
3542 		loops++;
3543 
3544 		if (reserved == 0 || reclaimed >= max_reclaim)
3545 			break;
3546 
3547 		if (trans && trans->transaction->blocked)
3548 			return -EAGAIN;
3549 
3550 		if (wait_ordered && !trans) {
3551 			btrfs_wait_ordered_extents(root, 0, 0);
3552 		} else {
3553 			time_left = schedule_timeout_interruptible(1);
3554 
3555 			/* We were interrupted, exit */
3556 			if (time_left)
3557 				break;
3558 		}
3559 
3560 		/* we've kicked the IO a few times, if anything has been freed,
3561 		 * exit.  There is no sense in looping here for a long time
3562 		 * when we really need to commit the transaction, or there are
3563 		 * just too many writers without enough free space
3564 		 */
3565 
3566 		if (loops > 3) {
3567 			smp_mb();
3568 			if (progress != space_info->reservation_progress)
3569 				break;
3570 		}
3571 
3572 	}
3573 
3574 	return reclaimed >= to_reclaim;
3575 }
3576 
3577 /**
3578  * maybe_commit_transaction - possibly commit the transaction if its ok to
3579  * @root - the root we're allocating for
3580  * @bytes - the number of bytes we want to reserve
3581  * @force - force the commit
3582  *
3583  * This will check to make sure that committing the transaction will actually
3584  * get us somewhere and then commit the transaction if it does.  Otherwise it
3585  * will return -ENOSPC.
3586  */
3587 static int may_commit_transaction(struct btrfs_root *root,
3588 				  struct btrfs_space_info *space_info,
3589 				  u64 bytes, int force)
3590 {
3591 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3592 	struct btrfs_trans_handle *trans;
3593 
3594 	trans = (struct btrfs_trans_handle *)current->journal_info;
3595 	if (trans)
3596 		return -EAGAIN;
3597 
3598 	if (force)
3599 		goto commit;
3600 
3601 	/* See if there is enough pinned space to make this reservation */
3602 	spin_lock(&space_info->lock);
3603 	if (space_info->bytes_pinned >= bytes) {
3604 		spin_unlock(&space_info->lock);
3605 		goto commit;
3606 	}
3607 	spin_unlock(&space_info->lock);
3608 
3609 	/*
3610 	 * See if there is some space in the delayed insertion reservation for
3611 	 * this reservation.
3612 	 */
3613 	if (space_info != delayed_rsv->space_info)
3614 		return -ENOSPC;
3615 
3616 	spin_lock(&space_info->lock);
3617 	spin_lock(&delayed_rsv->lock);
3618 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3619 		spin_unlock(&delayed_rsv->lock);
3620 		spin_unlock(&space_info->lock);
3621 		return -ENOSPC;
3622 	}
3623 	spin_unlock(&delayed_rsv->lock);
3624 	spin_unlock(&space_info->lock);
3625 
3626 commit:
3627 	trans = btrfs_join_transaction(root);
3628 	if (IS_ERR(trans))
3629 		return -ENOSPC;
3630 
3631 	return btrfs_commit_transaction(trans, root);
3632 }
3633 
3634 /**
3635  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3636  * @root - the root we're allocating for
3637  * @block_rsv - the block_rsv we're allocating for
3638  * @orig_bytes - the number of bytes we want
3639  * @flush - wether or not we can flush to make our reservation
3640  *
3641  * This will reserve orgi_bytes number of bytes from the space info associated
3642  * with the block_rsv.  If there is not enough space it will make an attempt to
3643  * flush out space to make room.  It will do this by flushing delalloc if
3644  * possible or committing the transaction.  If flush is 0 then no attempts to
3645  * regain reservations will be made and this will fail if there is not enough
3646  * space already.
3647  */
3648 static int reserve_metadata_bytes(struct btrfs_root *root,
3649 				  struct btrfs_block_rsv *block_rsv,
3650 				  u64 orig_bytes, int flush)
3651 {
3652 	struct btrfs_space_info *space_info = block_rsv->space_info;
3653 	u64 used;
3654 	u64 num_bytes = orig_bytes;
3655 	int retries = 0;
3656 	int ret = 0;
3657 	bool committed = false;
3658 	bool flushing = false;
3659 	bool wait_ordered = false;
3660 
3661 again:
3662 	ret = 0;
3663 	spin_lock(&space_info->lock);
3664 	/*
3665 	 * We only want to wait if somebody other than us is flushing and we are
3666 	 * actually alloed to flush.
3667 	 */
3668 	while (flush && !flushing && space_info->flush) {
3669 		spin_unlock(&space_info->lock);
3670 		/*
3671 		 * If we have a trans handle we can't wait because the flusher
3672 		 * may have to commit the transaction, which would mean we would
3673 		 * deadlock since we are waiting for the flusher to finish, but
3674 		 * hold the current transaction open.
3675 		 */
3676 		if (current->journal_info)
3677 			return -EAGAIN;
3678 		ret = wait_event_interruptible(space_info->wait,
3679 					       !space_info->flush);
3680 		/* Must have been interrupted, return */
3681 		if (ret)
3682 			return -EINTR;
3683 
3684 		spin_lock(&space_info->lock);
3685 	}
3686 
3687 	ret = -ENOSPC;
3688 	used = space_info->bytes_used + space_info->bytes_reserved +
3689 		space_info->bytes_pinned + space_info->bytes_readonly +
3690 		space_info->bytes_may_use;
3691 
3692 	/*
3693 	 * The idea here is that we've not already over-reserved the block group
3694 	 * then we can go ahead and save our reservation first and then start
3695 	 * flushing if we need to.  Otherwise if we've already overcommitted
3696 	 * lets start flushing stuff first and then come back and try to make
3697 	 * our reservation.
3698 	 */
3699 	if (used <= space_info->total_bytes) {
3700 		if (used + orig_bytes <= space_info->total_bytes) {
3701 			space_info->bytes_may_use += orig_bytes;
3702 			trace_btrfs_space_reservation(root->fs_info,
3703 					      "space_info",
3704 					      (u64)(unsigned long)space_info,
3705 					      orig_bytes, 1);
3706 			ret = 0;
3707 		} else {
3708 			/*
3709 			 * Ok set num_bytes to orig_bytes since we aren't
3710 			 * overocmmitted, this way we only try and reclaim what
3711 			 * we need.
3712 			 */
3713 			num_bytes = orig_bytes;
3714 		}
3715 	} else {
3716 		/*
3717 		 * Ok we're over committed, set num_bytes to the overcommitted
3718 		 * amount plus the amount of bytes that we need for this
3719 		 * reservation.
3720 		 */
3721 		wait_ordered = true;
3722 		num_bytes = used - space_info->total_bytes +
3723 			(orig_bytes * (retries + 1));
3724 	}
3725 
3726 	if (ret) {
3727 		u64 profile = btrfs_get_alloc_profile(root, 0);
3728 		u64 avail;
3729 
3730 		/*
3731 		 * If we have a lot of space that's pinned, don't bother doing
3732 		 * the overcommit dance yet and just commit the transaction.
3733 		 */
3734 		avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3735 		do_div(avail, 10);
3736 		if (space_info->bytes_pinned >= avail && flush && !committed) {
3737 			space_info->flush = 1;
3738 			flushing = true;
3739 			spin_unlock(&space_info->lock);
3740 			ret = may_commit_transaction(root, space_info,
3741 						     orig_bytes, 1);
3742 			if (ret)
3743 				goto out;
3744 			committed = true;
3745 			goto again;
3746 		}
3747 
3748 		spin_lock(&root->fs_info->free_chunk_lock);
3749 		avail = root->fs_info->free_chunk_space;
3750 
3751 		/*
3752 		 * If we have dup, raid1 or raid10 then only half of the free
3753 		 * space is actually useable.
3754 		 */
3755 		if (profile & (BTRFS_BLOCK_GROUP_DUP |
3756 			       BTRFS_BLOCK_GROUP_RAID1 |
3757 			       BTRFS_BLOCK_GROUP_RAID10))
3758 			avail >>= 1;
3759 
3760 		/*
3761 		 * If we aren't flushing don't let us overcommit too much, say
3762 		 * 1/8th of the space.  If we can flush, let it overcommit up to
3763 		 * 1/2 of the space.
3764 		 */
3765 		if (flush)
3766 			avail >>= 3;
3767 		else
3768 			avail >>= 1;
3769 		 spin_unlock(&root->fs_info->free_chunk_lock);
3770 
3771 		if (used + num_bytes < space_info->total_bytes + avail) {
3772 			space_info->bytes_may_use += orig_bytes;
3773 			trace_btrfs_space_reservation(root->fs_info,
3774 					      "space_info",
3775 					      (u64)(unsigned long)space_info,
3776 					      orig_bytes, 1);
3777 			ret = 0;
3778 		} else {
3779 			wait_ordered = true;
3780 		}
3781 	}
3782 
3783 	/*
3784 	 * Couldn't make our reservation, save our place so while we're trying
3785 	 * to reclaim space we can actually use it instead of somebody else
3786 	 * stealing it from us.
3787 	 */
3788 	if (ret && flush) {
3789 		flushing = true;
3790 		space_info->flush = 1;
3791 	}
3792 
3793 	spin_unlock(&space_info->lock);
3794 
3795 	if (!ret || !flush)
3796 		goto out;
3797 
3798 	/*
3799 	 * We do synchronous shrinking since we don't actually unreserve
3800 	 * metadata until after the IO is completed.
3801 	 */
3802 	ret = shrink_delalloc(root, num_bytes, wait_ordered);
3803 	if (ret < 0)
3804 		goto out;
3805 
3806 	ret = 0;
3807 
3808 	/*
3809 	 * So if we were overcommitted it's possible that somebody else flushed
3810 	 * out enough space and we simply didn't have enough space to reclaim,
3811 	 * so go back around and try again.
3812 	 */
3813 	if (retries < 2) {
3814 		wait_ordered = true;
3815 		retries++;
3816 		goto again;
3817 	}
3818 
3819 	ret = -ENOSPC;
3820 	if (committed)
3821 		goto out;
3822 
3823 	ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3824 	if (!ret) {
3825 		committed = true;
3826 		goto again;
3827 	}
3828 
3829 out:
3830 	if (flushing) {
3831 		spin_lock(&space_info->lock);
3832 		space_info->flush = 0;
3833 		wake_up_all(&space_info->wait);
3834 		spin_unlock(&space_info->lock);
3835 	}
3836 	return ret;
3837 }
3838 
3839 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3840 					     struct btrfs_root *root)
3841 {
3842 	struct btrfs_block_rsv *block_rsv = NULL;
3843 
3844 	if (root->ref_cows || root == root->fs_info->csum_root)
3845 		block_rsv = trans->block_rsv;
3846 
3847 	if (!block_rsv)
3848 		block_rsv = root->block_rsv;
3849 
3850 	if (!block_rsv)
3851 		block_rsv = &root->fs_info->empty_block_rsv;
3852 
3853 	return block_rsv;
3854 }
3855 
3856 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3857 			       u64 num_bytes)
3858 {
3859 	int ret = -ENOSPC;
3860 	spin_lock(&block_rsv->lock);
3861 	if (block_rsv->reserved >= num_bytes) {
3862 		block_rsv->reserved -= num_bytes;
3863 		if (block_rsv->reserved < block_rsv->size)
3864 			block_rsv->full = 0;
3865 		ret = 0;
3866 	}
3867 	spin_unlock(&block_rsv->lock);
3868 	return ret;
3869 }
3870 
3871 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3872 				u64 num_bytes, int update_size)
3873 {
3874 	spin_lock(&block_rsv->lock);
3875 	block_rsv->reserved += num_bytes;
3876 	if (update_size)
3877 		block_rsv->size += num_bytes;
3878 	else if (block_rsv->reserved >= block_rsv->size)
3879 		block_rsv->full = 1;
3880 	spin_unlock(&block_rsv->lock);
3881 }
3882 
3883 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3884 				    struct btrfs_block_rsv *block_rsv,
3885 				    struct btrfs_block_rsv *dest, u64 num_bytes)
3886 {
3887 	struct btrfs_space_info *space_info = block_rsv->space_info;
3888 
3889 	spin_lock(&block_rsv->lock);
3890 	if (num_bytes == (u64)-1)
3891 		num_bytes = block_rsv->size;
3892 	block_rsv->size -= num_bytes;
3893 	if (block_rsv->reserved >= block_rsv->size) {
3894 		num_bytes = block_rsv->reserved - block_rsv->size;
3895 		block_rsv->reserved = block_rsv->size;
3896 		block_rsv->full = 1;
3897 	} else {
3898 		num_bytes = 0;
3899 	}
3900 	spin_unlock(&block_rsv->lock);
3901 
3902 	if (num_bytes > 0) {
3903 		if (dest) {
3904 			spin_lock(&dest->lock);
3905 			if (!dest->full) {
3906 				u64 bytes_to_add;
3907 
3908 				bytes_to_add = dest->size - dest->reserved;
3909 				bytes_to_add = min(num_bytes, bytes_to_add);
3910 				dest->reserved += bytes_to_add;
3911 				if (dest->reserved >= dest->size)
3912 					dest->full = 1;
3913 				num_bytes -= bytes_to_add;
3914 			}
3915 			spin_unlock(&dest->lock);
3916 		}
3917 		if (num_bytes) {
3918 			spin_lock(&space_info->lock);
3919 			space_info->bytes_may_use -= num_bytes;
3920 			trace_btrfs_space_reservation(fs_info, "space_info",
3921 					      (u64)(unsigned long)space_info,
3922 					      num_bytes, 0);
3923 			space_info->reservation_progress++;
3924 			spin_unlock(&space_info->lock);
3925 		}
3926 	}
3927 }
3928 
3929 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3930 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3931 {
3932 	int ret;
3933 
3934 	ret = block_rsv_use_bytes(src, num_bytes);
3935 	if (ret)
3936 		return ret;
3937 
3938 	block_rsv_add_bytes(dst, num_bytes, 1);
3939 	return 0;
3940 }
3941 
3942 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3943 {
3944 	memset(rsv, 0, sizeof(*rsv));
3945 	spin_lock_init(&rsv->lock);
3946 }
3947 
3948 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3949 {
3950 	struct btrfs_block_rsv *block_rsv;
3951 	struct btrfs_fs_info *fs_info = root->fs_info;
3952 
3953 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3954 	if (!block_rsv)
3955 		return NULL;
3956 
3957 	btrfs_init_block_rsv(block_rsv);
3958 	block_rsv->space_info = __find_space_info(fs_info,
3959 						  BTRFS_BLOCK_GROUP_METADATA);
3960 	return block_rsv;
3961 }
3962 
3963 void btrfs_free_block_rsv(struct btrfs_root *root,
3964 			  struct btrfs_block_rsv *rsv)
3965 {
3966 	btrfs_block_rsv_release(root, rsv, (u64)-1);
3967 	kfree(rsv);
3968 }
3969 
3970 static inline int __block_rsv_add(struct btrfs_root *root,
3971 				  struct btrfs_block_rsv *block_rsv,
3972 				  u64 num_bytes, int flush)
3973 {
3974 	int ret;
3975 
3976 	if (num_bytes == 0)
3977 		return 0;
3978 
3979 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3980 	if (!ret) {
3981 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3982 		return 0;
3983 	}
3984 
3985 	return ret;
3986 }
3987 
3988 int btrfs_block_rsv_add(struct btrfs_root *root,
3989 			struct btrfs_block_rsv *block_rsv,
3990 			u64 num_bytes)
3991 {
3992 	return __block_rsv_add(root, block_rsv, num_bytes, 1);
3993 }
3994 
3995 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3996 				struct btrfs_block_rsv *block_rsv,
3997 				u64 num_bytes)
3998 {
3999 	return __block_rsv_add(root, block_rsv, num_bytes, 0);
4000 }
4001 
4002 int btrfs_block_rsv_check(struct btrfs_root *root,
4003 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4004 {
4005 	u64 num_bytes = 0;
4006 	int ret = -ENOSPC;
4007 
4008 	if (!block_rsv)
4009 		return 0;
4010 
4011 	spin_lock(&block_rsv->lock);
4012 	num_bytes = div_factor(block_rsv->size, min_factor);
4013 	if (block_rsv->reserved >= num_bytes)
4014 		ret = 0;
4015 	spin_unlock(&block_rsv->lock);
4016 
4017 	return ret;
4018 }
4019 
4020 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4021 					   struct btrfs_block_rsv *block_rsv,
4022 					   u64 min_reserved, int flush)
4023 {
4024 	u64 num_bytes = 0;
4025 	int ret = -ENOSPC;
4026 
4027 	if (!block_rsv)
4028 		return 0;
4029 
4030 	spin_lock(&block_rsv->lock);
4031 	num_bytes = min_reserved;
4032 	if (block_rsv->reserved >= num_bytes)
4033 		ret = 0;
4034 	else
4035 		num_bytes -= block_rsv->reserved;
4036 	spin_unlock(&block_rsv->lock);
4037 
4038 	if (!ret)
4039 		return 0;
4040 
4041 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4042 	if (!ret) {
4043 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4044 		return 0;
4045 	}
4046 
4047 	return ret;
4048 }
4049 
4050 int btrfs_block_rsv_refill(struct btrfs_root *root,
4051 			   struct btrfs_block_rsv *block_rsv,
4052 			   u64 min_reserved)
4053 {
4054 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4055 }
4056 
4057 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4058 				   struct btrfs_block_rsv *block_rsv,
4059 				   u64 min_reserved)
4060 {
4061 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4062 }
4063 
4064 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4065 			    struct btrfs_block_rsv *dst_rsv,
4066 			    u64 num_bytes)
4067 {
4068 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4069 }
4070 
4071 void btrfs_block_rsv_release(struct btrfs_root *root,
4072 			     struct btrfs_block_rsv *block_rsv,
4073 			     u64 num_bytes)
4074 {
4075 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4076 	if (global_rsv->full || global_rsv == block_rsv ||
4077 	    block_rsv->space_info != global_rsv->space_info)
4078 		global_rsv = NULL;
4079 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4080 				num_bytes);
4081 }
4082 
4083 /*
4084  * helper to calculate size of global block reservation.
4085  * the desired value is sum of space used by extent tree,
4086  * checksum tree and root tree
4087  */
4088 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4089 {
4090 	struct btrfs_space_info *sinfo;
4091 	u64 num_bytes;
4092 	u64 meta_used;
4093 	u64 data_used;
4094 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4095 
4096 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4097 	spin_lock(&sinfo->lock);
4098 	data_used = sinfo->bytes_used;
4099 	spin_unlock(&sinfo->lock);
4100 
4101 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4102 	spin_lock(&sinfo->lock);
4103 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4104 		data_used = 0;
4105 	meta_used = sinfo->bytes_used;
4106 	spin_unlock(&sinfo->lock);
4107 
4108 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4109 		    csum_size * 2;
4110 	num_bytes += div64_u64(data_used + meta_used, 50);
4111 
4112 	if (num_bytes * 3 > meta_used)
4113 		num_bytes = div64_u64(meta_used, 3) * 2;
4114 
4115 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4116 }
4117 
4118 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4119 {
4120 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4121 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4122 	u64 num_bytes;
4123 
4124 	num_bytes = calc_global_metadata_size(fs_info);
4125 
4126 	spin_lock(&block_rsv->lock);
4127 	spin_lock(&sinfo->lock);
4128 
4129 	block_rsv->size = num_bytes;
4130 
4131 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4132 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4133 		    sinfo->bytes_may_use;
4134 
4135 	if (sinfo->total_bytes > num_bytes) {
4136 		num_bytes = sinfo->total_bytes - num_bytes;
4137 		block_rsv->reserved += num_bytes;
4138 		sinfo->bytes_may_use += num_bytes;
4139 		trace_btrfs_space_reservation(fs_info, "space_info",
4140 				      (u64)(unsigned long)sinfo, num_bytes, 1);
4141 	}
4142 
4143 	if (block_rsv->reserved >= block_rsv->size) {
4144 		num_bytes = block_rsv->reserved - block_rsv->size;
4145 		sinfo->bytes_may_use -= num_bytes;
4146 		trace_btrfs_space_reservation(fs_info, "space_info",
4147 				      (u64)(unsigned long)sinfo, num_bytes, 0);
4148 		sinfo->reservation_progress++;
4149 		block_rsv->reserved = block_rsv->size;
4150 		block_rsv->full = 1;
4151 	}
4152 
4153 	spin_unlock(&sinfo->lock);
4154 	spin_unlock(&block_rsv->lock);
4155 }
4156 
4157 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4158 {
4159 	struct btrfs_space_info *space_info;
4160 
4161 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4162 	fs_info->chunk_block_rsv.space_info = space_info;
4163 
4164 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4165 	fs_info->global_block_rsv.space_info = space_info;
4166 	fs_info->delalloc_block_rsv.space_info = space_info;
4167 	fs_info->trans_block_rsv.space_info = space_info;
4168 	fs_info->empty_block_rsv.space_info = space_info;
4169 	fs_info->delayed_block_rsv.space_info = space_info;
4170 
4171 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4172 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4173 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4174 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4175 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4176 
4177 	update_global_block_rsv(fs_info);
4178 }
4179 
4180 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4181 {
4182 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4183 				(u64)-1);
4184 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4185 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4186 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4187 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4188 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4189 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4190 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4191 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4192 }
4193 
4194 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4195 				  struct btrfs_root *root)
4196 {
4197 	if (!trans->bytes_reserved)
4198 		return;
4199 
4200 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4201 				      (u64)(unsigned long)trans,
4202 				      trans->bytes_reserved, 0);
4203 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4204 	trans->bytes_reserved = 0;
4205 }
4206 
4207 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4208 				  struct inode *inode)
4209 {
4210 	struct btrfs_root *root = BTRFS_I(inode)->root;
4211 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4212 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4213 
4214 	/*
4215 	 * We need to hold space in order to delete our orphan item once we've
4216 	 * added it, so this takes the reservation so we can release it later
4217 	 * when we are truly done with the orphan item.
4218 	 */
4219 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4220 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4221 				      btrfs_ino(inode), num_bytes, 1);
4222 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4223 }
4224 
4225 void btrfs_orphan_release_metadata(struct inode *inode)
4226 {
4227 	struct btrfs_root *root = BTRFS_I(inode)->root;
4228 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4229 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4230 				      btrfs_ino(inode), num_bytes, 0);
4231 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4232 }
4233 
4234 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4235 				struct btrfs_pending_snapshot *pending)
4236 {
4237 	struct btrfs_root *root = pending->root;
4238 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4239 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4240 	/*
4241 	 * two for root back/forward refs, two for directory entries
4242 	 * and one for root of the snapshot.
4243 	 */
4244 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4245 	dst_rsv->space_info = src_rsv->space_info;
4246 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4247 }
4248 
4249 /**
4250  * drop_outstanding_extent - drop an outstanding extent
4251  * @inode: the inode we're dropping the extent for
4252  *
4253  * This is called when we are freeing up an outstanding extent, either called
4254  * after an error or after an extent is written.  This will return the number of
4255  * reserved extents that need to be freed.  This must be called with
4256  * BTRFS_I(inode)->lock held.
4257  */
4258 static unsigned drop_outstanding_extent(struct inode *inode)
4259 {
4260 	unsigned drop_inode_space = 0;
4261 	unsigned dropped_extents = 0;
4262 
4263 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4264 	BTRFS_I(inode)->outstanding_extents--;
4265 
4266 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4267 	    BTRFS_I(inode)->delalloc_meta_reserved) {
4268 		drop_inode_space = 1;
4269 		BTRFS_I(inode)->delalloc_meta_reserved = 0;
4270 	}
4271 
4272 	/*
4273 	 * If we have more or the same amount of outsanding extents than we have
4274 	 * reserved then we need to leave the reserved extents count alone.
4275 	 */
4276 	if (BTRFS_I(inode)->outstanding_extents >=
4277 	    BTRFS_I(inode)->reserved_extents)
4278 		return drop_inode_space;
4279 
4280 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4281 		BTRFS_I(inode)->outstanding_extents;
4282 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4283 	return dropped_extents + drop_inode_space;
4284 }
4285 
4286 /**
4287  * calc_csum_metadata_size - return the amount of metada space that must be
4288  *	reserved/free'd for the given bytes.
4289  * @inode: the inode we're manipulating
4290  * @num_bytes: the number of bytes in question
4291  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4292  *
4293  * This adjusts the number of csum_bytes in the inode and then returns the
4294  * correct amount of metadata that must either be reserved or freed.  We
4295  * calculate how many checksums we can fit into one leaf and then divide the
4296  * number of bytes that will need to be checksumed by this value to figure out
4297  * how many checksums will be required.  If we are adding bytes then the number
4298  * may go up and we will return the number of additional bytes that must be
4299  * reserved.  If it is going down we will return the number of bytes that must
4300  * be freed.
4301  *
4302  * This must be called with BTRFS_I(inode)->lock held.
4303  */
4304 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4305 				   int reserve)
4306 {
4307 	struct btrfs_root *root = BTRFS_I(inode)->root;
4308 	u64 csum_size;
4309 	int num_csums_per_leaf;
4310 	int num_csums;
4311 	int old_csums;
4312 
4313 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4314 	    BTRFS_I(inode)->csum_bytes == 0)
4315 		return 0;
4316 
4317 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4318 	if (reserve)
4319 		BTRFS_I(inode)->csum_bytes += num_bytes;
4320 	else
4321 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4322 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4323 	num_csums_per_leaf = (int)div64_u64(csum_size,
4324 					    sizeof(struct btrfs_csum_item) +
4325 					    sizeof(struct btrfs_disk_key));
4326 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4327 	num_csums = num_csums + num_csums_per_leaf - 1;
4328 	num_csums = num_csums / num_csums_per_leaf;
4329 
4330 	old_csums = old_csums + num_csums_per_leaf - 1;
4331 	old_csums = old_csums / num_csums_per_leaf;
4332 
4333 	/* No change, no need to reserve more */
4334 	if (old_csums == num_csums)
4335 		return 0;
4336 
4337 	if (reserve)
4338 		return btrfs_calc_trans_metadata_size(root,
4339 						      num_csums - old_csums);
4340 
4341 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4342 }
4343 
4344 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4345 {
4346 	struct btrfs_root *root = BTRFS_I(inode)->root;
4347 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4348 	u64 to_reserve = 0;
4349 	u64 csum_bytes;
4350 	unsigned nr_extents = 0;
4351 	int extra_reserve = 0;
4352 	int flush = 1;
4353 	int ret;
4354 
4355 	/* Need to be holding the i_mutex here if we aren't free space cache */
4356 	if (btrfs_is_free_space_inode(root, inode))
4357 		flush = 0;
4358 
4359 	if (flush && btrfs_transaction_in_commit(root->fs_info))
4360 		schedule_timeout(1);
4361 
4362 	mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4363 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4364 
4365 	spin_lock(&BTRFS_I(inode)->lock);
4366 	BTRFS_I(inode)->outstanding_extents++;
4367 
4368 	if (BTRFS_I(inode)->outstanding_extents >
4369 	    BTRFS_I(inode)->reserved_extents)
4370 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4371 			BTRFS_I(inode)->reserved_extents;
4372 
4373 	/*
4374 	 * Add an item to reserve for updating the inode when we complete the
4375 	 * delalloc io.
4376 	 */
4377 	if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4378 		nr_extents++;
4379 		extra_reserve = 1;
4380 	}
4381 
4382 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4383 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4384 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4385 	spin_unlock(&BTRFS_I(inode)->lock);
4386 
4387 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4388 	if (ret) {
4389 		u64 to_free = 0;
4390 		unsigned dropped;
4391 
4392 		spin_lock(&BTRFS_I(inode)->lock);
4393 		dropped = drop_outstanding_extent(inode);
4394 		/*
4395 		 * If the inodes csum_bytes is the same as the original
4396 		 * csum_bytes then we know we haven't raced with any free()ers
4397 		 * so we can just reduce our inodes csum bytes and carry on.
4398 		 * Otherwise we have to do the normal free thing to account for
4399 		 * the case that the free side didn't free up its reserve
4400 		 * because of this outstanding reservation.
4401 		 */
4402 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4403 			calc_csum_metadata_size(inode, num_bytes, 0);
4404 		else
4405 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4406 		spin_unlock(&BTRFS_I(inode)->lock);
4407 		if (dropped)
4408 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4409 
4410 		if (to_free) {
4411 			btrfs_block_rsv_release(root, block_rsv, to_free);
4412 			trace_btrfs_space_reservation(root->fs_info,
4413 						      "delalloc",
4414 						      btrfs_ino(inode),
4415 						      to_free, 0);
4416 		}
4417 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4418 		return ret;
4419 	}
4420 
4421 	spin_lock(&BTRFS_I(inode)->lock);
4422 	if (extra_reserve) {
4423 		BTRFS_I(inode)->delalloc_meta_reserved = 1;
4424 		nr_extents--;
4425 	}
4426 	BTRFS_I(inode)->reserved_extents += nr_extents;
4427 	spin_unlock(&BTRFS_I(inode)->lock);
4428 	mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4429 
4430 	if (to_reserve)
4431 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4432 					      btrfs_ino(inode), to_reserve, 1);
4433 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4434 
4435 	return 0;
4436 }
4437 
4438 /**
4439  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4440  * @inode: the inode to release the reservation for
4441  * @num_bytes: the number of bytes we're releasing
4442  *
4443  * This will release the metadata reservation for an inode.  This can be called
4444  * once we complete IO for a given set of bytes to release their metadata
4445  * reservations.
4446  */
4447 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4448 {
4449 	struct btrfs_root *root = BTRFS_I(inode)->root;
4450 	u64 to_free = 0;
4451 	unsigned dropped;
4452 
4453 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4454 	spin_lock(&BTRFS_I(inode)->lock);
4455 	dropped = drop_outstanding_extent(inode);
4456 
4457 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4458 	spin_unlock(&BTRFS_I(inode)->lock);
4459 	if (dropped > 0)
4460 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4461 
4462 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4463 				      btrfs_ino(inode), to_free, 0);
4464 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4465 				to_free);
4466 }
4467 
4468 /**
4469  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4470  * @inode: inode we're writing to
4471  * @num_bytes: the number of bytes we want to allocate
4472  *
4473  * This will do the following things
4474  *
4475  * o reserve space in the data space info for num_bytes
4476  * o reserve space in the metadata space info based on number of outstanding
4477  *   extents and how much csums will be needed
4478  * o add to the inodes ->delalloc_bytes
4479  * o add it to the fs_info's delalloc inodes list.
4480  *
4481  * This will return 0 for success and -ENOSPC if there is no space left.
4482  */
4483 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4484 {
4485 	int ret;
4486 
4487 	ret = btrfs_check_data_free_space(inode, num_bytes);
4488 	if (ret)
4489 		return ret;
4490 
4491 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4492 	if (ret) {
4493 		btrfs_free_reserved_data_space(inode, num_bytes);
4494 		return ret;
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 /**
4501  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4502  * @inode: inode we're releasing space for
4503  * @num_bytes: the number of bytes we want to free up
4504  *
4505  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4506  * called in the case that we don't need the metadata AND data reservations
4507  * anymore.  So if there is an error or we insert an inline extent.
4508  *
4509  * This function will release the metadata space that was not used and will
4510  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4511  * list if there are no delalloc bytes left.
4512  */
4513 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4514 {
4515 	btrfs_delalloc_release_metadata(inode, num_bytes);
4516 	btrfs_free_reserved_data_space(inode, num_bytes);
4517 }
4518 
4519 static int update_block_group(struct btrfs_trans_handle *trans,
4520 			      struct btrfs_root *root,
4521 			      u64 bytenr, u64 num_bytes, int alloc)
4522 {
4523 	struct btrfs_block_group_cache *cache = NULL;
4524 	struct btrfs_fs_info *info = root->fs_info;
4525 	u64 total = num_bytes;
4526 	u64 old_val;
4527 	u64 byte_in_group;
4528 	int factor;
4529 
4530 	/* block accounting for super block */
4531 	spin_lock(&info->delalloc_lock);
4532 	old_val = btrfs_super_bytes_used(info->super_copy);
4533 	if (alloc)
4534 		old_val += num_bytes;
4535 	else
4536 		old_val -= num_bytes;
4537 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4538 	spin_unlock(&info->delalloc_lock);
4539 
4540 	while (total) {
4541 		cache = btrfs_lookup_block_group(info, bytenr);
4542 		if (!cache)
4543 			return -1;
4544 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4545 				    BTRFS_BLOCK_GROUP_RAID1 |
4546 				    BTRFS_BLOCK_GROUP_RAID10))
4547 			factor = 2;
4548 		else
4549 			factor = 1;
4550 		/*
4551 		 * If this block group has free space cache written out, we
4552 		 * need to make sure to load it if we are removing space.  This
4553 		 * is because we need the unpinning stage to actually add the
4554 		 * space back to the block group, otherwise we will leak space.
4555 		 */
4556 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4557 			cache_block_group(cache, trans, NULL, 1);
4558 
4559 		byte_in_group = bytenr - cache->key.objectid;
4560 		WARN_ON(byte_in_group > cache->key.offset);
4561 
4562 		spin_lock(&cache->space_info->lock);
4563 		spin_lock(&cache->lock);
4564 
4565 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4566 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4567 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4568 
4569 		cache->dirty = 1;
4570 		old_val = btrfs_block_group_used(&cache->item);
4571 		num_bytes = min(total, cache->key.offset - byte_in_group);
4572 		if (alloc) {
4573 			old_val += num_bytes;
4574 			btrfs_set_block_group_used(&cache->item, old_val);
4575 			cache->reserved -= num_bytes;
4576 			cache->space_info->bytes_reserved -= num_bytes;
4577 			cache->space_info->bytes_used += num_bytes;
4578 			cache->space_info->disk_used += num_bytes * factor;
4579 			spin_unlock(&cache->lock);
4580 			spin_unlock(&cache->space_info->lock);
4581 		} else {
4582 			old_val -= num_bytes;
4583 			btrfs_set_block_group_used(&cache->item, old_val);
4584 			cache->pinned += num_bytes;
4585 			cache->space_info->bytes_pinned += num_bytes;
4586 			cache->space_info->bytes_used -= num_bytes;
4587 			cache->space_info->disk_used -= num_bytes * factor;
4588 			spin_unlock(&cache->lock);
4589 			spin_unlock(&cache->space_info->lock);
4590 
4591 			set_extent_dirty(info->pinned_extents,
4592 					 bytenr, bytenr + num_bytes - 1,
4593 					 GFP_NOFS | __GFP_NOFAIL);
4594 		}
4595 		btrfs_put_block_group(cache);
4596 		total -= num_bytes;
4597 		bytenr += num_bytes;
4598 	}
4599 	return 0;
4600 }
4601 
4602 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4603 {
4604 	struct btrfs_block_group_cache *cache;
4605 	u64 bytenr;
4606 
4607 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4608 	if (!cache)
4609 		return 0;
4610 
4611 	bytenr = cache->key.objectid;
4612 	btrfs_put_block_group(cache);
4613 
4614 	return bytenr;
4615 }
4616 
4617 static int pin_down_extent(struct btrfs_root *root,
4618 			   struct btrfs_block_group_cache *cache,
4619 			   u64 bytenr, u64 num_bytes, int reserved)
4620 {
4621 	spin_lock(&cache->space_info->lock);
4622 	spin_lock(&cache->lock);
4623 	cache->pinned += num_bytes;
4624 	cache->space_info->bytes_pinned += num_bytes;
4625 	if (reserved) {
4626 		cache->reserved -= num_bytes;
4627 		cache->space_info->bytes_reserved -= num_bytes;
4628 	}
4629 	spin_unlock(&cache->lock);
4630 	spin_unlock(&cache->space_info->lock);
4631 
4632 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4633 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4634 	return 0;
4635 }
4636 
4637 /*
4638  * this function must be called within transaction
4639  */
4640 int btrfs_pin_extent(struct btrfs_root *root,
4641 		     u64 bytenr, u64 num_bytes, int reserved)
4642 {
4643 	struct btrfs_block_group_cache *cache;
4644 
4645 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4646 	BUG_ON(!cache);
4647 
4648 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4649 
4650 	btrfs_put_block_group(cache);
4651 	return 0;
4652 }
4653 
4654 /*
4655  * this function must be called within transaction
4656  */
4657 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4658 				    struct btrfs_root *root,
4659 				    u64 bytenr, u64 num_bytes)
4660 {
4661 	struct btrfs_block_group_cache *cache;
4662 
4663 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4664 	BUG_ON(!cache);
4665 
4666 	/*
4667 	 * pull in the free space cache (if any) so that our pin
4668 	 * removes the free space from the cache.  We have load_only set
4669 	 * to one because the slow code to read in the free extents does check
4670 	 * the pinned extents.
4671 	 */
4672 	cache_block_group(cache, trans, root, 1);
4673 
4674 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4675 
4676 	/* remove us from the free space cache (if we're there at all) */
4677 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4678 	btrfs_put_block_group(cache);
4679 	return 0;
4680 }
4681 
4682 /**
4683  * btrfs_update_reserved_bytes - update the block_group and space info counters
4684  * @cache:	The cache we are manipulating
4685  * @num_bytes:	The number of bytes in question
4686  * @reserve:	One of the reservation enums
4687  *
4688  * This is called by the allocator when it reserves space, or by somebody who is
4689  * freeing space that was never actually used on disk.  For example if you
4690  * reserve some space for a new leaf in transaction A and before transaction A
4691  * commits you free that leaf, you call this with reserve set to 0 in order to
4692  * clear the reservation.
4693  *
4694  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4695  * ENOSPC accounting.  For data we handle the reservation through clearing the
4696  * delalloc bits in the io_tree.  We have to do this since we could end up
4697  * allocating less disk space for the amount of data we have reserved in the
4698  * case of compression.
4699  *
4700  * If this is a reservation and the block group has become read only we cannot
4701  * make the reservation and return -EAGAIN, otherwise this function always
4702  * succeeds.
4703  */
4704 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4705 				       u64 num_bytes, int reserve)
4706 {
4707 	struct btrfs_space_info *space_info = cache->space_info;
4708 	int ret = 0;
4709 	spin_lock(&space_info->lock);
4710 	spin_lock(&cache->lock);
4711 	if (reserve != RESERVE_FREE) {
4712 		if (cache->ro) {
4713 			ret = -EAGAIN;
4714 		} else {
4715 			cache->reserved += num_bytes;
4716 			space_info->bytes_reserved += num_bytes;
4717 			if (reserve == RESERVE_ALLOC) {
4718 				trace_btrfs_space_reservation(cache->fs_info,
4719 					      "space_info",
4720 					      (u64)(unsigned long)space_info,
4721 					      num_bytes, 0);
4722 				space_info->bytes_may_use -= num_bytes;
4723 			}
4724 		}
4725 	} else {
4726 		if (cache->ro)
4727 			space_info->bytes_readonly += num_bytes;
4728 		cache->reserved -= num_bytes;
4729 		space_info->bytes_reserved -= num_bytes;
4730 		space_info->reservation_progress++;
4731 	}
4732 	spin_unlock(&cache->lock);
4733 	spin_unlock(&space_info->lock);
4734 	return ret;
4735 }
4736 
4737 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4738 				struct btrfs_root *root)
4739 {
4740 	struct btrfs_fs_info *fs_info = root->fs_info;
4741 	struct btrfs_caching_control *next;
4742 	struct btrfs_caching_control *caching_ctl;
4743 	struct btrfs_block_group_cache *cache;
4744 
4745 	down_write(&fs_info->extent_commit_sem);
4746 
4747 	list_for_each_entry_safe(caching_ctl, next,
4748 				 &fs_info->caching_block_groups, list) {
4749 		cache = caching_ctl->block_group;
4750 		if (block_group_cache_done(cache)) {
4751 			cache->last_byte_to_unpin = (u64)-1;
4752 			list_del_init(&caching_ctl->list);
4753 			put_caching_control(caching_ctl);
4754 		} else {
4755 			cache->last_byte_to_unpin = caching_ctl->progress;
4756 		}
4757 	}
4758 
4759 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4760 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4761 	else
4762 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4763 
4764 	up_write(&fs_info->extent_commit_sem);
4765 
4766 	update_global_block_rsv(fs_info);
4767 	return 0;
4768 }
4769 
4770 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4771 {
4772 	struct btrfs_fs_info *fs_info = root->fs_info;
4773 	struct btrfs_block_group_cache *cache = NULL;
4774 	u64 len;
4775 
4776 	while (start <= end) {
4777 		if (!cache ||
4778 		    start >= cache->key.objectid + cache->key.offset) {
4779 			if (cache)
4780 				btrfs_put_block_group(cache);
4781 			cache = btrfs_lookup_block_group(fs_info, start);
4782 			BUG_ON(!cache);
4783 		}
4784 
4785 		len = cache->key.objectid + cache->key.offset - start;
4786 		len = min(len, end + 1 - start);
4787 
4788 		if (start < cache->last_byte_to_unpin) {
4789 			len = min(len, cache->last_byte_to_unpin - start);
4790 			btrfs_add_free_space(cache, start, len);
4791 		}
4792 
4793 		start += len;
4794 
4795 		spin_lock(&cache->space_info->lock);
4796 		spin_lock(&cache->lock);
4797 		cache->pinned -= len;
4798 		cache->space_info->bytes_pinned -= len;
4799 		if (cache->ro)
4800 			cache->space_info->bytes_readonly += len;
4801 		spin_unlock(&cache->lock);
4802 		spin_unlock(&cache->space_info->lock);
4803 	}
4804 
4805 	if (cache)
4806 		btrfs_put_block_group(cache);
4807 	return 0;
4808 }
4809 
4810 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4811 			       struct btrfs_root *root)
4812 {
4813 	struct btrfs_fs_info *fs_info = root->fs_info;
4814 	struct extent_io_tree *unpin;
4815 	u64 start;
4816 	u64 end;
4817 	int ret;
4818 
4819 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4820 		unpin = &fs_info->freed_extents[1];
4821 	else
4822 		unpin = &fs_info->freed_extents[0];
4823 
4824 	while (1) {
4825 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4826 					    EXTENT_DIRTY);
4827 		if (ret)
4828 			break;
4829 
4830 		if (btrfs_test_opt(root, DISCARD))
4831 			ret = btrfs_discard_extent(root, start,
4832 						   end + 1 - start, NULL);
4833 
4834 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4835 		unpin_extent_range(root, start, end);
4836 		cond_resched();
4837 	}
4838 
4839 	return 0;
4840 }
4841 
4842 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4843 				struct btrfs_root *root,
4844 				u64 bytenr, u64 num_bytes, u64 parent,
4845 				u64 root_objectid, u64 owner_objectid,
4846 				u64 owner_offset, int refs_to_drop,
4847 				struct btrfs_delayed_extent_op *extent_op)
4848 {
4849 	struct btrfs_key key;
4850 	struct btrfs_path *path;
4851 	struct btrfs_fs_info *info = root->fs_info;
4852 	struct btrfs_root *extent_root = info->extent_root;
4853 	struct extent_buffer *leaf;
4854 	struct btrfs_extent_item *ei;
4855 	struct btrfs_extent_inline_ref *iref;
4856 	int ret;
4857 	int is_data;
4858 	int extent_slot = 0;
4859 	int found_extent = 0;
4860 	int num_to_del = 1;
4861 	u32 item_size;
4862 	u64 refs;
4863 
4864 	path = btrfs_alloc_path();
4865 	if (!path)
4866 		return -ENOMEM;
4867 
4868 	path->reada = 1;
4869 	path->leave_spinning = 1;
4870 
4871 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4872 	BUG_ON(!is_data && refs_to_drop != 1);
4873 
4874 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4875 				    bytenr, num_bytes, parent,
4876 				    root_objectid, owner_objectid,
4877 				    owner_offset);
4878 	if (ret == 0) {
4879 		extent_slot = path->slots[0];
4880 		while (extent_slot >= 0) {
4881 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4882 					      extent_slot);
4883 			if (key.objectid != bytenr)
4884 				break;
4885 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4886 			    key.offset == num_bytes) {
4887 				found_extent = 1;
4888 				break;
4889 			}
4890 			if (path->slots[0] - extent_slot > 5)
4891 				break;
4892 			extent_slot--;
4893 		}
4894 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4895 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4896 		if (found_extent && item_size < sizeof(*ei))
4897 			found_extent = 0;
4898 #endif
4899 		if (!found_extent) {
4900 			BUG_ON(iref);
4901 			ret = remove_extent_backref(trans, extent_root, path,
4902 						    NULL, refs_to_drop,
4903 						    is_data);
4904 			BUG_ON(ret);
4905 			btrfs_release_path(path);
4906 			path->leave_spinning = 1;
4907 
4908 			key.objectid = bytenr;
4909 			key.type = BTRFS_EXTENT_ITEM_KEY;
4910 			key.offset = num_bytes;
4911 
4912 			ret = btrfs_search_slot(trans, extent_root,
4913 						&key, path, -1, 1);
4914 			if (ret) {
4915 				printk(KERN_ERR "umm, got %d back from search"
4916 				       ", was looking for %llu\n", ret,
4917 				       (unsigned long long)bytenr);
4918 				if (ret > 0)
4919 					btrfs_print_leaf(extent_root,
4920 							 path->nodes[0]);
4921 			}
4922 			BUG_ON(ret);
4923 			extent_slot = path->slots[0];
4924 		}
4925 	} else {
4926 		btrfs_print_leaf(extent_root, path->nodes[0]);
4927 		WARN_ON(1);
4928 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4929 		       "parent %llu root %llu  owner %llu offset %llu\n",
4930 		       (unsigned long long)bytenr,
4931 		       (unsigned long long)parent,
4932 		       (unsigned long long)root_objectid,
4933 		       (unsigned long long)owner_objectid,
4934 		       (unsigned long long)owner_offset);
4935 	}
4936 
4937 	leaf = path->nodes[0];
4938 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4940 	if (item_size < sizeof(*ei)) {
4941 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4942 		ret = convert_extent_item_v0(trans, extent_root, path,
4943 					     owner_objectid, 0);
4944 		BUG_ON(ret < 0);
4945 
4946 		btrfs_release_path(path);
4947 		path->leave_spinning = 1;
4948 
4949 		key.objectid = bytenr;
4950 		key.type = BTRFS_EXTENT_ITEM_KEY;
4951 		key.offset = num_bytes;
4952 
4953 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4954 					-1, 1);
4955 		if (ret) {
4956 			printk(KERN_ERR "umm, got %d back from search"
4957 			       ", was looking for %llu\n", ret,
4958 			       (unsigned long long)bytenr);
4959 			btrfs_print_leaf(extent_root, path->nodes[0]);
4960 		}
4961 		BUG_ON(ret);
4962 		extent_slot = path->slots[0];
4963 		leaf = path->nodes[0];
4964 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4965 	}
4966 #endif
4967 	BUG_ON(item_size < sizeof(*ei));
4968 	ei = btrfs_item_ptr(leaf, extent_slot,
4969 			    struct btrfs_extent_item);
4970 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4971 		struct btrfs_tree_block_info *bi;
4972 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4973 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4974 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4975 	}
4976 
4977 	refs = btrfs_extent_refs(leaf, ei);
4978 	BUG_ON(refs < refs_to_drop);
4979 	refs -= refs_to_drop;
4980 
4981 	if (refs > 0) {
4982 		if (extent_op)
4983 			__run_delayed_extent_op(extent_op, leaf, ei);
4984 		/*
4985 		 * In the case of inline back ref, reference count will
4986 		 * be updated by remove_extent_backref
4987 		 */
4988 		if (iref) {
4989 			BUG_ON(!found_extent);
4990 		} else {
4991 			btrfs_set_extent_refs(leaf, ei, refs);
4992 			btrfs_mark_buffer_dirty(leaf);
4993 		}
4994 		if (found_extent) {
4995 			ret = remove_extent_backref(trans, extent_root, path,
4996 						    iref, refs_to_drop,
4997 						    is_data);
4998 			BUG_ON(ret);
4999 		}
5000 	} else {
5001 		if (found_extent) {
5002 			BUG_ON(is_data && refs_to_drop !=
5003 			       extent_data_ref_count(root, path, iref));
5004 			if (iref) {
5005 				BUG_ON(path->slots[0] != extent_slot);
5006 			} else {
5007 				BUG_ON(path->slots[0] != extent_slot + 1);
5008 				path->slots[0] = extent_slot;
5009 				num_to_del = 2;
5010 			}
5011 		}
5012 
5013 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5014 				      num_to_del);
5015 		BUG_ON(ret);
5016 		btrfs_release_path(path);
5017 
5018 		if (is_data) {
5019 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5020 			BUG_ON(ret);
5021 		} else {
5022 			invalidate_mapping_pages(info->btree_inode->i_mapping,
5023 			     bytenr >> PAGE_CACHE_SHIFT,
5024 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
5025 		}
5026 
5027 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5028 		BUG_ON(ret);
5029 	}
5030 	btrfs_free_path(path);
5031 	return ret;
5032 }
5033 
5034 /*
5035  * when we free an block, it is possible (and likely) that we free the last
5036  * delayed ref for that extent as well.  This searches the delayed ref tree for
5037  * a given extent, and if there are no other delayed refs to be processed, it
5038  * removes it from the tree.
5039  */
5040 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5041 				      struct btrfs_root *root, u64 bytenr)
5042 {
5043 	struct btrfs_delayed_ref_head *head;
5044 	struct btrfs_delayed_ref_root *delayed_refs;
5045 	struct btrfs_delayed_ref_node *ref;
5046 	struct rb_node *node;
5047 	int ret = 0;
5048 
5049 	delayed_refs = &trans->transaction->delayed_refs;
5050 	spin_lock(&delayed_refs->lock);
5051 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5052 	if (!head)
5053 		goto out;
5054 
5055 	node = rb_prev(&head->node.rb_node);
5056 	if (!node)
5057 		goto out;
5058 
5059 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5060 
5061 	/* there are still entries for this ref, we can't drop it */
5062 	if (ref->bytenr == bytenr)
5063 		goto out;
5064 
5065 	if (head->extent_op) {
5066 		if (!head->must_insert_reserved)
5067 			goto out;
5068 		kfree(head->extent_op);
5069 		head->extent_op = NULL;
5070 	}
5071 
5072 	/*
5073 	 * waiting for the lock here would deadlock.  If someone else has it
5074 	 * locked they are already in the process of dropping it anyway
5075 	 */
5076 	if (!mutex_trylock(&head->mutex))
5077 		goto out;
5078 
5079 	/*
5080 	 * at this point we have a head with no other entries.  Go
5081 	 * ahead and process it.
5082 	 */
5083 	head->node.in_tree = 0;
5084 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5085 
5086 	delayed_refs->num_entries--;
5087 	if (waitqueue_active(&delayed_refs->seq_wait))
5088 		wake_up(&delayed_refs->seq_wait);
5089 
5090 	/*
5091 	 * we don't take a ref on the node because we're removing it from the
5092 	 * tree, so we just steal the ref the tree was holding.
5093 	 */
5094 	delayed_refs->num_heads--;
5095 	if (list_empty(&head->cluster))
5096 		delayed_refs->num_heads_ready--;
5097 
5098 	list_del_init(&head->cluster);
5099 	spin_unlock(&delayed_refs->lock);
5100 
5101 	BUG_ON(head->extent_op);
5102 	if (head->must_insert_reserved)
5103 		ret = 1;
5104 
5105 	mutex_unlock(&head->mutex);
5106 	btrfs_put_delayed_ref(&head->node);
5107 	return ret;
5108 out:
5109 	spin_unlock(&delayed_refs->lock);
5110 	return 0;
5111 }
5112 
5113 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5114 			   struct btrfs_root *root,
5115 			   struct extent_buffer *buf,
5116 			   u64 parent, int last_ref, int for_cow)
5117 {
5118 	struct btrfs_block_group_cache *cache = NULL;
5119 	int ret;
5120 
5121 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5122 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5123 					buf->start, buf->len,
5124 					parent, root->root_key.objectid,
5125 					btrfs_header_level(buf),
5126 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5127 		BUG_ON(ret);
5128 	}
5129 
5130 	if (!last_ref)
5131 		return;
5132 
5133 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5134 
5135 	if (btrfs_header_generation(buf) == trans->transid) {
5136 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5137 			ret = check_ref_cleanup(trans, root, buf->start);
5138 			if (!ret)
5139 				goto out;
5140 		}
5141 
5142 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5143 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5144 			goto out;
5145 		}
5146 
5147 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5148 
5149 		btrfs_add_free_space(cache, buf->start, buf->len);
5150 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5151 	}
5152 out:
5153 	/*
5154 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5155 	 * anymore.
5156 	 */
5157 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5158 	btrfs_put_block_group(cache);
5159 }
5160 
5161 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5162 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5163 		      u64 owner, u64 offset, int for_cow)
5164 {
5165 	int ret;
5166 	struct btrfs_fs_info *fs_info = root->fs_info;
5167 
5168 	/*
5169 	 * tree log blocks never actually go into the extent allocation
5170 	 * tree, just update pinning info and exit early.
5171 	 */
5172 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5173 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5174 		/* unlocks the pinned mutex */
5175 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5176 		ret = 0;
5177 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5178 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5179 					num_bytes,
5180 					parent, root_objectid, (int)owner,
5181 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5182 		BUG_ON(ret);
5183 	} else {
5184 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5185 						num_bytes,
5186 						parent, root_objectid, owner,
5187 						offset, BTRFS_DROP_DELAYED_REF,
5188 						NULL, for_cow);
5189 		BUG_ON(ret);
5190 	}
5191 	return ret;
5192 }
5193 
5194 static u64 stripe_align(struct btrfs_root *root, u64 val)
5195 {
5196 	u64 mask = ((u64)root->stripesize - 1);
5197 	u64 ret = (val + mask) & ~mask;
5198 	return ret;
5199 }
5200 
5201 /*
5202  * when we wait for progress in the block group caching, its because
5203  * our allocation attempt failed at least once.  So, we must sleep
5204  * and let some progress happen before we try again.
5205  *
5206  * This function will sleep at least once waiting for new free space to
5207  * show up, and then it will check the block group free space numbers
5208  * for our min num_bytes.  Another option is to have it go ahead
5209  * and look in the rbtree for a free extent of a given size, but this
5210  * is a good start.
5211  */
5212 static noinline int
5213 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5214 				u64 num_bytes)
5215 {
5216 	struct btrfs_caching_control *caching_ctl;
5217 	DEFINE_WAIT(wait);
5218 
5219 	caching_ctl = get_caching_control(cache);
5220 	if (!caching_ctl)
5221 		return 0;
5222 
5223 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5224 		   (cache->free_space_ctl->free_space >= num_bytes));
5225 
5226 	put_caching_control(caching_ctl);
5227 	return 0;
5228 }
5229 
5230 static noinline int
5231 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5232 {
5233 	struct btrfs_caching_control *caching_ctl;
5234 	DEFINE_WAIT(wait);
5235 
5236 	caching_ctl = get_caching_control(cache);
5237 	if (!caching_ctl)
5238 		return 0;
5239 
5240 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5241 
5242 	put_caching_control(caching_ctl);
5243 	return 0;
5244 }
5245 
5246 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5247 {
5248 	int index;
5249 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5250 		index = 0;
5251 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5252 		index = 1;
5253 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5254 		index = 2;
5255 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5256 		index = 3;
5257 	else
5258 		index = 4;
5259 	return index;
5260 }
5261 
5262 enum btrfs_loop_type {
5263 	LOOP_FIND_IDEAL = 0,
5264 	LOOP_CACHING_NOWAIT = 1,
5265 	LOOP_CACHING_WAIT = 2,
5266 	LOOP_ALLOC_CHUNK = 3,
5267 	LOOP_NO_EMPTY_SIZE = 4,
5268 };
5269 
5270 /*
5271  * walks the btree of allocated extents and find a hole of a given size.
5272  * The key ins is changed to record the hole:
5273  * ins->objectid == block start
5274  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5275  * ins->offset == number of blocks
5276  * Any available blocks before search_start are skipped.
5277  */
5278 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5279 				     struct btrfs_root *orig_root,
5280 				     u64 num_bytes, u64 empty_size,
5281 				     u64 search_start, u64 search_end,
5282 				     u64 hint_byte, struct btrfs_key *ins,
5283 				     u64 data)
5284 {
5285 	int ret = 0;
5286 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5287 	struct btrfs_free_cluster *last_ptr = NULL;
5288 	struct btrfs_block_group_cache *block_group = NULL;
5289 	struct btrfs_block_group_cache *used_block_group;
5290 	int empty_cluster = 2 * 1024 * 1024;
5291 	int allowed_chunk_alloc = 0;
5292 	int done_chunk_alloc = 0;
5293 	struct btrfs_space_info *space_info;
5294 	int loop = 0;
5295 	int index = 0;
5296 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5297 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5298 	bool found_uncached_bg = false;
5299 	bool failed_cluster_refill = false;
5300 	bool failed_alloc = false;
5301 	bool use_cluster = true;
5302 	bool have_caching_bg = false;
5303 	u64 ideal_cache_percent = 0;
5304 	u64 ideal_cache_offset = 0;
5305 
5306 	WARN_ON(num_bytes < root->sectorsize);
5307 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5308 	ins->objectid = 0;
5309 	ins->offset = 0;
5310 
5311 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5312 
5313 	space_info = __find_space_info(root->fs_info, data);
5314 	if (!space_info) {
5315 		printk(KERN_ERR "No space info for %llu\n", data);
5316 		return -ENOSPC;
5317 	}
5318 
5319 	/*
5320 	 * If the space info is for both data and metadata it means we have a
5321 	 * small filesystem and we can't use the clustering stuff.
5322 	 */
5323 	if (btrfs_mixed_space_info(space_info))
5324 		use_cluster = false;
5325 
5326 	if (orig_root->ref_cows || empty_size)
5327 		allowed_chunk_alloc = 1;
5328 
5329 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5330 		last_ptr = &root->fs_info->meta_alloc_cluster;
5331 		if (!btrfs_test_opt(root, SSD))
5332 			empty_cluster = 64 * 1024;
5333 	}
5334 
5335 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5336 	    btrfs_test_opt(root, SSD)) {
5337 		last_ptr = &root->fs_info->data_alloc_cluster;
5338 	}
5339 
5340 	if (last_ptr) {
5341 		spin_lock(&last_ptr->lock);
5342 		if (last_ptr->block_group)
5343 			hint_byte = last_ptr->window_start;
5344 		spin_unlock(&last_ptr->lock);
5345 	}
5346 
5347 	search_start = max(search_start, first_logical_byte(root, 0));
5348 	search_start = max(search_start, hint_byte);
5349 
5350 	if (!last_ptr)
5351 		empty_cluster = 0;
5352 
5353 	if (search_start == hint_byte) {
5354 ideal_cache:
5355 		block_group = btrfs_lookup_block_group(root->fs_info,
5356 						       search_start);
5357 		used_block_group = block_group;
5358 		/*
5359 		 * we don't want to use the block group if it doesn't match our
5360 		 * allocation bits, or if its not cached.
5361 		 *
5362 		 * However if we are re-searching with an ideal block group
5363 		 * picked out then we don't care that the block group is cached.
5364 		 */
5365 		if (block_group && block_group_bits(block_group, data) &&
5366 		    (block_group->cached != BTRFS_CACHE_NO ||
5367 		     search_start == ideal_cache_offset)) {
5368 			down_read(&space_info->groups_sem);
5369 			if (list_empty(&block_group->list) ||
5370 			    block_group->ro) {
5371 				/*
5372 				 * someone is removing this block group,
5373 				 * we can't jump into the have_block_group
5374 				 * target because our list pointers are not
5375 				 * valid
5376 				 */
5377 				btrfs_put_block_group(block_group);
5378 				up_read(&space_info->groups_sem);
5379 			} else {
5380 				index = get_block_group_index(block_group);
5381 				goto have_block_group;
5382 			}
5383 		} else if (block_group) {
5384 			btrfs_put_block_group(block_group);
5385 		}
5386 	}
5387 search:
5388 	have_caching_bg = false;
5389 	down_read(&space_info->groups_sem);
5390 	list_for_each_entry(block_group, &space_info->block_groups[index],
5391 			    list) {
5392 		u64 offset;
5393 		int cached;
5394 
5395 		used_block_group = block_group;
5396 		btrfs_get_block_group(block_group);
5397 		search_start = block_group->key.objectid;
5398 
5399 		/*
5400 		 * this can happen if we end up cycling through all the
5401 		 * raid types, but we want to make sure we only allocate
5402 		 * for the proper type.
5403 		 */
5404 		if (!block_group_bits(block_group, data)) {
5405 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5406 				BTRFS_BLOCK_GROUP_RAID1 |
5407 				BTRFS_BLOCK_GROUP_RAID10;
5408 
5409 			/*
5410 			 * if they asked for extra copies and this block group
5411 			 * doesn't provide them, bail.  This does allow us to
5412 			 * fill raid0 from raid1.
5413 			 */
5414 			if ((data & extra) && !(block_group->flags & extra))
5415 				goto loop;
5416 		}
5417 
5418 have_block_group:
5419 		cached = block_group_cache_done(block_group);
5420 		if (unlikely(!cached)) {
5421 			u64 free_percent;
5422 
5423 			found_uncached_bg = true;
5424 			ret = cache_block_group(block_group, trans,
5425 						orig_root, 1);
5426 			if (block_group->cached == BTRFS_CACHE_FINISHED)
5427 				goto alloc;
5428 
5429 			free_percent = btrfs_block_group_used(&block_group->item);
5430 			free_percent *= 100;
5431 			free_percent = div64_u64(free_percent,
5432 						 block_group->key.offset);
5433 			free_percent = 100 - free_percent;
5434 			if (free_percent > ideal_cache_percent &&
5435 			    likely(!block_group->ro)) {
5436 				ideal_cache_offset = block_group->key.objectid;
5437 				ideal_cache_percent = free_percent;
5438 			}
5439 
5440 			/*
5441 			 * The caching workers are limited to 2 threads, so we
5442 			 * can queue as much work as we care to.
5443 			 */
5444 			if (loop > LOOP_FIND_IDEAL) {
5445 				ret = cache_block_group(block_group, trans,
5446 							orig_root, 0);
5447 				BUG_ON(ret);
5448 			}
5449 
5450 			/*
5451 			 * If loop is set for cached only, try the next block
5452 			 * group.
5453 			 */
5454 			if (loop == LOOP_FIND_IDEAL)
5455 				goto loop;
5456 		}
5457 
5458 alloc:
5459 		if (unlikely(block_group->ro))
5460 			goto loop;
5461 
5462 		/*
5463 		 * Ok we want to try and use the cluster allocator, so
5464 		 * lets look there
5465 		 */
5466 		if (last_ptr) {
5467 			/*
5468 			 * the refill lock keeps out other
5469 			 * people trying to start a new cluster
5470 			 */
5471 			spin_lock(&last_ptr->refill_lock);
5472 			used_block_group = last_ptr->block_group;
5473 			if (used_block_group != block_group &&
5474 			    (!used_block_group ||
5475 			     used_block_group->ro ||
5476 			     !block_group_bits(used_block_group, data))) {
5477 				used_block_group = block_group;
5478 				goto refill_cluster;
5479 			}
5480 
5481 			if (used_block_group != block_group)
5482 				btrfs_get_block_group(used_block_group);
5483 
5484 			offset = btrfs_alloc_from_cluster(used_block_group,
5485 			  last_ptr, num_bytes, used_block_group->key.objectid);
5486 			if (offset) {
5487 				/* we have a block, we're done */
5488 				spin_unlock(&last_ptr->refill_lock);
5489 				trace_btrfs_reserve_extent_cluster(root,
5490 					block_group, search_start, num_bytes);
5491 				goto checks;
5492 			}
5493 
5494 			WARN_ON(last_ptr->block_group != used_block_group);
5495 			if (used_block_group != block_group) {
5496 				btrfs_put_block_group(used_block_group);
5497 				used_block_group = block_group;
5498 			}
5499 refill_cluster:
5500 			BUG_ON(used_block_group != block_group);
5501 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5502 			 * set up a new clusters, so lets just skip it
5503 			 * and let the allocator find whatever block
5504 			 * it can find.  If we reach this point, we
5505 			 * will have tried the cluster allocator
5506 			 * plenty of times and not have found
5507 			 * anything, so we are likely way too
5508 			 * fragmented for the clustering stuff to find
5509 			 * anything.
5510 			 *
5511 			 * However, if the cluster is taken from the
5512 			 * current block group, release the cluster
5513 			 * first, so that we stand a better chance of
5514 			 * succeeding in the unclustered
5515 			 * allocation.  */
5516 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5517 			    last_ptr->block_group != block_group) {
5518 				spin_unlock(&last_ptr->refill_lock);
5519 				goto unclustered_alloc;
5520 			}
5521 
5522 			/*
5523 			 * this cluster didn't work out, free it and
5524 			 * start over
5525 			 */
5526 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5527 
5528 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5529 				spin_unlock(&last_ptr->refill_lock);
5530 				goto unclustered_alloc;
5531 			}
5532 
5533 			/* allocate a cluster in this block group */
5534 			ret = btrfs_find_space_cluster(trans, root,
5535 					       block_group, last_ptr,
5536 					       search_start, num_bytes,
5537 					       empty_cluster + empty_size);
5538 			if (ret == 0) {
5539 				/*
5540 				 * now pull our allocation out of this
5541 				 * cluster
5542 				 */
5543 				offset = btrfs_alloc_from_cluster(block_group,
5544 						  last_ptr, num_bytes,
5545 						  search_start);
5546 				if (offset) {
5547 					/* we found one, proceed */
5548 					spin_unlock(&last_ptr->refill_lock);
5549 					trace_btrfs_reserve_extent_cluster(root,
5550 						block_group, search_start,
5551 						num_bytes);
5552 					goto checks;
5553 				}
5554 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5555 				   && !failed_cluster_refill) {
5556 				spin_unlock(&last_ptr->refill_lock);
5557 
5558 				failed_cluster_refill = true;
5559 				wait_block_group_cache_progress(block_group,
5560 				       num_bytes + empty_cluster + empty_size);
5561 				goto have_block_group;
5562 			}
5563 
5564 			/*
5565 			 * at this point we either didn't find a cluster
5566 			 * or we weren't able to allocate a block from our
5567 			 * cluster.  Free the cluster we've been trying
5568 			 * to use, and go to the next block group
5569 			 */
5570 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5571 			spin_unlock(&last_ptr->refill_lock);
5572 			goto loop;
5573 		}
5574 
5575 unclustered_alloc:
5576 		spin_lock(&block_group->free_space_ctl->tree_lock);
5577 		if (cached &&
5578 		    block_group->free_space_ctl->free_space <
5579 		    num_bytes + empty_cluster + empty_size) {
5580 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5581 			goto loop;
5582 		}
5583 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5584 
5585 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5586 						    num_bytes, empty_size);
5587 		/*
5588 		 * If we didn't find a chunk, and we haven't failed on this
5589 		 * block group before, and this block group is in the middle of
5590 		 * caching and we are ok with waiting, then go ahead and wait
5591 		 * for progress to be made, and set failed_alloc to true.
5592 		 *
5593 		 * If failed_alloc is true then we've already waited on this
5594 		 * block group once and should move on to the next block group.
5595 		 */
5596 		if (!offset && !failed_alloc && !cached &&
5597 		    loop > LOOP_CACHING_NOWAIT) {
5598 			wait_block_group_cache_progress(block_group,
5599 						num_bytes + empty_size);
5600 			failed_alloc = true;
5601 			goto have_block_group;
5602 		} else if (!offset) {
5603 			if (!cached)
5604 				have_caching_bg = true;
5605 			goto loop;
5606 		}
5607 checks:
5608 		search_start = stripe_align(root, offset);
5609 		/* move on to the next group */
5610 		if (search_start + num_bytes >= search_end) {
5611 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5612 			goto loop;
5613 		}
5614 
5615 		/* move on to the next group */
5616 		if (search_start + num_bytes >
5617 		    used_block_group->key.objectid + used_block_group->key.offset) {
5618 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5619 			goto loop;
5620 		}
5621 
5622 		if (offset < search_start)
5623 			btrfs_add_free_space(used_block_group, offset,
5624 					     search_start - offset);
5625 		BUG_ON(offset > search_start);
5626 
5627 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5628 						  alloc_type);
5629 		if (ret == -EAGAIN) {
5630 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5631 			goto loop;
5632 		}
5633 
5634 		/* we are all good, lets return */
5635 		ins->objectid = search_start;
5636 		ins->offset = num_bytes;
5637 
5638 		trace_btrfs_reserve_extent(orig_root, block_group,
5639 					   search_start, num_bytes);
5640 		if (offset < search_start)
5641 			btrfs_add_free_space(used_block_group, offset,
5642 					     search_start - offset);
5643 		BUG_ON(offset > search_start);
5644 		if (used_block_group != block_group)
5645 			btrfs_put_block_group(used_block_group);
5646 		btrfs_put_block_group(block_group);
5647 		break;
5648 loop:
5649 		failed_cluster_refill = false;
5650 		failed_alloc = false;
5651 		BUG_ON(index != get_block_group_index(block_group));
5652 		if (used_block_group != block_group)
5653 			btrfs_put_block_group(used_block_group);
5654 		btrfs_put_block_group(block_group);
5655 	}
5656 	up_read(&space_info->groups_sem);
5657 
5658 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5659 		goto search;
5660 
5661 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5662 		goto search;
5663 
5664 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5665 	 *			for them to make caching progress.  Also
5666 	 *			determine the best possible bg to cache
5667 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5668 	 *			caching kthreads as we move along
5669 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5670 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5671 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5672 	 *			again
5673 	 */
5674 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5675 		index = 0;
5676 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5677 			found_uncached_bg = false;
5678 			loop++;
5679 			if (!ideal_cache_percent)
5680 				goto search;
5681 
5682 			/*
5683 			 * 1 of the following 2 things have happened so far
5684 			 *
5685 			 * 1) We found an ideal block group for caching that
5686 			 * is mostly full and will cache quickly, so we might
5687 			 * as well wait for it.
5688 			 *
5689 			 * 2) We searched for cached only and we didn't find
5690 			 * anything, and we didn't start any caching kthreads
5691 			 * either, so chances are we will loop through and
5692 			 * start a couple caching kthreads, and then come back
5693 			 * around and just wait for them.  This will be slower
5694 			 * because we will have 2 caching kthreads reading at
5695 			 * the same time when we could have just started one
5696 			 * and waited for it to get far enough to give us an
5697 			 * allocation, so go ahead and go to the wait caching
5698 			 * loop.
5699 			 */
5700 			loop = LOOP_CACHING_WAIT;
5701 			search_start = ideal_cache_offset;
5702 			ideal_cache_percent = 0;
5703 			goto ideal_cache;
5704 		} else if (loop == LOOP_FIND_IDEAL) {
5705 			/*
5706 			 * Didn't find a uncached bg, wait on anything we find
5707 			 * next.
5708 			 */
5709 			loop = LOOP_CACHING_WAIT;
5710 			goto search;
5711 		}
5712 
5713 		loop++;
5714 
5715 		if (loop == LOOP_ALLOC_CHUNK) {
5716 		       if (allowed_chunk_alloc) {
5717 				ret = do_chunk_alloc(trans, root, num_bytes +
5718 						     2 * 1024 * 1024, data,
5719 						     CHUNK_ALLOC_LIMITED);
5720 				allowed_chunk_alloc = 0;
5721 				if (ret == 1)
5722 					done_chunk_alloc = 1;
5723 			} else if (!done_chunk_alloc &&
5724 				   space_info->force_alloc ==
5725 				   CHUNK_ALLOC_NO_FORCE) {
5726 				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5727 			}
5728 
5729 		       /*
5730 			* We didn't allocate a chunk, go ahead and drop the
5731 			* empty size and loop again.
5732 			*/
5733 		       if (!done_chunk_alloc)
5734 			       loop = LOOP_NO_EMPTY_SIZE;
5735 		}
5736 
5737 		if (loop == LOOP_NO_EMPTY_SIZE) {
5738 			empty_size = 0;
5739 			empty_cluster = 0;
5740 		}
5741 
5742 		goto search;
5743 	} else if (!ins->objectid) {
5744 		ret = -ENOSPC;
5745 	} else if (ins->objectid) {
5746 		ret = 0;
5747 	}
5748 
5749 	return ret;
5750 }
5751 
5752 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5753 			    int dump_block_groups)
5754 {
5755 	struct btrfs_block_group_cache *cache;
5756 	int index = 0;
5757 
5758 	spin_lock(&info->lock);
5759 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5760 	       (unsigned long long)info->flags,
5761 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5762 				    info->bytes_pinned - info->bytes_reserved -
5763 				    info->bytes_readonly),
5764 	       (info->full) ? "" : "not ");
5765 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5766 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5767 	       (unsigned long long)info->total_bytes,
5768 	       (unsigned long long)info->bytes_used,
5769 	       (unsigned long long)info->bytes_pinned,
5770 	       (unsigned long long)info->bytes_reserved,
5771 	       (unsigned long long)info->bytes_may_use,
5772 	       (unsigned long long)info->bytes_readonly);
5773 	spin_unlock(&info->lock);
5774 
5775 	if (!dump_block_groups)
5776 		return;
5777 
5778 	down_read(&info->groups_sem);
5779 again:
5780 	list_for_each_entry(cache, &info->block_groups[index], list) {
5781 		spin_lock(&cache->lock);
5782 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5783 		       "%llu pinned %llu reserved\n",
5784 		       (unsigned long long)cache->key.objectid,
5785 		       (unsigned long long)cache->key.offset,
5786 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5787 		       (unsigned long long)cache->pinned,
5788 		       (unsigned long long)cache->reserved);
5789 		btrfs_dump_free_space(cache, bytes);
5790 		spin_unlock(&cache->lock);
5791 	}
5792 	if (++index < BTRFS_NR_RAID_TYPES)
5793 		goto again;
5794 	up_read(&info->groups_sem);
5795 }
5796 
5797 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5798 			 struct btrfs_root *root,
5799 			 u64 num_bytes, u64 min_alloc_size,
5800 			 u64 empty_size, u64 hint_byte,
5801 			 u64 search_end, struct btrfs_key *ins,
5802 			 u64 data)
5803 {
5804 	bool final_tried = false;
5805 	int ret;
5806 	u64 search_start = 0;
5807 
5808 	data = btrfs_get_alloc_profile(root, data);
5809 again:
5810 	/*
5811 	 * the only place that sets empty_size is btrfs_realloc_node, which
5812 	 * is not called recursively on allocations
5813 	 */
5814 	if (empty_size || root->ref_cows)
5815 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5816 				     num_bytes + 2 * 1024 * 1024, data,
5817 				     CHUNK_ALLOC_NO_FORCE);
5818 
5819 	WARN_ON(num_bytes < root->sectorsize);
5820 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5821 			       search_start, search_end, hint_byte,
5822 			       ins, data);
5823 
5824 	if (ret == -ENOSPC) {
5825 		if (!final_tried) {
5826 			num_bytes = num_bytes >> 1;
5827 			num_bytes = num_bytes & ~(root->sectorsize - 1);
5828 			num_bytes = max(num_bytes, min_alloc_size);
5829 			do_chunk_alloc(trans, root->fs_info->extent_root,
5830 				       num_bytes, data, CHUNK_ALLOC_FORCE);
5831 			if (num_bytes == min_alloc_size)
5832 				final_tried = true;
5833 			goto again;
5834 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5835 			struct btrfs_space_info *sinfo;
5836 
5837 			sinfo = __find_space_info(root->fs_info, data);
5838 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
5839 			       "wanted %llu\n", (unsigned long long)data,
5840 			       (unsigned long long)num_bytes);
5841 			dump_space_info(sinfo, num_bytes, 1);
5842 		}
5843 	}
5844 
5845 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5846 
5847 	return ret;
5848 }
5849 
5850 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5851 					u64 start, u64 len, int pin)
5852 {
5853 	struct btrfs_block_group_cache *cache;
5854 	int ret = 0;
5855 
5856 	cache = btrfs_lookup_block_group(root->fs_info, start);
5857 	if (!cache) {
5858 		printk(KERN_ERR "Unable to find block group for %llu\n",
5859 		       (unsigned long long)start);
5860 		return -ENOSPC;
5861 	}
5862 
5863 	if (btrfs_test_opt(root, DISCARD))
5864 		ret = btrfs_discard_extent(root, start, len, NULL);
5865 
5866 	if (pin)
5867 		pin_down_extent(root, cache, start, len, 1);
5868 	else {
5869 		btrfs_add_free_space(cache, start, len);
5870 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5871 	}
5872 	btrfs_put_block_group(cache);
5873 
5874 	trace_btrfs_reserved_extent_free(root, start, len);
5875 
5876 	return ret;
5877 }
5878 
5879 int btrfs_free_reserved_extent(struct btrfs_root *root,
5880 					u64 start, u64 len)
5881 {
5882 	return __btrfs_free_reserved_extent(root, start, len, 0);
5883 }
5884 
5885 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5886 				       u64 start, u64 len)
5887 {
5888 	return __btrfs_free_reserved_extent(root, start, len, 1);
5889 }
5890 
5891 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5892 				      struct btrfs_root *root,
5893 				      u64 parent, u64 root_objectid,
5894 				      u64 flags, u64 owner, u64 offset,
5895 				      struct btrfs_key *ins, int ref_mod)
5896 {
5897 	int ret;
5898 	struct btrfs_fs_info *fs_info = root->fs_info;
5899 	struct btrfs_extent_item *extent_item;
5900 	struct btrfs_extent_inline_ref *iref;
5901 	struct btrfs_path *path;
5902 	struct extent_buffer *leaf;
5903 	int type;
5904 	u32 size;
5905 
5906 	if (parent > 0)
5907 		type = BTRFS_SHARED_DATA_REF_KEY;
5908 	else
5909 		type = BTRFS_EXTENT_DATA_REF_KEY;
5910 
5911 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5912 
5913 	path = btrfs_alloc_path();
5914 	if (!path)
5915 		return -ENOMEM;
5916 
5917 	path->leave_spinning = 1;
5918 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5919 				      ins, size);
5920 	BUG_ON(ret);
5921 
5922 	leaf = path->nodes[0];
5923 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5924 				     struct btrfs_extent_item);
5925 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5926 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5927 	btrfs_set_extent_flags(leaf, extent_item,
5928 			       flags | BTRFS_EXTENT_FLAG_DATA);
5929 
5930 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5931 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5932 	if (parent > 0) {
5933 		struct btrfs_shared_data_ref *ref;
5934 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5935 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5936 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5937 	} else {
5938 		struct btrfs_extent_data_ref *ref;
5939 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5940 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5941 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5942 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5943 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5944 	}
5945 
5946 	btrfs_mark_buffer_dirty(path->nodes[0]);
5947 	btrfs_free_path(path);
5948 
5949 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5950 	if (ret) {
5951 		printk(KERN_ERR "btrfs update block group failed for %llu "
5952 		       "%llu\n", (unsigned long long)ins->objectid,
5953 		       (unsigned long long)ins->offset);
5954 		BUG();
5955 	}
5956 	return ret;
5957 }
5958 
5959 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5960 				     struct btrfs_root *root,
5961 				     u64 parent, u64 root_objectid,
5962 				     u64 flags, struct btrfs_disk_key *key,
5963 				     int level, struct btrfs_key *ins)
5964 {
5965 	int ret;
5966 	struct btrfs_fs_info *fs_info = root->fs_info;
5967 	struct btrfs_extent_item *extent_item;
5968 	struct btrfs_tree_block_info *block_info;
5969 	struct btrfs_extent_inline_ref *iref;
5970 	struct btrfs_path *path;
5971 	struct extent_buffer *leaf;
5972 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5973 
5974 	path = btrfs_alloc_path();
5975 	if (!path)
5976 		return -ENOMEM;
5977 
5978 	path->leave_spinning = 1;
5979 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5980 				      ins, size);
5981 	BUG_ON(ret);
5982 
5983 	leaf = path->nodes[0];
5984 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5985 				     struct btrfs_extent_item);
5986 	btrfs_set_extent_refs(leaf, extent_item, 1);
5987 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5988 	btrfs_set_extent_flags(leaf, extent_item,
5989 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5990 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5991 
5992 	btrfs_set_tree_block_key(leaf, block_info, key);
5993 	btrfs_set_tree_block_level(leaf, block_info, level);
5994 
5995 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5996 	if (parent > 0) {
5997 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5998 		btrfs_set_extent_inline_ref_type(leaf, iref,
5999 						 BTRFS_SHARED_BLOCK_REF_KEY);
6000 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6001 	} else {
6002 		btrfs_set_extent_inline_ref_type(leaf, iref,
6003 						 BTRFS_TREE_BLOCK_REF_KEY);
6004 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6005 	}
6006 
6007 	btrfs_mark_buffer_dirty(leaf);
6008 	btrfs_free_path(path);
6009 
6010 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6011 	if (ret) {
6012 		printk(KERN_ERR "btrfs update block group failed for %llu "
6013 		       "%llu\n", (unsigned long long)ins->objectid,
6014 		       (unsigned long long)ins->offset);
6015 		BUG();
6016 	}
6017 	return ret;
6018 }
6019 
6020 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6021 				     struct btrfs_root *root,
6022 				     u64 root_objectid, u64 owner,
6023 				     u64 offset, struct btrfs_key *ins)
6024 {
6025 	int ret;
6026 
6027 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6028 
6029 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6030 					 ins->offset, 0,
6031 					 root_objectid, owner, offset,
6032 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6033 	return ret;
6034 }
6035 
6036 /*
6037  * this is used by the tree logging recovery code.  It records that
6038  * an extent has been allocated and makes sure to clear the free
6039  * space cache bits as well
6040  */
6041 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6042 				   struct btrfs_root *root,
6043 				   u64 root_objectid, u64 owner, u64 offset,
6044 				   struct btrfs_key *ins)
6045 {
6046 	int ret;
6047 	struct btrfs_block_group_cache *block_group;
6048 	struct btrfs_caching_control *caching_ctl;
6049 	u64 start = ins->objectid;
6050 	u64 num_bytes = ins->offset;
6051 
6052 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6053 	cache_block_group(block_group, trans, NULL, 0);
6054 	caching_ctl = get_caching_control(block_group);
6055 
6056 	if (!caching_ctl) {
6057 		BUG_ON(!block_group_cache_done(block_group));
6058 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6059 		BUG_ON(ret);
6060 	} else {
6061 		mutex_lock(&caching_ctl->mutex);
6062 
6063 		if (start >= caching_ctl->progress) {
6064 			ret = add_excluded_extent(root, start, num_bytes);
6065 			BUG_ON(ret);
6066 		} else if (start + num_bytes <= caching_ctl->progress) {
6067 			ret = btrfs_remove_free_space(block_group,
6068 						      start, num_bytes);
6069 			BUG_ON(ret);
6070 		} else {
6071 			num_bytes = caching_ctl->progress - start;
6072 			ret = btrfs_remove_free_space(block_group,
6073 						      start, num_bytes);
6074 			BUG_ON(ret);
6075 
6076 			start = caching_ctl->progress;
6077 			num_bytes = ins->objectid + ins->offset -
6078 				    caching_ctl->progress;
6079 			ret = add_excluded_extent(root, start, num_bytes);
6080 			BUG_ON(ret);
6081 		}
6082 
6083 		mutex_unlock(&caching_ctl->mutex);
6084 		put_caching_control(caching_ctl);
6085 	}
6086 
6087 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6088 					  RESERVE_ALLOC_NO_ACCOUNT);
6089 	BUG_ON(ret);
6090 	btrfs_put_block_group(block_group);
6091 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6092 					 0, owner, offset, ins, 1);
6093 	return ret;
6094 }
6095 
6096 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6097 					    struct btrfs_root *root,
6098 					    u64 bytenr, u32 blocksize,
6099 					    int level)
6100 {
6101 	struct extent_buffer *buf;
6102 
6103 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6104 	if (!buf)
6105 		return ERR_PTR(-ENOMEM);
6106 	btrfs_set_header_generation(buf, trans->transid);
6107 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6108 	btrfs_tree_lock(buf);
6109 	clean_tree_block(trans, root, buf);
6110 
6111 	btrfs_set_lock_blocking(buf);
6112 	btrfs_set_buffer_uptodate(buf);
6113 
6114 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6115 		/*
6116 		 * we allow two log transactions at a time, use different
6117 		 * EXENT bit to differentiate dirty pages.
6118 		 */
6119 		if (root->log_transid % 2 == 0)
6120 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6121 					buf->start + buf->len - 1, GFP_NOFS);
6122 		else
6123 			set_extent_new(&root->dirty_log_pages, buf->start,
6124 					buf->start + buf->len - 1, GFP_NOFS);
6125 	} else {
6126 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6127 			 buf->start + buf->len - 1, GFP_NOFS);
6128 	}
6129 	trans->blocks_used++;
6130 	/* this returns a buffer locked for blocking */
6131 	return buf;
6132 }
6133 
6134 static struct btrfs_block_rsv *
6135 use_block_rsv(struct btrfs_trans_handle *trans,
6136 	      struct btrfs_root *root, u32 blocksize)
6137 {
6138 	struct btrfs_block_rsv *block_rsv;
6139 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6140 	int ret;
6141 
6142 	block_rsv = get_block_rsv(trans, root);
6143 
6144 	if (block_rsv->size == 0) {
6145 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6146 		/*
6147 		 * If we couldn't reserve metadata bytes try and use some from
6148 		 * the global reserve.
6149 		 */
6150 		if (ret && block_rsv != global_rsv) {
6151 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6152 			if (!ret)
6153 				return global_rsv;
6154 			return ERR_PTR(ret);
6155 		} else if (ret) {
6156 			return ERR_PTR(ret);
6157 		}
6158 		return block_rsv;
6159 	}
6160 
6161 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6162 	if (!ret)
6163 		return block_rsv;
6164 	if (ret) {
6165 		static DEFINE_RATELIMIT_STATE(_rs,
6166 				DEFAULT_RATELIMIT_INTERVAL,
6167 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6168 		if (__ratelimit(&_rs)) {
6169 			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6170 			WARN_ON(1);
6171 		}
6172 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6173 		if (!ret) {
6174 			return block_rsv;
6175 		} else if (ret && block_rsv != global_rsv) {
6176 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6177 			if (!ret)
6178 				return global_rsv;
6179 		}
6180 	}
6181 
6182 	return ERR_PTR(-ENOSPC);
6183 }
6184 
6185 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6186 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6187 {
6188 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6189 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6190 }
6191 
6192 /*
6193  * finds a free extent and does all the dirty work required for allocation
6194  * returns the key for the extent through ins, and a tree buffer for
6195  * the first block of the extent through buf.
6196  *
6197  * returns the tree buffer or NULL.
6198  */
6199 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6200 					struct btrfs_root *root, u32 blocksize,
6201 					u64 parent, u64 root_objectid,
6202 					struct btrfs_disk_key *key, int level,
6203 					u64 hint, u64 empty_size, int for_cow)
6204 {
6205 	struct btrfs_key ins;
6206 	struct btrfs_block_rsv *block_rsv;
6207 	struct extent_buffer *buf;
6208 	u64 flags = 0;
6209 	int ret;
6210 
6211 
6212 	block_rsv = use_block_rsv(trans, root, blocksize);
6213 	if (IS_ERR(block_rsv))
6214 		return ERR_CAST(block_rsv);
6215 
6216 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6217 				   empty_size, hint, (u64)-1, &ins, 0);
6218 	if (ret) {
6219 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6220 		return ERR_PTR(ret);
6221 	}
6222 
6223 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6224 				    blocksize, level);
6225 	BUG_ON(IS_ERR(buf));
6226 
6227 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6228 		if (parent == 0)
6229 			parent = ins.objectid;
6230 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6231 	} else
6232 		BUG_ON(parent > 0);
6233 
6234 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6235 		struct btrfs_delayed_extent_op *extent_op;
6236 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6237 		BUG_ON(!extent_op);
6238 		if (key)
6239 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6240 		else
6241 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6242 		extent_op->flags_to_set = flags;
6243 		extent_op->update_key = 1;
6244 		extent_op->update_flags = 1;
6245 		extent_op->is_data = 0;
6246 
6247 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6248 					ins.objectid,
6249 					ins.offset, parent, root_objectid,
6250 					level, BTRFS_ADD_DELAYED_EXTENT,
6251 					extent_op, for_cow);
6252 		BUG_ON(ret);
6253 	}
6254 	return buf;
6255 }
6256 
6257 struct walk_control {
6258 	u64 refs[BTRFS_MAX_LEVEL];
6259 	u64 flags[BTRFS_MAX_LEVEL];
6260 	struct btrfs_key update_progress;
6261 	int stage;
6262 	int level;
6263 	int shared_level;
6264 	int update_ref;
6265 	int keep_locks;
6266 	int reada_slot;
6267 	int reada_count;
6268 	int for_reloc;
6269 };
6270 
6271 #define DROP_REFERENCE	1
6272 #define UPDATE_BACKREF	2
6273 
6274 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6275 				     struct btrfs_root *root,
6276 				     struct walk_control *wc,
6277 				     struct btrfs_path *path)
6278 {
6279 	u64 bytenr;
6280 	u64 generation;
6281 	u64 refs;
6282 	u64 flags;
6283 	u32 nritems;
6284 	u32 blocksize;
6285 	struct btrfs_key key;
6286 	struct extent_buffer *eb;
6287 	int ret;
6288 	int slot;
6289 	int nread = 0;
6290 
6291 	if (path->slots[wc->level] < wc->reada_slot) {
6292 		wc->reada_count = wc->reada_count * 2 / 3;
6293 		wc->reada_count = max(wc->reada_count, 2);
6294 	} else {
6295 		wc->reada_count = wc->reada_count * 3 / 2;
6296 		wc->reada_count = min_t(int, wc->reada_count,
6297 					BTRFS_NODEPTRS_PER_BLOCK(root));
6298 	}
6299 
6300 	eb = path->nodes[wc->level];
6301 	nritems = btrfs_header_nritems(eb);
6302 	blocksize = btrfs_level_size(root, wc->level - 1);
6303 
6304 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6305 		if (nread >= wc->reada_count)
6306 			break;
6307 
6308 		cond_resched();
6309 		bytenr = btrfs_node_blockptr(eb, slot);
6310 		generation = btrfs_node_ptr_generation(eb, slot);
6311 
6312 		if (slot == path->slots[wc->level])
6313 			goto reada;
6314 
6315 		if (wc->stage == UPDATE_BACKREF &&
6316 		    generation <= root->root_key.offset)
6317 			continue;
6318 
6319 		/* We don't lock the tree block, it's OK to be racy here */
6320 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6321 					       &refs, &flags);
6322 		BUG_ON(ret);
6323 		BUG_ON(refs == 0);
6324 
6325 		if (wc->stage == DROP_REFERENCE) {
6326 			if (refs == 1)
6327 				goto reada;
6328 
6329 			if (wc->level == 1 &&
6330 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6331 				continue;
6332 			if (!wc->update_ref ||
6333 			    generation <= root->root_key.offset)
6334 				continue;
6335 			btrfs_node_key_to_cpu(eb, &key, slot);
6336 			ret = btrfs_comp_cpu_keys(&key,
6337 						  &wc->update_progress);
6338 			if (ret < 0)
6339 				continue;
6340 		} else {
6341 			if (wc->level == 1 &&
6342 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6343 				continue;
6344 		}
6345 reada:
6346 		ret = readahead_tree_block(root, bytenr, blocksize,
6347 					   generation);
6348 		if (ret)
6349 			break;
6350 		nread++;
6351 	}
6352 	wc->reada_slot = slot;
6353 }
6354 
6355 /*
6356  * hepler to process tree block while walking down the tree.
6357  *
6358  * when wc->stage == UPDATE_BACKREF, this function updates
6359  * back refs for pointers in the block.
6360  *
6361  * NOTE: return value 1 means we should stop walking down.
6362  */
6363 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6364 				   struct btrfs_root *root,
6365 				   struct btrfs_path *path,
6366 				   struct walk_control *wc, int lookup_info)
6367 {
6368 	int level = wc->level;
6369 	struct extent_buffer *eb = path->nodes[level];
6370 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6371 	int ret;
6372 
6373 	if (wc->stage == UPDATE_BACKREF &&
6374 	    btrfs_header_owner(eb) != root->root_key.objectid)
6375 		return 1;
6376 
6377 	/*
6378 	 * when reference count of tree block is 1, it won't increase
6379 	 * again. once full backref flag is set, we never clear it.
6380 	 */
6381 	if (lookup_info &&
6382 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6383 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6384 		BUG_ON(!path->locks[level]);
6385 		ret = btrfs_lookup_extent_info(trans, root,
6386 					       eb->start, eb->len,
6387 					       &wc->refs[level],
6388 					       &wc->flags[level]);
6389 		BUG_ON(ret);
6390 		BUG_ON(wc->refs[level] == 0);
6391 	}
6392 
6393 	if (wc->stage == DROP_REFERENCE) {
6394 		if (wc->refs[level] > 1)
6395 			return 1;
6396 
6397 		if (path->locks[level] && !wc->keep_locks) {
6398 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6399 			path->locks[level] = 0;
6400 		}
6401 		return 0;
6402 	}
6403 
6404 	/* wc->stage == UPDATE_BACKREF */
6405 	if (!(wc->flags[level] & flag)) {
6406 		BUG_ON(!path->locks[level]);
6407 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6408 		BUG_ON(ret);
6409 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6410 		BUG_ON(ret);
6411 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6412 						  eb->len, flag, 0);
6413 		BUG_ON(ret);
6414 		wc->flags[level] |= flag;
6415 	}
6416 
6417 	/*
6418 	 * the block is shared by multiple trees, so it's not good to
6419 	 * keep the tree lock
6420 	 */
6421 	if (path->locks[level] && level > 0) {
6422 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6423 		path->locks[level] = 0;
6424 	}
6425 	return 0;
6426 }
6427 
6428 /*
6429  * hepler to process tree block pointer.
6430  *
6431  * when wc->stage == DROP_REFERENCE, this function checks
6432  * reference count of the block pointed to. if the block
6433  * is shared and we need update back refs for the subtree
6434  * rooted at the block, this function changes wc->stage to
6435  * UPDATE_BACKREF. if the block is shared and there is no
6436  * need to update back, this function drops the reference
6437  * to the block.
6438  *
6439  * NOTE: return value 1 means we should stop walking down.
6440  */
6441 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6442 				 struct btrfs_root *root,
6443 				 struct btrfs_path *path,
6444 				 struct walk_control *wc, int *lookup_info)
6445 {
6446 	u64 bytenr;
6447 	u64 generation;
6448 	u64 parent;
6449 	u32 blocksize;
6450 	struct btrfs_key key;
6451 	struct extent_buffer *next;
6452 	int level = wc->level;
6453 	int reada = 0;
6454 	int ret = 0;
6455 
6456 	generation = btrfs_node_ptr_generation(path->nodes[level],
6457 					       path->slots[level]);
6458 	/*
6459 	 * if the lower level block was created before the snapshot
6460 	 * was created, we know there is no need to update back refs
6461 	 * for the subtree
6462 	 */
6463 	if (wc->stage == UPDATE_BACKREF &&
6464 	    generation <= root->root_key.offset) {
6465 		*lookup_info = 1;
6466 		return 1;
6467 	}
6468 
6469 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6470 	blocksize = btrfs_level_size(root, level - 1);
6471 
6472 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6473 	if (!next) {
6474 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6475 		if (!next)
6476 			return -ENOMEM;
6477 		reada = 1;
6478 	}
6479 	btrfs_tree_lock(next);
6480 	btrfs_set_lock_blocking(next);
6481 
6482 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6483 				       &wc->refs[level - 1],
6484 				       &wc->flags[level - 1]);
6485 	BUG_ON(ret);
6486 	BUG_ON(wc->refs[level - 1] == 0);
6487 	*lookup_info = 0;
6488 
6489 	if (wc->stage == DROP_REFERENCE) {
6490 		if (wc->refs[level - 1] > 1) {
6491 			if (level == 1 &&
6492 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6493 				goto skip;
6494 
6495 			if (!wc->update_ref ||
6496 			    generation <= root->root_key.offset)
6497 				goto skip;
6498 
6499 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6500 					      path->slots[level]);
6501 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6502 			if (ret < 0)
6503 				goto skip;
6504 
6505 			wc->stage = UPDATE_BACKREF;
6506 			wc->shared_level = level - 1;
6507 		}
6508 	} else {
6509 		if (level == 1 &&
6510 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6511 			goto skip;
6512 	}
6513 
6514 	if (!btrfs_buffer_uptodate(next, generation)) {
6515 		btrfs_tree_unlock(next);
6516 		free_extent_buffer(next);
6517 		next = NULL;
6518 		*lookup_info = 1;
6519 	}
6520 
6521 	if (!next) {
6522 		if (reada && level == 1)
6523 			reada_walk_down(trans, root, wc, path);
6524 		next = read_tree_block(root, bytenr, blocksize, generation);
6525 		if (!next)
6526 			return -EIO;
6527 		btrfs_tree_lock(next);
6528 		btrfs_set_lock_blocking(next);
6529 	}
6530 
6531 	level--;
6532 	BUG_ON(level != btrfs_header_level(next));
6533 	path->nodes[level] = next;
6534 	path->slots[level] = 0;
6535 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6536 	wc->level = level;
6537 	if (wc->level == 1)
6538 		wc->reada_slot = 0;
6539 	return 0;
6540 skip:
6541 	wc->refs[level - 1] = 0;
6542 	wc->flags[level - 1] = 0;
6543 	if (wc->stage == DROP_REFERENCE) {
6544 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6545 			parent = path->nodes[level]->start;
6546 		} else {
6547 			BUG_ON(root->root_key.objectid !=
6548 			       btrfs_header_owner(path->nodes[level]));
6549 			parent = 0;
6550 		}
6551 
6552 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6553 				root->root_key.objectid, level - 1, 0, 0);
6554 		BUG_ON(ret);
6555 	}
6556 	btrfs_tree_unlock(next);
6557 	free_extent_buffer(next);
6558 	*lookup_info = 1;
6559 	return 1;
6560 }
6561 
6562 /*
6563  * hepler to process tree block while walking up the tree.
6564  *
6565  * when wc->stage == DROP_REFERENCE, this function drops
6566  * reference count on the block.
6567  *
6568  * when wc->stage == UPDATE_BACKREF, this function changes
6569  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6570  * to UPDATE_BACKREF previously while processing the block.
6571  *
6572  * NOTE: return value 1 means we should stop walking up.
6573  */
6574 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6575 				 struct btrfs_root *root,
6576 				 struct btrfs_path *path,
6577 				 struct walk_control *wc)
6578 {
6579 	int ret;
6580 	int level = wc->level;
6581 	struct extent_buffer *eb = path->nodes[level];
6582 	u64 parent = 0;
6583 
6584 	if (wc->stage == UPDATE_BACKREF) {
6585 		BUG_ON(wc->shared_level < level);
6586 		if (level < wc->shared_level)
6587 			goto out;
6588 
6589 		ret = find_next_key(path, level + 1, &wc->update_progress);
6590 		if (ret > 0)
6591 			wc->update_ref = 0;
6592 
6593 		wc->stage = DROP_REFERENCE;
6594 		wc->shared_level = -1;
6595 		path->slots[level] = 0;
6596 
6597 		/*
6598 		 * check reference count again if the block isn't locked.
6599 		 * we should start walking down the tree again if reference
6600 		 * count is one.
6601 		 */
6602 		if (!path->locks[level]) {
6603 			BUG_ON(level == 0);
6604 			btrfs_tree_lock(eb);
6605 			btrfs_set_lock_blocking(eb);
6606 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6607 
6608 			ret = btrfs_lookup_extent_info(trans, root,
6609 						       eb->start, eb->len,
6610 						       &wc->refs[level],
6611 						       &wc->flags[level]);
6612 			BUG_ON(ret);
6613 			BUG_ON(wc->refs[level] == 0);
6614 			if (wc->refs[level] == 1) {
6615 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6616 				return 1;
6617 			}
6618 		}
6619 	}
6620 
6621 	/* wc->stage == DROP_REFERENCE */
6622 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6623 
6624 	if (wc->refs[level] == 1) {
6625 		if (level == 0) {
6626 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6627 				ret = btrfs_dec_ref(trans, root, eb, 1,
6628 						    wc->for_reloc);
6629 			else
6630 				ret = btrfs_dec_ref(trans, root, eb, 0,
6631 						    wc->for_reloc);
6632 			BUG_ON(ret);
6633 		}
6634 		/* make block locked assertion in clean_tree_block happy */
6635 		if (!path->locks[level] &&
6636 		    btrfs_header_generation(eb) == trans->transid) {
6637 			btrfs_tree_lock(eb);
6638 			btrfs_set_lock_blocking(eb);
6639 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6640 		}
6641 		clean_tree_block(trans, root, eb);
6642 	}
6643 
6644 	if (eb == root->node) {
6645 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6646 			parent = eb->start;
6647 		else
6648 			BUG_ON(root->root_key.objectid !=
6649 			       btrfs_header_owner(eb));
6650 	} else {
6651 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6652 			parent = path->nodes[level + 1]->start;
6653 		else
6654 			BUG_ON(root->root_key.objectid !=
6655 			       btrfs_header_owner(path->nodes[level + 1]));
6656 	}
6657 
6658 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6659 out:
6660 	wc->refs[level] = 0;
6661 	wc->flags[level] = 0;
6662 	return 0;
6663 }
6664 
6665 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6666 				   struct btrfs_root *root,
6667 				   struct btrfs_path *path,
6668 				   struct walk_control *wc)
6669 {
6670 	int level = wc->level;
6671 	int lookup_info = 1;
6672 	int ret;
6673 
6674 	while (level >= 0) {
6675 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6676 		if (ret > 0)
6677 			break;
6678 
6679 		if (level == 0)
6680 			break;
6681 
6682 		if (path->slots[level] >=
6683 		    btrfs_header_nritems(path->nodes[level]))
6684 			break;
6685 
6686 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6687 		if (ret > 0) {
6688 			path->slots[level]++;
6689 			continue;
6690 		} else if (ret < 0)
6691 			return ret;
6692 		level = wc->level;
6693 	}
6694 	return 0;
6695 }
6696 
6697 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6698 				 struct btrfs_root *root,
6699 				 struct btrfs_path *path,
6700 				 struct walk_control *wc, int max_level)
6701 {
6702 	int level = wc->level;
6703 	int ret;
6704 
6705 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6706 	while (level < max_level && path->nodes[level]) {
6707 		wc->level = level;
6708 		if (path->slots[level] + 1 <
6709 		    btrfs_header_nritems(path->nodes[level])) {
6710 			path->slots[level]++;
6711 			return 0;
6712 		} else {
6713 			ret = walk_up_proc(trans, root, path, wc);
6714 			if (ret > 0)
6715 				return 0;
6716 
6717 			if (path->locks[level]) {
6718 				btrfs_tree_unlock_rw(path->nodes[level],
6719 						     path->locks[level]);
6720 				path->locks[level] = 0;
6721 			}
6722 			free_extent_buffer(path->nodes[level]);
6723 			path->nodes[level] = NULL;
6724 			level++;
6725 		}
6726 	}
6727 	return 1;
6728 }
6729 
6730 /*
6731  * drop a subvolume tree.
6732  *
6733  * this function traverses the tree freeing any blocks that only
6734  * referenced by the tree.
6735  *
6736  * when a shared tree block is found. this function decreases its
6737  * reference count by one. if update_ref is true, this function
6738  * also make sure backrefs for the shared block and all lower level
6739  * blocks are properly updated.
6740  */
6741 void btrfs_drop_snapshot(struct btrfs_root *root,
6742 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6743 			 int for_reloc)
6744 {
6745 	struct btrfs_path *path;
6746 	struct btrfs_trans_handle *trans;
6747 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6748 	struct btrfs_root_item *root_item = &root->root_item;
6749 	struct walk_control *wc;
6750 	struct btrfs_key key;
6751 	int err = 0;
6752 	int ret;
6753 	int level;
6754 
6755 	path = btrfs_alloc_path();
6756 	if (!path) {
6757 		err = -ENOMEM;
6758 		goto out;
6759 	}
6760 
6761 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6762 	if (!wc) {
6763 		btrfs_free_path(path);
6764 		err = -ENOMEM;
6765 		goto out;
6766 	}
6767 
6768 	trans = btrfs_start_transaction(tree_root, 0);
6769 	BUG_ON(IS_ERR(trans));
6770 
6771 	if (block_rsv)
6772 		trans->block_rsv = block_rsv;
6773 
6774 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6775 		level = btrfs_header_level(root->node);
6776 		path->nodes[level] = btrfs_lock_root_node(root);
6777 		btrfs_set_lock_blocking(path->nodes[level]);
6778 		path->slots[level] = 0;
6779 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6780 		memset(&wc->update_progress, 0,
6781 		       sizeof(wc->update_progress));
6782 	} else {
6783 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6784 		memcpy(&wc->update_progress, &key,
6785 		       sizeof(wc->update_progress));
6786 
6787 		level = root_item->drop_level;
6788 		BUG_ON(level == 0);
6789 		path->lowest_level = level;
6790 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6791 		path->lowest_level = 0;
6792 		if (ret < 0) {
6793 			err = ret;
6794 			goto out_free;
6795 		}
6796 		WARN_ON(ret > 0);
6797 
6798 		/*
6799 		 * unlock our path, this is safe because only this
6800 		 * function is allowed to delete this snapshot
6801 		 */
6802 		btrfs_unlock_up_safe(path, 0);
6803 
6804 		level = btrfs_header_level(root->node);
6805 		while (1) {
6806 			btrfs_tree_lock(path->nodes[level]);
6807 			btrfs_set_lock_blocking(path->nodes[level]);
6808 
6809 			ret = btrfs_lookup_extent_info(trans, root,
6810 						path->nodes[level]->start,
6811 						path->nodes[level]->len,
6812 						&wc->refs[level],
6813 						&wc->flags[level]);
6814 			BUG_ON(ret);
6815 			BUG_ON(wc->refs[level] == 0);
6816 
6817 			if (level == root_item->drop_level)
6818 				break;
6819 
6820 			btrfs_tree_unlock(path->nodes[level]);
6821 			WARN_ON(wc->refs[level] != 1);
6822 			level--;
6823 		}
6824 	}
6825 
6826 	wc->level = level;
6827 	wc->shared_level = -1;
6828 	wc->stage = DROP_REFERENCE;
6829 	wc->update_ref = update_ref;
6830 	wc->keep_locks = 0;
6831 	wc->for_reloc = for_reloc;
6832 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6833 
6834 	while (1) {
6835 		ret = walk_down_tree(trans, root, path, wc);
6836 		if (ret < 0) {
6837 			err = ret;
6838 			break;
6839 		}
6840 
6841 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6842 		if (ret < 0) {
6843 			err = ret;
6844 			break;
6845 		}
6846 
6847 		if (ret > 0) {
6848 			BUG_ON(wc->stage != DROP_REFERENCE);
6849 			break;
6850 		}
6851 
6852 		if (wc->stage == DROP_REFERENCE) {
6853 			level = wc->level;
6854 			btrfs_node_key(path->nodes[level],
6855 				       &root_item->drop_progress,
6856 				       path->slots[level]);
6857 			root_item->drop_level = level;
6858 		}
6859 
6860 		BUG_ON(wc->level == 0);
6861 		if (btrfs_should_end_transaction(trans, tree_root)) {
6862 			ret = btrfs_update_root(trans, tree_root,
6863 						&root->root_key,
6864 						root_item);
6865 			BUG_ON(ret);
6866 
6867 			btrfs_end_transaction_throttle(trans, tree_root);
6868 			trans = btrfs_start_transaction(tree_root, 0);
6869 			BUG_ON(IS_ERR(trans));
6870 			if (block_rsv)
6871 				trans->block_rsv = block_rsv;
6872 		}
6873 	}
6874 	btrfs_release_path(path);
6875 	BUG_ON(err);
6876 
6877 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6878 	BUG_ON(ret);
6879 
6880 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6881 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6882 					   NULL, NULL);
6883 		BUG_ON(ret < 0);
6884 		if (ret > 0) {
6885 			/* if we fail to delete the orphan item this time
6886 			 * around, it'll get picked up the next time.
6887 			 *
6888 			 * The most common failure here is just -ENOENT.
6889 			 */
6890 			btrfs_del_orphan_item(trans, tree_root,
6891 					      root->root_key.objectid);
6892 		}
6893 	}
6894 
6895 	if (root->in_radix) {
6896 		btrfs_free_fs_root(tree_root->fs_info, root);
6897 	} else {
6898 		free_extent_buffer(root->node);
6899 		free_extent_buffer(root->commit_root);
6900 		kfree(root);
6901 	}
6902 out_free:
6903 	btrfs_end_transaction_throttle(trans, tree_root);
6904 	kfree(wc);
6905 	btrfs_free_path(path);
6906 out:
6907 	if (err)
6908 		btrfs_std_error(root->fs_info, err);
6909 	return;
6910 }
6911 
6912 /*
6913  * drop subtree rooted at tree block 'node'.
6914  *
6915  * NOTE: this function will unlock and release tree block 'node'
6916  * only used by relocation code
6917  */
6918 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6919 			struct btrfs_root *root,
6920 			struct extent_buffer *node,
6921 			struct extent_buffer *parent)
6922 {
6923 	struct btrfs_path *path;
6924 	struct walk_control *wc;
6925 	int level;
6926 	int parent_level;
6927 	int ret = 0;
6928 	int wret;
6929 
6930 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6931 
6932 	path = btrfs_alloc_path();
6933 	if (!path)
6934 		return -ENOMEM;
6935 
6936 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6937 	if (!wc) {
6938 		btrfs_free_path(path);
6939 		return -ENOMEM;
6940 	}
6941 
6942 	btrfs_assert_tree_locked(parent);
6943 	parent_level = btrfs_header_level(parent);
6944 	extent_buffer_get(parent);
6945 	path->nodes[parent_level] = parent;
6946 	path->slots[parent_level] = btrfs_header_nritems(parent);
6947 
6948 	btrfs_assert_tree_locked(node);
6949 	level = btrfs_header_level(node);
6950 	path->nodes[level] = node;
6951 	path->slots[level] = 0;
6952 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6953 
6954 	wc->refs[parent_level] = 1;
6955 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6956 	wc->level = level;
6957 	wc->shared_level = -1;
6958 	wc->stage = DROP_REFERENCE;
6959 	wc->update_ref = 0;
6960 	wc->keep_locks = 1;
6961 	wc->for_reloc = 1;
6962 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6963 
6964 	while (1) {
6965 		wret = walk_down_tree(trans, root, path, wc);
6966 		if (wret < 0) {
6967 			ret = wret;
6968 			break;
6969 		}
6970 
6971 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6972 		if (wret < 0)
6973 			ret = wret;
6974 		if (wret != 0)
6975 			break;
6976 	}
6977 
6978 	kfree(wc);
6979 	btrfs_free_path(path);
6980 	return ret;
6981 }
6982 
6983 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6984 {
6985 	u64 num_devices;
6986 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6987 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6988 
6989 	if (root->fs_info->balance_ctl) {
6990 		struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6991 		u64 tgt = 0;
6992 
6993 		/* pick restriper's target profile and return */
6994 		if (flags & BTRFS_BLOCK_GROUP_DATA &&
6995 		    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6996 			tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6997 		} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6998 			   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6999 			tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
7000 		} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
7001 			   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
7002 			tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
7003 		}
7004 
7005 		if (tgt) {
7006 			/* extended -> chunk profile */
7007 			tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7008 			return tgt;
7009 		}
7010 	}
7011 
7012 	/*
7013 	 * we add in the count of missing devices because we want
7014 	 * to make sure that any RAID levels on a degraded FS
7015 	 * continue to be honored.
7016 	 */
7017 	num_devices = root->fs_info->fs_devices->rw_devices +
7018 		root->fs_info->fs_devices->missing_devices;
7019 
7020 	if (num_devices == 1) {
7021 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7022 		stripped = flags & ~stripped;
7023 
7024 		/* turn raid0 into single device chunks */
7025 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7026 			return stripped;
7027 
7028 		/* turn mirroring into duplication */
7029 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7030 			     BTRFS_BLOCK_GROUP_RAID10))
7031 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7032 		return flags;
7033 	} else {
7034 		/* they already had raid on here, just return */
7035 		if (flags & stripped)
7036 			return flags;
7037 
7038 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7039 		stripped = flags & ~stripped;
7040 
7041 		/* switch duplicated blocks with raid1 */
7042 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7043 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7044 
7045 		/* turn single device chunks into raid0 */
7046 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
7047 	}
7048 	return flags;
7049 }
7050 
7051 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7052 {
7053 	struct btrfs_space_info *sinfo = cache->space_info;
7054 	u64 num_bytes;
7055 	u64 min_allocable_bytes;
7056 	int ret = -ENOSPC;
7057 
7058 
7059 	/*
7060 	 * We need some metadata space and system metadata space for
7061 	 * allocating chunks in some corner cases until we force to set
7062 	 * it to be readonly.
7063 	 */
7064 	if ((sinfo->flags &
7065 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7066 	    !force)
7067 		min_allocable_bytes = 1 * 1024 * 1024;
7068 	else
7069 		min_allocable_bytes = 0;
7070 
7071 	spin_lock(&sinfo->lock);
7072 	spin_lock(&cache->lock);
7073 
7074 	if (cache->ro) {
7075 		ret = 0;
7076 		goto out;
7077 	}
7078 
7079 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7080 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7081 
7082 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7083 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7084 	    min_allocable_bytes <= sinfo->total_bytes) {
7085 		sinfo->bytes_readonly += num_bytes;
7086 		cache->ro = 1;
7087 		ret = 0;
7088 	}
7089 out:
7090 	spin_unlock(&cache->lock);
7091 	spin_unlock(&sinfo->lock);
7092 	return ret;
7093 }
7094 
7095 int btrfs_set_block_group_ro(struct btrfs_root *root,
7096 			     struct btrfs_block_group_cache *cache)
7097 
7098 {
7099 	struct btrfs_trans_handle *trans;
7100 	u64 alloc_flags;
7101 	int ret;
7102 
7103 	BUG_ON(cache->ro);
7104 
7105 	trans = btrfs_join_transaction(root);
7106 	BUG_ON(IS_ERR(trans));
7107 
7108 	alloc_flags = update_block_group_flags(root, cache->flags);
7109 	if (alloc_flags != cache->flags)
7110 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7111 			       CHUNK_ALLOC_FORCE);
7112 
7113 	ret = set_block_group_ro(cache, 0);
7114 	if (!ret)
7115 		goto out;
7116 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7117 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7118 			     CHUNK_ALLOC_FORCE);
7119 	if (ret < 0)
7120 		goto out;
7121 	ret = set_block_group_ro(cache, 0);
7122 out:
7123 	btrfs_end_transaction(trans, root);
7124 	return ret;
7125 }
7126 
7127 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7128 			    struct btrfs_root *root, u64 type)
7129 {
7130 	u64 alloc_flags = get_alloc_profile(root, type);
7131 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7132 			      CHUNK_ALLOC_FORCE);
7133 }
7134 
7135 /*
7136  * helper to account the unused space of all the readonly block group in the
7137  * list. takes mirrors into account.
7138  */
7139 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7140 {
7141 	struct btrfs_block_group_cache *block_group;
7142 	u64 free_bytes = 0;
7143 	int factor;
7144 
7145 	list_for_each_entry(block_group, groups_list, list) {
7146 		spin_lock(&block_group->lock);
7147 
7148 		if (!block_group->ro) {
7149 			spin_unlock(&block_group->lock);
7150 			continue;
7151 		}
7152 
7153 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7154 					  BTRFS_BLOCK_GROUP_RAID10 |
7155 					  BTRFS_BLOCK_GROUP_DUP))
7156 			factor = 2;
7157 		else
7158 			factor = 1;
7159 
7160 		free_bytes += (block_group->key.offset -
7161 			       btrfs_block_group_used(&block_group->item)) *
7162 			       factor;
7163 
7164 		spin_unlock(&block_group->lock);
7165 	}
7166 
7167 	return free_bytes;
7168 }
7169 
7170 /*
7171  * helper to account the unused space of all the readonly block group in the
7172  * space_info. takes mirrors into account.
7173  */
7174 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7175 {
7176 	int i;
7177 	u64 free_bytes = 0;
7178 
7179 	spin_lock(&sinfo->lock);
7180 
7181 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7182 		if (!list_empty(&sinfo->block_groups[i]))
7183 			free_bytes += __btrfs_get_ro_block_group_free_space(
7184 						&sinfo->block_groups[i]);
7185 
7186 	spin_unlock(&sinfo->lock);
7187 
7188 	return free_bytes;
7189 }
7190 
7191 int btrfs_set_block_group_rw(struct btrfs_root *root,
7192 			      struct btrfs_block_group_cache *cache)
7193 {
7194 	struct btrfs_space_info *sinfo = cache->space_info;
7195 	u64 num_bytes;
7196 
7197 	BUG_ON(!cache->ro);
7198 
7199 	spin_lock(&sinfo->lock);
7200 	spin_lock(&cache->lock);
7201 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7202 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7203 	sinfo->bytes_readonly -= num_bytes;
7204 	cache->ro = 0;
7205 	spin_unlock(&cache->lock);
7206 	spin_unlock(&sinfo->lock);
7207 	return 0;
7208 }
7209 
7210 /*
7211  * checks to see if its even possible to relocate this block group.
7212  *
7213  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7214  * ok to go ahead and try.
7215  */
7216 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7217 {
7218 	struct btrfs_block_group_cache *block_group;
7219 	struct btrfs_space_info *space_info;
7220 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7221 	struct btrfs_device *device;
7222 	u64 min_free;
7223 	u64 dev_min = 1;
7224 	u64 dev_nr = 0;
7225 	int index;
7226 	int full = 0;
7227 	int ret = 0;
7228 
7229 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7230 
7231 	/* odd, couldn't find the block group, leave it alone */
7232 	if (!block_group)
7233 		return -1;
7234 
7235 	min_free = btrfs_block_group_used(&block_group->item);
7236 
7237 	/* no bytes used, we're good */
7238 	if (!min_free)
7239 		goto out;
7240 
7241 	space_info = block_group->space_info;
7242 	spin_lock(&space_info->lock);
7243 
7244 	full = space_info->full;
7245 
7246 	/*
7247 	 * if this is the last block group we have in this space, we can't
7248 	 * relocate it unless we're able to allocate a new chunk below.
7249 	 *
7250 	 * Otherwise, we need to make sure we have room in the space to handle
7251 	 * all of the extents from this block group.  If we can, we're good
7252 	 */
7253 	if ((space_info->total_bytes != block_group->key.offset) &&
7254 	    (space_info->bytes_used + space_info->bytes_reserved +
7255 	     space_info->bytes_pinned + space_info->bytes_readonly +
7256 	     min_free < space_info->total_bytes)) {
7257 		spin_unlock(&space_info->lock);
7258 		goto out;
7259 	}
7260 	spin_unlock(&space_info->lock);
7261 
7262 	/*
7263 	 * ok we don't have enough space, but maybe we have free space on our
7264 	 * devices to allocate new chunks for relocation, so loop through our
7265 	 * alloc devices and guess if we have enough space.  However, if we
7266 	 * were marked as full, then we know there aren't enough chunks, and we
7267 	 * can just return.
7268 	 */
7269 	ret = -1;
7270 	if (full)
7271 		goto out;
7272 
7273 	/*
7274 	 * index:
7275 	 *      0: raid10
7276 	 *      1: raid1
7277 	 *      2: dup
7278 	 *      3: raid0
7279 	 *      4: single
7280 	 */
7281 	index = get_block_group_index(block_group);
7282 	if (index == 0) {
7283 		dev_min = 4;
7284 		/* Divide by 2 */
7285 		min_free >>= 1;
7286 	} else if (index == 1) {
7287 		dev_min = 2;
7288 	} else if (index == 2) {
7289 		/* Multiply by 2 */
7290 		min_free <<= 1;
7291 	} else if (index == 3) {
7292 		dev_min = fs_devices->rw_devices;
7293 		do_div(min_free, dev_min);
7294 	}
7295 
7296 	mutex_lock(&root->fs_info->chunk_mutex);
7297 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7298 		u64 dev_offset;
7299 
7300 		/*
7301 		 * check to make sure we can actually find a chunk with enough
7302 		 * space to fit our block group in.
7303 		 */
7304 		if (device->total_bytes > device->bytes_used + min_free) {
7305 			ret = find_free_dev_extent(device, min_free,
7306 						   &dev_offset, NULL);
7307 			if (!ret)
7308 				dev_nr++;
7309 
7310 			if (dev_nr >= dev_min)
7311 				break;
7312 
7313 			ret = -1;
7314 		}
7315 	}
7316 	mutex_unlock(&root->fs_info->chunk_mutex);
7317 out:
7318 	btrfs_put_block_group(block_group);
7319 	return ret;
7320 }
7321 
7322 static int find_first_block_group(struct btrfs_root *root,
7323 		struct btrfs_path *path, struct btrfs_key *key)
7324 {
7325 	int ret = 0;
7326 	struct btrfs_key found_key;
7327 	struct extent_buffer *leaf;
7328 	int slot;
7329 
7330 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7331 	if (ret < 0)
7332 		goto out;
7333 
7334 	while (1) {
7335 		slot = path->slots[0];
7336 		leaf = path->nodes[0];
7337 		if (slot >= btrfs_header_nritems(leaf)) {
7338 			ret = btrfs_next_leaf(root, path);
7339 			if (ret == 0)
7340 				continue;
7341 			if (ret < 0)
7342 				goto out;
7343 			break;
7344 		}
7345 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7346 
7347 		if (found_key.objectid >= key->objectid &&
7348 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7349 			ret = 0;
7350 			goto out;
7351 		}
7352 		path->slots[0]++;
7353 	}
7354 out:
7355 	return ret;
7356 }
7357 
7358 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7359 {
7360 	struct btrfs_block_group_cache *block_group;
7361 	u64 last = 0;
7362 
7363 	while (1) {
7364 		struct inode *inode;
7365 
7366 		block_group = btrfs_lookup_first_block_group(info, last);
7367 		while (block_group) {
7368 			spin_lock(&block_group->lock);
7369 			if (block_group->iref)
7370 				break;
7371 			spin_unlock(&block_group->lock);
7372 			block_group = next_block_group(info->tree_root,
7373 						       block_group);
7374 		}
7375 		if (!block_group) {
7376 			if (last == 0)
7377 				break;
7378 			last = 0;
7379 			continue;
7380 		}
7381 
7382 		inode = block_group->inode;
7383 		block_group->iref = 0;
7384 		block_group->inode = NULL;
7385 		spin_unlock(&block_group->lock);
7386 		iput(inode);
7387 		last = block_group->key.objectid + block_group->key.offset;
7388 		btrfs_put_block_group(block_group);
7389 	}
7390 }
7391 
7392 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7393 {
7394 	struct btrfs_block_group_cache *block_group;
7395 	struct btrfs_space_info *space_info;
7396 	struct btrfs_caching_control *caching_ctl;
7397 	struct rb_node *n;
7398 
7399 	down_write(&info->extent_commit_sem);
7400 	while (!list_empty(&info->caching_block_groups)) {
7401 		caching_ctl = list_entry(info->caching_block_groups.next,
7402 					 struct btrfs_caching_control, list);
7403 		list_del(&caching_ctl->list);
7404 		put_caching_control(caching_ctl);
7405 	}
7406 	up_write(&info->extent_commit_sem);
7407 
7408 	spin_lock(&info->block_group_cache_lock);
7409 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7410 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7411 				       cache_node);
7412 		rb_erase(&block_group->cache_node,
7413 			 &info->block_group_cache_tree);
7414 		spin_unlock(&info->block_group_cache_lock);
7415 
7416 		down_write(&block_group->space_info->groups_sem);
7417 		list_del(&block_group->list);
7418 		up_write(&block_group->space_info->groups_sem);
7419 
7420 		if (block_group->cached == BTRFS_CACHE_STARTED)
7421 			wait_block_group_cache_done(block_group);
7422 
7423 		/*
7424 		 * We haven't cached this block group, which means we could
7425 		 * possibly have excluded extents on this block group.
7426 		 */
7427 		if (block_group->cached == BTRFS_CACHE_NO)
7428 			free_excluded_extents(info->extent_root, block_group);
7429 
7430 		btrfs_remove_free_space_cache(block_group);
7431 		btrfs_put_block_group(block_group);
7432 
7433 		spin_lock(&info->block_group_cache_lock);
7434 	}
7435 	spin_unlock(&info->block_group_cache_lock);
7436 
7437 	/* now that all the block groups are freed, go through and
7438 	 * free all the space_info structs.  This is only called during
7439 	 * the final stages of unmount, and so we know nobody is
7440 	 * using them.  We call synchronize_rcu() once before we start,
7441 	 * just to be on the safe side.
7442 	 */
7443 	synchronize_rcu();
7444 
7445 	release_global_block_rsv(info);
7446 
7447 	while(!list_empty(&info->space_info)) {
7448 		space_info = list_entry(info->space_info.next,
7449 					struct btrfs_space_info,
7450 					list);
7451 		if (space_info->bytes_pinned > 0 ||
7452 		    space_info->bytes_reserved > 0 ||
7453 		    space_info->bytes_may_use > 0) {
7454 			WARN_ON(1);
7455 			dump_space_info(space_info, 0, 0);
7456 		}
7457 		list_del(&space_info->list);
7458 		kfree(space_info);
7459 	}
7460 	return 0;
7461 }
7462 
7463 static void __link_block_group(struct btrfs_space_info *space_info,
7464 			       struct btrfs_block_group_cache *cache)
7465 {
7466 	int index = get_block_group_index(cache);
7467 
7468 	down_write(&space_info->groups_sem);
7469 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7470 	up_write(&space_info->groups_sem);
7471 }
7472 
7473 int btrfs_read_block_groups(struct btrfs_root *root)
7474 {
7475 	struct btrfs_path *path;
7476 	int ret;
7477 	struct btrfs_block_group_cache *cache;
7478 	struct btrfs_fs_info *info = root->fs_info;
7479 	struct btrfs_space_info *space_info;
7480 	struct btrfs_key key;
7481 	struct btrfs_key found_key;
7482 	struct extent_buffer *leaf;
7483 	int need_clear = 0;
7484 	u64 cache_gen;
7485 
7486 	root = info->extent_root;
7487 	key.objectid = 0;
7488 	key.offset = 0;
7489 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7490 	path = btrfs_alloc_path();
7491 	if (!path)
7492 		return -ENOMEM;
7493 	path->reada = 1;
7494 
7495 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7496 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7497 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7498 		need_clear = 1;
7499 	if (btrfs_test_opt(root, CLEAR_CACHE))
7500 		need_clear = 1;
7501 
7502 	while (1) {
7503 		ret = find_first_block_group(root, path, &key);
7504 		if (ret > 0)
7505 			break;
7506 		if (ret != 0)
7507 			goto error;
7508 		leaf = path->nodes[0];
7509 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7510 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7511 		if (!cache) {
7512 			ret = -ENOMEM;
7513 			goto error;
7514 		}
7515 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7516 						GFP_NOFS);
7517 		if (!cache->free_space_ctl) {
7518 			kfree(cache);
7519 			ret = -ENOMEM;
7520 			goto error;
7521 		}
7522 
7523 		atomic_set(&cache->count, 1);
7524 		spin_lock_init(&cache->lock);
7525 		cache->fs_info = info;
7526 		INIT_LIST_HEAD(&cache->list);
7527 		INIT_LIST_HEAD(&cache->cluster_list);
7528 
7529 		if (need_clear)
7530 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7531 
7532 		read_extent_buffer(leaf, &cache->item,
7533 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7534 				   sizeof(cache->item));
7535 		memcpy(&cache->key, &found_key, sizeof(found_key));
7536 
7537 		key.objectid = found_key.objectid + found_key.offset;
7538 		btrfs_release_path(path);
7539 		cache->flags = btrfs_block_group_flags(&cache->item);
7540 		cache->sectorsize = root->sectorsize;
7541 
7542 		btrfs_init_free_space_ctl(cache);
7543 
7544 		/*
7545 		 * We need to exclude the super stripes now so that the space
7546 		 * info has super bytes accounted for, otherwise we'll think
7547 		 * we have more space than we actually do.
7548 		 */
7549 		exclude_super_stripes(root, cache);
7550 
7551 		/*
7552 		 * check for two cases, either we are full, and therefore
7553 		 * don't need to bother with the caching work since we won't
7554 		 * find any space, or we are empty, and we can just add all
7555 		 * the space in and be done with it.  This saves us _alot_ of
7556 		 * time, particularly in the full case.
7557 		 */
7558 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7559 			cache->last_byte_to_unpin = (u64)-1;
7560 			cache->cached = BTRFS_CACHE_FINISHED;
7561 			free_excluded_extents(root, cache);
7562 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7563 			cache->last_byte_to_unpin = (u64)-1;
7564 			cache->cached = BTRFS_CACHE_FINISHED;
7565 			add_new_free_space(cache, root->fs_info,
7566 					   found_key.objectid,
7567 					   found_key.objectid +
7568 					   found_key.offset);
7569 			free_excluded_extents(root, cache);
7570 		}
7571 
7572 		ret = update_space_info(info, cache->flags, found_key.offset,
7573 					btrfs_block_group_used(&cache->item),
7574 					&space_info);
7575 		BUG_ON(ret);
7576 		cache->space_info = space_info;
7577 		spin_lock(&cache->space_info->lock);
7578 		cache->space_info->bytes_readonly += cache->bytes_super;
7579 		spin_unlock(&cache->space_info->lock);
7580 
7581 		__link_block_group(space_info, cache);
7582 
7583 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7584 		BUG_ON(ret);
7585 
7586 		set_avail_alloc_bits(root->fs_info, cache->flags);
7587 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7588 			set_block_group_ro(cache, 1);
7589 	}
7590 
7591 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7592 		if (!(get_alloc_profile(root, space_info->flags) &
7593 		      (BTRFS_BLOCK_GROUP_RAID10 |
7594 		       BTRFS_BLOCK_GROUP_RAID1 |
7595 		       BTRFS_BLOCK_GROUP_DUP)))
7596 			continue;
7597 		/*
7598 		 * avoid allocating from un-mirrored block group if there are
7599 		 * mirrored block groups.
7600 		 */
7601 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7602 			set_block_group_ro(cache, 1);
7603 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7604 			set_block_group_ro(cache, 1);
7605 	}
7606 
7607 	init_global_block_rsv(info);
7608 	ret = 0;
7609 error:
7610 	btrfs_free_path(path);
7611 	return ret;
7612 }
7613 
7614 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7615 			   struct btrfs_root *root, u64 bytes_used,
7616 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7617 			   u64 size)
7618 {
7619 	int ret;
7620 	struct btrfs_root *extent_root;
7621 	struct btrfs_block_group_cache *cache;
7622 
7623 	extent_root = root->fs_info->extent_root;
7624 
7625 	root->fs_info->last_trans_log_full_commit = trans->transid;
7626 
7627 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7628 	if (!cache)
7629 		return -ENOMEM;
7630 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7631 					GFP_NOFS);
7632 	if (!cache->free_space_ctl) {
7633 		kfree(cache);
7634 		return -ENOMEM;
7635 	}
7636 
7637 	cache->key.objectid = chunk_offset;
7638 	cache->key.offset = size;
7639 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7640 	cache->sectorsize = root->sectorsize;
7641 	cache->fs_info = root->fs_info;
7642 
7643 	atomic_set(&cache->count, 1);
7644 	spin_lock_init(&cache->lock);
7645 	INIT_LIST_HEAD(&cache->list);
7646 	INIT_LIST_HEAD(&cache->cluster_list);
7647 
7648 	btrfs_init_free_space_ctl(cache);
7649 
7650 	btrfs_set_block_group_used(&cache->item, bytes_used);
7651 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7652 	cache->flags = type;
7653 	btrfs_set_block_group_flags(&cache->item, type);
7654 
7655 	cache->last_byte_to_unpin = (u64)-1;
7656 	cache->cached = BTRFS_CACHE_FINISHED;
7657 	exclude_super_stripes(root, cache);
7658 
7659 	add_new_free_space(cache, root->fs_info, chunk_offset,
7660 			   chunk_offset + size);
7661 
7662 	free_excluded_extents(root, cache);
7663 
7664 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7665 				&cache->space_info);
7666 	BUG_ON(ret);
7667 	update_global_block_rsv(root->fs_info);
7668 
7669 	spin_lock(&cache->space_info->lock);
7670 	cache->space_info->bytes_readonly += cache->bytes_super;
7671 	spin_unlock(&cache->space_info->lock);
7672 
7673 	__link_block_group(cache->space_info, cache);
7674 
7675 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7676 	BUG_ON(ret);
7677 
7678 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7679 				sizeof(cache->item));
7680 	BUG_ON(ret);
7681 
7682 	set_avail_alloc_bits(extent_root->fs_info, type);
7683 
7684 	return 0;
7685 }
7686 
7687 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7688 {
7689 	u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7690 
7691 	/* chunk -> extended profile */
7692 	if (extra_flags == 0)
7693 		extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7694 
7695 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7696 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7697 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7698 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7699 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7700 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7701 }
7702 
7703 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7704 			     struct btrfs_root *root, u64 group_start)
7705 {
7706 	struct btrfs_path *path;
7707 	struct btrfs_block_group_cache *block_group;
7708 	struct btrfs_free_cluster *cluster;
7709 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7710 	struct btrfs_key key;
7711 	struct inode *inode;
7712 	int ret;
7713 	int index;
7714 	int factor;
7715 
7716 	root = root->fs_info->extent_root;
7717 
7718 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7719 	BUG_ON(!block_group);
7720 	BUG_ON(!block_group->ro);
7721 
7722 	/*
7723 	 * Free the reserved super bytes from this block group before
7724 	 * remove it.
7725 	 */
7726 	free_excluded_extents(root, block_group);
7727 
7728 	memcpy(&key, &block_group->key, sizeof(key));
7729 	index = get_block_group_index(block_group);
7730 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7731 				  BTRFS_BLOCK_GROUP_RAID1 |
7732 				  BTRFS_BLOCK_GROUP_RAID10))
7733 		factor = 2;
7734 	else
7735 		factor = 1;
7736 
7737 	/* make sure this block group isn't part of an allocation cluster */
7738 	cluster = &root->fs_info->data_alloc_cluster;
7739 	spin_lock(&cluster->refill_lock);
7740 	btrfs_return_cluster_to_free_space(block_group, cluster);
7741 	spin_unlock(&cluster->refill_lock);
7742 
7743 	/*
7744 	 * make sure this block group isn't part of a metadata
7745 	 * allocation cluster
7746 	 */
7747 	cluster = &root->fs_info->meta_alloc_cluster;
7748 	spin_lock(&cluster->refill_lock);
7749 	btrfs_return_cluster_to_free_space(block_group, cluster);
7750 	spin_unlock(&cluster->refill_lock);
7751 
7752 	path = btrfs_alloc_path();
7753 	if (!path) {
7754 		ret = -ENOMEM;
7755 		goto out;
7756 	}
7757 
7758 	inode = lookup_free_space_inode(tree_root, block_group, path);
7759 	if (!IS_ERR(inode)) {
7760 		ret = btrfs_orphan_add(trans, inode);
7761 		BUG_ON(ret);
7762 		clear_nlink(inode);
7763 		/* One for the block groups ref */
7764 		spin_lock(&block_group->lock);
7765 		if (block_group->iref) {
7766 			block_group->iref = 0;
7767 			block_group->inode = NULL;
7768 			spin_unlock(&block_group->lock);
7769 			iput(inode);
7770 		} else {
7771 			spin_unlock(&block_group->lock);
7772 		}
7773 		/* One for our lookup ref */
7774 		btrfs_add_delayed_iput(inode);
7775 	}
7776 
7777 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7778 	key.offset = block_group->key.objectid;
7779 	key.type = 0;
7780 
7781 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7782 	if (ret < 0)
7783 		goto out;
7784 	if (ret > 0)
7785 		btrfs_release_path(path);
7786 	if (ret == 0) {
7787 		ret = btrfs_del_item(trans, tree_root, path);
7788 		if (ret)
7789 			goto out;
7790 		btrfs_release_path(path);
7791 	}
7792 
7793 	spin_lock(&root->fs_info->block_group_cache_lock);
7794 	rb_erase(&block_group->cache_node,
7795 		 &root->fs_info->block_group_cache_tree);
7796 	spin_unlock(&root->fs_info->block_group_cache_lock);
7797 
7798 	down_write(&block_group->space_info->groups_sem);
7799 	/*
7800 	 * we must use list_del_init so people can check to see if they
7801 	 * are still on the list after taking the semaphore
7802 	 */
7803 	list_del_init(&block_group->list);
7804 	if (list_empty(&block_group->space_info->block_groups[index]))
7805 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
7806 	up_write(&block_group->space_info->groups_sem);
7807 
7808 	if (block_group->cached == BTRFS_CACHE_STARTED)
7809 		wait_block_group_cache_done(block_group);
7810 
7811 	btrfs_remove_free_space_cache(block_group);
7812 
7813 	spin_lock(&block_group->space_info->lock);
7814 	block_group->space_info->total_bytes -= block_group->key.offset;
7815 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7816 	block_group->space_info->disk_total -= block_group->key.offset * factor;
7817 	spin_unlock(&block_group->space_info->lock);
7818 
7819 	memcpy(&key, &block_group->key, sizeof(key));
7820 
7821 	btrfs_clear_space_info_full(root->fs_info);
7822 
7823 	btrfs_put_block_group(block_group);
7824 	btrfs_put_block_group(block_group);
7825 
7826 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7827 	if (ret > 0)
7828 		ret = -EIO;
7829 	if (ret < 0)
7830 		goto out;
7831 
7832 	ret = btrfs_del_item(trans, root, path);
7833 out:
7834 	btrfs_free_path(path);
7835 	return ret;
7836 }
7837 
7838 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7839 {
7840 	struct btrfs_space_info *space_info;
7841 	struct btrfs_super_block *disk_super;
7842 	u64 features;
7843 	u64 flags;
7844 	int mixed = 0;
7845 	int ret;
7846 
7847 	disk_super = fs_info->super_copy;
7848 	if (!btrfs_super_root(disk_super))
7849 		return 1;
7850 
7851 	features = btrfs_super_incompat_flags(disk_super);
7852 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7853 		mixed = 1;
7854 
7855 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
7856 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7857 	if (ret)
7858 		goto out;
7859 
7860 	if (mixed) {
7861 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7862 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7863 	} else {
7864 		flags = BTRFS_BLOCK_GROUP_METADATA;
7865 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7866 		if (ret)
7867 			goto out;
7868 
7869 		flags = BTRFS_BLOCK_GROUP_DATA;
7870 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7871 	}
7872 out:
7873 	return ret;
7874 }
7875 
7876 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7877 {
7878 	return unpin_extent_range(root, start, end);
7879 }
7880 
7881 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7882 			       u64 num_bytes, u64 *actual_bytes)
7883 {
7884 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7885 }
7886 
7887 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7888 {
7889 	struct btrfs_fs_info *fs_info = root->fs_info;
7890 	struct btrfs_block_group_cache *cache = NULL;
7891 	u64 group_trimmed;
7892 	u64 start;
7893 	u64 end;
7894 	u64 trimmed = 0;
7895 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7896 	int ret = 0;
7897 
7898 	/*
7899 	 * try to trim all FS space, our block group may start from non-zero.
7900 	 */
7901 	if (range->len == total_bytes)
7902 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
7903 	else
7904 		cache = btrfs_lookup_block_group(fs_info, range->start);
7905 
7906 	while (cache) {
7907 		if (cache->key.objectid >= (range->start + range->len)) {
7908 			btrfs_put_block_group(cache);
7909 			break;
7910 		}
7911 
7912 		start = max(range->start, cache->key.objectid);
7913 		end = min(range->start + range->len,
7914 				cache->key.objectid + cache->key.offset);
7915 
7916 		if (end - start >= range->minlen) {
7917 			if (!block_group_cache_done(cache)) {
7918 				ret = cache_block_group(cache, NULL, root, 0);
7919 				if (!ret)
7920 					wait_block_group_cache_done(cache);
7921 			}
7922 			ret = btrfs_trim_block_group(cache,
7923 						     &group_trimmed,
7924 						     start,
7925 						     end,
7926 						     range->minlen);
7927 
7928 			trimmed += group_trimmed;
7929 			if (ret) {
7930 				btrfs_put_block_group(cache);
7931 				break;
7932 			}
7933 		}
7934 
7935 		cache = next_block_group(fs_info->tree_root, cache);
7936 	}
7937 
7938 	range->len = trimmed;
7939 	return ret;
7940 }
7941