1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_delayed_ref_node *node, u64 parent, 43 u64 root_objectid, u64 owner_objectid, 44 u64 owner_offset, int refs_to_drop, 45 struct btrfs_delayed_extent_op *extra_op); 46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 47 struct extent_buffer *leaf, 48 struct btrfs_extent_item *ei); 49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 50 u64 parent, u64 root_objectid, 51 u64 flags, u64 owner, u64 offset, 52 struct btrfs_key *ins, int ref_mod); 53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 54 struct btrfs_delayed_ref_node *node, 55 struct btrfs_delayed_extent_op *extent_op); 56 static int find_next_key(struct btrfs_path *path, int level, 57 struct btrfs_key *key); 58 59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 60 { 61 return (cache->flags & bits) == bits; 62 } 63 64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 65 u64 start, u64 num_bytes) 66 { 67 u64 end = start + num_bytes - 1; 68 set_extent_bits(&fs_info->excluded_extents, start, end, 69 EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->start; 79 end = start + cache->length - 1; 80 81 clear_extent_bits(&fs_info->excluded_extents, start, end, 82 EXTENT_UPTODATE); 83 } 84 85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 86 { 87 if (ref->type == BTRFS_REF_METADATA) { 88 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 89 return BTRFS_BLOCK_GROUP_SYSTEM; 90 else 91 return BTRFS_BLOCK_GROUP_METADATA; 92 } 93 return BTRFS_BLOCK_GROUP_DATA; 94 } 95 96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 97 struct btrfs_ref *ref) 98 { 99 struct btrfs_space_info *space_info; 100 u64 flags = generic_ref_to_space_flags(ref); 101 102 space_info = btrfs_find_space_info(fs_info, flags); 103 ASSERT(space_info); 104 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 105 BTRFS_TOTAL_BYTES_PINNED_BATCH); 106 } 107 108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_ref *ref) 110 { 111 struct btrfs_space_info *space_info; 112 u64 flags = generic_ref_to_space_flags(ref); 113 114 space_info = btrfs_find_space_info(fs_info, flags); 115 ASSERT(space_info); 116 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 117 BTRFS_TOTAL_BYTES_PINNED_BATCH); 118 } 119 120 /* simple helper to search for an existing data extent at a given offset */ 121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 122 { 123 int ret; 124 struct btrfs_key key; 125 struct btrfs_path *path; 126 127 path = btrfs_alloc_path(); 128 if (!path) 129 return -ENOMEM; 130 131 key.objectid = start; 132 key.offset = len; 133 key.type = BTRFS_EXTENT_ITEM_KEY; 134 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 135 btrfs_free_path(path); 136 return ret; 137 } 138 139 /* 140 * helper function to lookup reference count and flags of a tree block. 141 * 142 * the head node for delayed ref is used to store the sum of all the 143 * reference count modifications queued up in the rbtree. the head 144 * node may also store the extent flags to set. This way you can check 145 * to see what the reference count and extent flags would be if all of 146 * the delayed refs are not processed. 147 */ 148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 149 struct btrfs_fs_info *fs_info, u64 bytenr, 150 u64 offset, int metadata, u64 *refs, u64 *flags) 151 { 152 struct btrfs_delayed_ref_head *head; 153 struct btrfs_delayed_ref_root *delayed_refs; 154 struct btrfs_path *path; 155 struct btrfs_extent_item *ei; 156 struct extent_buffer *leaf; 157 struct btrfs_key key; 158 u32 item_size; 159 u64 num_refs; 160 u64 extent_flags; 161 int ret; 162 163 /* 164 * If we don't have skinny metadata, don't bother doing anything 165 * different 166 */ 167 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 168 offset = fs_info->nodesize; 169 metadata = 0; 170 } 171 172 path = btrfs_alloc_path(); 173 if (!path) 174 return -ENOMEM; 175 176 if (!trans) { 177 path->skip_locking = 1; 178 path->search_commit_root = 1; 179 } 180 181 search_again: 182 key.objectid = bytenr; 183 key.offset = offset; 184 if (metadata) 185 key.type = BTRFS_METADATA_ITEM_KEY; 186 else 187 key.type = BTRFS_EXTENT_ITEM_KEY; 188 189 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 190 if (ret < 0) 191 goto out_free; 192 193 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 194 if (path->slots[0]) { 195 path->slots[0]--; 196 btrfs_item_key_to_cpu(path->nodes[0], &key, 197 path->slots[0]); 198 if (key.objectid == bytenr && 199 key.type == BTRFS_EXTENT_ITEM_KEY && 200 key.offset == fs_info->nodesize) 201 ret = 0; 202 } 203 } 204 205 if (ret == 0) { 206 leaf = path->nodes[0]; 207 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 208 if (item_size >= sizeof(*ei)) { 209 ei = btrfs_item_ptr(leaf, path->slots[0], 210 struct btrfs_extent_item); 211 num_refs = btrfs_extent_refs(leaf, ei); 212 extent_flags = btrfs_extent_flags(leaf, ei); 213 } else { 214 ret = -EINVAL; 215 btrfs_print_v0_err(fs_info); 216 if (trans) 217 btrfs_abort_transaction(trans, ret); 218 else 219 btrfs_handle_fs_error(fs_info, ret, NULL); 220 221 goto out_free; 222 } 223 224 BUG_ON(num_refs == 0); 225 } else { 226 num_refs = 0; 227 extent_flags = 0; 228 ret = 0; 229 } 230 231 if (!trans) 232 goto out; 233 234 delayed_refs = &trans->transaction->delayed_refs; 235 spin_lock(&delayed_refs->lock); 236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 237 if (head) { 238 if (!mutex_trylock(&head->mutex)) { 239 refcount_inc(&head->refs); 240 spin_unlock(&delayed_refs->lock); 241 242 btrfs_release_path(path); 243 244 /* 245 * Mutex was contended, block until it's released and try 246 * again 247 */ 248 mutex_lock(&head->mutex); 249 mutex_unlock(&head->mutex); 250 btrfs_put_delayed_ref_head(head); 251 goto search_again; 252 } 253 spin_lock(&head->lock); 254 if (head->extent_op && head->extent_op->update_flags) 255 extent_flags |= head->extent_op->flags_to_set; 256 else 257 BUG_ON(num_refs == 0); 258 259 num_refs += head->ref_mod; 260 spin_unlock(&head->lock); 261 mutex_unlock(&head->mutex); 262 } 263 spin_unlock(&delayed_refs->lock); 264 out: 265 WARN_ON(num_refs == 0); 266 if (refs) 267 *refs = num_refs; 268 if (flags) 269 *flags = extent_flags; 270 out_free: 271 btrfs_free_path(path); 272 return ret; 273 } 274 275 /* 276 * Back reference rules. Back refs have three main goals: 277 * 278 * 1) differentiate between all holders of references to an extent so that 279 * when a reference is dropped we can make sure it was a valid reference 280 * before freeing the extent. 281 * 282 * 2) Provide enough information to quickly find the holders of an extent 283 * if we notice a given block is corrupted or bad. 284 * 285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 286 * maintenance. This is actually the same as #2, but with a slightly 287 * different use case. 288 * 289 * There are two kinds of back refs. The implicit back refs is optimized 290 * for pointers in non-shared tree blocks. For a given pointer in a block, 291 * back refs of this kind provide information about the block's owner tree 292 * and the pointer's key. These information allow us to find the block by 293 * b-tree searching. The full back refs is for pointers in tree blocks not 294 * referenced by their owner trees. The location of tree block is recorded 295 * in the back refs. Actually the full back refs is generic, and can be 296 * used in all cases the implicit back refs is used. The major shortcoming 297 * of the full back refs is its overhead. Every time a tree block gets 298 * COWed, we have to update back refs entry for all pointers in it. 299 * 300 * For a newly allocated tree block, we use implicit back refs for 301 * pointers in it. This means most tree related operations only involve 302 * implicit back refs. For a tree block created in old transaction, the 303 * only way to drop a reference to it is COW it. So we can detect the 304 * event that tree block loses its owner tree's reference and do the 305 * back refs conversion. 306 * 307 * When a tree block is COWed through a tree, there are four cases: 308 * 309 * The reference count of the block is one and the tree is the block's 310 * owner tree. Nothing to do in this case. 311 * 312 * The reference count of the block is one and the tree is not the 313 * block's owner tree. In this case, full back refs is used for pointers 314 * in the block. Remove these full back refs, add implicit back refs for 315 * every pointers in the new block. 316 * 317 * The reference count of the block is greater than one and the tree is 318 * the block's owner tree. In this case, implicit back refs is used for 319 * pointers in the block. Add full back refs for every pointers in the 320 * block, increase lower level extents' reference counts. The original 321 * implicit back refs are entailed to the new block. 322 * 323 * The reference count of the block is greater than one and the tree is 324 * not the block's owner tree. Add implicit back refs for every pointer in 325 * the new block, increase lower level extents' reference count. 326 * 327 * Back Reference Key composing: 328 * 329 * The key objectid corresponds to the first byte in the extent, 330 * The key type is used to differentiate between types of back refs. 331 * There are different meanings of the key offset for different types 332 * of back refs. 333 * 334 * File extents can be referenced by: 335 * 336 * - multiple snapshots, subvolumes, or different generations in one subvol 337 * - different files inside a single subvolume 338 * - different offsets inside a file (bookend extents in file.c) 339 * 340 * The extent ref structure for the implicit back refs has fields for: 341 * 342 * - Objectid of the subvolume root 343 * - objectid of the file holding the reference 344 * - original offset in the file 345 * - how many bookend extents 346 * 347 * The key offset for the implicit back refs is hash of the first 348 * three fields. 349 * 350 * The extent ref structure for the full back refs has field for: 351 * 352 * - number of pointers in the tree leaf 353 * 354 * The key offset for the implicit back refs is the first byte of 355 * the tree leaf 356 * 357 * When a file extent is allocated, The implicit back refs is used. 358 * the fields are filled in: 359 * 360 * (root_key.objectid, inode objectid, offset in file, 1) 361 * 362 * When a file extent is removed file truncation, we find the 363 * corresponding implicit back refs and check the following fields: 364 * 365 * (btrfs_header_owner(leaf), inode objectid, offset in file) 366 * 367 * Btree extents can be referenced by: 368 * 369 * - Different subvolumes 370 * 371 * Both the implicit back refs and the full back refs for tree blocks 372 * only consist of key. The key offset for the implicit back refs is 373 * objectid of block's owner tree. The key offset for the full back refs 374 * is the first byte of parent block. 375 * 376 * When implicit back refs is used, information about the lowest key and 377 * level of the tree block are required. These information are stored in 378 * tree block info structure. 379 */ 380 381 /* 382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 385 */ 386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 387 struct btrfs_extent_inline_ref *iref, 388 enum btrfs_inline_ref_type is_data) 389 { 390 int type = btrfs_extent_inline_ref_type(eb, iref); 391 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 392 393 if (type == BTRFS_TREE_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_BLOCK_REF_KEY || 395 type == BTRFS_SHARED_DATA_REF_KEY || 396 type == BTRFS_EXTENT_DATA_REF_KEY) { 397 if (is_data == BTRFS_REF_TYPE_BLOCK) { 398 if (type == BTRFS_TREE_BLOCK_REF_KEY) 399 return type; 400 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 401 ASSERT(eb->fs_info); 402 /* 403 * Every shared one has parent tree block, 404 * which must be aligned to sector size. 405 */ 406 if (offset && 407 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 408 return type; 409 } 410 } else if (is_data == BTRFS_REF_TYPE_DATA) { 411 if (type == BTRFS_EXTENT_DATA_REF_KEY) 412 return type; 413 if (type == BTRFS_SHARED_DATA_REF_KEY) { 414 ASSERT(eb->fs_info); 415 /* 416 * Every shared one has parent tree block, 417 * which must be aligned to sector size. 418 */ 419 if (offset && 420 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 421 return type; 422 } 423 } else { 424 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 425 return type; 426 } 427 } 428 429 btrfs_print_leaf((struct extent_buffer *)eb); 430 btrfs_err(eb->fs_info, 431 "eb %llu iref 0x%lx invalid extent inline ref type %d", 432 eb->start, (unsigned long)iref, type); 433 WARN_ON(1); 434 435 return BTRFS_REF_TYPE_INVALID; 436 } 437 438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 439 { 440 u32 high_crc = ~(u32)0; 441 u32 low_crc = ~(u32)0; 442 __le64 lenum; 443 444 lenum = cpu_to_le64(root_objectid); 445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 446 lenum = cpu_to_le64(owner); 447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 448 lenum = cpu_to_le64(offset); 449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 450 451 return ((u64)high_crc << 31) ^ (u64)low_crc; 452 } 453 454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 455 struct btrfs_extent_data_ref *ref) 456 { 457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 458 btrfs_extent_data_ref_objectid(leaf, ref), 459 btrfs_extent_data_ref_offset(leaf, ref)); 460 } 461 462 static int match_extent_data_ref(struct extent_buffer *leaf, 463 struct btrfs_extent_data_ref *ref, 464 u64 root_objectid, u64 owner, u64 offset) 465 { 466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 467 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 468 btrfs_extent_data_ref_offset(leaf, ref) != offset) 469 return 0; 470 return 1; 471 } 472 473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_path *path, 475 u64 bytenr, u64 parent, 476 u64 root_objectid, 477 u64 owner, u64 offset) 478 { 479 struct btrfs_root *root = trans->fs_info->extent_root; 480 struct btrfs_key key; 481 struct btrfs_extent_data_ref *ref; 482 struct extent_buffer *leaf; 483 u32 nritems; 484 int ret; 485 int recow; 486 int err = -ENOENT; 487 488 key.objectid = bytenr; 489 if (parent) { 490 key.type = BTRFS_SHARED_DATA_REF_KEY; 491 key.offset = parent; 492 } else { 493 key.type = BTRFS_EXTENT_DATA_REF_KEY; 494 key.offset = hash_extent_data_ref(root_objectid, 495 owner, offset); 496 } 497 again: 498 recow = 0; 499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 500 if (ret < 0) { 501 err = ret; 502 goto fail; 503 } 504 505 if (parent) { 506 if (!ret) 507 return 0; 508 goto fail; 509 } 510 511 leaf = path->nodes[0]; 512 nritems = btrfs_header_nritems(leaf); 513 while (1) { 514 if (path->slots[0] >= nritems) { 515 ret = btrfs_next_leaf(root, path); 516 if (ret < 0) 517 err = ret; 518 if (ret) 519 goto fail; 520 521 leaf = path->nodes[0]; 522 nritems = btrfs_header_nritems(leaf); 523 recow = 1; 524 } 525 526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 527 if (key.objectid != bytenr || 528 key.type != BTRFS_EXTENT_DATA_REF_KEY) 529 goto fail; 530 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_extent_data_ref); 533 534 if (match_extent_data_ref(leaf, ref, root_objectid, 535 owner, offset)) { 536 if (recow) { 537 btrfs_release_path(path); 538 goto again; 539 } 540 err = 0; 541 break; 542 } 543 path->slots[0]++; 544 } 545 fail: 546 return err; 547 } 548 549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 550 struct btrfs_path *path, 551 u64 bytenr, u64 parent, 552 u64 root_objectid, u64 owner, 553 u64 offset, int refs_to_add) 554 { 555 struct btrfs_root *root = trans->fs_info->extent_root; 556 struct btrfs_key key; 557 struct extent_buffer *leaf; 558 u32 size; 559 u32 num_refs; 560 int ret; 561 562 key.objectid = bytenr; 563 if (parent) { 564 key.type = BTRFS_SHARED_DATA_REF_KEY; 565 key.offset = parent; 566 size = sizeof(struct btrfs_shared_data_ref); 567 } else { 568 key.type = BTRFS_EXTENT_DATA_REF_KEY; 569 key.offset = hash_extent_data_ref(root_objectid, 570 owner, offset); 571 size = sizeof(struct btrfs_extent_data_ref); 572 } 573 574 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 575 if (ret && ret != -EEXIST) 576 goto fail; 577 578 leaf = path->nodes[0]; 579 if (parent) { 580 struct btrfs_shared_data_ref *ref; 581 ref = btrfs_item_ptr(leaf, path->slots[0], 582 struct btrfs_shared_data_ref); 583 if (ret == 0) { 584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_shared_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 589 } 590 } else { 591 struct btrfs_extent_data_ref *ref; 592 while (ret == -EEXIST) { 593 ref = btrfs_item_ptr(leaf, path->slots[0], 594 struct btrfs_extent_data_ref); 595 if (match_extent_data_ref(leaf, ref, root_objectid, 596 owner, offset)) 597 break; 598 btrfs_release_path(path); 599 key.offset++; 600 ret = btrfs_insert_empty_item(trans, root, path, &key, 601 size); 602 if (ret && ret != -EEXIST) 603 goto fail; 604 605 leaf = path->nodes[0]; 606 } 607 ref = btrfs_item_ptr(leaf, path->slots[0], 608 struct btrfs_extent_data_ref); 609 if (ret == 0) { 610 btrfs_set_extent_data_ref_root(leaf, ref, 611 root_objectid); 612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 613 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 615 } else { 616 num_refs = btrfs_extent_data_ref_count(leaf, ref); 617 num_refs += refs_to_add; 618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 619 } 620 } 621 btrfs_mark_buffer_dirty(leaf); 622 ret = 0; 623 fail: 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 629 struct btrfs_path *path, 630 int refs_to_drop, int *last_ref) 631 { 632 struct btrfs_key key; 633 struct btrfs_extent_data_ref *ref1 = NULL; 634 struct btrfs_shared_data_ref *ref2 = NULL; 635 struct extent_buffer *leaf; 636 u32 num_refs = 0; 637 int ret = 0; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 643 ref1 = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_extent_data_ref); 645 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 647 ref2 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_shared_data_ref); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 651 btrfs_print_v0_err(trans->fs_info); 652 btrfs_abort_transaction(trans, -EINVAL); 653 return -EINVAL; 654 } else { 655 BUG(); 656 } 657 658 BUG_ON(num_refs < refs_to_drop); 659 num_refs -= refs_to_drop; 660 661 if (num_refs == 0) { 662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 663 *last_ref = 1; 664 } else { 665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 669 btrfs_mark_buffer_dirty(leaf); 670 } 671 return ret; 672 } 673 674 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 675 struct btrfs_extent_inline_ref *iref) 676 { 677 struct btrfs_key key; 678 struct extent_buffer *leaf; 679 struct btrfs_extent_data_ref *ref1; 680 struct btrfs_shared_data_ref *ref2; 681 u32 num_refs = 0; 682 int type; 683 684 leaf = path->nodes[0]; 685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 686 687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 688 if (iref) { 689 /* 690 * If type is invalid, we should have bailed out earlier than 691 * this call. 692 */ 693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 694 ASSERT(type != BTRFS_REF_TYPE_INVALID); 695 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 697 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 698 } else { 699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 700 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 701 } 702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 703 ref1 = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_extent_data_ref); 705 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 707 ref2 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_shared_data_ref); 709 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 710 } else { 711 WARN_ON(1); 712 } 713 return num_refs; 714 } 715 716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = trans->fs_info->extent_root; 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 735 if (ret > 0) 736 ret = -ENOENT; 737 return ret; 738 } 739 740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 741 struct btrfs_path *path, 742 u64 bytenr, u64 parent, 743 u64 root_objectid) 744 { 745 struct btrfs_key key; 746 int ret; 747 748 key.objectid = bytenr; 749 if (parent) { 750 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 751 key.offset = parent; 752 } else { 753 key.type = BTRFS_TREE_BLOCK_REF_KEY; 754 key.offset = root_objectid; 755 } 756 757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 758 path, &key, 0); 759 btrfs_release_path(path); 760 return ret; 761 } 762 763 static inline int extent_ref_type(u64 parent, u64 owner) 764 { 765 int type; 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (parent > 0) 768 type = BTRFS_SHARED_BLOCK_REF_KEY; 769 else 770 type = BTRFS_TREE_BLOCK_REF_KEY; 771 } else { 772 if (parent > 0) 773 type = BTRFS_SHARED_DATA_REF_KEY; 774 else 775 type = BTRFS_EXTENT_DATA_REF_KEY; 776 } 777 return type; 778 } 779 780 static int find_next_key(struct btrfs_path *path, int level, 781 struct btrfs_key *key) 782 783 { 784 for (; level < BTRFS_MAX_LEVEL; level++) { 785 if (!path->nodes[level]) 786 break; 787 if (path->slots[level] + 1 >= 788 btrfs_header_nritems(path->nodes[level])) 789 continue; 790 if (level == 0) 791 btrfs_item_key_to_cpu(path->nodes[level], key, 792 path->slots[level] + 1); 793 else 794 btrfs_node_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 return 0; 797 } 798 return 1; 799 } 800 801 /* 802 * look for inline back ref. if back ref is found, *ref_ret is set 803 * to the address of inline back ref, and 0 is returned. 804 * 805 * if back ref isn't found, *ref_ret is set to the address where it 806 * should be inserted, and -ENOENT is returned. 807 * 808 * if insert is true and there are too many inline back refs, the path 809 * points to the extent item, and -EAGAIN is returned. 810 * 811 * NOTE: inline back refs are ordered in the same way that back ref 812 * items in the tree are ordered. 813 */ 814 static noinline_for_stack 815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_extent_inline_ref **ref_ret, 818 u64 bytenr, u64 num_bytes, 819 u64 parent, u64 root_objectid, 820 u64 owner, u64 offset, int insert) 821 { 822 struct btrfs_fs_info *fs_info = trans->fs_info; 823 struct btrfs_root *root = fs_info->extent_root; 824 struct btrfs_key key; 825 struct extent_buffer *leaf; 826 struct btrfs_extent_item *ei; 827 struct btrfs_extent_inline_ref *iref; 828 u64 flags; 829 u64 item_size; 830 unsigned long ptr; 831 unsigned long end; 832 int extra_size; 833 int type; 834 int want; 835 int ret; 836 int err = 0; 837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 838 int needed; 839 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 844 want = extent_ref_type(parent, owner); 845 if (insert) { 846 extra_size = btrfs_extent_inline_ref_size(want); 847 path->search_for_extension = 1; 848 path->keep_locks = 1; 849 } else 850 extra_size = -1; 851 852 /* 853 * Owner is our level, so we can just add one to get the level for the 854 * block we are interested in. 855 */ 856 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 857 key.type = BTRFS_METADATA_ITEM_KEY; 858 key.offset = owner; 859 } 860 861 again: 862 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 863 if (ret < 0) { 864 err = ret; 865 goto out; 866 } 867 868 /* 869 * We may be a newly converted file system which still has the old fat 870 * extent entries for metadata, so try and see if we have one of those. 871 */ 872 if (ret > 0 && skinny_metadata) { 873 skinny_metadata = false; 874 if (path->slots[0]) { 875 path->slots[0]--; 876 btrfs_item_key_to_cpu(path->nodes[0], &key, 877 path->slots[0]); 878 if (key.objectid == bytenr && 879 key.type == BTRFS_EXTENT_ITEM_KEY && 880 key.offset == num_bytes) 881 ret = 0; 882 } 883 if (ret) { 884 key.objectid = bytenr; 885 key.type = BTRFS_EXTENT_ITEM_KEY; 886 key.offset = num_bytes; 887 btrfs_release_path(path); 888 goto again; 889 } 890 } 891 892 if (ret && !insert) { 893 err = -ENOENT; 894 goto out; 895 } else if (WARN_ON(ret)) { 896 err = -EIO; 897 goto out; 898 } 899 900 leaf = path->nodes[0]; 901 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 902 if (unlikely(item_size < sizeof(*ei))) { 903 err = -EINVAL; 904 btrfs_print_v0_err(fs_info); 905 btrfs_abort_transaction(trans, err); 906 goto out; 907 } 908 909 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 910 flags = btrfs_extent_flags(leaf, ei); 911 912 ptr = (unsigned long)(ei + 1); 913 end = (unsigned long)ei + item_size; 914 915 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 916 ptr += sizeof(struct btrfs_tree_block_info); 917 BUG_ON(ptr > end); 918 } 919 920 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 921 needed = BTRFS_REF_TYPE_DATA; 922 else 923 needed = BTRFS_REF_TYPE_BLOCK; 924 925 err = -ENOENT; 926 while (1) { 927 if (ptr >= end) { 928 WARN_ON(ptr > end); 929 break; 930 } 931 iref = (struct btrfs_extent_inline_ref *)ptr; 932 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 933 if (type == BTRFS_REF_TYPE_INVALID) { 934 err = -EUCLEAN; 935 goto out; 936 } 937 938 if (want < type) 939 break; 940 if (want > type) { 941 ptr += btrfs_extent_inline_ref_size(type); 942 continue; 943 } 944 945 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 946 struct btrfs_extent_data_ref *dref; 947 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 948 if (match_extent_data_ref(leaf, dref, root_objectid, 949 owner, offset)) { 950 err = 0; 951 break; 952 } 953 if (hash_extent_data_ref_item(leaf, dref) < 954 hash_extent_data_ref(root_objectid, owner, offset)) 955 break; 956 } else { 957 u64 ref_offset; 958 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 959 if (parent > 0) { 960 if (parent == ref_offset) { 961 err = 0; 962 break; 963 } 964 if (ref_offset < parent) 965 break; 966 } else { 967 if (root_objectid == ref_offset) { 968 err = 0; 969 break; 970 } 971 if (ref_offset < root_objectid) 972 break; 973 } 974 } 975 ptr += btrfs_extent_inline_ref_size(type); 976 } 977 if (err == -ENOENT && insert) { 978 if (item_size + extra_size >= 979 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 980 err = -EAGAIN; 981 goto out; 982 } 983 /* 984 * To add new inline back ref, we have to make sure 985 * there is no corresponding back ref item. 986 * For simplicity, we just do not add new inline back 987 * ref if there is any kind of item for this block 988 */ 989 if (find_next_key(path, 0, &key) == 0 && 990 key.objectid == bytenr && 991 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 992 err = -EAGAIN; 993 goto out; 994 } 995 } 996 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 997 out: 998 if (insert) { 999 path->keep_locks = 0; 1000 path->search_for_extension = 0; 1001 btrfs_unlock_up_safe(path, 1); 1002 } 1003 return err; 1004 } 1005 1006 /* 1007 * helper to add new inline back ref 1008 */ 1009 static noinline_for_stack 1010 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1011 struct btrfs_path *path, 1012 struct btrfs_extent_inline_ref *iref, 1013 u64 parent, u64 root_objectid, 1014 u64 owner, u64 offset, int refs_to_add, 1015 struct btrfs_delayed_extent_op *extent_op) 1016 { 1017 struct extent_buffer *leaf; 1018 struct btrfs_extent_item *ei; 1019 unsigned long ptr; 1020 unsigned long end; 1021 unsigned long item_offset; 1022 u64 refs; 1023 int size; 1024 int type; 1025 1026 leaf = path->nodes[0]; 1027 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1028 item_offset = (unsigned long)iref - (unsigned long)ei; 1029 1030 type = extent_ref_type(parent, owner); 1031 size = btrfs_extent_inline_ref_size(type); 1032 1033 btrfs_extend_item(path, size); 1034 1035 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1036 refs = btrfs_extent_refs(leaf, ei); 1037 refs += refs_to_add; 1038 btrfs_set_extent_refs(leaf, ei, refs); 1039 if (extent_op) 1040 __run_delayed_extent_op(extent_op, leaf, ei); 1041 1042 ptr = (unsigned long)ei + item_offset; 1043 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1044 if (ptr < end - size) 1045 memmove_extent_buffer(leaf, ptr + size, ptr, 1046 end - size - ptr); 1047 1048 iref = (struct btrfs_extent_inline_ref *)ptr; 1049 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1050 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1051 struct btrfs_extent_data_ref *dref; 1052 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1053 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1054 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1055 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1056 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1057 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1058 struct btrfs_shared_data_ref *sref; 1059 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1060 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1062 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1064 } else { 1065 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1066 } 1067 btrfs_mark_buffer_dirty(leaf); 1068 } 1069 1070 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_extent_inline_ref **ref_ret, 1073 u64 bytenr, u64 num_bytes, u64 parent, 1074 u64 root_objectid, u64 owner, u64 offset) 1075 { 1076 int ret; 1077 1078 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1079 num_bytes, parent, root_objectid, 1080 owner, offset, 0); 1081 if (ret != -ENOENT) 1082 return ret; 1083 1084 btrfs_release_path(path); 1085 *ref_ret = NULL; 1086 1087 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1088 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1089 root_objectid); 1090 } else { 1091 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1092 root_objectid, owner, offset); 1093 } 1094 return ret; 1095 } 1096 1097 /* 1098 * helper to update/remove inline back ref 1099 */ 1100 static noinline_for_stack 1101 void update_inline_extent_backref(struct btrfs_path *path, 1102 struct btrfs_extent_inline_ref *iref, 1103 int refs_to_mod, 1104 struct btrfs_delayed_extent_op *extent_op, 1105 int *last_ref) 1106 { 1107 struct extent_buffer *leaf = path->nodes[0]; 1108 struct btrfs_extent_item *ei; 1109 struct btrfs_extent_data_ref *dref = NULL; 1110 struct btrfs_shared_data_ref *sref = NULL; 1111 unsigned long ptr; 1112 unsigned long end; 1113 u32 item_size; 1114 int size; 1115 int type; 1116 u64 refs; 1117 1118 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1119 refs = btrfs_extent_refs(leaf, ei); 1120 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1121 refs += refs_to_mod; 1122 btrfs_set_extent_refs(leaf, ei, refs); 1123 if (extent_op) 1124 __run_delayed_extent_op(extent_op, leaf, ei); 1125 1126 /* 1127 * If type is invalid, we should have bailed out after 1128 * lookup_inline_extent_backref(). 1129 */ 1130 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1131 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1132 1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1135 refs = btrfs_extent_data_ref_count(leaf, dref); 1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1137 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1138 refs = btrfs_shared_data_ref_count(leaf, sref); 1139 } else { 1140 refs = 1; 1141 BUG_ON(refs_to_mod != -1); 1142 } 1143 1144 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1145 refs += refs_to_mod; 1146 1147 if (refs > 0) { 1148 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1149 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1150 else 1151 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1152 } else { 1153 *last_ref = 1; 1154 size = btrfs_extent_inline_ref_size(type); 1155 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1156 ptr = (unsigned long)iref; 1157 end = (unsigned long)ei + item_size; 1158 if (ptr + size < end) 1159 memmove_extent_buffer(leaf, ptr, ptr + size, 1160 end - ptr - size); 1161 item_size -= size; 1162 btrfs_truncate_item(path, item_size, 1); 1163 } 1164 btrfs_mark_buffer_dirty(leaf); 1165 } 1166 1167 static noinline_for_stack 1168 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1169 struct btrfs_path *path, 1170 u64 bytenr, u64 num_bytes, u64 parent, 1171 u64 root_objectid, u64 owner, 1172 u64 offset, int refs_to_add, 1173 struct btrfs_delayed_extent_op *extent_op) 1174 { 1175 struct btrfs_extent_inline_ref *iref; 1176 int ret; 1177 1178 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1179 num_bytes, parent, root_objectid, 1180 owner, offset, 1); 1181 if (ret == 0) { 1182 /* 1183 * We're adding refs to a tree block we already own, this 1184 * should not happen at all. 1185 */ 1186 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1187 btrfs_crit(trans->fs_info, 1188 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1189 bytenr, num_bytes, root_objectid); 1190 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1191 WARN_ON(1); 1192 btrfs_crit(trans->fs_info, 1193 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1194 btrfs_print_leaf(path->nodes[0]); 1195 } 1196 return -EUCLEAN; 1197 } 1198 update_inline_extent_backref(path, iref, refs_to_add, 1199 extent_op, NULL); 1200 } else if (ret == -ENOENT) { 1201 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1202 root_objectid, owner, offset, 1203 refs_to_add, extent_op); 1204 ret = 0; 1205 } 1206 return ret; 1207 } 1208 1209 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1210 struct btrfs_path *path, 1211 struct btrfs_extent_inline_ref *iref, 1212 int refs_to_drop, int is_data, int *last_ref) 1213 { 1214 int ret = 0; 1215 1216 BUG_ON(!is_data && refs_to_drop != 1); 1217 if (iref) { 1218 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1219 last_ref); 1220 } else if (is_data) { 1221 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1222 last_ref); 1223 } else { 1224 *last_ref = 1; 1225 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1226 } 1227 return ret; 1228 } 1229 1230 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1231 u64 *discarded_bytes) 1232 { 1233 int j, ret = 0; 1234 u64 bytes_left, end; 1235 u64 aligned_start = ALIGN(start, 1 << 9); 1236 1237 if (WARN_ON(start != aligned_start)) { 1238 len -= aligned_start - start; 1239 len = round_down(len, 1 << 9); 1240 start = aligned_start; 1241 } 1242 1243 *discarded_bytes = 0; 1244 1245 if (!len) 1246 return 0; 1247 1248 end = start + len; 1249 bytes_left = len; 1250 1251 /* Skip any superblocks on this device. */ 1252 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1253 u64 sb_start = btrfs_sb_offset(j); 1254 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1255 u64 size = sb_start - start; 1256 1257 if (!in_range(sb_start, start, bytes_left) && 1258 !in_range(sb_end, start, bytes_left) && 1259 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1260 continue; 1261 1262 /* 1263 * Superblock spans beginning of range. Adjust start and 1264 * try again. 1265 */ 1266 if (sb_start <= start) { 1267 start += sb_end - start; 1268 if (start > end) { 1269 bytes_left = 0; 1270 break; 1271 } 1272 bytes_left = end - start; 1273 continue; 1274 } 1275 1276 if (size) { 1277 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1278 GFP_NOFS, 0); 1279 if (!ret) 1280 *discarded_bytes += size; 1281 else if (ret != -EOPNOTSUPP) 1282 return ret; 1283 } 1284 1285 start = sb_end; 1286 if (start > end) { 1287 bytes_left = 0; 1288 break; 1289 } 1290 bytes_left = end - start; 1291 } 1292 1293 if (bytes_left) { 1294 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1295 GFP_NOFS, 0); 1296 if (!ret) 1297 *discarded_bytes += bytes_left; 1298 } 1299 return ret; 1300 } 1301 1302 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1303 u64 num_bytes, u64 *actual_bytes) 1304 { 1305 int ret = 0; 1306 u64 discarded_bytes = 0; 1307 u64 end = bytenr + num_bytes; 1308 u64 cur = bytenr; 1309 struct btrfs_bio *bbio = NULL; 1310 1311 1312 /* 1313 * Avoid races with device replace and make sure our bbio has devices 1314 * associated to its stripes that don't go away while we are discarding. 1315 */ 1316 btrfs_bio_counter_inc_blocked(fs_info); 1317 while (cur < end) { 1318 struct btrfs_bio_stripe *stripe; 1319 int i; 1320 1321 num_bytes = end - cur; 1322 /* Tell the block device(s) that the sectors can be discarded */ 1323 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1324 &num_bytes, &bbio, 0); 1325 /* 1326 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1327 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1328 * thus we can't continue anyway. 1329 */ 1330 if (ret < 0) 1331 goto out; 1332 1333 stripe = bbio->stripes; 1334 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1335 u64 bytes; 1336 struct request_queue *req_q; 1337 1338 if (!stripe->dev->bdev) { 1339 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1340 continue; 1341 } 1342 req_q = bdev_get_queue(stripe->dev->bdev); 1343 if (!blk_queue_discard(req_q)) 1344 continue; 1345 1346 ret = btrfs_issue_discard(stripe->dev->bdev, 1347 stripe->physical, 1348 stripe->length, 1349 &bytes); 1350 if (!ret) { 1351 discarded_bytes += bytes; 1352 } else if (ret != -EOPNOTSUPP) { 1353 /* 1354 * Logic errors or -ENOMEM, or -EIO, but 1355 * unlikely to happen. 1356 * 1357 * And since there are two loops, explicitly 1358 * go to out to avoid confusion. 1359 */ 1360 btrfs_put_bbio(bbio); 1361 goto out; 1362 } 1363 1364 /* 1365 * Just in case we get back EOPNOTSUPP for some reason, 1366 * just ignore the return value so we don't screw up 1367 * people calling discard_extent. 1368 */ 1369 ret = 0; 1370 } 1371 btrfs_put_bbio(bbio); 1372 cur += num_bytes; 1373 } 1374 out: 1375 btrfs_bio_counter_dec(fs_info); 1376 1377 if (actual_bytes) 1378 *actual_bytes = discarded_bytes; 1379 1380 1381 if (ret == -EOPNOTSUPP) 1382 ret = 0; 1383 return ret; 1384 } 1385 1386 /* Can return -ENOMEM */ 1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1388 struct btrfs_ref *generic_ref) 1389 { 1390 struct btrfs_fs_info *fs_info = trans->fs_info; 1391 int old_ref_mod, new_ref_mod; 1392 int ret; 1393 1394 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1395 generic_ref->action); 1396 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1397 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1398 1399 if (generic_ref->type == BTRFS_REF_METADATA) 1400 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1401 NULL, &old_ref_mod, &new_ref_mod); 1402 else 1403 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1404 &old_ref_mod, &new_ref_mod); 1405 1406 btrfs_ref_tree_mod(fs_info, generic_ref); 1407 1408 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1409 sub_pinned_bytes(fs_info, generic_ref); 1410 1411 return ret; 1412 } 1413 1414 /* 1415 * __btrfs_inc_extent_ref - insert backreference for a given extent 1416 * 1417 * The counterpart is in __btrfs_free_extent(), with examples and more details 1418 * how it works. 1419 * 1420 * @trans: Handle of transaction 1421 * 1422 * @node: The delayed ref node used to get the bytenr/length for 1423 * extent whose references are incremented. 1424 * 1425 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1426 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1427 * bytenr of the parent block. Since new extents are always 1428 * created with indirect references, this will only be the case 1429 * when relocating a shared extent. In that case, root_objectid 1430 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1431 * be 0 1432 * 1433 * @root_objectid: The id of the root where this modification has originated, 1434 * this can be either one of the well-known metadata trees or 1435 * the subvolume id which references this extent. 1436 * 1437 * @owner: For data extents it is the inode number of the owning file. 1438 * For metadata extents this parameter holds the level in the 1439 * tree of the extent. 1440 * 1441 * @offset: For metadata extents the offset is ignored and is currently 1442 * always passed as 0. For data extents it is the fileoffset 1443 * this extent belongs to. 1444 * 1445 * @refs_to_add Number of references to add 1446 * 1447 * @extent_op Pointer to a structure, holding information necessary when 1448 * updating a tree block's flags 1449 * 1450 */ 1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1452 struct btrfs_delayed_ref_node *node, 1453 u64 parent, u64 root_objectid, 1454 u64 owner, u64 offset, int refs_to_add, 1455 struct btrfs_delayed_extent_op *extent_op) 1456 { 1457 struct btrfs_path *path; 1458 struct extent_buffer *leaf; 1459 struct btrfs_extent_item *item; 1460 struct btrfs_key key; 1461 u64 bytenr = node->bytenr; 1462 u64 num_bytes = node->num_bytes; 1463 u64 refs; 1464 int ret; 1465 1466 path = btrfs_alloc_path(); 1467 if (!path) 1468 return -ENOMEM; 1469 1470 /* this will setup the path even if it fails to insert the back ref */ 1471 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1472 parent, root_objectid, owner, 1473 offset, refs_to_add, extent_op); 1474 if ((ret < 0 && ret != -EAGAIN) || !ret) 1475 goto out; 1476 1477 /* 1478 * Ok we had -EAGAIN which means we didn't have space to insert and 1479 * inline extent ref, so just update the reference count and add a 1480 * normal backref. 1481 */ 1482 leaf = path->nodes[0]; 1483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1484 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1485 refs = btrfs_extent_refs(leaf, item); 1486 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1487 if (extent_op) 1488 __run_delayed_extent_op(extent_op, leaf, item); 1489 1490 btrfs_mark_buffer_dirty(leaf); 1491 btrfs_release_path(path); 1492 1493 /* now insert the actual backref */ 1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1495 BUG_ON(refs_to_add != 1); 1496 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1497 root_objectid); 1498 } else { 1499 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1500 root_objectid, owner, offset, 1501 refs_to_add); 1502 } 1503 if (ret) 1504 btrfs_abort_transaction(trans, ret); 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1511 struct btrfs_delayed_ref_node *node, 1512 struct btrfs_delayed_extent_op *extent_op, 1513 int insert_reserved) 1514 { 1515 int ret = 0; 1516 struct btrfs_delayed_data_ref *ref; 1517 struct btrfs_key ins; 1518 u64 parent = 0; 1519 u64 ref_root = 0; 1520 u64 flags = 0; 1521 1522 ins.objectid = node->bytenr; 1523 ins.offset = node->num_bytes; 1524 ins.type = BTRFS_EXTENT_ITEM_KEY; 1525 1526 ref = btrfs_delayed_node_to_data_ref(node); 1527 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1528 1529 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1530 parent = ref->parent; 1531 ref_root = ref->root; 1532 1533 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1534 if (extent_op) 1535 flags |= extent_op->flags_to_set; 1536 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1537 flags, ref->objectid, 1538 ref->offset, &ins, 1539 node->ref_mod); 1540 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1541 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1542 ref->objectid, ref->offset, 1543 node->ref_mod, extent_op); 1544 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1545 ret = __btrfs_free_extent(trans, node, parent, 1546 ref_root, ref->objectid, 1547 ref->offset, node->ref_mod, 1548 extent_op); 1549 } else { 1550 BUG(); 1551 } 1552 return ret; 1553 } 1554 1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1556 struct extent_buffer *leaf, 1557 struct btrfs_extent_item *ei) 1558 { 1559 u64 flags = btrfs_extent_flags(leaf, ei); 1560 if (extent_op->update_flags) { 1561 flags |= extent_op->flags_to_set; 1562 btrfs_set_extent_flags(leaf, ei, flags); 1563 } 1564 1565 if (extent_op->update_key) { 1566 struct btrfs_tree_block_info *bi; 1567 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1568 bi = (struct btrfs_tree_block_info *)(ei + 1); 1569 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1570 } 1571 } 1572 1573 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1574 struct btrfs_delayed_ref_head *head, 1575 struct btrfs_delayed_extent_op *extent_op) 1576 { 1577 struct btrfs_fs_info *fs_info = trans->fs_info; 1578 struct btrfs_key key; 1579 struct btrfs_path *path; 1580 struct btrfs_extent_item *ei; 1581 struct extent_buffer *leaf; 1582 u32 item_size; 1583 int ret; 1584 int err = 0; 1585 int metadata = !extent_op->is_data; 1586 1587 if (TRANS_ABORTED(trans)) 1588 return 0; 1589 1590 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1591 metadata = 0; 1592 1593 path = btrfs_alloc_path(); 1594 if (!path) 1595 return -ENOMEM; 1596 1597 key.objectid = head->bytenr; 1598 1599 if (metadata) { 1600 key.type = BTRFS_METADATA_ITEM_KEY; 1601 key.offset = extent_op->level; 1602 } else { 1603 key.type = BTRFS_EXTENT_ITEM_KEY; 1604 key.offset = head->num_bytes; 1605 } 1606 1607 again: 1608 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1609 if (ret < 0) { 1610 err = ret; 1611 goto out; 1612 } 1613 if (ret > 0) { 1614 if (metadata) { 1615 if (path->slots[0] > 0) { 1616 path->slots[0]--; 1617 btrfs_item_key_to_cpu(path->nodes[0], &key, 1618 path->slots[0]); 1619 if (key.objectid == head->bytenr && 1620 key.type == BTRFS_EXTENT_ITEM_KEY && 1621 key.offset == head->num_bytes) 1622 ret = 0; 1623 } 1624 if (ret > 0) { 1625 btrfs_release_path(path); 1626 metadata = 0; 1627 1628 key.objectid = head->bytenr; 1629 key.offset = head->num_bytes; 1630 key.type = BTRFS_EXTENT_ITEM_KEY; 1631 goto again; 1632 } 1633 } else { 1634 err = -EIO; 1635 goto out; 1636 } 1637 } 1638 1639 leaf = path->nodes[0]; 1640 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1641 1642 if (unlikely(item_size < sizeof(*ei))) { 1643 err = -EINVAL; 1644 btrfs_print_v0_err(fs_info); 1645 btrfs_abort_transaction(trans, err); 1646 goto out; 1647 } 1648 1649 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1650 __run_delayed_extent_op(extent_op, leaf, ei); 1651 1652 btrfs_mark_buffer_dirty(leaf); 1653 out: 1654 btrfs_free_path(path); 1655 return err; 1656 } 1657 1658 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1659 struct btrfs_delayed_ref_node *node, 1660 struct btrfs_delayed_extent_op *extent_op, 1661 int insert_reserved) 1662 { 1663 int ret = 0; 1664 struct btrfs_delayed_tree_ref *ref; 1665 u64 parent = 0; 1666 u64 ref_root = 0; 1667 1668 ref = btrfs_delayed_node_to_tree_ref(node); 1669 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1670 1671 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1672 parent = ref->parent; 1673 ref_root = ref->root; 1674 1675 if (node->ref_mod != 1) { 1676 btrfs_err(trans->fs_info, 1677 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1678 node->bytenr, node->ref_mod, node->action, ref_root, 1679 parent); 1680 return -EIO; 1681 } 1682 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1683 BUG_ON(!extent_op || !extent_op->update_flags); 1684 ret = alloc_reserved_tree_block(trans, node, extent_op); 1685 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1686 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1687 ref->level, 0, 1, extent_op); 1688 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1689 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1690 ref->level, 0, 1, extent_op); 1691 } else { 1692 BUG(); 1693 } 1694 return ret; 1695 } 1696 1697 /* helper function to actually process a single delayed ref entry */ 1698 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1699 struct btrfs_delayed_ref_node *node, 1700 struct btrfs_delayed_extent_op *extent_op, 1701 int insert_reserved) 1702 { 1703 int ret = 0; 1704 1705 if (TRANS_ABORTED(trans)) { 1706 if (insert_reserved) 1707 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1708 return 0; 1709 } 1710 1711 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1712 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1713 ret = run_delayed_tree_ref(trans, node, extent_op, 1714 insert_reserved); 1715 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1716 node->type == BTRFS_SHARED_DATA_REF_KEY) 1717 ret = run_delayed_data_ref(trans, node, extent_op, 1718 insert_reserved); 1719 else 1720 BUG(); 1721 if (ret && insert_reserved) 1722 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1723 return ret; 1724 } 1725 1726 static inline struct btrfs_delayed_ref_node * 1727 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1728 { 1729 struct btrfs_delayed_ref_node *ref; 1730 1731 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1732 return NULL; 1733 1734 /* 1735 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1736 * This is to prevent a ref count from going down to zero, which deletes 1737 * the extent item from the extent tree, when there still are references 1738 * to add, which would fail because they would not find the extent item. 1739 */ 1740 if (!list_empty(&head->ref_add_list)) 1741 return list_first_entry(&head->ref_add_list, 1742 struct btrfs_delayed_ref_node, add_list); 1743 1744 ref = rb_entry(rb_first_cached(&head->ref_tree), 1745 struct btrfs_delayed_ref_node, ref_node); 1746 ASSERT(list_empty(&ref->add_list)); 1747 return ref; 1748 } 1749 1750 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1751 struct btrfs_delayed_ref_head *head) 1752 { 1753 spin_lock(&delayed_refs->lock); 1754 head->processing = 0; 1755 delayed_refs->num_heads_ready++; 1756 spin_unlock(&delayed_refs->lock); 1757 btrfs_delayed_ref_unlock(head); 1758 } 1759 1760 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1761 struct btrfs_delayed_ref_head *head) 1762 { 1763 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1764 1765 if (!extent_op) 1766 return NULL; 1767 1768 if (head->must_insert_reserved) { 1769 head->extent_op = NULL; 1770 btrfs_free_delayed_extent_op(extent_op); 1771 return NULL; 1772 } 1773 return extent_op; 1774 } 1775 1776 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1777 struct btrfs_delayed_ref_head *head) 1778 { 1779 struct btrfs_delayed_extent_op *extent_op; 1780 int ret; 1781 1782 extent_op = cleanup_extent_op(head); 1783 if (!extent_op) 1784 return 0; 1785 head->extent_op = NULL; 1786 spin_unlock(&head->lock); 1787 ret = run_delayed_extent_op(trans, head, extent_op); 1788 btrfs_free_delayed_extent_op(extent_op); 1789 return ret ? ret : 1; 1790 } 1791 1792 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1793 struct btrfs_delayed_ref_root *delayed_refs, 1794 struct btrfs_delayed_ref_head *head) 1795 { 1796 int nr_items = 1; /* Dropping this ref head update. */ 1797 1798 if (head->total_ref_mod < 0) { 1799 struct btrfs_space_info *space_info; 1800 u64 flags; 1801 1802 if (head->is_data) 1803 flags = BTRFS_BLOCK_GROUP_DATA; 1804 else if (head->is_system) 1805 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1806 else 1807 flags = BTRFS_BLOCK_GROUP_METADATA; 1808 space_info = btrfs_find_space_info(fs_info, flags); 1809 ASSERT(space_info); 1810 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1811 -head->num_bytes, 1812 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1813 1814 /* 1815 * We had csum deletions accounted for in our delayed refs rsv, 1816 * we need to drop the csum leaves for this update from our 1817 * delayed_refs_rsv. 1818 */ 1819 if (head->is_data) { 1820 spin_lock(&delayed_refs->lock); 1821 delayed_refs->pending_csums -= head->num_bytes; 1822 spin_unlock(&delayed_refs->lock); 1823 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1824 head->num_bytes); 1825 } 1826 } 1827 1828 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1829 } 1830 1831 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1832 struct btrfs_delayed_ref_head *head) 1833 { 1834 1835 struct btrfs_fs_info *fs_info = trans->fs_info; 1836 struct btrfs_delayed_ref_root *delayed_refs; 1837 int ret; 1838 1839 delayed_refs = &trans->transaction->delayed_refs; 1840 1841 ret = run_and_cleanup_extent_op(trans, head); 1842 if (ret < 0) { 1843 unselect_delayed_ref_head(delayed_refs, head); 1844 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1845 return ret; 1846 } else if (ret) { 1847 return ret; 1848 } 1849 1850 /* 1851 * Need to drop our head ref lock and re-acquire the delayed ref lock 1852 * and then re-check to make sure nobody got added. 1853 */ 1854 spin_unlock(&head->lock); 1855 spin_lock(&delayed_refs->lock); 1856 spin_lock(&head->lock); 1857 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1858 spin_unlock(&head->lock); 1859 spin_unlock(&delayed_refs->lock); 1860 return 1; 1861 } 1862 btrfs_delete_ref_head(delayed_refs, head); 1863 spin_unlock(&head->lock); 1864 spin_unlock(&delayed_refs->lock); 1865 1866 if (head->must_insert_reserved) { 1867 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1868 if (head->is_data) { 1869 ret = btrfs_del_csums(trans, fs_info->csum_root, 1870 head->bytenr, head->num_bytes); 1871 } 1872 } 1873 1874 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1875 1876 trace_run_delayed_ref_head(fs_info, head, 0); 1877 btrfs_delayed_ref_unlock(head); 1878 btrfs_put_delayed_ref_head(head); 1879 return 0; 1880 } 1881 1882 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1883 struct btrfs_trans_handle *trans) 1884 { 1885 struct btrfs_delayed_ref_root *delayed_refs = 1886 &trans->transaction->delayed_refs; 1887 struct btrfs_delayed_ref_head *head = NULL; 1888 int ret; 1889 1890 spin_lock(&delayed_refs->lock); 1891 head = btrfs_select_ref_head(delayed_refs); 1892 if (!head) { 1893 spin_unlock(&delayed_refs->lock); 1894 return head; 1895 } 1896 1897 /* 1898 * Grab the lock that says we are going to process all the refs for 1899 * this head 1900 */ 1901 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1902 spin_unlock(&delayed_refs->lock); 1903 1904 /* 1905 * We may have dropped the spin lock to get the head mutex lock, and 1906 * that might have given someone else time to free the head. If that's 1907 * true, it has been removed from our list and we can move on. 1908 */ 1909 if (ret == -EAGAIN) 1910 head = ERR_PTR(-EAGAIN); 1911 1912 return head; 1913 } 1914 1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1916 struct btrfs_delayed_ref_head *locked_ref, 1917 unsigned long *run_refs) 1918 { 1919 struct btrfs_fs_info *fs_info = trans->fs_info; 1920 struct btrfs_delayed_ref_root *delayed_refs; 1921 struct btrfs_delayed_extent_op *extent_op; 1922 struct btrfs_delayed_ref_node *ref; 1923 int must_insert_reserved = 0; 1924 int ret; 1925 1926 delayed_refs = &trans->transaction->delayed_refs; 1927 1928 lockdep_assert_held(&locked_ref->mutex); 1929 lockdep_assert_held(&locked_ref->lock); 1930 1931 while ((ref = select_delayed_ref(locked_ref))) { 1932 if (ref->seq && 1933 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1934 spin_unlock(&locked_ref->lock); 1935 unselect_delayed_ref_head(delayed_refs, locked_ref); 1936 return -EAGAIN; 1937 } 1938 1939 (*run_refs)++; 1940 ref->in_tree = 0; 1941 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1942 RB_CLEAR_NODE(&ref->ref_node); 1943 if (!list_empty(&ref->add_list)) 1944 list_del(&ref->add_list); 1945 /* 1946 * When we play the delayed ref, also correct the ref_mod on 1947 * head 1948 */ 1949 switch (ref->action) { 1950 case BTRFS_ADD_DELAYED_REF: 1951 case BTRFS_ADD_DELAYED_EXTENT: 1952 locked_ref->ref_mod -= ref->ref_mod; 1953 break; 1954 case BTRFS_DROP_DELAYED_REF: 1955 locked_ref->ref_mod += ref->ref_mod; 1956 break; 1957 default: 1958 WARN_ON(1); 1959 } 1960 atomic_dec(&delayed_refs->num_entries); 1961 1962 /* 1963 * Record the must_insert_reserved flag before we drop the 1964 * spin lock. 1965 */ 1966 must_insert_reserved = locked_ref->must_insert_reserved; 1967 locked_ref->must_insert_reserved = 0; 1968 1969 extent_op = locked_ref->extent_op; 1970 locked_ref->extent_op = NULL; 1971 spin_unlock(&locked_ref->lock); 1972 1973 ret = run_one_delayed_ref(trans, ref, extent_op, 1974 must_insert_reserved); 1975 1976 btrfs_free_delayed_extent_op(extent_op); 1977 if (ret) { 1978 unselect_delayed_ref_head(delayed_refs, locked_ref); 1979 btrfs_put_delayed_ref(ref); 1980 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1981 ret); 1982 return ret; 1983 } 1984 1985 btrfs_put_delayed_ref(ref); 1986 cond_resched(); 1987 1988 spin_lock(&locked_ref->lock); 1989 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1990 } 1991 1992 return 0; 1993 } 1994 1995 /* 1996 * Returns 0 on success or if called with an already aborted transaction. 1997 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1998 */ 1999 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2000 unsigned long nr) 2001 { 2002 struct btrfs_fs_info *fs_info = trans->fs_info; 2003 struct btrfs_delayed_ref_root *delayed_refs; 2004 struct btrfs_delayed_ref_head *locked_ref = NULL; 2005 ktime_t start = ktime_get(); 2006 int ret; 2007 unsigned long count = 0; 2008 unsigned long actual_count = 0; 2009 2010 delayed_refs = &trans->transaction->delayed_refs; 2011 do { 2012 if (!locked_ref) { 2013 locked_ref = btrfs_obtain_ref_head(trans); 2014 if (IS_ERR_OR_NULL(locked_ref)) { 2015 if (PTR_ERR(locked_ref) == -EAGAIN) { 2016 continue; 2017 } else { 2018 break; 2019 } 2020 } 2021 count++; 2022 } 2023 /* 2024 * We need to try and merge add/drops of the same ref since we 2025 * can run into issues with relocate dropping the implicit ref 2026 * and then it being added back again before the drop can 2027 * finish. If we merged anything we need to re-loop so we can 2028 * get a good ref. 2029 * Or we can get node references of the same type that weren't 2030 * merged when created due to bumps in the tree mod seq, and 2031 * we need to merge them to prevent adding an inline extent 2032 * backref before dropping it (triggering a BUG_ON at 2033 * insert_inline_extent_backref()). 2034 */ 2035 spin_lock(&locked_ref->lock); 2036 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2037 2038 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2039 &actual_count); 2040 if (ret < 0 && ret != -EAGAIN) { 2041 /* 2042 * Error, btrfs_run_delayed_refs_for_head already 2043 * unlocked everything so just bail out 2044 */ 2045 return ret; 2046 } else if (!ret) { 2047 /* 2048 * Success, perform the usual cleanup of a processed 2049 * head 2050 */ 2051 ret = cleanup_ref_head(trans, locked_ref); 2052 if (ret > 0 ) { 2053 /* We dropped our lock, we need to loop. */ 2054 ret = 0; 2055 continue; 2056 } else if (ret) { 2057 return ret; 2058 } 2059 } 2060 2061 /* 2062 * Either success case or btrfs_run_delayed_refs_for_head 2063 * returned -EAGAIN, meaning we need to select another head 2064 */ 2065 2066 locked_ref = NULL; 2067 cond_resched(); 2068 } while ((nr != -1 && count < nr) || locked_ref); 2069 2070 /* 2071 * We don't want to include ref heads since we can have empty ref heads 2072 * and those will drastically skew our runtime down since we just do 2073 * accounting, no actual extent tree updates. 2074 */ 2075 if (actual_count > 0) { 2076 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2077 u64 avg; 2078 2079 /* 2080 * We weigh the current average higher than our current runtime 2081 * to avoid large swings in the average. 2082 */ 2083 spin_lock(&delayed_refs->lock); 2084 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2085 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2086 spin_unlock(&delayed_refs->lock); 2087 } 2088 return 0; 2089 } 2090 2091 #ifdef SCRAMBLE_DELAYED_REFS 2092 /* 2093 * Normally delayed refs get processed in ascending bytenr order. This 2094 * correlates in most cases to the order added. To expose dependencies on this 2095 * order, we start to process the tree in the middle instead of the beginning 2096 */ 2097 static u64 find_middle(struct rb_root *root) 2098 { 2099 struct rb_node *n = root->rb_node; 2100 struct btrfs_delayed_ref_node *entry; 2101 int alt = 1; 2102 u64 middle; 2103 u64 first = 0, last = 0; 2104 2105 n = rb_first(root); 2106 if (n) { 2107 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2108 first = entry->bytenr; 2109 } 2110 n = rb_last(root); 2111 if (n) { 2112 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2113 last = entry->bytenr; 2114 } 2115 n = root->rb_node; 2116 2117 while (n) { 2118 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2119 WARN_ON(!entry->in_tree); 2120 2121 middle = entry->bytenr; 2122 2123 if (alt) 2124 n = n->rb_left; 2125 else 2126 n = n->rb_right; 2127 2128 alt = 1 - alt; 2129 } 2130 return middle; 2131 } 2132 #endif 2133 2134 /* 2135 * this starts processing the delayed reference count updates and 2136 * extent insertions we have queued up so far. count can be 2137 * 0, which means to process everything in the tree at the start 2138 * of the run (but not newly added entries), or it can be some target 2139 * number you'd like to process. 2140 * 2141 * Returns 0 on success or if called with an aborted transaction 2142 * Returns <0 on error and aborts the transaction 2143 */ 2144 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2145 unsigned long count) 2146 { 2147 struct btrfs_fs_info *fs_info = trans->fs_info; 2148 struct rb_node *node; 2149 struct btrfs_delayed_ref_root *delayed_refs; 2150 struct btrfs_delayed_ref_head *head; 2151 int ret; 2152 int run_all = count == (unsigned long)-1; 2153 2154 /* We'll clean this up in btrfs_cleanup_transaction */ 2155 if (TRANS_ABORTED(trans)) 2156 return 0; 2157 2158 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2159 return 0; 2160 2161 delayed_refs = &trans->transaction->delayed_refs; 2162 if (count == 0) 2163 count = atomic_read(&delayed_refs->num_entries) * 2; 2164 2165 again: 2166 #ifdef SCRAMBLE_DELAYED_REFS 2167 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2168 #endif 2169 ret = __btrfs_run_delayed_refs(trans, count); 2170 if (ret < 0) { 2171 btrfs_abort_transaction(trans, ret); 2172 return ret; 2173 } 2174 2175 if (run_all) { 2176 btrfs_create_pending_block_groups(trans); 2177 2178 spin_lock(&delayed_refs->lock); 2179 node = rb_first_cached(&delayed_refs->href_root); 2180 if (!node) { 2181 spin_unlock(&delayed_refs->lock); 2182 goto out; 2183 } 2184 head = rb_entry(node, struct btrfs_delayed_ref_head, 2185 href_node); 2186 refcount_inc(&head->refs); 2187 spin_unlock(&delayed_refs->lock); 2188 2189 /* Mutex was contended, block until it's released and retry. */ 2190 mutex_lock(&head->mutex); 2191 mutex_unlock(&head->mutex); 2192 2193 btrfs_put_delayed_ref_head(head); 2194 cond_resched(); 2195 goto again; 2196 } 2197 out: 2198 return 0; 2199 } 2200 2201 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2202 struct extent_buffer *eb, u64 flags, 2203 int level, int is_data) 2204 { 2205 struct btrfs_delayed_extent_op *extent_op; 2206 int ret; 2207 2208 extent_op = btrfs_alloc_delayed_extent_op(); 2209 if (!extent_op) 2210 return -ENOMEM; 2211 2212 extent_op->flags_to_set = flags; 2213 extent_op->update_flags = true; 2214 extent_op->update_key = false; 2215 extent_op->is_data = is_data ? true : false; 2216 extent_op->level = level; 2217 2218 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2219 if (ret) 2220 btrfs_free_delayed_extent_op(extent_op); 2221 return ret; 2222 } 2223 2224 static noinline int check_delayed_ref(struct btrfs_root *root, 2225 struct btrfs_path *path, 2226 u64 objectid, u64 offset, u64 bytenr) 2227 { 2228 struct btrfs_delayed_ref_head *head; 2229 struct btrfs_delayed_ref_node *ref; 2230 struct btrfs_delayed_data_ref *data_ref; 2231 struct btrfs_delayed_ref_root *delayed_refs; 2232 struct btrfs_transaction *cur_trans; 2233 struct rb_node *node; 2234 int ret = 0; 2235 2236 spin_lock(&root->fs_info->trans_lock); 2237 cur_trans = root->fs_info->running_transaction; 2238 if (cur_trans) 2239 refcount_inc(&cur_trans->use_count); 2240 spin_unlock(&root->fs_info->trans_lock); 2241 if (!cur_trans) 2242 return 0; 2243 2244 delayed_refs = &cur_trans->delayed_refs; 2245 spin_lock(&delayed_refs->lock); 2246 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2247 if (!head) { 2248 spin_unlock(&delayed_refs->lock); 2249 btrfs_put_transaction(cur_trans); 2250 return 0; 2251 } 2252 2253 if (!mutex_trylock(&head->mutex)) { 2254 refcount_inc(&head->refs); 2255 spin_unlock(&delayed_refs->lock); 2256 2257 btrfs_release_path(path); 2258 2259 /* 2260 * Mutex was contended, block until it's released and let 2261 * caller try again 2262 */ 2263 mutex_lock(&head->mutex); 2264 mutex_unlock(&head->mutex); 2265 btrfs_put_delayed_ref_head(head); 2266 btrfs_put_transaction(cur_trans); 2267 return -EAGAIN; 2268 } 2269 spin_unlock(&delayed_refs->lock); 2270 2271 spin_lock(&head->lock); 2272 /* 2273 * XXX: We should replace this with a proper search function in the 2274 * future. 2275 */ 2276 for (node = rb_first_cached(&head->ref_tree); node; 2277 node = rb_next(node)) { 2278 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2279 /* If it's a shared ref we know a cross reference exists */ 2280 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2281 ret = 1; 2282 break; 2283 } 2284 2285 data_ref = btrfs_delayed_node_to_data_ref(ref); 2286 2287 /* 2288 * If our ref doesn't match the one we're currently looking at 2289 * then we have a cross reference. 2290 */ 2291 if (data_ref->root != root->root_key.objectid || 2292 data_ref->objectid != objectid || 2293 data_ref->offset != offset) { 2294 ret = 1; 2295 break; 2296 } 2297 } 2298 spin_unlock(&head->lock); 2299 mutex_unlock(&head->mutex); 2300 btrfs_put_transaction(cur_trans); 2301 return ret; 2302 } 2303 2304 static noinline int check_committed_ref(struct btrfs_root *root, 2305 struct btrfs_path *path, 2306 u64 objectid, u64 offset, u64 bytenr, 2307 bool strict) 2308 { 2309 struct btrfs_fs_info *fs_info = root->fs_info; 2310 struct btrfs_root *extent_root = fs_info->extent_root; 2311 struct extent_buffer *leaf; 2312 struct btrfs_extent_data_ref *ref; 2313 struct btrfs_extent_inline_ref *iref; 2314 struct btrfs_extent_item *ei; 2315 struct btrfs_key key; 2316 u32 item_size; 2317 int type; 2318 int ret; 2319 2320 key.objectid = bytenr; 2321 key.offset = (u64)-1; 2322 key.type = BTRFS_EXTENT_ITEM_KEY; 2323 2324 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2325 if (ret < 0) 2326 goto out; 2327 BUG_ON(ret == 0); /* Corruption */ 2328 2329 ret = -ENOENT; 2330 if (path->slots[0] == 0) 2331 goto out; 2332 2333 path->slots[0]--; 2334 leaf = path->nodes[0]; 2335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2336 2337 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2338 goto out; 2339 2340 ret = 1; 2341 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2342 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2343 2344 /* If extent item has more than 1 inline ref then it's shared */ 2345 if (item_size != sizeof(*ei) + 2346 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2347 goto out; 2348 2349 /* 2350 * If extent created before last snapshot => it's shared unless the 2351 * snapshot has been deleted. Use the heuristic if strict is false. 2352 */ 2353 if (!strict && 2354 (btrfs_extent_generation(leaf, ei) <= 2355 btrfs_root_last_snapshot(&root->root_item))) 2356 goto out; 2357 2358 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2359 2360 /* If this extent has SHARED_DATA_REF then it's shared */ 2361 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2362 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2363 goto out; 2364 2365 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2366 if (btrfs_extent_refs(leaf, ei) != 2367 btrfs_extent_data_ref_count(leaf, ref) || 2368 btrfs_extent_data_ref_root(leaf, ref) != 2369 root->root_key.objectid || 2370 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2371 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2372 goto out; 2373 2374 ret = 0; 2375 out: 2376 return ret; 2377 } 2378 2379 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2380 u64 bytenr, bool strict) 2381 { 2382 struct btrfs_path *path; 2383 int ret; 2384 2385 path = btrfs_alloc_path(); 2386 if (!path) 2387 return -ENOMEM; 2388 2389 do { 2390 ret = check_committed_ref(root, path, objectid, 2391 offset, bytenr, strict); 2392 if (ret && ret != -ENOENT) 2393 goto out; 2394 2395 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2396 } while (ret == -EAGAIN); 2397 2398 out: 2399 btrfs_free_path(path); 2400 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2401 WARN_ON(ret > 0); 2402 return ret; 2403 } 2404 2405 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2406 struct btrfs_root *root, 2407 struct extent_buffer *buf, 2408 int full_backref, int inc) 2409 { 2410 struct btrfs_fs_info *fs_info = root->fs_info; 2411 u64 bytenr; 2412 u64 num_bytes; 2413 u64 parent; 2414 u64 ref_root; 2415 u32 nritems; 2416 struct btrfs_key key; 2417 struct btrfs_file_extent_item *fi; 2418 struct btrfs_ref generic_ref = { 0 }; 2419 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2420 int i; 2421 int action; 2422 int level; 2423 int ret = 0; 2424 2425 if (btrfs_is_testing(fs_info)) 2426 return 0; 2427 2428 ref_root = btrfs_header_owner(buf); 2429 nritems = btrfs_header_nritems(buf); 2430 level = btrfs_header_level(buf); 2431 2432 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2433 return 0; 2434 2435 if (full_backref) 2436 parent = buf->start; 2437 else 2438 parent = 0; 2439 if (inc) 2440 action = BTRFS_ADD_DELAYED_REF; 2441 else 2442 action = BTRFS_DROP_DELAYED_REF; 2443 2444 for (i = 0; i < nritems; i++) { 2445 if (level == 0) { 2446 btrfs_item_key_to_cpu(buf, &key, i); 2447 if (key.type != BTRFS_EXTENT_DATA_KEY) 2448 continue; 2449 fi = btrfs_item_ptr(buf, i, 2450 struct btrfs_file_extent_item); 2451 if (btrfs_file_extent_type(buf, fi) == 2452 BTRFS_FILE_EXTENT_INLINE) 2453 continue; 2454 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2455 if (bytenr == 0) 2456 continue; 2457 2458 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2459 key.offset -= btrfs_file_extent_offset(buf, fi); 2460 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2461 num_bytes, parent); 2462 generic_ref.real_root = root->root_key.objectid; 2463 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2464 key.offset); 2465 generic_ref.skip_qgroup = for_reloc; 2466 if (inc) 2467 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2468 else 2469 ret = btrfs_free_extent(trans, &generic_ref); 2470 if (ret) 2471 goto fail; 2472 } else { 2473 bytenr = btrfs_node_blockptr(buf, i); 2474 num_bytes = fs_info->nodesize; 2475 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2476 num_bytes, parent); 2477 generic_ref.real_root = root->root_key.objectid; 2478 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2479 generic_ref.skip_qgroup = for_reloc; 2480 if (inc) 2481 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2482 else 2483 ret = btrfs_free_extent(trans, &generic_ref); 2484 if (ret) 2485 goto fail; 2486 } 2487 } 2488 return 0; 2489 fail: 2490 return ret; 2491 } 2492 2493 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2494 struct extent_buffer *buf, int full_backref) 2495 { 2496 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2497 } 2498 2499 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2500 struct extent_buffer *buf, int full_backref) 2501 { 2502 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2503 } 2504 2505 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2506 { 2507 struct btrfs_block_group *block_group; 2508 int readonly = 0; 2509 2510 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2511 if (!block_group || block_group->ro) 2512 readonly = 1; 2513 if (block_group) 2514 btrfs_put_block_group(block_group); 2515 return readonly; 2516 } 2517 2518 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2519 { 2520 struct btrfs_fs_info *fs_info = root->fs_info; 2521 u64 flags; 2522 u64 ret; 2523 2524 if (data) 2525 flags = BTRFS_BLOCK_GROUP_DATA; 2526 else if (root == fs_info->chunk_root) 2527 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2528 else 2529 flags = BTRFS_BLOCK_GROUP_METADATA; 2530 2531 ret = btrfs_get_alloc_profile(fs_info, flags); 2532 return ret; 2533 } 2534 2535 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2536 { 2537 struct btrfs_block_group *cache; 2538 u64 bytenr; 2539 2540 spin_lock(&fs_info->block_group_cache_lock); 2541 bytenr = fs_info->first_logical_byte; 2542 spin_unlock(&fs_info->block_group_cache_lock); 2543 2544 if (bytenr < (u64)-1) 2545 return bytenr; 2546 2547 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2548 if (!cache) 2549 return 0; 2550 2551 bytenr = cache->start; 2552 btrfs_put_block_group(cache); 2553 2554 return bytenr; 2555 } 2556 2557 static int pin_down_extent(struct btrfs_trans_handle *trans, 2558 struct btrfs_block_group *cache, 2559 u64 bytenr, u64 num_bytes, int reserved) 2560 { 2561 struct btrfs_fs_info *fs_info = cache->fs_info; 2562 2563 spin_lock(&cache->space_info->lock); 2564 spin_lock(&cache->lock); 2565 cache->pinned += num_bytes; 2566 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2567 num_bytes); 2568 if (reserved) { 2569 cache->reserved -= num_bytes; 2570 cache->space_info->bytes_reserved -= num_bytes; 2571 } 2572 spin_unlock(&cache->lock); 2573 spin_unlock(&cache->space_info->lock); 2574 2575 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2576 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2577 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2578 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2579 return 0; 2580 } 2581 2582 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2583 u64 bytenr, u64 num_bytes, int reserved) 2584 { 2585 struct btrfs_block_group *cache; 2586 2587 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2588 BUG_ON(!cache); /* Logic error */ 2589 2590 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2591 2592 btrfs_put_block_group(cache); 2593 return 0; 2594 } 2595 2596 /* 2597 * this function must be called within transaction 2598 */ 2599 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2600 u64 bytenr, u64 num_bytes) 2601 { 2602 struct btrfs_block_group *cache; 2603 int ret; 2604 2605 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2606 if (!cache) 2607 return -EINVAL; 2608 2609 /* 2610 * pull in the free space cache (if any) so that our pin 2611 * removes the free space from the cache. We have load_only set 2612 * to one because the slow code to read in the free extents does check 2613 * the pinned extents. 2614 */ 2615 btrfs_cache_block_group(cache, 1); 2616 /* 2617 * Make sure we wait until the cache is completely built in case it is 2618 * missing or is invalid and therefore needs to be rebuilt. 2619 */ 2620 ret = btrfs_wait_block_group_cache_done(cache); 2621 if (ret) 2622 goto out; 2623 2624 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2625 2626 /* remove us from the free space cache (if we're there at all) */ 2627 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2628 out: 2629 btrfs_put_block_group(cache); 2630 return ret; 2631 } 2632 2633 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2634 u64 start, u64 num_bytes) 2635 { 2636 int ret; 2637 struct btrfs_block_group *block_group; 2638 2639 block_group = btrfs_lookup_block_group(fs_info, start); 2640 if (!block_group) 2641 return -EINVAL; 2642 2643 btrfs_cache_block_group(block_group, 1); 2644 /* 2645 * Make sure we wait until the cache is completely built in case it is 2646 * missing or is invalid and therefore needs to be rebuilt. 2647 */ 2648 ret = btrfs_wait_block_group_cache_done(block_group); 2649 if (ret) 2650 goto out; 2651 2652 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2653 out: 2654 btrfs_put_block_group(block_group); 2655 return ret; 2656 } 2657 2658 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2659 { 2660 struct btrfs_fs_info *fs_info = eb->fs_info; 2661 struct btrfs_file_extent_item *item; 2662 struct btrfs_key key; 2663 int found_type; 2664 int i; 2665 int ret = 0; 2666 2667 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2668 return 0; 2669 2670 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2671 btrfs_item_key_to_cpu(eb, &key, i); 2672 if (key.type != BTRFS_EXTENT_DATA_KEY) 2673 continue; 2674 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2675 found_type = btrfs_file_extent_type(eb, item); 2676 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2677 continue; 2678 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2679 continue; 2680 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2681 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2682 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2683 if (ret) 2684 break; 2685 } 2686 2687 return ret; 2688 } 2689 2690 static void 2691 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2692 { 2693 atomic_inc(&bg->reservations); 2694 } 2695 2696 /* 2697 * Returns the free cluster for the given space info and sets empty_cluster to 2698 * what it should be based on the mount options. 2699 */ 2700 static struct btrfs_free_cluster * 2701 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2702 struct btrfs_space_info *space_info, u64 *empty_cluster) 2703 { 2704 struct btrfs_free_cluster *ret = NULL; 2705 2706 *empty_cluster = 0; 2707 if (btrfs_mixed_space_info(space_info)) 2708 return ret; 2709 2710 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2711 ret = &fs_info->meta_alloc_cluster; 2712 if (btrfs_test_opt(fs_info, SSD)) 2713 *empty_cluster = SZ_2M; 2714 else 2715 *empty_cluster = SZ_64K; 2716 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2717 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2718 *empty_cluster = SZ_2M; 2719 ret = &fs_info->data_alloc_cluster; 2720 } 2721 2722 return ret; 2723 } 2724 2725 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2726 u64 start, u64 end, 2727 const bool return_free_space) 2728 { 2729 struct btrfs_block_group *cache = NULL; 2730 struct btrfs_space_info *space_info; 2731 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2732 struct btrfs_free_cluster *cluster = NULL; 2733 u64 len; 2734 u64 total_unpinned = 0; 2735 u64 empty_cluster = 0; 2736 bool readonly; 2737 2738 while (start <= end) { 2739 readonly = false; 2740 if (!cache || 2741 start >= cache->start + cache->length) { 2742 if (cache) 2743 btrfs_put_block_group(cache); 2744 total_unpinned = 0; 2745 cache = btrfs_lookup_block_group(fs_info, start); 2746 BUG_ON(!cache); /* Logic error */ 2747 2748 cluster = fetch_cluster_info(fs_info, 2749 cache->space_info, 2750 &empty_cluster); 2751 empty_cluster <<= 1; 2752 } 2753 2754 len = cache->start + cache->length - start; 2755 len = min(len, end + 1 - start); 2756 2757 down_read(&fs_info->commit_root_sem); 2758 if (start < cache->last_byte_to_unpin && return_free_space) { 2759 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2760 2761 btrfs_add_free_space(cache, start, add_len); 2762 } 2763 up_read(&fs_info->commit_root_sem); 2764 2765 start += len; 2766 total_unpinned += len; 2767 space_info = cache->space_info; 2768 2769 /* 2770 * If this space cluster has been marked as fragmented and we've 2771 * unpinned enough in this block group to potentially allow a 2772 * cluster to be created inside of it go ahead and clear the 2773 * fragmented check. 2774 */ 2775 if (cluster && cluster->fragmented && 2776 total_unpinned > empty_cluster) { 2777 spin_lock(&cluster->lock); 2778 cluster->fragmented = 0; 2779 spin_unlock(&cluster->lock); 2780 } 2781 2782 spin_lock(&space_info->lock); 2783 spin_lock(&cache->lock); 2784 cache->pinned -= len; 2785 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2786 space_info->max_extent_size = 0; 2787 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2788 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2789 if (cache->ro) { 2790 space_info->bytes_readonly += len; 2791 readonly = true; 2792 } 2793 spin_unlock(&cache->lock); 2794 if (!readonly && return_free_space && 2795 global_rsv->space_info == space_info) { 2796 u64 to_add = len; 2797 2798 spin_lock(&global_rsv->lock); 2799 if (!global_rsv->full) { 2800 to_add = min(len, global_rsv->size - 2801 global_rsv->reserved); 2802 global_rsv->reserved += to_add; 2803 btrfs_space_info_update_bytes_may_use(fs_info, 2804 space_info, to_add); 2805 if (global_rsv->reserved >= global_rsv->size) 2806 global_rsv->full = 1; 2807 len -= to_add; 2808 } 2809 spin_unlock(&global_rsv->lock); 2810 } 2811 /* Add to any tickets we may have */ 2812 if (!readonly && return_free_space && len) 2813 btrfs_try_granting_tickets(fs_info, space_info); 2814 spin_unlock(&space_info->lock); 2815 } 2816 2817 if (cache) 2818 btrfs_put_block_group(cache); 2819 return 0; 2820 } 2821 2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2823 { 2824 struct btrfs_fs_info *fs_info = trans->fs_info; 2825 struct btrfs_block_group *block_group, *tmp; 2826 struct list_head *deleted_bgs; 2827 struct extent_io_tree *unpin; 2828 u64 start; 2829 u64 end; 2830 int ret; 2831 2832 unpin = &trans->transaction->pinned_extents; 2833 2834 while (!TRANS_ABORTED(trans)) { 2835 struct extent_state *cached_state = NULL; 2836 2837 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2838 ret = find_first_extent_bit(unpin, 0, &start, &end, 2839 EXTENT_DIRTY, &cached_state); 2840 if (ret) { 2841 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2842 break; 2843 } 2844 2845 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2846 ret = btrfs_discard_extent(fs_info, start, 2847 end + 1 - start, NULL); 2848 2849 clear_extent_dirty(unpin, start, end, &cached_state); 2850 unpin_extent_range(fs_info, start, end, true); 2851 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2852 free_extent_state(cached_state); 2853 cond_resched(); 2854 } 2855 2856 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2857 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2858 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2859 } 2860 2861 /* 2862 * Transaction is finished. We don't need the lock anymore. We 2863 * do need to clean up the block groups in case of a transaction 2864 * abort. 2865 */ 2866 deleted_bgs = &trans->transaction->deleted_bgs; 2867 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2868 u64 trimmed = 0; 2869 2870 ret = -EROFS; 2871 if (!TRANS_ABORTED(trans)) 2872 ret = btrfs_discard_extent(fs_info, 2873 block_group->start, 2874 block_group->length, 2875 &trimmed); 2876 2877 list_del_init(&block_group->bg_list); 2878 btrfs_unfreeze_block_group(block_group); 2879 btrfs_put_block_group(block_group); 2880 2881 if (ret) { 2882 const char *errstr = btrfs_decode_error(ret); 2883 btrfs_warn(fs_info, 2884 "discard failed while removing blockgroup: errno=%d %s", 2885 ret, errstr); 2886 } 2887 } 2888 2889 return 0; 2890 } 2891 2892 /* 2893 * Drop one or more refs of @node. 2894 * 2895 * 1. Locate the extent refs. 2896 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2897 * Locate it, then reduce the refs number or remove the ref line completely. 2898 * 2899 * 2. Update the refs count in EXTENT/METADATA_ITEM 2900 * 2901 * Inline backref case: 2902 * 2903 * in extent tree we have: 2904 * 2905 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2906 * refs 2 gen 6 flags DATA 2907 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2908 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2909 * 2910 * This function gets called with: 2911 * 2912 * node->bytenr = 13631488 2913 * node->num_bytes = 1048576 2914 * root_objectid = FS_TREE 2915 * owner_objectid = 257 2916 * owner_offset = 0 2917 * refs_to_drop = 1 2918 * 2919 * Then we should get some like: 2920 * 2921 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2922 * refs 1 gen 6 flags DATA 2923 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2924 * 2925 * Keyed backref case: 2926 * 2927 * in extent tree we have: 2928 * 2929 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2930 * refs 754 gen 6 flags DATA 2931 * [...] 2932 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2933 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2934 * 2935 * This function get called with: 2936 * 2937 * node->bytenr = 13631488 2938 * node->num_bytes = 1048576 2939 * root_objectid = FS_TREE 2940 * owner_objectid = 866 2941 * owner_offset = 0 2942 * refs_to_drop = 1 2943 * 2944 * Then we should get some like: 2945 * 2946 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2947 * refs 753 gen 6 flags DATA 2948 * 2949 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2950 */ 2951 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2952 struct btrfs_delayed_ref_node *node, u64 parent, 2953 u64 root_objectid, u64 owner_objectid, 2954 u64 owner_offset, int refs_to_drop, 2955 struct btrfs_delayed_extent_op *extent_op) 2956 { 2957 struct btrfs_fs_info *info = trans->fs_info; 2958 struct btrfs_key key; 2959 struct btrfs_path *path; 2960 struct btrfs_root *extent_root = info->extent_root; 2961 struct extent_buffer *leaf; 2962 struct btrfs_extent_item *ei; 2963 struct btrfs_extent_inline_ref *iref; 2964 int ret; 2965 int is_data; 2966 int extent_slot = 0; 2967 int found_extent = 0; 2968 int num_to_del = 1; 2969 u32 item_size; 2970 u64 refs; 2971 u64 bytenr = node->bytenr; 2972 u64 num_bytes = node->num_bytes; 2973 int last_ref = 0; 2974 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2975 2976 path = btrfs_alloc_path(); 2977 if (!path) 2978 return -ENOMEM; 2979 2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2981 2982 if (!is_data && refs_to_drop != 1) { 2983 btrfs_crit(info, 2984 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2985 node->bytenr, refs_to_drop); 2986 ret = -EINVAL; 2987 btrfs_abort_transaction(trans, ret); 2988 goto out; 2989 } 2990 2991 if (is_data) 2992 skinny_metadata = false; 2993 2994 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2995 parent, root_objectid, owner_objectid, 2996 owner_offset); 2997 if (ret == 0) { 2998 /* 2999 * Either the inline backref or the SHARED_DATA_REF/ 3000 * SHARED_BLOCK_REF is found 3001 * 3002 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3003 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3004 */ 3005 extent_slot = path->slots[0]; 3006 while (extent_slot >= 0) { 3007 btrfs_item_key_to_cpu(path->nodes[0], &key, 3008 extent_slot); 3009 if (key.objectid != bytenr) 3010 break; 3011 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3012 key.offset == num_bytes) { 3013 found_extent = 1; 3014 break; 3015 } 3016 if (key.type == BTRFS_METADATA_ITEM_KEY && 3017 key.offset == owner_objectid) { 3018 found_extent = 1; 3019 break; 3020 } 3021 3022 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3023 if (path->slots[0] - extent_slot > 5) 3024 break; 3025 extent_slot--; 3026 } 3027 3028 if (!found_extent) { 3029 if (iref) { 3030 btrfs_crit(info, 3031 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3032 btrfs_abort_transaction(trans, -EUCLEAN); 3033 goto err_dump; 3034 } 3035 /* Must be SHARED_* item, remove the backref first */ 3036 ret = remove_extent_backref(trans, path, NULL, 3037 refs_to_drop, 3038 is_data, &last_ref); 3039 if (ret) { 3040 btrfs_abort_transaction(trans, ret); 3041 goto out; 3042 } 3043 btrfs_release_path(path); 3044 3045 /* Slow path to locate EXTENT/METADATA_ITEM */ 3046 key.objectid = bytenr; 3047 key.type = BTRFS_EXTENT_ITEM_KEY; 3048 key.offset = num_bytes; 3049 3050 if (!is_data && skinny_metadata) { 3051 key.type = BTRFS_METADATA_ITEM_KEY; 3052 key.offset = owner_objectid; 3053 } 3054 3055 ret = btrfs_search_slot(trans, extent_root, 3056 &key, path, -1, 1); 3057 if (ret > 0 && skinny_metadata && path->slots[0]) { 3058 /* 3059 * Couldn't find our skinny metadata item, 3060 * see if we have ye olde extent item. 3061 */ 3062 path->slots[0]--; 3063 btrfs_item_key_to_cpu(path->nodes[0], &key, 3064 path->slots[0]); 3065 if (key.objectid == bytenr && 3066 key.type == BTRFS_EXTENT_ITEM_KEY && 3067 key.offset == num_bytes) 3068 ret = 0; 3069 } 3070 3071 if (ret > 0 && skinny_metadata) { 3072 skinny_metadata = false; 3073 key.objectid = bytenr; 3074 key.type = BTRFS_EXTENT_ITEM_KEY; 3075 key.offset = num_bytes; 3076 btrfs_release_path(path); 3077 ret = btrfs_search_slot(trans, extent_root, 3078 &key, path, -1, 1); 3079 } 3080 3081 if (ret) { 3082 btrfs_err(info, 3083 "umm, got %d back from search, was looking for %llu", 3084 ret, bytenr); 3085 if (ret > 0) 3086 btrfs_print_leaf(path->nodes[0]); 3087 } 3088 if (ret < 0) { 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 extent_slot = path->slots[0]; 3093 } 3094 } else if (WARN_ON(ret == -ENOENT)) { 3095 btrfs_print_leaf(path->nodes[0]); 3096 btrfs_err(info, 3097 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3098 bytenr, parent, root_objectid, owner_objectid, 3099 owner_offset); 3100 btrfs_abort_transaction(trans, ret); 3101 goto out; 3102 } else { 3103 btrfs_abort_transaction(trans, ret); 3104 goto out; 3105 } 3106 3107 leaf = path->nodes[0]; 3108 item_size = btrfs_item_size_nr(leaf, extent_slot); 3109 if (unlikely(item_size < sizeof(*ei))) { 3110 ret = -EINVAL; 3111 btrfs_print_v0_err(info); 3112 btrfs_abort_transaction(trans, ret); 3113 goto out; 3114 } 3115 ei = btrfs_item_ptr(leaf, extent_slot, 3116 struct btrfs_extent_item); 3117 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3118 key.type == BTRFS_EXTENT_ITEM_KEY) { 3119 struct btrfs_tree_block_info *bi; 3120 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3121 btrfs_crit(info, 3122 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3123 key.objectid, key.type, key.offset, 3124 owner_objectid, item_size, 3125 sizeof(*ei) + sizeof(*bi)); 3126 btrfs_abort_transaction(trans, -EUCLEAN); 3127 goto err_dump; 3128 } 3129 bi = (struct btrfs_tree_block_info *)(ei + 1); 3130 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3131 } 3132 3133 refs = btrfs_extent_refs(leaf, ei); 3134 if (refs < refs_to_drop) { 3135 btrfs_crit(info, 3136 "trying to drop %d refs but we only have %llu for bytenr %llu", 3137 refs_to_drop, refs, bytenr); 3138 btrfs_abort_transaction(trans, -EUCLEAN); 3139 goto err_dump; 3140 } 3141 refs -= refs_to_drop; 3142 3143 if (refs > 0) { 3144 if (extent_op) 3145 __run_delayed_extent_op(extent_op, leaf, ei); 3146 /* 3147 * In the case of inline back ref, reference count will 3148 * be updated by remove_extent_backref 3149 */ 3150 if (iref) { 3151 if (!found_extent) { 3152 btrfs_crit(info, 3153 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3154 btrfs_abort_transaction(trans, -EUCLEAN); 3155 goto err_dump; 3156 } 3157 } else { 3158 btrfs_set_extent_refs(leaf, ei, refs); 3159 btrfs_mark_buffer_dirty(leaf); 3160 } 3161 if (found_extent) { 3162 ret = remove_extent_backref(trans, path, iref, 3163 refs_to_drop, is_data, 3164 &last_ref); 3165 if (ret) { 3166 btrfs_abort_transaction(trans, ret); 3167 goto out; 3168 } 3169 } 3170 } else { 3171 /* In this branch refs == 1 */ 3172 if (found_extent) { 3173 if (is_data && refs_to_drop != 3174 extent_data_ref_count(path, iref)) { 3175 btrfs_crit(info, 3176 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3177 extent_data_ref_count(path, iref), 3178 refs_to_drop); 3179 btrfs_abort_transaction(trans, -EUCLEAN); 3180 goto err_dump; 3181 } 3182 if (iref) { 3183 if (path->slots[0] != extent_slot) { 3184 btrfs_crit(info, 3185 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3186 key.objectid, key.type, 3187 key.offset); 3188 btrfs_abort_transaction(trans, -EUCLEAN); 3189 goto err_dump; 3190 } 3191 } else { 3192 /* 3193 * No inline ref, we must be at SHARED_* item, 3194 * And it's single ref, it must be: 3195 * | extent_slot ||extent_slot + 1| 3196 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3197 */ 3198 if (path->slots[0] != extent_slot + 1) { 3199 btrfs_crit(info, 3200 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3201 btrfs_abort_transaction(trans, -EUCLEAN); 3202 goto err_dump; 3203 } 3204 path->slots[0] = extent_slot; 3205 num_to_del = 2; 3206 } 3207 } 3208 3209 last_ref = 1; 3210 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3211 num_to_del); 3212 if (ret) { 3213 btrfs_abort_transaction(trans, ret); 3214 goto out; 3215 } 3216 btrfs_release_path(path); 3217 3218 if (is_data) { 3219 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3220 num_bytes); 3221 if (ret) { 3222 btrfs_abort_transaction(trans, ret); 3223 goto out; 3224 } 3225 } 3226 3227 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3228 if (ret) { 3229 btrfs_abort_transaction(trans, ret); 3230 goto out; 3231 } 3232 3233 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3234 if (ret) { 3235 btrfs_abort_transaction(trans, ret); 3236 goto out; 3237 } 3238 } 3239 btrfs_release_path(path); 3240 3241 out: 3242 btrfs_free_path(path); 3243 return ret; 3244 err_dump: 3245 /* 3246 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3247 * dump for debug build. 3248 */ 3249 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3250 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3251 path->slots[0], extent_slot); 3252 btrfs_print_leaf(path->nodes[0]); 3253 } 3254 3255 btrfs_free_path(path); 3256 return -EUCLEAN; 3257 } 3258 3259 /* 3260 * when we free an block, it is possible (and likely) that we free the last 3261 * delayed ref for that extent as well. This searches the delayed ref tree for 3262 * a given extent, and if there are no other delayed refs to be processed, it 3263 * removes it from the tree. 3264 */ 3265 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3266 u64 bytenr) 3267 { 3268 struct btrfs_delayed_ref_head *head; 3269 struct btrfs_delayed_ref_root *delayed_refs; 3270 int ret = 0; 3271 3272 delayed_refs = &trans->transaction->delayed_refs; 3273 spin_lock(&delayed_refs->lock); 3274 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3275 if (!head) 3276 goto out_delayed_unlock; 3277 3278 spin_lock(&head->lock); 3279 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3280 goto out; 3281 3282 if (cleanup_extent_op(head) != NULL) 3283 goto out; 3284 3285 /* 3286 * waiting for the lock here would deadlock. If someone else has it 3287 * locked they are already in the process of dropping it anyway 3288 */ 3289 if (!mutex_trylock(&head->mutex)) 3290 goto out; 3291 3292 btrfs_delete_ref_head(delayed_refs, head); 3293 head->processing = 0; 3294 3295 spin_unlock(&head->lock); 3296 spin_unlock(&delayed_refs->lock); 3297 3298 BUG_ON(head->extent_op); 3299 if (head->must_insert_reserved) 3300 ret = 1; 3301 3302 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3303 mutex_unlock(&head->mutex); 3304 btrfs_put_delayed_ref_head(head); 3305 return ret; 3306 out: 3307 spin_unlock(&head->lock); 3308 3309 out_delayed_unlock: 3310 spin_unlock(&delayed_refs->lock); 3311 return 0; 3312 } 3313 3314 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3315 struct btrfs_root *root, 3316 struct extent_buffer *buf, 3317 u64 parent, int last_ref) 3318 { 3319 struct btrfs_fs_info *fs_info = root->fs_info; 3320 struct btrfs_ref generic_ref = { 0 }; 3321 int pin = 1; 3322 int ret; 3323 3324 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3325 buf->start, buf->len, parent); 3326 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3327 root->root_key.objectid); 3328 3329 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3330 int old_ref_mod, new_ref_mod; 3331 3332 btrfs_ref_tree_mod(fs_info, &generic_ref); 3333 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3334 &old_ref_mod, &new_ref_mod); 3335 BUG_ON(ret); /* -ENOMEM */ 3336 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3337 } 3338 3339 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3340 struct btrfs_block_group *cache; 3341 3342 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3343 ret = check_ref_cleanup(trans, buf->start); 3344 if (!ret) 3345 goto out; 3346 } 3347 3348 pin = 0; 3349 cache = btrfs_lookup_block_group(fs_info, buf->start); 3350 3351 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3352 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3353 btrfs_put_block_group(cache); 3354 goto out; 3355 } 3356 3357 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3358 3359 btrfs_add_free_space(cache, buf->start, buf->len); 3360 btrfs_free_reserved_bytes(cache, buf->len, 0); 3361 btrfs_put_block_group(cache); 3362 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3363 } 3364 out: 3365 if (pin) 3366 add_pinned_bytes(fs_info, &generic_ref); 3367 3368 if (last_ref) { 3369 /* 3370 * Deleting the buffer, clear the corrupt flag since it doesn't 3371 * matter anymore. 3372 */ 3373 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3374 } 3375 } 3376 3377 /* Can return -ENOMEM */ 3378 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3379 { 3380 struct btrfs_fs_info *fs_info = trans->fs_info; 3381 int old_ref_mod, new_ref_mod; 3382 int ret; 3383 3384 if (btrfs_is_testing(fs_info)) 3385 return 0; 3386 3387 /* 3388 * tree log blocks never actually go into the extent allocation 3389 * tree, just update pinning info and exit early. 3390 */ 3391 if ((ref->type == BTRFS_REF_METADATA && 3392 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3393 (ref->type == BTRFS_REF_DATA && 3394 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3395 /* unlocks the pinned mutex */ 3396 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3397 old_ref_mod = new_ref_mod = 0; 3398 ret = 0; 3399 } else if (ref->type == BTRFS_REF_METADATA) { 3400 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3401 &old_ref_mod, &new_ref_mod); 3402 } else { 3403 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3404 &old_ref_mod, &new_ref_mod); 3405 } 3406 3407 if (!((ref->type == BTRFS_REF_METADATA && 3408 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3409 (ref->type == BTRFS_REF_DATA && 3410 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3411 btrfs_ref_tree_mod(fs_info, ref); 3412 3413 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3414 add_pinned_bytes(fs_info, ref); 3415 3416 return ret; 3417 } 3418 3419 enum btrfs_loop_type { 3420 LOOP_CACHING_NOWAIT, 3421 LOOP_CACHING_WAIT, 3422 LOOP_ALLOC_CHUNK, 3423 LOOP_NO_EMPTY_SIZE, 3424 }; 3425 3426 static inline void 3427 btrfs_lock_block_group(struct btrfs_block_group *cache, 3428 int delalloc) 3429 { 3430 if (delalloc) 3431 down_read(&cache->data_rwsem); 3432 } 3433 3434 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3435 int delalloc) 3436 { 3437 btrfs_get_block_group(cache); 3438 if (delalloc) 3439 down_read(&cache->data_rwsem); 3440 } 3441 3442 static struct btrfs_block_group *btrfs_lock_cluster( 3443 struct btrfs_block_group *block_group, 3444 struct btrfs_free_cluster *cluster, 3445 int delalloc) 3446 __acquires(&cluster->refill_lock) 3447 { 3448 struct btrfs_block_group *used_bg = NULL; 3449 3450 spin_lock(&cluster->refill_lock); 3451 while (1) { 3452 used_bg = cluster->block_group; 3453 if (!used_bg) 3454 return NULL; 3455 3456 if (used_bg == block_group) 3457 return used_bg; 3458 3459 btrfs_get_block_group(used_bg); 3460 3461 if (!delalloc) 3462 return used_bg; 3463 3464 if (down_read_trylock(&used_bg->data_rwsem)) 3465 return used_bg; 3466 3467 spin_unlock(&cluster->refill_lock); 3468 3469 /* We should only have one-level nested. */ 3470 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3471 3472 spin_lock(&cluster->refill_lock); 3473 if (used_bg == cluster->block_group) 3474 return used_bg; 3475 3476 up_read(&used_bg->data_rwsem); 3477 btrfs_put_block_group(used_bg); 3478 } 3479 } 3480 3481 static inline void 3482 btrfs_release_block_group(struct btrfs_block_group *cache, 3483 int delalloc) 3484 { 3485 if (delalloc) 3486 up_read(&cache->data_rwsem); 3487 btrfs_put_block_group(cache); 3488 } 3489 3490 enum btrfs_extent_allocation_policy { 3491 BTRFS_EXTENT_ALLOC_CLUSTERED, 3492 }; 3493 3494 /* 3495 * Structure used internally for find_free_extent() function. Wraps needed 3496 * parameters. 3497 */ 3498 struct find_free_extent_ctl { 3499 /* Basic allocation info */ 3500 u64 num_bytes; 3501 u64 empty_size; 3502 u64 flags; 3503 int delalloc; 3504 3505 /* Where to start the search inside the bg */ 3506 u64 search_start; 3507 3508 /* For clustered allocation */ 3509 u64 empty_cluster; 3510 struct btrfs_free_cluster *last_ptr; 3511 bool use_cluster; 3512 3513 bool have_caching_bg; 3514 bool orig_have_caching_bg; 3515 3516 /* RAID index, converted from flags */ 3517 int index; 3518 3519 /* 3520 * Current loop number, check find_free_extent_update_loop() for details 3521 */ 3522 int loop; 3523 3524 /* 3525 * Whether we're refilling a cluster, if true we need to re-search 3526 * current block group but don't try to refill the cluster again. 3527 */ 3528 bool retry_clustered; 3529 3530 /* 3531 * Whether we're updating free space cache, if true we need to re-search 3532 * current block group but don't try updating free space cache again. 3533 */ 3534 bool retry_unclustered; 3535 3536 /* If current block group is cached */ 3537 int cached; 3538 3539 /* Max contiguous hole found */ 3540 u64 max_extent_size; 3541 3542 /* Total free space from free space cache, not always contiguous */ 3543 u64 total_free_space; 3544 3545 /* Found result */ 3546 u64 found_offset; 3547 3548 /* Hint where to start looking for an empty space */ 3549 u64 hint_byte; 3550 3551 /* Allocation policy */ 3552 enum btrfs_extent_allocation_policy policy; 3553 }; 3554 3555 3556 /* 3557 * Helper function for find_free_extent(). 3558 * 3559 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3560 * Return -EAGAIN to inform caller that we need to re-search this block group 3561 * Return >0 to inform caller that we find nothing 3562 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3563 */ 3564 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3565 struct find_free_extent_ctl *ffe_ctl, 3566 struct btrfs_block_group **cluster_bg_ret) 3567 { 3568 struct btrfs_block_group *cluster_bg; 3569 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3570 u64 aligned_cluster; 3571 u64 offset; 3572 int ret; 3573 3574 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3575 if (!cluster_bg) 3576 goto refill_cluster; 3577 if (cluster_bg != bg && (cluster_bg->ro || 3578 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3579 goto release_cluster; 3580 3581 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3582 ffe_ctl->num_bytes, cluster_bg->start, 3583 &ffe_ctl->max_extent_size); 3584 if (offset) { 3585 /* We have a block, we're done */ 3586 spin_unlock(&last_ptr->refill_lock); 3587 trace_btrfs_reserve_extent_cluster(cluster_bg, 3588 ffe_ctl->search_start, ffe_ctl->num_bytes); 3589 *cluster_bg_ret = cluster_bg; 3590 ffe_ctl->found_offset = offset; 3591 return 0; 3592 } 3593 WARN_ON(last_ptr->block_group != cluster_bg); 3594 3595 release_cluster: 3596 /* 3597 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3598 * lets just skip it and let the allocator find whatever block it can 3599 * find. If we reach this point, we will have tried the cluster 3600 * allocator plenty of times and not have found anything, so we are 3601 * likely way too fragmented for the clustering stuff to find anything. 3602 * 3603 * However, if the cluster is taken from the current block group, 3604 * release the cluster first, so that we stand a better chance of 3605 * succeeding in the unclustered allocation. 3606 */ 3607 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3608 spin_unlock(&last_ptr->refill_lock); 3609 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3610 return -ENOENT; 3611 } 3612 3613 /* This cluster didn't work out, free it and start over */ 3614 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3615 3616 if (cluster_bg != bg) 3617 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3618 3619 refill_cluster: 3620 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3621 spin_unlock(&last_ptr->refill_lock); 3622 return -ENOENT; 3623 } 3624 3625 aligned_cluster = max_t(u64, 3626 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3627 bg->full_stripe_len); 3628 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3629 ffe_ctl->num_bytes, aligned_cluster); 3630 if (ret == 0) { 3631 /* Now pull our allocation out of this cluster */ 3632 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3633 ffe_ctl->num_bytes, ffe_ctl->search_start, 3634 &ffe_ctl->max_extent_size); 3635 if (offset) { 3636 /* We found one, proceed */ 3637 spin_unlock(&last_ptr->refill_lock); 3638 trace_btrfs_reserve_extent_cluster(bg, 3639 ffe_ctl->search_start, 3640 ffe_ctl->num_bytes); 3641 ffe_ctl->found_offset = offset; 3642 return 0; 3643 } 3644 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3645 !ffe_ctl->retry_clustered) { 3646 spin_unlock(&last_ptr->refill_lock); 3647 3648 ffe_ctl->retry_clustered = true; 3649 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3650 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3651 return -EAGAIN; 3652 } 3653 /* 3654 * At this point we either didn't find a cluster or we weren't able to 3655 * allocate a block from our cluster. Free the cluster we've been 3656 * trying to use, and go to the next block group. 3657 */ 3658 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3659 spin_unlock(&last_ptr->refill_lock); 3660 return 1; 3661 } 3662 3663 /* 3664 * Return >0 to inform caller that we find nothing 3665 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3666 * Return -EAGAIN to inform caller that we need to re-search this block group 3667 */ 3668 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3669 struct find_free_extent_ctl *ffe_ctl) 3670 { 3671 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3672 u64 offset; 3673 3674 /* 3675 * We are doing an unclustered allocation, set the fragmented flag so 3676 * we don't bother trying to setup a cluster again until we get more 3677 * space. 3678 */ 3679 if (unlikely(last_ptr)) { 3680 spin_lock(&last_ptr->lock); 3681 last_ptr->fragmented = 1; 3682 spin_unlock(&last_ptr->lock); 3683 } 3684 if (ffe_ctl->cached) { 3685 struct btrfs_free_space_ctl *free_space_ctl; 3686 3687 free_space_ctl = bg->free_space_ctl; 3688 spin_lock(&free_space_ctl->tree_lock); 3689 if (free_space_ctl->free_space < 3690 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3691 ffe_ctl->empty_size) { 3692 ffe_ctl->total_free_space = max_t(u64, 3693 ffe_ctl->total_free_space, 3694 free_space_ctl->free_space); 3695 spin_unlock(&free_space_ctl->tree_lock); 3696 return 1; 3697 } 3698 spin_unlock(&free_space_ctl->tree_lock); 3699 } 3700 3701 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3702 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3703 &ffe_ctl->max_extent_size); 3704 3705 /* 3706 * If we didn't find a chunk, and we haven't failed on this block group 3707 * before, and this block group is in the middle of caching and we are 3708 * ok with waiting, then go ahead and wait for progress to be made, and 3709 * set @retry_unclustered to true. 3710 * 3711 * If @retry_unclustered is true then we've already waited on this 3712 * block group once and should move on to the next block group. 3713 */ 3714 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3715 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3716 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3717 ffe_ctl->empty_size); 3718 ffe_ctl->retry_unclustered = true; 3719 return -EAGAIN; 3720 } else if (!offset) { 3721 return 1; 3722 } 3723 ffe_ctl->found_offset = offset; 3724 return 0; 3725 } 3726 3727 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3728 struct find_free_extent_ctl *ffe_ctl, 3729 struct btrfs_block_group **bg_ret) 3730 { 3731 int ret; 3732 3733 /* We want to try and use the cluster allocator, so lets look there */ 3734 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3735 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3736 if (ret >= 0 || ret == -EAGAIN) 3737 return ret; 3738 /* ret == -ENOENT case falls through */ 3739 } 3740 3741 return find_free_extent_unclustered(block_group, ffe_ctl); 3742 } 3743 3744 static int do_allocation(struct btrfs_block_group *block_group, 3745 struct find_free_extent_ctl *ffe_ctl, 3746 struct btrfs_block_group **bg_ret) 3747 { 3748 switch (ffe_ctl->policy) { 3749 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3750 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3751 default: 3752 BUG(); 3753 } 3754 } 3755 3756 static void release_block_group(struct btrfs_block_group *block_group, 3757 struct find_free_extent_ctl *ffe_ctl, 3758 int delalloc) 3759 { 3760 switch (ffe_ctl->policy) { 3761 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3762 ffe_ctl->retry_clustered = false; 3763 ffe_ctl->retry_unclustered = false; 3764 break; 3765 default: 3766 BUG(); 3767 } 3768 3769 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3770 ffe_ctl->index); 3771 btrfs_release_block_group(block_group, delalloc); 3772 } 3773 3774 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3775 struct btrfs_key *ins) 3776 { 3777 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3778 3779 if (!ffe_ctl->use_cluster && last_ptr) { 3780 spin_lock(&last_ptr->lock); 3781 last_ptr->window_start = ins->objectid; 3782 spin_unlock(&last_ptr->lock); 3783 } 3784 } 3785 3786 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3787 struct btrfs_key *ins) 3788 { 3789 switch (ffe_ctl->policy) { 3790 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3791 found_extent_clustered(ffe_ctl, ins); 3792 break; 3793 default: 3794 BUG(); 3795 } 3796 } 3797 3798 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3799 { 3800 switch (ffe_ctl->policy) { 3801 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3802 /* 3803 * If we can't allocate a new chunk we've already looped through 3804 * at least once, move on to the NO_EMPTY_SIZE case. 3805 */ 3806 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3807 return 0; 3808 default: 3809 BUG(); 3810 } 3811 } 3812 3813 /* 3814 * Return >0 means caller needs to re-search for free extent 3815 * Return 0 means we have the needed free extent. 3816 * Return <0 means we failed to locate any free extent. 3817 */ 3818 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3819 struct btrfs_key *ins, 3820 struct find_free_extent_ctl *ffe_ctl, 3821 bool full_search) 3822 { 3823 struct btrfs_root *root = fs_info->extent_root; 3824 int ret; 3825 3826 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3827 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3828 ffe_ctl->orig_have_caching_bg = true; 3829 3830 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3831 ffe_ctl->have_caching_bg) 3832 return 1; 3833 3834 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3835 return 1; 3836 3837 if (ins->objectid) { 3838 found_extent(ffe_ctl, ins); 3839 return 0; 3840 } 3841 3842 /* 3843 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3844 * caching kthreads as we move along 3845 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3846 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3847 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3848 * again 3849 */ 3850 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3851 ffe_ctl->index = 0; 3852 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3853 /* 3854 * We want to skip the LOOP_CACHING_WAIT step if we 3855 * don't have any uncached bgs and we've already done a 3856 * full search through. 3857 */ 3858 if (ffe_ctl->orig_have_caching_bg || !full_search) 3859 ffe_ctl->loop = LOOP_CACHING_WAIT; 3860 else 3861 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3862 } else { 3863 ffe_ctl->loop++; 3864 } 3865 3866 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3867 struct btrfs_trans_handle *trans; 3868 int exist = 0; 3869 3870 trans = current->journal_info; 3871 if (trans) 3872 exist = 1; 3873 else 3874 trans = btrfs_join_transaction(root); 3875 3876 if (IS_ERR(trans)) { 3877 ret = PTR_ERR(trans); 3878 return ret; 3879 } 3880 3881 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3882 CHUNK_ALLOC_FORCE); 3883 3884 /* Do not bail out on ENOSPC since we can do more. */ 3885 if (ret == -ENOSPC) 3886 ret = chunk_allocation_failed(ffe_ctl); 3887 else if (ret < 0) 3888 btrfs_abort_transaction(trans, ret); 3889 else 3890 ret = 0; 3891 if (!exist) 3892 btrfs_end_transaction(trans); 3893 if (ret) 3894 return ret; 3895 } 3896 3897 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3898 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3899 return -ENOSPC; 3900 3901 /* 3902 * Don't loop again if we already have no empty_size and 3903 * no empty_cluster. 3904 */ 3905 if (ffe_ctl->empty_size == 0 && 3906 ffe_ctl->empty_cluster == 0) 3907 return -ENOSPC; 3908 ffe_ctl->empty_size = 0; 3909 ffe_ctl->empty_cluster = 0; 3910 } 3911 return 1; 3912 } 3913 return -ENOSPC; 3914 } 3915 3916 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3917 struct find_free_extent_ctl *ffe_ctl, 3918 struct btrfs_space_info *space_info, 3919 struct btrfs_key *ins) 3920 { 3921 /* 3922 * If our free space is heavily fragmented we may not be able to make 3923 * big contiguous allocations, so instead of doing the expensive search 3924 * for free space, simply return ENOSPC with our max_extent_size so we 3925 * can go ahead and search for a more manageable chunk. 3926 * 3927 * If our max_extent_size is large enough for our allocation simply 3928 * disable clustering since we will likely not be able to find enough 3929 * space to create a cluster and induce latency trying. 3930 */ 3931 if (space_info->max_extent_size) { 3932 spin_lock(&space_info->lock); 3933 if (space_info->max_extent_size && 3934 ffe_ctl->num_bytes > space_info->max_extent_size) { 3935 ins->offset = space_info->max_extent_size; 3936 spin_unlock(&space_info->lock); 3937 return -ENOSPC; 3938 } else if (space_info->max_extent_size) { 3939 ffe_ctl->use_cluster = false; 3940 } 3941 spin_unlock(&space_info->lock); 3942 } 3943 3944 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3945 &ffe_ctl->empty_cluster); 3946 if (ffe_ctl->last_ptr) { 3947 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3948 3949 spin_lock(&last_ptr->lock); 3950 if (last_ptr->block_group) 3951 ffe_ctl->hint_byte = last_ptr->window_start; 3952 if (last_ptr->fragmented) { 3953 /* 3954 * We still set window_start so we can keep track of the 3955 * last place we found an allocation to try and save 3956 * some time. 3957 */ 3958 ffe_ctl->hint_byte = last_ptr->window_start; 3959 ffe_ctl->use_cluster = false; 3960 } 3961 spin_unlock(&last_ptr->lock); 3962 } 3963 3964 return 0; 3965 } 3966 3967 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3968 struct find_free_extent_ctl *ffe_ctl, 3969 struct btrfs_space_info *space_info, 3970 struct btrfs_key *ins) 3971 { 3972 switch (ffe_ctl->policy) { 3973 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3974 return prepare_allocation_clustered(fs_info, ffe_ctl, 3975 space_info, ins); 3976 default: 3977 BUG(); 3978 } 3979 } 3980 3981 /* 3982 * walks the btree of allocated extents and find a hole of a given size. 3983 * The key ins is changed to record the hole: 3984 * ins->objectid == start position 3985 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3986 * ins->offset == the size of the hole. 3987 * Any available blocks before search_start are skipped. 3988 * 3989 * If there is no suitable free space, we will record the max size of 3990 * the free space extent currently. 3991 * 3992 * The overall logic and call chain: 3993 * 3994 * find_free_extent() 3995 * |- Iterate through all block groups 3996 * | |- Get a valid block group 3997 * | |- Try to do clustered allocation in that block group 3998 * | |- Try to do unclustered allocation in that block group 3999 * | |- Check if the result is valid 4000 * | | |- If valid, then exit 4001 * | |- Jump to next block group 4002 * | 4003 * |- Push harder to find free extents 4004 * |- If not found, re-iterate all block groups 4005 */ 4006 static noinline int find_free_extent(struct btrfs_root *root, 4007 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4008 u64 hint_byte_orig, struct btrfs_key *ins, 4009 u64 flags, int delalloc) 4010 { 4011 struct btrfs_fs_info *fs_info = root->fs_info; 4012 int ret = 0; 4013 int cache_block_group_error = 0; 4014 struct btrfs_block_group *block_group = NULL; 4015 struct find_free_extent_ctl ffe_ctl = {0}; 4016 struct btrfs_space_info *space_info; 4017 bool full_search = false; 4018 4019 WARN_ON(num_bytes < fs_info->sectorsize); 4020 4021 ffe_ctl.num_bytes = num_bytes; 4022 ffe_ctl.empty_size = empty_size; 4023 ffe_ctl.flags = flags; 4024 ffe_ctl.search_start = 0; 4025 ffe_ctl.delalloc = delalloc; 4026 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4027 ffe_ctl.have_caching_bg = false; 4028 ffe_ctl.orig_have_caching_bg = false; 4029 ffe_ctl.found_offset = 0; 4030 ffe_ctl.hint_byte = hint_byte_orig; 4031 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4032 4033 /* For clustered allocation */ 4034 ffe_ctl.retry_clustered = false; 4035 ffe_ctl.retry_unclustered = false; 4036 ffe_ctl.last_ptr = NULL; 4037 ffe_ctl.use_cluster = true; 4038 4039 ins->type = BTRFS_EXTENT_ITEM_KEY; 4040 ins->objectid = 0; 4041 ins->offset = 0; 4042 4043 trace_find_free_extent(root, num_bytes, empty_size, flags); 4044 4045 space_info = btrfs_find_space_info(fs_info, flags); 4046 if (!space_info) { 4047 btrfs_err(fs_info, "No space info for %llu", flags); 4048 return -ENOSPC; 4049 } 4050 4051 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4052 if (ret < 0) 4053 return ret; 4054 4055 ffe_ctl.search_start = max(ffe_ctl.search_start, 4056 first_logical_byte(fs_info, 0)); 4057 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4058 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4059 block_group = btrfs_lookup_block_group(fs_info, 4060 ffe_ctl.search_start); 4061 /* 4062 * we don't want to use the block group if it doesn't match our 4063 * allocation bits, or if its not cached. 4064 * 4065 * However if we are re-searching with an ideal block group 4066 * picked out then we don't care that the block group is cached. 4067 */ 4068 if (block_group && block_group_bits(block_group, flags) && 4069 block_group->cached != BTRFS_CACHE_NO) { 4070 down_read(&space_info->groups_sem); 4071 if (list_empty(&block_group->list) || 4072 block_group->ro) { 4073 /* 4074 * someone is removing this block group, 4075 * we can't jump into the have_block_group 4076 * target because our list pointers are not 4077 * valid 4078 */ 4079 btrfs_put_block_group(block_group); 4080 up_read(&space_info->groups_sem); 4081 } else { 4082 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4083 block_group->flags); 4084 btrfs_lock_block_group(block_group, delalloc); 4085 goto have_block_group; 4086 } 4087 } else if (block_group) { 4088 btrfs_put_block_group(block_group); 4089 } 4090 } 4091 search: 4092 ffe_ctl.have_caching_bg = false; 4093 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4094 ffe_ctl.index == 0) 4095 full_search = true; 4096 down_read(&space_info->groups_sem); 4097 list_for_each_entry(block_group, 4098 &space_info->block_groups[ffe_ctl.index], list) { 4099 struct btrfs_block_group *bg_ret; 4100 4101 /* If the block group is read-only, we can skip it entirely. */ 4102 if (unlikely(block_group->ro)) 4103 continue; 4104 4105 btrfs_grab_block_group(block_group, delalloc); 4106 ffe_ctl.search_start = block_group->start; 4107 4108 /* 4109 * this can happen if we end up cycling through all the 4110 * raid types, but we want to make sure we only allocate 4111 * for the proper type. 4112 */ 4113 if (!block_group_bits(block_group, flags)) { 4114 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4115 BTRFS_BLOCK_GROUP_RAID1_MASK | 4116 BTRFS_BLOCK_GROUP_RAID56_MASK | 4117 BTRFS_BLOCK_GROUP_RAID10; 4118 4119 /* 4120 * if they asked for extra copies and this block group 4121 * doesn't provide them, bail. This does allow us to 4122 * fill raid0 from raid1. 4123 */ 4124 if ((flags & extra) && !(block_group->flags & extra)) 4125 goto loop; 4126 4127 /* 4128 * This block group has different flags than we want. 4129 * It's possible that we have MIXED_GROUP flag but no 4130 * block group is mixed. Just skip such block group. 4131 */ 4132 btrfs_release_block_group(block_group, delalloc); 4133 continue; 4134 } 4135 4136 have_block_group: 4137 ffe_ctl.cached = btrfs_block_group_done(block_group); 4138 if (unlikely(!ffe_ctl.cached)) { 4139 ffe_ctl.have_caching_bg = true; 4140 ret = btrfs_cache_block_group(block_group, 0); 4141 4142 /* 4143 * If we get ENOMEM here or something else we want to 4144 * try other block groups, because it may not be fatal. 4145 * However if we can't find anything else we need to 4146 * save our return here so that we return the actual 4147 * error that caused problems, not ENOSPC. 4148 */ 4149 if (ret < 0) { 4150 if (!cache_block_group_error) 4151 cache_block_group_error = ret; 4152 ret = 0; 4153 goto loop; 4154 } 4155 ret = 0; 4156 } 4157 4158 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4159 goto loop; 4160 4161 bg_ret = NULL; 4162 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4163 if (ret == 0) { 4164 if (bg_ret && bg_ret != block_group) { 4165 btrfs_release_block_group(block_group, delalloc); 4166 block_group = bg_ret; 4167 } 4168 } else if (ret == -EAGAIN) { 4169 goto have_block_group; 4170 } else if (ret > 0) { 4171 goto loop; 4172 } 4173 4174 /* Checks */ 4175 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4176 fs_info->stripesize); 4177 4178 /* move on to the next group */ 4179 if (ffe_ctl.search_start + num_bytes > 4180 block_group->start + block_group->length) { 4181 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4182 num_bytes); 4183 goto loop; 4184 } 4185 4186 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4187 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4188 ffe_ctl.search_start - ffe_ctl.found_offset); 4189 4190 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4191 num_bytes, delalloc); 4192 if (ret == -EAGAIN) { 4193 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4194 num_bytes); 4195 goto loop; 4196 } 4197 btrfs_inc_block_group_reservations(block_group); 4198 4199 /* we are all good, lets return */ 4200 ins->objectid = ffe_ctl.search_start; 4201 ins->offset = num_bytes; 4202 4203 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4204 num_bytes); 4205 btrfs_release_block_group(block_group, delalloc); 4206 break; 4207 loop: 4208 release_block_group(block_group, &ffe_ctl, delalloc); 4209 cond_resched(); 4210 } 4211 up_read(&space_info->groups_sem); 4212 4213 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4214 if (ret > 0) 4215 goto search; 4216 4217 if (ret == -ENOSPC && !cache_block_group_error) { 4218 /* 4219 * Use ffe_ctl->total_free_space as fallback if we can't find 4220 * any contiguous hole. 4221 */ 4222 if (!ffe_ctl.max_extent_size) 4223 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4224 spin_lock(&space_info->lock); 4225 space_info->max_extent_size = ffe_ctl.max_extent_size; 4226 spin_unlock(&space_info->lock); 4227 ins->offset = ffe_ctl.max_extent_size; 4228 } else if (ret == -ENOSPC) { 4229 ret = cache_block_group_error; 4230 } 4231 return ret; 4232 } 4233 4234 /* 4235 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4236 * hole that is at least as big as @num_bytes. 4237 * 4238 * @root - The root that will contain this extent 4239 * 4240 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4241 * is used for accounting purposes. This value differs 4242 * from @num_bytes only in the case of compressed extents. 4243 * 4244 * @num_bytes - Number of bytes to allocate on-disk. 4245 * 4246 * @min_alloc_size - Indicates the minimum amount of space that the 4247 * allocator should try to satisfy. In some cases 4248 * @num_bytes may be larger than what is required and if 4249 * the filesystem is fragmented then allocation fails. 4250 * However, the presence of @min_alloc_size gives a 4251 * chance to try and satisfy the smaller allocation. 4252 * 4253 * @empty_size - A hint that you plan on doing more COW. This is the 4254 * size in bytes the allocator should try to find free 4255 * next to the block it returns. This is just a hint and 4256 * may be ignored by the allocator. 4257 * 4258 * @hint_byte - Hint to the allocator to start searching above the byte 4259 * address passed. It might be ignored. 4260 * 4261 * @ins - This key is modified to record the found hole. It will 4262 * have the following values: 4263 * ins->objectid == start position 4264 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4265 * ins->offset == the size of the hole. 4266 * 4267 * @is_data - Boolean flag indicating whether an extent is 4268 * allocated for data (true) or metadata (false) 4269 * 4270 * @delalloc - Boolean flag indicating whether this allocation is for 4271 * delalloc or not. If 'true' data_rwsem of block groups 4272 * is going to be acquired. 4273 * 4274 * 4275 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4276 * case -ENOSPC is returned then @ins->offset will contain the size of the 4277 * largest available hole the allocator managed to find. 4278 */ 4279 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4280 u64 num_bytes, u64 min_alloc_size, 4281 u64 empty_size, u64 hint_byte, 4282 struct btrfs_key *ins, int is_data, int delalloc) 4283 { 4284 struct btrfs_fs_info *fs_info = root->fs_info; 4285 bool final_tried = num_bytes == min_alloc_size; 4286 u64 flags; 4287 int ret; 4288 4289 flags = get_alloc_profile_by_root(root, is_data); 4290 again: 4291 WARN_ON(num_bytes < fs_info->sectorsize); 4292 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4293 hint_byte, ins, flags, delalloc); 4294 if (!ret && !is_data) { 4295 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4296 } else if (ret == -ENOSPC) { 4297 if (!final_tried && ins->offset) { 4298 num_bytes = min(num_bytes >> 1, ins->offset); 4299 num_bytes = round_down(num_bytes, 4300 fs_info->sectorsize); 4301 num_bytes = max(num_bytes, min_alloc_size); 4302 ram_bytes = num_bytes; 4303 if (num_bytes == min_alloc_size) 4304 final_tried = true; 4305 goto again; 4306 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4307 struct btrfs_space_info *sinfo; 4308 4309 sinfo = btrfs_find_space_info(fs_info, flags); 4310 btrfs_err(fs_info, 4311 "allocation failed flags %llu, wanted %llu", 4312 flags, num_bytes); 4313 if (sinfo) 4314 btrfs_dump_space_info(fs_info, sinfo, 4315 num_bytes, 1); 4316 } 4317 } 4318 4319 return ret; 4320 } 4321 4322 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4323 u64 start, u64 len, int delalloc) 4324 { 4325 struct btrfs_block_group *cache; 4326 4327 cache = btrfs_lookup_block_group(fs_info, start); 4328 if (!cache) { 4329 btrfs_err(fs_info, "Unable to find block group for %llu", 4330 start); 4331 return -ENOSPC; 4332 } 4333 4334 btrfs_add_free_space(cache, start, len); 4335 btrfs_free_reserved_bytes(cache, len, delalloc); 4336 trace_btrfs_reserved_extent_free(fs_info, start, len); 4337 4338 btrfs_put_block_group(cache); 4339 return 0; 4340 } 4341 4342 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4343 u64 len) 4344 { 4345 struct btrfs_block_group *cache; 4346 int ret = 0; 4347 4348 cache = btrfs_lookup_block_group(trans->fs_info, start); 4349 if (!cache) { 4350 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4351 start); 4352 return -ENOSPC; 4353 } 4354 4355 ret = pin_down_extent(trans, cache, start, len, 1); 4356 btrfs_put_block_group(cache); 4357 return ret; 4358 } 4359 4360 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4361 u64 parent, u64 root_objectid, 4362 u64 flags, u64 owner, u64 offset, 4363 struct btrfs_key *ins, int ref_mod) 4364 { 4365 struct btrfs_fs_info *fs_info = trans->fs_info; 4366 int ret; 4367 struct btrfs_extent_item *extent_item; 4368 struct btrfs_extent_inline_ref *iref; 4369 struct btrfs_path *path; 4370 struct extent_buffer *leaf; 4371 int type; 4372 u32 size; 4373 4374 if (parent > 0) 4375 type = BTRFS_SHARED_DATA_REF_KEY; 4376 else 4377 type = BTRFS_EXTENT_DATA_REF_KEY; 4378 4379 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4380 4381 path = btrfs_alloc_path(); 4382 if (!path) 4383 return -ENOMEM; 4384 4385 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4386 ins, size); 4387 if (ret) { 4388 btrfs_free_path(path); 4389 return ret; 4390 } 4391 4392 leaf = path->nodes[0]; 4393 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4394 struct btrfs_extent_item); 4395 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4396 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4397 btrfs_set_extent_flags(leaf, extent_item, 4398 flags | BTRFS_EXTENT_FLAG_DATA); 4399 4400 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4401 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4402 if (parent > 0) { 4403 struct btrfs_shared_data_ref *ref; 4404 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4405 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4406 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4407 } else { 4408 struct btrfs_extent_data_ref *ref; 4409 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4410 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4411 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4412 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4413 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4414 } 4415 4416 btrfs_mark_buffer_dirty(path->nodes[0]); 4417 btrfs_free_path(path); 4418 4419 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4420 if (ret) 4421 return ret; 4422 4423 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4424 if (ret) { /* -ENOENT, logic error */ 4425 btrfs_err(fs_info, "update block group failed for %llu %llu", 4426 ins->objectid, ins->offset); 4427 BUG(); 4428 } 4429 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4430 return ret; 4431 } 4432 4433 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4434 struct btrfs_delayed_ref_node *node, 4435 struct btrfs_delayed_extent_op *extent_op) 4436 { 4437 struct btrfs_fs_info *fs_info = trans->fs_info; 4438 int ret; 4439 struct btrfs_extent_item *extent_item; 4440 struct btrfs_key extent_key; 4441 struct btrfs_tree_block_info *block_info; 4442 struct btrfs_extent_inline_ref *iref; 4443 struct btrfs_path *path; 4444 struct extent_buffer *leaf; 4445 struct btrfs_delayed_tree_ref *ref; 4446 u32 size = sizeof(*extent_item) + sizeof(*iref); 4447 u64 num_bytes; 4448 u64 flags = extent_op->flags_to_set; 4449 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4450 4451 ref = btrfs_delayed_node_to_tree_ref(node); 4452 4453 extent_key.objectid = node->bytenr; 4454 if (skinny_metadata) { 4455 extent_key.offset = ref->level; 4456 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4457 num_bytes = fs_info->nodesize; 4458 } else { 4459 extent_key.offset = node->num_bytes; 4460 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4461 size += sizeof(*block_info); 4462 num_bytes = node->num_bytes; 4463 } 4464 4465 path = btrfs_alloc_path(); 4466 if (!path) 4467 return -ENOMEM; 4468 4469 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4470 &extent_key, size); 4471 if (ret) { 4472 btrfs_free_path(path); 4473 return ret; 4474 } 4475 4476 leaf = path->nodes[0]; 4477 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4478 struct btrfs_extent_item); 4479 btrfs_set_extent_refs(leaf, extent_item, 1); 4480 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4481 btrfs_set_extent_flags(leaf, extent_item, 4482 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4483 4484 if (skinny_metadata) { 4485 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4486 } else { 4487 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4488 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4489 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4490 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4491 } 4492 4493 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4494 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4495 btrfs_set_extent_inline_ref_type(leaf, iref, 4496 BTRFS_SHARED_BLOCK_REF_KEY); 4497 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4498 } else { 4499 btrfs_set_extent_inline_ref_type(leaf, iref, 4500 BTRFS_TREE_BLOCK_REF_KEY); 4501 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4502 } 4503 4504 btrfs_mark_buffer_dirty(leaf); 4505 btrfs_free_path(path); 4506 4507 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4508 num_bytes); 4509 if (ret) 4510 return ret; 4511 4512 ret = btrfs_update_block_group(trans, extent_key.objectid, 4513 fs_info->nodesize, 1); 4514 if (ret) { /* -ENOENT, logic error */ 4515 btrfs_err(fs_info, "update block group failed for %llu %llu", 4516 extent_key.objectid, extent_key.offset); 4517 BUG(); 4518 } 4519 4520 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4521 fs_info->nodesize); 4522 return ret; 4523 } 4524 4525 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4526 struct btrfs_root *root, u64 owner, 4527 u64 offset, u64 ram_bytes, 4528 struct btrfs_key *ins) 4529 { 4530 struct btrfs_ref generic_ref = { 0 }; 4531 int ret; 4532 4533 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4534 4535 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4536 ins->objectid, ins->offset, 0); 4537 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4538 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4539 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4540 ram_bytes, NULL, NULL); 4541 return ret; 4542 } 4543 4544 /* 4545 * this is used by the tree logging recovery code. It records that 4546 * an extent has been allocated and makes sure to clear the free 4547 * space cache bits as well 4548 */ 4549 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4550 u64 root_objectid, u64 owner, u64 offset, 4551 struct btrfs_key *ins) 4552 { 4553 struct btrfs_fs_info *fs_info = trans->fs_info; 4554 int ret; 4555 struct btrfs_block_group *block_group; 4556 struct btrfs_space_info *space_info; 4557 4558 /* 4559 * Mixed block groups will exclude before processing the log so we only 4560 * need to do the exclude dance if this fs isn't mixed. 4561 */ 4562 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4563 ret = __exclude_logged_extent(fs_info, ins->objectid, 4564 ins->offset); 4565 if (ret) 4566 return ret; 4567 } 4568 4569 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4570 if (!block_group) 4571 return -EINVAL; 4572 4573 space_info = block_group->space_info; 4574 spin_lock(&space_info->lock); 4575 spin_lock(&block_group->lock); 4576 space_info->bytes_reserved += ins->offset; 4577 block_group->reserved += ins->offset; 4578 spin_unlock(&block_group->lock); 4579 spin_unlock(&space_info->lock); 4580 4581 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4582 offset, ins, 1); 4583 if (ret) 4584 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4585 btrfs_put_block_group(block_group); 4586 return ret; 4587 } 4588 4589 static struct extent_buffer * 4590 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4591 u64 bytenr, int level, u64 owner, 4592 enum btrfs_lock_nesting nest) 4593 { 4594 struct btrfs_fs_info *fs_info = root->fs_info; 4595 struct extent_buffer *buf; 4596 4597 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4598 if (IS_ERR(buf)) 4599 return buf; 4600 4601 /* 4602 * Extra safety check in case the extent tree is corrupted and extent 4603 * allocator chooses to use a tree block which is already used and 4604 * locked. 4605 */ 4606 if (buf->lock_owner == current->pid) { 4607 btrfs_err_rl(fs_info, 4608 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4609 buf->start, btrfs_header_owner(buf), current->pid); 4610 free_extent_buffer(buf); 4611 return ERR_PTR(-EUCLEAN); 4612 } 4613 4614 /* 4615 * This needs to stay, because we could allocate a freed block from an 4616 * old tree into a new tree, so we need to make sure this new block is 4617 * set to the appropriate level and owner. 4618 */ 4619 btrfs_set_buffer_lockdep_class(owner, buf, level); 4620 __btrfs_tree_lock(buf, nest); 4621 btrfs_clean_tree_block(buf); 4622 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4623 4624 set_extent_buffer_uptodate(buf); 4625 4626 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4627 btrfs_set_header_level(buf, level); 4628 btrfs_set_header_bytenr(buf, buf->start); 4629 btrfs_set_header_generation(buf, trans->transid); 4630 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4631 btrfs_set_header_owner(buf, owner); 4632 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4633 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4634 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4635 buf->log_index = root->log_transid % 2; 4636 /* 4637 * we allow two log transactions at a time, use different 4638 * EXTENT bit to differentiate dirty pages. 4639 */ 4640 if (buf->log_index == 0) 4641 set_extent_dirty(&root->dirty_log_pages, buf->start, 4642 buf->start + buf->len - 1, GFP_NOFS); 4643 else 4644 set_extent_new(&root->dirty_log_pages, buf->start, 4645 buf->start + buf->len - 1); 4646 } else { 4647 buf->log_index = -1; 4648 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4649 buf->start + buf->len - 1, GFP_NOFS); 4650 } 4651 trans->dirty = true; 4652 /* this returns a buffer locked for blocking */ 4653 return buf; 4654 } 4655 4656 /* 4657 * finds a free extent and does all the dirty work required for allocation 4658 * returns the tree buffer or an ERR_PTR on error. 4659 */ 4660 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4661 struct btrfs_root *root, 4662 u64 parent, u64 root_objectid, 4663 const struct btrfs_disk_key *key, 4664 int level, u64 hint, 4665 u64 empty_size, 4666 enum btrfs_lock_nesting nest) 4667 { 4668 struct btrfs_fs_info *fs_info = root->fs_info; 4669 struct btrfs_key ins; 4670 struct btrfs_block_rsv *block_rsv; 4671 struct extent_buffer *buf; 4672 struct btrfs_delayed_extent_op *extent_op; 4673 struct btrfs_ref generic_ref = { 0 }; 4674 u64 flags = 0; 4675 int ret; 4676 u32 blocksize = fs_info->nodesize; 4677 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4678 4679 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4680 if (btrfs_is_testing(fs_info)) { 4681 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4682 level, root_objectid, nest); 4683 if (!IS_ERR(buf)) 4684 root->alloc_bytenr += blocksize; 4685 return buf; 4686 } 4687 #endif 4688 4689 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4690 if (IS_ERR(block_rsv)) 4691 return ERR_CAST(block_rsv); 4692 4693 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4694 empty_size, hint, &ins, 0, 0); 4695 if (ret) 4696 goto out_unuse; 4697 4698 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4699 root_objectid, nest); 4700 if (IS_ERR(buf)) { 4701 ret = PTR_ERR(buf); 4702 goto out_free_reserved; 4703 } 4704 4705 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4706 if (parent == 0) 4707 parent = ins.objectid; 4708 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4709 } else 4710 BUG_ON(parent > 0); 4711 4712 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4713 extent_op = btrfs_alloc_delayed_extent_op(); 4714 if (!extent_op) { 4715 ret = -ENOMEM; 4716 goto out_free_buf; 4717 } 4718 if (key) 4719 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4720 else 4721 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4722 extent_op->flags_to_set = flags; 4723 extent_op->update_key = skinny_metadata ? false : true; 4724 extent_op->update_flags = true; 4725 extent_op->is_data = false; 4726 extent_op->level = level; 4727 4728 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4729 ins.objectid, ins.offset, parent); 4730 generic_ref.real_root = root->root_key.objectid; 4731 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4732 btrfs_ref_tree_mod(fs_info, &generic_ref); 4733 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4734 extent_op, NULL, NULL); 4735 if (ret) 4736 goto out_free_delayed; 4737 } 4738 return buf; 4739 4740 out_free_delayed: 4741 btrfs_free_delayed_extent_op(extent_op); 4742 out_free_buf: 4743 free_extent_buffer(buf); 4744 out_free_reserved: 4745 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4746 out_unuse: 4747 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4748 return ERR_PTR(ret); 4749 } 4750 4751 struct walk_control { 4752 u64 refs[BTRFS_MAX_LEVEL]; 4753 u64 flags[BTRFS_MAX_LEVEL]; 4754 struct btrfs_key update_progress; 4755 struct btrfs_key drop_progress; 4756 int drop_level; 4757 int stage; 4758 int level; 4759 int shared_level; 4760 int update_ref; 4761 int keep_locks; 4762 int reada_slot; 4763 int reada_count; 4764 int restarted; 4765 }; 4766 4767 #define DROP_REFERENCE 1 4768 #define UPDATE_BACKREF 2 4769 4770 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4771 struct btrfs_root *root, 4772 struct walk_control *wc, 4773 struct btrfs_path *path) 4774 { 4775 struct btrfs_fs_info *fs_info = root->fs_info; 4776 u64 bytenr; 4777 u64 generation; 4778 u64 refs; 4779 u64 flags; 4780 u32 nritems; 4781 struct btrfs_key key; 4782 struct extent_buffer *eb; 4783 int ret; 4784 int slot; 4785 int nread = 0; 4786 4787 if (path->slots[wc->level] < wc->reada_slot) { 4788 wc->reada_count = wc->reada_count * 2 / 3; 4789 wc->reada_count = max(wc->reada_count, 2); 4790 } else { 4791 wc->reada_count = wc->reada_count * 3 / 2; 4792 wc->reada_count = min_t(int, wc->reada_count, 4793 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4794 } 4795 4796 eb = path->nodes[wc->level]; 4797 nritems = btrfs_header_nritems(eb); 4798 4799 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4800 if (nread >= wc->reada_count) 4801 break; 4802 4803 cond_resched(); 4804 bytenr = btrfs_node_blockptr(eb, slot); 4805 generation = btrfs_node_ptr_generation(eb, slot); 4806 4807 if (slot == path->slots[wc->level]) 4808 goto reada; 4809 4810 if (wc->stage == UPDATE_BACKREF && 4811 generation <= root->root_key.offset) 4812 continue; 4813 4814 /* We don't lock the tree block, it's OK to be racy here */ 4815 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4816 wc->level - 1, 1, &refs, 4817 &flags); 4818 /* We don't care about errors in readahead. */ 4819 if (ret < 0) 4820 continue; 4821 BUG_ON(refs == 0); 4822 4823 if (wc->stage == DROP_REFERENCE) { 4824 if (refs == 1) 4825 goto reada; 4826 4827 if (wc->level == 1 && 4828 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4829 continue; 4830 if (!wc->update_ref || 4831 generation <= root->root_key.offset) 4832 continue; 4833 btrfs_node_key_to_cpu(eb, &key, slot); 4834 ret = btrfs_comp_cpu_keys(&key, 4835 &wc->update_progress); 4836 if (ret < 0) 4837 continue; 4838 } else { 4839 if (wc->level == 1 && 4840 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4841 continue; 4842 } 4843 reada: 4844 btrfs_readahead_node_child(eb, slot); 4845 nread++; 4846 } 4847 wc->reada_slot = slot; 4848 } 4849 4850 /* 4851 * helper to process tree block while walking down the tree. 4852 * 4853 * when wc->stage == UPDATE_BACKREF, this function updates 4854 * back refs for pointers in the block. 4855 * 4856 * NOTE: return value 1 means we should stop walking down. 4857 */ 4858 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4859 struct btrfs_root *root, 4860 struct btrfs_path *path, 4861 struct walk_control *wc, int lookup_info) 4862 { 4863 struct btrfs_fs_info *fs_info = root->fs_info; 4864 int level = wc->level; 4865 struct extent_buffer *eb = path->nodes[level]; 4866 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4867 int ret; 4868 4869 if (wc->stage == UPDATE_BACKREF && 4870 btrfs_header_owner(eb) != root->root_key.objectid) 4871 return 1; 4872 4873 /* 4874 * when reference count of tree block is 1, it won't increase 4875 * again. once full backref flag is set, we never clear it. 4876 */ 4877 if (lookup_info && 4878 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4879 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4880 BUG_ON(!path->locks[level]); 4881 ret = btrfs_lookup_extent_info(trans, fs_info, 4882 eb->start, level, 1, 4883 &wc->refs[level], 4884 &wc->flags[level]); 4885 BUG_ON(ret == -ENOMEM); 4886 if (ret) 4887 return ret; 4888 BUG_ON(wc->refs[level] == 0); 4889 } 4890 4891 if (wc->stage == DROP_REFERENCE) { 4892 if (wc->refs[level] > 1) 4893 return 1; 4894 4895 if (path->locks[level] && !wc->keep_locks) { 4896 btrfs_tree_unlock_rw(eb, path->locks[level]); 4897 path->locks[level] = 0; 4898 } 4899 return 0; 4900 } 4901 4902 /* wc->stage == UPDATE_BACKREF */ 4903 if (!(wc->flags[level] & flag)) { 4904 BUG_ON(!path->locks[level]); 4905 ret = btrfs_inc_ref(trans, root, eb, 1); 4906 BUG_ON(ret); /* -ENOMEM */ 4907 ret = btrfs_dec_ref(trans, root, eb, 0); 4908 BUG_ON(ret); /* -ENOMEM */ 4909 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4910 btrfs_header_level(eb), 0); 4911 BUG_ON(ret); /* -ENOMEM */ 4912 wc->flags[level] |= flag; 4913 } 4914 4915 /* 4916 * the block is shared by multiple trees, so it's not good to 4917 * keep the tree lock 4918 */ 4919 if (path->locks[level] && level > 0) { 4920 btrfs_tree_unlock_rw(eb, path->locks[level]); 4921 path->locks[level] = 0; 4922 } 4923 return 0; 4924 } 4925 4926 /* 4927 * This is used to verify a ref exists for this root to deal with a bug where we 4928 * would have a drop_progress key that hadn't been updated properly. 4929 */ 4930 static int check_ref_exists(struct btrfs_trans_handle *trans, 4931 struct btrfs_root *root, u64 bytenr, u64 parent, 4932 int level) 4933 { 4934 struct btrfs_path *path; 4935 struct btrfs_extent_inline_ref *iref; 4936 int ret; 4937 4938 path = btrfs_alloc_path(); 4939 if (!path) 4940 return -ENOMEM; 4941 4942 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4943 root->fs_info->nodesize, parent, 4944 root->root_key.objectid, level, 0); 4945 btrfs_free_path(path); 4946 if (ret == -ENOENT) 4947 return 0; 4948 if (ret < 0) 4949 return ret; 4950 return 1; 4951 } 4952 4953 /* 4954 * helper to process tree block pointer. 4955 * 4956 * when wc->stage == DROP_REFERENCE, this function checks 4957 * reference count of the block pointed to. if the block 4958 * is shared and we need update back refs for the subtree 4959 * rooted at the block, this function changes wc->stage to 4960 * UPDATE_BACKREF. if the block is shared and there is no 4961 * need to update back, this function drops the reference 4962 * to the block. 4963 * 4964 * NOTE: return value 1 means we should stop walking down. 4965 */ 4966 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4967 struct btrfs_root *root, 4968 struct btrfs_path *path, 4969 struct walk_control *wc, int *lookup_info) 4970 { 4971 struct btrfs_fs_info *fs_info = root->fs_info; 4972 u64 bytenr; 4973 u64 generation; 4974 u64 parent; 4975 struct btrfs_key key; 4976 struct btrfs_key first_key; 4977 struct btrfs_ref ref = { 0 }; 4978 struct extent_buffer *next; 4979 int level = wc->level; 4980 int reada = 0; 4981 int ret = 0; 4982 bool need_account = false; 4983 4984 generation = btrfs_node_ptr_generation(path->nodes[level], 4985 path->slots[level]); 4986 /* 4987 * if the lower level block was created before the snapshot 4988 * was created, we know there is no need to update back refs 4989 * for the subtree 4990 */ 4991 if (wc->stage == UPDATE_BACKREF && 4992 generation <= root->root_key.offset) { 4993 *lookup_info = 1; 4994 return 1; 4995 } 4996 4997 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4998 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4999 path->slots[level]); 5000 5001 next = find_extent_buffer(fs_info, bytenr); 5002 if (!next) { 5003 next = btrfs_find_create_tree_block(fs_info, bytenr, 5004 root->root_key.objectid, level - 1); 5005 if (IS_ERR(next)) 5006 return PTR_ERR(next); 5007 reada = 1; 5008 } 5009 btrfs_tree_lock(next); 5010 5011 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5012 &wc->refs[level - 1], 5013 &wc->flags[level - 1]); 5014 if (ret < 0) 5015 goto out_unlock; 5016 5017 if (unlikely(wc->refs[level - 1] == 0)) { 5018 btrfs_err(fs_info, "Missing references."); 5019 ret = -EIO; 5020 goto out_unlock; 5021 } 5022 *lookup_info = 0; 5023 5024 if (wc->stage == DROP_REFERENCE) { 5025 if (wc->refs[level - 1] > 1) { 5026 need_account = true; 5027 if (level == 1 && 5028 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5029 goto skip; 5030 5031 if (!wc->update_ref || 5032 generation <= root->root_key.offset) 5033 goto skip; 5034 5035 btrfs_node_key_to_cpu(path->nodes[level], &key, 5036 path->slots[level]); 5037 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5038 if (ret < 0) 5039 goto skip; 5040 5041 wc->stage = UPDATE_BACKREF; 5042 wc->shared_level = level - 1; 5043 } 5044 } else { 5045 if (level == 1 && 5046 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5047 goto skip; 5048 } 5049 5050 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5051 btrfs_tree_unlock(next); 5052 free_extent_buffer(next); 5053 next = NULL; 5054 *lookup_info = 1; 5055 } 5056 5057 if (!next) { 5058 if (reada && level == 1) 5059 reada_walk_down(trans, root, wc, path); 5060 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5061 generation, level - 1, &first_key); 5062 if (IS_ERR(next)) { 5063 return PTR_ERR(next); 5064 } else if (!extent_buffer_uptodate(next)) { 5065 free_extent_buffer(next); 5066 return -EIO; 5067 } 5068 btrfs_tree_lock(next); 5069 } 5070 5071 level--; 5072 ASSERT(level == btrfs_header_level(next)); 5073 if (level != btrfs_header_level(next)) { 5074 btrfs_err(root->fs_info, "mismatched level"); 5075 ret = -EIO; 5076 goto out_unlock; 5077 } 5078 path->nodes[level] = next; 5079 path->slots[level] = 0; 5080 path->locks[level] = BTRFS_WRITE_LOCK; 5081 wc->level = level; 5082 if (wc->level == 1) 5083 wc->reada_slot = 0; 5084 return 0; 5085 skip: 5086 wc->refs[level - 1] = 0; 5087 wc->flags[level - 1] = 0; 5088 if (wc->stage == DROP_REFERENCE) { 5089 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5090 parent = path->nodes[level]->start; 5091 } else { 5092 ASSERT(root->root_key.objectid == 5093 btrfs_header_owner(path->nodes[level])); 5094 if (root->root_key.objectid != 5095 btrfs_header_owner(path->nodes[level])) { 5096 btrfs_err(root->fs_info, 5097 "mismatched block owner"); 5098 ret = -EIO; 5099 goto out_unlock; 5100 } 5101 parent = 0; 5102 } 5103 5104 /* 5105 * If we had a drop_progress we need to verify the refs are set 5106 * as expected. If we find our ref then we know that from here 5107 * on out everything should be correct, and we can clear the 5108 * ->restarted flag. 5109 */ 5110 if (wc->restarted) { 5111 ret = check_ref_exists(trans, root, bytenr, parent, 5112 level - 1); 5113 if (ret < 0) 5114 goto out_unlock; 5115 if (ret == 0) 5116 goto no_delete; 5117 ret = 0; 5118 wc->restarted = 0; 5119 } 5120 5121 /* 5122 * Reloc tree doesn't contribute to qgroup numbers, and we have 5123 * already accounted them at merge time (replace_path), 5124 * thus we could skip expensive subtree trace here. 5125 */ 5126 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5127 need_account) { 5128 ret = btrfs_qgroup_trace_subtree(trans, next, 5129 generation, level - 1); 5130 if (ret) { 5131 btrfs_err_rl(fs_info, 5132 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5133 ret); 5134 } 5135 } 5136 5137 /* 5138 * We need to update the next key in our walk control so we can 5139 * update the drop_progress key accordingly. We don't care if 5140 * find_next_key doesn't find a key because that means we're at 5141 * the end and are going to clean up now. 5142 */ 5143 wc->drop_level = level; 5144 find_next_key(path, level, &wc->drop_progress); 5145 5146 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5147 fs_info->nodesize, parent); 5148 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5149 ret = btrfs_free_extent(trans, &ref); 5150 if (ret) 5151 goto out_unlock; 5152 } 5153 no_delete: 5154 *lookup_info = 1; 5155 ret = 1; 5156 5157 out_unlock: 5158 btrfs_tree_unlock(next); 5159 free_extent_buffer(next); 5160 5161 return ret; 5162 } 5163 5164 /* 5165 * helper to process tree block while walking up the tree. 5166 * 5167 * when wc->stage == DROP_REFERENCE, this function drops 5168 * reference count on the block. 5169 * 5170 * when wc->stage == UPDATE_BACKREF, this function changes 5171 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5172 * to UPDATE_BACKREF previously while processing the block. 5173 * 5174 * NOTE: return value 1 means we should stop walking up. 5175 */ 5176 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5177 struct btrfs_root *root, 5178 struct btrfs_path *path, 5179 struct walk_control *wc) 5180 { 5181 struct btrfs_fs_info *fs_info = root->fs_info; 5182 int ret; 5183 int level = wc->level; 5184 struct extent_buffer *eb = path->nodes[level]; 5185 u64 parent = 0; 5186 5187 if (wc->stage == UPDATE_BACKREF) { 5188 BUG_ON(wc->shared_level < level); 5189 if (level < wc->shared_level) 5190 goto out; 5191 5192 ret = find_next_key(path, level + 1, &wc->update_progress); 5193 if (ret > 0) 5194 wc->update_ref = 0; 5195 5196 wc->stage = DROP_REFERENCE; 5197 wc->shared_level = -1; 5198 path->slots[level] = 0; 5199 5200 /* 5201 * check reference count again if the block isn't locked. 5202 * we should start walking down the tree again if reference 5203 * count is one. 5204 */ 5205 if (!path->locks[level]) { 5206 BUG_ON(level == 0); 5207 btrfs_tree_lock(eb); 5208 path->locks[level] = BTRFS_WRITE_LOCK; 5209 5210 ret = btrfs_lookup_extent_info(trans, fs_info, 5211 eb->start, level, 1, 5212 &wc->refs[level], 5213 &wc->flags[level]); 5214 if (ret < 0) { 5215 btrfs_tree_unlock_rw(eb, path->locks[level]); 5216 path->locks[level] = 0; 5217 return ret; 5218 } 5219 BUG_ON(wc->refs[level] == 0); 5220 if (wc->refs[level] == 1) { 5221 btrfs_tree_unlock_rw(eb, path->locks[level]); 5222 path->locks[level] = 0; 5223 return 1; 5224 } 5225 } 5226 } 5227 5228 /* wc->stage == DROP_REFERENCE */ 5229 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5230 5231 if (wc->refs[level] == 1) { 5232 if (level == 0) { 5233 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5234 ret = btrfs_dec_ref(trans, root, eb, 1); 5235 else 5236 ret = btrfs_dec_ref(trans, root, eb, 0); 5237 BUG_ON(ret); /* -ENOMEM */ 5238 if (is_fstree(root->root_key.objectid)) { 5239 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5240 if (ret) { 5241 btrfs_err_rl(fs_info, 5242 "error %d accounting leaf items, quota is out of sync, rescan required", 5243 ret); 5244 } 5245 } 5246 } 5247 /* make block locked assertion in btrfs_clean_tree_block happy */ 5248 if (!path->locks[level] && 5249 btrfs_header_generation(eb) == trans->transid) { 5250 btrfs_tree_lock(eb); 5251 path->locks[level] = BTRFS_WRITE_LOCK; 5252 } 5253 btrfs_clean_tree_block(eb); 5254 } 5255 5256 if (eb == root->node) { 5257 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5258 parent = eb->start; 5259 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5260 goto owner_mismatch; 5261 } else { 5262 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5263 parent = path->nodes[level + 1]->start; 5264 else if (root->root_key.objectid != 5265 btrfs_header_owner(path->nodes[level + 1])) 5266 goto owner_mismatch; 5267 } 5268 5269 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5270 out: 5271 wc->refs[level] = 0; 5272 wc->flags[level] = 0; 5273 return 0; 5274 5275 owner_mismatch: 5276 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5277 btrfs_header_owner(eb), root->root_key.objectid); 5278 return -EUCLEAN; 5279 } 5280 5281 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5282 struct btrfs_root *root, 5283 struct btrfs_path *path, 5284 struct walk_control *wc) 5285 { 5286 int level = wc->level; 5287 int lookup_info = 1; 5288 int ret; 5289 5290 while (level >= 0) { 5291 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5292 if (ret > 0) 5293 break; 5294 5295 if (level == 0) 5296 break; 5297 5298 if (path->slots[level] >= 5299 btrfs_header_nritems(path->nodes[level])) 5300 break; 5301 5302 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5303 if (ret > 0) { 5304 path->slots[level]++; 5305 continue; 5306 } else if (ret < 0) 5307 return ret; 5308 level = wc->level; 5309 } 5310 return 0; 5311 } 5312 5313 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5314 struct btrfs_root *root, 5315 struct btrfs_path *path, 5316 struct walk_control *wc, int max_level) 5317 { 5318 int level = wc->level; 5319 int ret; 5320 5321 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5322 while (level < max_level && path->nodes[level]) { 5323 wc->level = level; 5324 if (path->slots[level] + 1 < 5325 btrfs_header_nritems(path->nodes[level])) { 5326 path->slots[level]++; 5327 return 0; 5328 } else { 5329 ret = walk_up_proc(trans, root, path, wc); 5330 if (ret > 0) 5331 return 0; 5332 if (ret < 0) 5333 return ret; 5334 5335 if (path->locks[level]) { 5336 btrfs_tree_unlock_rw(path->nodes[level], 5337 path->locks[level]); 5338 path->locks[level] = 0; 5339 } 5340 free_extent_buffer(path->nodes[level]); 5341 path->nodes[level] = NULL; 5342 level++; 5343 } 5344 } 5345 return 1; 5346 } 5347 5348 /* 5349 * drop a subvolume tree. 5350 * 5351 * this function traverses the tree freeing any blocks that only 5352 * referenced by the tree. 5353 * 5354 * when a shared tree block is found. this function decreases its 5355 * reference count by one. if update_ref is true, this function 5356 * also make sure backrefs for the shared block and all lower level 5357 * blocks are properly updated. 5358 * 5359 * If called with for_reloc == 0, may exit early with -EAGAIN 5360 */ 5361 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5362 { 5363 struct btrfs_fs_info *fs_info = root->fs_info; 5364 struct btrfs_path *path; 5365 struct btrfs_trans_handle *trans; 5366 struct btrfs_root *tree_root = fs_info->tree_root; 5367 struct btrfs_root_item *root_item = &root->root_item; 5368 struct walk_control *wc; 5369 struct btrfs_key key; 5370 int err = 0; 5371 int ret; 5372 int level; 5373 bool root_dropped = false; 5374 5375 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5376 5377 path = btrfs_alloc_path(); 5378 if (!path) { 5379 err = -ENOMEM; 5380 goto out; 5381 } 5382 5383 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5384 if (!wc) { 5385 btrfs_free_path(path); 5386 err = -ENOMEM; 5387 goto out; 5388 } 5389 5390 /* 5391 * Use join to avoid potential EINTR from transaction start. See 5392 * wait_reserve_ticket and the whole reservation callchain. 5393 */ 5394 if (for_reloc) 5395 trans = btrfs_join_transaction(tree_root); 5396 else 5397 trans = btrfs_start_transaction(tree_root, 0); 5398 if (IS_ERR(trans)) { 5399 err = PTR_ERR(trans); 5400 goto out_free; 5401 } 5402 5403 err = btrfs_run_delayed_items(trans); 5404 if (err) 5405 goto out_end_trans; 5406 5407 /* 5408 * This will help us catch people modifying the fs tree while we're 5409 * dropping it. It is unsafe to mess with the fs tree while it's being 5410 * dropped as we unlock the root node and parent nodes as we walk down 5411 * the tree, assuming nothing will change. If something does change 5412 * then we'll have stale information and drop references to blocks we've 5413 * already dropped. 5414 */ 5415 set_bit(BTRFS_ROOT_DELETING, &root->state); 5416 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5417 level = btrfs_header_level(root->node); 5418 path->nodes[level] = btrfs_lock_root_node(root); 5419 path->slots[level] = 0; 5420 path->locks[level] = BTRFS_WRITE_LOCK; 5421 memset(&wc->update_progress, 0, 5422 sizeof(wc->update_progress)); 5423 } else { 5424 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5425 memcpy(&wc->update_progress, &key, 5426 sizeof(wc->update_progress)); 5427 5428 level = btrfs_root_drop_level(root_item); 5429 BUG_ON(level == 0); 5430 path->lowest_level = level; 5431 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5432 path->lowest_level = 0; 5433 if (ret < 0) { 5434 err = ret; 5435 goto out_end_trans; 5436 } 5437 WARN_ON(ret > 0); 5438 5439 /* 5440 * unlock our path, this is safe because only this 5441 * function is allowed to delete this snapshot 5442 */ 5443 btrfs_unlock_up_safe(path, 0); 5444 5445 level = btrfs_header_level(root->node); 5446 while (1) { 5447 btrfs_tree_lock(path->nodes[level]); 5448 path->locks[level] = BTRFS_WRITE_LOCK; 5449 5450 ret = btrfs_lookup_extent_info(trans, fs_info, 5451 path->nodes[level]->start, 5452 level, 1, &wc->refs[level], 5453 &wc->flags[level]); 5454 if (ret < 0) { 5455 err = ret; 5456 goto out_end_trans; 5457 } 5458 BUG_ON(wc->refs[level] == 0); 5459 5460 if (level == btrfs_root_drop_level(root_item)) 5461 break; 5462 5463 btrfs_tree_unlock(path->nodes[level]); 5464 path->locks[level] = 0; 5465 WARN_ON(wc->refs[level] != 1); 5466 level--; 5467 } 5468 } 5469 5470 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5471 wc->level = level; 5472 wc->shared_level = -1; 5473 wc->stage = DROP_REFERENCE; 5474 wc->update_ref = update_ref; 5475 wc->keep_locks = 0; 5476 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5477 5478 while (1) { 5479 5480 ret = walk_down_tree(trans, root, path, wc); 5481 if (ret < 0) { 5482 err = ret; 5483 break; 5484 } 5485 5486 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5487 if (ret < 0) { 5488 err = ret; 5489 break; 5490 } 5491 5492 if (ret > 0) { 5493 BUG_ON(wc->stage != DROP_REFERENCE); 5494 break; 5495 } 5496 5497 if (wc->stage == DROP_REFERENCE) { 5498 wc->drop_level = wc->level; 5499 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5500 &wc->drop_progress, 5501 path->slots[wc->drop_level]); 5502 } 5503 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5504 &wc->drop_progress); 5505 btrfs_set_root_drop_level(root_item, wc->drop_level); 5506 5507 BUG_ON(wc->level == 0); 5508 if (btrfs_should_end_transaction(trans) || 5509 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5510 ret = btrfs_update_root(trans, tree_root, 5511 &root->root_key, 5512 root_item); 5513 if (ret) { 5514 btrfs_abort_transaction(trans, ret); 5515 err = ret; 5516 goto out_end_trans; 5517 } 5518 5519 btrfs_end_transaction_throttle(trans); 5520 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5521 btrfs_debug(fs_info, 5522 "drop snapshot early exit"); 5523 err = -EAGAIN; 5524 goto out_free; 5525 } 5526 5527 /* 5528 * Use join to avoid potential EINTR from transaction 5529 * start. See wait_reserve_ticket and the whole 5530 * reservation callchain. 5531 */ 5532 if (for_reloc) 5533 trans = btrfs_join_transaction(tree_root); 5534 else 5535 trans = btrfs_start_transaction(tree_root, 0); 5536 if (IS_ERR(trans)) { 5537 err = PTR_ERR(trans); 5538 goto out_free; 5539 } 5540 } 5541 } 5542 btrfs_release_path(path); 5543 if (err) 5544 goto out_end_trans; 5545 5546 ret = btrfs_del_root(trans, &root->root_key); 5547 if (ret) { 5548 btrfs_abort_transaction(trans, ret); 5549 err = ret; 5550 goto out_end_trans; 5551 } 5552 5553 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5554 ret = btrfs_find_root(tree_root, &root->root_key, path, 5555 NULL, NULL); 5556 if (ret < 0) { 5557 btrfs_abort_transaction(trans, ret); 5558 err = ret; 5559 goto out_end_trans; 5560 } else if (ret > 0) { 5561 /* if we fail to delete the orphan item this time 5562 * around, it'll get picked up the next time. 5563 * 5564 * The most common failure here is just -ENOENT. 5565 */ 5566 btrfs_del_orphan_item(trans, tree_root, 5567 root->root_key.objectid); 5568 } 5569 } 5570 5571 /* 5572 * This subvolume is going to be completely dropped, and won't be 5573 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5574 * commit transaction time. So free it here manually. 5575 */ 5576 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5577 btrfs_qgroup_free_meta_all_pertrans(root); 5578 5579 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5580 btrfs_add_dropped_root(trans, root); 5581 else 5582 btrfs_put_root(root); 5583 root_dropped = true; 5584 out_end_trans: 5585 btrfs_end_transaction_throttle(trans); 5586 out_free: 5587 kfree(wc); 5588 btrfs_free_path(path); 5589 out: 5590 /* 5591 * So if we need to stop dropping the snapshot for whatever reason we 5592 * need to make sure to add it back to the dead root list so that we 5593 * keep trying to do the work later. This also cleans up roots if we 5594 * don't have it in the radix (like when we recover after a power fail 5595 * or unmount) so we don't leak memory. 5596 */ 5597 if (!for_reloc && !root_dropped) 5598 btrfs_add_dead_root(root); 5599 return err; 5600 } 5601 5602 /* 5603 * drop subtree rooted at tree block 'node'. 5604 * 5605 * NOTE: this function will unlock and release tree block 'node' 5606 * only used by relocation code 5607 */ 5608 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5609 struct btrfs_root *root, 5610 struct extent_buffer *node, 5611 struct extent_buffer *parent) 5612 { 5613 struct btrfs_fs_info *fs_info = root->fs_info; 5614 struct btrfs_path *path; 5615 struct walk_control *wc; 5616 int level; 5617 int parent_level; 5618 int ret = 0; 5619 int wret; 5620 5621 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5622 5623 path = btrfs_alloc_path(); 5624 if (!path) 5625 return -ENOMEM; 5626 5627 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5628 if (!wc) { 5629 btrfs_free_path(path); 5630 return -ENOMEM; 5631 } 5632 5633 btrfs_assert_tree_locked(parent); 5634 parent_level = btrfs_header_level(parent); 5635 atomic_inc(&parent->refs); 5636 path->nodes[parent_level] = parent; 5637 path->slots[parent_level] = btrfs_header_nritems(parent); 5638 5639 btrfs_assert_tree_locked(node); 5640 level = btrfs_header_level(node); 5641 path->nodes[level] = node; 5642 path->slots[level] = 0; 5643 path->locks[level] = BTRFS_WRITE_LOCK; 5644 5645 wc->refs[parent_level] = 1; 5646 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5647 wc->level = level; 5648 wc->shared_level = -1; 5649 wc->stage = DROP_REFERENCE; 5650 wc->update_ref = 0; 5651 wc->keep_locks = 1; 5652 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5653 5654 while (1) { 5655 wret = walk_down_tree(trans, root, path, wc); 5656 if (wret < 0) { 5657 ret = wret; 5658 break; 5659 } 5660 5661 wret = walk_up_tree(trans, root, path, wc, parent_level); 5662 if (wret < 0) 5663 ret = wret; 5664 if (wret != 0) 5665 break; 5666 } 5667 5668 kfree(wc); 5669 btrfs_free_path(path); 5670 return ret; 5671 } 5672 5673 /* 5674 * helper to account the unused space of all the readonly block group in the 5675 * space_info. takes mirrors into account. 5676 */ 5677 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5678 { 5679 struct btrfs_block_group *block_group; 5680 u64 free_bytes = 0; 5681 int factor; 5682 5683 /* It's df, we don't care if it's racy */ 5684 if (list_empty(&sinfo->ro_bgs)) 5685 return 0; 5686 5687 spin_lock(&sinfo->lock); 5688 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5689 spin_lock(&block_group->lock); 5690 5691 if (!block_group->ro) { 5692 spin_unlock(&block_group->lock); 5693 continue; 5694 } 5695 5696 factor = btrfs_bg_type_to_factor(block_group->flags); 5697 free_bytes += (block_group->length - 5698 block_group->used) * factor; 5699 5700 spin_unlock(&block_group->lock); 5701 } 5702 spin_unlock(&sinfo->lock); 5703 5704 return free_bytes; 5705 } 5706 5707 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5708 u64 start, u64 end) 5709 { 5710 return unpin_extent_range(fs_info, start, end, false); 5711 } 5712 5713 /* 5714 * It used to be that old block groups would be left around forever. 5715 * Iterating over them would be enough to trim unused space. Since we 5716 * now automatically remove them, we also need to iterate over unallocated 5717 * space. 5718 * 5719 * We don't want a transaction for this since the discard may take a 5720 * substantial amount of time. We don't require that a transaction be 5721 * running, but we do need to take a running transaction into account 5722 * to ensure that we're not discarding chunks that were released or 5723 * allocated in the current transaction. 5724 * 5725 * Holding the chunks lock will prevent other threads from allocating 5726 * or releasing chunks, but it won't prevent a running transaction 5727 * from committing and releasing the memory that the pending chunks 5728 * list head uses. For that, we need to take a reference to the 5729 * transaction and hold the commit root sem. We only need to hold 5730 * it while performing the free space search since we have already 5731 * held back allocations. 5732 */ 5733 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5734 { 5735 u64 start = SZ_1M, len = 0, end = 0; 5736 int ret; 5737 5738 *trimmed = 0; 5739 5740 /* Discard not supported = nothing to do. */ 5741 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5742 return 0; 5743 5744 /* Not writable = nothing to do. */ 5745 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5746 return 0; 5747 5748 /* No free space = nothing to do. */ 5749 if (device->total_bytes <= device->bytes_used) 5750 return 0; 5751 5752 ret = 0; 5753 5754 while (1) { 5755 struct btrfs_fs_info *fs_info = device->fs_info; 5756 u64 bytes; 5757 5758 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5759 if (ret) 5760 break; 5761 5762 find_first_clear_extent_bit(&device->alloc_state, start, 5763 &start, &end, 5764 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5765 5766 /* Check if there are any CHUNK_* bits left */ 5767 if (start > device->total_bytes) { 5768 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5769 btrfs_warn_in_rcu(fs_info, 5770 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5771 start, end - start + 1, 5772 rcu_str_deref(device->name), 5773 device->total_bytes); 5774 mutex_unlock(&fs_info->chunk_mutex); 5775 ret = 0; 5776 break; 5777 } 5778 5779 /* Ensure we skip the reserved area in the first 1M */ 5780 start = max_t(u64, start, SZ_1M); 5781 5782 /* 5783 * If find_first_clear_extent_bit find a range that spans the 5784 * end of the device it will set end to -1, in this case it's up 5785 * to the caller to trim the value to the size of the device. 5786 */ 5787 end = min(end, device->total_bytes - 1); 5788 5789 len = end - start + 1; 5790 5791 /* We didn't find any extents */ 5792 if (!len) { 5793 mutex_unlock(&fs_info->chunk_mutex); 5794 ret = 0; 5795 break; 5796 } 5797 5798 ret = btrfs_issue_discard(device->bdev, start, len, 5799 &bytes); 5800 if (!ret) 5801 set_extent_bits(&device->alloc_state, start, 5802 start + bytes - 1, 5803 CHUNK_TRIMMED); 5804 mutex_unlock(&fs_info->chunk_mutex); 5805 5806 if (ret) 5807 break; 5808 5809 start += len; 5810 *trimmed += bytes; 5811 5812 if (fatal_signal_pending(current)) { 5813 ret = -ERESTARTSYS; 5814 break; 5815 } 5816 5817 cond_resched(); 5818 } 5819 5820 return ret; 5821 } 5822 5823 /* 5824 * Trim the whole filesystem by: 5825 * 1) trimming the free space in each block group 5826 * 2) trimming the unallocated space on each device 5827 * 5828 * This will also continue trimming even if a block group or device encounters 5829 * an error. The return value will be the last error, or 0 if nothing bad 5830 * happens. 5831 */ 5832 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5833 { 5834 struct btrfs_block_group *cache = NULL; 5835 struct btrfs_device *device; 5836 struct list_head *devices; 5837 u64 group_trimmed; 5838 u64 range_end = U64_MAX; 5839 u64 start; 5840 u64 end; 5841 u64 trimmed = 0; 5842 u64 bg_failed = 0; 5843 u64 dev_failed = 0; 5844 int bg_ret = 0; 5845 int dev_ret = 0; 5846 int ret = 0; 5847 5848 /* 5849 * Check range overflow if range->len is set. 5850 * The default range->len is U64_MAX. 5851 */ 5852 if (range->len != U64_MAX && 5853 check_add_overflow(range->start, range->len, &range_end)) 5854 return -EINVAL; 5855 5856 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5857 for (; cache; cache = btrfs_next_block_group(cache)) { 5858 if (cache->start >= range_end) { 5859 btrfs_put_block_group(cache); 5860 break; 5861 } 5862 5863 start = max(range->start, cache->start); 5864 end = min(range_end, cache->start + cache->length); 5865 5866 if (end - start >= range->minlen) { 5867 if (!btrfs_block_group_done(cache)) { 5868 ret = btrfs_cache_block_group(cache, 0); 5869 if (ret) { 5870 bg_failed++; 5871 bg_ret = ret; 5872 continue; 5873 } 5874 ret = btrfs_wait_block_group_cache_done(cache); 5875 if (ret) { 5876 bg_failed++; 5877 bg_ret = ret; 5878 continue; 5879 } 5880 } 5881 ret = btrfs_trim_block_group(cache, 5882 &group_trimmed, 5883 start, 5884 end, 5885 range->minlen); 5886 5887 trimmed += group_trimmed; 5888 if (ret) { 5889 bg_failed++; 5890 bg_ret = ret; 5891 continue; 5892 } 5893 } 5894 } 5895 5896 if (bg_failed) 5897 btrfs_warn(fs_info, 5898 "failed to trim %llu block group(s), last error %d", 5899 bg_failed, bg_ret); 5900 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5901 devices = &fs_info->fs_devices->devices; 5902 list_for_each_entry(device, devices, dev_list) { 5903 ret = btrfs_trim_free_extents(device, &group_trimmed); 5904 if (ret) { 5905 dev_failed++; 5906 dev_ret = ret; 5907 break; 5908 } 5909 5910 trimmed += group_trimmed; 5911 } 5912 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5913 5914 if (dev_failed) 5915 btrfs_warn(fs_info, 5916 "failed to trim %llu device(s), last error %d", 5917 dev_failed, dev_ret); 5918 range->len = trimmed; 5919 if (bg_ret) 5920 return bg_ret; 5921 return dev_ret; 5922 } 5923