xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 565d76cb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35 
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 				 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 				struct btrfs_root *root,
43 				u64 bytenr, u64 num_bytes, u64 parent,
44 				u64 root_objectid, u64 owner_objectid,
45 				u64 owner_offset, int refs_to_drop,
46 				struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 				    struct extent_buffer *leaf,
49 				    struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 				      struct btrfs_root *root,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_root *root,
57 				     u64 parent, u64 root_objectid,
58 				     u64 flags, struct btrfs_disk_key *key,
59 				     int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 			  struct btrfs_root *extent_root, u64 alloc_bytes,
62 			  u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 			 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 			    int dump_block_groups);
67 
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 	smp_mb();
72 	return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74 
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 	return (cache->flags & bits) == bits;
78 }
79 
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 	atomic_inc(&cache->count);
83 }
84 
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 	if (atomic_dec_and_test(&cache->count)) {
88 		WARN_ON(cache->pinned > 0);
89 		WARN_ON(cache->reserved > 0);
90 		WARN_ON(cache->reserved_pinned > 0);
91 		kfree(cache);
92 	}
93 }
94 
95 /*
96  * this adds the block group to the fs_info rb tree for the block group
97  * cache
98  */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 				struct btrfs_block_group_cache *block_group)
101 {
102 	struct rb_node **p;
103 	struct rb_node *parent = NULL;
104 	struct btrfs_block_group_cache *cache;
105 
106 	spin_lock(&info->block_group_cache_lock);
107 	p = &info->block_group_cache_tree.rb_node;
108 
109 	while (*p) {
110 		parent = *p;
111 		cache = rb_entry(parent, struct btrfs_block_group_cache,
112 				 cache_node);
113 		if (block_group->key.objectid < cache->key.objectid) {
114 			p = &(*p)->rb_left;
115 		} else if (block_group->key.objectid > cache->key.objectid) {
116 			p = &(*p)->rb_right;
117 		} else {
118 			spin_unlock(&info->block_group_cache_lock);
119 			return -EEXIST;
120 		}
121 	}
122 
123 	rb_link_node(&block_group->cache_node, parent, p);
124 	rb_insert_color(&block_group->cache_node,
125 			&info->block_group_cache_tree);
126 	spin_unlock(&info->block_group_cache_lock);
127 
128 	return 0;
129 }
130 
131 /*
132  * This will return the block group at or after bytenr if contains is 0, else
133  * it will return the block group that contains the bytenr
134  */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 			      int contains)
138 {
139 	struct btrfs_block_group_cache *cache, *ret = NULL;
140 	struct rb_node *n;
141 	u64 end, start;
142 
143 	spin_lock(&info->block_group_cache_lock);
144 	n = info->block_group_cache_tree.rb_node;
145 
146 	while (n) {
147 		cache = rb_entry(n, struct btrfs_block_group_cache,
148 				 cache_node);
149 		end = cache->key.objectid + cache->key.offset - 1;
150 		start = cache->key.objectid;
151 
152 		if (bytenr < start) {
153 			if (!contains && (!ret || start < ret->key.objectid))
154 				ret = cache;
155 			n = n->rb_left;
156 		} else if (bytenr > start) {
157 			if (contains && bytenr <= end) {
158 				ret = cache;
159 				break;
160 			}
161 			n = n->rb_right;
162 		} else {
163 			ret = cache;
164 			break;
165 		}
166 	}
167 	if (ret)
168 		btrfs_get_block_group(ret);
169 	spin_unlock(&info->block_group_cache_lock);
170 
171 	return ret;
172 }
173 
174 static int add_excluded_extent(struct btrfs_root *root,
175 			       u64 start, u64 num_bytes)
176 {
177 	u64 end = start + num_bytes - 1;
178 	set_extent_bits(&root->fs_info->freed_extents[0],
179 			start, end, EXTENT_UPTODATE, GFP_NOFS);
180 	set_extent_bits(&root->fs_info->freed_extents[1],
181 			start, end, EXTENT_UPTODATE, GFP_NOFS);
182 	return 0;
183 }
184 
185 static void free_excluded_extents(struct btrfs_root *root,
186 				  struct btrfs_block_group_cache *cache)
187 {
188 	u64 start, end;
189 
190 	start = cache->key.objectid;
191 	end = start + cache->key.offset - 1;
192 
193 	clear_extent_bits(&root->fs_info->freed_extents[0],
194 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
195 	clear_extent_bits(&root->fs_info->freed_extents[1],
196 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198 
199 static int exclude_super_stripes(struct btrfs_root *root,
200 				 struct btrfs_block_group_cache *cache)
201 {
202 	u64 bytenr;
203 	u64 *logical;
204 	int stripe_len;
205 	int i, nr, ret;
206 
207 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 		cache->bytes_super += stripe_len;
210 		ret = add_excluded_extent(root, cache->key.objectid,
211 					  stripe_len);
212 		BUG_ON(ret);
213 	}
214 
215 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 		bytenr = btrfs_sb_offset(i);
217 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 				       cache->key.objectid, bytenr,
219 				       0, &logical, &nr, &stripe_len);
220 		BUG_ON(ret);
221 
222 		while (nr--) {
223 			cache->bytes_super += stripe_len;
224 			ret = add_excluded_extent(root, logical[nr],
225 						  stripe_len);
226 			BUG_ON(ret);
227 		}
228 
229 		kfree(logical);
230 	}
231 	return 0;
232 }
233 
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 	struct btrfs_caching_control *ctl;
238 
239 	spin_lock(&cache->lock);
240 	if (cache->cached != BTRFS_CACHE_STARTED) {
241 		spin_unlock(&cache->lock);
242 		return NULL;
243 	}
244 
245 	/* We're loading it the fast way, so we don't have a caching_ctl. */
246 	if (!cache->caching_ctl) {
247 		spin_unlock(&cache->lock);
248 		return NULL;
249 	}
250 
251 	ctl = cache->caching_ctl;
252 	atomic_inc(&ctl->count);
253 	spin_unlock(&cache->lock);
254 	return ctl;
255 }
256 
257 static void put_caching_control(struct btrfs_caching_control *ctl)
258 {
259 	if (atomic_dec_and_test(&ctl->count))
260 		kfree(ctl);
261 }
262 
263 /*
264  * this is only called by cache_block_group, since we could have freed extents
265  * we need to check the pinned_extents for any extents that can't be used yet
266  * since their free space will be released as soon as the transaction commits.
267  */
268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
269 			      struct btrfs_fs_info *info, u64 start, u64 end)
270 {
271 	u64 extent_start, extent_end, size, total_added = 0;
272 	int ret;
273 
274 	while (start < end) {
275 		ret = find_first_extent_bit(info->pinned_extents, start,
276 					    &extent_start, &extent_end,
277 					    EXTENT_DIRTY | EXTENT_UPTODATE);
278 		if (ret)
279 			break;
280 
281 		if (extent_start <= start) {
282 			start = extent_end + 1;
283 		} else if (extent_start > start && extent_start < end) {
284 			size = extent_start - start;
285 			total_added += size;
286 			ret = btrfs_add_free_space(block_group, start,
287 						   size);
288 			BUG_ON(ret);
289 			start = extent_end + 1;
290 		} else {
291 			break;
292 		}
293 	}
294 
295 	if (start < end) {
296 		size = end - start;
297 		total_added += size;
298 		ret = btrfs_add_free_space(block_group, start, size);
299 		BUG_ON(ret);
300 	}
301 
302 	return total_added;
303 }
304 
305 static int caching_kthread(void *data)
306 {
307 	struct btrfs_block_group_cache *block_group = data;
308 	struct btrfs_fs_info *fs_info = block_group->fs_info;
309 	struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
310 	struct btrfs_root *extent_root = fs_info->extent_root;
311 	struct btrfs_path *path;
312 	struct extent_buffer *leaf;
313 	struct btrfs_key key;
314 	u64 total_found = 0;
315 	u64 last = 0;
316 	u32 nritems;
317 	int ret = 0;
318 
319 	path = btrfs_alloc_path();
320 	if (!path)
321 		return -ENOMEM;
322 
323 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
324 
325 	/*
326 	 * We don't want to deadlock with somebody trying to allocate a new
327 	 * extent for the extent root while also trying to search the extent
328 	 * root to add free space.  So we skip locking and search the commit
329 	 * root, since its read-only
330 	 */
331 	path->skip_locking = 1;
332 	path->search_commit_root = 1;
333 	path->reada = 2;
334 
335 	key.objectid = last;
336 	key.offset = 0;
337 	key.type = BTRFS_EXTENT_ITEM_KEY;
338 again:
339 	mutex_lock(&caching_ctl->mutex);
340 	/* need to make sure the commit_root doesn't disappear */
341 	down_read(&fs_info->extent_commit_sem);
342 
343 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
344 	if (ret < 0)
345 		goto err;
346 
347 	leaf = path->nodes[0];
348 	nritems = btrfs_header_nritems(leaf);
349 
350 	while (1) {
351 		smp_mb();
352 		if (fs_info->closing > 1) {
353 			last = (u64)-1;
354 			break;
355 		}
356 
357 		if (path->slots[0] < nritems) {
358 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
359 		} else {
360 			ret = find_next_key(path, 0, &key);
361 			if (ret)
362 				break;
363 
364 			caching_ctl->progress = last;
365 			btrfs_release_path(extent_root, path);
366 			up_read(&fs_info->extent_commit_sem);
367 			mutex_unlock(&caching_ctl->mutex);
368 			if (btrfs_transaction_in_commit(fs_info))
369 				schedule_timeout(1);
370 			else
371 				cond_resched();
372 			goto again;
373 		}
374 
375 		if (key.objectid < block_group->key.objectid) {
376 			path->slots[0]++;
377 			continue;
378 		}
379 
380 		if (key.objectid >= block_group->key.objectid +
381 		    block_group->key.offset)
382 			break;
383 
384 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
385 			total_found += add_new_free_space(block_group,
386 							  fs_info, last,
387 							  key.objectid);
388 			last = key.objectid + key.offset;
389 
390 			if (total_found > (1024 * 1024 * 2)) {
391 				total_found = 0;
392 				wake_up(&caching_ctl->wait);
393 			}
394 		}
395 		path->slots[0]++;
396 	}
397 	ret = 0;
398 
399 	total_found += add_new_free_space(block_group, fs_info, last,
400 					  block_group->key.objectid +
401 					  block_group->key.offset);
402 	caching_ctl->progress = (u64)-1;
403 
404 	spin_lock(&block_group->lock);
405 	block_group->caching_ctl = NULL;
406 	block_group->cached = BTRFS_CACHE_FINISHED;
407 	spin_unlock(&block_group->lock);
408 
409 err:
410 	btrfs_free_path(path);
411 	up_read(&fs_info->extent_commit_sem);
412 
413 	free_excluded_extents(extent_root, block_group);
414 
415 	mutex_unlock(&caching_ctl->mutex);
416 	wake_up(&caching_ctl->wait);
417 
418 	put_caching_control(caching_ctl);
419 	atomic_dec(&block_group->space_info->caching_threads);
420 	btrfs_put_block_group(block_group);
421 
422 	return 0;
423 }
424 
425 static int cache_block_group(struct btrfs_block_group_cache *cache,
426 			     struct btrfs_trans_handle *trans,
427 			     struct btrfs_root *root,
428 			     int load_cache_only)
429 {
430 	struct btrfs_fs_info *fs_info = cache->fs_info;
431 	struct btrfs_caching_control *caching_ctl;
432 	struct task_struct *tsk;
433 	int ret = 0;
434 
435 	smp_mb();
436 	if (cache->cached != BTRFS_CACHE_NO)
437 		return 0;
438 
439 	/*
440 	 * We can't do the read from on-disk cache during a commit since we need
441 	 * to have the normal tree locking.  Also if we are currently trying to
442 	 * allocate blocks for the tree root we can't do the fast caching since
443 	 * we likely hold important locks.
444 	 */
445 	if (!trans->transaction->in_commit &&
446 	    (root && root != root->fs_info->tree_root)) {
447 		spin_lock(&cache->lock);
448 		if (cache->cached != BTRFS_CACHE_NO) {
449 			spin_unlock(&cache->lock);
450 			return 0;
451 		}
452 		cache->cached = BTRFS_CACHE_STARTED;
453 		spin_unlock(&cache->lock);
454 
455 		ret = load_free_space_cache(fs_info, cache);
456 
457 		spin_lock(&cache->lock);
458 		if (ret == 1) {
459 			cache->cached = BTRFS_CACHE_FINISHED;
460 			cache->last_byte_to_unpin = (u64)-1;
461 		} else {
462 			cache->cached = BTRFS_CACHE_NO;
463 		}
464 		spin_unlock(&cache->lock);
465 		if (ret == 1) {
466 			free_excluded_extents(fs_info->extent_root, cache);
467 			return 0;
468 		}
469 	}
470 
471 	if (load_cache_only)
472 		return 0;
473 
474 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
475 	BUG_ON(!caching_ctl);
476 
477 	INIT_LIST_HEAD(&caching_ctl->list);
478 	mutex_init(&caching_ctl->mutex);
479 	init_waitqueue_head(&caching_ctl->wait);
480 	caching_ctl->block_group = cache;
481 	caching_ctl->progress = cache->key.objectid;
482 	/* one for caching kthread, one for caching block group list */
483 	atomic_set(&caching_ctl->count, 2);
484 
485 	spin_lock(&cache->lock);
486 	if (cache->cached != BTRFS_CACHE_NO) {
487 		spin_unlock(&cache->lock);
488 		kfree(caching_ctl);
489 		return 0;
490 	}
491 	cache->caching_ctl = caching_ctl;
492 	cache->cached = BTRFS_CACHE_STARTED;
493 	spin_unlock(&cache->lock);
494 
495 	down_write(&fs_info->extent_commit_sem);
496 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
497 	up_write(&fs_info->extent_commit_sem);
498 
499 	atomic_inc(&cache->space_info->caching_threads);
500 	btrfs_get_block_group(cache);
501 
502 	tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
503 			  cache->key.objectid);
504 	if (IS_ERR(tsk)) {
505 		ret = PTR_ERR(tsk);
506 		printk(KERN_ERR "error running thread %d\n", ret);
507 		BUG();
508 	}
509 
510 	return ret;
511 }
512 
513 /*
514  * return the block group that starts at or after bytenr
515  */
516 static struct btrfs_block_group_cache *
517 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
518 {
519 	struct btrfs_block_group_cache *cache;
520 
521 	cache = block_group_cache_tree_search(info, bytenr, 0);
522 
523 	return cache;
524 }
525 
526 /*
527  * return the block group that contains the given bytenr
528  */
529 struct btrfs_block_group_cache *btrfs_lookup_block_group(
530 						 struct btrfs_fs_info *info,
531 						 u64 bytenr)
532 {
533 	struct btrfs_block_group_cache *cache;
534 
535 	cache = block_group_cache_tree_search(info, bytenr, 1);
536 
537 	return cache;
538 }
539 
540 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
541 						  u64 flags)
542 {
543 	struct list_head *head = &info->space_info;
544 	struct btrfs_space_info *found;
545 
546 	flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
547 		 BTRFS_BLOCK_GROUP_METADATA;
548 
549 	rcu_read_lock();
550 	list_for_each_entry_rcu(found, head, list) {
551 		if (found->flags & flags) {
552 			rcu_read_unlock();
553 			return found;
554 		}
555 	}
556 	rcu_read_unlock();
557 	return NULL;
558 }
559 
560 /*
561  * after adding space to the filesystem, we need to clear the full flags
562  * on all the space infos.
563  */
564 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
565 {
566 	struct list_head *head = &info->space_info;
567 	struct btrfs_space_info *found;
568 
569 	rcu_read_lock();
570 	list_for_each_entry_rcu(found, head, list)
571 		found->full = 0;
572 	rcu_read_unlock();
573 }
574 
575 static u64 div_factor(u64 num, int factor)
576 {
577 	if (factor == 10)
578 		return num;
579 	num *= factor;
580 	do_div(num, 10);
581 	return num;
582 }
583 
584 static u64 div_factor_fine(u64 num, int factor)
585 {
586 	if (factor == 100)
587 		return num;
588 	num *= factor;
589 	do_div(num, 100);
590 	return num;
591 }
592 
593 u64 btrfs_find_block_group(struct btrfs_root *root,
594 			   u64 search_start, u64 search_hint, int owner)
595 {
596 	struct btrfs_block_group_cache *cache;
597 	u64 used;
598 	u64 last = max(search_hint, search_start);
599 	u64 group_start = 0;
600 	int full_search = 0;
601 	int factor = 9;
602 	int wrapped = 0;
603 again:
604 	while (1) {
605 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
606 		if (!cache)
607 			break;
608 
609 		spin_lock(&cache->lock);
610 		last = cache->key.objectid + cache->key.offset;
611 		used = btrfs_block_group_used(&cache->item);
612 
613 		if ((full_search || !cache->ro) &&
614 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
615 			if (used + cache->pinned + cache->reserved <
616 			    div_factor(cache->key.offset, factor)) {
617 				group_start = cache->key.objectid;
618 				spin_unlock(&cache->lock);
619 				btrfs_put_block_group(cache);
620 				goto found;
621 			}
622 		}
623 		spin_unlock(&cache->lock);
624 		btrfs_put_block_group(cache);
625 		cond_resched();
626 	}
627 	if (!wrapped) {
628 		last = search_start;
629 		wrapped = 1;
630 		goto again;
631 	}
632 	if (!full_search && factor < 10) {
633 		last = search_start;
634 		full_search = 1;
635 		factor = 10;
636 		goto again;
637 	}
638 found:
639 	return group_start;
640 }
641 
642 /* simple helper to search for an existing extent at a given offset */
643 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
644 {
645 	int ret;
646 	struct btrfs_key key;
647 	struct btrfs_path *path;
648 
649 	path = btrfs_alloc_path();
650 	BUG_ON(!path);
651 	key.objectid = start;
652 	key.offset = len;
653 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
654 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
655 				0, 0);
656 	btrfs_free_path(path);
657 	return ret;
658 }
659 
660 /*
661  * helper function to lookup reference count and flags of extent.
662  *
663  * the head node for delayed ref is used to store the sum of all the
664  * reference count modifications queued up in the rbtree. the head
665  * node may also store the extent flags to set. This way you can check
666  * to see what the reference count and extent flags would be if all of
667  * the delayed refs are not processed.
668  */
669 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
670 			     struct btrfs_root *root, u64 bytenr,
671 			     u64 num_bytes, u64 *refs, u64 *flags)
672 {
673 	struct btrfs_delayed_ref_head *head;
674 	struct btrfs_delayed_ref_root *delayed_refs;
675 	struct btrfs_path *path;
676 	struct btrfs_extent_item *ei;
677 	struct extent_buffer *leaf;
678 	struct btrfs_key key;
679 	u32 item_size;
680 	u64 num_refs;
681 	u64 extent_flags;
682 	int ret;
683 
684 	path = btrfs_alloc_path();
685 	if (!path)
686 		return -ENOMEM;
687 
688 	key.objectid = bytenr;
689 	key.type = BTRFS_EXTENT_ITEM_KEY;
690 	key.offset = num_bytes;
691 	if (!trans) {
692 		path->skip_locking = 1;
693 		path->search_commit_root = 1;
694 	}
695 again:
696 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
697 				&key, path, 0, 0);
698 	if (ret < 0)
699 		goto out_free;
700 
701 	if (ret == 0) {
702 		leaf = path->nodes[0];
703 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
704 		if (item_size >= sizeof(*ei)) {
705 			ei = btrfs_item_ptr(leaf, path->slots[0],
706 					    struct btrfs_extent_item);
707 			num_refs = btrfs_extent_refs(leaf, ei);
708 			extent_flags = btrfs_extent_flags(leaf, ei);
709 		} else {
710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
711 			struct btrfs_extent_item_v0 *ei0;
712 			BUG_ON(item_size != sizeof(*ei0));
713 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
714 					     struct btrfs_extent_item_v0);
715 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
716 			/* FIXME: this isn't correct for data */
717 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
718 #else
719 			BUG();
720 #endif
721 		}
722 		BUG_ON(num_refs == 0);
723 	} else {
724 		num_refs = 0;
725 		extent_flags = 0;
726 		ret = 0;
727 	}
728 
729 	if (!trans)
730 		goto out;
731 
732 	delayed_refs = &trans->transaction->delayed_refs;
733 	spin_lock(&delayed_refs->lock);
734 	head = btrfs_find_delayed_ref_head(trans, bytenr);
735 	if (head) {
736 		if (!mutex_trylock(&head->mutex)) {
737 			atomic_inc(&head->node.refs);
738 			spin_unlock(&delayed_refs->lock);
739 
740 			btrfs_release_path(root->fs_info->extent_root, path);
741 
742 			mutex_lock(&head->mutex);
743 			mutex_unlock(&head->mutex);
744 			btrfs_put_delayed_ref(&head->node);
745 			goto again;
746 		}
747 		if (head->extent_op && head->extent_op->update_flags)
748 			extent_flags |= head->extent_op->flags_to_set;
749 		else
750 			BUG_ON(num_refs == 0);
751 
752 		num_refs += head->node.ref_mod;
753 		mutex_unlock(&head->mutex);
754 	}
755 	spin_unlock(&delayed_refs->lock);
756 out:
757 	WARN_ON(num_refs == 0);
758 	if (refs)
759 		*refs = num_refs;
760 	if (flags)
761 		*flags = extent_flags;
762 out_free:
763 	btrfs_free_path(path);
764 	return ret;
765 }
766 
767 /*
768  * Back reference rules.  Back refs have three main goals:
769  *
770  * 1) differentiate between all holders of references to an extent so that
771  *    when a reference is dropped we can make sure it was a valid reference
772  *    before freeing the extent.
773  *
774  * 2) Provide enough information to quickly find the holders of an extent
775  *    if we notice a given block is corrupted or bad.
776  *
777  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
778  *    maintenance.  This is actually the same as #2, but with a slightly
779  *    different use case.
780  *
781  * There are two kinds of back refs. The implicit back refs is optimized
782  * for pointers in non-shared tree blocks. For a given pointer in a block,
783  * back refs of this kind provide information about the block's owner tree
784  * and the pointer's key. These information allow us to find the block by
785  * b-tree searching. The full back refs is for pointers in tree blocks not
786  * referenced by their owner trees. The location of tree block is recorded
787  * in the back refs. Actually the full back refs is generic, and can be
788  * used in all cases the implicit back refs is used. The major shortcoming
789  * of the full back refs is its overhead. Every time a tree block gets
790  * COWed, we have to update back refs entry for all pointers in it.
791  *
792  * For a newly allocated tree block, we use implicit back refs for
793  * pointers in it. This means most tree related operations only involve
794  * implicit back refs. For a tree block created in old transaction, the
795  * only way to drop a reference to it is COW it. So we can detect the
796  * event that tree block loses its owner tree's reference and do the
797  * back refs conversion.
798  *
799  * When a tree block is COW'd through a tree, there are four cases:
800  *
801  * The reference count of the block is one and the tree is the block's
802  * owner tree. Nothing to do in this case.
803  *
804  * The reference count of the block is one and the tree is not the
805  * block's owner tree. In this case, full back refs is used for pointers
806  * in the block. Remove these full back refs, add implicit back refs for
807  * every pointers in the new block.
808  *
809  * The reference count of the block is greater than one and the tree is
810  * the block's owner tree. In this case, implicit back refs is used for
811  * pointers in the block. Add full back refs for every pointers in the
812  * block, increase lower level extents' reference counts. The original
813  * implicit back refs are entailed to the new block.
814  *
815  * The reference count of the block is greater than one and the tree is
816  * not the block's owner tree. Add implicit back refs for every pointer in
817  * the new block, increase lower level extents' reference count.
818  *
819  * Back Reference Key composing:
820  *
821  * The key objectid corresponds to the first byte in the extent,
822  * The key type is used to differentiate between types of back refs.
823  * There are different meanings of the key offset for different types
824  * of back refs.
825  *
826  * File extents can be referenced by:
827  *
828  * - multiple snapshots, subvolumes, or different generations in one subvol
829  * - different files inside a single subvolume
830  * - different offsets inside a file (bookend extents in file.c)
831  *
832  * The extent ref structure for the implicit back refs has fields for:
833  *
834  * - Objectid of the subvolume root
835  * - objectid of the file holding the reference
836  * - original offset in the file
837  * - how many bookend extents
838  *
839  * The key offset for the implicit back refs is hash of the first
840  * three fields.
841  *
842  * The extent ref structure for the full back refs has field for:
843  *
844  * - number of pointers in the tree leaf
845  *
846  * The key offset for the implicit back refs is the first byte of
847  * the tree leaf
848  *
849  * When a file extent is allocated, The implicit back refs is used.
850  * the fields are filled in:
851  *
852  *     (root_key.objectid, inode objectid, offset in file, 1)
853  *
854  * When a file extent is removed file truncation, we find the
855  * corresponding implicit back refs and check the following fields:
856  *
857  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
858  *
859  * Btree extents can be referenced by:
860  *
861  * - Different subvolumes
862  *
863  * Both the implicit back refs and the full back refs for tree blocks
864  * only consist of key. The key offset for the implicit back refs is
865  * objectid of block's owner tree. The key offset for the full back refs
866  * is the first byte of parent block.
867  *
868  * When implicit back refs is used, information about the lowest key and
869  * level of the tree block are required. These information are stored in
870  * tree block info structure.
871  */
872 
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
875 				  struct btrfs_root *root,
876 				  struct btrfs_path *path,
877 				  u64 owner, u32 extra_size)
878 {
879 	struct btrfs_extent_item *item;
880 	struct btrfs_extent_item_v0 *ei0;
881 	struct btrfs_extent_ref_v0 *ref0;
882 	struct btrfs_tree_block_info *bi;
883 	struct extent_buffer *leaf;
884 	struct btrfs_key key;
885 	struct btrfs_key found_key;
886 	u32 new_size = sizeof(*item);
887 	u64 refs;
888 	int ret;
889 
890 	leaf = path->nodes[0];
891 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
892 
893 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
894 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
895 			     struct btrfs_extent_item_v0);
896 	refs = btrfs_extent_refs_v0(leaf, ei0);
897 
898 	if (owner == (u64)-1) {
899 		while (1) {
900 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
901 				ret = btrfs_next_leaf(root, path);
902 				if (ret < 0)
903 					return ret;
904 				BUG_ON(ret > 0);
905 				leaf = path->nodes[0];
906 			}
907 			btrfs_item_key_to_cpu(leaf, &found_key,
908 					      path->slots[0]);
909 			BUG_ON(key.objectid != found_key.objectid);
910 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
911 				path->slots[0]++;
912 				continue;
913 			}
914 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
915 					      struct btrfs_extent_ref_v0);
916 			owner = btrfs_ref_objectid_v0(leaf, ref0);
917 			break;
918 		}
919 	}
920 	btrfs_release_path(root, path);
921 
922 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
923 		new_size += sizeof(*bi);
924 
925 	new_size -= sizeof(*ei0);
926 	ret = btrfs_search_slot(trans, root, &key, path,
927 				new_size + extra_size, 1);
928 	if (ret < 0)
929 		return ret;
930 	BUG_ON(ret);
931 
932 	ret = btrfs_extend_item(trans, root, path, new_size);
933 	BUG_ON(ret);
934 
935 	leaf = path->nodes[0];
936 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
937 	btrfs_set_extent_refs(leaf, item, refs);
938 	/* FIXME: get real generation */
939 	btrfs_set_extent_generation(leaf, item, 0);
940 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
941 		btrfs_set_extent_flags(leaf, item,
942 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
943 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
944 		bi = (struct btrfs_tree_block_info *)(item + 1);
945 		/* FIXME: get first key of the block */
946 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
947 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
948 	} else {
949 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
950 	}
951 	btrfs_mark_buffer_dirty(leaf);
952 	return 0;
953 }
954 #endif
955 
956 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
957 {
958 	u32 high_crc = ~(u32)0;
959 	u32 low_crc = ~(u32)0;
960 	__le64 lenum;
961 
962 	lenum = cpu_to_le64(root_objectid);
963 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
964 	lenum = cpu_to_le64(owner);
965 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
966 	lenum = cpu_to_le64(offset);
967 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
968 
969 	return ((u64)high_crc << 31) ^ (u64)low_crc;
970 }
971 
972 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
973 				     struct btrfs_extent_data_ref *ref)
974 {
975 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
976 				    btrfs_extent_data_ref_objectid(leaf, ref),
977 				    btrfs_extent_data_ref_offset(leaf, ref));
978 }
979 
980 static int match_extent_data_ref(struct extent_buffer *leaf,
981 				 struct btrfs_extent_data_ref *ref,
982 				 u64 root_objectid, u64 owner, u64 offset)
983 {
984 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
985 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
986 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
987 		return 0;
988 	return 1;
989 }
990 
991 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
992 					   struct btrfs_root *root,
993 					   struct btrfs_path *path,
994 					   u64 bytenr, u64 parent,
995 					   u64 root_objectid,
996 					   u64 owner, u64 offset)
997 {
998 	struct btrfs_key key;
999 	struct btrfs_extent_data_ref *ref;
1000 	struct extent_buffer *leaf;
1001 	u32 nritems;
1002 	int ret;
1003 	int recow;
1004 	int err = -ENOENT;
1005 
1006 	key.objectid = bytenr;
1007 	if (parent) {
1008 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1009 		key.offset = parent;
1010 	} else {
1011 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1012 		key.offset = hash_extent_data_ref(root_objectid,
1013 						  owner, offset);
1014 	}
1015 again:
1016 	recow = 0;
1017 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1018 	if (ret < 0) {
1019 		err = ret;
1020 		goto fail;
1021 	}
1022 
1023 	if (parent) {
1024 		if (!ret)
1025 			return 0;
1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1027 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1028 		btrfs_release_path(root, path);
1029 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1030 		if (ret < 0) {
1031 			err = ret;
1032 			goto fail;
1033 		}
1034 		if (!ret)
1035 			return 0;
1036 #endif
1037 		goto fail;
1038 	}
1039 
1040 	leaf = path->nodes[0];
1041 	nritems = btrfs_header_nritems(leaf);
1042 	while (1) {
1043 		if (path->slots[0] >= nritems) {
1044 			ret = btrfs_next_leaf(root, path);
1045 			if (ret < 0)
1046 				err = ret;
1047 			if (ret)
1048 				goto fail;
1049 
1050 			leaf = path->nodes[0];
1051 			nritems = btrfs_header_nritems(leaf);
1052 			recow = 1;
1053 		}
1054 
1055 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 		if (key.objectid != bytenr ||
1057 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1058 			goto fail;
1059 
1060 		ref = btrfs_item_ptr(leaf, path->slots[0],
1061 				     struct btrfs_extent_data_ref);
1062 
1063 		if (match_extent_data_ref(leaf, ref, root_objectid,
1064 					  owner, offset)) {
1065 			if (recow) {
1066 				btrfs_release_path(root, path);
1067 				goto again;
1068 			}
1069 			err = 0;
1070 			break;
1071 		}
1072 		path->slots[0]++;
1073 	}
1074 fail:
1075 	return err;
1076 }
1077 
1078 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1079 					   struct btrfs_root *root,
1080 					   struct btrfs_path *path,
1081 					   u64 bytenr, u64 parent,
1082 					   u64 root_objectid, u64 owner,
1083 					   u64 offset, int refs_to_add)
1084 {
1085 	struct btrfs_key key;
1086 	struct extent_buffer *leaf;
1087 	u32 size;
1088 	u32 num_refs;
1089 	int ret;
1090 
1091 	key.objectid = bytenr;
1092 	if (parent) {
1093 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1094 		key.offset = parent;
1095 		size = sizeof(struct btrfs_shared_data_ref);
1096 	} else {
1097 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1098 		key.offset = hash_extent_data_ref(root_objectid,
1099 						  owner, offset);
1100 		size = sizeof(struct btrfs_extent_data_ref);
1101 	}
1102 
1103 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1104 	if (ret && ret != -EEXIST)
1105 		goto fail;
1106 
1107 	leaf = path->nodes[0];
1108 	if (parent) {
1109 		struct btrfs_shared_data_ref *ref;
1110 		ref = btrfs_item_ptr(leaf, path->slots[0],
1111 				     struct btrfs_shared_data_ref);
1112 		if (ret == 0) {
1113 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1114 		} else {
1115 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1116 			num_refs += refs_to_add;
1117 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1118 		}
1119 	} else {
1120 		struct btrfs_extent_data_ref *ref;
1121 		while (ret == -EEXIST) {
1122 			ref = btrfs_item_ptr(leaf, path->slots[0],
1123 					     struct btrfs_extent_data_ref);
1124 			if (match_extent_data_ref(leaf, ref, root_objectid,
1125 						  owner, offset))
1126 				break;
1127 			btrfs_release_path(root, path);
1128 			key.offset++;
1129 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1130 						      size);
1131 			if (ret && ret != -EEXIST)
1132 				goto fail;
1133 
1134 			leaf = path->nodes[0];
1135 		}
1136 		ref = btrfs_item_ptr(leaf, path->slots[0],
1137 				     struct btrfs_extent_data_ref);
1138 		if (ret == 0) {
1139 			btrfs_set_extent_data_ref_root(leaf, ref,
1140 						       root_objectid);
1141 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1142 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1143 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1144 		} else {
1145 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1146 			num_refs += refs_to_add;
1147 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1148 		}
1149 	}
1150 	btrfs_mark_buffer_dirty(leaf);
1151 	ret = 0;
1152 fail:
1153 	btrfs_release_path(root, path);
1154 	return ret;
1155 }
1156 
1157 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1158 					   struct btrfs_root *root,
1159 					   struct btrfs_path *path,
1160 					   int refs_to_drop)
1161 {
1162 	struct btrfs_key key;
1163 	struct btrfs_extent_data_ref *ref1 = NULL;
1164 	struct btrfs_shared_data_ref *ref2 = NULL;
1165 	struct extent_buffer *leaf;
1166 	u32 num_refs = 0;
1167 	int ret = 0;
1168 
1169 	leaf = path->nodes[0];
1170 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1171 
1172 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1173 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1174 				      struct btrfs_extent_data_ref);
1175 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1176 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1177 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1178 				      struct btrfs_shared_data_ref);
1179 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1181 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1182 		struct btrfs_extent_ref_v0 *ref0;
1183 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1184 				      struct btrfs_extent_ref_v0);
1185 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1186 #endif
1187 	} else {
1188 		BUG();
1189 	}
1190 
1191 	BUG_ON(num_refs < refs_to_drop);
1192 	num_refs -= refs_to_drop;
1193 
1194 	if (num_refs == 0) {
1195 		ret = btrfs_del_item(trans, root, path);
1196 	} else {
1197 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1198 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1199 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1200 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 		else {
1203 			struct btrfs_extent_ref_v0 *ref0;
1204 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 					struct btrfs_extent_ref_v0);
1206 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1207 		}
1208 #endif
1209 		btrfs_mark_buffer_dirty(leaf);
1210 	}
1211 	return ret;
1212 }
1213 
1214 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1215 					  struct btrfs_path *path,
1216 					  struct btrfs_extent_inline_ref *iref)
1217 {
1218 	struct btrfs_key key;
1219 	struct extent_buffer *leaf;
1220 	struct btrfs_extent_data_ref *ref1;
1221 	struct btrfs_shared_data_ref *ref2;
1222 	u32 num_refs = 0;
1223 
1224 	leaf = path->nodes[0];
1225 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1226 	if (iref) {
1227 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1228 		    BTRFS_EXTENT_DATA_REF_KEY) {
1229 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1230 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1231 		} else {
1232 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1233 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1234 		}
1235 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1236 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1237 				      struct btrfs_extent_data_ref);
1238 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1239 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1240 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1241 				      struct btrfs_shared_data_ref);
1242 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1245 		struct btrfs_extent_ref_v0 *ref0;
1246 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1247 				      struct btrfs_extent_ref_v0);
1248 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1249 #endif
1250 	} else {
1251 		WARN_ON(1);
1252 	}
1253 	return num_refs;
1254 }
1255 
1256 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1257 					  struct btrfs_root *root,
1258 					  struct btrfs_path *path,
1259 					  u64 bytenr, u64 parent,
1260 					  u64 root_objectid)
1261 {
1262 	struct btrfs_key key;
1263 	int ret;
1264 
1265 	key.objectid = bytenr;
1266 	if (parent) {
1267 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1268 		key.offset = parent;
1269 	} else {
1270 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1271 		key.offset = root_objectid;
1272 	}
1273 
1274 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1275 	if (ret > 0)
1276 		ret = -ENOENT;
1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1278 	if (ret == -ENOENT && parent) {
1279 		btrfs_release_path(root, path);
1280 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1281 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1282 		if (ret > 0)
1283 			ret = -ENOENT;
1284 	}
1285 #endif
1286 	return ret;
1287 }
1288 
1289 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1290 					  struct btrfs_root *root,
1291 					  struct btrfs_path *path,
1292 					  u64 bytenr, u64 parent,
1293 					  u64 root_objectid)
1294 {
1295 	struct btrfs_key key;
1296 	int ret;
1297 
1298 	key.objectid = bytenr;
1299 	if (parent) {
1300 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1301 		key.offset = parent;
1302 	} else {
1303 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1304 		key.offset = root_objectid;
1305 	}
1306 
1307 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1308 	btrfs_release_path(root, path);
1309 	return ret;
1310 }
1311 
1312 static inline int extent_ref_type(u64 parent, u64 owner)
1313 {
1314 	int type;
1315 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1316 		if (parent > 0)
1317 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1318 		else
1319 			type = BTRFS_TREE_BLOCK_REF_KEY;
1320 	} else {
1321 		if (parent > 0)
1322 			type = BTRFS_SHARED_DATA_REF_KEY;
1323 		else
1324 			type = BTRFS_EXTENT_DATA_REF_KEY;
1325 	}
1326 	return type;
1327 }
1328 
1329 static int find_next_key(struct btrfs_path *path, int level,
1330 			 struct btrfs_key *key)
1331 
1332 {
1333 	for (; level < BTRFS_MAX_LEVEL; level++) {
1334 		if (!path->nodes[level])
1335 			break;
1336 		if (path->slots[level] + 1 >=
1337 		    btrfs_header_nritems(path->nodes[level]))
1338 			continue;
1339 		if (level == 0)
1340 			btrfs_item_key_to_cpu(path->nodes[level], key,
1341 					      path->slots[level] + 1);
1342 		else
1343 			btrfs_node_key_to_cpu(path->nodes[level], key,
1344 					      path->slots[level] + 1);
1345 		return 0;
1346 	}
1347 	return 1;
1348 }
1349 
1350 /*
1351  * look for inline back ref. if back ref is found, *ref_ret is set
1352  * to the address of inline back ref, and 0 is returned.
1353  *
1354  * if back ref isn't found, *ref_ret is set to the address where it
1355  * should be inserted, and -ENOENT is returned.
1356  *
1357  * if insert is true and there are too many inline back refs, the path
1358  * points to the extent item, and -EAGAIN is returned.
1359  *
1360  * NOTE: inline back refs are ordered in the same way that back ref
1361  *	 items in the tree are ordered.
1362  */
1363 static noinline_for_stack
1364 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1365 				 struct btrfs_root *root,
1366 				 struct btrfs_path *path,
1367 				 struct btrfs_extent_inline_ref **ref_ret,
1368 				 u64 bytenr, u64 num_bytes,
1369 				 u64 parent, u64 root_objectid,
1370 				 u64 owner, u64 offset, int insert)
1371 {
1372 	struct btrfs_key key;
1373 	struct extent_buffer *leaf;
1374 	struct btrfs_extent_item *ei;
1375 	struct btrfs_extent_inline_ref *iref;
1376 	u64 flags;
1377 	u64 item_size;
1378 	unsigned long ptr;
1379 	unsigned long end;
1380 	int extra_size;
1381 	int type;
1382 	int want;
1383 	int ret;
1384 	int err = 0;
1385 
1386 	key.objectid = bytenr;
1387 	key.type = BTRFS_EXTENT_ITEM_KEY;
1388 	key.offset = num_bytes;
1389 
1390 	want = extent_ref_type(parent, owner);
1391 	if (insert) {
1392 		extra_size = btrfs_extent_inline_ref_size(want);
1393 		path->keep_locks = 1;
1394 	} else
1395 		extra_size = -1;
1396 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1397 	if (ret < 0) {
1398 		err = ret;
1399 		goto out;
1400 	}
1401 	BUG_ON(ret);
1402 
1403 	leaf = path->nodes[0];
1404 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 	if (item_size < sizeof(*ei)) {
1407 		if (!insert) {
1408 			err = -ENOENT;
1409 			goto out;
1410 		}
1411 		ret = convert_extent_item_v0(trans, root, path, owner,
1412 					     extra_size);
1413 		if (ret < 0) {
1414 			err = ret;
1415 			goto out;
1416 		}
1417 		leaf = path->nodes[0];
1418 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1419 	}
1420 #endif
1421 	BUG_ON(item_size < sizeof(*ei));
1422 
1423 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1424 	flags = btrfs_extent_flags(leaf, ei);
1425 
1426 	ptr = (unsigned long)(ei + 1);
1427 	end = (unsigned long)ei + item_size;
1428 
1429 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1430 		ptr += sizeof(struct btrfs_tree_block_info);
1431 		BUG_ON(ptr > end);
1432 	} else {
1433 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1434 	}
1435 
1436 	err = -ENOENT;
1437 	while (1) {
1438 		if (ptr >= end) {
1439 			WARN_ON(ptr > end);
1440 			break;
1441 		}
1442 		iref = (struct btrfs_extent_inline_ref *)ptr;
1443 		type = btrfs_extent_inline_ref_type(leaf, iref);
1444 		if (want < type)
1445 			break;
1446 		if (want > type) {
1447 			ptr += btrfs_extent_inline_ref_size(type);
1448 			continue;
1449 		}
1450 
1451 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1452 			struct btrfs_extent_data_ref *dref;
1453 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1454 			if (match_extent_data_ref(leaf, dref, root_objectid,
1455 						  owner, offset)) {
1456 				err = 0;
1457 				break;
1458 			}
1459 			if (hash_extent_data_ref_item(leaf, dref) <
1460 			    hash_extent_data_ref(root_objectid, owner, offset))
1461 				break;
1462 		} else {
1463 			u64 ref_offset;
1464 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1465 			if (parent > 0) {
1466 				if (parent == ref_offset) {
1467 					err = 0;
1468 					break;
1469 				}
1470 				if (ref_offset < parent)
1471 					break;
1472 			} else {
1473 				if (root_objectid == ref_offset) {
1474 					err = 0;
1475 					break;
1476 				}
1477 				if (ref_offset < root_objectid)
1478 					break;
1479 			}
1480 		}
1481 		ptr += btrfs_extent_inline_ref_size(type);
1482 	}
1483 	if (err == -ENOENT && insert) {
1484 		if (item_size + extra_size >=
1485 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1486 			err = -EAGAIN;
1487 			goto out;
1488 		}
1489 		/*
1490 		 * To add new inline back ref, we have to make sure
1491 		 * there is no corresponding back ref item.
1492 		 * For simplicity, we just do not add new inline back
1493 		 * ref if there is any kind of item for this block
1494 		 */
1495 		if (find_next_key(path, 0, &key) == 0 &&
1496 		    key.objectid == bytenr &&
1497 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1498 			err = -EAGAIN;
1499 			goto out;
1500 		}
1501 	}
1502 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1503 out:
1504 	if (insert) {
1505 		path->keep_locks = 0;
1506 		btrfs_unlock_up_safe(path, 1);
1507 	}
1508 	return err;
1509 }
1510 
1511 /*
1512  * helper to add new inline back ref
1513  */
1514 static noinline_for_stack
1515 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1516 				struct btrfs_root *root,
1517 				struct btrfs_path *path,
1518 				struct btrfs_extent_inline_ref *iref,
1519 				u64 parent, u64 root_objectid,
1520 				u64 owner, u64 offset, int refs_to_add,
1521 				struct btrfs_delayed_extent_op *extent_op)
1522 {
1523 	struct extent_buffer *leaf;
1524 	struct btrfs_extent_item *ei;
1525 	unsigned long ptr;
1526 	unsigned long end;
1527 	unsigned long item_offset;
1528 	u64 refs;
1529 	int size;
1530 	int type;
1531 	int ret;
1532 
1533 	leaf = path->nodes[0];
1534 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1535 	item_offset = (unsigned long)iref - (unsigned long)ei;
1536 
1537 	type = extent_ref_type(parent, owner);
1538 	size = btrfs_extent_inline_ref_size(type);
1539 
1540 	ret = btrfs_extend_item(trans, root, path, size);
1541 	BUG_ON(ret);
1542 
1543 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1544 	refs = btrfs_extent_refs(leaf, ei);
1545 	refs += refs_to_add;
1546 	btrfs_set_extent_refs(leaf, ei, refs);
1547 	if (extent_op)
1548 		__run_delayed_extent_op(extent_op, leaf, ei);
1549 
1550 	ptr = (unsigned long)ei + item_offset;
1551 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1552 	if (ptr < end - size)
1553 		memmove_extent_buffer(leaf, ptr + size, ptr,
1554 				      end - size - ptr);
1555 
1556 	iref = (struct btrfs_extent_inline_ref *)ptr;
1557 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1558 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1559 		struct btrfs_extent_data_ref *dref;
1560 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1561 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1562 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1563 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1564 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1565 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1566 		struct btrfs_shared_data_ref *sref;
1567 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1568 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1569 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1570 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1571 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1572 	} else {
1573 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1574 	}
1575 	btrfs_mark_buffer_dirty(leaf);
1576 	return 0;
1577 }
1578 
1579 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1580 				 struct btrfs_root *root,
1581 				 struct btrfs_path *path,
1582 				 struct btrfs_extent_inline_ref **ref_ret,
1583 				 u64 bytenr, u64 num_bytes, u64 parent,
1584 				 u64 root_objectid, u64 owner, u64 offset)
1585 {
1586 	int ret;
1587 
1588 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1589 					   bytenr, num_bytes, parent,
1590 					   root_objectid, owner, offset, 0);
1591 	if (ret != -ENOENT)
1592 		return ret;
1593 
1594 	btrfs_release_path(root, path);
1595 	*ref_ret = NULL;
1596 
1597 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1598 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1599 					    root_objectid);
1600 	} else {
1601 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1602 					     root_objectid, owner, offset);
1603 	}
1604 	return ret;
1605 }
1606 
1607 /*
1608  * helper to update/remove inline back ref
1609  */
1610 static noinline_for_stack
1611 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1612 				 struct btrfs_root *root,
1613 				 struct btrfs_path *path,
1614 				 struct btrfs_extent_inline_ref *iref,
1615 				 int refs_to_mod,
1616 				 struct btrfs_delayed_extent_op *extent_op)
1617 {
1618 	struct extent_buffer *leaf;
1619 	struct btrfs_extent_item *ei;
1620 	struct btrfs_extent_data_ref *dref = NULL;
1621 	struct btrfs_shared_data_ref *sref = NULL;
1622 	unsigned long ptr;
1623 	unsigned long end;
1624 	u32 item_size;
1625 	int size;
1626 	int type;
1627 	int ret;
1628 	u64 refs;
1629 
1630 	leaf = path->nodes[0];
1631 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1632 	refs = btrfs_extent_refs(leaf, ei);
1633 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1634 	refs += refs_to_mod;
1635 	btrfs_set_extent_refs(leaf, ei, refs);
1636 	if (extent_op)
1637 		__run_delayed_extent_op(extent_op, leaf, ei);
1638 
1639 	type = btrfs_extent_inline_ref_type(leaf, iref);
1640 
1641 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1643 		refs = btrfs_extent_data_ref_count(leaf, dref);
1644 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 		refs = btrfs_shared_data_ref_count(leaf, sref);
1647 	} else {
1648 		refs = 1;
1649 		BUG_ON(refs_to_mod != -1);
1650 	}
1651 
1652 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1653 	refs += refs_to_mod;
1654 
1655 	if (refs > 0) {
1656 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1657 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1658 		else
1659 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1660 	} else {
1661 		size =  btrfs_extent_inline_ref_size(type);
1662 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1663 		ptr = (unsigned long)iref;
1664 		end = (unsigned long)ei + item_size;
1665 		if (ptr + size < end)
1666 			memmove_extent_buffer(leaf, ptr, ptr + size,
1667 					      end - ptr - size);
1668 		item_size -= size;
1669 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1670 		BUG_ON(ret);
1671 	}
1672 	btrfs_mark_buffer_dirty(leaf);
1673 	return 0;
1674 }
1675 
1676 static noinline_for_stack
1677 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 				 struct btrfs_root *root,
1679 				 struct btrfs_path *path,
1680 				 u64 bytenr, u64 num_bytes, u64 parent,
1681 				 u64 root_objectid, u64 owner,
1682 				 u64 offset, int refs_to_add,
1683 				 struct btrfs_delayed_extent_op *extent_op)
1684 {
1685 	struct btrfs_extent_inline_ref *iref;
1686 	int ret;
1687 
1688 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1689 					   bytenr, num_bytes, parent,
1690 					   root_objectid, owner, offset, 1);
1691 	if (ret == 0) {
1692 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1693 		ret = update_inline_extent_backref(trans, root, path, iref,
1694 						   refs_to_add, extent_op);
1695 	} else if (ret == -ENOENT) {
1696 		ret = setup_inline_extent_backref(trans, root, path, iref,
1697 						  parent, root_objectid,
1698 						  owner, offset, refs_to_add,
1699 						  extent_op);
1700 	}
1701 	return ret;
1702 }
1703 
1704 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1705 				 struct btrfs_root *root,
1706 				 struct btrfs_path *path,
1707 				 u64 bytenr, u64 parent, u64 root_objectid,
1708 				 u64 owner, u64 offset, int refs_to_add)
1709 {
1710 	int ret;
1711 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1712 		BUG_ON(refs_to_add != 1);
1713 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1714 					    parent, root_objectid);
1715 	} else {
1716 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1717 					     parent, root_objectid,
1718 					     owner, offset, refs_to_add);
1719 	}
1720 	return ret;
1721 }
1722 
1723 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref *iref,
1727 				 int refs_to_drop, int is_data)
1728 {
1729 	int ret;
1730 
1731 	BUG_ON(!is_data && refs_to_drop != 1);
1732 	if (iref) {
1733 		ret = update_inline_extent_backref(trans, root, path, iref,
1734 						   -refs_to_drop, NULL);
1735 	} else if (is_data) {
1736 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1737 	} else {
1738 		ret = btrfs_del_item(trans, root, path);
1739 	}
1740 	return ret;
1741 }
1742 
1743 static void btrfs_issue_discard(struct block_device *bdev,
1744 				u64 start, u64 len)
1745 {
1746 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1747 }
1748 
1749 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1750 				u64 num_bytes)
1751 {
1752 	int ret;
1753 	u64 map_length = num_bytes;
1754 	struct btrfs_multi_bio *multi = NULL;
1755 
1756 	if (!btrfs_test_opt(root, DISCARD))
1757 		return 0;
1758 
1759 	/* Tell the block device(s) that the sectors can be discarded */
1760 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1761 			      bytenr, &map_length, &multi, 0);
1762 	if (!ret) {
1763 		struct btrfs_bio_stripe *stripe = multi->stripes;
1764 		int i;
1765 
1766 		if (map_length > num_bytes)
1767 			map_length = num_bytes;
1768 
1769 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1770 			btrfs_issue_discard(stripe->dev->bdev,
1771 					    stripe->physical,
1772 					    map_length);
1773 		}
1774 		kfree(multi);
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1781 			 struct btrfs_root *root,
1782 			 u64 bytenr, u64 num_bytes, u64 parent,
1783 			 u64 root_objectid, u64 owner, u64 offset)
1784 {
1785 	int ret;
1786 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1787 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1788 
1789 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1791 					parent, root_objectid, (int)owner,
1792 					BTRFS_ADD_DELAYED_REF, NULL);
1793 	} else {
1794 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1795 					parent, root_objectid, owner, offset,
1796 					BTRFS_ADD_DELAYED_REF, NULL);
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1802 				  struct btrfs_root *root,
1803 				  u64 bytenr, u64 num_bytes,
1804 				  u64 parent, u64 root_objectid,
1805 				  u64 owner, u64 offset, int refs_to_add,
1806 				  struct btrfs_delayed_extent_op *extent_op)
1807 {
1808 	struct btrfs_path *path;
1809 	struct extent_buffer *leaf;
1810 	struct btrfs_extent_item *item;
1811 	u64 refs;
1812 	int ret;
1813 	int err = 0;
1814 
1815 	path = btrfs_alloc_path();
1816 	if (!path)
1817 		return -ENOMEM;
1818 
1819 	path->reada = 1;
1820 	path->leave_spinning = 1;
1821 	/* this will setup the path even if it fails to insert the back ref */
1822 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1823 					   path, bytenr, num_bytes, parent,
1824 					   root_objectid, owner, offset,
1825 					   refs_to_add, extent_op);
1826 	if (ret == 0)
1827 		goto out;
1828 
1829 	if (ret != -EAGAIN) {
1830 		err = ret;
1831 		goto out;
1832 	}
1833 
1834 	leaf = path->nodes[0];
1835 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 	refs = btrfs_extent_refs(leaf, item);
1837 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1838 	if (extent_op)
1839 		__run_delayed_extent_op(extent_op, leaf, item);
1840 
1841 	btrfs_mark_buffer_dirty(leaf);
1842 	btrfs_release_path(root->fs_info->extent_root, path);
1843 
1844 	path->reada = 1;
1845 	path->leave_spinning = 1;
1846 
1847 	/* now insert the actual backref */
1848 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1849 				    path, bytenr, parent, root_objectid,
1850 				    owner, offset, refs_to_add);
1851 	BUG_ON(ret);
1852 out:
1853 	btrfs_free_path(path);
1854 	return err;
1855 }
1856 
1857 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1858 				struct btrfs_root *root,
1859 				struct btrfs_delayed_ref_node *node,
1860 				struct btrfs_delayed_extent_op *extent_op,
1861 				int insert_reserved)
1862 {
1863 	int ret = 0;
1864 	struct btrfs_delayed_data_ref *ref;
1865 	struct btrfs_key ins;
1866 	u64 parent = 0;
1867 	u64 ref_root = 0;
1868 	u64 flags = 0;
1869 
1870 	ins.objectid = node->bytenr;
1871 	ins.offset = node->num_bytes;
1872 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1873 
1874 	ref = btrfs_delayed_node_to_data_ref(node);
1875 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1876 		parent = ref->parent;
1877 	else
1878 		ref_root = ref->root;
1879 
1880 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1881 		if (extent_op) {
1882 			BUG_ON(extent_op->update_key);
1883 			flags |= extent_op->flags_to_set;
1884 		}
1885 		ret = alloc_reserved_file_extent(trans, root,
1886 						 parent, ref_root, flags,
1887 						 ref->objectid, ref->offset,
1888 						 &ins, node->ref_mod);
1889 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1890 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1891 					     node->num_bytes, parent,
1892 					     ref_root, ref->objectid,
1893 					     ref->offset, node->ref_mod,
1894 					     extent_op);
1895 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1896 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1897 					  node->num_bytes, parent,
1898 					  ref_root, ref->objectid,
1899 					  ref->offset, node->ref_mod,
1900 					  extent_op);
1901 	} else {
1902 		BUG();
1903 	}
1904 	return ret;
1905 }
1906 
1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1908 				    struct extent_buffer *leaf,
1909 				    struct btrfs_extent_item *ei)
1910 {
1911 	u64 flags = btrfs_extent_flags(leaf, ei);
1912 	if (extent_op->update_flags) {
1913 		flags |= extent_op->flags_to_set;
1914 		btrfs_set_extent_flags(leaf, ei, flags);
1915 	}
1916 
1917 	if (extent_op->update_key) {
1918 		struct btrfs_tree_block_info *bi;
1919 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1920 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1921 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1922 	}
1923 }
1924 
1925 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1926 				 struct btrfs_root *root,
1927 				 struct btrfs_delayed_ref_node *node,
1928 				 struct btrfs_delayed_extent_op *extent_op)
1929 {
1930 	struct btrfs_key key;
1931 	struct btrfs_path *path;
1932 	struct btrfs_extent_item *ei;
1933 	struct extent_buffer *leaf;
1934 	u32 item_size;
1935 	int ret;
1936 	int err = 0;
1937 
1938 	path = btrfs_alloc_path();
1939 	if (!path)
1940 		return -ENOMEM;
1941 
1942 	key.objectid = node->bytenr;
1943 	key.type = BTRFS_EXTENT_ITEM_KEY;
1944 	key.offset = node->num_bytes;
1945 
1946 	path->reada = 1;
1947 	path->leave_spinning = 1;
1948 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1949 				path, 0, 1);
1950 	if (ret < 0) {
1951 		err = ret;
1952 		goto out;
1953 	}
1954 	if (ret > 0) {
1955 		err = -EIO;
1956 		goto out;
1957 	}
1958 
1959 	leaf = path->nodes[0];
1960 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1962 	if (item_size < sizeof(*ei)) {
1963 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1964 					     path, (u64)-1, 0);
1965 		if (ret < 0) {
1966 			err = ret;
1967 			goto out;
1968 		}
1969 		leaf = path->nodes[0];
1970 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 	}
1972 #endif
1973 	BUG_ON(item_size < sizeof(*ei));
1974 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1975 	__run_delayed_extent_op(extent_op, leaf, ei);
1976 
1977 	btrfs_mark_buffer_dirty(leaf);
1978 out:
1979 	btrfs_free_path(path);
1980 	return err;
1981 }
1982 
1983 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1984 				struct btrfs_root *root,
1985 				struct btrfs_delayed_ref_node *node,
1986 				struct btrfs_delayed_extent_op *extent_op,
1987 				int insert_reserved)
1988 {
1989 	int ret = 0;
1990 	struct btrfs_delayed_tree_ref *ref;
1991 	struct btrfs_key ins;
1992 	u64 parent = 0;
1993 	u64 ref_root = 0;
1994 
1995 	ins.objectid = node->bytenr;
1996 	ins.offset = node->num_bytes;
1997 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1998 
1999 	ref = btrfs_delayed_node_to_tree_ref(node);
2000 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2001 		parent = ref->parent;
2002 	else
2003 		ref_root = ref->root;
2004 
2005 	BUG_ON(node->ref_mod != 1);
2006 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2007 		BUG_ON(!extent_op || !extent_op->update_flags ||
2008 		       !extent_op->update_key);
2009 		ret = alloc_reserved_tree_block(trans, root,
2010 						parent, ref_root,
2011 						extent_op->flags_to_set,
2012 						&extent_op->key,
2013 						ref->level, &ins);
2014 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2015 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2016 					     node->num_bytes, parent, ref_root,
2017 					     ref->level, 0, 1, extent_op);
2018 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2019 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2020 					  node->num_bytes, parent, ref_root,
2021 					  ref->level, 0, 1, extent_op);
2022 	} else {
2023 		BUG();
2024 	}
2025 	return ret;
2026 }
2027 
2028 /* helper function to actually process a single delayed ref entry */
2029 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2030 			       struct btrfs_root *root,
2031 			       struct btrfs_delayed_ref_node *node,
2032 			       struct btrfs_delayed_extent_op *extent_op,
2033 			       int insert_reserved)
2034 {
2035 	int ret;
2036 	if (btrfs_delayed_ref_is_head(node)) {
2037 		struct btrfs_delayed_ref_head *head;
2038 		/*
2039 		 * we've hit the end of the chain and we were supposed
2040 		 * to insert this extent into the tree.  But, it got
2041 		 * deleted before we ever needed to insert it, so all
2042 		 * we have to do is clean up the accounting
2043 		 */
2044 		BUG_ON(extent_op);
2045 		head = btrfs_delayed_node_to_head(node);
2046 		if (insert_reserved) {
2047 			btrfs_pin_extent(root, node->bytenr,
2048 					 node->num_bytes, 1);
2049 			if (head->is_data) {
2050 				ret = btrfs_del_csums(trans, root,
2051 						      node->bytenr,
2052 						      node->num_bytes);
2053 				BUG_ON(ret);
2054 			}
2055 		}
2056 		mutex_unlock(&head->mutex);
2057 		return 0;
2058 	}
2059 
2060 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2061 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2062 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2063 					   insert_reserved);
2064 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2065 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2066 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2067 					   insert_reserved);
2068 	else
2069 		BUG();
2070 	return ret;
2071 }
2072 
2073 static noinline struct btrfs_delayed_ref_node *
2074 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2075 {
2076 	struct rb_node *node;
2077 	struct btrfs_delayed_ref_node *ref;
2078 	int action = BTRFS_ADD_DELAYED_REF;
2079 again:
2080 	/*
2081 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2082 	 * this prevents ref count from going down to zero when
2083 	 * there still are pending delayed ref.
2084 	 */
2085 	node = rb_prev(&head->node.rb_node);
2086 	while (1) {
2087 		if (!node)
2088 			break;
2089 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2090 				rb_node);
2091 		if (ref->bytenr != head->node.bytenr)
2092 			break;
2093 		if (ref->action == action)
2094 			return ref;
2095 		node = rb_prev(node);
2096 	}
2097 	if (action == BTRFS_ADD_DELAYED_REF) {
2098 		action = BTRFS_DROP_DELAYED_REF;
2099 		goto again;
2100 	}
2101 	return NULL;
2102 }
2103 
2104 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2105 				       struct btrfs_root *root,
2106 				       struct list_head *cluster)
2107 {
2108 	struct btrfs_delayed_ref_root *delayed_refs;
2109 	struct btrfs_delayed_ref_node *ref;
2110 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2111 	struct btrfs_delayed_extent_op *extent_op;
2112 	int ret;
2113 	int count = 0;
2114 	int must_insert_reserved = 0;
2115 
2116 	delayed_refs = &trans->transaction->delayed_refs;
2117 	while (1) {
2118 		if (!locked_ref) {
2119 			/* pick a new head ref from the cluster list */
2120 			if (list_empty(cluster))
2121 				break;
2122 
2123 			locked_ref = list_entry(cluster->next,
2124 				     struct btrfs_delayed_ref_head, cluster);
2125 
2126 			/* grab the lock that says we are going to process
2127 			 * all the refs for this head */
2128 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2129 
2130 			/*
2131 			 * we may have dropped the spin lock to get the head
2132 			 * mutex lock, and that might have given someone else
2133 			 * time to free the head.  If that's true, it has been
2134 			 * removed from our list and we can move on.
2135 			 */
2136 			if (ret == -EAGAIN) {
2137 				locked_ref = NULL;
2138 				count++;
2139 				continue;
2140 			}
2141 		}
2142 
2143 		/*
2144 		 * record the must insert reserved flag before we
2145 		 * drop the spin lock.
2146 		 */
2147 		must_insert_reserved = locked_ref->must_insert_reserved;
2148 		locked_ref->must_insert_reserved = 0;
2149 
2150 		extent_op = locked_ref->extent_op;
2151 		locked_ref->extent_op = NULL;
2152 
2153 		/*
2154 		 * locked_ref is the head node, so we have to go one
2155 		 * node back for any delayed ref updates
2156 		 */
2157 		ref = select_delayed_ref(locked_ref);
2158 		if (!ref) {
2159 			/* All delayed refs have been processed, Go ahead
2160 			 * and send the head node to run_one_delayed_ref,
2161 			 * so that any accounting fixes can happen
2162 			 */
2163 			ref = &locked_ref->node;
2164 
2165 			if (extent_op && must_insert_reserved) {
2166 				kfree(extent_op);
2167 				extent_op = NULL;
2168 			}
2169 
2170 			if (extent_op) {
2171 				spin_unlock(&delayed_refs->lock);
2172 
2173 				ret = run_delayed_extent_op(trans, root,
2174 							    ref, extent_op);
2175 				BUG_ON(ret);
2176 				kfree(extent_op);
2177 
2178 				cond_resched();
2179 				spin_lock(&delayed_refs->lock);
2180 				continue;
2181 			}
2182 
2183 			list_del_init(&locked_ref->cluster);
2184 			locked_ref = NULL;
2185 		}
2186 
2187 		ref->in_tree = 0;
2188 		rb_erase(&ref->rb_node, &delayed_refs->root);
2189 		delayed_refs->num_entries--;
2190 
2191 		spin_unlock(&delayed_refs->lock);
2192 
2193 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2194 					  must_insert_reserved);
2195 		BUG_ON(ret);
2196 
2197 		btrfs_put_delayed_ref(ref);
2198 		kfree(extent_op);
2199 		count++;
2200 
2201 		cond_resched();
2202 		spin_lock(&delayed_refs->lock);
2203 	}
2204 	return count;
2205 }
2206 
2207 /*
2208  * this starts processing the delayed reference count updates and
2209  * extent insertions we have queued up so far.  count can be
2210  * 0, which means to process everything in the tree at the start
2211  * of the run (but not newly added entries), or it can be some target
2212  * number you'd like to process.
2213  */
2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2215 			   struct btrfs_root *root, unsigned long count)
2216 {
2217 	struct rb_node *node;
2218 	struct btrfs_delayed_ref_root *delayed_refs;
2219 	struct btrfs_delayed_ref_node *ref;
2220 	struct list_head cluster;
2221 	int ret;
2222 	int run_all = count == (unsigned long)-1;
2223 	int run_most = 0;
2224 
2225 	if (root == root->fs_info->extent_root)
2226 		root = root->fs_info->tree_root;
2227 
2228 	delayed_refs = &trans->transaction->delayed_refs;
2229 	INIT_LIST_HEAD(&cluster);
2230 again:
2231 	spin_lock(&delayed_refs->lock);
2232 	if (count == 0) {
2233 		count = delayed_refs->num_entries * 2;
2234 		run_most = 1;
2235 	}
2236 	while (1) {
2237 		if (!(run_all || run_most) &&
2238 		    delayed_refs->num_heads_ready < 64)
2239 			break;
2240 
2241 		/*
2242 		 * go find something we can process in the rbtree.  We start at
2243 		 * the beginning of the tree, and then build a cluster
2244 		 * of refs to process starting at the first one we are able to
2245 		 * lock
2246 		 */
2247 		ret = btrfs_find_ref_cluster(trans, &cluster,
2248 					     delayed_refs->run_delayed_start);
2249 		if (ret)
2250 			break;
2251 
2252 		ret = run_clustered_refs(trans, root, &cluster);
2253 		BUG_ON(ret < 0);
2254 
2255 		count -= min_t(unsigned long, ret, count);
2256 
2257 		if (count == 0)
2258 			break;
2259 	}
2260 
2261 	if (run_all) {
2262 		node = rb_first(&delayed_refs->root);
2263 		if (!node)
2264 			goto out;
2265 		count = (unsigned long)-1;
2266 
2267 		while (node) {
2268 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2269 				       rb_node);
2270 			if (btrfs_delayed_ref_is_head(ref)) {
2271 				struct btrfs_delayed_ref_head *head;
2272 
2273 				head = btrfs_delayed_node_to_head(ref);
2274 				atomic_inc(&ref->refs);
2275 
2276 				spin_unlock(&delayed_refs->lock);
2277 				mutex_lock(&head->mutex);
2278 				mutex_unlock(&head->mutex);
2279 
2280 				btrfs_put_delayed_ref(ref);
2281 				cond_resched();
2282 				goto again;
2283 			}
2284 			node = rb_next(node);
2285 		}
2286 		spin_unlock(&delayed_refs->lock);
2287 		schedule_timeout(1);
2288 		goto again;
2289 	}
2290 out:
2291 	spin_unlock(&delayed_refs->lock);
2292 	return 0;
2293 }
2294 
2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2296 				struct btrfs_root *root,
2297 				u64 bytenr, u64 num_bytes, u64 flags,
2298 				int is_data)
2299 {
2300 	struct btrfs_delayed_extent_op *extent_op;
2301 	int ret;
2302 
2303 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2304 	if (!extent_op)
2305 		return -ENOMEM;
2306 
2307 	extent_op->flags_to_set = flags;
2308 	extent_op->update_flags = 1;
2309 	extent_op->update_key = 0;
2310 	extent_op->is_data = is_data ? 1 : 0;
2311 
2312 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2313 	if (ret)
2314 		kfree(extent_op);
2315 	return ret;
2316 }
2317 
2318 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2319 				      struct btrfs_root *root,
2320 				      struct btrfs_path *path,
2321 				      u64 objectid, u64 offset, u64 bytenr)
2322 {
2323 	struct btrfs_delayed_ref_head *head;
2324 	struct btrfs_delayed_ref_node *ref;
2325 	struct btrfs_delayed_data_ref *data_ref;
2326 	struct btrfs_delayed_ref_root *delayed_refs;
2327 	struct rb_node *node;
2328 	int ret = 0;
2329 
2330 	ret = -ENOENT;
2331 	delayed_refs = &trans->transaction->delayed_refs;
2332 	spin_lock(&delayed_refs->lock);
2333 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2334 	if (!head)
2335 		goto out;
2336 
2337 	if (!mutex_trylock(&head->mutex)) {
2338 		atomic_inc(&head->node.refs);
2339 		spin_unlock(&delayed_refs->lock);
2340 
2341 		btrfs_release_path(root->fs_info->extent_root, path);
2342 
2343 		mutex_lock(&head->mutex);
2344 		mutex_unlock(&head->mutex);
2345 		btrfs_put_delayed_ref(&head->node);
2346 		return -EAGAIN;
2347 	}
2348 
2349 	node = rb_prev(&head->node.rb_node);
2350 	if (!node)
2351 		goto out_unlock;
2352 
2353 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2354 
2355 	if (ref->bytenr != bytenr)
2356 		goto out_unlock;
2357 
2358 	ret = 1;
2359 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2360 		goto out_unlock;
2361 
2362 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2363 
2364 	node = rb_prev(node);
2365 	if (node) {
2366 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2367 		if (ref->bytenr == bytenr)
2368 			goto out_unlock;
2369 	}
2370 
2371 	if (data_ref->root != root->root_key.objectid ||
2372 	    data_ref->objectid != objectid || data_ref->offset != offset)
2373 		goto out_unlock;
2374 
2375 	ret = 0;
2376 out_unlock:
2377 	mutex_unlock(&head->mutex);
2378 out:
2379 	spin_unlock(&delayed_refs->lock);
2380 	return ret;
2381 }
2382 
2383 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2384 					struct btrfs_root *root,
2385 					struct btrfs_path *path,
2386 					u64 objectid, u64 offset, u64 bytenr)
2387 {
2388 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2389 	struct extent_buffer *leaf;
2390 	struct btrfs_extent_data_ref *ref;
2391 	struct btrfs_extent_inline_ref *iref;
2392 	struct btrfs_extent_item *ei;
2393 	struct btrfs_key key;
2394 	u32 item_size;
2395 	int ret;
2396 
2397 	key.objectid = bytenr;
2398 	key.offset = (u64)-1;
2399 	key.type = BTRFS_EXTENT_ITEM_KEY;
2400 
2401 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2402 	if (ret < 0)
2403 		goto out;
2404 	BUG_ON(ret == 0);
2405 
2406 	ret = -ENOENT;
2407 	if (path->slots[0] == 0)
2408 		goto out;
2409 
2410 	path->slots[0]--;
2411 	leaf = path->nodes[0];
2412 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2413 
2414 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2415 		goto out;
2416 
2417 	ret = 1;
2418 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 	if (item_size < sizeof(*ei)) {
2421 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2422 		goto out;
2423 	}
2424 #endif
2425 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2426 
2427 	if (item_size != sizeof(*ei) +
2428 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2429 		goto out;
2430 
2431 	if (btrfs_extent_generation(leaf, ei) <=
2432 	    btrfs_root_last_snapshot(&root->root_item))
2433 		goto out;
2434 
2435 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2436 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2437 	    BTRFS_EXTENT_DATA_REF_KEY)
2438 		goto out;
2439 
2440 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2441 	if (btrfs_extent_refs(leaf, ei) !=
2442 	    btrfs_extent_data_ref_count(leaf, ref) ||
2443 	    btrfs_extent_data_ref_root(leaf, ref) !=
2444 	    root->root_key.objectid ||
2445 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2446 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2447 		goto out;
2448 
2449 	ret = 0;
2450 out:
2451 	return ret;
2452 }
2453 
2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2455 			  struct btrfs_root *root,
2456 			  u64 objectid, u64 offset, u64 bytenr)
2457 {
2458 	struct btrfs_path *path;
2459 	int ret;
2460 	int ret2;
2461 
2462 	path = btrfs_alloc_path();
2463 	if (!path)
2464 		return -ENOENT;
2465 
2466 	do {
2467 		ret = check_committed_ref(trans, root, path, objectid,
2468 					  offset, bytenr);
2469 		if (ret && ret != -ENOENT)
2470 			goto out;
2471 
2472 		ret2 = check_delayed_ref(trans, root, path, objectid,
2473 					 offset, bytenr);
2474 	} while (ret2 == -EAGAIN);
2475 
2476 	if (ret2 && ret2 != -ENOENT) {
2477 		ret = ret2;
2478 		goto out;
2479 	}
2480 
2481 	if (ret != -ENOENT || ret2 != -ENOENT)
2482 		ret = 0;
2483 out:
2484 	btrfs_free_path(path);
2485 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2486 		WARN_ON(ret > 0);
2487 	return ret;
2488 }
2489 
2490 #if 0
2491 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2492 		    struct extent_buffer *buf, u32 nr_extents)
2493 {
2494 	struct btrfs_key key;
2495 	struct btrfs_file_extent_item *fi;
2496 	u64 root_gen;
2497 	u32 nritems;
2498 	int i;
2499 	int level;
2500 	int ret = 0;
2501 	int shared = 0;
2502 
2503 	if (!root->ref_cows)
2504 		return 0;
2505 
2506 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2507 		shared = 0;
2508 		root_gen = root->root_key.offset;
2509 	} else {
2510 		shared = 1;
2511 		root_gen = trans->transid - 1;
2512 	}
2513 
2514 	level = btrfs_header_level(buf);
2515 	nritems = btrfs_header_nritems(buf);
2516 
2517 	if (level == 0) {
2518 		struct btrfs_leaf_ref *ref;
2519 		struct btrfs_extent_info *info;
2520 
2521 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
2522 		if (!ref) {
2523 			ret = -ENOMEM;
2524 			goto out;
2525 		}
2526 
2527 		ref->root_gen = root_gen;
2528 		ref->bytenr = buf->start;
2529 		ref->owner = btrfs_header_owner(buf);
2530 		ref->generation = btrfs_header_generation(buf);
2531 		ref->nritems = nr_extents;
2532 		info = ref->extents;
2533 
2534 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
2535 			u64 disk_bytenr;
2536 			btrfs_item_key_to_cpu(buf, &key, i);
2537 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2538 				continue;
2539 			fi = btrfs_item_ptr(buf, i,
2540 					    struct btrfs_file_extent_item);
2541 			if (btrfs_file_extent_type(buf, fi) ==
2542 			    BTRFS_FILE_EXTENT_INLINE)
2543 				continue;
2544 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2545 			if (disk_bytenr == 0)
2546 				continue;
2547 
2548 			info->bytenr = disk_bytenr;
2549 			info->num_bytes =
2550 				btrfs_file_extent_disk_num_bytes(buf, fi);
2551 			info->objectid = key.objectid;
2552 			info->offset = key.offset;
2553 			info++;
2554 		}
2555 
2556 		ret = btrfs_add_leaf_ref(root, ref, shared);
2557 		if (ret == -EEXIST && shared) {
2558 			struct btrfs_leaf_ref *old;
2559 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2560 			BUG_ON(!old);
2561 			btrfs_remove_leaf_ref(root, old);
2562 			btrfs_free_leaf_ref(root, old);
2563 			ret = btrfs_add_leaf_ref(root, ref, shared);
2564 		}
2565 		WARN_ON(ret);
2566 		btrfs_free_leaf_ref(root, ref);
2567 	}
2568 out:
2569 	return ret;
2570 }
2571 
2572 /* when a block goes through cow, we update the reference counts of
2573  * everything that block points to.  The internal pointers of the block
2574  * can be in just about any order, and it is likely to have clusters of
2575  * things that are close together and clusters of things that are not.
2576  *
2577  * To help reduce the seeks that come with updating all of these reference
2578  * counts, sort them by byte number before actual updates are done.
2579  *
2580  * struct refsort is used to match byte number to slot in the btree block.
2581  * we sort based on the byte number and then use the slot to actually
2582  * find the item.
2583  *
2584  * struct refsort is smaller than strcut btrfs_item and smaller than
2585  * struct btrfs_key_ptr.  Since we're currently limited to the page size
2586  * for a btree block, there's no way for a kmalloc of refsorts for a
2587  * single node to be bigger than a page.
2588  */
2589 struct refsort {
2590 	u64 bytenr;
2591 	u32 slot;
2592 };
2593 
2594 /*
2595  * for passing into sort()
2596  */
2597 static int refsort_cmp(const void *a_void, const void *b_void)
2598 {
2599 	const struct refsort *a = a_void;
2600 	const struct refsort *b = b_void;
2601 
2602 	if (a->bytenr < b->bytenr)
2603 		return -1;
2604 	if (a->bytenr > b->bytenr)
2605 		return 1;
2606 	return 0;
2607 }
2608 #endif
2609 
2610 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2611 			   struct btrfs_root *root,
2612 			   struct extent_buffer *buf,
2613 			   int full_backref, int inc)
2614 {
2615 	u64 bytenr;
2616 	u64 num_bytes;
2617 	u64 parent;
2618 	u64 ref_root;
2619 	u32 nritems;
2620 	struct btrfs_key key;
2621 	struct btrfs_file_extent_item *fi;
2622 	int i;
2623 	int level;
2624 	int ret = 0;
2625 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2626 			    u64, u64, u64, u64, u64, u64);
2627 
2628 	ref_root = btrfs_header_owner(buf);
2629 	nritems = btrfs_header_nritems(buf);
2630 	level = btrfs_header_level(buf);
2631 
2632 	if (!root->ref_cows && level == 0)
2633 		return 0;
2634 
2635 	if (inc)
2636 		process_func = btrfs_inc_extent_ref;
2637 	else
2638 		process_func = btrfs_free_extent;
2639 
2640 	if (full_backref)
2641 		parent = buf->start;
2642 	else
2643 		parent = 0;
2644 
2645 	for (i = 0; i < nritems; i++) {
2646 		if (level == 0) {
2647 			btrfs_item_key_to_cpu(buf, &key, i);
2648 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2649 				continue;
2650 			fi = btrfs_item_ptr(buf, i,
2651 					    struct btrfs_file_extent_item);
2652 			if (btrfs_file_extent_type(buf, fi) ==
2653 			    BTRFS_FILE_EXTENT_INLINE)
2654 				continue;
2655 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2656 			if (bytenr == 0)
2657 				continue;
2658 
2659 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2660 			key.offset -= btrfs_file_extent_offset(buf, fi);
2661 			ret = process_func(trans, root, bytenr, num_bytes,
2662 					   parent, ref_root, key.objectid,
2663 					   key.offset);
2664 			if (ret)
2665 				goto fail;
2666 		} else {
2667 			bytenr = btrfs_node_blockptr(buf, i);
2668 			num_bytes = btrfs_level_size(root, level - 1);
2669 			ret = process_func(trans, root, bytenr, num_bytes,
2670 					   parent, ref_root, level - 1, 0);
2671 			if (ret)
2672 				goto fail;
2673 		}
2674 	}
2675 	return 0;
2676 fail:
2677 	BUG();
2678 	return ret;
2679 }
2680 
2681 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2682 		  struct extent_buffer *buf, int full_backref)
2683 {
2684 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2685 }
2686 
2687 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2688 		  struct extent_buffer *buf, int full_backref)
2689 {
2690 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2691 }
2692 
2693 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2694 				 struct btrfs_root *root,
2695 				 struct btrfs_path *path,
2696 				 struct btrfs_block_group_cache *cache)
2697 {
2698 	int ret;
2699 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2700 	unsigned long bi;
2701 	struct extent_buffer *leaf;
2702 
2703 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2704 	if (ret < 0)
2705 		goto fail;
2706 	BUG_ON(ret);
2707 
2708 	leaf = path->nodes[0];
2709 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2710 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2711 	btrfs_mark_buffer_dirty(leaf);
2712 	btrfs_release_path(extent_root, path);
2713 fail:
2714 	if (ret)
2715 		return ret;
2716 	return 0;
2717 
2718 }
2719 
2720 static struct btrfs_block_group_cache *
2721 next_block_group(struct btrfs_root *root,
2722 		 struct btrfs_block_group_cache *cache)
2723 {
2724 	struct rb_node *node;
2725 	spin_lock(&root->fs_info->block_group_cache_lock);
2726 	node = rb_next(&cache->cache_node);
2727 	btrfs_put_block_group(cache);
2728 	if (node) {
2729 		cache = rb_entry(node, struct btrfs_block_group_cache,
2730 				 cache_node);
2731 		btrfs_get_block_group(cache);
2732 	} else
2733 		cache = NULL;
2734 	spin_unlock(&root->fs_info->block_group_cache_lock);
2735 	return cache;
2736 }
2737 
2738 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2739 			    struct btrfs_trans_handle *trans,
2740 			    struct btrfs_path *path)
2741 {
2742 	struct btrfs_root *root = block_group->fs_info->tree_root;
2743 	struct inode *inode = NULL;
2744 	u64 alloc_hint = 0;
2745 	int dcs = BTRFS_DC_ERROR;
2746 	int num_pages = 0;
2747 	int retries = 0;
2748 	int ret = 0;
2749 
2750 	/*
2751 	 * If this block group is smaller than 100 megs don't bother caching the
2752 	 * block group.
2753 	 */
2754 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2755 		spin_lock(&block_group->lock);
2756 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2757 		spin_unlock(&block_group->lock);
2758 		return 0;
2759 	}
2760 
2761 again:
2762 	inode = lookup_free_space_inode(root, block_group, path);
2763 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2764 		ret = PTR_ERR(inode);
2765 		btrfs_release_path(root, path);
2766 		goto out;
2767 	}
2768 
2769 	if (IS_ERR(inode)) {
2770 		BUG_ON(retries);
2771 		retries++;
2772 
2773 		if (block_group->ro)
2774 			goto out_free;
2775 
2776 		ret = create_free_space_inode(root, trans, block_group, path);
2777 		if (ret)
2778 			goto out_free;
2779 		goto again;
2780 	}
2781 
2782 	/*
2783 	 * We want to set the generation to 0, that way if anything goes wrong
2784 	 * from here on out we know not to trust this cache when we load up next
2785 	 * time.
2786 	 */
2787 	BTRFS_I(inode)->generation = 0;
2788 	ret = btrfs_update_inode(trans, root, inode);
2789 	WARN_ON(ret);
2790 
2791 	if (i_size_read(inode) > 0) {
2792 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2793 						      inode);
2794 		if (ret)
2795 			goto out_put;
2796 	}
2797 
2798 	spin_lock(&block_group->lock);
2799 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2800 		/* We're not cached, don't bother trying to write stuff out */
2801 		dcs = BTRFS_DC_WRITTEN;
2802 		spin_unlock(&block_group->lock);
2803 		goto out_put;
2804 	}
2805 	spin_unlock(&block_group->lock);
2806 
2807 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2808 	if (!num_pages)
2809 		num_pages = 1;
2810 
2811 	/*
2812 	 * Just to make absolutely sure we have enough space, we're going to
2813 	 * preallocate 12 pages worth of space for each block group.  In
2814 	 * practice we ought to use at most 8, but we need extra space so we can
2815 	 * add our header and have a terminator between the extents and the
2816 	 * bitmaps.
2817 	 */
2818 	num_pages *= 16;
2819 	num_pages *= PAGE_CACHE_SIZE;
2820 
2821 	ret = btrfs_check_data_free_space(inode, num_pages);
2822 	if (ret)
2823 		goto out_put;
2824 
2825 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2826 					      num_pages, num_pages,
2827 					      &alloc_hint);
2828 	if (!ret)
2829 		dcs = BTRFS_DC_SETUP;
2830 	btrfs_free_reserved_data_space(inode, num_pages);
2831 out_put:
2832 	iput(inode);
2833 out_free:
2834 	btrfs_release_path(root, path);
2835 out:
2836 	spin_lock(&block_group->lock);
2837 	block_group->disk_cache_state = dcs;
2838 	spin_unlock(&block_group->lock);
2839 
2840 	return ret;
2841 }
2842 
2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2844 				   struct btrfs_root *root)
2845 {
2846 	struct btrfs_block_group_cache *cache;
2847 	int err = 0;
2848 	struct btrfs_path *path;
2849 	u64 last = 0;
2850 
2851 	path = btrfs_alloc_path();
2852 	if (!path)
2853 		return -ENOMEM;
2854 
2855 again:
2856 	while (1) {
2857 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2858 		while (cache) {
2859 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2860 				break;
2861 			cache = next_block_group(root, cache);
2862 		}
2863 		if (!cache) {
2864 			if (last == 0)
2865 				break;
2866 			last = 0;
2867 			continue;
2868 		}
2869 		err = cache_save_setup(cache, trans, path);
2870 		last = cache->key.objectid + cache->key.offset;
2871 		btrfs_put_block_group(cache);
2872 	}
2873 
2874 	while (1) {
2875 		if (last == 0) {
2876 			err = btrfs_run_delayed_refs(trans, root,
2877 						     (unsigned long)-1);
2878 			BUG_ON(err);
2879 		}
2880 
2881 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2882 		while (cache) {
2883 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2884 				btrfs_put_block_group(cache);
2885 				goto again;
2886 			}
2887 
2888 			if (cache->dirty)
2889 				break;
2890 			cache = next_block_group(root, cache);
2891 		}
2892 		if (!cache) {
2893 			if (last == 0)
2894 				break;
2895 			last = 0;
2896 			continue;
2897 		}
2898 
2899 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2900 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2901 		cache->dirty = 0;
2902 		last = cache->key.objectid + cache->key.offset;
2903 
2904 		err = write_one_cache_group(trans, root, path, cache);
2905 		BUG_ON(err);
2906 		btrfs_put_block_group(cache);
2907 	}
2908 
2909 	while (1) {
2910 		/*
2911 		 * I don't think this is needed since we're just marking our
2912 		 * preallocated extent as written, but just in case it can't
2913 		 * hurt.
2914 		 */
2915 		if (last == 0) {
2916 			err = btrfs_run_delayed_refs(trans, root,
2917 						     (unsigned long)-1);
2918 			BUG_ON(err);
2919 		}
2920 
2921 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2922 		while (cache) {
2923 			/*
2924 			 * Really this shouldn't happen, but it could if we
2925 			 * couldn't write the entire preallocated extent and
2926 			 * splitting the extent resulted in a new block.
2927 			 */
2928 			if (cache->dirty) {
2929 				btrfs_put_block_group(cache);
2930 				goto again;
2931 			}
2932 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2933 				break;
2934 			cache = next_block_group(root, cache);
2935 		}
2936 		if (!cache) {
2937 			if (last == 0)
2938 				break;
2939 			last = 0;
2940 			continue;
2941 		}
2942 
2943 		btrfs_write_out_cache(root, trans, cache, path);
2944 
2945 		/*
2946 		 * If we didn't have an error then the cache state is still
2947 		 * NEED_WRITE, so we can set it to WRITTEN.
2948 		 */
2949 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2950 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
2951 		last = cache->key.objectid + cache->key.offset;
2952 		btrfs_put_block_group(cache);
2953 	}
2954 
2955 	btrfs_free_path(path);
2956 	return 0;
2957 }
2958 
2959 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2960 {
2961 	struct btrfs_block_group_cache *block_group;
2962 	int readonly = 0;
2963 
2964 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2965 	if (!block_group || block_group->ro)
2966 		readonly = 1;
2967 	if (block_group)
2968 		btrfs_put_block_group(block_group);
2969 	return readonly;
2970 }
2971 
2972 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2973 			     u64 total_bytes, u64 bytes_used,
2974 			     struct btrfs_space_info **space_info)
2975 {
2976 	struct btrfs_space_info *found;
2977 	int i;
2978 	int factor;
2979 
2980 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2981 		     BTRFS_BLOCK_GROUP_RAID10))
2982 		factor = 2;
2983 	else
2984 		factor = 1;
2985 
2986 	found = __find_space_info(info, flags);
2987 	if (found) {
2988 		spin_lock(&found->lock);
2989 		found->total_bytes += total_bytes;
2990 		found->disk_total += total_bytes * factor;
2991 		found->bytes_used += bytes_used;
2992 		found->disk_used += bytes_used * factor;
2993 		found->full = 0;
2994 		spin_unlock(&found->lock);
2995 		*space_info = found;
2996 		return 0;
2997 	}
2998 	found = kzalloc(sizeof(*found), GFP_NOFS);
2999 	if (!found)
3000 		return -ENOMEM;
3001 
3002 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3003 		INIT_LIST_HEAD(&found->block_groups[i]);
3004 	init_rwsem(&found->groups_sem);
3005 	spin_lock_init(&found->lock);
3006 	found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3007 				BTRFS_BLOCK_GROUP_SYSTEM |
3008 				BTRFS_BLOCK_GROUP_METADATA);
3009 	found->total_bytes = total_bytes;
3010 	found->disk_total = total_bytes * factor;
3011 	found->bytes_used = bytes_used;
3012 	found->disk_used = bytes_used * factor;
3013 	found->bytes_pinned = 0;
3014 	found->bytes_reserved = 0;
3015 	found->bytes_readonly = 0;
3016 	found->bytes_may_use = 0;
3017 	found->full = 0;
3018 	found->force_alloc = 0;
3019 	*space_info = found;
3020 	list_add_rcu(&found->list, &info->space_info);
3021 	atomic_set(&found->caching_threads, 0);
3022 	return 0;
3023 }
3024 
3025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3026 {
3027 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3028 				   BTRFS_BLOCK_GROUP_RAID1 |
3029 				   BTRFS_BLOCK_GROUP_RAID10 |
3030 				   BTRFS_BLOCK_GROUP_DUP);
3031 	if (extra_flags) {
3032 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3033 			fs_info->avail_data_alloc_bits |= extra_flags;
3034 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
3035 			fs_info->avail_metadata_alloc_bits |= extra_flags;
3036 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3037 			fs_info->avail_system_alloc_bits |= extra_flags;
3038 	}
3039 }
3040 
3041 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3042 {
3043 	/*
3044 	 * we add in the count of missing devices because we want
3045 	 * to make sure that any RAID levels on a degraded FS
3046 	 * continue to be honored.
3047 	 */
3048 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3049 		root->fs_info->fs_devices->missing_devices;
3050 
3051 	if (num_devices == 1)
3052 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3053 	if (num_devices < 4)
3054 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3055 
3056 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3057 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3058 		      BTRFS_BLOCK_GROUP_RAID10))) {
3059 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3060 	}
3061 
3062 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3063 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3064 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3065 	}
3066 
3067 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3068 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3069 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3070 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
3071 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3072 	return flags;
3073 }
3074 
3075 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3076 {
3077 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3078 		flags |= root->fs_info->avail_data_alloc_bits &
3079 			 root->fs_info->data_alloc_profile;
3080 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3081 		flags |= root->fs_info->avail_system_alloc_bits &
3082 			 root->fs_info->system_alloc_profile;
3083 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3084 		flags |= root->fs_info->avail_metadata_alloc_bits &
3085 			 root->fs_info->metadata_alloc_profile;
3086 	return btrfs_reduce_alloc_profile(root, flags);
3087 }
3088 
3089 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3090 {
3091 	u64 flags;
3092 
3093 	if (data)
3094 		flags = BTRFS_BLOCK_GROUP_DATA;
3095 	else if (root == root->fs_info->chunk_root)
3096 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3097 	else
3098 		flags = BTRFS_BLOCK_GROUP_METADATA;
3099 
3100 	return get_alloc_profile(root, flags);
3101 }
3102 
3103 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3104 {
3105 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3106 						       BTRFS_BLOCK_GROUP_DATA);
3107 }
3108 
3109 /*
3110  * This will check the space that the inode allocates from to make sure we have
3111  * enough space for bytes.
3112  */
3113 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3114 {
3115 	struct btrfs_space_info *data_sinfo;
3116 	struct btrfs_root *root = BTRFS_I(inode)->root;
3117 	u64 used;
3118 	int ret = 0, committed = 0, alloc_chunk = 1;
3119 
3120 	/* make sure bytes are sectorsize aligned */
3121 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3122 
3123 	if (root == root->fs_info->tree_root) {
3124 		alloc_chunk = 0;
3125 		committed = 1;
3126 	}
3127 
3128 	data_sinfo = BTRFS_I(inode)->space_info;
3129 	if (!data_sinfo)
3130 		goto alloc;
3131 
3132 again:
3133 	/* make sure we have enough space to handle the data first */
3134 	spin_lock(&data_sinfo->lock);
3135 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3136 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3137 		data_sinfo->bytes_may_use;
3138 
3139 	if (used + bytes > data_sinfo->total_bytes) {
3140 		struct btrfs_trans_handle *trans;
3141 
3142 		/*
3143 		 * if we don't have enough free bytes in this space then we need
3144 		 * to alloc a new chunk.
3145 		 */
3146 		if (!data_sinfo->full && alloc_chunk) {
3147 			u64 alloc_target;
3148 
3149 			data_sinfo->force_alloc = 1;
3150 			spin_unlock(&data_sinfo->lock);
3151 alloc:
3152 			alloc_target = btrfs_get_alloc_profile(root, 1);
3153 			trans = btrfs_join_transaction(root, 1);
3154 			if (IS_ERR(trans))
3155 				return PTR_ERR(trans);
3156 
3157 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3158 					     bytes + 2 * 1024 * 1024,
3159 					     alloc_target, 0);
3160 			btrfs_end_transaction(trans, root);
3161 			if (ret < 0) {
3162 				if (ret != -ENOSPC)
3163 					return ret;
3164 				else
3165 					goto commit_trans;
3166 			}
3167 
3168 			if (!data_sinfo) {
3169 				btrfs_set_inode_space_info(root, inode);
3170 				data_sinfo = BTRFS_I(inode)->space_info;
3171 			}
3172 			goto again;
3173 		}
3174 		spin_unlock(&data_sinfo->lock);
3175 
3176 		/* commit the current transaction and try again */
3177 commit_trans:
3178 		if (!committed && !root->fs_info->open_ioctl_trans) {
3179 			committed = 1;
3180 			trans = btrfs_join_transaction(root, 1);
3181 			if (IS_ERR(trans))
3182 				return PTR_ERR(trans);
3183 			ret = btrfs_commit_transaction(trans, root);
3184 			if (ret)
3185 				return ret;
3186 			goto again;
3187 		}
3188 
3189 #if 0 /* I hope we never need this code again, just in case */
3190 		printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
3191 		       "%llu bytes_reserved, " "%llu bytes_pinned, "
3192 		       "%llu bytes_readonly, %llu may use %llu total\n",
3193 		       (unsigned long long)bytes,
3194 		       (unsigned long long)data_sinfo->bytes_used,
3195 		       (unsigned long long)data_sinfo->bytes_reserved,
3196 		       (unsigned long long)data_sinfo->bytes_pinned,
3197 		       (unsigned long long)data_sinfo->bytes_readonly,
3198 		       (unsigned long long)data_sinfo->bytes_may_use,
3199 		       (unsigned long long)data_sinfo->total_bytes);
3200 #endif
3201 		return -ENOSPC;
3202 	}
3203 	data_sinfo->bytes_may_use += bytes;
3204 	BTRFS_I(inode)->reserved_bytes += bytes;
3205 	spin_unlock(&data_sinfo->lock);
3206 
3207 	return 0;
3208 }
3209 
3210 /*
3211  * called when we are clearing an delalloc extent from the
3212  * inode's io_tree or there was an error for whatever reason
3213  * after calling btrfs_check_data_free_space
3214  */
3215 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3216 {
3217 	struct btrfs_root *root = BTRFS_I(inode)->root;
3218 	struct btrfs_space_info *data_sinfo;
3219 
3220 	/* make sure bytes are sectorsize aligned */
3221 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3222 
3223 	data_sinfo = BTRFS_I(inode)->space_info;
3224 	spin_lock(&data_sinfo->lock);
3225 	data_sinfo->bytes_may_use -= bytes;
3226 	BTRFS_I(inode)->reserved_bytes -= bytes;
3227 	spin_unlock(&data_sinfo->lock);
3228 }
3229 
3230 static void force_metadata_allocation(struct btrfs_fs_info *info)
3231 {
3232 	struct list_head *head = &info->space_info;
3233 	struct btrfs_space_info *found;
3234 
3235 	rcu_read_lock();
3236 	list_for_each_entry_rcu(found, head, list) {
3237 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3238 			found->force_alloc = 1;
3239 	}
3240 	rcu_read_unlock();
3241 }
3242 
3243 static int should_alloc_chunk(struct btrfs_root *root,
3244 			      struct btrfs_space_info *sinfo, u64 alloc_bytes)
3245 {
3246 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3247 	u64 thresh;
3248 
3249 	if (sinfo->bytes_used + sinfo->bytes_reserved +
3250 	    alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3251 		return 0;
3252 
3253 	if (sinfo->bytes_used + sinfo->bytes_reserved +
3254 	    alloc_bytes < div_factor(num_bytes, 8))
3255 		return 0;
3256 
3257 	thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3258 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3259 
3260 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3261 		return 0;
3262 
3263 	return 1;
3264 }
3265 
3266 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3267 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3268 			  u64 flags, int force)
3269 {
3270 	struct btrfs_space_info *space_info;
3271 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3272 	int ret = 0;
3273 
3274 	mutex_lock(&fs_info->chunk_mutex);
3275 
3276 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3277 
3278 	space_info = __find_space_info(extent_root->fs_info, flags);
3279 	if (!space_info) {
3280 		ret = update_space_info(extent_root->fs_info, flags,
3281 					0, 0, &space_info);
3282 		BUG_ON(ret);
3283 	}
3284 	BUG_ON(!space_info);
3285 
3286 	spin_lock(&space_info->lock);
3287 	if (space_info->force_alloc)
3288 		force = 1;
3289 	if (space_info->full) {
3290 		spin_unlock(&space_info->lock);
3291 		goto out;
3292 	}
3293 
3294 	if (!force && !should_alloc_chunk(extent_root, space_info,
3295 					  alloc_bytes)) {
3296 		spin_unlock(&space_info->lock);
3297 		goto out;
3298 	}
3299 	spin_unlock(&space_info->lock);
3300 
3301 	/*
3302 	 * If we have mixed data/metadata chunks we want to make sure we keep
3303 	 * allocating mixed chunks instead of individual chunks.
3304 	 */
3305 	if (btrfs_mixed_space_info(space_info))
3306 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3307 
3308 	/*
3309 	 * if we're doing a data chunk, go ahead and make sure that
3310 	 * we keep a reasonable number of metadata chunks allocated in the
3311 	 * FS as well.
3312 	 */
3313 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3314 		fs_info->data_chunk_allocations++;
3315 		if (!(fs_info->data_chunk_allocations %
3316 		      fs_info->metadata_ratio))
3317 			force_metadata_allocation(fs_info);
3318 	}
3319 
3320 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3321 	spin_lock(&space_info->lock);
3322 	if (ret)
3323 		space_info->full = 1;
3324 	else
3325 		ret = 1;
3326 	space_info->force_alloc = 0;
3327 	spin_unlock(&space_info->lock);
3328 out:
3329 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3330 	return ret;
3331 }
3332 
3333 /*
3334  * shrink metadata reservation for delalloc
3335  */
3336 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3337 			   struct btrfs_root *root, u64 to_reclaim, int sync)
3338 {
3339 	struct btrfs_block_rsv *block_rsv;
3340 	struct btrfs_space_info *space_info;
3341 	u64 reserved;
3342 	u64 max_reclaim;
3343 	u64 reclaimed = 0;
3344 	long time_left;
3345 	int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3346 	int loops = 0;
3347 	unsigned long progress;
3348 
3349 	block_rsv = &root->fs_info->delalloc_block_rsv;
3350 	space_info = block_rsv->space_info;
3351 
3352 	smp_mb();
3353 	reserved = space_info->bytes_reserved;
3354 	progress = space_info->reservation_progress;
3355 
3356 	if (reserved == 0)
3357 		return 0;
3358 
3359 	max_reclaim = min(reserved, to_reclaim);
3360 
3361 	while (loops < 1024) {
3362 		/* have the flusher threads jump in and do some IO */
3363 		smp_mb();
3364 		nr_pages = min_t(unsigned long, nr_pages,
3365 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3366 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3367 
3368 		spin_lock(&space_info->lock);
3369 		if (reserved > space_info->bytes_reserved)
3370 			reclaimed += reserved - space_info->bytes_reserved;
3371 		reserved = space_info->bytes_reserved;
3372 		spin_unlock(&space_info->lock);
3373 
3374 		loops++;
3375 
3376 		if (reserved == 0 || reclaimed >= max_reclaim)
3377 			break;
3378 
3379 		if (trans && trans->transaction->blocked)
3380 			return -EAGAIN;
3381 
3382 		time_left = schedule_timeout_interruptible(1);
3383 
3384 		/* We were interrupted, exit */
3385 		if (time_left)
3386 			break;
3387 
3388 		/* we've kicked the IO a few times, if anything has been freed,
3389 		 * exit.  There is no sense in looping here for a long time
3390 		 * when we really need to commit the transaction, or there are
3391 		 * just too many writers without enough free space
3392 		 */
3393 
3394 		if (loops > 3) {
3395 			smp_mb();
3396 			if (progress != space_info->reservation_progress)
3397 				break;
3398 		}
3399 
3400 	}
3401 	return reclaimed >= to_reclaim;
3402 }
3403 
3404 /*
3405  * Retries tells us how many times we've called reserve_metadata_bytes.  The
3406  * idea is if this is the first call (retries == 0) then we will add to our
3407  * reserved count if we can't make the allocation in order to hold our place
3408  * while we go and try and free up space.  That way for retries > 1 we don't try
3409  * and add space, we just check to see if the amount of unused space is >= the
3410  * total space, meaning that our reservation is valid.
3411  *
3412  * However if we don't intend to retry this reservation, pass -1 as retries so
3413  * that it short circuits this logic.
3414  */
3415 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3416 				  struct btrfs_root *root,
3417 				  struct btrfs_block_rsv *block_rsv,
3418 				  u64 orig_bytes, int flush)
3419 {
3420 	struct btrfs_space_info *space_info = block_rsv->space_info;
3421 	u64 unused;
3422 	u64 num_bytes = orig_bytes;
3423 	int retries = 0;
3424 	int ret = 0;
3425 	bool reserved = false;
3426 	bool committed = false;
3427 
3428 again:
3429 	ret = -ENOSPC;
3430 	if (reserved)
3431 		num_bytes = 0;
3432 
3433 	spin_lock(&space_info->lock);
3434 	unused = space_info->bytes_used + space_info->bytes_reserved +
3435 		 space_info->bytes_pinned + space_info->bytes_readonly +
3436 		 space_info->bytes_may_use;
3437 
3438 	/*
3439 	 * The idea here is that we've not already over-reserved the block group
3440 	 * then we can go ahead and save our reservation first and then start
3441 	 * flushing if we need to.  Otherwise if we've already overcommitted
3442 	 * lets start flushing stuff first and then come back and try to make
3443 	 * our reservation.
3444 	 */
3445 	if (unused <= space_info->total_bytes) {
3446 		unused = space_info->total_bytes - unused;
3447 		if (unused >= num_bytes) {
3448 			if (!reserved)
3449 				space_info->bytes_reserved += orig_bytes;
3450 			ret = 0;
3451 		} else {
3452 			/*
3453 			 * Ok set num_bytes to orig_bytes since we aren't
3454 			 * overocmmitted, this way we only try and reclaim what
3455 			 * we need.
3456 			 */
3457 			num_bytes = orig_bytes;
3458 		}
3459 	} else {
3460 		/*
3461 		 * Ok we're over committed, set num_bytes to the overcommitted
3462 		 * amount plus the amount of bytes that we need for this
3463 		 * reservation.
3464 		 */
3465 		num_bytes = unused - space_info->total_bytes +
3466 			(orig_bytes * (retries + 1));
3467 	}
3468 
3469 	/*
3470 	 * Couldn't make our reservation, save our place so while we're trying
3471 	 * to reclaim space we can actually use it instead of somebody else
3472 	 * stealing it from us.
3473 	 */
3474 	if (ret && !reserved) {
3475 		space_info->bytes_reserved += orig_bytes;
3476 		reserved = true;
3477 	}
3478 
3479 	spin_unlock(&space_info->lock);
3480 
3481 	if (!ret)
3482 		return 0;
3483 
3484 	if (!flush)
3485 		goto out;
3486 
3487 	/*
3488 	 * We do synchronous shrinking since we don't actually unreserve
3489 	 * metadata until after the IO is completed.
3490 	 */
3491 	ret = shrink_delalloc(trans, root, num_bytes, 1);
3492 	if (ret > 0)
3493 		return 0;
3494 	else if (ret < 0)
3495 		goto out;
3496 
3497 	/*
3498 	 * So if we were overcommitted it's possible that somebody else flushed
3499 	 * out enough space and we simply didn't have enough space to reclaim,
3500 	 * so go back around and try again.
3501 	 */
3502 	if (retries < 2) {
3503 		retries++;
3504 		goto again;
3505 	}
3506 
3507 	spin_lock(&space_info->lock);
3508 	/*
3509 	 * Not enough space to be reclaimed, don't bother committing the
3510 	 * transaction.
3511 	 */
3512 	if (space_info->bytes_pinned < orig_bytes)
3513 		ret = -ENOSPC;
3514 	spin_unlock(&space_info->lock);
3515 	if (ret)
3516 		goto out;
3517 
3518 	ret = -EAGAIN;
3519 	if (trans || committed)
3520 		goto out;
3521 
3522 	ret = -ENOSPC;
3523 	trans = btrfs_join_transaction(root, 1);
3524 	if (IS_ERR(trans))
3525 		goto out;
3526 	ret = btrfs_commit_transaction(trans, root);
3527 	if (!ret) {
3528 		trans = NULL;
3529 		committed = true;
3530 		goto again;
3531 	}
3532 
3533 out:
3534 	if (reserved) {
3535 		spin_lock(&space_info->lock);
3536 		space_info->bytes_reserved -= orig_bytes;
3537 		spin_unlock(&space_info->lock);
3538 	}
3539 
3540 	return ret;
3541 }
3542 
3543 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3544 					     struct btrfs_root *root)
3545 {
3546 	struct btrfs_block_rsv *block_rsv;
3547 	if (root->ref_cows)
3548 		block_rsv = trans->block_rsv;
3549 	else
3550 		block_rsv = root->block_rsv;
3551 
3552 	if (!block_rsv)
3553 		block_rsv = &root->fs_info->empty_block_rsv;
3554 
3555 	return block_rsv;
3556 }
3557 
3558 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3559 			       u64 num_bytes)
3560 {
3561 	int ret = -ENOSPC;
3562 	spin_lock(&block_rsv->lock);
3563 	if (block_rsv->reserved >= num_bytes) {
3564 		block_rsv->reserved -= num_bytes;
3565 		if (block_rsv->reserved < block_rsv->size)
3566 			block_rsv->full = 0;
3567 		ret = 0;
3568 	}
3569 	spin_unlock(&block_rsv->lock);
3570 	return ret;
3571 }
3572 
3573 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3574 				u64 num_bytes, int update_size)
3575 {
3576 	spin_lock(&block_rsv->lock);
3577 	block_rsv->reserved += num_bytes;
3578 	if (update_size)
3579 		block_rsv->size += num_bytes;
3580 	else if (block_rsv->reserved >= block_rsv->size)
3581 		block_rsv->full = 1;
3582 	spin_unlock(&block_rsv->lock);
3583 }
3584 
3585 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3586 			     struct btrfs_block_rsv *dest, u64 num_bytes)
3587 {
3588 	struct btrfs_space_info *space_info = block_rsv->space_info;
3589 
3590 	spin_lock(&block_rsv->lock);
3591 	if (num_bytes == (u64)-1)
3592 		num_bytes = block_rsv->size;
3593 	block_rsv->size -= num_bytes;
3594 	if (block_rsv->reserved >= block_rsv->size) {
3595 		num_bytes = block_rsv->reserved - block_rsv->size;
3596 		block_rsv->reserved = block_rsv->size;
3597 		block_rsv->full = 1;
3598 	} else {
3599 		num_bytes = 0;
3600 	}
3601 	spin_unlock(&block_rsv->lock);
3602 
3603 	if (num_bytes > 0) {
3604 		if (dest) {
3605 			spin_lock(&dest->lock);
3606 			if (!dest->full) {
3607 				u64 bytes_to_add;
3608 
3609 				bytes_to_add = dest->size - dest->reserved;
3610 				bytes_to_add = min(num_bytes, bytes_to_add);
3611 				dest->reserved += bytes_to_add;
3612 				if (dest->reserved >= dest->size)
3613 					dest->full = 1;
3614 				num_bytes -= bytes_to_add;
3615 			}
3616 			spin_unlock(&dest->lock);
3617 		}
3618 		if (num_bytes) {
3619 			spin_lock(&space_info->lock);
3620 			space_info->bytes_reserved -= num_bytes;
3621 			space_info->reservation_progress++;
3622 			spin_unlock(&space_info->lock);
3623 		}
3624 	}
3625 }
3626 
3627 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3628 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3629 {
3630 	int ret;
3631 
3632 	ret = block_rsv_use_bytes(src, num_bytes);
3633 	if (ret)
3634 		return ret;
3635 
3636 	block_rsv_add_bytes(dst, num_bytes, 1);
3637 	return 0;
3638 }
3639 
3640 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3641 {
3642 	memset(rsv, 0, sizeof(*rsv));
3643 	spin_lock_init(&rsv->lock);
3644 	atomic_set(&rsv->usage, 1);
3645 	rsv->priority = 6;
3646 	INIT_LIST_HEAD(&rsv->list);
3647 }
3648 
3649 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3650 {
3651 	struct btrfs_block_rsv *block_rsv;
3652 	struct btrfs_fs_info *fs_info = root->fs_info;
3653 
3654 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3655 	if (!block_rsv)
3656 		return NULL;
3657 
3658 	btrfs_init_block_rsv(block_rsv);
3659 	block_rsv->space_info = __find_space_info(fs_info,
3660 						  BTRFS_BLOCK_GROUP_METADATA);
3661 	return block_rsv;
3662 }
3663 
3664 void btrfs_free_block_rsv(struct btrfs_root *root,
3665 			  struct btrfs_block_rsv *rsv)
3666 {
3667 	if (rsv && atomic_dec_and_test(&rsv->usage)) {
3668 		btrfs_block_rsv_release(root, rsv, (u64)-1);
3669 		if (!rsv->durable)
3670 			kfree(rsv);
3671 	}
3672 }
3673 
3674 /*
3675  * make the block_rsv struct be able to capture freed space.
3676  * the captured space will re-add to the the block_rsv struct
3677  * after transaction commit
3678  */
3679 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3680 				 struct btrfs_block_rsv *block_rsv)
3681 {
3682 	block_rsv->durable = 1;
3683 	mutex_lock(&fs_info->durable_block_rsv_mutex);
3684 	list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3685 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
3686 }
3687 
3688 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3689 			struct btrfs_root *root,
3690 			struct btrfs_block_rsv *block_rsv,
3691 			u64 num_bytes)
3692 {
3693 	int ret;
3694 
3695 	if (num_bytes == 0)
3696 		return 0;
3697 
3698 	ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3699 	if (!ret) {
3700 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3701 		return 0;
3702 	}
3703 
3704 	return ret;
3705 }
3706 
3707 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3708 			  struct btrfs_root *root,
3709 			  struct btrfs_block_rsv *block_rsv,
3710 			  u64 min_reserved, int min_factor)
3711 {
3712 	u64 num_bytes = 0;
3713 	int commit_trans = 0;
3714 	int ret = -ENOSPC;
3715 
3716 	if (!block_rsv)
3717 		return 0;
3718 
3719 	spin_lock(&block_rsv->lock);
3720 	if (min_factor > 0)
3721 		num_bytes = div_factor(block_rsv->size, min_factor);
3722 	if (min_reserved > num_bytes)
3723 		num_bytes = min_reserved;
3724 
3725 	if (block_rsv->reserved >= num_bytes) {
3726 		ret = 0;
3727 	} else {
3728 		num_bytes -= block_rsv->reserved;
3729 		if (block_rsv->durable &&
3730 		    block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3731 			commit_trans = 1;
3732 	}
3733 	spin_unlock(&block_rsv->lock);
3734 	if (!ret)
3735 		return 0;
3736 
3737 	if (block_rsv->refill_used) {
3738 		ret = reserve_metadata_bytes(trans, root, block_rsv,
3739 					     num_bytes, 0);
3740 		if (!ret) {
3741 			block_rsv_add_bytes(block_rsv, num_bytes, 0);
3742 			return 0;
3743 		}
3744 	}
3745 
3746 	if (commit_trans) {
3747 		if (trans)
3748 			return -EAGAIN;
3749 
3750 		trans = btrfs_join_transaction(root, 1);
3751 		BUG_ON(IS_ERR(trans));
3752 		ret = btrfs_commit_transaction(trans, root);
3753 		return 0;
3754 	}
3755 
3756 	return -ENOSPC;
3757 }
3758 
3759 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3760 			    struct btrfs_block_rsv *dst_rsv,
3761 			    u64 num_bytes)
3762 {
3763 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3764 }
3765 
3766 void btrfs_block_rsv_release(struct btrfs_root *root,
3767 			     struct btrfs_block_rsv *block_rsv,
3768 			     u64 num_bytes)
3769 {
3770 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3771 	if (global_rsv->full || global_rsv == block_rsv ||
3772 	    block_rsv->space_info != global_rsv->space_info)
3773 		global_rsv = NULL;
3774 	block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3775 }
3776 
3777 /*
3778  * helper to calculate size of global block reservation.
3779  * the desired value is sum of space used by extent tree,
3780  * checksum tree and root tree
3781  */
3782 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3783 {
3784 	struct btrfs_space_info *sinfo;
3785 	u64 num_bytes;
3786 	u64 meta_used;
3787 	u64 data_used;
3788 	int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3789 #if 0
3790 	/*
3791 	 * per tree used space accounting can be inaccuracy, so we
3792 	 * can't rely on it.
3793 	 */
3794 	spin_lock(&fs_info->extent_root->accounting_lock);
3795 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3796 	spin_unlock(&fs_info->extent_root->accounting_lock);
3797 
3798 	spin_lock(&fs_info->csum_root->accounting_lock);
3799 	num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3800 	spin_unlock(&fs_info->csum_root->accounting_lock);
3801 
3802 	spin_lock(&fs_info->tree_root->accounting_lock);
3803 	num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3804 	spin_unlock(&fs_info->tree_root->accounting_lock);
3805 #endif
3806 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3807 	spin_lock(&sinfo->lock);
3808 	data_used = sinfo->bytes_used;
3809 	spin_unlock(&sinfo->lock);
3810 
3811 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3812 	spin_lock(&sinfo->lock);
3813 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3814 		data_used = 0;
3815 	meta_used = sinfo->bytes_used;
3816 	spin_unlock(&sinfo->lock);
3817 
3818 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3819 		    csum_size * 2;
3820 	num_bytes += div64_u64(data_used + meta_used, 50);
3821 
3822 	if (num_bytes * 3 > meta_used)
3823 		num_bytes = div64_u64(meta_used, 3);
3824 
3825 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3826 }
3827 
3828 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3829 {
3830 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3831 	struct btrfs_space_info *sinfo = block_rsv->space_info;
3832 	u64 num_bytes;
3833 
3834 	num_bytes = calc_global_metadata_size(fs_info);
3835 
3836 	spin_lock(&block_rsv->lock);
3837 	spin_lock(&sinfo->lock);
3838 
3839 	block_rsv->size = num_bytes;
3840 
3841 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3842 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
3843 		    sinfo->bytes_may_use;
3844 
3845 	if (sinfo->total_bytes > num_bytes) {
3846 		num_bytes = sinfo->total_bytes - num_bytes;
3847 		block_rsv->reserved += num_bytes;
3848 		sinfo->bytes_reserved += num_bytes;
3849 	}
3850 
3851 	if (block_rsv->reserved >= block_rsv->size) {
3852 		num_bytes = block_rsv->reserved - block_rsv->size;
3853 		sinfo->bytes_reserved -= num_bytes;
3854 		sinfo->reservation_progress++;
3855 		block_rsv->reserved = block_rsv->size;
3856 		block_rsv->full = 1;
3857 	}
3858 #if 0
3859 	printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3860 		block_rsv->size, block_rsv->reserved);
3861 #endif
3862 	spin_unlock(&sinfo->lock);
3863 	spin_unlock(&block_rsv->lock);
3864 }
3865 
3866 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3867 {
3868 	struct btrfs_space_info *space_info;
3869 
3870 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3871 	fs_info->chunk_block_rsv.space_info = space_info;
3872 	fs_info->chunk_block_rsv.priority = 10;
3873 
3874 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3875 	fs_info->global_block_rsv.space_info = space_info;
3876 	fs_info->global_block_rsv.priority = 10;
3877 	fs_info->global_block_rsv.refill_used = 1;
3878 	fs_info->delalloc_block_rsv.space_info = space_info;
3879 	fs_info->trans_block_rsv.space_info = space_info;
3880 	fs_info->empty_block_rsv.space_info = space_info;
3881 	fs_info->empty_block_rsv.priority = 10;
3882 
3883 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3884 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3885 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3886 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3887 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3888 
3889 	btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3890 
3891 	btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3892 
3893 	update_global_block_rsv(fs_info);
3894 }
3895 
3896 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3897 {
3898 	block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3899 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3900 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3901 	WARN_ON(fs_info->trans_block_rsv.size > 0);
3902 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3903 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
3904 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3905 }
3906 
3907 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3908 {
3909 	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3910 		3 * num_items;
3911 }
3912 
3913 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3914 				 struct btrfs_root *root,
3915 				 int num_items)
3916 {
3917 	u64 num_bytes;
3918 	int ret;
3919 
3920 	if (num_items == 0 || root->fs_info->chunk_root == root)
3921 		return 0;
3922 
3923 	num_bytes = calc_trans_metadata_size(root, num_items);
3924 	ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3925 				  num_bytes);
3926 	if (!ret) {
3927 		trans->bytes_reserved += num_bytes;
3928 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3929 	}
3930 	return ret;
3931 }
3932 
3933 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3934 				  struct btrfs_root *root)
3935 {
3936 	if (!trans->bytes_reserved)
3937 		return;
3938 
3939 	BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3940 	btrfs_block_rsv_release(root, trans->block_rsv,
3941 				trans->bytes_reserved);
3942 	trans->bytes_reserved = 0;
3943 }
3944 
3945 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3946 				  struct inode *inode)
3947 {
3948 	struct btrfs_root *root = BTRFS_I(inode)->root;
3949 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3950 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3951 
3952 	/*
3953 	 * one for deleting orphan item, one for updating inode and
3954 	 * two for calling btrfs_truncate_inode_items.
3955 	 *
3956 	 * btrfs_truncate_inode_items is a delete operation, it frees
3957 	 * more space than it uses in most cases. So two units of
3958 	 * metadata space should be enough for calling it many times.
3959 	 * If all of the metadata space is used, we can commit
3960 	 * transaction and use space it freed.
3961 	 */
3962 	u64 num_bytes = calc_trans_metadata_size(root, 4);
3963 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3964 }
3965 
3966 void btrfs_orphan_release_metadata(struct inode *inode)
3967 {
3968 	struct btrfs_root *root = BTRFS_I(inode)->root;
3969 	u64 num_bytes = calc_trans_metadata_size(root, 4);
3970 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3971 }
3972 
3973 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3974 				struct btrfs_pending_snapshot *pending)
3975 {
3976 	struct btrfs_root *root = pending->root;
3977 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3978 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3979 	/*
3980 	 * two for root back/forward refs, two for directory entries
3981 	 * and one for root of the snapshot.
3982 	 */
3983 	u64 num_bytes = calc_trans_metadata_size(root, 5);
3984 	dst_rsv->space_info = src_rsv->space_info;
3985 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3986 }
3987 
3988 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3989 {
3990 	return num_bytes >>= 3;
3991 }
3992 
3993 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3994 {
3995 	struct btrfs_root *root = BTRFS_I(inode)->root;
3996 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3997 	u64 to_reserve;
3998 	int nr_extents;
3999 	int ret;
4000 
4001 	if (btrfs_transaction_in_commit(root->fs_info))
4002 		schedule_timeout(1);
4003 
4004 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4005 
4006 	spin_lock(&BTRFS_I(inode)->accounting_lock);
4007 	nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
4008 	if (nr_extents > BTRFS_I(inode)->reserved_extents) {
4009 		nr_extents -= BTRFS_I(inode)->reserved_extents;
4010 		to_reserve = calc_trans_metadata_size(root, nr_extents);
4011 	} else {
4012 		nr_extents = 0;
4013 		to_reserve = 0;
4014 	}
4015 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4016 	to_reserve += calc_csum_metadata_size(inode, num_bytes);
4017 	ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4018 	if (ret)
4019 		return ret;
4020 
4021 	spin_lock(&BTRFS_I(inode)->accounting_lock);
4022 	BTRFS_I(inode)->reserved_extents += nr_extents;
4023 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
4024 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4025 
4026 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4027 
4028 	if (block_rsv->size > 512 * 1024 * 1024)
4029 		shrink_delalloc(NULL, root, to_reserve, 0);
4030 
4031 	return 0;
4032 }
4033 
4034 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4035 {
4036 	struct btrfs_root *root = BTRFS_I(inode)->root;
4037 	u64 to_free;
4038 	int nr_extents;
4039 
4040 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4041 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4042 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4043 
4044 	spin_lock(&BTRFS_I(inode)->accounting_lock);
4045 	nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4046 	if (nr_extents < BTRFS_I(inode)->reserved_extents) {
4047 		nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
4048 		BTRFS_I(inode)->reserved_extents -= nr_extents;
4049 	} else {
4050 		nr_extents = 0;
4051 	}
4052 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4053 
4054 	to_free = calc_csum_metadata_size(inode, num_bytes);
4055 	if (nr_extents > 0)
4056 		to_free += calc_trans_metadata_size(root, nr_extents);
4057 
4058 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4059 				to_free);
4060 }
4061 
4062 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4063 {
4064 	int ret;
4065 
4066 	ret = btrfs_check_data_free_space(inode, num_bytes);
4067 	if (ret)
4068 		return ret;
4069 
4070 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4071 	if (ret) {
4072 		btrfs_free_reserved_data_space(inode, num_bytes);
4073 		return ret;
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4080 {
4081 	btrfs_delalloc_release_metadata(inode, num_bytes);
4082 	btrfs_free_reserved_data_space(inode, num_bytes);
4083 }
4084 
4085 static int update_block_group(struct btrfs_trans_handle *trans,
4086 			      struct btrfs_root *root,
4087 			      u64 bytenr, u64 num_bytes, int alloc)
4088 {
4089 	struct btrfs_block_group_cache *cache = NULL;
4090 	struct btrfs_fs_info *info = root->fs_info;
4091 	u64 total = num_bytes;
4092 	u64 old_val;
4093 	u64 byte_in_group;
4094 	int factor;
4095 
4096 	/* block accounting for super block */
4097 	spin_lock(&info->delalloc_lock);
4098 	old_val = btrfs_super_bytes_used(&info->super_copy);
4099 	if (alloc)
4100 		old_val += num_bytes;
4101 	else
4102 		old_val -= num_bytes;
4103 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
4104 	spin_unlock(&info->delalloc_lock);
4105 
4106 	while (total) {
4107 		cache = btrfs_lookup_block_group(info, bytenr);
4108 		if (!cache)
4109 			return -1;
4110 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4111 				    BTRFS_BLOCK_GROUP_RAID1 |
4112 				    BTRFS_BLOCK_GROUP_RAID10))
4113 			factor = 2;
4114 		else
4115 			factor = 1;
4116 		/*
4117 		 * If this block group has free space cache written out, we
4118 		 * need to make sure to load it if we are removing space.  This
4119 		 * is because we need the unpinning stage to actually add the
4120 		 * space back to the block group, otherwise we will leak space.
4121 		 */
4122 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4123 			cache_block_group(cache, trans, NULL, 1);
4124 
4125 		byte_in_group = bytenr - cache->key.objectid;
4126 		WARN_ON(byte_in_group > cache->key.offset);
4127 
4128 		spin_lock(&cache->space_info->lock);
4129 		spin_lock(&cache->lock);
4130 
4131 		if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4132 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4133 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4134 
4135 		cache->dirty = 1;
4136 		old_val = btrfs_block_group_used(&cache->item);
4137 		num_bytes = min(total, cache->key.offset - byte_in_group);
4138 		if (alloc) {
4139 			old_val += num_bytes;
4140 			btrfs_set_block_group_used(&cache->item, old_val);
4141 			cache->reserved -= num_bytes;
4142 			cache->space_info->bytes_reserved -= num_bytes;
4143 			cache->space_info->reservation_progress++;
4144 			cache->space_info->bytes_used += num_bytes;
4145 			cache->space_info->disk_used += num_bytes * factor;
4146 			spin_unlock(&cache->lock);
4147 			spin_unlock(&cache->space_info->lock);
4148 		} else {
4149 			old_val -= num_bytes;
4150 			btrfs_set_block_group_used(&cache->item, old_val);
4151 			cache->pinned += num_bytes;
4152 			cache->space_info->bytes_pinned += num_bytes;
4153 			cache->space_info->bytes_used -= num_bytes;
4154 			cache->space_info->disk_used -= num_bytes * factor;
4155 			spin_unlock(&cache->lock);
4156 			spin_unlock(&cache->space_info->lock);
4157 
4158 			set_extent_dirty(info->pinned_extents,
4159 					 bytenr, bytenr + num_bytes - 1,
4160 					 GFP_NOFS | __GFP_NOFAIL);
4161 		}
4162 		btrfs_put_block_group(cache);
4163 		total -= num_bytes;
4164 		bytenr += num_bytes;
4165 	}
4166 	return 0;
4167 }
4168 
4169 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4170 {
4171 	struct btrfs_block_group_cache *cache;
4172 	u64 bytenr;
4173 
4174 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4175 	if (!cache)
4176 		return 0;
4177 
4178 	bytenr = cache->key.objectid;
4179 	btrfs_put_block_group(cache);
4180 
4181 	return bytenr;
4182 }
4183 
4184 static int pin_down_extent(struct btrfs_root *root,
4185 			   struct btrfs_block_group_cache *cache,
4186 			   u64 bytenr, u64 num_bytes, int reserved)
4187 {
4188 	spin_lock(&cache->space_info->lock);
4189 	spin_lock(&cache->lock);
4190 	cache->pinned += num_bytes;
4191 	cache->space_info->bytes_pinned += num_bytes;
4192 	if (reserved) {
4193 		cache->reserved -= num_bytes;
4194 		cache->space_info->bytes_reserved -= num_bytes;
4195 		cache->space_info->reservation_progress++;
4196 	}
4197 	spin_unlock(&cache->lock);
4198 	spin_unlock(&cache->space_info->lock);
4199 
4200 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4201 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4202 	return 0;
4203 }
4204 
4205 /*
4206  * this function must be called within transaction
4207  */
4208 int btrfs_pin_extent(struct btrfs_root *root,
4209 		     u64 bytenr, u64 num_bytes, int reserved)
4210 {
4211 	struct btrfs_block_group_cache *cache;
4212 
4213 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4214 	BUG_ON(!cache);
4215 
4216 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4217 
4218 	btrfs_put_block_group(cache);
4219 	return 0;
4220 }
4221 
4222 /*
4223  * update size of reserved extents. this function may return -EAGAIN
4224  * if 'reserve' is true or 'sinfo' is false.
4225  */
4226 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
4227 				 u64 num_bytes, int reserve, int sinfo)
4228 {
4229 	int ret = 0;
4230 	if (sinfo) {
4231 		struct btrfs_space_info *space_info = cache->space_info;
4232 		spin_lock(&space_info->lock);
4233 		spin_lock(&cache->lock);
4234 		if (reserve) {
4235 			if (cache->ro) {
4236 				ret = -EAGAIN;
4237 			} else {
4238 				cache->reserved += num_bytes;
4239 				space_info->bytes_reserved += num_bytes;
4240 			}
4241 		} else {
4242 			if (cache->ro)
4243 				space_info->bytes_readonly += num_bytes;
4244 			cache->reserved -= num_bytes;
4245 			space_info->bytes_reserved -= num_bytes;
4246 			space_info->reservation_progress++;
4247 		}
4248 		spin_unlock(&cache->lock);
4249 		spin_unlock(&space_info->lock);
4250 	} else {
4251 		spin_lock(&cache->lock);
4252 		if (cache->ro) {
4253 			ret = -EAGAIN;
4254 		} else {
4255 			if (reserve)
4256 				cache->reserved += num_bytes;
4257 			else
4258 				cache->reserved -= num_bytes;
4259 		}
4260 		spin_unlock(&cache->lock);
4261 	}
4262 	return ret;
4263 }
4264 
4265 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4266 				struct btrfs_root *root)
4267 {
4268 	struct btrfs_fs_info *fs_info = root->fs_info;
4269 	struct btrfs_caching_control *next;
4270 	struct btrfs_caching_control *caching_ctl;
4271 	struct btrfs_block_group_cache *cache;
4272 
4273 	down_write(&fs_info->extent_commit_sem);
4274 
4275 	list_for_each_entry_safe(caching_ctl, next,
4276 				 &fs_info->caching_block_groups, list) {
4277 		cache = caching_ctl->block_group;
4278 		if (block_group_cache_done(cache)) {
4279 			cache->last_byte_to_unpin = (u64)-1;
4280 			list_del_init(&caching_ctl->list);
4281 			put_caching_control(caching_ctl);
4282 		} else {
4283 			cache->last_byte_to_unpin = caching_ctl->progress;
4284 		}
4285 	}
4286 
4287 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4288 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4289 	else
4290 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4291 
4292 	up_write(&fs_info->extent_commit_sem);
4293 
4294 	update_global_block_rsv(fs_info);
4295 	return 0;
4296 }
4297 
4298 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4299 {
4300 	struct btrfs_fs_info *fs_info = root->fs_info;
4301 	struct btrfs_block_group_cache *cache = NULL;
4302 	u64 len;
4303 
4304 	while (start <= end) {
4305 		if (!cache ||
4306 		    start >= cache->key.objectid + cache->key.offset) {
4307 			if (cache)
4308 				btrfs_put_block_group(cache);
4309 			cache = btrfs_lookup_block_group(fs_info, start);
4310 			BUG_ON(!cache);
4311 		}
4312 
4313 		len = cache->key.objectid + cache->key.offset - start;
4314 		len = min(len, end + 1 - start);
4315 
4316 		if (start < cache->last_byte_to_unpin) {
4317 			len = min(len, cache->last_byte_to_unpin - start);
4318 			btrfs_add_free_space(cache, start, len);
4319 		}
4320 
4321 		start += len;
4322 
4323 		spin_lock(&cache->space_info->lock);
4324 		spin_lock(&cache->lock);
4325 		cache->pinned -= len;
4326 		cache->space_info->bytes_pinned -= len;
4327 		if (cache->ro) {
4328 			cache->space_info->bytes_readonly += len;
4329 		} else if (cache->reserved_pinned > 0) {
4330 			len = min(len, cache->reserved_pinned);
4331 			cache->reserved_pinned -= len;
4332 			cache->space_info->bytes_reserved += len;
4333 		}
4334 		spin_unlock(&cache->lock);
4335 		spin_unlock(&cache->space_info->lock);
4336 	}
4337 
4338 	if (cache)
4339 		btrfs_put_block_group(cache);
4340 	return 0;
4341 }
4342 
4343 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4344 			       struct btrfs_root *root)
4345 {
4346 	struct btrfs_fs_info *fs_info = root->fs_info;
4347 	struct extent_io_tree *unpin;
4348 	struct btrfs_block_rsv *block_rsv;
4349 	struct btrfs_block_rsv *next_rsv;
4350 	u64 start;
4351 	u64 end;
4352 	int idx;
4353 	int ret;
4354 
4355 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4356 		unpin = &fs_info->freed_extents[1];
4357 	else
4358 		unpin = &fs_info->freed_extents[0];
4359 
4360 	while (1) {
4361 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4362 					    EXTENT_DIRTY);
4363 		if (ret)
4364 			break;
4365 
4366 		ret = btrfs_discard_extent(root, start, end + 1 - start);
4367 
4368 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4369 		unpin_extent_range(root, start, end);
4370 		cond_resched();
4371 	}
4372 
4373 	mutex_lock(&fs_info->durable_block_rsv_mutex);
4374 	list_for_each_entry_safe(block_rsv, next_rsv,
4375 				 &fs_info->durable_block_rsv_list, list) {
4376 
4377 		idx = trans->transid & 0x1;
4378 		if (block_rsv->freed[idx] > 0) {
4379 			block_rsv_add_bytes(block_rsv,
4380 					    block_rsv->freed[idx], 0);
4381 			block_rsv->freed[idx] = 0;
4382 		}
4383 		if (atomic_read(&block_rsv->usage) == 0) {
4384 			btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4385 
4386 			if (block_rsv->freed[0] == 0 &&
4387 			    block_rsv->freed[1] == 0) {
4388 				list_del_init(&block_rsv->list);
4389 				kfree(block_rsv);
4390 			}
4391 		} else {
4392 			btrfs_block_rsv_release(root, block_rsv, 0);
4393 		}
4394 	}
4395 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
4396 
4397 	return 0;
4398 }
4399 
4400 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4401 				struct btrfs_root *root,
4402 				u64 bytenr, u64 num_bytes, u64 parent,
4403 				u64 root_objectid, u64 owner_objectid,
4404 				u64 owner_offset, int refs_to_drop,
4405 				struct btrfs_delayed_extent_op *extent_op)
4406 {
4407 	struct btrfs_key key;
4408 	struct btrfs_path *path;
4409 	struct btrfs_fs_info *info = root->fs_info;
4410 	struct btrfs_root *extent_root = info->extent_root;
4411 	struct extent_buffer *leaf;
4412 	struct btrfs_extent_item *ei;
4413 	struct btrfs_extent_inline_ref *iref;
4414 	int ret;
4415 	int is_data;
4416 	int extent_slot = 0;
4417 	int found_extent = 0;
4418 	int num_to_del = 1;
4419 	u32 item_size;
4420 	u64 refs;
4421 
4422 	path = btrfs_alloc_path();
4423 	if (!path)
4424 		return -ENOMEM;
4425 
4426 	path->reada = 1;
4427 	path->leave_spinning = 1;
4428 
4429 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4430 	BUG_ON(!is_data && refs_to_drop != 1);
4431 
4432 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4433 				    bytenr, num_bytes, parent,
4434 				    root_objectid, owner_objectid,
4435 				    owner_offset);
4436 	if (ret == 0) {
4437 		extent_slot = path->slots[0];
4438 		while (extent_slot >= 0) {
4439 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4440 					      extent_slot);
4441 			if (key.objectid != bytenr)
4442 				break;
4443 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4444 			    key.offset == num_bytes) {
4445 				found_extent = 1;
4446 				break;
4447 			}
4448 			if (path->slots[0] - extent_slot > 5)
4449 				break;
4450 			extent_slot--;
4451 		}
4452 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4453 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4454 		if (found_extent && item_size < sizeof(*ei))
4455 			found_extent = 0;
4456 #endif
4457 		if (!found_extent) {
4458 			BUG_ON(iref);
4459 			ret = remove_extent_backref(trans, extent_root, path,
4460 						    NULL, refs_to_drop,
4461 						    is_data);
4462 			BUG_ON(ret);
4463 			btrfs_release_path(extent_root, path);
4464 			path->leave_spinning = 1;
4465 
4466 			key.objectid = bytenr;
4467 			key.type = BTRFS_EXTENT_ITEM_KEY;
4468 			key.offset = num_bytes;
4469 
4470 			ret = btrfs_search_slot(trans, extent_root,
4471 						&key, path, -1, 1);
4472 			if (ret) {
4473 				printk(KERN_ERR "umm, got %d back from search"
4474 				       ", was looking for %llu\n", ret,
4475 				       (unsigned long long)bytenr);
4476 				btrfs_print_leaf(extent_root, path->nodes[0]);
4477 			}
4478 			BUG_ON(ret);
4479 			extent_slot = path->slots[0];
4480 		}
4481 	} else {
4482 		btrfs_print_leaf(extent_root, path->nodes[0]);
4483 		WARN_ON(1);
4484 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4485 		       "parent %llu root %llu  owner %llu offset %llu\n",
4486 		       (unsigned long long)bytenr,
4487 		       (unsigned long long)parent,
4488 		       (unsigned long long)root_objectid,
4489 		       (unsigned long long)owner_objectid,
4490 		       (unsigned long long)owner_offset);
4491 	}
4492 
4493 	leaf = path->nodes[0];
4494 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4495 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4496 	if (item_size < sizeof(*ei)) {
4497 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4498 		ret = convert_extent_item_v0(trans, extent_root, path,
4499 					     owner_objectid, 0);
4500 		BUG_ON(ret < 0);
4501 
4502 		btrfs_release_path(extent_root, path);
4503 		path->leave_spinning = 1;
4504 
4505 		key.objectid = bytenr;
4506 		key.type = BTRFS_EXTENT_ITEM_KEY;
4507 		key.offset = num_bytes;
4508 
4509 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4510 					-1, 1);
4511 		if (ret) {
4512 			printk(KERN_ERR "umm, got %d back from search"
4513 			       ", was looking for %llu\n", ret,
4514 			       (unsigned long long)bytenr);
4515 			btrfs_print_leaf(extent_root, path->nodes[0]);
4516 		}
4517 		BUG_ON(ret);
4518 		extent_slot = path->slots[0];
4519 		leaf = path->nodes[0];
4520 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4521 	}
4522 #endif
4523 	BUG_ON(item_size < sizeof(*ei));
4524 	ei = btrfs_item_ptr(leaf, extent_slot,
4525 			    struct btrfs_extent_item);
4526 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4527 		struct btrfs_tree_block_info *bi;
4528 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4529 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4530 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4531 	}
4532 
4533 	refs = btrfs_extent_refs(leaf, ei);
4534 	BUG_ON(refs < refs_to_drop);
4535 	refs -= refs_to_drop;
4536 
4537 	if (refs > 0) {
4538 		if (extent_op)
4539 			__run_delayed_extent_op(extent_op, leaf, ei);
4540 		/*
4541 		 * In the case of inline back ref, reference count will
4542 		 * be updated by remove_extent_backref
4543 		 */
4544 		if (iref) {
4545 			BUG_ON(!found_extent);
4546 		} else {
4547 			btrfs_set_extent_refs(leaf, ei, refs);
4548 			btrfs_mark_buffer_dirty(leaf);
4549 		}
4550 		if (found_extent) {
4551 			ret = remove_extent_backref(trans, extent_root, path,
4552 						    iref, refs_to_drop,
4553 						    is_data);
4554 			BUG_ON(ret);
4555 		}
4556 	} else {
4557 		if (found_extent) {
4558 			BUG_ON(is_data && refs_to_drop !=
4559 			       extent_data_ref_count(root, path, iref));
4560 			if (iref) {
4561 				BUG_ON(path->slots[0] != extent_slot);
4562 			} else {
4563 				BUG_ON(path->slots[0] != extent_slot + 1);
4564 				path->slots[0] = extent_slot;
4565 				num_to_del = 2;
4566 			}
4567 		}
4568 
4569 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4570 				      num_to_del);
4571 		BUG_ON(ret);
4572 		btrfs_release_path(extent_root, path);
4573 
4574 		if (is_data) {
4575 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4576 			BUG_ON(ret);
4577 		} else {
4578 			invalidate_mapping_pages(info->btree_inode->i_mapping,
4579 			     bytenr >> PAGE_CACHE_SHIFT,
4580 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4581 		}
4582 
4583 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4584 		BUG_ON(ret);
4585 	}
4586 	btrfs_free_path(path);
4587 	return ret;
4588 }
4589 
4590 /*
4591  * when we free an block, it is possible (and likely) that we free the last
4592  * delayed ref for that extent as well.  This searches the delayed ref tree for
4593  * a given extent, and if there are no other delayed refs to be processed, it
4594  * removes it from the tree.
4595  */
4596 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4597 				      struct btrfs_root *root, u64 bytenr)
4598 {
4599 	struct btrfs_delayed_ref_head *head;
4600 	struct btrfs_delayed_ref_root *delayed_refs;
4601 	struct btrfs_delayed_ref_node *ref;
4602 	struct rb_node *node;
4603 	int ret = 0;
4604 
4605 	delayed_refs = &trans->transaction->delayed_refs;
4606 	spin_lock(&delayed_refs->lock);
4607 	head = btrfs_find_delayed_ref_head(trans, bytenr);
4608 	if (!head)
4609 		goto out;
4610 
4611 	node = rb_prev(&head->node.rb_node);
4612 	if (!node)
4613 		goto out;
4614 
4615 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4616 
4617 	/* there are still entries for this ref, we can't drop it */
4618 	if (ref->bytenr == bytenr)
4619 		goto out;
4620 
4621 	if (head->extent_op) {
4622 		if (!head->must_insert_reserved)
4623 			goto out;
4624 		kfree(head->extent_op);
4625 		head->extent_op = NULL;
4626 	}
4627 
4628 	/*
4629 	 * waiting for the lock here would deadlock.  If someone else has it
4630 	 * locked they are already in the process of dropping it anyway
4631 	 */
4632 	if (!mutex_trylock(&head->mutex))
4633 		goto out;
4634 
4635 	/*
4636 	 * at this point we have a head with no other entries.  Go
4637 	 * ahead and process it.
4638 	 */
4639 	head->node.in_tree = 0;
4640 	rb_erase(&head->node.rb_node, &delayed_refs->root);
4641 
4642 	delayed_refs->num_entries--;
4643 
4644 	/*
4645 	 * we don't take a ref on the node because we're removing it from the
4646 	 * tree, so we just steal the ref the tree was holding.
4647 	 */
4648 	delayed_refs->num_heads--;
4649 	if (list_empty(&head->cluster))
4650 		delayed_refs->num_heads_ready--;
4651 
4652 	list_del_init(&head->cluster);
4653 	spin_unlock(&delayed_refs->lock);
4654 
4655 	BUG_ON(head->extent_op);
4656 	if (head->must_insert_reserved)
4657 		ret = 1;
4658 
4659 	mutex_unlock(&head->mutex);
4660 	btrfs_put_delayed_ref(&head->node);
4661 	return ret;
4662 out:
4663 	spin_unlock(&delayed_refs->lock);
4664 	return 0;
4665 }
4666 
4667 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4668 			   struct btrfs_root *root,
4669 			   struct extent_buffer *buf,
4670 			   u64 parent, int last_ref)
4671 {
4672 	struct btrfs_block_rsv *block_rsv;
4673 	struct btrfs_block_group_cache *cache = NULL;
4674 	int ret;
4675 
4676 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4677 		ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4678 						parent, root->root_key.objectid,
4679 						btrfs_header_level(buf),
4680 						BTRFS_DROP_DELAYED_REF, NULL);
4681 		BUG_ON(ret);
4682 	}
4683 
4684 	if (!last_ref)
4685 		return;
4686 
4687 	block_rsv = get_block_rsv(trans, root);
4688 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4689 	if (block_rsv->space_info != cache->space_info)
4690 		goto out;
4691 
4692 	if (btrfs_header_generation(buf) == trans->transid) {
4693 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4694 			ret = check_ref_cleanup(trans, root, buf->start);
4695 			if (!ret)
4696 				goto pin;
4697 		}
4698 
4699 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4700 			pin_down_extent(root, cache, buf->start, buf->len, 1);
4701 			goto pin;
4702 		}
4703 
4704 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4705 
4706 		btrfs_add_free_space(cache, buf->start, buf->len);
4707 		ret = update_reserved_bytes(cache, buf->len, 0, 0);
4708 		if (ret == -EAGAIN) {
4709 			/* block group became read-only */
4710 			update_reserved_bytes(cache, buf->len, 0, 1);
4711 			goto out;
4712 		}
4713 
4714 		ret = 1;
4715 		spin_lock(&block_rsv->lock);
4716 		if (block_rsv->reserved < block_rsv->size) {
4717 			block_rsv->reserved += buf->len;
4718 			ret = 0;
4719 		}
4720 		spin_unlock(&block_rsv->lock);
4721 
4722 		if (ret) {
4723 			spin_lock(&cache->space_info->lock);
4724 			cache->space_info->bytes_reserved -= buf->len;
4725 			cache->space_info->reservation_progress++;
4726 			spin_unlock(&cache->space_info->lock);
4727 		}
4728 		goto out;
4729 	}
4730 pin:
4731 	if (block_rsv->durable && !cache->ro) {
4732 		ret = 0;
4733 		spin_lock(&cache->lock);
4734 		if (!cache->ro) {
4735 			cache->reserved_pinned += buf->len;
4736 			ret = 1;
4737 		}
4738 		spin_unlock(&cache->lock);
4739 
4740 		if (ret) {
4741 			spin_lock(&block_rsv->lock);
4742 			block_rsv->freed[trans->transid & 0x1] += buf->len;
4743 			spin_unlock(&block_rsv->lock);
4744 		}
4745 	}
4746 out:
4747 	btrfs_put_block_group(cache);
4748 }
4749 
4750 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4751 		      struct btrfs_root *root,
4752 		      u64 bytenr, u64 num_bytes, u64 parent,
4753 		      u64 root_objectid, u64 owner, u64 offset)
4754 {
4755 	int ret;
4756 
4757 	/*
4758 	 * tree log blocks never actually go into the extent allocation
4759 	 * tree, just update pinning info and exit early.
4760 	 */
4761 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4762 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4763 		/* unlocks the pinned mutex */
4764 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
4765 		ret = 0;
4766 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4767 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4768 					parent, root_objectid, (int)owner,
4769 					BTRFS_DROP_DELAYED_REF, NULL);
4770 		BUG_ON(ret);
4771 	} else {
4772 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4773 					parent, root_objectid, owner,
4774 					offset, BTRFS_DROP_DELAYED_REF, NULL);
4775 		BUG_ON(ret);
4776 	}
4777 	return ret;
4778 }
4779 
4780 static u64 stripe_align(struct btrfs_root *root, u64 val)
4781 {
4782 	u64 mask = ((u64)root->stripesize - 1);
4783 	u64 ret = (val + mask) & ~mask;
4784 	return ret;
4785 }
4786 
4787 /*
4788  * when we wait for progress in the block group caching, its because
4789  * our allocation attempt failed at least once.  So, we must sleep
4790  * and let some progress happen before we try again.
4791  *
4792  * This function will sleep at least once waiting for new free space to
4793  * show up, and then it will check the block group free space numbers
4794  * for our min num_bytes.  Another option is to have it go ahead
4795  * and look in the rbtree for a free extent of a given size, but this
4796  * is a good start.
4797  */
4798 static noinline int
4799 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4800 				u64 num_bytes)
4801 {
4802 	struct btrfs_caching_control *caching_ctl;
4803 	DEFINE_WAIT(wait);
4804 
4805 	caching_ctl = get_caching_control(cache);
4806 	if (!caching_ctl)
4807 		return 0;
4808 
4809 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4810 		   (cache->free_space >= num_bytes));
4811 
4812 	put_caching_control(caching_ctl);
4813 	return 0;
4814 }
4815 
4816 static noinline int
4817 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4818 {
4819 	struct btrfs_caching_control *caching_ctl;
4820 	DEFINE_WAIT(wait);
4821 
4822 	caching_ctl = get_caching_control(cache);
4823 	if (!caching_ctl)
4824 		return 0;
4825 
4826 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
4827 
4828 	put_caching_control(caching_ctl);
4829 	return 0;
4830 }
4831 
4832 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4833 {
4834 	int index;
4835 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4836 		index = 0;
4837 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4838 		index = 1;
4839 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4840 		index = 2;
4841 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4842 		index = 3;
4843 	else
4844 		index = 4;
4845 	return index;
4846 }
4847 
4848 enum btrfs_loop_type {
4849 	LOOP_FIND_IDEAL = 0,
4850 	LOOP_CACHING_NOWAIT = 1,
4851 	LOOP_CACHING_WAIT = 2,
4852 	LOOP_ALLOC_CHUNK = 3,
4853 	LOOP_NO_EMPTY_SIZE = 4,
4854 };
4855 
4856 /*
4857  * walks the btree of allocated extents and find a hole of a given size.
4858  * The key ins is changed to record the hole:
4859  * ins->objectid == block start
4860  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4861  * ins->offset == number of blocks
4862  * Any available blocks before search_start are skipped.
4863  */
4864 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4865 				     struct btrfs_root *orig_root,
4866 				     u64 num_bytes, u64 empty_size,
4867 				     u64 search_start, u64 search_end,
4868 				     u64 hint_byte, struct btrfs_key *ins,
4869 				     int data)
4870 {
4871 	int ret = 0;
4872 	struct btrfs_root *root = orig_root->fs_info->extent_root;
4873 	struct btrfs_free_cluster *last_ptr = NULL;
4874 	struct btrfs_block_group_cache *block_group = NULL;
4875 	int empty_cluster = 2 * 1024 * 1024;
4876 	int allowed_chunk_alloc = 0;
4877 	int done_chunk_alloc = 0;
4878 	struct btrfs_space_info *space_info;
4879 	int last_ptr_loop = 0;
4880 	int loop = 0;
4881 	int index = 0;
4882 	bool found_uncached_bg = false;
4883 	bool failed_cluster_refill = false;
4884 	bool failed_alloc = false;
4885 	bool use_cluster = true;
4886 	u64 ideal_cache_percent = 0;
4887 	u64 ideal_cache_offset = 0;
4888 
4889 	WARN_ON(num_bytes < root->sectorsize);
4890 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4891 	ins->objectid = 0;
4892 	ins->offset = 0;
4893 
4894 	space_info = __find_space_info(root->fs_info, data);
4895 	if (!space_info) {
4896 		printk(KERN_ERR "No space info for %d\n", data);
4897 		return -ENOSPC;
4898 	}
4899 
4900 	/*
4901 	 * If the space info is for both data and metadata it means we have a
4902 	 * small filesystem and we can't use the clustering stuff.
4903 	 */
4904 	if (btrfs_mixed_space_info(space_info))
4905 		use_cluster = false;
4906 
4907 	if (orig_root->ref_cows || empty_size)
4908 		allowed_chunk_alloc = 1;
4909 
4910 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4911 		last_ptr = &root->fs_info->meta_alloc_cluster;
4912 		if (!btrfs_test_opt(root, SSD))
4913 			empty_cluster = 64 * 1024;
4914 	}
4915 
4916 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4917 	    btrfs_test_opt(root, SSD)) {
4918 		last_ptr = &root->fs_info->data_alloc_cluster;
4919 	}
4920 
4921 	if (last_ptr) {
4922 		spin_lock(&last_ptr->lock);
4923 		if (last_ptr->block_group)
4924 			hint_byte = last_ptr->window_start;
4925 		spin_unlock(&last_ptr->lock);
4926 	}
4927 
4928 	search_start = max(search_start, first_logical_byte(root, 0));
4929 	search_start = max(search_start, hint_byte);
4930 
4931 	if (!last_ptr)
4932 		empty_cluster = 0;
4933 
4934 	if (search_start == hint_byte) {
4935 ideal_cache:
4936 		block_group = btrfs_lookup_block_group(root->fs_info,
4937 						       search_start);
4938 		/*
4939 		 * we don't want to use the block group if it doesn't match our
4940 		 * allocation bits, or if its not cached.
4941 		 *
4942 		 * However if we are re-searching with an ideal block group
4943 		 * picked out then we don't care that the block group is cached.
4944 		 */
4945 		if (block_group && block_group_bits(block_group, data) &&
4946 		    (block_group->cached != BTRFS_CACHE_NO ||
4947 		     search_start == ideal_cache_offset)) {
4948 			down_read(&space_info->groups_sem);
4949 			if (list_empty(&block_group->list) ||
4950 			    block_group->ro) {
4951 				/*
4952 				 * someone is removing this block group,
4953 				 * we can't jump into the have_block_group
4954 				 * target because our list pointers are not
4955 				 * valid
4956 				 */
4957 				btrfs_put_block_group(block_group);
4958 				up_read(&space_info->groups_sem);
4959 			} else {
4960 				index = get_block_group_index(block_group);
4961 				goto have_block_group;
4962 			}
4963 		} else if (block_group) {
4964 			btrfs_put_block_group(block_group);
4965 		}
4966 	}
4967 search:
4968 	down_read(&space_info->groups_sem);
4969 	list_for_each_entry(block_group, &space_info->block_groups[index],
4970 			    list) {
4971 		u64 offset;
4972 		int cached;
4973 
4974 		btrfs_get_block_group(block_group);
4975 		search_start = block_group->key.objectid;
4976 
4977 		/*
4978 		 * this can happen if we end up cycling through all the
4979 		 * raid types, but we want to make sure we only allocate
4980 		 * for the proper type.
4981 		 */
4982 		if (!block_group_bits(block_group, data)) {
4983 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
4984 				BTRFS_BLOCK_GROUP_RAID1 |
4985 				BTRFS_BLOCK_GROUP_RAID10;
4986 
4987 			/*
4988 			 * if they asked for extra copies and this block group
4989 			 * doesn't provide them, bail.  This does allow us to
4990 			 * fill raid0 from raid1.
4991 			 */
4992 			if ((data & extra) && !(block_group->flags & extra))
4993 				goto loop;
4994 		}
4995 
4996 have_block_group:
4997 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4998 			u64 free_percent;
4999 
5000 			ret = cache_block_group(block_group, trans,
5001 						orig_root, 1);
5002 			if (block_group->cached == BTRFS_CACHE_FINISHED)
5003 				goto have_block_group;
5004 
5005 			free_percent = btrfs_block_group_used(&block_group->item);
5006 			free_percent *= 100;
5007 			free_percent = div64_u64(free_percent,
5008 						 block_group->key.offset);
5009 			free_percent = 100 - free_percent;
5010 			if (free_percent > ideal_cache_percent &&
5011 			    likely(!block_group->ro)) {
5012 				ideal_cache_offset = block_group->key.objectid;
5013 				ideal_cache_percent = free_percent;
5014 			}
5015 
5016 			/*
5017 			 * We only want to start kthread caching if we are at
5018 			 * the point where we will wait for caching to make
5019 			 * progress, or if our ideal search is over and we've
5020 			 * found somebody to start caching.
5021 			 */
5022 			if (loop > LOOP_CACHING_NOWAIT ||
5023 			    (loop > LOOP_FIND_IDEAL &&
5024 			     atomic_read(&space_info->caching_threads) < 2)) {
5025 				ret = cache_block_group(block_group, trans,
5026 							orig_root, 0);
5027 				BUG_ON(ret);
5028 			}
5029 			found_uncached_bg = true;
5030 
5031 			/*
5032 			 * If loop is set for cached only, try the next block
5033 			 * group.
5034 			 */
5035 			if (loop == LOOP_FIND_IDEAL)
5036 				goto loop;
5037 		}
5038 
5039 		cached = block_group_cache_done(block_group);
5040 		if (unlikely(!cached))
5041 			found_uncached_bg = true;
5042 
5043 		if (unlikely(block_group->ro))
5044 			goto loop;
5045 
5046 		/*
5047 		 * Ok we want to try and use the cluster allocator, so lets look
5048 		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5049 		 * have tried the cluster allocator plenty of times at this
5050 		 * point and not have found anything, so we are likely way too
5051 		 * fragmented for the clustering stuff to find anything, so lets
5052 		 * just skip it and let the allocator find whatever block it can
5053 		 * find
5054 		 */
5055 		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5056 			/*
5057 			 * the refill lock keeps out other
5058 			 * people trying to start a new cluster
5059 			 */
5060 			spin_lock(&last_ptr->refill_lock);
5061 			if (last_ptr->block_group &&
5062 			    (last_ptr->block_group->ro ||
5063 			    !block_group_bits(last_ptr->block_group, data))) {
5064 				offset = 0;
5065 				goto refill_cluster;
5066 			}
5067 
5068 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5069 						 num_bytes, search_start);
5070 			if (offset) {
5071 				/* we have a block, we're done */
5072 				spin_unlock(&last_ptr->refill_lock);
5073 				goto checks;
5074 			}
5075 
5076 			spin_lock(&last_ptr->lock);
5077 			/*
5078 			 * whoops, this cluster doesn't actually point to
5079 			 * this block group.  Get a ref on the block
5080 			 * group is does point to and try again
5081 			 */
5082 			if (!last_ptr_loop && last_ptr->block_group &&
5083 			    last_ptr->block_group != block_group) {
5084 
5085 				btrfs_put_block_group(block_group);
5086 				block_group = last_ptr->block_group;
5087 				btrfs_get_block_group(block_group);
5088 				spin_unlock(&last_ptr->lock);
5089 				spin_unlock(&last_ptr->refill_lock);
5090 
5091 				last_ptr_loop = 1;
5092 				search_start = block_group->key.objectid;
5093 				/*
5094 				 * we know this block group is properly
5095 				 * in the list because
5096 				 * btrfs_remove_block_group, drops the
5097 				 * cluster before it removes the block
5098 				 * group from the list
5099 				 */
5100 				goto have_block_group;
5101 			}
5102 			spin_unlock(&last_ptr->lock);
5103 refill_cluster:
5104 			/*
5105 			 * this cluster didn't work out, free it and
5106 			 * start over
5107 			 */
5108 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5109 
5110 			last_ptr_loop = 0;
5111 
5112 			/* allocate a cluster in this block group */
5113 			ret = btrfs_find_space_cluster(trans, root,
5114 					       block_group, last_ptr,
5115 					       offset, num_bytes,
5116 					       empty_cluster + empty_size);
5117 			if (ret == 0) {
5118 				/*
5119 				 * now pull our allocation out of this
5120 				 * cluster
5121 				 */
5122 				offset = btrfs_alloc_from_cluster(block_group,
5123 						  last_ptr, num_bytes,
5124 						  search_start);
5125 				if (offset) {
5126 					/* we found one, proceed */
5127 					spin_unlock(&last_ptr->refill_lock);
5128 					goto checks;
5129 				}
5130 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5131 				   && !failed_cluster_refill) {
5132 				spin_unlock(&last_ptr->refill_lock);
5133 
5134 				failed_cluster_refill = true;
5135 				wait_block_group_cache_progress(block_group,
5136 				       num_bytes + empty_cluster + empty_size);
5137 				goto have_block_group;
5138 			}
5139 
5140 			/*
5141 			 * at this point we either didn't find a cluster
5142 			 * or we weren't able to allocate a block from our
5143 			 * cluster.  Free the cluster we've been trying
5144 			 * to use, and go to the next block group
5145 			 */
5146 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5147 			spin_unlock(&last_ptr->refill_lock);
5148 			goto loop;
5149 		}
5150 
5151 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5152 						    num_bytes, empty_size);
5153 		/*
5154 		 * If we didn't find a chunk, and we haven't failed on this
5155 		 * block group before, and this block group is in the middle of
5156 		 * caching and we are ok with waiting, then go ahead and wait
5157 		 * for progress to be made, and set failed_alloc to true.
5158 		 *
5159 		 * If failed_alloc is true then we've already waited on this
5160 		 * block group once and should move on to the next block group.
5161 		 */
5162 		if (!offset && !failed_alloc && !cached &&
5163 		    loop > LOOP_CACHING_NOWAIT) {
5164 			wait_block_group_cache_progress(block_group,
5165 						num_bytes + empty_size);
5166 			failed_alloc = true;
5167 			goto have_block_group;
5168 		} else if (!offset) {
5169 			goto loop;
5170 		}
5171 checks:
5172 		search_start = stripe_align(root, offset);
5173 		/* move on to the next group */
5174 		if (search_start + num_bytes >= search_end) {
5175 			btrfs_add_free_space(block_group, offset, num_bytes);
5176 			goto loop;
5177 		}
5178 
5179 		/* move on to the next group */
5180 		if (search_start + num_bytes >
5181 		    block_group->key.objectid + block_group->key.offset) {
5182 			btrfs_add_free_space(block_group, offset, num_bytes);
5183 			goto loop;
5184 		}
5185 
5186 		ins->objectid = search_start;
5187 		ins->offset = num_bytes;
5188 
5189 		if (offset < search_start)
5190 			btrfs_add_free_space(block_group, offset,
5191 					     search_start - offset);
5192 		BUG_ON(offset > search_start);
5193 
5194 		ret = update_reserved_bytes(block_group, num_bytes, 1,
5195 					    (data & BTRFS_BLOCK_GROUP_DATA));
5196 		if (ret == -EAGAIN) {
5197 			btrfs_add_free_space(block_group, offset, num_bytes);
5198 			goto loop;
5199 		}
5200 
5201 		/* we are all good, lets return */
5202 		ins->objectid = search_start;
5203 		ins->offset = num_bytes;
5204 
5205 		if (offset < search_start)
5206 			btrfs_add_free_space(block_group, offset,
5207 					     search_start - offset);
5208 		BUG_ON(offset > search_start);
5209 		break;
5210 loop:
5211 		failed_cluster_refill = false;
5212 		failed_alloc = false;
5213 		BUG_ON(index != get_block_group_index(block_group));
5214 		btrfs_put_block_group(block_group);
5215 	}
5216 	up_read(&space_info->groups_sem);
5217 
5218 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5219 		goto search;
5220 
5221 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5222 	 *			for them to make caching progress.  Also
5223 	 *			determine the best possible bg to cache
5224 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5225 	 *			caching kthreads as we move along
5226 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5227 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5228 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5229 	 *			again
5230 	 */
5231 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5232 	    (found_uncached_bg || empty_size || empty_cluster ||
5233 	     allowed_chunk_alloc)) {
5234 		index = 0;
5235 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5236 			found_uncached_bg = false;
5237 			loop++;
5238 			if (!ideal_cache_percent &&
5239 			    atomic_read(&space_info->caching_threads))
5240 				goto search;
5241 
5242 			/*
5243 			 * 1 of the following 2 things have happened so far
5244 			 *
5245 			 * 1) We found an ideal block group for caching that
5246 			 * is mostly full and will cache quickly, so we might
5247 			 * as well wait for it.
5248 			 *
5249 			 * 2) We searched for cached only and we didn't find
5250 			 * anything, and we didn't start any caching kthreads
5251 			 * either, so chances are we will loop through and
5252 			 * start a couple caching kthreads, and then come back
5253 			 * around and just wait for them.  This will be slower
5254 			 * because we will have 2 caching kthreads reading at
5255 			 * the same time when we could have just started one
5256 			 * and waited for it to get far enough to give us an
5257 			 * allocation, so go ahead and go to the wait caching
5258 			 * loop.
5259 			 */
5260 			loop = LOOP_CACHING_WAIT;
5261 			search_start = ideal_cache_offset;
5262 			ideal_cache_percent = 0;
5263 			goto ideal_cache;
5264 		} else if (loop == LOOP_FIND_IDEAL) {
5265 			/*
5266 			 * Didn't find a uncached bg, wait on anything we find
5267 			 * next.
5268 			 */
5269 			loop = LOOP_CACHING_WAIT;
5270 			goto search;
5271 		}
5272 
5273 		if (loop < LOOP_CACHING_WAIT) {
5274 			loop++;
5275 			goto search;
5276 		}
5277 
5278 		if (loop == LOOP_ALLOC_CHUNK) {
5279 			empty_size = 0;
5280 			empty_cluster = 0;
5281 		}
5282 
5283 		if (allowed_chunk_alloc) {
5284 			ret = do_chunk_alloc(trans, root, num_bytes +
5285 					     2 * 1024 * 1024, data, 1);
5286 			allowed_chunk_alloc = 0;
5287 			done_chunk_alloc = 1;
5288 		} else if (!done_chunk_alloc) {
5289 			space_info->force_alloc = 1;
5290 		}
5291 
5292 		if (loop < LOOP_NO_EMPTY_SIZE) {
5293 			loop++;
5294 			goto search;
5295 		}
5296 		ret = -ENOSPC;
5297 	} else if (!ins->objectid) {
5298 		ret = -ENOSPC;
5299 	}
5300 
5301 	/* we found what we needed */
5302 	if (ins->objectid) {
5303 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
5304 			trans->block_group = block_group->key.objectid;
5305 
5306 		btrfs_put_block_group(block_group);
5307 		ret = 0;
5308 	}
5309 
5310 	return ret;
5311 }
5312 
5313 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5314 			    int dump_block_groups)
5315 {
5316 	struct btrfs_block_group_cache *cache;
5317 	int index = 0;
5318 
5319 	spin_lock(&info->lock);
5320 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5321 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5322 				    info->bytes_pinned - info->bytes_reserved -
5323 				    info->bytes_readonly),
5324 	       (info->full) ? "" : "not ");
5325 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5326 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5327 	       (unsigned long long)info->total_bytes,
5328 	       (unsigned long long)info->bytes_used,
5329 	       (unsigned long long)info->bytes_pinned,
5330 	       (unsigned long long)info->bytes_reserved,
5331 	       (unsigned long long)info->bytes_may_use,
5332 	       (unsigned long long)info->bytes_readonly);
5333 	spin_unlock(&info->lock);
5334 
5335 	if (!dump_block_groups)
5336 		return;
5337 
5338 	down_read(&info->groups_sem);
5339 again:
5340 	list_for_each_entry(cache, &info->block_groups[index], list) {
5341 		spin_lock(&cache->lock);
5342 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5343 		       "%llu pinned %llu reserved\n",
5344 		       (unsigned long long)cache->key.objectid,
5345 		       (unsigned long long)cache->key.offset,
5346 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5347 		       (unsigned long long)cache->pinned,
5348 		       (unsigned long long)cache->reserved);
5349 		btrfs_dump_free_space(cache, bytes);
5350 		spin_unlock(&cache->lock);
5351 	}
5352 	if (++index < BTRFS_NR_RAID_TYPES)
5353 		goto again;
5354 	up_read(&info->groups_sem);
5355 }
5356 
5357 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5358 			 struct btrfs_root *root,
5359 			 u64 num_bytes, u64 min_alloc_size,
5360 			 u64 empty_size, u64 hint_byte,
5361 			 u64 search_end, struct btrfs_key *ins,
5362 			 u64 data)
5363 {
5364 	int ret;
5365 	u64 search_start = 0;
5366 
5367 	data = btrfs_get_alloc_profile(root, data);
5368 again:
5369 	/*
5370 	 * the only place that sets empty_size is btrfs_realloc_node, which
5371 	 * is not called recursively on allocations
5372 	 */
5373 	if (empty_size || root->ref_cows)
5374 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5375 				     num_bytes + 2 * 1024 * 1024, data, 0);
5376 
5377 	WARN_ON(num_bytes < root->sectorsize);
5378 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5379 			       search_start, search_end, hint_byte,
5380 			       ins, data);
5381 
5382 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5383 		num_bytes = num_bytes >> 1;
5384 		num_bytes = num_bytes & ~(root->sectorsize - 1);
5385 		num_bytes = max(num_bytes, min_alloc_size);
5386 		do_chunk_alloc(trans, root->fs_info->extent_root,
5387 			       num_bytes, data, 1);
5388 		goto again;
5389 	}
5390 	if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5391 		struct btrfs_space_info *sinfo;
5392 
5393 		sinfo = __find_space_info(root->fs_info, data);
5394 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
5395 		       "wanted %llu\n", (unsigned long long)data,
5396 		       (unsigned long long)num_bytes);
5397 		dump_space_info(sinfo, num_bytes, 1);
5398 	}
5399 
5400 	return ret;
5401 }
5402 
5403 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5404 {
5405 	struct btrfs_block_group_cache *cache;
5406 	int ret = 0;
5407 
5408 	cache = btrfs_lookup_block_group(root->fs_info, start);
5409 	if (!cache) {
5410 		printk(KERN_ERR "Unable to find block group for %llu\n",
5411 		       (unsigned long long)start);
5412 		return -ENOSPC;
5413 	}
5414 
5415 	ret = btrfs_discard_extent(root, start, len);
5416 
5417 	btrfs_add_free_space(cache, start, len);
5418 	update_reserved_bytes(cache, len, 0, 1);
5419 	btrfs_put_block_group(cache);
5420 
5421 	return ret;
5422 }
5423 
5424 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5425 				      struct btrfs_root *root,
5426 				      u64 parent, u64 root_objectid,
5427 				      u64 flags, u64 owner, u64 offset,
5428 				      struct btrfs_key *ins, int ref_mod)
5429 {
5430 	int ret;
5431 	struct btrfs_fs_info *fs_info = root->fs_info;
5432 	struct btrfs_extent_item *extent_item;
5433 	struct btrfs_extent_inline_ref *iref;
5434 	struct btrfs_path *path;
5435 	struct extent_buffer *leaf;
5436 	int type;
5437 	u32 size;
5438 
5439 	if (parent > 0)
5440 		type = BTRFS_SHARED_DATA_REF_KEY;
5441 	else
5442 		type = BTRFS_EXTENT_DATA_REF_KEY;
5443 
5444 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5445 
5446 	path = btrfs_alloc_path();
5447 	BUG_ON(!path);
5448 
5449 	path->leave_spinning = 1;
5450 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5451 				      ins, size);
5452 	BUG_ON(ret);
5453 
5454 	leaf = path->nodes[0];
5455 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5456 				     struct btrfs_extent_item);
5457 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5458 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5459 	btrfs_set_extent_flags(leaf, extent_item,
5460 			       flags | BTRFS_EXTENT_FLAG_DATA);
5461 
5462 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5463 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5464 	if (parent > 0) {
5465 		struct btrfs_shared_data_ref *ref;
5466 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5467 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5468 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5469 	} else {
5470 		struct btrfs_extent_data_ref *ref;
5471 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5472 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5473 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5474 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5475 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5476 	}
5477 
5478 	btrfs_mark_buffer_dirty(path->nodes[0]);
5479 	btrfs_free_path(path);
5480 
5481 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5482 	if (ret) {
5483 		printk(KERN_ERR "btrfs update block group failed for %llu "
5484 		       "%llu\n", (unsigned long long)ins->objectid,
5485 		       (unsigned long long)ins->offset);
5486 		BUG();
5487 	}
5488 	return ret;
5489 }
5490 
5491 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5492 				     struct btrfs_root *root,
5493 				     u64 parent, u64 root_objectid,
5494 				     u64 flags, struct btrfs_disk_key *key,
5495 				     int level, struct btrfs_key *ins)
5496 {
5497 	int ret;
5498 	struct btrfs_fs_info *fs_info = root->fs_info;
5499 	struct btrfs_extent_item *extent_item;
5500 	struct btrfs_tree_block_info *block_info;
5501 	struct btrfs_extent_inline_ref *iref;
5502 	struct btrfs_path *path;
5503 	struct extent_buffer *leaf;
5504 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5505 
5506 	path = btrfs_alloc_path();
5507 	BUG_ON(!path);
5508 
5509 	path->leave_spinning = 1;
5510 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5511 				      ins, size);
5512 	BUG_ON(ret);
5513 
5514 	leaf = path->nodes[0];
5515 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5516 				     struct btrfs_extent_item);
5517 	btrfs_set_extent_refs(leaf, extent_item, 1);
5518 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5519 	btrfs_set_extent_flags(leaf, extent_item,
5520 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5521 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5522 
5523 	btrfs_set_tree_block_key(leaf, block_info, key);
5524 	btrfs_set_tree_block_level(leaf, block_info, level);
5525 
5526 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5527 	if (parent > 0) {
5528 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5529 		btrfs_set_extent_inline_ref_type(leaf, iref,
5530 						 BTRFS_SHARED_BLOCK_REF_KEY);
5531 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5532 	} else {
5533 		btrfs_set_extent_inline_ref_type(leaf, iref,
5534 						 BTRFS_TREE_BLOCK_REF_KEY);
5535 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5536 	}
5537 
5538 	btrfs_mark_buffer_dirty(leaf);
5539 	btrfs_free_path(path);
5540 
5541 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5542 	if (ret) {
5543 		printk(KERN_ERR "btrfs update block group failed for %llu "
5544 		       "%llu\n", (unsigned long long)ins->objectid,
5545 		       (unsigned long long)ins->offset);
5546 		BUG();
5547 	}
5548 	return ret;
5549 }
5550 
5551 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5552 				     struct btrfs_root *root,
5553 				     u64 root_objectid, u64 owner,
5554 				     u64 offset, struct btrfs_key *ins)
5555 {
5556 	int ret;
5557 
5558 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5559 
5560 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5561 					 0, root_objectid, owner, offset,
5562 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
5563 	return ret;
5564 }
5565 
5566 /*
5567  * this is used by the tree logging recovery code.  It records that
5568  * an extent has been allocated and makes sure to clear the free
5569  * space cache bits as well
5570  */
5571 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5572 				   struct btrfs_root *root,
5573 				   u64 root_objectid, u64 owner, u64 offset,
5574 				   struct btrfs_key *ins)
5575 {
5576 	int ret;
5577 	struct btrfs_block_group_cache *block_group;
5578 	struct btrfs_caching_control *caching_ctl;
5579 	u64 start = ins->objectid;
5580 	u64 num_bytes = ins->offset;
5581 
5582 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5583 	cache_block_group(block_group, trans, NULL, 0);
5584 	caching_ctl = get_caching_control(block_group);
5585 
5586 	if (!caching_ctl) {
5587 		BUG_ON(!block_group_cache_done(block_group));
5588 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5589 		BUG_ON(ret);
5590 	} else {
5591 		mutex_lock(&caching_ctl->mutex);
5592 
5593 		if (start >= caching_ctl->progress) {
5594 			ret = add_excluded_extent(root, start, num_bytes);
5595 			BUG_ON(ret);
5596 		} else if (start + num_bytes <= caching_ctl->progress) {
5597 			ret = btrfs_remove_free_space(block_group,
5598 						      start, num_bytes);
5599 			BUG_ON(ret);
5600 		} else {
5601 			num_bytes = caching_ctl->progress - start;
5602 			ret = btrfs_remove_free_space(block_group,
5603 						      start, num_bytes);
5604 			BUG_ON(ret);
5605 
5606 			start = caching_ctl->progress;
5607 			num_bytes = ins->objectid + ins->offset -
5608 				    caching_ctl->progress;
5609 			ret = add_excluded_extent(root, start, num_bytes);
5610 			BUG_ON(ret);
5611 		}
5612 
5613 		mutex_unlock(&caching_ctl->mutex);
5614 		put_caching_control(caching_ctl);
5615 	}
5616 
5617 	ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5618 	BUG_ON(ret);
5619 	btrfs_put_block_group(block_group);
5620 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5621 					 0, owner, offset, ins, 1);
5622 	return ret;
5623 }
5624 
5625 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5626 					    struct btrfs_root *root,
5627 					    u64 bytenr, u32 blocksize,
5628 					    int level)
5629 {
5630 	struct extent_buffer *buf;
5631 
5632 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5633 	if (!buf)
5634 		return ERR_PTR(-ENOMEM);
5635 	btrfs_set_header_generation(buf, trans->transid);
5636 	btrfs_set_buffer_lockdep_class(buf, level);
5637 	btrfs_tree_lock(buf);
5638 	clean_tree_block(trans, root, buf);
5639 
5640 	btrfs_set_lock_blocking(buf);
5641 	btrfs_set_buffer_uptodate(buf);
5642 
5643 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5644 		/*
5645 		 * we allow two log transactions at a time, use different
5646 		 * EXENT bit to differentiate dirty pages.
5647 		 */
5648 		if (root->log_transid % 2 == 0)
5649 			set_extent_dirty(&root->dirty_log_pages, buf->start,
5650 					buf->start + buf->len - 1, GFP_NOFS);
5651 		else
5652 			set_extent_new(&root->dirty_log_pages, buf->start,
5653 					buf->start + buf->len - 1, GFP_NOFS);
5654 	} else {
5655 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5656 			 buf->start + buf->len - 1, GFP_NOFS);
5657 	}
5658 	trans->blocks_used++;
5659 	/* this returns a buffer locked for blocking */
5660 	return buf;
5661 }
5662 
5663 static struct btrfs_block_rsv *
5664 use_block_rsv(struct btrfs_trans_handle *trans,
5665 	      struct btrfs_root *root, u32 blocksize)
5666 {
5667 	struct btrfs_block_rsv *block_rsv;
5668 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5669 	int ret;
5670 
5671 	block_rsv = get_block_rsv(trans, root);
5672 
5673 	if (block_rsv->size == 0) {
5674 		ret = reserve_metadata_bytes(trans, root, block_rsv,
5675 					     blocksize, 0);
5676 		/*
5677 		 * If we couldn't reserve metadata bytes try and use some from
5678 		 * the global reserve.
5679 		 */
5680 		if (ret && block_rsv != global_rsv) {
5681 			ret = block_rsv_use_bytes(global_rsv, blocksize);
5682 			if (!ret)
5683 				return global_rsv;
5684 			return ERR_PTR(ret);
5685 		} else if (ret) {
5686 			return ERR_PTR(ret);
5687 		}
5688 		return block_rsv;
5689 	}
5690 
5691 	ret = block_rsv_use_bytes(block_rsv, blocksize);
5692 	if (!ret)
5693 		return block_rsv;
5694 	if (ret) {
5695 		WARN_ON(1);
5696 		ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5697 					     0);
5698 		if (!ret) {
5699 			spin_lock(&block_rsv->lock);
5700 			block_rsv->size += blocksize;
5701 			spin_unlock(&block_rsv->lock);
5702 			return block_rsv;
5703 		} else if (ret && block_rsv != global_rsv) {
5704 			ret = block_rsv_use_bytes(global_rsv, blocksize);
5705 			if (!ret)
5706 				return global_rsv;
5707 		}
5708 	}
5709 
5710 	return ERR_PTR(-ENOSPC);
5711 }
5712 
5713 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5714 {
5715 	block_rsv_add_bytes(block_rsv, blocksize, 0);
5716 	block_rsv_release_bytes(block_rsv, NULL, 0);
5717 }
5718 
5719 /*
5720  * finds a free extent and does all the dirty work required for allocation
5721  * returns the key for the extent through ins, and a tree buffer for
5722  * the first block of the extent through buf.
5723  *
5724  * returns the tree buffer or NULL.
5725  */
5726 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5727 					struct btrfs_root *root, u32 blocksize,
5728 					u64 parent, u64 root_objectid,
5729 					struct btrfs_disk_key *key, int level,
5730 					u64 hint, u64 empty_size)
5731 {
5732 	struct btrfs_key ins;
5733 	struct btrfs_block_rsv *block_rsv;
5734 	struct extent_buffer *buf;
5735 	u64 flags = 0;
5736 	int ret;
5737 
5738 
5739 	block_rsv = use_block_rsv(trans, root, blocksize);
5740 	if (IS_ERR(block_rsv))
5741 		return ERR_CAST(block_rsv);
5742 
5743 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5744 				   empty_size, hint, (u64)-1, &ins, 0);
5745 	if (ret) {
5746 		unuse_block_rsv(block_rsv, blocksize);
5747 		return ERR_PTR(ret);
5748 	}
5749 
5750 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5751 				    blocksize, level);
5752 	BUG_ON(IS_ERR(buf));
5753 
5754 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5755 		if (parent == 0)
5756 			parent = ins.objectid;
5757 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5758 	} else
5759 		BUG_ON(parent > 0);
5760 
5761 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5762 		struct btrfs_delayed_extent_op *extent_op;
5763 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5764 		BUG_ON(!extent_op);
5765 		if (key)
5766 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5767 		else
5768 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5769 		extent_op->flags_to_set = flags;
5770 		extent_op->update_key = 1;
5771 		extent_op->update_flags = 1;
5772 		extent_op->is_data = 0;
5773 
5774 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5775 					ins.offset, parent, root_objectid,
5776 					level, BTRFS_ADD_DELAYED_EXTENT,
5777 					extent_op);
5778 		BUG_ON(ret);
5779 	}
5780 	return buf;
5781 }
5782 
5783 struct walk_control {
5784 	u64 refs[BTRFS_MAX_LEVEL];
5785 	u64 flags[BTRFS_MAX_LEVEL];
5786 	struct btrfs_key update_progress;
5787 	int stage;
5788 	int level;
5789 	int shared_level;
5790 	int update_ref;
5791 	int keep_locks;
5792 	int reada_slot;
5793 	int reada_count;
5794 };
5795 
5796 #define DROP_REFERENCE	1
5797 #define UPDATE_BACKREF	2
5798 
5799 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5800 				     struct btrfs_root *root,
5801 				     struct walk_control *wc,
5802 				     struct btrfs_path *path)
5803 {
5804 	u64 bytenr;
5805 	u64 generation;
5806 	u64 refs;
5807 	u64 flags;
5808 	u32 nritems;
5809 	u32 blocksize;
5810 	struct btrfs_key key;
5811 	struct extent_buffer *eb;
5812 	int ret;
5813 	int slot;
5814 	int nread = 0;
5815 
5816 	if (path->slots[wc->level] < wc->reada_slot) {
5817 		wc->reada_count = wc->reada_count * 2 / 3;
5818 		wc->reada_count = max(wc->reada_count, 2);
5819 	} else {
5820 		wc->reada_count = wc->reada_count * 3 / 2;
5821 		wc->reada_count = min_t(int, wc->reada_count,
5822 					BTRFS_NODEPTRS_PER_BLOCK(root));
5823 	}
5824 
5825 	eb = path->nodes[wc->level];
5826 	nritems = btrfs_header_nritems(eb);
5827 	blocksize = btrfs_level_size(root, wc->level - 1);
5828 
5829 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5830 		if (nread >= wc->reada_count)
5831 			break;
5832 
5833 		cond_resched();
5834 		bytenr = btrfs_node_blockptr(eb, slot);
5835 		generation = btrfs_node_ptr_generation(eb, slot);
5836 
5837 		if (slot == path->slots[wc->level])
5838 			goto reada;
5839 
5840 		if (wc->stage == UPDATE_BACKREF &&
5841 		    generation <= root->root_key.offset)
5842 			continue;
5843 
5844 		/* We don't lock the tree block, it's OK to be racy here */
5845 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5846 					       &refs, &flags);
5847 		BUG_ON(ret);
5848 		BUG_ON(refs == 0);
5849 
5850 		if (wc->stage == DROP_REFERENCE) {
5851 			if (refs == 1)
5852 				goto reada;
5853 
5854 			if (wc->level == 1 &&
5855 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5856 				continue;
5857 			if (!wc->update_ref ||
5858 			    generation <= root->root_key.offset)
5859 				continue;
5860 			btrfs_node_key_to_cpu(eb, &key, slot);
5861 			ret = btrfs_comp_cpu_keys(&key,
5862 						  &wc->update_progress);
5863 			if (ret < 0)
5864 				continue;
5865 		} else {
5866 			if (wc->level == 1 &&
5867 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5868 				continue;
5869 		}
5870 reada:
5871 		ret = readahead_tree_block(root, bytenr, blocksize,
5872 					   generation);
5873 		if (ret)
5874 			break;
5875 		nread++;
5876 	}
5877 	wc->reada_slot = slot;
5878 }
5879 
5880 /*
5881  * hepler to process tree block while walking down the tree.
5882  *
5883  * when wc->stage == UPDATE_BACKREF, this function updates
5884  * back refs for pointers in the block.
5885  *
5886  * NOTE: return value 1 means we should stop walking down.
5887  */
5888 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5889 				   struct btrfs_root *root,
5890 				   struct btrfs_path *path,
5891 				   struct walk_control *wc, int lookup_info)
5892 {
5893 	int level = wc->level;
5894 	struct extent_buffer *eb = path->nodes[level];
5895 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5896 	int ret;
5897 
5898 	if (wc->stage == UPDATE_BACKREF &&
5899 	    btrfs_header_owner(eb) != root->root_key.objectid)
5900 		return 1;
5901 
5902 	/*
5903 	 * when reference count of tree block is 1, it won't increase
5904 	 * again. once full backref flag is set, we never clear it.
5905 	 */
5906 	if (lookup_info &&
5907 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5908 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5909 		BUG_ON(!path->locks[level]);
5910 		ret = btrfs_lookup_extent_info(trans, root,
5911 					       eb->start, eb->len,
5912 					       &wc->refs[level],
5913 					       &wc->flags[level]);
5914 		BUG_ON(ret);
5915 		BUG_ON(wc->refs[level] == 0);
5916 	}
5917 
5918 	if (wc->stage == DROP_REFERENCE) {
5919 		if (wc->refs[level] > 1)
5920 			return 1;
5921 
5922 		if (path->locks[level] && !wc->keep_locks) {
5923 			btrfs_tree_unlock(eb);
5924 			path->locks[level] = 0;
5925 		}
5926 		return 0;
5927 	}
5928 
5929 	/* wc->stage == UPDATE_BACKREF */
5930 	if (!(wc->flags[level] & flag)) {
5931 		BUG_ON(!path->locks[level]);
5932 		ret = btrfs_inc_ref(trans, root, eb, 1);
5933 		BUG_ON(ret);
5934 		ret = btrfs_dec_ref(trans, root, eb, 0);
5935 		BUG_ON(ret);
5936 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5937 						  eb->len, flag, 0);
5938 		BUG_ON(ret);
5939 		wc->flags[level] |= flag;
5940 	}
5941 
5942 	/*
5943 	 * the block is shared by multiple trees, so it's not good to
5944 	 * keep the tree lock
5945 	 */
5946 	if (path->locks[level] && level > 0) {
5947 		btrfs_tree_unlock(eb);
5948 		path->locks[level] = 0;
5949 	}
5950 	return 0;
5951 }
5952 
5953 /*
5954  * hepler to process tree block pointer.
5955  *
5956  * when wc->stage == DROP_REFERENCE, this function checks
5957  * reference count of the block pointed to. if the block
5958  * is shared and we need update back refs for the subtree
5959  * rooted at the block, this function changes wc->stage to
5960  * UPDATE_BACKREF. if the block is shared and there is no
5961  * need to update back, this function drops the reference
5962  * to the block.
5963  *
5964  * NOTE: return value 1 means we should stop walking down.
5965  */
5966 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5967 				 struct btrfs_root *root,
5968 				 struct btrfs_path *path,
5969 				 struct walk_control *wc, int *lookup_info)
5970 {
5971 	u64 bytenr;
5972 	u64 generation;
5973 	u64 parent;
5974 	u32 blocksize;
5975 	struct btrfs_key key;
5976 	struct extent_buffer *next;
5977 	int level = wc->level;
5978 	int reada = 0;
5979 	int ret = 0;
5980 
5981 	generation = btrfs_node_ptr_generation(path->nodes[level],
5982 					       path->slots[level]);
5983 	/*
5984 	 * if the lower level block was created before the snapshot
5985 	 * was created, we know there is no need to update back refs
5986 	 * for the subtree
5987 	 */
5988 	if (wc->stage == UPDATE_BACKREF &&
5989 	    generation <= root->root_key.offset) {
5990 		*lookup_info = 1;
5991 		return 1;
5992 	}
5993 
5994 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5995 	blocksize = btrfs_level_size(root, level - 1);
5996 
5997 	next = btrfs_find_tree_block(root, bytenr, blocksize);
5998 	if (!next) {
5999 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6000 		if (!next)
6001 			return -ENOMEM;
6002 		reada = 1;
6003 	}
6004 	btrfs_tree_lock(next);
6005 	btrfs_set_lock_blocking(next);
6006 
6007 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6008 				       &wc->refs[level - 1],
6009 				       &wc->flags[level - 1]);
6010 	BUG_ON(ret);
6011 	BUG_ON(wc->refs[level - 1] == 0);
6012 	*lookup_info = 0;
6013 
6014 	if (wc->stage == DROP_REFERENCE) {
6015 		if (wc->refs[level - 1] > 1) {
6016 			if (level == 1 &&
6017 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6018 				goto skip;
6019 
6020 			if (!wc->update_ref ||
6021 			    generation <= root->root_key.offset)
6022 				goto skip;
6023 
6024 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6025 					      path->slots[level]);
6026 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6027 			if (ret < 0)
6028 				goto skip;
6029 
6030 			wc->stage = UPDATE_BACKREF;
6031 			wc->shared_level = level - 1;
6032 		}
6033 	} else {
6034 		if (level == 1 &&
6035 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6036 			goto skip;
6037 	}
6038 
6039 	if (!btrfs_buffer_uptodate(next, generation)) {
6040 		btrfs_tree_unlock(next);
6041 		free_extent_buffer(next);
6042 		next = NULL;
6043 		*lookup_info = 1;
6044 	}
6045 
6046 	if (!next) {
6047 		if (reada && level == 1)
6048 			reada_walk_down(trans, root, wc, path);
6049 		next = read_tree_block(root, bytenr, blocksize, generation);
6050 		btrfs_tree_lock(next);
6051 		btrfs_set_lock_blocking(next);
6052 	}
6053 
6054 	level--;
6055 	BUG_ON(level != btrfs_header_level(next));
6056 	path->nodes[level] = next;
6057 	path->slots[level] = 0;
6058 	path->locks[level] = 1;
6059 	wc->level = level;
6060 	if (wc->level == 1)
6061 		wc->reada_slot = 0;
6062 	return 0;
6063 skip:
6064 	wc->refs[level - 1] = 0;
6065 	wc->flags[level - 1] = 0;
6066 	if (wc->stage == DROP_REFERENCE) {
6067 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6068 			parent = path->nodes[level]->start;
6069 		} else {
6070 			BUG_ON(root->root_key.objectid !=
6071 			       btrfs_header_owner(path->nodes[level]));
6072 			parent = 0;
6073 		}
6074 
6075 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6076 					root->root_key.objectid, level - 1, 0);
6077 		BUG_ON(ret);
6078 	}
6079 	btrfs_tree_unlock(next);
6080 	free_extent_buffer(next);
6081 	*lookup_info = 1;
6082 	return 1;
6083 }
6084 
6085 /*
6086  * hepler to process tree block while walking up the tree.
6087  *
6088  * when wc->stage == DROP_REFERENCE, this function drops
6089  * reference count on the block.
6090  *
6091  * when wc->stage == UPDATE_BACKREF, this function changes
6092  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6093  * to UPDATE_BACKREF previously while processing the block.
6094  *
6095  * NOTE: return value 1 means we should stop walking up.
6096  */
6097 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6098 				 struct btrfs_root *root,
6099 				 struct btrfs_path *path,
6100 				 struct walk_control *wc)
6101 {
6102 	int ret;
6103 	int level = wc->level;
6104 	struct extent_buffer *eb = path->nodes[level];
6105 	u64 parent = 0;
6106 
6107 	if (wc->stage == UPDATE_BACKREF) {
6108 		BUG_ON(wc->shared_level < level);
6109 		if (level < wc->shared_level)
6110 			goto out;
6111 
6112 		ret = find_next_key(path, level + 1, &wc->update_progress);
6113 		if (ret > 0)
6114 			wc->update_ref = 0;
6115 
6116 		wc->stage = DROP_REFERENCE;
6117 		wc->shared_level = -1;
6118 		path->slots[level] = 0;
6119 
6120 		/*
6121 		 * check reference count again if the block isn't locked.
6122 		 * we should start walking down the tree again if reference
6123 		 * count is one.
6124 		 */
6125 		if (!path->locks[level]) {
6126 			BUG_ON(level == 0);
6127 			btrfs_tree_lock(eb);
6128 			btrfs_set_lock_blocking(eb);
6129 			path->locks[level] = 1;
6130 
6131 			ret = btrfs_lookup_extent_info(trans, root,
6132 						       eb->start, eb->len,
6133 						       &wc->refs[level],
6134 						       &wc->flags[level]);
6135 			BUG_ON(ret);
6136 			BUG_ON(wc->refs[level] == 0);
6137 			if (wc->refs[level] == 1) {
6138 				btrfs_tree_unlock(eb);
6139 				path->locks[level] = 0;
6140 				return 1;
6141 			}
6142 		}
6143 	}
6144 
6145 	/* wc->stage == DROP_REFERENCE */
6146 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6147 
6148 	if (wc->refs[level] == 1) {
6149 		if (level == 0) {
6150 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6151 				ret = btrfs_dec_ref(trans, root, eb, 1);
6152 			else
6153 				ret = btrfs_dec_ref(trans, root, eb, 0);
6154 			BUG_ON(ret);
6155 		}
6156 		/* make block locked assertion in clean_tree_block happy */
6157 		if (!path->locks[level] &&
6158 		    btrfs_header_generation(eb) == trans->transid) {
6159 			btrfs_tree_lock(eb);
6160 			btrfs_set_lock_blocking(eb);
6161 			path->locks[level] = 1;
6162 		}
6163 		clean_tree_block(trans, root, eb);
6164 	}
6165 
6166 	if (eb == root->node) {
6167 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168 			parent = eb->start;
6169 		else
6170 			BUG_ON(root->root_key.objectid !=
6171 			       btrfs_header_owner(eb));
6172 	} else {
6173 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6174 			parent = path->nodes[level + 1]->start;
6175 		else
6176 			BUG_ON(root->root_key.objectid !=
6177 			       btrfs_header_owner(path->nodes[level + 1]));
6178 	}
6179 
6180 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6181 out:
6182 	wc->refs[level] = 0;
6183 	wc->flags[level] = 0;
6184 	return 0;
6185 }
6186 
6187 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6188 				   struct btrfs_root *root,
6189 				   struct btrfs_path *path,
6190 				   struct walk_control *wc)
6191 {
6192 	int level = wc->level;
6193 	int lookup_info = 1;
6194 	int ret;
6195 
6196 	while (level >= 0) {
6197 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6198 		if (ret > 0)
6199 			break;
6200 
6201 		if (level == 0)
6202 			break;
6203 
6204 		if (path->slots[level] >=
6205 		    btrfs_header_nritems(path->nodes[level]))
6206 			break;
6207 
6208 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6209 		if (ret > 0) {
6210 			path->slots[level]++;
6211 			continue;
6212 		} else if (ret < 0)
6213 			return ret;
6214 		level = wc->level;
6215 	}
6216 	return 0;
6217 }
6218 
6219 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6220 				 struct btrfs_root *root,
6221 				 struct btrfs_path *path,
6222 				 struct walk_control *wc, int max_level)
6223 {
6224 	int level = wc->level;
6225 	int ret;
6226 
6227 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6228 	while (level < max_level && path->nodes[level]) {
6229 		wc->level = level;
6230 		if (path->slots[level] + 1 <
6231 		    btrfs_header_nritems(path->nodes[level])) {
6232 			path->slots[level]++;
6233 			return 0;
6234 		} else {
6235 			ret = walk_up_proc(trans, root, path, wc);
6236 			if (ret > 0)
6237 				return 0;
6238 
6239 			if (path->locks[level]) {
6240 				btrfs_tree_unlock(path->nodes[level]);
6241 				path->locks[level] = 0;
6242 			}
6243 			free_extent_buffer(path->nodes[level]);
6244 			path->nodes[level] = NULL;
6245 			level++;
6246 		}
6247 	}
6248 	return 1;
6249 }
6250 
6251 /*
6252  * drop a subvolume tree.
6253  *
6254  * this function traverses the tree freeing any blocks that only
6255  * referenced by the tree.
6256  *
6257  * when a shared tree block is found. this function decreases its
6258  * reference count by one. if update_ref is true, this function
6259  * also make sure backrefs for the shared block and all lower level
6260  * blocks are properly updated.
6261  */
6262 int btrfs_drop_snapshot(struct btrfs_root *root,
6263 			struct btrfs_block_rsv *block_rsv, int update_ref)
6264 {
6265 	struct btrfs_path *path;
6266 	struct btrfs_trans_handle *trans;
6267 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6268 	struct btrfs_root_item *root_item = &root->root_item;
6269 	struct walk_control *wc;
6270 	struct btrfs_key key;
6271 	int err = 0;
6272 	int ret;
6273 	int level;
6274 
6275 	path = btrfs_alloc_path();
6276 	BUG_ON(!path);
6277 
6278 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6279 	BUG_ON(!wc);
6280 
6281 	trans = btrfs_start_transaction(tree_root, 0);
6282 	BUG_ON(IS_ERR(trans));
6283 
6284 	if (block_rsv)
6285 		trans->block_rsv = block_rsv;
6286 
6287 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6288 		level = btrfs_header_level(root->node);
6289 		path->nodes[level] = btrfs_lock_root_node(root);
6290 		btrfs_set_lock_blocking(path->nodes[level]);
6291 		path->slots[level] = 0;
6292 		path->locks[level] = 1;
6293 		memset(&wc->update_progress, 0,
6294 		       sizeof(wc->update_progress));
6295 	} else {
6296 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6297 		memcpy(&wc->update_progress, &key,
6298 		       sizeof(wc->update_progress));
6299 
6300 		level = root_item->drop_level;
6301 		BUG_ON(level == 0);
6302 		path->lowest_level = level;
6303 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6304 		path->lowest_level = 0;
6305 		if (ret < 0) {
6306 			err = ret;
6307 			goto out;
6308 		}
6309 		WARN_ON(ret > 0);
6310 
6311 		/*
6312 		 * unlock our path, this is safe because only this
6313 		 * function is allowed to delete this snapshot
6314 		 */
6315 		btrfs_unlock_up_safe(path, 0);
6316 
6317 		level = btrfs_header_level(root->node);
6318 		while (1) {
6319 			btrfs_tree_lock(path->nodes[level]);
6320 			btrfs_set_lock_blocking(path->nodes[level]);
6321 
6322 			ret = btrfs_lookup_extent_info(trans, root,
6323 						path->nodes[level]->start,
6324 						path->nodes[level]->len,
6325 						&wc->refs[level],
6326 						&wc->flags[level]);
6327 			BUG_ON(ret);
6328 			BUG_ON(wc->refs[level] == 0);
6329 
6330 			if (level == root_item->drop_level)
6331 				break;
6332 
6333 			btrfs_tree_unlock(path->nodes[level]);
6334 			WARN_ON(wc->refs[level] != 1);
6335 			level--;
6336 		}
6337 	}
6338 
6339 	wc->level = level;
6340 	wc->shared_level = -1;
6341 	wc->stage = DROP_REFERENCE;
6342 	wc->update_ref = update_ref;
6343 	wc->keep_locks = 0;
6344 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6345 
6346 	while (1) {
6347 		ret = walk_down_tree(trans, root, path, wc);
6348 		if (ret < 0) {
6349 			err = ret;
6350 			break;
6351 		}
6352 
6353 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6354 		if (ret < 0) {
6355 			err = ret;
6356 			break;
6357 		}
6358 
6359 		if (ret > 0) {
6360 			BUG_ON(wc->stage != DROP_REFERENCE);
6361 			break;
6362 		}
6363 
6364 		if (wc->stage == DROP_REFERENCE) {
6365 			level = wc->level;
6366 			btrfs_node_key(path->nodes[level],
6367 				       &root_item->drop_progress,
6368 				       path->slots[level]);
6369 			root_item->drop_level = level;
6370 		}
6371 
6372 		BUG_ON(wc->level == 0);
6373 		if (btrfs_should_end_transaction(trans, tree_root)) {
6374 			ret = btrfs_update_root(trans, tree_root,
6375 						&root->root_key,
6376 						root_item);
6377 			BUG_ON(ret);
6378 
6379 			btrfs_end_transaction_throttle(trans, tree_root);
6380 			trans = btrfs_start_transaction(tree_root, 0);
6381 			BUG_ON(IS_ERR(trans));
6382 			if (block_rsv)
6383 				trans->block_rsv = block_rsv;
6384 		}
6385 	}
6386 	btrfs_release_path(root, path);
6387 	BUG_ON(err);
6388 
6389 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6390 	BUG_ON(ret);
6391 
6392 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6393 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6394 					   NULL, NULL);
6395 		BUG_ON(ret < 0);
6396 		if (ret > 0) {
6397 			/* if we fail to delete the orphan item this time
6398 			 * around, it'll get picked up the next time.
6399 			 *
6400 			 * The most common failure here is just -ENOENT.
6401 			 */
6402 			btrfs_del_orphan_item(trans, tree_root,
6403 					      root->root_key.objectid);
6404 		}
6405 	}
6406 
6407 	if (root->in_radix) {
6408 		btrfs_free_fs_root(tree_root->fs_info, root);
6409 	} else {
6410 		free_extent_buffer(root->node);
6411 		free_extent_buffer(root->commit_root);
6412 		kfree(root);
6413 	}
6414 out:
6415 	btrfs_end_transaction_throttle(trans, tree_root);
6416 	kfree(wc);
6417 	btrfs_free_path(path);
6418 	return err;
6419 }
6420 
6421 /*
6422  * drop subtree rooted at tree block 'node'.
6423  *
6424  * NOTE: this function will unlock and release tree block 'node'
6425  */
6426 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6427 			struct btrfs_root *root,
6428 			struct extent_buffer *node,
6429 			struct extent_buffer *parent)
6430 {
6431 	struct btrfs_path *path;
6432 	struct walk_control *wc;
6433 	int level;
6434 	int parent_level;
6435 	int ret = 0;
6436 	int wret;
6437 
6438 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6439 
6440 	path = btrfs_alloc_path();
6441 	BUG_ON(!path);
6442 
6443 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6444 	BUG_ON(!wc);
6445 
6446 	btrfs_assert_tree_locked(parent);
6447 	parent_level = btrfs_header_level(parent);
6448 	extent_buffer_get(parent);
6449 	path->nodes[parent_level] = parent;
6450 	path->slots[parent_level] = btrfs_header_nritems(parent);
6451 
6452 	btrfs_assert_tree_locked(node);
6453 	level = btrfs_header_level(node);
6454 	path->nodes[level] = node;
6455 	path->slots[level] = 0;
6456 	path->locks[level] = 1;
6457 
6458 	wc->refs[parent_level] = 1;
6459 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6460 	wc->level = level;
6461 	wc->shared_level = -1;
6462 	wc->stage = DROP_REFERENCE;
6463 	wc->update_ref = 0;
6464 	wc->keep_locks = 1;
6465 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6466 
6467 	while (1) {
6468 		wret = walk_down_tree(trans, root, path, wc);
6469 		if (wret < 0) {
6470 			ret = wret;
6471 			break;
6472 		}
6473 
6474 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6475 		if (wret < 0)
6476 			ret = wret;
6477 		if (wret != 0)
6478 			break;
6479 	}
6480 
6481 	kfree(wc);
6482 	btrfs_free_path(path);
6483 	return ret;
6484 }
6485 
6486 #if 0
6487 static unsigned long calc_ra(unsigned long start, unsigned long last,
6488 			     unsigned long nr)
6489 {
6490 	return min(last, start + nr - 1);
6491 }
6492 
6493 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6494 					 u64 len)
6495 {
6496 	u64 page_start;
6497 	u64 page_end;
6498 	unsigned long first_index;
6499 	unsigned long last_index;
6500 	unsigned long i;
6501 	struct page *page;
6502 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6503 	struct file_ra_state *ra;
6504 	struct btrfs_ordered_extent *ordered;
6505 	unsigned int total_read = 0;
6506 	unsigned int total_dirty = 0;
6507 	int ret = 0;
6508 
6509 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
6510 	if (!ra)
6511 		return -ENOMEM;
6512 
6513 	mutex_lock(&inode->i_mutex);
6514 	first_index = start >> PAGE_CACHE_SHIFT;
6515 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6516 
6517 	/* make sure the dirty trick played by the caller work */
6518 	ret = invalidate_inode_pages2_range(inode->i_mapping,
6519 					    first_index, last_index);
6520 	if (ret)
6521 		goto out_unlock;
6522 
6523 	file_ra_state_init(ra, inode->i_mapping);
6524 
6525 	for (i = first_index ; i <= last_index; i++) {
6526 		if (total_read % ra->ra_pages == 0) {
6527 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6528 				       calc_ra(i, last_index, ra->ra_pages));
6529 		}
6530 		total_read++;
6531 again:
6532 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6533 			BUG_ON(1);
6534 		page = grab_cache_page(inode->i_mapping, i);
6535 		if (!page) {
6536 			ret = -ENOMEM;
6537 			goto out_unlock;
6538 		}
6539 		if (!PageUptodate(page)) {
6540 			btrfs_readpage(NULL, page);
6541 			lock_page(page);
6542 			if (!PageUptodate(page)) {
6543 				unlock_page(page);
6544 				page_cache_release(page);
6545 				ret = -EIO;
6546 				goto out_unlock;
6547 			}
6548 		}
6549 		wait_on_page_writeback(page);
6550 
6551 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6552 		page_end = page_start + PAGE_CACHE_SIZE - 1;
6553 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6554 
6555 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
6556 		if (ordered) {
6557 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6558 			unlock_page(page);
6559 			page_cache_release(page);
6560 			btrfs_start_ordered_extent(inode, ordered, 1);
6561 			btrfs_put_ordered_extent(ordered);
6562 			goto again;
6563 		}
6564 		set_page_extent_mapped(page);
6565 
6566 		if (i == first_index)
6567 			set_extent_bits(io_tree, page_start, page_end,
6568 					EXTENT_BOUNDARY, GFP_NOFS);
6569 		btrfs_set_extent_delalloc(inode, page_start, page_end);
6570 
6571 		set_page_dirty(page);
6572 		total_dirty++;
6573 
6574 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6575 		unlock_page(page);
6576 		page_cache_release(page);
6577 	}
6578 
6579 out_unlock:
6580 	kfree(ra);
6581 	mutex_unlock(&inode->i_mutex);
6582 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6583 	return ret;
6584 }
6585 
6586 static noinline int relocate_data_extent(struct inode *reloc_inode,
6587 					 struct btrfs_key *extent_key,
6588 					 u64 offset)
6589 {
6590 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6591 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6592 	struct extent_map *em;
6593 	u64 start = extent_key->objectid - offset;
6594 	u64 end = start + extent_key->offset - 1;
6595 
6596 	em = alloc_extent_map(GFP_NOFS);
6597 	BUG_ON(!em);
6598 
6599 	em->start = start;
6600 	em->len = extent_key->offset;
6601 	em->block_len = extent_key->offset;
6602 	em->block_start = extent_key->objectid;
6603 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6604 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6605 
6606 	/* setup extent map to cheat btrfs_readpage */
6607 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6608 	while (1) {
6609 		int ret;
6610 		write_lock(&em_tree->lock);
6611 		ret = add_extent_mapping(em_tree, em);
6612 		write_unlock(&em_tree->lock);
6613 		if (ret != -EEXIST) {
6614 			free_extent_map(em);
6615 			break;
6616 		}
6617 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6618 	}
6619 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6620 
6621 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6622 }
6623 
6624 struct btrfs_ref_path {
6625 	u64 extent_start;
6626 	u64 nodes[BTRFS_MAX_LEVEL];
6627 	u64 root_objectid;
6628 	u64 root_generation;
6629 	u64 owner_objectid;
6630 	u32 num_refs;
6631 	int lowest_level;
6632 	int current_level;
6633 	int shared_level;
6634 
6635 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6636 	u64 new_nodes[BTRFS_MAX_LEVEL];
6637 };
6638 
6639 struct disk_extent {
6640 	u64 ram_bytes;
6641 	u64 disk_bytenr;
6642 	u64 disk_num_bytes;
6643 	u64 offset;
6644 	u64 num_bytes;
6645 	u8 compression;
6646 	u8 encryption;
6647 	u16 other_encoding;
6648 };
6649 
6650 static int is_cowonly_root(u64 root_objectid)
6651 {
6652 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6653 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6654 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6655 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6656 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6657 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6658 		return 1;
6659 	return 0;
6660 }
6661 
6662 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6663 				    struct btrfs_root *extent_root,
6664 				    struct btrfs_ref_path *ref_path,
6665 				    int first_time)
6666 {
6667 	struct extent_buffer *leaf;
6668 	struct btrfs_path *path;
6669 	struct btrfs_extent_ref *ref;
6670 	struct btrfs_key key;
6671 	struct btrfs_key found_key;
6672 	u64 bytenr;
6673 	u32 nritems;
6674 	int level;
6675 	int ret = 1;
6676 
6677 	path = btrfs_alloc_path();
6678 	if (!path)
6679 		return -ENOMEM;
6680 
6681 	if (first_time) {
6682 		ref_path->lowest_level = -1;
6683 		ref_path->current_level = -1;
6684 		ref_path->shared_level = -1;
6685 		goto walk_up;
6686 	}
6687 walk_down:
6688 	level = ref_path->current_level - 1;
6689 	while (level >= -1) {
6690 		u64 parent;
6691 		if (level < ref_path->lowest_level)
6692 			break;
6693 
6694 		if (level >= 0)
6695 			bytenr = ref_path->nodes[level];
6696 		else
6697 			bytenr = ref_path->extent_start;
6698 		BUG_ON(bytenr == 0);
6699 
6700 		parent = ref_path->nodes[level + 1];
6701 		ref_path->nodes[level + 1] = 0;
6702 		ref_path->current_level = level;
6703 		BUG_ON(parent == 0);
6704 
6705 		key.objectid = bytenr;
6706 		key.offset = parent + 1;
6707 		key.type = BTRFS_EXTENT_REF_KEY;
6708 
6709 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6710 		if (ret < 0)
6711 			goto out;
6712 		BUG_ON(ret == 0);
6713 
6714 		leaf = path->nodes[0];
6715 		nritems = btrfs_header_nritems(leaf);
6716 		if (path->slots[0] >= nritems) {
6717 			ret = btrfs_next_leaf(extent_root, path);
6718 			if (ret < 0)
6719 				goto out;
6720 			if (ret > 0)
6721 				goto next;
6722 			leaf = path->nodes[0];
6723 		}
6724 
6725 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6726 		if (found_key.objectid == bytenr &&
6727 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
6728 			if (level < ref_path->shared_level)
6729 				ref_path->shared_level = level;
6730 			goto found;
6731 		}
6732 next:
6733 		level--;
6734 		btrfs_release_path(extent_root, path);
6735 		cond_resched();
6736 	}
6737 	/* reached lowest level */
6738 	ret = 1;
6739 	goto out;
6740 walk_up:
6741 	level = ref_path->current_level;
6742 	while (level < BTRFS_MAX_LEVEL - 1) {
6743 		u64 ref_objectid;
6744 
6745 		if (level >= 0)
6746 			bytenr = ref_path->nodes[level];
6747 		else
6748 			bytenr = ref_path->extent_start;
6749 
6750 		BUG_ON(bytenr == 0);
6751 
6752 		key.objectid = bytenr;
6753 		key.offset = 0;
6754 		key.type = BTRFS_EXTENT_REF_KEY;
6755 
6756 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6757 		if (ret < 0)
6758 			goto out;
6759 
6760 		leaf = path->nodes[0];
6761 		nritems = btrfs_header_nritems(leaf);
6762 		if (path->slots[0] >= nritems) {
6763 			ret = btrfs_next_leaf(extent_root, path);
6764 			if (ret < 0)
6765 				goto out;
6766 			if (ret > 0) {
6767 				/* the extent was freed by someone */
6768 				if (ref_path->lowest_level == level)
6769 					goto out;
6770 				btrfs_release_path(extent_root, path);
6771 				goto walk_down;
6772 			}
6773 			leaf = path->nodes[0];
6774 		}
6775 
6776 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6777 		if (found_key.objectid != bytenr ||
6778 				found_key.type != BTRFS_EXTENT_REF_KEY) {
6779 			/* the extent was freed by someone */
6780 			if (ref_path->lowest_level == level) {
6781 				ret = 1;
6782 				goto out;
6783 			}
6784 			btrfs_release_path(extent_root, path);
6785 			goto walk_down;
6786 		}
6787 found:
6788 		ref = btrfs_item_ptr(leaf, path->slots[0],
6789 				struct btrfs_extent_ref);
6790 		ref_objectid = btrfs_ref_objectid(leaf, ref);
6791 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6792 			if (first_time) {
6793 				level = (int)ref_objectid;
6794 				BUG_ON(level >= BTRFS_MAX_LEVEL);
6795 				ref_path->lowest_level = level;
6796 				ref_path->current_level = level;
6797 				ref_path->nodes[level] = bytenr;
6798 			} else {
6799 				WARN_ON(ref_objectid != level);
6800 			}
6801 		} else {
6802 			WARN_ON(level != -1);
6803 		}
6804 		first_time = 0;
6805 
6806 		if (ref_path->lowest_level == level) {
6807 			ref_path->owner_objectid = ref_objectid;
6808 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6809 		}
6810 
6811 		/*
6812 		 * the block is tree root or the block isn't in reference
6813 		 * counted tree.
6814 		 */
6815 		if (found_key.objectid == found_key.offset ||
6816 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6817 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6818 			ref_path->root_generation =
6819 				btrfs_ref_generation(leaf, ref);
6820 			if (level < 0) {
6821 				/* special reference from the tree log */
6822 				ref_path->nodes[0] = found_key.offset;
6823 				ref_path->current_level = 0;
6824 			}
6825 			ret = 0;
6826 			goto out;
6827 		}
6828 
6829 		level++;
6830 		BUG_ON(ref_path->nodes[level] != 0);
6831 		ref_path->nodes[level] = found_key.offset;
6832 		ref_path->current_level = level;
6833 
6834 		/*
6835 		 * the reference was created in the running transaction,
6836 		 * no need to continue walking up.
6837 		 */
6838 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6839 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6840 			ref_path->root_generation =
6841 				btrfs_ref_generation(leaf, ref);
6842 			ret = 0;
6843 			goto out;
6844 		}
6845 
6846 		btrfs_release_path(extent_root, path);
6847 		cond_resched();
6848 	}
6849 	/* reached max tree level, but no tree root found. */
6850 	BUG();
6851 out:
6852 	btrfs_free_path(path);
6853 	return ret;
6854 }
6855 
6856 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6857 				struct btrfs_root *extent_root,
6858 				struct btrfs_ref_path *ref_path,
6859 				u64 extent_start)
6860 {
6861 	memset(ref_path, 0, sizeof(*ref_path));
6862 	ref_path->extent_start = extent_start;
6863 
6864 	return __next_ref_path(trans, extent_root, ref_path, 1);
6865 }
6866 
6867 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6868 			       struct btrfs_root *extent_root,
6869 			       struct btrfs_ref_path *ref_path)
6870 {
6871 	return __next_ref_path(trans, extent_root, ref_path, 0);
6872 }
6873 
6874 static noinline int get_new_locations(struct inode *reloc_inode,
6875 				      struct btrfs_key *extent_key,
6876 				      u64 offset, int no_fragment,
6877 				      struct disk_extent **extents,
6878 				      int *nr_extents)
6879 {
6880 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6881 	struct btrfs_path *path;
6882 	struct btrfs_file_extent_item *fi;
6883 	struct extent_buffer *leaf;
6884 	struct disk_extent *exts = *extents;
6885 	struct btrfs_key found_key;
6886 	u64 cur_pos;
6887 	u64 last_byte;
6888 	u32 nritems;
6889 	int nr = 0;
6890 	int max = *nr_extents;
6891 	int ret;
6892 
6893 	WARN_ON(!no_fragment && *extents);
6894 	if (!exts) {
6895 		max = 1;
6896 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6897 		if (!exts)
6898 			return -ENOMEM;
6899 	}
6900 
6901 	path = btrfs_alloc_path();
6902 	BUG_ON(!path);
6903 
6904 	cur_pos = extent_key->objectid - offset;
6905 	last_byte = extent_key->objectid + extent_key->offset;
6906 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6907 				       cur_pos, 0);
6908 	if (ret < 0)
6909 		goto out;
6910 	if (ret > 0) {
6911 		ret = -ENOENT;
6912 		goto out;
6913 	}
6914 
6915 	while (1) {
6916 		leaf = path->nodes[0];
6917 		nritems = btrfs_header_nritems(leaf);
6918 		if (path->slots[0] >= nritems) {
6919 			ret = btrfs_next_leaf(root, path);
6920 			if (ret < 0)
6921 				goto out;
6922 			if (ret > 0)
6923 				break;
6924 			leaf = path->nodes[0];
6925 		}
6926 
6927 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6928 		if (found_key.offset != cur_pos ||
6929 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
6930 		    found_key.objectid != reloc_inode->i_ino)
6931 			break;
6932 
6933 		fi = btrfs_item_ptr(leaf, path->slots[0],
6934 				    struct btrfs_file_extent_item);
6935 		if (btrfs_file_extent_type(leaf, fi) !=
6936 		    BTRFS_FILE_EXTENT_REG ||
6937 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6938 			break;
6939 
6940 		if (nr == max) {
6941 			struct disk_extent *old = exts;
6942 			max *= 2;
6943 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6944 			memcpy(exts, old, sizeof(*exts) * nr);
6945 			if (old != *extents)
6946 				kfree(old);
6947 		}
6948 
6949 		exts[nr].disk_bytenr =
6950 			btrfs_file_extent_disk_bytenr(leaf, fi);
6951 		exts[nr].disk_num_bytes =
6952 			btrfs_file_extent_disk_num_bytes(leaf, fi);
6953 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6954 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6955 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6956 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6957 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6958 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6959 									   fi);
6960 		BUG_ON(exts[nr].offset > 0);
6961 		BUG_ON(exts[nr].compression || exts[nr].encryption);
6962 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6963 
6964 		cur_pos += exts[nr].num_bytes;
6965 		nr++;
6966 
6967 		if (cur_pos + offset >= last_byte)
6968 			break;
6969 
6970 		if (no_fragment) {
6971 			ret = 1;
6972 			goto out;
6973 		}
6974 		path->slots[0]++;
6975 	}
6976 
6977 	BUG_ON(cur_pos + offset > last_byte);
6978 	if (cur_pos + offset < last_byte) {
6979 		ret = -ENOENT;
6980 		goto out;
6981 	}
6982 	ret = 0;
6983 out:
6984 	btrfs_free_path(path);
6985 	if (ret) {
6986 		if (exts != *extents)
6987 			kfree(exts);
6988 	} else {
6989 		*extents = exts;
6990 		*nr_extents = nr;
6991 	}
6992 	return ret;
6993 }
6994 
6995 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6996 					struct btrfs_root *root,
6997 					struct btrfs_path *path,
6998 					struct btrfs_key *extent_key,
6999 					struct btrfs_key *leaf_key,
7000 					struct btrfs_ref_path *ref_path,
7001 					struct disk_extent *new_extents,
7002 					int nr_extents)
7003 {
7004 	struct extent_buffer *leaf;
7005 	struct btrfs_file_extent_item *fi;
7006 	struct inode *inode = NULL;
7007 	struct btrfs_key key;
7008 	u64 lock_start = 0;
7009 	u64 lock_end = 0;
7010 	u64 num_bytes;
7011 	u64 ext_offset;
7012 	u64 search_end = (u64)-1;
7013 	u32 nritems;
7014 	int nr_scaned = 0;
7015 	int extent_locked = 0;
7016 	int extent_type;
7017 	int ret;
7018 
7019 	memcpy(&key, leaf_key, sizeof(key));
7020 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7021 		if (key.objectid < ref_path->owner_objectid ||
7022 		    (key.objectid == ref_path->owner_objectid &&
7023 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
7024 			key.objectid = ref_path->owner_objectid;
7025 			key.type = BTRFS_EXTENT_DATA_KEY;
7026 			key.offset = 0;
7027 		}
7028 	}
7029 
7030 	while (1) {
7031 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
7032 		if (ret < 0)
7033 			goto out;
7034 
7035 		leaf = path->nodes[0];
7036 		nritems = btrfs_header_nritems(leaf);
7037 next:
7038 		if (extent_locked && ret > 0) {
7039 			/*
7040 			 * the file extent item was modified by someone
7041 			 * before the extent got locked.
7042 			 */
7043 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7044 				      lock_end, GFP_NOFS);
7045 			extent_locked = 0;
7046 		}
7047 
7048 		if (path->slots[0] >= nritems) {
7049 			if (++nr_scaned > 2)
7050 				break;
7051 
7052 			BUG_ON(extent_locked);
7053 			ret = btrfs_next_leaf(root, path);
7054 			if (ret < 0)
7055 				goto out;
7056 			if (ret > 0)
7057 				break;
7058 			leaf = path->nodes[0];
7059 			nritems = btrfs_header_nritems(leaf);
7060 		}
7061 
7062 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7063 
7064 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7065 			if ((key.objectid > ref_path->owner_objectid) ||
7066 			    (key.objectid == ref_path->owner_objectid &&
7067 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
7068 			    key.offset >= search_end)
7069 				break;
7070 		}
7071 
7072 		if (inode && key.objectid != inode->i_ino) {
7073 			BUG_ON(extent_locked);
7074 			btrfs_release_path(root, path);
7075 			mutex_unlock(&inode->i_mutex);
7076 			iput(inode);
7077 			inode = NULL;
7078 			continue;
7079 		}
7080 
7081 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
7082 			path->slots[0]++;
7083 			ret = 1;
7084 			goto next;
7085 		}
7086 		fi = btrfs_item_ptr(leaf, path->slots[0],
7087 				    struct btrfs_file_extent_item);
7088 		extent_type = btrfs_file_extent_type(leaf, fi);
7089 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
7090 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
7091 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
7092 		     extent_key->objectid)) {
7093 			path->slots[0]++;
7094 			ret = 1;
7095 			goto next;
7096 		}
7097 
7098 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7099 		ext_offset = btrfs_file_extent_offset(leaf, fi);
7100 
7101 		if (search_end == (u64)-1) {
7102 			search_end = key.offset - ext_offset +
7103 				btrfs_file_extent_ram_bytes(leaf, fi);
7104 		}
7105 
7106 		if (!extent_locked) {
7107 			lock_start = key.offset;
7108 			lock_end = lock_start + num_bytes - 1;
7109 		} else {
7110 			if (lock_start > key.offset ||
7111 			    lock_end + 1 < key.offset + num_bytes) {
7112 				unlock_extent(&BTRFS_I(inode)->io_tree,
7113 					      lock_start, lock_end, GFP_NOFS);
7114 				extent_locked = 0;
7115 			}
7116 		}
7117 
7118 		if (!inode) {
7119 			btrfs_release_path(root, path);
7120 
7121 			inode = btrfs_iget_locked(root->fs_info->sb,
7122 						  key.objectid, root);
7123 			if (inode->i_state & I_NEW) {
7124 				BTRFS_I(inode)->root = root;
7125 				BTRFS_I(inode)->location.objectid =
7126 					key.objectid;
7127 				BTRFS_I(inode)->location.type =
7128 					BTRFS_INODE_ITEM_KEY;
7129 				BTRFS_I(inode)->location.offset = 0;
7130 				btrfs_read_locked_inode(inode);
7131 				unlock_new_inode(inode);
7132 			}
7133 			/*
7134 			 * some code call btrfs_commit_transaction while
7135 			 * holding the i_mutex, so we can't use mutex_lock
7136 			 * here.
7137 			 */
7138 			if (is_bad_inode(inode) ||
7139 			    !mutex_trylock(&inode->i_mutex)) {
7140 				iput(inode);
7141 				inode = NULL;
7142 				key.offset = (u64)-1;
7143 				goto skip;
7144 			}
7145 		}
7146 
7147 		if (!extent_locked) {
7148 			struct btrfs_ordered_extent *ordered;
7149 
7150 			btrfs_release_path(root, path);
7151 
7152 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7153 				    lock_end, GFP_NOFS);
7154 			ordered = btrfs_lookup_first_ordered_extent(inode,
7155 								    lock_end);
7156 			if (ordered &&
7157 			    ordered->file_offset <= lock_end &&
7158 			    ordered->file_offset + ordered->len > lock_start) {
7159 				unlock_extent(&BTRFS_I(inode)->io_tree,
7160 					      lock_start, lock_end, GFP_NOFS);
7161 				btrfs_start_ordered_extent(inode, ordered, 1);
7162 				btrfs_put_ordered_extent(ordered);
7163 				key.offset += num_bytes;
7164 				goto skip;
7165 			}
7166 			if (ordered)
7167 				btrfs_put_ordered_extent(ordered);
7168 
7169 			extent_locked = 1;
7170 			continue;
7171 		}
7172 
7173 		if (nr_extents == 1) {
7174 			/* update extent pointer in place */
7175 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
7176 						new_extents[0].disk_bytenr);
7177 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7178 						new_extents[0].disk_num_bytes);
7179 			btrfs_mark_buffer_dirty(leaf);
7180 
7181 			btrfs_drop_extent_cache(inode, key.offset,
7182 						key.offset + num_bytes - 1, 0);
7183 
7184 			ret = btrfs_inc_extent_ref(trans, root,
7185 						new_extents[0].disk_bytenr,
7186 						new_extents[0].disk_num_bytes,
7187 						leaf->start,
7188 						root->root_key.objectid,
7189 						trans->transid,
7190 						key.objectid);
7191 			BUG_ON(ret);
7192 
7193 			ret = btrfs_free_extent(trans, root,
7194 						extent_key->objectid,
7195 						extent_key->offset,
7196 						leaf->start,
7197 						btrfs_header_owner(leaf),
7198 						btrfs_header_generation(leaf),
7199 						key.objectid, 0);
7200 			BUG_ON(ret);
7201 
7202 			btrfs_release_path(root, path);
7203 			key.offset += num_bytes;
7204 		} else {
7205 			BUG_ON(1);
7206 #if 0
7207 			u64 alloc_hint;
7208 			u64 extent_len;
7209 			int i;
7210 			/*
7211 			 * drop old extent pointer at first, then insert the
7212 			 * new pointers one bye one
7213 			 */
7214 			btrfs_release_path(root, path);
7215 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
7216 						 key.offset + num_bytes,
7217 						 key.offset, &alloc_hint);
7218 			BUG_ON(ret);
7219 
7220 			for (i = 0; i < nr_extents; i++) {
7221 				if (ext_offset >= new_extents[i].num_bytes) {
7222 					ext_offset -= new_extents[i].num_bytes;
7223 					continue;
7224 				}
7225 				extent_len = min(new_extents[i].num_bytes -
7226 						 ext_offset, num_bytes);
7227 
7228 				ret = btrfs_insert_empty_item(trans, root,
7229 							      path, &key,
7230 							      sizeof(*fi));
7231 				BUG_ON(ret);
7232 
7233 				leaf = path->nodes[0];
7234 				fi = btrfs_item_ptr(leaf, path->slots[0],
7235 						struct btrfs_file_extent_item);
7236 				btrfs_set_file_extent_generation(leaf, fi,
7237 							trans->transid);
7238 				btrfs_set_file_extent_type(leaf, fi,
7239 							BTRFS_FILE_EXTENT_REG);
7240 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
7241 						new_extents[i].disk_bytenr);
7242 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7243 						new_extents[i].disk_num_bytes);
7244 				btrfs_set_file_extent_ram_bytes(leaf, fi,
7245 						new_extents[i].ram_bytes);
7246 
7247 				btrfs_set_file_extent_compression(leaf, fi,
7248 						new_extents[i].compression);
7249 				btrfs_set_file_extent_encryption(leaf, fi,
7250 						new_extents[i].encryption);
7251 				btrfs_set_file_extent_other_encoding(leaf, fi,
7252 						new_extents[i].other_encoding);
7253 
7254 				btrfs_set_file_extent_num_bytes(leaf, fi,
7255 							extent_len);
7256 				ext_offset += new_extents[i].offset;
7257 				btrfs_set_file_extent_offset(leaf, fi,
7258 							ext_offset);
7259 				btrfs_mark_buffer_dirty(leaf);
7260 
7261 				btrfs_drop_extent_cache(inode, key.offset,
7262 						key.offset + extent_len - 1, 0);
7263 
7264 				ret = btrfs_inc_extent_ref(trans, root,
7265 						new_extents[i].disk_bytenr,
7266 						new_extents[i].disk_num_bytes,
7267 						leaf->start,
7268 						root->root_key.objectid,
7269 						trans->transid, key.objectid);
7270 				BUG_ON(ret);
7271 				btrfs_release_path(root, path);
7272 
7273 				inode_add_bytes(inode, extent_len);
7274 
7275 				ext_offset = 0;
7276 				num_bytes -= extent_len;
7277 				key.offset += extent_len;
7278 
7279 				if (num_bytes == 0)
7280 					break;
7281 			}
7282 			BUG_ON(i >= nr_extents);
7283 #endif
7284 		}
7285 
7286 		if (extent_locked) {
7287 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7288 				      lock_end, GFP_NOFS);
7289 			extent_locked = 0;
7290 		}
7291 skip:
7292 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
7293 		    key.offset >= search_end)
7294 			break;
7295 
7296 		cond_resched();
7297 	}
7298 	ret = 0;
7299 out:
7300 	btrfs_release_path(root, path);
7301 	if (inode) {
7302 		mutex_unlock(&inode->i_mutex);
7303 		if (extent_locked) {
7304 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7305 				      lock_end, GFP_NOFS);
7306 		}
7307 		iput(inode);
7308 	}
7309 	return ret;
7310 }
7311 
7312 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
7313 			       struct btrfs_root *root,
7314 			       struct extent_buffer *buf, u64 orig_start)
7315 {
7316 	int level;
7317 	int ret;
7318 
7319 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
7320 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7321 
7322 	level = btrfs_header_level(buf);
7323 	if (level == 0) {
7324 		struct btrfs_leaf_ref *ref;
7325 		struct btrfs_leaf_ref *orig_ref;
7326 
7327 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
7328 		if (!orig_ref)
7329 			return -ENOENT;
7330 
7331 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
7332 		if (!ref) {
7333 			btrfs_free_leaf_ref(root, orig_ref);
7334 			return -ENOMEM;
7335 		}
7336 
7337 		ref->nritems = orig_ref->nritems;
7338 		memcpy(ref->extents, orig_ref->extents,
7339 			sizeof(ref->extents[0]) * ref->nritems);
7340 
7341 		btrfs_free_leaf_ref(root, orig_ref);
7342 
7343 		ref->root_gen = trans->transid;
7344 		ref->bytenr = buf->start;
7345 		ref->owner = btrfs_header_owner(buf);
7346 		ref->generation = btrfs_header_generation(buf);
7347 
7348 		ret = btrfs_add_leaf_ref(root, ref, 0);
7349 		WARN_ON(ret);
7350 		btrfs_free_leaf_ref(root, ref);
7351 	}
7352 	return 0;
7353 }
7354 
7355 static noinline int invalidate_extent_cache(struct btrfs_root *root,
7356 					struct extent_buffer *leaf,
7357 					struct btrfs_block_group_cache *group,
7358 					struct btrfs_root *target_root)
7359 {
7360 	struct btrfs_key key;
7361 	struct inode *inode = NULL;
7362 	struct btrfs_file_extent_item *fi;
7363 	struct extent_state *cached_state = NULL;
7364 	u64 num_bytes;
7365 	u64 skip_objectid = 0;
7366 	u32 nritems;
7367 	u32 i;
7368 
7369 	nritems = btrfs_header_nritems(leaf);
7370 	for (i = 0; i < nritems; i++) {
7371 		btrfs_item_key_to_cpu(leaf, &key, i);
7372 		if (key.objectid == skip_objectid ||
7373 		    key.type != BTRFS_EXTENT_DATA_KEY)
7374 			continue;
7375 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7376 		if (btrfs_file_extent_type(leaf, fi) ==
7377 		    BTRFS_FILE_EXTENT_INLINE)
7378 			continue;
7379 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
7380 			continue;
7381 		if (!inode || inode->i_ino != key.objectid) {
7382 			iput(inode);
7383 			inode = btrfs_ilookup(target_root->fs_info->sb,
7384 					      key.objectid, target_root, 1);
7385 		}
7386 		if (!inode) {
7387 			skip_objectid = key.objectid;
7388 			continue;
7389 		}
7390 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7391 
7392 		lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7393 				 key.offset + num_bytes - 1, 0, &cached_state,
7394 				 GFP_NOFS);
7395 		btrfs_drop_extent_cache(inode, key.offset,
7396 					key.offset + num_bytes - 1, 1);
7397 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7398 				     key.offset + num_bytes - 1, &cached_state,
7399 				     GFP_NOFS);
7400 		cond_resched();
7401 	}
7402 	iput(inode);
7403 	return 0;
7404 }
7405 
7406 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7407 					struct btrfs_root *root,
7408 					struct extent_buffer *leaf,
7409 					struct btrfs_block_group_cache *group,
7410 					struct inode *reloc_inode)
7411 {
7412 	struct btrfs_key key;
7413 	struct btrfs_key extent_key;
7414 	struct btrfs_file_extent_item *fi;
7415 	struct btrfs_leaf_ref *ref;
7416 	struct disk_extent *new_extent;
7417 	u64 bytenr;
7418 	u64 num_bytes;
7419 	u32 nritems;
7420 	u32 i;
7421 	int ext_index;
7422 	int nr_extent;
7423 	int ret;
7424 
7425 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7426 	BUG_ON(!new_extent);
7427 
7428 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
7429 	BUG_ON(!ref);
7430 
7431 	ext_index = -1;
7432 	nritems = btrfs_header_nritems(leaf);
7433 	for (i = 0; i < nritems; i++) {
7434 		btrfs_item_key_to_cpu(leaf, &key, i);
7435 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7436 			continue;
7437 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7438 		if (btrfs_file_extent_type(leaf, fi) ==
7439 		    BTRFS_FILE_EXTENT_INLINE)
7440 			continue;
7441 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7442 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7443 		if (bytenr == 0)
7444 			continue;
7445 
7446 		ext_index++;
7447 		if (bytenr >= group->key.objectid + group->key.offset ||
7448 		    bytenr + num_bytes <= group->key.objectid)
7449 			continue;
7450 
7451 		extent_key.objectid = bytenr;
7452 		extent_key.offset = num_bytes;
7453 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7454 		nr_extent = 1;
7455 		ret = get_new_locations(reloc_inode, &extent_key,
7456 					group->key.objectid, 1,
7457 					&new_extent, &nr_extent);
7458 		if (ret > 0)
7459 			continue;
7460 		BUG_ON(ret < 0);
7461 
7462 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7463 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7464 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7465 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7466 
7467 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
7468 						new_extent->disk_bytenr);
7469 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7470 						new_extent->disk_num_bytes);
7471 		btrfs_mark_buffer_dirty(leaf);
7472 
7473 		ret = btrfs_inc_extent_ref(trans, root,
7474 					new_extent->disk_bytenr,
7475 					new_extent->disk_num_bytes,
7476 					leaf->start,
7477 					root->root_key.objectid,
7478 					trans->transid, key.objectid);
7479 		BUG_ON(ret);
7480 
7481 		ret = btrfs_free_extent(trans, root,
7482 					bytenr, num_bytes, leaf->start,
7483 					btrfs_header_owner(leaf),
7484 					btrfs_header_generation(leaf),
7485 					key.objectid, 0);
7486 		BUG_ON(ret);
7487 		cond_resched();
7488 	}
7489 	kfree(new_extent);
7490 	BUG_ON(ext_index + 1 != ref->nritems);
7491 	btrfs_free_leaf_ref(root, ref);
7492 	return 0;
7493 }
7494 
7495 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7496 			  struct btrfs_root *root)
7497 {
7498 	struct btrfs_root *reloc_root;
7499 	int ret;
7500 
7501 	if (root->reloc_root) {
7502 		reloc_root = root->reloc_root;
7503 		root->reloc_root = NULL;
7504 		list_add(&reloc_root->dead_list,
7505 			 &root->fs_info->dead_reloc_roots);
7506 
7507 		btrfs_set_root_bytenr(&reloc_root->root_item,
7508 				      reloc_root->node->start);
7509 		btrfs_set_root_level(&root->root_item,
7510 				     btrfs_header_level(reloc_root->node));
7511 		memset(&reloc_root->root_item.drop_progress, 0,
7512 			sizeof(struct btrfs_disk_key));
7513 		reloc_root->root_item.drop_level = 0;
7514 
7515 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
7516 					&reloc_root->root_key,
7517 					&reloc_root->root_item);
7518 		BUG_ON(ret);
7519 	}
7520 	return 0;
7521 }
7522 
7523 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7524 {
7525 	struct btrfs_trans_handle *trans;
7526 	struct btrfs_root *reloc_root;
7527 	struct btrfs_root *prev_root = NULL;
7528 	struct list_head dead_roots;
7529 	int ret;
7530 	unsigned long nr;
7531 
7532 	INIT_LIST_HEAD(&dead_roots);
7533 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7534 
7535 	while (!list_empty(&dead_roots)) {
7536 		reloc_root = list_entry(dead_roots.prev,
7537 					struct btrfs_root, dead_list);
7538 		list_del_init(&reloc_root->dead_list);
7539 
7540 		BUG_ON(reloc_root->commit_root != NULL);
7541 		while (1) {
7542 			trans = btrfs_join_transaction(root, 1);
7543 			BUG_ON(IS_ERR(trans));
7544 
7545 			mutex_lock(&root->fs_info->drop_mutex);
7546 			ret = btrfs_drop_snapshot(trans, reloc_root);
7547 			if (ret != -EAGAIN)
7548 				break;
7549 			mutex_unlock(&root->fs_info->drop_mutex);
7550 
7551 			nr = trans->blocks_used;
7552 			ret = btrfs_end_transaction(trans, root);
7553 			BUG_ON(ret);
7554 			btrfs_btree_balance_dirty(root, nr);
7555 		}
7556 
7557 		free_extent_buffer(reloc_root->node);
7558 
7559 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
7560 				     &reloc_root->root_key);
7561 		BUG_ON(ret);
7562 		mutex_unlock(&root->fs_info->drop_mutex);
7563 
7564 		nr = trans->blocks_used;
7565 		ret = btrfs_end_transaction(trans, root);
7566 		BUG_ON(ret);
7567 		btrfs_btree_balance_dirty(root, nr);
7568 
7569 		kfree(prev_root);
7570 		prev_root = reloc_root;
7571 	}
7572 	if (prev_root) {
7573 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7574 		kfree(prev_root);
7575 	}
7576 	return 0;
7577 }
7578 
7579 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7580 {
7581 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7582 	return 0;
7583 }
7584 
7585 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7586 {
7587 	struct btrfs_root *reloc_root;
7588 	struct btrfs_trans_handle *trans;
7589 	struct btrfs_key location;
7590 	int found;
7591 	int ret;
7592 
7593 	mutex_lock(&root->fs_info->tree_reloc_mutex);
7594 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7595 	BUG_ON(ret);
7596 	found = !list_empty(&root->fs_info->dead_reloc_roots);
7597 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
7598 
7599 	if (found) {
7600 		trans = btrfs_start_transaction(root, 1);
7601 		BUG_ON(IS_ERR(trans));
7602 		ret = btrfs_commit_transaction(trans, root);
7603 		BUG_ON(ret);
7604 	}
7605 
7606 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7607 	location.offset = (u64)-1;
7608 	location.type = BTRFS_ROOT_ITEM_KEY;
7609 
7610 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7611 	BUG_ON(!reloc_root);
7612 	btrfs_orphan_cleanup(reloc_root);
7613 	return 0;
7614 }
7615 
7616 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7617 				    struct btrfs_root *root)
7618 {
7619 	struct btrfs_root *reloc_root;
7620 	struct extent_buffer *eb;
7621 	struct btrfs_root_item *root_item;
7622 	struct btrfs_key root_key;
7623 	int ret;
7624 
7625 	BUG_ON(!root->ref_cows);
7626 	if (root->reloc_root)
7627 		return 0;
7628 
7629 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7630 	BUG_ON(!root_item);
7631 
7632 	ret = btrfs_copy_root(trans, root, root->commit_root,
7633 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
7634 	BUG_ON(ret);
7635 
7636 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7637 	root_key.offset = root->root_key.objectid;
7638 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7639 
7640 	memcpy(root_item, &root->root_item, sizeof(root_item));
7641 	btrfs_set_root_refs(root_item, 0);
7642 	btrfs_set_root_bytenr(root_item, eb->start);
7643 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
7644 	btrfs_set_root_generation(root_item, trans->transid);
7645 
7646 	btrfs_tree_unlock(eb);
7647 	free_extent_buffer(eb);
7648 
7649 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7650 				&root_key, root_item);
7651 	BUG_ON(ret);
7652 	kfree(root_item);
7653 
7654 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7655 						 &root_key);
7656 	BUG_ON(!reloc_root);
7657 	reloc_root->last_trans = trans->transid;
7658 	reloc_root->commit_root = NULL;
7659 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7660 
7661 	root->reloc_root = reloc_root;
7662 	return 0;
7663 }
7664 
7665 /*
7666  * Core function of space balance.
7667  *
7668  * The idea is using reloc trees to relocate tree blocks in reference
7669  * counted roots. There is one reloc tree for each subvol, and all
7670  * reloc trees share same root key objectid. Reloc trees are snapshots
7671  * of the latest committed roots of subvols (root->commit_root).
7672  *
7673  * To relocate a tree block referenced by a subvol, there are two steps.
7674  * COW the block through subvol's reloc tree, then update block pointer
7675  * in the subvol to point to the new block. Since all reloc trees share
7676  * same root key objectid, doing special handing for tree blocks owned
7677  * by them is easy. Once a tree block has been COWed in one reloc tree,
7678  * we can use the resulting new block directly when the same block is
7679  * required to COW again through other reloc trees. By this way, relocated
7680  * tree blocks are shared between reloc trees, so they are also shared
7681  * between subvols.
7682  */
7683 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7684 				      struct btrfs_root *root,
7685 				      struct btrfs_path *path,
7686 				      struct btrfs_key *first_key,
7687 				      struct btrfs_ref_path *ref_path,
7688 				      struct btrfs_block_group_cache *group,
7689 				      struct inode *reloc_inode)
7690 {
7691 	struct btrfs_root *reloc_root;
7692 	struct extent_buffer *eb = NULL;
7693 	struct btrfs_key *keys;
7694 	u64 *nodes;
7695 	int level;
7696 	int shared_level;
7697 	int lowest_level = 0;
7698 	int ret;
7699 
7700 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7701 		lowest_level = ref_path->owner_objectid;
7702 
7703 	if (!root->ref_cows) {
7704 		path->lowest_level = lowest_level;
7705 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7706 		BUG_ON(ret < 0);
7707 		path->lowest_level = 0;
7708 		btrfs_release_path(root, path);
7709 		return 0;
7710 	}
7711 
7712 	mutex_lock(&root->fs_info->tree_reloc_mutex);
7713 	ret = init_reloc_tree(trans, root);
7714 	BUG_ON(ret);
7715 	reloc_root = root->reloc_root;
7716 
7717 	shared_level = ref_path->shared_level;
7718 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7719 
7720 	keys = ref_path->node_keys;
7721 	nodes = ref_path->new_nodes;
7722 	memset(&keys[shared_level + 1], 0,
7723 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7724 	memset(&nodes[shared_level + 1], 0,
7725 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7726 
7727 	if (nodes[lowest_level] == 0) {
7728 		path->lowest_level = lowest_level;
7729 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7730 					0, 1);
7731 		BUG_ON(ret);
7732 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7733 			eb = path->nodes[level];
7734 			if (!eb || eb == reloc_root->node)
7735 				break;
7736 			nodes[level] = eb->start;
7737 			if (level == 0)
7738 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
7739 			else
7740 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
7741 		}
7742 		if (nodes[0] &&
7743 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7744 			eb = path->nodes[0];
7745 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
7746 						      group, reloc_inode);
7747 			BUG_ON(ret);
7748 		}
7749 		btrfs_release_path(reloc_root, path);
7750 	} else {
7751 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7752 				       lowest_level);
7753 		BUG_ON(ret);
7754 	}
7755 
7756 	/*
7757 	 * replace tree blocks in the fs tree with tree blocks in
7758 	 * the reloc tree.
7759 	 */
7760 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7761 	BUG_ON(ret < 0);
7762 
7763 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7764 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7765 					0, 0);
7766 		BUG_ON(ret);
7767 		extent_buffer_get(path->nodes[0]);
7768 		eb = path->nodes[0];
7769 		btrfs_release_path(reloc_root, path);
7770 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
7771 		BUG_ON(ret);
7772 		free_extent_buffer(eb);
7773 	}
7774 
7775 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
7776 	path->lowest_level = 0;
7777 	return 0;
7778 }
7779 
7780 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7781 					struct btrfs_root *root,
7782 					struct btrfs_path *path,
7783 					struct btrfs_key *first_key,
7784 					struct btrfs_ref_path *ref_path)
7785 {
7786 	int ret;
7787 
7788 	ret = relocate_one_path(trans, root, path, first_key,
7789 				ref_path, NULL, NULL);
7790 	BUG_ON(ret);
7791 
7792 	return 0;
7793 }
7794 
7795 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7796 				    struct btrfs_root *extent_root,
7797 				    struct btrfs_path *path,
7798 				    struct btrfs_key *extent_key)
7799 {
7800 	int ret;
7801 
7802 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7803 	if (ret)
7804 		goto out;
7805 	ret = btrfs_del_item(trans, extent_root, path);
7806 out:
7807 	btrfs_release_path(extent_root, path);
7808 	return ret;
7809 }
7810 
7811 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7812 						struct btrfs_ref_path *ref_path)
7813 {
7814 	struct btrfs_key root_key;
7815 
7816 	root_key.objectid = ref_path->root_objectid;
7817 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7818 	if (is_cowonly_root(ref_path->root_objectid))
7819 		root_key.offset = 0;
7820 	else
7821 		root_key.offset = (u64)-1;
7822 
7823 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
7824 }
7825 
7826 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7827 					struct btrfs_path *path,
7828 					struct btrfs_key *extent_key,
7829 					struct btrfs_block_group_cache *group,
7830 					struct inode *reloc_inode, int pass)
7831 {
7832 	struct btrfs_trans_handle *trans;
7833 	struct btrfs_root *found_root;
7834 	struct btrfs_ref_path *ref_path = NULL;
7835 	struct disk_extent *new_extents = NULL;
7836 	int nr_extents = 0;
7837 	int loops;
7838 	int ret;
7839 	int level;
7840 	struct btrfs_key first_key;
7841 	u64 prev_block = 0;
7842 
7843 
7844 	trans = btrfs_start_transaction(extent_root, 1);
7845 	BUG_ON(IS_ERR(trans));
7846 
7847 	if (extent_key->objectid == 0) {
7848 		ret = del_extent_zero(trans, extent_root, path, extent_key);
7849 		goto out;
7850 	}
7851 
7852 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7853 	if (!ref_path) {
7854 		ret = -ENOMEM;
7855 		goto out;
7856 	}
7857 
7858 	for (loops = 0; ; loops++) {
7859 		if (loops == 0) {
7860 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7861 						   extent_key->objectid);
7862 		} else {
7863 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7864 		}
7865 		if (ret < 0)
7866 			goto out;
7867 		if (ret > 0)
7868 			break;
7869 
7870 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7871 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7872 			continue;
7873 
7874 		found_root = read_ref_root(extent_root->fs_info, ref_path);
7875 		BUG_ON(!found_root);
7876 		/*
7877 		 * for reference counted tree, only process reference paths
7878 		 * rooted at the latest committed root.
7879 		 */
7880 		if (found_root->ref_cows &&
7881 		    ref_path->root_generation != found_root->root_key.offset)
7882 			continue;
7883 
7884 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7885 			if (pass == 0) {
7886 				/*
7887 				 * copy data extents to new locations
7888 				 */
7889 				u64 group_start = group->key.objectid;
7890 				ret = relocate_data_extent(reloc_inode,
7891 							   extent_key,
7892 							   group_start);
7893 				if (ret < 0)
7894 					goto out;
7895 				break;
7896 			}
7897 			level = 0;
7898 		} else {
7899 			level = ref_path->owner_objectid;
7900 		}
7901 
7902 		if (prev_block != ref_path->nodes[level]) {
7903 			struct extent_buffer *eb;
7904 			u64 block_start = ref_path->nodes[level];
7905 			u64 block_size = btrfs_level_size(found_root, level);
7906 
7907 			eb = read_tree_block(found_root, block_start,
7908 					     block_size, 0);
7909 			btrfs_tree_lock(eb);
7910 			BUG_ON(level != btrfs_header_level(eb));
7911 
7912 			if (level == 0)
7913 				btrfs_item_key_to_cpu(eb, &first_key, 0);
7914 			else
7915 				btrfs_node_key_to_cpu(eb, &first_key, 0);
7916 
7917 			btrfs_tree_unlock(eb);
7918 			free_extent_buffer(eb);
7919 			prev_block = block_start;
7920 		}
7921 
7922 		mutex_lock(&extent_root->fs_info->trans_mutex);
7923 		btrfs_record_root_in_trans(found_root);
7924 		mutex_unlock(&extent_root->fs_info->trans_mutex);
7925 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7926 			/*
7927 			 * try to update data extent references while
7928 			 * keeping metadata shared between snapshots.
7929 			 */
7930 			if (pass == 1) {
7931 				ret = relocate_one_path(trans, found_root,
7932 						path, &first_key, ref_path,
7933 						group, reloc_inode);
7934 				if (ret < 0)
7935 					goto out;
7936 				continue;
7937 			}
7938 			/*
7939 			 * use fallback method to process the remaining
7940 			 * references.
7941 			 */
7942 			if (!new_extents) {
7943 				u64 group_start = group->key.objectid;
7944 				new_extents = kmalloc(sizeof(*new_extents),
7945 						      GFP_NOFS);
7946 				nr_extents = 1;
7947 				ret = get_new_locations(reloc_inode,
7948 							extent_key,
7949 							group_start, 1,
7950 							&new_extents,
7951 							&nr_extents);
7952 				if (ret)
7953 					goto out;
7954 			}
7955 			ret = replace_one_extent(trans, found_root,
7956 						path, extent_key,
7957 						&first_key, ref_path,
7958 						new_extents, nr_extents);
7959 		} else {
7960 			ret = relocate_tree_block(trans, found_root, path,
7961 						  &first_key, ref_path);
7962 		}
7963 		if (ret < 0)
7964 			goto out;
7965 	}
7966 	ret = 0;
7967 out:
7968 	btrfs_end_transaction(trans, extent_root);
7969 	kfree(new_extents);
7970 	kfree(ref_path);
7971 	return ret;
7972 }
7973 #endif
7974 
7975 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7976 {
7977 	u64 num_devices;
7978 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7979 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7980 
7981 	/*
7982 	 * we add in the count of missing devices because we want
7983 	 * to make sure that any RAID levels on a degraded FS
7984 	 * continue to be honored.
7985 	 */
7986 	num_devices = root->fs_info->fs_devices->rw_devices +
7987 		root->fs_info->fs_devices->missing_devices;
7988 
7989 	if (num_devices == 1) {
7990 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7991 		stripped = flags & ~stripped;
7992 
7993 		/* turn raid0 into single device chunks */
7994 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7995 			return stripped;
7996 
7997 		/* turn mirroring into duplication */
7998 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7999 			     BTRFS_BLOCK_GROUP_RAID10))
8000 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8001 		return flags;
8002 	} else {
8003 		/* they already had raid on here, just return */
8004 		if (flags & stripped)
8005 			return flags;
8006 
8007 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8008 		stripped = flags & ~stripped;
8009 
8010 		/* switch duplicated blocks with raid1 */
8011 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8012 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8013 
8014 		/* turn single device chunks into raid0 */
8015 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
8016 	}
8017 	return flags;
8018 }
8019 
8020 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
8021 {
8022 	struct btrfs_space_info *sinfo = cache->space_info;
8023 	u64 num_bytes;
8024 	int ret = -ENOSPC;
8025 
8026 	if (cache->ro)
8027 		return 0;
8028 
8029 	spin_lock(&sinfo->lock);
8030 	spin_lock(&cache->lock);
8031 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8032 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8033 
8034 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8035 	    sinfo->bytes_may_use + sinfo->bytes_readonly +
8036 	    cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
8037 		sinfo->bytes_readonly += num_bytes;
8038 		sinfo->bytes_reserved += cache->reserved_pinned;
8039 		cache->reserved_pinned = 0;
8040 		cache->ro = 1;
8041 		ret = 0;
8042 	}
8043 
8044 	spin_unlock(&cache->lock);
8045 	spin_unlock(&sinfo->lock);
8046 	return ret;
8047 }
8048 
8049 int btrfs_set_block_group_ro(struct btrfs_root *root,
8050 			     struct btrfs_block_group_cache *cache)
8051 
8052 {
8053 	struct btrfs_trans_handle *trans;
8054 	u64 alloc_flags;
8055 	int ret;
8056 
8057 	BUG_ON(cache->ro);
8058 
8059 	trans = btrfs_join_transaction(root, 1);
8060 	BUG_ON(IS_ERR(trans));
8061 
8062 	alloc_flags = update_block_group_flags(root, cache->flags);
8063 	if (alloc_flags != cache->flags)
8064 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8065 
8066 	ret = set_block_group_ro(cache);
8067 	if (!ret)
8068 		goto out;
8069 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8070 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8071 	if (ret < 0)
8072 		goto out;
8073 	ret = set_block_group_ro(cache);
8074 out:
8075 	btrfs_end_transaction(trans, root);
8076 	return ret;
8077 }
8078 
8079 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8080 			    struct btrfs_root *root, u64 type)
8081 {
8082 	u64 alloc_flags = get_alloc_profile(root, type);
8083 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8084 }
8085 
8086 /*
8087  * helper to account the unused space of all the readonly block group in the
8088  * list. takes mirrors into account.
8089  */
8090 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8091 {
8092 	struct btrfs_block_group_cache *block_group;
8093 	u64 free_bytes = 0;
8094 	int factor;
8095 
8096 	list_for_each_entry(block_group, groups_list, list) {
8097 		spin_lock(&block_group->lock);
8098 
8099 		if (!block_group->ro) {
8100 			spin_unlock(&block_group->lock);
8101 			continue;
8102 		}
8103 
8104 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8105 					  BTRFS_BLOCK_GROUP_RAID10 |
8106 					  BTRFS_BLOCK_GROUP_DUP))
8107 			factor = 2;
8108 		else
8109 			factor = 1;
8110 
8111 		free_bytes += (block_group->key.offset -
8112 			       btrfs_block_group_used(&block_group->item)) *
8113 			       factor;
8114 
8115 		spin_unlock(&block_group->lock);
8116 	}
8117 
8118 	return free_bytes;
8119 }
8120 
8121 /*
8122  * helper to account the unused space of all the readonly block group in the
8123  * space_info. takes mirrors into account.
8124  */
8125 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8126 {
8127 	int i;
8128 	u64 free_bytes = 0;
8129 
8130 	spin_lock(&sinfo->lock);
8131 
8132 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8133 		if (!list_empty(&sinfo->block_groups[i]))
8134 			free_bytes += __btrfs_get_ro_block_group_free_space(
8135 						&sinfo->block_groups[i]);
8136 
8137 	spin_unlock(&sinfo->lock);
8138 
8139 	return free_bytes;
8140 }
8141 
8142 int btrfs_set_block_group_rw(struct btrfs_root *root,
8143 			      struct btrfs_block_group_cache *cache)
8144 {
8145 	struct btrfs_space_info *sinfo = cache->space_info;
8146 	u64 num_bytes;
8147 
8148 	BUG_ON(!cache->ro);
8149 
8150 	spin_lock(&sinfo->lock);
8151 	spin_lock(&cache->lock);
8152 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8153 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8154 	sinfo->bytes_readonly -= num_bytes;
8155 	cache->ro = 0;
8156 	spin_unlock(&cache->lock);
8157 	spin_unlock(&sinfo->lock);
8158 	return 0;
8159 }
8160 
8161 /*
8162  * checks to see if its even possible to relocate this block group.
8163  *
8164  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8165  * ok to go ahead and try.
8166  */
8167 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8168 {
8169 	struct btrfs_block_group_cache *block_group;
8170 	struct btrfs_space_info *space_info;
8171 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8172 	struct btrfs_device *device;
8173 	int full = 0;
8174 	int ret = 0;
8175 
8176 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8177 
8178 	/* odd, couldn't find the block group, leave it alone */
8179 	if (!block_group)
8180 		return -1;
8181 
8182 	/* no bytes used, we're good */
8183 	if (!btrfs_block_group_used(&block_group->item))
8184 		goto out;
8185 
8186 	space_info = block_group->space_info;
8187 	spin_lock(&space_info->lock);
8188 
8189 	full = space_info->full;
8190 
8191 	/*
8192 	 * if this is the last block group we have in this space, we can't
8193 	 * relocate it unless we're able to allocate a new chunk below.
8194 	 *
8195 	 * Otherwise, we need to make sure we have room in the space to handle
8196 	 * all of the extents from this block group.  If we can, we're good
8197 	 */
8198 	if ((space_info->total_bytes != block_group->key.offset) &&
8199 	   (space_info->bytes_used + space_info->bytes_reserved +
8200 	    space_info->bytes_pinned + space_info->bytes_readonly +
8201 	    btrfs_block_group_used(&block_group->item) <
8202 	    space_info->total_bytes)) {
8203 		spin_unlock(&space_info->lock);
8204 		goto out;
8205 	}
8206 	spin_unlock(&space_info->lock);
8207 
8208 	/*
8209 	 * ok we don't have enough space, but maybe we have free space on our
8210 	 * devices to allocate new chunks for relocation, so loop through our
8211 	 * alloc devices and guess if we have enough space.  However, if we
8212 	 * were marked as full, then we know there aren't enough chunks, and we
8213 	 * can just return.
8214 	 */
8215 	ret = -1;
8216 	if (full)
8217 		goto out;
8218 
8219 	mutex_lock(&root->fs_info->chunk_mutex);
8220 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8221 		u64 min_free = btrfs_block_group_used(&block_group->item);
8222 		u64 dev_offset;
8223 
8224 		/*
8225 		 * check to make sure we can actually find a chunk with enough
8226 		 * space to fit our block group in.
8227 		 */
8228 		if (device->total_bytes > device->bytes_used + min_free) {
8229 			ret = find_free_dev_extent(NULL, device, min_free,
8230 						   &dev_offset, NULL);
8231 			if (!ret)
8232 				break;
8233 			ret = -1;
8234 		}
8235 	}
8236 	mutex_unlock(&root->fs_info->chunk_mutex);
8237 out:
8238 	btrfs_put_block_group(block_group);
8239 	return ret;
8240 }
8241 
8242 static int find_first_block_group(struct btrfs_root *root,
8243 		struct btrfs_path *path, struct btrfs_key *key)
8244 {
8245 	int ret = 0;
8246 	struct btrfs_key found_key;
8247 	struct extent_buffer *leaf;
8248 	int slot;
8249 
8250 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8251 	if (ret < 0)
8252 		goto out;
8253 
8254 	while (1) {
8255 		slot = path->slots[0];
8256 		leaf = path->nodes[0];
8257 		if (slot >= btrfs_header_nritems(leaf)) {
8258 			ret = btrfs_next_leaf(root, path);
8259 			if (ret == 0)
8260 				continue;
8261 			if (ret < 0)
8262 				goto out;
8263 			break;
8264 		}
8265 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8266 
8267 		if (found_key.objectid >= key->objectid &&
8268 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8269 			ret = 0;
8270 			goto out;
8271 		}
8272 		path->slots[0]++;
8273 	}
8274 out:
8275 	return ret;
8276 }
8277 
8278 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8279 {
8280 	struct btrfs_block_group_cache *block_group;
8281 	u64 last = 0;
8282 
8283 	while (1) {
8284 		struct inode *inode;
8285 
8286 		block_group = btrfs_lookup_first_block_group(info, last);
8287 		while (block_group) {
8288 			spin_lock(&block_group->lock);
8289 			if (block_group->iref)
8290 				break;
8291 			spin_unlock(&block_group->lock);
8292 			block_group = next_block_group(info->tree_root,
8293 						       block_group);
8294 		}
8295 		if (!block_group) {
8296 			if (last == 0)
8297 				break;
8298 			last = 0;
8299 			continue;
8300 		}
8301 
8302 		inode = block_group->inode;
8303 		block_group->iref = 0;
8304 		block_group->inode = NULL;
8305 		spin_unlock(&block_group->lock);
8306 		iput(inode);
8307 		last = block_group->key.objectid + block_group->key.offset;
8308 		btrfs_put_block_group(block_group);
8309 	}
8310 }
8311 
8312 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8313 {
8314 	struct btrfs_block_group_cache *block_group;
8315 	struct btrfs_space_info *space_info;
8316 	struct btrfs_caching_control *caching_ctl;
8317 	struct rb_node *n;
8318 
8319 	down_write(&info->extent_commit_sem);
8320 	while (!list_empty(&info->caching_block_groups)) {
8321 		caching_ctl = list_entry(info->caching_block_groups.next,
8322 					 struct btrfs_caching_control, list);
8323 		list_del(&caching_ctl->list);
8324 		put_caching_control(caching_ctl);
8325 	}
8326 	up_write(&info->extent_commit_sem);
8327 
8328 	spin_lock(&info->block_group_cache_lock);
8329 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8330 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8331 				       cache_node);
8332 		rb_erase(&block_group->cache_node,
8333 			 &info->block_group_cache_tree);
8334 		spin_unlock(&info->block_group_cache_lock);
8335 
8336 		down_write(&block_group->space_info->groups_sem);
8337 		list_del(&block_group->list);
8338 		up_write(&block_group->space_info->groups_sem);
8339 
8340 		if (block_group->cached == BTRFS_CACHE_STARTED)
8341 			wait_block_group_cache_done(block_group);
8342 
8343 		/*
8344 		 * We haven't cached this block group, which means we could
8345 		 * possibly have excluded extents on this block group.
8346 		 */
8347 		if (block_group->cached == BTRFS_CACHE_NO)
8348 			free_excluded_extents(info->extent_root, block_group);
8349 
8350 		btrfs_remove_free_space_cache(block_group);
8351 		btrfs_put_block_group(block_group);
8352 
8353 		spin_lock(&info->block_group_cache_lock);
8354 	}
8355 	spin_unlock(&info->block_group_cache_lock);
8356 
8357 	/* now that all the block groups are freed, go through and
8358 	 * free all the space_info structs.  This is only called during
8359 	 * the final stages of unmount, and so we know nobody is
8360 	 * using them.  We call synchronize_rcu() once before we start,
8361 	 * just to be on the safe side.
8362 	 */
8363 	synchronize_rcu();
8364 
8365 	release_global_block_rsv(info);
8366 
8367 	while(!list_empty(&info->space_info)) {
8368 		space_info = list_entry(info->space_info.next,
8369 					struct btrfs_space_info,
8370 					list);
8371 		if (space_info->bytes_pinned > 0 ||
8372 		    space_info->bytes_reserved > 0) {
8373 			WARN_ON(1);
8374 			dump_space_info(space_info, 0, 0);
8375 		}
8376 		list_del(&space_info->list);
8377 		kfree(space_info);
8378 	}
8379 	return 0;
8380 }
8381 
8382 static void __link_block_group(struct btrfs_space_info *space_info,
8383 			       struct btrfs_block_group_cache *cache)
8384 {
8385 	int index = get_block_group_index(cache);
8386 
8387 	down_write(&space_info->groups_sem);
8388 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8389 	up_write(&space_info->groups_sem);
8390 }
8391 
8392 int btrfs_read_block_groups(struct btrfs_root *root)
8393 {
8394 	struct btrfs_path *path;
8395 	int ret;
8396 	struct btrfs_block_group_cache *cache;
8397 	struct btrfs_fs_info *info = root->fs_info;
8398 	struct btrfs_space_info *space_info;
8399 	struct btrfs_key key;
8400 	struct btrfs_key found_key;
8401 	struct extent_buffer *leaf;
8402 	int need_clear = 0;
8403 	u64 cache_gen;
8404 
8405 	root = info->extent_root;
8406 	key.objectid = 0;
8407 	key.offset = 0;
8408 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8409 	path = btrfs_alloc_path();
8410 	if (!path)
8411 		return -ENOMEM;
8412 
8413 	cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
8414 	if (cache_gen != 0 &&
8415 	    btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
8416 		need_clear = 1;
8417 	if (btrfs_test_opt(root, CLEAR_CACHE))
8418 		need_clear = 1;
8419 	if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
8420 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
8421 
8422 	while (1) {
8423 		ret = find_first_block_group(root, path, &key);
8424 		if (ret > 0)
8425 			break;
8426 		if (ret != 0)
8427 			goto error;
8428 		leaf = path->nodes[0];
8429 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8430 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8431 		if (!cache) {
8432 			ret = -ENOMEM;
8433 			goto error;
8434 		}
8435 
8436 		atomic_set(&cache->count, 1);
8437 		spin_lock_init(&cache->lock);
8438 		spin_lock_init(&cache->tree_lock);
8439 		cache->fs_info = info;
8440 		INIT_LIST_HEAD(&cache->list);
8441 		INIT_LIST_HEAD(&cache->cluster_list);
8442 
8443 		if (need_clear)
8444 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8445 
8446 		/*
8447 		 * we only want to have 32k of ram per block group for keeping
8448 		 * track of free space, and if we pass 1/2 of that we want to
8449 		 * start converting things over to using bitmaps
8450 		 */
8451 		cache->extents_thresh = ((1024 * 32) / 2) /
8452 			sizeof(struct btrfs_free_space);
8453 
8454 		read_extent_buffer(leaf, &cache->item,
8455 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8456 				   sizeof(cache->item));
8457 		memcpy(&cache->key, &found_key, sizeof(found_key));
8458 
8459 		key.objectid = found_key.objectid + found_key.offset;
8460 		btrfs_release_path(root, path);
8461 		cache->flags = btrfs_block_group_flags(&cache->item);
8462 		cache->sectorsize = root->sectorsize;
8463 
8464 		/*
8465 		 * We need to exclude the super stripes now so that the space
8466 		 * info has super bytes accounted for, otherwise we'll think
8467 		 * we have more space than we actually do.
8468 		 */
8469 		exclude_super_stripes(root, cache);
8470 
8471 		/*
8472 		 * check for two cases, either we are full, and therefore
8473 		 * don't need to bother with the caching work since we won't
8474 		 * find any space, or we are empty, and we can just add all
8475 		 * the space in and be done with it.  This saves us _alot_ of
8476 		 * time, particularly in the full case.
8477 		 */
8478 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8479 			cache->last_byte_to_unpin = (u64)-1;
8480 			cache->cached = BTRFS_CACHE_FINISHED;
8481 			free_excluded_extents(root, cache);
8482 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8483 			cache->last_byte_to_unpin = (u64)-1;
8484 			cache->cached = BTRFS_CACHE_FINISHED;
8485 			add_new_free_space(cache, root->fs_info,
8486 					   found_key.objectid,
8487 					   found_key.objectid +
8488 					   found_key.offset);
8489 			free_excluded_extents(root, cache);
8490 		}
8491 
8492 		ret = update_space_info(info, cache->flags, found_key.offset,
8493 					btrfs_block_group_used(&cache->item),
8494 					&space_info);
8495 		BUG_ON(ret);
8496 		cache->space_info = space_info;
8497 		spin_lock(&cache->space_info->lock);
8498 		cache->space_info->bytes_readonly += cache->bytes_super;
8499 		spin_unlock(&cache->space_info->lock);
8500 
8501 		__link_block_group(space_info, cache);
8502 
8503 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8504 		BUG_ON(ret);
8505 
8506 		set_avail_alloc_bits(root->fs_info, cache->flags);
8507 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8508 			set_block_group_ro(cache);
8509 	}
8510 
8511 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8512 		if (!(get_alloc_profile(root, space_info->flags) &
8513 		      (BTRFS_BLOCK_GROUP_RAID10 |
8514 		       BTRFS_BLOCK_GROUP_RAID1 |
8515 		       BTRFS_BLOCK_GROUP_DUP)))
8516 			continue;
8517 		/*
8518 		 * avoid allocating from un-mirrored block group if there are
8519 		 * mirrored block groups.
8520 		 */
8521 		list_for_each_entry(cache, &space_info->block_groups[3], list)
8522 			set_block_group_ro(cache);
8523 		list_for_each_entry(cache, &space_info->block_groups[4], list)
8524 			set_block_group_ro(cache);
8525 	}
8526 
8527 	init_global_block_rsv(info);
8528 	ret = 0;
8529 error:
8530 	btrfs_free_path(path);
8531 	return ret;
8532 }
8533 
8534 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8535 			   struct btrfs_root *root, u64 bytes_used,
8536 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8537 			   u64 size)
8538 {
8539 	int ret;
8540 	struct btrfs_root *extent_root;
8541 	struct btrfs_block_group_cache *cache;
8542 
8543 	extent_root = root->fs_info->extent_root;
8544 
8545 	root->fs_info->last_trans_log_full_commit = trans->transid;
8546 
8547 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8548 	if (!cache)
8549 		return -ENOMEM;
8550 
8551 	cache->key.objectid = chunk_offset;
8552 	cache->key.offset = size;
8553 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8554 	cache->sectorsize = root->sectorsize;
8555 	cache->fs_info = root->fs_info;
8556 
8557 	/*
8558 	 * we only want to have 32k of ram per block group for keeping track
8559 	 * of free space, and if we pass 1/2 of that we want to start
8560 	 * converting things over to using bitmaps
8561 	 */
8562 	cache->extents_thresh = ((1024 * 32) / 2) /
8563 		sizeof(struct btrfs_free_space);
8564 	atomic_set(&cache->count, 1);
8565 	spin_lock_init(&cache->lock);
8566 	spin_lock_init(&cache->tree_lock);
8567 	INIT_LIST_HEAD(&cache->list);
8568 	INIT_LIST_HEAD(&cache->cluster_list);
8569 
8570 	btrfs_set_block_group_used(&cache->item, bytes_used);
8571 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8572 	cache->flags = type;
8573 	btrfs_set_block_group_flags(&cache->item, type);
8574 
8575 	cache->last_byte_to_unpin = (u64)-1;
8576 	cache->cached = BTRFS_CACHE_FINISHED;
8577 	exclude_super_stripes(root, cache);
8578 
8579 	add_new_free_space(cache, root->fs_info, chunk_offset,
8580 			   chunk_offset + size);
8581 
8582 	free_excluded_extents(root, cache);
8583 
8584 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8585 				&cache->space_info);
8586 	BUG_ON(ret);
8587 
8588 	spin_lock(&cache->space_info->lock);
8589 	cache->space_info->bytes_readonly += cache->bytes_super;
8590 	spin_unlock(&cache->space_info->lock);
8591 
8592 	__link_block_group(cache->space_info, cache);
8593 
8594 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8595 	BUG_ON(ret);
8596 
8597 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8598 				sizeof(cache->item));
8599 	BUG_ON(ret);
8600 
8601 	set_avail_alloc_bits(extent_root->fs_info, type);
8602 
8603 	return 0;
8604 }
8605 
8606 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8607 			     struct btrfs_root *root, u64 group_start)
8608 {
8609 	struct btrfs_path *path;
8610 	struct btrfs_block_group_cache *block_group;
8611 	struct btrfs_free_cluster *cluster;
8612 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8613 	struct btrfs_key key;
8614 	struct inode *inode;
8615 	int ret;
8616 	int factor;
8617 
8618 	root = root->fs_info->extent_root;
8619 
8620 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8621 	BUG_ON(!block_group);
8622 	BUG_ON(!block_group->ro);
8623 
8624 	memcpy(&key, &block_group->key, sizeof(key));
8625 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8626 				  BTRFS_BLOCK_GROUP_RAID1 |
8627 				  BTRFS_BLOCK_GROUP_RAID10))
8628 		factor = 2;
8629 	else
8630 		factor = 1;
8631 
8632 	/* make sure this block group isn't part of an allocation cluster */
8633 	cluster = &root->fs_info->data_alloc_cluster;
8634 	spin_lock(&cluster->refill_lock);
8635 	btrfs_return_cluster_to_free_space(block_group, cluster);
8636 	spin_unlock(&cluster->refill_lock);
8637 
8638 	/*
8639 	 * make sure this block group isn't part of a metadata
8640 	 * allocation cluster
8641 	 */
8642 	cluster = &root->fs_info->meta_alloc_cluster;
8643 	spin_lock(&cluster->refill_lock);
8644 	btrfs_return_cluster_to_free_space(block_group, cluster);
8645 	spin_unlock(&cluster->refill_lock);
8646 
8647 	path = btrfs_alloc_path();
8648 	BUG_ON(!path);
8649 
8650 	inode = lookup_free_space_inode(root, block_group, path);
8651 	if (!IS_ERR(inode)) {
8652 		btrfs_orphan_add(trans, inode);
8653 		clear_nlink(inode);
8654 		/* One for the block groups ref */
8655 		spin_lock(&block_group->lock);
8656 		if (block_group->iref) {
8657 			block_group->iref = 0;
8658 			block_group->inode = NULL;
8659 			spin_unlock(&block_group->lock);
8660 			iput(inode);
8661 		} else {
8662 			spin_unlock(&block_group->lock);
8663 		}
8664 		/* One for our lookup ref */
8665 		iput(inode);
8666 	}
8667 
8668 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8669 	key.offset = block_group->key.objectid;
8670 	key.type = 0;
8671 
8672 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8673 	if (ret < 0)
8674 		goto out;
8675 	if (ret > 0)
8676 		btrfs_release_path(tree_root, path);
8677 	if (ret == 0) {
8678 		ret = btrfs_del_item(trans, tree_root, path);
8679 		if (ret)
8680 			goto out;
8681 		btrfs_release_path(tree_root, path);
8682 	}
8683 
8684 	spin_lock(&root->fs_info->block_group_cache_lock);
8685 	rb_erase(&block_group->cache_node,
8686 		 &root->fs_info->block_group_cache_tree);
8687 	spin_unlock(&root->fs_info->block_group_cache_lock);
8688 
8689 	down_write(&block_group->space_info->groups_sem);
8690 	/*
8691 	 * we must use list_del_init so people can check to see if they
8692 	 * are still on the list after taking the semaphore
8693 	 */
8694 	list_del_init(&block_group->list);
8695 	up_write(&block_group->space_info->groups_sem);
8696 
8697 	if (block_group->cached == BTRFS_CACHE_STARTED)
8698 		wait_block_group_cache_done(block_group);
8699 
8700 	btrfs_remove_free_space_cache(block_group);
8701 
8702 	spin_lock(&block_group->space_info->lock);
8703 	block_group->space_info->total_bytes -= block_group->key.offset;
8704 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8705 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8706 	spin_unlock(&block_group->space_info->lock);
8707 
8708 	memcpy(&key, &block_group->key, sizeof(key));
8709 
8710 	btrfs_clear_space_info_full(root->fs_info);
8711 
8712 	btrfs_put_block_group(block_group);
8713 	btrfs_put_block_group(block_group);
8714 
8715 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8716 	if (ret > 0)
8717 		ret = -EIO;
8718 	if (ret < 0)
8719 		goto out;
8720 
8721 	ret = btrfs_del_item(trans, root, path);
8722 out:
8723 	btrfs_free_path(path);
8724 	return ret;
8725 }
8726 
8727 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8728 {
8729 	return unpin_extent_range(root, start, end);
8730 }
8731 
8732 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8733 			       u64 num_bytes)
8734 {
8735 	return btrfs_discard_extent(root, bytenr, num_bytes);
8736 }
8737