1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include "compat.h" 27 #include "hash.h" 28 #include "ctree.h" 29 #include "disk-io.h" 30 #include "print-tree.h" 31 #include "transaction.h" 32 #include "volumes.h" 33 #include "locking.h" 34 #include "free-space-cache.h" 35 36 static int update_block_group(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 u64 bytenr, u64 num_bytes, int alloc); 39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache, 40 u64 num_bytes, int reserve, int sinfo); 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_root *root, 43 u64 bytenr, u64 num_bytes, u64 parent, 44 u64 root_objectid, u64 owner_objectid, 45 u64 owner_offset, int refs_to_drop, 46 struct btrfs_delayed_extent_op *extra_op); 47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 48 struct extent_buffer *leaf, 49 struct btrfs_extent_item *ei); 50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_root *root, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_root *root, 57 u64 parent, u64 root_objectid, 58 u64 flags, struct btrfs_disk_key *key, 59 int level, struct btrfs_key *ins); 60 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 61 struct btrfs_root *extent_root, u64 alloc_bytes, 62 u64 flags, int force); 63 static int find_next_key(struct btrfs_path *path, int level, 64 struct btrfs_key *key); 65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 66 int dump_block_groups); 67 68 static noinline int 69 block_group_cache_done(struct btrfs_block_group_cache *cache) 70 { 71 smp_mb(); 72 return cache->cached == BTRFS_CACHE_FINISHED; 73 } 74 75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 76 { 77 return (cache->flags & bits) == bits; 78 } 79 80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 81 { 82 atomic_inc(&cache->count); 83 } 84 85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 86 { 87 if (atomic_dec_and_test(&cache->count)) { 88 WARN_ON(cache->pinned > 0); 89 WARN_ON(cache->reserved > 0); 90 WARN_ON(cache->reserved_pinned > 0); 91 kfree(cache); 92 } 93 } 94 95 /* 96 * this adds the block group to the fs_info rb tree for the block group 97 * cache 98 */ 99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 100 struct btrfs_block_group_cache *block_group) 101 { 102 struct rb_node **p; 103 struct rb_node *parent = NULL; 104 struct btrfs_block_group_cache *cache; 105 106 spin_lock(&info->block_group_cache_lock); 107 p = &info->block_group_cache_tree.rb_node; 108 109 while (*p) { 110 parent = *p; 111 cache = rb_entry(parent, struct btrfs_block_group_cache, 112 cache_node); 113 if (block_group->key.objectid < cache->key.objectid) { 114 p = &(*p)->rb_left; 115 } else if (block_group->key.objectid > cache->key.objectid) { 116 p = &(*p)->rb_right; 117 } else { 118 spin_unlock(&info->block_group_cache_lock); 119 return -EEXIST; 120 } 121 } 122 123 rb_link_node(&block_group->cache_node, parent, p); 124 rb_insert_color(&block_group->cache_node, 125 &info->block_group_cache_tree); 126 spin_unlock(&info->block_group_cache_lock); 127 128 return 0; 129 } 130 131 /* 132 * This will return the block group at or after bytenr if contains is 0, else 133 * it will return the block group that contains the bytenr 134 */ 135 static struct btrfs_block_group_cache * 136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 137 int contains) 138 { 139 struct btrfs_block_group_cache *cache, *ret = NULL; 140 struct rb_node *n; 141 u64 end, start; 142 143 spin_lock(&info->block_group_cache_lock); 144 n = info->block_group_cache_tree.rb_node; 145 146 while (n) { 147 cache = rb_entry(n, struct btrfs_block_group_cache, 148 cache_node); 149 end = cache->key.objectid + cache->key.offset - 1; 150 start = cache->key.objectid; 151 152 if (bytenr < start) { 153 if (!contains && (!ret || start < ret->key.objectid)) 154 ret = cache; 155 n = n->rb_left; 156 } else if (bytenr > start) { 157 if (contains && bytenr <= end) { 158 ret = cache; 159 break; 160 } 161 n = n->rb_right; 162 } else { 163 ret = cache; 164 break; 165 } 166 } 167 if (ret) 168 btrfs_get_block_group(ret); 169 spin_unlock(&info->block_group_cache_lock); 170 171 return ret; 172 } 173 174 static int add_excluded_extent(struct btrfs_root *root, 175 u64 start, u64 num_bytes) 176 { 177 u64 end = start + num_bytes - 1; 178 set_extent_bits(&root->fs_info->freed_extents[0], 179 start, end, EXTENT_UPTODATE, GFP_NOFS); 180 set_extent_bits(&root->fs_info->freed_extents[1], 181 start, end, EXTENT_UPTODATE, GFP_NOFS); 182 return 0; 183 } 184 185 static void free_excluded_extents(struct btrfs_root *root, 186 struct btrfs_block_group_cache *cache) 187 { 188 u64 start, end; 189 190 start = cache->key.objectid; 191 end = start + cache->key.offset - 1; 192 193 clear_extent_bits(&root->fs_info->freed_extents[0], 194 start, end, EXTENT_UPTODATE, GFP_NOFS); 195 clear_extent_bits(&root->fs_info->freed_extents[1], 196 start, end, EXTENT_UPTODATE, GFP_NOFS); 197 } 198 199 static int exclude_super_stripes(struct btrfs_root *root, 200 struct btrfs_block_group_cache *cache) 201 { 202 u64 bytenr; 203 u64 *logical; 204 int stripe_len; 205 int i, nr, ret; 206 207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 209 cache->bytes_super += stripe_len; 210 ret = add_excluded_extent(root, cache->key.objectid, 211 stripe_len); 212 BUG_ON(ret); 213 } 214 215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 216 bytenr = btrfs_sb_offset(i); 217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 218 cache->key.objectid, bytenr, 219 0, &logical, &nr, &stripe_len); 220 BUG_ON(ret); 221 222 while (nr--) { 223 cache->bytes_super += stripe_len; 224 ret = add_excluded_extent(root, logical[nr], 225 stripe_len); 226 BUG_ON(ret); 227 } 228 229 kfree(logical); 230 } 231 return 0; 232 } 233 234 static struct btrfs_caching_control * 235 get_caching_control(struct btrfs_block_group_cache *cache) 236 { 237 struct btrfs_caching_control *ctl; 238 239 spin_lock(&cache->lock); 240 if (cache->cached != BTRFS_CACHE_STARTED) { 241 spin_unlock(&cache->lock); 242 return NULL; 243 } 244 245 /* We're loading it the fast way, so we don't have a caching_ctl. */ 246 if (!cache->caching_ctl) { 247 spin_unlock(&cache->lock); 248 return NULL; 249 } 250 251 ctl = cache->caching_ctl; 252 atomic_inc(&ctl->count); 253 spin_unlock(&cache->lock); 254 return ctl; 255 } 256 257 static void put_caching_control(struct btrfs_caching_control *ctl) 258 { 259 if (atomic_dec_and_test(&ctl->count)) 260 kfree(ctl); 261 } 262 263 /* 264 * this is only called by cache_block_group, since we could have freed extents 265 * we need to check the pinned_extents for any extents that can't be used yet 266 * since their free space will be released as soon as the transaction commits. 267 */ 268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 269 struct btrfs_fs_info *info, u64 start, u64 end) 270 { 271 u64 extent_start, extent_end, size, total_added = 0; 272 int ret; 273 274 while (start < end) { 275 ret = find_first_extent_bit(info->pinned_extents, start, 276 &extent_start, &extent_end, 277 EXTENT_DIRTY | EXTENT_UPTODATE); 278 if (ret) 279 break; 280 281 if (extent_start <= start) { 282 start = extent_end + 1; 283 } else if (extent_start > start && extent_start < end) { 284 size = extent_start - start; 285 total_added += size; 286 ret = btrfs_add_free_space(block_group, start, 287 size); 288 BUG_ON(ret); 289 start = extent_end + 1; 290 } else { 291 break; 292 } 293 } 294 295 if (start < end) { 296 size = end - start; 297 total_added += size; 298 ret = btrfs_add_free_space(block_group, start, size); 299 BUG_ON(ret); 300 } 301 302 return total_added; 303 } 304 305 static int caching_kthread(void *data) 306 { 307 struct btrfs_block_group_cache *block_group = data; 308 struct btrfs_fs_info *fs_info = block_group->fs_info; 309 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl; 310 struct btrfs_root *extent_root = fs_info->extent_root; 311 struct btrfs_path *path; 312 struct extent_buffer *leaf; 313 struct btrfs_key key; 314 u64 total_found = 0; 315 u64 last = 0; 316 u32 nritems; 317 int ret = 0; 318 319 path = btrfs_alloc_path(); 320 if (!path) 321 return -ENOMEM; 322 323 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 324 325 /* 326 * We don't want to deadlock with somebody trying to allocate a new 327 * extent for the extent root while also trying to search the extent 328 * root to add free space. So we skip locking and search the commit 329 * root, since its read-only 330 */ 331 path->skip_locking = 1; 332 path->search_commit_root = 1; 333 path->reada = 2; 334 335 key.objectid = last; 336 key.offset = 0; 337 key.type = BTRFS_EXTENT_ITEM_KEY; 338 again: 339 mutex_lock(&caching_ctl->mutex); 340 /* need to make sure the commit_root doesn't disappear */ 341 down_read(&fs_info->extent_commit_sem); 342 343 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 344 if (ret < 0) 345 goto err; 346 347 leaf = path->nodes[0]; 348 nritems = btrfs_header_nritems(leaf); 349 350 while (1) { 351 smp_mb(); 352 if (fs_info->closing > 1) { 353 last = (u64)-1; 354 break; 355 } 356 357 if (path->slots[0] < nritems) { 358 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 359 } else { 360 ret = find_next_key(path, 0, &key); 361 if (ret) 362 break; 363 364 caching_ctl->progress = last; 365 btrfs_release_path(extent_root, path); 366 up_read(&fs_info->extent_commit_sem); 367 mutex_unlock(&caching_ctl->mutex); 368 if (btrfs_transaction_in_commit(fs_info)) 369 schedule_timeout(1); 370 else 371 cond_resched(); 372 goto again; 373 } 374 375 if (key.objectid < block_group->key.objectid) { 376 path->slots[0]++; 377 continue; 378 } 379 380 if (key.objectid >= block_group->key.objectid + 381 block_group->key.offset) 382 break; 383 384 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 385 total_found += add_new_free_space(block_group, 386 fs_info, last, 387 key.objectid); 388 last = key.objectid + key.offset; 389 390 if (total_found > (1024 * 1024 * 2)) { 391 total_found = 0; 392 wake_up(&caching_ctl->wait); 393 } 394 } 395 path->slots[0]++; 396 } 397 ret = 0; 398 399 total_found += add_new_free_space(block_group, fs_info, last, 400 block_group->key.objectid + 401 block_group->key.offset); 402 caching_ctl->progress = (u64)-1; 403 404 spin_lock(&block_group->lock); 405 block_group->caching_ctl = NULL; 406 block_group->cached = BTRFS_CACHE_FINISHED; 407 spin_unlock(&block_group->lock); 408 409 err: 410 btrfs_free_path(path); 411 up_read(&fs_info->extent_commit_sem); 412 413 free_excluded_extents(extent_root, block_group); 414 415 mutex_unlock(&caching_ctl->mutex); 416 wake_up(&caching_ctl->wait); 417 418 put_caching_control(caching_ctl); 419 atomic_dec(&block_group->space_info->caching_threads); 420 btrfs_put_block_group(block_group); 421 422 return 0; 423 } 424 425 static int cache_block_group(struct btrfs_block_group_cache *cache, 426 struct btrfs_trans_handle *trans, 427 struct btrfs_root *root, 428 int load_cache_only) 429 { 430 struct btrfs_fs_info *fs_info = cache->fs_info; 431 struct btrfs_caching_control *caching_ctl; 432 struct task_struct *tsk; 433 int ret = 0; 434 435 smp_mb(); 436 if (cache->cached != BTRFS_CACHE_NO) 437 return 0; 438 439 /* 440 * We can't do the read from on-disk cache during a commit since we need 441 * to have the normal tree locking. Also if we are currently trying to 442 * allocate blocks for the tree root we can't do the fast caching since 443 * we likely hold important locks. 444 */ 445 if (!trans->transaction->in_commit && 446 (root && root != root->fs_info->tree_root)) { 447 spin_lock(&cache->lock); 448 if (cache->cached != BTRFS_CACHE_NO) { 449 spin_unlock(&cache->lock); 450 return 0; 451 } 452 cache->cached = BTRFS_CACHE_STARTED; 453 spin_unlock(&cache->lock); 454 455 ret = load_free_space_cache(fs_info, cache); 456 457 spin_lock(&cache->lock); 458 if (ret == 1) { 459 cache->cached = BTRFS_CACHE_FINISHED; 460 cache->last_byte_to_unpin = (u64)-1; 461 } else { 462 cache->cached = BTRFS_CACHE_NO; 463 } 464 spin_unlock(&cache->lock); 465 if (ret == 1) { 466 free_excluded_extents(fs_info->extent_root, cache); 467 return 0; 468 } 469 } 470 471 if (load_cache_only) 472 return 0; 473 474 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL); 475 BUG_ON(!caching_ctl); 476 477 INIT_LIST_HEAD(&caching_ctl->list); 478 mutex_init(&caching_ctl->mutex); 479 init_waitqueue_head(&caching_ctl->wait); 480 caching_ctl->block_group = cache; 481 caching_ctl->progress = cache->key.objectid; 482 /* one for caching kthread, one for caching block group list */ 483 atomic_set(&caching_ctl->count, 2); 484 485 spin_lock(&cache->lock); 486 if (cache->cached != BTRFS_CACHE_NO) { 487 spin_unlock(&cache->lock); 488 kfree(caching_ctl); 489 return 0; 490 } 491 cache->caching_ctl = caching_ctl; 492 cache->cached = BTRFS_CACHE_STARTED; 493 spin_unlock(&cache->lock); 494 495 down_write(&fs_info->extent_commit_sem); 496 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 497 up_write(&fs_info->extent_commit_sem); 498 499 atomic_inc(&cache->space_info->caching_threads); 500 btrfs_get_block_group(cache); 501 502 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n", 503 cache->key.objectid); 504 if (IS_ERR(tsk)) { 505 ret = PTR_ERR(tsk); 506 printk(KERN_ERR "error running thread %d\n", ret); 507 BUG(); 508 } 509 510 return ret; 511 } 512 513 /* 514 * return the block group that starts at or after bytenr 515 */ 516 static struct btrfs_block_group_cache * 517 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 518 { 519 struct btrfs_block_group_cache *cache; 520 521 cache = block_group_cache_tree_search(info, bytenr, 0); 522 523 return cache; 524 } 525 526 /* 527 * return the block group that contains the given bytenr 528 */ 529 struct btrfs_block_group_cache *btrfs_lookup_block_group( 530 struct btrfs_fs_info *info, 531 u64 bytenr) 532 { 533 struct btrfs_block_group_cache *cache; 534 535 cache = block_group_cache_tree_search(info, bytenr, 1); 536 537 return cache; 538 } 539 540 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 541 u64 flags) 542 { 543 struct list_head *head = &info->space_info; 544 struct btrfs_space_info *found; 545 546 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | 547 BTRFS_BLOCK_GROUP_METADATA; 548 549 rcu_read_lock(); 550 list_for_each_entry_rcu(found, head, list) { 551 if (found->flags & flags) { 552 rcu_read_unlock(); 553 return found; 554 } 555 } 556 rcu_read_unlock(); 557 return NULL; 558 } 559 560 /* 561 * after adding space to the filesystem, we need to clear the full flags 562 * on all the space infos. 563 */ 564 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 565 { 566 struct list_head *head = &info->space_info; 567 struct btrfs_space_info *found; 568 569 rcu_read_lock(); 570 list_for_each_entry_rcu(found, head, list) 571 found->full = 0; 572 rcu_read_unlock(); 573 } 574 575 static u64 div_factor(u64 num, int factor) 576 { 577 if (factor == 10) 578 return num; 579 num *= factor; 580 do_div(num, 10); 581 return num; 582 } 583 584 static u64 div_factor_fine(u64 num, int factor) 585 { 586 if (factor == 100) 587 return num; 588 num *= factor; 589 do_div(num, 100); 590 return num; 591 } 592 593 u64 btrfs_find_block_group(struct btrfs_root *root, 594 u64 search_start, u64 search_hint, int owner) 595 { 596 struct btrfs_block_group_cache *cache; 597 u64 used; 598 u64 last = max(search_hint, search_start); 599 u64 group_start = 0; 600 int full_search = 0; 601 int factor = 9; 602 int wrapped = 0; 603 again: 604 while (1) { 605 cache = btrfs_lookup_first_block_group(root->fs_info, last); 606 if (!cache) 607 break; 608 609 spin_lock(&cache->lock); 610 last = cache->key.objectid + cache->key.offset; 611 used = btrfs_block_group_used(&cache->item); 612 613 if ((full_search || !cache->ro) && 614 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 615 if (used + cache->pinned + cache->reserved < 616 div_factor(cache->key.offset, factor)) { 617 group_start = cache->key.objectid; 618 spin_unlock(&cache->lock); 619 btrfs_put_block_group(cache); 620 goto found; 621 } 622 } 623 spin_unlock(&cache->lock); 624 btrfs_put_block_group(cache); 625 cond_resched(); 626 } 627 if (!wrapped) { 628 last = search_start; 629 wrapped = 1; 630 goto again; 631 } 632 if (!full_search && factor < 10) { 633 last = search_start; 634 full_search = 1; 635 factor = 10; 636 goto again; 637 } 638 found: 639 return group_start; 640 } 641 642 /* simple helper to search for an existing extent at a given offset */ 643 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 644 { 645 int ret; 646 struct btrfs_key key; 647 struct btrfs_path *path; 648 649 path = btrfs_alloc_path(); 650 BUG_ON(!path); 651 key.objectid = start; 652 key.offset = len; 653 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 654 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 655 0, 0); 656 btrfs_free_path(path); 657 return ret; 658 } 659 660 /* 661 * helper function to lookup reference count and flags of extent. 662 * 663 * the head node for delayed ref is used to store the sum of all the 664 * reference count modifications queued up in the rbtree. the head 665 * node may also store the extent flags to set. This way you can check 666 * to see what the reference count and extent flags would be if all of 667 * the delayed refs are not processed. 668 */ 669 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 670 struct btrfs_root *root, u64 bytenr, 671 u64 num_bytes, u64 *refs, u64 *flags) 672 { 673 struct btrfs_delayed_ref_head *head; 674 struct btrfs_delayed_ref_root *delayed_refs; 675 struct btrfs_path *path; 676 struct btrfs_extent_item *ei; 677 struct extent_buffer *leaf; 678 struct btrfs_key key; 679 u32 item_size; 680 u64 num_refs; 681 u64 extent_flags; 682 int ret; 683 684 path = btrfs_alloc_path(); 685 if (!path) 686 return -ENOMEM; 687 688 key.objectid = bytenr; 689 key.type = BTRFS_EXTENT_ITEM_KEY; 690 key.offset = num_bytes; 691 if (!trans) { 692 path->skip_locking = 1; 693 path->search_commit_root = 1; 694 } 695 again: 696 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 697 &key, path, 0, 0); 698 if (ret < 0) 699 goto out_free; 700 701 if (ret == 0) { 702 leaf = path->nodes[0]; 703 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 704 if (item_size >= sizeof(*ei)) { 705 ei = btrfs_item_ptr(leaf, path->slots[0], 706 struct btrfs_extent_item); 707 num_refs = btrfs_extent_refs(leaf, ei); 708 extent_flags = btrfs_extent_flags(leaf, ei); 709 } else { 710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 711 struct btrfs_extent_item_v0 *ei0; 712 BUG_ON(item_size != sizeof(*ei0)); 713 ei0 = btrfs_item_ptr(leaf, path->slots[0], 714 struct btrfs_extent_item_v0); 715 num_refs = btrfs_extent_refs_v0(leaf, ei0); 716 /* FIXME: this isn't correct for data */ 717 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 718 #else 719 BUG(); 720 #endif 721 } 722 BUG_ON(num_refs == 0); 723 } else { 724 num_refs = 0; 725 extent_flags = 0; 726 ret = 0; 727 } 728 729 if (!trans) 730 goto out; 731 732 delayed_refs = &trans->transaction->delayed_refs; 733 spin_lock(&delayed_refs->lock); 734 head = btrfs_find_delayed_ref_head(trans, bytenr); 735 if (head) { 736 if (!mutex_trylock(&head->mutex)) { 737 atomic_inc(&head->node.refs); 738 spin_unlock(&delayed_refs->lock); 739 740 btrfs_release_path(root->fs_info->extent_root, path); 741 742 mutex_lock(&head->mutex); 743 mutex_unlock(&head->mutex); 744 btrfs_put_delayed_ref(&head->node); 745 goto again; 746 } 747 if (head->extent_op && head->extent_op->update_flags) 748 extent_flags |= head->extent_op->flags_to_set; 749 else 750 BUG_ON(num_refs == 0); 751 752 num_refs += head->node.ref_mod; 753 mutex_unlock(&head->mutex); 754 } 755 spin_unlock(&delayed_refs->lock); 756 out: 757 WARN_ON(num_refs == 0); 758 if (refs) 759 *refs = num_refs; 760 if (flags) 761 *flags = extent_flags; 762 out_free: 763 btrfs_free_path(path); 764 return ret; 765 } 766 767 /* 768 * Back reference rules. Back refs have three main goals: 769 * 770 * 1) differentiate between all holders of references to an extent so that 771 * when a reference is dropped we can make sure it was a valid reference 772 * before freeing the extent. 773 * 774 * 2) Provide enough information to quickly find the holders of an extent 775 * if we notice a given block is corrupted or bad. 776 * 777 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 778 * maintenance. This is actually the same as #2, but with a slightly 779 * different use case. 780 * 781 * There are two kinds of back refs. The implicit back refs is optimized 782 * for pointers in non-shared tree blocks. For a given pointer in a block, 783 * back refs of this kind provide information about the block's owner tree 784 * and the pointer's key. These information allow us to find the block by 785 * b-tree searching. The full back refs is for pointers in tree blocks not 786 * referenced by their owner trees. The location of tree block is recorded 787 * in the back refs. Actually the full back refs is generic, and can be 788 * used in all cases the implicit back refs is used. The major shortcoming 789 * of the full back refs is its overhead. Every time a tree block gets 790 * COWed, we have to update back refs entry for all pointers in it. 791 * 792 * For a newly allocated tree block, we use implicit back refs for 793 * pointers in it. This means most tree related operations only involve 794 * implicit back refs. For a tree block created in old transaction, the 795 * only way to drop a reference to it is COW it. So we can detect the 796 * event that tree block loses its owner tree's reference and do the 797 * back refs conversion. 798 * 799 * When a tree block is COW'd through a tree, there are four cases: 800 * 801 * The reference count of the block is one and the tree is the block's 802 * owner tree. Nothing to do in this case. 803 * 804 * The reference count of the block is one and the tree is not the 805 * block's owner tree. In this case, full back refs is used for pointers 806 * in the block. Remove these full back refs, add implicit back refs for 807 * every pointers in the new block. 808 * 809 * The reference count of the block is greater than one and the tree is 810 * the block's owner tree. In this case, implicit back refs is used for 811 * pointers in the block. Add full back refs for every pointers in the 812 * block, increase lower level extents' reference counts. The original 813 * implicit back refs are entailed to the new block. 814 * 815 * The reference count of the block is greater than one and the tree is 816 * not the block's owner tree. Add implicit back refs for every pointer in 817 * the new block, increase lower level extents' reference count. 818 * 819 * Back Reference Key composing: 820 * 821 * The key objectid corresponds to the first byte in the extent, 822 * The key type is used to differentiate between types of back refs. 823 * There are different meanings of the key offset for different types 824 * of back refs. 825 * 826 * File extents can be referenced by: 827 * 828 * - multiple snapshots, subvolumes, or different generations in one subvol 829 * - different files inside a single subvolume 830 * - different offsets inside a file (bookend extents in file.c) 831 * 832 * The extent ref structure for the implicit back refs has fields for: 833 * 834 * - Objectid of the subvolume root 835 * - objectid of the file holding the reference 836 * - original offset in the file 837 * - how many bookend extents 838 * 839 * The key offset for the implicit back refs is hash of the first 840 * three fields. 841 * 842 * The extent ref structure for the full back refs has field for: 843 * 844 * - number of pointers in the tree leaf 845 * 846 * The key offset for the implicit back refs is the first byte of 847 * the tree leaf 848 * 849 * When a file extent is allocated, The implicit back refs is used. 850 * the fields are filled in: 851 * 852 * (root_key.objectid, inode objectid, offset in file, 1) 853 * 854 * When a file extent is removed file truncation, we find the 855 * corresponding implicit back refs and check the following fields: 856 * 857 * (btrfs_header_owner(leaf), inode objectid, offset in file) 858 * 859 * Btree extents can be referenced by: 860 * 861 * - Different subvolumes 862 * 863 * Both the implicit back refs and the full back refs for tree blocks 864 * only consist of key. The key offset for the implicit back refs is 865 * objectid of block's owner tree. The key offset for the full back refs 866 * is the first byte of parent block. 867 * 868 * When implicit back refs is used, information about the lowest key and 869 * level of the tree block are required. These information are stored in 870 * tree block info structure. 871 */ 872 873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 874 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 875 struct btrfs_root *root, 876 struct btrfs_path *path, 877 u64 owner, u32 extra_size) 878 { 879 struct btrfs_extent_item *item; 880 struct btrfs_extent_item_v0 *ei0; 881 struct btrfs_extent_ref_v0 *ref0; 882 struct btrfs_tree_block_info *bi; 883 struct extent_buffer *leaf; 884 struct btrfs_key key; 885 struct btrfs_key found_key; 886 u32 new_size = sizeof(*item); 887 u64 refs; 888 int ret; 889 890 leaf = path->nodes[0]; 891 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 892 893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 894 ei0 = btrfs_item_ptr(leaf, path->slots[0], 895 struct btrfs_extent_item_v0); 896 refs = btrfs_extent_refs_v0(leaf, ei0); 897 898 if (owner == (u64)-1) { 899 while (1) { 900 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 901 ret = btrfs_next_leaf(root, path); 902 if (ret < 0) 903 return ret; 904 BUG_ON(ret > 0); 905 leaf = path->nodes[0]; 906 } 907 btrfs_item_key_to_cpu(leaf, &found_key, 908 path->slots[0]); 909 BUG_ON(key.objectid != found_key.objectid); 910 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 911 path->slots[0]++; 912 continue; 913 } 914 ref0 = btrfs_item_ptr(leaf, path->slots[0], 915 struct btrfs_extent_ref_v0); 916 owner = btrfs_ref_objectid_v0(leaf, ref0); 917 break; 918 } 919 } 920 btrfs_release_path(root, path); 921 922 if (owner < BTRFS_FIRST_FREE_OBJECTID) 923 new_size += sizeof(*bi); 924 925 new_size -= sizeof(*ei0); 926 ret = btrfs_search_slot(trans, root, &key, path, 927 new_size + extra_size, 1); 928 if (ret < 0) 929 return ret; 930 BUG_ON(ret); 931 932 ret = btrfs_extend_item(trans, root, path, new_size); 933 BUG_ON(ret); 934 935 leaf = path->nodes[0]; 936 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 937 btrfs_set_extent_refs(leaf, item, refs); 938 /* FIXME: get real generation */ 939 btrfs_set_extent_generation(leaf, item, 0); 940 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 941 btrfs_set_extent_flags(leaf, item, 942 BTRFS_EXTENT_FLAG_TREE_BLOCK | 943 BTRFS_BLOCK_FLAG_FULL_BACKREF); 944 bi = (struct btrfs_tree_block_info *)(item + 1); 945 /* FIXME: get first key of the block */ 946 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 947 btrfs_set_tree_block_level(leaf, bi, (int)owner); 948 } else { 949 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 950 } 951 btrfs_mark_buffer_dirty(leaf); 952 return 0; 953 } 954 #endif 955 956 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 957 { 958 u32 high_crc = ~(u32)0; 959 u32 low_crc = ~(u32)0; 960 __le64 lenum; 961 962 lenum = cpu_to_le64(root_objectid); 963 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 964 lenum = cpu_to_le64(owner); 965 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 966 lenum = cpu_to_le64(offset); 967 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 968 969 return ((u64)high_crc << 31) ^ (u64)low_crc; 970 } 971 972 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 973 struct btrfs_extent_data_ref *ref) 974 { 975 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 976 btrfs_extent_data_ref_objectid(leaf, ref), 977 btrfs_extent_data_ref_offset(leaf, ref)); 978 } 979 980 static int match_extent_data_ref(struct extent_buffer *leaf, 981 struct btrfs_extent_data_ref *ref, 982 u64 root_objectid, u64 owner, u64 offset) 983 { 984 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 985 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 986 btrfs_extent_data_ref_offset(leaf, ref) != offset) 987 return 0; 988 return 1; 989 } 990 991 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 992 struct btrfs_root *root, 993 struct btrfs_path *path, 994 u64 bytenr, u64 parent, 995 u64 root_objectid, 996 u64 owner, u64 offset) 997 { 998 struct btrfs_key key; 999 struct btrfs_extent_data_ref *ref; 1000 struct extent_buffer *leaf; 1001 u32 nritems; 1002 int ret; 1003 int recow; 1004 int err = -ENOENT; 1005 1006 key.objectid = bytenr; 1007 if (parent) { 1008 key.type = BTRFS_SHARED_DATA_REF_KEY; 1009 key.offset = parent; 1010 } else { 1011 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1012 key.offset = hash_extent_data_ref(root_objectid, 1013 owner, offset); 1014 } 1015 again: 1016 recow = 0; 1017 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1018 if (ret < 0) { 1019 err = ret; 1020 goto fail; 1021 } 1022 1023 if (parent) { 1024 if (!ret) 1025 return 0; 1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1027 key.type = BTRFS_EXTENT_REF_V0_KEY; 1028 btrfs_release_path(root, path); 1029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1030 if (ret < 0) { 1031 err = ret; 1032 goto fail; 1033 } 1034 if (!ret) 1035 return 0; 1036 #endif 1037 goto fail; 1038 } 1039 1040 leaf = path->nodes[0]; 1041 nritems = btrfs_header_nritems(leaf); 1042 while (1) { 1043 if (path->slots[0] >= nritems) { 1044 ret = btrfs_next_leaf(root, path); 1045 if (ret < 0) 1046 err = ret; 1047 if (ret) 1048 goto fail; 1049 1050 leaf = path->nodes[0]; 1051 nritems = btrfs_header_nritems(leaf); 1052 recow = 1; 1053 } 1054 1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1056 if (key.objectid != bytenr || 1057 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1058 goto fail; 1059 1060 ref = btrfs_item_ptr(leaf, path->slots[0], 1061 struct btrfs_extent_data_ref); 1062 1063 if (match_extent_data_ref(leaf, ref, root_objectid, 1064 owner, offset)) { 1065 if (recow) { 1066 btrfs_release_path(root, path); 1067 goto again; 1068 } 1069 err = 0; 1070 break; 1071 } 1072 path->slots[0]++; 1073 } 1074 fail: 1075 return err; 1076 } 1077 1078 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1079 struct btrfs_root *root, 1080 struct btrfs_path *path, 1081 u64 bytenr, u64 parent, 1082 u64 root_objectid, u64 owner, 1083 u64 offset, int refs_to_add) 1084 { 1085 struct btrfs_key key; 1086 struct extent_buffer *leaf; 1087 u32 size; 1088 u32 num_refs; 1089 int ret; 1090 1091 key.objectid = bytenr; 1092 if (parent) { 1093 key.type = BTRFS_SHARED_DATA_REF_KEY; 1094 key.offset = parent; 1095 size = sizeof(struct btrfs_shared_data_ref); 1096 } else { 1097 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1098 key.offset = hash_extent_data_ref(root_objectid, 1099 owner, offset); 1100 size = sizeof(struct btrfs_extent_data_ref); 1101 } 1102 1103 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1104 if (ret && ret != -EEXIST) 1105 goto fail; 1106 1107 leaf = path->nodes[0]; 1108 if (parent) { 1109 struct btrfs_shared_data_ref *ref; 1110 ref = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_shared_data_ref); 1112 if (ret == 0) { 1113 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1114 } else { 1115 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1116 num_refs += refs_to_add; 1117 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1118 } 1119 } else { 1120 struct btrfs_extent_data_ref *ref; 1121 while (ret == -EEXIST) { 1122 ref = btrfs_item_ptr(leaf, path->slots[0], 1123 struct btrfs_extent_data_ref); 1124 if (match_extent_data_ref(leaf, ref, root_objectid, 1125 owner, offset)) 1126 break; 1127 btrfs_release_path(root, path); 1128 key.offset++; 1129 ret = btrfs_insert_empty_item(trans, root, path, &key, 1130 size); 1131 if (ret && ret != -EEXIST) 1132 goto fail; 1133 1134 leaf = path->nodes[0]; 1135 } 1136 ref = btrfs_item_ptr(leaf, path->slots[0], 1137 struct btrfs_extent_data_ref); 1138 if (ret == 0) { 1139 btrfs_set_extent_data_ref_root(leaf, ref, 1140 root_objectid); 1141 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1142 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1143 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1144 } else { 1145 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1146 num_refs += refs_to_add; 1147 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1148 } 1149 } 1150 btrfs_mark_buffer_dirty(leaf); 1151 ret = 0; 1152 fail: 1153 btrfs_release_path(root, path); 1154 return ret; 1155 } 1156 1157 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1158 struct btrfs_root *root, 1159 struct btrfs_path *path, 1160 int refs_to_drop) 1161 { 1162 struct btrfs_key key; 1163 struct btrfs_extent_data_ref *ref1 = NULL; 1164 struct btrfs_shared_data_ref *ref2 = NULL; 1165 struct extent_buffer *leaf; 1166 u32 num_refs = 0; 1167 int ret = 0; 1168 1169 leaf = path->nodes[0]; 1170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1171 1172 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1173 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1174 struct btrfs_extent_data_ref); 1175 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1176 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1177 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1178 struct btrfs_shared_data_ref); 1179 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1181 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1182 struct btrfs_extent_ref_v0 *ref0; 1183 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1184 struct btrfs_extent_ref_v0); 1185 num_refs = btrfs_ref_count_v0(leaf, ref0); 1186 #endif 1187 } else { 1188 BUG(); 1189 } 1190 1191 BUG_ON(num_refs < refs_to_drop); 1192 num_refs -= refs_to_drop; 1193 1194 if (num_refs == 0) { 1195 ret = btrfs_del_item(trans, root, path); 1196 } else { 1197 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1198 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1199 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1200 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1202 else { 1203 struct btrfs_extent_ref_v0 *ref0; 1204 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_extent_ref_v0); 1206 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1207 } 1208 #endif 1209 btrfs_mark_buffer_dirty(leaf); 1210 } 1211 return ret; 1212 } 1213 1214 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1215 struct btrfs_path *path, 1216 struct btrfs_extent_inline_ref *iref) 1217 { 1218 struct btrfs_key key; 1219 struct extent_buffer *leaf; 1220 struct btrfs_extent_data_ref *ref1; 1221 struct btrfs_shared_data_ref *ref2; 1222 u32 num_refs = 0; 1223 1224 leaf = path->nodes[0]; 1225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1226 if (iref) { 1227 if (btrfs_extent_inline_ref_type(leaf, iref) == 1228 BTRFS_EXTENT_DATA_REF_KEY) { 1229 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1230 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1231 } else { 1232 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1233 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1234 } 1235 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1236 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_extent_data_ref); 1238 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1239 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1240 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_shared_data_ref); 1242 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1244 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1245 struct btrfs_extent_ref_v0 *ref0; 1246 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1247 struct btrfs_extent_ref_v0); 1248 num_refs = btrfs_ref_count_v0(leaf, ref0); 1249 #endif 1250 } else { 1251 WARN_ON(1); 1252 } 1253 return num_refs; 1254 } 1255 1256 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1257 struct btrfs_root *root, 1258 struct btrfs_path *path, 1259 u64 bytenr, u64 parent, 1260 u64 root_objectid) 1261 { 1262 struct btrfs_key key; 1263 int ret; 1264 1265 key.objectid = bytenr; 1266 if (parent) { 1267 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1268 key.offset = parent; 1269 } else { 1270 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1271 key.offset = root_objectid; 1272 } 1273 1274 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1275 if (ret > 0) 1276 ret = -ENOENT; 1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1278 if (ret == -ENOENT && parent) { 1279 btrfs_release_path(root, path); 1280 key.type = BTRFS_EXTENT_REF_V0_KEY; 1281 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1282 if (ret > 0) 1283 ret = -ENOENT; 1284 } 1285 #endif 1286 return ret; 1287 } 1288 1289 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1290 struct btrfs_root *root, 1291 struct btrfs_path *path, 1292 u64 bytenr, u64 parent, 1293 u64 root_objectid) 1294 { 1295 struct btrfs_key key; 1296 int ret; 1297 1298 key.objectid = bytenr; 1299 if (parent) { 1300 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1301 key.offset = parent; 1302 } else { 1303 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1304 key.offset = root_objectid; 1305 } 1306 1307 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1308 btrfs_release_path(root, path); 1309 return ret; 1310 } 1311 1312 static inline int extent_ref_type(u64 parent, u64 owner) 1313 { 1314 int type; 1315 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1316 if (parent > 0) 1317 type = BTRFS_SHARED_BLOCK_REF_KEY; 1318 else 1319 type = BTRFS_TREE_BLOCK_REF_KEY; 1320 } else { 1321 if (parent > 0) 1322 type = BTRFS_SHARED_DATA_REF_KEY; 1323 else 1324 type = BTRFS_EXTENT_DATA_REF_KEY; 1325 } 1326 return type; 1327 } 1328 1329 static int find_next_key(struct btrfs_path *path, int level, 1330 struct btrfs_key *key) 1331 1332 { 1333 for (; level < BTRFS_MAX_LEVEL; level++) { 1334 if (!path->nodes[level]) 1335 break; 1336 if (path->slots[level] + 1 >= 1337 btrfs_header_nritems(path->nodes[level])) 1338 continue; 1339 if (level == 0) 1340 btrfs_item_key_to_cpu(path->nodes[level], key, 1341 path->slots[level] + 1); 1342 else 1343 btrfs_node_key_to_cpu(path->nodes[level], key, 1344 path->slots[level] + 1); 1345 return 0; 1346 } 1347 return 1; 1348 } 1349 1350 /* 1351 * look for inline back ref. if back ref is found, *ref_ret is set 1352 * to the address of inline back ref, and 0 is returned. 1353 * 1354 * if back ref isn't found, *ref_ret is set to the address where it 1355 * should be inserted, and -ENOENT is returned. 1356 * 1357 * if insert is true and there are too many inline back refs, the path 1358 * points to the extent item, and -EAGAIN is returned. 1359 * 1360 * NOTE: inline back refs are ordered in the same way that back ref 1361 * items in the tree are ordered. 1362 */ 1363 static noinline_for_stack 1364 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1365 struct btrfs_root *root, 1366 struct btrfs_path *path, 1367 struct btrfs_extent_inline_ref **ref_ret, 1368 u64 bytenr, u64 num_bytes, 1369 u64 parent, u64 root_objectid, 1370 u64 owner, u64 offset, int insert) 1371 { 1372 struct btrfs_key key; 1373 struct extent_buffer *leaf; 1374 struct btrfs_extent_item *ei; 1375 struct btrfs_extent_inline_ref *iref; 1376 u64 flags; 1377 u64 item_size; 1378 unsigned long ptr; 1379 unsigned long end; 1380 int extra_size; 1381 int type; 1382 int want; 1383 int ret; 1384 int err = 0; 1385 1386 key.objectid = bytenr; 1387 key.type = BTRFS_EXTENT_ITEM_KEY; 1388 key.offset = num_bytes; 1389 1390 want = extent_ref_type(parent, owner); 1391 if (insert) { 1392 extra_size = btrfs_extent_inline_ref_size(want); 1393 path->keep_locks = 1; 1394 } else 1395 extra_size = -1; 1396 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1397 if (ret < 0) { 1398 err = ret; 1399 goto out; 1400 } 1401 BUG_ON(ret); 1402 1403 leaf = path->nodes[0]; 1404 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1406 if (item_size < sizeof(*ei)) { 1407 if (!insert) { 1408 err = -ENOENT; 1409 goto out; 1410 } 1411 ret = convert_extent_item_v0(trans, root, path, owner, 1412 extra_size); 1413 if (ret < 0) { 1414 err = ret; 1415 goto out; 1416 } 1417 leaf = path->nodes[0]; 1418 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1419 } 1420 #endif 1421 BUG_ON(item_size < sizeof(*ei)); 1422 1423 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1424 flags = btrfs_extent_flags(leaf, ei); 1425 1426 ptr = (unsigned long)(ei + 1); 1427 end = (unsigned long)ei + item_size; 1428 1429 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1430 ptr += sizeof(struct btrfs_tree_block_info); 1431 BUG_ON(ptr > end); 1432 } else { 1433 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1434 } 1435 1436 err = -ENOENT; 1437 while (1) { 1438 if (ptr >= end) { 1439 WARN_ON(ptr > end); 1440 break; 1441 } 1442 iref = (struct btrfs_extent_inline_ref *)ptr; 1443 type = btrfs_extent_inline_ref_type(leaf, iref); 1444 if (want < type) 1445 break; 1446 if (want > type) { 1447 ptr += btrfs_extent_inline_ref_size(type); 1448 continue; 1449 } 1450 1451 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1452 struct btrfs_extent_data_ref *dref; 1453 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1454 if (match_extent_data_ref(leaf, dref, root_objectid, 1455 owner, offset)) { 1456 err = 0; 1457 break; 1458 } 1459 if (hash_extent_data_ref_item(leaf, dref) < 1460 hash_extent_data_ref(root_objectid, owner, offset)) 1461 break; 1462 } else { 1463 u64 ref_offset; 1464 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1465 if (parent > 0) { 1466 if (parent == ref_offset) { 1467 err = 0; 1468 break; 1469 } 1470 if (ref_offset < parent) 1471 break; 1472 } else { 1473 if (root_objectid == ref_offset) { 1474 err = 0; 1475 break; 1476 } 1477 if (ref_offset < root_objectid) 1478 break; 1479 } 1480 } 1481 ptr += btrfs_extent_inline_ref_size(type); 1482 } 1483 if (err == -ENOENT && insert) { 1484 if (item_size + extra_size >= 1485 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1486 err = -EAGAIN; 1487 goto out; 1488 } 1489 /* 1490 * To add new inline back ref, we have to make sure 1491 * there is no corresponding back ref item. 1492 * For simplicity, we just do not add new inline back 1493 * ref if there is any kind of item for this block 1494 */ 1495 if (find_next_key(path, 0, &key) == 0 && 1496 key.objectid == bytenr && 1497 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1498 err = -EAGAIN; 1499 goto out; 1500 } 1501 } 1502 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1503 out: 1504 if (insert) { 1505 path->keep_locks = 0; 1506 btrfs_unlock_up_safe(path, 1); 1507 } 1508 return err; 1509 } 1510 1511 /* 1512 * helper to add new inline back ref 1513 */ 1514 static noinline_for_stack 1515 int setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1516 struct btrfs_root *root, 1517 struct btrfs_path *path, 1518 struct btrfs_extent_inline_ref *iref, 1519 u64 parent, u64 root_objectid, 1520 u64 owner, u64 offset, int refs_to_add, 1521 struct btrfs_delayed_extent_op *extent_op) 1522 { 1523 struct extent_buffer *leaf; 1524 struct btrfs_extent_item *ei; 1525 unsigned long ptr; 1526 unsigned long end; 1527 unsigned long item_offset; 1528 u64 refs; 1529 int size; 1530 int type; 1531 int ret; 1532 1533 leaf = path->nodes[0]; 1534 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1535 item_offset = (unsigned long)iref - (unsigned long)ei; 1536 1537 type = extent_ref_type(parent, owner); 1538 size = btrfs_extent_inline_ref_size(type); 1539 1540 ret = btrfs_extend_item(trans, root, path, size); 1541 BUG_ON(ret); 1542 1543 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1544 refs = btrfs_extent_refs(leaf, ei); 1545 refs += refs_to_add; 1546 btrfs_set_extent_refs(leaf, ei, refs); 1547 if (extent_op) 1548 __run_delayed_extent_op(extent_op, leaf, ei); 1549 1550 ptr = (unsigned long)ei + item_offset; 1551 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1552 if (ptr < end - size) 1553 memmove_extent_buffer(leaf, ptr + size, ptr, 1554 end - size - ptr); 1555 1556 iref = (struct btrfs_extent_inline_ref *)ptr; 1557 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1558 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1559 struct btrfs_extent_data_ref *dref; 1560 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1561 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1562 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1563 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1564 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1565 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1566 struct btrfs_shared_data_ref *sref; 1567 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1568 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1569 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1570 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1571 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1572 } else { 1573 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1574 } 1575 btrfs_mark_buffer_dirty(leaf); 1576 return 0; 1577 } 1578 1579 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1580 struct btrfs_root *root, 1581 struct btrfs_path *path, 1582 struct btrfs_extent_inline_ref **ref_ret, 1583 u64 bytenr, u64 num_bytes, u64 parent, 1584 u64 root_objectid, u64 owner, u64 offset) 1585 { 1586 int ret; 1587 1588 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1589 bytenr, num_bytes, parent, 1590 root_objectid, owner, offset, 0); 1591 if (ret != -ENOENT) 1592 return ret; 1593 1594 btrfs_release_path(root, path); 1595 *ref_ret = NULL; 1596 1597 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1598 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1599 root_objectid); 1600 } else { 1601 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1602 root_objectid, owner, offset); 1603 } 1604 return ret; 1605 } 1606 1607 /* 1608 * helper to update/remove inline back ref 1609 */ 1610 static noinline_for_stack 1611 int update_inline_extent_backref(struct btrfs_trans_handle *trans, 1612 struct btrfs_root *root, 1613 struct btrfs_path *path, 1614 struct btrfs_extent_inline_ref *iref, 1615 int refs_to_mod, 1616 struct btrfs_delayed_extent_op *extent_op) 1617 { 1618 struct extent_buffer *leaf; 1619 struct btrfs_extent_item *ei; 1620 struct btrfs_extent_data_ref *dref = NULL; 1621 struct btrfs_shared_data_ref *sref = NULL; 1622 unsigned long ptr; 1623 unsigned long end; 1624 u32 item_size; 1625 int size; 1626 int type; 1627 int ret; 1628 u64 refs; 1629 1630 leaf = path->nodes[0]; 1631 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1632 refs = btrfs_extent_refs(leaf, ei); 1633 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1634 refs += refs_to_mod; 1635 btrfs_set_extent_refs(leaf, ei, refs); 1636 if (extent_op) 1637 __run_delayed_extent_op(extent_op, leaf, ei); 1638 1639 type = btrfs_extent_inline_ref_type(leaf, iref); 1640 1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1642 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1643 refs = btrfs_extent_data_ref_count(leaf, dref); 1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1645 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1646 refs = btrfs_shared_data_ref_count(leaf, sref); 1647 } else { 1648 refs = 1; 1649 BUG_ON(refs_to_mod != -1); 1650 } 1651 1652 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1653 refs += refs_to_mod; 1654 1655 if (refs > 0) { 1656 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1657 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1658 else 1659 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1660 } else { 1661 size = btrfs_extent_inline_ref_size(type); 1662 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1663 ptr = (unsigned long)iref; 1664 end = (unsigned long)ei + item_size; 1665 if (ptr + size < end) 1666 memmove_extent_buffer(leaf, ptr, ptr + size, 1667 end - ptr - size); 1668 item_size -= size; 1669 ret = btrfs_truncate_item(trans, root, path, item_size, 1); 1670 BUG_ON(ret); 1671 } 1672 btrfs_mark_buffer_dirty(leaf); 1673 return 0; 1674 } 1675 1676 static noinline_for_stack 1677 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1678 struct btrfs_root *root, 1679 struct btrfs_path *path, 1680 u64 bytenr, u64 num_bytes, u64 parent, 1681 u64 root_objectid, u64 owner, 1682 u64 offset, int refs_to_add, 1683 struct btrfs_delayed_extent_op *extent_op) 1684 { 1685 struct btrfs_extent_inline_ref *iref; 1686 int ret; 1687 1688 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1689 bytenr, num_bytes, parent, 1690 root_objectid, owner, offset, 1); 1691 if (ret == 0) { 1692 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1693 ret = update_inline_extent_backref(trans, root, path, iref, 1694 refs_to_add, extent_op); 1695 } else if (ret == -ENOENT) { 1696 ret = setup_inline_extent_backref(trans, root, path, iref, 1697 parent, root_objectid, 1698 owner, offset, refs_to_add, 1699 extent_op); 1700 } 1701 return ret; 1702 } 1703 1704 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1705 struct btrfs_root *root, 1706 struct btrfs_path *path, 1707 u64 bytenr, u64 parent, u64 root_objectid, 1708 u64 owner, u64 offset, int refs_to_add) 1709 { 1710 int ret; 1711 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1712 BUG_ON(refs_to_add != 1); 1713 ret = insert_tree_block_ref(trans, root, path, bytenr, 1714 parent, root_objectid); 1715 } else { 1716 ret = insert_extent_data_ref(trans, root, path, bytenr, 1717 parent, root_objectid, 1718 owner, offset, refs_to_add); 1719 } 1720 return ret; 1721 } 1722 1723 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref *iref, 1727 int refs_to_drop, int is_data) 1728 { 1729 int ret; 1730 1731 BUG_ON(!is_data && refs_to_drop != 1); 1732 if (iref) { 1733 ret = update_inline_extent_backref(trans, root, path, iref, 1734 -refs_to_drop, NULL); 1735 } else if (is_data) { 1736 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1737 } else { 1738 ret = btrfs_del_item(trans, root, path); 1739 } 1740 return ret; 1741 } 1742 1743 static void btrfs_issue_discard(struct block_device *bdev, 1744 u64 start, u64 len) 1745 { 1746 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0); 1747 } 1748 1749 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1750 u64 num_bytes) 1751 { 1752 int ret; 1753 u64 map_length = num_bytes; 1754 struct btrfs_multi_bio *multi = NULL; 1755 1756 if (!btrfs_test_opt(root, DISCARD)) 1757 return 0; 1758 1759 /* Tell the block device(s) that the sectors can be discarded */ 1760 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, 1761 bytenr, &map_length, &multi, 0); 1762 if (!ret) { 1763 struct btrfs_bio_stripe *stripe = multi->stripes; 1764 int i; 1765 1766 if (map_length > num_bytes) 1767 map_length = num_bytes; 1768 1769 for (i = 0; i < multi->num_stripes; i++, stripe++) { 1770 btrfs_issue_discard(stripe->dev->bdev, 1771 stripe->physical, 1772 map_length); 1773 } 1774 kfree(multi); 1775 } 1776 1777 return ret; 1778 } 1779 1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1781 struct btrfs_root *root, 1782 u64 bytenr, u64 num_bytes, u64 parent, 1783 u64 root_objectid, u64 owner, u64 offset) 1784 { 1785 int ret; 1786 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1787 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1788 1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1790 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 1791 parent, root_objectid, (int)owner, 1792 BTRFS_ADD_DELAYED_REF, NULL); 1793 } else { 1794 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 1795 parent, root_objectid, owner, offset, 1796 BTRFS_ADD_DELAYED_REF, NULL); 1797 } 1798 return ret; 1799 } 1800 1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1802 struct btrfs_root *root, 1803 u64 bytenr, u64 num_bytes, 1804 u64 parent, u64 root_objectid, 1805 u64 owner, u64 offset, int refs_to_add, 1806 struct btrfs_delayed_extent_op *extent_op) 1807 { 1808 struct btrfs_path *path; 1809 struct extent_buffer *leaf; 1810 struct btrfs_extent_item *item; 1811 u64 refs; 1812 int ret; 1813 int err = 0; 1814 1815 path = btrfs_alloc_path(); 1816 if (!path) 1817 return -ENOMEM; 1818 1819 path->reada = 1; 1820 path->leave_spinning = 1; 1821 /* this will setup the path even if it fails to insert the back ref */ 1822 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1823 path, bytenr, num_bytes, parent, 1824 root_objectid, owner, offset, 1825 refs_to_add, extent_op); 1826 if (ret == 0) 1827 goto out; 1828 1829 if (ret != -EAGAIN) { 1830 err = ret; 1831 goto out; 1832 } 1833 1834 leaf = path->nodes[0]; 1835 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1836 refs = btrfs_extent_refs(leaf, item); 1837 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1838 if (extent_op) 1839 __run_delayed_extent_op(extent_op, leaf, item); 1840 1841 btrfs_mark_buffer_dirty(leaf); 1842 btrfs_release_path(root->fs_info->extent_root, path); 1843 1844 path->reada = 1; 1845 path->leave_spinning = 1; 1846 1847 /* now insert the actual backref */ 1848 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1849 path, bytenr, parent, root_objectid, 1850 owner, offset, refs_to_add); 1851 BUG_ON(ret); 1852 out: 1853 btrfs_free_path(path); 1854 return err; 1855 } 1856 1857 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1858 struct btrfs_root *root, 1859 struct btrfs_delayed_ref_node *node, 1860 struct btrfs_delayed_extent_op *extent_op, 1861 int insert_reserved) 1862 { 1863 int ret = 0; 1864 struct btrfs_delayed_data_ref *ref; 1865 struct btrfs_key ins; 1866 u64 parent = 0; 1867 u64 ref_root = 0; 1868 u64 flags = 0; 1869 1870 ins.objectid = node->bytenr; 1871 ins.offset = node->num_bytes; 1872 ins.type = BTRFS_EXTENT_ITEM_KEY; 1873 1874 ref = btrfs_delayed_node_to_data_ref(node); 1875 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1876 parent = ref->parent; 1877 else 1878 ref_root = ref->root; 1879 1880 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1881 if (extent_op) { 1882 BUG_ON(extent_op->update_key); 1883 flags |= extent_op->flags_to_set; 1884 } 1885 ret = alloc_reserved_file_extent(trans, root, 1886 parent, ref_root, flags, 1887 ref->objectid, ref->offset, 1888 &ins, node->ref_mod); 1889 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1890 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1891 node->num_bytes, parent, 1892 ref_root, ref->objectid, 1893 ref->offset, node->ref_mod, 1894 extent_op); 1895 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1896 ret = __btrfs_free_extent(trans, root, node->bytenr, 1897 node->num_bytes, parent, 1898 ref_root, ref->objectid, 1899 ref->offset, node->ref_mod, 1900 extent_op); 1901 } else { 1902 BUG(); 1903 } 1904 return ret; 1905 } 1906 1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1908 struct extent_buffer *leaf, 1909 struct btrfs_extent_item *ei) 1910 { 1911 u64 flags = btrfs_extent_flags(leaf, ei); 1912 if (extent_op->update_flags) { 1913 flags |= extent_op->flags_to_set; 1914 btrfs_set_extent_flags(leaf, ei, flags); 1915 } 1916 1917 if (extent_op->update_key) { 1918 struct btrfs_tree_block_info *bi; 1919 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1920 bi = (struct btrfs_tree_block_info *)(ei + 1); 1921 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1922 } 1923 } 1924 1925 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1926 struct btrfs_root *root, 1927 struct btrfs_delayed_ref_node *node, 1928 struct btrfs_delayed_extent_op *extent_op) 1929 { 1930 struct btrfs_key key; 1931 struct btrfs_path *path; 1932 struct btrfs_extent_item *ei; 1933 struct extent_buffer *leaf; 1934 u32 item_size; 1935 int ret; 1936 int err = 0; 1937 1938 path = btrfs_alloc_path(); 1939 if (!path) 1940 return -ENOMEM; 1941 1942 key.objectid = node->bytenr; 1943 key.type = BTRFS_EXTENT_ITEM_KEY; 1944 key.offset = node->num_bytes; 1945 1946 path->reada = 1; 1947 path->leave_spinning = 1; 1948 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 1949 path, 0, 1); 1950 if (ret < 0) { 1951 err = ret; 1952 goto out; 1953 } 1954 if (ret > 0) { 1955 err = -EIO; 1956 goto out; 1957 } 1958 1959 leaf = path->nodes[0]; 1960 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1962 if (item_size < sizeof(*ei)) { 1963 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 1964 path, (u64)-1, 0); 1965 if (ret < 0) { 1966 err = ret; 1967 goto out; 1968 } 1969 leaf = path->nodes[0]; 1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1971 } 1972 #endif 1973 BUG_ON(item_size < sizeof(*ei)); 1974 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1975 __run_delayed_extent_op(extent_op, leaf, ei); 1976 1977 btrfs_mark_buffer_dirty(leaf); 1978 out: 1979 btrfs_free_path(path); 1980 return err; 1981 } 1982 1983 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1984 struct btrfs_root *root, 1985 struct btrfs_delayed_ref_node *node, 1986 struct btrfs_delayed_extent_op *extent_op, 1987 int insert_reserved) 1988 { 1989 int ret = 0; 1990 struct btrfs_delayed_tree_ref *ref; 1991 struct btrfs_key ins; 1992 u64 parent = 0; 1993 u64 ref_root = 0; 1994 1995 ins.objectid = node->bytenr; 1996 ins.offset = node->num_bytes; 1997 ins.type = BTRFS_EXTENT_ITEM_KEY; 1998 1999 ref = btrfs_delayed_node_to_tree_ref(node); 2000 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2001 parent = ref->parent; 2002 else 2003 ref_root = ref->root; 2004 2005 BUG_ON(node->ref_mod != 1); 2006 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2007 BUG_ON(!extent_op || !extent_op->update_flags || 2008 !extent_op->update_key); 2009 ret = alloc_reserved_tree_block(trans, root, 2010 parent, ref_root, 2011 extent_op->flags_to_set, 2012 &extent_op->key, 2013 ref->level, &ins); 2014 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2015 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2016 node->num_bytes, parent, ref_root, 2017 ref->level, 0, 1, extent_op); 2018 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2019 ret = __btrfs_free_extent(trans, root, node->bytenr, 2020 node->num_bytes, parent, ref_root, 2021 ref->level, 0, 1, extent_op); 2022 } else { 2023 BUG(); 2024 } 2025 return ret; 2026 } 2027 2028 /* helper function to actually process a single delayed ref entry */ 2029 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2030 struct btrfs_root *root, 2031 struct btrfs_delayed_ref_node *node, 2032 struct btrfs_delayed_extent_op *extent_op, 2033 int insert_reserved) 2034 { 2035 int ret; 2036 if (btrfs_delayed_ref_is_head(node)) { 2037 struct btrfs_delayed_ref_head *head; 2038 /* 2039 * we've hit the end of the chain and we were supposed 2040 * to insert this extent into the tree. But, it got 2041 * deleted before we ever needed to insert it, so all 2042 * we have to do is clean up the accounting 2043 */ 2044 BUG_ON(extent_op); 2045 head = btrfs_delayed_node_to_head(node); 2046 if (insert_reserved) { 2047 btrfs_pin_extent(root, node->bytenr, 2048 node->num_bytes, 1); 2049 if (head->is_data) { 2050 ret = btrfs_del_csums(trans, root, 2051 node->bytenr, 2052 node->num_bytes); 2053 BUG_ON(ret); 2054 } 2055 } 2056 mutex_unlock(&head->mutex); 2057 return 0; 2058 } 2059 2060 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2061 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2062 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2063 insert_reserved); 2064 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2065 node->type == BTRFS_SHARED_DATA_REF_KEY) 2066 ret = run_delayed_data_ref(trans, root, node, extent_op, 2067 insert_reserved); 2068 else 2069 BUG(); 2070 return ret; 2071 } 2072 2073 static noinline struct btrfs_delayed_ref_node * 2074 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2075 { 2076 struct rb_node *node; 2077 struct btrfs_delayed_ref_node *ref; 2078 int action = BTRFS_ADD_DELAYED_REF; 2079 again: 2080 /* 2081 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2082 * this prevents ref count from going down to zero when 2083 * there still are pending delayed ref. 2084 */ 2085 node = rb_prev(&head->node.rb_node); 2086 while (1) { 2087 if (!node) 2088 break; 2089 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2090 rb_node); 2091 if (ref->bytenr != head->node.bytenr) 2092 break; 2093 if (ref->action == action) 2094 return ref; 2095 node = rb_prev(node); 2096 } 2097 if (action == BTRFS_ADD_DELAYED_REF) { 2098 action = BTRFS_DROP_DELAYED_REF; 2099 goto again; 2100 } 2101 return NULL; 2102 } 2103 2104 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2105 struct btrfs_root *root, 2106 struct list_head *cluster) 2107 { 2108 struct btrfs_delayed_ref_root *delayed_refs; 2109 struct btrfs_delayed_ref_node *ref; 2110 struct btrfs_delayed_ref_head *locked_ref = NULL; 2111 struct btrfs_delayed_extent_op *extent_op; 2112 int ret; 2113 int count = 0; 2114 int must_insert_reserved = 0; 2115 2116 delayed_refs = &trans->transaction->delayed_refs; 2117 while (1) { 2118 if (!locked_ref) { 2119 /* pick a new head ref from the cluster list */ 2120 if (list_empty(cluster)) 2121 break; 2122 2123 locked_ref = list_entry(cluster->next, 2124 struct btrfs_delayed_ref_head, cluster); 2125 2126 /* grab the lock that says we are going to process 2127 * all the refs for this head */ 2128 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2129 2130 /* 2131 * we may have dropped the spin lock to get the head 2132 * mutex lock, and that might have given someone else 2133 * time to free the head. If that's true, it has been 2134 * removed from our list and we can move on. 2135 */ 2136 if (ret == -EAGAIN) { 2137 locked_ref = NULL; 2138 count++; 2139 continue; 2140 } 2141 } 2142 2143 /* 2144 * record the must insert reserved flag before we 2145 * drop the spin lock. 2146 */ 2147 must_insert_reserved = locked_ref->must_insert_reserved; 2148 locked_ref->must_insert_reserved = 0; 2149 2150 extent_op = locked_ref->extent_op; 2151 locked_ref->extent_op = NULL; 2152 2153 /* 2154 * locked_ref is the head node, so we have to go one 2155 * node back for any delayed ref updates 2156 */ 2157 ref = select_delayed_ref(locked_ref); 2158 if (!ref) { 2159 /* All delayed refs have been processed, Go ahead 2160 * and send the head node to run_one_delayed_ref, 2161 * so that any accounting fixes can happen 2162 */ 2163 ref = &locked_ref->node; 2164 2165 if (extent_op && must_insert_reserved) { 2166 kfree(extent_op); 2167 extent_op = NULL; 2168 } 2169 2170 if (extent_op) { 2171 spin_unlock(&delayed_refs->lock); 2172 2173 ret = run_delayed_extent_op(trans, root, 2174 ref, extent_op); 2175 BUG_ON(ret); 2176 kfree(extent_op); 2177 2178 cond_resched(); 2179 spin_lock(&delayed_refs->lock); 2180 continue; 2181 } 2182 2183 list_del_init(&locked_ref->cluster); 2184 locked_ref = NULL; 2185 } 2186 2187 ref->in_tree = 0; 2188 rb_erase(&ref->rb_node, &delayed_refs->root); 2189 delayed_refs->num_entries--; 2190 2191 spin_unlock(&delayed_refs->lock); 2192 2193 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2194 must_insert_reserved); 2195 BUG_ON(ret); 2196 2197 btrfs_put_delayed_ref(ref); 2198 kfree(extent_op); 2199 count++; 2200 2201 cond_resched(); 2202 spin_lock(&delayed_refs->lock); 2203 } 2204 return count; 2205 } 2206 2207 /* 2208 * this starts processing the delayed reference count updates and 2209 * extent insertions we have queued up so far. count can be 2210 * 0, which means to process everything in the tree at the start 2211 * of the run (but not newly added entries), or it can be some target 2212 * number you'd like to process. 2213 */ 2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, unsigned long count) 2216 { 2217 struct rb_node *node; 2218 struct btrfs_delayed_ref_root *delayed_refs; 2219 struct btrfs_delayed_ref_node *ref; 2220 struct list_head cluster; 2221 int ret; 2222 int run_all = count == (unsigned long)-1; 2223 int run_most = 0; 2224 2225 if (root == root->fs_info->extent_root) 2226 root = root->fs_info->tree_root; 2227 2228 delayed_refs = &trans->transaction->delayed_refs; 2229 INIT_LIST_HEAD(&cluster); 2230 again: 2231 spin_lock(&delayed_refs->lock); 2232 if (count == 0) { 2233 count = delayed_refs->num_entries * 2; 2234 run_most = 1; 2235 } 2236 while (1) { 2237 if (!(run_all || run_most) && 2238 delayed_refs->num_heads_ready < 64) 2239 break; 2240 2241 /* 2242 * go find something we can process in the rbtree. We start at 2243 * the beginning of the tree, and then build a cluster 2244 * of refs to process starting at the first one we are able to 2245 * lock 2246 */ 2247 ret = btrfs_find_ref_cluster(trans, &cluster, 2248 delayed_refs->run_delayed_start); 2249 if (ret) 2250 break; 2251 2252 ret = run_clustered_refs(trans, root, &cluster); 2253 BUG_ON(ret < 0); 2254 2255 count -= min_t(unsigned long, ret, count); 2256 2257 if (count == 0) 2258 break; 2259 } 2260 2261 if (run_all) { 2262 node = rb_first(&delayed_refs->root); 2263 if (!node) 2264 goto out; 2265 count = (unsigned long)-1; 2266 2267 while (node) { 2268 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2269 rb_node); 2270 if (btrfs_delayed_ref_is_head(ref)) { 2271 struct btrfs_delayed_ref_head *head; 2272 2273 head = btrfs_delayed_node_to_head(ref); 2274 atomic_inc(&ref->refs); 2275 2276 spin_unlock(&delayed_refs->lock); 2277 mutex_lock(&head->mutex); 2278 mutex_unlock(&head->mutex); 2279 2280 btrfs_put_delayed_ref(ref); 2281 cond_resched(); 2282 goto again; 2283 } 2284 node = rb_next(node); 2285 } 2286 spin_unlock(&delayed_refs->lock); 2287 schedule_timeout(1); 2288 goto again; 2289 } 2290 out: 2291 spin_unlock(&delayed_refs->lock); 2292 return 0; 2293 } 2294 2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2296 struct btrfs_root *root, 2297 u64 bytenr, u64 num_bytes, u64 flags, 2298 int is_data) 2299 { 2300 struct btrfs_delayed_extent_op *extent_op; 2301 int ret; 2302 2303 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2304 if (!extent_op) 2305 return -ENOMEM; 2306 2307 extent_op->flags_to_set = flags; 2308 extent_op->update_flags = 1; 2309 extent_op->update_key = 0; 2310 extent_op->is_data = is_data ? 1 : 0; 2311 2312 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2313 if (ret) 2314 kfree(extent_op); 2315 return ret; 2316 } 2317 2318 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2319 struct btrfs_root *root, 2320 struct btrfs_path *path, 2321 u64 objectid, u64 offset, u64 bytenr) 2322 { 2323 struct btrfs_delayed_ref_head *head; 2324 struct btrfs_delayed_ref_node *ref; 2325 struct btrfs_delayed_data_ref *data_ref; 2326 struct btrfs_delayed_ref_root *delayed_refs; 2327 struct rb_node *node; 2328 int ret = 0; 2329 2330 ret = -ENOENT; 2331 delayed_refs = &trans->transaction->delayed_refs; 2332 spin_lock(&delayed_refs->lock); 2333 head = btrfs_find_delayed_ref_head(trans, bytenr); 2334 if (!head) 2335 goto out; 2336 2337 if (!mutex_trylock(&head->mutex)) { 2338 atomic_inc(&head->node.refs); 2339 spin_unlock(&delayed_refs->lock); 2340 2341 btrfs_release_path(root->fs_info->extent_root, path); 2342 2343 mutex_lock(&head->mutex); 2344 mutex_unlock(&head->mutex); 2345 btrfs_put_delayed_ref(&head->node); 2346 return -EAGAIN; 2347 } 2348 2349 node = rb_prev(&head->node.rb_node); 2350 if (!node) 2351 goto out_unlock; 2352 2353 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2354 2355 if (ref->bytenr != bytenr) 2356 goto out_unlock; 2357 2358 ret = 1; 2359 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2360 goto out_unlock; 2361 2362 data_ref = btrfs_delayed_node_to_data_ref(ref); 2363 2364 node = rb_prev(node); 2365 if (node) { 2366 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2367 if (ref->bytenr == bytenr) 2368 goto out_unlock; 2369 } 2370 2371 if (data_ref->root != root->root_key.objectid || 2372 data_ref->objectid != objectid || data_ref->offset != offset) 2373 goto out_unlock; 2374 2375 ret = 0; 2376 out_unlock: 2377 mutex_unlock(&head->mutex); 2378 out: 2379 spin_unlock(&delayed_refs->lock); 2380 return ret; 2381 } 2382 2383 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2384 struct btrfs_root *root, 2385 struct btrfs_path *path, 2386 u64 objectid, u64 offset, u64 bytenr) 2387 { 2388 struct btrfs_root *extent_root = root->fs_info->extent_root; 2389 struct extent_buffer *leaf; 2390 struct btrfs_extent_data_ref *ref; 2391 struct btrfs_extent_inline_ref *iref; 2392 struct btrfs_extent_item *ei; 2393 struct btrfs_key key; 2394 u32 item_size; 2395 int ret; 2396 2397 key.objectid = bytenr; 2398 key.offset = (u64)-1; 2399 key.type = BTRFS_EXTENT_ITEM_KEY; 2400 2401 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2402 if (ret < 0) 2403 goto out; 2404 BUG_ON(ret == 0); 2405 2406 ret = -ENOENT; 2407 if (path->slots[0] == 0) 2408 goto out; 2409 2410 path->slots[0]--; 2411 leaf = path->nodes[0]; 2412 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2413 2414 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2415 goto out; 2416 2417 ret = 1; 2418 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2420 if (item_size < sizeof(*ei)) { 2421 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2422 goto out; 2423 } 2424 #endif 2425 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2426 2427 if (item_size != sizeof(*ei) + 2428 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2429 goto out; 2430 2431 if (btrfs_extent_generation(leaf, ei) <= 2432 btrfs_root_last_snapshot(&root->root_item)) 2433 goto out; 2434 2435 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2436 if (btrfs_extent_inline_ref_type(leaf, iref) != 2437 BTRFS_EXTENT_DATA_REF_KEY) 2438 goto out; 2439 2440 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2441 if (btrfs_extent_refs(leaf, ei) != 2442 btrfs_extent_data_ref_count(leaf, ref) || 2443 btrfs_extent_data_ref_root(leaf, ref) != 2444 root->root_key.objectid || 2445 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2446 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2447 goto out; 2448 2449 ret = 0; 2450 out: 2451 return ret; 2452 } 2453 2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2455 struct btrfs_root *root, 2456 u64 objectid, u64 offset, u64 bytenr) 2457 { 2458 struct btrfs_path *path; 2459 int ret; 2460 int ret2; 2461 2462 path = btrfs_alloc_path(); 2463 if (!path) 2464 return -ENOENT; 2465 2466 do { 2467 ret = check_committed_ref(trans, root, path, objectid, 2468 offset, bytenr); 2469 if (ret && ret != -ENOENT) 2470 goto out; 2471 2472 ret2 = check_delayed_ref(trans, root, path, objectid, 2473 offset, bytenr); 2474 } while (ret2 == -EAGAIN); 2475 2476 if (ret2 && ret2 != -ENOENT) { 2477 ret = ret2; 2478 goto out; 2479 } 2480 2481 if (ret != -ENOENT || ret2 != -ENOENT) 2482 ret = 0; 2483 out: 2484 btrfs_free_path(path); 2485 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2486 WARN_ON(ret > 0); 2487 return ret; 2488 } 2489 2490 #if 0 2491 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2492 struct extent_buffer *buf, u32 nr_extents) 2493 { 2494 struct btrfs_key key; 2495 struct btrfs_file_extent_item *fi; 2496 u64 root_gen; 2497 u32 nritems; 2498 int i; 2499 int level; 2500 int ret = 0; 2501 int shared = 0; 2502 2503 if (!root->ref_cows) 2504 return 0; 2505 2506 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2507 shared = 0; 2508 root_gen = root->root_key.offset; 2509 } else { 2510 shared = 1; 2511 root_gen = trans->transid - 1; 2512 } 2513 2514 level = btrfs_header_level(buf); 2515 nritems = btrfs_header_nritems(buf); 2516 2517 if (level == 0) { 2518 struct btrfs_leaf_ref *ref; 2519 struct btrfs_extent_info *info; 2520 2521 ref = btrfs_alloc_leaf_ref(root, nr_extents); 2522 if (!ref) { 2523 ret = -ENOMEM; 2524 goto out; 2525 } 2526 2527 ref->root_gen = root_gen; 2528 ref->bytenr = buf->start; 2529 ref->owner = btrfs_header_owner(buf); 2530 ref->generation = btrfs_header_generation(buf); 2531 ref->nritems = nr_extents; 2532 info = ref->extents; 2533 2534 for (i = 0; nr_extents > 0 && i < nritems; i++) { 2535 u64 disk_bytenr; 2536 btrfs_item_key_to_cpu(buf, &key, i); 2537 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2538 continue; 2539 fi = btrfs_item_ptr(buf, i, 2540 struct btrfs_file_extent_item); 2541 if (btrfs_file_extent_type(buf, fi) == 2542 BTRFS_FILE_EXTENT_INLINE) 2543 continue; 2544 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2545 if (disk_bytenr == 0) 2546 continue; 2547 2548 info->bytenr = disk_bytenr; 2549 info->num_bytes = 2550 btrfs_file_extent_disk_num_bytes(buf, fi); 2551 info->objectid = key.objectid; 2552 info->offset = key.offset; 2553 info++; 2554 } 2555 2556 ret = btrfs_add_leaf_ref(root, ref, shared); 2557 if (ret == -EEXIST && shared) { 2558 struct btrfs_leaf_ref *old; 2559 old = btrfs_lookup_leaf_ref(root, ref->bytenr); 2560 BUG_ON(!old); 2561 btrfs_remove_leaf_ref(root, old); 2562 btrfs_free_leaf_ref(root, old); 2563 ret = btrfs_add_leaf_ref(root, ref, shared); 2564 } 2565 WARN_ON(ret); 2566 btrfs_free_leaf_ref(root, ref); 2567 } 2568 out: 2569 return ret; 2570 } 2571 2572 /* when a block goes through cow, we update the reference counts of 2573 * everything that block points to. The internal pointers of the block 2574 * can be in just about any order, and it is likely to have clusters of 2575 * things that are close together and clusters of things that are not. 2576 * 2577 * To help reduce the seeks that come with updating all of these reference 2578 * counts, sort them by byte number before actual updates are done. 2579 * 2580 * struct refsort is used to match byte number to slot in the btree block. 2581 * we sort based on the byte number and then use the slot to actually 2582 * find the item. 2583 * 2584 * struct refsort is smaller than strcut btrfs_item and smaller than 2585 * struct btrfs_key_ptr. Since we're currently limited to the page size 2586 * for a btree block, there's no way for a kmalloc of refsorts for a 2587 * single node to be bigger than a page. 2588 */ 2589 struct refsort { 2590 u64 bytenr; 2591 u32 slot; 2592 }; 2593 2594 /* 2595 * for passing into sort() 2596 */ 2597 static int refsort_cmp(const void *a_void, const void *b_void) 2598 { 2599 const struct refsort *a = a_void; 2600 const struct refsort *b = b_void; 2601 2602 if (a->bytenr < b->bytenr) 2603 return -1; 2604 if (a->bytenr > b->bytenr) 2605 return 1; 2606 return 0; 2607 } 2608 #endif 2609 2610 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2611 struct btrfs_root *root, 2612 struct extent_buffer *buf, 2613 int full_backref, int inc) 2614 { 2615 u64 bytenr; 2616 u64 num_bytes; 2617 u64 parent; 2618 u64 ref_root; 2619 u32 nritems; 2620 struct btrfs_key key; 2621 struct btrfs_file_extent_item *fi; 2622 int i; 2623 int level; 2624 int ret = 0; 2625 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2626 u64, u64, u64, u64, u64, u64); 2627 2628 ref_root = btrfs_header_owner(buf); 2629 nritems = btrfs_header_nritems(buf); 2630 level = btrfs_header_level(buf); 2631 2632 if (!root->ref_cows && level == 0) 2633 return 0; 2634 2635 if (inc) 2636 process_func = btrfs_inc_extent_ref; 2637 else 2638 process_func = btrfs_free_extent; 2639 2640 if (full_backref) 2641 parent = buf->start; 2642 else 2643 parent = 0; 2644 2645 for (i = 0; i < nritems; i++) { 2646 if (level == 0) { 2647 btrfs_item_key_to_cpu(buf, &key, i); 2648 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2649 continue; 2650 fi = btrfs_item_ptr(buf, i, 2651 struct btrfs_file_extent_item); 2652 if (btrfs_file_extent_type(buf, fi) == 2653 BTRFS_FILE_EXTENT_INLINE) 2654 continue; 2655 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2656 if (bytenr == 0) 2657 continue; 2658 2659 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2660 key.offset -= btrfs_file_extent_offset(buf, fi); 2661 ret = process_func(trans, root, bytenr, num_bytes, 2662 parent, ref_root, key.objectid, 2663 key.offset); 2664 if (ret) 2665 goto fail; 2666 } else { 2667 bytenr = btrfs_node_blockptr(buf, i); 2668 num_bytes = btrfs_level_size(root, level - 1); 2669 ret = process_func(trans, root, bytenr, num_bytes, 2670 parent, ref_root, level - 1, 0); 2671 if (ret) 2672 goto fail; 2673 } 2674 } 2675 return 0; 2676 fail: 2677 BUG(); 2678 return ret; 2679 } 2680 2681 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2682 struct extent_buffer *buf, int full_backref) 2683 { 2684 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2685 } 2686 2687 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2688 struct extent_buffer *buf, int full_backref) 2689 { 2690 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2691 } 2692 2693 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2694 struct btrfs_root *root, 2695 struct btrfs_path *path, 2696 struct btrfs_block_group_cache *cache) 2697 { 2698 int ret; 2699 struct btrfs_root *extent_root = root->fs_info->extent_root; 2700 unsigned long bi; 2701 struct extent_buffer *leaf; 2702 2703 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2704 if (ret < 0) 2705 goto fail; 2706 BUG_ON(ret); 2707 2708 leaf = path->nodes[0]; 2709 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2710 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2711 btrfs_mark_buffer_dirty(leaf); 2712 btrfs_release_path(extent_root, path); 2713 fail: 2714 if (ret) 2715 return ret; 2716 return 0; 2717 2718 } 2719 2720 static struct btrfs_block_group_cache * 2721 next_block_group(struct btrfs_root *root, 2722 struct btrfs_block_group_cache *cache) 2723 { 2724 struct rb_node *node; 2725 spin_lock(&root->fs_info->block_group_cache_lock); 2726 node = rb_next(&cache->cache_node); 2727 btrfs_put_block_group(cache); 2728 if (node) { 2729 cache = rb_entry(node, struct btrfs_block_group_cache, 2730 cache_node); 2731 btrfs_get_block_group(cache); 2732 } else 2733 cache = NULL; 2734 spin_unlock(&root->fs_info->block_group_cache_lock); 2735 return cache; 2736 } 2737 2738 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2739 struct btrfs_trans_handle *trans, 2740 struct btrfs_path *path) 2741 { 2742 struct btrfs_root *root = block_group->fs_info->tree_root; 2743 struct inode *inode = NULL; 2744 u64 alloc_hint = 0; 2745 int dcs = BTRFS_DC_ERROR; 2746 int num_pages = 0; 2747 int retries = 0; 2748 int ret = 0; 2749 2750 /* 2751 * If this block group is smaller than 100 megs don't bother caching the 2752 * block group. 2753 */ 2754 if (block_group->key.offset < (100 * 1024 * 1024)) { 2755 spin_lock(&block_group->lock); 2756 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2757 spin_unlock(&block_group->lock); 2758 return 0; 2759 } 2760 2761 again: 2762 inode = lookup_free_space_inode(root, block_group, path); 2763 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2764 ret = PTR_ERR(inode); 2765 btrfs_release_path(root, path); 2766 goto out; 2767 } 2768 2769 if (IS_ERR(inode)) { 2770 BUG_ON(retries); 2771 retries++; 2772 2773 if (block_group->ro) 2774 goto out_free; 2775 2776 ret = create_free_space_inode(root, trans, block_group, path); 2777 if (ret) 2778 goto out_free; 2779 goto again; 2780 } 2781 2782 /* 2783 * We want to set the generation to 0, that way if anything goes wrong 2784 * from here on out we know not to trust this cache when we load up next 2785 * time. 2786 */ 2787 BTRFS_I(inode)->generation = 0; 2788 ret = btrfs_update_inode(trans, root, inode); 2789 WARN_ON(ret); 2790 2791 if (i_size_read(inode) > 0) { 2792 ret = btrfs_truncate_free_space_cache(root, trans, path, 2793 inode); 2794 if (ret) 2795 goto out_put; 2796 } 2797 2798 spin_lock(&block_group->lock); 2799 if (block_group->cached != BTRFS_CACHE_FINISHED) { 2800 /* We're not cached, don't bother trying to write stuff out */ 2801 dcs = BTRFS_DC_WRITTEN; 2802 spin_unlock(&block_group->lock); 2803 goto out_put; 2804 } 2805 spin_unlock(&block_group->lock); 2806 2807 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); 2808 if (!num_pages) 2809 num_pages = 1; 2810 2811 /* 2812 * Just to make absolutely sure we have enough space, we're going to 2813 * preallocate 12 pages worth of space for each block group. In 2814 * practice we ought to use at most 8, but we need extra space so we can 2815 * add our header and have a terminator between the extents and the 2816 * bitmaps. 2817 */ 2818 num_pages *= 16; 2819 num_pages *= PAGE_CACHE_SIZE; 2820 2821 ret = btrfs_check_data_free_space(inode, num_pages); 2822 if (ret) 2823 goto out_put; 2824 2825 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2826 num_pages, num_pages, 2827 &alloc_hint); 2828 if (!ret) 2829 dcs = BTRFS_DC_SETUP; 2830 btrfs_free_reserved_data_space(inode, num_pages); 2831 out_put: 2832 iput(inode); 2833 out_free: 2834 btrfs_release_path(root, path); 2835 out: 2836 spin_lock(&block_group->lock); 2837 block_group->disk_cache_state = dcs; 2838 spin_unlock(&block_group->lock); 2839 2840 return ret; 2841 } 2842 2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root) 2845 { 2846 struct btrfs_block_group_cache *cache; 2847 int err = 0; 2848 struct btrfs_path *path; 2849 u64 last = 0; 2850 2851 path = btrfs_alloc_path(); 2852 if (!path) 2853 return -ENOMEM; 2854 2855 again: 2856 while (1) { 2857 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2858 while (cache) { 2859 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2860 break; 2861 cache = next_block_group(root, cache); 2862 } 2863 if (!cache) { 2864 if (last == 0) 2865 break; 2866 last = 0; 2867 continue; 2868 } 2869 err = cache_save_setup(cache, trans, path); 2870 last = cache->key.objectid + cache->key.offset; 2871 btrfs_put_block_group(cache); 2872 } 2873 2874 while (1) { 2875 if (last == 0) { 2876 err = btrfs_run_delayed_refs(trans, root, 2877 (unsigned long)-1); 2878 BUG_ON(err); 2879 } 2880 2881 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2882 while (cache) { 2883 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 2884 btrfs_put_block_group(cache); 2885 goto again; 2886 } 2887 2888 if (cache->dirty) 2889 break; 2890 cache = next_block_group(root, cache); 2891 } 2892 if (!cache) { 2893 if (last == 0) 2894 break; 2895 last = 0; 2896 continue; 2897 } 2898 2899 if (cache->disk_cache_state == BTRFS_DC_SETUP) 2900 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 2901 cache->dirty = 0; 2902 last = cache->key.objectid + cache->key.offset; 2903 2904 err = write_one_cache_group(trans, root, path, cache); 2905 BUG_ON(err); 2906 btrfs_put_block_group(cache); 2907 } 2908 2909 while (1) { 2910 /* 2911 * I don't think this is needed since we're just marking our 2912 * preallocated extent as written, but just in case it can't 2913 * hurt. 2914 */ 2915 if (last == 0) { 2916 err = btrfs_run_delayed_refs(trans, root, 2917 (unsigned long)-1); 2918 BUG_ON(err); 2919 } 2920 2921 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2922 while (cache) { 2923 /* 2924 * Really this shouldn't happen, but it could if we 2925 * couldn't write the entire preallocated extent and 2926 * splitting the extent resulted in a new block. 2927 */ 2928 if (cache->dirty) { 2929 btrfs_put_block_group(cache); 2930 goto again; 2931 } 2932 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 2933 break; 2934 cache = next_block_group(root, cache); 2935 } 2936 if (!cache) { 2937 if (last == 0) 2938 break; 2939 last = 0; 2940 continue; 2941 } 2942 2943 btrfs_write_out_cache(root, trans, cache, path); 2944 2945 /* 2946 * If we didn't have an error then the cache state is still 2947 * NEED_WRITE, so we can set it to WRITTEN. 2948 */ 2949 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 2950 cache->disk_cache_state = BTRFS_DC_WRITTEN; 2951 last = cache->key.objectid + cache->key.offset; 2952 btrfs_put_block_group(cache); 2953 } 2954 2955 btrfs_free_path(path); 2956 return 0; 2957 } 2958 2959 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 2960 { 2961 struct btrfs_block_group_cache *block_group; 2962 int readonly = 0; 2963 2964 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 2965 if (!block_group || block_group->ro) 2966 readonly = 1; 2967 if (block_group) 2968 btrfs_put_block_group(block_group); 2969 return readonly; 2970 } 2971 2972 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 2973 u64 total_bytes, u64 bytes_used, 2974 struct btrfs_space_info **space_info) 2975 { 2976 struct btrfs_space_info *found; 2977 int i; 2978 int factor; 2979 2980 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2981 BTRFS_BLOCK_GROUP_RAID10)) 2982 factor = 2; 2983 else 2984 factor = 1; 2985 2986 found = __find_space_info(info, flags); 2987 if (found) { 2988 spin_lock(&found->lock); 2989 found->total_bytes += total_bytes; 2990 found->disk_total += total_bytes * factor; 2991 found->bytes_used += bytes_used; 2992 found->disk_used += bytes_used * factor; 2993 found->full = 0; 2994 spin_unlock(&found->lock); 2995 *space_info = found; 2996 return 0; 2997 } 2998 found = kzalloc(sizeof(*found), GFP_NOFS); 2999 if (!found) 3000 return -ENOMEM; 3001 3002 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3003 INIT_LIST_HEAD(&found->block_groups[i]); 3004 init_rwsem(&found->groups_sem); 3005 spin_lock_init(&found->lock); 3006 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | 3007 BTRFS_BLOCK_GROUP_SYSTEM | 3008 BTRFS_BLOCK_GROUP_METADATA); 3009 found->total_bytes = total_bytes; 3010 found->disk_total = total_bytes * factor; 3011 found->bytes_used = bytes_used; 3012 found->disk_used = bytes_used * factor; 3013 found->bytes_pinned = 0; 3014 found->bytes_reserved = 0; 3015 found->bytes_readonly = 0; 3016 found->bytes_may_use = 0; 3017 found->full = 0; 3018 found->force_alloc = 0; 3019 *space_info = found; 3020 list_add_rcu(&found->list, &info->space_info); 3021 atomic_set(&found->caching_threads, 0); 3022 return 0; 3023 } 3024 3025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3026 { 3027 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | 3028 BTRFS_BLOCK_GROUP_RAID1 | 3029 BTRFS_BLOCK_GROUP_RAID10 | 3030 BTRFS_BLOCK_GROUP_DUP); 3031 if (extra_flags) { 3032 if (flags & BTRFS_BLOCK_GROUP_DATA) 3033 fs_info->avail_data_alloc_bits |= extra_flags; 3034 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3035 fs_info->avail_metadata_alloc_bits |= extra_flags; 3036 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3037 fs_info->avail_system_alloc_bits |= extra_flags; 3038 } 3039 } 3040 3041 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3042 { 3043 /* 3044 * we add in the count of missing devices because we want 3045 * to make sure that any RAID levels on a degraded FS 3046 * continue to be honored. 3047 */ 3048 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3049 root->fs_info->fs_devices->missing_devices; 3050 3051 if (num_devices == 1) 3052 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3053 if (num_devices < 4) 3054 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3055 3056 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3057 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3058 BTRFS_BLOCK_GROUP_RAID10))) { 3059 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3060 } 3061 3062 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3063 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3064 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3065 } 3066 3067 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3068 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3069 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3070 (flags & BTRFS_BLOCK_GROUP_DUP))) 3071 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3072 return flags; 3073 } 3074 3075 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3076 { 3077 if (flags & BTRFS_BLOCK_GROUP_DATA) 3078 flags |= root->fs_info->avail_data_alloc_bits & 3079 root->fs_info->data_alloc_profile; 3080 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3081 flags |= root->fs_info->avail_system_alloc_bits & 3082 root->fs_info->system_alloc_profile; 3083 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3084 flags |= root->fs_info->avail_metadata_alloc_bits & 3085 root->fs_info->metadata_alloc_profile; 3086 return btrfs_reduce_alloc_profile(root, flags); 3087 } 3088 3089 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3090 { 3091 u64 flags; 3092 3093 if (data) 3094 flags = BTRFS_BLOCK_GROUP_DATA; 3095 else if (root == root->fs_info->chunk_root) 3096 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3097 else 3098 flags = BTRFS_BLOCK_GROUP_METADATA; 3099 3100 return get_alloc_profile(root, flags); 3101 } 3102 3103 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 3104 { 3105 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 3106 BTRFS_BLOCK_GROUP_DATA); 3107 } 3108 3109 /* 3110 * This will check the space that the inode allocates from to make sure we have 3111 * enough space for bytes. 3112 */ 3113 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3114 { 3115 struct btrfs_space_info *data_sinfo; 3116 struct btrfs_root *root = BTRFS_I(inode)->root; 3117 u64 used; 3118 int ret = 0, committed = 0, alloc_chunk = 1; 3119 3120 /* make sure bytes are sectorsize aligned */ 3121 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3122 3123 if (root == root->fs_info->tree_root) { 3124 alloc_chunk = 0; 3125 committed = 1; 3126 } 3127 3128 data_sinfo = BTRFS_I(inode)->space_info; 3129 if (!data_sinfo) 3130 goto alloc; 3131 3132 again: 3133 /* make sure we have enough space to handle the data first */ 3134 spin_lock(&data_sinfo->lock); 3135 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3136 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3137 data_sinfo->bytes_may_use; 3138 3139 if (used + bytes > data_sinfo->total_bytes) { 3140 struct btrfs_trans_handle *trans; 3141 3142 /* 3143 * if we don't have enough free bytes in this space then we need 3144 * to alloc a new chunk. 3145 */ 3146 if (!data_sinfo->full && alloc_chunk) { 3147 u64 alloc_target; 3148 3149 data_sinfo->force_alloc = 1; 3150 spin_unlock(&data_sinfo->lock); 3151 alloc: 3152 alloc_target = btrfs_get_alloc_profile(root, 1); 3153 trans = btrfs_join_transaction(root, 1); 3154 if (IS_ERR(trans)) 3155 return PTR_ERR(trans); 3156 3157 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3158 bytes + 2 * 1024 * 1024, 3159 alloc_target, 0); 3160 btrfs_end_transaction(trans, root); 3161 if (ret < 0) { 3162 if (ret != -ENOSPC) 3163 return ret; 3164 else 3165 goto commit_trans; 3166 } 3167 3168 if (!data_sinfo) { 3169 btrfs_set_inode_space_info(root, inode); 3170 data_sinfo = BTRFS_I(inode)->space_info; 3171 } 3172 goto again; 3173 } 3174 spin_unlock(&data_sinfo->lock); 3175 3176 /* commit the current transaction and try again */ 3177 commit_trans: 3178 if (!committed && !root->fs_info->open_ioctl_trans) { 3179 committed = 1; 3180 trans = btrfs_join_transaction(root, 1); 3181 if (IS_ERR(trans)) 3182 return PTR_ERR(trans); 3183 ret = btrfs_commit_transaction(trans, root); 3184 if (ret) 3185 return ret; 3186 goto again; 3187 } 3188 3189 #if 0 /* I hope we never need this code again, just in case */ 3190 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, " 3191 "%llu bytes_reserved, " "%llu bytes_pinned, " 3192 "%llu bytes_readonly, %llu may use %llu total\n", 3193 (unsigned long long)bytes, 3194 (unsigned long long)data_sinfo->bytes_used, 3195 (unsigned long long)data_sinfo->bytes_reserved, 3196 (unsigned long long)data_sinfo->bytes_pinned, 3197 (unsigned long long)data_sinfo->bytes_readonly, 3198 (unsigned long long)data_sinfo->bytes_may_use, 3199 (unsigned long long)data_sinfo->total_bytes); 3200 #endif 3201 return -ENOSPC; 3202 } 3203 data_sinfo->bytes_may_use += bytes; 3204 BTRFS_I(inode)->reserved_bytes += bytes; 3205 spin_unlock(&data_sinfo->lock); 3206 3207 return 0; 3208 } 3209 3210 /* 3211 * called when we are clearing an delalloc extent from the 3212 * inode's io_tree or there was an error for whatever reason 3213 * after calling btrfs_check_data_free_space 3214 */ 3215 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3216 { 3217 struct btrfs_root *root = BTRFS_I(inode)->root; 3218 struct btrfs_space_info *data_sinfo; 3219 3220 /* make sure bytes are sectorsize aligned */ 3221 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3222 3223 data_sinfo = BTRFS_I(inode)->space_info; 3224 spin_lock(&data_sinfo->lock); 3225 data_sinfo->bytes_may_use -= bytes; 3226 BTRFS_I(inode)->reserved_bytes -= bytes; 3227 spin_unlock(&data_sinfo->lock); 3228 } 3229 3230 static void force_metadata_allocation(struct btrfs_fs_info *info) 3231 { 3232 struct list_head *head = &info->space_info; 3233 struct btrfs_space_info *found; 3234 3235 rcu_read_lock(); 3236 list_for_each_entry_rcu(found, head, list) { 3237 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3238 found->force_alloc = 1; 3239 } 3240 rcu_read_unlock(); 3241 } 3242 3243 static int should_alloc_chunk(struct btrfs_root *root, 3244 struct btrfs_space_info *sinfo, u64 alloc_bytes) 3245 { 3246 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3247 u64 thresh; 3248 3249 if (sinfo->bytes_used + sinfo->bytes_reserved + 3250 alloc_bytes + 256 * 1024 * 1024 < num_bytes) 3251 return 0; 3252 3253 if (sinfo->bytes_used + sinfo->bytes_reserved + 3254 alloc_bytes < div_factor(num_bytes, 8)) 3255 return 0; 3256 3257 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy); 3258 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5)); 3259 3260 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3)) 3261 return 0; 3262 3263 return 1; 3264 } 3265 3266 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3267 struct btrfs_root *extent_root, u64 alloc_bytes, 3268 u64 flags, int force) 3269 { 3270 struct btrfs_space_info *space_info; 3271 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3272 int ret = 0; 3273 3274 mutex_lock(&fs_info->chunk_mutex); 3275 3276 flags = btrfs_reduce_alloc_profile(extent_root, flags); 3277 3278 space_info = __find_space_info(extent_root->fs_info, flags); 3279 if (!space_info) { 3280 ret = update_space_info(extent_root->fs_info, flags, 3281 0, 0, &space_info); 3282 BUG_ON(ret); 3283 } 3284 BUG_ON(!space_info); 3285 3286 spin_lock(&space_info->lock); 3287 if (space_info->force_alloc) 3288 force = 1; 3289 if (space_info->full) { 3290 spin_unlock(&space_info->lock); 3291 goto out; 3292 } 3293 3294 if (!force && !should_alloc_chunk(extent_root, space_info, 3295 alloc_bytes)) { 3296 spin_unlock(&space_info->lock); 3297 goto out; 3298 } 3299 spin_unlock(&space_info->lock); 3300 3301 /* 3302 * If we have mixed data/metadata chunks we want to make sure we keep 3303 * allocating mixed chunks instead of individual chunks. 3304 */ 3305 if (btrfs_mixed_space_info(space_info)) 3306 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3307 3308 /* 3309 * if we're doing a data chunk, go ahead and make sure that 3310 * we keep a reasonable number of metadata chunks allocated in the 3311 * FS as well. 3312 */ 3313 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3314 fs_info->data_chunk_allocations++; 3315 if (!(fs_info->data_chunk_allocations % 3316 fs_info->metadata_ratio)) 3317 force_metadata_allocation(fs_info); 3318 } 3319 3320 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3321 spin_lock(&space_info->lock); 3322 if (ret) 3323 space_info->full = 1; 3324 else 3325 ret = 1; 3326 space_info->force_alloc = 0; 3327 spin_unlock(&space_info->lock); 3328 out: 3329 mutex_unlock(&extent_root->fs_info->chunk_mutex); 3330 return ret; 3331 } 3332 3333 /* 3334 * shrink metadata reservation for delalloc 3335 */ 3336 static int shrink_delalloc(struct btrfs_trans_handle *trans, 3337 struct btrfs_root *root, u64 to_reclaim, int sync) 3338 { 3339 struct btrfs_block_rsv *block_rsv; 3340 struct btrfs_space_info *space_info; 3341 u64 reserved; 3342 u64 max_reclaim; 3343 u64 reclaimed = 0; 3344 long time_left; 3345 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3346 int loops = 0; 3347 unsigned long progress; 3348 3349 block_rsv = &root->fs_info->delalloc_block_rsv; 3350 space_info = block_rsv->space_info; 3351 3352 smp_mb(); 3353 reserved = space_info->bytes_reserved; 3354 progress = space_info->reservation_progress; 3355 3356 if (reserved == 0) 3357 return 0; 3358 3359 max_reclaim = min(reserved, to_reclaim); 3360 3361 while (loops < 1024) { 3362 /* have the flusher threads jump in and do some IO */ 3363 smp_mb(); 3364 nr_pages = min_t(unsigned long, nr_pages, 3365 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); 3366 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages); 3367 3368 spin_lock(&space_info->lock); 3369 if (reserved > space_info->bytes_reserved) 3370 reclaimed += reserved - space_info->bytes_reserved; 3371 reserved = space_info->bytes_reserved; 3372 spin_unlock(&space_info->lock); 3373 3374 loops++; 3375 3376 if (reserved == 0 || reclaimed >= max_reclaim) 3377 break; 3378 3379 if (trans && trans->transaction->blocked) 3380 return -EAGAIN; 3381 3382 time_left = schedule_timeout_interruptible(1); 3383 3384 /* We were interrupted, exit */ 3385 if (time_left) 3386 break; 3387 3388 /* we've kicked the IO a few times, if anything has been freed, 3389 * exit. There is no sense in looping here for a long time 3390 * when we really need to commit the transaction, or there are 3391 * just too many writers without enough free space 3392 */ 3393 3394 if (loops > 3) { 3395 smp_mb(); 3396 if (progress != space_info->reservation_progress) 3397 break; 3398 } 3399 3400 } 3401 return reclaimed >= to_reclaim; 3402 } 3403 3404 /* 3405 * Retries tells us how many times we've called reserve_metadata_bytes. The 3406 * idea is if this is the first call (retries == 0) then we will add to our 3407 * reserved count if we can't make the allocation in order to hold our place 3408 * while we go and try and free up space. That way for retries > 1 we don't try 3409 * and add space, we just check to see if the amount of unused space is >= the 3410 * total space, meaning that our reservation is valid. 3411 * 3412 * However if we don't intend to retry this reservation, pass -1 as retries so 3413 * that it short circuits this logic. 3414 */ 3415 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans, 3416 struct btrfs_root *root, 3417 struct btrfs_block_rsv *block_rsv, 3418 u64 orig_bytes, int flush) 3419 { 3420 struct btrfs_space_info *space_info = block_rsv->space_info; 3421 u64 unused; 3422 u64 num_bytes = orig_bytes; 3423 int retries = 0; 3424 int ret = 0; 3425 bool reserved = false; 3426 bool committed = false; 3427 3428 again: 3429 ret = -ENOSPC; 3430 if (reserved) 3431 num_bytes = 0; 3432 3433 spin_lock(&space_info->lock); 3434 unused = space_info->bytes_used + space_info->bytes_reserved + 3435 space_info->bytes_pinned + space_info->bytes_readonly + 3436 space_info->bytes_may_use; 3437 3438 /* 3439 * The idea here is that we've not already over-reserved the block group 3440 * then we can go ahead and save our reservation first and then start 3441 * flushing if we need to. Otherwise if we've already overcommitted 3442 * lets start flushing stuff first and then come back and try to make 3443 * our reservation. 3444 */ 3445 if (unused <= space_info->total_bytes) { 3446 unused = space_info->total_bytes - unused; 3447 if (unused >= num_bytes) { 3448 if (!reserved) 3449 space_info->bytes_reserved += orig_bytes; 3450 ret = 0; 3451 } else { 3452 /* 3453 * Ok set num_bytes to orig_bytes since we aren't 3454 * overocmmitted, this way we only try and reclaim what 3455 * we need. 3456 */ 3457 num_bytes = orig_bytes; 3458 } 3459 } else { 3460 /* 3461 * Ok we're over committed, set num_bytes to the overcommitted 3462 * amount plus the amount of bytes that we need for this 3463 * reservation. 3464 */ 3465 num_bytes = unused - space_info->total_bytes + 3466 (orig_bytes * (retries + 1)); 3467 } 3468 3469 /* 3470 * Couldn't make our reservation, save our place so while we're trying 3471 * to reclaim space we can actually use it instead of somebody else 3472 * stealing it from us. 3473 */ 3474 if (ret && !reserved) { 3475 space_info->bytes_reserved += orig_bytes; 3476 reserved = true; 3477 } 3478 3479 spin_unlock(&space_info->lock); 3480 3481 if (!ret) 3482 return 0; 3483 3484 if (!flush) 3485 goto out; 3486 3487 /* 3488 * We do synchronous shrinking since we don't actually unreserve 3489 * metadata until after the IO is completed. 3490 */ 3491 ret = shrink_delalloc(trans, root, num_bytes, 1); 3492 if (ret > 0) 3493 return 0; 3494 else if (ret < 0) 3495 goto out; 3496 3497 /* 3498 * So if we were overcommitted it's possible that somebody else flushed 3499 * out enough space and we simply didn't have enough space to reclaim, 3500 * so go back around and try again. 3501 */ 3502 if (retries < 2) { 3503 retries++; 3504 goto again; 3505 } 3506 3507 spin_lock(&space_info->lock); 3508 /* 3509 * Not enough space to be reclaimed, don't bother committing the 3510 * transaction. 3511 */ 3512 if (space_info->bytes_pinned < orig_bytes) 3513 ret = -ENOSPC; 3514 spin_unlock(&space_info->lock); 3515 if (ret) 3516 goto out; 3517 3518 ret = -EAGAIN; 3519 if (trans || committed) 3520 goto out; 3521 3522 ret = -ENOSPC; 3523 trans = btrfs_join_transaction(root, 1); 3524 if (IS_ERR(trans)) 3525 goto out; 3526 ret = btrfs_commit_transaction(trans, root); 3527 if (!ret) { 3528 trans = NULL; 3529 committed = true; 3530 goto again; 3531 } 3532 3533 out: 3534 if (reserved) { 3535 spin_lock(&space_info->lock); 3536 space_info->bytes_reserved -= orig_bytes; 3537 spin_unlock(&space_info->lock); 3538 } 3539 3540 return ret; 3541 } 3542 3543 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, 3544 struct btrfs_root *root) 3545 { 3546 struct btrfs_block_rsv *block_rsv; 3547 if (root->ref_cows) 3548 block_rsv = trans->block_rsv; 3549 else 3550 block_rsv = root->block_rsv; 3551 3552 if (!block_rsv) 3553 block_rsv = &root->fs_info->empty_block_rsv; 3554 3555 return block_rsv; 3556 } 3557 3558 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 3559 u64 num_bytes) 3560 { 3561 int ret = -ENOSPC; 3562 spin_lock(&block_rsv->lock); 3563 if (block_rsv->reserved >= num_bytes) { 3564 block_rsv->reserved -= num_bytes; 3565 if (block_rsv->reserved < block_rsv->size) 3566 block_rsv->full = 0; 3567 ret = 0; 3568 } 3569 spin_unlock(&block_rsv->lock); 3570 return ret; 3571 } 3572 3573 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 3574 u64 num_bytes, int update_size) 3575 { 3576 spin_lock(&block_rsv->lock); 3577 block_rsv->reserved += num_bytes; 3578 if (update_size) 3579 block_rsv->size += num_bytes; 3580 else if (block_rsv->reserved >= block_rsv->size) 3581 block_rsv->full = 1; 3582 spin_unlock(&block_rsv->lock); 3583 } 3584 3585 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, 3586 struct btrfs_block_rsv *dest, u64 num_bytes) 3587 { 3588 struct btrfs_space_info *space_info = block_rsv->space_info; 3589 3590 spin_lock(&block_rsv->lock); 3591 if (num_bytes == (u64)-1) 3592 num_bytes = block_rsv->size; 3593 block_rsv->size -= num_bytes; 3594 if (block_rsv->reserved >= block_rsv->size) { 3595 num_bytes = block_rsv->reserved - block_rsv->size; 3596 block_rsv->reserved = block_rsv->size; 3597 block_rsv->full = 1; 3598 } else { 3599 num_bytes = 0; 3600 } 3601 spin_unlock(&block_rsv->lock); 3602 3603 if (num_bytes > 0) { 3604 if (dest) { 3605 spin_lock(&dest->lock); 3606 if (!dest->full) { 3607 u64 bytes_to_add; 3608 3609 bytes_to_add = dest->size - dest->reserved; 3610 bytes_to_add = min(num_bytes, bytes_to_add); 3611 dest->reserved += bytes_to_add; 3612 if (dest->reserved >= dest->size) 3613 dest->full = 1; 3614 num_bytes -= bytes_to_add; 3615 } 3616 spin_unlock(&dest->lock); 3617 } 3618 if (num_bytes) { 3619 spin_lock(&space_info->lock); 3620 space_info->bytes_reserved -= num_bytes; 3621 space_info->reservation_progress++; 3622 spin_unlock(&space_info->lock); 3623 } 3624 } 3625 } 3626 3627 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 3628 struct btrfs_block_rsv *dst, u64 num_bytes) 3629 { 3630 int ret; 3631 3632 ret = block_rsv_use_bytes(src, num_bytes); 3633 if (ret) 3634 return ret; 3635 3636 block_rsv_add_bytes(dst, num_bytes, 1); 3637 return 0; 3638 } 3639 3640 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 3641 { 3642 memset(rsv, 0, sizeof(*rsv)); 3643 spin_lock_init(&rsv->lock); 3644 atomic_set(&rsv->usage, 1); 3645 rsv->priority = 6; 3646 INIT_LIST_HEAD(&rsv->list); 3647 } 3648 3649 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 3650 { 3651 struct btrfs_block_rsv *block_rsv; 3652 struct btrfs_fs_info *fs_info = root->fs_info; 3653 3654 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 3655 if (!block_rsv) 3656 return NULL; 3657 3658 btrfs_init_block_rsv(block_rsv); 3659 block_rsv->space_info = __find_space_info(fs_info, 3660 BTRFS_BLOCK_GROUP_METADATA); 3661 return block_rsv; 3662 } 3663 3664 void btrfs_free_block_rsv(struct btrfs_root *root, 3665 struct btrfs_block_rsv *rsv) 3666 { 3667 if (rsv && atomic_dec_and_test(&rsv->usage)) { 3668 btrfs_block_rsv_release(root, rsv, (u64)-1); 3669 if (!rsv->durable) 3670 kfree(rsv); 3671 } 3672 } 3673 3674 /* 3675 * make the block_rsv struct be able to capture freed space. 3676 * the captured space will re-add to the the block_rsv struct 3677 * after transaction commit 3678 */ 3679 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info, 3680 struct btrfs_block_rsv *block_rsv) 3681 { 3682 block_rsv->durable = 1; 3683 mutex_lock(&fs_info->durable_block_rsv_mutex); 3684 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list); 3685 mutex_unlock(&fs_info->durable_block_rsv_mutex); 3686 } 3687 3688 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans, 3689 struct btrfs_root *root, 3690 struct btrfs_block_rsv *block_rsv, 3691 u64 num_bytes) 3692 { 3693 int ret; 3694 3695 if (num_bytes == 0) 3696 return 0; 3697 3698 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1); 3699 if (!ret) { 3700 block_rsv_add_bytes(block_rsv, num_bytes, 1); 3701 return 0; 3702 } 3703 3704 return ret; 3705 } 3706 3707 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans, 3708 struct btrfs_root *root, 3709 struct btrfs_block_rsv *block_rsv, 3710 u64 min_reserved, int min_factor) 3711 { 3712 u64 num_bytes = 0; 3713 int commit_trans = 0; 3714 int ret = -ENOSPC; 3715 3716 if (!block_rsv) 3717 return 0; 3718 3719 spin_lock(&block_rsv->lock); 3720 if (min_factor > 0) 3721 num_bytes = div_factor(block_rsv->size, min_factor); 3722 if (min_reserved > num_bytes) 3723 num_bytes = min_reserved; 3724 3725 if (block_rsv->reserved >= num_bytes) { 3726 ret = 0; 3727 } else { 3728 num_bytes -= block_rsv->reserved; 3729 if (block_rsv->durable && 3730 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes) 3731 commit_trans = 1; 3732 } 3733 spin_unlock(&block_rsv->lock); 3734 if (!ret) 3735 return 0; 3736 3737 if (block_rsv->refill_used) { 3738 ret = reserve_metadata_bytes(trans, root, block_rsv, 3739 num_bytes, 0); 3740 if (!ret) { 3741 block_rsv_add_bytes(block_rsv, num_bytes, 0); 3742 return 0; 3743 } 3744 } 3745 3746 if (commit_trans) { 3747 if (trans) 3748 return -EAGAIN; 3749 3750 trans = btrfs_join_transaction(root, 1); 3751 BUG_ON(IS_ERR(trans)); 3752 ret = btrfs_commit_transaction(trans, root); 3753 return 0; 3754 } 3755 3756 return -ENOSPC; 3757 } 3758 3759 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3760 struct btrfs_block_rsv *dst_rsv, 3761 u64 num_bytes) 3762 { 3763 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3764 } 3765 3766 void btrfs_block_rsv_release(struct btrfs_root *root, 3767 struct btrfs_block_rsv *block_rsv, 3768 u64 num_bytes) 3769 { 3770 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3771 if (global_rsv->full || global_rsv == block_rsv || 3772 block_rsv->space_info != global_rsv->space_info) 3773 global_rsv = NULL; 3774 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); 3775 } 3776 3777 /* 3778 * helper to calculate size of global block reservation. 3779 * the desired value is sum of space used by extent tree, 3780 * checksum tree and root tree 3781 */ 3782 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 3783 { 3784 struct btrfs_space_info *sinfo; 3785 u64 num_bytes; 3786 u64 meta_used; 3787 u64 data_used; 3788 int csum_size = btrfs_super_csum_size(&fs_info->super_copy); 3789 #if 0 3790 /* 3791 * per tree used space accounting can be inaccuracy, so we 3792 * can't rely on it. 3793 */ 3794 spin_lock(&fs_info->extent_root->accounting_lock); 3795 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item); 3796 spin_unlock(&fs_info->extent_root->accounting_lock); 3797 3798 spin_lock(&fs_info->csum_root->accounting_lock); 3799 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item); 3800 spin_unlock(&fs_info->csum_root->accounting_lock); 3801 3802 spin_lock(&fs_info->tree_root->accounting_lock); 3803 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item); 3804 spin_unlock(&fs_info->tree_root->accounting_lock); 3805 #endif 3806 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 3807 spin_lock(&sinfo->lock); 3808 data_used = sinfo->bytes_used; 3809 spin_unlock(&sinfo->lock); 3810 3811 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3812 spin_lock(&sinfo->lock); 3813 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 3814 data_used = 0; 3815 meta_used = sinfo->bytes_used; 3816 spin_unlock(&sinfo->lock); 3817 3818 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 3819 csum_size * 2; 3820 num_bytes += div64_u64(data_used + meta_used, 50); 3821 3822 if (num_bytes * 3 > meta_used) 3823 num_bytes = div64_u64(meta_used, 3); 3824 3825 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 3826 } 3827 3828 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 3829 { 3830 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3831 struct btrfs_space_info *sinfo = block_rsv->space_info; 3832 u64 num_bytes; 3833 3834 num_bytes = calc_global_metadata_size(fs_info); 3835 3836 spin_lock(&block_rsv->lock); 3837 spin_lock(&sinfo->lock); 3838 3839 block_rsv->size = num_bytes; 3840 3841 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 3842 sinfo->bytes_reserved + sinfo->bytes_readonly + 3843 sinfo->bytes_may_use; 3844 3845 if (sinfo->total_bytes > num_bytes) { 3846 num_bytes = sinfo->total_bytes - num_bytes; 3847 block_rsv->reserved += num_bytes; 3848 sinfo->bytes_reserved += num_bytes; 3849 } 3850 3851 if (block_rsv->reserved >= block_rsv->size) { 3852 num_bytes = block_rsv->reserved - block_rsv->size; 3853 sinfo->bytes_reserved -= num_bytes; 3854 sinfo->reservation_progress++; 3855 block_rsv->reserved = block_rsv->size; 3856 block_rsv->full = 1; 3857 } 3858 #if 0 3859 printk(KERN_INFO"global block rsv size %llu reserved %llu\n", 3860 block_rsv->size, block_rsv->reserved); 3861 #endif 3862 spin_unlock(&sinfo->lock); 3863 spin_unlock(&block_rsv->lock); 3864 } 3865 3866 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 3867 { 3868 struct btrfs_space_info *space_info; 3869 3870 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3871 fs_info->chunk_block_rsv.space_info = space_info; 3872 fs_info->chunk_block_rsv.priority = 10; 3873 3874 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3875 fs_info->global_block_rsv.space_info = space_info; 3876 fs_info->global_block_rsv.priority = 10; 3877 fs_info->global_block_rsv.refill_used = 1; 3878 fs_info->delalloc_block_rsv.space_info = space_info; 3879 fs_info->trans_block_rsv.space_info = space_info; 3880 fs_info->empty_block_rsv.space_info = space_info; 3881 fs_info->empty_block_rsv.priority = 10; 3882 3883 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 3884 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 3885 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 3886 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 3887 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 3888 3889 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv); 3890 3891 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv); 3892 3893 update_global_block_rsv(fs_info); 3894 } 3895 3896 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 3897 { 3898 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); 3899 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 3900 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 3901 WARN_ON(fs_info->trans_block_rsv.size > 0); 3902 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 3903 WARN_ON(fs_info->chunk_block_rsv.size > 0); 3904 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 3905 } 3906 3907 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items) 3908 { 3909 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3910 3 * num_items; 3911 } 3912 3913 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans, 3914 struct btrfs_root *root, 3915 int num_items) 3916 { 3917 u64 num_bytes; 3918 int ret; 3919 3920 if (num_items == 0 || root->fs_info->chunk_root == root) 3921 return 0; 3922 3923 num_bytes = calc_trans_metadata_size(root, num_items); 3924 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv, 3925 num_bytes); 3926 if (!ret) { 3927 trans->bytes_reserved += num_bytes; 3928 trans->block_rsv = &root->fs_info->trans_block_rsv; 3929 } 3930 return ret; 3931 } 3932 3933 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3934 struct btrfs_root *root) 3935 { 3936 if (!trans->bytes_reserved) 3937 return; 3938 3939 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv); 3940 btrfs_block_rsv_release(root, trans->block_rsv, 3941 trans->bytes_reserved); 3942 trans->bytes_reserved = 0; 3943 } 3944 3945 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3946 struct inode *inode) 3947 { 3948 struct btrfs_root *root = BTRFS_I(inode)->root; 3949 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3950 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 3951 3952 /* 3953 * one for deleting orphan item, one for updating inode and 3954 * two for calling btrfs_truncate_inode_items. 3955 * 3956 * btrfs_truncate_inode_items is a delete operation, it frees 3957 * more space than it uses in most cases. So two units of 3958 * metadata space should be enough for calling it many times. 3959 * If all of the metadata space is used, we can commit 3960 * transaction and use space it freed. 3961 */ 3962 u64 num_bytes = calc_trans_metadata_size(root, 4); 3963 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3964 } 3965 3966 void btrfs_orphan_release_metadata(struct inode *inode) 3967 { 3968 struct btrfs_root *root = BTRFS_I(inode)->root; 3969 u64 num_bytes = calc_trans_metadata_size(root, 4); 3970 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 3971 } 3972 3973 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 3974 struct btrfs_pending_snapshot *pending) 3975 { 3976 struct btrfs_root *root = pending->root; 3977 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3978 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 3979 /* 3980 * two for root back/forward refs, two for directory entries 3981 * and one for root of the snapshot. 3982 */ 3983 u64 num_bytes = calc_trans_metadata_size(root, 5); 3984 dst_rsv->space_info = src_rsv->space_info; 3985 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3986 } 3987 3988 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes) 3989 { 3990 return num_bytes >>= 3; 3991 } 3992 3993 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 3994 { 3995 struct btrfs_root *root = BTRFS_I(inode)->root; 3996 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 3997 u64 to_reserve; 3998 int nr_extents; 3999 int ret; 4000 4001 if (btrfs_transaction_in_commit(root->fs_info)) 4002 schedule_timeout(1); 4003 4004 num_bytes = ALIGN(num_bytes, root->sectorsize); 4005 4006 spin_lock(&BTRFS_I(inode)->accounting_lock); 4007 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1; 4008 if (nr_extents > BTRFS_I(inode)->reserved_extents) { 4009 nr_extents -= BTRFS_I(inode)->reserved_extents; 4010 to_reserve = calc_trans_metadata_size(root, nr_extents); 4011 } else { 4012 nr_extents = 0; 4013 to_reserve = 0; 4014 } 4015 spin_unlock(&BTRFS_I(inode)->accounting_lock); 4016 to_reserve += calc_csum_metadata_size(inode, num_bytes); 4017 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1); 4018 if (ret) 4019 return ret; 4020 4021 spin_lock(&BTRFS_I(inode)->accounting_lock); 4022 BTRFS_I(inode)->reserved_extents += nr_extents; 4023 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 4024 spin_unlock(&BTRFS_I(inode)->accounting_lock); 4025 4026 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4027 4028 if (block_rsv->size > 512 * 1024 * 1024) 4029 shrink_delalloc(NULL, root, to_reserve, 0); 4030 4031 return 0; 4032 } 4033 4034 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4035 { 4036 struct btrfs_root *root = BTRFS_I(inode)->root; 4037 u64 to_free; 4038 int nr_extents; 4039 4040 num_bytes = ALIGN(num_bytes, root->sectorsize); 4041 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 4042 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0); 4043 4044 spin_lock(&BTRFS_I(inode)->accounting_lock); 4045 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents); 4046 if (nr_extents < BTRFS_I(inode)->reserved_extents) { 4047 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents; 4048 BTRFS_I(inode)->reserved_extents -= nr_extents; 4049 } else { 4050 nr_extents = 0; 4051 } 4052 spin_unlock(&BTRFS_I(inode)->accounting_lock); 4053 4054 to_free = calc_csum_metadata_size(inode, num_bytes); 4055 if (nr_extents > 0) 4056 to_free += calc_trans_metadata_size(root, nr_extents); 4057 4058 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4059 to_free); 4060 } 4061 4062 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4063 { 4064 int ret; 4065 4066 ret = btrfs_check_data_free_space(inode, num_bytes); 4067 if (ret) 4068 return ret; 4069 4070 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4071 if (ret) { 4072 btrfs_free_reserved_data_space(inode, num_bytes); 4073 return ret; 4074 } 4075 4076 return 0; 4077 } 4078 4079 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4080 { 4081 btrfs_delalloc_release_metadata(inode, num_bytes); 4082 btrfs_free_reserved_data_space(inode, num_bytes); 4083 } 4084 4085 static int update_block_group(struct btrfs_trans_handle *trans, 4086 struct btrfs_root *root, 4087 u64 bytenr, u64 num_bytes, int alloc) 4088 { 4089 struct btrfs_block_group_cache *cache = NULL; 4090 struct btrfs_fs_info *info = root->fs_info; 4091 u64 total = num_bytes; 4092 u64 old_val; 4093 u64 byte_in_group; 4094 int factor; 4095 4096 /* block accounting for super block */ 4097 spin_lock(&info->delalloc_lock); 4098 old_val = btrfs_super_bytes_used(&info->super_copy); 4099 if (alloc) 4100 old_val += num_bytes; 4101 else 4102 old_val -= num_bytes; 4103 btrfs_set_super_bytes_used(&info->super_copy, old_val); 4104 spin_unlock(&info->delalloc_lock); 4105 4106 while (total) { 4107 cache = btrfs_lookup_block_group(info, bytenr); 4108 if (!cache) 4109 return -1; 4110 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4111 BTRFS_BLOCK_GROUP_RAID1 | 4112 BTRFS_BLOCK_GROUP_RAID10)) 4113 factor = 2; 4114 else 4115 factor = 1; 4116 /* 4117 * If this block group has free space cache written out, we 4118 * need to make sure to load it if we are removing space. This 4119 * is because we need the unpinning stage to actually add the 4120 * space back to the block group, otherwise we will leak space. 4121 */ 4122 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4123 cache_block_group(cache, trans, NULL, 1); 4124 4125 byte_in_group = bytenr - cache->key.objectid; 4126 WARN_ON(byte_in_group > cache->key.offset); 4127 4128 spin_lock(&cache->space_info->lock); 4129 spin_lock(&cache->lock); 4130 4131 if (btrfs_super_cache_generation(&info->super_copy) != 0 && 4132 cache->disk_cache_state < BTRFS_DC_CLEAR) 4133 cache->disk_cache_state = BTRFS_DC_CLEAR; 4134 4135 cache->dirty = 1; 4136 old_val = btrfs_block_group_used(&cache->item); 4137 num_bytes = min(total, cache->key.offset - byte_in_group); 4138 if (alloc) { 4139 old_val += num_bytes; 4140 btrfs_set_block_group_used(&cache->item, old_val); 4141 cache->reserved -= num_bytes; 4142 cache->space_info->bytes_reserved -= num_bytes; 4143 cache->space_info->reservation_progress++; 4144 cache->space_info->bytes_used += num_bytes; 4145 cache->space_info->disk_used += num_bytes * factor; 4146 spin_unlock(&cache->lock); 4147 spin_unlock(&cache->space_info->lock); 4148 } else { 4149 old_val -= num_bytes; 4150 btrfs_set_block_group_used(&cache->item, old_val); 4151 cache->pinned += num_bytes; 4152 cache->space_info->bytes_pinned += num_bytes; 4153 cache->space_info->bytes_used -= num_bytes; 4154 cache->space_info->disk_used -= num_bytes * factor; 4155 spin_unlock(&cache->lock); 4156 spin_unlock(&cache->space_info->lock); 4157 4158 set_extent_dirty(info->pinned_extents, 4159 bytenr, bytenr + num_bytes - 1, 4160 GFP_NOFS | __GFP_NOFAIL); 4161 } 4162 btrfs_put_block_group(cache); 4163 total -= num_bytes; 4164 bytenr += num_bytes; 4165 } 4166 return 0; 4167 } 4168 4169 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4170 { 4171 struct btrfs_block_group_cache *cache; 4172 u64 bytenr; 4173 4174 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4175 if (!cache) 4176 return 0; 4177 4178 bytenr = cache->key.objectid; 4179 btrfs_put_block_group(cache); 4180 4181 return bytenr; 4182 } 4183 4184 static int pin_down_extent(struct btrfs_root *root, 4185 struct btrfs_block_group_cache *cache, 4186 u64 bytenr, u64 num_bytes, int reserved) 4187 { 4188 spin_lock(&cache->space_info->lock); 4189 spin_lock(&cache->lock); 4190 cache->pinned += num_bytes; 4191 cache->space_info->bytes_pinned += num_bytes; 4192 if (reserved) { 4193 cache->reserved -= num_bytes; 4194 cache->space_info->bytes_reserved -= num_bytes; 4195 cache->space_info->reservation_progress++; 4196 } 4197 spin_unlock(&cache->lock); 4198 spin_unlock(&cache->space_info->lock); 4199 4200 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4201 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4202 return 0; 4203 } 4204 4205 /* 4206 * this function must be called within transaction 4207 */ 4208 int btrfs_pin_extent(struct btrfs_root *root, 4209 u64 bytenr, u64 num_bytes, int reserved) 4210 { 4211 struct btrfs_block_group_cache *cache; 4212 4213 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4214 BUG_ON(!cache); 4215 4216 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4217 4218 btrfs_put_block_group(cache); 4219 return 0; 4220 } 4221 4222 /* 4223 * update size of reserved extents. this function may return -EAGAIN 4224 * if 'reserve' is true or 'sinfo' is false. 4225 */ 4226 static int update_reserved_bytes(struct btrfs_block_group_cache *cache, 4227 u64 num_bytes, int reserve, int sinfo) 4228 { 4229 int ret = 0; 4230 if (sinfo) { 4231 struct btrfs_space_info *space_info = cache->space_info; 4232 spin_lock(&space_info->lock); 4233 spin_lock(&cache->lock); 4234 if (reserve) { 4235 if (cache->ro) { 4236 ret = -EAGAIN; 4237 } else { 4238 cache->reserved += num_bytes; 4239 space_info->bytes_reserved += num_bytes; 4240 } 4241 } else { 4242 if (cache->ro) 4243 space_info->bytes_readonly += num_bytes; 4244 cache->reserved -= num_bytes; 4245 space_info->bytes_reserved -= num_bytes; 4246 space_info->reservation_progress++; 4247 } 4248 spin_unlock(&cache->lock); 4249 spin_unlock(&space_info->lock); 4250 } else { 4251 spin_lock(&cache->lock); 4252 if (cache->ro) { 4253 ret = -EAGAIN; 4254 } else { 4255 if (reserve) 4256 cache->reserved += num_bytes; 4257 else 4258 cache->reserved -= num_bytes; 4259 } 4260 spin_unlock(&cache->lock); 4261 } 4262 return ret; 4263 } 4264 4265 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4266 struct btrfs_root *root) 4267 { 4268 struct btrfs_fs_info *fs_info = root->fs_info; 4269 struct btrfs_caching_control *next; 4270 struct btrfs_caching_control *caching_ctl; 4271 struct btrfs_block_group_cache *cache; 4272 4273 down_write(&fs_info->extent_commit_sem); 4274 4275 list_for_each_entry_safe(caching_ctl, next, 4276 &fs_info->caching_block_groups, list) { 4277 cache = caching_ctl->block_group; 4278 if (block_group_cache_done(cache)) { 4279 cache->last_byte_to_unpin = (u64)-1; 4280 list_del_init(&caching_ctl->list); 4281 put_caching_control(caching_ctl); 4282 } else { 4283 cache->last_byte_to_unpin = caching_ctl->progress; 4284 } 4285 } 4286 4287 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4288 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4289 else 4290 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4291 4292 up_write(&fs_info->extent_commit_sem); 4293 4294 update_global_block_rsv(fs_info); 4295 return 0; 4296 } 4297 4298 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4299 { 4300 struct btrfs_fs_info *fs_info = root->fs_info; 4301 struct btrfs_block_group_cache *cache = NULL; 4302 u64 len; 4303 4304 while (start <= end) { 4305 if (!cache || 4306 start >= cache->key.objectid + cache->key.offset) { 4307 if (cache) 4308 btrfs_put_block_group(cache); 4309 cache = btrfs_lookup_block_group(fs_info, start); 4310 BUG_ON(!cache); 4311 } 4312 4313 len = cache->key.objectid + cache->key.offset - start; 4314 len = min(len, end + 1 - start); 4315 4316 if (start < cache->last_byte_to_unpin) { 4317 len = min(len, cache->last_byte_to_unpin - start); 4318 btrfs_add_free_space(cache, start, len); 4319 } 4320 4321 start += len; 4322 4323 spin_lock(&cache->space_info->lock); 4324 spin_lock(&cache->lock); 4325 cache->pinned -= len; 4326 cache->space_info->bytes_pinned -= len; 4327 if (cache->ro) { 4328 cache->space_info->bytes_readonly += len; 4329 } else if (cache->reserved_pinned > 0) { 4330 len = min(len, cache->reserved_pinned); 4331 cache->reserved_pinned -= len; 4332 cache->space_info->bytes_reserved += len; 4333 } 4334 spin_unlock(&cache->lock); 4335 spin_unlock(&cache->space_info->lock); 4336 } 4337 4338 if (cache) 4339 btrfs_put_block_group(cache); 4340 return 0; 4341 } 4342 4343 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 4344 struct btrfs_root *root) 4345 { 4346 struct btrfs_fs_info *fs_info = root->fs_info; 4347 struct extent_io_tree *unpin; 4348 struct btrfs_block_rsv *block_rsv; 4349 struct btrfs_block_rsv *next_rsv; 4350 u64 start; 4351 u64 end; 4352 int idx; 4353 int ret; 4354 4355 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4356 unpin = &fs_info->freed_extents[1]; 4357 else 4358 unpin = &fs_info->freed_extents[0]; 4359 4360 while (1) { 4361 ret = find_first_extent_bit(unpin, 0, &start, &end, 4362 EXTENT_DIRTY); 4363 if (ret) 4364 break; 4365 4366 ret = btrfs_discard_extent(root, start, end + 1 - start); 4367 4368 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4369 unpin_extent_range(root, start, end); 4370 cond_resched(); 4371 } 4372 4373 mutex_lock(&fs_info->durable_block_rsv_mutex); 4374 list_for_each_entry_safe(block_rsv, next_rsv, 4375 &fs_info->durable_block_rsv_list, list) { 4376 4377 idx = trans->transid & 0x1; 4378 if (block_rsv->freed[idx] > 0) { 4379 block_rsv_add_bytes(block_rsv, 4380 block_rsv->freed[idx], 0); 4381 block_rsv->freed[idx] = 0; 4382 } 4383 if (atomic_read(&block_rsv->usage) == 0) { 4384 btrfs_block_rsv_release(root, block_rsv, (u64)-1); 4385 4386 if (block_rsv->freed[0] == 0 && 4387 block_rsv->freed[1] == 0) { 4388 list_del_init(&block_rsv->list); 4389 kfree(block_rsv); 4390 } 4391 } else { 4392 btrfs_block_rsv_release(root, block_rsv, 0); 4393 } 4394 } 4395 mutex_unlock(&fs_info->durable_block_rsv_mutex); 4396 4397 return 0; 4398 } 4399 4400 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 4401 struct btrfs_root *root, 4402 u64 bytenr, u64 num_bytes, u64 parent, 4403 u64 root_objectid, u64 owner_objectid, 4404 u64 owner_offset, int refs_to_drop, 4405 struct btrfs_delayed_extent_op *extent_op) 4406 { 4407 struct btrfs_key key; 4408 struct btrfs_path *path; 4409 struct btrfs_fs_info *info = root->fs_info; 4410 struct btrfs_root *extent_root = info->extent_root; 4411 struct extent_buffer *leaf; 4412 struct btrfs_extent_item *ei; 4413 struct btrfs_extent_inline_ref *iref; 4414 int ret; 4415 int is_data; 4416 int extent_slot = 0; 4417 int found_extent = 0; 4418 int num_to_del = 1; 4419 u32 item_size; 4420 u64 refs; 4421 4422 path = btrfs_alloc_path(); 4423 if (!path) 4424 return -ENOMEM; 4425 4426 path->reada = 1; 4427 path->leave_spinning = 1; 4428 4429 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 4430 BUG_ON(!is_data && refs_to_drop != 1); 4431 4432 ret = lookup_extent_backref(trans, extent_root, path, &iref, 4433 bytenr, num_bytes, parent, 4434 root_objectid, owner_objectid, 4435 owner_offset); 4436 if (ret == 0) { 4437 extent_slot = path->slots[0]; 4438 while (extent_slot >= 0) { 4439 btrfs_item_key_to_cpu(path->nodes[0], &key, 4440 extent_slot); 4441 if (key.objectid != bytenr) 4442 break; 4443 if (key.type == BTRFS_EXTENT_ITEM_KEY && 4444 key.offset == num_bytes) { 4445 found_extent = 1; 4446 break; 4447 } 4448 if (path->slots[0] - extent_slot > 5) 4449 break; 4450 extent_slot--; 4451 } 4452 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4453 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 4454 if (found_extent && item_size < sizeof(*ei)) 4455 found_extent = 0; 4456 #endif 4457 if (!found_extent) { 4458 BUG_ON(iref); 4459 ret = remove_extent_backref(trans, extent_root, path, 4460 NULL, refs_to_drop, 4461 is_data); 4462 BUG_ON(ret); 4463 btrfs_release_path(extent_root, path); 4464 path->leave_spinning = 1; 4465 4466 key.objectid = bytenr; 4467 key.type = BTRFS_EXTENT_ITEM_KEY; 4468 key.offset = num_bytes; 4469 4470 ret = btrfs_search_slot(trans, extent_root, 4471 &key, path, -1, 1); 4472 if (ret) { 4473 printk(KERN_ERR "umm, got %d back from search" 4474 ", was looking for %llu\n", ret, 4475 (unsigned long long)bytenr); 4476 btrfs_print_leaf(extent_root, path->nodes[0]); 4477 } 4478 BUG_ON(ret); 4479 extent_slot = path->slots[0]; 4480 } 4481 } else { 4482 btrfs_print_leaf(extent_root, path->nodes[0]); 4483 WARN_ON(1); 4484 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 4485 "parent %llu root %llu owner %llu offset %llu\n", 4486 (unsigned long long)bytenr, 4487 (unsigned long long)parent, 4488 (unsigned long long)root_objectid, 4489 (unsigned long long)owner_objectid, 4490 (unsigned long long)owner_offset); 4491 } 4492 4493 leaf = path->nodes[0]; 4494 item_size = btrfs_item_size_nr(leaf, extent_slot); 4495 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4496 if (item_size < sizeof(*ei)) { 4497 BUG_ON(found_extent || extent_slot != path->slots[0]); 4498 ret = convert_extent_item_v0(trans, extent_root, path, 4499 owner_objectid, 0); 4500 BUG_ON(ret < 0); 4501 4502 btrfs_release_path(extent_root, path); 4503 path->leave_spinning = 1; 4504 4505 key.objectid = bytenr; 4506 key.type = BTRFS_EXTENT_ITEM_KEY; 4507 key.offset = num_bytes; 4508 4509 ret = btrfs_search_slot(trans, extent_root, &key, path, 4510 -1, 1); 4511 if (ret) { 4512 printk(KERN_ERR "umm, got %d back from search" 4513 ", was looking for %llu\n", ret, 4514 (unsigned long long)bytenr); 4515 btrfs_print_leaf(extent_root, path->nodes[0]); 4516 } 4517 BUG_ON(ret); 4518 extent_slot = path->slots[0]; 4519 leaf = path->nodes[0]; 4520 item_size = btrfs_item_size_nr(leaf, extent_slot); 4521 } 4522 #endif 4523 BUG_ON(item_size < sizeof(*ei)); 4524 ei = btrfs_item_ptr(leaf, extent_slot, 4525 struct btrfs_extent_item); 4526 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4527 struct btrfs_tree_block_info *bi; 4528 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 4529 bi = (struct btrfs_tree_block_info *)(ei + 1); 4530 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 4531 } 4532 4533 refs = btrfs_extent_refs(leaf, ei); 4534 BUG_ON(refs < refs_to_drop); 4535 refs -= refs_to_drop; 4536 4537 if (refs > 0) { 4538 if (extent_op) 4539 __run_delayed_extent_op(extent_op, leaf, ei); 4540 /* 4541 * In the case of inline back ref, reference count will 4542 * be updated by remove_extent_backref 4543 */ 4544 if (iref) { 4545 BUG_ON(!found_extent); 4546 } else { 4547 btrfs_set_extent_refs(leaf, ei, refs); 4548 btrfs_mark_buffer_dirty(leaf); 4549 } 4550 if (found_extent) { 4551 ret = remove_extent_backref(trans, extent_root, path, 4552 iref, refs_to_drop, 4553 is_data); 4554 BUG_ON(ret); 4555 } 4556 } else { 4557 if (found_extent) { 4558 BUG_ON(is_data && refs_to_drop != 4559 extent_data_ref_count(root, path, iref)); 4560 if (iref) { 4561 BUG_ON(path->slots[0] != extent_slot); 4562 } else { 4563 BUG_ON(path->slots[0] != extent_slot + 1); 4564 path->slots[0] = extent_slot; 4565 num_to_del = 2; 4566 } 4567 } 4568 4569 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 4570 num_to_del); 4571 BUG_ON(ret); 4572 btrfs_release_path(extent_root, path); 4573 4574 if (is_data) { 4575 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 4576 BUG_ON(ret); 4577 } else { 4578 invalidate_mapping_pages(info->btree_inode->i_mapping, 4579 bytenr >> PAGE_CACHE_SHIFT, 4580 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 4581 } 4582 4583 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 4584 BUG_ON(ret); 4585 } 4586 btrfs_free_path(path); 4587 return ret; 4588 } 4589 4590 /* 4591 * when we free an block, it is possible (and likely) that we free the last 4592 * delayed ref for that extent as well. This searches the delayed ref tree for 4593 * a given extent, and if there are no other delayed refs to be processed, it 4594 * removes it from the tree. 4595 */ 4596 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 4597 struct btrfs_root *root, u64 bytenr) 4598 { 4599 struct btrfs_delayed_ref_head *head; 4600 struct btrfs_delayed_ref_root *delayed_refs; 4601 struct btrfs_delayed_ref_node *ref; 4602 struct rb_node *node; 4603 int ret = 0; 4604 4605 delayed_refs = &trans->transaction->delayed_refs; 4606 spin_lock(&delayed_refs->lock); 4607 head = btrfs_find_delayed_ref_head(trans, bytenr); 4608 if (!head) 4609 goto out; 4610 4611 node = rb_prev(&head->node.rb_node); 4612 if (!node) 4613 goto out; 4614 4615 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 4616 4617 /* there are still entries for this ref, we can't drop it */ 4618 if (ref->bytenr == bytenr) 4619 goto out; 4620 4621 if (head->extent_op) { 4622 if (!head->must_insert_reserved) 4623 goto out; 4624 kfree(head->extent_op); 4625 head->extent_op = NULL; 4626 } 4627 4628 /* 4629 * waiting for the lock here would deadlock. If someone else has it 4630 * locked they are already in the process of dropping it anyway 4631 */ 4632 if (!mutex_trylock(&head->mutex)) 4633 goto out; 4634 4635 /* 4636 * at this point we have a head with no other entries. Go 4637 * ahead and process it. 4638 */ 4639 head->node.in_tree = 0; 4640 rb_erase(&head->node.rb_node, &delayed_refs->root); 4641 4642 delayed_refs->num_entries--; 4643 4644 /* 4645 * we don't take a ref on the node because we're removing it from the 4646 * tree, so we just steal the ref the tree was holding. 4647 */ 4648 delayed_refs->num_heads--; 4649 if (list_empty(&head->cluster)) 4650 delayed_refs->num_heads_ready--; 4651 4652 list_del_init(&head->cluster); 4653 spin_unlock(&delayed_refs->lock); 4654 4655 BUG_ON(head->extent_op); 4656 if (head->must_insert_reserved) 4657 ret = 1; 4658 4659 mutex_unlock(&head->mutex); 4660 btrfs_put_delayed_ref(&head->node); 4661 return ret; 4662 out: 4663 spin_unlock(&delayed_refs->lock); 4664 return 0; 4665 } 4666 4667 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 4668 struct btrfs_root *root, 4669 struct extent_buffer *buf, 4670 u64 parent, int last_ref) 4671 { 4672 struct btrfs_block_rsv *block_rsv; 4673 struct btrfs_block_group_cache *cache = NULL; 4674 int ret; 4675 4676 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4677 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len, 4678 parent, root->root_key.objectid, 4679 btrfs_header_level(buf), 4680 BTRFS_DROP_DELAYED_REF, NULL); 4681 BUG_ON(ret); 4682 } 4683 4684 if (!last_ref) 4685 return; 4686 4687 block_rsv = get_block_rsv(trans, root); 4688 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 4689 if (block_rsv->space_info != cache->space_info) 4690 goto out; 4691 4692 if (btrfs_header_generation(buf) == trans->transid) { 4693 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4694 ret = check_ref_cleanup(trans, root, buf->start); 4695 if (!ret) 4696 goto pin; 4697 } 4698 4699 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 4700 pin_down_extent(root, cache, buf->start, buf->len, 1); 4701 goto pin; 4702 } 4703 4704 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 4705 4706 btrfs_add_free_space(cache, buf->start, buf->len); 4707 ret = update_reserved_bytes(cache, buf->len, 0, 0); 4708 if (ret == -EAGAIN) { 4709 /* block group became read-only */ 4710 update_reserved_bytes(cache, buf->len, 0, 1); 4711 goto out; 4712 } 4713 4714 ret = 1; 4715 spin_lock(&block_rsv->lock); 4716 if (block_rsv->reserved < block_rsv->size) { 4717 block_rsv->reserved += buf->len; 4718 ret = 0; 4719 } 4720 spin_unlock(&block_rsv->lock); 4721 4722 if (ret) { 4723 spin_lock(&cache->space_info->lock); 4724 cache->space_info->bytes_reserved -= buf->len; 4725 cache->space_info->reservation_progress++; 4726 spin_unlock(&cache->space_info->lock); 4727 } 4728 goto out; 4729 } 4730 pin: 4731 if (block_rsv->durable && !cache->ro) { 4732 ret = 0; 4733 spin_lock(&cache->lock); 4734 if (!cache->ro) { 4735 cache->reserved_pinned += buf->len; 4736 ret = 1; 4737 } 4738 spin_unlock(&cache->lock); 4739 4740 if (ret) { 4741 spin_lock(&block_rsv->lock); 4742 block_rsv->freed[trans->transid & 0x1] += buf->len; 4743 spin_unlock(&block_rsv->lock); 4744 } 4745 } 4746 out: 4747 btrfs_put_block_group(cache); 4748 } 4749 4750 int btrfs_free_extent(struct btrfs_trans_handle *trans, 4751 struct btrfs_root *root, 4752 u64 bytenr, u64 num_bytes, u64 parent, 4753 u64 root_objectid, u64 owner, u64 offset) 4754 { 4755 int ret; 4756 4757 /* 4758 * tree log blocks never actually go into the extent allocation 4759 * tree, just update pinning info and exit early. 4760 */ 4761 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 4762 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 4763 /* unlocks the pinned mutex */ 4764 btrfs_pin_extent(root, bytenr, num_bytes, 1); 4765 ret = 0; 4766 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 4767 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 4768 parent, root_objectid, (int)owner, 4769 BTRFS_DROP_DELAYED_REF, NULL); 4770 BUG_ON(ret); 4771 } else { 4772 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 4773 parent, root_objectid, owner, 4774 offset, BTRFS_DROP_DELAYED_REF, NULL); 4775 BUG_ON(ret); 4776 } 4777 return ret; 4778 } 4779 4780 static u64 stripe_align(struct btrfs_root *root, u64 val) 4781 { 4782 u64 mask = ((u64)root->stripesize - 1); 4783 u64 ret = (val + mask) & ~mask; 4784 return ret; 4785 } 4786 4787 /* 4788 * when we wait for progress in the block group caching, its because 4789 * our allocation attempt failed at least once. So, we must sleep 4790 * and let some progress happen before we try again. 4791 * 4792 * This function will sleep at least once waiting for new free space to 4793 * show up, and then it will check the block group free space numbers 4794 * for our min num_bytes. Another option is to have it go ahead 4795 * and look in the rbtree for a free extent of a given size, but this 4796 * is a good start. 4797 */ 4798 static noinline int 4799 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 4800 u64 num_bytes) 4801 { 4802 struct btrfs_caching_control *caching_ctl; 4803 DEFINE_WAIT(wait); 4804 4805 caching_ctl = get_caching_control(cache); 4806 if (!caching_ctl) 4807 return 0; 4808 4809 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 4810 (cache->free_space >= num_bytes)); 4811 4812 put_caching_control(caching_ctl); 4813 return 0; 4814 } 4815 4816 static noinline int 4817 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 4818 { 4819 struct btrfs_caching_control *caching_ctl; 4820 DEFINE_WAIT(wait); 4821 4822 caching_ctl = get_caching_control(cache); 4823 if (!caching_ctl) 4824 return 0; 4825 4826 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 4827 4828 put_caching_control(caching_ctl); 4829 return 0; 4830 } 4831 4832 static int get_block_group_index(struct btrfs_block_group_cache *cache) 4833 { 4834 int index; 4835 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) 4836 index = 0; 4837 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) 4838 index = 1; 4839 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) 4840 index = 2; 4841 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) 4842 index = 3; 4843 else 4844 index = 4; 4845 return index; 4846 } 4847 4848 enum btrfs_loop_type { 4849 LOOP_FIND_IDEAL = 0, 4850 LOOP_CACHING_NOWAIT = 1, 4851 LOOP_CACHING_WAIT = 2, 4852 LOOP_ALLOC_CHUNK = 3, 4853 LOOP_NO_EMPTY_SIZE = 4, 4854 }; 4855 4856 /* 4857 * walks the btree of allocated extents and find a hole of a given size. 4858 * The key ins is changed to record the hole: 4859 * ins->objectid == block start 4860 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4861 * ins->offset == number of blocks 4862 * Any available blocks before search_start are skipped. 4863 */ 4864 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 4865 struct btrfs_root *orig_root, 4866 u64 num_bytes, u64 empty_size, 4867 u64 search_start, u64 search_end, 4868 u64 hint_byte, struct btrfs_key *ins, 4869 int data) 4870 { 4871 int ret = 0; 4872 struct btrfs_root *root = orig_root->fs_info->extent_root; 4873 struct btrfs_free_cluster *last_ptr = NULL; 4874 struct btrfs_block_group_cache *block_group = NULL; 4875 int empty_cluster = 2 * 1024 * 1024; 4876 int allowed_chunk_alloc = 0; 4877 int done_chunk_alloc = 0; 4878 struct btrfs_space_info *space_info; 4879 int last_ptr_loop = 0; 4880 int loop = 0; 4881 int index = 0; 4882 bool found_uncached_bg = false; 4883 bool failed_cluster_refill = false; 4884 bool failed_alloc = false; 4885 bool use_cluster = true; 4886 u64 ideal_cache_percent = 0; 4887 u64 ideal_cache_offset = 0; 4888 4889 WARN_ON(num_bytes < root->sectorsize); 4890 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 4891 ins->objectid = 0; 4892 ins->offset = 0; 4893 4894 space_info = __find_space_info(root->fs_info, data); 4895 if (!space_info) { 4896 printk(KERN_ERR "No space info for %d\n", data); 4897 return -ENOSPC; 4898 } 4899 4900 /* 4901 * If the space info is for both data and metadata it means we have a 4902 * small filesystem and we can't use the clustering stuff. 4903 */ 4904 if (btrfs_mixed_space_info(space_info)) 4905 use_cluster = false; 4906 4907 if (orig_root->ref_cows || empty_size) 4908 allowed_chunk_alloc = 1; 4909 4910 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 4911 last_ptr = &root->fs_info->meta_alloc_cluster; 4912 if (!btrfs_test_opt(root, SSD)) 4913 empty_cluster = 64 * 1024; 4914 } 4915 4916 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 4917 btrfs_test_opt(root, SSD)) { 4918 last_ptr = &root->fs_info->data_alloc_cluster; 4919 } 4920 4921 if (last_ptr) { 4922 spin_lock(&last_ptr->lock); 4923 if (last_ptr->block_group) 4924 hint_byte = last_ptr->window_start; 4925 spin_unlock(&last_ptr->lock); 4926 } 4927 4928 search_start = max(search_start, first_logical_byte(root, 0)); 4929 search_start = max(search_start, hint_byte); 4930 4931 if (!last_ptr) 4932 empty_cluster = 0; 4933 4934 if (search_start == hint_byte) { 4935 ideal_cache: 4936 block_group = btrfs_lookup_block_group(root->fs_info, 4937 search_start); 4938 /* 4939 * we don't want to use the block group if it doesn't match our 4940 * allocation bits, or if its not cached. 4941 * 4942 * However if we are re-searching with an ideal block group 4943 * picked out then we don't care that the block group is cached. 4944 */ 4945 if (block_group && block_group_bits(block_group, data) && 4946 (block_group->cached != BTRFS_CACHE_NO || 4947 search_start == ideal_cache_offset)) { 4948 down_read(&space_info->groups_sem); 4949 if (list_empty(&block_group->list) || 4950 block_group->ro) { 4951 /* 4952 * someone is removing this block group, 4953 * we can't jump into the have_block_group 4954 * target because our list pointers are not 4955 * valid 4956 */ 4957 btrfs_put_block_group(block_group); 4958 up_read(&space_info->groups_sem); 4959 } else { 4960 index = get_block_group_index(block_group); 4961 goto have_block_group; 4962 } 4963 } else if (block_group) { 4964 btrfs_put_block_group(block_group); 4965 } 4966 } 4967 search: 4968 down_read(&space_info->groups_sem); 4969 list_for_each_entry(block_group, &space_info->block_groups[index], 4970 list) { 4971 u64 offset; 4972 int cached; 4973 4974 btrfs_get_block_group(block_group); 4975 search_start = block_group->key.objectid; 4976 4977 /* 4978 * this can happen if we end up cycling through all the 4979 * raid types, but we want to make sure we only allocate 4980 * for the proper type. 4981 */ 4982 if (!block_group_bits(block_group, data)) { 4983 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4984 BTRFS_BLOCK_GROUP_RAID1 | 4985 BTRFS_BLOCK_GROUP_RAID10; 4986 4987 /* 4988 * if they asked for extra copies and this block group 4989 * doesn't provide them, bail. This does allow us to 4990 * fill raid0 from raid1. 4991 */ 4992 if ((data & extra) && !(block_group->flags & extra)) 4993 goto loop; 4994 } 4995 4996 have_block_group: 4997 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) { 4998 u64 free_percent; 4999 5000 ret = cache_block_group(block_group, trans, 5001 orig_root, 1); 5002 if (block_group->cached == BTRFS_CACHE_FINISHED) 5003 goto have_block_group; 5004 5005 free_percent = btrfs_block_group_used(&block_group->item); 5006 free_percent *= 100; 5007 free_percent = div64_u64(free_percent, 5008 block_group->key.offset); 5009 free_percent = 100 - free_percent; 5010 if (free_percent > ideal_cache_percent && 5011 likely(!block_group->ro)) { 5012 ideal_cache_offset = block_group->key.objectid; 5013 ideal_cache_percent = free_percent; 5014 } 5015 5016 /* 5017 * We only want to start kthread caching if we are at 5018 * the point where we will wait for caching to make 5019 * progress, or if our ideal search is over and we've 5020 * found somebody to start caching. 5021 */ 5022 if (loop > LOOP_CACHING_NOWAIT || 5023 (loop > LOOP_FIND_IDEAL && 5024 atomic_read(&space_info->caching_threads) < 2)) { 5025 ret = cache_block_group(block_group, trans, 5026 orig_root, 0); 5027 BUG_ON(ret); 5028 } 5029 found_uncached_bg = true; 5030 5031 /* 5032 * If loop is set for cached only, try the next block 5033 * group. 5034 */ 5035 if (loop == LOOP_FIND_IDEAL) 5036 goto loop; 5037 } 5038 5039 cached = block_group_cache_done(block_group); 5040 if (unlikely(!cached)) 5041 found_uncached_bg = true; 5042 5043 if (unlikely(block_group->ro)) 5044 goto loop; 5045 5046 /* 5047 * Ok we want to try and use the cluster allocator, so lets look 5048 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will 5049 * have tried the cluster allocator plenty of times at this 5050 * point and not have found anything, so we are likely way too 5051 * fragmented for the clustering stuff to find anything, so lets 5052 * just skip it and let the allocator find whatever block it can 5053 * find 5054 */ 5055 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) { 5056 /* 5057 * the refill lock keeps out other 5058 * people trying to start a new cluster 5059 */ 5060 spin_lock(&last_ptr->refill_lock); 5061 if (last_ptr->block_group && 5062 (last_ptr->block_group->ro || 5063 !block_group_bits(last_ptr->block_group, data))) { 5064 offset = 0; 5065 goto refill_cluster; 5066 } 5067 5068 offset = btrfs_alloc_from_cluster(block_group, last_ptr, 5069 num_bytes, search_start); 5070 if (offset) { 5071 /* we have a block, we're done */ 5072 spin_unlock(&last_ptr->refill_lock); 5073 goto checks; 5074 } 5075 5076 spin_lock(&last_ptr->lock); 5077 /* 5078 * whoops, this cluster doesn't actually point to 5079 * this block group. Get a ref on the block 5080 * group is does point to and try again 5081 */ 5082 if (!last_ptr_loop && last_ptr->block_group && 5083 last_ptr->block_group != block_group) { 5084 5085 btrfs_put_block_group(block_group); 5086 block_group = last_ptr->block_group; 5087 btrfs_get_block_group(block_group); 5088 spin_unlock(&last_ptr->lock); 5089 spin_unlock(&last_ptr->refill_lock); 5090 5091 last_ptr_loop = 1; 5092 search_start = block_group->key.objectid; 5093 /* 5094 * we know this block group is properly 5095 * in the list because 5096 * btrfs_remove_block_group, drops the 5097 * cluster before it removes the block 5098 * group from the list 5099 */ 5100 goto have_block_group; 5101 } 5102 spin_unlock(&last_ptr->lock); 5103 refill_cluster: 5104 /* 5105 * this cluster didn't work out, free it and 5106 * start over 5107 */ 5108 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5109 5110 last_ptr_loop = 0; 5111 5112 /* allocate a cluster in this block group */ 5113 ret = btrfs_find_space_cluster(trans, root, 5114 block_group, last_ptr, 5115 offset, num_bytes, 5116 empty_cluster + empty_size); 5117 if (ret == 0) { 5118 /* 5119 * now pull our allocation out of this 5120 * cluster 5121 */ 5122 offset = btrfs_alloc_from_cluster(block_group, 5123 last_ptr, num_bytes, 5124 search_start); 5125 if (offset) { 5126 /* we found one, proceed */ 5127 spin_unlock(&last_ptr->refill_lock); 5128 goto checks; 5129 } 5130 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5131 && !failed_cluster_refill) { 5132 spin_unlock(&last_ptr->refill_lock); 5133 5134 failed_cluster_refill = true; 5135 wait_block_group_cache_progress(block_group, 5136 num_bytes + empty_cluster + empty_size); 5137 goto have_block_group; 5138 } 5139 5140 /* 5141 * at this point we either didn't find a cluster 5142 * or we weren't able to allocate a block from our 5143 * cluster. Free the cluster we've been trying 5144 * to use, and go to the next block group 5145 */ 5146 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5147 spin_unlock(&last_ptr->refill_lock); 5148 goto loop; 5149 } 5150 5151 offset = btrfs_find_space_for_alloc(block_group, search_start, 5152 num_bytes, empty_size); 5153 /* 5154 * If we didn't find a chunk, and we haven't failed on this 5155 * block group before, and this block group is in the middle of 5156 * caching and we are ok with waiting, then go ahead and wait 5157 * for progress to be made, and set failed_alloc to true. 5158 * 5159 * If failed_alloc is true then we've already waited on this 5160 * block group once and should move on to the next block group. 5161 */ 5162 if (!offset && !failed_alloc && !cached && 5163 loop > LOOP_CACHING_NOWAIT) { 5164 wait_block_group_cache_progress(block_group, 5165 num_bytes + empty_size); 5166 failed_alloc = true; 5167 goto have_block_group; 5168 } else if (!offset) { 5169 goto loop; 5170 } 5171 checks: 5172 search_start = stripe_align(root, offset); 5173 /* move on to the next group */ 5174 if (search_start + num_bytes >= search_end) { 5175 btrfs_add_free_space(block_group, offset, num_bytes); 5176 goto loop; 5177 } 5178 5179 /* move on to the next group */ 5180 if (search_start + num_bytes > 5181 block_group->key.objectid + block_group->key.offset) { 5182 btrfs_add_free_space(block_group, offset, num_bytes); 5183 goto loop; 5184 } 5185 5186 ins->objectid = search_start; 5187 ins->offset = num_bytes; 5188 5189 if (offset < search_start) 5190 btrfs_add_free_space(block_group, offset, 5191 search_start - offset); 5192 BUG_ON(offset > search_start); 5193 5194 ret = update_reserved_bytes(block_group, num_bytes, 1, 5195 (data & BTRFS_BLOCK_GROUP_DATA)); 5196 if (ret == -EAGAIN) { 5197 btrfs_add_free_space(block_group, offset, num_bytes); 5198 goto loop; 5199 } 5200 5201 /* we are all good, lets return */ 5202 ins->objectid = search_start; 5203 ins->offset = num_bytes; 5204 5205 if (offset < search_start) 5206 btrfs_add_free_space(block_group, offset, 5207 search_start - offset); 5208 BUG_ON(offset > search_start); 5209 break; 5210 loop: 5211 failed_cluster_refill = false; 5212 failed_alloc = false; 5213 BUG_ON(index != get_block_group_index(block_group)); 5214 btrfs_put_block_group(block_group); 5215 } 5216 up_read(&space_info->groups_sem); 5217 5218 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5219 goto search; 5220 5221 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for 5222 * for them to make caching progress. Also 5223 * determine the best possible bg to cache 5224 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5225 * caching kthreads as we move along 5226 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5227 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5228 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5229 * again 5230 */ 5231 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE && 5232 (found_uncached_bg || empty_size || empty_cluster || 5233 allowed_chunk_alloc)) { 5234 index = 0; 5235 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { 5236 found_uncached_bg = false; 5237 loop++; 5238 if (!ideal_cache_percent && 5239 atomic_read(&space_info->caching_threads)) 5240 goto search; 5241 5242 /* 5243 * 1 of the following 2 things have happened so far 5244 * 5245 * 1) We found an ideal block group for caching that 5246 * is mostly full and will cache quickly, so we might 5247 * as well wait for it. 5248 * 5249 * 2) We searched for cached only and we didn't find 5250 * anything, and we didn't start any caching kthreads 5251 * either, so chances are we will loop through and 5252 * start a couple caching kthreads, and then come back 5253 * around and just wait for them. This will be slower 5254 * because we will have 2 caching kthreads reading at 5255 * the same time when we could have just started one 5256 * and waited for it to get far enough to give us an 5257 * allocation, so go ahead and go to the wait caching 5258 * loop. 5259 */ 5260 loop = LOOP_CACHING_WAIT; 5261 search_start = ideal_cache_offset; 5262 ideal_cache_percent = 0; 5263 goto ideal_cache; 5264 } else if (loop == LOOP_FIND_IDEAL) { 5265 /* 5266 * Didn't find a uncached bg, wait on anything we find 5267 * next. 5268 */ 5269 loop = LOOP_CACHING_WAIT; 5270 goto search; 5271 } 5272 5273 if (loop < LOOP_CACHING_WAIT) { 5274 loop++; 5275 goto search; 5276 } 5277 5278 if (loop == LOOP_ALLOC_CHUNK) { 5279 empty_size = 0; 5280 empty_cluster = 0; 5281 } 5282 5283 if (allowed_chunk_alloc) { 5284 ret = do_chunk_alloc(trans, root, num_bytes + 5285 2 * 1024 * 1024, data, 1); 5286 allowed_chunk_alloc = 0; 5287 done_chunk_alloc = 1; 5288 } else if (!done_chunk_alloc) { 5289 space_info->force_alloc = 1; 5290 } 5291 5292 if (loop < LOOP_NO_EMPTY_SIZE) { 5293 loop++; 5294 goto search; 5295 } 5296 ret = -ENOSPC; 5297 } else if (!ins->objectid) { 5298 ret = -ENOSPC; 5299 } 5300 5301 /* we found what we needed */ 5302 if (ins->objectid) { 5303 if (!(data & BTRFS_BLOCK_GROUP_DATA)) 5304 trans->block_group = block_group->key.objectid; 5305 5306 btrfs_put_block_group(block_group); 5307 ret = 0; 5308 } 5309 5310 return ret; 5311 } 5312 5313 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5314 int dump_block_groups) 5315 { 5316 struct btrfs_block_group_cache *cache; 5317 int index = 0; 5318 5319 spin_lock(&info->lock); 5320 printk(KERN_INFO "space_info has %llu free, is %sfull\n", 5321 (unsigned long long)(info->total_bytes - info->bytes_used - 5322 info->bytes_pinned - info->bytes_reserved - 5323 info->bytes_readonly), 5324 (info->full) ? "" : "not "); 5325 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5326 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5327 (unsigned long long)info->total_bytes, 5328 (unsigned long long)info->bytes_used, 5329 (unsigned long long)info->bytes_pinned, 5330 (unsigned long long)info->bytes_reserved, 5331 (unsigned long long)info->bytes_may_use, 5332 (unsigned long long)info->bytes_readonly); 5333 spin_unlock(&info->lock); 5334 5335 if (!dump_block_groups) 5336 return; 5337 5338 down_read(&info->groups_sem); 5339 again: 5340 list_for_each_entry(cache, &info->block_groups[index], list) { 5341 spin_lock(&cache->lock); 5342 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 5343 "%llu pinned %llu reserved\n", 5344 (unsigned long long)cache->key.objectid, 5345 (unsigned long long)cache->key.offset, 5346 (unsigned long long)btrfs_block_group_used(&cache->item), 5347 (unsigned long long)cache->pinned, 5348 (unsigned long long)cache->reserved); 5349 btrfs_dump_free_space(cache, bytes); 5350 spin_unlock(&cache->lock); 5351 } 5352 if (++index < BTRFS_NR_RAID_TYPES) 5353 goto again; 5354 up_read(&info->groups_sem); 5355 } 5356 5357 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5358 struct btrfs_root *root, 5359 u64 num_bytes, u64 min_alloc_size, 5360 u64 empty_size, u64 hint_byte, 5361 u64 search_end, struct btrfs_key *ins, 5362 u64 data) 5363 { 5364 int ret; 5365 u64 search_start = 0; 5366 5367 data = btrfs_get_alloc_profile(root, data); 5368 again: 5369 /* 5370 * the only place that sets empty_size is btrfs_realloc_node, which 5371 * is not called recursively on allocations 5372 */ 5373 if (empty_size || root->ref_cows) 5374 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5375 num_bytes + 2 * 1024 * 1024, data, 0); 5376 5377 WARN_ON(num_bytes < root->sectorsize); 5378 ret = find_free_extent(trans, root, num_bytes, empty_size, 5379 search_start, search_end, hint_byte, 5380 ins, data); 5381 5382 if (ret == -ENOSPC && num_bytes > min_alloc_size) { 5383 num_bytes = num_bytes >> 1; 5384 num_bytes = num_bytes & ~(root->sectorsize - 1); 5385 num_bytes = max(num_bytes, min_alloc_size); 5386 do_chunk_alloc(trans, root->fs_info->extent_root, 5387 num_bytes, data, 1); 5388 goto again; 5389 } 5390 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) { 5391 struct btrfs_space_info *sinfo; 5392 5393 sinfo = __find_space_info(root->fs_info, data); 5394 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5395 "wanted %llu\n", (unsigned long long)data, 5396 (unsigned long long)num_bytes); 5397 dump_space_info(sinfo, num_bytes, 1); 5398 } 5399 5400 return ret; 5401 } 5402 5403 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) 5404 { 5405 struct btrfs_block_group_cache *cache; 5406 int ret = 0; 5407 5408 cache = btrfs_lookup_block_group(root->fs_info, start); 5409 if (!cache) { 5410 printk(KERN_ERR "Unable to find block group for %llu\n", 5411 (unsigned long long)start); 5412 return -ENOSPC; 5413 } 5414 5415 ret = btrfs_discard_extent(root, start, len); 5416 5417 btrfs_add_free_space(cache, start, len); 5418 update_reserved_bytes(cache, len, 0, 1); 5419 btrfs_put_block_group(cache); 5420 5421 return ret; 5422 } 5423 5424 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5425 struct btrfs_root *root, 5426 u64 parent, u64 root_objectid, 5427 u64 flags, u64 owner, u64 offset, 5428 struct btrfs_key *ins, int ref_mod) 5429 { 5430 int ret; 5431 struct btrfs_fs_info *fs_info = root->fs_info; 5432 struct btrfs_extent_item *extent_item; 5433 struct btrfs_extent_inline_ref *iref; 5434 struct btrfs_path *path; 5435 struct extent_buffer *leaf; 5436 int type; 5437 u32 size; 5438 5439 if (parent > 0) 5440 type = BTRFS_SHARED_DATA_REF_KEY; 5441 else 5442 type = BTRFS_EXTENT_DATA_REF_KEY; 5443 5444 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 5445 5446 path = btrfs_alloc_path(); 5447 BUG_ON(!path); 5448 5449 path->leave_spinning = 1; 5450 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5451 ins, size); 5452 BUG_ON(ret); 5453 5454 leaf = path->nodes[0]; 5455 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5456 struct btrfs_extent_item); 5457 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 5458 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5459 btrfs_set_extent_flags(leaf, extent_item, 5460 flags | BTRFS_EXTENT_FLAG_DATA); 5461 5462 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 5463 btrfs_set_extent_inline_ref_type(leaf, iref, type); 5464 if (parent > 0) { 5465 struct btrfs_shared_data_ref *ref; 5466 ref = (struct btrfs_shared_data_ref *)(iref + 1); 5467 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5468 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 5469 } else { 5470 struct btrfs_extent_data_ref *ref; 5471 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 5472 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 5473 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 5474 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 5475 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 5476 } 5477 5478 btrfs_mark_buffer_dirty(path->nodes[0]); 5479 btrfs_free_path(path); 5480 5481 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5482 if (ret) { 5483 printk(KERN_ERR "btrfs update block group failed for %llu " 5484 "%llu\n", (unsigned long long)ins->objectid, 5485 (unsigned long long)ins->offset); 5486 BUG(); 5487 } 5488 return ret; 5489 } 5490 5491 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 5492 struct btrfs_root *root, 5493 u64 parent, u64 root_objectid, 5494 u64 flags, struct btrfs_disk_key *key, 5495 int level, struct btrfs_key *ins) 5496 { 5497 int ret; 5498 struct btrfs_fs_info *fs_info = root->fs_info; 5499 struct btrfs_extent_item *extent_item; 5500 struct btrfs_tree_block_info *block_info; 5501 struct btrfs_extent_inline_ref *iref; 5502 struct btrfs_path *path; 5503 struct extent_buffer *leaf; 5504 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 5505 5506 path = btrfs_alloc_path(); 5507 BUG_ON(!path); 5508 5509 path->leave_spinning = 1; 5510 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5511 ins, size); 5512 BUG_ON(ret); 5513 5514 leaf = path->nodes[0]; 5515 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5516 struct btrfs_extent_item); 5517 btrfs_set_extent_refs(leaf, extent_item, 1); 5518 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5519 btrfs_set_extent_flags(leaf, extent_item, 5520 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 5521 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 5522 5523 btrfs_set_tree_block_key(leaf, block_info, key); 5524 btrfs_set_tree_block_level(leaf, block_info, level); 5525 5526 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 5527 if (parent > 0) { 5528 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 5529 btrfs_set_extent_inline_ref_type(leaf, iref, 5530 BTRFS_SHARED_BLOCK_REF_KEY); 5531 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5532 } else { 5533 btrfs_set_extent_inline_ref_type(leaf, iref, 5534 BTRFS_TREE_BLOCK_REF_KEY); 5535 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 5536 } 5537 5538 btrfs_mark_buffer_dirty(leaf); 5539 btrfs_free_path(path); 5540 5541 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5542 if (ret) { 5543 printk(KERN_ERR "btrfs update block group failed for %llu " 5544 "%llu\n", (unsigned long long)ins->objectid, 5545 (unsigned long long)ins->offset); 5546 BUG(); 5547 } 5548 return ret; 5549 } 5550 5551 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5552 struct btrfs_root *root, 5553 u64 root_objectid, u64 owner, 5554 u64 offset, struct btrfs_key *ins) 5555 { 5556 int ret; 5557 5558 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 5559 5560 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, 5561 0, root_objectid, owner, offset, 5562 BTRFS_ADD_DELAYED_EXTENT, NULL); 5563 return ret; 5564 } 5565 5566 /* 5567 * this is used by the tree logging recovery code. It records that 5568 * an extent has been allocated and makes sure to clear the free 5569 * space cache bits as well 5570 */ 5571 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 5572 struct btrfs_root *root, 5573 u64 root_objectid, u64 owner, u64 offset, 5574 struct btrfs_key *ins) 5575 { 5576 int ret; 5577 struct btrfs_block_group_cache *block_group; 5578 struct btrfs_caching_control *caching_ctl; 5579 u64 start = ins->objectid; 5580 u64 num_bytes = ins->offset; 5581 5582 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 5583 cache_block_group(block_group, trans, NULL, 0); 5584 caching_ctl = get_caching_control(block_group); 5585 5586 if (!caching_ctl) { 5587 BUG_ON(!block_group_cache_done(block_group)); 5588 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5589 BUG_ON(ret); 5590 } else { 5591 mutex_lock(&caching_ctl->mutex); 5592 5593 if (start >= caching_ctl->progress) { 5594 ret = add_excluded_extent(root, start, num_bytes); 5595 BUG_ON(ret); 5596 } else if (start + num_bytes <= caching_ctl->progress) { 5597 ret = btrfs_remove_free_space(block_group, 5598 start, num_bytes); 5599 BUG_ON(ret); 5600 } else { 5601 num_bytes = caching_ctl->progress - start; 5602 ret = btrfs_remove_free_space(block_group, 5603 start, num_bytes); 5604 BUG_ON(ret); 5605 5606 start = caching_ctl->progress; 5607 num_bytes = ins->objectid + ins->offset - 5608 caching_ctl->progress; 5609 ret = add_excluded_extent(root, start, num_bytes); 5610 BUG_ON(ret); 5611 } 5612 5613 mutex_unlock(&caching_ctl->mutex); 5614 put_caching_control(caching_ctl); 5615 } 5616 5617 ret = update_reserved_bytes(block_group, ins->offset, 1, 1); 5618 BUG_ON(ret); 5619 btrfs_put_block_group(block_group); 5620 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 5621 0, owner, offset, ins, 1); 5622 return ret; 5623 } 5624 5625 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 5626 struct btrfs_root *root, 5627 u64 bytenr, u32 blocksize, 5628 int level) 5629 { 5630 struct extent_buffer *buf; 5631 5632 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 5633 if (!buf) 5634 return ERR_PTR(-ENOMEM); 5635 btrfs_set_header_generation(buf, trans->transid); 5636 btrfs_set_buffer_lockdep_class(buf, level); 5637 btrfs_tree_lock(buf); 5638 clean_tree_block(trans, root, buf); 5639 5640 btrfs_set_lock_blocking(buf); 5641 btrfs_set_buffer_uptodate(buf); 5642 5643 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5644 /* 5645 * we allow two log transactions at a time, use different 5646 * EXENT bit to differentiate dirty pages. 5647 */ 5648 if (root->log_transid % 2 == 0) 5649 set_extent_dirty(&root->dirty_log_pages, buf->start, 5650 buf->start + buf->len - 1, GFP_NOFS); 5651 else 5652 set_extent_new(&root->dirty_log_pages, buf->start, 5653 buf->start + buf->len - 1, GFP_NOFS); 5654 } else { 5655 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 5656 buf->start + buf->len - 1, GFP_NOFS); 5657 } 5658 trans->blocks_used++; 5659 /* this returns a buffer locked for blocking */ 5660 return buf; 5661 } 5662 5663 static struct btrfs_block_rsv * 5664 use_block_rsv(struct btrfs_trans_handle *trans, 5665 struct btrfs_root *root, u32 blocksize) 5666 { 5667 struct btrfs_block_rsv *block_rsv; 5668 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5669 int ret; 5670 5671 block_rsv = get_block_rsv(trans, root); 5672 5673 if (block_rsv->size == 0) { 5674 ret = reserve_metadata_bytes(trans, root, block_rsv, 5675 blocksize, 0); 5676 /* 5677 * If we couldn't reserve metadata bytes try and use some from 5678 * the global reserve. 5679 */ 5680 if (ret && block_rsv != global_rsv) { 5681 ret = block_rsv_use_bytes(global_rsv, blocksize); 5682 if (!ret) 5683 return global_rsv; 5684 return ERR_PTR(ret); 5685 } else if (ret) { 5686 return ERR_PTR(ret); 5687 } 5688 return block_rsv; 5689 } 5690 5691 ret = block_rsv_use_bytes(block_rsv, blocksize); 5692 if (!ret) 5693 return block_rsv; 5694 if (ret) { 5695 WARN_ON(1); 5696 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize, 5697 0); 5698 if (!ret) { 5699 spin_lock(&block_rsv->lock); 5700 block_rsv->size += blocksize; 5701 spin_unlock(&block_rsv->lock); 5702 return block_rsv; 5703 } else if (ret && block_rsv != global_rsv) { 5704 ret = block_rsv_use_bytes(global_rsv, blocksize); 5705 if (!ret) 5706 return global_rsv; 5707 } 5708 } 5709 5710 return ERR_PTR(-ENOSPC); 5711 } 5712 5713 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) 5714 { 5715 block_rsv_add_bytes(block_rsv, blocksize, 0); 5716 block_rsv_release_bytes(block_rsv, NULL, 0); 5717 } 5718 5719 /* 5720 * finds a free extent and does all the dirty work required for allocation 5721 * returns the key for the extent through ins, and a tree buffer for 5722 * the first block of the extent through buf. 5723 * 5724 * returns the tree buffer or NULL. 5725 */ 5726 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 5727 struct btrfs_root *root, u32 blocksize, 5728 u64 parent, u64 root_objectid, 5729 struct btrfs_disk_key *key, int level, 5730 u64 hint, u64 empty_size) 5731 { 5732 struct btrfs_key ins; 5733 struct btrfs_block_rsv *block_rsv; 5734 struct extent_buffer *buf; 5735 u64 flags = 0; 5736 int ret; 5737 5738 5739 block_rsv = use_block_rsv(trans, root, blocksize); 5740 if (IS_ERR(block_rsv)) 5741 return ERR_CAST(block_rsv); 5742 5743 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 5744 empty_size, hint, (u64)-1, &ins, 0); 5745 if (ret) { 5746 unuse_block_rsv(block_rsv, blocksize); 5747 return ERR_PTR(ret); 5748 } 5749 5750 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 5751 blocksize, level); 5752 BUG_ON(IS_ERR(buf)); 5753 5754 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5755 if (parent == 0) 5756 parent = ins.objectid; 5757 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5758 } else 5759 BUG_ON(parent > 0); 5760 5761 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5762 struct btrfs_delayed_extent_op *extent_op; 5763 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 5764 BUG_ON(!extent_op); 5765 if (key) 5766 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5767 else 5768 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5769 extent_op->flags_to_set = flags; 5770 extent_op->update_key = 1; 5771 extent_op->update_flags = 1; 5772 extent_op->is_data = 0; 5773 5774 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, 5775 ins.offset, parent, root_objectid, 5776 level, BTRFS_ADD_DELAYED_EXTENT, 5777 extent_op); 5778 BUG_ON(ret); 5779 } 5780 return buf; 5781 } 5782 5783 struct walk_control { 5784 u64 refs[BTRFS_MAX_LEVEL]; 5785 u64 flags[BTRFS_MAX_LEVEL]; 5786 struct btrfs_key update_progress; 5787 int stage; 5788 int level; 5789 int shared_level; 5790 int update_ref; 5791 int keep_locks; 5792 int reada_slot; 5793 int reada_count; 5794 }; 5795 5796 #define DROP_REFERENCE 1 5797 #define UPDATE_BACKREF 2 5798 5799 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5800 struct btrfs_root *root, 5801 struct walk_control *wc, 5802 struct btrfs_path *path) 5803 { 5804 u64 bytenr; 5805 u64 generation; 5806 u64 refs; 5807 u64 flags; 5808 u32 nritems; 5809 u32 blocksize; 5810 struct btrfs_key key; 5811 struct extent_buffer *eb; 5812 int ret; 5813 int slot; 5814 int nread = 0; 5815 5816 if (path->slots[wc->level] < wc->reada_slot) { 5817 wc->reada_count = wc->reada_count * 2 / 3; 5818 wc->reada_count = max(wc->reada_count, 2); 5819 } else { 5820 wc->reada_count = wc->reada_count * 3 / 2; 5821 wc->reada_count = min_t(int, wc->reada_count, 5822 BTRFS_NODEPTRS_PER_BLOCK(root)); 5823 } 5824 5825 eb = path->nodes[wc->level]; 5826 nritems = btrfs_header_nritems(eb); 5827 blocksize = btrfs_level_size(root, wc->level - 1); 5828 5829 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5830 if (nread >= wc->reada_count) 5831 break; 5832 5833 cond_resched(); 5834 bytenr = btrfs_node_blockptr(eb, slot); 5835 generation = btrfs_node_ptr_generation(eb, slot); 5836 5837 if (slot == path->slots[wc->level]) 5838 goto reada; 5839 5840 if (wc->stage == UPDATE_BACKREF && 5841 generation <= root->root_key.offset) 5842 continue; 5843 5844 /* We don't lock the tree block, it's OK to be racy here */ 5845 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 5846 &refs, &flags); 5847 BUG_ON(ret); 5848 BUG_ON(refs == 0); 5849 5850 if (wc->stage == DROP_REFERENCE) { 5851 if (refs == 1) 5852 goto reada; 5853 5854 if (wc->level == 1 && 5855 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5856 continue; 5857 if (!wc->update_ref || 5858 generation <= root->root_key.offset) 5859 continue; 5860 btrfs_node_key_to_cpu(eb, &key, slot); 5861 ret = btrfs_comp_cpu_keys(&key, 5862 &wc->update_progress); 5863 if (ret < 0) 5864 continue; 5865 } else { 5866 if (wc->level == 1 && 5867 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5868 continue; 5869 } 5870 reada: 5871 ret = readahead_tree_block(root, bytenr, blocksize, 5872 generation); 5873 if (ret) 5874 break; 5875 nread++; 5876 } 5877 wc->reada_slot = slot; 5878 } 5879 5880 /* 5881 * hepler to process tree block while walking down the tree. 5882 * 5883 * when wc->stage == UPDATE_BACKREF, this function updates 5884 * back refs for pointers in the block. 5885 * 5886 * NOTE: return value 1 means we should stop walking down. 5887 */ 5888 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5889 struct btrfs_root *root, 5890 struct btrfs_path *path, 5891 struct walk_control *wc, int lookup_info) 5892 { 5893 int level = wc->level; 5894 struct extent_buffer *eb = path->nodes[level]; 5895 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5896 int ret; 5897 5898 if (wc->stage == UPDATE_BACKREF && 5899 btrfs_header_owner(eb) != root->root_key.objectid) 5900 return 1; 5901 5902 /* 5903 * when reference count of tree block is 1, it won't increase 5904 * again. once full backref flag is set, we never clear it. 5905 */ 5906 if (lookup_info && 5907 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5908 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5909 BUG_ON(!path->locks[level]); 5910 ret = btrfs_lookup_extent_info(trans, root, 5911 eb->start, eb->len, 5912 &wc->refs[level], 5913 &wc->flags[level]); 5914 BUG_ON(ret); 5915 BUG_ON(wc->refs[level] == 0); 5916 } 5917 5918 if (wc->stage == DROP_REFERENCE) { 5919 if (wc->refs[level] > 1) 5920 return 1; 5921 5922 if (path->locks[level] && !wc->keep_locks) { 5923 btrfs_tree_unlock(eb); 5924 path->locks[level] = 0; 5925 } 5926 return 0; 5927 } 5928 5929 /* wc->stage == UPDATE_BACKREF */ 5930 if (!(wc->flags[level] & flag)) { 5931 BUG_ON(!path->locks[level]); 5932 ret = btrfs_inc_ref(trans, root, eb, 1); 5933 BUG_ON(ret); 5934 ret = btrfs_dec_ref(trans, root, eb, 0); 5935 BUG_ON(ret); 5936 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 5937 eb->len, flag, 0); 5938 BUG_ON(ret); 5939 wc->flags[level] |= flag; 5940 } 5941 5942 /* 5943 * the block is shared by multiple trees, so it's not good to 5944 * keep the tree lock 5945 */ 5946 if (path->locks[level] && level > 0) { 5947 btrfs_tree_unlock(eb); 5948 path->locks[level] = 0; 5949 } 5950 return 0; 5951 } 5952 5953 /* 5954 * hepler to process tree block pointer. 5955 * 5956 * when wc->stage == DROP_REFERENCE, this function checks 5957 * reference count of the block pointed to. if the block 5958 * is shared and we need update back refs for the subtree 5959 * rooted at the block, this function changes wc->stage to 5960 * UPDATE_BACKREF. if the block is shared and there is no 5961 * need to update back, this function drops the reference 5962 * to the block. 5963 * 5964 * NOTE: return value 1 means we should stop walking down. 5965 */ 5966 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5967 struct btrfs_root *root, 5968 struct btrfs_path *path, 5969 struct walk_control *wc, int *lookup_info) 5970 { 5971 u64 bytenr; 5972 u64 generation; 5973 u64 parent; 5974 u32 blocksize; 5975 struct btrfs_key key; 5976 struct extent_buffer *next; 5977 int level = wc->level; 5978 int reada = 0; 5979 int ret = 0; 5980 5981 generation = btrfs_node_ptr_generation(path->nodes[level], 5982 path->slots[level]); 5983 /* 5984 * if the lower level block was created before the snapshot 5985 * was created, we know there is no need to update back refs 5986 * for the subtree 5987 */ 5988 if (wc->stage == UPDATE_BACKREF && 5989 generation <= root->root_key.offset) { 5990 *lookup_info = 1; 5991 return 1; 5992 } 5993 5994 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5995 blocksize = btrfs_level_size(root, level - 1); 5996 5997 next = btrfs_find_tree_block(root, bytenr, blocksize); 5998 if (!next) { 5999 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6000 if (!next) 6001 return -ENOMEM; 6002 reada = 1; 6003 } 6004 btrfs_tree_lock(next); 6005 btrfs_set_lock_blocking(next); 6006 6007 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6008 &wc->refs[level - 1], 6009 &wc->flags[level - 1]); 6010 BUG_ON(ret); 6011 BUG_ON(wc->refs[level - 1] == 0); 6012 *lookup_info = 0; 6013 6014 if (wc->stage == DROP_REFERENCE) { 6015 if (wc->refs[level - 1] > 1) { 6016 if (level == 1 && 6017 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6018 goto skip; 6019 6020 if (!wc->update_ref || 6021 generation <= root->root_key.offset) 6022 goto skip; 6023 6024 btrfs_node_key_to_cpu(path->nodes[level], &key, 6025 path->slots[level]); 6026 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6027 if (ret < 0) 6028 goto skip; 6029 6030 wc->stage = UPDATE_BACKREF; 6031 wc->shared_level = level - 1; 6032 } 6033 } else { 6034 if (level == 1 && 6035 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6036 goto skip; 6037 } 6038 6039 if (!btrfs_buffer_uptodate(next, generation)) { 6040 btrfs_tree_unlock(next); 6041 free_extent_buffer(next); 6042 next = NULL; 6043 *lookup_info = 1; 6044 } 6045 6046 if (!next) { 6047 if (reada && level == 1) 6048 reada_walk_down(trans, root, wc, path); 6049 next = read_tree_block(root, bytenr, blocksize, generation); 6050 btrfs_tree_lock(next); 6051 btrfs_set_lock_blocking(next); 6052 } 6053 6054 level--; 6055 BUG_ON(level != btrfs_header_level(next)); 6056 path->nodes[level] = next; 6057 path->slots[level] = 0; 6058 path->locks[level] = 1; 6059 wc->level = level; 6060 if (wc->level == 1) 6061 wc->reada_slot = 0; 6062 return 0; 6063 skip: 6064 wc->refs[level - 1] = 0; 6065 wc->flags[level - 1] = 0; 6066 if (wc->stage == DROP_REFERENCE) { 6067 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6068 parent = path->nodes[level]->start; 6069 } else { 6070 BUG_ON(root->root_key.objectid != 6071 btrfs_header_owner(path->nodes[level])); 6072 parent = 0; 6073 } 6074 6075 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6076 root->root_key.objectid, level - 1, 0); 6077 BUG_ON(ret); 6078 } 6079 btrfs_tree_unlock(next); 6080 free_extent_buffer(next); 6081 *lookup_info = 1; 6082 return 1; 6083 } 6084 6085 /* 6086 * hepler to process tree block while walking up the tree. 6087 * 6088 * when wc->stage == DROP_REFERENCE, this function drops 6089 * reference count on the block. 6090 * 6091 * when wc->stage == UPDATE_BACKREF, this function changes 6092 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6093 * to UPDATE_BACKREF previously while processing the block. 6094 * 6095 * NOTE: return value 1 means we should stop walking up. 6096 */ 6097 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6098 struct btrfs_root *root, 6099 struct btrfs_path *path, 6100 struct walk_control *wc) 6101 { 6102 int ret; 6103 int level = wc->level; 6104 struct extent_buffer *eb = path->nodes[level]; 6105 u64 parent = 0; 6106 6107 if (wc->stage == UPDATE_BACKREF) { 6108 BUG_ON(wc->shared_level < level); 6109 if (level < wc->shared_level) 6110 goto out; 6111 6112 ret = find_next_key(path, level + 1, &wc->update_progress); 6113 if (ret > 0) 6114 wc->update_ref = 0; 6115 6116 wc->stage = DROP_REFERENCE; 6117 wc->shared_level = -1; 6118 path->slots[level] = 0; 6119 6120 /* 6121 * check reference count again if the block isn't locked. 6122 * we should start walking down the tree again if reference 6123 * count is one. 6124 */ 6125 if (!path->locks[level]) { 6126 BUG_ON(level == 0); 6127 btrfs_tree_lock(eb); 6128 btrfs_set_lock_blocking(eb); 6129 path->locks[level] = 1; 6130 6131 ret = btrfs_lookup_extent_info(trans, root, 6132 eb->start, eb->len, 6133 &wc->refs[level], 6134 &wc->flags[level]); 6135 BUG_ON(ret); 6136 BUG_ON(wc->refs[level] == 0); 6137 if (wc->refs[level] == 1) { 6138 btrfs_tree_unlock(eb); 6139 path->locks[level] = 0; 6140 return 1; 6141 } 6142 } 6143 } 6144 6145 /* wc->stage == DROP_REFERENCE */ 6146 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6147 6148 if (wc->refs[level] == 1) { 6149 if (level == 0) { 6150 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6151 ret = btrfs_dec_ref(trans, root, eb, 1); 6152 else 6153 ret = btrfs_dec_ref(trans, root, eb, 0); 6154 BUG_ON(ret); 6155 } 6156 /* make block locked assertion in clean_tree_block happy */ 6157 if (!path->locks[level] && 6158 btrfs_header_generation(eb) == trans->transid) { 6159 btrfs_tree_lock(eb); 6160 btrfs_set_lock_blocking(eb); 6161 path->locks[level] = 1; 6162 } 6163 clean_tree_block(trans, root, eb); 6164 } 6165 6166 if (eb == root->node) { 6167 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6168 parent = eb->start; 6169 else 6170 BUG_ON(root->root_key.objectid != 6171 btrfs_header_owner(eb)); 6172 } else { 6173 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6174 parent = path->nodes[level + 1]->start; 6175 else 6176 BUG_ON(root->root_key.objectid != 6177 btrfs_header_owner(path->nodes[level + 1])); 6178 } 6179 6180 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6181 out: 6182 wc->refs[level] = 0; 6183 wc->flags[level] = 0; 6184 return 0; 6185 } 6186 6187 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6188 struct btrfs_root *root, 6189 struct btrfs_path *path, 6190 struct walk_control *wc) 6191 { 6192 int level = wc->level; 6193 int lookup_info = 1; 6194 int ret; 6195 6196 while (level >= 0) { 6197 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6198 if (ret > 0) 6199 break; 6200 6201 if (level == 0) 6202 break; 6203 6204 if (path->slots[level] >= 6205 btrfs_header_nritems(path->nodes[level])) 6206 break; 6207 6208 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6209 if (ret > 0) { 6210 path->slots[level]++; 6211 continue; 6212 } else if (ret < 0) 6213 return ret; 6214 level = wc->level; 6215 } 6216 return 0; 6217 } 6218 6219 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6220 struct btrfs_root *root, 6221 struct btrfs_path *path, 6222 struct walk_control *wc, int max_level) 6223 { 6224 int level = wc->level; 6225 int ret; 6226 6227 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6228 while (level < max_level && path->nodes[level]) { 6229 wc->level = level; 6230 if (path->slots[level] + 1 < 6231 btrfs_header_nritems(path->nodes[level])) { 6232 path->slots[level]++; 6233 return 0; 6234 } else { 6235 ret = walk_up_proc(trans, root, path, wc); 6236 if (ret > 0) 6237 return 0; 6238 6239 if (path->locks[level]) { 6240 btrfs_tree_unlock(path->nodes[level]); 6241 path->locks[level] = 0; 6242 } 6243 free_extent_buffer(path->nodes[level]); 6244 path->nodes[level] = NULL; 6245 level++; 6246 } 6247 } 6248 return 1; 6249 } 6250 6251 /* 6252 * drop a subvolume tree. 6253 * 6254 * this function traverses the tree freeing any blocks that only 6255 * referenced by the tree. 6256 * 6257 * when a shared tree block is found. this function decreases its 6258 * reference count by one. if update_ref is true, this function 6259 * also make sure backrefs for the shared block and all lower level 6260 * blocks are properly updated. 6261 */ 6262 int btrfs_drop_snapshot(struct btrfs_root *root, 6263 struct btrfs_block_rsv *block_rsv, int update_ref) 6264 { 6265 struct btrfs_path *path; 6266 struct btrfs_trans_handle *trans; 6267 struct btrfs_root *tree_root = root->fs_info->tree_root; 6268 struct btrfs_root_item *root_item = &root->root_item; 6269 struct walk_control *wc; 6270 struct btrfs_key key; 6271 int err = 0; 6272 int ret; 6273 int level; 6274 6275 path = btrfs_alloc_path(); 6276 BUG_ON(!path); 6277 6278 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6279 BUG_ON(!wc); 6280 6281 trans = btrfs_start_transaction(tree_root, 0); 6282 BUG_ON(IS_ERR(trans)); 6283 6284 if (block_rsv) 6285 trans->block_rsv = block_rsv; 6286 6287 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6288 level = btrfs_header_level(root->node); 6289 path->nodes[level] = btrfs_lock_root_node(root); 6290 btrfs_set_lock_blocking(path->nodes[level]); 6291 path->slots[level] = 0; 6292 path->locks[level] = 1; 6293 memset(&wc->update_progress, 0, 6294 sizeof(wc->update_progress)); 6295 } else { 6296 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6297 memcpy(&wc->update_progress, &key, 6298 sizeof(wc->update_progress)); 6299 6300 level = root_item->drop_level; 6301 BUG_ON(level == 0); 6302 path->lowest_level = level; 6303 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6304 path->lowest_level = 0; 6305 if (ret < 0) { 6306 err = ret; 6307 goto out; 6308 } 6309 WARN_ON(ret > 0); 6310 6311 /* 6312 * unlock our path, this is safe because only this 6313 * function is allowed to delete this snapshot 6314 */ 6315 btrfs_unlock_up_safe(path, 0); 6316 6317 level = btrfs_header_level(root->node); 6318 while (1) { 6319 btrfs_tree_lock(path->nodes[level]); 6320 btrfs_set_lock_blocking(path->nodes[level]); 6321 6322 ret = btrfs_lookup_extent_info(trans, root, 6323 path->nodes[level]->start, 6324 path->nodes[level]->len, 6325 &wc->refs[level], 6326 &wc->flags[level]); 6327 BUG_ON(ret); 6328 BUG_ON(wc->refs[level] == 0); 6329 6330 if (level == root_item->drop_level) 6331 break; 6332 6333 btrfs_tree_unlock(path->nodes[level]); 6334 WARN_ON(wc->refs[level] != 1); 6335 level--; 6336 } 6337 } 6338 6339 wc->level = level; 6340 wc->shared_level = -1; 6341 wc->stage = DROP_REFERENCE; 6342 wc->update_ref = update_ref; 6343 wc->keep_locks = 0; 6344 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6345 6346 while (1) { 6347 ret = walk_down_tree(trans, root, path, wc); 6348 if (ret < 0) { 6349 err = ret; 6350 break; 6351 } 6352 6353 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6354 if (ret < 0) { 6355 err = ret; 6356 break; 6357 } 6358 6359 if (ret > 0) { 6360 BUG_ON(wc->stage != DROP_REFERENCE); 6361 break; 6362 } 6363 6364 if (wc->stage == DROP_REFERENCE) { 6365 level = wc->level; 6366 btrfs_node_key(path->nodes[level], 6367 &root_item->drop_progress, 6368 path->slots[level]); 6369 root_item->drop_level = level; 6370 } 6371 6372 BUG_ON(wc->level == 0); 6373 if (btrfs_should_end_transaction(trans, tree_root)) { 6374 ret = btrfs_update_root(trans, tree_root, 6375 &root->root_key, 6376 root_item); 6377 BUG_ON(ret); 6378 6379 btrfs_end_transaction_throttle(trans, tree_root); 6380 trans = btrfs_start_transaction(tree_root, 0); 6381 BUG_ON(IS_ERR(trans)); 6382 if (block_rsv) 6383 trans->block_rsv = block_rsv; 6384 } 6385 } 6386 btrfs_release_path(root, path); 6387 BUG_ON(err); 6388 6389 ret = btrfs_del_root(trans, tree_root, &root->root_key); 6390 BUG_ON(ret); 6391 6392 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 6393 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 6394 NULL, NULL); 6395 BUG_ON(ret < 0); 6396 if (ret > 0) { 6397 /* if we fail to delete the orphan item this time 6398 * around, it'll get picked up the next time. 6399 * 6400 * The most common failure here is just -ENOENT. 6401 */ 6402 btrfs_del_orphan_item(trans, tree_root, 6403 root->root_key.objectid); 6404 } 6405 } 6406 6407 if (root->in_radix) { 6408 btrfs_free_fs_root(tree_root->fs_info, root); 6409 } else { 6410 free_extent_buffer(root->node); 6411 free_extent_buffer(root->commit_root); 6412 kfree(root); 6413 } 6414 out: 6415 btrfs_end_transaction_throttle(trans, tree_root); 6416 kfree(wc); 6417 btrfs_free_path(path); 6418 return err; 6419 } 6420 6421 /* 6422 * drop subtree rooted at tree block 'node'. 6423 * 6424 * NOTE: this function will unlock and release tree block 'node' 6425 */ 6426 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6427 struct btrfs_root *root, 6428 struct extent_buffer *node, 6429 struct extent_buffer *parent) 6430 { 6431 struct btrfs_path *path; 6432 struct walk_control *wc; 6433 int level; 6434 int parent_level; 6435 int ret = 0; 6436 int wret; 6437 6438 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6439 6440 path = btrfs_alloc_path(); 6441 BUG_ON(!path); 6442 6443 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6444 BUG_ON(!wc); 6445 6446 btrfs_assert_tree_locked(parent); 6447 parent_level = btrfs_header_level(parent); 6448 extent_buffer_get(parent); 6449 path->nodes[parent_level] = parent; 6450 path->slots[parent_level] = btrfs_header_nritems(parent); 6451 6452 btrfs_assert_tree_locked(node); 6453 level = btrfs_header_level(node); 6454 path->nodes[level] = node; 6455 path->slots[level] = 0; 6456 path->locks[level] = 1; 6457 6458 wc->refs[parent_level] = 1; 6459 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6460 wc->level = level; 6461 wc->shared_level = -1; 6462 wc->stage = DROP_REFERENCE; 6463 wc->update_ref = 0; 6464 wc->keep_locks = 1; 6465 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6466 6467 while (1) { 6468 wret = walk_down_tree(trans, root, path, wc); 6469 if (wret < 0) { 6470 ret = wret; 6471 break; 6472 } 6473 6474 wret = walk_up_tree(trans, root, path, wc, parent_level); 6475 if (wret < 0) 6476 ret = wret; 6477 if (wret != 0) 6478 break; 6479 } 6480 6481 kfree(wc); 6482 btrfs_free_path(path); 6483 return ret; 6484 } 6485 6486 #if 0 6487 static unsigned long calc_ra(unsigned long start, unsigned long last, 6488 unsigned long nr) 6489 { 6490 return min(last, start + nr - 1); 6491 } 6492 6493 static noinline int relocate_inode_pages(struct inode *inode, u64 start, 6494 u64 len) 6495 { 6496 u64 page_start; 6497 u64 page_end; 6498 unsigned long first_index; 6499 unsigned long last_index; 6500 unsigned long i; 6501 struct page *page; 6502 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6503 struct file_ra_state *ra; 6504 struct btrfs_ordered_extent *ordered; 6505 unsigned int total_read = 0; 6506 unsigned int total_dirty = 0; 6507 int ret = 0; 6508 6509 ra = kzalloc(sizeof(*ra), GFP_NOFS); 6510 if (!ra) 6511 return -ENOMEM; 6512 6513 mutex_lock(&inode->i_mutex); 6514 first_index = start >> PAGE_CACHE_SHIFT; 6515 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; 6516 6517 /* make sure the dirty trick played by the caller work */ 6518 ret = invalidate_inode_pages2_range(inode->i_mapping, 6519 first_index, last_index); 6520 if (ret) 6521 goto out_unlock; 6522 6523 file_ra_state_init(ra, inode->i_mapping); 6524 6525 for (i = first_index ; i <= last_index; i++) { 6526 if (total_read % ra->ra_pages == 0) { 6527 btrfs_force_ra(inode->i_mapping, ra, NULL, i, 6528 calc_ra(i, last_index, ra->ra_pages)); 6529 } 6530 total_read++; 6531 again: 6532 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) 6533 BUG_ON(1); 6534 page = grab_cache_page(inode->i_mapping, i); 6535 if (!page) { 6536 ret = -ENOMEM; 6537 goto out_unlock; 6538 } 6539 if (!PageUptodate(page)) { 6540 btrfs_readpage(NULL, page); 6541 lock_page(page); 6542 if (!PageUptodate(page)) { 6543 unlock_page(page); 6544 page_cache_release(page); 6545 ret = -EIO; 6546 goto out_unlock; 6547 } 6548 } 6549 wait_on_page_writeback(page); 6550 6551 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 6552 page_end = page_start + PAGE_CACHE_SIZE - 1; 6553 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 6554 6555 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6556 if (ordered) { 6557 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 6558 unlock_page(page); 6559 page_cache_release(page); 6560 btrfs_start_ordered_extent(inode, ordered, 1); 6561 btrfs_put_ordered_extent(ordered); 6562 goto again; 6563 } 6564 set_page_extent_mapped(page); 6565 6566 if (i == first_index) 6567 set_extent_bits(io_tree, page_start, page_end, 6568 EXTENT_BOUNDARY, GFP_NOFS); 6569 btrfs_set_extent_delalloc(inode, page_start, page_end); 6570 6571 set_page_dirty(page); 6572 total_dirty++; 6573 6574 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 6575 unlock_page(page); 6576 page_cache_release(page); 6577 } 6578 6579 out_unlock: 6580 kfree(ra); 6581 mutex_unlock(&inode->i_mutex); 6582 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); 6583 return ret; 6584 } 6585 6586 static noinline int relocate_data_extent(struct inode *reloc_inode, 6587 struct btrfs_key *extent_key, 6588 u64 offset) 6589 { 6590 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 6591 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; 6592 struct extent_map *em; 6593 u64 start = extent_key->objectid - offset; 6594 u64 end = start + extent_key->offset - 1; 6595 6596 em = alloc_extent_map(GFP_NOFS); 6597 BUG_ON(!em); 6598 6599 em->start = start; 6600 em->len = extent_key->offset; 6601 em->block_len = extent_key->offset; 6602 em->block_start = extent_key->objectid; 6603 em->bdev = root->fs_info->fs_devices->latest_bdev; 6604 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6605 6606 /* setup extent map to cheat btrfs_readpage */ 6607 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 6608 while (1) { 6609 int ret; 6610 write_lock(&em_tree->lock); 6611 ret = add_extent_mapping(em_tree, em); 6612 write_unlock(&em_tree->lock); 6613 if (ret != -EEXIST) { 6614 free_extent_map(em); 6615 break; 6616 } 6617 btrfs_drop_extent_cache(reloc_inode, start, end, 0); 6618 } 6619 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 6620 6621 return relocate_inode_pages(reloc_inode, start, extent_key->offset); 6622 } 6623 6624 struct btrfs_ref_path { 6625 u64 extent_start; 6626 u64 nodes[BTRFS_MAX_LEVEL]; 6627 u64 root_objectid; 6628 u64 root_generation; 6629 u64 owner_objectid; 6630 u32 num_refs; 6631 int lowest_level; 6632 int current_level; 6633 int shared_level; 6634 6635 struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; 6636 u64 new_nodes[BTRFS_MAX_LEVEL]; 6637 }; 6638 6639 struct disk_extent { 6640 u64 ram_bytes; 6641 u64 disk_bytenr; 6642 u64 disk_num_bytes; 6643 u64 offset; 6644 u64 num_bytes; 6645 u8 compression; 6646 u8 encryption; 6647 u16 other_encoding; 6648 }; 6649 6650 static int is_cowonly_root(u64 root_objectid) 6651 { 6652 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 6653 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 6654 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 6655 root_objectid == BTRFS_DEV_TREE_OBJECTID || 6656 root_objectid == BTRFS_TREE_LOG_OBJECTID || 6657 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 6658 return 1; 6659 return 0; 6660 } 6661 6662 static noinline int __next_ref_path(struct btrfs_trans_handle *trans, 6663 struct btrfs_root *extent_root, 6664 struct btrfs_ref_path *ref_path, 6665 int first_time) 6666 { 6667 struct extent_buffer *leaf; 6668 struct btrfs_path *path; 6669 struct btrfs_extent_ref *ref; 6670 struct btrfs_key key; 6671 struct btrfs_key found_key; 6672 u64 bytenr; 6673 u32 nritems; 6674 int level; 6675 int ret = 1; 6676 6677 path = btrfs_alloc_path(); 6678 if (!path) 6679 return -ENOMEM; 6680 6681 if (first_time) { 6682 ref_path->lowest_level = -1; 6683 ref_path->current_level = -1; 6684 ref_path->shared_level = -1; 6685 goto walk_up; 6686 } 6687 walk_down: 6688 level = ref_path->current_level - 1; 6689 while (level >= -1) { 6690 u64 parent; 6691 if (level < ref_path->lowest_level) 6692 break; 6693 6694 if (level >= 0) 6695 bytenr = ref_path->nodes[level]; 6696 else 6697 bytenr = ref_path->extent_start; 6698 BUG_ON(bytenr == 0); 6699 6700 parent = ref_path->nodes[level + 1]; 6701 ref_path->nodes[level + 1] = 0; 6702 ref_path->current_level = level; 6703 BUG_ON(parent == 0); 6704 6705 key.objectid = bytenr; 6706 key.offset = parent + 1; 6707 key.type = BTRFS_EXTENT_REF_KEY; 6708 6709 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 6710 if (ret < 0) 6711 goto out; 6712 BUG_ON(ret == 0); 6713 6714 leaf = path->nodes[0]; 6715 nritems = btrfs_header_nritems(leaf); 6716 if (path->slots[0] >= nritems) { 6717 ret = btrfs_next_leaf(extent_root, path); 6718 if (ret < 0) 6719 goto out; 6720 if (ret > 0) 6721 goto next; 6722 leaf = path->nodes[0]; 6723 } 6724 6725 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6726 if (found_key.objectid == bytenr && 6727 found_key.type == BTRFS_EXTENT_REF_KEY) { 6728 if (level < ref_path->shared_level) 6729 ref_path->shared_level = level; 6730 goto found; 6731 } 6732 next: 6733 level--; 6734 btrfs_release_path(extent_root, path); 6735 cond_resched(); 6736 } 6737 /* reached lowest level */ 6738 ret = 1; 6739 goto out; 6740 walk_up: 6741 level = ref_path->current_level; 6742 while (level < BTRFS_MAX_LEVEL - 1) { 6743 u64 ref_objectid; 6744 6745 if (level >= 0) 6746 bytenr = ref_path->nodes[level]; 6747 else 6748 bytenr = ref_path->extent_start; 6749 6750 BUG_ON(bytenr == 0); 6751 6752 key.objectid = bytenr; 6753 key.offset = 0; 6754 key.type = BTRFS_EXTENT_REF_KEY; 6755 6756 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 6757 if (ret < 0) 6758 goto out; 6759 6760 leaf = path->nodes[0]; 6761 nritems = btrfs_header_nritems(leaf); 6762 if (path->slots[0] >= nritems) { 6763 ret = btrfs_next_leaf(extent_root, path); 6764 if (ret < 0) 6765 goto out; 6766 if (ret > 0) { 6767 /* the extent was freed by someone */ 6768 if (ref_path->lowest_level == level) 6769 goto out; 6770 btrfs_release_path(extent_root, path); 6771 goto walk_down; 6772 } 6773 leaf = path->nodes[0]; 6774 } 6775 6776 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6777 if (found_key.objectid != bytenr || 6778 found_key.type != BTRFS_EXTENT_REF_KEY) { 6779 /* the extent was freed by someone */ 6780 if (ref_path->lowest_level == level) { 6781 ret = 1; 6782 goto out; 6783 } 6784 btrfs_release_path(extent_root, path); 6785 goto walk_down; 6786 } 6787 found: 6788 ref = btrfs_item_ptr(leaf, path->slots[0], 6789 struct btrfs_extent_ref); 6790 ref_objectid = btrfs_ref_objectid(leaf, ref); 6791 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { 6792 if (first_time) { 6793 level = (int)ref_objectid; 6794 BUG_ON(level >= BTRFS_MAX_LEVEL); 6795 ref_path->lowest_level = level; 6796 ref_path->current_level = level; 6797 ref_path->nodes[level] = bytenr; 6798 } else { 6799 WARN_ON(ref_objectid != level); 6800 } 6801 } else { 6802 WARN_ON(level != -1); 6803 } 6804 first_time = 0; 6805 6806 if (ref_path->lowest_level == level) { 6807 ref_path->owner_objectid = ref_objectid; 6808 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); 6809 } 6810 6811 /* 6812 * the block is tree root or the block isn't in reference 6813 * counted tree. 6814 */ 6815 if (found_key.objectid == found_key.offset || 6816 is_cowonly_root(btrfs_ref_root(leaf, ref))) { 6817 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 6818 ref_path->root_generation = 6819 btrfs_ref_generation(leaf, ref); 6820 if (level < 0) { 6821 /* special reference from the tree log */ 6822 ref_path->nodes[0] = found_key.offset; 6823 ref_path->current_level = 0; 6824 } 6825 ret = 0; 6826 goto out; 6827 } 6828 6829 level++; 6830 BUG_ON(ref_path->nodes[level] != 0); 6831 ref_path->nodes[level] = found_key.offset; 6832 ref_path->current_level = level; 6833 6834 /* 6835 * the reference was created in the running transaction, 6836 * no need to continue walking up. 6837 */ 6838 if (btrfs_ref_generation(leaf, ref) == trans->transid) { 6839 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 6840 ref_path->root_generation = 6841 btrfs_ref_generation(leaf, ref); 6842 ret = 0; 6843 goto out; 6844 } 6845 6846 btrfs_release_path(extent_root, path); 6847 cond_resched(); 6848 } 6849 /* reached max tree level, but no tree root found. */ 6850 BUG(); 6851 out: 6852 btrfs_free_path(path); 6853 return ret; 6854 } 6855 6856 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, 6857 struct btrfs_root *extent_root, 6858 struct btrfs_ref_path *ref_path, 6859 u64 extent_start) 6860 { 6861 memset(ref_path, 0, sizeof(*ref_path)); 6862 ref_path->extent_start = extent_start; 6863 6864 return __next_ref_path(trans, extent_root, ref_path, 1); 6865 } 6866 6867 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, 6868 struct btrfs_root *extent_root, 6869 struct btrfs_ref_path *ref_path) 6870 { 6871 return __next_ref_path(trans, extent_root, ref_path, 0); 6872 } 6873 6874 static noinline int get_new_locations(struct inode *reloc_inode, 6875 struct btrfs_key *extent_key, 6876 u64 offset, int no_fragment, 6877 struct disk_extent **extents, 6878 int *nr_extents) 6879 { 6880 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 6881 struct btrfs_path *path; 6882 struct btrfs_file_extent_item *fi; 6883 struct extent_buffer *leaf; 6884 struct disk_extent *exts = *extents; 6885 struct btrfs_key found_key; 6886 u64 cur_pos; 6887 u64 last_byte; 6888 u32 nritems; 6889 int nr = 0; 6890 int max = *nr_extents; 6891 int ret; 6892 6893 WARN_ON(!no_fragment && *extents); 6894 if (!exts) { 6895 max = 1; 6896 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); 6897 if (!exts) 6898 return -ENOMEM; 6899 } 6900 6901 path = btrfs_alloc_path(); 6902 BUG_ON(!path); 6903 6904 cur_pos = extent_key->objectid - offset; 6905 last_byte = extent_key->objectid + extent_key->offset; 6906 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, 6907 cur_pos, 0); 6908 if (ret < 0) 6909 goto out; 6910 if (ret > 0) { 6911 ret = -ENOENT; 6912 goto out; 6913 } 6914 6915 while (1) { 6916 leaf = path->nodes[0]; 6917 nritems = btrfs_header_nritems(leaf); 6918 if (path->slots[0] >= nritems) { 6919 ret = btrfs_next_leaf(root, path); 6920 if (ret < 0) 6921 goto out; 6922 if (ret > 0) 6923 break; 6924 leaf = path->nodes[0]; 6925 } 6926 6927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6928 if (found_key.offset != cur_pos || 6929 found_key.type != BTRFS_EXTENT_DATA_KEY || 6930 found_key.objectid != reloc_inode->i_ino) 6931 break; 6932 6933 fi = btrfs_item_ptr(leaf, path->slots[0], 6934 struct btrfs_file_extent_item); 6935 if (btrfs_file_extent_type(leaf, fi) != 6936 BTRFS_FILE_EXTENT_REG || 6937 btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 6938 break; 6939 6940 if (nr == max) { 6941 struct disk_extent *old = exts; 6942 max *= 2; 6943 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); 6944 memcpy(exts, old, sizeof(*exts) * nr); 6945 if (old != *extents) 6946 kfree(old); 6947 } 6948 6949 exts[nr].disk_bytenr = 6950 btrfs_file_extent_disk_bytenr(leaf, fi); 6951 exts[nr].disk_num_bytes = 6952 btrfs_file_extent_disk_num_bytes(leaf, fi); 6953 exts[nr].offset = btrfs_file_extent_offset(leaf, fi); 6954 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 6955 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6956 exts[nr].compression = btrfs_file_extent_compression(leaf, fi); 6957 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); 6958 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, 6959 fi); 6960 BUG_ON(exts[nr].offset > 0); 6961 BUG_ON(exts[nr].compression || exts[nr].encryption); 6962 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); 6963 6964 cur_pos += exts[nr].num_bytes; 6965 nr++; 6966 6967 if (cur_pos + offset >= last_byte) 6968 break; 6969 6970 if (no_fragment) { 6971 ret = 1; 6972 goto out; 6973 } 6974 path->slots[0]++; 6975 } 6976 6977 BUG_ON(cur_pos + offset > last_byte); 6978 if (cur_pos + offset < last_byte) { 6979 ret = -ENOENT; 6980 goto out; 6981 } 6982 ret = 0; 6983 out: 6984 btrfs_free_path(path); 6985 if (ret) { 6986 if (exts != *extents) 6987 kfree(exts); 6988 } else { 6989 *extents = exts; 6990 *nr_extents = nr; 6991 } 6992 return ret; 6993 } 6994 6995 static noinline int replace_one_extent(struct btrfs_trans_handle *trans, 6996 struct btrfs_root *root, 6997 struct btrfs_path *path, 6998 struct btrfs_key *extent_key, 6999 struct btrfs_key *leaf_key, 7000 struct btrfs_ref_path *ref_path, 7001 struct disk_extent *new_extents, 7002 int nr_extents) 7003 { 7004 struct extent_buffer *leaf; 7005 struct btrfs_file_extent_item *fi; 7006 struct inode *inode = NULL; 7007 struct btrfs_key key; 7008 u64 lock_start = 0; 7009 u64 lock_end = 0; 7010 u64 num_bytes; 7011 u64 ext_offset; 7012 u64 search_end = (u64)-1; 7013 u32 nritems; 7014 int nr_scaned = 0; 7015 int extent_locked = 0; 7016 int extent_type; 7017 int ret; 7018 7019 memcpy(&key, leaf_key, sizeof(key)); 7020 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 7021 if (key.objectid < ref_path->owner_objectid || 7022 (key.objectid == ref_path->owner_objectid && 7023 key.type < BTRFS_EXTENT_DATA_KEY)) { 7024 key.objectid = ref_path->owner_objectid; 7025 key.type = BTRFS_EXTENT_DATA_KEY; 7026 key.offset = 0; 7027 } 7028 } 7029 7030 while (1) { 7031 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 7032 if (ret < 0) 7033 goto out; 7034 7035 leaf = path->nodes[0]; 7036 nritems = btrfs_header_nritems(leaf); 7037 next: 7038 if (extent_locked && ret > 0) { 7039 /* 7040 * the file extent item was modified by someone 7041 * before the extent got locked. 7042 */ 7043 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7044 lock_end, GFP_NOFS); 7045 extent_locked = 0; 7046 } 7047 7048 if (path->slots[0] >= nritems) { 7049 if (++nr_scaned > 2) 7050 break; 7051 7052 BUG_ON(extent_locked); 7053 ret = btrfs_next_leaf(root, path); 7054 if (ret < 0) 7055 goto out; 7056 if (ret > 0) 7057 break; 7058 leaf = path->nodes[0]; 7059 nritems = btrfs_header_nritems(leaf); 7060 } 7061 7062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7063 7064 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 7065 if ((key.objectid > ref_path->owner_objectid) || 7066 (key.objectid == ref_path->owner_objectid && 7067 key.type > BTRFS_EXTENT_DATA_KEY) || 7068 key.offset >= search_end) 7069 break; 7070 } 7071 7072 if (inode && key.objectid != inode->i_ino) { 7073 BUG_ON(extent_locked); 7074 btrfs_release_path(root, path); 7075 mutex_unlock(&inode->i_mutex); 7076 iput(inode); 7077 inode = NULL; 7078 continue; 7079 } 7080 7081 if (key.type != BTRFS_EXTENT_DATA_KEY) { 7082 path->slots[0]++; 7083 ret = 1; 7084 goto next; 7085 } 7086 fi = btrfs_item_ptr(leaf, path->slots[0], 7087 struct btrfs_file_extent_item); 7088 extent_type = btrfs_file_extent_type(leaf, fi); 7089 if ((extent_type != BTRFS_FILE_EXTENT_REG && 7090 extent_type != BTRFS_FILE_EXTENT_PREALLOC) || 7091 (btrfs_file_extent_disk_bytenr(leaf, fi) != 7092 extent_key->objectid)) { 7093 path->slots[0]++; 7094 ret = 1; 7095 goto next; 7096 } 7097 7098 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 7099 ext_offset = btrfs_file_extent_offset(leaf, fi); 7100 7101 if (search_end == (u64)-1) { 7102 search_end = key.offset - ext_offset + 7103 btrfs_file_extent_ram_bytes(leaf, fi); 7104 } 7105 7106 if (!extent_locked) { 7107 lock_start = key.offset; 7108 lock_end = lock_start + num_bytes - 1; 7109 } else { 7110 if (lock_start > key.offset || 7111 lock_end + 1 < key.offset + num_bytes) { 7112 unlock_extent(&BTRFS_I(inode)->io_tree, 7113 lock_start, lock_end, GFP_NOFS); 7114 extent_locked = 0; 7115 } 7116 } 7117 7118 if (!inode) { 7119 btrfs_release_path(root, path); 7120 7121 inode = btrfs_iget_locked(root->fs_info->sb, 7122 key.objectid, root); 7123 if (inode->i_state & I_NEW) { 7124 BTRFS_I(inode)->root = root; 7125 BTRFS_I(inode)->location.objectid = 7126 key.objectid; 7127 BTRFS_I(inode)->location.type = 7128 BTRFS_INODE_ITEM_KEY; 7129 BTRFS_I(inode)->location.offset = 0; 7130 btrfs_read_locked_inode(inode); 7131 unlock_new_inode(inode); 7132 } 7133 /* 7134 * some code call btrfs_commit_transaction while 7135 * holding the i_mutex, so we can't use mutex_lock 7136 * here. 7137 */ 7138 if (is_bad_inode(inode) || 7139 !mutex_trylock(&inode->i_mutex)) { 7140 iput(inode); 7141 inode = NULL; 7142 key.offset = (u64)-1; 7143 goto skip; 7144 } 7145 } 7146 7147 if (!extent_locked) { 7148 struct btrfs_ordered_extent *ordered; 7149 7150 btrfs_release_path(root, path); 7151 7152 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7153 lock_end, GFP_NOFS); 7154 ordered = btrfs_lookup_first_ordered_extent(inode, 7155 lock_end); 7156 if (ordered && 7157 ordered->file_offset <= lock_end && 7158 ordered->file_offset + ordered->len > lock_start) { 7159 unlock_extent(&BTRFS_I(inode)->io_tree, 7160 lock_start, lock_end, GFP_NOFS); 7161 btrfs_start_ordered_extent(inode, ordered, 1); 7162 btrfs_put_ordered_extent(ordered); 7163 key.offset += num_bytes; 7164 goto skip; 7165 } 7166 if (ordered) 7167 btrfs_put_ordered_extent(ordered); 7168 7169 extent_locked = 1; 7170 continue; 7171 } 7172 7173 if (nr_extents == 1) { 7174 /* update extent pointer in place */ 7175 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7176 new_extents[0].disk_bytenr); 7177 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7178 new_extents[0].disk_num_bytes); 7179 btrfs_mark_buffer_dirty(leaf); 7180 7181 btrfs_drop_extent_cache(inode, key.offset, 7182 key.offset + num_bytes - 1, 0); 7183 7184 ret = btrfs_inc_extent_ref(trans, root, 7185 new_extents[0].disk_bytenr, 7186 new_extents[0].disk_num_bytes, 7187 leaf->start, 7188 root->root_key.objectid, 7189 trans->transid, 7190 key.objectid); 7191 BUG_ON(ret); 7192 7193 ret = btrfs_free_extent(trans, root, 7194 extent_key->objectid, 7195 extent_key->offset, 7196 leaf->start, 7197 btrfs_header_owner(leaf), 7198 btrfs_header_generation(leaf), 7199 key.objectid, 0); 7200 BUG_ON(ret); 7201 7202 btrfs_release_path(root, path); 7203 key.offset += num_bytes; 7204 } else { 7205 BUG_ON(1); 7206 #if 0 7207 u64 alloc_hint; 7208 u64 extent_len; 7209 int i; 7210 /* 7211 * drop old extent pointer at first, then insert the 7212 * new pointers one bye one 7213 */ 7214 btrfs_release_path(root, path); 7215 ret = btrfs_drop_extents(trans, root, inode, key.offset, 7216 key.offset + num_bytes, 7217 key.offset, &alloc_hint); 7218 BUG_ON(ret); 7219 7220 for (i = 0; i < nr_extents; i++) { 7221 if (ext_offset >= new_extents[i].num_bytes) { 7222 ext_offset -= new_extents[i].num_bytes; 7223 continue; 7224 } 7225 extent_len = min(new_extents[i].num_bytes - 7226 ext_offset, num_bytes); 7227 7228 ret = btrfs_insert_empty_item(trans, root, 7229 path, &key, 7230 sizeof(*fi)); 7231 BUG_ON(ret); 7232 7233 leaf = path->nodes[0]; 7234 fi = btrfs_item_ptr(leaf, path->slots[0], 7235 struct btrfs_file_extent_item); 7236 btrfs_set_file_extent_generation(leaf, fi, 7237 trans->transid); 7238 btrfs_set_file_extent_type(leaf, fi, 7239 BTRFS_FILE_EXTENT_REG); 7240 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7241 new_extents[i].disk_bytenr); 7242 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7243 new_extents[i].disk_num_bytes); 7244 btrfs_set_file_extent_ram_bytes(leaf, fi, 7245 new_extents[i].ram_bytes); 7246 7247 btrfs_set_file_extent_compression(leaf, fi, 7248 new_extents[i].compression); 7249 btrfs_set_file_extent_encryption(leaf, fi, 7250 new_extents[i].encryption); 7251 btrfs_set_file_extent_other_encoding(leaf, fi, 7252 new_extents[i].other_encoding); 7253 7254 btrfs_set_file_extent_num_bytes(leaf, fi, 7255 extent_len); 7256 ext_offset += new_extents[i].offset; 7257 btrfs_set_file_extent_offset(leaf, fi, 7258 ext_offset); 7259 btrfs_mark_buffer_dirty(leaf); 7260 7261 btrfs_drop_extent_cache(inode, key.offset, 7262 key.offset + extent_len - 1, 0); 7263 7264 ret = btrfs_inc_extent_ref(trans, root, 7265 new_extents[i].disk_bytenr, 7266 new_extents[i].disk_num_bytes, 7267 leaf->start, 7268 root->root_key.objectid, 7269 trans->transid, key.objectid); 7270 BUG_ON(ret); 7271 btrfs_release_path(root, path); 7272 7273 inode_add_bytes(inode, extent_len); 7274 7275 ext_offset = 0; 7276 num_bytes -= extent_len; 7277 key.offset += extent_len; 7278 7279 if (num_bytes == 0) 7280 break; 7281 } 7282 BUG_ON(i >= nr_extents); 7283 #endif 7284 } 7285 7286 if (extent_locked) { 7287 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7288 lock_end, GFP_NOFS); 7289 extent_locked = 0; 7290 } 7291 skip: 7292 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && 7293 key.offset >= search_end) 7294 break; 7295 7296 cond_resched(); 7297 } 7298 ret = 0; 7299 out: 7300 btrfs_release_path(root, path); 7301 if (inode) { 7302 mutex_unlock(&inode->i_mutex); 7303 if (extent_locked) { 7304 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 7305 lock_end, GFP_NOFS); 7306 } 7307 iput(inode); 7308 } 7309 return ret; 7310 } 7311 7312 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, 7313 struct btrfs_root *root, 7314 struct extent_buffer *buf, u64 orig_start) 7315 { 7316 int level; 7317 int ret; 7318 7319 BUG_ON(btrfs_header_generation(buf) != trans->transid); 7320 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7321 7322 level = btrfs_header_level(buf); 7323 if (level == 0) { 7324 struct btrfs_leaf_ref *ref; 7325 struct btrfs_leaf_ref *orig_ref; 7326 7327 orig_ref = btrfs_lookup_leaf_ref(root, orig_start); 7328 if (!orig_ref) 7329 return -ENOENT; 7330 7331 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); 7332 if (!ref) { 7333 btrfs_free_leaf_ref(root, orig_ref); 7334 return -ENOMEM; 7335 } 7336 7337 ref->nritems = orig_ref->nritems; 7338 memcpy(ref->extents, orig_ref->extents, 7339 sizeof(ref->extents[0]) * ref->nritems); 7340 7341 btrfs_free_leaf_ref(root, orig_ref); 7342 7343 ref->root_gen = trans->transid; 7344 ref->bytenr = buf->start; 7345 ref->owner = btrfs_header_owner(buf); 7346 ref->generation = btrfs_header_generation(buf); 7347 7348 ret = btrfs_add_leaf_ref(root, ref, 0); 7349 WARN_ON(ret); 7350 btrfs_free_leaf_ref(root, ref); 7351 } 7352 return 0; 7353 } 7354 7355 static noinline int invalidate_extent_cache(struct btrfs_root *root, 7356 struct extent_buffer *leaf, 7357 struct btrfs_block_group_cache *group, 7358 struct btrfs_root *target_root) 7359 { 7360 struct btrfs_key key; 7361 struct inode *inode = NULL; 7362 struct btrfs_file_extent_item *fi; 7363 struct extent_state *cached_state = NULL; 7364 u64 num_bytes; 7365 u64 skip_objectid = 0; 7366 u32 nritems; 7367 u32 i; 7368 7369 nritems = btrfs_header_nritems(leaf); 7370 for (i = 0; i < nritems; i++) { 7371 btrfs_item_key_to_cpu(leaf, &key, i); 7372 if (key.objectid == skip_objectid || 7373 key.type != BTRFS_EXTENT_DATA_KEY) 7374 continue; 7375 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 7376 if (btrfs_file_extent_type(leaf, fi) == 7377 BTRFS_FILE_EXTENT_INLINE) 7378 continue; 7379 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 7380 continue; 7381 if (!inode || inode->i_ino != key.objectid) { 7382 iput(inode); 7383 inode = btrfs_ilookup(target_root->fs_info->sb, 7384 key.objectid, target_root, 1); 7385 } 7386 if (!inode) { 7387 skip_objectid = key.objectid; 7388 continue; 7389 } 7390 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 7391 7392 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset, 7393 key.offset + num_bytes - 1, 0, &cached_state, 7394 GFP_NOFS); 7395 btrfs_drop_extent_cache(inode, key.offset, 7396 key.offset + num_bytes - 1, 1); 7397 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset, 7398 key.offset + num_bytes - 1, &cached_state, 7399 GFP_NOFS); 7400 cond_resched(); 7401 } 7402 iput(inode); 7403 return 0; 7404 } 7405 7406 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, 7407 struct btrfs_root *root, 7408 struct extent_buffer *leaf, 7409 struct btrfs_block_group_cache *group, 7410 struct inode *reloc_inode) 7411 { 7412 struct btrfs_key key; 7413 struct btrfs_key extent_key; 7414 struct btrfs_file_extent_item *fi; 7415 struct btrfs_leaf_ref *ref; 7416 struct disk_extent *new_extent; 7417 u64 bytenr; 7418 u64 num_bytes; 7419 u32 nritems; 7420 u32 i; 7421 int ext_index; 7422 int nr_extent; 7423 int ret; 7424 7425 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); 7426 BUG_ON(!new_extent); 7427 7428 ref = btrfs_lookup_leaf_ref(root, leaf->start); 7429 BUG_ON(!ref); 7430 7431 ext_index = -1; 7432 nritems = btrfs_header_nritems(leaf); 7433 for (i = 0; i < nritems; i++) { 7434 btrfs_item_key_to_cpu(leaf, &key, i); 7435 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 7436 continue; 7437 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 7438 if (btrfs_file_extent_type(leaf, fi) == 7439 BTRFS_FILE_EXTENT_INLINE) 7440 continue; 7441 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7442 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 7443 if (bytenr == 0) 7444 continue; 7445 7446 ext_index++; 7447 if (bytenr >= group->key.objectid + group->key.offset || 7448 bytenr + num_bytes <= group->key.objectid) 7449 continue; 7450 7451 extent_key.objectid = bytenr; 7452 extent_key.offset = num_bytes; 7453 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 7454 nr_extent = 1; 7455 ret = get_new_locations(reloc_inode, &extent_key, 7456 group->key.objectid, 1, 7457 &new_extent, &nr_extent); 7458 if (ret > 0) 7459 continue; 7460 BUG_ON(ret < 0); 7461 7462 BUG_ON(ref->extents[ext_index].bytenr != bytenr); 7463 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); 7464 ref->extents[ext_index].bytenr = new_extent->disk_bytenr; 7465 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; 7466 7467 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7468 new_extent->disk_bytenr); 7469 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7470 new_extent->disk_num_bytes); 7471 btrfs_mark_buffer_dirty(leaf); 7472 7473 ret = btrfs_inc_extent_ref(trans, root, 7474 new_extent->disk_bytenr, 7475 new_extent->disk_num_bytes, 7476 leaf->start, 7477 root->root_key.objectid, 7478 trans->transid, key.objectid); 7479 BUG_ON(ret); 7480 7481 ret = btrfs_free_extent(trans, root, 7482 bytenr, num_bytes, leaf->start, 7483 btrfs_header_owner(leaf), 7484 btrfs_header_generation(leaf), 7485 key.objectid, 0); 7486 BUG_ON(ret); 7487 cond_resched(); 7488 } 7489 kfree(new_extent); 7490 BUG_ON(ext_index + 1 != ref->nritems); 7491 btrfs_free_leaf_ref(root, ref); 7492 return 0; 7493 } 7494 7495 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, 7496 struct btrfs_root *root) 7497 { 7498 struct btrfs_root *reloc_root; 7499 int ret; 7500 7501 if (root->reloc_root) { 7502 reloc_root = root->reloc_root; 7503 root->reloc_root = NULL; 7504 list_add(&reloc_root->dead_list, 7505 &root->fs_info->dead_reloc_roots); 7506 7507 btrfs_set_root_bytenr(&reloc_root->root_item, 7508 reloc_root->node->start); 7509 btrfs_set_root_level(&root->root_item, 7510 btrfs_header_level(reloc_root->node)); 7511 memset(&reloc_root->root_item.drop_progress, 0, 7512 sizeof(struct btrfs_disk_key)); 7513 reloc_root->root_item.drop_level = 0; 7514 7515 ret = btrfs_update_root(trans, root->fs_info->tree_root, 7516 &reloc_root->root_key, 7517 &reloc_root->root_item); 7518 BUG_ON(ret); 7519 } 7520 return 0; 7521 } 7522 7523 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) 7524 { 7525 struct btrfs_trans_handle *trans; 7526 struct btrfs_root *reloc_root; 7527 struct btrfs_root *prev_root = NULL; 7528 struct list_head dead_roots; 7529 int ret; 7530 unsigned long nr; 7531 7532 INIT_LIST_HEAD(&dead_roots); 7533 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); 7534 7535 while (!list_empty(&dead_roots)) { 7536 reloc_root = list_entry(dead_roots.prev, 7537 struct btrfs_root, dead_list); 7538 list_del_init(&reloc_root->dead_list); 7539 7540 BUG_ON(reloc_root->commit_root != NULL); 7541 while (1) { 7542 trans = btrfs_join_transaction(root, 1); 7543 BUG_ON(IS_ERR(trans)); 7544 7545 mutex_lock(&root->fs_info->drop_mutex); 7546 ret = btrfs_drop_snapshot(trans, reloc_root); 7547 if (ret != -EAGAIN) 7548 break; 7549 mutex_unlock(&root->fs_info->drop_mutex); 7550 7551 nr = trans->blocks_used; 7552 ret = btrfs_end_transaction(trans, root); 7553 BUG_ON(ret); 7554 btrfs_btree_balance_dirty(root, nr); 7555 } 7556 7557 free_extent_buffer(reloc_root->node); 7558 7559 ret = btrfs_del_root(trans, root->fs_info->tree_root, 7560 &reloc_root->root_key); 7561 BUG_ON(ret); 7562 mutex_unlock(&root->fs_info->drop_mutex); 7563 7564 nr = trans->blocks_used; 7565 ret = btrfs_end_transaction(trans, root); 7566 BUG_ON(ret); 7567 btrfs_btree_balance_dirty(root, nr); 7568 7569 kfree(prev_root); 7570 prev_root = reloc_root; 7571 } 7572 if (prev_root) { 7573 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); 7574 kfree(prev_root); 7575 } 7576 return 0; 7577 } 7578 7579 int btrfs_add_dead_reloc_root(struct btrfs_root *root) 7580 { 7581 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); 7582 return 0; 7583 } 7584 7585 int btrfs_cleanup_reloc_trees(struct btrfs_root *root) 7586 { 7587 struct btrfs_root *reloc_root; 7588 struct btrfs_trans_handle *trans; 7589 struct btrfs_key location; 7590 int found; 7591 int ret; 7592 7593 mutex_lock(&root->fs_info->tree_reloc_mutex); 7594 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); 7595 BUG_ON(ret); 7596 found = !list_empty(&root->fs_info->dead_reloc_roots); 7597 mutex_unlock(&root->fs_info->tree_reloc_mutex); 7598 7599 if (found) { 7600 trans = btrfs_start_transaction(root, 1); 7601 BUG_ON(IS_ERR(trans)); 7602 ret = btrfs_commit_transaction(trans, root); 7603 BUG_ON(ret); 7604 } 7605 7606 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 7607 location.offset = (u64)-1; 7608 location.type = BTRFS_ROOT_ITEM_KEY; 7609 7610 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 7611 BUG_ON(!reloc_root); 7612 btrfs_orphan_cleanup(reloc_root); 7613 return 0; 7614 } 7615 7616 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, 7617 struct btrfs_root *root) 7618 { 7619 struct btrfs_root *reloc_root; 7620 struct extent_buffer *eb; 7621 struct btrfs_root_item *root_item; 7622 struct btrfs_key root_key; 7623 int ret; 7624 7625 BUG_ON(!root->ref_cows); 7626 if (root->reloc_root) 7627 return 0; 7628 7629 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 7630 BUG_ON(!root_item); 7631 7632 ret = btrfs_copy_root(trans, root, root->commit_root, 7633 &eb, BTRFS_TREE_RELOC_OBJECTID); 7634 BUG_ON(ret); 7635 7636 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 7637 root_key.offset = root->root_key.objectid; 7638 root_key.type = BTRFS_ROOT_ITEM_KEY; 7639 7640 memcpy(root_item, &root->root_item, sizeof(root_item)); 7641 btrfs_set_root_refs(root_item, 0); 7642 btrfs_set_root_bytenr(root_item, eb->start); 7643 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 7644 btrfs_set_root_generation(root_item, trans->transid); 7645 7646 btrfs_tree_unlock(eb); 7647 free_extent_buffer(eb); 7648 7649 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 7650 &root_key, root_item); 7651 BUG_ON(ret); 7652 kfree(root_item); 7653 7654 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 7655 &root_key); 7656 BUG_ON(!reloc_root); 7657 reloc_root->last_trans = trans->transid; 7658 reloc_root->commit_root = NULL; 7659 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; 7660 7661 root->reloc_root = reloc_root; 7662 return 0; 7663 } 7664 7665 /* 7666 * Core function of space balance. 7667 * 7668 * The idea is using reloc trees to relocate tree blocks in reference 7669 * counted roots. There is one reloc tree for each subvol, and all 7670 * reloc trees share same root key objectid. Reloc trees are snapshots 7671 * of the latest committed roots of subvols (root->commit_root). 7672 * 7673 * To relocate a tree block referenced by a subvol, there are two steps. 7674 * COW the block through subvol's reloc tree, then update block pointer 7675 * in the subvol to point to the new block. Since all reloc trees share 7676 * same root key objectid, doing special handing for tree blocks owned 7677 * by them is easy. Once a tree block has been COWed in one reloc tree, 7678 * we can use the resulting new block directly when the same block is 7679 * required to COW again through other reloc trees. By this way, relocated 7680 * tree blocks are shared between reloc trees, so they are also shared 7681 * between subvols. 7682 */ 7683 static noinline int relocate_one_path(struct btrfs_trans_handle *trans, 7684 struct btrfs_root *root, 7685 struct btrfs_path *path, 7686 struct btrfs_key *first_key, 7687 struct btrfs_ref_path *ref_path, 7688 struct btrfs_block_group_cache *group, 7689 struct inode *reloc_inode) 7690 { 7691 struct btrfs_root *reloc_root; 7692 struct extent_buffer *eb = NULL; 7693 struct btrfs_key *keys; 7694 u64 *nodes; 7695 int level; 7696 int shared_level; 7697 int lowest_level = 0; 7698 int ret; 7699 7700 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 7701 lowest_level = ref_path->owner_objectid; 7702 7703 if (!root->ref_cows) { 7704 path->lowest_level = lowest_level; 7705 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); 7706 BUG_ON(ret < 0); 7707 path->lowest_level = 0; 7708 btrfs_release_path(root, path); 7709 return 0; 7710 } 7711 7712 mutex_lock(&root->fs_info->tree_reloc_mutex); 7713 ret = init_reloc_tree(trans, root); 7714 BUG_ON(ret); 7715 reloc_root = root->reloc_root; 7716 7717 shared_level = ref_path->shared_level; 7718 ref_path->shared_level = BTRFS_MAX_LEVEL - 1; 7719 7720 keys = ref_path->node_keys; 7721 nodes = ref_path->new_nodes; 7722 memset(&keys[shared_level + 1], 0, 7723 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); 7724 memset(&nodes[shared_level + 1], 0, 7725 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); 7726 7727 if (nodes[lowest_level] == 0) { 7728 path->lowest_level = lowest_level; 7729 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 7730 0, 1); 7731 BUG_ON(ret); 7732 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { 7733 eb = path->nodes[level]; 7734 if (!eb || eb == reloc_root->node) 7735 break; 7736 nodes[level] = eb->start; 7737 if (level == 0) 7738 btrfs_item_key_to_cpu(eb, &keys[level], 0); 7739 else 7740 btrfs_node_key_to_cpu(eb, &keys[level], 0); 7741 } 7742 if (nodes[0] && 7743 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7744 eb = path->nodes[0]; 7745 ret = replace_extents_in_leaf(trans, reloc_root, eb, 7746 group, reloc_inode); 7747 BUG_ON(ret); 7748 } 7749 btrfs_release_path(reloc_root, path); 7750 } else { 7751 ret = btrfs_merge_path(trans, reloc_root, keys, nodes, 7752 lowest_level); 7753 BUG_ON(ret); 7754 } 7755 7756 /* 7757 * replace tree blocks in the fs tree with tree blocks in 7758 * the reloc tree. 7759 */ 7760 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); 7761 BUG_ON(ret < 0); 7762 7763 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7764 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 7765 0, 0); 7766 BUG_ON(ret); 7767 extent_buffer_get(path->nodes[0]); 7768 eb = path->nodes[0]; 7769 btrfs_release_path(reloc_root, path); 7770 ret = invalidate_extent_cache(reloc_root, eb, group, root); 7771 BUG_ON(ret); 7772 free_extent_buffer(eb); 7773 } 7774 7775 mutex_unlock(&root->fs_info->tree_reloc_mutex); 7776 path->lowest_level = 0; 7777 return 0; 7778 } 7779 7780 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, 7781 struct btrfs_root *root, 7782 struct btrfs_path *path, 7783 struct btrfs_key *first_key, 7784 struct btrfs_ref_path *ref_path) 7785 { 7786 int ret; 7787 7788 ret = relocate_one_path(trans, root, path, first_key, 7789 ref_path, NULL, NULL); 7790 BUG_ON(ret); 7791 7792 return 0; 7793 } 7794 7795 static noinline int del_extent_zero(struct btrfs_trans_handle *trans, 7796 struct btrfs_root *extent_root, 7797 struct btrfs_path *path, 7798 struct btrfs_key *extent_key) 7799 { 7800 int ret; 7801 7802 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); 7803 if (ret) 7804 goto out; 7805 ret = btrfs_del_item(trans, extent_root, path); 7806 out: 7807 btrfs_release_path(extent_root, path); 7808 return ret; 7809 } 7810 7811 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, 7812 struct btrfs_ref_path *ref_path) 7813 { 7814 struct btrfs_key root_key; 7815 7816 root_key.objectid = ref_path->root_objectid; 7817 root_key.type = BTRFS_ROOT_ITEM_KEY; 7818 if (is_cowonly_root(ref_path->root_objectid)) 7819 root_key.offset = 0; 7820 else 7821 root_key.offset = (u64)-1; 7822 7823 return btrfs_read_fs_root_no_name(fs_info, &root_key); 7824 } 7825 7826 static noinline int relocate_one_extent(struct btrfs_root *extent_root, 7827 struct btrfs_path *path, 7828 struct btrfs_key *extent_key, 7829 struct btrfs_block_group_cache *group, 7830 struct inode *reloc_inode, int pass) 7831 { 7832 struct btrfs_trans_handle *trans; 7833 struct btrfs_root *found_root; 7834 struct btrfs_ref_path *ref_path = NULL; 7835 struct disk_extent *new_extents = NULL; 7836 int nr_extents = 0; 7837 int loops; 7838 int ret; 7839 int level; 7840 struct btrfs_key first_key; 7841 u64 prev_block = 0; 7842 7843 7844 trans = btrfs_start_transaction(extent_root, 1); 7845 BUG_ON(IS_ERR(trans)); 7846 7847 if (extent_key->objectid == 0) { 7848 ret = del_extent_zero(trans, extent_root, path, extent_key); 7849 goto out; 7850 } 7851 7852 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); 7853 if (!ref_path) { 7854 ret = -ENOMEM; 7855 goto out; 7856 } 7857 7858 for (loops = 0; ; loops++) { 7859 if (loops == 0) { 7860 ret = btrfs_first_ref_path(trans, extent_root, ref_path, 7861 extent_key->objectid); 7862 } else { 7863 ret = btrfs_next_ref_path(trans, extent_root, ref_path); 7864 } 7865 if (ret < 0) 7866 goto out; 7867 if (ret > 0) 7868 break; 7869 7870 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || 7871 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) 7872 continue; 7873 7874 found_root = read_ref_root(extent_root->fs_info, ref_path); 7875 BUG_ON(!found_root); 7876 /* 7877 * for reference counted tree, only process reference paths 7878 * rooted at the latest committed root. 7879 */ 7880 if (found_root->ref_cows && 7881 ref_path->root_generation != found_root->root_key.offset) 7882 continue; 7883 7884 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7885 if (pass == 0) { 7886 /* 7887 * copy data extents to new locations 7888 */ 7889 u64 group_start = group->key.objectid; 7890 ret = relocate_data_extent(reloc_inode, 7891 extent_key, 7892 group_start); 7893 if (ret < 0) 7894 goto out; 7895 break; 7896 } 7897 level = 0; 7898 } else { 7899 level = ref_path->owner_objectid; 7900 } 7901 7902 if (prev_block != ref_path->nodes[level]) { 7903 struct extent_buffer *eb; 7904 u64 block_start = ref_path->nodes[level]; 7905 u64 block_size = btrfs_level_size(found_root, level); 7906 7907 eb = read_tree_block(found_root, block_start, 7908 block_size, 0); 7909 btrfs_tree_lock(eb); 7910 BUG_ON(level != btrfs_header_level(eb)); 7911 7912 if (level == 0) 7913 btrfs_item_key_to_cpu(eb, &first_key, 0); 7914 else 7915 btrfs_node_key_to_cpu(eb, &first_key, 0); 7916 7917 btrfs_tree_unlock(eb); 7918 free_extent_buffer(eb); 7919 prev_block = block_start; 7920 } 7921 7922 mutex_lock(&extent_root->fs_info->trans_mutex); 7923 btrfs_record_root_in_trans(found_root); 7924 mutex_unlock(&extent_root->fs_info->trans_mutex); 7925 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7926 /* 7927 * try to update data extent references while 7928 * keeping metadata shared between snapshots. 7929 */ 7930 if (pass == 1) { 7931 ret = relocate_one_path(trans, found_root, 7932 path, &first_key, ref_path, 7933 group, reloc_inode); 7934 if (ret < 0) 7935 goto out; 7936 continue; 7937 } 7938 /* 7939 * use fallback method to process the remaining 7940 * references. 7941 */ 7942 if (!new_extents) { 7943 u64 group_start = group->key.objectid; 7944 new_extents = kmalloc(sizeof(*new_extents), 7945 GFP_NOFS); 7946 nr_extents = 1; 7947 ret = get_new_locations(reloc_inode, 7948 extent_key, 7949 group_start, 1, 7950 &new_extents, 7951 &nr_extents); 7952 if (ret) 7953 goto out; 7954 } 7955 ret = replace_one_extent(trans, found_root, 7956 path, extent_key, 7957 &first_key, ref_path, 7958 new_extents, nr_extents); 7959 } else { 7960 ret = relocate_tree_block(trans, found_root, path, 7961 &first_key, ref_path); 7962 } 7963 if (ret < 0) 7964 goto out; 7965 } 7966 ret = 0; 7967 out: 7968 btrfs_end_transaction(trans, extent_root); 7969 kfree(new_extents); 7970 kfree(ref_path); 7971 return ret; 7972 } 7973 #endif 7974 7975 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7976 { 7977 u64 num_devices; 7978 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7979 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7980 7981 /* 7982 * we add in the count of missing devices because we want 7983 * to make sure that any RAID levels on a degraded FS 7984 * continue to be honored. 7985 */ 7986 num_devices = root->fs_info->fs_devices->rw_devices + 7987 root->fs_info->fs_devices->missing_devices; 7988 7989 if (num_devices == 1) { 7990 stripped |= BTRFS_BLOCK_GROUP_DUP; 7991 stripped = flags & ~stripped; 7992 7993 /* turn raid0 into single device chunks */ 7994 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7995 return stripped; 7996 7997 /* turn mirroring into duplication */ 7998 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7999 BTRFS_BLOCK_GROUP_RAID10)) 8000 return stripped | BTRFS_BLOCK_GROUP_DUP; 8001 return flags; 8002 } else { 8003 /* they already had raid on here, just return */ 8004 if (flags & stripped) 8005 return flags; 8006 8007 stripped |= BTRFS_BLOCK_GROUP_DUP; 8008 stripped = flags & ~stripped; 8009 8010 /* switch duplicated blocks with raid1 */ 8011 if (flags & BTRFS_BLOCK_GROUP_DUP) 8012 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8013 8014 /* turn single device chunks into raid0 */ 8015 return stripped | BTRFS_BLOCK_GROUP_RAID0; 8016 } 8017 return flags; 8018 } 8019 8020 static int set_block_group_ro(struct btrfs_block_group_cache *cache) 8021 { 8022 struct btrfs_space_info *sinfo = cache->space_info; 8023 u64 num_bytes; 8024 int ret = -ENOSPC; 8025 8026 if (cache->ro) 8027 return 0; 8028 8029 spin_lock(&sinfo->lock); 8030 spin_lock(&cache->lock); 8031 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8032 cache->bytes_super - btrfs_block_group_used(&cache->item); 8033 8034 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8035 sinfo->bytes_may_use + sinfo->bytes_readonly + 8036 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) { 8037 sinfo->bytes_readonly += num_bytes; 8038 sinfo->bytes_reserved += cache->reserved_pinned; 8039 cache->reserved_pinned = 0; 8040 cache->ro = 1; 8041 ret = 0; 8042 } 8043 8044 spin_unlock(&cache->lock); 8045 spin_unlock(&sinfo->lock); 8046 return ret; 8047 } 8048 8049 int btrfs_set_block_group_ro(struct btrfs_root *root, 8050 struct btrfs_block_group_cache *cache) 8051 8052 { 8053 struct btrfs_trans_handle *trans; 8054 u64 alloc_flags; 8055 int ret; 8056 8057 BUG_ON(cache->ro); 8058 8059 trans = btrfs_join_transaction(root, 1); 8060 BUG_ON(IS_ERR(trans)); 8061 8062 alloc_flags = update_block_group_flags(root, cache->flags); 8063 if (alloc_flags != cache->flags) 8064 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 8065 8066 ret = set_block_group_ro(cache); 8067 if (!ret) 8068 goto out; 8069 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8070 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 8071 if (ret < 0) 8072 goto out; 8073 ret = set_block_group_ro(cache); 8074 out: 8075 btrfs_end_transaction(trans, root); 8076 return ret; 8077 } 8078 8079 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8080 struct btrfs_root *root, u64 type) 8081 { 8082 u64 alloc_flags = get_alloc_profile(root, type); 8083 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 8084 } 8085 8086 /* 8087 * helper to account the unused space of all the readonly block group in the 8088 * list. takes mirrors into account. 8089 */ 8090 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 8091 { 8092 struct btrfs_block_group_cache *block_group; 8093 u64 free_bytes = 0; 8094 int factor; 8095 8096 list_for_each_entry(block_group, groups_list, list) { 8097 spin_lock(&block_group->lock); 8098 8099 if (!block_group->ro) { 8100 spin_unlock(&block_group->lock); 8101 continue; 8102 } 8103 8104 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8105 BTRFS_BLOCK_GROUP_RAID10 | 8106 BTRFS_BLOCK_GROUP_DUP)) 8107 factor = 2; 8108 else 8109 factor = 1; 8110 8111 free_bytes += (block_group->key.offset - 8112 btrfs_block_group_used(&block_group->item)) * 8113 factor; 8114 8115 spin_unlock(&block_group->lock); 8116 } 8117 8118 return free_bytes; 8119 } 8120 8121 /* 8122 * helper to account the unused space of all the readonly block group in the 8123 * space_info. takes mirrors into account. 8124 */ 8125 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8126 { 8127 int i; 8128 u64 free_bytes = 0; 8129 8130 spin_lock(&sinfo->lock); 8131 8132 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8133 if (!list_empty(&sinfo->block_groups[i])) 8134 free_bytes += __btrfs_get_ro_block_group_free_space( 8135 &sinfo->block_groups[i]); 8136 8137 spin_unlock(&sinfo->lock); 8138 8139 return free_bytes; 8140 } 8141 8142 int btrfs_set_block_group_rw(struct btrfs_root *root, 8143 struct btrfs_block_group_cache *cache) 8144 { 8145 struct btrfs_space_info *sinfo = cache->space_info; 8146 u64 num_bytes; 8147 8148 BUG_ON(!cache->ro); 8149 8150 spin_lock(&sinfo->lock); 8151 spin_lock(&cache->lock); 8152 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8153 cache->bytes_super - btrfs_block_group_used(&cache->item); 8154 sinfo->bytes_readonly -= num_bytes; 8155 cache->ro = 0; 8156 spin_unlock(&cache->lock); 8157 spin_unlock(&sinfo->lock); 8158 return 0; 8159 } 8160 8161 /* 8162 * checks to see if its even possible to relocate this block group. 8163 * 8164 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8165 * ok to go ahead and try. 8166 */ 8167 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8168 { 8169 struct btrfs_block_group_cache *block_group; 8170 struct btrfs_space_info *space_info; 8171 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8172 struct btrfs_device *device; 8173 int full = 0; 8174 int ret = 0; 8175 8176 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8177 8178 /* odd, couldn't find the block group, leave it alone */ 8179 if (!block_group) 8180 return -1; 8181 8182 /* no bytes used, we're good */ 8183 if (!btrfs_block_group_used(&block_group->item)) 8184 goto out; 8185 8186 space_info = block_group->space_info; 8187 spin_lock(&space_info->lock); 8188 8189 full = space_info->full; 8190 8191 /* 8192 * if this is the last block group we have in this space, we can't 8193 * relocate it unless we're able to allocate a new chunk below. 8194 * 8195 * Otherwise, we need to make sure we have room in the space to handle 8196 * all of the extents from this block group. If we can, we're good 8197 */ 8198 if ((space_info->total_bytes != block_group->key.offset) && 8199 (space_info->bytes_used + space_info->bytes_reserved + 8200 space_info->bytes_pinned + space_info->bytes_readonly + 8201 btrfs_block_group_used(&block_group->item) < 8202 space_info->total_bytes)) { 8203 spin_unlock(&space_info->lock); 8204 goto out; 8205 } 8206 spin_unlock(&space_info->lock); 8207 8208 /* 8209 * ok we don't have enough space, but maybe we have free space on our 8210 * devices to allocate new chunks for relocation, so loop through our 8211 * alloc devices and guess if we have enough space. However, if we 8212 * were marked as full, then we know there aren't enough chunks, and we 8213 * can just return. 8214 */ 8215 ret = -1; 8216 if (full) 8217 goto out; 8218 8219 mutex_lock(&root->fs_info->chunk_mutex); 8220 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8221 u64 min_free = btrfs_block_group_used(&block_group->item); 8222 u64 dev_offset; 8223 8224 /* 8225 * check to make sure we can actually find a chunk with enough 8226 * space to fit our block group in. 8227 */ 8228 if (device->total_bytes > device->bytes_used + min_free) { 8229 ret = find_free_dev_extent(NULL, device, min_free, 8230 &dev_offset, NULL); 8231 if (!ret) 8232 break; 8233 ret = -1; 8234 } 8235 } 8236 mutex_unlock(&root->fs_info->chunk_mutex); 8237 out: 8238 btrfs_put_block_group(block_group); 8239 return ret; 8240 } 8241 8242 static int find_first_block_group(struct btrfs_root *root, 8243 struct btrfs_path *path, struct btrfs_key *key) 8244 { 8245 int ret = 0; 8246 struct btrfs_key found_key; 8247 struct extent_buffer *leaf; 8248 int slot; 8249 8250 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8251 if (ret < 0) 8252 goto out; 8253 8254 while (1) { 8255 slot = path->slots[0]; 8256 leaf = path->nodes[0]; 8257 if (slot >= btrfs_header_nritems(leaf)) { 8258 ret = btrfs_next_leaf(root, path); 8259 if (ret == 0) 8260 continue; 8261 if (ret < 0) 8262 goto out; 8263 break; 8264 } 8265 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8266 8267 if (found_key.objectid >= key->objectid && 8268 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8269 ret = 0; 8270 goto out; 8271 } 8272 path->slots[0]++; 8273 } 8274 out: 8275 return ret; 8276 } 8277 8278 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8279 { 8280 struct btrfs_block_group_cache *block_group; 8281 u64 last = 0; 8282 8283 while (1) { 8284 struct inode *inode; 8285 8286 block_group = btrfs_lookup_first_block_group(info, last); 8287 while (block_group) { 8288 spin_lock(&block_group->lock); 8289 if (block_group->iref) 8290 break; 8291 spin_unlock(&block_group->lock); 8292 block_group = next_block_group(info->tree_root, 8293 block_group); 8294 } 8295 if (!block_group) { 8296 if (last == 0) 8297 break; 8298 last = 0; 8299 continue; 8300 } 8301 8302 inode = block_group->inode; 8303 block_group->iref = 0; 8304 block_group->inode = NULL; 8305 spin_unlock(&block_group->lock); 8306 iput(inode); 8307 last = block_group->key.objectid + block_group->key.offset; 8308 btrfs_put_block_group(block_group); 8309 } 8310 } 8311 8312 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8313 { 8314 struct btrfs_block_group_cache *block_group; 8315 struct btrfs_space_info *space_info; 8316 struct btrfs_caching_control *caching_ctl; 8317 struct rb_node *n; 8318 8319 down_write(&info->extent_commit_sem); 8320 while (!list_empty(&info->caching_block_groups)) { 8321 caching_ctl = list_entry(info->caching_block_groups.next, 8322 struct btrfs_caching_control, list); 8323 list_del(&caching_ctl->list); 8324 put_caching_control(caching_ctl); 8325 } 8326 up_write(&info->extent_commit_sem); 8327 8328 spin_lock(&info->block_group_cache_lock); 8329 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8330 block_group = rb_entry(n, struct btrfs_block_group_cache, 8331 cache_node); 8332 rb_erase(&block_group->cache_node, 8333 &info->block_group_cache_tree); 8334 spin_unlock(&info->block_group_cache_lock); 8335 8336 down_write(&block_group->space_info->groups_sem); 8337 list_del(&block_group->list); 8338 up_write(&block_group->space_info->groups_sem); 8339 8340 if (block_group->cached == BTRFS_CACHE_STARTED) 8341 wait_block_group_cache_done(block_group); 8342 8343 /* 8344 * We haven't cached this block group, which means we could 8345 * possibly have excluded extents on this block group. 8346 */ 8347 if (block_group->cached == BTRFS_CACHE_NO) 8348 free_excluded_extents(info->extent_root, block_group); 8349 8350 btrfs_remove_free_space_cache(block_group); 8351 btrfs_put_block_group(block_group); 8352 8353 spin_lock(&info->block_group_cache_lock); 8354 } 8355 spin_unlock(&info->block_group_cache_lock); 8356 8357 /* now that all the block groups are freed, go through and 8358 * free all the space_info structs. This is only called during 8359 * the final stages of unmount, and so we know nobody is 8360 * using them. We call synchronize_rcu() once before we start, 8361 * just to be on the safe side. 8362 */ 8363 synchronize_rcu(); 8364 8365 release_global_block_rsv(info); 8366 8367 while(!list_empty(&info->space_info)) { 8368 space_info = list_entry(info->space_info.next, 8369 struct btrfs_space_info, 8370 list); 8371 if (space_info->bytes_pinned > 0 || 8372 space_info->bytes_reserved > 0) { 8373 WARN_ON(1); 8374 dump_space_info(space_info, 0, 0); 8375 } 8376 list_del(&space_info->list); 8377 kfree(space_info); 8378 } 8379 return 0; 8380 } 8381 8382 static void __link_block_group(struct btrfs_space_info *space_info, 8383 struct btrfs_block_group_cache *cache) 8384 { 8385 int index = get_block_group_index(cache); 8386 8387 down_write(&space_info->groups_sem); 8388 list_add_tail(&cache->list, &space_info->block_groups[index]); 8389 up_write(&space_info->groups_sem); 8390 } 8391 8392 int btrfs_read_block_groups(struct btrfs_root *root) 8393 { 8394 struct btrfs_path *path; 8395 int ret; 8396 struct btrfs_block_group_cache *cache; 8397 struct btrfs_fs_info *info = root->fs_info; 8398 struct btrfs_space_info *space_info; 8399 struct btrfs_key key; 8400 struct btrfs_key found_key; 8401 struct extent_buffer *leaf; 8402 int need_clear = 0; 8403 u64 cache_gen; 8404 8405 root = info->extent_root; 8406 key.objectid = 0; 8407 key.offset = 0; 8408 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8409 path = btrfs_alloc_path(); 8410 if (!path) 8411 return -ENOMEM; 8412 8413 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy); 8414 if (cache_gen != 0 && 8415 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen) 8416 need_clear = 1; 8417 if (btrfs_test_opt(root, CLEAR_CACHE)) 8418 need_clear = 1; 8419 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen) 8420 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 8421 8422 while (1) { 8423 ret = find_first_block_group(root, path, &key); 8424 if (ret > 0) 8425 break; 8426 if (ret != 0) 8427 goto error; 8428 leaf = path->nodes[0]; 8429 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8430 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8431 if (!cache) { 8432 ret = -ENOMEM; 8433 goto error; 8434 } 8435 8436 atomic_set(&cache->count, 1); 8437 spin_lock_init(&cache->lock); 8438 spin_lock_init(&cache->tree_lock); 8439 cache->fs_info = info; 8440 INIT_LIST_HEAD(&cache->list); 8441 INIT_LIST_HEAD(&cache->cluster_list); 8442 8443 if (need_clear) 8444 cache->disk_cache_state = BTRFS_DC_CLEAR; 8445 8446 /* 8447 * we only want to have 32k of ram per block group for keeping 8448 * track of free space, and if we pass 1/2 of that we want to 8449 * start converting things over to using bitmaps 8450 */ 8451 cache->extents_thresh = ((1024 * 32) / 2) / 8452 sizeof(struct btrfs_free_space); 8453 8454 read_extent_buffer(leaf, &cache->item, 8455 btrfs_item_ptr_offset(leaf, path->slots[0]), 8456 sizeof(cache->item)); 8457 memcpy(&cache->key, &found_key, sizeof(found_key)); 8458 8459 key.objectid = found_key.objectid + found_key.offset; 8460 btrfs_release_path(root, path); 8461 cache->flags = btrfs_block_group_flags(&cache->item); 8462 cache->sectorsize = root->sectorsize; 8463 8464 /* 8465 * We need to exclude the super stripes now so that the space 8466 * info has super bytes accounted for, otherwise we'll think 8467 * we have more space than we actually do. 8468 */ 8469 exclude_super_stripes(root, cache); 8470 8471 /* 8472 * check for two cases, either we are full, and therefore 8473 * don't need to bother with the caching work since we won't 8474 * find any space, or we are empty, and we can just add all 8475 * the space in and be done with it. This saves us _alot_ of 8476 * time, particularly in the full case. 8477 */ 8478 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8479 cache->last_byte_to_unpin = (u64)-1; 8480 cache->cached = BTRFS_CACHE_FINISHED; 8481 free_excluded_extents(root, cache); 8482 } else if (btrfs_block_group_used(&cache->item) == 0) { 8483 cache->last_byte_to_unpin = (u64)-1; 8484 cache->cached = BTRFS_CACHE_FINISHED; 8485 add_new_free_space(cache, root->fs_info, 8486 found_key.objectid, 8487 found_key.objectid + 8488 found_key.offset); 8489 free_excluded_extents(root, cache); 8490 } 8491 8492 ret = update_space_info(info, cache->flags, found_key.offset, 8493 btrfs_block_group_used(&cache->item), 8494 &space_info); 8495 BUG_ON(ret); 8496 cache->space_info = space_info; 8497 spin_lock(&cache->space_info->lock); 8498 cache->space_info->bytes_readonly += cache->bytes_super; 8499 spin_unlock(&cache->space_info->lock); 8500 8501 __link_block_group(space_info, cache); 8502 8503 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8504 BUG_ON(ret); 8505 8506 set_avail_alloc_bits(root->fs_info, cache->flags); 8507 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8508 set_block_group_ro(cache); 8509 } 8510 8511 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8512 if (!(get_alloc_profile(root, space_info->flags) & 8513 (BTRFS_BLOCK_GROUP_RAID10 | 8514 BTRFS_BLOCK_GROUP_RAID1 | 8515 BTRFS_BLOCK_GROUP_DUP))) 8516 continue; 8517 /* 8518 * avoid allocating from un-mirrored block group if there are 8519 * mirrored block groups. 8520 */ 8521 list_for_each_entry(cache, &space_info->block_groups[3], list) 8522 set_block_group_ro(cache); 8523 list_for_each_entry(cache, &space_info->block_groups[4], list) 8524 set_block_group_ro(cache); 8525 } 8526 8527 init_global_block_rsv(info); 8528 ret = 0; 8529 error: 8530 btrfs_free_path(path); 8531 return ret; 8532 } 8533 8534 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8535 struct btrfs_root *root, u64 bytes_used, 8536 u64 type, u64 chunk_objectid, u64 chunk_offset, 8537 u64 size) 8538 { 8539 int ret; 8540 struct btrfs_root *extent_root; 8541 struct btrfs_block_group_cache *cache; 8542 8543 extent_root = root->fs_info->extent_root; 8544 8545 root->fs_info->last_trans_log_full_commit = trans->transid; 8546 8547 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8548 if (!cache) 8549 return -ENOMEM; 8550 8551 cache->key.objectid = chunk_offset; 8552 cache->key.offset = size; 8553 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8554 cache->sectorsize = root->sectorsize; 8555 cache->fs_info = root->fs_info; 8556 8557 /* 8558 * we only want to have 32k of ram per block group for keeping track 8559 * of free space, and if we pass 1/2 of that we want to start 8560 * converting things over to using bitmaps 8561 */ 8562 cache->extents_thresh = ((1024 * 32) / 2) / 8563 sizeof(struct btrfs_free_space); 8564 atomic_set(&cache->count, 1); 8565 spin_lock_init(&cache->lock); 8566 spin_lock_init(&cache->tree_lock); 8567 INIT_LIST_HEAD(&cache->list); 8568 INIT_LIST_HEAD(&cache->cluster_list); 8569 8570 btrfs_set_block_group_used(&cache->item, bytes_used); 8571 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8572 cache->flags = type; 8573 btrfs_set_block_group_flags(&cache->item, type); 8574 8575 cache->last_byte_to_unpin = (u64)-1; 8576 cache->cached = BTRFS_CACHE_FINISHED; 8577 exclude_super_stripes(root, cache); 8578 8579 add_new_free_space(cache, root->fs_info, chunk_offset, 8580 chunk_offset + size); 8581 8582 free_excluded_extents(root, cache); 8583 8584 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8585 &cache->space_info); 8586 BUG_ON(ret); 8587 8588 spin_lock(&cache->space_info->lock); 8589 cache->space_info->bytes_readonly += cache->bytes_super; 8590 spin_unlock(&cache->space_info->lock); 8591 8592 __link_block_group(cache->space_info, cache); 8593 8594 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8595 BUG_ON(ret); 8596 8597 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 8598 sizeof(cache->item)); 8599 BUG_ON(ret); 8600 8601 set_avail_alloc_bits(extent_root->fs_info, type); 8602 8603 return 0; 8604 } 8605 8606 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8607 struct btrfs_root *root, u64 group_start) 8608 { 8609 struct btrfs_path *path; 8610 struct btrfs_block_group_cache *block_group; 8611 struct btrfs_free_cluster *cluster; 8612 struct btrfs_root *tree_root = root->fs_info->tree_root; 8613 struct btrfs_key key; 8614 struct inode *inode; 8615 int ret; 8616 int factor; 8617 8618 root = root->fs_info->extent_root; 8619 8620 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8621 BUG_ON(!block_group); 8622 BUG_ON(!block_group->ro); 8623 8624 memcpy(&key, &block_group->key, sizeof(key)); 8625 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8626 BTRFS_BLOCK_GROUP_RAID1 | 8627 BTRFS_BLOCK_GROUP_RAID10)) 8628 factor = 2; 8629 else 8630 factor = 1; 8631 8632 /* make sure this block group isn't part of an allocation cluster */ 8633 cluster = &root->fs_info->data_alloc_cluster; 8634 spin_lock(&cluster->refill_lock); 8635 btrfs_return_cluster_to_free_space(block_group, cluster); 8636 spin_unlock(&cluster->refill_lock); 8637 8638 /* 8639 * make sure this block group isn't part of a metadata 8640 * allocation cluster 8641 */ 8642 cluster = &root->fs_info->meta_alloc_cluster; 8643 spin_lock(&cluster->refill_lock); 8644 btrfs_return_cluster_to_free_space(block_group, cluster); 8645 spin_unlock(&cluster->refill_lock); 8646 8647 path = btrfs_alloc_path(); 8648 BUG_ON(!path); 8649 8650 inode = lookup_free_space_inode(root, block_group, path); 8651 if (!IS_ERR(inode)) { 8652 btrfs_orphan_add(trans, inode); 8653 clear_nlink(inode); 8654 /* One for the block groups ref */ 8655 spin_lock(&block_group->lock); 8656 if (block_group->iref) { 8657 block_group->iref = 0; 8658 block_group->inode = NULL; 8659 spin_unlock(&block_group->lock); 8660 iput(inode); 8661 } else { 8662 spin_unlock(&block_group->lock); 8663 } 8664 /* One for our lookup ref */ 8665 iput(inode); 8666 } 8667 8668 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8669 key.offset = block_group->key.objectid; 8670 key.type = 0; 8671 8672 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8673 if (ret < 0) 8674 goto out; 8675 if (ret > 0) 8676 btrfs_release_path(tree_root, path); 8677 if (ret == 0) { 8678 ret = btrfs_del_item(trans, tree_root, path); 8679 if (ret) 8680 goto out; 8681 btrfs_release_path(tree_root, path); 8682 } 8683 8684 spin_lock(&root->fs_info->block_group_cache_lock); 8685 rb_erase(&block_group->cache_node, 8686 &root->fs_info->block_group_cache_tree); 8687 spin_unlock(&root->fs_info->block_group_cache_lock); 8688 8689 down_write(&block_group->space_info->groups_sem); 8690 /* 8691 * we must use list_del_init so people can check to see if they 8692 * are still on the list after taking the semaphore 8693 */ 8694 list_del_init(&block_group->list); 8695 up_write(&block_group->space_info->groups_sem); 8696 8697 if (block_group->cached == BTRFS_CACHE_STARTED) 8698 wait_block_group_cache_done(block_group); 8699 8700 btrfs_remove_free_space_cache(block_group); 8701 8702 spin_lock(&block_group->space_info->lock); 8703 block_group->space_info->total_bytes -= block_group->key.offset; 8704 block_group->space_info->bytes_readonly -= block_group->key.offset; 8705 block_group->space_info->disk_total -= block_group->key.offset * factor; 8706 spin_unlock(&block_group->space_info->lock); 8707 8708 memcpy(&key, &block_group->key, sizeof(key)); 8709 8710 btrfs_clear_space_info_full(root->fs_info); 8711 8712 btrfs_put_block_group(block_group); 8713 btrfs_put_block_group(block_group); 8714 8715 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8716 if (ret > 0) 8717 ret = -EIO; 8718 if (ret < 0) 8719 goto out; 8720 8721 ret = btrfs_del_item(trans, root, path); 8722 out: 8723 btrfs_free_path(path); 8724 return ret; 8725 } 8726 8727 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8728 { 8729 return unpin_extent_range(root, start, end); 8730 } 8731 8732 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8733 u64 num_bytes) 8734 { 8735 return btrfs_discard_extent(root, bytenr, num_bytes); 8736 } 8737