1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 bytenr, u64 num_bytes, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op, 86 int no_quota); 87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins, 100 int no_quota); 101 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 102 struct btrfs_root *extent_root, u64 flags, 103 int force); 104 static int find_next_key(struct btrfs_path *path, int level, 105 struct btrfs_key *key); 106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 107 int dump_block_groups); 108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 109 u64 num_bytes, int reserve, 110 int delalloc); 111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 112 u64 num_bytes); 113 int btrfs_pin_extent(struct btrfs_root *root, 114 u64 bytenr, u64 num_bytes, int reserved); 115 116 static noinline int 117 block_group_cache_done(struct btrfs_block_group_cache *cache) 118 { 119 smp_mb(); 120 return cache->cached == BTRFS_CACHE_FINISHED || 121 cache->cached == BTRFS_CACHE_ERROR; 122 } 123 124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 125 { 126 return (cache->flags & bits) == bits; 127 } 128 129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 130 { 131 atomic_inc(&cache->count); 132 } 133 134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 135 { 136 if (atomic_dec_and_test(&cache->count)) { 137 WARN_ON(cache->pinned > 0); 138 WARN_ON(cache->reserved > 0); 139 kfree(cache->free_space_ctl); 140 kfree(cache); 141 } 142 } 143 144 /* 145 * this adds the block group to the fs_info rb tree for the block group 146 * cache 147 */ 148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 149 struct btrfs_block_group_cache *block_group) 150 { 151 struct rb_node **p; 152 struct rb_node *parent = NULL; 153 struct btrfs_block_group_cache *cache; 154 155 spin_lock(&info->block_group_cache_lock); 156 p = &info->block_group_cache_tree.rb_node; 157 158 while (*p) { 159 parent = *p; 160 cache = rb_entry(parent, struct btrfs_block_group_cache, 161 cache_node); 162 if (block_group->key.objectid < cache->key.objectid) { 163 p = &(*p)->rb_left; 164 } else if (block_group->key.objectid > cache->key.objectid) { 165 p = &(*p)->rb_right; 166 } else { 167 spin_unlock(&info->block_group_cache_lock); 168 return -EEXIST; 169 } 170 } 171 172 rb_link_node(&block_group->cache_node, parent, p); 173 rb_insert_color(&block_group->cache_node, 174 &info->block_group_cache_tree); 175 176 if (info->first_logical_byte > block_group->key.objectid) 177 info->first_logical_byte = block_group->key.objectid; 178 179 spin_unlock(&info->block_group_cache_lock); 180 181 return 0; 182 } 183 184 /* 185 * This will return the block group at or after bytenr if contains is 0, else 186 * it will return the block group that contains the bytenr 187 */ 188 static struct btrfs_block_group_cache * 189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 190 int contains) 191 { 192 struct btrfs_block_group_cache *cache, *ret = NULL; 193 struct rb_node *n; 194 u64 end, start; 195 196 spin_lock(&info->block_group_cache_lock); 197 n = info->block_group_cache_tree.rb_node; 198 199 while (n) { 200 cache = rb_entry(n, struct btrfs_block_group_cache, 201 cache_node); 202 end = cache->key.objectid + cache->key.offset - 1; 203 start = cache->key.objectid; 204 205 if (bytenr < start) { 206 if (!contains && (!ret || start < ret->key.objectid)) 207 ret = cache; 208 n = n->rb_left; 209 } else if (bytenr > start) { 210 if (contains && bytenr <= end) { 211 ret = cache; 212 break; 213 } 214 n = n->rb_right; 215 } else { 216 ret = cache; 217 break; 218 } 219 } 220 if (ret) { 221 btrfs_get_block_group(ret); 222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 223 info->first_logical_byte = ret->key.objectid; 224 } 225 spin_unlock(&info->block_group_cache_lock); 226 227 return ret; 228 } 229 230 static int add_excluded_extent(struct btrfs_root *root, 231 u64 start, u64 num_bytes) 232 { 233 u64 end = start + num_bytes - 1; 234 set_extent_bits(&root->fs_info->freed_extents[0], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 set_extent_bits(&root->fs_info->freed_extents[1], 237 start, end, EXTENT_UPTODATE, GFP_NOFS); 238 return 0; 239 } 240 241 static void free_excluded_extents(struct btrfs_root *root, 242 struct btrfs_block_group_cache *cache) 243 { 244 u64 start, end; 245 246 start = cache->key.objectid; 247 end = start + cache->key.offset - 1; 248 249 clear_extent_bits(&root->fs_info->freed_extents[0], 250 start, end, EXTENT_UPTODATE, GFP_NOFS); 251 clear_extent_bits(&root->fs_info->freed_extents[1], 252 start, end, EXTENT_UPTODATE, GFP_NOFS); 253 } 254 255 static int exclude_super_stripes(struct btrfs_root *root, 256 struct btrfs_block_group_cache *cache) 257 { 258 u64 bytenr; 259 u64 *logical; 260 int stripe_len; 261 int i, nr, ret; 262 263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 265 cache->bytes_super += stripe_len; 266 ret = add_excluded_extent(root, cache->key.objectid, 267 stripe_len); 268 if (ret) 269 return ret; 270 } 271 272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 273 bytenr = btrfs_sb_offset(i); 274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 275 cache->key.objectid, bytenr, 276 0, &logical, &nr, &stripe_len); 277 if (ret) 278 return ret; 279 280 while (nr--) { 281 u64 start, len; 282 283 if (logical[nr] > cache->key.objectid + 284 cache->key.offset) 285 continue; 286 287 if (logical[nr] + stripe_len <= cache->key.objectid) 288 continue; 289 290 start = logical[nr]; 291 if (start < cache->key.objectid) { 292 start = cache->key.objectid; 293 len = (logical[nr] + stripe_len) - start; 294 } else { 295 len = min_t(u64, stripe_len, 296 cache->key.objectid + 297 cache->key.offset - start); 298 } 299 300 cache->bytes_super += len; 301 ret = add_excluded_extent(root, start, len); 302 if (ret) { 303 kfree(logical); 304 return ret; 305 } 306 } 307 308 kfree(logical); 309 } 310 return 0; 311 } 312 313 static struct btrfs_caching_control * 314 get_caching_control(struct btrfs_block_group_cache *cache) 315 { 316 struct btrfs_caching_control *ctl; 317 318 spin_lock(&cache->lock); 319 if (!cache->caching_ctl) { 320 spin_unlock(&cache->lock); 321 return NULL; 322 } 323 324 ctl = cache->caching_ctl; 325 atomic_inc(&ctl->count); 326 spin_unlock(&cache->lock); 327 return ctl; 328 } 329 330 static void put_caching_control(struct btrfs_caching_control *ctl) 331 { 332 if (atomic_dec_and_test(&ctl->count)) 333 kfree(ctl); 334 } 335 336 /* 337 * this is only called by cache_block_group, since we could have freed extents 338 * we need to check the pinned_extents for any extents that can't be used yet 339 * since their free space will be released as soon as the transaction commits. 340 */ 341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 342 struct btrfs_fs_info *info, u64 start, u64 end) 343 { 344 u64 extent_start, extent_end, size, total_added = 0; 345 int ret; 346 347 while (start < end) { 348 ret = find_first_extent_bit(info->pinned_extents, start, 349 &extent_start, &extent_end, 350 EXTENT_DIRTY | EXTENT_UPTODATE, 351 NULL); 352 if (ret) 353 break; 354 355 if (extent_start <= start) { 356 start = extent_end + 1; 357 } else if (extent_start > start && extent_start < end) { 358 size = extent_start - start; 359 total_added += size; 360 ret = btrfs_add_free_space(block_group, start, 361 size); 362 BUG_ON(ret); /* -ENOMEM or logic error */ 363 start = extent_end + 1; 364 } else { 365 break; 366 } 367 } 368 369 if (start < end) { 370 size = end - start; 371 total_added += size; 372 ret = btrfs_add_free_space(block_group, start, size); 373 BUG_ON(ret); /* -ENOMEM or logic error */ 374 } 375 376 return total_added; 377 } 378 379 static noinline void caching_thread(struct btrfs_work *work) 380 { 381 struct btrfs_block_group_cache *block_group; 382 struct btrfs_fs_info *fs_info; 383 struct btrfs_caching_control *caching_ctl; 384 struct btrfs_root *extent_root; 385 struct btrfs_path *path; 386 struct extent_buffer *leaf; 387 struct btrfs_key key; 388 u64 total_found = 0; 389 u64 last = 0; 390 u32 nritems; 391 int ret = -ENOMEM; 392 393 caching_ctl = container_of(work, struct btrfs_caching_control, work); 394 block_group = caching_ctl->block_group; 395 fs_info = block_group->fs_info; 396 extent_root = fs_info->extent_root; 397 398 path = btrfs_alloc_path(); 399 if (!path) 400 goto out; 401 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 403 404 /* 405 * We don't want to deadlock with somebody trying to allocate a new 406 * extent for the extent root while also trying to search the extent 407 * root to add free space. So we skip locking and search the commit 408 * root, since its read-only 409 */ 410 path->skip_locking = 1; 411 path->search_commit_root = 1; 412 path->reada = 1; 413 414 key.objectid = last; 415 key.offset = 0; 416 key.type = BTRFS_EXTENT_ITEM_KEY; 417 again: 418 mutex_lock(&caching_ctl->mutex); 419 /* need to make sure the commit_root doesn't disappear */ 420 down_read(&fs_info->commit_root_sem); 421 422 next: 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 424 if (ret < 0) 425 goto err; 426 427 leaf = path->nodes[0]; 428 nritems = btrfs_header_nritems(leaf); 429 430 while (1) { 431 if (btrfs_fs_closing(fs_info) > 1) { 432 last = (u64)-1; 433 break; 434 } 435 436 if (path->slots[0] < nritems) { 437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 438 } else { 439 ret = find_next_key(path, 0, &key); 440 if (ret) 441 break; 442 443 if (need_resched() || 444 rwsem_is_contended(&fs_info->commit_root_sem)) { 445 caching_ctl->progress = last; 446 btrfs_release_path(path); 447 up_read(&fs_info->commit_root_sem); 448 mutex_unlock(&caching_ctl->mutex); 449 cond_resched(); 450 goto again; 451 } 452 453 ret = btrfs_next_leaf(extent_root, path); 454 if (ret < 0) 455 goto err; 456 if (ret) 457 break; 458 leaf = path->nodes[0]; 459 nritems = btrfs_header_nritems(leaf); 460 continue; 461 } 462 463 if (key.objectid < last) { 464 key.objectid = last; 465 key.offset = 0; 466 key.type = BTRFS_EXTENT_ITEM_KEY; 467 468 caching_ctl->progress = last; 469 btrfs_release_path(path); 470 goto next; 471 } 472 473 if (key.objectid < block_group->key.objectid) { 474 path->slots[0]++; 475 continue; 476 } 477 478 if (key.objectid >= block_group->key.objectid + 479 block_group->key.offset) 480 break; 481 482 if (key.type == BTRFS_EXTENT_ITEM_KEY || 483 key.type == BTRFS_METADATA_ITEM_KEY) { 484 total_found += add_new_free_space(block_group, 485 fs_info, last, 486 key.objectid); 487 if (key.type == BTRFS_METADATA_ITEM_KEY) 488 last = key.objectid + 489 fs_info->tree_root->nodesize; 490 else 491 last = key.objectid + key.offset; 492 493 if (total_found > (1024 * 1024 * 2)) { 494 total_found = 0; 495 wake_up(&caching_ctl->wait); 496 } 497 } 498 path->slots[0]++; 499 } 500 ret = 0; 501 502 total_found += add_new_free_space(block_group, fs_info, last, 503 block_group->key.objectid + 504 block_group->key.offset); 505 caching_ctl->progress = (u64)-1; 506 507 spin_lock(&block_group->lock); 508 block_group->caching_ctl = NULL; 509 block_group->cached = BTRFS_CACHE_FINISHED; 510 spin_unlock(&block_group->lock); 511 512 err: 513 btrfs_free_path(path); 514 up_read(&fs_info->commit_root_sem); 515 516 free_excluded_extents(extent_root, block_group); 517 518 mutex_unlock(&caching_ctl->mutex); 519 out: 520 if (ret) { 521 spin_lock(&block_group->lock); 522 block_group->caching_ctl = NULL; 523 block_group->cached = BTRFS_CACHE_ERROR; 524 spin_unlock(&block_group->lock); 525 } 526 wake_up(&caching_ctl->wait); 527 528 put_caching_control(caching_ctl); 529 btrfs_put_block_group(block_group); 530 } 531 532 static int cache_block_group(struct btrfs_block_group_cache *cache, 533 int load_cache_only) 534 { 535 DEFINE_WAIT(wait); 536 struct btrfs_fs_info *fs_info = cache->fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 int ret = 0; 539 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 541 if (!caching_ctl) 542 return -ENOMEM; 543 544 INIT_LIST_HEAD(&caching_ctl->list); 545 mutex_init(&caching_ctl->mutex); 546 init_waitqueue_head(&caching_ctl->wait); 547 caching_ctl->block_group = cache; 548 caching_ctl->progress = cache->key.objectid; 549 atomic_set(&caching_ctl->count, 1); 550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 551 caching_thread, NULL, NULL); 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 mutex_lock(&caching_ctl->mutex); 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 caching_ctl->progress = (u64)-1; 601 } else { 602 if (load_cache_only) { 603 cache->caching_ctl = NULL; 604 cache->cached = BTRFS_CACHE_NO; 605 } else { 606 cache->cached = BTRFS_CACHE_STARTED; 607 cache->has_caching_ctl = 1; 608 } 609 } 610 spin_unlock(&cache->lock); 611 mutex_unlock(&caching_ctl->mutex); 612 613 wake_up(&caching_ctl->wait); 614 if (ret == 1) { 615 put_caching_control(caching_ctl); 616 free_excluded_extents(fs_info->extent_root, cache); 617 return 0; 618 } 619 } else { 620 /* 621 * We are not going to do the fast caching, set cached to the 622 * appropriate value and wakeup any waiters. 623 */ 624 spin_lock(&cache->lock); 625 if (load_cache_only) { 626 cache->caching_ctl = NULL; 627 cache->cached = BTRFS_CACHE_NO; 628 } else { 629 cache->cached = BTRFS_CACHE_STARTED; 630 cache->has_caching_ctl = 1; 631 } 632 spin_unlock(&cache->lock); 633 wake_up(&caching_ctl->wait); 634 } 635 636 if (load_cache_only) { 637 put_caching_control(caching_ctl); 638 return 0; 639 } 640 641 down_write(&fs_info->commit_root_sem); 642 atomic_inc(&caching_ctl->count); 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 644 up_write(&fs_info->commit_root_sem); 645 646 btrfs_get_block_group(cache); 647 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 649 650 return ret; 651 } 652 653 /* 654 * return the block group that starts at or after bytenr 655 */ 656 static struct btrfs_block_group_cache * 657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 658 { 659 struct btrfs_block_group_cache *cache; 660 661 cache = block_group_cache_tree_search(info, bytenr, 0); 662 663 return cache; 664 } 665 666 /* 667 * return the block group that contains the given bytenr 668 */ 669 struct btrfs_block_group_cache *btrfs_lookup_block_group( 670 struct btrfs_fs_info *info, 671 u64 bytenr) 672 { 673 struct btrfs_block_group_cache *cache; 674 675 cache = block_group_cache_tree_search(info, bytenr, 1); 676 677 return cache; 678 } 679 680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 681 u64 flags) 682 { 683 struct list_head *head = &info->space_info; 684 struct btrfs_space_info *found; 685 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 687 688 rcu_read_lock(); 689 list_for_each_entry_rcu(found, head, list) { 690 if (found->flags & flags) { 691 rcu_read_unlock(); 692 return found; 693 } 694 } 695 rcu_read_unlock(); 696 return NULL; 697 } 698 699 /* 700 * after adding space to the filesystem, we need to clear the full flags 701 * on all the space infos. 702 */ 703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 704 { 705 struct list_head *head = &info->space_info; 706 struct btrfs_space_info *found; 707 708 rcu_read_lock(); 709 list_for_each_entry_rcu(found, head, list) 710 found->full = 0; 711 rcu_read_unlock(); 712 } 713 714 /* simple helper to search for an existing data extent at a given offset */ 715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 716 { 717 int ret; 718 struct btrfs_key key; 719 struct btrfs_path *path; 720 721 path = btrfs_alloc_path(); 722 if (!path) 723 return -ENOMEM; 724 725 key.objectid = start; 726 key.offset = len; 727 key.type = BTRFS_EXTENT_ITEM_KEY; 728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 729 0, 0); 730 btrfs_free_path(path); 731 return ret; 732 } 733 734 /* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746 { 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->nodesize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (!trans) { 772 path->skip_locking = 1; 773 path->search_commit_root = 1; 774 } 775 776 search_again: 777 key.objectid = bytenr; 778 key.offset = offset; 779 if (metadata) 780 key.type = BTRFS_METADATA_ITEM_KEY; 781 else 782 key.type = BTRFS_EXTENT_ITEM_KEY; 783 784 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 785 &key, path, 0, 0); 786 if (ret < 0) 787 goto out_free; 788 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 790 if (path->slots[0]) { 791 path->slots[0]--; 792 btrfs_item_key_to_cpu(path->nodes[0], &key, 793 path->slots[0]); 794 if (key.objectid == bytenr && 795 key.type == BTRFS_EXTENT_ITEM_KEY && 796 key.offset == root->nodesize) 797 ret = 0; 798 } 799 } 800 801 if (ret == 0) { 802 leaf = path->nodes[0]; 803 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 804 if (item_size >= sizeof(*ei)) { 805 ei = btrfs_item_ptr(leaf, path->slots[0], 806 struct btrfs_extent_item); 807 num_refs = btrfs_extent_refs(leaf, ei); 808 extent_flags = btrfs_extent_flags(leaf, ei); 809 } else { 810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 struct btrfs_extent_item_v0 *ei0; 812 BUG_ON(item_size != sizeof(*ei0)); 813 ei0 = btrfs_item_ptr(leaf, path->slots[0], 814 struct btrfs_extent_item_v0); 815 num_refs = btrfs_extent_refs_v0(leaf, ei0); 816 /* FIXME: this isn't correct for data */ 817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 818 #else 819 BUG(); 820 #endif 821 } 822 BUG_ON(num_refs == 0); 823 } else { 824 num_refs = 0; 825 extent_flags = 0; 826 ret = 0; 827 } 828 829 if (!trans) 830 goto out; 831 832 delayed_refs = &trans->transaction->delayed_refs; 833 spin_lock(&delayed_refs->lock); 834 head = btrfs_find_delayed_ref_head(trans, bytenr); 835 if (head) { 836 if (!mutex_trylock(&head->mutex)) { 837 atomic_inc(&head->node.refs); 838 spin_unlock(&delayed_refs->lock); 839 840 btrfs_release_path(path); 841 842 /* 843 * Mutex was contended, block until it's released and try 844 * again 845 */ 846 mutex_lock(&head->mutex); 847 mutex_unlock(&head->mutex); 848 btrfs_put_delayed_ref(&head->node); 849 goto search_again; 850 } 851 spin_lock(&head->lock); 852 if (head->extent_op && head->extent_op->update_flags) 853 extent_flags |= head->extent_op->flags_to_set; 854 else 855 BUG_ON(num_refs == 0); 856 857 num_refs += head->node.ref_mod; 858 spin_unlock(&head->lock); 859 mutex_unlock(&head->mutex); 860 } 861 spin_unlock(&delayed_refs->lock); 862 out: 863 WARN_ON(num_refs == 0); 864 if (refs) 865 *refs = num_refs; 866 if (flags) 867 *flags = extent_flags; 868 out_free: 869 btrfs_free_path(path); 870 return ret; 871 } 872 873 /* 874 * Back reference rules. Back refs have three main goals: 875 * 876 * 1) differentiate between all holders of references to an extent so that 877 * when a reference is dropped we can make sure it was a valid reference 878 * before freeing the extent. 879 * 880 * 2) Provide enough information to quickly find the holders of an extent 881 * if we notice a given block is corrupted or bad. 882 * 883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 884 * maintenance. This is actually the same as #2, but with a slightly 885 * different use case. 886 * 887 * There are two kinds of back refs. The implicit back refs is optimized 888 * for pointers in non-shared tree blocks. For a given pointer in a block, 889 * back refs of this kind provide information about the block's owner tree 890 * and the pointer's key. These information allow us to find the block by 891 * b-tree searching. The full back refs is for pointers in tree blocks not 892 * referenced by their owner trees. The location of tree block is recorded 893 * in the back refs. Actually the full back refs is generic, and can be 894 * used in all cases the implicit back refs is used. The major shortcoming 895 * of the full back refs is its overhead. Every time a tree block gets 896 * COWed, we have to update back refs entry for all pointers in it. 897 * 898 * For a newly allocated tree block, we use implicit back refs for 899 * pointers in it. This means most tree related operations only involve 900 * implicit back refs. For a tree block created in old transaction, the 901 * only way to drop a reference to it is COW it. So we can detect the 902 * event that tree block loses its owner tree's reference and do the 903 * back refs conversion. 904 * 905 * When a tree block is COW'd through a tree, there are four cases: 906 * 907 * The reference count of the block is one and the tree is the block's 908 * owner tree. Nothing to do in this case. 909 * 910 * The reference count of the block is one and the tree is not the 911 * block's owner tree. In this case, full back refs is used for pointers 912 * in the block. Remove these full back refs, add implicit back refs for 913 * every pointers in the new block. 914 * 915 * The reference count of the block is greater than one and the tree is 916 * the block's owner tree. In this case, implicit back refs is used for 917 * pointers in the block. Add full back refs for every pointers in the 918 * block, increase lower level extents' reference counts. The original 919 * implicit back refs are entailed to the new block. 920 * 921 * The reference count of the block is greater than one and the tree is 922 * not the block's owner tree. Add implicit back refs for every pointer in 923 * the new block, increase lower level extents' reference count. 924 * 925 * Back Reference Key composing: 926 * 927 * The key objectid corresponds to the first byte in the extent, 928 * The key type is used to differentiate between types of back refs. 929 * There are different meanings of the key offset for different types 930 * of back refs. 931 * 932 * File extents can be referenced by: 933 * 934 * - multiple snapshots, subvolumes, or different generations in one subvol 935 * - different files inside a single subvolume 936 * - different offsets inside a file (bookend extents in file.c) 937 * 938 * The extent ref structure for the implicit back refs has fields for: 939 * 940 * - Objectid of the subvolume root 941 * - objectid of the file holding the reference 942 * - original offset in the file 943 * - how many bookend extents 944 * 945 * The key offset for the implicit back refs is hash of the first 946 * three fields. 947 * 948 * The extent ref structure for the full back refs has field for: 949 * 950 * - number of pointers in the tree leaf 951 * 952 * The key offset for the implicit back refs is the first byte of 953 * the tree leaf 954 * 955 * When a file extent is allocated, The implicit back refs is used. 956 * the fields are filled in: 957 * 958 * (root_key.objectid, inode objectid, offset in file, 1) 959 * 960 * When a file extent is removed file truncation, we find the 961 * corresponding implicit back refs and check the following fields: 962 * 963 * (btrfs_header_owner(leaf), inode objectid, offset in file) 964 * 965 * Btree extents can be referenced by: 966 * 967 * - Different subvolumes 968 * 969 * Both the implicit back refs and the full back refs for tree blocks 970 * only consist of key. The key offset for the implicit back refs is 971 * objectid of block's owner tree. The key offset for the full back refs 972 * is the first byte of parent block. 973 * 974 * When implicit back refs is used, information about the lowest key and 975 * level of the tree block are required. These information are stored in 976 * tree block info structure. 977 */ 978 979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct btrfs_path *path, 983 u64 owner, u32 extra_size) 984 { 985 struct btrfs_extent_item *item; 986 struct btrfs_extent_item_v0 *ei0; 987 struct btrfs_extent_ref_v0 *ref0; 988 struct btrfs_tree_block_info *bi; 989 struct extent_buffer *leaf; 990 struct btrfs_key key; 991 struct btrfs_key found_key; 992 u32 new_size = sizeof(*item); 993 u64 refs; 994 int ret; 995 996 leaf = path->nodes[0]; 997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 998 999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1000 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_extent_item_v0); 1002 refs = btrfs_extent_refs_v0(leaf, ei0); 1003 1004 if (owner == (u64)-1) { 1005 while (1) { 1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1007 ret = btrfs_next_leaf(root, path); 1008 if (ret < 0) 1009 return ret; 1010 BUG_ON(ret > 0); /* Corruption */ 1011 leaf = path->nodes[0]; 1012 } 1013 btrfs_item_key_to_cpu(leaf, &found_key, 1014 path->slots[0]); 1015 BUG_ON(key.objectid != found_key.objectid); 1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1017 path->slots[0]++; 1018 continue; 1019 } 1020 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_extent_ref_v0); 1022 owner = btrfs_ref_objectid_v0(leaf, ref0); 1023 break; 1024 } 1025 } 1026 btrfs_release_path(path); 1027 1028 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1029 new_size += sizeof(*bi); 1030 1031 new_size -= sizeof(*ei0); 1032 ret = btrfs_search_slot(trans, root, &key, path, 1033 new_size + extra_size, 1); 1034 if (ret < 0) 1035 return ret; 1036 BUG_ON(ret); /* Corruption */ 1037 1038 btrfs_extend_item(root, path, new_size); 1039 1040 leaf = path->nodes[0]; 1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1042 btrfs_set_extent_refs(leaf, item, refs); 1043 /* FIXME: get real generation */ 1044 btrfs_set_extent_generation(leaf, item, 0); 1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1046 btrfs_set_extent_flags(leaf, item, 1047 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1048 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1049 bi = (struct btrfs_tree_block_info *)(item + 1); 1050 /* FIXME: get first key of the block */ 1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1052 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1053 } else { 1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1055 } 1056 btrfs_mark_buffer_dirty(leaf); 1057 return 0; 1058 } 1059 #endif 1060 1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1062 { 1063 u32 high_crc = ~(u32)0; 1064 u32 low_crc = ~(u32)0; 1065 __le64 lenum; 1066 1067 lenum = cpu_to_le64(root_objectid); 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1069 lenum = cpu_to_le64(owner); 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1071 lenum = cpu_to_le64(offset); 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1073 1074 return ((u64)high_crc << 31) ^ (u64)low_crc; 1075 } 1076 1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1078 struct btrfs_extent_data_ref *ref) 1079 { 1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1081 btrfs_extent_data_ref_objectid(leaf, ref), 1082 btrfs_extent_data_ref_offset(leaf, ref)); 1083 } 1084 1085 static int match_extent_data_ref(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref, 1087 u64 root_objectid, u64 owner, u64 offset) 1088 { 1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1091 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1092 return 0; 1093 return 1; 1094 } 1095 1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1097 struct btrfs_root *root, 1098 struct btrfs_path *path, 1099 u64 bytenr, u64 parent, 1100 u64 root_objectid, 1101 u64 owner, u64 offset) 1102 { 1103 struct btrfs_key key; 1104 struct btrfs_extent_data_ref *ref; 1105 struct extent_buffer *leaf; 1106 u32 nritems; 1107 int ret; 1108 int recow; 1109 int err = -ENOENT; 1110 1111 key.objectid = bytenr; 1112 if (parent) { 1113 key.type = BTRFS_SHARED_DATA_REF_KEY; 1114 key.offset = parent; 1115 } else { 1116 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1117 key.offset = hash_extent_data_ref(root_objectid, 1118 owner, offset); 1119 } 1120 again: 1121 recow = 0; 1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1123 if (ret < 0) { 1124 err = ret; 1125 goto fail; 1126 } 1127 1128 if (parent) { 1129 if (!ret) 1130 return 0; 1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1132 key.type = BTRFS_EXTENT_REF_V0_KEY; 1133 btrfs_release_path(path); 1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1135 if (ret < 0) { 1136 err = ret; 1137 goto fail; 1138 } 1139 if (!ret) 1140 return 0; 1141 #endif 1142 goto fail; 1143 } 1144 1145 leaf = path->nodes[0]; 1146 nritems = btrfs_header_nritems(leaf); 1147 while (1) { 1148 if (path->slots[0] >= nritems) { 1149 ret = btrfs_next_leaf(root, path); 1150 if (ret < 0) 1151 err = ret; 1152 if (ret) 1153 goto fail; 1154 1155 leaf = path->nodes[0]; 1156 nritems = btrfs_header_nritems(leaf); 1157 recow = 1; 1158 } 1159 1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1161 if (key.objectid != bytenr || 1162 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1163 goto fail; 1164 1165 ref = btrfs_item_ptr(leaf, path->slots[0], 1166 struct btrfs_extent_data_ref); 1167 1168 if (match_extent_data_ref(leaf, ref, root_objectid, 1169 owner, offset)) { 1170 if (recow) { 1171 btrfs_release_path(path); 1172 goto again; 1173 } 1174 err = 0; 1175 break; 1176 } 1177 path->slots[0]++; 1178 } 1179 fail: 1180 return err; 1181 } 1182 1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1184 struct btrfs_root *root, 1185 struct btrfs_path *path, 1186 u64 bytenr, u64 parent, 1187 u64 root_objectid, u64 owner, 1188 u64 offset, int refs_to_add) 1189 { 1190 struct btrfs_key key; 1191 struct extent_buffer *leaf; 1192 u32 size; 1193 u32 num_refs; 1194 int ret; 1195 1196 key.objectid = bytenr; 1197 if (parent) { 1198 key.type = BTRFS_SHARED_DATA_REF_KEY; 1199 key.offset = parent; 1200 size = sizeof(struct btrfs_shared_data_ref); 1201 } else { 1202 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1203 key.offset = hash_extent_data_ref(root_objectid, 1204 owner, offset); 1205 size = sizeof(struct btrfs_extent_data_ref); 1206 } 1207 1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1209 if (ret && ret != -EEXIST) 1210 goto fail; 1211 1212 leaf = path->nodes[0]; 1213 if (parent) { 1214 struct btrfs_shared_data_ref *ref; 1215 ref = btrfs_item_ptr(leaf, path->slots[0], 1216 struct btrfs_shared_data_ref); 1217 if (ret == 0) { 1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1219 } else { 1220 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1221 num_refs += refs_to_add; 1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1223 } 1224 } else { 1225 struct btrfs_extent_data_ref *ref; 1226 while (ret == -EEXIST) { 1227 ref = btrfs_item_ptr(leaf, path->slots[0], 1228 struct btrfs_extent_data_ref); 1229 if (match_extent_data_ref(leaf, ref, root_objectid, 1230 owner, offset)) 1231 break; 1232 btrfs_release_path(path); 1233 key.offset++; 1234 ret = btrfs_insert_empty_item(trans, root, path, &key, 1235 size); 1236 if (ret && ret != -EEXIST) 1237 goto fail; 1238 1239 leaf = path->nodes[0]; 1240 } 1241 ref = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_extent_data_ref); 1243 if (ret == 0) { 1244 btrfs_set_extent_data_ref_root(leaf, ref, 1245 root_objectid); 1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1249 } else { 1250 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1251 num_refs += refs_to_add; 1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1253 } 1254 } 1255 btrfs_mark_buffer_dirty(leaf); 1256 ret = 0; 1257 fail: 1258 btrfs_release_path(path); 1259 return ret; 1260 } 1261 1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1263 struct btrfs_root *root, 1264 struct btrfs_path *path, 1265 int refs_to_drop, int *last_ref) 1266 { 1267 struct btrfs_key key; 1268 struct btrfs_extent_data_ref *ref1 = NULL; 1269 struct btrfs_shared_data_ref *ref2 = NULL; 1270 struct extent_buffer *leaf; 1271 u32 num_refs = 0; 1272 int ret = 0; 1273 1274 leaf = path->nodes[0]; 1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1276 1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1278 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1279 struct btrfs_extent_data_ref); 1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1282 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1283 struct btrfs_shared_data_ref); 1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1287 struct btrfs_extent_ref_v0 *ref0; 1288 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_extent_ref_v0); 1290 num_refs = btrfs_ref_count_v0(leaf, ref0); 1291 #endif 1292 } else { 1293 BUG(); 1294 } 1295 1296 BUG_ON(num_refs < refs_to_drop); 1297 num_refs -= refs_to_drop; 1298 1299 if (num_refs == 0) { 1300 ret = btrfs_del_item(trans, root, path); 1301 *last_ref = 1; 1302 } else { 1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1308 else { 1309 struct btrfs_extent_ref_v0 *ref0; 1310 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_extent_ref_v0); 1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1313 } 1314 #endif 1315 btrfs_mark_buffer_dirty(leaf); 1316 } 1317 return ret; 1318 } 1319 1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1321 struct btrfs_path *path, 1322 struct btrfs_extent_inline_ref *iref) 1323 { 1324 struct btrfs_key key; 1325 struct extent_buffer *leaf; 1326 struct btrfs_extent_data_ref *ref1; 1327 struct btrfs_shared_data_ref *ref2; 1328 u32 num_refs = 0; 1329 1330 leaf = path->nodes[0]; 1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1332 if (iref) { 1333 if (btrfs_extent_inline_ref_type(leaf, iref) == 1334 BTRFS_EXTENT_DATA_REF_KEY) { 1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1337 } else { 1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1340 } 1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1343 struct btrfs_extent_data_ref); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1346 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1347 struct btrfs_shared_data_ref); 1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1351 struct btrfs_extent_ref_v0 *ref0; 1352 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_extent_ref_v0); 1354 num_refs = btrfs_ref_count_v0(leaf, ref0); 1355 #endif 1356 } else { 1357 WARN_ON(1); 1358 } 1359 return num_refs; 1360 } 1361 1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root, 1364 struct btrfs_path *path, 1365 u64 bytenr, u64 parent, 1366 u64 root_objectid) 1367 { 1368 struct btrfs_key key; 1369 int ret; 1370 1371 key.objectid = bytenr; 1372 if (parent) { 1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1374 key.offset = parent; 1375 } else { 1376 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1377 key.offset = root_objectid; 1378 } 1379 1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1381 if (ret > 0) 1382 ret = -ENOENT; 1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1384 if (ret == -ENOENT && parent) { 1385 btrfs_release_path(path); 1386 key.type = BTRFS_EXTENT_REF_V0_KEY; 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 } 1391 #endif 1392 return ret; 1393 } 1394 1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root, 1397 struct btrfs_path *path, 1398 u64 bytenr, u64 parent, 1399 u64 root_objectid) 1400 { 1401 struct btrfs_key key; 1402 int ret; 1403 1404 key.objectid = bytenr; 1405 if (parent) { 1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1407 key.offset = parent; 1408 } else { 1409 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1410 key.offset = root_objectid; 1411 } 1412 1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1414 btrfs_release_path(path); 1415 return ret; 1416 } 1417 1418 static inline int extent_ref_type(u64 parent, u64 owner) 1419 { 1420 int type; 1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1422 if (parent > 0) 1423 type = BTRFS_SHARED_BLOCK_REF_KEY; 1424 else 1425 type = BTRFS_TREE_BLOCK_REF_KEY; 1426 } else { 1427 if (parent > 0) 1428 type = BTRFS_SHARED_DATA_REF_KEY; 1429 else 1430 type = BTRFS_EXTENT_DATA_REF_KEY; 1431 } 1432 return type; 1433 } 1434 1435 static int find_next_key(struct btrfs_path *path, int level, 1436 struct btrfs_key *key) 1437 1438 { 1439 for (; level < BTRFS_MAX_LEVEL; level++) { 1440 if (!path->nodes[level]) 1441 break; 1442 if (path->slots[level] + 1 >= 1443 btrfs_header_nritems(path->nodes[level])) 1444 continue; 1445 if (level == 0) 1446 btrfs_item_key_to_cpu(path->nodes[level], key, 1447 path->slots[level] + 1); 1448 else 1449 btrfs_node_key_to_cpu(path->nodes[level], key, 1450 path->slots[level] + 1); 1451 return 0; 1452 } 1453 return 1; 1454 } 1455 1456 /* 1457 * look for inline back ref. if back ref is found, *ref_ret is set 1458 * to the address of inline back ref, and 0 is returned. 1459 * 1460 * if back ref isn't found, *ref_ret is set to the address where it 1461 * should be inserted, and -ENOENT is returned. 1462 * 1463 * if insert is true and there are too many inline back refs, the path 1464 * points to the extent item, and -EAGAIN is returned. 1465 * 1466 * NOTE: inline back refs are ordered in the same way that back ref 1467 * items in the tree are ordered. 1468 */ 1469 static noinline_for_stack 1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1471 struct btrfs_root *root, 1472 struct btrfs_path *path, 1473 struct btrfs_extent_inline_ref **ref_ret, 1474 u64 bytenr, u64 num_bytes, 1475 u64 parent, u64 root_objectid, 1476 u64 owner, u64 offset, int insert) 1477 { 1478 struct btrfs_key key; 1479 struct extent_buffer *leaf; 1480 struct btrfs_extent_item *ei; 1481 struct btrfs_extent_inline_ref *iref; 1482 u64 flags; 1483 u64 item_size; 1484 unsigned long ptr; 1485 unsigned long end; 1486 int extra_size; 1487 int type; 1488 int want; 1489 int ret; 1490 int err = 0; 1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1492 SKINNY_METADATA); 1493 1494 key.objectid = bytenr; 1495 key.type = BTRFS_EXTENT_ITEM_KEY; 1496 key.offset = num_bytes; 1497 1498 want = extent_ref_type(parent, owner); 1499 if (insert) { 1500 extra_size = btrfs_extent_inline_ref_size(want); 1501 path->keep_locks = 1; 1502 } else 1503 extra_size = -1; 1504 1505 /* 1506 * Owner is our parent level, so we can just add one to get the level 1507 * for the block we are interested in. 1508 */ 1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1510 key.type = BTRFS_METADATA_ITEM_KEY; 1511 key.offset = owner; 1512 } 1513 1514 again: 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1516 if (ret < 0) { 1517 err = ret; 1518 goto out; 1519 } 1520 1521 /* 1522 * We may be a newly converted file system which still has the old fat 1523 * extent entries for metadata, so try and see if we have one of those. 1524 */ 1525 if (ret > 0 && skinny_metadata) { 1526 skinny_metadata = false; 1527 if (path->slots[0]) { 1528 path->slots[0]--; 1529 btrfs_item_key_to_cpu(path->nodes[0], &key, 1530 path->slots[0]); 1531 if (key.objectid == bytenr && 1532 key.type == BTRFS_EXTENT_ITEM_KEY && 1533 key.offset == num_bytes) 1534 ret = 0; 1535 } 1536 if (ret) { 1537 key.objectid = bytenr; 1538 key.type = BTRFS_EXTENT_ITEM_KEY; 1539 key.offset = num_bytes; 1540 btrfs_release_path(path); 1541 goto again; 1542 } 1543 } 1544 1545 if (ret && !insert) { 1546 err = -ENOENT; 1547 goto out; 1548 } else if (WARN_ON(ret)) { 1549 err = -EIO; 1550 goto out; 1551 } 1552 1553 leaf = path->nodes[0]; 1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1556 if (item_size < sizeof(*ei)) { 1557 if (!insert) { 1558 err = -ENOENT; 1559 goto out; 1560 } 1561 ret = convert_extent_item_v0(trans, root, path, owner, 1562 extra_size); 1563 if (ret < 0) { 1564 err = ret; 1565 goto out; 1566 } 1567 leaf = path->nodes[0]; 1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1569 } 1570 #endif 1571 BUG_ON(item_size < sizeof(*ei)); 1572 1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1574 flags = btrfs_extent_flags(leaf, ei); 1575 1576 ptr = (unsigned long)(ei + 1); 1577 end = (unsigned long)ei + item_size; 1578 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1580 ptr += sizeof(struct btrfs_tree_block_info); 1581 BUG_ON(ptr > end); 1582 } 1583 1584 err = -ENOENT; 1585 while (1) { 1586 if (ptr >= end) { 1587 WARN_ON(ptr > end); 1588 break; 1589 } 1590 iref = (struct btrfs_extent_inline_ref *)ptr; 1591 type = btrfs_extent_inline_ref_type(leaf, iref); 1592 if (want < type) 1593 break; 1594 if (want > type) { 1595 ptr += btrfs_extent_inline_ref_size(type); 1596 continue; 1597 } 1598 1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1600 struct btrfs_extent_data_ref *dref; 1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1602 if (match_extent_data_ref(leaf, dref, root_objectid, 1603 owner, offset)) { 1604 err = 0; 1605 break; 1606 } 1607 if (hash_extent_data_ref_item(leaf, dref) < 1608 hash_extent_data_ref(root_objectid, owner, offset)) 1609 break; 1610 } else { 1611 u64 ref_offset; 1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1613 if (parent > 0) { 1614 if (parent == ref_offset) { 1615 err = 0; 1616 break; 1617 } 1618 if (ref_offset < parent) 1619 break; 1620 } else { 1621 if (root_objectid == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < root_objectid) 1626 break; 1627 } 1628 } 1629 ptr += btrfs_extent_inline_ref_size(type); 1630 } 1631 if (err == -ENOENT && insert) { 1632 if (item_size + extra_size >= 1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1634 err = -EAGAIN; 1635 goto out; 1636 } 1637 /* 1638 * To add new inline back ref, we have to make sure 1639 * there is no corresponding back ref item. 1640 * For simplicity, we just do not add new inline back 1641 * ref if there is any kind of item for this block 1642 */ 1643 if (find_next_key(path, 0, &key) == 0 && 1644 key.objectid == bytenr && 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1646 err = -EAGAIN; 1647 goto out; 1648 } 1649 } 1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1651 out: 1652 if (insert) { 1653 path->keep_locks = 0; 1654 btrfs_unlock_up_safe(path, 1); 1655 } 1656 return err; 1657 } 1658 1659 /* 1660 * helper to add new inline back ref 1661 */ 1662 static noinline_for_stack 1663 void setup_inline_extent_backref(struct btrfs_root *root, 1664 struct btrfs_path *path, 1665 struct btrfs_extent_inline_ref *iref, 1666 u64 parent, u64 root_objectid, 1667 u64 owner, u64 offset, int refs_to_add, 1668 struct btrfs_delayed_extent_op *extent_op) 1669 { 1670 struct extent_buffer *leaf; 1671 struct btrfs_extent_item *ei; 1672 unsigned long ptr; 1673 unsigned long end; 1674 unsigned long item_offset; 1675 u64 refs; 1676 int size; 1677 int type; 1678 1679 leaf = path->nodes[0]; 1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1681 item_offset = (unsigned long)iref - (unsigned long)ei; 1682 1683 type = extent_ref_type(parent, owner); 1684 size = btrfs_extent_inline_ref_size(type); 1685 1686 btrfs_extend_item(root, path, size); 1687 1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1689 refs = btrfs_extent_refs(leaf, ei); 1690 refs += refs_to_add; 1691 btrfs_set_extent_refs(leaf, ei, refs); 1692 if (extent_op) 1693 __run_delayed_extent_op(extent_op, leaf, ei); 1694 1695 ptr = (unsigned long)ei + item_offset; 1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1697 if (ptr < end - size) 1698 memmove_extent_buffer(leaf, ptr + size, ptr, 1699 end - size - ptr); 1700 1701 iref = (struct btrfs_extent_inline_ref *)ptr; 1702 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1704 struct btrfs_extent_data_ref *dref; 1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1711 struct btrfs_shared_data_ref *sref; 1712 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1717 } else { 1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1719 } 1720 btrfs_mark_buffer_dirty(leaf); 1721 } 1722 1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref **ref_ret, 1727 u64 bytenr, u64 num_bytes, u64 parent, 1728 u64 root_objectid, u64 owner, u64 offset) 1729 { 1730 int ret; 1731 1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1733 bytenr, num_bytes, parent, 1734 root_objectid, owner, offset, 0); 1735 if (ret != -ENOENT) 1736 return ret; 1737 1738 btrfs_release_path(path); 1739 *ref_ret = NULL; 1740 1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1743 root_objectid); 1744 } else { 1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1746 root_objectid, owner, offset); 1747 } 1748 return ret; 1749 } 1750 1751 /* 1752 * helper to update/remove inline back ref 1753 */ 1754 static noinline_for_stack 1755 void update_inline_extent_backref(struct btrfs_root *root, 1756 struct btrfs_path *path, 1757 struct btrfs_extent_inline_ref *iref, 1758 int refs_to_mod, 1759 struct btrfs_delayed_extent_op *extent_op, 1760 int *last_ref) 1761 { 1762 struct extent_buffer *leaf; 1763 struct btrfs_extent_item *ei; 1764 struct btrfs_extent_data_ref *dref = NULL; 1765 struct btrfs_shared_data_ref *sref = NULL; 1766 unsigned long ptr; 1767 unsigned long end; 1768 u32 item_size; 1769 int size; 1770 int type; 1771 u64 refs; 1772 1773 leaf = path->nodes[0]; 1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1775 refs = btrfs_extent_refs(leaf, ei); 1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1777 refs += refs_to_mod; 1778 btrfs_set_extent_refs(leaf, ei, refs); 1779 if (extent_op) 1780 __run_delayed_extent_op(extent_op, leaf, ei); 1781 1782 type = btrfs_extent_inline_ref_type(leaf, iref); 1783 1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1786 refs = btrfs_extent_data_ref_count(leaf, dref); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1789 refs = btrfs_shared_data_ref_count(leaf, sref); 1790 } else { 1791 refs = 1; 1792 BUG_ON(refs_to_mod != -1); 1793 } 1794 1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1796 refs += refs_to_mod; 1797 1798 if (refs > 0) { 1799 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1800 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1801 else 1802 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1803 } else { 1804 *last_ref = 1; 1805 size = btrfs_extent_inline_ref_size(type); 1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1807 ptr = (unsigned long)iref; 1808 end = (unsigned long)ei + item_size; 1809 if (ptr + size < end) 1810 memmove_extent_buffer(leaf, ptr, ptr + size, 1811 end - ptr - size); 1812 item_size -= size; 1813 btrfs_truncate_item(root, path, item_size, 1); 1814 } 1815 btrfs_mark_buffer_dirty(leaf); 1816 } 1817 1818 static noinline_for_stack 1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1820 struct btrfs_root *root, 1821 struct btrfs_path *path, 1822 u64 bytenr, u64 num_bytes, u64 parent, 1823 u64 root_objectid, u64 owner, 1824 u64 offset, int refs_to_add, 1825 struct btrfs_delayed_extent_op *extent_op) 1826 { 1827 struct btrfs_extent_inline_ref *iref; 1828 int ret; 1829 1830 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1831 bytenr, num_bytes, parent, 1832 root_objectid, owner, offset, 1); 1833 if (ret == 0) { 1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1835 update_inline_extent_backref(root, path, iref, 1836 refs_to_add, extent_op, NULL); 1837 } else if (ret == -ENOENT) { 1838 setup_inline_extent_backref(root, path, iref, parent, 1839 root_objectid, owner, offset, 1840 refs_to_add, extent_op); 1841 ret = 0; 1842 } 1843 return ret; 1844 } 1845 1846 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1847 struct btrfs_root *root, 1848 struct btrfs_path *path, 1849 u64 bytenr, u64 parent, u64 root_objectid, 1850 u64 owner, u64 offset, int refs_to_add) 1851 { 1852 int ret; 1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1854 BUG_ON(refs_to_add != 1); 1855 ret = insert_tree_block_ref(trans, root, path, bytenr, 1856 parent, root_objectid); 1857 } else { 1858 ret = insert_extent_data_ref(trans, root, path, bytenr, 1859 parent, root_objectid, 1860 owner, offset, refs_to_add); 1861 } 1862 return ret; 1863 } 1864 1865 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1866 struct btrfs_root *root, 1867 struct btrfs_path *path, 1868 struct btrfs_extent_inline_ref *iref, 1869 int refs_to_drop, int is_data, int *last_ref) 1870 { 1871 int ret = 0; 1872 1873 BUG_ON(!is_data && refs_to_drop != 1); 1874 if (iref) { 1875 update_inline_extent_backref(root, path, iref, 1876 -refs_to_drop, NULL, last_ref); 1877 } else if (is_data) { 1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1879 last_ref); 1880 } else { 1881 *last_ref = 1; 1882 ret = btrfs_del_item(trans, root, path); 1883 } 1884 return ret; 1885 } 1886 1887 static int btrfs_issue_discard(struct block_device *bdev, 1888 u64 start, u64 len) 1889 { 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1891 } 1892 1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1894 u64 num_bytes, u64 *actual_bytes) 1895 { 1896 int ret; 1897 u64 discarded_bytes = 0; 1898 struct btrfs_bio *bbio = NULL; 1899 1900 1901 /* Tell the block device(s) that the sectors can be discarded */ 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1903 bytenr, &num_bytes, &bbio, 0); 1904 /* Error condition is -ENOMEM */ 1905 if (!ret) { 1906 struct btrfs_bio_stripe *stripe = bbio->stripes; 1907 int i; 1908 1909 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1911 if (!stripe->dev->can_discard) 1912 continue; 1913 1914 ret = btrfs_issue_discard(stripe->dev->bdev, 1915 stripe->physical, 1916 stripe->length); 1917 if (!ret) 1918 discarded_bytes += stripe->length; 1919 else if (ret != -EOPNOTSUPP) 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1921 1922 /* 1923 * Just in case we get back EOPNOTSUPP for some reason, 1924 * just ignore the return value so we don't screw up 1925 * people calling discard_extent. 1926 */ 1927 ret = 0; 1928 } 1929 btrfs_put_bbio(bbio); 1930 } 1931 1932 if (actual_bytes) 1933 *actual_bytes = discarded_bytes; 1934 1935 1936 if (ret == -EOPNOTSUPP) 1937 ret = 0; 1938 return ret; 1939 } 1940 1941 /* Can return -ENOMEM */ 1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 u64 bytenr, u64 num_bytes, u64 parent, 1945 u64 root_objectid, u64 owner, u64 offset, 1946 int no_quota) 1947 { 1948 int ret; 1949 struct btrfs_fs_info *fs_info = root->fs_info; 1950 1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1952 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1953 1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1956 num_bytes, 1957 parent, root_objectid, (int)owner, 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1959 } else { 1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1961 num_bytes, 1962 parent, root_objectid, owner, offset, 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1964 } 1965 return ret; 1966 } 1967 1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1969 struct btrfs_root *root, 1970 u64 bytenr, u64 num_bytes, 1971 u64 parent, u64 root_objectid, 1972 u64 owner, u64 offset, int refs_to_add, 1973 int no_quota, 1974 struct btrfs_delayed_extent_op *extent_op) 1975 { 1976 struct btrfs_fs_info *fs_info = root->fs_info; 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 struct btrfs_key key; 1981 u64 refs; 1982 int ret; 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota)) 2000 goto out; 2001 /* 2002 * Ok we were able to insert an inline extent and it appears to be a new 2003 * reference, deal with the qgroup accounting. 2004 */ 2005 if (!ret && !no_quota) { 2006 ASSERT(root->fs_info->quota_enabled); 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], 2010 struct btrfs_extent_item); 2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add) 2012 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2013 btrfs_release_path(path); 2014 2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2016 bytenr, num_bytes, type, 0); 2017 goto out; 2018 } 2019 2020 /* 2021 * Ok we had -EAGAIN which means we didn't have space to insert and 2022 * inline extent ref, so just update the reference count and add a 2023 * normal backref. 2024 */ 2025 leaf = path->nodes[0]; 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2028 refs = btrfs_extent_refs(leaf, item); 2029 if (refs) 2030 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2032 if (extent_op) 2033 __run_delayed_extent_op(extent_op, leaf, item); 2034 2035 btrfs_mark_buffer_dirty(leaf); 2036 btrfs_release_path(path); 2037 2038 if (!no_quota) { 2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2040 bytenr, num_bytes, type, 0); 2041 if (ret) 2042 goto out; 2043 } 2044 2045 path->reada = 1; 2046 path->leave_spinning = 1; 2047 /* now insert the actual backref */ 2048 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2049 path, bytenr, parent, root_objectid, 2050 owner, offset, refs_to_add); 2051 if (ret) 2052 btrfs_abort_transaction(trans, root, ret); 2053 out: 2054 btrfs_free_path(path); 2055 return ret; 2056 } 2057 2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2059 struct btrfs_root *root, 2060 struct btrfs_delayed_ref_node *node, 2061 struct btrfs_delayed_extent_op *extent_op, 2062 int insert_reserved) 2063 { 2064 int ret = 0; 2065 struct btrfs_delayed_data_ref *ref; 2066 struct btrfs_key ins; 2067 u64 parent = 0; 2068 u64 ref_root = 0; 2069 u64 flags = 0; 2070 2071 ins.objectid = node->bytenr; 2072 ins.offset = node->num_bytes; 2073 ins.type = BTRFS_EXTENT_ITEM_KEY; 2074 2075 ref = btrfs_delayed_node_to_data_ref(node); 2076 trace_run_delayed_data_ref(node, ref, node->action); 2077 2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2079 parent = ref->parent; 2080 ref_root = ref->root; 2081 2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2083 if (extent_op) 2084 flags |= extent_op->flags_to_set; 2085 ret = alloc_reserved_file_extent(trans, root, 2086 parent, ref_root, flags, 2087 ref->objectid, ref->offset, 2088 &ins, node->ref_mod); 2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2091 node->num_bytes, parent, 2092 ref_root, ref->objectid, 2093 ref->offset, node->ref_mod, 2094 node->no_quota, extent_op); 2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2096 ret = __btrfs_free_extent(trans, root, node->bytenr, 2097 node->num_bytes, parent, 2098 ref_root, ref->objectid, 2099 ref->offset, node->ref_mod, 2100 extent_op, node->no_quota); 2101 } else { 2102 BUG(); 2103 } 2104 return ret; 2105 } 2106 2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2108 struct extent_buffer *leaf, 2109 struct btrfs_extent_item *ei) 2110 { 2111 u64 flags = btrfs_extent_flags(leaf, ei); 2112 if (extent_op->update_flags) { 2113 flags |= extent_op->flags_to_set; 2114 btrfs_set_extent_flags(leaf, ei, flags); 2115 } 2116 2117 if (extent_op->update_key) { 2118 struct btrfs_tree_block_info *bi; 2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2120 bi = (struct btrfs_tree_block_info *)(ei + 1); 2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2122 } 2123 } 2124 2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root, 2127 struct btrfs_delayed_ref_node *node, 2128 struct btrfs_delayed_extent_op *extent_op) 2129 { 2130 struct btrfs_key key; 2131 struct btrfs_path *path; 2132 struct btrfs_extent_item *ei; 2133 struct extent_buffer *leaf; 2134 u32 item_size; 2135 int ret; 2136 int err = 0; 2137 int metadata = !extent_op->is_data; 2138 2139 if (trans->aborted) 2140 return 0; 2141 2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2143 metadata = 0; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 2149 key.objectid = node->bytenr; 2150 2151 if (metadata) { 2152 key.type = BTRFS_METADATA_ITEM_KEY; 2153 key.offset = extent_op->level; 2154 } else { 2155 key.type = BTRFS_EXTENT_ITEM_KEY; 2156 key.offset = node->num_bytes; 2157 } 2158 2159 again: 2160 path->reada = 1; 2161 path->leave_spinning = 1; 2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2163 path, 0, 1); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 if (ret > 0) { 2169 if (metadata) { 2170 if (path->slots[0] > 0) { 2171 path->slots[0]--; 2172 btrfs_item_key_to_cpu(path->nodes[0], &key, 2173 path->slots[0]); 2174 if (key.objectid == node->bytenr && 2175 key.type == BTRFS_EXTENT_ITEM_KEY && 2176 key.offset == node->num_bytes) 2177 ret = 0; 2178 } 2179 if (ret > 0) { 2180 btrfs_release_path(path); 2181 metadata = 0; 2182 2183 key.objectid = node->bytenr; 2184 key.offset = node->num_bytes; 2185 key.type = BTRFS_EXTENT_ITEM_KEY; 2186 goto again; 2187 } 2188 } else { 2189 err = -EIO; 2190 goto out; 2191 } 2192 } 2193 2194 leaf = path->nodes[0]; 2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2197 if (item_size < sizeof(*ei)) { 2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2199 path, (u64)-1, 0); 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 leaf = path->nodes[0]; 2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2206 } 2207 #endif 2208 BUG_ON(item_size < sizeof(*ei)); 2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2210 __run_delayed_extent_op(extent_op, leaf, ei); 2211 2212 btrfs_mark_buffer_dirty(leaf); 2213 out: 2214 btrfs_free_path(path); 2215 return err; 2216 } 2217 2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2219 struct btrfs_root *root, 2220 struct btrfs_delayed_ref_node *node, 2221 struct btrfs_delayed_extent_op *extent_op, 2222 int insert_reserved) 2223 { 2224 int ret = 0; 2225 struct btrfs_delayed_tree_ref *ref; 2226 struct btrfs_key ins; 2227 u64 parent = 0; 2228 u64 ref_root = 0; 2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2230 SKINNY_METADATA); 2231 2232 ref = btrfs_delayed_node_to_tree_ref(node); 2233 trace_run_delayed_tree_ref(node, ref, node->action); 2234 2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2236 parent = ref->parent; 2237 ref_root = ref->root; 2238 2239 ins.objectid = node->bytenr; 2240 if (skinny_metadata) { 2241 ins.offset = ref->level; 2242 ins.type = BTRFS_METADATA_ITEM_KEY; 2243 } else { 2244 ins.offset = node->num_bytes; 2245 ins.type = BTRFS_EXTENT_ITEM_KEY; 2246 } 2247 2248 BUG_ON(node->ref_mod != 1); 2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2250 BUG_ON(!extent_op || !extent_op->update_flags); 2251 ret = alloc_reserved_tree_block(trans, root, 2252 parent, ref_root, 2253 extent_op->flags_to_set, 2254 &extent_op->key, 2255 ref->level, &ins, 2256 node->no_quota); 2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2259 node->num_bytes, parent, ref_root, 2260 ref->level, 0, 1, node->no_quota, 2261 extent_op); 2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2263 ret = __btrfs_free_extent(trans, root, node->bytenr, 2264 node->num_bytes, parent, ref_root, 2265 ref->level, 0, 1, extent_op, 2266 node->no_quota); 2267 } else { 2268 BUG(); 2269 } 2270 return ret; 2271 } 2272 2273 /* helper function to actually process a single delayed ref entry */ 2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2275 struct btrfs_root *root, 2276 struct btrfs_delayed_ref_node *node, 2277 struct btrfs_delayed_extent_op *extent_op, 2278 int insert_reserved) 2279 { 2280 int ret = 0; 2281 2282 if (trans->aborted) { 2283 if (insert_reserved) 2284 btrfs_pin_extent(root, node->bytenr, 2285 node->num_bytes, 1); 2286 return 0; 2287 } 2288 2289 if (btrfs_delayed_ref_is_head(node)) { 2290 struct btrfs_delayed_ref_head *head; 2291 /* 2292 * we've hit the end of the chain and we were supposed 2293 * to insert this extent into the tree. But, it got 2294 * deleted before we ever needed to insert it, so all 2295 * we have to do is clean up the accounting 2296 */ 2297 BUG_ON(extent_op); 2298 head = btrfs_delayed_node_to_head(node); 2299 trace_run_delayed_ref_head(node, head, node->action); 2300 2301 if (insert_reserved) { 2302 btrfs_pin_extent(root, node->bytenr, 2303 node->num_bytes, 1); 2304 if (head->is_data) { 2305 ret = btrfs_del_csums(trans, root, 2306 node->bytenr, 2307 node->num_bytes); 2308 } 2309 } 2310 return ret; 2311 } 2312 2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2315 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2316 insert_reserved); 2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2318 node->type == BTRFS_SHARED_DATA_REF_KEY) 2319 ret = run_delayed_data_ref(trans, root, node, extent_op, 2320 insert_reserved); 2321 else 2322 BUG(); 2323 return ret; 2324 } 2325 2326 static noinline struct btrfs_delayed_ref_node * 2327 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2328 { 2329 struct rb_node *node; 2330 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2331 2332 /* 2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2334 * this prevents ref count from going down to zero when 2335 * there still are pending delayed ref. 2336 */ 2337 node = rb_first(&head->ref_root); 2338 while (node) { 2339 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2340 rb_node); 2341 if (ref->action == BTRFS_ADD_DELAYED_REF) 2342 return ref; 2343 else if (last == NULL) 2344 last = ref; 2345 node = rb_next(node); 2346 } 2347 return last; 2348 } 2349 2350 /* 2351 * Returns 0 on success or if called with an already aborted transaction. 2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2353 */ 2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2355 struct btrfs_root *root, 2356 unsigned long nr) 2357 { 2358 struct btrfs_delayed_ref_root *delayed_refs; 2359 struct btrfs_delayed_ref_node *ref; 2360 struct btrfs_delayed_ref_head *locked_ref = NULL; 2361 struct btrfs_delayed_extent_op *extent_op; 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 ktime_t start = ktime_get(); 2364 int ret; 2365 unsigned long count = 0; 2366 unsigned long actual_count = 0; 2367 int must_insert_reserved = 0; 2368 2369 delayed_refs = &trans->transaction->delayed_refs; 2370 while (1) { 2371 if (!locked_ref) { 2372 if (count >= nr) 2373 break; 2374 2375 spin_lock(&delayed_refs->lock); 2376 locked_ref = btrfs_select_ref_head(trans); 2377 if (!locked_ref) { 2378 spin_unlock(&delayed_refs->lock); 2379 break; 2380 } 2381 2382 /* grab the lock that says we are going to process 2383 * all the refs for this head */ 2384 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2385 spin_unlock(&delayed_refs->lock); 2386 /* 2387 * we may have dropped the spin lock to get the head 2388 * mutex lock, and that might have given someone else 2389 * time to free the head. If that's true, it has been 2390 * removed from our list and we can move on. 2391 */ 2392 if (ret == -EAGAIN) { 2393 locked_ref = NULL; 2394 count++; 2395 continue; 2396 } 2397 } 2398 2399 /* 2400 * We need to try and merge add/drops of the same ref since we 2401 * can run into issues with relocate dropping the implicit ref 2402 * and then it being added back again before the drop can 2403 * finish. If we merged anything we need to re-loop so we can 2404 * get a good ref. 2405 */ 2406 spin_lock(&locked_ref->lock); 2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2408 locked_ref); 2409 2410 /* 2411 * locked_ref is the head node, so we have to go one 2412 * node back for any delayed ref updates 2413 */ 2414 ref = select_delayed_ref(locked_ref); 2415 2416 if (ref && ref->seq && 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2418 spin_unlock(&locked_ref->lock); 2419 btrfs_delayed_ref_unlock(locked_ref); 2420 spin_lock(&delayed_refs->lock); 2421 locked_ref->processing = 0; 2422 delayed_refs->num_heads_ready++; 2423 spin_unlock(&delayed_refs->lock); 2424 locked_ref = NULL; 2425 cond_resched(); 2426 count++; 2427 continue; 2428 } 2429 2430 /* 2431 * record the must insert reserved flag before we 2432 * drop the spin lock. 2433 */ 2434 must_insert_reserved = locked_ref->must_insert_reserved; 2435 locked_ref->must_insert_reserved = 0; 2436 2437 extent_op = locked_ref->extent_op; 2438 locked_ref->extent_op = NULL; 2439 2440 if (!ref) { 2441 2442 2443 /* All delayed refs have been processed, Go ahead 2444 * and send the head node to run_one_delayed_ref, 2445 * so that any accounting fixes can happen 2446 */ 2447 ref = &locked_ref->node; 2448 2449 if (extent_op && must_insert_reserved) { 2450 btrfs_free_delayed_extent_op(extent_op); 2451 extent_op = NULL; 2452 } 2453 2454 if (extent_op) { 2455 spin_unlock(&locked_ref->lock); 2456 ret = run_delayed_extent_op(trans, root, 2457 ref, extent_op); 2458 btrfs_free_delayed_extent_op(extent_op); 2459 2460 if (ret) { 2461 /* 2462 * Need to reset must_insert_reserved if 2463 * there was an error so the abort stuff 2464 * can cleanup the reserved space 2465 * properly. 2466 */ 2467 if (must_insert_reserved) 2468 locked_ref->must_insert_reserved = 1; 2469 locked_ref->processing = 0; 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2471 btrfs_delayed_ref_unlock(locked_ref); 2472 return ret; 2473 } 2474 continue; 2475 } 2476 2477 /* 2478 * Need to drop our head ref lock and re-aqcuire the 2479 * delayed ref lock and then re-check to make sure 2480 * nobody got added. 2481 */ 2482 spin_unlock(&locked_ref->lock); 2483 spin_lock(&delayed_refs->lock); 2484 spin_lock(&locked_ref->lock); 2485 if (rb_first(&locked_ref->ref_root) || 2486 locked_ref->extent_op) { 2487 spin_unlock(&locked_ref->lock); 2488 spin_unlock(&delayed_refs->lock); 2489 continue; 2490 } 2491 ref->in_tree = 0; 2492 delayed_refs->num_heads--; 2493 rb_erase(&locked_ref->href_node, 2494 &delayed_refs->href_root); 2495 spin_unlock(&delayed_refs->lock); 2496 } else { 2497 actual_count++; 2498 ref->in_tree = 0; 2499 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2500 } 2501 atomic_dec(&delayed_refs->num_entries); 2502 2503 if (!btrfs_delayed_ref_is_head(ref)) { 2504 /* 2505 * when we play the delayed ref, also correct the 2506 * ref_mod on head 2507 */ 2508 switch (ref->action) { 2509 case BTRFS_ADD_DELAYED_REF: 2510 case BTRFS_ADD_DELAYED_EXTENT: 2511 locked_ref->node.ref_mod -= ref->ref_mod; 2512 break; 2513 case BTRFS_DROP_DELAYED_REF: 2514 locked_ref->node.ref_mod += ref->ref_mod; 2515 break; 2516 default: 2517 WARN_ON(1); 2518 } 2519 } 2520 spin_unlock(&locked_ref->lock); 2521 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2523 must_insert_reserved); 2524 2525 btrfs_free_delayed_extent_op(extent_op); 2526 if (ret) { 2527 locked_ref->processing = 0; 2528 btrfs_delayed_ref_unlock(locked_ref); 2529 btrfs_put_delayed_ref(ref); 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2531 return ret; 2532 } 2533 2534 /* 2535 * If this node is a head, that means all the refs in this head 2536 * have been dealt with, and we will pick the next head to deal 2537 * with, so we must unlock the head and drop it from the cluster 2538 * list before we release it. 2539 */ 2540 if (btrfs_delayed_ref_is_head(ref)) { 2541 if (locked_ref->is_data && 2542 locked_ref->total_ref_mod < 0) { 2543 spin_lock(&delayed_refs->lock); 2544 delayed_refs->pending_csums -= ref->num_bytes; 2545 spin_unlock(&delayed_refs->lock); 2546 } 2547 btrfs_delayed_ref_unlock(locked_ref); 2548 locked_ref = NULL; 2549 } 2550 btrfs_put_delayed_ref(ref); 2551 count++; 2552 cond_resched(); 2553 } 2554 2555 /* 2556 * We don't want to include ref heads since we can have empty ref heads 2557 * and those will drastically skew our runtime down since we just do 2558 * accounting, no actual extent tree updates. 2559 */ 2560 if (actual_count > 0) { 2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2562 u64 avg; 2563 2564 /* 2565 * We weigh the current average higher than our current runtime 2566 * to avoid large swings in the average. 2567 */ 2568 spin_lock(&delayed_refs->lock); 2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2571 spin_unlock(&delayed_refs->lock); 2572 } 2573 return 0; 2574 } 2575 2576 #ifdef SCRAMBLE_DELAYED_REFS 2577 /* 2578 * Normally delayed refs get processed in ascending bytenr order. This 2579 * correlates in most cases to the order added. To expose dependencies on this 2580 * order, we start to process the tree in the middle instead of the beginning 2581 */ 2582 static u64 find_middle(struct rb_root *root) 2583 { 2584 struct rb_node *n = root->rb_node; 2585 struct btrfs_delayed_ref_node *entry; 2586 int alt = 1; 2587 u64 middle; 2588 u64 first = 0, last = 0; 2589 2590 n = rb_first(root); 2591 if (n) { 2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2593 first = entry->bytenr; 2594 } 2595 n = rb_last(root); 2596 if (n) { 2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2598 last = entry->bytenr; 2599 } 2600 n = root->rb_node; 2601 2602 while (n) { 2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2604 WARN_ON(!entry->in_tree); 2605 2606 middle = entry->bytenr; 2607 2608 if (alt) 2609 n = n->rb_left; 2610 else 2611 n = n->rb_right; 2612 2613 alt = 1 - alt; 2614 } 2615 return middle; 2616 } 2617 #endif 2618 2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2620 { 2621 u64 num_bytes; 2622 2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2624 sizeof(struct btrfs_extent_inline_ref)); 2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2627 2628 /* 2629 * We don't ever fill up leaves all the way so multiply by 2 just to be 2630 * closer to what we're really going to want to ouse. 2631 */ 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2633 } 2634 2635 /* 2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2637 * would require to store the csums for that many bytes. 2638 */ 2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2640 { 2641 u64 csum_size; 2642 u64 num_csums_per_leaf; 2643 u64 num_csums; 2644 2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2646 num_csums_per_leaf = div64_u64(csum_size, 2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2648 num_csums = div64_u64(csum_bytes, root->sectorsize); 2649 num_csums += num_csums_per_leaf - 1; 2650 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2651 return num_csums; 2652 } 2653 2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2655 struct btrfs_root *root) 2656 { 2657 struct btrfs_block_rsv *global_rsv; 2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2661 u64 num_bytes, num_dirty_bgs_bytes; 2662 int ret = 0; 2663 2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2665 num_heads = heads_to_leaves(root, num_heads); 2666 if (num_heads > 1) 2667 num_bytes += (num_heads - 1) * root->nodesize; 2668 num_bytes <<= 1; 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2671 num_dirty_bgs); 2672 global_rsv = &root->fs_info->global_block_rsv; 2673 2674 /* 2675 * If we can't allocate any more chunks lets make sure we have _lots_ of 2676 * wiggle room since running delayed refs can create more delayed refs. 2677 */ 2678 if (global_rsv->space_info->full) { 2679 num_dirty_bgs_bytes <<= 1; 2680 num_bytes <<= 1; 2681 } 2682 2683 spin_lock(&global_rsv->lock); 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2685 ret = 1; 2686 spin_unlock(&global_rsv->lock); 2687 return ret; 2688 } 2689 2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2691 struct btrfs_root *root) 2692 { 2693 struct btrfs_fs_info *fs_info = root->fs_info; 2694 u64 num_entries = 2695 atomic_read(&trans->transaction->delayed_refs.num_entries); 2696 u64 avg_runtime; 2697 u64 val; 2698 2699 smp_mb(); 2700 avg_runtime = fs_info->avg_delayed_ref_runtime; 2701 val = num_entries * avg_runtime; 2702 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2703 return 1; 2704 if (val >= NSEC_PER_SEC / 2) 2705 return 2; 2706 2707 return btrfs_check_space_for_delayed_refs(trans, root); 2708 } 2709 2710 struct async_delayed_refs { 2711 struct btrfs_root *root; 2712 int count; 2713 int error; 2714 int sync; 2715 struct completion wait; 2716 struct btrfs_work work; 2717 }; 2718 2719 static void delayed_ref_async_start(struct btrfs_work *work) 2720 { 2721 struct async_delayed_refs *async; 2722 struct btrfs_trans_handle *trans; 2723 int ret; 2724 2725 async = container_of(work, struct async_delayed_refs, work); 2726 2727 trans = btrfs_join_transaction(async->root); 2728 if (IS_ERR(trans)) { 2729 async->error = PTR_ERR(trans); 2730 goto done; 2731 } 2732 2733 /* 2734 * trans->sync means that when we call end_transaciton, we won't 2735 * wait on delayed refs 2736 */ 2737 trans->sync = true; 2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2739 if (ret) 2740 async->error = ret; 2741 2742 ret = btrfs_end_transaction(trans, async->root); 2743 if (ret && !async->error) 2744 async->error = ret; 2745 done: 2746 if (async->sync) 2747 complete(&async->wait); 2748 else 2749 kfree(async); 2750 } 2751 2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2753 unsigned long count, int wait) 2754 { 2755 struct async_delayed_refs *async; 2756 int ret; 2757 2758 async = kmalloc(sizeof(*async), GFP_NOFS); 2759 if (!async) 2760 return -ENOMEM; 2761 2762 async->root = root->fs_info->tree_root; 2763 async->count = count; 2764 async->error = 0; 2765 if (wait) 2766 async->sync = 1; 2767 else 2768 async->sync = 0; 2769 init_completion(&async->wait); 2770 2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2772 delayed_ref_async_start, NULL, NULL); 2773 2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2775 2776 if (wait) { 2777 wait_for_completion(&async->wait); 2778 ret = async->error; 2779 kfree(async); 2780 return ret; 2781 } 2782 return 0; 2783 } 2784 2785 /* 2786 * this starts processing the delayed reference count updates and 2787 * extent insertions we have queued up so far. count can be 2788 * 0, which means to process everything in the tree at the start 2789 * of the run (but not newly added entries), or it can be some target 2790 * number you'd like to process. 2791 * 2792 * Returns 0 on success or if called with an aborted transaction 2793 * Returns <0 on error and aborts the transaction 2794 */ 2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2796 struct btrfs_root *root, unsigned long count) 2797 { 2798 struct rb_node *node; 2799 struct btrfs_delayed_ref_root *delayed_refs; 2800 struct btrfs_delayed_ref_head *head; 2801 int ret; 2802 int run_all = count == (unsigned long)-1; 2803 2804 /* We'll clean this up in btrfs_cleanup_transaction */ 2805 if (trans->aborted) 2806 return 0; 2807 2808 if (root == root->fs_info->extent_root) 2809 root = root->fs_info->tree_root; 2810 2811 delayed_refs = &trans->transaction->delayed_refs; 2812 if (count == 0) 2813 count = atomic_read(&delayed_refs->num_entries) * 2; 2814 2815 again: 2816 #ifdef SCRAMBLE_DELAYED_REFS 2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2818 #endif 2819 ret = __btrfs_run_delayed_refs(trans, root, count); 2820 if (ret < 0) { 2821 btrfs_abort_transaction(trans, root, ret); 2822 return ret; 2823 } 2824 2825 if (run_all) { 2826 if (!list_empty(&trans->new_bgs)) 2827 btrfs_create_pending_block_groups(trans, root); 2828 2829 spin_lock(&delayed_refs->lock); 2830 node = rb_first(&delayed_refs->href_root); 2831 if (!node) { 2832 spin_unlock(&delayed_refs->lock); 2833 goto out; 2834 } 2835 count = (unsigned long)-1; 2836 2837 while (node) { 2838 head = rb_entry(node, struct btrfs_delayed_ref_head, 2839 href_node); 2840 if (btrfs_delayed_ref_is_head(&head->node)) { 2841 struct btrfs_delayed_ref_node *ref; 2842 2843 ref = &head->node; 2844 atomic_inc(&ref->refs); 2845 2846 spin_unlock(&delayed_refs->lock); 2847 /* 2848 * Mutex was contended, block until it's 2849 * released and try again 2850 */ 2851 mutex_lock(&head->mutex); 2852 mutex_unlock(&head->mutex); 2853 2854 btrfs_put_delayed_ref(ref); 2855 cond_resched(); 2856 goto again; 2857 } else { 2858 WARN_ON(1); 2859 } 2860 node = rb_next(node); 2861 } 2862 spin_unlock(&delayed_refs->lock); 2863 cond_resched(); 2864 goto again; 2865 } 2866 out: 2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info); 2868 if (ret) 2869 return ret; 2870 assert_qgroups_uptodate(trans); 2871 return 0; 2872 } 2873 2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2875 struct btrfs_root *root, 2876 u64 bytenr, u64 num_bytes, u64 flags, 2877 int level, int is_data) 2878 { 2879 struct btrfs_delayed_extent_op *extent_op; 2880 int ret; 2881 2882 extent_op = btrfs_alloc_delayed_extent_op(); 2883 if (!extent_op) 2884 return -ENOMEM; 2885 2886 extent_op->flags_to_set = flags; 2887 extent_op->update_flags = 1; 2888 extent_op->update_key = 0; 2889 extent_op->is_data = is_data ? 1 : 0; 2890 extent_op->level = level; 2891 2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2893 num_bytes, extent_op); 2894 if (ret) 2895 btrfs_free_delayed_extent_op(extent_op); 2896 return ret; 2897 } 2898 2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 struct btrfs_path *path, 2902 u64 objectid, u64 offset, u64 bytenr) 2903 { 2904 struct btrfs_delayed_ref_head *head; 2905 struct btrfs_delayed_ref_node *ref; 2906 struct btrfs_delayed_data_ref *data_ref; 2907 struct btrfs_delayed_ref_root *delayed_refs; 2908 struct rb_node *node; 2909 int ret = 0; 2910 2911 delayed_refs = &trans->transaction->delayed_refs; 2912 spin_lock(&delayed_refs->lock); 2913 head = btrfs_find_delayed_ref_head(trans, bytenr); 2914 if (!head) { 2915 spin_unlock(&delayed_refs->lock); 2916 return 0; 2917 } 2918 2919 if (!mutex_trylock(&head->mutex)) { 2920 atomic_inc(&head->node.refs); 2921 spin_unlock(&delayed_refs->lock); 2922 2923 btrfs_release_path(path); 2924 2925 /* 2926 * Mutex was contended, block until it's released and let 2927 * caller try again 2928 */ 2929 mutex_lock(&head->mutex); 2930 mutex_unlock(&head->mutex); 2931 btrfs_put_delayed_ref(&head->node); 2932 return -EAGAIN; 2933 } 2934 spin_unlock(&delayed_refs->lock); 2935 2936 spin_lock(&head->lock); 2937 node = rb_first(&head->ref_root); 2938 while (node) { 2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2940 node = rb_next(node); 2941 2942 /* If it's a shared ref we know a cross reference exists */ 2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2944 ret = 1; 2945 break; 2946 } 2947 2948 data_ref = btrfs_delayed_node_to_data_ref(ref); 2949 2950 /* 2951 * If our ref doesn't match the one we're currently looking at 2952 * then we have a cross reference. 2953 */ 2954 if (data_ref->root != root->root_key.objectid || 2955 data_ref->objectid != objectid || 2956 data_ref->offset != offset) { 2957 ret = 1; 2958 break; 2959 } 2960 } 2961 spin_unlock(&head->lock); 2962 mutex_unlock(&head->mutex); 2963 return ret; 2964 } 2965 2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, 2968 struct btrfs_path *path, 2969 u64 objectid, u64 offset, u64 bytenr) 2970 { 2971 struct btrfs_root *extent_root = root->fs_info->extent_root; 2972 struct extent_buffer *leaf; 2973 struct btrfs_extent_data_ref *ref; 2974 struct btrfs_extent_inline_ref *iref; 2975 struct btrfs_extent_item *ei; 2976 struct btrfs_key key; 2977 u32 item_size; 2978 int ret; 2979 2980 key.objectid = bytenr; 2981 key.offset = (u64)-1; 2982 key.type = BTRFS_EXTENT_ITEM_KEY; 2983 2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2985 if (ret < 0) 2986 goto out; 2987 BUG_ON(ret == 0); /* Corruption */ 2988 2989 ret = -ENOENT; 2990 if (path->slots[0] == 0) 2991 goto out; 2992 2993 path->slots[0]--; 2994 leaf = path->nodes[0]; 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2996 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2998 goto out; 2999 3000 ret = 1; 3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3003 if (item_size < sizeof(*ei)) { 3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3005 goto out; 3006 } 3007 #endif 3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3009 3010 if (item_size != sizeof(*ei) + 3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3012 goto out; 3013 3014 if (btrfs_extent_generation(leaf, ei) <= 3015 btrfs_root_last_snapshot(&root->root_item)) 3016 goto out; 3017 3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3019 if (btrfs_extent_inline_ref_type(leaf, iref) != 3020 BTRFS_EXTENT_DATA_REF_KEY) 3021 goto out; 3022 3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3024 if (btrfs_extent_refs(leaf, ei) != 3025 btrfs_extent_data_ref_count(leaf, ref) || 3026 btrfs_extent_data_ref_root(leaf, ref) != 3027 root->root_key.objectid || 3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3029 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3030 goto out; 3031 3032 ret = 0; 3033 out: 3034 return ret; 3035 } 3036 3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3038 struct btrfs_root *root, 3039 u64 objectid, u64 offset, u64 bytenr) 3040 { 3041 struct btrfs_path *path; 3042 int ret; 3043 int ret2; 3044 3045 path = btrfs_alloc_path(); 3046 if (!path) 3047 return -ENOENT; 3048 3049 do { 3050 ret = check_committed_ref(trans, root, path, objectid, 3051 offset, bytenr); 3052 if (ret && ret != -ENOENT) 3053 goto out; 3054 3055 ret2 = check_delayed_ref(trans, root, path, objectid, 3056 offset, bytenr); 3057 } while (ret2 == -EAGAIN); 3058 3059 if (ret2 && ret2 != -ENOENT) { 3060 ret = ret2; 3061 goto out; 3062 } 3063 3064 if (ret != -ENOENT || ret2 != -ENOENT) 3065 ret = 0; 3066 out: 3067 btrfs_free_path(path); 3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3069 WARN_ON(ret > 0); 3070 return ret; 3071 } 3072 3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3074 struct btrfs_root *root, 3075 struct extent_buffer *buf, 3076 int full_backref, int inc) 3077 { 3078 u64 bytenr; 3079 u64 num_bytes; 3080 u64 parent; 3081 u64 ref_root; 3082 u32 nritems; 3083 struct btrfs_key key; 3084 struct btrfs_file_extent_item *fi; 3085 int i; 3086 int level; 3087 int ret = 0; 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3089 u64, u64, u64, u64, u64, u64, int); 3090 3091 3092 if (btrfs_test_is_dummy_root(root)) 3093 return 0; 3094 3095 ref_root = btrfs_header_owner(buf); 3096 nritems = btrfs_header_nritems(buf); 3097 level = btrfs_header_level(buf); 3098 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3100 return 0; 3101 3102 if (inc) 3103 process_func = btrfs_inc_extent_ref; 3104 else 3105 process_func = btrfs_free_extent; 3106 3107 if (full_backref) 3108 parent = buf->start; 3109 else 3110 parent = 0; 3111 3112 for (i = 0; i < nritems; i++) { 3113 if (level == 0) { 3114 btrfs_item_key_to_cpu(buf, &key, i); 3115 if (key.type != BTRFS_EXTENT_DATA_KEY) 3116 continue; 3117 fi = btrfs_item_ptr(buf, i, 3118 struct btrfs_file_extent_item); 3119 if (btrfs_file_extent_type(buf, fi) == 3120 BTRFS_FILE_EXTENT_INLINE) 3121 continue; 3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3123 if (bytenr == 0) 3124 continue; 3125 3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3127 key.offset -= btrfs_file_extent_offset(buf, fi); 3128 ret = process_func(trans, root, bytenr, num_bytes, 3129 parent, ref_root, key.objectid, 3130 key.offset, 1); 3131 if (ret) 3132 goto fail; 3133 } else { 3134 bytenr = btrfs_node_blockptr(buf, i); 3135 num_bytes = root->nodesize; 3136 ret = process_func(trans, root, bytenr, num_bytes, 3137 parent, ref_root, level - 1, 0, 3138 1); 3139 if (ret) 3140 goto fail; 3141 } 3142 } 3143 return 0; 3144 fail: 3145 return ret; 3146 } 3147 3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3149 struct extent_buffer *buf, int full_backref) 3150 { 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3152 } 3153 3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3155 struct extent_buffer *buf, int full_backref) 3156 { 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3158 } 3159 3160 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3161 struct btrfs_root *root, 3162 struct btrfs_path *path, 3163 struct btrfs_block_group_cache *cache) 3164 { 3165 int ret; 3166 struct btrfs_root *extent_root = root->fs_info->extent_root; 3167 unsigned long bi; 3168 struct extent_buffer *leaf; 3169 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3171 if (ret) { 3172 if (ret > 0) 3173 ret = -ENOENT; 3174 goto fail; 3175 } 3176 3177 leaf = path->nodes[0]; 3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3180 btrfs_mark_buffer_dirty(leaf); 3181 fail: 3182 btrfs_release_path(path); 3183 return ret; 3184 3185 } 3186 3187 static struct btrfs_block_group_cache * 3188 next_block_group(struct btrfs_root *root, 3189 struct btrfs_block_group_cache *cache) 3190 { 3191 struct rb_node *node; 3192 3193 spin_lock(&root->fs_info->block_group_cache_lock); 3194 3195 /* If our block group was removed, we need a full search. */ 3196 if (RB_EMPTY_NODE(&cache->cache_node)) { 3197 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3198 3199 spin_unlock(&root->fs_info->block_group_cache_lock); 3200 btrfs_put_block_group(cache); 3201 cache = btrfs_lookup_first_block_group(root->fs_info, 3202 next_bytenr); 3203 return cache; 3204 } 3205 node = rb_next(&cache->cache_node); 3206 btrfs_put_block_group(cache); 3207 if (node) { 3208 cache = rb_entry(node, struct btrfs_block_group_cache, 3209 cache_node); 3210 btrfs_get_block_group(cache); 3211 } else 3212 cache = NULL; 3213 spin_unlock(&root->fs_info->block_group_cache_lock); 3214 return cache; 3215 } 3216 3217 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3218 struct btrfs_trans_handle *trans, 3219 struct btrfs_path *path) 3220 { 3221 struct btrfs_root *root = block_group->fs_info->tree_root; 3222 struct inode *inode = NULL; 3223 u64 alloc_hint = 0; 3224 int dcs = BTRFS_DC_ERROR; 3225 u64 num_pages = 0; 3226 int retries = 0; 3227 int ret = 0; 3228 3229 /* 3230 * If this block group is smaller than 100 megs don't bother caching the 3231 * block group. 3232 */ 3233 if (block_group->key.offset < (100 * 1024 * 1024)) { 3234 spin_lock(&block_group->lock); 3235 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3236 spin_unlock(&block_group->lock); 3237 return 0; 3238 } 3239 3240 if (trans->aborted) 3241 return 0; 3242 again: 3243 inode = lookup_free_space_inode(root, block_group, path); 3244 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3245 ret = PTR_ERR(inode); 3246 btrfs_release_path(path); 3247 goto out; 3248 } 3249 3250 if (IS_ERR(inode)) { 3251 BUG_ON(retries); 3252 retries++; 3253 3254 if (block_group->ro) 3255 goto out_free; 3256 3257 ret = create_free_space_inode(root, trans, block_group, path); 3258 if (ret) 3259 goto out_free; 3260 goto again; 3261 } 3262 3263 /* We've already setup this transaction, go ahead and exit */ 3264 if (block_group->cache_generation == trans->transid && 3265 i_size_read(inode)) { 3266 dcs = BTRFS_DC_SETUP; 3267 goto out_put; 3268 } 3269 3270 /* 3271 * We want to set the generation to 0, that way if anything goes wrong 3272 * from here on out we know not to trust this cache when we load up next 3273 * time. 3274 */ 3275 BTRFS_I(inode)->generation = 0; 3276 ret = btrfs_update_inode(trans, root, inode); 3277 if (ret) { 3278 /* 3279 * So theoretically we could recover from this, simply set the 3280 * super cache generation to 0 so we know to invalidate the 3281 * cache, but then we'd have to keep track of the block groups 3282 * that fail this way so we know we _have_ to reset this cache 3283 * before the next commit or risk reading stale cache. So to 3284 * limit our exposure to horrible edge cases lets just abort the 3285 * transaction, this only happens in really bad situations 3286 * anyway. 3287 */ 3288 btrfs_abort_transaction(trans, root, ret); 3289 goto out_put; 3290 } 3291 WARN_ON(ret); 3292 3293 if (i_size_read(inode) > 0) { 3294 ret = btrfs_check_trunc_cache_free_space(root, 3295 &root->fs_info->global_block_rsv); 3296 if (ret) 3297 goto out_put; 3298 3299 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3300 if (ret) 3301 goto out_put; 3302 } 3303 3304 spin_lock(&block_group->lock); 3305 if (block_group->cached != BTRFS_CACHE_FINISHED || 3306 !btrfs_test_opt(root, SPACE_CACHE)) { 3307 /* 3308 * don't bother trying to write stuff out _if_ 3309 * a) we're not cached, 3310 * b) we're with nospace_cache mount option. 3311 */ 3312 dcs = BTRFS_DC_WRITTEN; 3313 spin_unlock(&block_group->lock); 3314 goto out_put; 3315 } 3316 spin_unlock(&block_group->lock); 3317 3318 /* 3319 * Try to preallocate enough space based on how big the block group is. 3320 * Keep in mind this has to include any pinned space which could end up 3321 * taking up quite a bit since it's not folded into the other space 3322 * cache. 3323 */ 3324 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3325 if (!num_pages) 3326 num_pages = 1; 3327 3328 num_pages *= 16; 3329 num_pages *= PAGE_CACHE_SIZE; 3330 3331 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3332 if (ret) 3333 goto out_put; 3334 3335 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3336 num_pages, num_pages, 3337 &alloc_hint); 3338 if (!ret) 3339 dcs = BTRFS_DC_SETUP; 3340 btrfs_free_reserved_data_space(inode, num_pages); 3341 3342 out_put: 3343 iput(inode); 3344 out_free: 3345 btrfs_release_path(path); 3346 out: 3347 spin_lock(&block_group->lock); 3348 if (!ret && dcs == BTRFS_DC_SETUP) 3349 block_group->cache_generation = trans->transid; 3350 block_group->disk_cache_state = dcs; 3351 spin_unlock(&block_group->lock); 3352 3353 return ret; 3354 } 3355 3356 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3357 struct btrfs_root *root) 3358 { 3359 struct btrfs_block_group_cache *cache, *tmp; 3360 struct btrfs_transaction *cur_trans = trans->transaction; 3361 struct btrfs_path *path; 3362 3363 if (list_empty(&cur_trans->dirty_bgs) || 3364 !btrfs_test_opt(root, SPACE_CACHE)) 3365 return 0; 3366 3367 path = btrfs_alloc_path(); 3368 if (!path) 3369 return -ENOMEM; 3370 3371 /* Could add new block groups, use _safe just in case */ 3372 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3373 dirty_list) { 3374 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3375 cache_save_setup(cache, trans, path); 3376 } 3377 3378 btrfs_free_path(path); 3379 return 0; 3380 } 3381 3382 /* 3383 * transaction commit does final block group cache writeback during a 3384 * critical section where nothing is allowed to change the FS. This is 3385 * required in order for the cache to actually match the block group, 3386 * but can introduce a lot of latency into the commit. 3387 * 3388 * So, btrfs_start_dirty_block_groups is here to kick off block group 3389 * cache IO. There's a chance we'll have to redo some of it if the 3390 * block group changes again during the commit, but it greatly reduces 3391 * the commit latency by getting rid of the easy block groups while 3392 * we're still allowing others to join the commit. 3393 */ 3394 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3395 struct btrfs_root *root) 3396 { 3397 struct btrfs_block_group_cache *cache; 3398 struct btrfs_transaction *cur_trans = trans->transaction; 3399 int ret = 0; 3400 int should_put; 3401 struct btrfs_path *path = NULL; 3402 LIST_HEAD(dirty); 3403 struct list_head *io = &cur_trans->io_bgs; 3404 int num_started = 0; 3405 int loops = 0; 3406 3407 spin_lock(&cur_trans->dirty_bgs_lock); 3408 if (list_empty(&cur_trans->dirty_bgs)) { 3409 spin_unlock(&cur_trans->dirty_bgs_lock); 3410 return 0; 3411 } 3412 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3413 spin_unlock(&cur_trans->dirty_bgs_lock); 3414 3415 again: 3416 /* 3417 * make sure all the block groups on our dirty list actually 3418 * exist 3419 */ 3420 btrfs_create_pending_block_groups(trans, root); 3421 3422 if (!path) { 3423 path = btrfs_alloc_path(); 3424 if (!path) 3425 return -ENOMEM; 3426 } 3427 3428 /* 3429 * cache_write_mutex is here only to save us from balance or automatic 3430 * removal of empty block groups deleting this block group while we are 3431 * writing out the cache 3432 */ 3433 mutex_lock(&trans->transaction->cache_write_mutex); 3434 while (!list_empty(&dirty)) { 3435 cache = list_first_entry(&dirty, 3436 struct btrfs_block_group_cache, 3437 dirty_list); 3438 /* 3439 * this can happen if something re-dirties a block 3440 * group that is already under IO. Just wait for it to 3441 * finish and then do it all again 3442 */ 3443 if (!list_empty(&cache->io_list)) { 3444 list_del_init(&cache->io_list); 3445 btrfs_wait_cache_io(root, trans, cache, 3446 &cache->io_ctl, path, 3447 cache->key.objectid); 3448 btrfs_put_block_group(cache); 3449 } 3450 3451 3452 /* 3453 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3454 * if it should update the cache_state. Don't delete 3455 * until after we wait. 3456 * 3457 * Since we're not running in the commit critical section 3458 * we need the dirty_bgs_lock to protect from update_block_group 3459 */ 3460 spin_lock(&cur_trans->dirty_bgs_lock); 3461 list_del_init(&cache->dirty_list); 3462 spin_unlock(&cur_trans->dirty_bgs_lock); 3463 3464 should_put = 1; 3465 3466 cache_save_setup(cache, trans, path); 3467 3468 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3469 cache->io_ctl.inode = NULL; 3470 ret = btrfs_write_out_cache(root, trans, cache, path); 3471 if (ret == 0 && cache->io_ctl.inode) { 3472 num_started++; 3473 should_put = 0; 3474 3475 /* 3476 * the cache_write_mutex is protecting 3477 * the io_list 3478 */ 3479 list_add_tail(&cache->io_list, io); 3480 } else { 3481 /* 3482 * if we failed to write the cache, the 3483 * generation will be bad and life goes on 3484 */ 3485 ret = 0; 3486 } 3487 } 3488 if (!ret) { 3489 ret = write_one_cache_group(trans, root, path, cache); 3490 /* 3491 * Our block group might still be attached to the list 3492 * of new block groups in the transaction handle of some 3493 * other task (struct btrfs_trans_handle->new_bgs). This 3494 * means its block group item isn't yet in the extent 3495 * tree. If this happens ignore the error, as we will 3496 * try again later in the critical section of the 3497 * transaction commit. 3498 */ 3499 if (ret == -ENOENT) { 3500 ret = 0; 3501 spin_lock(&cur_trans->dirty_bgs_lock); 3502 if (list_empty(&cache->dirty_list)) { 3503 list_add_tail(&cache->dirty_list, 3504 &cur_trans->dirty_bgs); 3505 btrfs_get_block_group(cache); 3506 } 3507 spin_unlock(&cur_trans->dirty_bgs_lock); 3508 } else if (ret) { 3509 btrfs_abort_transaction(trans, root, ret); 3510 } 3511 } 3512 3513 /* if its not on the io list, we need to put the block group */ 3514 if (should_put) 3515 btrfs_put_block_group(cache); 3516 3517 if (ret) 3518 break; 3519 3520 /* 3521 * Avoid blocking other tasks for too long. It might even save 3522 * us from writing caches for block groups that are going to be 3523 * removed. 3524 */ 3525 mutex_unlock(&trans->transaction->cache_write_mutex); 3526 mutex_lock(&trans->transaction->cache_write_mutex); 3527 } 3528 mutex_unlock(&trans->transaction->cache_write_mutex); 3529 3530 /* 3531 * go through delayed refs for all the stuff we've just kicked off 3532 * and then loop back (just once) 3533 */ 3534 ret = btrfs_run_delayed_refs(trans, root, 0); 3535 if (!ret && loops == 0) { 3536 loops++; 3537 spin_lock(&cur_trans->dirty_bgs_lock); 3538 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3539 /* 3540 * dirty_bgs_lock protects us from concurrent block group 3541 * deletes too (not just cache_write_mutex). 3542 */ 3543 if (!list_empty(&dirty)) { 3544 spin_unlock(&cur_trans->dirty_bgs_lock); 3545 goto again; 3546 } 3547 spin_unlock(&cur_trans->dirty_bgs_lock); 3548 } 3549 3550 btrfs_free_path(path); 3551 return ret; 3552 } 3553 3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3555 struct btrfs_root *root) 3556 { 3557 struct btrfs_block_group_cache *cache; 3558 struct btrfs_transaction *cur_trans = trans->transaction; 3559 int ret = 0; 3560 int should_put; 3561 struct btrfs_path *path; 3562 struct list_head *io = &cur_trans->io_bgs; 3563 int num_started = 0; 3564 3565 path = btrfs_alloc_path(); 3566 if (!path) 3567 return -ENOMEM; 3568 3569 /* 3570 * We don't need the lock here since we are protected by the transaction 3571 * commit. We want to do the cache_save_setup first and then run the 3572 * delayed refs to make sure we have the best chance at doing this all 3573 * in one shot. 3574 */ 3575 while (!list_empty(&cur_trans->dirty_bgs)) { 3576 cache = list_first_entry(&cur_trans->dirty_bgs, 3577 struct btrfs_block_group_cache, 3578 dirty_list); 3579 3580 /* 3581 * this can happen if cache_save_setup re-dirties a block 3582 * group that is already under IO. Just wait for it to 3583 * finish and then do it all again 3584 */ 3585 if (!list_empty(&cache->io_list)) { 3586 list_del_init(&cache->io_list); 3587 btrfs_wait_cache_io(root, trans, cache, 3588 &cache->io_ctl, path, 3589 cache->key.objectid); 3590 btrfs_put_block_group(cache); 3591 } 3592 3593 /* 3594 * don't remove from the dirty list until after we've waited 3595 * on any pending IO 3596 */ 3597 list_del_init(&cache->dirty_list); 3598 should_put = 1; 3599 3600 cache_save_setup(cache, trans, path); 3601 3602 if (!ret) 3603 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3604 3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3606 cache->io_ctl.inode = NULL; 3607 ret = btrfs_write_out_cache(root, trans, cache, path); 3608 if (ret == 0 && cache->io_ctl.inode) { 3609 num_started++; 3610 should_put = 0; 3611 list_add_tail(&cache->io_list, io); 3612 } else { 3613 /* 3614 * if we failed to write the cache, the 3615 * generation will be bad and life goes on 3616 */ 3617 ret = 0; 3618 } 3619 } 3620 if (!ret) { 3621 ret = write_one_cache_group(trans, root, path, cache); 3622 if (ret) 3623 btrfs_abort_transaction(trans, root, ret); 3624 } 3625 3626 /* if its not on the io list, we need to put the block group */ 3627 if (should_put) 3628 btrfs_put_block_group(cache); 3629 } 3630 3631 while (!list_empty(io)) { 3632 cache = list_first_entry(io, struct btrfs_block_group_cache, 3633 io_list); 3634 list_del_init(&cache->io_list); 3635 btrfs_wait_cache_io(root, trans, cache, 3636 &cache->io_ctl, path, cache->key.objectid); 3637 btrfs_put_block_group(cache); 3638 } 3639 3640 btrfs_free_path(path); 3641 return ret; 3642 } 3643 3644 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3645 { 3646 struct btrfs_block_group_cache *block_group; 3647 int readonly = 0; 3648 3649 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3650 if (!block_group || block_group->ro) 3651 readonly = 1; 3652 if (block_group) 3653 btrfs_put_block_group(block_group); 3654 return readonly; 3655 } 3656 3657 static const char *alloc_name(u64 flags) 3658 { 3659 switch (flags) { 3660 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3661 return "mixed"; 3662 case BTRFS_BLOCK_GROUP_METADATA: 3663 return "metadata"; 3664 case BTRFS_BLOCK_GROUP_DATA: 3665 return "data"; 3666 case BTRFS_BLOCK_GROUP_SYSTEM: 3667 return "system"; 3668 default: 3669 WARN_ON(1); 3670 return "invalid-combination"; 3671 }; 3672 } 3673 3674 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3675 u64 total_bytes, u64 bytes_used, 3676 struct btrfs_space_info **space_info) 3677 { 3678 struct btrfs_space_info *found; 3679 int i; 3680 int factor; 3681 int ret; 3682 3683 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3684 BTRFS_BLOCK_GROUP_RAID10)) 3685 factor = 2; 3686 else 3687 factor = 1; 3688 3689 found = __find_space_info(info, flags); 3690 if (found) { 3691 spin_lock(&found->lock); 3692 found->total_bytes += total_bytes; 3693 found->disk_total += total_bytes * factor; 3694 found->bytes_used += bytes_used; 3695 found->disk_used += bytes_used * factor; 3696 found->full = 0; 3697 spin_unlock(&found->lock); 3698 *space_info = found; 3699 return 0; 3700 } 3701 found = kzalloc(sizeof(*found), GFP_NOFS); 3702 if (!found) 3703 return -ENOMEM; 3704 3705 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3706 if (ret) { 3707 kfree(found); 3708 return ret; 3709 } 3710 3711 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3712 INIT_LIST_HEAD(&found->block_groups[i]); 3713 init_rwsem(&found->groups_sem); 3714 spin_lock_init(&found->lock); 3715 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3716 found->total_bytes = total_bytes; 3717 found->disk_total = total_bytes * factor; 3718 found->bytes_used = bytes_used; 3719 found->disk_used = bytes_used * factor; 3720 found->bytes_pinned = 0; 3721 found->bytes_reserved = 0; 3722 found->bytes_readonly = 0; 3723 found->bytes_may_use = 0; 3724 found->full = 0; 3725 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3726 found->chunk_alloc = 0; 3727 found->flush = 0; 3728 init_waitqueue_head(&found->wait); 3729 INIT_LIST_HEAD(&found->ro_bgs); 3730 3731 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3732 info->space_info_kobj, "%s", 3733 alloc_name(found->flags)); 3734 if (ret) { 3735 kfree(found); 3736 return ret; 3737 } 3738 3739 *space_info = found; 3740 list_add_rcu(&found->list, &info->space_info); 3741 if (flags & BTRFS_BLOCK_GROUP_DATA) 3742 info->data_sinfo = found; 3743 3744 return ret; 3745 } 3746 3747 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3748 { 3749 u64 extra_flags = chunk_to_extended(flags) & 3750 BTRFS_EXTENDED_PROFILE_MASK; 3751 3752 write_seqlock(&fs_info->profiles_lock); 3753 if (flags & BTRFS_BLOCK_GROUP_DATA) 3754 fs_info->avail_data_alloc_bits |= extra_flags; 3755 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3756 fs_info->avail_metadata_alloc_bits |= extra_flags; 3757 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3758 fs_info->avail_system_alloc_bits |= extra_flags; 3759 write_sequnlock(&fs_info->profiles_lock); 3760 } 3761 3762 /* 3763 * returns target flags in extended format or 0 if restripe for this 3764 * chunk_type is not in progress 3765 * 3766 * should be called with either volume_mutex or balance_lock held 3767 */ 3768 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3769 { 3770 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3771 u64 target = 0; 3772 3773 if (!bctl) 3774 return 0; 3775 3776 if (flags & BTRFS_BLOCK_GROUP_DATA && 3777 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3778 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3779 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3780 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3781 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3782 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3783 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3784 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3785 } 3786 3787 return target; 3788 } 3789 3790 /* 3791 * @flags: available profiles in extended format (see ctree.h) 3792 * 3793 * Returns reduced profile in chunk format. If profile changing is in 3794 * progress (either running or paused) picks the target profile (if it's 3795 * already available), otherwise falls back to plain reducing. 3796 */ 3797 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3798 { 3799 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3800 u64 target; 3801 u64 tmp; 3802 3803 /* 3804 * see if restripe for this chunk_type is in progress, if so 3805 * try to reduce to the target profile 3806 */ 3807 spin_lock(&root->fs_info->balance_lock); 3808 target = get_restripe_target(root->fs_info, flags); 3809 if (target) { 3810 /* pick target profile only if it's already available */ 3811 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3812 spin_unlock(&root->fs_info->balance_lock); 3813 return extended_to_chunk(target); 3814 } 3815 } 3816 spin_unlock(&root->fs_info->balance_lock); 3817 3818 /* First, mask out the RAID levels which aren't possible */ 3819 if (num_devices == 1) 3820 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3821 BTRFS_BLOCK_GROUP_RAID5); 3822 if (num_devices < 3) 3823 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3824 if (num_devices < 4) 3825 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3826 3827 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3828 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3829 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3830 flags &= ~tmp; 3831 3832 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3833 tmp = BTRFS_BLOCK_GROUP_RAID6; 3834 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3835 tmp = BTRFS_BLOCK_GROUP_RAID5; 3836 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3837 tmp = BTRFS_BLOCK_GROUP_RAID10; 3838 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3839 tmp = BTRFS_BLOCK_GROUP_RAID1; 3840 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3841 tmp = BTRFS_BLOCK_GROUP_RAID0; 3842 3843 return extended_to_chunk(flags | tmp); 3844 } 3845 3846 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3847 { 3848 unsigned seq; 3849 u64 flags; 3850 3851 do { 3852 flags = orig_flags; 3853 seq = read_seqbegin(&root->fs_info->profiles_lock); 3854 3855 if (flags & BTRFS_BLOCK_GROUP_DATA) 3856 flags |= root->fs_info->avail_data_alloc_bits; 3857 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3858 flags |= root->fs_info->avail_system_alloc_bits; 3859 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3860 flags |= root->fs_info->avail_metadata_alloc_bits; 3861 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3862 3863 return btrfs_reduce_alloc_profile(root, flags); 3864 } 3865 3866 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3867 { 3868 u64 flags; 3869 u64 ret; 3870 3871 if (data) 3872 flags = BTRFS_BLOCK_GROUP_DATA; 3873 else if (root == root->fs_info->chunk_root) 3874 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3875 else 3876 flags = BTRFS_BLOCK_GROUP_METADATA; 3877 3878 ret = get_alloc_profile(root, flags); 3879 return ret; 3880 } 3881 3882 /* 3883 * This will check the space that the inode allocates from to make sure we have 3884 * enough space for bytes. 3885 */ 3886 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3887 { 3888 struct btrfs_space_info *data_sinfo; 3889 struct btrfs_root *root = BTRFS_I(inode)->root; 3890 struct btrfs_fs_info *fs_info = root->fs_info; 3891 u64 used; 3892 int ret = 0; 3893 int need_commit = 2; 3894 int have_pinned_space; 3895 3896 /* make sure bytes are sectorsize aligned */ 3897 bytes = ALIGN(bytes, root->sectorsize); 3898 3899 if (btrfs_is_free_space_inode(inode)) { 3900 need_commit = 0; 3901 ASSERT(current->journal_info); 3902 } 3903 3904 data_sinfo = fs_info->data_sinfo; 3905 if (!data_sinfo) 3906 goto alloc; 3907 3908 again: 3909 /* make sure we have enough space to handle the data first */ 3910 spin_lock(&data_sinfo->lock); 3911 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3912 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3913 data_sinfo->bytes_may_use; 3914 3915 if (used + bytes > data_sinfo->total_bytes) { 3916 struct btrfs_trans_handle *trans; 3917 3918 /* 3919 * if we don't have enough free bytes in this space then we need 3920 * to alloc a new chunk. 3921 */ 3922 if (!data_sinfo->full) { 3923 u64 alloc_target; 3924 3925 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3926 spin_unlock(&data_sinfo->lock); 3927 alloc: 3928 alloc_target = btrfs_get_alloc_profile(root, 1); 3929 /* 3930 * It is ugly that we don't call nolock join 3931 * transaction for the free space inode case here. 3932 * But it is safe because we only do the data space 3933 * reservation for the free space cache in the 3934 * transaction context, the common join transaction 3935 * just increase the counter of the current transaction 3936 * handler, doesn't try to acquire the trans_lock of 3937 * the fs. 3938 */ 3939 trans = btrfs_join_transaction(root); 3940 if (IS_ERR(trans)) 3941 return PTR_ERR(trans); 3942 3943 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3944 alloc_target, 3945 CHUNK_ALLOC_NO_FORCE); 3946 btrfs_end_transaction(trans, root); 3947 if (ret < 0) { 3948 if (ret != -ENOSPC) 3949 return ret; 3950 else { 3951 have_pinned_space = 1; 3952 goto commit_trans; 3953 } 3954 } 3955 3956 if (!data_sinfo) 3957 data_sinfo = fs_info->data_sinfo; 3958 3959 goto again; 3960 } 3961 3962 /* 3963 * If we don't have enough pinned space to deal with this 3964 * allocation, and no removed chunk in current transaction, 3965 * don't bother committing the transaction. 3966 */ 3967 have_pinned_space = percpu_counter_compare( 3968 &data_sinfo->total_bytes_pinned, 3969 used + bytes - data_sinfo->total_bytes); 3970 spin_unlock(&data_sinfo->lock); 3971 3972 /* commit the current transaction and try again */ 3973 commit_trans: 3974 if (need_commit && 3975 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3976 need_commit--; 3977 3978 trans = btrfs_join_transaction(root); 3979 if (IS_ERR(trans)) 3980 return PTR_ERR(trans); 3981 if (have_pinned_space >= 0 || 3982 trans->transaction->have_free_bgs || 3983 need_commit > 0) { 3984 ret = btrfs_commit_transaction(trans, root); 3985 if (ret) 3986 return ret; 3987 /* 3988 * make sure that all running delayed iput are 3989 * done 3990 */ 3991 down_write(&root->fs_info->delayed_iput_sem); 3992 up_write(&root->fs_info->delayed_iput_sem); 3993 goto again; 3994 } else { 3995 btrfs_end_transaction(trans, root); 3996 } 3997 } 3998 3999 trace_btrfs_space_reservation(root->fs_info, 4000 "space_info:enospc", 4001 data_sinfo->flags, bytes, 1); 4002 return -ENOSPC; 4003 } 4004 ret = btrfs_qgroup_reserve(root, write_bytes); 4005 if (ret) 4006 goto out; 4007 data_sinfo->bytes_may_use += bytes; 4008 trace_btrfs_space_reservation(root->fs_info, "space_info", 4009 data_sinfo->flags, bytes, 1); 4010 out: 4011 spin_unlock(&data_sinfo->lock); 4012 4013 return ret; 4014 } 4015 4016 /* 4017 * Called if we need to clear a data reservation for this inode. 4018 */ 4019 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 4020 { 4021 struct btrfs_root *root = BTRFS_I(inode)->root; 4022 struct btrfs_space_info *data_sinfo; 4023 4024 /* make sure bytes are sectorsize aligned */ 4025 bytes = ALIGN(bytes, root->sectorsize); 4026 4027 data_sinfo = root->fs_info->data_sinfo; 4028 spin_lock(&data_sinfo->lock); 4029 WARN_ON(data_sinfo->bytes_may_use < bytes); 4030 data_sinfo->bytes_may_use -= bytes; 4031 trace_btrfs_space_reservation(root->fs_info, "space_info", 4032 data_sinfo->flags, bytes, 0); 4033 spin_unlock(&data_sinfo->lock); 4034 } 4035 4036 static void force_metadata_allocation(struct btrfs_fs_info *info) 4037 { 4038 struct list_head *head = &info->space_info; 4039 struct btrfs_space_info *found; 4040 4041 rcu_read_lock(); 4042 list_for_each_entry_rcu(found, head, list) { 4043 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4044 found->force_alloc = CHUNK_ALLOC_FORCE; 4045 } 4046 rcu_read_unlock(); 4047 } 4048 4049 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4050 { 4051 return (global->size << 1); 4052 } 4053 4054 static int should_alloc_chunk(struct btrfs_root *root, 4055 struct btrfs_space_info *sinfo, int force) 4056 { 4057 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4058 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4059 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4060 u64 thresh; 4061 4062 if (force == CHUNK_ALLOC_FORCE) 4063 return 1; 4064 4065 /* 4066 * We need to take into account the global rsv because for all intents 4067 * and purposes it's used space. Don't worry about locking the 4068 * global_rsv, it doesn't change except when the transaction commits. 4069 */ 4070 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4071 num_allocated += calc_global_rsv_need_space(global_rsv); 4072 4073 /* 4074 * in limited mode, we want to have some free space up to 4075 * about 1% of the FS size. 4076 */ 4077 if (force == CHUNK_ALLOC_LIMITED) { 4078 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4079 thresh = max_t(u64, 64 * 1024 * 1024, 4080 div_factor_fine(thresh, 1)); 4081 4082 if (num_bytes - num_allocated < thresh) 4083 return 1; 4084 } 4085 4086 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4087 return 0; 4088 return 1; 4089 } 4090 4091 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 4092 { 4093 u64 num_dev; 4094 4095 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4096 BTRFS_BLOCK_GROUP_RAID0 | 4097 BTRFS_BLOCK_GROUP_RAID5 | 4098 BTRFS_BLOCK_GROUP_RAID6)) 4099 num_dev = root->fs_info->fs_devices->rw_devices; 4100 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4101 num_dev = 2; 4102 else 4103 num_dev = 1; /* DUP or single */ 4104 4105 /* metadata for updaing devices and chunk tree */ 4106 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 4107 } 4108 4109 static void check_system_chunk(struct btrfs_trans_handle *trans, 4110 struct btrfs_root *root, u64 type) 4111 { 4112 struct btrfs_space_info *info; 4113 u64 left; 4114 u64 thresh; 4115 4116 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4117 spin_lock(&info->lock); 4118 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4119 info->bytes_reserved - info->bytes_readonly; 4120 spin_unlock(&info->lock); 4121 4122 thresh = get_system_chunk_thresh(root, type); 4123 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4124 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4125 left, thresh, type); 4126 dump_space_info(info, 0, 0); 4127 } 4128 4129 if (left < thresh) { 4130 u64 flags; 4131 4132 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4133 btrfs_alloc_chunk(trans, root, flags); 4134 } 4135 } 4136 4137 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4138 struct btrfs_root *extent_root, u64 flags, int force) 4139 { 4140 struct btrfs_space_info *space_info; 4141 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4142 int wait_for_alloc = 0; 4143 int ret = 0; 4144 4145 /* Don't re-enter if we're already allocating a chunk */ 4146 if (trans->allocating_chunk) 4147 return -ENOSPC; 4148 4149 space_info = __find_space_info(extent_root->fs_info, flags); 4150 if (!space_info) { 4151 ret = update_space_info(extent_root->fs_info, flags, 4152 0, 0, &space_info); 4153 BUG_ON(ret); /* -ENOMEM */ 4154 } 4155 BUG_ON(!space_info); /* Logic error */ 4156 4157 again: 4158 spin_lock(&space_info->lock); 4159 if (force < space_info->force_alloc) 4160 force = space_info->force_alloc; 4161 if (space_info->full) { 4162 if (should_alloc_chunk(extent_root, space_info, force)) 4163 ret = -ENOSPC; 4164 else 4165 ret = 0; 4166 spin_unlock(&space_info->lock); 4167 return ret; 4168 } 4169 4170 if (!should_alloc_chunk(extent_root, space_info, force)) { 4171 spin_unlock(&space_info->lock); 4172 return 0; 4173 } else if (space_info->chunk_alloc) { 4174 wait_for_alloc = 1; 4175 } else { 4176 space_info->chunk_alloc = 1; 4177 } 4178 4179 spin_unlock(&space_info->lock); 4180 4181 mutex_lock(&fs_info->chunk_mutex); 4182 4183 /* 4184 * The chunk_mutex is held throughout the entirety of a chunk 4185 * allocation, so once we've acquired the chunk_mutex we know that the 4186 * other guy is done and we need to recheck and see if we should 4187 * allocate. 4188 */ 4189 if (wait_for_alloc) { 4190 mutex_unlock(&fs_info->chunk_mutex); 4191 wait_for_alloc = 0; 4192 goto again; 4193 } 4194 4195 trans->allocating_chunk = true; 4196 4197 /* 4198 * If we have mixed data/metadata chunks we want to make sure we keep 4199 * allocating mixed chunks instead of individual chunks. 4200 */ 4201 if (btrfs_mixed_space_info(space_info)) 4202 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4203 4204 /* 4205 * if we're doing a data chunk, go ahead and make sure that 4206 * we keep a reasonable number of metadata chunks allocated in the 4207 * FS as well. 4208 */ 4209 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4210 fs_info->data_chunk_allocations++; 4211 if (!(fs_info->data_chunk_allocations % 4212 fs_info->metadata_ratio)) 4213 force_metadata_allocation(fs_info); 4214 } 4215 4216 /* 4217 * Check if we have enough space in SYSTEM chunk because we may need 4218 * to update devices. 4219 */ 4220 check_system_chunk(trans, extent_root, flags); 4221 4222 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4223 trans->allocating_chunk = false; 4224 4225 spin_lock(&space_info->lock); 4226 if (ret < 0 && ret != -ENOSPC) 4227 goto out; 4228 if (ret) 4229 space_info->full = 1; 4230 else 4231 ret = 1; 4232 4233 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4234 out: 4235 space_info->chunk_alloc = 0; 4236 spin_unlock(&space_info->lock); 4237 mutex_unlock(&fs_info->chunk_mutex); 4238 return ret; 4239 } 4240 4241 static int can_overcommit(struct btrfs_root *root, 4242 struct btrfs_space_info *space_info, u64 bytes, 4243 enum btrfs_reserve_flush_enum flush) 4244 { 4245 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4246 u64 profile = btrfs_get_alloc_profile(root, 0); 4247 u64 space_size; 4248 u64 avail; 4249 u64 used; 4250 4251 used = space_info->bytes_used + space_info->bytes_reserved + 4252 space_info->bytes_pinned + space_info->bytes_readonly; 4253 4254 /* 4255 * We only want to allow over committing if we have lots of actual space 4256 * free, but if we don't have enough space to handle the global reserve 4257 * space then we could end up having a real enospc problem when trying 4258 * to allocate a chunk or some other such important allocation. 4259 */ 4260 spin_lock(&global_rsv->lock); 4261 space_size = calc_global_rsv_need_space(global_rsv); 4262 spin_unlock(&global_rsv->lock); 4263 if (used + space_size >= space_info->total_bytes) 4264 return 0; 4265 4266 used += space_info->bytes_may_use; 4267 4268 spin_lock(&root->fs_info->free_chunk_lock); 4269 avail = root->fs_info->free_chunk_space; 4270 spin_unlock(&root->fs_info->free_chunk_lock); 4271 4272 /* 4273 * If we have dup, raid1 or raid10 then only half of the free 4274 * space is actually useable. For raid56, the space info used 4275 * doesn't include the parity drive, so we don't have to 4276 * change the math 4277 */ 4278 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4279 BTRFS_BLOCK_GROUP_RAID1 | 4280 BTRFS_BLOCK_GROUP_RAID10)) 4281 avail >>= 1; 4282 4283 /* 4284 * If we aren't flushing all things, let us overcommit up to 4285 * 1/2th of the space. If we can flush, don't let us overcommit 4286 * too much, let it overcommit up to 1/8 of the space. 4287 */ 4288 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4289 avail >>= 3; 4290 else 4291 avail >>= 1; 4292 4293 if (used + bytes < space_info->total_bytes + avail) 4294 return 1; 4295 return 0; 4296 } 4297 4298 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4299 unsigned long nr_pages, int nr_items) 4300 { 4301 struct super_block *sb = root->fs_info->sb; 4302 4303 if (down_read_trylock(&sb->s_umount)) { 4304 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4305 up_read(&sb->s_umount); 4306 } else { 4307 /* 4308 * We needn't worry the filesystem going from r/w to r/o though 4309 * we don't acquire ->s_umount mutex, because the filesystem 4310 * should guarantee the delalloc inodes list be empty after 4311 * the filesystem is readonly(all dirty pages are written to 4312 * the disk). 4313 */ 4314 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4315 if (!current->journal_info) 4316 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4317 } 4318 } 4319 4320 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4321 { 4322 u64 bytes; 4323 int nr; 4324 4325 bytes = btrfs_calc_trans_metadata_size(root, 1); 4326 nr = (int)div64_u64(to_reclaim, bytes); 4327 if (!nr) 4328 nr = 1; 4329 return nr; 4330 } 4331 4332 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4333 4334 /* 4335 * shrink metadata reservation for delalloc 4336 */ 4337 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4338 bool wait_ordered) 4339 { 4340 struct btrfs_block_rsv *block_rsv; 4341 struct btrfs_space_info *space_info; 4342 struct btrfs_trans_handle *trans; 4343 u64 delalloc_bytes; 4344 u64 max_reclaim; 4345 long time_left; 4346 unsigned long nr_pages; 4347 int loops; 4348 int items; 4349 enum btrfs_reserve_flush_enum flush; 4350 4351 /* Calc the number of the pages we need flush for space reservation */ 4352 items = calc_reclaim_items_nr(root, to_reclaim); 4353 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4354 4355 trans = (struct btrfs_trans_handle *)current->journal_info; 4356 block_rsv = &root->fs_info->delalloc_block_rsv; 4357 space_info = block_rsv->space_info; 4358 4359 delalloc_bytes = percpu_counter_sum_positive( 4360 &root->fs_info->delalloc_bytes); 4361 if (delalloc_bytes == 0) { 4362 if (trans) 4363 return; 4364 if (wait_ordered) 4365 btrfs_wait_ordered_roots(root->fs_info, items); 4366 return; 4367 } 4368 4369 loops = 0; 4370 while (delalloc_bytes && loops < 3) { 4371 max_reclaim = min(delalloc_bytes, to_reclaim); 4372 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4373 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4374 /* 4375 * We need to wait for the async pages to actually start before 4376 * we do anything. 4377 */ 4378 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4379 if (!max_reclaim) 4380 goto skip_async; 4381 4382 if (max_reclaim <= nr_pages) 4383 max_reclaim = 0; 4384 else 4385 max_reclaim -= nr_pages; 4386 4387 wait_event(root->fs_info->async_submit_wait, 4388 atomic_read(&root->fs_info->async_delalloc_pages) <= 4389 (int)max_reclaim); 4390 skip_async: 4391 if (!trans) 4392 flush = BTRFS_RESERVE_FLUSH_ALL; 4393 else 4394 flush = BTRFS_RESERVE_NO_FLUSH; 4395 spin_lock(&space_info->lock); 4396 if (can_overcommit(root, space_info, orig, flush)) { 4397 spin_unlock(&space_info->lock); 4398 break; 4399 } 4400 spin_unlock(&space_info->lock); 4401 4402 loops++; 4403 if (wait_ordered && !trans) { 4404 btrfs_wait_ordered_roots(root->fs_info, items); 4405 } else { 4406 time_left = schedule_timeout_killable(1); 4407 if (time_left) 4408 break; 4409 } 4410 delalloc_bytes = percpu_counter_sum_positive( 4411 &root->fs_info->delalloc_bytes); 4412 } 4413 } 4414 4415 /** 4416 * maybe_commit_transaction - possibly commit the transaction if its ok to 4417 * @root - the root we're allocating for 4418 * @bytes - the number of bytes we want to reserve 4419 * @force - force the commit 4420 * 4421 * This will check to make sure that committing the transaction will actually 4422 * get us somewhere and then commit the transaction if it does. Otherwise it 4423 * will return -ENOSPC. 4424 */ 4425 static int may_commit_transaction(struct btrfs_root *root, 4426 struct btrfs_space_info *space_info, 4427 u64 bytes, int force) 4428 { 4429 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4430 struct btrfs_trans_handle *trans; 4431 4432 trans = (struct btrfs_trans_handle *)current->journal_info; 4433 if (trans) 4434 return -EAGAIN; 4435 4436 if (force) 4437 goto commit; 4438 4439 /* See if there is enough pinned space to make this reservation */ 4440 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4441 bytes) >= 0) 4442 goto commit; 4443 4444 /* 4445 * See if there is some space in the delayed insertion reservation for 4446 * this reservation. 4447 */ 4448 if (space_info != delayed_rsv->space_info) 4449 return -ENOSPC; 4450 4451 spin_lock(&delayed_rsv->lock); 4452 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4453 bytes - delayed_rsv->size) >= 0) { 4454 spin_unlock(&delayed_rsv->lock); 4455 return -ENOSPC; 4456 } 4457 spin_unlock(&delayed_rsv->lock); 4458 4459 commit: 4460 trans = btrfs_join_transaction(root); 4461 if (IS_ERR(trans)) 4462 return -ENOSPC; 4463 4464 return btrfs_commit_transaction(trans, root); 4465 } 4466 4467 enum flush_state { 4468 FLUSH_DELAYED_ITEMS_NR = 1, 4469 FLUSH_DELAYED_ITEMS = 2, 4470 FLUSH_DELALLOC = 3, 4471 FLUSH_DELALLOC_WAIT = 4, 4472 ALLOC_CHUNK = 5, 4473 COMMIT_TRANS = 6, 4474 }; 4475 4476 static int flush_space(struct btrfs_root *root, 4477 struct btrfs_space_info *space_info, u64 num_bytes, 4478 u64 orig_bytes, int state) 4479 { 4480 struct btrfs_trans_handle *trans; 4481 int nr; 4482 int ret = 0; 4483 4484 switch (state) { 4485 case FLUSH_DELAYED_ITEMS_NR: 4486 case FLUSH_DELAYED_ITEMS: 4487 if (state == FLUSH_DELAYED_ITEMS_NR) 4488 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4489 else 4490 nr = -1; 4491 4492 trans = btrfs_join_transaction(root); 4493 if (IS_ERR(trans)) { 4494 ret = PTR_ERR(trans); 4495 break; 4496 } 4497 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4498 btrfs_end_transaction(trans, root); 4499 break; 4500 case FLUSH_DELALLOC: 4501 case FLUSH_DELALLOC_WAIT: 4502 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4503 state == FLUSH_DELALLOC_WAIT); 4504 break; 4505 case ALLOC_CHUNK: 4506 trans = btrfs_join_transaction(root); 4507 if (IS_ERR(trans)) { 4508 ret = PTR_ERR(trans); 4509 break; 4510 } 4511 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4512 btrfs_get_alloc_profile(root, 0), 4513 CHUNK_ALLOC_NO_FORCE); 4514 btrfs_end_transaction(trans, root); 4515 if (ret == -ENOSPC) 4516 ret = 0; 4517 break; 4518 case COMMIT_TRANS: 4519 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4520 break; 4521 default: 4522 ret = -ENOSPC; 4523 break; 4524 } 4525 4526 return ret; 4527 } 4528 4529 static inline u64 4530 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4531 struct btrfs_space_info *space_info) 4532 { 4533 u64 used; 4534 u64 expected; 4535 u64 to_reclaim; 4536 4537 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4538 16 * 1024 * 1024); 4539 spin_lock(&space_info->lock); 4540 if (can_overcommit(root, space_info, to_reclaim, 4541 BTRFS_RESERVE_FLUSH_ALL)) { 4542 to_reclaim = 0; 4543 goto out; 4544 } 4545 4546 used = space_info->bytes_used + space_info->bytes_reserved + 4547 space_info->bytes_pinned + space_info->bytes_readonly + 4548 space_info->bytes_may_use; 4549 if (can_overcommit(root, space_info, 1024 * 1024, 4550 BTRFS_RESERVE_FLUSH_ALL)) 4551 expected = div_factor_fine(space_info->total_bytes, 95); 4552 else 4553 expected = div_factor_fine(space_info->total_bytes, 90); 4554 4555 if (used > expected) 4556 to_reclaim = used - expected; 4557 else 4558 to_reclaim = 0; 4559 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4560 space_info->bytes_reserved); 4561 out: 4562 spin_unlock(&space_info->lock); 4563 4564 return to_reclaim; 4565 } 4566 4567 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4568 struct btrfs_fs_info *fs_info, u64 used) 4569 { 4570 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4571 4572 /* If we're just plain full then async reclaim just slows us down. */ 4573 if (space_info->bytes_used >= thresh) 4574 return 0; 4575 4576 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4577 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4578 } 4579 4580 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4581 struct btrfs_fs_info *fs_info, 4582 int flush_state) 4583 { 4584 u64 used; 4585 4586 spin_lock(&space_info->lock); 4587 /* 4588 * We run out of space and have not got any free space via flush_space, 4589 * so don't bother doing async reclaim. 4590 */ 4591 if (flush_state > COMMIT_TRANS && space_info->full) { 4592 spin_unlock(&space_info->lock); 4593 return 0; 4594 } 4595 4596 used = space_info->bytes_used + space_info->bytes_reserved + 4597 space_info->bytes_pinned + space_info->bytes_readonly + 4598 space_info->bytes_may_use; 4599 if (need_do_async_reclaim(space_info, fs_info, used)) { 4600 spin_unlock(&space_info->lock); 4601 return 1; 4602 } 4603 spin_unlock(&space_info->lock); 4604 4605 return 0; 4606 } 4607 4608 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4609 { 4610 struct btrfs_fs_info *fs_info; 4611 struct btrfs_space_info *space_info; 4612 u64 to_reclaim; 4613 int flush_state; 4614 4615 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4616 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4617 4618 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4619 space_info); 4620 if (!to_reclaim) 4621 return; 4622 4623 flush_state = FLUSH_DELAYED_ITEMS_NR; 4624 do { 4625 flush_space(fs_info->fs_root, space_info, to_reclaim, 4626 to_reclaim, flush_state); 4627 flush_state++; 4628 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4629 flush_state)) 4630 return; 4631 } while (flush_state < COMMIT_TRANS); 4632 } 4633 4634 void btrfs_init_async_reclaim_work(struct work_struct *work) 4635 { 4636 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4637 } 4638 4639 /** 4640 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4641 * @root - the root we're allocating for 4642 * @block_rsv - the block_rsv we're allocating for 4643 * @orig_bytes - the number of bytes we want 4644 * @flush - whether or not we can flush to make our reservation 4645 * 4646 * This will reserve orgi_bytes number of bytes from the space info associated 4647 * with the block_rsv. If there is not enough space it will make an attempt to 4648 * flush out space to make room. It will do this by flushing delalloc if 4649 * possible or committing the transaction. If flush is 0 then no attempts to 4650 * regain reservations will be made and this will fail if there is not enough 4651 * space already. 4652 */ 4653 static int reserve_metadata_bytes(struct btrfs_root *root, 4654 struct btrfs_block_rsv *block_rsv, 4655 u64 orig_bytes, 4656 enum btrfs_reserve_flush_enum flush) 4657 { 4658 struct btrfs_space_info *space_info = block_rsv->space_info; 4659 u64 used; 4660 u64 num_bytes = orig_bytes; 4661 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4662 int ret = 0; 4663 bool flushing = false; 4664 4665 again: 4666 ret = 0; 4667 spin_lock(&space_info->lock); 4668 /* 4669 * We only want to wait if somebody other than us is flushing and we 4670 * are actually allowed to flush all things. 4671 */ 4672 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4673 space_info->flush) { 4674 spin_unlock(&space_info->lock); 4675 /* 4676 * If we have a trans handle we can't wait because the flusher 4677 * may have to commit the transaction, which would mean we would 4678 * deadlock since we are waiting for the flusher to finish, but 4679 * hold the current transaction open. 4680 */ 4681 if (current->journal_info) 4682 return -EAGAIN; 4683 ret = wait_event_killable(space_info->wait, !space_info->flush); 4684 /* Must have been killed, return */ 4685 if (ret) 4686 return -EINTR; 4687 4688 spin_lock(&space_info->lock); 4689 } 4690 4691 ret = -ENOSPC; 4692 used = space_info->bytes_used + space_info->bytes_reserved + 4693 space_info->bytes_pinned + space_info->bytes_readonly + 4694 space_info->bytes_may_use; 4695 4696 /* 4697 * The idea here is that we've not already over-reserved the block group 4698 * then we can go ahead and save our reservation first and then start 4699 * flushing if we need to. Otherwise if we've already overcommitted 4700 * lets start flushing stuff first and then come back and try to make 4701 * our reservation. 4702 */ 4703 if (used <= space_info->total_bytes) { 4704 if (used + orig_bytes <= space_info->total_bytes) { 4705 space_info->bytes_may_use += orig_bytes; 4706 trace_btrfs_space_reservation(root->fs_info, 4707 "space_info", space_info->flags, orig_bytes, 1); 4708 ret = 0; 4709 } else { 4710 /* 4711 * Ok set num_bytes to orig_bytes since we aren't 4712 * overocmmitted, this way we only try and reclaim what 4713 * we need. 4714 */ 4715 num_bytes = orig_bytes; 4716 } 4717 } else { 4718 /* 4719 * Ok we're over committed, set num_bytes to the overcommitted 4720 * amount plus the amount of bytes that we need for this 4721 * reservation. 4722 */ 4723 num_bytes = used - space_info->total_bytes + 4724 (orig_bytes * 2); 4725 } 4726 4727 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4728 space_info->bytes_may_use += orig_bytes; 4729 trace_btrfs_space_reservation(root->fs_info, "space_info", 4730 space_info->flags, orig_bytes, 4731 1); 4732 ret = 0; 4733 } 4734 4735 /* 4736 * Couldn't make our reservation, save our place so while we're trying 4737 * to reclaim space we can actually use it instead of somebody else 4738 * stealing it from us. 4739 * 4740 * We make the other tasks wait for the flush only when we can flush 4741 * all things. 4742 */ 4743 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4744 flushing = true; 4745 space_info->flush = 1; 4746 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4747 used += orig_bytes; 4748 /* 4749 * We will do the space reservation dance during log replay, 4750 * which means we won't have fs_info->fs_root set, so don't do 4751 * the async reclaim as we will panic. 4752 */ 4753 if (!root->fs_info->log_root_recovering && 4754 need_do_async_reclaim(space_info, root->fs_info, used) && 4755 !work_busy(&root->fs_info->async_reclaim_work)) 4756 queue_work(system_unbound_wq, 4757 &root->fs_info->async_reclaim_work); 4758 } 4759 spin_unlock(&space_info->lock); 4760 4761 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4762 goto out; 4763 4764 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4765 flush_state); 4766 flush_state++; 4767 4768 /* 4769 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4770 * would happen. So skip delalloc flush. 4771 */ 4772 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4773 (flush_state == FLUSH_DELALLOC || 4774 flush_state == FLUSH_DELALLOC_WAIT)) 4775 flush_state = ALLOC_CHUNK; 4776 4777 if (!ret) 4778 goto again; 4779 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4780 flush_state < COMMIT_TRANS) 4781 goto again; 4782 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4783 flush_state <= COMMIT_TRANS) 4784 goto again; 4785 4786 out: 4787 if (ret == -ENOSPC && 4788 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4789 struct btrfs_block_rsv *global_rsv = 4790 &root->fs_info->global_block_rsv; 4791 4792 if (block_rsv != global_rsv && 4793 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4794 ret = 0; 4795 } 4796 if (ret == -ENOSPC) 4797 trace_btrfs_space_reservation(root->fs_info, 4798 "space_info:enospc", 4799 space_info->flags, orig_bytes, 1); 4800 if (flushing) { 4801 spin_lock(&space_info->lock); 4802 space_info->flush = 0; 4803 wake_up_all(&space_info->wait); 4804 spin_unlock(&space_info->lock); 4805 } 4806 return ret; 4807 } 4808 4809 static struct btrfs_block_rsv *get_block_rsv( 4810 const struct btrfs_trans_handle *trans, 4811 const struct btrfs_root *root) 4812 { 4813 struct btrfs_block_rsv *block_rsv = NULL; 4814 4815 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4816 block_rsv = trans->block_rsv; 4817 4818 if (root == root->fs_info->csum_root && trans->adding_csums) 4819 block_rsv = trans->block_rsv; 4820 4821 if (root == root->fs_info->uuid_root) 4822 block_rsv = trans->block_rsv; 4823 4824 if (!block_rsv) 4825 block_rsv = root->block_rsv; 4826 4827 if (!block_rsv) 4828 block_rsv = &root->fs_info->empty_block_rsv; 4829 4830 return block_rsv; 4831 } 4832 4833 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4834 u64 num_bytes) 4835 { 4836 int ret = -ENOSPC; 4837 spin_lock(&block_rsv->lock); 4838 if (block_rsv->reserved >= num_bytes) { 4839 block_rsv->reserved -= num_bytes; 4840 if (block_rsv->reserved < block_rsv->size) 4841 block_rsv->full = 0; 4842 ret = 0; 4843 } 4844 spin_unlock(&block_rsv->lock); 4845 return ret; 4846 } 4847 4848 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4849 u64 num_bytes, int update_size) 4850 { 4851 spin_lock(&block_rsv->lock); 4852 block_rsv->reserved += num_bytes; 4853 if (update_size) 4854 block_rsv->size += num_bytes; 4855 else if (block_rsv->reserved >= block_rsv->size) 4856 block_rsv->full = 1; 4857 spin_unlock(&block_rsv->lock); 4858 } 4859 4860 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4861 struct btrfs_block_rsv *dest, u64 num_bytes, 4862 int min_factor) 4863 { 4864 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4865 u64 min_bytes; 4866 4867 if (global_rsv->space_info != dest->space_info) 4868 return -ENOSPC; 4869 4870 spin_lock(&global_rsv->lock); 4871 min_bytes = div_factor(global_rsv->size, min_factor); 4872 if (global_rsv->reserved < min_bytes + num_bytes) { 4873 spin_unlock(&global_rsv->lock); 4874 return -ENOSPC; 4875 } 4876 global_rsv->reserved -= num_bytes; 4877 if (global_rsv->reserved < global_rsv->size) 4878 global_rsv->full = 0; 4879 spin_unlock(&global_rsv->lock); 4880 4881 block_rsv_add_bytes(dest, num_bytes, 1); 4882 return 0; 4883 } 4884 4885 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4886 struct btrfs_block_rsv *block_rsv, 4887 struct btrfs_block_rsv *dest, u64 num_bytes) 4888 { 4889 struct btrfs_space_info *space_info = block_rsv->space_info; 4890 4891 spin_lock(&block_rsv->lock); 4892 if (num_bytes == (u64)-1) 4893 num_bytes = block_rsv->size; 4894 block_rsv->size -= num_bytes; 4895 if (block_rsv->reserved >= block_rsv->size) { 4896 num_bytes = block_rsv->reserved - block_rsv->size; 4897 block_rsv->reserved = block_rsv->size; 4898 block_rsv->full = 1; 4899 } else { 4900 num_bytes = 0; 4901 } 4902 spin_unlock(&block_rsv->lock); 4903 4904 if (num_bytes > 0) { 4905 if (dest) { 4906 spin_lock(&dest->lock); 4907 if (!dest->full) { 4908 u64 bytes_to_add; 4909 4910 bytes_to_add = dest->size - dest->reserved; 4911 bytes_to_add = min(num_bytes, bytes_to_add); 4912 dest->reserved += bytes_to_add; 4913 if (dest->reserved >= dest->size) 4914 dest->full = 1; 4915 num_bytes -= bytes_to_add; 4916 } 4917 spin_unlock(&dest->lock); 4918 } 4919 if (num_bytes) { 4920 spin_lock(&space_info->lock); 4921 space_info->bytes_may_use -= num_bytes; 4922 trace_btrfs_space_reservation(fs_info, "space_info", 4923 space_info->flags, num_bytes, 0); 4924 spin_unlock(&space_info->lock); 4925 } 4926 } 4927 } 4928 4929 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4930 struct btrfs_block_rsv *dst, u64 num_bytes) 4931 { 4932 int ret; 4933 4934 ret = block_rsv_use_bytes(src, num_bytes); 4935 if (ret) 4936 return ret; 4937 4938 block_rsv_add_bytes(dst, num_bytes, 1); 4939 return 0; 4940 } 4941 4942 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4943 { 4944 memset(rsv, 0, sizeof(*rsv)); 4945 spin_lock_init(&rsv->lock); 4946 rsv->type = type; 4947 } 4948 4949 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4950 unsigned short type) 4951 { 4952 struct btrfs_block_rsv *block_rsv; 4953 struct btrfs_fs_info *fs_info = root->fs_info; 4954 4955 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4956 if (!block_rsv) 4957 return NULL; 4958 4959 btrfs_init_block_rsv(block_rsv, type); 4960 block_rsv->space_info = __find_space_info(fs_info, 4961 BTRFS_BLOCK_GROUP_METADATA); 4962 return block_rsv; 4963 } 4964 4965 void btrfs_free_block_rsv(struct btrfs_root *root, 4966 struct btrfs_block_rsv *rsv) 4967 { 4968 if (!rsv) 4969 return; 4970 btrfs_block_rsv_release(root, rsv, (u64)-1); 4971 kfree(rsv); 4972 } 4973 4974 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4975 { 4976 kfree(rsv); 4977 } 4978 4979 int btrfs_block_rsv_add(struct btrfs_root *root, 4980 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4981 enum btrfs_reserve_flush_enum flush) 4982 { 4983 int ret; 4984 4985 if (num_bytes == 0) 4986 return 0; 4987 4988 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4989 if (!ret) { 4990 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4991 return 0; 4992 } 4993 4994 return ret; 4995 } 4996 4997 int btrfs_block_rsv_check(struct btrfs_root *root, 4998 struct btrfs_block_rsv *block_rsv, int min_factor) 4999 { 5000 u64 num_bytes = 0; 5001 int ret = -ENOSPC; 5002 5003 if (!block_rsv) 5004 return 0; 5005 5006 spin_lock(&block_rsv->lock); 5007 num_bytes = div_factor(block_rsv->size, min_factor); 5008 if (block_rsv->reserved >= num_bytes) 5009 ret = 0; 5010 spin_unlock(&block_rsv->lock); 5011 5012 return ret; 5013 } 5014 5015 int btrfs_block_rsv_refill(struct btrfs_root *root, 5016 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5017 enum btrfs_reserve_flush_enum flush) 5018 { 5019 u64 num_bytes = 0; 5020 int ret = -ENOSPC; 5021 5022 if (!block_rsv) 5023 return 0; 5024 5025 spin_lock(&block_rsv->lock); 5026 num_bytes = min_reserved; 5027 if (block_rsv->reserved >= num_bytes) 5028 ret = 0; 5029 else 5030 num_bytes -= block_rsv->reserved; 5031 spin_unlock(&block_rsv->lock); 5032 5033 if (!ret) 5034 return 0; 5035 5036 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5037 if (!ret) { 5038 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5039 return 0; 5040 } 5041 5042 return ret; 5043 } 5044 5045 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5046 struct btrfs_block_rsv *dst_rsv, 5047 u64 num_bytes) 5048 { 5049 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5050 } 5051 5052 void btrfs_block_rsv_release(struct btrfs_root *root, 5053 struct btrfs_block_rsv *block_rsv, 5054 u64 num_bytes) 5055 { 5056 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5057 if (global_rsv == block_rsv || 5058 block_rsv->space_info != global_rsv->space_info) 5059 global_rsv = NULL; 5060 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5061 num_bytes); 5062 } 5063 5064 /* 5065 * helper to calculate size of global block reservation. 5066 * the desired value is sum of space used by extent tree, 5067 * checksum tree and root tree 5068 */ 5069 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5070 { 5071 struct btrfs_space_info *sinfo; 5072 u64 num_bytes; 5073 u64 meta_used; 5074 u64 data_used; 5075 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5076 5077 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5078 spin_lock(&sinfo->lock); 5079 data_used = sinfo->bytes_used; 5080 spin_unlock(&sinfo->lock); 5081 5082 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5083 spin_lock(&sinfo->lock); 5084 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5085 data_used = 0; 5086 meta_used = sinfo->bytes_used; 5087 spin_unlock(&sinfo->lock); 5088 5089 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5090 csum_size * 2; 5091 num_bytes += div_u64(data_used + meta_used, 50); 5092 5093 if (num_bytes * 3 > meta_used) 5094 num_bytes = div_u64(meta_used, 3); 5095 5096 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5097 } 5098 5099 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5100 { 5101 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5102 struct btrfs_space_info *sinfo = block_rsv->space_info; 5103 u64 num_bytes; 5104 5105 num_bytes = calc_global_metadata_size(fs_info); 5106 5107 spin_lock(&sinfo->lock); 5108 spin_lock(&block_rsv->lock); 5109 5110 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5111 5112 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5113 sinfo->bytes_reserved + sinfo->bytes_readonly + 5114 sinfo->bytes_may_use; 5115 5116 if (sinfo->total_bytes > num_bytes) { 5117 num_bytes = sinfo->total_bytes - num_bytes; 5118 block_rsv->reserved += num_bytes; 5119 sinfo->bytes_may_use += num_bytes; 5120 trace_btrfs_space_reservation(fs_info, "space_info", 5121 sinfo->flags, num_bytes, 1); 5122 } 5123 5124 if (block_rsv->reserved >= block_rsv->size) { 5125 num_bytes = block_rsv->reserved - block_rsv->size; 5126 sinfo->bytes_may_use -= num_bytes; 5127 trace_btrfs_space_reservation(fs_info, "space_info", 5128 sinfo->flags, num_bytes, 0); 5129 block_rsv->reserved = block_rsv->size; 5130 block_rsv->full = 1; 5131 } 5132 5133 spin_unlock(&block_rsv->lock); 5134 spin_unlock(&sinfo->lock); 5135 } 5136 5137 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5138 { 5139 struct btrfs_space_info *space_info; 5140 5141 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5142 fs_info->chunk_block_rsv.space_info = space_info; 5143 5144 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5145 fs_info->global_block_rsv.space_info = space_info; 5146 fs_info->delalloc_block_rsv.space_info = space_info; 5147 fs_info->trans_block_rsv.space_info = space_info; 5148 fs_info->empty_block_rsv.space_info = space_info; 5149 fs_info->delayed_block_rsv.space_info = space_info; 5150 5151 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5152 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5153 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5154 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5155 if (fs_info->quota_root) 5156 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5157 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5158 5159 update_global_block_rsv(fs_info); 5160 } 5161 5162 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5163 { 5164 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5165 (u64)-1); 5166 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5167 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5168 WARN_ON(fs_info->trans_block_rsv.size > 0); 5169 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5170 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5171 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5172 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5173 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5174 } 5175 5176 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5177 struct btrfs_root *root) 5178 { 5179 if (!trans->block_rsv) 5180 return; 5181 5182 if (!trans->bytes_reserved) 5183 return; 5184 5185 trace_btrfs_space_reservation(root->fs_info, "transaction", 5186 trans->transid, trans->bytes_reserved, 0); 5187 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5188 trans->bytes_reserved = 0; 5189 } 5190 5191 /* Can only return 0 or -ENOSPC */ 5192 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5193 struct inode *inode) 5194 { 5195 struct btrfs_root *root = BTRFS_I(inode)->root; 5196 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5197 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5198 5199 /* 5200 * We need to hold space in order to delete our orphan item once we've 5201 * added it, so this takes the reservation so we can release it later 5202 * when we are truly done with the orphan item. 5203 */ 5204 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5205 trace_btrfs_space_reservation(root->fs_info, "orphan", 5206 btrfs_ino(inode), num_bytes, 1); 5207 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5208 } 5209 5210 void btrfs_orphan_release_metadata(struct inode *inode) 5211 { 5212 struct btrfs_root *root = BTRFS_I(inode)->root; 5213 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5214 trace_btrfs_space_reservation(root->fs_info, "orphan", 5215 btrfs_ino(inode), num_bytes, 0); 5216 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5217 } 5218 5219 /* 5220 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5221 * root: the root of the parent directory 5222 * rsv: block reservation 5223 * items: the number of items that we need do reservation 5224 * qgroup_reserved: used to return the reserved size in qgroup 5225 * 5226 * This function is used to reserve the space for snapshot/subvolume 5227 * creation and deletion. Those operations are different with the 5228 * common file/directory operations, they change two fs/file trees 5229 * and root tree, the number of items that the qgroup reserves is 5230 * different with the free space reservation. So we can not use 5231 * the space reseravtion mechanism in start_transaction(). 5232 */ 5233 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5234 struct btrfs_block_rsv *rsv, 5235 int items, 5236 u64 *qgroup_reserved, 5237 bool use_global_rsv) 5238 { 5239 u64 num_bytes; 5240 int ret; 5241 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5242 5243 if (root->fs_info->quota_enabled) { 5244 /* One for parent inode, two for dir entries */ 5245 num_bytes = 3 * root->nodesize; 5246 ret = btrfs_qgroup_reserve(root, num_bytes); 5247 if (ret) 5248 return ret; 5249 } else { 5250 num_bytes = 0; 5251 } 5252 5253 *qgroup_reserved = num_bytes; 5254 5255 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5256 rsv->space_info = __find_space_info(root->fs_info, 5257 BTRFS_BLOCK_GROUP_METADATA); 5258 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5259 BTRFS_RESERVE_FLUSH_ALL); 5260 5261 if (ret == -ENOSPC && use_global_rsv) 5262 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5263 5264 if (ret) { 5265 if (*qgroup_reserved) 5266 btrfs_qgroup_free(root, *qgroup_reserved); 5267 } 5268 5269 return ret; 5270 } 5271 5272 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5273 struct btrfs_block_rsv *rsv, 5274 u64 qgroup_reserved) 5275 { 5276 btrfs_block_rsv_release(root, rsv, (u64)-1); 5277 } 5278 5279 /** 5280 * drop_outstanding_extent - drop an outstanding extent 5281 * @inode: the inode we're dropping the extent for 5282 * @num_bytes: the number of bytes we're relaseing. 5283 * 5284 * This is called when we are freeing up an outstanding extent, either called 5285 * after an error or after an extent is written. This will return the number of 5286 * reserved extents that need to be freed. This must be called with 5287 * BTRFS_I(inode)->lock held. 5288 */ 5289 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5290 { 5291 unsigned drop_inode_space = 0; 5292 unsigned dropped_extents = 0; 5293 unsigned num_extents = 0; 5294 5295 num_extents = (unsigned)div64_u64(num_bytes + 5296 BTRFS_MAX_EXTENT_SIZE - 1, 5297 BTRFS_MAX_EXTENT_SIZE); 5298 ASSERT(num_extents); 5299 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5300 BTRFS_I(inode)->outstanding_extents -= num_extents; 5301 5302 if (BTRFS_I(inode)->outstanding_extents == 0 && 5303 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5304 &BTRFS_I(inode)->runtime_flags)) 5305 drop_inode_space = 1; 5306 5307 /* 5308 * If we have more or the same amount of outsanding extents than we have 5309 * reserved then we need to leave the reserved extents count alone. 5310 */ 5311 if (BTRFS_I(inode)->outstanding_extents >= 5312 BTRFS_I(inode)->reserved_extents) 5313 return drop_inode_space; 5314 5315 dropped_extents = BTRFS_I(inode)->reserved_extents - 5316 BTRFS_I(inode)->outstanding_extents; 5317 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5318 return dropped_extents + drop_inode_space; 5319 } 5320 5321 /** 5322 * calc_csum_metadata_size - return the amount of metada space that must be 5323 * reserved/free'd for the given bytes. 5324 * @inode: the inode we're manipulating 5325 * @num_bytes: the number of bytes in question 5326 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5327 * 5328 * This adjusts the number of csum_bytes in the inode and then returns the 5329 * correct amount of metadata that must either be reserved or freed. We 5330 * calculate how many checksums we can fit into one leaf and then divide the 5331 * number of bytes that will need to be checksumed by this value to figure out 5332 * how many checksums will be required. If we are adding bytes then the number 5333 * may go up and we will return the number of additional bytes that must be 5334 * reserved. If it is going down we will return the number of bytes that must 5335 * be freed. 5336 * 5337 * This must be called with BTRFS_I(inode)->lock held. 5338 */ 5339 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5340 int reserve) 5341 { 5342 struct btrfs_root *root = BTRFS_I(inode)->root; 5343 u64 old_csums, num_csums; 5344 5345 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5346 BTRFS_I(inode)->csum_bytes == 0) 5347 return 0; 5348 5349 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5350 if (reserve) 5351 BTRFS_I(inode)->csum_bytes += num_bytes; 5352 else 5353 BTRFS_I(inode)->csum_bytes -= num_bytes; 5354 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5355 5356 /* No change, no need to reserve more */ 5357 if (old_csums == num_csums) 5358 return 0; 5359 5360 if (reserve) 5361 return btrfs_calc_trans_metadata_size(root, 5362 num_csums - old_csums); 5363 5364 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5365 } 5366 5367 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5368 { 5369 struct btrfs_root *root = BTRFS_I(inode)->root; 5370 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5371 u64 to_reserve = 0; 5372 u64 csum_bytes; 5373 unsigned nr_extents = 0; 5374 int extra_reserve = 0; 5375 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5376 int ret = 0; 5377 bool delalloc_lock = true; 5378 u64 to_free = 0; 5379 unsigned dropped; 5380 5381 /* If we are a free space inode we need to not flush since we will be in 5382 * the middle of a transaction commit. We also don't need the delalloc 5383 * mutex since we won't race with anybody. We need this mostly to make 5384 * lockdep shut its filthy mouth. 5385 */ 5386 if (btrfs_is_free_space_inode(inode)) { 5387 flush = BTRFS_RESERVE_NO_FLUSH; 5388 delalloc_lock = false; 5389 } 5390 5391 if (flush != BTRFS_RESERVE_NO_FLUSH && 5392 btrfs_transaction_in_commit(root->fs_info)) 5393 schedule_timeout(1); 5394 5395 if (delalloc_lock) 5396 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5397 5398 num_bytes = ALIGN(num_bytes, root->sectorsize); 5399 5400 spin_lock(&BTRFS_I(inode)->lock); 5401 nr_extents = (unsigned)div64_u64(num_bytes + 5402 BTRFS_MAX_EXTENT_SIZE - 1, 5403 BTRFS_MAX_EXTENT_SIZE); 5404 BTRFS_I(inode)->outstanding_extents += nr_extents; 5405 nr_extents = 0; 5406 5407 if (BTRFS_I(inode)->outstanding_extents > 5408 BTRFS_I(inode)->reserved_extents) 5409 nr_extents = BTRFS_I(inode)->outstanding_extents - 5410 BTRFS_I(inode)->reserved_extents; 5411 5412 /* 5413 * Add an item to reserve for updating the inode when we complete the 5414 * delalloc io. 5415 */ 5416 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5417 &BTRFS_I(inode)->runtime_flags)) { 5418 nr_extents++; 5419 extra_reserve = 1; 5420 } 5421 5422 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5423 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5424 csum_bytes = BTRFS_I(inode)->csum_bytes; 5425 spin_unlock(&BTRFS_I(inode)->lock); 5426 5427 if (root->fs_info->quota_enabled) { 5428 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5429 if (ret) 5430 goto out_fail; 5431 } 5432 5433 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5434 if (unlikely(ret)) { 5435 if (root->fs_info->quota_enabled) 5436 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5437 goto out_fail; 5438 } 5439 5440 spin_lock(&BTRFS_I(inode)->lock); 5441 if (extra_reserve) { 5442 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5443 &BTRFS_I(inode)->runtime_flags); 5444 nr_extents--; 5445 } 5446 BTRFS_I(inode)->reserved_extents += nr_extents; 5447 spin_unlock(&BTRFS_I(inode)->lock); 5448 5449 if (delalloc_lock) 5450 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5451 5452 if (to_reserve) 5453 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5454 btrfs_ino(inode), to_reserve, 1); 5455 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5456 5457 return 0; 5458 5459 out_fail: 5460 spin_lock(&BTRFS_I(inode)->lock); 5461 dropped = drop_outstanding_extent(inode, num_bytes); 5462 /* 5463 * If the inodes csum_bytes is the same as the original 5464 * csum_bytes then we know we haven't raced with any free()ers 5465 * so we can just reduce our inodes csum bytes and carry on. 5466 */ 5467 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5468 calc_csum_metadata_size(inode, num_bytes, 0); 5469 } else { 5470 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5471 u64 bytes; 5472 5473 /* 5474 * This is tricky, but first we need to figure out how much we 5475 * free'd from any free-ers that occured during this 5476 * reservation, so we reset ->csum_bytes to the csum_bytes 5477 * before we dropped our lock, and then call the free for the 5478 * number of bytes that were freed while we were trying our 5479 * reservation. 5480 */ 5481 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5482 BTRFS_I(inode)->csum_bytes = csum_bytes; 5483 to_free = calc_csum_metadata_size(inode, bytes, 0); 5484 5485 5486 /* 5487 * Now we need to see how much we would have freed had we not 5488 * been making this reservation and our ->csum_bytes were not 5489 * artificially inflated. 5490 */ 5491 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5492 bytes = csum_bytes - orig_csum_bytes; 5493 bytes = calc_csum_metadata_size(inode, bytes, 0); 5494 5495 /* 5496 * Now reset ->csum_bytes to what it should be. If bytes is 5497 * more than to_free then we would have free'd more space had we 5498 * not had an artificially high ->csum_bytes, so we need to free 5499 * the remainder. If bytes is the same or less then we don't 5500 * need to do anything, the other free-ers did the correct 5501 * thing. 5502 */ 5503 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5504 if (bytes > to_free) 5505 to_free = bytes - to_free; 5506 else 5507 to_free = 0; 5508 } 5509 spin_unlock(&BTRFS_I(inode)->lock); 5510 if (dropped) 5511 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5512 5513 if (to_free) { 5514 btrfs_block_rsv_release(root, block_rsv, to_free); 5515 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5516 btrfs_ino(inode), to_free, 0); 5517 } 5518 if (delalloc_lock) 5519 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5520 return ret; 5521 } 5522 5523 /** 5524 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5525 * @inode: the inode to release the reservation for 5526 * @num_bytes: the number of bytes we're releasing 5527 * 5528 * This will release the metadata reservation for an inode. This can be called 5529 * once we complete IO for a given set of bytes to release their metadata 5530 * reservations. 5531 */ 5532 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5533 { 5534 struct btrfs_root *root = BTRFS_I(inode)->root; 5535 u64 to_free = 0; 5536 unsigned dropped; 5537 5538 num_bytes = ALIGN(num_bytes, root->sectorsize); 5539 spin_lock(&BTRFS_I(inode)->lock); 5540 dropped = drop_outstanding_extent(inode, num_bytes); 5541 5542 if (num_bytes) 5543 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5544 spin_unlock(&BTRFS_I(inode)->lock); 5545 if (dropped > 0) 5546 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5547 5548 if (btrfs_test_is_dummy_root(root)) 5549 return; 5550 5551 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5552 btrfs_ino(inode), to_free, 0); 5553 5554 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5555 to_free); 5556 } 5557 5558 /** 5559 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5560 * @inode: inode we're writing to 5561 * @num_bytes: the number of bytes we want to allocate 5562 * 5563 * This will do the following things 5564 * 5565 * o reserve space in the data space info for num_bytes 5566 * o reserve space in the metadata space info based on number of outstanding 5567 * extents and how much csums will be needed 5568 * o add to the inodes ->delalloc_bytes 5569 * o add it to the fs_info's delalloc inodes list. 5570 * 5571 * This will return 0 for success and -ENOSPC if there is no space left. 5572 */ 5573 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5574 { 5575 int ret; 5576 5577 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5578 if (ret) 5579 return ret; 5580 5581 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5582 if (ret) { 5583 btrfs_free_reserved_data_space(inode, num_bytes); 5584 return ret; 5585 } 5586 5587 return 0; 5588 } 5589 5590 /** 5591 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5592 * @inode: inode we're releasing space for 5593 * @num_bytes: the number of bytes we want to free up 5594 * 5595 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5596 * called in the case that we don't need the metadata AND data reservations 5597 * anymore. So if there is an error or we insert an inline extent. 5598 * 5599 * This function will release the metadata space that was not used and will 5600 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5601 * list if there are no delalloc bytes left. 5602 */ 5603 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5604 { 5605 btrfs_delalloc_release_metadata(inode, num_bytes); 5606 btrfs_free_reserved_data_space(inode, num_bytes); 5607 } 5608 5609 static int update_block_group(struct btrfs_trans_handle *trans, 5610 struct btrfs_root *root, u64 bytenr, 5611 u64 num_bytes, int alloc) 5612 { 5613 struct btrfs_block_group_cache *cache = NULL; 5614 struct btrfs_fs_info *info = root->fs_info; 5615 u64 total = num_bytes; 5616 u64 old_val; 5617 u64 byte_in_group; 5618 int factor; 5619 5620 /* block accounting for super block */ 5621 spin_lock(&info->delalloc_root_lock); 5622 old_val = btrfs_super_bytes_used(info->super_copy); 5623 if (alloc) 5624 old_val += num_bytes; 5625 else 5626 old_val -= num_bytes; 5627 btrfs_set_super_bytes_used(info->super_copy, old_val); 5628 spin_unlock(&info->delalloc_root_lock); 5629 5630 while (total) { 5631 cache = btrfs_lookup_block_group(info, bytenr); 5632 if (!cache) 5633 return -ENOENT; 5634 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5635 BTRFS_BLOCK_GROUP_RAID1 | 5636 BTRFS_BLOCK_GROUP_RAID10)) 5637 factor = 2; 5638 else 5639 factor = 1; 5640 /* 5641 * If this block group has free space cache written out, we 5642 * need to make sure to load it if we are removing space. This 5643 * is because we need the unpinning stage to actually add the 5644 * space back to the block group, otherwise we will leak space. 5645 */ 5646 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5647 cache_block_group(cache, 1); 5648 5649 byte_in_group = bytenr - cache->key.objectid; 5650 WARN_ON(byte_in_group > cache->key.offset); 5651 5652 spin_lock(&cache->space_info->lock); 5653 spin_lock(&cache->lock); 5654 5655 if (btrfs_test_opt(root, SPACE_CACHE) && 5656 cache->disk_cache_state < BTRFS_DC_CLEAR) 5657 cache->disk_cache_state = BTRFS_DC_CLEAR; 5658 5659 old_val = btrfs_block_group_used(&cache->item); 5660 num_bytes = min(total, cache->key.offset - byte_in_group); 5661 if (alloc) { 5662 old_val += num_bytes; 5663 btrfs_set_block_group_used(&cache->item, old_val); 5664 cache->reserved -= num_bytes; 5665 cache->space_info->bytes_reserved -= num_bytes; 5666 cache->space_info->bytes_used += num_bytes; 5667 cache->space_info->disk_used += num_bytes * factor; 5668 spin_unlock(&cache->lock); 5669 spin_unlock(&cache->space_info->lock); 5670 } else { 5671 old_val -= num_bytes; 5672 btrfs_set_block_group_used(&cache->item, old_val); 5673 cache->pinned += num_bytes; 5674 cache->space_info->bytes_pinned += num_bytes; 5675 cache->space_info->bytes_used -= num_bytes; 5676 cache->space_info->disk_used -= num_bytes * factor; 5677 spin_unlock(&cache->lock); 5678 spin_unlock(&cache->space_info->lock); 5679 5680 set_extent_dirty(info->pinned_extents, 5681 bytenr, bytenr + num_bytes - 1, 5682 GFP_NOFS | __GFP_NOFAIL); 5683 /* 5684 * No longer have used bytes in this block group, queue 5685 * it for deletion. 5686 */ 5687 if (old_val == 0) { 5688 spin_lock(&info->unused_bgs_lock); 5689 if (list_empty(&cache->bg_list)) { 5690 btrfs_get_block_group(cache); 5691 list_add_tail(&cache->bg_list, 5692 &info->unused_bgs); 5693 } 5694 spin_unlock(&info->unused_bgs_lock); 5695 } 5696 } 5697 5698 spin_lock(&trans->transaction->dirty_bgs_lock); 5699 if (list_empty(&cache->dirty_list)) { 5700 list_add_tail(&cache->dirty_list, 5701 &trans->transaction->dirty_bgs); 5702 trans->transaction->num_dirty_bgs++; 5703 btrfs_get_block_group(cache); 5704 } 5705 spin_unlock(&trans->transaction->dirty_bgs_lock); 5706 5707 btrfs_put_block_group(cache); 5708 total -= num_bytes; 5709 bytenr += num_bytes; 5710 } 5711 return 0; 5712 } 5713 5714 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5715 { 5716 struct btrfs_block_group_cache *cache; 5717 u64 bytenr; 5718 5719 spin_lock(&root->fs_info->block_group_cache_lock); 5720 bytenr = root->fs_info->first_logical_byte; 5721 spin_unlock(&root->fs_info->block_group_cache_lock); 5722 5723 if (bytenr < (u64)-1) 5724 return bytenr; 5725 5726 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5727 if (!cache) 5728 return 0; 5729 5730 bytenr = cache->key.objectid; 5731 btrfs_put_block_group(cache); 5732 5733 return bytenr; 5734 } 5735 5736 static int pin_down_extent(struct btrfs_root *root, 5737 struct btrfs_block_group_cache *cache, 5738 u64 bytenr, u64 num_bytes, int reserved) 5739 { 5740 spin_lock(&cache->space_info->lock); 5741 spin_lock(&cache->lock); 5742 cache->pinned += num_bytes; 5743 cache->space_info->bytes_pinned += num_bytes; 5744 if (reserved) { 5745 cache->reserved -= num_bytes; 5746 cache->space_info->bytes_reserved -= num_bytes; 5747 } 5748 spin_unlock(&cache->lock); 5749 spin_unlock(&cache->space_info->lock); 5750 5751 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5752 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5753 if (reserved) 5754 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5755 return 0; 5756 } 5757 5758 /* 5759 * this function must be called within transaction 5760 */ 5761 int btrfs_pin_extent(struct btrfs_root *root, 5762 u64 bytenr, u64 num_bytes, int reserved) 5763 { 5764 struct btrfs_block_group_cache *cache; 5765 5766 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5767 BUG_ON(!cache); /* Logic error */ 5768 5769 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5770 5771 btrfs_put_block_group(cache); 5772 return 0; 5773 } 5774 5775 /* 5776 * this function must be called within transaction 5777 */ 5778 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5779 u64 bytenr, u64 num_bytes) 5780 { 5781 struct btrfs_block_group_cache *cache; 5782 int ret; 5783 5784 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5785 if (!cache) 5786 return -EINVAL; 5787 5788 /* 5789 * pull in the free space cache (if any) so that our pin 5790 * removes the free space from the cache. We have load_only set 5791 * to one because the slow code to read in the free extents does check 5792 * the pinned extents. 5793 */ 5794 cache_block_group(cache, 1); 5795 5796 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5797 5798 /* remove us from the free space cache (if we're there at all) */ 5799 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5800 btrfs_put_block_group(cache); 5801 return ret; 5802 } 5803 5804 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5805 { 5806 int ret; 5807 struct btrfs_block_group_cache *block_group; 5808 struct btrfs_caching_control *caching_ctl; 5809 5810 block_group = btrfs_lookup_block_group(root->fs_info, start); 5811 if (!block_group) 5812 return -EINVAL; 5813 5814 cache_block_group(block_group, 0); 5815 caching_ctl = get_caching_control(block_group); 5816 5817 if (!caching_ctl) { 5818 /* Logic error */ 5819 BUG_ON(!block_group_cache_done(block_group)); 5820 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5821 } else { 5822 mutex_lock(&caching_ctl->mutex); 5823 5824 if (start >= caching_ctl->progress) { 5825 ret = add_excluded_extent(root, start, num_bytes); 5826 } else if (start + num_bytes <= caching_ctl->progress) { 5827 ret = btrfs_remove_free_space(block_group, 5828 start, num_bytes); 5829 } else { 5830 num_bytes = caching_ctl->progress - start; 5831 ret = btrfs_remove_free_space(block_group, 5832 start, num_bytes); 5833 if (ret) 5834 goto out_lock; 5835 5836 num_bytes = (start + num_bytes) - 5837 caching_ctl->progress; 5838 start = caching_ctl->progress; 5839 ret = add_excluded_extent(root, start, num_bytes); 5840 } 5841 out_lock: 5842 mutex_unlock(&caching_ctl->mutex); 5843 put_caching_control(caching_ctl); 5844 } 5845 btrfs_put_block_group(block_group); 5846 return ret; 5847 } 5848 5849 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5850 struct extent_buffer *eb) 5851 { 5852 struct btrfs_file_extent_item *item; 5853 struct btrfs_key key; 5854 int found_type; 5855 int i; 5856 5857 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5858 return 0; 5859 5860 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5861 btrfs_item_key_to_cpu(eb, &key, i); 5862 if (key.type != BTRFS_EXTENT_DATA_KEY) 5863 continue; 5864 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5865 found_type = btrfs_file_extent_type(eb, item); 5866 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5867 continue; 5868 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5869 continue; 5870 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5871 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5872 __exclude_logged_extent(log, key.objectid, key.offset); 5873 } 5874 5875 return 0; 5876 } 5877 5878 /** 5879 * btrfs_update_reserved_bytes - update the block_group and space info counters 5880 * @cache: The cache we are manipulating 5881 * @num_bytes: The number of bytes in question 5882 * @reserve: One of the reservation enums 5883 * @delalloc: The blocks are allocated for the delalloc write 5884 * 5885 * This is called by the allocator when it reserves space, or by somebody who is 5886 * freeing space that was never actually used on disk. For example if you 5887 * reserve some space for a new leaf in transaction A and before transaction A 5888 * commits you free that leaf, you call this with reserve set to 0 in order to 5889 * clear the reservation. 5890 * 5891 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5892 * ENOSPC accounting. For data we handle the reservation through clearing the 5893 * delalloc bits in the io_tree. We have to do this since we could end up 5894 * allocating less disk space for the amount of data we have reserved in the 5895 * case of compression. 5896 * 5897 * If this is a reservation and the block group has become read only we cannot 5898 * make the reservation and return -EAGAIN, otherwise this function always 5899 * succeeds. 5900 */ 5901 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5902 u64 num_bytes, int reserve, int delalloc) 5903 { 5904 struct btrfs_space_info *space_info = cache->space_info; 5905 int ret = 0; 5906 5907 spin_lock(&space_info->lock); 5908 spin_lock(&cache->lock); 5909 if (reserve != RESERVE_FREE) { 5910 if (cache->ro) { 5911 ret = -EAGAIN; 5912 } else { 5913 cache->reserved += num_bytes; 5914 space_info->bytes_reserved += num_bytes; 5915 if (reserve == RESERVE_ALLOC) { 5916 trace_btrfs_space_reservation(cache->fs_info, 5917 "space_info", space_info->flags, 5918 num_bytes, 0); 5919 space_info->bytes_may_use -= num_bytes; 5920 } 5921 5922 if (delalloc) 5923 cache->delalloc_bytes += num_bytes; 5924 } 5925 } else { 5926 if (cache->ro) 5927 space_info->bytes_readonly += num_bytes; 5928 cache->reserved -= num_bytes; 5929 space_info->bytes_reserved -= num_bytes; 5930 5931 if (delalloc) 5932 cache->delalloc_bytes -= num_bytes; 5933 } 5934 spin_unlock(&cache->lock); 5935 spin_unlock(&space_info->lock); 5936 return ret; 5937 } 5938 5939 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5940 struct btrfs_root *root) 5941 { 5942 struct btrfs_fs_info *fs_info = root->fs_info; 5943 struct btrfs_caching_control *next; 5944 struct btrfs_caching_control *caching_ctl; 5945 struct btrfs_block_group_cache *cache; 5946 5947 down_write(&fs_info->commit_root_sem); 5948 5949 list_for_each_entry_safe(caching_ctl, next, 5950 &fs_info->caching_block_groups, list) { 5951 cache = caching_ctl->block_group; 5952 if (block_group_cache_done(cache)) { 5953 cache->last_byte_to_unpin = (u64)-1; 5954 list_del_init(&caching_ctl->list); 5955 put_caching_control(caching_ctl); 5956 } else { 5957 cache->last_byte_to_unpin = caching_ctl->progress; 5958 } 5959 } 5960 5961 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5962 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5963 else 5964 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5965 5966 up_write(&fs_info->commit_root_sem); 5967 5968 update_global_block_rsv(fs_info); 5969 } 5970 5971 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 5972 const bool return_free_space) 5973 { 5974 struct btrfs_fs_info *fs_info = root->fs_info; 5975 struct btrfs_block_group_cache *cache = NULL; 5976 struct btrfs_space_info *space_info; 5977 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5978 u64 len; 5979 bool readonly; 5980 5981 while (start <= end) { 5982 readonly = false; 5983 if (!cache || 5984 start >= cache->key.objectid + cache->key.offset) { 5985 if (cache) 5986 btrfs_put_block_group(cache); 5987 cache = btrfs_lookup_block_group(fs_info, start); 5988 BUG_ON(!cache); /* Logic error */ 5989 } 5990 5991 len = cache->key.objectid + cache->key.offset - start; 5992 len = min(len, end + 1 - start); 5993 5994 if (start < cache->last_byte_to_unpin) { 5995 len = min(len, cache->last_byte_to_unpin - start); 5996 if (return_free_space) 5997 btrfs_add_free_space(cache, start, len); 5998 } 5999 6000 start += len; 6001 space_info = cache->space_info; 6002 6003 spin_lock(&space_info->lock); 6004 spin_lock(&cache->lock); 6005 cache->pinned -= len; 6006 space_info->bytes_pinned -= len; 6007 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6008 if (cache->ro) { 6009 space_info->bytes_readonly += len; 6010 readonly = true; 6011 } 6012 spin_unlock(&cache->lock); 6013 if (!readonly && global_rsv->space_info == space_info) { 6014 spin_lock(&global_rsv->lock); 6015 if (!global_rsv->full) { 6016 len = min(len, global_rsv->size - 6017 global_rsv->reserved); 6018 global_rsv->reserved += len; 6019 space_info->bytes_may_use += len; 6020 if (global_rsv->reserved >= global_rsv->size) 6021 global_rsv->full = 1; 6022 } 6023 spin_unlock(&global_rsv->lock); 6024 } 6025 spin_unlock(&space_info->lock); 6026 } 6027 6028 if (cache) 6029 btrfs_put_block_group(cache); 6030 return 0; 6031 } 6032 6033 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6034 struct btrfs_root *root) 6035 { 6036 struct btrfs_fs_info *fs_info = root->fs_info; 6037 struct extent_io_tree *unpin; 6038 u64 start; 6039 u64 end; 6040 int ret; 6041 6042 if (trans->aborted) 6043 return 0; 6044 6045 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6046 unpin = &fs_info->freed_extents[1]; 6047 else 6048 unpin = &fs_info->freed_extents[0]; 6049 6050 while (1) { 6051 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6052 ret = find_first_extent_bit(unpin, 0, &start, &end, 6053 EXTENT_DIRTY, NULL); 6054 if (ret) { 6055 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6056 break; 6057 } 6058 6059 if (btrfs_test_opt(root, DISCARD)) 6060 ret = btrfs_discard_extent(root, start, 6061 end + 1 - start, NULL); 6062 6063 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6064 unpin_extent_range(root, start, end, true); 6065 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6066 cond_resched(); 6067 } 6068 6069 return 0; 6070 } 6071 6072 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6073 u64 owner, u64 root_objectid) 6074 { 6075 struct btrfs_space_info *space_info; 6076 u64 flags; 6077 6078 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6079 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6080 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6081 else 6082 flags = BTRFS_BLOCK_GROUP_METADATA; 6083 } else { 6084 flags = BTRFS_BLOCK_GROUP_DATA; 6085 } 6086 6087 space_info = __find_space_info(fs_info, flags); 6088 BUG_ON(!space_info); /* Logic bug */ 6089 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6090 } 6091 6092 6093 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6094 struct btrfs_root *root, 6095 u64 bytenr, u64 num_bytes, u64 parent, 6096 u64 root_objectid, u64 owner_objectid, 6097 u64 owner_offset, int refs_to_drop, 6098 struct btrfs_delayed_extent_op *extent_op, 6099 int no_quota) 6100 { 6101 struct btrfs_key key; 6102 struct btrfs_path *path; 6103 struct btrfs_fs_info *info = root->fs_info; 6104 struct btrfs_root *extent_root = info->extent_root; 6105 struct extent_buffer *leaf; 6106 struct btrfs_extent_item *ei; 6107 struct btrfs_extent_inline_ref *iref; 6108 int ret; 6109 int is_data; 6110 int extent_slot = 0; 6111 int found_extent = 0; 6112 int num_to_del = 1; 6113 u32 item_size; 6114 u64 refs; 6115 int last_ref = 0; 6116 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL; 6117 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6118 SKINNY_METADATA); 6119 6120 if (!info->quota_enabled || !is_fstree(root_objectid)) 6121 no_quota = 1; 6122 6123 path = btrfs_alloc_path(); 6124 if (!path) 6125 return -ENOMEM; 6126 6127 path->reada = 1; 6128 path->leave_spinning = 1; 6129 6130 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6131 BUG_ON(!is_data && refs_to_drop != 1); 6132 6133 if (is_data) 6134 skinny_metadata = 0; 6135 6136 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6137 bytenr, num_bytes, parent, 6138 root_objectid, owner_objectid, 6139 owner_offset); 6140 if (ret == 0) { 6141 extent_slot = path->slots[0]; 6142 while (extent_slot >= 0) { 6143 btrfs_item_key_to_cpu(path->nodes[0], &key, 6144 extent_slot); 6145 if (key.objectid != bytenr) 6146 break; 6147 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6148 key.offset == num_bytes) { 6149 found_extent = 1; 6150 break; 6151 } 6152 if (key.type == BTRFS_METADATA_ITEM_KEY && 6153 key.offset == owner_objectid) { 6154 found_extent = 1; 6155 break; 6156 } 6157 if (path->slots[0] - extent_slot > 5) 6158 break; 6159 extent_slot--; 6160 } 6161 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6162 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6163 if (found_extent && item_size < sizeof(*ei)) 6164 found_extent = 0; 6165 #endif 6166 if (!found_extent) { 6167 BUG_ON(iref); 6168 ret = remove_extent_backref(trans, extent_root, path, 6169 NULL, refs_to_drop, 6170 is_data, &last_ref); 6171 if (ret) { 6172 btrfs_abort_transaction(trans, extent_root, ret); 6173 goto out; 6174 } 6175 btrfs_release_path(path); 6176 path->leave_spinning = 1; 6177 6178 key.objectid = bytenr; 6179 key.type = BTRFS_EXTENT_ITEM_KEY; 6180 key.offset = num_bytes; 6181 6182 if (!is_data && skinny_metadata) { 6183 key.type = BTRFS_METADATA_ITEM_KEY; 6184 key.offset = owner_objectid; 6185 } 6186 6187 ret = btrfs_search_slot(trans, extent_root, 6188 &key, path, -1, 1); 6189 if (ret > 0 && skinny_metadata && path->slots[0]) { 6190 /* 6191 * Couldn't find our skinny metadata item, 6192 * see if we have ye olde extent item. 6193 */ 6194 path->slots[0]--; 6195 btrfs_item_key_to_cpu(path->nodes[0], &key, 6196 path->slots[0]); 6197 if (key.objectid == bytenr && 6198 key.type == BTRFS_EXTENT_ITEM_KEY && 6199 key.offset == num_bytes) 6200 ret = 0; 6201 } 6202 6203 if (ret > 0 && skinny_metadata) { 6204 skinny_metadata = false; 6205 key.objectid = bytenr; 6206 key.type = BTRFS_EXTENT_ITEM_KEY; 6207 key.offset = num_bytes; 6208 btrfs_release_path(path); 6209 ret = btrfs_search_slot(trans, extent_root, 6210 &key, path, -1, 1); 6211 } 6212 6213 if (ret) { 6214 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6215 ret, bytenr); 6216 if (ret > 0) 6217 btrfs_print_leaf(extent_root, 6218 path->nodes[0]); 6219 } 6220 if (ret < 0) { 6221 btrfs_abort_transaction(trans, extent_root, ret); 6222 goto out; 6223 } 6224 extent_slot = path->slots[0]; 6225 } 6226 } else if (WARN_ON(ret == -ENOENT)) { 6227 btrfs_print_leaf(extent_root, path->nodes[0]); 6228 btrfs_err(info, 6229 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6230 bytenr, parent, root_objectid, owner_objectid, 6231 owner_offset); 6232 btrfs_abort_transaction(trans, extent_root, ret); 6233 goto out; 6234 } else { 6235 btrfs_abort_transaction(trans, extent_root, ret); 6236 goto out; 6237 } 6238 6239 leaf = path->nodes[0]; 6240 item_size = btrfs_item_size_nr(leaf, extent_slot); 6241 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6242 if (item_size < sizeof(*ei)) { 6243 BUG_ON(found_extent || extent_slot != path->slots[0]); 6244 ret = convert_extent_item_v0(trans, extent_root, path, 6245 owner_objectid, 0); 6246 if (ret < 0) { 6247 btrfs_abort_transaction(trans, extent_root, ret); 6248 goto out; 6249 } 6250 6251 btrfs_release_path(path); 6252 path->leave_spinning = 1; 6253 6254 key.objectid = bytenr; 6255 key.type = BTRFS_EXTENT_ITEM_KEY; 6256 key.offset = num_bytes; 6257 6258 ret = btrfs_search_slot(trans, extent_root, &key, path, 6259 -1, 1); 6260 if (ret) { 6261 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6262 ret, bytenr); 6263 btrfs_print_leaf(extent_root, path->nodes[0]); 6264 } 6265 if (ret < 0) { 6266 btrfs_abort_transaction(trans, extent_root, ret); 6267 goto out; 6268 } 6269 6270 extent_slot = path->slots[0]; 6271 leaf = path->nodes[0]; 6272 item_size = btrfs_item_size_nr(leaf, extent_slot); 6273 } 6274 #endif 6275 BUG_ON(item_size < sizeof(*ei)); 6276 ei = btrfs_item_ptr(leaf, extent_slot, 6277 struct btrfs_extent_item); 6278 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6279 key.type == BTRFS_EXTENT_ITEM_KEY) { 6280 struct btrfs_tree_block_info *bi; 6281 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6282 bi = (struct btrfs_tree_block_info *)(ei + 1); 6283 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6284 } 6285 6286 refs = btrfs_extent_refs(leaf, ei); 6287 if (refs < refs_to_drop) { 6288 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6289 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6290 ret = -EINVAL; 6291 btrfs_abort_transaction(trans, extent_root, ret); 6292 goto out; 6293 } 6294 refs -= refs_to_drop; 6295 6296 if (refs > 0) { 6297 type = BTRFS_QGROUP_OPER_SUB_SHARED; 6298 if (extent_op) 6299 __run_delayed_extent_op(extent_op, leaf, ei); 6300 /* 6301 * In the case of inline back ref, reference count will 6302 * be updated by remove_extent_backref 6303 */ 6304 if (iref) { 6305 BUG_ON(!found_extent); 6306 } else { 6307 btrfs_set_extent_refs(leaf, ei, refs); 6308 btrfs_mark_buffer_dirty(leaf); 6309 } 6310 if (found_extent) { 6311 ret = remove_extent_backref(trans, extent_root, path, 6312 iref, refs_to_drop, 6313 is_data, &last_ref); 6314 if (ret) { 6315 btrfs_abort_transaction(trans, extent_root, ret); 6316 goto out; 6317 } 6318 } 6319 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6320 root_objectid); 6321 } else { 6322 if (found_extent) { 6323 BUG_ON(is_data && refs_to_drop != 6324 extent_data_ref_count(root, path, iref)); 6325 if (iref) { 6326 BUG_ON(path->slots[0] != extent_slot); 6327 } else { 6328 BUG_ON(path->slots[0] != extent_slot + 1); 6329 path->slots[0] = extent_slot; 6330 num_to_del = 2; 6331 } 6332 } 6333 6334 last_ref = 1; 6335 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6336 num_to_del); 6337 if (ret) { 6338 btrfs_abort_transaction(trans, extent_root, ret); 6339 goto out; 6340 } 6341 btrfs_release_path(path); 6342 6343 if (is_data) { 6344 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6345 if (ret) { 6346 btrfs_abort_transaction(trans, extent_root, ret); 6347 goto out; 6348 } 6349 } 6350 6351 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6352 if (ret) { 6353 btrfs_abort_transaction(trans, extent_root, ret); 6354 goto out; 6355 } 6356 } 6357 btrfs_release_path(path); 6358 6359 /* Deal with the quota accounting */ 6360 if (!ret && last_ref && !no_quota) { 6361 int mod_seq = 0; 6362 6363 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID && 6364 type == BTRFS_QGROUP_OPER_SUB_SHARED) 6365 mod_seq = 1; 6366 6367 ret = btrfs_qgroup_record_ref(trans, info, root_objectid, 6368 bytenr, num_bytes, type, 6369 mod_seq); 6370 } 6371 out: 6372 btrfs_free_path(path); 6373 return ret; 6374 } 6375 6376 /* 6377 * when we free an block, it is possible (and likely) that we free the last 6378 * delayed ref for that extent as well. This searches the delayed ref tree for 6379 * a given extent, and if there are no other delayed refs to be processed, it 6380 * removes it from the tree. 6381 */ 6382 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6383 struct btrfs_root *root, u64 bytenr) 6384 { 6385 struct btrfs_delayed_ref_head *head; 6386 struct btrfs_delayed_ref_root *delayed_refs; 6387 int ret = 0; 6388 6389 delayed_refs = &trans->transaction->delayed_refs; 6390 spin_lock(&delayed_refs->lock); 6391 head = btrfs_find_delayed_ref_head(trans, bytenr); 6392 if (!head) 6393 goto out_delayed_unlock; 6394 6395 spin_lock(&head->lock); 6396 if (rb_first(&head->ref_root)) 6397 goto out; 6398 6399 if (head->extent_op) { 6400 if (!head->must_insert_reserved) 6401 goto out; 6402 btrfs_free_delayed_extent_op(head->extent_op); 6403 head->extent_op = NULL; 6404 } 6405 6406 /* 6407 * waiting for the lock here would deadlock. If someone else has it 6408 * locked they are already in the process of dropping it anyway 6409 */ 6410 if (!mutex_trylock(&head->mutex)) 6411 goto out; 6412 6413 /* 6414 * at this point we have a head with no other entries. Go 6415 * ahead and process it. 6416 */ 6417 head->node.in_tree = 0; 6418 rb_erase(&head->href_node, &delayed_refs->href_root); 6419 6420 atomic_dec(&delayed_refs->num_entries); 6421 6422 /* 6423 * we don't take a ref on the node because we're removing it from the 6424 * tree, so we just steal the ref the tree was holding. 6425 */ 6426 delayed_refs->num_heads--; 6427 if (head->processing == 0) 6428 delayed_refs->num_heads_ready--; 6429 head->processing = 0; 6430 spin_unlock(&head->lock); 6431 spin_unlock(&delayed_refs->lock); 6432 6433 BUG_ON(head->extent_op); 6434 if (head->must_insert_reserved) 6435 ret = 1; 6436 6437 mutex_unlock(&head->mutex); 6438 btrfs_put_delayed_ref(&head->node); 6439 return ret; 6440 out: 6441 spin_unlock(&head->lock); 6442 6443 out_delayed_unlock: 6444 spin_unlock(&delayed_refs->lock); 6445 return 0; 6446 } 6447 6448 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6449 struct btrfs_root *root, 6450 struct extent_buffer *buf, 6451 u64 parent, int last_ref) 6452 { 6453 int pin = 1; 6454 int ret; 6455 6456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6457 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6458 buf->start, buf->len, 6459 parent, root->root_key.objectid, 6460 btrfs_header_level(buf), 6461 BTRFS_DROP_DELAYED_REF, NULL, 0); 6462 BUG_ON(ret); /* -ENOMEM */ 6463 } 6464 6465 if (!last_ref) 6466 return; 6467 6468 if (btrfs_header_generation(buf) == trans->transid) { 6469 struct btrfs_block_group_cache *cache; 6470 6471 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6472 ret = check_ref_cleanup(trans, root, buf->start); 6473 if (!ret) 6474 goto out; 6475 } 6476 6477 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6478 6479 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6480 pin_down_extent(root, cache, buf->start, buf->len, 1); 6481 btrfs_put_block_group(cache); 6482 goto out; 6483 } 6484 6485 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6486 6487 btrfs_add_free_space(cache, buf->start, buf->len); 6488 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6489 btrfs_put_block_group(cache); 6490 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6491 pin = 0; 6492 } 6493 out: 6494 if (pin) 6495 add_pinned_bytes(root->fs_info, buf->len, 6496 btrfs_header_level(buf), 6497 root->root_key.objectid); 6498 6499 /* 6500 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6501 * anymore. 6502 */ 6503 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6504 } 6505 6506 /* Can return -ENOMEM */ 6507 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6508 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6509 u64 owner, u64 offset, int no_quota) 6510 { 6511 int ret; 6512 struct btrfs_fs_info *fs_info = root->fs_info; 6513 6514 if (btrfs_test_is_dummy_root(root)) 6515 return 0; 6516 6517 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6518 6519 /* 6520 * tree log blocks never actually go into the extent allocation 6521 * tree, just update pinning info and exit early. 6522 */ 6523 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6524 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6525 /* unlocks the pinned mutex */ 6526 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6527 ret = 0; 6528 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6529 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6530 num_bytes, 6531 parent, root_objectid, (int)owner, 6532 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6533 } else { 6534 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6535 num_bytes, 6536 parent, root_objectid, owner, 6537 offset, BTRFS_DROP_DELAYED_REF, 6538 NULL, no_quota); 6539 } 6540 return ret; 6541 } 6542 6543 /* 6544 * when we wait for progress in the block group caching, its because 6545 * our allocation attempt failed at least once. So, we must sleep 6546 * and let some progress happen before we try again. 6547 * 6548 * This function will sleep at least once waiting for new free space to 6549 * show up, and then it will check the block group free space numbers 6550 * for our min num_bytes. Another option is to have it go ahead 6551 * and look in the rbtree for a free extent of a given size, but this 6552 * is a good start. 6553 * 6554 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6555 * any of the information in this block group. 6556 */ 6557 static noinline void 6558 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6559 u64 num_bytes) 6560 { 6561 struct btrfs_caching_control *caching_ctl; 6562 6563 caching_ctl = get_caching_control(cache); 6564 if (!caching_ctl) 6565 return; 6566 6567 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6568 (cache->free_space_ctl->free_space >= num_bytes)); 6569 6570 put_caching_control(caching_ctl); 6571 } 6572 6573 static noinline int 6574 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6575 { 6576 struct btrfs_caching_control *caching_ctl; 6577 int ret = 0; 6578 6579 caching_ctl = get_caching_control(cache); 6580 if (!caching_ctl) 6581 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6582 6583 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6584 if (cache->cached == BTRFS_CACHE_ERROR) 6585 ret = -EIO; 6586 put_caching_control(caching_ctl); 6587 return ret; 6588 } 6589 6590 int __get_raid_index(u64 flags) 6591 { 6592 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6593 return BTRFS_RAID_RAID10; 6594 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6595 return BTRFS_RAID_RAID1; 6596 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6597 return BTRFS_RAID_DUP; 6598 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6599 return BTRFS_RAID_RAID0; 6600 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6601 return BTRFS_RAID_RAID5; 6602 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6603 return BTRFS_RAID_RAID6; 6604 6605 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6606 } 6607 6608 int get_block_group_index(struct btrfs_block_group_cache *cache) 6609 { 6610 return __get_raid_index(cache->flags); 6611 } 6612 6613 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6614 [BTRFS_RAID_RAID10] = "raid10", 6615 [BTRFS_RAID_RAID1] = "raid1", 6616 [BTRFS_RAID_DUP] = "dup", 6617 [BTRFS_RAID_RAID0] = "raid0", 6618 [BTRFS_RAID_SINGLE] = "single", 6619 [BTRFS_RAID_RAID5] = "raid5", 6620 [BTRFS_RAID_RAID6] = "raid6", 6621 }; 6622 6623 static const char *get_raid_name(enum btrfs_raid_types type) 6624 { 6625 if (type >= BTRFS_NR_RAID_TYPES) 6626 return NULL; 6627 6628 return btrfs_raid_type_names[type]; 6629 } 6630 6631 enum btrfs_loop_type { 6632 LOOP_CACHING_NOWAIT = 0, 6633 LOOP_CACHING_WAIT = 1, 6634 LOOP_ALLOC_CHUNK = 2, 6635 LOOP_NO_EMPTY_SIZE = 3, 6636 }; 6637 6638 static inline void 6639 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6640 int delalloc) 6641 { 6642 if (delalloc) 6643 down_read(&cache->data_rwsem); 6644 } 6645 6646 static inline void 6647 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6648 int delalloc) 6649 { 6650 btrfs_get_block_group(cache); 6651 if (delalloc) 6652 down_read(&cache->data_rwsem); 6653 } 6654 6655 static struct btrfs_block_group_cache * 6656 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6657 struct btrfs_free_cluster *cluster, 6658 int delalloc) 6659 { 6660 struct btrfs_block_group_cache *used_bg; 6661 bool locked = false; 6662 again: 6663 spin_lock(&cluster->refill_lock); 6664 if (locked) { 6665 if (used_bg == cluster->block_group) 6666 return used_bg; 6667 6668 up_read(&used_bg->data_rwsem); 6669 btrfs_put_block_group(used_bg); 6670 } 6671 6672 used_bg = cluster->block_group; 6673 if (!used_bg) 6674 return NULL; 6675 6676 if (used_bg == block_group) 6677 return used_bg; 6678 6679 btrfs_get_block_group(used_bg); 6680 6681 if (!delalloc) 6682 return used_bg; 6683 6684 if (down_read_trylock(&used_bg->data_rwsem)) 6685 return used_bg; 6686 6687 spin_unlock(&cluster->refill_lock); 6688 down_read(&used_bg->data_rwsem); 6689 locked = true; 6690 goto again; 6691 } 6692 6693 static inline void 6694 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6695 int delalloc) 6696 { 6697 if (delalloc) 6698 up_read(&cache->data_rwsem); 6699 btrfs_put_block_group(cache); 6700 } 6701 6702 /* 6703 * walks the btree of allocated extents and find a hole of a given size. 6704 * The key ins is changed to record the hole: 6705 * ins->objectid == start position 6706 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6707 * ins->offset == the size of the hole. 6708 * Any available blocks before search_start are skipped. 6709 * 6710 * If there is no suitable free space, we will record the max size of 6711 * the free space extent currently. 6712 */ 6713 static noinline int find_free_extent(struct btrfs_root *orig_root, 6714 u64 num_bytes, u64 empty_size, 6715 u64 hint_byte, struct btrfs_key *ins, 6716 u64 flags, int delalloc) 6717 { 6718 int ret = 0; 6719 struct btrfs_root *root = orig_root->fs_info->extent_root; 6720 struct btrfs_free_cluster *last_ptr = NULL; 6721 struct btrfs_block_group_cache *block_group = NULL; 6722 u64 search_start = 0; 6723 u64 max_extent_size = 0; 6724 int empty_cluster = 2 * 1024 * 1024; 6725 struct btrfs_space_info *space_info; 6726 int loop = 0; 6727 int index = __get_raid_index(flags); 6728 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6729 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6730 bool failed_cluster_refill = false; 6731 bool failed_alloc = false; 6732 bool use_cluster = true; 6733 bool have_caching_bg = false; 6734 6735 WARN_ON(num_bytes < root->sectorsize); 6736 ins->type = BTRFS_EXTENT_ITEM_KEY; 6737 ins->objectid = 0; 6738 ins->offset = 0; 6739 6740 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6741 6742 space_info = __find_space_info(root->fs_info, flags); 6743 if (!space_info) { 6744 btrfs_err(root->fs_info, "No space info for %llu", flags); 6745 return -ENOSPC; 6746 } 6747 6748 /* 6749 * If the space info is for both data and metadata it means we have a 6750 * small filesystem and we can't use the clustering stuff. 6751 */ 6752 if (btrfs_mixed_space_info(space_info)) 6753 use_cluster = false; 6754 6755 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6756 last_ptr = &root->fs_info->meta_alloc_cluster; 6757 if (!btrfs_test_opt(root, SSD)) 6758 empty_cluster = 64 * 1024; 6759 } 6760 6761 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6762 btrfs_test_opt(root, SSD)) { 6763 last_ptr = &root->fs_info->data_alloc_cluster; 6764 } 6765 6766 if (last_ptr) { 6767 spin_lock(&last_ptr->lock); 6768 if (last_ptr->block_group) 6769 hint_byte = last_ptr->window_start; 6770 spin_unlock(&last_ptr->lock); 6771 } 6772 6773 search_start = max(search_start, first_logical_byte(root, 0)); 6774 search_start = max(search_start, hint_byte); 6775 6776 if (!last_ptr) 6777 empty_cluster = 0; 6778 6779 if (search_start == hint_byte) { 6780 block_group = btrfs_lookup_block_group(root->fs_info, 6781 search_start); 6782 /* 6783 * we don't want to use the block group if it doesn't match our 6784 * allocation bits, or if its not cached. 6785 * 6786 * However if we are re-searching with an ideal block group 6787 * picked out then we don't care that the block group is cached. 6788 */ 6789 if (block_group && block_group_bits(block_group, flags) && 6790 block_group->cached != BTRFS_CACHE_NO) { 6791 down_read(&space_info->groups_sem); 6792 if (list_empty(&block_group->list) || 6793 block_group->ro) { 6794 /* 6795 * someone is removing this block group, 6796 * we can't jump into the have_block_group 6797 * target because our list pointers are not 6798 * valid 6799 */ 6800 btrfs_put_block_group(block_group); 6801 up_read(&space_info->groups_sem); 6802 } else { 6803 index = get_block_group_index(block_group); 6804 btrfs_lock_block_group(block_group, delalloc); 6805 goto have_block_group; 6806 } 6807 } else if (block_group) { 6808 btrfs_put_block_group(block_group); 6809 } 6810 } 6811 search: 6812 have_caching_bg = false; 6813 down_read(&space_info->groups_sem); 6814 list_for_each_entry(block_group, &space_info->block_groups[index], 6815 list) { 6816 u64 offset; 6817 int cached; 6818 6819 btrfs_grab_block_group(block_group, delalloc); 6820 search_start = block_group->key.objectid; 6821 6822 /* 6823 * this can happen if we end up cycling through all the 6824 * raid types, but we want to make sure we only allocate 6825 * for the proper type. 6826 */ 6827 if (!block_group_bits(block_group, flags)) { 6828 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6829 BTRFS_BLOCK_GROUP_RAID1 | 6830 BTRFS_BLOCK_GROUP_RAID5 | 6831 BTRFS_BLOCK_GROUP_RAID6 | 6832 BTRFS_BLOCK_GROUP_RAID10; 6833 6834 /* 6835 * if they asked for extra copies and this block group 6836 * doesn't provide them, bail. This does allow us to 6837 * fill raid0 from raid1. 6838 */ 6839 if ((flags & extra) && !(block_group->flags & extra)) 6840 goto loop; 6841 } 6842 6843 have_block_group: 6844 cached = block_group_cache_done(block_group); 6845 if (unlikely(!cached)) { 6846 ret = cache_block_group(block_group, 0); 6847 BUG_ON(ret < 0); 6848 ret = 0; 6849 } 6850 6851 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6852 goto loop; 6853 if (unlikely(block_group->ro)) 6854 goto loop; 6855 6856 /* 6857 * Ok we want to try and use the cluster allocator, so 6858 * lets look there 6859 */ 6860 if (last_ptr) { 6861 struct btrfs_block_group_cache *used_block_group; 6862 unsigned long aligned_cluster; 6863 /* 6864 * the refill lock keeps out other 6865 * people trying to start a new cluster 6866 */ 6867 used_block_group = btrfs_lock_cluster(block_group, 6868 last_ptr, 6869 delalloc); 6870 if (!used_block_group) 6871 goto refill_cluster; 6872 6873 if (used_block_group != block_group && 6874 (used_block_group->ro || 6875 !block_group_bits(used_block_group, flags))) 6876 goto release_cluster; 6877 6878 offset = btrfs_alloc_from_cluster(used_block_group, 6879 last_ptr, 6880 num_bytes, 6881 used_block_group->key.objectid, 6882 &max_extent_size); 6883 if (offset) { 6884 /* we have a block, we're done */ 6885 spin_unlock(&last_ptr->refill_lock); 6886 trace_btrfs_reserve_extent_cluster(root, 6887 used_block_group, 6888 search_start, num_bytes); 6889 if (used_block_group != block_group) { 6890 btrfs_release_block_group(block_group, 6891 delalloc); 6892 block_group = used_block_group; 6893 } 6894 goto checks; 6895 } 6896 6897 WARN_ON(last_ptr->block_group != used_block_group); 6898 release_cluster: 6899 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6900 * set up a new clusters, so lets just skip it 6901 * and let the allocator find whatever block 6902 * it can find. If we reach this point, we 6903 * will have tried the cluster allocator 6904 * plenty of times and not have found 6905 * anything, so we are likely way too 6906 * fragmented for the clustering stuff to find 6907 * anything. 6908 * 6909 * However, if the cluster is taken from the 6910 * current block group, release the cluster 6911 * first, so that we stand a better chance of 6912 * succeeding in the unclustered 6913 * allocation. */ 6914 if (loop >= LOOP_NO_EMPTY_SIZE && 6915 used_block_group != block_group) { 6916 spin_unlock(&last_ptr->refill_lock); 6917 btrfs_release_block_group(used_block_group, 6918 delalloc); 6919 goto unclustered_alloc; 6920 } 6921 6922 /* 6923 * this cluster didn't work out, free it and 6924 * start over 6925 */ 6926 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6927 6928 if (used_block_group != block_group) 6929 btrfs_release_block_group(used_block_group, 6930 delalloc); 6931 refill_cluster: 6932 if (loop >= LOOP_NO_EMPTY_SIZE) { 6933 spin_unlock(&last_ptr->refill_lock); 6934 goto unclustered_alloc; 6935 } 6936 6937 aligned_cluster = max_t(unsigned long, 6938 empty_cluster + empty_size, 6939 block_group->full_stripe_len); 6940 6941 /* allocate a cluster in this block group */ 6942 ret = btrfs_find_space_cluster(root, block_group, 6943 last_ptr, search_start, 6944 num_bytes, 6945 aligned_cluster); 6946 if (ret == 0) { 6947 /* 6948 * now pull our allocation out of this 6949 * cluster 6950 */ 6951 offset = btrfs_alloc_from_cluster(block_group, 6952 last_ptr, 6953 num_bytes, 6954 search_start, 6955 &max_extent_size); 6956 if (offset) { 6957 /* we found one, proceed */ 6958 spin_unlock(&last_ptr->refill_lock); 6959 trace_btrfs_reserve_extent_cluster(root, 6960 block_group, search_start, 6961 num_bytes); 6962 goto checks; 6963 } 6964 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6965 && !failed_cluster_refill) { 6966 spin_unlock(&last_ptr->refill_lock); 6967 6968 failed_cluster_refill = true; 6969 wait_block_group_cache_progress(block_group, 6970 num_bytes + empty_cluster + empty_size); 6971 goto have_block_group; 6972 } 6973 6974 /* 6975 * at this point we either didn't find a cluster 6976 * or we weren't able to allocate a block from our 6977 * cluster. Free the cluster we've been trying 6978 * to use, and go to the next block group 6979 */ 6980 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6981 spin_unlock(&last_ptr->refill_lock); 6982 goto loop; 6983 } 6984 6985 unclustered_alloc: 6986 spin_lock(&block_group->free_space_ctl->tree_lock); 6987 if (cached && 6988 block_group->free_space_ctl->free_space < 6989 num_bytes + empty_cluster + empty_size) { 6990 if (block_group->free_space_ctl->free_space > 6991 max_extent_size) 6992 max_extent_size = 6993 block_group->free_space_ctl->free_space; 6994 spin_unlock(&block_group->free_space_ctl->tree_lock); 6995 goto loop; 6996 } 6997 spin_unlock(&block_group->free_space_ctl->tree_lock); 6998 6999 offset = btrfs_find_space_for_alloc(block_group, search_start, 7000 num_bytes, empty_size, 7001 &max_extent_size); 7002 /* 7003 * If we didn't find a chunk, and we haven't failed on this 7004 * block group before, and this block group is in the middle of 7005 * caching and we are ok with waiting, then go ahead and wait 7006 * for progress to be made, and set failed_alloc to true. 7007 * 7008 * If failed_alloc is true then we've already waited on this 7009 * block group once and should move on to the next block group. 7010 */ 7011 if (!offset && !failed_alloc && !cached && 7012 loop > LOOP_CACHING_NOWAIT) { 7013 wait_block_group_cache_progress(block_group, 7014 num_bytes + empty_size); 7015 failed_alloc = true; 7016 goto have_block_group; 7017 } else if (!offset) { 7018 if (!cached) 7019 have_caching_bg = true; 7020 goto loop; 7021 } 7022 checks: 7023 search_start = ALIGN(offset, root->stripesize); 7024 7025 /* move on to the next group */ 7026 if (search_start + num_bytes > 7027 block_group->key.objectid + block_group->key.offset) { 7028 btrfs_add_free_space(block_group, offset, num_bytes); 7029 goto loop; 7030 } 7031 7032 if (offset < search_start) 7033 btrfs_add_free_space(block_group, offset, 7034 search_start - offset); 7035 BUG_ON(offset > search_start); 7036 7037 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7038 alloc_type, delalloc); 7039 if (ret == -EAGAIN) { 7040 btrfs_add_free_space(block_group, offset, num_bytes); 7041 goto loop; 7042 } 7043 7044 /* we are all good, lets return */ 7045 ins->objectid = search_start; 7046 ins->offset = num_bytes; 7047 7048 trace_btrfs_reserve_extent(orig_root, block_group, 7049 search_start, num_bytes); 7050 btrfs_release_block_group(block_group, delalloc); 7051 break; 7052 loop: 7053 failed_cluster_refill = false; 7054 failed_alloc = false; 7055 BUG_ON(index != get_block_group_index(block_group)); 7056 btrfs_release_block_group(block_group, delalloc); 7057 } 7058 up_read(&space_info->groups_sem); 7059 7060 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7061 goto search; 7062 7063 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7064 goto search; 7065 7066 /* 7067 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7068 * caching kthreads as we move along 7069 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7070 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7071 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7072 * again 7073 */ 7074 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7075 index = 0; 7076 loop++; 7077 if (loop == LOOP_ALLOC_CHUNK) { 7078 struct btrfs_trans_handle *trans; 7079 int exist = 0; 7080 7081 trans = current->journal_info; 7082 if (trans) 7083 exist = 1; 7084 else 7085 trans = btrfs_join_transaction(root); 7086 7087 if (IS_ERR(trans)) { 7088 ret = PTR_ERR(trans); 7089 goto out; 7090 } 7091 7092 ret = do_chunk_alloc(trans, root, flags, 7093 CHUNK_ALLOC_FORCE); 7094 /* 7095 * Do not bail out on ENOSPC since we 7096 * can do more things. 7097 */ 7098 if (ret < 0 && ret != -ENOSPC) 7099 btrfs_abort_transaction(trans, 7100 root, ret); 7101 else 7102 ret = 0; 7103 if (!exist) 7104 btrfs_end_transaction(trans, root); 7105 if (ret) 7106 goto out; 7107 } 7108 7109 if (loop == LOOP_NO_EMPTY_SIZE) { 7110 empty_size = 0; 7111 empty_cluster = 0; 7112 } 7113 7114 goto search; 7115 } else if (!ins->objectid) { 7116 ret = -ENOSPC; 7117 } else if (ins->objectid) { 7118 ret = 0; 7119 } 7120 out: 7121 if (ret == -ENOSPC) 7122 ins->offset = max_extent_size; 7123 return ret; 7124 } 7125 7126 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7127 int dump_block_groups) 7128 { 7129 struct btrfs_block_group_cache *cache; 7130 int index = 0; 7131 7132 spin_lock(&info->lock); 7133 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7134 info->flags, 7135 info->total_bytes - info->bytes_used - info->bytes_pinned - 7136 info->bytes_reserved - info->bytes_readonly, 7137 (info->full) ? "" : "not "); 7138 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7139 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7140 info->total_bytes, info->bytes_used, info->bytes_pinned, 7141 info->bytes_reserved, info->bytes_may_use, 7142 info->bytes_readonly); 7143 spin_unlock(&info->lock); 7144 7145 if (!dump_block_groups) 7146 return; 7147 7148 down_read(&info->groups_sem); 7149 again: 7150 list_for_each_entry(cache, &info->block_groups[index], list) { 7151 spin_lock(&cache->lock); 7152 printk(KERN_INFO "BTRFS: " 7153 "block group %llu has %llu bytes, " 7154 "%llu used %llu pinned %llu reserved %s\n", 7155 cache->key.objectid, cache->key.offset, 7156 btrfs_block_group_used(&cache->item), cache->pinned, 7157 cache->reserved, cache->ro ? "[readonly]" : ""); 7158 btrfs_dump_free_space(cache, bytes); 7159 spin_unlock(&cache->lock); 7160 } 7161 if (++index < BTRFS_NR_RAID_TYPES) 7162 goto again; 7163 up_read(&info->groups_sem); 7164 } 7165 7166 int btrfs_reserve_extent(struct btrfs_root *root, 7167 u64 num_bytes, u64 min_alloc_size, 7168 u64 empty_size, u64 hint_byte, 7169 struct btrfs_key *ins, int is_data, int delalloc) 7170 { 7171 bool final_tried = false; 7172 u64 flags; 7173 int ret; 7174 7175 flags = btrfs_get_alloc_profile(root, is_data); 7176 again: 7177 WARN_ON(num_bytes < root->sectorsize); 7178 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7179 flags, delalloc); 7180 7181 if (ret == -ENOSPC) { 7182 if (!final_tried && ins->offset) { 7183 num_bytes = min(num_bytes >> 1, ins->offset); 7184 num_bytes = round_down(num_bytes, root->sectorsize); 7185 num_bytes = max(num_bytes, min_alloc_size); 7186 if (num_bytes == min_alloc_size) 7187 final_tried = true; 7188 goto again; 7189 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7190 struct btrfs_space_info *sinfo; 7191 7192 sinfo = __find_space_info(root->fs_info, flags); 7193 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7194 flags, num_bytes); 7195 if (sinfo) 7196 dump_space_info(sinfo, num_bytes, 1); 7197 } 7198 } 7199 7200 return ret; 7201 } 7202 7203 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7204 u64 start, u64 len, 7205 int pin, int delalloc) 7206 { 7207 struct btrfs_block_group_cache *cache; 7208 int ret = 0; 7209 7210 cache = btrfs_lookup_block_group(root->fs_info, start); 7211 if (!cache) { 7212 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7213 start); 7214 return -ENOSPC; 7215 } 7216 7217 if (pin) 7218 pin_down_extent(root, cache, start, len, 1); 7219 else { 7220 if (btrfs_test_opt(root, DISCARD)) 7221 ret = btrfs_discard_extent(root, start, len, NULL); 7222 btrfs_add_free_space(cache, start, len); 7223 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7224 } 7225 7226 btrfs_put_block_group(cache); 7227 7228 trace_btrfs_reserved_extent_free(root, start, len); 7229 7230 return ret; 7231 } 7232 7233 int btrfs_free_reserved_extent(struct btrfs_root *root, 7234 u64 start, u64 len, int delalloc) 7235 { 7236 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7237 } 7238 7239 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7240 u64 start, u64 len) 7241 { 7242 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7243 } 7244 7245 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7246 struct btrfs_root *root, 7247 u64 parent, u64 root_objectid, 7248 u64 flags, u64 owner, u64 offset, 7249 struct btrfs_key *ins, int ref_mod) 7250 { 7251 int ret; 7252 struct btrfs_fs_info *fs_info = root->fs_info; 7253 struct btrfs_extent_item *extent_item; 7254 struct btrfs_extent_inline_ref *iref; 7255 struct btrfs_path *path; 7256 struct extent_buffer *leaf; 7257 int type; 7258 u32 size; 7259 7260 if (parent > 0) 7261 type = BTRFS_SHARED_DATA_REF_KEY; 7262 else 7263 type = BTRFS_EXTENT_DATA_REF_KEY; 7264 7265 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7266 7267 path = btrfs_alloc_path(); 7268 if (!path) 7269 return -ENOMEM; 7270 7271 path->leave_spinning = 1; 7272 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7273 ins, size); 7274 if (ret) { 7275 btrfs_free_path(path); 7276 return ret; 7277 } 7278 7279 leaf = path->nodes[0]; 7280 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7281 struct btrfs_extent_item); 7282 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7283 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7284 btrfs_set_extent_flags(leaf, extent_item, 7285 flags | BTRFS_EXTENT_FLAG_DATA); 7286 7287 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7288 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7289 if (parent > 0) { 7290 struct btrfs_shared_data_ref *ref; 7291 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7292 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7293 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7294 } else { 7295 struct btrfs_extent_data_ref *ref; 7296 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7297 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7298 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7299 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7300 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7301 } 7302 7303 btrfs_mark_buffer_dirty(path->nodes[0]); 7304 btrfs_free_path(path); 7305 7306 /* Always set parent to 0 here since its exclusive anyway. */ 7307 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7308 ins->objectid, ins->offset, 7309 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7310 if (ret) 7311 return ret; 7312 7313 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7314 if (ret) { /* -ENOENT, logic error */ 7315 btrfs_err(fs_info, "update block group failed for %llu %llu", 7316 ins->objectid, ins->offset); 7317 BUG(); 7318 } 7319 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7320 return ret; 7321 } 7322 7323 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7324 struct btrfs_root *root, 7325 u64 parent, u64 root_objectid, 7326 u64 flags, struct btrfs_disk_key *key, 7327 int level, struct btrfs_key *ins, 7328 int no_quota) 7329 { 7330 int ret; 7331 struct btrfs_fs_info *fs_info = root->fs_info; 7332 struct btrfs_extent_item *extent_item; 7333 struct btrfs_tree_block_info *block_info; 7334 struct btrfs_extent_inline_ref *iref; 7335 struct btrfs_path *path; 7336 struct extent_buffer *leaf; 7337 u32 size = sizeof(*extent_item) + sizeof(*iref); 7338 u64 num_bytes = ins->offset; 7339 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7340 SKINNY_METADATA); 7341 7342 if (!skinny_metadata) 7343 size += sizeof(*block_info); 7344 7345 path = btrfs_alloc_path(); 7346 if (!path) { 7347 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7348 root->nodesize); 7349 return -ENOMEM; 7350 } 7351 7352 path->leave_spinning = 1; 7353 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7354 ins, size); 7355 if (ret) { 7356 btrfs_free_path(path); 7357 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7358 root->nodesize); 7359 return ret; 7360 } 7361 7362 leaf = path->nodes[0]; 7363 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7364 struct btrfs_extent_item); 7365 btrfs_set_extent_refs(leaf, extent_item, 1); 7366 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7367 btrfs_set_extent_flags(leaf, extent_item, 7368 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7369 7370 if (skinny_metadata) { 7371 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7372 num_bytes = root->nodesize; 7373 } else { 7374 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7375 btrfs_set_tree_block_key(leaf, block_info, key); 7376 btrfs_set_tree_block_level(leaf, block_info, level); 7377 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7378 } 7379 7380 if (parent > 0) { 7381 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7382 btrfs_set_extent_inline_ref_type(leaf, iref, 7383 BTRFS_SHARED_BLOCK_REF_KEY); 7384 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7385 } else { 7386 btrfs_set_extent_inline_ref_type(leaf, iref, 7387 BTRFS_TREE_BLOCK_REF_KEY); 7388 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7389 } 7390 7391 btrfs_mark_buffer_dirty(leaf); 7392 btrfs_free_path(path); 7393 7394 if (!no_quota) { 7395 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7396 ins->objectid, num_bytes, 7397 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7398 if (ret) 7399 return ret; 7400 } 7401 7402 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7403 1); 7404 if (ret) { /* -ENOENT, logic error */ 7405 btrfs_err(fs_info, "update block group failed for %llu %llu", 7406 ins->objectid, ins->offset); 7407 BUG(); 7408 } 7409 7410 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7411 return ret; 7412 } 7413 7414 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7415 struct btrfs_root *root, 7416 u64 root_objectid, u64 owner, 7417 u64 offset, struct btrfs_key *ins) 7418 { 7419 int ret; 7420 7421 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7422 7423 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7424 ins->offset, 0, 7425 root_objectid, owner, offset, 7426 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7427 return ret; 7428 } 7429 7430 /* 7431 * this is used by the tree logging recovery code. It records that 7432 * an extent has been allocated and makes sure to clear the free 7433 * space cache bits as well 7434 */ 7435 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7436 struct btrfs_root *root, 7437 u64 root_objectid, u64 owner, u64 offset, 7438 struct btrfs_key *ins) 7439 { 7440 int ret; 7441 struct btrfs_block_group_cache *block_group; 7442 7443 /* 7444 * Mixed block groups will exclude before processing the log so we only 7445 * need to do the exlude dance if this fs isn't mixed. 7446 */ 7447 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7448 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7449 if (ret) 7450 return ret; 7451 } 7452 7453 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7454 if (!block_group) 7455 return -EINVAL; 7456 7457 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7458 RESERVE_ALLOC_NO_ACCOUNT, 0); 7459 BUG_ON(ret); /* logic error */ 7460 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7461 0, owner, offset, ins, 1); 7462 btrfs_put_block_group(block_group); 7463 return ret; 7464 } 7465 7466 static struct extent_buffer * 7467 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7468 u64 bytenr, int level) 7469 { 7470 struct extent_buffer *buf; 7471 7472 buf = btrfs_find_create_tree_block(root, bytenr); 7473 if (!buf) 7474 return ERR_PTR(-ENOMEM); 7475 btrfs_set_header_generation(buf, trans->transid); 7476 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7477 btrfs_tree_lock(buf); 7478 clean_tree_block(trans, root->fs_info, buf); 7479 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7480 7481 btrfs_set_lock_blocking(buf); 7482 btrfs_set_buffer_uptodate(buf); 7483 7484 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7485 buf->log_index = root->log_transid % 2; 7486 /* 7487 * we allow two log transactions at a time, use different 7488 * EXENT bit to differentiate dirty pages. 7489 */ 7490 if (buf->log_index == 0) 7491 set_extent_dirty(&root->dirty_log_pages, buf->start, 7492 buf->start + buf->len - 1, GFP_NOFS); 7493 else 7494 set_extent_new(&root->dirty_log_pages, buf->start, 7495 buf->start + buf->len - 1, GFP_NOFS); 7496 } else { 7497 buf->log_index = -1; 7498 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7499 buf->start + buf->len - 1, GFP_NOFS); 7500 } 7501 trans->blocks_used++; 7502 /* this returns a buffer locked for blocking */ 7503 return buf; 7504 } 7505 7506 static struct btrfs_block_rsv * 7507 use_block_rsv(struct btrfs_trans_handle *trans, 7508 struct btrfs_root *root, u32 blocksize) 7509 { 7510 struct btrfs_block_rsv *block_rsv; 7511 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7512 int ret; 7513 bool global_updated = false; 7514 7515 block_rsv = get_block_rsv(trans, root); 7516 7517 if (unlikely(block_rsv->size == 0)) 7518 goto try_reserve; 7519 again: 7520 ret = block_rsv_use_bytes(block_rsv, blocksize); 7521 if (!ret) 7522 return block_rsv; 7523 7524 if (block_rsv->failfast) 7525 return ERR_PTR(ret); 7526 7527 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7528 global_updated = true; 7529 update_global_block_rsv(root->fs_info); 7530 goto again; 7531 } 7532 7533 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7534 static DEFINE_RATELIMIT_STATE(_rs, 7535 DEFAULT_RATELIMIT_INTERVAL * 10, 7536 /*DEFAULT_RATELIMIT_BURST*/ 1); 7537 if (__ratelimit(&_rs)) 7538 WARN(1, KERN_DEBUG 7539 "BTRFS: block rsv returned %d\n", ret); 7540 } 7541 try_reserve: 7542 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7543 BTRFS_RESERVE_NO_FLUSH); 7544 if (!ret) 7545 return block_rsv; 7546 /* 7547 * If we couldn't reserve metadata bytes try and use some from 7548 * the global reserve if its space type is the same as the global 7549 * reservation. 7550 */ 7551 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7552 block_rsv->space_info == global_rsv->space_info) { 7553 ret = block_rsv_use_bytes(global_rsv, blocksize); 7554 if (!ret) 7555 return global_rsv; 7556 } 7557 return ERR_PTR(ret); 7558 } 7559 7560 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7561 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7562 { 7563 block_rsv_add_bytes(block_rsv, blocksize, 0); 7564 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7565 } 7566 7567 /* 7568 * finds a free extent and does all the dirty work required for allocation 7569 * returns the key for the extent through ins, and a tree buffer for 7570 * the first block of the extent through buf. 7571 * 7572 * returns the tree buffer or an ERR_PTR on error. 7573 */ 7574 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7575 struct btrfs_root *root, 7576 u64 parent, u64 root_objectid, 7577 struct btrfs_disk_key *key, int level, 7578 u64 hint, u64 empty_size) 7579 { 7580 struct btrfs_key ins; 7581 struct btrfs_block_rsv *block_rsv; 7582 struct extent_buffer *buf; 7583 struct btrfs_delayed_extent_op *extent_op; 7584 u64 flags = 0; 7585 int ret; 7586 u32 blocksize = root->nodesize; 7587 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7588 SKINNY_METADATA); 7589 7590 if (btrfs_test_is_dummy_root(root)) { 7591 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7592 level); 7593 if (!IS_ERR(buf)) 7594 root->alloc_bytenr += blocksize; 7595 return buf; 7596 } 7597 7598 block_rsv = use_block_rsv(trans, root, blocksize); 7599 if (IS_ERR(block_rsv)) 7600 return ERR_CAST(block_rsv); 7601 7602 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7603 empty_size, hint, &ins, 0, 0); 7604 if (ret) 7605 goto out_unuse; 7606 7607 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7608 if (IS_ERR(buf)) { 7609 ret = PTR_ERR(buf); 7610 goto out_free_reserved; 7611 } 7612 7613 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7614 if (parent == 0) 7615 parent = ins.objectid; 7616 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7617 } else 7618 BUG_ON(parent > 0); 7619 7620 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7621 extent_op = btrfs_alloc_delayed_extent_op(); 7622 if (!extent_op) { 7623 ret = -ENOMEM; 7624 goto out_free_buf; 7625 } 7626 if (key) 7627 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7628 else 7629 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7630 extent_op->flags_to_set = flags; 7631 if (skinny_metadata) 7632 extent_op->update_key = 0; 7633 else 7634 extent_op->update_key = 1; 7635 extent_op->update_flags = 1; 7636 extent_op->is_data = 0; 7637 extent_op->level = level; 7638 7639 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7640 ins.objectid, ins.offset, 7641 parent, root_objectid, level, 7642 BTRFS_ADD_DELAYED_EXTENT, 7643 extent_op, 0); 7644 if (ret) 7645 goto out_free_delayed; 7646 } 7647 return buf; 7648 7649 out_free_delayed: 7650 btrfs_free_delayed_extent_op(extent_op); 7651 out_free_buf: 7652 free_extent_buffer(buf); 7653 out_free_reserved: 7654 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7655 out_unuse: 7656 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7657 return ERR_PTR(ret); 7658 } 7659 7660 struct walk_control { 7661 u64 refs[BTRFS_MAX_LEVEL]; 7662 u64 flags[BTRFS_MAX_LEVEL]; 7663 struct btrfs_key update_progress; 7664 int stage; 7665 int level; 7666 int shared_level; 7667 int update_ref; 7668 int keep_locks; 7669 int reada_slot; 7670 int reada_count; 7671 int for_reloc; 7672 }; 7673 7674 #define DROP_REFERENCE 1 7675 #define UPDATE_BACKREF 2 7676 7677 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7678 struct btrfs_root *root, 7679 struct walk_control *wc, 7680 struct btrfs_path *path) 7681 { 7682 u64 bytenr; 7683 u64 generation; 7684 u64 refs; 7685 u64 flags; 7686 u32 nritems; 7687 u32 blocksize; 7688 struct btrfs_key key; 7689 struct extent_buffer *eb; 7690 int ret; 7691 int slot; 7692 int nread = 0; 7693 7694 if (path->slots[wc->level] < wc->reada_slot) { 7695 wc->reada_count = wc->reada_count * 2 / 3; 7696 wc->reada_count = max(wc->reada_count, 2); 7697 } else { 7698 wc->reada_count = wc->reada_count * 3 / 2; 7699 wc->reada_count = min_t(int, wc->reada_count, 7700 BTRFS_NODEPTRS_PER_BLOCK(root)); 7701 } 7702 7703 eb = path->nodes[wc->level]; 7704 nritems = btrfs_header_nritems(eb); 7705 blocksize = root->nodesize; 7706 7707 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7708 if (nread >= wc->reada_count) 7709 break; 7710 7711 cond_resched(); 7712 bytenr = btrfs_node_blockptr(eb, slot); 7713 generation = btrfs_node_ptr_generation(eb, slot); 7714 7715 if (slot == path->slots[wc->level]) 7716 goto reada; 7717 7718 if (wc->stage == UPDATE_BACKREF && 7719 generation <= root->root_key.offset) 7720 continue; 7721 7722 /* We don't lock the tree block, it's OK to be racy here */ 7723 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7724 wc->level - 1, 1, &refs, 7725 &flags); 7726 /* We don't care about errors in readahead. */ 7727 if (ret < 0) 7728 continue; 7729 BUG_ON(refs == 0); 7730 7731 if (wc->stage == DROP_REFERENCE) { 7732 if (refs == 1) 7733 goto reada; 7734 7735 if (wc->level == 1 && 7736 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7737 continue; 7738 if (!wc->update_ref || 7739 generation <= root->root_key.offset) 7740 continue; 7741 btrfs_node_key_to_cpu(eb, &key, slot); 7742 ret = btrfs_comp_cpu_keys(&key, 7743 &wc->update_progress); 7744 if (ret < 0) 7745 continue; 7746 } else { 7747 if (wc->level == 1 && 7748 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7749 continue; 7750 } 7751 reada: 7752 readahead_tree_block(root, bytenr); 7753 nread++; 7754 } 7755 wc->reada_slot = slot; 7756 } 7757 7758 static int account_leaf_items(struct btrfs_trans_handle *trans, 7759 struct btrfs_root *root, 7760 struct extent_buffer *eb) 7761 { 7762 int nr = btrfs_header_nritems(eb); 7763 int i, extent_type, ret; 7764 struct btrfs_key key; 7765 struct btrfs_file_extent_item *fi; 7766 u64 bytenr, num_bytes; 7767 7768 for (i = 0; i < nr; i++) { 7769 btrfs_item_key_to_cpu(eb, &key, i); 7770 7771 if (key.type != BTRFS_EXTENT_DATA_KEY) 7772 continue; 7773 7774 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7775 /* filter out non qgroup-accountable extents */ 7776 extent_type = btrfs_file_extent_type(eb, fi); 7777 7778 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7779 continue; 7780 7781 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7782 if (!bytenr) 7783 continue; 7784 7785 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7786 7787 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7788 root->objectid, 7789 bytenr, num_bytes, 7790 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0); 7791 if (ret) 7792 return ret; 7793 } 7794 return 0; 7795 } 7796 7797 /* 7798 * Walk up the tree from the bottom, freeing leaves and any interior 7799 * nodes which have had all slots visited. If a node (leaf or 7800 * interior) is freed, the node above it will have it's slot 7801 * incremented. The root node will never be freed. 7802 * 7803 * At the end of this function, we should have a path which has all 7804 * slots incremented to the next position for a search. If we need to 7805 * read a new node it will be NULL and the node above it will have the 7806 * correct slot selected for a later read. 7807 * 7808 * If we increment the root nodes slot counter past the number of 7809 * elements, 1 is returned to signal completion of the search. 7810 */ 7811 static int adjust_slots_upwards(struct btrfs_root *root, 7812 struct btrfs_path *path, int root_level) 7813 { 7814 int level = 0; 7815 int nr, slot; 7816 struct extent_buffer *eb; 7817 7818 if (root_level == 0) 7819 return 1; 7820 7821 while (level <= root_level) { 7822 eb = path->nodes[level]; 7823 nr = btrfs_header_nritems(eb); 7824 path->slots[level]++; 7825 slot = path->slots[level]; 7826 if (slot >= nr || level == 0) { 7827 /* 7828 * Don't free the root - we will detect this 7829 * condition after our loop and return a 7830 * positive value for caller to stop walking the tree. 7831 */ 7832 if (level != root_level) { 7833 btrfs_tree_unlock_rw(eb, path->locks[level]); 7834 path->locks[level] = 0; 7835 7836 free_extent_buffer(eb); 7837 path->nodes[level] = NULL; 7838 path->slots[level] = 0; 7839 } 7840 } else { 7841 /* 7842 * We have a valid slot to walk back down 7843 * from. Stop here so caller can process these 7844 * new nodes. 7845 */ 7846 break; 7847 } 7848 7849 level++; 7850 } 7851 7852 eb = path->nodes[root_level]; 7853 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7854 return 1; 7855 7856 return 0; 7857 } 7858 7859 /* 7860 * root_eb is the subtree root and is locked before this function is called. 7861 */ 7862 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7863 struct btrfs_root *root, 7864 struct extent_buffer *root_eb, 7865 u64 root_gen, 7866 int root_level) 7867 { 7868 int ret = 0; 7869 int level; 7870 struct extent_buffer *eb = root_eb; 7871 struct btrfs_path *path = NULL; 7872 7873 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7874 BUG_ON(root_eb == NULL); 7875 7876 if (!root->fs_info->quota_enabled) 7877 return 0; 7878 7879 if (!extent_buffer_uptodate(root_eb)) { 7880 ret = btrfs_read_buffer(root_eb, root_gen); 7881 if (ret) 7882 goto out; 7883 } 7884 7885 if (root_level == 0) { 7886 ret = account_leaf_items(trans, root, root_eb); 7887 goto out; 7888 } 7889 7890 path = btrfs_alloc_path(); 7891 if (!path) 7892 return -ENOMEM; 7893 7894 /* 7895 * Walk down the tree. Missing extent blocks are filled in as 7896 * we go. Metadata is accounted every time we read a new 7897 * extent block. 7898 * 7899 * When we reach a leaf, we account for file extent items in it, 7900 * walk back up the tree (adjusting slot pointers as we go) 7901 * and restart the search process. 7902 */ 7903 extent_buffer_get(root_eb); /* For path */ 7904 path->nodes[root_level] = root_eb; 7905 path->slots[root_level] = 0; 7906 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7907 walk_down: 7908 level = root_level; 7909 while (level >= 0) { 7910 if (path->nodes[level] == NULL) { 7911 int parent_slot; 7912 u64 child_gen; 7913 u64 child_bytenr; 7914 7915 /* We need to get child blockptr/gen from 7916 * parent before we can read it. */ 7917 eb = path->nodes[level + 1]; 7918 parent_slot = path->slots[level + 1]; 7919 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7920 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7921 7922 eb = read_tree_block(root, child_bytenr, child_gen); 7923 if (!eb || !extent_buffer_uptodate(eb)) { 7924 ret = -EIO; 7925 goto out; 7926 } 7927 7928 path->nodes[level] = eb; 7929 path->slots[level] = 0; 7930 7931 btrfs_tree_read_lock(eb); 7932 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7933 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7934 7935 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7936 root->objectid, 7937 child_bytenr, 7938 root->nodesize, 7939 BTRFS_QGROUP_OPER_SUB_SUBTREE, 7940 0); 7941 if (ret) 7942 goto out; 7943 7944 } 7945 7946 if (level == 0) { 7947 ret = account_leaf_items(trans, root, path->nodes[level]); 7948 if (ret) 7949 goto out; 7950 7951 /* Nonzero return here means we completed our search */ 7952 ret = adjust_slots_upwards(root, path, root_level); 7953 if (ret) 7954 break; 7955 7956 /* Restart search with new slots */ 7957 goto walk_down; 7958 } 7959 7960 level--; 7961 } 7962 7963 ret = 0; 7964 out: 7965 btrfs_free_path(path); 7966 7967 return ret; 7968 } 7969 7970 /* 7971 * helper to process tree block while walking down the tree. 7972 * 7973 * when wc->stage == UPDATE_BACKREF, this function updates 7974 * back refs for pointers in the block. 7975 * 7976 * NOTE: return value 1 means we should stop walking down. 7977 */ 7978 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7979 struct btrfs_root *root, 7980 struct btrfs_path *path, 7981 struct walk_control *wc, int lookup_info) 7982 { 7983 int level = wc->level; 7984 struct extent_buffer *eb = path->nodes[level]; 7985 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7986 int ret; 7987 7988 if (wc->stage == UPDATE_BACKREF && 7989 btrfs_header_owner(eb) != root->root_key.objectid) 7990 return 1; 7991 7992 /* 7993 * when reference count of tree block is 1, it won't increase 7994 * again. once full backref flag is set, we never clear it. 7995 */ 7996 if (lookup_info && 7997 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7998 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7999 BUG_ON(!path->locks[level]); 8000 ret = btrfs_lookup_extent_info(trans, root, 8001 eb->start, level, 1, 8002 &wc->refs[level], 8003 &wc->flags[level]); 8004 BUG_ON(ret == -ENOMEM); 8005 if (ret) 8006 return ret; 8007 BUG_ON(wc->refs[level] == 0); 8008 } 8009 8010 if (wc->stage == DROP_REFERENCE) { 8011 if (wc->refs[level] > 1) 8012 return 1; 8013 8014 if (path->locks[level] && !wc->keep_locks) { 8015 btrfs_tree_unlock_rw(eb, path->locks[level]); 8016 path->locks[level] = 0; 8017 } 8018 return 0; 8019 } 8020 8021 /* wc->stage == UPDATE_BACKREF */ 8022 if (!(wc->flags[level] & flag)) { 8023 BUG_ON(!path->locks[level]); 8024 ret = btrfs_inc_ref(trans, root, eb, 1); 8025 BUG_ON(ret); /* -ENOMEM */ 8026 ret = btrfs_dec_ref(trans, root, eb, 0); 8027 BUG_ON(ret); /* -ENOMEM */ 8028 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8029 eb->len, flag, 8030 btrfs_header_level(eb), 0); 8031 BUG_ON(ret); /* -ENOMEM */ 8032 wc->flags[level] |= flag; 8033 } 8034 8035 /* 8036 * the block is shared by multiple trees, so it's not good to 8037 * keep the tree lock 8038 */ 8039 if (path->locks[level] && level > 0) { 8040 btrfs_tree_unlock_rw(eb, path->locks[level]); 8041 path->locks[level] = 0; 8042 } 8043 return 0; 8044 } 8045 8046 /* 8047 * helper to process tree block pointer. 8048 * 8049 * when wc->stage == DROP_REFERENCE, this function checks 8050 * reference count of the block pointed to. if the block 8051 * is shared and we need update back refs for the subtree 8052 * rooted at the block, this function changes wc->stage to 8053 * UPDATE_BACKREF. if the block is shared and there is no 8054 * need to update back, this function drops the reference 8055 * to the block. 8056 * 8057 * NOTE: return value 1 means we should stop walking down. 8058 */ 8059 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8060 struct btrfs_root *root, 8061 struct btrfs_path *path, 8062 struct walk_control *wc, int *lookup_info) 8063 { 8064 u64 bytenr; 8065 u64 generation; 8066 u64 parent; 8067 u32 blocksize; 8068 struct btrfs_key key; 8069 struct extent_buffer *next; 8070 int level = wc->level; 8071 int reada = 0; 8072 int ret = 0; 8073 bool need_account = false; 8074 8075 generation = btrfs_node_ptr_generation(path->nodes[level], 8076 path->slots[level]); 8077 /* 8078 * if the lower level block was created before the snapshot 8079 * was created, we know there is no need to update back refs 8080 * for the subtree 8081 */ 8082 if (wc->stage == UPDATE_BACKREF && 8083 generation <= root->root_key.offset) { 8084 *lookup_info = 1; 8085 return 1; 8086 } 8087 8088 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8089 blocksize = root->nodesize; 8090 8091 next = btrfs_find_tree_block(root->fs_info, bytenr); 8092 if (!next) { 8093 next = btrfs_find_create_tree_block(root, bytenr); 8094 if (!next) 8095 return -ENOMEM; 8096 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8097 level - 1); 8098 reada = 1; 8099 } 8100 btrfs_tree_lock(next); 8101 btrfs_set_lock_blocking(next); 8102 8103 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8104 &wc->refs[level - 1], 8105 &wc->flags[level - 1]); 8106 if (ret < 0) { 8107 btrfs_tree_unlock(next); 8108 return ret; 8109 } 8110 8111 if (unlikely(wc->refs[level - 1] == 0)) { 8112 btrfs_err(root->fs_info, "Missing references."); 8113 BUG(); 8114 } 8115 *lookup_info = 0; 8116 8117 if (wc->stage == DROP_REFERENCE) { 8118 if (wc->refs[level - 1] > 1) { 8119 need_account = true; 8120 if (level == 1 && 8121 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8122 goto skip; 8123 8124 if (!wc->update_ref || 8125 generation <= root->root_key.offset) 8126 goto skip; 8127 8128 btrfs_node_key_to_cpu(path->nodes[level], &key, 8129 path->slots[level]); 8130 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8131 if (ret < 0) 8132 goto skip; 8133 8134 wc->stage = UPDATE_BACKREF; 8135 wc->shared_level = level - 1; 8136 } 8137 } else { 8138 if (level == 1 && 8139 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8140 goto skip; 8141 } 8142 8143 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8144 btrfs_tree_unlock(next); 8145 free_extent_buffer(next); 8146 next = NULL; 8147 *lookup_info = 1; 8148 } 8149 8150 if (!next) { 8151 if (reada && level == 1) 8152 reada_walk_down(trans, root, wc, path); 8153 next = read_tree_block(root, bytenr, generation); 8154 if (!next || !extent_buffer_uptodate(next)) { 8155 free_extent_buffer(next); 8156 return -EIO; 8157 } 8158 btrfs_tree_lock(next); 8159 btrfs_set_lock_blocking(next); 8160 } 8161 8162 level--; 8163 BUG_ON(level != btrfs_header_level(next)); 8164 path->nodes[level] = next; 8165 path->slots[level] = 0; 8166 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8167 wc->level = level; 8168 if (wc->level == 1) 8169 wc->reada_slot = 0; 8170 return 0; 8171 skip: 8172 wc->refs[level - 1] = 0; 8173 wc->flags[level - 1] = 0; 8174 if (wc->stage == DROP_REFERENCE) { 8175 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8176 parent = path->nodes[level]->start; 8177 } else { 8178 BUG_ON(root->root_key.objectid != 8179 btrfs_header_owner(path->nodes[level])); 8180 parent = 0; 8181 } 8182 8183 if (need_account) { 8184 ret = account_shared_subtree(trans, root, next, 8185 generation, level - 1); 8186 if (ret) { 8187 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8188 "%d accounting shared subtree. Quota " 8189 "is out of sync, rescan required.\n", 8190 root->fs_info->sb->s_id, ret); 8191 } 8192 } 8193 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8194 root->root_key.objectid, level - 1, 0, 0); 8195 BUG_ON(ret); /* -ENOMEM */ 8196 } 8197 btrfs_tree_unlock(next); 8198 free_extent_buffer(next); 8199 *lookup_info = 1; 8200 return 1; 8201 } 8202 8203 /* 8204 * helper to process tree block while walking up the tree. 8205 * 8206 * when wc->stage == DROP_REFERENCE, this function drops 8207 * reference count on the block. 8208 * 8209 * when wc->stage == UPDATE_BACKREF, this function changes 8210 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8211 * to UPDATE_BACKREF previously while processing the block. 8212 * 8213 * NOTE: return value 1 means we should stop walking up. 8214 */ 8215 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8216 struct btrfs_root *root, 8217 struct btrfs_path *path, 8218 struct walk_control *wc) 8219 { 8220 int ret; 8221 int level = wc->level; 8222 struct extent_buffer *eb = path->nodes[level]; 8223 u64 parent = 0; 8224 8225 if (wc->stage == UPDATE_BACKREF) { 8226 BUG_ON(wc->shared_level < level); 8227 if (level < wc->shared_level) 8228 goto out; 8229 8230 ret = find_next_key(path, level + 1, &wc->update_progress); 8231 if (ret > 0) 8232 wc->update_ref = 0; 8233 8234 wc->stage = DROP_REFERENCE; 8235 wc->shared_level = -1; 8236 path->slots[level] = 0; 8237 8238 /* 8239 * check reference count again if the block isn't locked. 8240 * we should start walking down the tree again if reference 8241 * count is one. 8242 */ 8243 if (!path->locks[level]) { 8244 BUG_ON(level == 0); 8245 btrfs_tree_lock(eb); 8246 btrfs_set_lock_blocking(eb); 8247 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8248 8249 ret = btrfs_lookup_extent_info(trans, root, 8250 eb->start, level, 1, 8251 &wc->refs[level], 8252 &wc->flags[level]); 8253 if (ret < 0) { 8254 btrfs_tree_unlock_rw(eb, path->locks[level]); 8255 path->locks[level] = 0; 8256 return ret; 8257 } 8258 BUG_ON(wc->refs[level] == 0); 8259 if (wc->refs[level] == 1) { 8260 btrfs_tree_unlock_rw(eb, path->locks[level]); 8261 path->locks[level] = 0; 8262 return 1; 8263 } 8264 } 8265 } 8266 8267 /* wc->stage == DROP_REFERENCE */ 8268 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8269 8270 if (wc->refs[level] == 1) { 8271 if (level == 0) { 8272 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8273 ret = btrfs_dec_ref(trans, root, eb, 1); 8274 else 8275 ret = btrfs_dec_ref(trans, root, eb, 0); 8276 BUG_ON(ret); /* -ENOMEM */ 8277 ret = account_leaf_items(trans, root, eb); 8278 if (ret) { 8279 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8280 "%d accounting leaf items. Quota " 8281 "is out of sync, rescan required.\n", 8282 root->fs_info->sb->s_id, ret); 8283 } 8284 } 8285 /* make block locked assertion in clean_tree_block happy */ 8286 if (!path->locks[level] && 8287 btrfs_header_generation(eb) == trans->transid) { 8288 btrfs_tree_lock(eb); 8289 btrfs_set_lock_blocking(eb); 8290 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8291 } 8292 clean_tree_block(trans, root->fs_info, eb); 8293 } 8294 8295 if (eb == root->node) { 8296 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8297 parent = eb->start; 8298 else 8299 BUG_ON(root->root_key.objectid != 8300 btrfs_header_owner(eb)); 8301 } else { 8302 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8303 parent = path->nodes[level + 1]->start; 8304 else 8305 BUG_ON(root->root_key.objectid != 8306 btrfs_header_owner(path->nodes[level + 1])); 8307 } 8308 8309 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8310 out: 8311 wc->refs[level] = 0; 8312 wc->flags[level] = 0; 8313 return 0; 8314 } 8315 8316 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8317 struct btrfs_root *root, 8318 struct btrfs_path *path, 8319 struct walk_control *wc) 8320 { 8321 int level = wc->level; 8322 int lookup_info = 1; 8323 int ret; 8324 8325 while (level >= 0) { 8326 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8327 if (ret > 0) 8328 break; 8329 8330 if (level == 0) 8331 break; 8332 8333 if (path->slots[level] >= 8334 btrfs_header_nritems(path->nodes[level])) 8335 break; 8336 8337 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8338 if (ret > 0) { 8339 path->slots[level]++; 8340 continue; 8341 } else if (ret < 0) 8342 return ret; 8343 level = wc->level; 8344 } 8345 return 0; 8346 } 8347 8348 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8349 struct btrfs_root *root, 8350 struct btrfs_path *path, 8351 struct walk_control *wc, int max_level) 8352 { 8353 int level = wc->level; 8354 int ret; 8355 8356 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8357 while (level < max_level && path->nodes[level]) { 8358 wc->level = level; 8359 if (path->slots[level] + 1 < 8360 btrfs_header_nritems(path->nodes[level])) { 8361 path->slots[level]++; 8362 return 0; 8363 } else { 8364 ret = walk_up_proc(trans, root, path, wc); 8365 if (ret > 0) 8366 return 0; 8367 8368 if (path->locks[level]) { 8369 btrfs_tree_unlock_rw(path->nodes[level], 8370 path->locks[level]); 8371 path->locks[level] = 0; 8372 } 8373 free_extent_buffer(path->nodes[level]); 8374 path->nodes[level] = NULL; 8375 level++; 8376 } 8377 } 8378 return 1; 8379 } 8380 8381 /* 8382 * drop a subvolume tree. 8383 * 8384 * this function traverses the tree freeing any blocks that only 8385 * referenced by the tree. 8386 * 8387 * when a shared tree block is found. this function decreases its 8388 * reference count by one. if update_ref is true, this function 8389 * also make sure backrefs for the shared block and all lower level 8390 * blocks are properly updated. 8391 * 8392 * If called with for_reloc == 0, may exit early with -EAGAIN 8393 */ 8394 int btrfs_drop_snapshot(struct btrfs_root *root, 8395 struct btrfs_block_rsv *block_rsv, int update_ref, 8396 int for_reloc) 8397 { 8398 struct btrfs_path *path; 8399 struct btrfs_trans_handle *trans; 8400 struct btrfs_root *tree_root = root->fs_info->tree_root; 8401 struct btrfs_root_item *root_item = &root->root_item; 8402 struct walk_control *wc; 8403 struct btrfs_key key; 8404 int err = 0; 8405 int ret; 8406 int level; 8407 bool root_dropped = false; 8408 8409 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8410 8411 path = btrfs_alloc_path(); 8412 if (!path) { 8413 err = -ENOMEM; 8414 goto out; 8415 } 8416 8417 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8418 if (!wc) { 8419 btrfs_free_path(path); 8420 err = -ENOMEM; 8421 goto out; 8422 } 8423 8424 trans = btrfs_start_transaction(tree_root, 0); 8425 if (IS_ERR(trans)) { 8426 err = PTR_ERR(trans); 8427 goto out_free; 8428 } 8429 8430 if (block_rsv) 8431 trans->block_rsv = block_rsv; 8432 8433 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8434 level = btrfs_header_level(root->node); 8435 path->nodes[level] = btrfs_lock_root_node(root); 8436 btrfs_set_lock_blocking(path->nodes[level]); 8437 path->slots[level] = 0; 8438 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8439 memset(&wc->update_progress, 0, 8440 sizeof(wc->update_progress)); 8441 } else { 8442 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8443 memcpy(&wc->update_progress, &key, 8444 sizeof(wc->update_progress)); 8445 8446 level = root_item->drop_level; 8447 BUG_ON(level == 0); 8448 path->lowest_level = level; 8449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8450 path->lowest_level = 0; 8451 if (ret < 0) { 8452 err = ret; 8453 goto out_end_trans; 8454 } 8455 WARN_ON(ret > 0); 8456 8457 /* 8458 * unlock our path, this is safe because only this 8459 * function is allowed to delete this snapshot 8460 */ 8461 btrfs_unlock_up_safe(path, 0); 8462 8463 level = btrfs_header_level(root->node); 8464 while (1) { 8465 btrfs_tree_lock(path->nodes[level]); 8466 btrfs_set_lock_blocking(path->nodes[level]); 8467 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8468 8469 ret = btrfs_lookup_extent_info(trans, root, 8470 path->nodes[level]->start, 8471 level, 1, &wc->refs[level], 8472 &wc->flags[level]); 8473 if (ret < 0) { 8474 err = ret; 8475 goto out_end_trans; 8476 } 8477 BUG_ON(wc->refs[level] == 0); 8478 8479 if (level == root_item->drop_level) 8480 break; 8481 8482 btrfs_tree_unlock(path->nodes[level]); 8483 path->locks[level] = 0; 8484 WARN_ON(wc->refs[level] != 1); 8485 level--; 8486 } 8487 } 8488 8489 wc->level = level; 8490 wc->shared_level = -1; 8491 wc->stage = DROP_REFERENCE; 8492 wc->update_ref = update_ref; 8493 wc->keep_locks = 0; 8494 wc->for_reloc = for_reloc; 8495 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8496 8497 while (1) { 8498 8499 ret = walk_down_tree(trans, root, path, wc); 8500 if (ret < 0) { 8501 err = ret; 8502 break; 8503 } 8504 8505 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8506 if (ret < 0) { 8507 err = ret; 8508 break; 8509 } 8510 8511 if (ret > 0) { 8512 BUG_ON(wc->stage != DROP_REFERENCE); 8513 break; 8514 } 8515 8516 if (wc->stage == DROP_REFERENCE) { 8517 level = wc->level; 8518 btrfs_node_key(path->nodes[level], 8519 &root_item->drop_progress, 8520 path->slots[level]); 8521 root_item->drop_level = level; 8522 } 8523 8524 BUG_ON(wc->level == 0); 8525 if (btrfs_should_end_transaction(trans, tree_root) || 8526 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8527 ret = btrfs_update_root(trans, tree_root, 8528 &root->root_key, 8529 root_item); 8530 if (ret) { 8531 btrfs_abort_transaction(trans, tree_root, ret); 8532 err = ret; 8533 goto out_end_trans; 8534 } 8535 8536 /* 8537 * Qgroup update accounting is run from 8538 * delayed ref handling. This usually works 8539 * out because delayed refs are normally the 8540 * only way qgroup updates are added. However, 8541 * we may have added updates during our tree 8542 * walk so run qgroups here to make sure we 8543 * don't lose any updates. 8544 */ 8545 ret = btrfs_delayed_qgroup_accounting(trans, 8546 root->fs_info); 8547 if (ret) 8548 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8549 "running qgroup updates " 8550 "during snapshot delete. " 8551 "Quota is out of sync, " 8552 "rescan required.\n", ret); 8553 8554 btrfs_end_transaction_throttle(trans, tree_root); 8555 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8556 pr_debug("BTRFS: drop snapshot early exit\n"); 8557 err = -EAGAIN; 8558 goto out_free; 8559 } 8560 8561 trans = btrfs_start_transaction(tree_root, 0); 8562 if (IS_ERR(trans)) { 8563 err = PTR_ERR(trans); 8564 goto out_free; 8565 } 8566 if (block_rsv) 8567 trans->block_rsv = block_rsv; 8568 } 8569 } 8570 btrfs_release_path(path); 8571 if (err) 8572 goto out_end_trans; 8573 8574 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8575 if (ret) { 8576 btrfs_abort_transaction(trans, tree_root, ret); 8577 goto out_end_trans; 8578 } 8579 8580 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8581 ret = btrfs_find_root(tree_root, &root->root_key, path, 8582 NULL, NULL); 8583 if (ret < 0) { 8584 btrfs_abort_transaction(trans, tree_root, ret); 8585 err = ret; 8586 goto out_end_trans; 8587 } else if (ret > 0) { 8588 /* if we fail to delete the orphan item this time 8589 * around, it'll get picked up the next time. 8590 * 8591 * The most common failure here is just -ENOENT. 8592 */ 8593 btrfs_del_orphan_item(trans, tree_root, 8594 root->root_key.objectid); 8595 } 8596 } 8597 8598 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8599 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8600 } else { 8601 free_extent_buffer(root->node); 8602 free_extent_buffer(root->commit_root); 8603 btrfs_put_fs_root(root); 8604 } 8605 root_dropped = true; 8606 out_end_trans: 8607 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info); 8608 if (ret) 8609 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8610 "running qgroup updates " 8611 "during snapshot delete. " 8612 "Quota is out of sync, " 8613 "rescan required.\n", ret); 8614 8615 btrfs_end_transaction_throttle(trans, tree_root); 8616 out_free: 8617 kfree(wc); 8618 btrfs_free_path(path); 8619 out: 8620 /* 8621 * So if we need to stop dropping the snapshot for whatever reason we 8622 * need to make sure to add it back to the dead root list so that we 8623 * keep trying to do the work later. This also cleans up roots if we 8624 * don't have it in the radix (like when we recover after a power fail 8625 * or unmount) so we don't leak memory. 8626 */ 8627 if (!for_reloc && root_dropped == false) 8628 btrfs_add_dead_root(root); 8629 if (err && err != -EAGAIN) 8630 btrfs_std_error(root->fs_info, err); 8631 return err; 8632 } 8633 8634 /* 8635 * drop subtree rooted at tree block 'node'. 8636 * 8637 * NOTE: this function will unlock and release tree block 'node' 8638 * only used by relocation code 8639 */ 8640 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8641 struct btrfs_root *root, 8642 struct extent_buffer *node, 8643 struct extent_buffer *parent) 8644 { 8645 struct btrfs_path *path; 8646 struct walk_control *wc; 8647 int level; 8648 int parent_level; 8649 int ret = 0; 8650 int wret; 8651 8652 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8653 8654 path = btrfs_alloc_path(); 8655 if (!path) 8656 return -ENOMEM; 8657 8658 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8659 if (!wc) { 8660 btrfs_free_path(path); 8661 return -ENOMEM; 8662 } 8663 8664 btrfs_assert_tree_locked(parent); 8665 parent_level = btrfs_header_level(parent); 8666 extent_buffer_get(parent); 8667 path->nodes[parent_level] = parent; 8668 path->slots[parent_level] = btrfs_header_nritems(parent); 8669 8670 btrfs_assert_tree_locked(node); 8671 level = btrfs_header_level(node); 8672 path->nodes[level] = node; 8673 path->slots[level] = 0; 8674 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8675 8676 wc->refs[parent_level] = 1; 8677 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8678 wc->level = level; 8679 wc->shared_level = -1; 8680 wc->stage = DROP_REFERENCE; 8681 wc->update_ref = 0; 8682 wc->keep_locks = 1; 8683 wc->for_reloc = 1; 8684 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8685 8686 while (1) { 8687 wret = walk_down_tree(trans, root, path, wc); 8688 if (wret < 0) { 8689 ret = wret; 8690 break; 8691 } 8692 8693 wret = walk_up_tree(trans, root, path, wc, parent_level); 8694 if (wret < 0) 8695 ret = wret; 8696 if (wret != 0) 8697 break; 8698 } 8699 8700 kfree(wc); 8701 btrfs_free_path(path); 8702 return ret; 8703 } 8704 8705 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8706 { 8707 u64 num_devices; 8708 u64 stripped; 8709 8710 /* 8711 * if restripe for this chunk_type is on pick target profile and 8712 * return, otherwise do the usual balance 8713 */ 8714 stripped = get_restripe_target(root->fs_info, flags); 8715 if (stripped) 8716 return extended_to_chunk(stripped); 8717 8718 num_devices = root->fs_info->fs_devices->rw_devices; 8719 8720 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8721 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8722 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8723 8724 if (num_devices == 1) { 8725 stripped |= BTRFS_BLOCK_GROUP_DUP; 8726 stripped = flags & ~stripped; 8727 8728 /* turn raid0 into single device chunks */ 8729 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8730 return stripped; 8731 8732 /* turn mirroring into duplication */ 8733 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8734 BTRFS_BLOCK_GROUP_RAID10)) 8735 return stripped | BTRFS_BLOCK_GROUP_DUP; 8736 } else { 8737 /* they already had raid on here, just return */ 8738 if (flags & stripped) 8739 return flags; 8740 8741 stripped |= BTRFS_BLOCK_GROUP_DUP; 8742 stripped = flags & ~stripped; 8743 8744 /* switch duplicated blocks with raid1 */ 8745 if (flags & BTRFS_BLOCK_GROUP_DUP) 8746 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8747 8748 /* this is drive concat, leave it alone */ 8749 } 8750 8751 return flags; 8752 } 8753 8754 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8755 { 8756 struct btrfs_space_info *sinfo = cache->space_info; 8757 u64 num_bytes; 8758 u64 min_allocable_bytes; 8759 int ret = -ENOSPC; 8760 8761 8762 /* 8763 * We need some metadata space and system metadata space for 8764 * allocating chunks in some corner cases until we force to set 8765 * it to be readonly. 8766 */ 8767 if ((sinfo->flags & 8768 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8769 !force) 8770 min_allocable_bytes = 1 * 1024 * 1024; 8771 else 8772 min_allocable_bytes = 0; 8773 8774 spin_lock(&sinfo->lock); 8775 spin_lock(&cache->lock); 8776 8777 if (cache->ro) { 8778 ret = 0; 8779 goto out; 8780 } 8781 8782 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8783 cache->bytes_super - btrfs_block_group_used(&cache->item); 8784 8785 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8786 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8787 min_allocable_bytes <= sinfo->total_bytes) { 8788 sinfo->bytes_readonly += num_bytes; 8789 cache->ro = 1; 8790 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8791 ret = 0; 8792 } 8793 out: 8794 spin_unlock(&cache->lock); 8795 spin_unlock(&sinfo->lock); 8796 return ret; 8797 } 8798 8799 int btrfs_set_block_group_ro(struct btrfs_root *root, 8800 struct btrfs_block_group_cache *cache) 8801 8802 { 8803 struct btrfs_trans_handle *trans; 8804 u64 alloc_flags; 8805 int ret; 8806 8807 BUG_ON(cache->ro); 8808 8809 again: 8810 trans = btrfs_join_transaction(root); 8811 if (IS_ERR(trans)) 8812 return PTR_ERR(trans); 8813 8814 /* 8815 * we're not allowed to set block groups readonly after the dirty 8816 * block groups cache has started writing. If it already started, 8817 * back off and let this transaction commit 8818 */ 8819 mutex_lock(&root->fs_info->ro_block_group_mutex); 8820 if (trans->transaction->dirty_bg_run) { 8821 u64 transid = trans->transid; 8822 8823 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8824 btrfs_end_transaction(trans, root); 8825 8826 ret = btrfs_wait_for_commit(root, transid); 8827 if (ret) 8828 return ret; 8829 goto again; 8830 } 8831 8832 /* 8833 * if we are changing raid levels, try to allocate a corresponding 8834 * block group with the new raid level. 8835 */ 8836 alloc_flags = update_block_group_flags(root, cache->flags); 8837 if (alloc_flags != cache->flags) { 8838 ret = do_chunk_alloc(trans, root, alloc_flags, 8839 CHUNK_ALLOC_FORCE); 8840 /* 8841 * ENOSPC is allowed here, we may have enough space 8842 * already allocated at the new raid level to 8843 * carry on 8844 */ 8845 if (ret == -ENOSPC) 8846 ret = 0; 8847 if (ret < 0) 8848 goto out; 8849 } 8850 8851 ret = set_block_group_ro(cache, 0); 8852 if (!ret) 8853 goto out; 8854 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8855 ret = do_chunk_alloc(trans, root, alloc_flags, 8856 CHUNK_ALLOC_FORCE); 8857 if (ret < 0) 8858 goto out; 8859 ret = set_block_group_ro(cache, 0); 8860 out: 8861 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8862 alloc_flags = update_block_group_flags(root, cache->flags); 8863 lock_chunks(root->fs_info->chunk_root); 8864 check_system_chunk(trans, root, alloc_flags); 8865 unlock_chunks(root->fs_info->chunk_root); 8866 } 8867 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8868 8869 btrfs_end_transaction(trans, root); 8870 return ret; 8871 } 8872 8873 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8874 struct btrfs_root *root, u64 type) 8875 { 8876 u64 alloc_flags = get_alloc_profile(root, type); 8877 return do_chunk_alloc(trans, root, alloc_flags, 8878 CHUNK_ALLOC_FORCE); 8879 } 8880 8881 /* 8882 * helper to account the unused space of all the readonly block group in the 8883 * space_info. takes mirrors into account. 8884 */ 8885 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8886 { 8887 struct btrfs_block_group_cache *block_group; 8888 u64 free_bytes = 0; 8889 int factor; 8890 8891 /* It's df, we don't care if it's racey */ 8892 if (list_empty(&sinfo->ro_bgs)) 8893 return 0; 8894 8895 spin_lock(&sinfo->lock); 8896 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8897 spin_lock(&block_group->lock); 8898 8899 if (!block_group->ro) { 8900 spin_unlock(&block_group->lock); 8901 continue; 8902 } 8903 8904 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8905 BTRFS_BLOCK_GROUP_RAID10 | 8906 BTRFS_BLOCK_GROUP_DUP)) 8907 factor = 2; 8908 else 8909 factor = 1; 8910 8911 free_bytes += (block_group->key.offset - 8912 btrfs_block_group_used(&block_group->item)) * 8913 factor; 8914 8915 spin_unlock(&block_group->lock); 8916 } 8917 spin_unlock(&sinfo->lock); 8918 8919 return free_bytes; 8920 } 8921 8922 void btrfs_set_block_group_rw(struct btrfs_root *root, 8923 struct btrfs_block_group_cache *cache) 8924 { 8925 struct btrfs_space_info *sinfo = cache->space_info; 8926 u64 num_bytes; 8927 8928 BUG_ON(!cache->ro); 8929 8930 spin_lock(&sinfo->lock); 8931 spin_lock(&cache->lock); 8932 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8933 cache->bytes_super - btrfs_block_group_used(&cache->item); 8934 sinfo->bytes_readonly -= num_bytes; 8935 cache->ro = 0; 8936 list_del_init(&cache->ro_list); 8937 spin_unlock(&cache->lock); 8938 spin_unlock(&sinfo->lock); 8939 } 8940 8941 /* 8942 * checks to see if its even possible to relocate this block group. 8943 * 8944 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8945 * ok to go ahead and try. 8946 */ 8947 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8948 { 8949 struct btrfs_block_group_cache *block_group; 8950 struct btrfs_space_info *space_info; 8951 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8952 struct btrfs_device *device; 8953 struct btrfs_trans_handle *trans; 8954 u64 min_free; 8955 u64 dev_min = 1; 8956 u64 dev_nr = 0; 8957 u64 target; 8958 int index; 8959 int full = 0; 8960 int ret = 0; 8961 8962 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8963 8964 /* odd, couldn't find the block group, leave it alone */ 8965 if (!block_group) 8966 return -1; 8967 8968 min_free = btrfs_block_group_used(&block_group->item); 8969 8970 /* no bytes used, we're good */ 8971 if (!min_free) 8972 goto out; 8973 8974 space_info = block_group->space_info; 8975 spin_lock(&space_info->lock); 8976 8977 full = space_info->full; 8978 8979 /* 8980 * if this is the last block group we have in this space, we can't 8981 * relocate it unless we're able to allocate a new chunk below. 8982 * 8983 * Otherwise, we need to make sure we have room in the space to handle 8984 * all of the extents from this block group. If we can, we're good 8985 */ 8986 if ((space_info->total_bytes != block_group->key.offset) && 8987 (space_info->bytes_used + space_info->bytes_reserved + 8988 space_info->bytes_pinned + space_info->bytes_readonly + 8989 min_free < space_info->total_bytes)) { 8990 spin_unlock(&space_info->lock); 8991 goto out; 8992 } 8993 spin_unlock(&space_info->lock); 8994 8995 /* 8996 * ok we don't have enough space, but maybe we have free space on our 8997 * devices to allocate new chunks for relocation, so loop through our 8998 * alloc devices and guess if we have enough space. if this block 8999 * group is going to be restriped, run checks against the target 9000 * profile instead of the current one. 9001 */ 9002 ret = -1; 9003 9004 /* 9005 * index: 9006 * 0: raid10 9007 * 1: raid1 9008 * 2: dup 9009 * 3: raid0 9010 * 4: single 9011 */ 9012 target = get_restripe_target(root->fs_info, block_group->flags); 9013 if (target) { 9014 index = __get_raid_index(extended_to_chunk(target)); 9015 } else { 9016 /* 9017 * this is just a balance, so if we were marked as full 9018 * we know there is no space for a new chunk 9019 */ 9020 if (full) 9021 goto out; 9022 9023 index = get_block_group_index(block_group); 9024 } 9025 9026 if (index == BTRFS_RAID_RAID10) { 9027 dev_min = 4; 9028 /* Divide by 2 */ 9029 min_free >>= 1; 9030 } else if (index == BTRFS_RAID_RAID1) { 9031 dev_min = 2; 9032 } else if (index == BTRFS_RAID_DUP) { 9033 /* Multiply by 2 */ 9034 min_free <<= 1; 9035 } else if (index == BTRFS_RAID_RAID0) { 9036 dev_min = fs_devices->rw_devices; 9037 min_free = div64_u64(min_free, dev_min); 9038 } 9039 9040 /* We need to do this so that we can look at pending chunks */ 9041 trans = btrfs_join_transaction(root); 9042 if (IS_ERR(trans)) { 9043 ret = PTR_ERR(trans); 9044 goto out; 9045 } 9046 9047 mutex_lock(&root->fs_info->chunk_mutex); 9048 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9049 u64 dev_offset; 9050 9051 /* 9052 * check to make sure we can actually find a chunk with enough 9053 * space to fit our block group in. 9054 */ 9055 if (device->total_bytes > device->bytes_used + min_free && 9056 !device->is_tgtdev_for_dev_replace) { 9057 ret = find_free_dev_extent(trans, device, min_free, 9058 &dev_offset, NULL); 9059 if (!ret) 9060 dev_nr++; 9061 9062 if (dev_nr >= dev_min) 9063 break; 9064 9065 ret = -1; 9066 } 9067 } 9068 mutex_unlock(&root->fs_info->chunk_mutex); 9069 btrfs_end_transaction(trans, root); 9070 out: 9071 btrfs_put_block_group(block_group); 9072 return ret; 9073 } 9074 9075 static int find_first_block_group(struct btrfs_root *root, 9076 struct btrfs_path *path, struct btrfs_key *key) 9077 { 9078 int ret = 0; 9079 struct btrfs_key found_key; 9080 struct extent_buffer *leaf; 9081 int slot; 9082 9083 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9084 if (ret < 0) 9085 goto out; 9086 9087 while (1) { 9088 slot = path->slots[0]; 9089 leaf = path->nodes[0]; 9090 if (slot >= btrfs_header_nritems(leaf)) { 9091 ret = btrfs_next_leaf(root, path); 9092 if (ret == 0) 9093 continue; 9094 if (ret < 0) 9095 goto out; 9096 break; 9097 } 9098 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9099 9100 if (found_key.objectid >= key->objectid && 9101 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9102 ret = 0; 9103 goto out; 9104 } 9105 path->slots[0]++; 9106 } 9107 out: 9108 return ret; 9109 } 9110 9111 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9112 { 9113 struct btrfs_block_group_cache *block_group; 9114 u64 last = 0; 9115 9116 while (1) { 9117 struct inode *inode; 9118 9119 block_group = btrfs_lookup_first_block_group(info, last); 9120 while (block_group) { 9121 spin_lock(&block_group->lock); 9122 if (block_group->iref) 9123 break; 9124 spin_unlock(&block_group->lock); 9125 block_group = next_block_group(info->tree_root, 9126 block_group); 9127 } 9128 if (!block_group) { 9129 if (last == 0) 9130 break; 9131 last = 0; 9132 continue; 9133 } 9134 9135 inode = block_group->inode; 9136 block_group->iref = 0; 9137 block_group->inode = NULL; 9138 spin_unlock(&block_group->lock); 9139 iput(inode); 9140 last = block_group->key.objectid + block_group->key.offset; 9141 btrfs_put_block_group(block_group); 9142 } 9143 } 9144 9145 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9146 { 9147 struct btrfs_block_group_cache *block_group; 9148 struct btrfs_space_info *space_info; 9149 struct btrfs_caching_control *caching_ctl; 9150 struct rb_node *n; 9151 9152 down_write(&info->commit_root_sem); 9153 while (!list_empty(&info->caching_block_groups)) { 9154 caching_ctl = list_entry(info->caching_block_groups.next, 9155 struct btrfs_caching_control, list); 9156 list_del(&caching_ctl->list); 9157 put_caching_control(caching_ctl); 9158 } 9159 up_write(&info->commit_root_sem); 9160 9161 spin_lock(&info->unused_bgs_lock); 9162 while (!list_empty(&info->unused_bgs)) { 9163 block_group = list_first_entry(&info->unused_bgs, 9164 struct btrfs_block_group_cache, 9165 bg_list); 9166 list_del_init(&block_group->bg_list); 9167 btrfs_put_block_group(block_group); 9168 } 9169 spin_unlock(&info->unused_bgs_lock); 9170 9171 spin_lock(&info->block_group_cache_lock); 9172 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9173 block_group = rb_entry(n, struct btrfs_block_group_cache, 9174 cache_node); 9175 rb_erase(&block_group->cache_node, 9176 &info->block_group_cache_tree); 9177 RB_CLEAR_NODE(&block_group->cache_node); 9178 spin_unlock(&info->block_group_cache_lock); 9179 9180 down_write(&block_group->space_info->groups_sem); 9181 list_del(&block_group->list); 9182 up_write(&block_group->space_info->groups_sem); 9183 9184 if (block_group->cached == BTRFS_CACHE_STARTED) 9185 wait_block_group_cache_done(block_group); 9186 9187 /* 9188 * We haven't cached this block group, which means we could 9189 * possibly have excluded extents on this block group. 9190 */ 9191 if (block_group->cached == BTRFS_CACHE_NO || 9192 block_group->cached == BTRFS_CACHE_ERROR) 9193 free_excluded_extents(info->extent_root, block_group); 9194 9195 btrfs_remove_free_space_cache(block_group); 9196 btrfs_put_block_group(block_group); 9197 9198 spin_lock(&info->block_group_cache_lock); 9199 } 9200 spin_unlock(&info->block_group_cache_lock); 9201 9202 /* now that all the block groups are freed, go through and 9203 * free all the space_info structs. This is only called during 9204 * the final stages of unmount, and so we know nobody is 9205 * using them. We call synchronize_rcu() once before we start, 9206 * just to be on the safe side. 9207 */ 9208 synchronize_rcu(); 9209 9210 release_global_block_rsv(info); 9211 9212 while (!list_empty(&info->space_info)) { 9213 int i; 9214 9215 space_info = list_entry(info->space_info.next, 9216 struct btrfs_space_info, 9217 list); 9218 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9219 if (WARN_ON(space_info->bytes_pinned > 0 || 9220 space_info->bytes_reserved > 0 || 9221 space_info->bytes_may_use > 0)) { 9222 dump_space_info(space_info, 0, 0); 9223 } 9224 } 9225 list_del(&space_info->list); 9226 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9227 struct kobject *kobj; 9228 kobj = space_info->block_group_kobjs[i]; 9229 space_info->block_group_kobjs[i] = NULL; 9230 if (kobj) { 9231 kobject_del(kobj); 9232 kobject_put(kobj); 9233 } 9234 } 9235 kobject_del(&space_info->kobj); 9236 kobject_put(&space_info->kobj); 9237 } 9238 return 0; 9239 } 9240 9241 static void __link_block_group(struct btrfs_space_info *space_info, 9242 struct btrfs_block_group_cache *cache) 9243 { 9244 int index = get_block_group_index(cache); 9245 bool first = false; 9246 9247 down_write(&space_info->groups_sem); 9248 if (list_empty(&space_info->block_groups[index])) 9249 first = true; 9250 list_add_tail(&cache->list, &space_info->block_groups[index]); 9251 up_write(&space_info->groups_sem); 9252 9253 if (first) { 9254 struct raid_kobject *rkobj; 9255 int ret; 9256 9257 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9258 if (!rkobj) 9259 goto out_err; 9260 rkobj->raid_type = index; 9261 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9262 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9263 "%s", get_raid_name(index)); 9264 if (ret) { 9265 kobject_put(&rkobj->kobj); 9266 goto out_err; 9267 } 9268 space_info->block_group_kobjs[index] = &rkobj->kobj; 9269 } 9270 9271 return; 9272 out_err: 9273 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9274 } 9275 9276 static struct btrfs_block_group_cache * 9277 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9278 { 9279 struct btrfs_block_group_cache *cache; 9280 9281 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9282 if (!cache) 9283 return NULL; 9284 9285 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9286 GFP_NOFS); 9287 if (!cache->free_space_ctl) { 9288 kfree(cache); 9289 return NULL; 9290 } 9291 9292 cache->key.objectid = start; 9293 cache->key.offset = size; 9294 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9295 9296 cache->sectorsize = root->sectorsize; 9297 cache->fs_info = root->fs_info; 9298 cache->full_stripe_len = btrfs_full_stripe_len(root, 9299 &root->fs_info->mapping_tree, 9300 start); 9301 atomic_set(&cache->count, 1); 9302 spin_lock_init(&cache->lock); 9303 init_rwsem(&cache->data_rwsem); 9304 INIT_LIST_HEAD(&cache->list); 9305 INIT_LIST_HEAD(&cache->cluster_list); 9306 INIT_LIST_HEAD(&cache->bg_list); 9307 INIT_LIST_HEAD(&cache->ro_list); 9308 INIT_LIST_HEAD(&cache->dirty_list); 9309 INIT_LIST_HEAD(&cache->io_list); 9310 btrfs_init_free_space_ctl(cache); 9311 atomic_set(&cache->trimming, 0); 9312 9313 return cache; 9314 } 9315 9316 int btrfs_read_block_groups(struct btrfs_root *root) 9317 { 9318 struct btrfs_path *path; 9319 int ret; 9320 struct btrfs_block_group_cache *cache; 9321 struct btrfs_fs_info *info = root->fs_info; 9322 struct btrfs_space_info *space_info; 9323 struct btrfs_key key; 9324 struct btrfs_key found_key; 9325 struct extent_buffer *leaf; 9326 int need_clear = 0; 9327 u64 cache_gen; 9328 9329 root = info->extent_root; 9330 key.objectid = 0; 9331 key.offset = 0; 9332 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9333 path = btrfs_alloc_path(); 9334 if (!path) 9335 return -ENOMEM; 9336 path->reada = 1; 9337 9338 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9339 if (btrfs_test_opt(root, SPACE_CACHE) && 9340 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9341 need_clear = 1; 9342 if (btrfs_test_opt(root, CLEAR_CACHE)) 9343 need_clear = 1; 9344 9345 while (1) { 9346 ret = find_first_block_group(root, path, &key); 9347 if (ret > 0) 9348 break; 9349 if (ret != 0) 9350 goto error; 9351 9352 leaf = path->nodes[0]; 9353 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9354 9355 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9356 found_key.offset); 9357 if (!cache) { 9358 ret = -ENOMEM; 9359 goto error; 9360 } 9361 9362 if (need_clear) { 9363 /* 9364 * When we mount with old space cache, we need to 9365 * set BTRFS_DC_CLEAR and set dirty flag. 9366 * 9367 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9368 * truncate the old free space cache inode and 9369 * setup a new one. 9370 * b) Setting 'dirty flag' makes sure that we flush 9371 * the new space cache info onto disk. 9372 */ 9373 if (btrfs_test_opt(root, SPACE_CACHE)) 9374 cache->disk_cache_state = BTRFS_DC_CLEAR; 9375 } 9376 9377 read_extent_buffer(leaf, &cache->item, 9378 btrfs_item_ptr_offset(leaf, path->slots[0]), 9379 sizeof(cache->item)); 9380 cache->flags = btrfs_block_group_flags(&cache->item); 9381 9382 key.objectid = found_key.objectid + found_key.offset; 9383 btrfs_release_path(path); 9384 9385 /* 9386 * We need to exclude the super stripes now so that the space 9387 * info has super bytes accounted for, otherwise we'll think 9388 * we have more space than we actually do. 9389 */ 9390 ret = exclude_super_stripes(root, cache); 9391 if (ret) { 9392 /* 9393 * We may have excluded something, so call this just in 9394 * case. 9395 */ 9396 free_excluded_extents(root, cache); 9397 btrfs_put_block_group(cache); 9398 goto error; 9399 } 9400 9401 /* 9402 * check for two cases, either we are full, and therefore 9403 * don't need to bother with the caching work since we won't 9404 * find any space, or we are empty, and we can just add all 9405 * the space in and be done with it. This saves us _alot_ of 9406 * time, particularly in the full case. 9407 */ 9408 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9409 cache->last_byte_to_unpin = (u64)-1; 9410 cache->cached = BTRFS_CACHE_FINISHED; 9411 free_excluded_extents(root, cache); 9412 } else if (btrfs_block_group_used(&cache->item) == 0) { 9413 cache->last_byte_to_unpin = (u64)-1; 9414 cache->cached = BTRFS_CACHE_FINISHED; 9415 add_new_free_space(cache, root->fs_info, 9416 found_key.objectid, 9417 found_key.objectid + 9418 found_key.offset); 9419 free_excluded_extents(root, cache); 9420 } 9421 9422 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9423 if (ret) { 9424 btrfs_remove_free_space_cache(cache); 9425 btrfs_put_block_group(cache); 9426 goto error; 9427 } 9428 9429 ret = update_space_info(info, cache->flags, found_key.offset, 9430 btrfs_block_group_used(&cache->item), 9431 &space_info); 9432 if (ret) { 9433 btrfs_remove_free_space_cache(cache); 9434 spin_lock(&info->block_group_cache_lock); 9435 rb_erase(&cache->cache_node, 9436 &info->block_group_cache_tree); 9437 RB_CLEAR_NODE(&cache->cache_node); 9438 spin_unlock(&info->block_group_cache_lock); 9439 btrfs_put_block_group(cache); 9440 goto error; 9441 } 9442 9443 cache->space_info = space_info; 9444 spin_lock(&cache->space_info->lock); 9445 cache->space_info->bytes_readonly += cache->bytes_super; 9446 spin_unlock(&cache->space_info->lock); 9447 9448 __link_block_group(space_info, cache); 9449 9450 set_avail_alloc_bits(root->fs_info, cache->flags); 9451 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9452 set_block_group_ro(cache, 1); 9453 } else if (btrfs_block_group_used(&cache->item) == 0) { 9454 spin_lock(&info->unused_bgs_lock); 9455 /* Should always be true but just in case. */ 9456 if (list_empty(&cache->bg_list)) { 9457 btrfs_get_block_group(cache); 9458 list_add_tail(&cache->bg_list, 9459 &info->unused_bgs); 9460 } 9461 spin_unlock(&info->unused_bgs_lock); 9462 } 9463 } 9464 9465 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9466 if (!(get_alloc_profile(root, space_info->flags) & 9467 (BTRFS_BLOCK_GROUP_RAID10 | 9468 BTRFS_BLOCK_GROUP_RAID1 | 9469 BTRFS_BLOCK_GROUP_RAID5 | 9470 BTRFS_BLOCK_GROUP_RAID6 | 9471 BTRFS_BLOCK_GROUP_DUP))) 9472 continue; 9473 /* 9474 * avoid allocating from un-mirrored block group if there are 9475 * mirrored block groups. 9476 */ 9477 list_for_each_entry(cache, 9478 &space_info->block_groups[BTRFS_RAID_RAID0], 9479 list) 9480 set_block_group_ro(cache, 1); 9481 list_for_each_entry(cache, 9482 &space_info->block_groups[BTRFS_RAID_SINGLE], 9483 list) 9484 set_block_group_ro(cache, 1); 9485 } 9486 9487 init_global_block_rsv(info); 9488 ret = 0; 9489 error: 9490 btrfs_free_path(path); 9491 return ret; 9492 } 9493 9494 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9495 struct btrfs_root *root) 9496 { 9497 struct btrfs_block_group_cache *block_group, *tmp; 9498 struct btrfs_root *extent_root = root->fs_info->extent_root; 9499 struct btrfs_block_group_item item; 9500 struct btrfs_key key; 9501 int ret = 0; 9502 9503 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9504 if (ret) 9505 goto next; 9506 9507 spin_lock(&block_group->lock); 9508 memcpy(&item, &block_group->item, sizeof(item)); 9509 memcpy(&key, &block_group->key, sizeof(key)); 9510 spin_unlock(&block_group->lock); 9511 9512 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9513 sizeof(item)); 9514 if (ret) 9515 btrfs_abort_transaction(trans, extent_root, ret); 9516 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9517 key.objectid, key.offset); 9518 if (ret) 9519 btrfs_abort_transaction(trans, extent_root, ret); 9520 next: 9521 list_del_init(&block_group->bg_list); 9522 } 9523 } 9524 9525 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9526 struct btrfs_root *root, u64 bytes_used, 9527 u64 type, u64 chunk_objectid, u64 chunk_offset, 9528 u64 size) 9529 { 9530 int ret; 9531 struct btrfs_root *extent_root; 9532 struct btrfs_block_group_cache *cache; 9533 9534 extent_root = root->fs_info->extent_root; 9535 9536 btrfs_set_log_full_commit(root->fs_info, trans); 9537 9538 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9539 if (!cache) 9540 return -ENOMEM; 9541 9542 btrfs_set_block_group_used(&cache->item, bytes_used); 9543 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9544 btrfs_set_block_group_flags(&cache->item, type); 9545 9546 cache->flags = type; 9547 cache->last_byte_to_unpin = (u64)-1; 9548 cache->cached = BTRFS_CACHE_FINISHED; 9549 ret = exclude_super_stripes(root, cache); 9550 if (ret) { 9551 /* 9552 * We may have excluded something, so call this just in 9553 * case. 9554 */ 9555 free_excluded_extents(root, cache); 9556 btrfs_put_block_group(cache); 9557 return ret; 9558 } 9559 9560 add_new_free_space(cache, root->fs_info, chunk_offset, 9561 chunk_offset + size); 9562 9563 free_excluded_extents(root, cache); 9564 9565 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9566 if (ret) { 9567 btrfs_remove_free_space_cache(cache); 9568 btrfs_put_block_group(cache); 9569 return ret; 9570 } 9571 9572 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9573 &cache->space_info); 9574 if (ret) { 9575 btrfs_remove_free_space_cache(cache); 9576 spin_lock(&root->fs_info->block_group_cache_lock); 9577 rb_erase(&cache->cache_node, 9578 &root->fs_info->block_group_cache_tree); 9579 RB_CLEAR_NODE(&cache->cache_node); 9580 spin_unlock(&root->fs_info->block_group_cache_lock); 9581 btrfs_put_block_group(cache); 9582 return ret; 9583 } 9584 update_global_block_rsv(root->fs_info); 9585 9586 spin_lock(&cache->space_info->lock); 9587 cache->space_info->bytes_readonly += cache->bytes_super; 9588 spin_unlock(&cache->space_info->lock); 9589 9590 __link_block_group(cache->space_info, cache); 9591 9592 list_add_tail(&cache->bg_list, &trans->new_bgs); 9593 9594 set_avail_alloc_bits(extent_root->fs_info, type); 9595 9596 return 0; 9597 } 9598 9599 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9600 { 9601 u64 extra_flags = chunk_to_extended(flags) & 9602 BTRFS_EXTENDED_PROFILE_MASK; 9603 9604 write_seqlock(&fs_info->profiles_lock); 9605 if (flags & BTRFS_BLOCK_GROUP_DATA) 9606 fs_info->avail_data_alloc_bits &= ~extra_flags; 9607 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9608 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9609 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9610 fs_info->avail_system_alloc_bits &= ~extra_flags; 9611 write_sequnlock(&fs_info->profiles_lock); 9612 } 9613 9614 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9615 struct btrfs_root *root, u64 group_start, 9616 struct extent_map *em) 9617 { 9618 struct btrfs_path *path; 9619 struct btrfs_block_group_cache *block_group; 9620 struct btrfs_free_cluster *cluster; 9621 struct btrfs_root *tree_root = root->fs_info->tree_root; 9622 struct btrfs_key key; 9623 struct inode *inode; 9624 struct kobject *kobj = NULL; 9625 int ret; 9626 int index; 9627 int factor; 9628 struct btrfs_caching_control *caching_ctl = NULL; 9629 bool remove_em; 9630 9631 root = root->fs_info->extent_root; 9632 9633 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9634 BUG_ON(!block_group); 9635 BUG_ON(!block_group->ro); 9636 9637 /* 9638 * Free the reserved super bytes from this block group before 9639 * remove it. 9640 */ 9641 free_excluded_extents(root, block_group); 9642 9643 memcpy(&key, &block_group->key, sizeof(key)); 9644 index = get_block_group_index(block_group); 9645 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9646 BTRFS_BLOCK_GROUP_RAID1 | 9647 BTRFS_BLOCK_GROUP_RAID10)) 9648 factor = 2; 9649 else 9650 factor = 1; 9651 9652 /* make sure this block group isn't part of an allocation cluster */ 9653 cluster = &root->fs_info->data_alloc_cluster; 9654 spin_lock(&cluster->refill_lock); 9655 btrfs_return_cluster_to_free_space(block_group, cluster); 9656 spin_unlock(&cluster->refill_lock); 9657 9658 /* 9659 * make sure this block group isn't part of a metadata 9660 * allocation cluster 9661 */ 9662 cluster = &root->fs_info->meta_alloc_cluster; 9663 spin_lock(&cluster->refill_lock); 9664 btrfs_return_cluster_to_free_space(block_group, cluster); 9665 spin_unlock(&cluster->refill_lock); 9666 9667 path = btrfs_alloc_path(); 9668 if (!path) { 9669 ret = -ENOMEM; 9670 goto out; 9671 } 9672 9673 /* 9674 * get the inode first so any iput calls done for the io_list 9675 * aren't the final iput (no unlinks allowed now) 9676 */ 9677 inode = lookup_free_space_inode(tree_root, block_group, path); 9678 9679 mutex_lock(&trans->transaction->cache_write_mutex); 9680 /* 9681 * make sure our free spache cache IO is done before remove the 9682 * free space inode 9683 */ 9684 spin_lock(&trans->transaction->dirty_bgs_lock); 9685 if (!list_empty(&block_group->io_list)) { 9686 list_del_init(&block_group->io_list); 9687 9688 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9689 9690 spin_unlock(&trans->transaction->dirty_bgs_lock); 9691 btrfs_wait_cache_io(root, trans, block_group, 9692 &block_group->io_ctl, path, 9693 block_group->key.objectid); 9694 btrfs_put_block_group(block_group); 9695 spin_lock(&trans->transaction->dirty_bgs_lock); 9696 } 9697 9698 if (!list_empty(&block_group->dirty_list)) { 9699 list_del_init(&block_group->dirty_list); 9700 btrfs_put_block_group(block_group); 9701 } 9702 spin_unlock(&trans->transaction->dirty_bgs_lock); 9703 mutex_unlock(&trans->transaction->cache_write_mutex); 9704 9705 if (!IS_ERR(inode)) { 9706 ret = btrfs_orphan_add(trans, inode); 9707 if (ret) { 9708 btrfs_add_delayed_iput(inode); 9709 goto out; 9710 } 9711 clear_nlink(inode); 9712 /* One for the block groups ref */ 9713 spin_lock(&block_group->lock); 9714 if (block_group->iref) { 9715 block_group->iref = 0; 9716 block_group->inode = NULL; 9717 spin_unlock(&block_group->lock); 9718 iput(inode); 9719 } else { 9720 spin_unlock(&block_group->lock); 9721 } 9722 /* One for our lookup ref */ 9723 btrfs_add_delayed_iput(inode); 9724 } 9725 9726 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9727 key.offset = block_group->key.objectid; 9728 key.type = 0; 9729 9730 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9731 if (ret < 0) 9732 goto out; 9733 if (ret > 0) 9734 btrfs_release_path(path); 9735 if (ret == 0) { 9736 ret = btrfs_del_item(trans, tree_root, path); 9737 if (ret) 9738 goto out; 9739 btrfs_release_path(path); 9740 } 9741 9742 spin_lock(&root->fs_info->block_group_cache_lock); 9743 rb_erase(&block_group->cache_node, 9744 &root->fs_info->block_group_cache_tree); 9745 RB_CLEAR_NODE(&block_group->cache_node); 9746 9747 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9748 root->fs_info->first_logical_byte = (u64)-1; 9749 spin_unlock(&root->fs_info->block_group_cache_lock); 9750 9751 down_write(&block_group->space_info->groups_sem); 9752 /* 9753 * we must use list_del_init so people can check to see if they 9754 * are still on the list after taking the semaphore 9755 */ 9756 list_del_init(&block_group->list); 9757 if (list_empty(&block_group->space_info->block_groups[index])) { 9758 kobj = block_group->space_info->block_group_kobjs[index]; 9759 block_group->space_info->block_group_kobjs[index] = NULL; 9760 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9761 } 9762 up_write(&block_group->space_info->groups_sem); 9763 if (kobj) { 9764 kobject_del(kobj); 9765 kobject_put(kobj); 9766 } 9767 9768 if (block_group->has_caching_ctl) 9769 caching_ctl = get_caching_control(block_group); 9770 if (block_group->cached == BTRFS_CACHE_STARTED) 9771 wait_block_group_cache_done(block_group); 9772 if (block_group->has_caching_ctl) { 9773 down_write(&root->fs_info->commit_root_sem); 9774 if (!caching_ctl) { 9775 struct btrfs_caching_control *ctl; 9776 9777 list_for_each_entry(ctl, 9778 &root->fs_info->caching_block_groups, list) 9779 if (ctl->block_group == block_group) { 9780 caching_ctl = ctl; 9781 atomic_inc(&caching_ctl->count); 9782 break; 9783 } 9784 } 9785 if (caching_ctl) 9786 list_del_init(&caching_ctl->list); 9787 up_write(&root->fs_info->commit_root_sem); 9788 if (caching_ctl) { 9789 /* Once for the caching bgs list and once for us. */ 9790 put_caching_control(caching_ctl); 9791 put_caching_control(caching_ctl); 9792 } 9793 } 9794 9795 spin_lock(&trans->transaction->dirty_bgs_lock); 9796 if (!list_empty(&block_group->dirty_list)) { 9797 WARN_ON(1); 9798 } 9799 if (!list_empty(&block_group->io_list)) { 9800 WARN_ON(1); 9801 } 9802 spin_unlock(&trans->transaction->dirty_bgs_lock); 9803 btrfs_remove_free_space_cache(block_group); 9804 9805 spin_lock(&block_group->space_info->lock); 9806 list_del_init(&block_group->ro_list); 9807 9808 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9809 WARN_ON(block_group->space_info->total_bytes 9810 < block_group->key.offset); 9811 WARN_ON(block_group->space_info->bytes_readonly 9812 < block_group->key.offset); 9813 WARN_ON(block_group->space_info->disk_total 9814 < block_group->key.offset * factor); 9815 } 9816 block_group->space_info->total_bytes -= block_group->key.offset; 9817 block_group->space_info->bytes_readonly -= block_group->key.offset; 9818 block_group->space_info->disk_total -= block_group->key.offset * factor; 9819 9820 spin_unlock(&block_group->space_info->lock); 9821 9822 memcpy(&key, &block_group->key, sizeof(key)); 9823 9824 lock_chunks(root); 9825 if (!list_empty(&em->list)) { 9826 /* We're in the transaction->pending_chunks list. */ 9827 free_extent_map(em); 9828 } 9829 spin_lock(&block_group->lock); 9830 block_group->removed = 1; 9831 /* 9832 * At this point trimming can't start on this block group, because we 9833 * removed the block group from the tree fs_info->block_group_cache_tree 9834 * so no one can't find it anymore and even if someone already got this 9835 * block group before we removed it from the rbtree, they have already 9836 * incremented block_group->trimming - if they didn't, they won't find 9837 * any free space entries because we already removed them all when we 9838 * called btrfs_remove_free_space_cache(). 9839 * 9840 * And we must not remove the extent map from the fs_info->mapping_tree 9841 * to prevent the same logical address range and physical device space 9842 * ranges from being reused for a new block group. This is because our 9843 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9844 * completely transactionless, so while it is trimming a range the 9845 * currently running transaction might finish and a new one start, 9846 * allowing for new block groups to be created that can reuse the same 9847 * physical device locations unless we take this special care. 9848 */ 9849 remove_em = (atomic_read(&block_group->trimming) == 0); 9850 /* 9851 * Make sure a trimmer task always sees the em in the pinned_chunks list 9852 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9853 * before checking block_group->removed). 9854 */ 9855 if (!remove_em) { 9856 /* 9857 * Our em might be in trans->transaction->pending_chunks which 9858 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9859 * and so is the fs_info->pinned_chunks list. 9860 * 9861 * So at this point we must be holding the chunk_mutex to avoid 9862 * any races with chunk allocation (more specifically at 9863 * volumes.c:contains_pending_extent()), to ensure it always 9864 * sees the em, either in the pending_chunks list or in the 9865 * pinned_chunks list. 9866 */ 9867 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9868 } 9869 spin_unlock(&block_group->lock); 9870 9871 if (remove_em) { 9872 struct extent_map_tree *em_tree; 9873 9874 em_tree = &root->fs_info->mapping_tree.map_tree; 9875 write_lock(&em_tree->lock); 9876 /* 9877 * The em might be in the pending_chunks list, so make sure the 9878 * chunk mutex is locked, since remove_extent_mapping() will 9879 * delete us from that list. 9880 */ 9881 remove_extent_mapping(em_tree, em); 9882 write_unlock(&em_tree->lock); 9883 /* once for the tree */ 9884 free_extent_map(em); 9885 } 9886 9887 unlock_chunks(root); 9888 9889 btrfs_put_block_group(block_group); 9890 btrfs_put_block_group(block_group); 9891 9892 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9893 if (ret > 0) 9894 ret = -EIO; 9895 if (ret < 0) 9896 goto out; 9897 9898 ret = btrfs_del_item(trans, root, path); 9899 out: 9900 btrfs_free_path(path); 9901 return ret; 9902 } 9903 9904 /* 9905 * Process the unused_bgs list and remove any that don't have any allocated 9906 * space inside of them. 9907 */ 9908 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9909 { 9910 struct btrfs_block_group_cache *block_group; 9911 struct btrfs_space_info *space_info; 9912 struct btrfs_root *root = fs_info->extent_root; 9913 struct btrfs_trans_handle *trans; 9914 int ret = 0; 9915 9916 if (!fs_info->open) 9917 return; 9918 9919 spin_lock(&fs_info->unused_bgs_lock); 9920 while (!list_empty(&fs_info->unused_bgs)) { 9921 u64 start, end; 9922 9923 block_group = list_first_entry(&fs_info->unused_bgs, 9924 struct btrfs_block_group_cache, 9925 bg_list); 9926 space_info = block_group->space_info; 9927 list_del_init(&block_group->bg_list); 9928 if (ret || btrfs_mixed_space_info(space_info)) { 9929 btrfs_put_block_group(block_group); 9930 continue; 9931 } 9932 spin_unlock(&fs_info->unused_bgs_lock); 9933 9934 /* Don't want to race with allocators so take the groups_sem */ 9935 down_write(&space_info->groups_sem); 9936 spin_lock(&block_group->lock); 9937 if (block_group->reserved || 9938 btrfs_block_group_used(&block_group->item) || 9939 block_group->ro) { 9940 /* 9941 * We want to bail if we made new allocations or have 9942 * outstanding allocations in this block group. We do 9943 * the ro check in case balance is currently acting on 9944 * this block group. 9945 */ 9946 spin_unlock(&block_group->lock); 9947 up_write(&space_info->groups_sem); 9948 goto next; 9949 } 9950 spin_unlock(&block_group->lock); 9951 9952 /* We don't want to force the issue, only flip if it's ok. */ 9953 ret = set_block_group_ro(block_group, 0); 9954 up_write(&space_info->groups_sem); 9955 if (ret < 0) { 9956 ret = 0; 9957 goto next; 9958 } 9959 9960 /* 9961 * Want to do this before we do anything else so we can recover 9962 * properly if we fail to join the transaction. 9963 */ 9964 /* 1 for btrfs_orphan_reserve_metadata() */ 9965 trans = btrfs_start_transaction(root, 1); 9966 if (IS_ERR(trans)) { 9967 btrfs_set_block_group_rw(root, block_group); 9968 ret = PTR_ERR(trans); 9969 goto next; 9970 } 9971 9972 /* 9973 * We could have pending pinned extents for this block group, 9974 * just delete them, we don't care about them anymore. 9975 */ 9976 start = block_group->key.objectid; 9977 end = start + block_group->key.offset - 1; 9978 /* 9979 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9980 * btrfs_finish_extent_commit(). If we are at transaction N, 9981 * another task might be running finish_extent_commit() for the 9982 * previous transaction N - 1, and have seen a range belonging 9983 * to the block group in freed_extents[] before we were able to 9984 * clear the whole block group range from freed_extents[]. This 9985 * means that task can lookup for the block group after we 9986 * unpinned it from freed_extents[] and removed it, leading to 9987 * a BUG_ON() at btrfs_unpin_extent_range(). 9988 */ 9989 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9990 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9991 EXTENT_DIRTY, GFP_NOFS); 9992 if (ret) { 9993 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9994 btrfs_set_block_group_rw(root, block_group); 9995 goto end_trans; 9996 } 9997 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 9998 EXTENT_DIRTY, GFP_NOFS); 9999 if (ret) { 10000 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10001 btrfs_set_block_group_rw(root, block_group); 10002 goto end_trans; 10003 } 10004 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10005 10006 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10007 spin_lock(&space_info->lock); 10008 spin_lock(&block_group->lock); 10009 10010 space_info->bytes_pinned -= block_group->pinned; 10011 space_info->bytes_readonly += block_group->pinned; 10012 percpu_counter_add(&space_info->total_bytes_pinned, 10013 -block_group->pinned); 10014 block_group->pinned = 0; 10015 10016 spin_unlock(&block_group->lock); 10017 spin_unlock(&space_info->lock); 10018 10019 /* 10020 * Btrfs_remove_chunk will abort the transaction if things go 10021 * horribly wrong. 10022 */ 10023 ret = btrfs_remove_chunk(trans, root, 10024 block_group->key.objectid); 10025 end_trans: 10026 btrfs_end_transaction(trans, root); 10027 next: 10028 btrfs_put_block_group(block_group); 10029 spin_lock(&fs_info->unused_bgs_lock); 10030 } 10031 spin_unlock(&fs_info->unused_bgs_lock); 10032 } 10033 10034 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10035 { 10036 struct btrfs_space_info *space_info; 10037 struct btrfs_super_block *disk_super; 10038 u64 features; 10039 u64 flags; 10040 int mixed = 0; 10041 int ret; 10042 10043 disk_super = fs_info->super_copy; 10044 if (!btrfs_super_root(disk_super)) 10045 return 1; 10046 10047 features = btrfs_super_incompat_flags(disk_super); 10048 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10049 mixed = 1; 10050 10051 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10052 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10053 if (ret) 10054 goto out; 10055 10056 if (mixed) { 10057 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10058 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10059 } else { 10060 flags = BTRFS_BLOCK_GROUP_METADATA; 10061 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10062 if (ret) 10063 goto out; 10064 10065 flags = BTRFS_BLOCK_GROUP_DATA; 10066 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10067 } 10068 out: 10069 return ret; 10070 } 10071 10072 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10073 { 10074 return unpin_extent_range(root, start, end, false); 10075 } 10076 10077 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10078 { 10079 struct btrfs_fs_info *fs_info = root->fs_info; 10080 struct btrfs_block_group_cache *cache = NULL; 10081 u64 group_trimmed; 10082 u64 start; 10083 u64 end; 10084 u64 trimmed = 0; 10085 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10086 int ret = 0; 10087 10088 /* 10089 * try to trim all FS space, our block group may start from non-zero. 10090 */ 10091 if (range->len == total_bytes) 10092 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10093 else 10094 cache = btrfs_lookup_block_group(fs_info, range->start); 10095 10096 while (cache) { 10097 if (cache->key.objectid >= (range->start + range->len)) { 10098 btrfs_put_block_group(cache); 10099 break; 10100 } 10101 10102 start = max(range->start, cache->key.objectid); 10103 end = min(range->start + range->len, 10104 cache->key.objectid + cache->key.offset); 10105 10106 if (end - start >= range->minlen) { 10107 if (!block_group_cache_done(cache)) { 10108 ret = cache_block_group(cache, 0); 10109 if (ret) { 10110 btrfs_put_block_group(cache); 10111 break; 10112 } 10113 ret = wait_block_group_cache_done(cache); 10114 if (ret) { 10115 btrfs_put_block_group(cache); 10116 break; 10117 } 10118 } 10119 ret = btrfs_trim_block_group(cache, 10120 &group_trimmed, 10121 start, 10122 end, 10123 range->minlen); 10124 10125 trimmed += group_trimmed; 10126 if (ret) { 10127 btrfs_put_block_group(cache); 10128 break; 10129 } 10130 } 10131 10132 cache = next_block_group(fs_info->tree_root, cache); 10133 } 10134 10135 range->len = trimmed; 10136 return ret; 10137 } 10138 10139 /* 10140 * btrfs_{start,end}_write_no_snapshoting() are similar to 10141 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10142 * data into the page cache through nocow before the subvolume is snapshoted, 10143 * but flush the data into disk after the snapshot creation, or to prevent 10144 * operations while snapshoting is ongoing and that cause the snapshot to be 10145 * inconsistent (writes followed by expanding truncates for example). 10146 */ 10147 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10148 { 10149 percpu_counter_dec(&root->subv_writers->counter); 10150 /* 10151 * Make sure counter is updated before we wake up 10152 * waiters. 10153 */ 10154 smp_mb(); 10155 if (waitqueue_active(&root->subv_writers->wait)) 10156 wake_up(&root->subv_writers->wait); 10157 } 10158 10159 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10160 { 10161 if (atomic_read(&root->will_be_snapshoted)) 10162 return 0; 10163 10164 percpu_counter_inc(&root->subv_writers->counter); 10165 /* 10166 * Make sure counter is updated before we check for snapshot creation. 10167 */ 10168 smp_mb(); 10169 if (atomic_read(&root->will_be_snapshoted)) { 10170 btrfs_end_write_no_snapshoting(root); 10171 return 0; 10172 } 10173 return 1; 10174 } 10175