xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 52fb57e7)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				u64 bytenr, u64 num_bytes, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op,
86 				int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins,
100 				     int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 			  struct btrfs_root *extent_root, u64 flags,
103 			  int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 			 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 			    int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 				       u64 num_bytes, int reserve,
110 				       int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 			       u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 		     u64 bytenr, u64 num_bytes, int reserved);
115 
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 	smp_mb();
120 	return cache->cached == BTRFS_CACHE_FINISHED ||
121 		cache->cached == BTRFS_CACHE_ERROR;
122 }
123 
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 	return (cache->flags & bits) == bits;
127 }
128 
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	atomic_inc(&cache->count);
132 }
133 
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 	if (atomic_dec_and_test(&cache->count)) {
137 		WARN_ON(cache->pinned > 0);
138 		WARN_ON(cache->reserved > 0);
139 		kfree(cache->free_space_ctl);
140 		kfree(cache);
141 	}
142 }
143 
144 /*
145  * this adds the block group to the fs_info rb tree for the block group
146  * cache
147  */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 				struct btrfs_block_group_cache *block_group)
150 {
151 	struct rb_node **p;
152 	struct rb_node *parent = NULL;
153 	struct btrfs_block_group_cache *cache;
154 
155 	spin_lock(&info->block_group_cache_lock);
156 	p = &info->block_group_cache_tree.rb_node;
157 
158 	while (*p) {
159 		parent = *p;
160 		cache = rb_entry(parent, struct btrfs_block_group_cache,
161 				 cache_node);
162 		if (block_group->key.objectid < cache->key.objectid) {
163 			p = &(*p)->rb_left;
164 		} else if (block_group->key.objectid > cache->key.objectid) {
165 			p = &(*p)->rb_right;
166 		} else {
167 			spin_unlock(&info->block_group_cache_lock);
168 			return -EEXIST;
169 		}
170 	}
171 
172 	rb_link_node(&block_group->cache_node, parent, p);
173 	rb_insert_color(&block_group->cache_node,
174 			&info->block_group_cache_tree);
175 
176 	if (info->first_logical_byte > block_group->key.objectid)
177 		info->first_logical_byte = block_group->key.objectid;
178 
179 	spin_unlock(&info->block_group_cache_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * This will return the block group at or after bytenr if contains is 0, else
186  * it will return the block group that contains the bytenr
187  */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 			      int contains)
191 {
192 	struct btrfs_block_group_cache *cache, *ret = NULL;
193 	struct rb_node *n;
194 	u64 end, start;
195 
196 	spin_lock(&info->block_group_cache_lock);
197 	n = info->block_group_cache_tree.rb_node;
198 
199 	while (n) {
200 		cache = rb_entry(n, struct btrfs_block_group_cache,
201 				 cache_node);
202 		end = cache->key.objectid + cache->key.offset - 1;
203 		start = cache->key.objectid;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->key.objectid))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 			info->first_logical_byte = ret->key.objectid;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 static int add_excluded_extent(struct btrfs_root *root,
231 			       u64 start, u64 num_bytes)
232 {
233 	u64 end = start + num_bytes - 1;
234 	set_extent_bits(&root->fs_info->freed_extents[0],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	set_extent_bits(&root->fs_info->freed_extents[1],
237 			start, end, EXTENT_UPTODATE, GFP_NOFS);
238 	return 0;
239 }
240 
241 static void free_excluded_extents(struct btrfs_root *root,
242 				  struct btrfs_block_group_cache *cache)
243 {
244 	u64 start, end;
245 
246 	start = cache->key.objectid;
247 	end = start + cache->key.offset - 1;
248 
249 	clear_extent_bits(&root->fs_info->freed_extents[0],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 	clear_extent_bits(&root->fs_info->freed_extents[1],
252 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254 
255 static int exclude_super_stripes(struct btrfs_root *root,
256 				 struct btrfs_block_group_cache *cache)
257 {
258 	u64 bytenr;
259 	u64 *logical;
260 	int stripe_len;
261 	int i, nr, ret;
262 
263 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 		cache->bytes_super += stripe_len;
266 		ret = add_excluded_extent(root, cache->key.objectid,
267 					  stripe_len);
268 		if (ret)
269 			return ret;
270 	}
271 
272 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 		bytenr = btrfs_sb_offset(i);
274 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 				       cache->key.objectid, bytenr,
276 				       0, &logical, &nr, &stripe_len);
277 		if (ret)
278 			return ret;
279 
280 		while (nr--) {
281 			u64 start, len;
282 
283 			if (logical[nr] > cache->key.objectid +
284 			    cache->key.offset)
285 				continue;
286 
287 			if (logical[nr] + stripe_len <= cache->key.objectid)
288 				continue;
289 
290 			start = logical[nr];
291 			if (start < cache->key.objectid) {
292 				start = cache->key.objectid;
293 				len = (logical[nr] + stripe_len) - start;
294 			} else {
295 				len = min_t(u64, stripe_len,
296 					    cache->key.objectid +
297 					    cache->key.offset - start);
298 			}
299 
300 			cache->bytes_super += len;
301 			ret = add_excluded_extent(root, start, len);
302 			if (ret) {
303 				kfree(logical);
304 				return ret;
305 			}
306 		}
307 
308 		kfree(logical);
309 	}
310 	return 0;
311 }
312 
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 	struct btrfs_caching_control *ctl;
317 
318 	spin_lock(&cache->lock);
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = -ENOMEM;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->commit_root_sem);
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto err;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->commit_root_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->nodesize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->commit_root_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 			caching_thread, NULL, NULL);
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		mutex_lock(&caching_ctl->mutex);
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 			caching_ctl->progress = (u64)-1;
601 		} else {
602 			if (load_cache_only) {
603 				cache->caching_ctl = NULL;
604 				cache->cached = BTRFS_CACHE_NO;
605 			} else {
606 				cache->cached = BTRFS_CACHE_STARTED;
607 				cache->has_caching_ctl = 1;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		mutex_unlock(&caching_ctl->mutex);
612 
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 			cache->has_caching_ctl = 1;
631 		}
632 		spin_unlock(&cache->lock);
633 		wake_up(&caching_ctl->wait);
634 	}
635 
636 	if (load_cache_only) {
637 		put_caching_control(caching_ctl);
638 		return 0;
639 	}
640 
641 	down_write(&fs_info->commit_root_sem);
642 	atomic_inc(&caching_ctl->count);
643 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 	up_write(&fs_info->commit_root_sem);
645 
646 	btrfs_get_block_group(cache);
647 
648 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 
650 	return ret;
651 }
652 
653 /*
654  * return the block group that starts at or after bytenr
655  */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 	struct btrfs_block_group_cache *cache;
660 
661 	cache = block_group_cache_tree_search(info, bytenr, 0);
662 
663 	return cache;
664 }
665 
666 /*
667  * return the block group that contains the given bytenr
668  */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 						 struct btrfs_fs_info *info,
671 						 u64 bytenr)
672 {
673 	struct btrfs_block_group_cache *cache;
674 
675 	cache = block_group_cache_tree_search(info, bytenr, 1);
676 
677 	return cache;
678 }
679 
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 						  u64 flags)
682 {
683 	struct list_head *head = &info->space_info;
684 	struct btrfs_space_info *found;
685 
686 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 
688 	rcu_read_lock();
689 	list_for_each_entry_rcu(found, head, list) {
690 		if (found->flags & flags) {
691 			rcu_read_unlock();
692 			return found;
693 		}
694 	}
695 	rcu_read_unlock();
696 	return NULL;
697 }
698 
699 /*
700  * after adding space to the filesystem, we need to clear the full flags
701  * on all the space infos.
702  */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 	struct list_head *head = &info->space_info;
706 	struct btrfs_space_info *found;
707 
708 	rcu_read_lock();
709 	list_for_each_entry_rcu(found, head, list)
710 		found->full = 0;
711 	rcu_read_unlock();
712 }
713 
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 	int ret;
718 	struct btrfs_key key;
719 	struct btrfs_path *path;
720 
721 	path = btrfs_alloc_path();
722 	if (!path)
723 		return -ENOMEM;
724 
725 	key.objectid = start;
726 	key.offset = len;
727 	key.type = BTRFS_EXTENT_ITEM_KEY;
728 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 				0, 0);
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->nodesize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (!trans) {
772 		path->skip_locking = 1;
773 		path->search_commit_root = 1;
774 	}
775 
776 search_again:
777 	key.objectid = bytenr;
778 	key.offset = offset;
779 	if (metadata)
780 		key.type = BTRFS_METADATA_ITEM_KEY;
781 	else
782 		key.type = BTRFS_EXTENT_ITEM_KEY;
783 
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->nodesize)
797 				ret = 0;
798 		}
799 	}
800 
801 	if (ret == 0) {
802 		leaf = path->nodes[0];
803 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 		if (item_size >= sizeof(*ei)) {
805 			ei = btrfs_item_ptr(leaf, path->slots[0],
806 					    struct btrfs_extent_item);
807 			num_refs = btrfs_extent_refs(leaf, ei);
808 			extent_flags = btrfs_extent_flags(leaf, ei);
809 		} else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 			struct btrfs_extent_item_v0 *ei0;
812 			BUG_ON(item_size != sizeof(*ei0));
813 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 					     struct btrfs_extent_item_v0);
815 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 			/* FIXME: this isn't correct for data */
817 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 			BUG();
820 #endif
821 		}
822 		BUG_ON(num_refs == 0);
823 	} else {
824 		num_refs = 0;
825 		extent_flags = 0;
826 		ret = 0;
827 	}
828 
829 	if (!trans)
830 		goto out;
831 
832 	delayed_refs = &trans->transaction->delayed_refs;
833 	spin_lock(&delayed_refs->lock);
834 	head = btrfs_find_delayed_ref_head(trans, bytenr);
835 	if (head) {
836 		if (!mutex_trylock(&head->mutex)) {
837 			atomic_inc(&head->node.refs);
838 			spin_unlock(&delayed_refs->lock);
839 
840 			btrfs_release_path(path);
841 
842 			/*
843 			 * Mutex was contended, block until it's released and try
844 			 * again
845 			 */
846 			mutex_lock(&head->mutex);
847 			mutex_unlock(&head->mutex);
848 			btrfs_put_delayed_ref(&head->node);
849 			goto search_again;
850 		}
851 		spin_lock(&head->lock);
852 		if (head->extent_op && head->extent_op->update_flags)
853 			extent_flags |= head->extent_op->flags_to_set;
854 		else
855 			BUG_ON(num_refs == 0);
856 
857 		num_refs += head->node.ref_mod;
858 		spin_unlock(&head->lock);
859 		mutex_unlock(&head->mutex);
860 	}
861 	spin_unlock(&delayed_refs->lock);
862 out:
863 	WARN_ON(num_refs == 0);
864 	if (refs)
865 		*refs = num_refs;
866 	if (flags)
867 		*flags = extent_flags;
868 out_free:
869 	btrfs_free_path(path);
870 	return ret;
871 }
872 
873 /*
874  * Back reference rules.  Back refs have three main goals:
875  *
876  * 1) differentiate between all holders of references to an extent so that
877  *    when a reference is dropped we can make sure it was a valid reference
878  *    before freeing the extent.
879  *
880  * 2) Provide enough information to quickly find the holders of an extent
881  *    if we notice a given block is corrupted or bad.
882  *
883  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884  *    maintenance.  This is actually the same as #2, but with a slightly
885  *    different use case.
886  *
887  * There are two kinds of back refs. The implicit back refs is optimized
888  * for pointers in non-shared tree blocks. For a given pointer in a block,
889  * back refs of this kind provide information about the block's owner tree
890  * and the pointer's key. These information allow us to find the block by
891  * b-tree searching. The full back refs is for pointers in tree blocks not
892  * referenced by their owner trees. The location of tree block is recorded
893  * in the back refs. Actually the full back refs is generic, and can be
894  * used in all cases the implicit back refs is used. The major shortcoming
895  * of the full back refs is its overhead. Every time a tree block gets
896  * COWed, we have to update back refs entry for all pointers in it.
897  *
898  * For a newly allocated tree block, we use implicit back refs for
899  * pointers in it. This means most tree related operations only involve
900  * implicit back refs. For a tree block created in old transaction, the
901  * only way to drop a reference to it is COW it. So we can detect the
902  * event that tree block loses its owner tree's reference and do the
903  * back refs conversion.
904  *
905  * When a tree block is COW'd through a tree, there are four cases:
906  *
907  * The reference count of the block is one and the tree is the block's
908  * owner tree. Nothing to do in this case.
909  *
910  * The reference count of the block is one and the tree is not the
911  * block's owner tree. In this case, full back refs is used for pointers
912  * in the block. Remove these full back refs, add implicit back refs for
913  * every pointers in the new block.
914  *
915  * The reference count of the block is greater than one and the tree is
916  * the block's owner tree. In this case, implicit back refs is used for
917  * pointers in the block. Add full back refs for every pointers in the
918  * block, increase lower level extents' reference counts. The original
919  * implicit back refs are entailed to the new block.
920  *
921  * The reference count of the block is greater than one and the tree is
922  * not the block's owner tree. Add implicit back refs for every pointer in
923  * the new block, increase lower level extents' reference count.
924  *
925  * Back Reference Key composing:
926  *
927  * The key objectid corresponds to the first byte in the extent,
928  * The key type is used to differentiate between types of back refs.
929  * There are different meanings of the key offset for different types
930  * of back refs.
931  *
932  * File extents can be referenced by:
933  *
934  * - multiple snapshots, subvolumes, or different generations in one subvol
935  * - different files inside a single subvolume
936  * - different offsets inside a file (bookend extents in file.c)
937  *
938  * The extent ref structure for the implicit back refs has fields for:
939  *
940  * - Objectid of the subvolume root
941  * - objectid of the file holding the reference
942  * - original offset in the file
943  * - how many bookend extents
944  *
945  * The key offset for the implicit back refs is hash of the first
946  * three fields.
947  *
948  * The extent ref structure for the full back refs has field for:
949  *
950  * - number of pointers in the tree leaf
951  *
952  * The key offset for the implicit back refs is the first byte of
953  * the tree leaf
954  *
955  * When a file extent is allocated, The implicit back refs is used.
956  * the fields are filled in:
957  *
958  *     (root_key.objectid, inode objectid, offset in file, 1)
959  *
960  * When a file extent is removed file truncation, we find the
961  * corresponding implicit back refs and check the following fields:
962  *
963  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
964  *
965  * Btree extents can be referenced by:
966  *
967  * - Different subvolumes
968  *
969  * Both the implicit back refs and the full back refs for tree blocks
970  * only consist of key. The key offset for the implicit back refs is
971  * objectid of block's owner tree. The key offset for the full back refs
972  * is the first byte of parent block.
973  *
974  * When implicit back refs is used, information about the lowest key and
975  * level of the tree block are required. These information are stored in
976  * tree block info structure.
977  */
978 
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 				  struct btrfs_root *root,
982 				  struct btrfs_path *path,
983 				  u64 owner, u32 extra_size)
984 {
985 	struct btrfs_extent_item *item;
986 	struct btrfs_extent_item_v0 *ei0;
987 	struct btrfs_extent_ref_v0 *ref0;
988 	struct btrfs_tree_block_info *bi;
989 	struct extent_buffer *leaf;
990 	struct btrfs_key key;
991 	struct btrfs_key found_key;
992 	u32 new_size = sizeof(*item);
993 	u64 refs;
994 	int ret;
995 
996 	leaf = path->nodes[0];
997 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998 
999 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 			     struct btrfs_extent_item_v0);
1002 	refs = btrfs_extent_refs_v0(leaf, ei0);
1003 
1004 	if (owner == (u64)-1) {
1005 		while (1) {
1006 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 				ret = btrfs_next_leaf(root, path);
1008 				if (ret < 0)
1009 					return ret;
1010 				BUG_ON(ret > 0); /* Corruption */
1011 				leaf = path->nodes[0];
1012 			}
1013 			btrfs_item_key_to_cpu(leaf, &found_key,
1014 					      path->slots[0]);
1015 			BUG_ON(key.objectid != found_key.objectid);
1016 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 				path->slots[0]++;
1018 				continue;
1019 			}
1020 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 					      struct btrfs_extent_ref_v0);
1022 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 			break;
1024 		}
1025 	}
1026 	btrfs_release_path(path);
1027 
1028 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 		new_size += sizeof(*bi);
1030 
1031 	new_size -= sizeof(*ei0);
1032 	ret = btrfs_search_slot(trans, root, &key, path,
1033 				new_size + extra_size, 1);
1034 	if (ret < 0)
1035 		return ret;
1036 	BUG_ON(ret); /* Corruption */
1037 
1038 	btrfs_extend_item(root, path, new_size);
1039 
1040 	leaf = path->nodes[0];
1041 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 	btrfs_set_extent_refs(leaf, item, refs);
1043 	/* FIXME: get real generation */
1044 	btrfs_set_extent_generation(leaf, item, 0);
1045 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 		btrfs_set_extent_flags(leaf, item,
1047 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 		bi = (struct btrfs_tree_block_info *)(item + 1);
1050 		/* FIXME: get first key of the block */
1051 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 	} else {
1054 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 	}
1056 	btrfs_mark_buffer_dirty(leaf);
1057 	return 0;
1058 }
1059 #endif
1060 
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	u32 high_crc = ~(u32)0;
1064 	u32 low_crc = ~(u32)0;
1065 	__le64 lenum;
1066 
1067 	lenum = cpu_to_le64(root_objectid);
1068 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 	lenum = cpu_to_le64(owner);
1070 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 	lenum = cpu_to_le64(offset);
1072 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073 
1074 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076 
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 				     struct btrfs_extent_data_ref *ref)
1079 {
1080 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 				    btrfs_extent_data_ref_objectid(leaf, ref),
1082 				    btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084 
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 				 struct btrfs_extent_data_ref *ref,
1087 				 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 		return 0;
1093 	return 1;
1094 }
1095 
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 					   struct btrfs_root *root,
1098 					   struct btrfs_path *path,
1099 					   u64 bytenr, u64 parent,
1100 					   u64 root_objectid,
1101 					   u64 owner, u64 offset)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_extent_data_ref *ref;
1105 	struct extent_buffer *leaf;
1106 	u32 nritems;
1107 	int ret;
1108 	int recow;
1109 	int err = -ENOENT;
1110 
1111 	key.objectid = bytenr;
1112 	if (parent) {
1113 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 		key.offset = parent;
1115 	} else {
1116 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 		key.offset = hash_extent_data_ref(root_objectid,
1118 						  owner, offset);
1119 	}
1120 again:
1121 	recow = 0;
1122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 	if (ret < 0) {
1124 		err = ret;
1125 		goto fail;
1126 	}
1127 
1128 	if (parent) {
1129 		if (!ret)
1130 			return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 		btrfs_release_path(path);
1134 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 		if (ret < 0) {
1136 			err = ret;
1137 			goto fail;
1138 		}
1139 		if (!ret)
1140 			return 0;
1141 #endif
1142 		goto fail;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	nritems = btrfs_header_nritems(leaf);
1147 	while (1) {
1148 		if (path->slots[0] >= nritems) {
1149 			ret = btrfs_next_leaf(root, path);
1150 			if (ret < 0)
1151 				err = ret;
1152 			if (ret)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 			nritems = btrfs_header_nritems(leaf);
1157 			recow = 1;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 		if (key.objectid != bytenr ||
1162 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 			goto fail;
1164 
1165 		ref = btrfs_item_ptr(leaf, path->slots[0],
1166 				     struct btrfs_extent_data_ref);
1167 
1168 		if (match_extent_data_ref(leaf, ref, root_objectid,
1169 					  owner, offset)) {
1170 			if (recow) {
1171 				btrfs_release_path(path);
1172 				goto again;
1173 			}
1174 			err = 0;
1175 			break;
1176 		}
1177 		path->slots[0]++;
1178 	}
1179 fail:
1180 	return err;
1181 }
1182 
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 					   struct btrfs_root *root,
1185 					   struct btrfs_path *path,
1186 					   u64 bytenr, u64 parent,
1187 					   u64 root_objectid, u64 owner,
1188 					   u64 offset, int refs_to_add)
1189 {
1190 	struct btrfs_key key;
1191 	struct extent_buffer *leaf;
1192 	u32 size;
1193 	u32 num_refs;
1194 	int ret;
1195 
1196 	key.objectid = bytenr;
1197 	if (parent) {
1198 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 		key.offset = parent;
1200 		size = sizeof(struct btrfs_shared_data_ref);
1201 	} else {
1202 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 		key.offset = hash_extent_data_ref(root_objectid,
1204 						  owner, offset);
1205 		size = sizeof(struct btrfs_extent_data_ref);
1206 	}
1207 
1208 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 	if (ret && ret != -EEXIST)
1210 		goto fail;
1211 
1212 	leaf = path->nodes[0];
1213 	if (parent) {
1214 		struct btrfs_shared_data_ref *ref;
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_shared_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 		} else {
1220 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 			num_refs += refs_to_add;
1222 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 		}
1224 	} else {
1225 		struct btrfs_extent_data_ref *ref;
1226 		while (ret == -EEXIST) {
1227 			ref = btrfs_item_ptr(leaf, path->slots[0],
1228 					     struct btrfs_extent_data_ref);
1229 			if (match_extent_data_ref(leaf, ref, root_objectid,
1230 						  owner, offset))
1231 				break;
1232 			btrfs_release_path(path);
1233 			key.offset++;
1234 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 						      size);
1236 			if (ret && ret != -EEXIST)
1237 				goto fail;
1238 
1239 			leaf = path->nodes[0];
1240 		}
1241 		ref = btrfs_item_ptr(leaf, path->slots[0],
1242 				     struct btrfs_extent_data_ref);
1243 		if (ret == 0) {
1244 			btrfs_set_extent_data_ref_root(leaf, ref,
1245 						       root_objectid);
1246 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 		} else {
1250 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 			num_refs += refs_to_add;
1252 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 		}
1254 	}
1255 	btrfs_mark_buffer_dirty(leaf);
1256 	ret = 0;
1257 fail:
1258 	btrfs_release_path(path);
1259 	return ret;
1260 }
1261 
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 					   struct btrfs_root *root,
1264 					   struct btrfs_path *path,
1265 					   int refs_to_drop, int *last_ref)
1266 {
1267 	struct btrfs_key key;
1268 	struct btrfs_extent_data_ref *ref1 = NULL;
1269 	struct btrfs_shared_data_ref *ref2 = NULL;
1270 	struct extent_buffer *leaf;
1271 	u32 num_refs = 0;
1272 	int ret = 0;
1273 
1274 	leaf = path->nodes[0];
1275 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276 
1277 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 				      struct btrfs_extent_data_ref);
1280 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 				      struct btrfs_shared_data_ref);
1284 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 		struct btrfs_extent_ref_v0 *ref0;
1288 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 				      struct btrfs_extent_ref_v0);
1290 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 	} else {
1293 		BUG();
1294 	}
1295 
1296 	BUG_ON(num_refs < refs_to_drop);
1297 	num_refs -= refs_to_drop;
1298 
1299 	if (num_refs == 0) {
1300 		ret = btrfs_del_item(trans, root, path);
1301 		*last_ref = 1;
1302 	} else {
1303 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 		else {
1309 			struct btrfs_extent_ref_v0 *ref0;
1310 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 					struct btrfs_extent_ref_v0);
1312 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 		}
1314 #endif
1315 		btrfs_mark_buffer_dirty(leaf);
1316 	}
1317 	return ret;
1318 }
1319 
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 					  struct btrfs_path *path,
1322 					  struct btrfs_extent_inline_ref *iref)
1323 {
1324 	struct btrfs_key key;
1325 	struct extent_buffer *leaf;
1326 	struct btrfs_extent_data_ref *ref1;
1327 	struct btrfs_shared_data_ref *ref2;
1328 	u32 num_refs = 0;
1329 
1330 	leaf = path->nodes[0];
1331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 	if (iref) {
1333 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 		    BTRFS_EXTENT_DATA_REF_KEY) {
1335 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 		} else {
1338 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 		}
1341 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_extent_data_ref);
1344 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_shared_data_ref);
1348 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 		struct btrfs_extent_ref_v0 *ref0;
1352 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_ref_v0);
1354 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 	} else {
1357 		WARN_ON(1);
1358 	}
1359 	return num_refs;
1360 }
1361 
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 					  struct btrfs_root *root,
1364 					  struct btrfs_path *path,
1365 					  u64 bytenr, u64 parent,
1366 					  u64 root_objectid)
1367 {
1368 	struct btrfs_key key;
1369 	int ret;
1370 
1371 	key.objectid = bytenr;
1372 	if (parent) {
1373 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 		key.offset = parent;
1375 	} else {
1376 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 		key.offset = root_objectid;
1378 	}
1379 
1380 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 	if (ret > 0)
1382 		ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 	if (ret == -ENOENT && parent) {
1385 		btrfs_release_path(path);
1386 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 		if (ret > 0)
1389 			ret = -ENOENT;
1390 	}
1391 #endif
1392 	return ret;
1393 }
1394 
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_root *root,
1397 					  struct btrfs_path *path,
1398 					  u64 bytenr, u64 parent,
1399 					  u64 root_objectid)
1400 {
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 	btrfs_release_path(path);
1415 	return ret;
1416 }
1417 
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 	int type;
1421 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 		if (parent > 0)
1423 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 		else
1425 			type = BTRFS_TREE_BLOCK_REF_KEY;
1426 	} else {
1427 		if (parent > 0)
1428 			type = BTRFS_SHARED_DATA_REF_KEY;
1429 		else
1430 			type = BTRFS_EXTENT_DATA_REF_KEY;
1431 	}
1432 	return type;
1433 }
1434 
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 			 struct btrfs_key *key)
1437 
1438 {
1439 	for (; level < BTRFS_MAX_LEVEL; level++) {
1440 		if (!path->nodes[level])
1441 			break;
1442 		if (path->slots[level] + 1 >=
1443 		    btrfs_header_nritems(path->nodes[level]))
1444 			continue;
1445 		if (level == 0)
1446 			btrfs_item_key_to_cpu(path->nodes[level], key,
1447 					      path->slots[level] + 1);
1448 		else
1449 			btrfs_node_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		return 0;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * look for inline back ref. if back ref is found, *ref_ret is set
1458  * to the address of inline back ref, and 0 is returned.
1459  *
1460  * if back ref isn't found, *ref_ret is set to the address where it
1461  * should be inserted, and -ENOENT is returned.
1462  *
1463  * if insert is true and there are too many inline back refs, the path
1464  * points to the extent item, and -EAGAIN is returned.
1465  *
1466  * NOTE: inline back refs are ordered in the same way that back ref
1467  *	 items in the tree are ordered.
1468  */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 				 struct btrfs_root *root,
1472 				 struct btrfs_path *path,
1473 				 struct btrfs_extent_inline_ref **ref_ret,
1474 				 u64 bytenr, u64 num_bytes,
1475 				 u64 parent, u64 root_objectid,
1476 				 u64 owner, u64 offset, int insert)
1477 {
1478 	struct btrfs_key key;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_extent_item *ei;
1481 	struct btrfs_extent_inline_ref *iref;
1482 	u64 flags;
1483 	u64 item_size;
1484 	unsigned long ptr;
1485 	unsigned long end;
1486 	int extra_size;
1487 	int type;
1488 	int want;
1489 	int ret;
1490 	int err = 0;
1491 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 						 SKINNY_METADATA);
1493 
1494 	key.objectid = bytenr;
1495 	key.type = BTRFS_EXTENT_ITEM_KEY;
1496 	key.offset = num_bytes;
1497 
1498 	want = extent_ref_type(parent, owner);
1499 	if (insert) {
1500 		extra_size = btrfs_extent_inline_ref_size(want);
1501 		path->keep_locks = 1;
1502 	} else
1503 		extra_size = -1;
1504 
1505 	/*
1506 	 * Owner is our parent level, so we can just add one to get the level
1507 	 * for the block we are interested in.
1508 	 */
1509 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 		key.type = BTRFS_METADATA_ITEM_KEY;
1511 		key.offset = owner;
1512 	}
1513 
1514 again:
1515 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 	if (ret < 0) {
1517 		err = ret;
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * We may be a newly converted file system which still has the old fat
1523 	 * extent entries for metadata, so try and see if we have one of those.
1524 	 */
1525 	if (ret > 0 && skinny_metadata) {
1526 		skinny_metadata = false;
1527 		if (path->slots[0]) {
1528 			path->slots[0]--;
1529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 					      path->slots[0]);
1531 			if (key.objectid == bytenr &&
1532 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 			    key.offset == num_bytes)
1534 				ret = 0;
1535 		}
1536 		if (ret) {
1537 			key.objectid = bytenr;
1538 			key.type = BTRFS_EXTENT_ITEM_KEY;
1539 			key.offset = num_bytes;
1540 			btrfs_release_path(path);
1541 			goto again;
1542 		}
1543 	}
1544 
1545 	if (ret && !insert) {
1546 		err = -ENOENT;
1547 		goto out;
1548 	} else if (WARN_ON(ret)) {
1549 		err = -EIO;
1550 		goto out;
1551 	}
1552 
1553 	leaf = path->nodes[0];
1554 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 	if (item_size < sizeof(*ei)) {
1557 		if (!insert) {
1558 			err = -ENOENT;
1559 			goto out;
1560 		}
1561 		ret = convert_extent_item_v0(trans, root, path, owner,
1562 					     extra_size);
1563 		if (ret < 0) {
1564 			err = ret;
1565 			goto out;
1566 		}
1567 		leaf = path->nodes[0];
1568 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 	}
1570 #endif
1571 	BUG_ON(item_size < sizeof(*ei));
1572 
1573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 	flags = btrfs_extent_flags(leaf, ei);
1575 
1576 	ptr = (unsigned long)(ei + 1);
1577 	end = (unsigned long)ei + item_size;
1578 
1579 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 		ptr += sizeof(struct btrfs_tree_block_info);
1581 		BUG_ON(ptr > end);
1582 	}
1583 
1584 	err = -ENOENT;
1585 	while (1) {
1586 		if (ptr >= end) {
1587 			WARN_ON(ptr > end);
1588 			break;
1589 		}
1590 		iref = (struct btrfs_extent_inline_ref *)ptr;
1591 		type = btrfs_extent_inline_ref_type(leaf, iref);
1592 		if (want < type)
1593 			break;
1594 		if (want > type) {
1595 			ptr += btrfs_extent_inline_ref_size(type);
1596 			continue;
1597 		}
1598 
1599 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 			struct btrfs_extent_data_ref *dref;
1601 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 			if (match_extent_data_ref(leaf, dref, root_objectid,
1603 						  owner, offset)) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (hash_extent_data_ref_item(leaf, dref) <
1608 			    hash_extent_data_ref(root_objectid, owner, offset))
1609 				break;
1610 		} else {
1611 			u64 ref_offset;
1612 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 			if (parent > 0) {
1614 				if (parent == ref_offset) {
1615 					err = 0;
1616 					break;
1617 				}
1618 				if (ref_offset < parent)
1619 					break;
1620 			} else {
1621 				if (root_objectid == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < root_objectid)
1626 					break;
1627 			}
1628 		}
1629 		ptr += btrfs_extent_inline_ref_size(type);
1630 	}
1631 	if (err == -ENOENT && insert) {
1632 		if (item_size + extra_size >=
1633 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 			err = -EAGAIN;
1635 			goto out;
1636 		}
1637 		/*
1638 		 * To add new inline back ref, we have to make sure
1639 		 * there is no corresponding back ref item.
1640 		 * For simplicity, we just do not add new inline back
1641 		 * ref if there is any kind of item for this block
1642 		 */
1643 		if (find_next_key(path, 0, &key) == 0 &&
1644 		    key.objectid == bytenr &&
1645 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 	}
1650 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 	if (insert) {
1653 		path->keep_locks = 0;
1654 		btrfs_unlock_up_safe(path, 1);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  * helper to add new inline back ref
1661  */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 				 struct btrfs_path *path,
1665 				 struct btrfs_extent_inline_ref *iref,
1666 				 u64 parent, u64 root_objectid,
1667 				 u64 owner, u64 offset, int refs_to_add,
1668 				 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 	struct extent_buffer *leaf;
1671 	struct btrfs_extent_item *ei;
1672 	unsigned long ptr;
1673 	unsigned long end;
1674 	unsigned long item_offset;
1675 	u64 refs;
1676 	int size;
1677 	int type;
1678 
1679 	leaf = path->nodes[0];
1680 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 	item_offset = (unsigned long)iref - (unsigned long)ei;
1682 
1683 	type = extent_ref_type(parent, owner);
1684 	size = btrfs_extent_inline_ref_size(type);
1685 
1686 	btrfs_extend_item(root, path, size);
1687 
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	refs = btrfs_extent_refs(leaf, ei);
1690 	refs += refs_to_add;
1691 	btrfs_set_extent_refs(leaf, ei, refs);
1692 	if (extent_op)
1693 		__run_delayed_extent_op(extent_op, leaf, ei);
1694 
1695 	ptr = (unsigned long)ei + item_offset;
1696 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 	if (ptr < end - size)
1698 		memmove_extent_buffer(leaf, ptr + size, ptr,
1699 				      end - size - ptr);
1700 
1701 	iref = (struct btrfs_extent_inline_ref *)ptr;
1702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 		struct btrfs_extent_data_ref *dref;
1705 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 		struct btrfs_shared_data_ref *sref;
1712 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 	} else {
1718 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 	}
1720 	btrfs_mark_buffer_dirty(leaf);
1721 }
1722 
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref **ref_ret,
1727 				 u64 bytenr, u64 num_bytes, u64 parent,
1728 				 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 	int ret;
1731 
1732 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 					   bytenr, num_bytes, parent,
1734 					   root_objectid, owner, offset, 0);
1735 	if (ret != -ENOENT)
1736 		return ret;
1737 
1738 	btrfs_release_path(path);
1739 	*ref_ret = NULL;
1740 
1741 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 					    root_objectid);
1744 	} else {
1745 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 					     root_objectid, owner, offset);
1747 	}
1748 	return ret;
1749 }
1750 
1751 /*
1752  * helper to update/remove inline back ref
1753  */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 				  struct btrfs_path *path,
1757 				  struct btrfs_extent_inline_ref *iref,
1758 				  int refs_to_mod,
1759 				  struct btrfs_delayed_extent_op *extent_op,
1760 				  int *last_ref)
1761 {
1762 	struct extent_buffer *leaf;
1763 	struct btrfs_extent_item *ei;
1764 	struct btrfs_extent_data_ref *dref = NULL;
1765 	struct btrfs_shared_data_ref *sref = NULL;
1766 	unsigned long ptr;
1767 	unsigned long end;
1768 	u32 item_size;
1769 	int size;
1770 	int type;
1771 	u64 refs;
1772 
1773 	leaf = path->nodes[0];
1774 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 	refs = btrfs_extent_refs(leaf, ei);
1776 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 	refs += refs_to_mod;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	type = btrfs_extent_inline_ref_type(leaf, iref);
1783 
1784 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 		refs = btrfs_extent_data_ref_count(leaf, dref);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 		refs = btrfs_shared_data_ref_count(leaf, sref);
1790 	} else {
1791 		refs = 1;
1792 		BUG_ON(refs_to_mod != -1);
1793 	}
1794 
1795 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 	refs += refs_to_mod;
1797 
1798 	if (refs > 0) {
1799 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 		else
1802 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 	} else {
1804 		*last_ref = 1;
1805 		size =  btrfs_extent_inline_ref_size(type);
1806 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 		ptr = (unsigned long)iref;
1808 		end = (unsigned long)ei + item_size;
1809 		if (ptr + size < end)
1810 			memmove_extent_buffer(leaf, ptr, ptr + size,
1811 					      end - ptr - size);
1812 		item_size -= size;
1813 		btrfs_truncate_item(root, path, item_size, 1);
1814 	}
1815 	btrfs_mark_buffer_dirty(leaf);
1816 }
1817 
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 num_bytes, u64 parent,
1823 				 u64 root_objectid, u64 owner,
1824 				 u64 offset, int refs_to_add,
1825 				 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 	struct btrfs_extent_inline_ref *iref;
1828 	int ret;
1829 
1830 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 					   bytenr, num_bytes, parent,
1832 					   root_objectid, owner, offset, 1);
1833 	if (ret == 0) {
1834 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 		update_inline_extent_backref(root, path, iref,
1836 					     refs_to_add, extent_op, NULL);
1837 	} else if (ret == -ENOENT) {
1838 		setup_inline_extent_backref(root, path, iref, parent,
1839 					    root_objectid, owner, offset,
1840 					    refs_to_add, extent_op);
1841 		ret = 0;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 				 struct btrfs_root *root,
1848 				 struct btrfs_path *path,
1849 				 u64 bytenr, u64 parent, u64 root_objectid,
1850 				 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 	int ret;
1853 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 		BUG_ON(refs_to_add != 1);
1855 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 					    parent, root_objectid);
1857 	} else {
1858 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 					     parent, root_objectid,
1860 					     owner, offset, refs_to_add);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 				 struct btrfs_root *root,
1867 				 struct btrfs_path *path,
1868 				 struct btrfs_extent_inline_ref *iref,
1869 				 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!is_data && refs_to_drop != 1);
1874 	if (iref) {
1875 		update_inline_extent_backref(root, path, iref,
1876 					     -refs_to_drop, NULL, last_ref);
1877 	} else if (is_data) {
1878 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 					     last_ref);
1880 	} else {
1881 		*last_ref = 1;
1882 		ret = btrfs_del_item(trans, root, path);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 				u64 start, u64 len)
1889 {
1890 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892 
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 			 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 	int ret;
1897 	u64 discarded_bytes = 0;
1898 	struct btrfs_bio *bbio = NULL;
1899 
1900 
1901 	/* Tell the block device(s) that the sectors can be discarded */
1902 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 			      bytenr, &num_bytes, &bbio, 0);
1904 	/* Error condition is -ENOMEM */
1905 	if (!ret) {
1906 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 		int i;
1908 
1909 
1910 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 			if (!stripe->dev->can_discard)
1912 				continue;
1913 
1914 			ret = btrfs_issue_discard(stripe->dev->bdev,
1915 						  stripe->physical,
1916 						  stripe->length);
1917 			if (!ret)
1918 				discarded_bytes += stripe->length;
1919 			else if (ret != -EOPNOTSUPP)
1920 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921 
1922 			/*
1923 			 * Just in case we get back EOPNOTSUPP for some reason,
1924 			 * just ignore the return value so we don't screw up
1925 			 * people calling discard_extent.
1926 			 */
1927 			ret = 0;
1928 		}
1929 		btrfs_put_bbio(bbio);
1930 	}
1931 
1932 	if (actual_bytes)
1933 		*actual_bytes = discarded_bytes;
1934 
1935 
1936 	if (ret == -EOPNOTSUPP)
1937 		ret = 0;
1938 	return ret;
1939 }
1940 
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 			 struct btrfs_root *root,
1944 			 u64 bytenr, u64 num_bytes, u64 parent,
1945 			 u64 root_objectid, u64 owner, u64 offset,
1946 			 int no_quota)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  int no_quota,
1974 				  struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 	struct btrfs_fs_info *fs_info = root->fs_info;
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	struct btrfs_key key;
1981 	u64 refs;
1982 	int ret;
1983 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 		goto out;
2001 	/*
2002 	 * Ok we were able to insert an inline extent and it appears to be a new
2003 	 * reference, deal with the qgroup accounting.
2004 	 */
2005 	if (!ret && !no_quota) {
2006 		ASSERT(root->fs_info->quota_enabled);
2007 		leaf = path->nodes[0];
2008 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 		item = btrfs_item_ptr(leaf, path->slots[0],
2010 				      struct btrfs_extent_item);
2011 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 		btrfs_release_path(path);
2014 
2015 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 					      bytenr, num_bytes, type, 0);
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 	 * inline extent ref, so just update the reference count and add a
2023 	 * normal backref.
2024 	 */
2025 	leaf = path->nodes[0];
2026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 	refs = btrfs_extent_refs(leaf, item);
2029 	if (refs)
2030 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 	if (extent_op)
2033 		__run_delayed_extent_op(extent_op, leaf, item);
2034 
2035 	btrfs_mark_buffer_dirty(leaf);
2036 	btrfs_release_path(path);
2037 
2038 	if (!no_quota) {
2039 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 					      bytenr, num_bytes, type, 0);
2041 		if (ret)
2042 			goto out;
2043 	}
2044 
2045 	path->reada = 1;
2046 	path->leave_spinning = 1;
2047 	/* now insert the actual backref */
2048 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 				    path, bytenr, parent, root_objectid,
2050 				    owner, offset, refs_to_add);
2051 	if (ret)
2052 		btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 	btrfs_free_path(path);
2055 	return ret;
2056 }
2057 
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 				struct btrfs_root *root,
2060 				struct btrfs_delayed_ref_node *node,
2061 				struct btrfs_delayed_extent_op *extent_op,
2062 				int insert_reserved)
2063 {
2064 	int ret = 0;
2065 	struct btrfs_delayed_data_ref *ref;
2066 	struct btrfs_key ins;
2067 	u64 parent = 0;
2068 	u64 ref_root = 0;
2069 	u64 flags = 0;
2070 
2071 	ins.objectid = node->bytenr;
2072 	ins.offset = node->num_bytes;
2073 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2074 
2075 	ref = btrfs_delayed_node_to_data_ref(node);
2076 	trace_run_delayed_data_ref(node, ref, node->action);
2077 
2078 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 		parent = ref->parent;
2080 	ref_root = ref->root;
2081 
2082 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 		if (extent_op)
2084 			flags |= extent_op->flags_to_set;
2085 		ret = alloc_reserved_file_extent(trans, root,
2086 						 parent, ref_root, flags,
2087 						 ref->objectid, ref->offset,
2088 						 &ins, node->ref_mod);
2089 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 					     node->num_bytes, parent,
2092 					     ref_root, ref->objectid,
2093 					     ref->offset, node->ref_mod,
2094 					     node->no_quota, extent_op);
2095 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 					  node->num_bytes, parent,
2098 					  ref_root, ref->objectid,
2099 					  ref->offset, node->ref_mod,
2100 					  extent_op, node->no_quota);
2101 	} else {
2102 		BUG();
2103 	}
2104 	return ret;
2105 }
2106 
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 				    struct extent_buffer *leaf,
2109 				    struct btrfs_extent_item *ei)
2110 {
2111 	u64 flags = btrfs_extent_flags(leaf, ei);
2112 	if (extent_op->update_flags) {
2113 		flags |= extent_op->flags_to_set;
2114 		btrfs_set_extent_flags(leaf, ei, flags);
2115 	}
2116 
2117 	if (extent_op->update_key) {
2118 		struct btrfs_tree_block_info *bi;
2119 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 	}
2123 }
2124 
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 				 struct btrfs_root *root,
2127 				 struct btrfs_delayed_ref_node *node,
2128 				 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 	struct btrfs_key key;
2131 	struct btrfs_path *path;
2132 	struct btrfs_extent_item *ei;
2133 	struct extent_buffer *leaf;
2134 	u32 item_size;
2135 	int ret;
2136 	int err = 0;
2137 	int metadata = !extent_op->is_data;
2138 
2139 	if (trans->aborted)
2140 		return 0;
2141 
2142 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 		metadata = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	key.objectid = node->bytenr;
2150 
2151 	if (metadata) {
2152 		key.type = BTRFS_METADATA_ITEM_KEY;
2153 		key.offset = extent_op->level;
2154 	} else {
2155 		key.type = BTRFS_EXTENT_ITEM_KEY;
2156 		key.offset = node->num_bytes;
2157 	}
2158 
2159 again:
2160 	path->reada = 1;
2161 	path->leave_spinning = 1;
2162 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 				path, 0, 1);
2164 	if (ret < 0) {
2165 		err = ret;
2166 		goto out;
2167 	}
2168 	if (ret > 0) {
2169 		if (metadata) {
2170 			if (path->slots[0] > 0) {
2171 				path->slots[0]--;
2172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 						      path->slots[0]);
2174 				if (key.objectid == node->bytenr &&
2175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 				    key.offset == node->num_bytes)
2177 					ret = 0;
2178 			}
2179 			if (ret > 0) {
2180 				btrfs_release_path(path);
2181 				metadata = 0;
2182 
2183 				key.objectid = node->bytenr;
2184 				key.offset = node->num_bytes;
2185 				key.type = BTRFS_EXTENT_ITEM_KEY;
2186 				goto again;
2187 			}
2188 		} else {
2189 			err = -EIO;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	leaf = path->nodes[0];
2195 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 	if (item_size < sizeof(*ei)) {
2198 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 					     path, (u64)-1, 0);
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 		leaf = path->nodes[0];
2205 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 	}
2207 #endif
2208 	BUG_ON(item_size < sizeof(*ei));
2209 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 	__run_delayed_extent_op(extent_op, leaf, ei);
2211 
2212 	btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 	btrfs_free_path(path);
2215 	return err;
2216 }
2217 
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 				struct btrfs_root *root,
2220 				struct btrfs_delayed_ref_node *node,
2221 				struct btrfs_delayed_extent_op *extent_op,
2222 				int insert_reserved)
2223 {
2224 	int ret = 0;
2225 	struct btrfs_delayed_tree_ref *ref;
2226 	struct btrfs_key ins;
2227 	u64 parent = 0;
2228 	u64 ref_root = 0;
2229 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 						 SKINNY_METADATA);
2231 
2232 	ref = btrfs_delayed_node_to_tree_ref(node);
2233 	trace_run_delayed_tree_ref(node, ref, node->action);
2234 
2235 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 		parent = ref->parent;
2237 	ref_root = ref->root;
2238 
2239 	ins.objectid = node->bytenr;
2240 	if (skinny_metadata) {
2241 		ins.offset = ref->level;
2242 		ins.type = BTRFS_METADATA_ITEM_KEY;
2243 	} else {
2244 		ins.offset = node->num_bytes;
2245 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 	}
2247 
2248 	BUG_ON(node->ref_mod != 1);
2249 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 		BUG_ON(!extent_op || !extent_op->update_flags);
2251 		ret = alloc_reserved_tree_block(trans, root,
2252 						parent, ref_root,
2253 						extent_op->flags_to_set,
2254 						&extent_op->key,
2255 						ref->level, &ins,
2256 						node->no_quota);
2257 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 					     node->num_bytes, parent, ref_root,
2260 					     ref->level, 0, 1, node->no_quota,
2261 					     extent_op);
2262 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 					  node->num_bytes, parent, ref_root,
2265 					  ref->level, 0, 1, extent_op,
2266 					  node->no_quota);
2267 	} else {
2268 		BUG();
2269 	}
2270 	return ret;
2271 }
2272 
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 			       struct btrfs_root *root,
2276 			       struct btrfs_delayed_ref_node *node,
2277 			       struct btrfs_delayed_extent_op *extent_op,
2278 			       int insert_reserved)
2279 {
2280 	int ret = 0;
2281 
2282 	if (trans->aborted) {
2283 		if (insert_reserved)
2284 			btrfs_pin_extent(root, node->bytenr,
2285 					 node->num_bytes, 1);
2286 		return 0;
2287 	}
2288 
2289 	if (btrfs_delayed_ref_is_head(node)) {
2290 		struct btrfs_delayed_ref_head *head;
2291 		/*
2292 		 * we've hit the end of the chain and we were supposed
2293 		 * to insert this extent into the tree.  But, it got
2294 		 * deleted before we ever needed to insert it, so all
2295 		 * we have to do is clean up the accounting
2296 		 */
2297 		BUG_ON(extent_op);
2298 		head = btrfs_delayed_node_to_head(node);
2299 		trace_run_delayed_ref_head(node, head, node->action);
2300 
2301 		if (insert_reserved) {
2302 			btrfs_pin_extent(root, node->bytenr,
2303 					 node->num_bytes, 1);
2304 			if (head->is_data) {
2305 				ret = btrfs_del_csums(trans, root,
2306 						      node->bytenr,
2307 						      node->num_bytes);
2308 			}
2309 		}
2310 		return ret;
2311 	}
2312 
2313 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 					   insert_reserved);
2317 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 					   insert_reserved);
2321 	else
2322 		BUG();
2323 	return ret;
2324 }
2325 
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 	struct rb_node *node;
2330 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331 
2332 	/*
2333 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 	 * this prevents ref count from going down to zero when
2335 	 * there still are pending delayed ref.
2336 	 */
2337 	node = rb_first(&head->ref_root);
2338 	while (node) {
2339 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 				rb_node);
2341 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 			return ref;
2343 		else if (last == NULL)
2344 			last = ref;
2345 		node = rb_next(node);
2346 	}
2347 	return last;
2348 }
2349 
2350 /*
2351  * Returns 0 on success or if called with an already aborted transaction.
2352  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353  */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 					     struct btrfs_root *root,
2356 					     unsigned long nr)
2357 {
2358 	struct btrfs_delayed_ref_root *delayed_refs;
2359 	struct btrfs_delayed_ref_node *ref;
2360 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 	struct btrfs_delayed_extent_op *extent_op;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	ktime_t start = ktime_get();
2364 	int ret;
2365 	unsigned long count = 0;
2366 	unsigned long actual_count = 0;
2367 	int must_insert_reserved = 0;
2368 
2369 	delayed_refs = &trans->transaction->delayed_refs;
2370 	while (1) {
2371 		if (!locked_ref) {
2372 			if (count >= nr)
2373 				break;
2374 
2375 			spin_lock(&delayed_refs->lock);
2376 			locked_ref = btrfs_select_ref_head(trans);
2377 			if (!locked_ref) {
2378 				spin_unlock(&delayed_refs->lock);
2379 				break;
2380 			}
2381 
2382 			/* grab the lock that says we are going to process
2383 			 * all the refs for this head */
2384 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 			spin_unlock(&delayed_refs->lock);
2386 			/*
2387 			 * we may have dropped the spin lock to get the head
2388 			 * mutex lock, and that might have given someone else
2389 			 * time to free the head.  If that's true, it has been
2390 			 * removed from our list and we can move on.
2391 			 */
2392 			if (ret == -EAGAIN) {
2393 				locked_ref = NULL;
2394 				count++;
2395 				continue;
2396 			}
2397 		}
2398 
2399 		/*
2400 		 * We need to try and merge add/drops of the same ref since we
2401 		 * can run into issues with relocate dropping the implicit ref
2402 		 * and then it being added back again before the drop can
2403 		 * finish.  If we merged anything we need to re-loop so we can
2404 		 * get a good ref.
2405 		 */
2406 		spin_lock(&locked_ref->lock);
2407 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 					 locked_ref);
2409 
2410 		/*
2411 		 * locked_ref is the head node, so we have to go one
2412 		 * node back for any delayed ref updates
2413 		 */
2414 		ref = select_delayed_ref(locked_ref);
2415 
2416 		if (ref && ref->seq &&
2417 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 			spin_unlock(&locked_ref->lock);
2419 			btrfs_delayed_ref_unlock(locked_ref);
2420 			spin_lock(&delayed_refs->lock);
2421 			locked_ref->processing = 0;
2422 			delayed_refs->num_heads_ready++;
2423 			spin_unlock(&delayed_refs->lock);
2424 			locked_ref = NULL;
2425 			cond_resched();
2426 			count++;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * record the must insert reserved flag before we
2432 		 * drop the spin lock.
2433 		 */
2434 		must_insert_reserved = locked_ref->must_insert_reserved;
2435 		locked_ref->must_insert_reserved = 0;
2436 
2437 		extent_op = locked_ref->extent_op;
2438 		locked_ref->extent_op = NULL;
2439 
2440 		if (!ref) {
2441 
2442 
2443 			/* All delayed refs have been processed, Go ahead
2444 			 * and send the head node to run_one_delayed_ref,
2445 			 * so that any accounting fixes can happen
2446 			 */
2447 			ref = &locked_ref->node;
2448 
2449 			if (extent_op && must_insert_reserved) {
2450 				btrfs_free_delayed_extent_op(extent_op);
2451 				extent_op = NULL;
2452 			}
2453 
2454 			if (extent_op) {
2455 				spin_unlock(&locked_ref->lock);
2456 				ret = run_delayed_extent_op(trans, root,
2457 							    ref, extent_op);
2458 				btrfs_free_delayed_extent_op(extent_op);
2459 
2460 				if (ret) {
2461 					/*
2462 					 * Need to reset must_insert_reserved if
2463 					 * there was an error so the abort stuff
2464 					 * can cleanup the reserved space
2465 					 * properly.
2466 					 */
2467 					if (must_insert_reserved)
2468 						locked_ref->must_insert_reserved = 1;
2469 					locked_ref->processing = 0;
2470 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 					btrfs_delayed_ref_unlock(locked_ref);
2472 					return ret;
2473 				}
2474 				continue;
2475 			}
2476 
2477 			/*
2478 			 * Need to drop our head ref lock and re-aqcuire the
2479 			 * delayed ref lock and then re-check to make sure
2480 			 * nobody got added.
2481 			 */
2482 			spin_unlock(&locked_ref->lock);
2483 			spin_lock(&delayed_refs->lock);
2484 			spin_lock(&locked_ref->lock);
2485 			if (rb_first(&locked_ref->ref_root) ||
2486 			    locked_ref->extent_op) {
2487 				spin_unlock(&locked_ref->lock);
2488 				spin_unlock(&delayed_refs->lock);
2489 				continue;
2490 			}
2491 			ref->in_tree = 0;
2492 			delayed_refs->num_heads--;
2493 			rb_erase(&locked_ref->href_node,
2494 				 &delayed_refs->href_root);
2495 			spin_unlock(&delayed_refs->lock);
2496 		} else {
2497 			actual_count++;
2498 			ref->in_tree = 0;
2499 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 		}
2501 		atomic_dec(&delayed_refs->num_entries);
2502 
2503 		if (!btrfs_delayed_ref_is_head(ref)) {
2504 			/*
2505 			 * when we play the delayed ref, also correct the
2506 			 * ref_mod on head
2507 			 */
2508 			switch (ref->action) {
2509 			case BTRFS_ADD_DELAYED_REF:
2510 			case BTRFS_ADD_DELAYED_EXTENT:
2511 				locked_ref->node.ref_mod -= ref->ref_mod;
2512 				break;
2513 			case BTRFS_DROP_DELAYED_REF:
2514 				locked_ref->node.ref_mod += ref->ref_mod;
2515 				break;
2516 			default:
2517 				WARN_ON(1);
2518 			}
2519 		}
2520 		spin_unlock(&locked_ref->lock);
2521 
2522 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 					  must_insert_reserved);
2524 
2525 		btrfs_free_delayed_extent_op(extent_op);
2526 		if (ret) {
2527 			locked_ref->processing = 0;
2528 			btrfs_delayed_ref_unlock(locked_ref);
2529 			btrfs_put_delayed_ref(ref);
2530 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 			return ret;
2532 		}
2533 
2534 		/*
2535 		 * If this node is a head, that means all the refs in this head
2536 		 * have been dealt with, and we will pick the next head to deal
2537 		 * with, so we must unlock the head and drop it from the cluster
2538 		 * list before we release it.
2539 		 */
2540 		if (btrfs_delayed_ref_is_head(ref)) {
2541 			if (locked_ref->is_data &&
2542 			    locked_ref->total_ref_mod < 0) {
2543 				spin_lock(&delayed_refs->lock);
2544 				delayed_refs->pending_csums -= ref->num_bytes;
2545 				spin_unlock(&delayed_refs->lock);
2546 			}
2547 			btrfs_delayed_ref_unlock(locked_ref);
2548 			locked_ref = NULL;
2549 		}
2550 		btrfs_put_delayed_ref(ref);
2551 		count++;
2552 		cond_resched();
2553 	}
2554 
2555 	/*
2556 	 * We don't want to include ref heads since we can have empty ref heads
2557 	 * and those will drastically skew our runtime down since we just do
2558 	 * accounting, no actual extent tree updates.
2559 	 */
2560 	if (actual_count > 0) {
2561 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 		u64 avg;
2563 
2564 		/*
2565 		 * We weigh the current average higher than our current runtime
2566 		 * to avoid large swings in the average.
2567 		 */
2568 		spin_lock(&delayed_refs->lock);
2569 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2571 		spin_unlock(&delayed_refs->lock);
2572 	}
2573 	return 0;
2574 }
2575 
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578  * Normally delayed refs get processed in ascending bytenr order. This
2579  * correlates in most cases to the order added. To expose dependencies on this
2580  * order, we start to process the tree in the middle instead of the beginning
2581  */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 	struct rb_node *n = root->rb_node;
2585 	struct btrfs_delayed_ref_node *entry;
2586 	int alt = 1;
2587 	u64 middle;
2588 	u64 first = 0, last = 0;
2589 
2590 	n = rb_first(root);
2591 	if (n) {
2592 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 		first = entry->bytenr;
2594 	}
2595 	n = rb_last(root);
2596 	if (n) {
2597 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 		last = entry->bytenr;
2599 	}
2600 	n = root->rb_node;
2601 
2602 	while (n) {
2603 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 		WARN_ON(!entry->in_tree);
2605 
2606 		middle = entry->bytenr;
2607 
2608 		if (alt)
2609 			n = n->rb_left;
2610 		else
2611 			n = n->rb_right;
2612 
2613 		alt = 1 - alt;
2614 	}
2615 	return middle;
2616 }
2617 #endif
2618 
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 	u64 num_bytes;
2622 
2623 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 			     sizeof(struct btrfs_extent_inline_ref));
2625 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627 
2628 	/*
2629 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 	 * closer to what we're really going to want to ouse.
2631 	 */
2632 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634 
2635 /*
2636  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637  * would require to store the csums for that many bytes.
2638  */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 	u64 csum_size;
2642 	u64 num_csums_per_leaf;
2643 	u64 num_csums;
2644 
2645 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 	num_csums_per_leaf = div64_u64(csum_size,
2647 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 	num_csums += num_csums_per_leaf - 1;
2650 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 	return num_csums;
2652 }
2653 
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 				       struct btrfs_root *root)
2656 {
2657 	struct btrfs_block_rsv *global_rsv;
2658 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 	u64 num_bytes, num_dirty_bgs_bytes;
2662 	int ret = 0;
2663 
2664 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 	num_heads = heads_to_leaves(root, num_heads);
2666 	if (num_heads > 1)
2667 		num_bytes += (num_heads - 1) * root->nodesize;
2668 	num_bytes <<= 1;
2669 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 							     num_dirty_bgs);
2672 	global_rsv = &root->fs_info->global_block_rsv;
2673 
2674 	/*
2675 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 	 * wiggle room since running delayed refs can create more delayed refs.
2677 	 */
2678 	if (global_rsv->space_info->full) {
2679 		num_dirty_bgs_bytes <<= 1;
2680 		num_bytes <<= 1;
2681 	}
2682 
2683 	spin_lock(&global_rsv->lock);
2684 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 		ret = 1;
2686 	spin_unlock(&global_rsv->lock);
2687 	return ret;
2688 }
2689 
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 				       struct btrfs_root *root)
2692 {
2693 	struct btrfs_fs_info *fs_info = root->fs_info;
2694 	u64 num_entries =
2695 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 	u64 avg_runtime;
2697 	u64 val;
2698 
2699 	smp_mb();
2700 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 	val = num_entries * avg_runtime;
2702 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 		return 1;
2704 	if (val >= NSEC_PER_SEC / 2)
2705 		return 2;
2706 
2707 	return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709 
2710 struct async_delayed_refs {
2711 	struct btrfs_root *root;
2712 	int count;
2713 	int error;
2714 	int sync;
2715 	struct completion wait;
2716 	struct btrfs_work work;
2717 };
2718 
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 	struct async_delayed_refs *async;
2722 	struct btrfs_trans_handle *trans;
2723 	int ret;
2724 
2725 	async = container_of(work, struct async_delayed_refs, work);
2726 
2727 	trans = btrfs_join_transaction(async->root);
2728 	if (IS_ERR(trans)) {
2729 		async->error = PTR_ERR(trans);
2730 		goto done;
2731 	}
2732 
2733 	/*
2734 	 * trans->sync means that when we call end_transaciton, we won't
2735 	 * wait on delayed refs
2736 	 */
2737 	trans->sync = true;
2738 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 	if (ret)
2740 		async->error = ret;
2741 
2742 	ret = btrfs_end_transaction(trans, async->root);
2743 	if (ret && !async->error)
2744 		async->error = ret;
2745 done:
2746 	if (async->sync)
2747 		complete(&async->wait);
2748 	else
2749 		kfree(async);
2750 }
2751 
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 				 unsigned long count, int wait)
2754 {
2755 	struct async_delayed_refs *async;
2756 	int ret;
2757 
2758 	async = kmalloc(sizeof(*async), GFP_NOFS);
2759 	if (!async)
2760 		return -ENOMEM;
2761 
2762 	async->root = root->fs_info->tree_root;
2763 	async->count = count;
2764 	async->error = 0;
2765 	if (wait)
2766 		async->sync = 1;
2767 	else
2768 		async->sync = 0;
2769 	init_completion(&async->wait);
2770 
2771 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 			delayed_ref_async_start, NULL, NULL);
2773 
2774 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775 
2776 	if (wait) {
2777 		wait_for_completion(&async->wait);
2778 		ret = async->error;
2779 		kfree(async);
2780 		return ret;
2781 	}
2782 	return 0;
2783 }
2784 
2785 /*
2786  * this starts processing the delayed reference count updates and
2787  * extent insertions we have queued up so far.  count can be
2788  * 0, which means to process everything in the tree at the start
2789  * of the run (but not newly added entries), or it can be some target
2790  * number you'd like to process.
2791  *
2792  * Returns 0 on success or if called with an aborted transaction
2793  * Returns <0 on error and aborts the transaction
2794  */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 			   struct btrfs_root *root, unsigned long count)
2797 {
2798 	struct rb_node *node;
2799 	struct btrfs_delayed_ref_root *delayed_refs;
2800 	struct btrfs_delayed_ref_head *head;
2801 	int ret;
2802 	int run_all = count == (unsigned long)-1;
2803 
2804 	/* We'll clean this up in btrfs_cleanup_transaction */
2805 	if (trans->aborted)
2806 		return 0;
2807 
2808 	if (root == root->fs_info->extent_root)
2809 		root = root->fs_info->tree_root;
2810 
2811 	delayed_refs = &trans->transaction->delayed_refs;
2812 	if (count == 0)
2813 		count = atomic_read(&delayed_refs->num_entries) * 2;
2814 
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 	ret = __btrfs_run_delayed_refs(trans, root, count);
2820 	if (ret < 0) {
2821 		btrfs_abort_transaction(trans, root, ret);
2822 		return ret;
2823 	}
2824 
2825 	if (run_all) {
2826 		if (!list_empty(&trans->new_bgs))
2827 			btrfs_create_pending_block_groups(trans, root);
2828 
2829 		spin_lock(&delayed_refs->lock);
2830 		node = rb_first(&delayed_refs->href_root);
2831 		if (!node) {
2832 			spin_unlock(&delayed_refs->lock);
2833 			goto out;
2834 		}
2835 		count = (unsigned long)-1;
2836 
2837 		while (node) {
2838 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 					href_node);
2840 			if (btrfs_delayed_ref_is_head(&head->node)) {
2841 				struct btrfs_delayed_ref_node *ref;
2842 
2843 				ref = &head->node;
2844 				atomic_inc(&ref->refs);
2845 
2846 				spin_unlock(&delayed_refs->lock);
2847 				/*
2848 				 * Mutex was contended, block until it's
2849 				 * released and try again
2850 				 */
2851 				mutex_lock(&head->mutex);
2852 				mutex_unlock(&head->mutex);
2853 
2854 				btrfs_put_delayed_ref(ref);
2855 				cond_resched();
2856 				goto again;
2857 			} else {
2858 				WARN_ON(1);
2859 			}
2860 			node = rb_next(node);
2861 		}
2862 		spin_unlock(&delayed_refs->lock);
2863 		cond_resched();
2864 		goto again;
2865 	}
2866 out:
2867 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 	if (ret)
2869 		return ret;
2870 	assert_qgroups_uptodate(trans);
2871 	return 0;
2872 }
2873 
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 				struct btrfs_root *root,
2876 				u64 bytenr, u64 num_bytes, u64 flags,
2877 				int level, int is_data)
2878 {
2879 	struct btrfs_delayed_extent_op *extent_op;
2880 	int ret;
2881 
2882 	extent_op = btrfs_alloc_delayed_extent_op();
2883 	if (!extent_op)
2884 		return -ENOMEM;
2885 
2886 	extent_op->flags_to_set = flags;
2887 	extent_op->update_flags = 1;
2888 	extent_op->update_key = 0;
2889 	extent_op->is_data = is_data ? 1 : 0;
2890 	extent_op->level = level;
2891 
2892 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 					  num_bytes, extent_op);
2894 	if (ret)
2895 		btrfs_free_delayed_extent_op(extent_op);
2896 	return ret;
2897 }
2898 
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 				      struct btrfs_root *root,
2901 				      struct btrfs_path *path,
2902 				      u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 	struct btrfs_delayed_ref_head *head;
2905 	struct btrfs_delayed_ref_node *ref;
2906 	struct btrfs_delayed_data_ref *data_ref;
2907 	struct btrfs_delayed_ref_root *delayed_refs;
2908 	struct rb_node *node;
2909 	int ret = 0;
2910 
2911 	delayed_refs = &trans->transaction->delayed_refs;
2912 	spin_lock(&delayed_refs->lock);
2913 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 	if (!head) {
2915 		spin_unlock(&delayed_refs->lock);
2916 		return 0;
2917 	}
2918 
2919 	if (!mutex_trylock(&head->mutex)) {
2920 		atomic_inc(&head->node.refs);
2921 		spin_unlock(&delayed_refs->lock);
2922 
2923 		btrfs_release_path(path);
2924 
2925 		/*
2926 		 * Mutex was contended, block until it's released and let
2927 		 * caller try again
2928 		 */
2929 		mutex_lock(&head->mutex);
2930 		mutex_unlock(&head->mutex);
2931 		btrfs_put_delayed_ref(&head->node);
2932 		return -EAGAIN;
2933 	}
2934 	spin_unlock(&delayed_refs->lock);
2935 
2936 	spin_lock(&head->lock);
2937 	node = rb_first(&head->ref_root);
2938 	while (node) {
2939 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 		node = rb_next(node);
2941 
2942 		/* If it's a shared ref we know a cross reference exists */
2943 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 			ret = 1;
2945 			break;
2946 		}
2947 
2948 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2949 
2950 		/*
2951 		 * If our ref doesn't match the one we're currently looking at
2952 		 * then we have a cross reference.
2953 		 */
2954 		if (data_ref->root != root->root_key.objectid ||
2955 		    data_ref->objectid != objectid ||
2956 		    data_ref->offset != offset) {
2957 			ret = 1;
2958 			break;
2959 		}
2960 	}
2961 	spin_unlock(&head->lock);
2962 	mutex_unlock(&head->mutex);
2963 	return ret;
2964 }
2965 
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 					struct btrfs_root *root,
2968 					struct btrfs_path *path,
2969 					u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 	struct extent_buffer *leaf;
2973 	struct btrfs_extent_data_ref *ref;
2974 	struct btrfs_extent_inline_ref *iref;
2975 	struct btrfs_extent_item *ei;
2976 	struct btrfs_key key;
2977 	u32 item_size;
2978 	int ret;
2979 
2980 	key.objectid = bytenr;
2981 	key.offset = (u64)-1;
2982 	key.type = BTRFS_EXTENT_ITEM_KEY;
2983 
2984 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 	if (ret < 0)
2986 		goto out;
2987 	BUG_ON(ret == 0); /* Corruption */
2988 
2989 	ret = -ENOENT;
2990 	if (path->slots[0] == 0)
2991 		goto out;
2992 
2993 	path->slots[0]--;
2994 	leaf = path->nodes[0];
2995 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996 
2997 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 		goto out;
2999 
3000 	ret = 1;
3001 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 	if (item_size < sizeof(*ei)) {
3004 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 		goto out;
3006 	}
3007 #endif
3008 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009 
3010 	if (item_size != sizeof(*ei) +
3011 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 		goto out;
3013 
3014 	if (btrfs_extent_generation(leaf, ei) <=
3015 	    btrfs_root_last_snapshot(&root->root_item))
3016 		goto out;
3017 
3018 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 	    BTRFS_EXTENT_DATA_REF_KEY)
3021 		goto out;
3022 
3023 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 	if (btrfs_extent_refs(leaf, ei) !=
3025 	    btrfs_extent_data_ref_count(leaf, ref) ||
3026 	    btrfs_extent_data_ref_root(leaf, ref) !=
3027 	    root->root_key.objectid ||
3028 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 		goto out;
3031 
3032 	ret = 0;
3033 out:
3034 	return ret;
3035 }
3036 
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 			  struct btrfs_root *root,
3039 			  u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 	struct btrfs_path *path;
3042 	int ret;
3043 	int ret2;
3044 
3045 	path = btrfs_alloc_path();
3046 	if (!path)
3047 		return -ENOENT;
3048 
3049 	do {
3050 		ret = check_committed_ref(trans, root, path, objectid,
3051 					  offset, bytenr);
3052 		if (ret && ret != -ENOENT)
3053 			goto out;
3054 
3055 		ret2 = check_delayed_ref(trans, root, path, objectid,
3056 					 offset, bytenr);
3057 	} while (ret2 == -EAGAIN);
3058 
3059 	if (ret2 && ret2 != -ENOENT) {
3060 		ret = ret2;
3061 		goto out;
3062 	}
3063 
3064 	if (ret != -ENOENT || ret2 != -ENOENT)
3065 		ret = 0;
3066 out:
3067 	btrfs_free_path(path);
3068 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 		WARN_ON(ret > 0);
3070 	return ret;
3071 }
3072 
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 			   struct btrfs_root *root,
3075 			   struct extent_buffer *buf,
3076 			   int full_backref, int inc)
3077 {
3078 	u64 bytenr;
3079 	u64 num_bytes;
3080 	u64 parent;
3081 	u64 ref_root;
3082 	u32 nritems;
3083 	struct btrfs_key key;
3084 	struct btrfs_file_extent_item *fi;
3085 	int i;
3086 	int level;
3087 	int ret = 0;
3088 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 			    u64, u64, u64, u64, u64, u64, int);
3090 
3091 
3092 	if (btrfs_test_is_dummy_root(root))
3093 		return 0;
3094 
3095 	ref_root = btrfs_header_owner(buf);
3096 	nritems = btrfs_header_nritems(buf);
3097 	level = btrfs_header_level(buf);
3098 
3099 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 		return 0;
3101 
3102 	if (inc)
3103 		process_func = btrfs_inc_extent_ref;
3104 	else
3105 		process_func = btrfs_free_extent;
3106 
3107 	if (full_backref)
3108 		parent = buf->start;
3109 	else
3110 		parent = 0;
3111 
3112 	for (i = 0; i < nritems; i++) {
3113 		if (level == 0) {
3114 			btrfs_item_key_to_cpu(buf, &key, i);
3115 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 				continue;
3117 			fi = btrfs_item_ptr(buf, i,
3118 					    struct btrfs_file_extent_item);
3119 			if (btrfs_file_extent_type(buf, fi) ==
3120 			    BTRFS_FILE_EXTENT_INLINE)
3121 				continue;
3122 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 			if (bytenr == 0)
3124 				continue;
3125 
3126 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 			key.offset -= btrfs_file_extent_offset(buf, fi);
3128 			ret = process_func(trans, root, bytenr, num_bytes,
3129 					   parent, ref_root, key.objectid,
3130 					   key.offset, 1);
3131 			if (ret)
3132 				goto fail;
3133 		} else {
3134 			bytenr = btrfs_node_blockptr(buf, i);
3135 			num_bytes = root->nodesize;
3136 			ret = process_func(trans, root, bytenr, num_bytes,
3137 					   parent, ref_root, level - 1, 0,
3138 					   1);
3139 			if (ret)
3140 				goto fail;
3141 		}
3142 	}
3143 	return 0;
3144 fail:
3145 	return ret;
3146 }
3147 
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 		  struct extent_buffer *buf, int full_backref)
3150 {
3151 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153 
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 		  struct extent_buffer *buf, int full_backref)
3156 {
3157 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159 
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 				 struct btrfs_root *root,
3162 				 struct btrfs_path *path,
3163 				 struct btrfs_block_group_cache *cache)
3164 {
3165 	int ret;
3166 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 	unsigned long bi;
3168 	struct extent_buffer *leaf;
3169 
3170 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 	if (ret) {
3172 		if (ret > 0)
3173 			ret = -ENOENT;
3174 		goto fail;
3175 	}
3176 
3177 	leaf = path->nodes[0];
3178 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 	btrfs_mark_buffer_dirty(leaf);
3181 fail:
3182 	btrfs_release_path(path);
3183 	return ret;
3184 
3185 }
3186 
3187 static struct btrfs_block_group_cache *
3188 next_block_group(struct btrfs_root *root,
3189 		 struct btrfs_block_group_cache *cache)
3190 {
3191 	struct rb_node *node;
3192 
3193 	spin_lock(&root->fs_info->block_group_cache_lock);
3194 
3195 	/* If our block group was removed, we need a full search. */
3196 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3197 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3198 
3199 		spin_unlock(&root->fs_info->block_group_cache_lock);
3200 		btrfs_put_block_group(cache);
3201 		cache = btrfs_lookup_first_block_group(root->fs_info,
3202 						       next_bytenr);
3203 		return cache;
3204 	}
3205 	node = rb_next(&cache->cache_node);
3206 	btrfs_put_block_group(cache);
3207 	if (node) {
3208 		cache = rb_entry(node, struct btrfs_block_group_cache,
3209 				 cache_node);
3210 		btrfs_get_block_group(cache);
3211 	} else
3212 		cache = NULL;
3213 	spin_unlock(&root->fs_info->block_group_cache_lock);
3214 	return cache;
3215 }
3216 
3217 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3218 			    struct btrfs_trans_handle *trans,
3219 			    struct btrfs_path *path)
3220 {
3221 	struct btrfs_root *root = block_group->fs_info->tree_root;
3222 	struct inode *inode = NULL;
3223 	u64 alloc_hint = 0;
3224 	int dcs = BTRFS_DC_ERROR;
3225 	u64 num_pages = 0;
3226 	int retries = 0;
3227 	int ret = 0;
3228 
3229 	/*
3230 	 * If this block group is smaller than 100 megs don't bother caching the
3231 	 * block group.
3232 	 */
3233 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3234 		spin_lock(&block_group->lock);
3235 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3236 		spin_unlock(&block_group->lock);
3237 		return 0;
3238 	}
3239 
3240 	if (trans->aborted)
3241 		return 0;
3242 again:
3243 	inode = lookup_free_space_inode(root, block_group, path);
3244 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3245 		ret = PTR_ERR(inode);
3246 		btrfs_release_path(path);
3247 		goto out;
3248 	}
3249 
3250 	if (IS_ERR(inode)) {
3251 		BUG_ON(retries);
3252 		retries++;
3253 
3254 		if (block_group->ro)
3255 			goto out_free;
3256 
3257 		ret = create_free_space_inode(root, trans, block_group, path);
3258 		if (ret)
3259 			goto out_free;
3260 		goto again;
3261 	}
3262 
3263 	/* We've already setup this transaction, go ahead and exit */
3264 	if (block_group->cache_generation == trans->transid &&
3265 	    i_size_read(inode)) {
3266 		dcs = BTRFS_DC_SETUP;
3267 		goto out_put;
3268 	}
3269 
3270 	/*
3271 	 * We want to set the generation to 0, that way if anything goes wrong
3272 	 * from here on out we know not to trust this cache when we load up next
3273 	 * time.
3274 	 */
3275 	BTRFS_I(inode)->generation = 0;
3276 	ret = btrfs_update_inode(trans, root, inode);
3277 	if (ret) {
3278 		/*
3279 		 * So theoretically we could recover from this, simply set the
3280 		 * super cache generation to 0 so we know to invalidate the
3281 		 * cache, but then we'd have to keep track of the block groups
3282 		 * that fail this way so we know we _have_ to reset this cache
3283 		 * before the next commit or risk reading stale cache.  So to
3284 		 * limit our exposure to horrible edge cases lets just abort the
3285 		 * transaction, this only happens in really bad situations
3286 		 * anyway.
3287 		 */
3288 		btrfs_abort_transaction(trans, root, ret);
3289 		goto out_put;
3290 	}
3291 	WARN_ON(ret);
3292 
3293 	if (i_size_read(inode) > 0) {
3294 		ret = btrfs_check_trunc_cache_free_space(root,
3295 					&root->fs_info->global_block_rsv);
3296 		if (ret)
3297 			goto out_put;
3298 
3299 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3300 		if (ret)
3301 			goto out_put;
3302 	}
3303 
3304 	spin_lock(&block_group->lock);
3305 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3306 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3307 		/*
3308 		 * don't bother trying to write stuff out _if_
3309 		 * a) we're not cached,
3310 		 * b) we're with nospace_cache mount option.
3311 		 */
3312 		dcs = BTRFS_DC_WRITTEN;
3313 		spin_unlock(&block_group->lock);
3314 		goto out_put;
3315 	}
3316 	spin_unlock(&block_group->lock);
3317 
3318 	/*
3319 	 * Try to preallocate enough space based on how big the block group is.
3320 	 * Keep in mind this has to include any pinned space which could end up
3321 	 * taking up quite a bit since it's not folded into the other space
3322 	 * cache.
3323 	 */
3324 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3325 	if (!num_pages)
3326 		num_pages = 1;
3327 
3328 	num_pages *= 16;
3329 	num_pages *= PAGE_CACHE_SIZE;
3330 
3331 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3332 	if (ret)
3333 		goto out_put;
3334 
3335 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3336 					      num_pages, num_pages,
3337 					      &alloc_hint);
3338 	if (!ret)
3339 		dcs = BTRFS_DC_SETUP;
3340 	btrfs_free_reserved_data_space(inode, num_pages);
3341 
3342 out_put:
3343 	iput(inode);
3344 out_free:
3345 	btrfs_release_path(path);
3346 out:
3347 	spin_lock(&block_group->lock);
3348 	if (!ret && dcs == BTRFS_DC_SETUP)
3349 		block_group->cache_generation = trans->transid;
3350 	block_group->disk_cache_state = dcs;
3351 	spin_unlock(&block_group->lock);
3352 
3353 	return ret;
3354 }
3355 
3356 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3357 			    struct btrfs_root *root)
3358 {
3359 	struct btrfs_block_group_cache *cache, *tmp;
3360 	struct btrfs_transaction *cur_trans = trans->transaction;
3361 	struct btrfs_path *path;
3362 
3363 	if (list_empty(&cur_trans->dirty_bgs) ||
3364 	    !btrfs_test_opt(root, SPACE_CACHE))
3365 		return 0;
3366 
3367 	path = btrfs_alloc_path();
3368 	if (!path)
3369 		return -ENOMEM;
3370 
3371 	/* Could add new block groups, use _safe just in case */
3372 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3373 				 dirty_list) {
3374 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3375 			cache_save_setup(cache, trans, path);
3376 	}
3377 
3378 	btrfs_free_path(path);
3379 	return 0;
3380 }
3381 
3382 /*
3383  * transaction commit does final block group cache writeback during a
3384  * critical section where nothing is allowed to change the FS.  This is
3385  * required in order for the cache to actually match the block group,
3386  * but can introduce a lot of latency into the commit.
3387  *
3388  * So, btrfs_start_dirty_block_groups is here to kick off block group
3389  * cache IO.  There's a chance we'll have to redo some of it if the
3390  * block group changes again during the commit, but it greatly reduces
3391  * the commit latency by getting rid of the easy block groups while
3392  * we're still allowing others to join the commit.
3393  */
3394 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3395 				   struct btrfs_root *root)
3396 {
3397 	struct btrfs_block_group_cache *cache;
3398 	struct btrfs_transaction *cur_trans = trans->transaction;
3399 	int ret = 0;
3400 	int should_put;
3401 	struct btrfs_path *path = NULL;
3402 	LIST_HEAD(dirty);
3403 	struct list_head *io = &cur_trans->io_bgs;
3404 	int num_started = 0;
3405 	int loops = 0;
3406 
3407 	spin_lock(&cur_trans->dirty_bgs_lock);
3408 	if (list_empty(&cur_trans->dirty_bgs)) {
3409 		spin_unlock(&cur_trans->dirty_bgs_lock);
3410 		return 0;
3411 	}
3412 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 	spin_unlock(&cur_trans->dirty_bgs_lock);
3414 
3415 again:
3416 	/*
3417 	 * make sure all the block groups on our dirty list actually
3418 	 * exist
3419 	 */
3420 	btrfs_create_pending_block_groups(trans, root);
3421 
3422 	if (!path) {
3423 		path = btrfs_alloc_path();
3424 		if (!path)
3425 			return -ENOMEM;
3426 	}
3427 
3428 	/*
3429 	 * cache_write_mutex is here only to save us from balance or automatic
3430 	 * removal of empty block groups deleting this block group while we are
3431 	 * writing out the cache
3432 	 */
3433 	mutex_lock(&trans->transaction->cache_write_mutex);
3434 	while (!list_empty(&dirty)) {
3435 		cache = list_first_entry(&dirty,
3436 					 struct btrfs_block_group_cache,
3437 					 dirty_list);
3438 		/*
3439 		 * this can happen if something re-dirties a block
3440 		 * group that is already under IO.  Just wait for it to
3441 		 * finish and then do it all again
3442 		 */
3443 		if (!list_empty(&cache->io_list)) {
3444 			list_del_init(&cache->io_list);
3445 			btrfs_wait_cache_io(root, trans, cache,
3446 					    &cache->io_ctl, path,
3447 					    cache->key.objectid);
3448 			btrfs_put_block_group(cache);
3449 		}
3450 
3451 
3452 		/*
3453 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3454 		 * if it should update the cache_state.  Don't delete
3455 		 * until after we wait.
3456 		 *
3457 		 * Since we're not running in the commit critical section
3458 		 * we need the dirty_bgs_lock to protect from update_block_group
3459 		 */
3460 		spin_lock(&cur_trans->dirty_bgs_lock);
3461 		list_del_init(&cache->dirty_list);
3462 		spin_unlock(&cur_trans->dirty_bgs_lock);
3463 
3464 		should_put = 1;
3465 
3466 		cache_save_setup(cache, trans, path);
3467 
3468 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3469 			cache->io_ctl.inode = NULL;
3470 			ret = btrfs_write_out_cache(root, trans, cache, path);
3471 			if (ret == 0 && cache->io_ctl.inode) {
3472 				num_started++;
3473 				should_put = 0;
3474 
3475 				/*
3476 				 * the cache_write_mutex is protecting
3477 				 * the io_list
3478 				 */
3479 				list_add_tail(&cache->io_list, io);
3480 			} else {
3481 				/*
3482 				 * if we failed to write the cache, the
3483 				 * generation will be bad and life goes on
3484 				 */
3485 				ret = 0;
3486 			}
3487 		}
3488 		if (!ret) {
3489 			ret = write_one_cache_group(trans, root, path, cache);
3490 			/*
3491 			 * Our block group might still be attached to the list
3492 			 * of new block groups in the transaction handle of some
3493 			 * other task (struct btrfs_trans_handle->new_bgs). This
3494 			 * means its block group item isn't yet in the extent
3495 			 * tree. If this happens ignore the error, as we will
3496 			 * try again later in the critical section of the
3497 			 * transaction commit.
3498 			 */
3499 			if (ret == -ENOENT) {
3500 				ret = 0;
3501 				spin_lock(&cur_trans->dirty_bgs_lock);
3502 				if (list_empty(&cache->dirty_list)) {
3503 					list_add_tail(&cache->dirty_list,
3504 						      &cur_trans->dirty_bgs);
3505 					btrfs_get_block_group(cache);
3506 				}
3507 				spin_unlock(&cur_trans->dirty_bgs_lock);
3508 			} else if (ret) {
3509 				btrfs_abort_transaction(trans, root, ret);
3510 			}
3511 		}
3512 
3513 		/* if its not on the io list, we need to put the block group */
3514 		if (should_put)
3515 			btrfs_put_block_group(cache);
3516 
3517 		if (ret)
3518 			break;
3519 
3520 		/*
3521 		 * Avoid blocking other tasks for too long. It might even save
3522 		 * us from writing caches for block groups that are going to be
3523 		 * removed.
3524 		 */
3525 		mutex_unlock(&trans->transaction->cache_write_mutex);
3526 		mutex_lock(&trans->transaction->cache_write_mutex);
3527 	}
3528 	mutex_unlock(&trans->transaction->cache_write_mutex);
3529 
3530 	/*
3531 	 * go through delayed refs for all the stuff we've just kicked off
3532 	 * and then loop back (just once)
3533 	 */
3534 	ret = btrfs_run_delayed_refs(trans, root, 0);
3535 	if (!ret && loops == 0) {
3536 		loops++;
3537 		spin_lock(&cur_trans->dirty_bgs_lock);
3538 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3539 		/*
3540 		 * dirty_bgs_lock protects us from concurrent block group
3541 		 * deletes too (not just cache_write_mutex).
3542 		 */
3543 		if (!list_empty(&dirty)) {
3544 			spin_unlock(&cur_trans->dirty_bgs_lock);
3545 			goto again;
3546 		}
3547 		spin_unlock(&cur_trans->dirty_bgs_lock);
3548 	}
3549 
3550 	btrfs_free_path(path);
3551 	return ret;
3552 }
3553 
3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3555 				   struct btrfs_root *root)
3556 {
3557 	struct btrfs_block_group_cache *cache;
3558 	struct btrfs_transaction *cur_trans = trans->transaction;
3559 	int ret = 0;
3560 	int should_put;
3561 	struct btrfs_path *path;
3562 	struct list_head *io = &cur_trans->io_bgs;
3563 	int num_started = 0;
3564 
3565 	path = btrfs_alloc_path();
3566 	if (!path)
3567 		return -ENOMEM;
3568 
3569 	/*
3570 	 * We don't need the lock here since we are protected by the transaction
3571 	 * commit.  We want to do the cache_save_setup first and then run the
3572 	 * delayed refs to make sure we have the best chance at doing this all
3573 	 * in one shot.
3574 	 */
3575 	while (!list_empty(&cur_trans->dirty_bgs)) {
3576 		cache = list_first_entry(&cur_trans->dirty_bgs,
3577 					 struct btrfs_block_group_cache,
3578 					 dirty_list);
3579 
3580 		/*
3581 		 * this can happen if cache_save_setup re-dirties a block
3582 		 * group that is already under IO.  Just wait for it to
3583 		 * finish and then do it all again
3584 		 */
3585 		if (!list_empty(&cache->io_list)) {
3586 			list_del_init(&cache->io_list);
3587 			btrfs_wait_cache_io(root, trans, cache,
3588 					    &cache->io_ctl, path,
3589 					    cache->key.objectid);
3590 			btrfs_put_block_group(cache);
3591 		}
3592 
3593 		/*
3594 		 * don't remove from the dirty list until after we've waited
3595 		 * on any pending IO
3596 		 */
3597 		list_del_init(&cache->dirty_list);
3598 		should_put = 1;
3599 
3600 		cache_save_setup(cache, trans, path);
3601 
3602 		if (!ret)
3603 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3604 
3605 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3606 			cache->io_ctl.inode = NULL;
3607 			ret = btrfs_write_out_cache(root, trans, cache, path);
3608 			if (ret == 0 && cache->io_ctl.inode) {
3609 				num_started++;
3610 				should_put = 0;
3611 				list_add_tail(&cache->io_list, io);
3612 			} else {
3613 				/*
3614 				 * if we failed to write the cache, the
3615 				 * generation will be bad and life goes on
3616 				 */
3617 				ret = 0;
3618 			}
3619 		}
3620 		if (!ret) {
3621 			ret = write_one_cache_group(trans, root, path, cache);
3622 			if (ret)
3623 				btrfs_abort_transaction(trans, root, ret);
3624 		}
3625 
3626 		/* if its not on the io list, we need to put the block group */
3627 		if (should_put)
3628 			btrfs_put_block_group(cache);
3629 	}
3630 
3631 	while (!list_empty(io)) {
3632 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3633 					 io_list);
3634 		list_del_init(&cache->io_list);
3635 		btrfs_wait_cache_io(root, trans, cache,
3636 				    &cache->io_ctl, path, cache->key.objectid);
3637 		btrfs_put_block_group(cache);
3638 	}
3639 
3640 	btrfs_free_path(path);
3641 	return ret;
3642 }
3643 
3644 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3645 {
3646 	struct btrfs_block_group_cache *block_group;
3647 	int readonly = 0;
3648 
3649 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3650 	if (!block_group || block_group->ro)
3651 		readonly = 1;
3652 	if (block_group)
3653 		btrfs_put_block_group(block_group);
3654 	return readonly;
3655 }
3656 
3657 static const char *alloc_name(u64 flags)
3658 {
3659 	switch (flags) {
3660 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3661 		return "mixed";
3662 	case BTRFS_BLOCK_GROUP_METADATA:
3663 		return "metadata";
3664 	case BTRFS_BLOCK_GROUP_DATA:
3665 		return "data";
3666 	case BTRFS_BLOCK_GROUP_SYSTEM:
3667 		return "system";
3668 	default:
3669 		WARN_ON(1);
3670 		return "invalid-combination";
3671 	};
3672 }
3673 
3674 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3675 			     u64 total_bytes, u64 bytes_used,
3676 			     struct btrfs_space_info **space_info)
3677 {
3678 	struct btrfs_space_info *found;
3679 	int i;
3680 	int factor;
3681 	int ret;
3682 
3683 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3684 		     BTRFS_BLOCK_GROUP_RAID10))
3685 		factor = 2;
3686 	else
3687 		factor = 1;
3688 
3689 	found = __find_space_info(info, flags);
3690 	if (found) {
3691 		spin_lock(&found->lock);
3692 		found->total_bytes += total_bytes;
3693 		found->disk_total += total_bytes * factor;
3694 		found->bytes_used += bytes_used;
3695 		found->disk_used += bytes_used * factor;
3696 		found->full = 0;
3697 		spin_unlock(&found->lock);
3698 		*space_info = found;
3699 		return 0;
3700 	}
3701 	found = kzalloc(sizeof(*found), GFP_NOFS);
3702 	if (!found)
3703 		return -ENOMEM;
3704 
3705 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3706 	if (ret) {
3707 		kfree(found);
3708 		return ret;
3709 	}
3710 
3711 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3712 		INIT_LIST_HEAD(&found->block_groups[i]);
3713 	init_rwsem(&found->groups_sem);
3714 	spin_lock_init(&found->lock);
3715 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3716 	found->total_bytes = total_bytes;
3717 	found->disk_total = total_bytes * factor;
3718 	found->bytes_used = bytes_used;
3719 	found->disk_used = bytes_used * factor;
3720 	found->bytes_pinned = 0;
3721 	found->bytes_reserved = 0;
3722 	found->bytes_readonly = 0;
3723 	found->bytes_may_use = 0;
3724 	found->full = 0;
3725 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3726 	found->chunk_alloc = 0;
3727 	found->flush = 0;
3728 	init_waitqueue_head(&found->wait);
3729 	INIT_LIST_HEAD(&found->ro_bgs);
3730 
3731 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3732 				    info->space_info_kobj, "%s",
3733 				    alloc_name(found->flags));
3734 	if (ret) {
3735 		kfree(found);
3736 		return ret;
3737 	}
3738 
3739 	*space_info = found;
3740 	list_add_rcu(&found->list, &info->space_info);
3741 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3742 		info->data_sinfo = found;
3743 
3744 	return ret;
3745 }
3746 
3747 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3748 {
3749 	u64 extra_flags = chunk_to_extended(flags) &
3750 				BTRFS_EXTENDED_PROFILE_MASK;
3751 
3752 	write_seqlock(&fs_info->profiles_lock);
3753 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3754 		fs_info->avail_data_alloc_bits |= extra_flags;
3755 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3756 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3757 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3758 		fs_info->avail_system_alloc_bits |= extra_flags;
3759 	write_sequnlock(&fs_info->profiles_lock);
3760 }
3761 
3762 /*
3763  * returns target flags in extended format or 0 if restripe for this
3764  * chunk_type is not in progress
3765  *
3766  * should be called with either volume_mutex or balance_lock held
3767  */
3768 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3769 {
3770 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3771 	u64 target = 0;
3772 
3773 	if (!bctl)
3774 		return 0;
3775 
3776 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3777 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3778 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3779 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3780 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3781 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3782 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3783 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3784 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3785 	}
3786 
3787 	return target;
3788 }
3789 
3790 /*
3791  * @flags: available profiles in extended format (see ctree.h)
3792  *
3793  * Returns reduced profile in chunk format.  If profile changing is in
3794  * progress (either running or paused) picks the target profile (if it's
3795  * already available), otherwise falls back to plain reducing.
3796  */
3797 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3798 {
3799 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3800 	u64 target;
3801 	u64 tmp;
3802 
3803 	/*
3804 	 * see if restripe for this chunk_type is in progress, if so
3805 	 * try to reduce to the target profile
3806 	 */
3807 	spin_lock(&root->fs_info->balance_lock);
3808 	target = get_restripe_target(root->fs_info, flags);
3809 	if (target) {
3810 		/* pick target profile only if it's already available */
3811 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3812 			spin_unlock(&root->fs_info->balance_lock);
3813 			return extended_to_chunk(target);
3814 		}
3815 	}
3816 	spin_unlock(&root->fs_info->balance_lock);
3817 
3818 	/* First, mask out the RAID levels which aren't possible */
3819 	if (num_devices == 1)
3820 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3821 			   BTRFS_BLOCK_GROUP_RAID5);
3822 	if (num_devices < 3)
3823 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3824 	if (num_devices < 4)
3825 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3826 
3827 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3828 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3829 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3830 	flags &= ~tmp;
3831 
3832 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3833 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3834 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3835 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3836 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3837 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3838 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3839 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3840 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3841 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3842 
3843 	return extended_to_chunk(flags | tmp);
3844 }
3845 
3846 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3847 {
3848 	unsigned seq;
3849 	u64 flags;
3850 
3851 	do {
3852 		flags = orig_flags;
3853 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3854 
3855 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3856 			flags |= root->fs_info->avail_data_alloc_bits;
3857 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3858 			flags |= root->fs_info->avail_system_alloc_bits;
3859 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3860 			flags |= root->fs_info->avail_metadata_alloc_bits;
3861 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3862 
3863 	return btrfs_reduce_alloc_profile(root, flags);
3864 }
3865 
3866 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3867 {
3868 	u64 flags;
3869 	u64 ret;
3870 
3871 	if (data)
3872 		flags = BTRFS_BLOCK_GROUP_DATA;
3873 	else if (root == root->fs_info->chunk_root)
3874 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3875 	else
3876 		flags = BTRFS_BLOCK_GROUP_METADATA;
3877 
3878 	ret = get_alloc_profile(root, flags);
3879 	return ret;
3880 }
3881 
3882 /*
3883  * This will check the space that the inode allocates from to make sure we have
3884  * enough space for bytes.
3885  */
3886 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3887 {
3888 	struct btrfs_space_info *data_sinfo;
3889 	struct btrfs_root *root = BTRFS_I(inode)->root;
3890 	struct btrfs_fs_info *fs_info = root->fs_info;
3891 	u64 used;
3892 	int ret = 0;
3893 	int need_commit = 2;
3894 	int have_pinned_space;
3895 
3896 	/* make sure bytes are sectorsize aligned */
3897 	bytes = ALIGN(bytes, root->sectorsize);
3898 
3899 	if (btrfs_is_free_space_inode(inode)) {
3900 		need_commit = 0;
3901 		ASSERT(current->journal_info);
3902 	}
3903 
3904 	data_sinfo = fs_info->data_sinfo;
3905 	if (!data_sinfo)
3906 		goto alloc;
3907 
3908 again:
3909 	/* make sure we have enough space to handle the data first */
3910 	spin_lock(&data_sinfo->lock);
3911 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3912 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3913 		data_sinfo->bytes_may_use;
3914 
3915 	if (used + bytes > data_sinfo->total_bytes) {
3916 		struct btrfs_trans_handle *trans;
3917 
3918 		/*
3919 		 * if we don't have enough free bytes in this space then we need
3920 		 * to alloc a new chunk.
3921 		 */
3922 		if (!data_sinfo->full) {
3923 			u64 alloc_target;
3924 
3925 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3926 			spin_unlock(&data_sinfo->lock);
3927 alloc:
3928 			alloc_target = btrfs_get_alloc_profile(root, 1);
3929 			/*
3930 			 * It is ugly that we don't call nolock join
3931 			 * transaction for the free space inode case here.
3932 			 * But it is safe because we only do the data space
3933 			 * reservation for the free space cache in the
3934 			 * transaction context, the common join transaction
3935 			 * just increase the counter of the current transaction
3936 			 * handler, doesn't try to acquire the trans_lock of
3937 			 * the fs.
3938 			 */
3939 			trans = btrfs_join_transaction(root);
3940 			if (IS_ERR(trans))
3941 				return PTR_ERR(trans);
3942 
3943 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3944 					     alloc_target,
3945 					     CHUNK_ALLOC_NO_FORCE);
3946 			btrfs_end_transaction(trans, root);
3947 			if (ret < 0) {
3948 				if (ret != -ENOSPC)
3949 					return ret;
3950 				else {
3951 					have_pinned_space = 1;
3952 					goto commit_trans;
3953 				}
3954 			}
3955 
3956 			if (!data_sinfo)
3957 				data_sinfo = fs_info->data_sinfo;
3958 
3959 			goto again;
3960 		}
3961 
3962 		/*
3963 		 * If we don't have enough pinned space to deal with this
3964 		 * allocation, and no removed chunk in current transaction,
3965 		 * don't bother committing the transaction.
3966 		 */
3967 		have_pinned_space = percpu_counter_compare(
3968 			&data_sinfo->total_bytes_pinned,
3969 			used + bytes - data_sinfo->total_bytes);
3970 		spin_unlock(&data_sinfo->lock);
3971 
3972 		/* commit the current transaction and try again */
3973 commit_trans:
3974 		if (need_commit &&
3975 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3976 			need_commit--;
3977 
3978 			trans = btrfs_join_transaction(root);
3979 			if (IS_ERR(trans))
3980 				return PTR_ERR(trans);
3981 			if (have_pinned_space >= 0 ||
3982 			    trans->transaction->have_free_bgs ||
3983 			    need_commit > 0) {
3984 				ret = btrfs_commit_transaction(trans, root);
3985 				if (ret)
3986 					return ret;
3987 				/*
3988 				 * make sure that all running delayed iput are
3989 				 * done
3990 				 */
3991 				down_write(&root->fs_info->delayed_iput_sem);
3992 				up_write(&root->fs_info->delayed_iput_sem);
3993 				goto again;
3994 			} else {
3995 				btrfs_end_transaction(trans, root);
3996 			}
3997 		}
3998 
3999 		trace_btrfs_space_reservation(root->fs_info,
4000 					      "space_info:enospc",
4001 					      data_sinfo->flags, bytes, 1);
4002 		return -ENOSPC;
4003 	}
4004 	ret = btrfs_qgroup_reserve(root, write_bytes);
4005 	if (ret)
4006 		goto out;
4007 	data_sinfo->bytes_may_use += bytes;
4008 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4009 				      data_sinfo->flags, bytes, 1);
4010 out:
4011 	spin_unlock(&data_sinfo->lock);
4012 
4013 	return ret;
4014 }
4015 
4016 /*
4017  * Called if we need to clear a data reservation for this inode.
4018  */
4019 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4020 {
4021 	struct btrfs_root *root = BTRFS_I(inode)->root;
4022 	struct btrfs_space_info *data_sinfo;
4023 
4024 	/* make sure bytes are sectorsize aligned */
4025 	bytes = ALIGN(bytes, root->sectorsize);
4026 
4027 	data_sinfo = root->fs_info->data_sinfo;
4028 	spin_lock(&data_sinfo->lock);
4029 	WARN_ON(data_sinfo->bytes_may_use < bytes);
4030 	data_sinfo->bytes_may_use -= bytes;
4031 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4032 				      data_sinfo->flags, bytes, 0);
4033 	spin_unlock(&data_sinfo->lock);
4034 }
4035 
4036 static void force_metadata_allocation(struct btrfs_fs_info *info)
4037 {
4038 	struct list_head *head = &info->space_info;
4039 	struct btrfs_space_info *found;
4040 
4041 	rcu_read_lock();
4042 	list_for_each_entry_rcu(found, head, list) {
4043 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4044 			found->force_alloc = CHUNK_ALLOC_FORCE;
4045 	}
4046 	rcu_read_unlock();
4047 }
4048 
4049 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4050 {
4051 	return (global->size << 1);
4052 }
4053 
4054 static int should_alloc_chunk(struct btrfs_root *root,
4055 			      struct btrfs_space_info *sinfo, int force)
4056 {
4057 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4058 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4059 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4060 	u64 thresh;
4061 
4062 	if (force == CHUNK_ALLOC_FORCE)
4063 		return 1;
4064 
4065 	/*
4066 	 * We need to take into account the global rsv because for all intents
4067 	 * and purposes it's used space.  Don't worry about locking the
4068 	 * global_rsv, it doesn't change except when the transaction commits.
4069 	 */
4070 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4071 		num_allocated += calc_global_rsv_need_space(global_rsv);
4072 
4073 	/*
4074 	 * in limited mode, we want to have some free space up to
4075 	 * about 1% of the FS size.
4076 	 */
4077 	if (force == CHUNK_ALLOC_LIMITED) {
4078 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4079 		thresh = max_t(u64, 64 * 1024 * 1024,
4080 			       div_factor_fine(thresh, 1));
4081 
4082 		if (num_bytes - num_allocated < thresh)
4083 			return 1;
4084 	}
4085 
4086 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4087 		return 0;
4088 	return 1;
4089 }
4090 
4091 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4092 {
4093 	u64 num_dev;
4094 
4095 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4096 		    BTRFS_BLOCK_GROUP_RAID0 |
4097 		    BTRFS_BLOCK_GROUP_RAID5 |
4098 		    BTRFS_BLOCK_GROUP_RAID6))
4099 		num_dev = root->fs_info->fs_devices->rw_devices;
4100 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4101 		num_dev = 2;
4102 	else
4103 		num_dev = 1;	/* DUP or single */
4104 
4105 	/* metadata for updaing devices and chunk tree */
4106 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4107 }
4108 
4109 static void check_system_chunk(struct btrfs_trans_handle *trans,
4110 			       struct btrfs_root *root, u64 type)
4111 {
4112 	struct btrfs_space_info *info;
4113 	u64 left;
4114 	u64 thresh;
4115 
4116 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4117 	spin_lock(&info->lock);
4118 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4119 		info->bytes_reserved - info->bytes_readonly;
4120 	spin_unlock(&info->lock);
4121 
4122 	thresh = get_system_chunk_thresh(root, type);
4123 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4124 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4125 			left, thresh, type);
4126 		dump_space_info(info, 0, 0);
4127 	}
4128 
4129 	if (left < thresh) {
4130 		u64 flags;
4131 
4132 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4133 		btrfs_alloc_chunk(trans, root, flags);
4134 	}
4135 }
4136 
4137 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4138 			  struct btrfs_root *extent_root, u64 flags, int force)
4139 {
4140 	struct btrfs_space_info *space_info;
4141 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4142 	int wait_for_alloc = 0;
4143 	int ret = 0;
4144 
4145 	/* Don't re-enter if we're already allocating a chunk */
4146 	if (trans->allocating_chunk)
4147 		return -ENOSPC;
4148 
4149 	space_info = __find_space_info(extent_root->fs_info, flags);
4150 	if (!space_info) {
4151 		ret = update_space_info(extent_root->fs_info, flags,
4152 					0, 0, &space_info);
4153 		BUG_ON(ret); /* -ENOMEM */
4154 	}
4155 	BUG_ON(!space_info); /* Logic error */
4156 
4157 again:
4158 	spin_lock(&space_info->lock);
4159 	if (force < space_info->force_alloc)
4160 		force = space_info->force_alloc;
4161 	if (space_info->full) {
4162 		if (should_alloc_chunk(extent_root, space_info, force))
4163 			ret = -ENOSPC;
4164 		else
4165 			ret = 0;
4166 		spin_unlock(&space_info->lock);
4167 		return ret;
4168 	}
4169 
4170 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4171 		spin_unlock(&space_info->lock);
4172 		return 0;
4173 	} else if (space_info->chunk_alloc) {
4174 		wait_for_alloc = 1;
4175 	} else {
4176 		space_info->chunk_alloc = 1;
4177 	}
4178 
4179 	spin_unlock(&space_info->lock);
4180 
4181 	mutex_lock(&fs_info->chunk_mutex);
4182 
4183 	/*
4184 	 * The chunk_mutex is held throughout the entirety of a chunk
4185 	 * allocation, so once we've acquired the chunk_mutex we know that the
4186 	 * other guy is done and we need to recheck and see if we should
4187 	 * allocate.
4188 	 */
4189 	if (wait_for_alloc) {
4190 		mutex_unlock(&fs_info->chunk_mutex);
4191 		wait_for_alloc = 0;
4192 		goto again;
4193 	}
4194 
4195 	trans->allocating_chunk = true;
4196 
4197 	/*
4198 	 * If we have mixed data/metadata chunks we want to make sure we keep
4199 	 * allocating mixed chunks instead of individual chunks.
4200 	 */
4201 	if (btrfs_mixed_space_info(space_info))
4202 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4203 
4204 	/*
4205 	 * if we're doing a data chunk, go ahead and make sure that
4206 	 * we keep a reasonable number of metadata chunks allocated in the
4207 	 * FS as well.
4208 	 */
4209 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4210 		fs_info->data_chunk_allocations++;
4211 		if (!(fs_info->data_chunk_allocations %
4212 		      fs_info->metadata_ratio))
4213 			force_metadata_allocation(fs_info);
4214 	}
4215 
4216 	/*
4217 	 * Check if we have enough space in SYSTEM chunk because we may need
4218 	 * to update devices.
4219 	 */
4220 	check_system_chunk(trans, extent_root, flags);
4221 
4222 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4223 	trans->allocating_chunk = false;
4224 
4225 	spin_lock(&space_info->lock);
4226 	if (ret < 0 && ret != -ENOSPC)
4227 		goto out;
4228 	if (ret)
4229 		space_info->full = 1;
4230 	else
4231 		ret = 1;
4232 
4233 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4234 out:
4235 	space_info->chunk_alloc = 0;
4236 	spin_unlock(&space_info->lock);
4237 	mutex_unlock(&fs_info->chunk_mutex);
4238 	return ret;
4239 }
4240 
4241 static int can_overcommit(struct btrfs_root *root,
4242 			  struct btrfs_space_info *space_info, u64 bytes,
4243 			  enum btrfs_reserve_flush_enum flush)
4244 {
4245 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4246 	u64 profile = btrfs_get_alloc_profile(root, 0);
4247 	u64 space_size;
4248 	u64 avail;
4249 	u64 used;
4250 
4251 	used = space_info->bytes_used + space_info->bytes_reserved +
4252 		space_info->bytes_pinned + space_info->bytes_readonly;
4253 
4254 	/*
4255 	 * We only want to allow over committing if we have lots of actual space
4256 	 * free, but if we don't have enough space to handle the global reserve
4257 	 * space then we could end up having a real enospc problem when trying
4258 	 * to allocate a chunk or some other such important allocation.
4259 	 */
4260 	spin_lock(&global_rsv->lock);
4261 	space_size = calc_global_rsv_need_space(global_rsv);
4262 	spin_unlock(&global_rsv->lock);
4263 	if (used + space_size >= space_info->total_bytes)
4264 		return 0;
4265 
4266 	used += space_info->bytes_may_use;
4267 
4268 	spin_lock(&root->fs_info->free_chunk_lock);
4269 	avail = root->fs_info->free_chunk_space;
4270 	spin_unlock(&root->fs_info->free_chunk_lock);
4271 
4272 	/*
4273 	 * If we have dup, raid1 or raid10 then only half of the free
4274 	 * space is actually useable.  For raid56, the space info used
4275 	 * doesn't include the parity drive, so we don't have to
4276 	 * change the math
4277 	 */
4278 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4279 		       BTRFS_BLOCK_GROUP_RAID1 |
4280 		       BTRFS_BLOCK_GROUP_RAID10))
4281 		avail >>= 1;
4282 
4283 	/*
4284 	 * If we aren't flushing all things, let us overcommit up to
4285 	 * 1/2th of the space. If we can flush, don't let us overcommit
4286 	 * too much, let it overcommit up to 1/8 of the space.
4287 	 */
4288 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4289 		avail >>= 3;
4290 	else
4291 		avail >>= 1;
4292 
4293 	if (used + bytes < space_info->total_bytes + avail)
4294 		return 1;
4295 	return 0;
4296 }
4297 
4298 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4299 					 unsigned long nr_pages, int nr_items)
4300 {
4301 	struct super_block *sb = root->fs_info->sb;
4302 
4303 	if (down_read_trylock(&sb->s_umount)) {
4304 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4305 		up_read(&sb->s_umount);
4306 	} else {
4307 		/*
4308 		 * We needn't worry the filesystem going from r/w to r/o though
4309 		 * we don't acquire ->s_umount mutex, because the filesystem
4310 		 * should guarantee the delalloc inodes list be empty after
4311 		 * the filesystem is readonly(all dirty pages are written to
4312 		 * the disk).
4313 		 */
4314 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4315 		if (!current->journal_info)
4316 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4317 	}
4318 }
4319 
4320 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4321 {
4322 	u64 bytes;
4323 	int nr;
4324 
4325 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4326 	nr = (int)div64_u64(to_reclaim, bytes);
4327 	if (!nr)
4328 		nr = 1;
4329 	return nr;
4330 }
4331 
4332 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4333 
4334 /*
4335  * shrink metadata reservation for delalloc
4336  */
4337 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4338 			    bool wait_ordered)
4339 {
4340 	struct btrfs_block_rsv *block_rsv;
4341 	struct btrfs_space_info *space_info;
4342 	struct btrfs_trans_handle *trans;
4343 	u64 delalloc_bytes;
4344 	u64 max_reclaim;
4345 	long time_left;
4346 	unsigned long nr_pages;
4347 	int loops;
4348 	int items;
4349 	enum btrfs_reserve_flush_enum flush;
4350 
4351 	/* Calc the number of the pages we need flush for space reservation */
4352 	items = calc_reclaim_items_nr(root, to_reclaim);
4353 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4354 
4355 	trans = (struct btrfs_trans_handle *)current->journal_info;
4356 	block_rsv = &root->fs_info->delalloc_block_rsv;
4357 	space_info = block_rsv->space_info;
4358 
4359 	delalloc_bytes = percpu_counter_sum_positive(
4360 						&root->fs_info->delalloc_bytes);
4361 	if (delalloc_bytes == 0) {
4362 		if (trans)
4363 			return;
4364 		if (wait_ordered)
4365 			btrfs_wait_ordered_roots(root->fs_info, items);
4366 		return;
4367 	}
4368 
4369 	loops = 0;
4370 	while (delalloc_bytes && loops < 3) {
4371 		max_reclaim = min(delalloc_bytes, to_reclaim);
4372 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4373 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4374 		/*
4375 		 * We need to wait for the async pages to actually start before
4376 		 * we do anything.
4377 		 */
4378 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4379 		if (!max_reclaim)
4380 			goto skip_async;
4381 
4382 		if (max_reclaim <= nr_pages)
4383 			max_reclaim = 0;
4384 		else
4385 			max_reclaim -= nr_pages;
4386 
4387 		wait_event(root->fs_info->async_submit_wait,
4388 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4389 			   (int)max_reclaim);
4390 skip_async:
4391 		if (!trans)
4392 			flush = BTRFS_RESERVE_FLUSH_ALL;
4393 		else
4394 			flush = BTRFS_RESERVE_NO_FLUSH;
4395 		spin_lock(&space_info->lock);
4396 		if (can_overcommit(root, space_info, orig, flush)) {
4397 			spin_unlock(&space_info->lock);
4398 			break;
4399 		}
4400 		spin_unlock(&space_info->lock);
4401 
4402 		loops++;
4403 		if (wait_ordered && !trans) {
4404 			btrfs_wait_ordered_roots(root->fs_info, items);
4405 		} else {
4406 			time_left = schedule_timeout_killable(1);
4407 			if (time_left)
4408 				break;
4409 		}
4410 		delalloc_bytes = percpu_counter_sum_positive(
4411 						&root->fs_info->delalloc_bytes);
4412 	}
4413 }
4414 
4415 /**
4416  * maybe_commit_transaction - possibly commit the transaction if its ok to
4417  * @root - the root we're allocating for
4418  * @bytes - the number of bytes we want to reserve
4419  * @force - force the commit
4420  *
4421  * This will check to make sure that committing the transaction will actually
4422  * get us somewhere and then commit the transaction if it does.  Otherwise it
4423  * will return -ENOSPC.
4424  */
4425 static int may_commit_transaction(struct btrfs_root *root,
4426 				  struct btrfs_space_info *space_info,
4427 				  u64 bytes, int force)
4428 {
4429 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4430 	struct btrfs_trans_handle *trans;
4431 
4432 	trans = (struct btrfs_trans_handle *)current->journal_info;
4433 	if (trans)
4434 		return -EAGAIN;
4435 
4436 	if (force)
4437 		goto commit;
4438 
4439 	/* See if there is enough pinned space to make this reservation */
4440 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4441 				   bytes) >= 0)
4442 		goto commit;
4443 
4444 	/*
4445 	 * See if there is some space in the delayed insertion reservation for
4446 	 * this reservation.
4447 	 */
4448 	if (space_info != delayed_rsv->space_info)
4449 		return -ENOSPC;
4450 
4451 	spin_lock(&delayed_rsv->lock);
4452 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4453 				   bytes - delayed_rsv->size) >= 0) {
4454 		spin_unlock(&delayed_rsv->lock);
4455 		return -ENOSPC;
4456 	}
4457 	spin_unlock(&delayed_rsv->lock);
4458 
4459 commit:
4460 	trans = btrfs_join_transaction(root);
4461 	if (IS_ERR(trans))
4462 		return -ENOSPC;
4463 
4464 	return btrfs_commit_transaction(trans, root);
4465 }
4466 
4467 enum flush_state {
4468 	FLUSH_DELAYED_ITEMS_NR	=	1,
4469 	FLUSH_DELAYED_ITEMS	=	2,
4470 	FLUSH_DELALLOC		=	3,
4471 	FLUSH_DELALLOC_WAIT	=	4,
4472 	ALLOC_CHUNK		=	5,
4473 	COMMIT_TRANS		=	6,
4474 };
4475 
4476 static int flush_space(struct btrfs_root *root,
4477 		       struct btrfs_space_info *space_info, u64 num_bytes,
4478 		       u64 orig_bytes, int state)
4479 {
4480 	struct btrfs_trans_handle *trans;
4481 	int nr;
4482 	int ret = 0;
4483 
4484 	switch (state) {
4485 	case FLUSH_DELAYED_ITEMS_NR:
4486 	case FLUSH_DELAYED_ITEMS:
4487 		if (state == FLUSH_DELAYED_ITEMS_NR)
4488 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4489 		else
4490 			nr = -1;
4491 
4492 		trans = btrfs_join_transaction(root);
4493 		if (IS_ERR(trans)) {
4494 			ret = PTR_ERR(trans);
4495 			break;
4496 		}
4497 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4498 		btrfs_end_transaction(trans, root);
4499 		break;
4500 	case FLUSH_DELALLOC:
4501 	case FLUSH_DELALLOC_WAIT:
4502 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4503 				state == FLUSH_DELALLOC_WAIT);
4504 		break;
4505 	case ALLOC_CHUNK:
4506 		trans = btrfs_join_transaction(root);
4507 		if (IS_ERR(trans)) {
4508 			ret = PTR_ERR(trans);
4509 			break;
4510 		}
4511 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4512 				     btrfs_get_alloc_profile(root, 0),
4513 				     CHUNK_ALLOC_NO_FORCE);
4514 		btrfs_end_transaction(trans, root);
4515 		if (ret == -ENOSPC)
4516 			ret = 0;
4517 		break;
4518 	case COMMIT_TRANS:
4519 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4520 		break;
4521 	default:
4522 		ret = -ENOSPC;
4523 		break;
4524 	}
4525 
4526 	return ret;
4527 }
4528 
4529 static inline u64
4530 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4531 				 struct btrfs_space_info *space_info)
4532 {
4533 	u64 used;
4534 	u64 expected;
4535 	u64 to_reclaim;
4536 
4537 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4538 				16 * 1024 * 1024);
4539 	spin_lock(&space_info->lock);
4540 	if (can_overcommit(root, space_info, to_reclaim,
4541 			   BTRFS_RESERVE_FLUSH_ALL)) {
4542 		to_reclaim = 0;
4543 		goto out;
4544 	}
4545 
4546 	used = space_info->bytes_used + space_info->bytes_reserved +
4547 	       space_info->bytes_pinned + space_info->bytes_readonly +
4548 	       space_info->bytes_may_use;
4549 	if (can_overcommit(root, space_info, 1024 * 1024,
4550 			   BTRFS_RESERVE_FLUSH_ALL))
4551 		expected = div_factor_fine(space_info->total_bytes, 95);
4552 	else
4553 		expected = div_factor_fine(space_info->total_bytes, 90);
4554 
4555 	if (used > expected)
4556 		to_reclaim = used - expected;
4557 	else
4558 		to_reclaim = 0;
4559 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4560 				     space_info->bytes_reserved);
4561 out:
4562 	spin_unlock(&space_info->lock);
4563 
4564 	return to_reclaim;
4565 }
4566 
4567 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4568 					struct btrfs_fs_info *fs_info, u64 used)
4569 {
4570 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4571 
4572 	/* If we're just plain full then async reclaim just slows us down. */
4573 	if (space_info->bytes_used >= thresh)
4574 		return 0;
4575 
4576 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4577 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4578 }
4579 
4580 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4581 				       struct btrfs_fs_info *fs_info,
4582 				       int flush_state)
4583 {
4584 	u64 used;
4585 
4586 	spin_lock(&space_info->lock);
4587 	/*
4588 	 * We run out of space and have not got any free space via flush_space,
4589 	 * so don't bother doing async reclaim.
4590 	 */
4591 	if (flush_state > COMMIT_TRANS && space_info->full) {
4592 		spin_unlock(&space_info->lock);
4593 		return 0;
4594 	}
4595 
4596 	used = space_info->bytes_used + space_info->bytes_reserved +
4597 	       space_info->bytes_pinned + space_info->bytes_readonly +
4598 	       space_info->bytes_may_use;
4599 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4600 		spin_unlock(&space_info->lock);
4601 		return 1;
4602 	}
4603 	spin_unlock(&space_info->lock);
4604 
4605 	return 0;
4606 }
4607 
4608 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4609 {
4610 	struct btrfs_fs_info *fs_info;
4611 	struct btrfs_space_info *space_info;
4612 	u64 to_reclaim;
4613 	int flush_state;
4614 
4615 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4616 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4617 
4618 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4619 						      space_info);
4620 	if (!to_reclaim)
4621 		return;
4622 
4623 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4624 	do {
4625 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4626 			    to_reclaim, flush_state);
4627 		flush_state++;
4628 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4629 						 flush_state))
4630 			return;
4631 	} while (flush_state < COMMIT_TRANS);
4632 }
4633 
4634 void btrfs_init_async_reclaim_work(struct work_struct *work)
4635 {
4636 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4637 }
4638 
4639 /**
4640  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4641  * @root - the root we're allocating for
4642  * @block_rsv - the block_rsv we're allocating for
4643  * @orig_bytes - the number of bytes we want
4644  * @flush - whether or not we can flush to make our reservation
4645  *
4646  * This will reserve orgi_bytes number of bytes from the space info associated
4647  * with the block_rsv.  If there is not enough space it will make an attempt to
4648  * flush out space to make room.  It will do this by flushing delalloc if
4649  * possible or committing the transaction.  If flush is 0 then no attempts to
4650  * regain reservations will be made and this will fail if there is not enough
4651  * space already.
4652  */
4653 static int reserve_metadata_bytes(struct btrfs_root *root,
4654 				  struct btrfs_block_rsv *block_rsv,
4655 				  u64 orig_bytes,
4656 				  enum btrfs_reserve_flush_enum flush)
4657 {
4658 	struct btrfs_space_info *space_info = block_rsv->space_info;
4659 	u64 used;
4660 	u64 num_bytes = orig_bytes;
4661 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4662 	int ret = 0;
4663 	bool flushing = false;
4664 
4665 again:
4666 	ret = 0;
4667 	spin_lock(&space_info->lock);
4668 	/*
4669 	 * We only want to wait if somebody other than us is flushing and we
4670 	 * are actually allowed to flush all things.
4671 	 */
4672 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4673 	       space_info->flush) {
4674 		spin_unlock(&space_info->lock);
4675 		/*
4676 		 * If we have a trans handle we can't wait because the flusher
4677 		 * may have to commit the transaction, which would mean we would
4678 		 * deadlock since we are waiting for the flusher to finish, but
4679 		 * hold the current transaction open.
4680 		 */
4681 		if (current->journal_info)
4682 			return -EAGAIN;
4683 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4684 		/* Must have been killed, return */
4685 		if (ret)
4686 			return -EINTR;
4687 
4688 		spin_lock(&space_info->lock);
4689 	}
4690 
4691 	ret = -ENOSPC;
4692 	used = space_info->bytes_used + space_info->bytes_reserved +
4693 		space_info->bytes_pinned + space_info->bytes_readonly +
4694 		space_info->bytes_may_use;
4695 
4696 	/*
4697 	 * The idea here is that we've not already over-reserved the block group
4698 	 * then we can go ahead and save our reservation first and then start
4699 	 * flushing if we need to.  Otherwise if we've already overcommitted
4700 	 * lets start flushing stuff first and then come back and try to make
4701 	 * our reservation.
4702 	 */
4703 	if (used <= space_info->total_bytes) {
4704 		if (used + orig_bytes <= space_info->total_bytes) {
4705 			space_info->bytes_may_use += orig_bytes;
4706 			trace_btrfs_space_reservation(root->fs_info,
4707 				"space_info", space_info->flags, orig_bytes, 1);
4708 			ret = 0;
4709 		} else {
4710 			/*
4711 			 * Ok set num_bytes to orig_bytes since we aren't
4712 			 * overocmmitted, this way we only try and reclaim what
4713 			 * we need.
4714 			 */
4715 			num_bytes = orig_bytes;
4716 		}
4717 	} else {
4718 		/*
4719 		 * Ok we're over committed, set num_bytes to the overcommitted
4720 		 * amount plus the amount of bytes that we need for this
4721 		 * reservation.
4722 		 */
4723 		num_bytes = used - space_info->total_bytes +
4724 			(orig_bytes * 2);
4725 	}
4726 
4727 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4728 		space_info->bytes_may_use += orig_bytes;
4729 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4730 					      space_info->flags, orig_bytes,
4731 					      1);
4732 		ret = 0;
4733 	}
4734 
4735 	/*
4736 	 * Couldn't make our reservation, save our place so while we're trying
4737 	 * to reclaim space we can actually use it instead of somebody else
4738 	 * stealing it from us.
4739 	 *
4740 	 * We make the other tasks wait for the flush only when we can flush
4741 	 * all things.
4742 	 */
4743 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4744 		flushing = true;
4745 		space_info->flush = 1;
4746 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4747 		used += orig_bytes;
4748 		/*
4749 		 * We will do the space reservation dance during log replay,
4750 		 * which means we won't have fs_info->fs_root set, so don't do
4751 		 * the async reclaim as we will panic.
4752 		 */
4753 		if (!root->fs_info->log_root_recovering &&
4754 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4755 		    !work_busy(&root->fs_info->async_reclaim_work))
4756 			queue_work(system_unbound_wq,
4757 				   &root->fs_info->async_reclaim_work);
4758 	}
4759 	spin_unlock(&space_info->lock);
4760 
4761 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4762 		goto out;
4763 
4764 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4765 			  flush_state);
4766 	flush_state++;
4767 
4768 	/*
4769 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4770 	 * would happen. So skip delalloc flush.
4771 	 */
4772 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4773 	    (flush_state == FLUSH_DELALLOC ||
4774 	     flush_state == FLUSH_DELALLOC_WAIT))
4775 		flush_state = ALLOC_CHUNK;
4776 
4777 	if (!ret)
4778 		goto again;
4779 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4780 		 flush_state < COMMIT_TRANS)
4781 		goto again;
4782 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4783 		 flush_state <= COMMIT_TRANS)
4784 		goto again;
4785 
4786 out:
4787 	if (ret == -ENOSPC &&
4788 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4789 		struct btrfs_block_rsv *global_rsv =
4790 			&root->fs_info->global_block_rsv;
4791 
4792 		if (block_rsv != global_rsv &&
4793 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4794 			ret = 0;
4795 	}
4796 	if (ret == -ENOSPC)
4797 		trace_btrfs_space_reservation(root->fs_info,
4798 					      "space_info:enospc",
4799 					      space_info->flags, orig_bytes, 1);
4800 	if (flushing) {
4801 		spin_lock(&space_info->lock);
4802 		space_info->flush = 0;
4803 		wake_up_all(&space_info->wait);
4804 		spin_unlock(&space_info->lock);
4805 	}
4806 	return ret;
4807 }
4808 
4809 static struct btrfs_block_rsv *get_block_rsv(
4810 					const struct btrfs_trans_handle *trans,
4811 					const struct btrfs_root *root)
4812 {
4813 	struct btrfs_block_rsv *block_rsv = NULL;
4814 
4815 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4816 		block_rsv = trans->block_rsv;
4817 
4818 	if (root == root->fs_info->csum_root && trans->adding_csums)
4819 		block_rsv = trans->block_rsv;
4820 
4821 	if (root == root->fs_info->uuid_root)
4822 		block_rsv = trans->block_rsv;
4823 
4824 	if (!block_rsv)
4825 		block_rsv = root->block_rsv;
4826 
4827 	if (!block_rsv)
4828 		block_rsv = &root->fs_info->empty_block_rsv;
4829 
4830 	return block_rsv;
4831 }
4832 
4833 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4834 			       u64 num_bytes)
4835 {
4836 	int ret = -ENOSPC;
4837 	spin_lock(&block_rsv->lock);
4838 	if (block_rsv->reserved >= num_bytes) {
4839 		block_rsv->reserved -= num_bytes;
4840 		if (block_rsv->reserved < block_rsv->size)
4841 			block_rsv->full = 0;
4842 		ret = 0;
4843 	}
4844 	spin_unlock(&block_rsv->lock);
4845 	return ret;
4846 }
4847 
4848 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4849 				u64 num_bytes, int update_size)
4850 {
4851 	spin_lock(&block_rsv->lock);
4852 	block_rsv->reserved += num_bytes;
4853 	if (update_size)
4854 		block_rsv->size += num_bytes;
4855 	else if (block_rsv->reserved >= block_rsv->size)
4856 		block_rsv->full = 1;
4857 	spin_unlock(&block_rsv->lock);
4858 }
4859 
4860 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4861 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4862 			     int min_factor)
4863 {
4864 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4865 	u64 min_bytes;
4866 
4867 	if (global_rsv->space_info != dest->space_info)
4868 		return -ENOSPC;
4869 
4870 	spin_lock(&global_rsv->lock);
4871 	min_bytes = div_factor(global_rsv->size, min_factor);
4872 	if (global_rsv->reserved < min_bytes + num_bytes) {
4873 		spin_unlock(&global_rsv->lock);
4874 		return -ENOSPC;
4875 	}
4876 	global_rsv->reserved -= num_bytes;
4877 	if (global_rsv->reserved < global_rsv->size)
4878 		global_rsv->full = 0;
4879 	spin_unlock(&global_rsv->lock);
4880 
4881 	block_rsv_add_bytes(dest, num_bytes, 1);
4882 	return 0;
4883 }
4884 
4885 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4886 				    struct btrfs_block_rsv *block_rsv,
4887 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4888 {
4889 	struct btrfs_space_info *space_info = block_rsv->space_info;
4890 
4891 	spin_lock(&block_rsv->lock);
4892 	if (num_bytes == (u64)-1)
4893 		num_bytes = block_rsv->size;
4894 	block_rsv->size -= num_bytes;
4895 	if (block_rsv->reserved >= block_rsv->size) {
4896 		num_bytes = block_rsv->reserved - block_rsv->size;
4897 		block_rsv->reserved = block_rsv->size;
4898 		block_rsv->full = 1;
4899 	} else {
4900 		num_bytes = 0;
4901 	}
4902 	spin_unlock(&block_rsv->lock);
4903 
4904 	if (num_bytes > 0) {
4905 		if (dest) {
4906 			spin_lock(&dest->lock);
4907 			if (!dest->full) {
4908 				u64 bytes_to_add;
4909 
4910 				bytes_to_add = dest->size - dest->reserved;
4911 				bytes_to_add = min(num_bytes, bytes_to_add);
4912 				dest->reserved += bytes_to_add;
4913 				if (dest->reserved >= dest->size)
4914 					dest->full = 1;
4915 				num_bytes -= bytes_to_add;
4916 			}
4917 			spin_unlock(&dest->lock);
4918 		}
4919 		if (num_bytes) {
4920 			spin_lock(&space_info->lock);
4921 			space_info->bytes_may_use -= num_bytes;
4922 			trace_btrfs_space_reservation(fs_info, "space_info",
4923 					space_info->flags, num_bytes, 0);
4924 			spin_unlock(&space_info->lock);
4925 		}
4926 	}
4927 }
4928 
4929 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4930 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4931 {
4932 	int ret;
4933 
4934 	ret = block_rsv_use_bytes(src, num_bytes);
4935 	if (ret)
4936 		return ret;
4937 
4938 	block_rsv_add_bytes(dst, num_bytes, 1);
4939 	return 0;
4940 }
4941 
4942 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4943 {
4944 	memset(rsv, 0, sizeof(*rsv));
4945 	spin_lock_init(&rsv->lock);
4946 	rsv->type = type;
4947 }
4948 
4949 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4950 					      unsigned short type)
4951 {
4952 	struct btrfs_block_rsv *block_rsv;
4953 	struct btrfs_fs_info *fs_info = root->fs_info;
4954 
4955 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4956 	if (!block_rsv)
4957 		return NULL;
4958 
4959 	btrfs_init_block_rsv(block_rsv, type);
4960 	block_rsv->space_info = __find_space_info(fs_info,
4961 						  BTRFS_BLOCK_GROUP_METADATA);
4962 	return block_rsv;
4963 }
4964 
4965 void btrfs_free_block_rsv(struct btrfs_root *root,
4966 			  struct btrfs_block_rsv *rsv)
4967 {
4968 	if (!rsv)
4969 		return;
4970 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4971 	kfree(rsv);
4972 }
4973 
4974 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4975 {
4976 	kfree(rsv);
4977 }
4978 
4979 int btrfs_block_rsv_add(struct btrfs_root *root,
4980 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4981 			enum btrfs_reserve_flush_enum flush)
4982 {
4983 	int ret;
4984 
4985 	if (num_bytes == 0)
4986 		return 0;
4987 
4988 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4989 	if (!ret) {
4990 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4991 		return 0;
4992 	}
4993 
4994 	return ret;
4995 }
4996 
4997 int btrfs_block_rsv_check(struct btrfs_root *root,
4998 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4999 {
5000 	u64 num_bytes = 0;
5001 	int ret = -ENOSPC;
5002 
5003 	if (!block_rsv)
5004 		return 0;
5005 
5006 	spin_lock(&block_rsv->lock);
5007 	num_bytes = div_factor(block_rsv->size, min_factor);
5008 	if (block_rsv->reserved >= num_bytes)
5009 		ret = 0;
5010 	spin_unlock(&block_rsv->lock);
5011 
5012 	return ret;
5013 }
5014 
5015 int btrfs_block_rsv_refill(struct btrfs_root *root,
5016 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5017 			   enum btrfs_reserve_flush_enum flush)
5018 {
5019 	u64 num_bytes = 0;
5020 	int ret = -ENOSPC;
5021 
5022 	if (!block_rsv)
5023 		return 0;
5024 
5025 	spin_lock(&block_rsv->lock);
5026 	num_bytes = min_reserved;
5027 	if (block_rsv->reserved >= num_bytes)
5028 		ret = 0;
5029 	else
5030 		num_bytes -= block_rsv->reserved;
5031 	spin_unlock(&block_rsv->lock);
5032 
5033 	if (!ret)
5034 		return 0;
5035 
5036 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5037 	if (!ret) {
5038 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5039 		return 0;
5040 	}
5041 
5042 	return ret;
5043 }
5044 
5045 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5046 			    struct btrfs_block_rsv *dst_rsv,
5047 			    u64 num_bytes)
5048 {
5049 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5050 }
5051 
5052 void btrfs_block_rsv_release(struct btrfs_root *root,
5053 			     struct btrfs_block_rsv *block_rsv,
5054 			     u64 num_bytes)
5055 {
5056 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5057 	if (global_rsv == block_rsv ||
5058 	    block_rsv->space_info != global_rsv->space_info)
5059 		global_rsv = NULL;
5060 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5061 				num_bytes);
5062 }
5063 
5064 /*
5065  * helper to calculate size of global block reservation.
5066  * the desired value is sum of space used by extent tree,
5067  * checksum tree and root tree
5068  */
5069 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5070 {
5071 	struct btrfs_space_info *sinfo;
5072 	u64 num_bytes;
5073 	u64 meta_used;
5074 	u64 data_used;
5075 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5076 
5077 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5078 	spin_lock(&sinfo->lock);
5079 	data_used = sinfo->bytes_used;
5080 	spin_unlock(&sinfo->lock);
5081 
5082 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5083 	spin_lock(&sinfo->lock);
5084 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5085 		data_used = 0;
5086 	meta_used = sinfo->bytes_used;
5087 	spin_unlock(&sinfo->lock);
5088 
5089 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5090 		    csum_size * 2;
5091 	num_bytes += div_u64(data_used + meta_used, 50);
5092 
5093 	if (num_bytes * 3 > meta_used)
5094 		num_bytes = div_u64(meta_used, 3);
5095 
5096 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5097 }
5098 
5099 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5100 {
5101 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5102 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5103 	u64 num_bytes;
5104 
5105 	num_bytes = calc_global_metadata_size(fs_info);
5106 
5107 	spin_lock(&sinfo->lock);
5108 	spin_lock(&block_rsv->lock);
5109 
5110 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5111 
5112 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5113 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5114 		    sinfo->bytes_may_use;
5115 
5116 	if (sinfo->total_bytes > num_bytes) {
5117 		num_bytes = sinfo->total_bytes - num_bytes;
5118 		block_rsv->reserved += num_bytes;
5119 		sinfo->bytes_may_use += num_bytes;
5120 		trace_btrfs_space_reservation(fs_info, "space_info",
5121 				      sinfo->flags, num_bytes, 1);
5122 	}
5123 
5124 	if (block_rsv->reserved >= block_rsv->size) {
5125 		num_bytes = block_rsv->reserved - block_rsv->size;
5126 		sinfo->bytes_may_use -= num_bytes;
5127 		trace_btrfs_space_reservation(fs_info, "space_info",
5128 				      sinfo->flags, num_bytes, 0);
5129 		block_rsv->reserved = block_rsv->size;
5130 		block_rsv->full = 1;
5131 	}
5132 
5133 	spin_unlock(&block_rsv->lock);
5134 	spin_unlock(&sinfo->lock);
5135 }
5136 
5137 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5138 {
5139 	struct btrfs_space_info *space_info;
5140 
5141 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5142 	fs_info->chunk_block_rsv.space_info = space_info;
5143 
5144 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5145 	fs_info->global_block_rsv.space_info = space_info;
5146 	fs_info->delalloc_block_rsv.space_info = space_info;
5147 	fs_info->trans_block_rsv.space_info = space_info;
5148 	fs_info->empty_block_rsv.space_info = space_info;
5149 	fs_info->delayed_block_rsv.space_info = space_info;
5150 
5151 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5152 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5153 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5154 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5155 	if (fs_info->quota_root)
5156 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5157 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5158 
5159 	update_global_block_rsv(fs_info);
5160 }
5161 
5162 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5163 {
5164 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5165 				(u64)-1);
5166 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5167 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5168 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5169 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5170 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5171 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5172 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5173 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5174 }
5175 
5176 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5177 				  struct btrfs_root *root)
5178 {
5179 	if (!trans->block_rsv)
5180 		return;
5181 
5182 	if (!trans->bytes_reserved)
5183 		return;
5184 
5185 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5186 				      trans->transid, trans->bytes_reserved, 0);
5187 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5188 	trans->bytes_reserved = 0;
5189 }
5190 
5191 /* Can only return 0 or -ENOSPC */
5192 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5193 				  struct inode *inode)
5194 {
5195 	struct btrfs_root *root = BTRFS_I(inode)->root;
5196 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5197 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5198 
5199 	/*
5200 	 * We need to hold space in order to delete our orphan item once we've
5201 	 * added it, so this takes the reservation so we can release it later
5202 	 * when we are truly done with the orphan item.
5203 	 */
5204 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5205 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5206 				      btrfs_ino(inode), num_bytes, 1);
5207 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5208 }
5209 
5210 void btrfs_orphan_release_metadata(struct inode *inode)
5211 {
5212 	struct btrfs_root *root = BTRFS_I(inode)->root;
5213 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5214 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5215 				      btrfs_ino(inode), num_bytes, 0);
5216 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5217 }
5218 
5219 /*
5220  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5221  * root: the root of the parent directory
5222  * rsv: block reservation
5223  * items: the number of items that we need do reservation
5224  * qgroup_reserved: used to return the reserved size in qgroup
5225  *
5226  * This function is used to reserve the space for snapshot/subvolume
5227  * creation and deletion. Those operations are different with the
5228  * common file/directory operations, they change two fs/file trees
5229  * and root tree, the number of items that the qgroup reserves is
5230  * different with the free space reservation. So we can not use
5231  * the space reseravtion mechanism in start_transaction().
5232  */
5233 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5234 				     struct btrfs_block_rsv *rsv,
5235 				     int items,
5236 				     u64 *qgroup_reserved,
5237 				     bool use_global_rsv)
5238 {
5239 	u64 num_bytes;
5240 	int ret;
5241 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5242 
5243 	if (root->fs_info->quota_enabled) {
5244 		/* One for parent inode, two for dir entries */
5245 		num_bytes = 3 * root->nodesize;
5246 		ret = btrfs_qgroup_reserve(root, num_bytes);
5247 		if (ret)
5248 			return ret;
5249 	} else {
5250 		num_bytes = 0;
5251 	}
5252 
5253 	*qgroup_reserved = num_bytes;
5254 
5255 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5256 	rsv->space_info = __find_space_info(root->fs_info,
5257 					    BTRFS_BLOCK_GROUP_METADATA);
5258 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5259 				  BTRFS_RESERVE_FLUSH_ALL);
5260 
5261 	if (ret == -ENOSPC && use_global_rsv)
5262 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5263 
5264 	if (ret) {
5265 		if (*qgroup_reserved)
5266 			btrfs_qgroup_free(root, *qgroup_reserved);
5267 	}
5268 
5269 	return ret;
5270 }
5271 
5272 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5273 				      struct btrfs_block_rsv *rsv,
5274 				      u64 qgroup_reserved)
5275 {
5276 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5277 }
5278 
5279 /**
5280  * drop_outstanding_extent - drop an outstanding extent
5281  * @inode: the inode we're dropping the extent for
5282  * @num_bytes: the number of bytes we're relaseing.
5283  *
5284  * This is called when we are freeing up an outstanding extent, either called
5285  * after an error or after an extent is written.  This will return the number of
5286  * reserved extents that need to be freed.  This must be called with
5287  * BTRFS_I(inode)->lock held.
5288  */
5289 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5290 {
5291 	unsigned drop_inode_space = 0;
5292 	unsigned dropped_extents = 0;
5293 	unsigned num_extents = 0;
5294 
5295 	num_extents = (unsigned)div64_u64(num_bytes +
5296 					  BTRFS_MAX_EXTENT_SIZE - 1,
5297 					  BTRFS_MAX_EXTENT_SIZE);
5298 	ASSERT(num_extents);
5299 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5300 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5301 
5302 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5303 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5304 			       &BTRFS_I(inode)->runtime_flags))
5305 		drop_inode_space = 1;
5306 
5307 	/*
5308 	 * If we have more or the same amount of outsanding extents than we have
5309 	 * reserved then we need to leave the reserved extents count alone.
5310 	 */
5311 	if (BTRFS_I(inode)->outstanding_extents >=
5312 	    BTRFS_I(inode)->reserved_extents)
5313 		return drop_inode_space;
5314 
5315 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5316 		BTRFS_I(inode)->outstanding_extents;
5317 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5318 	return dropped_extents + drop_inode_space;
5319 }
5320 
5321 /**
5322  * calc_csum_metadata_size - return the amount of metada space that must be
5323  *	reserved/free'd for the given bytes.
5324  * @inode: the inode we're manipulating
5325  * @num_bytes: the number of bytes in question
5326  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5327  *
5328  * This adjusts the number of csum_bytes in the inode and then returns the
5329  * correct amount of metadata that must either be reserved or freed.  We
5330  * calculate how many checksums we can fit into one leaf and then divide the
5331  * number of bytes that will need to be checksumed by this value to figure out
5332  * how many checksums will be required.  If we are adding bytes then the number
5333  * may go up and we will return the number of additional bytes that must be
5334  * reserved.  If it is going down we will return the number of bytes that must
5335  * be freed.
5336  *
5337  * This must be called with BTRFS_I(inode)->lock held.
5338  */
5339 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5340 				   int reserve)
5341 {
5342 	struct btrfs_root *root = BTRFS_I(inode)->root;
5343 	u64 old_csums, num_csums;
5344 
5345 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5346 	    BTRFS_I(inode)->csum_bytes == 0)
5347 		return 0;
5348 
5349 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5350 	if (reserve)
5351 		BTRFS_I(inode)->csum_bytes += num_bytes;
5352 	else
5353 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5354 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5355 
5356 	/* No change, no need to reserve more */
5357 	if (old_csums == num_csums)
5358 		return 0;
5359 
5360 	if (reserve)
5361 		return btrfs_calc_trans_metadata_size(root,
5362 						      num_csums - old_csums);
5363 
5364 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5365 }
5366 
5367 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5368 {
5369 	struct btrfs_root *root = BTRFS_I(inode)->root;
5370 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5371 	u64 to_reserve = 0;
5372 	u64 csum_bytes;
5373 	unsigned nr_extents = 0;
5374 	int extra_reserve = 0;
5375 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5376 	int ret = 0;
5377 	bool delalloc_lock = true;
5378 	u64 to_free = 0;
5379 	unsigned dropped;
5380 
5381 	/* If we are a free space inode we need to not flush since we will be in
5382 	 * the middle of a transaction commit.  We also don't need the delalloc
5383 	 * mutex since we won't race with anybody.  We need this mostly to make
5384 	 * lockdep shut its filthy mouth.
5385 	 */
5386 	if (btrfs_is_free_space_inode(inode)) {
5387 		flush = BTRFS_RESERVE_NO_FLUSH;
5388 		delalloc_lock = false;
5389 	}
5390 
5391 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5392 	    btrfs_transaction_in_commit(root->fs_info))
5393 		schedule_timeout(1);
5394 
5395 	if (delalloc_lock)
5396 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5397 
5398 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5399 
5400 	spin_lock(&BTRFS_I(inode)->lock);
5401 	nr_extents = (unsigned)div64_u64(num_bytes +
5402 					 BTRFS_MAX_EXTENT_SIZE - 1,
5403 					 BTRFS_MAX_EXTENT_SIZE);
5404 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5405 	nr_extents = 0;
5406 
5407 	if (BTRFS_I(inode)->outstanding_extents >
5408 	    BTRFS_I(inode)->reserved_extents)
5409 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5410 			BTRFS_I(inode)->reserved_extents;
5411 
5412 	/*
5413 	 * Add an item to reserve for updating the inode when we complete the
5414 	 * delalloc io.
5415 	 */
5416 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5417 		      &BTRFS_I(inode)->runtime_flags)) {
5418 		nr_extents++;
5419 		extra_reserve = 1;
5420 	}
5421 
5422 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5423 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5424 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5425 	spin_unlock(&BTRFS_I(inode)->lock);
5426 
5427 	if (root->fs_info->quota_enabled) {
5428 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5429 		if (ret)
5430 			goto out_fail;
5431 	}
5432 
5433 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5434 	if (unlikely(ret)) {
5435 		if (root->fs_info->quota_enabled)
5436 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5437 		goto out_fail;
5438 	}
5439 
5440 	spin_lock(&BTRFS_I(inode)->lock);
5441 	if (extra_reserve) {
5442 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5443 			&BTRFS_I(inode)->runtime_flags);
5444 		nr_extents--;
5445 	}
5446 	BTRFS_I(inode)->reserved_extents += nr_extents;
5447 	spin_unlock(&BTRFS_I(inode)->lock);
5448 
5449 	if (delalloc_lock)
5450 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5451 
5452 	if (to_reserve)
5453 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5454 					      btrfs_ino(inode), to_reserve, 1);
5455 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5456 
5457 	return 0;
5458 
5459 out_fail:
5460 	spin_lock(&BTRFS_I(inode)->lock);
5461 	dropped = drop_outstanding_extent(inode, num_bytes);
5462 	/*
5463 	 * If the inodes csum_bytes is the same as the original
5464 	 * csum_bytes then we know we haven't raced with any free()ers
5465 	 * so we can just reduce our inodes csum bytes and carry on.
5466 	 */
5467 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5468 		calc_csum_metadata_size(inode, num_bytes, 0);
5469 	} else {
5470 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5471 		u64 bytes;
5472 
5473 		/*
5474 		 * This is tricky, but first we need to figure out how much we
5475 		 * free'd from any free-ers that occured during this
5476 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5477 		 * before we dropped our lock, and then call the free for the
5478 		 * number of bytes that were freed while we were trying our
5479 		 * reservation.
5480 		 */
5481 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5482 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5483 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5484 
5485 
5486 		/*
5487 		 * Now we need to see how much we would have freed had we not
5488 		 * been making this reservation and our ->csum_bytes were not
5489 		 * artificially inflated.
5490 		 */
5491 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5492 		bytes = csum_bytes - orig_csum_bytes;
5493 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5494 
5495 		/*
5496 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5497 		 * more than to_free then we would have free'd more space had we
5498 		 * not had an artificially high ->csum_bytes, so we need to free
5499 		 * the remainder.  If bytes is the same or less then we don't
5500 		 * need to do anything, the other free-ers did the correct
5501 		 * thing.
5502 		 */
5503 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5504 		if (bytes > to_free)
5505 			to_free = bytes - to_free;
5506 		else
5507 			to_free = 0;
5508 	}
5509 	spin_unlock(&BTRFS_I(inode)->lock);
5510 	if (dropped)
5511 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5512 
5513 	if (to_free) {
5514 		btrfs_block_rsv_release(root, block_rsv, to_free);
5515 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5516 					      btrfs_ino(inode), to_free, 0);
5517 	}
5518 	if (delalloc_lock)
5519 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5520 	return ret;
5521 }
5522 
5523 /**
5524  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5525  * @inode: the inode to release the reservation for
5526  * @num_bytes: the number of bytes we're releasing
5527  *
5528  * This will release the metadata reservation for an inode.  This can be called
5529  * once we complete IO for a given set of bytes to release their metadata
5530  * reservations.
5531  */
5532 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5533 {
5534 	struct btrfs_root *root = BTRFS_I(inode)->root;
5535 	u64 to_free = 0;
5536 	unsigned dropped;
5537 
5538 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5539 	spin_lock(&BTRFS_I(inode)->lock);
5540 	dropped = drop_outstanding_extent(inode, num_bytes);
5541 
5542 	if (num_bytes)
5543 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5544 	spin_unlock(&BTRFS_I(inode)->lock);
5545 	if (dropped > 0)
5546 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5547 
5548 	if (btrfs_test_is_dummy_root(root))
5549 		return;
5550 
5551 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5552 				      btrfs_ino(inode), to_free, 0);
5553 
5554 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5555 				to_free);
5556 }
5557 
5558 /**
5559  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5560  * @inode: inode we're writing to
5561  * @num_bytes: the number of bytes we want to allocate
5562  *
5563  * This will do the following things
5564  *
5565  * o reserve space in the data space info for num_bytes
5566  * o reserve space in the metadata space info based on number of outstanding
5567  *   extents and how much csums will be needed
5568  * o add to the inodes ->delalloc_bytes
5569  * o add it to the fs_info's delalloc inodes list.
5570  *
5571  * This will return 0 for success and -ENOSPC if there is no space left.
5572  */
5573 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5574 {
5575 	int ret;
5576 
5577 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5578 	if (ret)
5579 		return ret;
5580 
5581 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5582 	if (ret) {
5583 		btrfs_free_reserved_data_space(inode, num_bytes);
5584 		return ret;
5585 	}
5586 
5587 	return 0;
5588 }
5589 
5590 /**
5591  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5592  * @inode: inode we're releasing space for
5593  * @num_bytes: the number of bytes we want to free up
5594  *
5595  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5596  * called in the case that we don't need the metadata AND data reservations
5597  * anymore.  So if there is an error or we insert an inline extent.
5598  *
5599  * This function will release the metadata space that was not used and will
5600  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5601  * list if there are no delalloc bytes left.
5602  */
5603 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5604 {
5605 	btrfs_delalloc_release_metadata(inode, num_bytes);
5606 	btrfs_free_reserved_data_space(inode, num_bytes);
5607 }
5608 
5609 static int update_block_group(struct btrfs_trans_handle *trans,
5610 			      struct btrfs_root *root, u64 bytenr,
5611 			      u64 num_bytes, int alloc)
5612 {
5613 	struct btrfs_block_group_cache *cache = NULL;
5614 	struct btrfs_fs_info *info = root->fs_info;
5615 	u64 total = num_bytes;
5616 	u64 old_val;
5617 	u64 byte_in_group;
5618 	int factor;
5619 
5620 	/* block accounting for super block */
5621 	spin_lock(&info->delalloc_root_lock);
5622 	old_val = btrfs_super_bytes_used(info->super_copy);
5623 	if (alloc)
5624 		old_val += num_bytes;
5625 	else
5626 		old_val -= num_bytes;
5627 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5628 	spin_unlock(&info->delalloc_root_lock);
5629 
5630 	while (total) {
5631 		cache = btrfs_lookup_block_group(info, bytenr);
5632 		if (!cache)
5633 			return -ENOENT;
5634 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5635 				    BTRFS_BLOCK_GROUP_RAID1 |
5636 				    BTRFS_BLOCK_GROUP_RAID10))
5637 			factor = 2;
5638 		else
5639 			factor = 1;
5640 		/*
5641 		 * If this block group has free space cache written out, we
5642 		 * need to make sure to load it if we are removing space.  This
5643 		 * is because we need the unpinning stage to actually add the
5644 		 * space back to the block group, otherwise we will leak space.
5645 		 */
5646 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5647 			cache_block_group(cache, 1);
5648 
5649 		byte_in_group = bytenr - cache->key.objectid;
5650 		WARN_ON(byte_in_group > cache->key.offset);
5651 
5652 		spin_lock(&cache->space_info->lock);
5653 		spin_lock(&cache->lock);
5654 
5655 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5656 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5657 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5658 
5659 		old_val = btrfs_block_group_used(&cache->item);
5660 		num_bytes = min(total, cache->key.offset - byte_in_group);
5661 		if (alloc) {
5662 			old_val += num_bytes;
5663 			btrfs_set_block_group_used(&cache->item, old_val);
5664 			cache->reserved -= num_bytes;
5665 			cache->space_info->bytes_reserved -= num_bytes;
5666 			cache->space_info->bytes_used += num_bytes;
5667 			cache->space_info->disk_used += num_bytes * factor;
5668 			spin_unlock(&cache->lock);
5669 			spin_unlock(&cache->space_info->lock);
5670 		} else {
5671 			old_val -= num_bytes;
5672 			btrfs_set_block_group_used(&cache->item, old_val);
5673 			cache->pinned += num_bytes;
5674 			cache->space_info->bytes_pinned += num_bytes;
5675 			cache->space_info->bytes_used -= num_bytes;
5676 			cache->space_info->disk_used -= num_bytes * factor;
5677 			spin_unlock(&cache->lock);
5678 			spin_unlock(&cache->space_info->lock);
5679 
5680 			set_extent_dirty(info->pinned_extents,
5681 					 bytenr, bytenr + num_bytes - 1,
5682 					 GFP_NOFS | __GFP_NOFAIL);
5683 			/*
5684 			 * No longer have used bytes in this block group, queue
5685 			 * it for deletion.
5686 			 */
5687 			if (old_val == 0) {
5688 				spin_lock(&info->unused_bgs_lock);
5689 				if (list_empty(&cache->bg_list)) {
5690 					btrfs_get_block_group(cache);
5691 					list_add_tail(&cache->bg_list,
5692 						      &info->unused_bgs);
5693 				}
5694 				spin_unlock(&info->unused_bgs_lock);
5695 			}
5696 		}
5697 
5698 		spin_lock(&trans->transaction->dirty_bgs_lock);
5699 		if (list_empty(&cache->dirty_list)) {
5700 			list_add_tail(&cache->dirty_list,
5701 				      &trans->transaction->dirty_bgs);
5702 				trans->transaction->num_dirty_bgs++;
5703 			btrfs_get_block_group(cache);
5704 		}
5705 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5706 
5707 		btrfs_put_block_group(cache);
5708 		total -= num_bytes;
5709 		bytenr += num_bytes;
5710 	}
5711 	return 0;
5712 }
5713 
5714 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5715 {
5716 	struct btrfs_block_group_cache *cache;
5717 	u64 bytenr;
5718 
5719 	spin_lock(&root->fs_info->block_group_cache_lock);
5720 	bytenr = root->fs_info->first_logical_byte;
5721 	spin_unlock(&root->fs_info->block_group_cache_lock);
5722 
5723 	if (bytenr < (u64)-1)
5724 		return bytenr;
5725 
5726 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5727 	if (!cache)
5728 		return 0;
5729 
5730 	bytenr = cache->key.objectid;
5731 	btrfs_put_block_group(cache);
5732 
5733 	return bytenr;
5734 }
5735 
5736 static int pin_down_extent(struct btrfs_root *root,
5737 			   struct btrfs_block_group_cache *cache,
5738 			   u64 bytenr, u64 num_bytes, int reserved)
5739 {
5740 	spin_lock(&cache->space_info->lock);
5741 	spin_lock(&cache->lock);
5742 	cache->pinned += num_bytes;
5743 	cache->space_info->bytes_pinned += num_bytes;
5744 	if (reserved) {
5745 		cache->reserved -= num_bytes;
5746 		cache->space_info->bytes_reserved -= num_bytes;
5747 	}
5748 	spin_unlock(&cache->lock);
5749 	spin_unlock(&cache->space_info->lock);
5750 
5751 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5752 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5753 	if (reserved)
5754 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5755 	return 0;
5756 }
5757 
5758 /*
5759  * this function must be called within transaction
5760  */
5761 int btrfs_pin_extent(struct btrfs_root *root,
5762 		     u64 bytenr, u64 num_bytes, int reserved)
5763 {
5764 	struct btrfs_block_group_cache *cache;
5765 
5766 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5767 	BUG_ON(!cache); /* Logic error */
5768 
5769 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5770 
5771 	btrfs_put_block_group(cache);
5772 	return 0;
5773 }
5774 
5775 /*
5776  * this function must be called within transaction
5777  */
5778 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5779 				    u64 bytenr, u64 num_bytes)
5780 {
5781 	struct btrfs_block_group_cache *cache;
5782 	int ret;
5783 
5784 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5785 	if (!cache)
5786 		return -EINVAL;
5787 
5788 	/*
5789 	 * pull in the free space cache (if any) so that our pin
5790 	 * removes the free space from the cache.  We have load_only set
5791 	 * to one because the slow code to read in the free extents does check
5792 	 * the pinned extents.
5793 	 */
5794 	cache_block_group(cache, 1);
5795 
5796 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5797 
5798 	/* remove us from the free space cache (if we're there at all) */
5799 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5800 	btrfs_put_block_group(cache);
5801 	return ret;
5802 }
5803 
5804 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5805 {
5806 	int ret;
5807 	struct btrfs_block_group_cache *block_group;
5808 	struct btrfs_caching_control *caching_ctl;
5809 
5810 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5811 	if (!block_group)
5812 		return -EINVAL;
5813 
5814 	cache_block_group(block_group, 0);
5815 	caching_ctl = get_caching_control(block_group);
5816 
5817 	if (!caching_ctl) {
5818 		/* Logic error */
5819 		BUG_ON(!block_group_cache_done(block_group));
5820 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5821 	} else {
5822 		mutex_lock(&caching_ctl->mutex);
5823 
5824 		if (start >= caching_ctl->progress) {
5825 			ret = add_excluded_extent(root, start, num_bytes);
5826 		} else if (start + num_bytes <= caching_ctl->progress) {
5827 			ret = btrfs_remove_free_space(block_group,
5828 						      start, num_bytes);
5829 		} else {
5830 			num_bytes = caching_ctl->progress - start;
5831 			ret = btrfs_remove_free_space(block_group,
5832 						      start, num_bytes);
5833 			if (ret)
5834 				goto out_lock;
5835 
5836 			num_bytes = (start + num_bytes) -
5837 				caching_ctl->progress;
5838 			start = caching_ctl->progress;
5839 			ret = add_excluded_extent(root, start, num_bytes);
5840 		}
5841 out_lock:
5842 		mutex_unlock(&caching_ctl->mutex);
5843 		put_caching_control(caching_ctl);
5844 	}
5845 	btrfs_put_block_group(block_group);
5846 	return ret;
5847 }
5848 
5849 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5850 				 struct extent_buffer *eb)
5851 {
5852 	struct btrfs_file_extent_item *item;
5853 	struct btrfs_key key;
5854 	int found_type;
5855 	int i;
5856 
5857 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5858 		return 0;
5859 
5860 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5861 		btrfs_item_key_to_cpu(eb, &key, i);
5862 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5863 			continue;
5864 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5865 		found_type = btrfs_file_extent_type(eb, item);
5866 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5867 			continue;
5868 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5869 			continue;
5870 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5871 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5872 		__exclude_logged_extent(log, key.objectid, key.offset);
5873 	}
5874 
5875 	return 0;
5876 }
5877 
5878 /**
5879  * btrfs_update_reserved_bytes - update the block_group and space info counters
5880  * @cache:	The cache we are manipulating
5881  * @num_bytes:	The number of bytes in question
5882  * @reserve:	One of the reservation enums
5883  * @delalloc:   The blocks are allocated for the delalloc write
5884  *
5885  * This is called by the allocator when it reserves space, or by somebody who is
5886  * freeing space that was never actually used on disk.  For example if you
5887  * reserve some space for a new leaf in transaction A and before transaction A
5888  * commits you free that leaf, you call this with reserve set to 0 in order to
5889  * clear the reservation.
5890  *
5891  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5892  * ENOSPC accounting.  For data we handle the reservation through clearing the
5893  * delalloc bits in the io_tree.  We have to do this since we could end up
5894  * allocating less disk space for the amount of data we have reserved in the
5895  * case of compression.
5896  *
5897  * If this is a reservation and the block group has become read only we cannot
5898  * make the reservation and return -EAGAIN, otherwise this function always
5899  * succeeds.
5900  */
5901 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5902 				       u64 num_bytes, int reserve, int delalloc)
5903 {
5904 	struct btrfs_space_info *space_info = cache->space_info;
5905 	int ret = 0;
5906 
5907 	spin_lock(&space_info->lock);
5908 	spin_lock(&cache->lock);
5909 	if (reserve != RESERVE_FREE) {
5910 		if (cache->ro) {
5911 			ret = -EAGAIN;
5912 		} else {
5913 			cache->reserved += num_bytes;
5914 			space_info->bytes_reserved += num_bytes;
5915 			if (reserve == RESERVE_ALLOC) {
5916 				trace_btrfs_space_reservation(cache->fs_info,
5917 						"space_info", space_info->flags,
5918 						num_bytes, 0);
5919 				space_info->bytes_may_use -= num_bytes;
5920 			}
5921 
5922 			if (delalloc)
5923 				cache->delalloc_bytes += num_bytes;
5924 		}
5925 	} else {
5926 		if (cache->ro)
5927 			space_info->bytes_readonly += num_bytes;
5928 		cache->reserved -= num_bytes;
5929 		space_info->bytes_reserved -= num_bytes;
5930 
5931 		if (delalloc)
5932 			cache->delalloc_bytes -= num_bytes;
5933 	}
5934 	spin_unlock(&cache->lock);
5935 	spin_unlock(&space_info->lock);
5936 	return ret;
5937 }
5938 
5939 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5940 				struct btrfs_root *root)
5941 {
5942 	struct btrfs_fs_info *fs_info = root->fs_info;
5943 	struct btrfs_caching_control *next;
5944 	struct btrfs_caching_control *caching_ctl;
5945 	struct btrfs_block_group_cache *cache;
5946 
5947 	down_write(&fs_info->commit_root_sem);
5948 
5949 	list_for_each_entry_safe(caching_ctl, next,
5950 				 &fs_info->caching_block_groups, list) {
5951 		cache = caching_ctl->block_group;
5952 		if (block_group_cache_done(cache)) {
5953 			cache->last_byte_to_unpin = (u64)-1;
5954 			list_del_init(&caching_ctl->list);
5955 			put_caching_control(caching_ctl);
5956 		} else {
5957 			cache->last_byte_to_unpin = caching_ctl->progress;
5958 		}
5959 	}
5960 
5961 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5962 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5963 	else
5964 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5965 
5966 	up_write(&fs_info->commit_root_sem);
5967 
5968 	update_global_block_rsv(fs_info);
5969 }
5970 
5971 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5972 			      const bool return_free_space)
5973 {
5974 	struct btrfs_fs_info *fs_info = root->fs_info;
5975 	struct btrfs_block_group_cache *cache = NULL;
5976 	struct btrfs_space_info *space_info;
5977 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5978 	u64 len;
5979 	bool readonly;
5980 
5981 	while (start <= end) {
5982 		readonly = false;
5983 		if (!cache ||
5984 		    start >= cache->key.objectid + cache->key.offset) {
5985 			if (cache)
5986 				btrfs_put_block_group(cache);
5987 			cache = btrfs_lookup_block_group(fs_info, start);
5988 			BUG_ON(!cache); /* Logic error */
5989 		}
5990 
5991 		len = cache->key.objectid + cache->key.offset - start;
5992 		len = min(len, end + 1 - start);
5993 
5994 		if (start < cache->last_byte_to_unpin) {
5995 			len = min(len, cache->last_byte_to_unpin - start);
5996 			if (return_free_space)
5997 				btrfs_add_free_space(cache, start, len);
5998 		}
5999 
6000 		start += len;
6001 		space_info = cache->space_info;
6002 
6003 		spin_lock(&space_info->lock);
6004 		spin_lock(&cache->lock);
6005 		cache->pinned -= len;
6006 		space_info->bytes_pinned -= len;
6007 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6008 		if (cache->ro) {
6009 			space_info->bytes_readonly += len;
6010 			readonly = true;
6011 		}
6012 		spin_unlock(&cache->lock);
6013 		if (!readonly && global_rsv->space_info == space_info) {
6014 			spin_lock(&global_rsv->lock);
6015 			if (!global_rsv->full) {
6016 				len = min(len, global_rsv->size -
6017 					  global_rsv->reserved);
6018 				global_rsv->reserved += len;
6019 				space_info->bytes_may_use += len;
6020 				if (global_rsv->reserved >= global_rsv->size)
6021 					global_rsv->full = 1;
6022 			}
6023 			spin_unlock(&global_rsv->lock);
6024 		}
6025 		spin_unlock(&space_info->lock);
6026 	}
6027 
6028 	if (cache)
6029 		btrfs_put_block_group(cache);
6030 	return 0;
6031 }
6032 
6033 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6034 			       struct btrfs_root *root)
6035 {
6036 	struct btrfs_fs_info *fs_info = root->fs_info;
6037 	struct extent_io_tree *unpin;
6038 	u64 start;
6039 	u64 end;
6040 	int ret;
6041 
6042 	if (trans->aborted)
6043 		return 0;
6044 
6045 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6046 		unpin = &fs_info->freed_extents[1];
6047 	else
6048 		unpin = &fs_info->freed_extents[0];
6049 
6050 	while (1) {
6051 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6052 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6053 					    EXTENT_DIRTY, NULL);
6054 		if (ret) {
6055 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6056 			break;
6057 		}
6058 
6059 		if (btrfs_test_opt(root, DISCARD))
6060 			ret = btrfs_discard_extent(root, start,
6061 						   end + 1 - start, NULL);
6062 
6063 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6064 		unpin_extent_range(root, start, end, true);
6065 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6066 		cond_resched();
6067 	}
6068 
6069 	return 0;
6070 }
6071 
6072 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6073 			     u64 owner, u64 root_objectid)
6074 {
6075 	struct btrfs_space_info *space_info;
6076 	u64 flags;
6077 
6078 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6079 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6080 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6081 		else
6082 			flags = BTRFS_BLOCK_GROUP_METADATA;
6083 	} else {
6084 		flags = BTRFS_BLOCK_GROUP_DATA;
6085 	}
6086 
6087 	space_info = __find_space_info(fs_info, flags);
6088 	BUG_ON(!space_info); /* Logic bug */
6089 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6090 }
6091 
6092 
6093 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6094 				struct btrfs_root *root,
6095 				u64 bytenr, u64 num_bytes, u64 parent,
6096 				u64 root_objectid, u64 owner_objectid,
6097 				u64 owner_offset, int refs_to_drop,
6098 				struct btrfs_delayed_extent_op *extent_op,
6099 				int no_quota)
6100 {
6101 	struct btrfs_key key;
6102 	struct btrfs_path *path;
6103 	struct btrfs_fs_info *info = root->fs_info;
6104 	struct btrfs_root *extent_root = info->extent_root;
6105 	struct extent_buffer *leaf;
6106 	struct btrfs_extent_item *ei;
6107 	struct btrfs_extent_inline_ref *iref;
6108 	int ret;
6109 	int is_data;
6110 	int extent_slot = 0;
6111 	int found_extent = 0;
6112 	int num_to_del = 1;
6113 	u32 item_size;
6114 	u64 refs;
6115 	int last_ref = 0;
6116 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6117 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6118 						 SKINNY_METADATA);
6119 
6120 	if (!info->quota_enabled || !is_fstree(root_objectid))
6121 		no_quota = 1;
6122 
6123 	path = btrfs_alloc_path();
6124 	if (!path)
6125 		return -ENOMEM;
6126 
6127 	path->reada = 1;
6128 	path->leave_spinning = 1;
6129 
6130 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6131 	BUG_ON(!is_data && refs_to_drop != 1);
6132 
6133 	if (is_data)
6134 		skinny_metadata = 0;
6135 
6136 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6137 				    bytenr, num_bytes, parent,
6138 				    root_objectid, owner_objectid,
6139 				    owner_offset);
6140 	if (ret == 0) {
6141 		extent_slot = path->slots[0];
6142 		while (extent_slot >= 0) {
6143 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6144 					      extent_slot);
6145 			if (key.objectid != bytenr)
6146 				break;
6147 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6148 			    key.offset == num_bytes) {
6149 				found_extent = 1;
6150 				break;
6151 			}
6152 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6153 			    key.offset == owner_objectid) {
6154 				found_extent = 1;
6155 				break;
6156 			}
6157 			if (path->slots[0] - extent_slot > 5)
6158 				break;
6159 			extent_slot--;
6160 		}
6161 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6162 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6163 		if (found_extent && item_size < sizeof(*ei))
6164 			found_extent = 0;
6165 #endif
6166 		if (!found_extent) {
6167 			BUG_ON(iref);
6168 			ret = remove_extent_backref(trans, extent_root, path,
6169 						    NULL, refs_to_drop,
6170 						    is_data, &last_ref);
6171 			if (ret) {
6172 				btrfs_abort_transaction(trans, extent_root, ret);
6173 				goto out;
6174 			}
6175 			btrfs_release_path(path);
6176 			path->leave_spinning = 1;
6177 
6178 			key.objectid = bytenr;
6179 			key.type = BTRFS_EXTENT_ITEM_KEY;
6180 			key.offset = num_bytes;
6181 
6182 			if (!is_data && skinny_metadata) {
6183 				key.type = BTRFS_METADATA_ITEM_KEY;
6184 				key.offset = owner_objectid;
6185 			}
6186 
6187 			ret = btrfs_search_slot(trans, extent_root,
6188 						&key, path, -1, 1);
6189 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6190 				/*
6191 				 * Couldn't find our skinny metadata item,
6192 				 * see if we have ye olde extent item.
6193 				 */
6194 				path->slots[0]--;
6195 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6196 						      path->slots[0]);
6197 				if (key.objectid == bytenr &&
6198 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6199 				    key.offset == num_bytes)
6200 					ret = 0;
6201 			}
6202 
6203 			if (ret > 0 && skinny_metadata) {
6204 				skinny_metadata = false;
6205 				key.objectid = bytenr;
6206 				key.type = BTRFS_EXTENT_ITEM_KEY;
6207 				key.offset = num_bytes;
6208 				btrfs_release_path(path);
6209 				ret = btrfs_search_slot(trans, extent_root,
6210 							&key, path, -1, 1);
6211 			}
6212 
6213 			if (ret) {
6214 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6215 					ret, bytenr);
6216 				if (ret > 0)
6217 					btrfs_print_leaf(extent_root,
6218 							 path->nodes[0]);
6219 			}
6220 			if (ret < 0) {
6221 				btrfs_abort_transaction(trans, extent_root, ret);
6222 				goto out;
6223 			}
6224 			extent_slot = path->slots[0];
6225 		}
6226 	} else if (WARN_ON(ret == -ENOENT)) {
6227 		btrfs_print_leaf(extent_root, path->nodes[0]);
6228 		btrfs_err(info,
6229 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6230 			bytenr, parent, root_objectid, owner_objectid,
6231 			owner_offset);
6232 		btrfs_abort_transaction(trans, extent_root, ret);
6233 		goto out;
6234 	} else {
6235 		btrfs_abort_transaction(trans, extent_root, ret);
6236 		goto out;
6237 	}
6238 
6239 	leaf = path->nodes[0];
6240 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6241 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6242 	if (item_size < sizeof(*ei)) {
6243 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6244 		ret = convert_extent_item_v0(trans, extent_root, path,
6245 					     owner_objectid, 0);
6246 		if (ret < 0) {
6247 			btrfs_abort_transaction(trans, extent_root, ret);
6248 			goto out;
6249 		}
6250 
6251 		btrfs_release_path(path);
6252 		path->leave_spinning = 1;
6253 
6254 		key.objectid = bytenr;
6255 		key.type = BTRFS_EXTENT_ITEM_KEY;
6256 		key.offset = num_bytes;
6257 
6258 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6259 					-1, 1);
6260 		if (ret) {
6261 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6262 				ret, bytenr);
6263 			btrfs_print_leaf(extent_root, path->nodes[0]);
6264 		}
6265 		if (ret < 0) {
6266 			btrfs_abort_transaction(trans, extent_root, ret);
6267 			goto out;
6268 		}
6269 
6270 		extent_slot = path->slots[0];
6271 		leaf = path->nodes[0];
6272 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6273 	}
6274 #endif
6275 	BUG_ON(item_size < sizeof(*ei));
6276 	ei = btrfs_item_ptr(leaf, extent_slot,
6277 			    struct btrfs_extent_item);
6278 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6279 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6280 		struct btrfs_tree_block_info *bi;
6281 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6282 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6283 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6284 	}
6285 
6286 	refs = btrfs_extent_refs(leaf, ei);
6287 	if (refs < refs_to_drop) {
6288 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6289 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6290 		ret = -EINVAL;
6291 		btrfs_abort_transaction(trans, extent_root, ret);
6292 		goto out;
6293 	}
6294 	refs -= refs_to_drop;
6295 
6296 	if (refs > 0) {
6297 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6298 		if (extent_op)
6299 			__run_delayed_extent_op(extent_op, leaf, ei);
6300 		/*
6301 		 * In the case of inline back ref, reference count will
6302 		 * be updated by remove_extent_backref
6303 		 */
6304 		if (iref) {
6305 			BUG_ON(!found_extent);
6306 		} else {
6307 			btrfs_set_extent_refs(leaf, ei, refs);
6308 			btrfs_mark_buffer_dirty(leaf);
6309 		}
6310 		if (found_extent) {
6311 			ret = remove_extent_backref(trans, extent_root, path,
6312 						    iref, refs_to_drop,
6313 						    is_data, &last_ref);
6314 			if (ret) {
6315 				btrfs_abort_transaction(trans, extent_root, ret);
6316 				goto out;
6317 			}
6318 		}
6319 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6320 				 root_objectid);
6321 	} else {
6322 		if (found_extent) {
6323 			BUG_ON(is_data && refs_to_drop !=
6324 			       extent_data_ref_count(root, path, iref));
6325 			if (iref) {
6326 				BUG_ON(path->slots[0] != extent_slot);
6327 			} else {
6328 				BUG_ON(path->slots[0] != extent_slot + 1);
6329 				path->slots[0] = extent_slot;
6330 				num_to_del = 2;
6331 			}
6332 		}
6333 
6334 		last_ref = 1;
6335 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6336 				      num_to_del);
6337 		if (ret) {
6338 			btrfs_abort_transaction(trans, extent_root, ret);
6339 			goto out;
6340 		}
6341 		btrfs_release_path(path);
6342 
6343 		if (is_data) {
6344 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6345 			if (ret) {
6346 				btrfs_abort_transaction(trans, extent_root, ret);
6347 				goto out;
6348 			}
6349 		}
6350 
6351 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6352 		if (ret) {
6353 			btrfs_abort_transaction(trans, extent_root, ret);
6354 			goto out;
6355 		}
6356 	}
6357 	btrfs_release_path(path);
6358 
6359 	/* Deal with the quota accounting */
6360 	if (!ret && last_ref && !no_quota) {
6361 		int mod_seq = 0;
6362 
6363 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6364 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6365 			mod_seq = 1;
6366 
6367 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6368 					      bytenr, num_bytes, type,
6369 					      mod_seq);
6370 	}
6371 out:
6372 	btrfs_free_path(path);
6373 	return ret;
6374 }
6375 
6376 /*
6377  * when we free an block, it is possible (and likely) that we free the last
6378  * delayed ref for that extent as well.  This searches the delayed ref tree for
6379  * a given extent, and if there are no other delayed refs to be processed, it
6380  * removes it from the tree.
6381  */
6382 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6383 				      struct btrfs_root *root, u64 bytenr)
6384 {
6385 	struct btrfs_delayed_ref_head *head;
6386 	struct btrfs_delayed_ref_root *delayed_refs;
6387 	int ret = 0;
6388 
6389 	delayed_refs = &trans->transaction->delayed_refs;
6390 	spin_lock(&delayed_refs->lock);
6391 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6392 	if (!head)
6393 		goto out_delayed_unlock;
6394 
6395 	spin_lock(&head->lock);
6396 	if (rb_first(&head->ref_root))
6397 		goto out;
6398 
6399 	if (head->extent_op) {
6400 		if (!head->must_insert_reserved)
6401 			goto out;
6402 		btrfs_free_delayed_extent_op(head->extent_op);
6403 		head->extent_op = NULL;
6404 	}
6405 
6406 	/*
6407 	 * waiting for the lock here would deadlock.  If someone else has it
6408 	 * locked they are already in the process of dropping it anyway
6409 	 */
6410 	if (!mutex_trylock(&head->mutex))
6411 		goto out;
6412 
6413 	/*
6414 	 * at this point we have a head with no other entries.  Go
6415 	 * ahead and process it.
6416 	 */
6417 	head->node.in_tree = 0;
6418 	rb_erase(&head->href_node, &delayed_refs->href_root);
6419 
6420 	atomic_dec(&delayed_refs->num_entries);
6421 
6422 	/*
6423 	 * we don't take a ref on the node because we're removing it from the
6424 	 * tree, so we just steal the ref the tree was holding.
6425 	 */
6426 	delayed_refs->num_heads--;
6427 	if (head->processing == 0)
6428 		delayed_refs->num_heads_ready--;
6429 	head->processing = 0;
6430 	spin_unlock(&head->lock);
6431 	spin_unlock(&delayed_refs->lock);
6432 
6433 	BUG_ON(head->extent_op);
6434 	if (head->must_insert_reserved)
6435 		ret = 1;
6436 
6437 	mutex_unlock(&head->mutex);
6438 	btrfs_put_delayed_ref(&head->node);
6439 	return ret;
6440 out:
6441 	spin_unlock(&head->lock);
6442 
6443 out_delayed_unlock:
6444 	spin_unlock(&delayed_refs->lock);
6445 	return 0;
6446 }
6447 
6448 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6449 			   struct btrfs_root *root,
6450 			   struct extent_buffer *buf,
6451 			   u64 parent, int last_ref)
6452 {
6453 	int pin = 1;
6454 	int ret;
6455 
6456 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6457 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6458 					buf->start, buf->len,
6459 					parent, root->root_key.objectid,
6460 					btrfs_header_level(buf),
6461 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6462 		BUG_ON(ret); /* -ENOMEM */
6463 	}
6464 
6465 	if (!last_ref)
6466 		return;
6467 
6468 	if (btrfs_header_generation(buf) == trans->transid) {
6469 		struct btrfs_block_group_cache *cache;
6470 
6471 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6472 			ret = check_ref_cleanup(trans, root, buf->start);
6473 			if (!ret)
6474 				goto out;
6475 		}
6476 
6477 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6478 
6479 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6480 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6481 			btrfs_put_block_group(cache);
6482 			goto out;
6483 		}
6484 
6485 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6486 
6487 		btrfs_add_free_space(cache, buf->start, buf->len);
6488 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6489 		btrfs_put_block_group(cache);
6490 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6491 		pin = 0;
6492 	}
6493 out:
6494 	if (pin)
6495 		add_pinned_bytes(root->fs_info, buf->len,
6496 				 btrfs_header_level(buf),
6497 				 root->root_key.objectid);
6498 
6499 	/*
6500 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6501 	 * anymore.
6502 	 */
6503 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6504 }
6505 
6506 /* Can return -ENOMEM */
6507 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6508 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6509 		      u64 owner, u64 offset, int no_quota)
6510 {
6511 	int ret;
6512 	struct btrfs_fs_info *fs_info = root->fs_info;
6513 
6514 	if (btrfs_test_is_dummy_root(root))
6515 		return 0;
6516 
6517 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6518 
6519 	/*
6520 	 * tree log blocks never actually go into the extent allocation
6521 	 * tree, just update pinning info and exit early.
6522 	 */
6523 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6524 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6525 		/* unlocks the pinned mutex */
6526 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6527 		ret = 0;
6528 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6529 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6530 					num_bytes,
6531 					parent, root_objectid, (int)owner,
6532 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6533 	} else {
6534 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6535 						num_bytes,
6536 						parent, root_objectid, owner,
6537 						offset, BTRFS_DROP_DELAYED_REF,
6538 						NULL, no_quota);
6539 	}
6540 	return ret;
6541 }
6542 
6543 /*
6544  * when we wait for progress in the block group caching, its because
6545  * our allocation attempt failed at least once.  So, we must sleep
6546  * and let some progress happen before we try again.
6547  *
6548  * This function will sleep at least once waiting for new free space to
6549  * show up, and then it will check the block group free space numbers
6550  * for our min num_bytes.  Another option is to have it go ahead
6551  * and look in the rbtree for a free extent of a given size, but this
6552  * is a good start.
6553  *
6554  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6555  * any of the information in this block group.
6556  */
6557 static noinline void
6558 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6559 				u64 num_bytes)
6560 {
6561 	struct btrfs_caching_control *caching_ctl;
6562 
6563 	caching_ctl = get_caching_control(cache);
6564 	if (!caching_ctl)
6565 		return;
6566 
6567 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6568 		   (cache->free_space_ctl->free_space >= num_bytes));
6569 
6570 	put_caching_control(caching_ctl);
6571 }
6572 
6573 static noinline int
6574 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6575 {
6576 	struct btrfs_caching_control *caching_ctl;
6577 	int ret = 0;
6578 
6579 	caching_ctl = get_caching_control(cache);
6580 	if (!caching_ctl)
6581 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6582 
6583 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6584 	if (cache->cached == BTRFS_CACHE_ERROR)
6585 		ret = -EIO;
6586 	put_caching_control(caching_ctl);
6587 	return ret;
6588 }
6589 
6590 int __get_raid_index(u64 flags)
6591 {
6592 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6593 		return BTRFS_RAID_RAID10;
6594 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6595 		return BTRFS_RAID_RAID1;
6596 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6597 		return BTRFS_RAID_DUP;
6598 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6599 		return BTRFS_RAID_RAID0;
6600 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6601 		return BTRFS_RAID_RAID5;
6602 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6603 		return BTRFS_RAID_RAID6;
6604 
6605 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6606 }
6607 
6608 int get_block_group_index(struct btrfs_block_group_cache *cache)
6609 {
6610 	return __get_raid_index(cache->flags);
6611 }
6612 
6613 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6614 	[BTRFS_RAID_RAID10]	= "raid10",
6615 	[BTRFS_RAID_RAID1]	= "raid1",
6616 	[BTRFS_RAID_DUP]	= "dup",
6617 	[BTRFS_RAID_RAID0]	= "raid0",
6618 	[BTRFS_RAID_SINGLE]	= "single",
6619 	[BTRFS_RAID_RAID5]	= "raid5",
6620 	[BTRFS_RAID_RAID6]	= "raid6",
6621 };
6622 
6623 static const char *get_raid_name(enum btrfs_raid_types type)
6624 {
6625 	if (type >= BTRFS_NR_RAID_TYPES)
6626 		return NULL;
6627 
6628 	return btrfs_raid_type_names[type];
6629 }
6630 
6631 enum btrfs_loop_type {
6632 	LOOP_CACHING_NOWAIT = 0,
6633 	LOOP_CACHING_WAIT = 1,
6634 	LOOP_ALLOC_CHUNK = 2,
6635 	LOOP_NO_EMPTY_SIZE = 3,
6636 };
6637 
6638 static inline void
6639 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6640 		       int delalloc)
6641 {
6642 	if (delalloc)
6643 		down_read(&cache->data_rwsem);
6644 }
6645 
6646 static inline void
6647 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6648 		       int delalloc)
6649 {
6650 	btrfs_get_block_group(cache);
6651 	if (delalloc)
6652 		down_read(&cache->data_rwsem);
6653 }
6654 
6655 static struct btrfs_block_group_cache *
6656 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6657 		   struct btrfs_free_cluster *cluster,
6658 		   int delalloc)
6659 {
6660 	struct btrfs_block_group_cache *used_bg;
6661 	bool locked = false;
6662 again:
6663 	spin_lock(&cluster->refill_lock);
6664 	if (locked) {
6665 		if (used_bg == cluster->block_group)
6666 			return used_bg;
6667 
6668 		up_read(&used_bg->data_rwsem);
6669 		btrfs_put_block_group(used_bg);
6670 	}
6671 
6672 	used_bg = cluster->block_group;
6673 	if (!used_bg)
6674 		return NULL;
6675 
6676 	if (used_bg == block_group)
6677 		return used_bg;
6678 
6679 	btrfs_get_block_group(used_bg);
6680 
6681 	if (!delalloc)
6682 		return used_bg;
6683 
6684 	if (down_read_trylock(&used_bg->data_rwsem))
6685 		return used_bg;
6686 
6687 	spin_unlock(&cluster->refill_lock);
6688 	down_read(&used_bg->data_rwsem);
6689 	locked = true;
6690 	goto again;
6691 }
6692 
6693 static inline void
6694 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6695 			 int delalloc)
6696 {
6697 	if (delalloc)
6698 		up_read(&cache->data_rwsem);
6699 	btrfs_put_block_group(cache);
6700 }
6701 
6702 /*
6703  * walks the btree of allocated extents and find a hole of a given size.
6704  * The key ins is changed to record the hole:
6705  * ins->objectid == start position
6706  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6707  * ins->offset == the size of the hole.
6708  * Any available blocks before search_start are skipped.
6709  *
6710  * If there is no suitable free space, we will record the max size of
6711  * the free space extent currently.
6712  */
6713 static noinline int find_free_extent(struct btrfs_root *orig_root,
6714 				     u64 num_bytes, u64 empty_size,
6715 				     u64 hint_byte, struct btrfs_key *ins,
6716 				     u64 flags, int delalloc)
6717 {
6718 	int ret = 0;
6719 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6720 	struct btrfs_free_cluster *last_ptr = NULL;
6721 	struct btrfs_block_group_cache *block_group = NULL;
6722 	u64 search_start = 0;
6723 	u64 max_extent_size = 0;
6724 	int empty_cluster = 2 * 1024 * 1024;
6725 	struct btrfs_space_info *space_info;
6726 	int loop = 0;
6727 	int index = __get_raid_index(flags);
6728 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6729 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6730 	bool failed_cluster_refill = false;
6731 	bool failed_alloc = false;
6732 	bool use_cluster = true;
6733 	bool have_caching_bg = false;
6734 
6735 	WARN_ON(num_bytes < root->sectorsize);
6736 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6737 	ins->objectid = 0;
6738 	ins->offset = 0;
6739 
6740 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6741 
6742 	space_info = __find_space_info(root->fs_info, flags);
6743 	if (!space_info) {
6744 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6745 		return -ENOSPC;
6746 	}
6747 
6748 	/*
6749 	 * If the space info is for both data and metadata it means we have a
6750 	 * small filesystem and we can't use the clustering stuff.
6751 	 */
6752 	if (btrfs_mixed_space_info(space_info))
6753 		use_cluster = false;
6754 
6755 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6756 		last_ptr = &root->fs_info->meta_alloc_cluster;
6757 		if (!btrfs_test_opt(root, SSD))
6758 			empty_cluster = 64 * 1024;
6759 	}
6760 
6761 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6762 	    btrfs_test_opt(root, SSD)) {
6763 		last_ptr = &root->fs_info->data_alloc_cluster;
6764 	}
6765 
6766 	if (last_ptr) {
6767 		spin_lock(&last_ptr->lock);
6768 		if (last_ptr->block_group)
6769 			hint_byte = last_ptr->window_start;
6770 		spin_unlock(&last_ptr->lock);
6771 	}
6772 
6773 	search_start = max(search_start, first_logical_byte(root, 0));
6774 	search_start = max(search_start, hint_byte);
6775 
6776 	if (!last_ptr)
6777 		empty_cluster = 0;
6778 
6779 	if (search_start == hint_byte) {
6780 		block_group = btrfs_lookup_block_group(root->fs_info,
6781 						       search_start);
6782 		/*
6783 		 * we don't want to use the block group if it doesn't match our
6784 		 * allocation bits, or if its not cached.
6785 		 *
6786 		 * However if we are re-searching with an ideal block group
6787 		 * picked out then we don't care that the block group is cached.
6788 		 */
6789 		if (block_group && block_group_bits(block_group, flags) &&
6790 		    block_group->cached != BTRFS_CACHE_NO) {
6791 			down_read(&space_info->groups_sem);
6792 			if (list_empty(&block_group->list) ||
6793 			    block_group->ro) {
6794 				/*
6795 				 * someone is removing this block group,
6796 				 * we can't jump into the have_block_group
6797 				 * target because our list pointers are not
6798 				 * valid
6799 				 */
6800 				btrfs_put_block_group(block_group);
6801 				up_read(&space_info->groups_sem);
6802 			} else {
6803 				index = get_block_group_index(block_group);
6804 				btrfs_lock_block_group(block_group, delalloc);
6805 				goto have_block_group;
6806 			}
6807 		} else if (block_group) {
6808 			btrfs_put_block_group(block_group);
6809 		}
6810 	}
6811 search:
6812 	have_caching_bg = false;
6813 	down_read(&space_info->groups_sem);
6814 	list_for_each_entry(block_group, &space_info->block_groups[index],
6815 			    list) {
6816 		u64 offset;
6817 		int cached;
6818 
6819 		btrfs_grab_block_group(block_group, delalloc);
6820 		search_start = block_group->key.objectid;
6821 
6822 		/*
6823 		 * this can happen if we end up cycling through all the
6824 		 * raid types, but we want to make sure we only allocate
6825 		 * for the proper type.
6826 		 */
6827 		if (!block_group_bits(block_group, flags)) {
6828 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6829 				BTRFS_BLOCK_GROUP_RAID1 |
6830 				BTRFS_BLOCK_GROUP_RAID5 |
6831 				BTRFS_BLOCK_GROUP_RAID6 |
6832 				BTRFS_BLOCK_GROUP_RAID10;
6833 
6834 			/*
6835 			 * if they asked for extra copies and this block group
6836 			 * doesn't provide them, bail.  This does allow us to
6837 			 * fill raid0 from raid1.
6838 			 */
6839 			if ((flags & extra) && !(block_group->flags & extra))
6840 				goto loop;
6841 		}
6842 
6843 have_block_group:
6844 		cached = block_group_cache_done(block_group);
6845 		if (unlikely(!cached)) {
6846 			ret = cache_block_group(block_group, 0);
6847 			BUG_ON(ret < 0);
6848 			ret = 0;
6849 		}
6850 
6851 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6852 			goto loop;
6853 		if (unlikely(block_group->ro))
6854 			goto loop;
6855 
6856 		/*
6857 		 * Ok we want to try and use the cluster allocator, so
6858 		 * lets look there
6859 		 */
6860 		if (last_ptr) {
6861 			struct btrfs_block_group_cache *used_block_group;
6862 			unsigned long aligned_cluster;
6863 			/*
6864 			 * the refill lock keeps out other
6865 			 * people trying to start a new cluster
6866 			 */
6867 			used_block_group = btrfs_lock_cluster(block_group,
6868 							      last_ptr,
6869 							      delalloc);
6870 			if (!used_block_group)
6871 				goto refill_cluster;
6872 
6873 			if (used_block_group != block_group &&
6874 			    (used_block_group->ro ||
6875 			     !block_group_bits(used_block_group, flags)))
6876 				goto release_cluster;
6877 
6878 			offset = btrfs_alloc_from_cluster(used_block_group,
6879 						last_ptr,
6880 						num_bytes,
6881 						used_block_group->key.objectid,
6882 						&max_extent_size);
6883 			if (offset) {
6884 				/* we have a block, we're done */
6885 				spin_unlock(&last_ptr->refill_lock);
6886 				trace_btrfs_reserve_extent_cluster(root,
6887 						used_block_group,
6888 						search_start, num_bytes);
6889 				if (used_block_group != block_group) {
6890 					btrfs_release_block_group(block_group,
6891 								  delalloc);
6892 					block_group = used_block_group;
6893 				}
6894 				goto checks;
6895 			}
6896 
6897 			WARN_ON(last_ptr->block_group != used_block_group);
6898 release_cluster:
6899 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6900 			 * set up a new clusters, so lets just skip it
6901 			 * and let the allocator find whatever block
6902 			 * it can find.  If we reach this point, we
6903 			 * will have tried the cluster allocator
6904 			 * plenty of times and not have found
6905 			 * anything, so we are likely way too
6906 			 * fragmented for the clustering stuff to find
6907 			 * anything.
6908 			 *
6909 			 * However, if the cluster is taken from the
6910 			 * current block group, release the cluster
6911 			 * first, so that we stand a better chance of
6912 			 * succeeding in the unclustered
6913 			 * allocation.  */
6914 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6915 			    used_block_group != block_group) {
6916 				spin_unlock(&last_ptr->refill_lock);
6917 				btrfs_release_block_group(used_block_group,
6918 							  delalloc);
6919 				goto unclustered_alloc;
6920 			}
6921 
6922 			/*
6923 			 * this cluster didn't work out, free it and
6924 			 * start over
6925 			 */
6926 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6927 
6928 			if (used_block_group != block_group)
6929 				btrfs_release_block_group(used_block_group,
6930 							  delalloc);
6931 refill_cluster:
6932 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6933 				spin_unlock(&last_ptr->refill_lock);
6934 				goto unclustered_alloc;
6935 			}
6936 
6937 			aligned_cluster = max_t(unsigned long,
6938 						empty_cluster + empty_size,
6939 					      block_group->full_stripe_len);
6940 
6941 			/* allocate a cluster in this block group */
6942 			ret = btrfs_find_space_cluster(root, block_group,
6943 						       last_ptr, search_start,
6944 						       num_bytes,
6945 						       aligned_cluster);
6946 			if (ret == 0) {
6947 				/*
6948 				 * now pull our allocation out of this
6949 				 * cluster
6950 				 */
6951 				offset = btrfs_alloc_from_cluster(block_group,
6952 							last_ptr,
6953 							num_bytes,
6954 							search_start,
6955 							&max_extent_size);
6956 				if (offset) {
6957 					/* we found one, proceed */
6958 					spin_unlock(&last_ptr->refill_lock);
6959 					trace_btrfs_reserve_extent_cluster(root,
6960 						block_group, search_start,
6961 						num_bytes);
6962 					goto checks;
6963 				}
6964 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6965 				   && !failed_cluster_refill) {
6966 				spin_unlock(&last_ptr->refill_lock);
6967 
6968 				failed_cluster_refill = true;
6969 				wait_block_group_cache_progress(block_group,
6970 				       num_bytes + empty_cluster + empty_size);
6971 				goto have_block_group;
6972 			}
6973 
6974 			/*
6975 			 * at this point we either didn't find a cluster
6976 			 * or we weren't able to allocate a block from our
6977 			 * cluster.  Free the cluster we've been trying
6978 			 * to use, and go to the next block group
6979 			 */
6980 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6981 			spin_unlock(&last_ptr->refill_lock);
6982 			goto loop;
6983 		}
6984 
6985 unclustered_alloc:
6986 		spin_lock(&block_group->free_space_ctl->tree_lock);
6987 		if (cached &&
6988 		    block_group->free_space_ctl->free_space <
6989 		    num_bytes + empty_cluster + empty_size) {
6990 			if (block_group->free_space_ctl->free_space >
6991 			    max_extent_size)
6992 				max_extent_size =
6993 					block_group->free_space_ctl->free_space;
6994 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6995 			goto loop;
6996 		}
6997 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6998 
6999 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7000 						    num_bytes, empty_size,
7001 						    &max_extent_size);
7002 		/*
7003 		 * If we didn't find a chunk, and we haven't failed on this
7004 		 * block group before, and this block group is in the middle of
7005 		 * caching and we are ok with waiting, then go ahead and wait
7006 		 * for progress to be made, and set failed_alloc to true.
7007 		 *
7008 		 * If failed_alloc is true then we've already waited on this
7009 		 * block group once and should move on to the next block group.
7010 		 */
7011 		if (!offset && !failed_alloc && !cached &&
7012 		    loop > LOOP_CACHING_NOWAIT) {
7013 			wait_block_group_cache_progress(block_group,
7014 						num_bytes + empty_size);
7015 			failed_alloc = true;
7016 			goto have_block_group;
7017 		} else if (!offset) {
7018 			if (!cached)
7019 				have_caching_bg = true;
7020 			goto loop;
7021 		}
7022 checks:
7023 		search_start = ALIGN(offset, root->stripesize);
7024 
7025 		/* move on to the next group */
7026 		if (search_start + num_bytes >
7027 		    block_group->key.objectid + block_group->key.offset) {
7028 			btrfs_add_free_space(block_group, offset, num_bytes);
7029 			goto loop;
7030 		}
7031 
7032 		if (offset < search_start)
7033 			btrfs_add_free_space(block_group, offset,
7034 					     search_start - offset);
7035 		BUG_ON(offset > search_start);
7036 
7037 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7038 						  alloc_type, delalloc);
7039 		if (ret == -EAGAIN) {
7040 			btrfs_add_free_space(block_group, offset, num_bytes);
7041 			goto loop;
7042 		}
7043 
7044 		/* we are all good, lets return */
7045 		ins->objectid = search_start;
7046 		ins->offset = num_bytes;
7047 
7048 		trace_btrfs_reserve_extent(orig_root, block_group,
7049 					   search_start, num_bytes);
7050 		btrfs_release_block_group(block_group, delalloc);
7051 		break;
7052 loop:
7053 		failed_cluster_refill = false;
7054 		failed_alloc = false;
7055 		BUG_ON(index != get_block_group_index(block_group));
7056 		btrfs_release_block_group(block_group, delalloc);
7057 	}
7058 	up_read(&space_info->groups_sem);
7059 
7060 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7061 		goto search;
7062 
7063 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7064 		goto search;
7065 
7066 	/*
7067 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7068 	 *			caching kthreads as we move along
7069 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7070 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7071 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7072 	 *			again
7073 	 */
7074 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7075 		index = 0;
7076 		loop++;
7077 		if (loop == LOOP_ALLOC_CHUNK) {
7078 			struct btrfs_trans_handle *trans;
7079 			int exist = 0;
7080 
7081 			trans = current->journal_info;
7082 			if (trans)
7083 				exist = 1;
7084 			else
7085 				trans = btrfs_join_transaction(root);
7086 
7087 			if (IS_ERR(trans)) {
7088 				ret = PTR_ERR(trans);
7089 				goto out;
7090 			}
7091 
7092 			ret = do_chunk_alloc(trans, root, flags,
7093 					     CHUNK_ALLOC_FORCE);
7094 			/*
7095 			 * Do not bail out on ENOSPC since we
7096 			 * can do more things.
7097 			 */
7098 			if (ret < 0 && ret != -ENOSPC)
7099 				btrfs_abort_transaction(trans,
7100 							root, ret);
7101 			else
7102 				ret = 0;
7103 			if (!exist)
7104 				btrfs_end_transaction(trans, root);
7105 			if (ret)
7106 				goto out;
7107 		}
7108 
7109 		if (loop == LOOP_NO_EMPTY_SIZE) {
7110 			empty_size = 0;
7111 			empty_cluster = 0;
7112 		}
7113 
7114 		goto search;
7115 	} else if (!ins->objectid) {
7116 		ret = -ENOSPC;
7117 	} else if (ins->objectid) {
7118 		ret = 0;
7119 	}
7120 out:
7121 	if (ret == -ENOSPC)
7122 		ins->offset = max_extent_size;
7123 	return ret;
7124 }
7125 
7126 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7127 			    int dump_block_groups)
7128 {
7129 	struct btrfs_block_group_cache *cache;
7130 	int index = 0;
7131 
7132 	spin_lock(&info->lock);
7133 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7134 	       info->flags,
7135 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7136 	       info->bytes_reserved - info->bytes_readonly,
7137 	       (info->full) ? "" : "not ");
7138 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7139 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7140 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7141 	       info->bytes_reserved, info->bytes_may_use,
7142 	       info->bytes_readonly);
7143 	spin_unlock(&info->lock);
7144 
7145 	if (!dump_block_groups)
7146 		return;
7147 
7148 	down_read(&info->groups_sem);
7149 again:
7150 	list_for_each_entry(cache, &info->block_groups[index], list) {
7151 		spin_lock(&cache->lock);
7152 		printk(KERN_INFO "BTRFS: "
7153 			   "block group %llu has %llu bytes, "
7154 			   "%llu used %llu pinned %llu reserved %s\n",
7155 		       cache->key.objectid, cache->key.offset,
7156 		       btrfs_block_group_used(&cache->item), cache->pinned,
7157 		       cache->reserved, cache->ro ? "[readonly]" : "");
7158 		btrfs_dump_free_space(cache, bytes);
7159 		spin_unlock(&cache->lock);
7160 	}
7161 	if (++index < BTRFS_NR_RAID_TYPES)
7162 		goto again;
7163 	up_read(&info->groups_sem);
7164 }
7165 
7166 int btrfs_reserve_extent(struct btrfs_root *root,
7167 			 u64 num_bytes, u64 min_alloc_size,
7168 			 u64 empty_size, u64 hint_byte,
7169 			 struct btrfs_key *ins, int is_data, int delalloc)
7170 {
7171 	bool final_tried = false;
7172 	u64 flags;
7173 	int ret;
7174 
7175 	flags = btrfs_get_alloc_profile(root, is_data);
7176 again:
7177 	WARN_ON(num_bytes < root->sectorsize);
7178 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7179 			       flags, delalloc);
7180 
7181 	if (ret == -ENOSPC) {
7182 		if (!final_tried && ins->offset) {
7183 			num_bytes = min(num_bytes >> 1, ins->offset);
7184 			num_bytes = round_down(num_bytes, root->sectorsize);
7185 			num_bytes = max(num_bytes, min_alloc_size);
7186 			if (num_bytes == min_alloc_size)
7187 				final_tried = true;
7188 			goto again;
7189 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7190 			struct btrfs_space_info *sinfo;
7191 
7192 			sinfo = __find_space_info(root->fs_info, flags);
7193 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7194 				flags, num_bytes);
7195 			if (sinfo)
7196 				dump_space_info(sinfo, num_bytes, 1);
7197 		}
7198 	}
7199 
7200 	return ret;
7201 }
7202 
7203 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7204 					u64 start, u64 len,
7205 					int pin, int delalloc)
7206 {
7207 	struct btrfs_block_group_cache *cache;
7208 	int ret = 0;
7209 
7210 	cache = btrfs_lookup_block_group(root->fs_info, start);
7211 	if (!cache) {
7212 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7213 			start);
7214 		return -ENOSPC;
7215 	}
7216 
7217 	if (pin)
7218 		pin_down_extent(root, cache, start, len, 1);
7219 	else {
7220 		if (btrfs_test_opt(root, DISCARD))
7221 			ret = btrfs_discard_extent(root, start, len, NULL);
7222 		btrfs_add_free_space(cache, start, len);
7223 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7224 	}
7225 
7226 	btrfs_put_block_group(cache);
7227 
7228 	trace_btrfs_reserved_extent_free(root, start, len);
7229 
7230 	return ret;
7231 }
7232 
7233 int btrfs_free_reserved_extent(struct btrfs_root *root,
7234 			       u64 start, u64 len, int delalloc)
7235 {
7236 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7237 }
7238 
7239 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7240 				       u64 start, u64 len)
7241 {
7242 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7243 }
7244 
7245 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7246 				      struct btrfs_root *root,
7247 				      u64 parent, u64 root_objectid,
7248 				      u64 flags, u64 owner, u64 offset,
7249 				      struct btrfs_key *ins, int ref_mod)
7250 {
7251 	int ret;
7252 	struct btrfs_fs_info *fs_info = root->fs_info;
7253 	struct btrfs_extent_item *extent_item;
7254 	struct btrfs_extent_inline_ref *iref;
7255 	struct btrfs_path *path;
7256 	struct extent_buffer *leaf;
7257 	int type;
7258 	u32 size;
7259 
7260 	if (parent > 0)
7261 		type = BTRFS_SHARED_DATA_REF_KEY;
7262 	else
7263 		type = BTRFS_EXTENT_DATA_REF_KEY;
7264 
7265 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7266 
7267 	path = btrfs_alloc_path();
7268 	if (!path)
7269 		return -ENOMEM;
7270 
7271 	path->leave_spinning = 1;
7272 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7273 				      ins, size);
7274 	if (ret) {
7275 		btrfs_free_path(path);
7276 		return ret;
7277 	}
7278 
7279 	leaf = path->nodes[0];
7280 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7281 				     struct btrfs_extent_item);
7282 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7283 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7284 	btrfs_set_extent_flags(leaf, extent_item,
7285 			       flags | BTRFS_EXTENT_FLAG_DATA);
7286 
7287 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7288 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7289 	if (parent > 0) {
7290 		struct btrfs_shared_data_ref *ref;
7291 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7292 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7293 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7294 	} else {
7295 		struct btrfs_extent_data_ref *ref;
7296 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7297 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7298 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7299 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7300 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7301 	}
7302 
7303 	btrfs_mark_buffer_dirty(path->nodes[0]);
7304 	btrfs_free_path(path);
7305 
7306 	/* Always set parent to 0 here since its exclusive anyway. */
7307 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7308 				      ins->objectid, ins->offset,
7309 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7310 	if (ret)
7311 		return ret;
7312 
7313 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7314 	if (ret) { /* -ENOENT, logic error */
7315 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7316 			ins->objectid, ins->offset);
7317 		BUG();
7318 	}
7319 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7320 	return ret;
7321 }
7322 
7323 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7324 				     struct btrfs_root *root,
7325 				     u64 parent, u64 root_objectid,
7326 				     u64 flags, struct btrfs_disk_key *key,
7327 				     int level, struct btrfs_key *ins,
7328 				     int no_quota)
7329 {
7330 	int ret;
7331 	struct btrfs_fs_info *fs_info = root->fs_info;
7332 	struct btrfs_extent_item *extent_item;
7333 	struct btrfs_tree_block_info *block_info;
7334 	struct btrfs_extent_inline_ref *iref;
7335 	struct btrfs_path *path;
7336 	struct extent_buffer *leaf;
7337 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7338 	u64 num_bytes = ins->offset;
7339 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7340 						 SKINNY_METADATA);
7341 
7342 	if (!skinny_metadata)
7343 		size += sizeof(*block_info);
7344 
7345 	path = btrfs_alloc_path();
7346 	if (!path) {
7347 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7348 						   root->nodesize);
7349 		return -ENOMEM;
7350 	}
7351 
7352 	path->leave_spinning = 1;
7353 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7354 				      ins, size);
7355 	if (ret) {
7356 		btrfs_free_path(path);
7357 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7358 						   root->nodesize);
7359 		return ret;
7360 	}
7361 
7362 	leaf = path->nodes[0];
7363 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7364 				     struct btrfs_extent_item);
7365 	btrfs_set_extent_refs(leaf, extent_item, 1);
7366 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7367 	btrfs_set_extent_flags(leaf, extent_item,
7368 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7369 
7370 	if (skinny_metadata) {
7371 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7372 		num_bytes = root->nodesize;
7373 	} else {
7374 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7375 		btrfs_set_tree_block_key(leaf, block_info, key);
7376 		btrfs_set_tree_block_level(leaf, block_info, level);
7377 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7378 	}
7379 
7380 	if (parent > 0) {
7381 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7382 		btrfs_set_extent_inline_ref_type(leaf, iref,
7383 						 BTRFS_SHARED_BLOCK_REF_KEY);
7384 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7385 	} else {
7386 		btrfs_set_extent_inline_ref_type(leaf, iref,
7387 						 BTRFS_TREE_BLOCK_REF_KEY);
7388 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7389 	}
7390 
7391 	btrfs_mark_buffer_dirty(leaf);
7392 	btrfs_free_path(path);
7393 
7394 	if (!no_quota) {
7395 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7396 					      ins->objectid, num_bytes,
7397 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7398 		if (ret)
7399 			return ret;
7400 	}
7401 
7402 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7403 				 1);
7404 	if (ret) { /* -ENOENT, logic error */
7405 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7406 			ins->objectid, ins->offset);
7407 		BUG();
7408 	}
7409 
7410 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7411 	return ret;
7412 }
7413 
7414 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7415 				     struct btrfs_root *root,
7416 				     u64 root_objectid, u64 owner,
7417 				     u64 offset, struct btrfs_key *ins)
7418 {
7419 	int ret;
7420 
7421 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7422 
7423 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7424 					 ins->offset, 0,
7425 					 root_objectid, owner, offset,
7426 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7427 	return ret;
7428 }
7429 
7430 /*
7431  * this is used by the tree logging recovery code.  It records that
7432  * an extent has been allocated and makes sure to clear the free
7433  * space cache bits as well
7434  */
7435 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7436 				   struct btrfs_root *root,
7437 				   u64 root_objectid, u64 owner, u64 offset,
7438 				   struct btrfs_key *ins)
7439 {
7440 	int ret;
7441 	struct btrfs_block_group_cache *block_group;
7442 
7443 	/*
7444 	 * Mixed block groups will exclude before processing the log so we only
7445 	 * need to do the exlude dance if this fs isn't mixed.
7446 	 */
7447 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7448 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7449 		if (ret)
7450 			return ret;
7451 	}
7452 
7453 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7454 	if (!block_group)
7455 		return -EINVAL;
7456 
7457 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7458 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7459 	BUG_ON(ret); /* logic error */
7460 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7461 					 0, owner, offset, ins, 1);
7462 	btrfs_put_block_group(block_group);
7463 	return ret;
7464 }
7465 
7466 static struct extent_buffer *
7467 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7468 		      u64 bytenr, int level)
7469 {
7470 	struct extent_buffer *buf;
7471 
7472 	buf = btrfs_find_create_tree_block(root, bytenr);
7473 	if (!buf)
7474 		return ERR_PTR(-ENOMEM);
7475 	btrfs_set_header_generation(buf, trans->transid);
7476 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7477 	btrfs_tree_lock(buf);
7478 	clean_tree_block(trans, root->fs_info, buf);
7479 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7480 
7481 	btrfs_set_lock_blocking(buf);
7482 	btrfs_set_buffer_uptodate(buf);
7483 
7484 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7485 		buf->log_index = root->log_transid % 2;
7486 		/*
7487 		 * we allow two log transactions at a time, use different
7488 		 * EXENT bit to differentiate dirty pages.
7489 		 */
7490 		if (buf->log_index == 0)
7491 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7492 					buf->start + buf->len - 1, GFP_NOFS);
7493 		else
7494 			set_extent_new(&root->dirty_log_pages, buf->start,
7495 					buf->start + buf->len - 1, GFP_NOFS);
7496 	} else {
7497 		buf->log_index = -1;
7498 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7499 			 buf->start + buf->len - 1, GFP_NOFS);
7500 	}
7501 	trans->blocks_used++;
7502 	/* this returns a buffer locked for blocking */
7503 	return buf;
7504 }
7505 
7506 static struct btrfs_block_rsv *
7507 use_block_rsv(struct btrfs_trans_handle *trans,
7508 	      struct btrfs_root *root, u32 blocksize)
7509 {
7510 	struct btrfs_block_rsv *block_rsv;
7511 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7512 	int ret;
7513 	bool global_updated = false;
7514 
7515 	block_rsv = get_block_rsv(trans, root);
7516 
7517 	if (unlikely(block_rsv->size == 0))
7518 		goto try_reserve;
7519 again:
7520 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7521 	if (!ret)
7522 		return block_rsv;
7523 
7524 	if (block_rsv->failfast)
7525 		return ERR_PTR(ret);
7526 
7527 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7528 		global_updated = true;
7529 		update_global_block_rsv(root->fs_info);
7530 		goto again;
7531 	}
7532 
7533 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7534 		static DEFINE_RATELIMIT_STATE(_rs,
7535 				DEFAULT_RATELIMIT_INTERVAL * 10,
7536 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7537 		if (__ratelimit(&_rs))
7538 			WARN(1, KERN_DEBUG
7539 				"BTRFS: block rsv returned %d\n", ret);
7540 	}
7541 try_reserve:
7542 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7543 				     BTRFS_RESERVE_NO_FLUSH);
7544 	if (!ret)
7545 		return block_rsv;
7546 	/*
7547 	 * If we couldn't reserve metadata bytes try and use some from
7548 	 * the global reserve if its space type is the same as the global
7549 	 * reservation.
7550 	 */
7551 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7552 	    block_rsv->space_info == global_rsv->space_info) {
7553 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7554 		if (!ret)
7555 			return global_rsv;
7556 	}
7557 	return ERR_PTR(ret);
7558 }
7559 
7560 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7561 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7562 {
7563 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7564 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7565 }
7566 
7567 /*
7568  * finds a free extent and does all the dirty work required for allocation
7569  * returns the key for the extent through ins, and a tree buffer for
7570  * the first block of the extent through buf.
7571  *
7572  * returns the tree buffer or an ERR_PTR on error.
7573  */
7574 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7575 					struct btrfs_root *root,
7576 					u64 parent, u64 root_objectid,
7577 					struct btrfs_disk_key *key, int level,
7578 					u64 hint, u64 empty_size)
7579 {
7580 	struct btrfs_key ins;
7581 	struct btrfs_block_rsv *block_rsv;
7582 	struct extent_buffer *buf;
7583 	struct btrfs_delayed_extent_op *extent_op;
7584 	u64 flags = 0;
7585 	int ret;
7586 	u32 blocksize = root->nodesize;
7587 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7588 						 SKINNY_METADATA);
7589 
7590 	if (btrfs_test_is_dummy_root(root)) {
7591 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7592 					    level);
7593 		if (!IS_ERR(buf))
7594 			root->alloc_bytenr += blocksize;
7595 		return buf;
7596 	}
7597 
7598 	block_rsv = use_block_rsv(trans, root, blocksize);
7599 	if (IS_ERR(block_rsv))
7600 		return ERR_CAST(block_rsv);
7601 
7602 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7603 				   empty_size, hint, &ins, 0, 0);
7604 	if (ret)
7605 		goto out_unuse;
7606 
7607 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7608 	if (IS_ERR(buf)) {
7609 		ret = PTR_ERR(buf);
7610 		goto out_free_reserved;
7611 	}
7612 
7613 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7614 		if (parent == 0)
7615 			parent = ins.objectid;
7616 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7617 	} else
7618 		BUG_ON(parent > 0);
7619 
7620 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7621 		extent_op = btrfs_alloc_delayed_extent_op();
7622 		if (!extent_op) {
7623 			ret = -ENOMEM;
7624 			goto out_free_buf;
7625 		}
7626 		if (key)
7627 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7628 		else
7629 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7630 		extent_op->flags_to_set = flags;
7631 		if (skinny_metadata)
7632 			extent_op->update_key = 0;
7633 		else
7634 			extent_op->update_key = 1;
7635 		extent_op->update_flags = 1;
7636 		extent_op->is_data = 0;
7637 		extent_op->level = level;
7638 
7639 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7640 						 ins.objectid, ins.offset,
7641 						 parent, root_objectid, level,
7642 						 BTRFS_ADD_DELAYED_EXTENT,
7643 						 extent_op, 0);
7644 		if (ret)
7645 			goto out_free_delayed;
7646 	}
7647 	return buf;
7648 
7649 out_free_delayed:
7650 	btrfs_free_delayed_extent_op(extent_op);
7651 out_free_buf:
7652 	free_extent_buffer(buf);
7653 out_free_reserved:
7654 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7655 out_unuse:
7656 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7657 	return ERR_PTR(ret);
7658 }
7659 
7660 struct walk_control {
7661 	u64 refs[BTRFS_MAX_LEVEL];
7662 	u64 flags[BTRFS_MAX_LEVEL];
7663 	struct btrfs_key update_progress;
7664 	int stage;
7665 	int level;
7666 	int shared_level;
7667 	int update_ref;
7668 	int keep_locks;
7669 	int reada_slot;
7670 	int reada_count;
7671 	int for_reloc;
7672 };
7673 
7674 #define DROP_REFERENCE	1
7675 #define UPDATE_BACKREF	2
7676 
7677 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7678 				     struct btrfs_root *root,
7679 				     struct walk_control *wc,
7680 				     struct btrfs_path *path)
7681 {
7682 	u64 bytenr;
7683 	u64 generation;
7684 	u64 refs;
7685 	u64 flags;
7686 	u32 nritems;
7687 	u32 blocksize;
7688 	struct btrfs_key key;
7689 	struct extent_buffer *eb;
7690 	int ret;
7691 	int slot;
7692 	int nread = 0;
7693 
7694 	if (path->slots[wc->level] < wc->reada_slot) {
7695 		wc->reada_count = wc->reada_count * 2 / 3;
7696 		wc->reada_count = max(wc->reada_count, 2);
7697 	} else {
7698 		wc->reada_count = wc->reada_count * 3 / 2;
7699 		wc->reada_count = min_t(int, wc->reada_count,
7700 					BTRFS_NODEPTRS_PER_BLOCK(root));
7701 	}
7702 
7703 	eb = path->nodes[wc->level];
7704 	nritems = btrfs_header_nritems(eb);
7705 	blocksize = root->nodesize;
7706 
7707 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7708 		if (nread >= wc->reada_count)
7709 			break;
7710 
7711 		cond_resched();
7712 		bytenr = btrfs_node_blockptr(eb, slot);
7713 		generation = btrfs_node_ptr_generation(eb, slot);
7714 
7715 		if (slot == path->slots[wc->level])
7716 			goto reada;
7717 
7718 		if (wc->stage == UPDATE_BACKREF &&
7719 		    generation <= root->root_key.offset)
7720 			continue;
7721 
7722 		/* We don't lock the tree block, it's OK to be racy here */
7723 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7724 					       wc->level - 1, 1, &refs,
7725 					       &flags);
7726 		/* We don't care about errors in readahead. */
7727 		if (ret < 0)
7728 			continue;
7729 		BUG_ON(refs == 0);
7730 
7731 		if (wc->stage == DROP_REFERENCE) {
7732 			if (refs == 1)
7733 				goto reada;
7734 
7735 			if (wc->level == 1 &&
7736 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7737 				continue;
7738 			if (!wc->update_ref ||
7739 			    generation <= root->root_key.offset)
7740 				continue;
7741 			btrfs_node_key_to_cpu(eb, &key, slot);
7742 			ret = btrfs_comp_cpu_keys(&key,
7743 						  &wc->update_progress);
7744 			if (ret < 0)
7745 				continue;
7746 		} else {
7747 			if (wc->level == 1 &&
7748 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7749 				continue;
7750 		}
7751 reada:
7752 		readahead_tree_block(root, bytenr);
7753 		nread++;
7754 	}
7755 	wc->reada_slot = slot;
7756 }
7757 
7758 static int account_leaf_items(struct btrfs_trans_handle *trans,
7759 			      struct btrfs_root *root,
7760 			      struct extent_buffer *eb)
7761 {
7762 	int nr = btrfs_header_nritems(eb);
7763 	int i, extent_type, ret;
7764 	struct btrfs_key key;
7765 	struct btrfs_file_extent_item *fi;
7766 	u64 bytenr, num_bytes;
7767 
7768 	for (i = 0; i < nr; i++) {
7769 		btrfs_item_key_to_cpu(eb, &key, i);
7770 
7771 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7772 			continue;
7773 
7774 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7775 		/* filter out non qgroup-accountable extents  */
7776 		extent_type = btrfs_file_extent_type(eb, fi);
7777 
7778 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7779 			continue;
7780 
7781 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7782 		if (!bytenr)
7783 			continue;
7784 
7785 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7786 
7787 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7788 					      root->objectid,
7789 					      bytenr, num_bytes,
7790 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7791 		if (ret)
7792 			return ret;
7793 	}
7794 	return 0;
7795 }
7796 
7797 /*
7798  * Walk up the tree from the bottom, freeing leaves and any interior
7799  * nodes which have had all slots visited. If a node (leaf or
7800  * interior) is freed, the node above it will have it's slot
7801  * incremented. The root node will never be freed.
7802  *
7803  * At the end of this function, we should have a path which has all
7804  * slots incremented to the next position for a search. If we need to
7805  * read a new node it will be NULL and the node above it will have the
7806  * correct slot selected for a later read.
7807  *
7808  * If we increment the root nodes slot counter past the number of
7809  * elements, 1 is returned to signal completion of the search.
7810  */
7811 static int adjust_slots_upwards(struct btrfs_root *root,
7812 				struct btrfs_path *path, int root_level)
7813 {
7814 	int level = 0;
7815 	int nr, slot;
7816 	struct extent_buffer *eb;
7817 
7818 	if (root_level == 0)
7819 		return 1;
7820 
7821 	while (level <= root_level) {
7822 		eb = path->nodes[level];
7823 		nr = btrfs_header_nritems(eb);
7824 		path->slots[level]++;
7825 		slot = path->slots[level];
7826 		if (slot >= nr || level == 0) {
7827 			/*
7828 			 * Don't free the root -  we will detect this
7829 			 * condition after our loop and return a
7830 			 * positive value for caller to stop walking the tree.
7831 			 */
7832 			if (level != root_level) {
7833 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7834 				path->locks[level] = 0;
7835 
7836 				free_extent_buffer(eb);
7837 				path->nodes[level] = NULL;
7838 				path->slots[level] = 0;
7839 			}
7840 		} else {
7841 			/*
7842 			 * We have a valid slot to walk back down
7843 			 * from. Stop here so caller can process these
7844 			 * new nodes.
7845 			 */
7846 			break;
7847 		}
7848 
7849 		level++;
7850 	}
7851 
7852 	eb = path->nodes[root_level];
7853 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7854 		return 1;
7855 
7856 	return 0;
7857 }
7858 
7859 /*
7860  * root_eb is the subtree root and is locked before this function is called.
7861  */
7862 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7863 				  struct btrfs_root *root,
7864 				  struct extent_buffer *root_eb,
7865 				  u64 root_gen,
7866 				  int root_level)
7867 {
7868 	int ret = 0;
7869 	int level;
7870 	struct extent_buffer *eb = root_eb;
7871 	struct btrfs_path *path = NULL;
7872 
7873 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7874 	BUG_ON(root_eb == NULL);
7875 
7876 	if (!root->fs_info->quota_enabled)
7877 		return 0;
7878 
7879 	if (!extent_buffer_uptodate(root_eb)) {
7880 		ret = btrfs_read_buffer(root_eb, root_gen);
7881 		if (ret)
7882 			goto out;
7883 	}
7884 
7885 	if (root_level == 0) {
7886 		ret = account_leaf_items(trans, root, root_eb);
7887 		goto out;
7888 	}
7889 
7890 	path = btrfs_alloc_path();
7891 	if (!path)
7892 		return -ENOMEM;
7893 
7894 	/*
7895 	 * Walk down the tree.  Missing extent blocks are filled in as
7896 	 * we go. Metadata is accounted every time we read a new
7897 	 * extent block.
7898 	 *
7899 	 * When we reach a leaf, we account for file extent items in it,
7900 	 * walk back up the tree (adjusting slot pointers as we go)
7901 	 * and restart the search process.
7902 	 */
7903 	extent_buffer_get(root_eb); /* For path */
7904 	path->nodes[root_level] = root_eb;
7905 	path->slots[root_level] = 0;
7906 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7907 walk_down:
7908 	level = root_level;
7909 	while (level >= 0) {
7910 		if (path->nodes[level] == NULL) {
7911 			int parent_slot;
7912 			u64 child_gen;
7913 			u64 child_bytenr;
7914 
7915 			/* We need to get child blockptr/gen from
7916 			 * parent before we can read it. */
7917 			eb = path->nodes[level + 1];
7918 			parent_slot = path->slots[level + 1];
7919 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7920 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7921 
7922 			eb = read_tree_block(root, child_bytenr, child_gen);
7923 			if (!eb || !extent_buffer_uptodate(eb)) {
7924 				ret = -EIO;
7925 				goto out;
7926 			}
7927 
7928 			path->nodes[level] = eb;
7929 			path->slots[level] = 0;
7930 
7931 			btrfs_tree_read_lock(eb);
7932 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7933 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7934 
7935 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7936 						root->objectid,
7937 						child_bytenr,
7938 						root->nodesize,
7939 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7940 						0);
7941 			if (ret)
7942 				goto out;
7943 
7944 		}
7945 
7946 		if (level == 0) {
7947 			ret = account_leaf_items(trans, root, path->nodes[level]);
7948 			if (ret)
7949 				goto out;
7950 
7951 			/* Nonzero return here means we completed our search */
7952 			ret = adjust_slots_upwards(root, path, root_level);
7953 			if (ret)
7954 				break;
7955 
7956 			/* Restart search with new slots */
7957 			goto walk_down;
7958 		}
7959 
7960 		level--;
7961 	}
7962 
7963 	ret = 0;
7964 out:
7965 	btrfs_free_path(path);
7966 
7967 	return ret;
7968 }
7969 
7970 /*
7971  * helper to process tree block while walking down the tree.
7972  *
7973  * when wc->stage == UPDATE_BACKREF, this function updates
7974  * back refs for pointers in the block.
7975  *
7976  * NOTE: return value 1 means we should stop walking down.
7977  */
7978 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7979 				   struct btrfs_root *root,
7980 				   struct btrfs_path *path,
7981 				   struct walk_control *wc, int lookup_info)
7982 {
7983 	int level = wc->level;
7984 	struct extent_buffer *eb = path->nodes[level];
7985 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7986 	int ret;
7987 
7988 	if (wc->stage == UPDATE_BACKREF &&
7989 	    btrfs_header_owner(eb) != root->root_key.objectid)
7990 		return 1;
7991 
7992 	/*
7993 	 * when reference count of tree block is 1, it won't increase
7994 	 * again. once full backref flag is set, we never clear it.
7995 	 */
7996 	if (lookup_info &&
7997 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7998 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7999 		BUG_ON(!path->locks[level]);
8000 		ret = btrfs_lookup_extent_info(trans, root,
8001 					       eb->start, level, 1,
8002 					       &wc->refs[level],
8003 					       &wc->flags[level]);
8004 		BUG_ON(ret == -ENOMEM);
8005 		if (ret)
8006 			return ret;
8007 		BUG_ON(wc->refs[level] == 0);
8008 	}
8009 
8010 	if (wc->stage == DROP_REFERENCE) {
8011 		if (wc->refs[level] > 1)
8012 			return 1;
8013 
8014 		if (path->locks[level] && !wc->keep_locks) {
8015 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8016 			path->locks[level] = 0;
8017 		}
8018 		return 0;
8019 	}
8020 
8021 	/* wc->stage == UPDATE_BACKREF */
8022 	if (!(wc->flags[level] & flag)) {
8023 		BUG_ON(!path->locks[level]);
8024 		ret = btrfs_inc_ref(trans, root, eb, 1);
8025 		BUG_ON(ret); /* -ENOMEM */
8026 		ret = btrfs_dec_ref(trans, root, eb, 0);
8027 		BUG_ON(ret); /* -ENOMEM */
8028 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8029 						  eb->len, flag,
8030 						  btrfs_header_level(eb), 0);
8031 		BUG_ON(ret); /* -ENOMEM */
8032 		wc->flags[level] |= flag;
8033 	}
8034 
8035 	/*
8036 	 * the block is shared by multiple trees, so it's not good to
8037 	 * keep the tree lock
8038 	 */
8039 	if (path->locks[level] && level > 0) {
8040 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8041 		path->locks[level] = 0;
8042 	}
8043 	return 0;
8044 }
8045 
8046 /*
8047  * helper to process tree block pointer.
8048  *
8049  * when wc->stage == DROP_REFERENCE, this function checks
8050  * reference count of the block pointed to. if the block
8051  * is shared and we need update back refs for the subtree
8052  * rooted at the block, this function changes wc->stage to
8053  * UPDATE_BACKREF. if the block is shared and there is no
8054  * need to update back, this function drops the reference
8055  * to the block.
8056  *
8057  * NOTE: return value 1 means we should stop walking down.
8058  */
8059 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8060 				 struct btrfs_root *root,
8061 				 struct btrfs_path *path,
8062 				 struct walk_control *wc, int *lookup_info)
8063 {
8064 	u64 bytenr;
8065 	u64 generation;
8066 	u64 parent;
8067 	u32 blocksize;
8068 	struct btrfs_key key;
8069 	struct extent_buffer *next;
8070 	int level = wc->level;
8071 	int reada = 0;
8072 	int ret = 0;
8073 	bool need_account = false;
8074 
8075 	generation = btrfs_node_ptr_generation(path->nodes[level],
8076 					       path->slots[level]);
8077 	/*
8078 	 * if the lower level block was created before the snapshot
8079 	 * was created, we know there is no need to update back refs
8080 	 * for the subtree
8081 	 */
8082 	if (wc->stage == UPDATE_BACKREF &&
8083 	    generation <= root->root_key.offset) {
8084 		*lookup_info = 1;
8085 		return 1;
8086 	}
8087 
8088 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8089 	blocksize = root->nodesize;
8090 
8091 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8092 	if (!next) {
8093 		next = btrfs_find_create_tree_block(root, bytenr);
8094 		if (!next)
8095 			return -ENOMEM;
8096 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8097 					       level - 1);
8098 		reada = 1;
8099 	}
8100 	btrfs_tree_lock(next);
8101 	btrfs_set_lock_blocking(next);
8102 
8103 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8104 				       &wc->refs[level - 1],
8105 				       &wc->flags[level - 1]);
8106 	if (ret < 0) {
8107 		btrfs_tree_unlock(next);
8108 		return ret;
8109 	}
8110 
8111 	if (unlikely(wc->refs[level - 1] == 0)) {
8112 		btrfs_err(root->fs_info, "Missing references.");
8113 		BUG();
8114 	}
8115 	*lookup_info = 0;
8116 
8117 	if (wc->stage == DROP_REFERENCE) {
8118 		if (wc->refs[level - 1] > 1) {
8119 			need_account = true;
8120 			if (level == 1 &&
8121 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8122 				goto skip;
8123 
8124 			if (!wc->update_ref ||
8125 			    generation <= root->root_key.offset)
8126 				goto skip;
8127 
8128 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8129 					      path->slots[level]);
8130 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8131 			if (ret < 0)
8132 				goto skip;
8133 
8134 			wc->stage = UPDATE_BACKREF;
8135 			wc->shared_level = level - 1;
8136 		}
8137 	} else {
8138 		if (level == 1 &&
8139 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8140 			goto skip;
8141 	}
8142 
8143 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8144 		btrfs_tree_unlock(next);
8145 		free_extent_buffer(next);
8146 		next = NULL;
8147 		*lookup_info = 1;
8148 	}
8149 
8150 	if (!next) {
8151 		if (reada && level == 1)
8152 			reada_walk_down(trans, root, wc, path);
8153 		next = read_tree_block(root, bytenr, generation);
8154 		if (!next || !extent_buffer_uptodate(next)) {
8155 			free_extent_buffer(next);
8156 			return -EIO;
8157 		}
8158 		btrfs_tree_lock(next);
8159 		btrfs_set_lock_blocking(next);
8160 	}
8161 
8162 	level--;
8163 	BUG_ON(level != btrfs_header_level(next));
8164 	path->nodes[level] = next;
8165 	path->slots[level] = 0;
8166 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8167 	wc->level = level;
8168 	if (wc->level == 1)
8169 		wc->reada_slot = 0;
8170 	return 0;
8171 skip:
8172 	wc->refs[level - 1] = 0;
8173 	wc->flags[level - 1] = 0;
8174 	if (wc->stage == DROP_REFERENCE) {
8175 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8176 			parent = path->nodes[level]->start;
8177 		} else {
8178 			BUG_ON(root->root_key.objectid !=
8179 			       btrfs_header_owner(path->nodes[level]));
8180 			parent = 0;
8181 		}
8182 
8183 		if (need_account) {
8184 			ret = account_shared_subtree(trans, root, next,
8185 						     generation, level - 1);
8186 			if (ret) {
8187 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8188 					"%d accounting shared subtree. Quota "
8189 					"is out of sync, rescan required.\n",
8190 					root->fs_info->sb->s_id, ret);
8191 			}
8192 		}
8193 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8194 				root->root_key.objectid, level - 1, 0, 0);
8195 		BUG_ON(ret); /* -ENOMEM */
8196 	}
8197 	btrfs_tree_unlock(next);
8198 	free_extent_buffer(next);
8199 	*lookup_info = 1;
8200 	return 1;
8201 }
8202 
8203 /*
8204  * helper to process tree block while walking up the tree.
8205  *
8206  * when wc->stage == DROP_REFERENCE, this function drops
8207  * reference count on the block.
8208  *
8209  * when wc->stage == UPDATE_BACKREF, this function changes
8210  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8211  * to UPDATE_BACKREF previously while processing the block.
8212  *
8213  * NOTE: return value 1 means we should stop walking up.
8214  */
8215 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8216 				 struct btrfs_root *root,
8217 				 struct btrfs_path *path,
8218 				 struct walk_control *wc)
8219 {
8220 	int ret;
8221 	int level = wc->level;
8222 	struct extent_buffer *eb = path->nodes[level];
8223 	u64 parent = 0;
8224 
8225 	if (wc->stage == UPDATE_BACKREF) {
8226 		BUG_ON(wc->shared_level < level);
8227 		if (level < wc->shared_level)
8228 			goto out;
8229 
8230 		ret = find_next_key(path, level + 1, &wc->update_progress);
8231 		if (ret > 0)
8232 			wc->update_ref = 0;
8233 
8234 		wc->stage = DROP_REFERENCE;
8235 		wc->shared_level = -1;
8236 		path->slots[level] = 0;
8237 
8238 		/*
8239 		 * check reference count again if the block isn't locked.
8240 		 * we should start walking down the tree again if reference
8241 		 * count is one.
8242 		 */
8243 		if (!path->locks[level]) {
8244 			BUG_ON(level == 0);
8245 			btrfs_tree_lock(eb);
8246 			btrfs_set_lock_blocking(eb);
8247 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8248 
8249 			ret = btrfs_lookup_extent_info(trans, root,
8250 						       eb->start, level, 1,
8251 						       &wc->refs[level],
8252 						       &wc->flags[level]);
8253 			if (ret < 0) {
8254 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8255 				path->locks[level] = 0;
8256 				return ret;
8257 			}
8258 			BUG_ON(wc->refs[level] == 0);
8259 			if (wc->refs[level] == 1) {
8260 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8261 				path->locks[level] = 0;
8262 				return 1;
8263 			}
8264 		}
8265 	}
8266 
8267 	/* wc->stage == DROP_REFERENCE */
8268 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8269 
8270 	if (wc->refs[level] == 1) {
8271 		if (level == 0) {
8272 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8273 				ret = btrfs_dec_ref(trans, root, eb, 1);
8274 			else
8275 				ret = btrfs_dec_ref(trans, root, eb, 0);
8276 			BUG_ON(ret); /* -ENOMEM */
8277 			ret = account_leaf_items(trans, root, eb);
8278 			if (ret) {
8279 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8280 					"%d accounting leaf items. Quota "
8281 					"is out of sync, rescan required.\n",
8282 					root->fs_info->sb->s_id, ret);
8283 			}
8284 		}
8285 		/* make block locked assertion in clean_tree_block happy */
8286 		if (!path->locks[level] &&
8287 		    btrfs_header_generation(eb) == trans->transid) {
8288 			btrfs_tree_lock(eb);
8289 			btrfs_set_lock_blocking(eb);
8290 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8291 		}
8292 		clean_tree_block(trans, root->fs_info, eb);
8293 	}
8294 
8295 	if (eb == root->node) {
8296 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8297 			parent = eb->start;
8298 		else
8299 			BUG_ON(root->root_key.objectid !=
8300 			       btrfs_header_owner(eb));
8301 	} else {
8302 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8303 			parent = path->nodes[level + 1]->start;
8304 		else
8305 			BUG_ON(root->root_key.objectid !=
8306 			       btrfs_header_owner(path->nodes[level + 1]));
8307 	}
8308 
8309 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8310 out:
8311 	wc->refs[level] = 0;
8312 	wc->flags[level] = 0;
8313 	return 0;
8314 }
8315 
8316 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8317 				   struct btrfs_root *root,
8318 				   struct btrfs_path *path,
8319 				   struct walk_control *wc)
8320 {
8321 	int level = wc->level;
8322 	int lookup_info = 1;
8323 	int ret;
8324 
8325 	while (level >= 0) {
8326 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8327 		if (ret > 0)
8328 			break;
8329 
8330 		if (level == 0)
8331 			break;
8332 
8333 		if (path->slots[level] >=
8334 		    btrfs_header_nritems(path->nodes[level]))
8335 			break;
8336 
8337 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8338 		if (ret > 0) {
8339 			path->slots[level]++;
8340 			continue;
8341 		} else if (ret < 0)
8342 			return ret;
8343 		level = wc->level;
8344 	}
8345 	return 0;
8346 }
8347 
8348 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8349 				 struct btrfs_root *root,
8350 				 struct btrfs_path *path,
8351 				 struct walk_control *wc, int max_level)
8352 {
8353 	int level = wc->level;
8354 	int ret;
8355 
8356 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8357 	while (level < max_level && path->nodes[level]) {
8358 		wc->level = level;
8359 		if (path->slots[level] + 1 <
8360 		    btrfs_header_nritems(path->nodes[level])) {
8361 			path->slots[level]++;
8362 			return 0;
8363 		} else {
8364 			ret = walk_up_proc(trans, root, path, wc);
8365 			if (ret > 0)
8366 				return 0;
8367 
8368 			if (path->locks[level]) {
8369 				btrfs_tree_unlock_rw(path->nodes[level],
8370 						     path->locks[level]);
8371 				path->locks[level] = 0;
8372 			}
8373 			free_extent_buffer(path->nodes[level]);
8374 			path->nodes[level] = NULL;
8375 			level++;
8376 		}
8377 	}
8378 	return 1;
8379 }
8380 
8381 /*
8382  * drop a subvolume tree.
8383  *
8384  * this function traverses the tree freeing any blocks that only
8385  * referenced by the tree.
8386  *
8387  * when a shared tree block is found. this function decreases its
8388  * reference count by one. if update_ref is true, this function
8389  * also make sure backrefs for the shared block and all lower level
8390  * blocks are properly updated.
8391  *
8392  * If called with for_reloc == 0, may exit early with -EAGAIN
8393  */
8394 int btrfs_drop_snapshot(struct btrfs_root *root,
8395 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8396 			 int for_reloc)
8397 {
8398 	struct btrfs_path *path;
8399 	struct btrfs_trans_handle *trans;
8400 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8401 	struct btrfs_root_item *root_item = &root->root_item;
8402 	struct walk_control *wc;
8403 	struct btrfs_key key;
8404 	int err = 0;
8405 	int ret;
8406 	int level;
8407 	bool root_dropped = false;
8408 
8409 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8410 
8411 	path = btrfs_alloc_path();
8412 	if (!path) {
8413 		err = -ENOMEM;
8414 		goto out;
8415 	}
8416 
8417 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8418 	if (!wc) {
8419 		btrfs_free_path(path);
8420 		err = -ENOMEM;
8421 		goto out;
8422 	}
8423 
8424 	trans = btrfs_start_transaction(tree_root, 0);
8425 	if (IS_ERR(trans)) {
8426 		err = PTR_ERR(trans);
8427 		goto out_free;
8428 	}
8429 
8430 	if (block_rsv)
8431 		trans->block_rsv = block_rsv;
8432 
8433 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8434 		level = btrfs_header_level(root->node);
8435 		path->nodes[level] = btrfs_lock_root_node(root);
8436 		btrfs_set_lock_blocking(path->nodes[level]);
8437 		path->slots[level] = 0;
8438 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8439 		memset(&wc->update_progress, 0,
8440 		       sizeof(wc->update_progress));
8441 	} else {
8442 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8443 		memcpy(&wc->update_progress, &key,
8444 		       sizeof(wc->update_progress));
8445 
8446 		level = root_item->drop_level;
8447 		BUG_ON(level == 0);
8448 		path->lowest_level = level;
8449 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8450 		path->lowest_level = 0;
8451 		if (ret < 0) {
8452 			err = ret;
8453 			goto out_end_trans;
8454 		}
8455 		WARN_ON(ret > 0);
8456 
8457 		/*
8458 		 * unlock our path, this is safe because only this
8459 		 * function is allowed to delete this snapshot
8460 		 */
8461 		btrfs_unlock_up_safe(path, 0);
8462 
8463 		level = btrfs_header_level(root->node);
8464 		while (1) {
8465 			btrfs_tree_lock(path->nodes[level]);
8466 			btrfs_set_lock_blocking(path->nodes[level]);
8467 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8468 
8469 			ret = btrfs_lookup_extent_info(trans, root,
8470 						path->nodes[level]->start,
8471 						level, 1, &wc->refs[level],
8472 						&wc->flags[level]);
8473 			if (ret < 0) {
8474 				err = ret;
8475 				goto out_end_trans;
8476 			}
8477 			BUG_ON(wc->refs[level] == 0);
8478 
8479 			if (level == root_item->drop_level)
8480 				break;
8481 
8482 			btrfs_tree_unlock(path->nodes[level]);
8483 			path->locks[level] = 0;
8484 			WARN_ON(wc->refs[level] != 1);
8485 			level--;
8486 		}
8487 	}
8488 
8489 	wc->level = level;
8490 	wc->shared_level = -1;
8491 	wc->stage = DROP_REFERENCE;
8492 	wc->update_ref = update_ref;
8493 	wc->keep_locks = 0;
8494 	wc->for_reloc = for_reloc;
8495 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8496 
8497 	while (1) {
8498 
8499 		ret = walk_down_tree(trans, root, path, wc);
8500 		if (ret < 0) {
8501 			err = ret;
8502 			break;
8503 		}
8504 
8505 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8506 		if (ret < 0) {
8507 			err = ret;
8508 			break;
8509 		}
8510 
8511 		if (ret > 0) {
8512 			BUG_ON(wc->stage != DROP_REFERENCE);
8513 			break;
8514 		}
8515 
8516 		if (wc->stage == DROP_REFERENCE) {
8517 			level = wc->level;
8518 			btrfs_node_key(path->nodes[level],
8519 				       &root_item->drop_progress,
8520 				       path->slots[level]);
8521 			root_item->drop_level = level;
8522 		}
8523 
8524 		BUG_ON(wc->level == 0);
8525 		if (btrfs_should_end_transaction(trans, tree_root) ||
8526 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8527 			ret = btrfs_update_root(trans, tree_root,
8528 						&root->root_key,
8529 						root_item);
8530 			if (ret) {
8531 				btrfs_abort_transaction(trans, tree_root, ret);
8532 				err = ret;
8533 				goto out_end_trans;
8534 			}
8535 
8536 			/*
8537 			 * Qgroup update accounting is run from
8538 			 * delayed ref handling. This usually works
8539 			 * out because delayed refs are normally the
8540 			 * only way qgroup updates are added. However,
8541 			 * we may have added updates during our tree
8542 			 * walk so run qgroups here to make sure we
8543 			 * don't lose any updates.
8544 			 */
8545 			ret = btrfs_delayed_qgroup_accounting(trans,
8546 							      root->fs_info);
8547 			if (ret)
8548 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8549 						   "running qgroup updates "
8550 						   "during snapshot delete. "
8551 						   "Quota is out of sync, "
8552 						   "rescan required.\n", ret);
8553 
8554 			btrfs_end_transaction_throttle(trans, tree_root);
8555 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8556 				pr_debug("BTRFS: drop snapshot early exit\n");
8557 				err = -EAGAIN;
8558 				goto out_free;
8559 			}
8560 
8561 			trans = btrfs_start_transaction(tree_root, 0);
8562 			if (IS_ERR(trans)) {
8563 				err = PTR_ERR(trans);
8564 				goto out_free;
8565 			}
8566 			if (block_rsv)
8567 				trans->block_rsv = block_rsv;
8568 		}
8569 	}
8570 	btrfs_release_path(path);
8571 	if (err)
8572 		goto out_end_trans;
8573 
8574 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8575 	if (ret) {
8576 		btrfs_abort_transaction(trans, tree_root, ret);
8577 		goto out_end_trans;
8578 	}
8579 
8580 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8581 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8582 				      NULL, NULL);
8583 		if (ret < 0) {
8584 			btrfs_abort_transaction(trans, tree_root, ret);
8585 			err = ret;
8586 			goto out_end_trans;
8587 		} else if (ret > 0) {
8588 			/* if we fail to delete the orphan item this time
8589 			 * around, it'll get picked up the next time.
8590 			 *
8591 			 * The most common failure here is just -ENOENT.
8592 			 */
8593 			btrfs_del_orphan_item(trans, tree_root,
8594 					      root->root_key.objectid);
8595 		}
8596 	}
8597 
8598 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8599 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8600 	} else {
8601 		free_extent_buffer(root->node);
8602 		free_extent_buffer(root->commit_root);
8603 		btrfs_put_fs_root(root);
8604 	}
8605 	root_dropped = true;
8606 out_end_trans:
8607 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8608 	if (ret)
8609 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8610 				   "running qgroup updates "
8611 				   "during snapshot delete. "
8612 				   "Quota is out of sync, "
8613 				   "rescan required.\n", ret);
8614 
8615 	btrfs_end_transaction_throttle(trans, tree_root);
8616 out_free:
8617 	kfree(wc);
8618 	btrfs_free_path(path);
8619 out:
8620 	/*
8621 	 * So if we need to stop dropping the snapshot for whatever reason we
8622 	 * need to make sure to add it back to the dead root list so that we
8623 	 * keep trying to do the work later.  This also cleans up roots if we
8624 	 * don't have it in the radix (like when we recover after a power fail
8625 	 * or unmount) so we don't leak memory.
8626 	 */
8627 	if (!for_reloc && root_dropped == false)
8628 		btrfs_add_dead_root(root);
8629 	if (err && err != -EAGAIN)
8630 		btrfs_std_error(root->fs_info, err);
8631 	return err;
8632 }
8633 
8634 /*
8635  * drop subtree rooted at tree block 'node'.
8636  *
8637  * NOTE: this function will unlock and release tree block 'node'
8638  * only used by relocation code
8639  */
8640 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8641 			struct btrfs_root *root,
8642 			struct extent_buffer *node,
8643 			struct extent_buffer *parent)
8644 {
8645 	struct btrfs_path *path;
8646 	struct walk_control *wc;
8647 	int level;
8648 	int parent_level;
8649 	int ret = 0;
8650 	int wret;
8651 
8652 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8653 
8654 	path = btrfs_alloc_path();
8655 	if (!path)
8656 		return -ENOMEM;
8657 
8658 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8659 	if (!wc) {
8660 		btrfs_free_path(path);
8661 		return -ENOMEM;
8662 	}
8663 
8664 	btrfs_assert_tree_locked(parent);
8665 	parent_level = btrfs_header_level(parent);
8666 	extent_buffer_get(parent);
8667 	path->nodes[parent_level] = parent;
8668 	path->slots[parent_level] = btrfs_header_nritems(parent);
8669 
8670 	btrfs_assert_tree_locked(node);
8671 	level = btrfs_header_level(node);
8672 	path->nodes[level] = node;
8673 	path->slots[level] = 0;
8674 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8675 
8676 	wc->refs[parent_level] = 1;
8677 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8678 	wc->level = level;
8679 	wc->shared_level = -1;
8680 	wc->stage = DROP_REFERENCE;
8681 	wc->update_ref = 0;
8682 	wc->keep_locks = 1;
8683 	wc->for_reloc = 1;
8684 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8685 
8686 	while (1) {
8687 		wret = walk_down_tree(trans, root, path, wc);
8688 		if (wret < 0) {
8689 			ret = wret;
8690 			break;
8691 		}
8692 
8693 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8694 		if (wret < 0)
8695 			ret = wret;
8696 		if (wret != 0)
8697 			break;
8698 	}
8699 
8700 	kfree(wc);
8701 	btrfs_free_path(path);
8702 	return ret;
8703 }
8704 
8705 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8706 {
8707 	u64 num_devices;
8708 	u64 stripped;
8709 
8710 	/*
8711 	 * if restripe for this chunk_type is on pick target profile and
8712 	 * return, otherwise do the usual balance
8713 	 */
8714 	stripped = get_restripe_target(root->fs_info, flags);
8715 	if (stripped)
8716 		return extended_to_chunk(stripped);
8717 
8718 	num_devices = root->fs_info->fs_devices->rw_devices;
8719 
8720 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8721 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8722 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8723 
8724 	if (num_devices == 1) {
8725 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8726 		stripped = flags & ~stripped;
8727 
8728 		/* turn raid0 into single device chunks */
8729 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8730 			return stripped;
8731 
8732 		/* turn mirroring into duplication */
8733 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8734 			     BTRFS_BLOCK_GROUP_RAID10))
8735 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8736 	} else {
8737 		/* they already had raid on here, just return */
8738 		if (flags & stripped)
8739 			return flags;
8740 
8741 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8742 		stripped = flags & ~stripped;
8743 
8744 		/* switch duplicated blocks with raid1 */
8745 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8746 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8747 
8748 		/* this is drive concat, leave it alone */
8749 	}
8750 
8751 	return flags;
8752 }
8753 
8754 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8755 {
8756 	struct btrfs_space_info *sinfo = cache->space_info;
8757 	u64 num_bytes;
8758 	u64 min_allocable_bytes;
8759 	int ret = -ENOSPC;
8760 
8761 
8762 	/*
8763 	 * We need some metadata space and system metadata space for
8764 	 * allocating chunks in some corner cases until we force to set
8765 	 * it to be readonly.
8766 	 */
8767 	if ((sinfo->flags &
8768 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8769 	    !force)
8770 		min_allocable_bytes = 1 * 1024 * 1024;
8771 	else
8772 		min_allocable_bytes = 0;
8773 
8774 	spin_lock(&sinfo->lock);
8775 	spin_lock(&cache->lock);
8776 
8777 	if (cache->ro) {
8778 		ret = 0;
8779 		goto out;
8780 	}
8781 
8782 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8783 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8784 
8785 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8786 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8787 	    min_allocable_bytes <= sinfo->total_bytes) {
8788 		sinfo->bytes_readonly += num_bytes;
8789 		cache->ro = 1;
8790 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8791 		ret = 0;
8792 	}
8793 out:
8794 	spin_unlock(&cache->lock);
8795 	spin_unlock(&sinfo->lock);
8796 	return ret;
8797 }
8798 
8799 int btrfs_set_block_group_ro(struct btrfs_root *root,
8800 			     struct btrfs_block_group_cache *cache)
8801 
8802 {
8803 	struct btrfs_trans_handle *trans;
8804 	u64 alloc_flags;
8805 	int ret;
8806 
8807 	BUG_ON(cache->ro);
8808 
8809 again:
8810 	trans = btrfs_join_transaction(root);
8811 	if (IS_ERR(trans))
8812 		return PTR_ERR(trans);
8813 
8814 	/*
8815 	 * we're not allowed to set block groups readonly after the dirty
8816 	 * block groups cache has started writing.  If it already started,
8817 	 * back off and let this transaction commit
8818 	 */
8819 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8820 	if (trans->transaction->dirty_bg_run) {
8821 		u64 transid = trans->transid;
8822 
8823 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8824 		btrfs_end_transaction(trans, root);
8825 
8826 		ret = btrfs_wait_for_commit(root, transid);
8827 		if (ret)
8828 			return ret;
8829 		goto again;
8830 	}
8831 
8832 	/*
8833 	 * if we are changing raid levels, try to allocate a corresponding
8834 	 * block group with the new raid level.
8835 	 */
8836 	alloc_flags = update_block_group_flags(root, cache->flags);
8837 	if (alloc_flags != cache->flags) {
8838 		ret = do_chunk_alloc(trans, root, alloc_flags,
8839 				     CHUNK_ALLOC_FORCE);
8840 		/*
8841 		 * ENOSPC is allowed here, we may have enough space
8842 		 * already allocated at the new raid level to
8843 		 * carry on
8844 		 */
8845 		if (ret == -ENOSPC)
8846 			ret = 0;
8847 		if (ret < 0)
8848 			goto out;
8849 	}
8850 
8851 	ret = set_block_group_ro(cache, 0);
8852 	if (!ret)
8853 		goto out;
8854 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8855 	ret = do_chunk_alloc(trans, root, alloc_flags,
8856 			     CHUNK_ALLOC_FORCE);
8857 	if (ret < 0)
8858 		goto out;
8859 	ret = set_block_group_ro(cache, 0);
8860 out:
8861 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8862 		alloc_flags = update_block_group_flags(root, cache->flags);
8863 		lock_chunks(root->fs_info->chunk_root);
8864 		check_system_chunk(trans, root, alloc_flags);
8865 		unlock_chunks(root->fs_info->chunk_root);
8866 	}
8867 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8868 
8869 	btrfs_end_transaction(trans, root);
8870 	return ret;
8871 }
8872 
8873 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8874 			    struct btrfs_root *root, u64 type)
8875 {
8876 	u64 alloc_flags = get_alloc_profile(root, type);
8877 	return do_chunk_alloc(trans, root, alloc_flags,
8878 			      CHUNK_ALLOC_FORCE);
8879 }
8880 
8881 /*
8882  * helper to account the unused space of all the readonly block group in the
8883  * space_info. takes mirrors into account.
8884  */
8885 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8886 {
8887 	struct btrfs_block_group_cache *block_group;
8888 	u64 free_bytes = 0;
8889 	int factor;
8890 
8891 	/* It's df, we don't care if it's racey */
8892 	if (list_empty(&sinfo->ro_bgs))
8893 		return 0;
8894 
8895 	spin_lock(&sinfo->lock);
8896 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8897 		spin_lock(&block_group->lock);
8898 
8899 		if (!block_group->ro) {
8900 			spin_unlock(&block_group->lock);
8901 			continue;
8902 		}
8903 
8904 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8905 					  BTRFS_BLOCK_GROUP_RAID10 |
8906 					  BTRFS_BLOCK_GROUP_DUP))
8907 			factor = 2;
8908 		else
8909 			factor = 1;
8910 
8911 		free_bytes += (block_group->key.offset -
8912 			       btrfs_block_group_used(&block_group->item)) *
8913 			       factor;
8914 
8915 		spin_unlock(&block_group->lock);
8916 	}
8917 	spin_unlock(&sinfo->lock);
8918 
8919 	return free_bytes;
8920 }
8921 
8922 void btrfs_set_block_group_rw(struct btrfs_root *root,
8923 			      struct btrfs_block_group_cache *cache)
8924 {
8925 	struct btrfs_space_info *sinfo = cache->space_info;
8926 	u64 num_bytes;
8927 
8928 	BUG_ON(!cache->ro);
8929 
8930 	spin_lock(&sinfo->lock);
8931 	spin_lock(&cache->lock);
8932 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8933 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8934 	sinfo->bytes_readonly -= num_bytes;
8935 	cache->ro = 0;
8936 	list_del_init(&cache->ro_list);
8937 	spin_unlock(&cache->lock);
8938 	spin_unlock(&sinfo->lock);
8939 }
8940 
8941 /*
8942  * checks to see if its even possible to relocate this block group.
8943  *
8944  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8945  * ok to go ahead and try.
8946  */
8947 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8948 {
8949 	struct btrfs_block_group_cache *block_group;
8950 	struct btrfs_space_info *space_info;
8951 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8952 	struct btrfs_device *device;
8953 	struct btrfs_trans_handle *trans;
8954 	u64 min_free;
8955 	u64 dev_min = 1;
8956 	u64 dev_nr = 0;
8957 	u64 target;
8958 	int index;
8959 	int full = 0;
8960 	int ret = 0;
8961 
8962 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8963 
8964 	/* odd, couldn't find the block group, leave it alone */
8965 	if (!block_group)
8966 		return -1;
8967 
8968 	min_free = btrfs_block_group_used(&block_group->item);
8969 
8970 	/* no bytes used, we're good */
8971 	if (!min_free)
8972 		goto out;
8973 
8974 	space_info = block_group->space_info;
8975 	spin_lock(&space_info->lock);
8976 
8977 	full = space_info->full;
8978 
8979 	/*
8980 	 * if this is the last block group we have in this space, we can't
8981 	 * relocate it unless we're able to allocate a new chunk below.
8982 	 *
8983 	 * Otherwise, we need to make sure we have room in the space to handle
8984 	 * all of the extents from this block group.  If we can, we're good
8985 	 */
8986 	if ((space_info->total_bytes != block_group->key.offset) &&
8987 	    (space_info->bytes_used + space_info->bytes_reserved +
8988 	     space_info->bytes_pinned + space_info->bytes_readonly +
8989 	     min_free < space_info->total_bytes)) {
8990 		spin_unlock(&space_info->lock);
8991 		goto out;
8992 	}
8993 	spin_unlock(&space_info->lock);
8994 
8995 	/*
8996 	 * ok we don't have enough space, but maybe we have free space on our
8997 	 * devices to allocate new chunks for relocation, so loop through our
8998 	 * alloc devices and guess if we have enough space.  if this block
8999 	 * group is going to be restriped, run checks against the target
9000 	 * profile instead of the current one.
9001 	 */
9002 	ret = -1;
9003 
9004 	/*
9005 	 * index:
9006 	 *      0: raid10
9007 	 *      1: raid1
9008 	 *      2: dup
9009 	 *      3: raid0
9010 	 *      4: single
9011 	 */
9012 	target = get_restripe_target(root->fs_info, block_group->flags);
9013 	if (target) {
9014 		index = __get_raid_index(extended_to_chunk(target));
9015 	} else {
9016 		/*
9017 		 * this is just a balance, so if we were marked as full
9018 		 * we know there is no space for a new chunk
9019 		 */
9020 		if (full)
9021 			goto out;
9022 
9023 		index = get_block_group_index(block_group);
9024 	}
9025 
9026 	if (index == BTRFS_RAID_RAID10) {
9027 		dev_min = 4;
9028 		/* Divide by 2 */
9029 		min_free >>= 1;
9030 	} else if (index == BTRFS_RAID_RAID1) {
9031 		dev_min = 2;
9032 	} else if (index == BTRFS_RAID_DUP) {
9033 		/* Multiply by 2 */
9034 		min_free <<= 1;
9035 	} else if (index == BTRFS_RAID_RAID0) {
9036 		dev_min = fs_devices->rw_devices;
9037 		min_free = div64_u64(min_free, dev_min);
9038 	}
9039 
9040 	/* We need to do this so that we can look at pending chunks */
9041 	trans = btrfs_join_transaction(root);
9042 	if (IS_ERR(trans)) {
9043 		ret = PTR_ERR(trans);
9044 		goto out;
9045 	}
9046 
9047 	mutex_lock(&root->fs_info->chunk_mutex);
9048 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9049 		u64 dev_offset;
9050 
9051 		/*
9052 		 * check to make sure we can actually find a chunk with enough
9053 		 * space to fit our block group in.
9054 		 */
9055 		if (device->total_bytes > device->bytes_used + min_free &&
9056 		    !device->is_tgtdev_for_dev_replace) {
9057 			ret = find_free_dev_extent(trans, device, min_free,
9058 						   &dev_offset, NULL);
9059 			if (!ret)
9060 				dev_nr++;
9061 
9062 			if (dev_nr >= dev_min)
9063 				break;
9064 
9065 			ret = -1;
9066 		}
9067 	}
9068 	mutex_unlock(&root->fs_info->chunk_mutex);
9069 	btrfs_end_transaction(trans, root);
9070 out:
9071 	btrfs_put_block_group(block_group);
9072 	return ret;
9073 }
9074 
9075 static int find_first_block_group(struct btrfs_root *root,
9076 		struct btrfs_path *path, struct btrfs_key *key)
9077 {
9078 	int ret = 0;
9079 	struct btrfs_key found_key;
9080 	struct extent_buffer *leaf;
9081 	int slot;
9082 
9083 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9084 	if (ret < 0)
9085 		goto out;
9086 
9087 	while (1) {
9088 		slot = path->slots[0];
9089 		leaf = path->nodes[0];
9090 		if (slot >= btrfs_header_nritems(leaf)) {
9091 			ret = btrfs_next_leaf(root, path);
9092 			if (ret == 0)
9093 				continue;
9094 			if (ret < 0)
9095 				goto out;
9096 			break;
9097 		}
9098 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9099 
9100 		if (found_key.objectid >= key->objectid &&
9101 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9102 			ret = 0;
9103 			goto out;
9104 		}
9105 		path->slots[0]++;
9106 	}
9107 out:
9108 	return ret;
9109 }
9110 
9111 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9112 {
9113 	struct btrfs_block_group_cache *block_group;
9114 	u64 last = 0;
9115 
9116 	while (1) {
9117 		struct inode *inode;
9118 
9119 		block_group = btrfs_lookup_first_block_group(info, last);
9120 		while (block_group) {
9121 			spin_lock(&block_group->lock);
9122 			if (block_group->iref)
9123 				break;
9124 			spin_unlock(&block_group->lock);
9125 			block_group = next_block_group(info->tree_root,
9126 						       block_group);
9127 		}
9128 		if (!block_group) {
9129 			if (last == 0)
9130 				break;
9131 			last = 0;
9132 			continue;
9133 		}
9134 
9135 		inode = block_group->inode;
9136 		block_group->iref = 0;
9137 		block_group->inode = NULL;
9138 		spin_unlock(&block_group->lock);
9139 		iput(inode);
9140 		last = block_group->key.objectid + block_group->key.offset;
9141 		btrfs_put_block_group(block_group);
9142 	}
9143 }
9144 
9145 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9146 {
9147 	struct btrfs_block_group_cache *block_group;
9148 	struct btrfs_space_info *space_info;
9149 	struct btrfs_caching_control *caching_ctl;
9150 	struct rb_node *n;
9151 
9152 	down_write(&info->commit_root_sem);
9153 	while (!list_empty(&info->caching_block_groups)) {
9154 		caching_ctl = list_entry(info->caching_block_groups.next,
9155 					 struct btrfs_caching_control, list);
9156 		list_del(&caching_ctl->list);
9157 		put_caching_control(caching_ctl);
9158 	}
9159 	up_write(&info->commit_root_sem);
9160 
9161 	spin_lock(&info->unused_bgs_lock);
9162 	while (!list_empty(&info->unused_bgs)) {
9163 		block_group = list_first_entry(&info->unused_bgs,
9164 					       struct btrfs_block_group_cache,
9165 					       bg_list);
9166 		list_del_init(&block_group->bg_list);
9167 		btrfs_put_block_group(block_group);
9168 	}
9169 	spin_unlock(&info->unused_bgs_lock);
9170 
9171 	spin_lock(&info->block_group_cache_lock);
9172 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9173 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9174 				       cache_node);
9175 		rb_erase(&block_group->cache_node,
9176 			 &info->block_group_cache_tree);
9177 		RB_CLEAR_NODE(&block_group->cache_node);
9178 		spin_unlock(&info->block_group_cache_lock);
9179 
9180 		down_write(&block_group->space_info->groups_sem);
9181 		list_del(&block_group->list);
9182 		up_write(&block_group->space_info->groups_sem);
9183 
9184 		if (block_group->cached == BTRFS_CACHE_STARTED)
9185 			wait_block_group_cache_done(block_group);
9186 
9187 		/*
9188 		 * We haven't cached this block group, which means we could
9189 		 * possibly have excluded extents on this block group.
9190 		 */
9191 		if (block_group->cached == BTRFS_CACHE_NO ||
9192 		    block_group->cached == BTRFS_CACHE_ERROR)
9193 			free_excluded_extents(info->extent_root, block_group);
9194 
9195 		btrfs_remove_free_space_cache(block_group);
9196 		btrfs_put_block_group(block_group);
9197 
9198 		spin_lock(&info->block_group_cache_lock);
9199 	}
9200 	spin_unlock(&info->block_group_cache_lock);
9201 
9202 	/* now that all the block groups are freed, go through and
9203 	 * free all the space_info structs.  This is only called during
9204 	 * the final stages of unmount, and so we know nobody is
9205 	 * using them.  We call synchronize_rcu() once before we start,
9206 	 * just to be on the safe side.
9207 	 */
9208 	synchronize_rcu();
9209 
9210 	release_global_block_rsv(info);
9211 
9212 	while (!list_empty(&info->space_info)) {
9213 		int i;
9214 
9215 		space_info = list_entry(info->space_info.next,
9216 					struct btrfs_space_info,
9217 					list);
9218 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9219 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9220 			    space_info->bytes_reserved > 0 ||
9221 			    space_info->bytes_may_use > 0)) {
9222 				dump_space_info(space_info, 0, 0);
9223 			}
9224 		}
9225 		list_del(&space_info->list);
9226 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9227 			struct kobject *kobj;
9228 			kobj = space_info->block_group_kobjs[i];
9229 			space_info->block_group_kobjs[i] = NULL;
9230 			if (kobj) {
9231 				kobject_del(kobj);
9232 				kobject_put(kobj);
9233 			}
9234 		}
9235 		kobject_del(&space_info->kobj);
9236 		kobject_put(&space_info->kobj);
9237 	}
9238 	return 0;
9239 }
9240 
9241 static void __link_block_group(struct btrfs_space_info *space_info,
9242 			       struct btrfs_block_group_cache *cache)
9243 {
9244 	int index = get_block_group_index(cache);
9245 	bool first = false;
9246 
9247 	down_write(&space_info->groups_sem);
9248 	if (list_empty(&space_info->block_groups[index]))
9249 		first = true;
9250 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9251 	up_write(&space_info->groups_sem);
9252 
9253 	if (first) {
9254 		struct raid_kobject *rkobj;
9255 		int ret;
9256 
9257 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9258 		if (!rkobj)
9259 			goto out_err;
9260 		rkobj->raid_type = index;
9261 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9262 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9263 				  "%s", get_raid_name(index));
9264 		if (ret) {
9265 			kobject_put(&rkobj->kobj);
9266 			goto out_err;
9267 		}
9268 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9269 	}
9270 
9271 	return;
9272 out_err:
9273 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9274 }
9275 
9276 static struct btrfs_block_group_cache *
9277 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9278 {
9279 	struct btrfs_block_group_cache *cache;
9280 
9281 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9282 	if (!cache)
9283 		return NULL;
9284 
9285 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9286 					GFP_NOFS);
9287 	if (!cache->free_space_ctl) {
9288 		kfree(cache);
9289 		return NULL;
9290 	}
9291 
9292 	cache->key.objectid = start;
9293 	cache->key.offset = size;
9294 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9295 
9296 	cache->sectorsize = root->sectorsize;
9297 	cache->fs_info = root->fs_info;
9298 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9299 					       &root->fs_info->mapping_tree,
9300 					       start);
9301 	atomic_set(&cache->count, 1);
9302 	spin_lock_init(&cache->lock);
9303 	init_rwsem(&cache->data_rwsem);
9304 	INIT_LIST_HEAD(&cache->list);
9305 	INIT_LIST_HEAD(&cache->cluster_list);
9306 	INIT_LIST_HEAD(&cache->bg_list);
9307 	INIT_LIST_HEAD(&cache->ro_list);
9308 	INIT_LIST_HEAD(&cache->dirty_list);
9309 	INIT_LIST_HEAD(&cache->io_list);
9310 	btrfs_init_free_space_ctl(cache);
9311 	atomic_set(&cache->trimming, 0);
9312 
9313 	return cache;
9314 }
9315 
9316 int btrfs_read_block_groups(struct btrfs_root *root)
9317 {
9318 	struct btrfs_path *path;
9319 	int ret;
9320 	struct btrfs_block_group_cache *cache;
9321 	struct btrfs_fs_info *info = root->fs_info;
9322 	struct btrfs_space_info *space_info;
9323 	struct btrfs_key key;
9324 	struct btrfs_key found_key;
9325 	struct extent_buffer *leaf;
9326 	int need_clear = 0;
9327 	u64 cache_gen;
9328 
9329 	root = info->extent_root;
9330 	key.objectid = 0;
9331 	key.offset = 0;
9332 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9333 	path = btrfs_alloc_path();
9334 	if (!path)
9335 		return -ENOMEM;
9336 	path->reada = 1;
9337 
9338 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9339 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9340 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9341 		need_clear = 1;
9342 	if (btrfs_test_opt(root, CLEAR_CACHE))
9343 		need_clear = 1;
9344 
9345 	while (1) {
9346 		ret = find_first_block_group(root, path, &key);
9347 		if (ret > 0)
9348 			break;
9349 		if (ret != 0)
9350 			goto error;
9351 
9352 		leaf = path->nodes[0];
9353 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9354 
9355 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9356 						       found_key.offset);
9357 		if (!cache) {
9358 			ret = -ENOMEM;
9359 			goto error;
9360 		}
9361 
9362 		if (need_clear) {
9363 			/*
9364 			 * When we mount with old space cache, we need to
9365 			 * set BTRFS_DC_CLEAR and set dirty flag.
9366 			 *
9367 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9368 			 *    truncate the old free space cache inode and
9369 			 *    setup a new one.
9370 			 * b) Setting 'dirty flag' makes sure that we flush
9371 			 *    the new space cache info onto disk.
9372 			 */
9373 			if (btrfs_test_opt(root, SPACE_CACHE))
9374 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9375 		}
9376 
9377 		read_extent_buffer(leaf, &cache->item,
9378 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9379 				   sizeof(cache->item));
9380 		cache->flags = btrfs_block_group_flags(&cache->item);
9381 
9382 		key.objectid = found_key.objectid + found_key.offset;
9383 		btrfs_release_path(path);
9384 
9385 		/*
9386 		 * We need to exclude the super stripes now so that the space
9387 		 * info has super bytes accounted for, otherwise we'll think
9388 		 * we have more space than we actually do.
9389 		 */
9390 		ret = exclude_super_stripes(root, cache);
9391 		if (ret) {
9392 			/*
9393 			 * We may have excluded something, so call this just in
9394 			 * case.
9395 			 */
9396 			free_excluded_extents(root, cache);
9397 			btrfs_put_block_group(cache);
9398 			goto error;
9399 		}
9400 
9401 		/*
9402 		 * check for two cases, either we are full, and therefore
9403 		 * don't need to bother with the caching work since we won't
9404 		 * find any space, or we are empty, and we can just add all
9405 		 * the space in and be done with it.  This saves us _alot_ of
9406 		 * time, particularly in the full case.
9407 		 */
9408 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9409 			cache->last_byte_to_unpin = (u64)-1;
9410 			cache->cached = BTRFS_CACHE_FINISHED;
9411 			free_excluded_extents(root, cache);
9412 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9413 			cache->last_byte_to_unpin = (u64)-1;
9414 			cache->cached = BTRFS_CACHE_FINISHED;
9415 			add_new_free_space(cache, root->fs_info,
9416 					   found_key.objectid,
9417 					   found_key.objectid +
9418 					   found_key.offset);
9419 			free_excluded_extents(root, cache);
9420 		}
9421 
9422 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9423 		if (ret) {
9424 			btrfs_remove_free_space_cache(cache);
9425 			btrfs_put_block_group(cache);
9426 			goto error;
9427 		}
9428 
9429 		ret = update_space_info(info, cache->flags, found_key.offset,
9430 					btrfs_block_group_used(&cache->item),
9431 					&space_info);
9432 		if (ret) {
9433 			btrfs_remove_free_space_cache(cache);
9434 			spin_lock(&info->block_group_cache_lock);
9435 			rb_erase(&cache->cache_node,
9436 				 &info->block_group_cache_tree);
9437 			RB_CLEAR_NODE(&cache->cache_node);
9438 			spin_unlock(&info->block_group_cache_lock);
9439 			btrfs_put_block_group(cache);
9440 			goto error;
9441 		}
9442 
9443 		cache->space_info = space_info;
9444 		spin_lock(&cache->space_info->lock);
9445 		cache->space_info->bytes_readonly += cache->bytes_super;
9446 		spin_unlock(&cache->space_info->lock);
9447 
9448 		__link_block_group(space_info, cache);
9449 
9450 		set_avail_alloc_bits(root->fs_info, cache->flags);
9451 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9452 			set_block_group_ro(cache, 1);
9453 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9454 			spin_lock(&info->unused_bgs_lock);
9455 			/* Should always be true but just in case. */
9456 			if (list_empty(&cache->bg_list)) {
9457 				btrfs_get_block_group(cache);
9458 				list_add_tail(&cache->bg_list,
9459 					      &info->unused_bgs);
9460 			}
9461 			spin_unlock(&info->unused_bgs_lock);
9462 		}
9463 	}
9464 
9465 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9466 		if (!(get_alloc_profile(root, space_info->flags) &
9467 		      (BTRFS_BLOCK_GROUP_RAID10 |
9468 		       BTRFS_BLOCK_GROUP_RAID1 |
9469 		       BTRFS_BLOCK_GROUP_RAID5 |
9470 		       BTRFS_BLOCK_GROUP_RAID6 |
9471 		       BTRFS_BLOCK_GROUP_DUP)))
9472 			continue;
9473 		/*
9474 		 * avoid allocating from un-mirrored block group if there are
9475 		 * mirrored block groups.
9476 		 */
9477 		list_for_each_entry(cache,
9478 				&space_info->block_groups[BTRFS_RAID_RAID0],
9479 				list)
9480 			set_block_group_ro(cache, 1);
9481 		list_for_each_entry(cache,
9482 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9483 				list)
9484 			set_block_group_ro(cache, 1);
9485 	}
9486 
9487 	init_global_block_rsv(info);
9488 	ret = 0;
9489 error:
9490 	btrfs_free_path(path);
9491 	return ret;
9492 }
9493 
9494 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9495 				       struct btrfs_root *root)
9496 {
9497 	struct btrfs_block_group_cache *block_group, *tmp;
9498 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9499 	struct btrfs_block_group_item item;
9500 	struct btrfs_key key;
9501 	int ret = 0;
9502 
9503 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9504 		if (ret)
9505 			goto next;
9506 
9507 		spin_lock(&block_group->lock);
9508 		memcpy(&item, &block_group->item, sizeof(item));
9509 		memcpy(&key, &block_group->key, sizeof(key));
9510 		spin_unlock(&block_group->lock);
9511 
9512 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9513 					sizeof(item));
9514 		if (ret)
9515 			btrfs_abort_transaction(trans, extent_root, ret);
9516 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9517 					       key.objectid, key.offset);
9518 		if (ret)
9519 			btrfs_abort_transaction(trans, extent_root, ret);
9520 next:
9521 		list_del_init(&block_group->bg_list);
9522 	}
9523 }
9524 
9525 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9526 			   struct btrfs_root *root, u64 bytes_used,
9527 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9528 			   u64 size)
9529 {
9530 	int ret;
9531 	struct btrfs_root *extent_root;
9532 	struct btrfs_block_group_cache *cache;
9533 
9534 	extent_root = root->fs_info->extent_root;
9535 
9536 	btrfs_set_log_full_commit(root->fs_info, trans);
9537 
9538 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9539 	if (!cache)
9540 		return -ENOMEM;
9541 
9542 	btrfs_set_block_group_used(&cache->item, bytes_used);
9543 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9544 	btrfs_set_block_group_flags(&cache->item, type);
9545 
9546 	cache->flags = type;
9547 	cache->last_byte_to_unpin = (u64)-1;
9548 	cache->cached = BTRFS_CACHE_FINISHED;
9549 	ret = exclude_super_stripes(root, cache);
9550 	if (ret) {
9551 		/*
9552 		 * We may have excluded something, so call this just in
9553 		 * case.
9554 		 */
9555 		free_excluded_extents(root, cache);
9556 		btrfs_put_block_group(cache);
9557 		return ret;
9558 	}
9559 
9560 	add_new_free_space(cache, root->fs_info, chunk_offset,
9561 			   chunk_offset + size);
9562 
9563 	free_excluded_extents(root, cache);
9564 
9565 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9566 	if (ret) {
9567 		btrfs_remove_free_space_cache(cache);
9568 		btrfs_put_block_group(cache);
9569 		return ret;
9570 	}
9571 
9572 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9573 				&cache->space_info);
9574 	if (ret) {
9575 		btrfs_remove_free_space_cache(cache);
9576 		spin_lock(&root->fs_info->block_group_cache_lock);
9577 		rb_erase(&cache->cache_node,
9578 			 &root->fs_info->block_group_cache_tree);
9579 		RB_CLEAR_NODE(&cache->cache_node);
9580 		spin_unlock(&root->fs_info->block_group_cache_lock);
9581 		btrfs_put_block_group(cache);
9582 		return ret;
9583 	}
9584 	update_global_block_rsv(root->fs_info);
9585 
9586 	spin_lock(&cache->space_info->lock);
9587 	cache->space_info->bytes_readonly += cache->bytes_super;
9588 	spin_unlock(&cache->space_info->lock);
9589 
9590 	__link_block_group(cache->space_info, cache);
9591 
9592 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9593 
9594 	set_avail_alloc_bits(extent_root->fs_info, type);
9595 
9596 	return 0;
9597 }
9598 
9599 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9600 {
9601 	u64 extra_flags = chunk_to_extended(flags) &
9602 				BTRFS_EXTENDED_PROFILE_MASK;
9603 
9604 	write_seqlock(&fs_info->profiles_lock);
9605 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9606 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9607 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9608 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9609 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9610 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9611 	write_sequnlock(&fs_info->profiles_lock);
9612 }
9613 
9614 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9615 			     struct btrfs_root *root, u64 group_start,
9616 			     struct extent_map *em)
9617 {
9618 	struct btrfs_path *path;
9619 	struct btrfs_block_group_cache *block_group;
9620 	struct btrfs_free_cluster *cluster;
9621 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9622 	struct btrfs_key key;
9623 	struct inode *inode;
9624 	struct kobject *kobj = NULL;
9625 	int ret;
9626 	int index;
9627 	int factor;
9628 	struct btrfs_caching_control *caching_ctl = NULL;
9629 	bool remove_em;
9630 
9631 	root = root->fs_info->extent_root;
9632 
9633 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9634 	BUG_ON(!block_group);
9635 	BUG_ON(!block_group->ro);
9636 
9637 	/*
9638 	 * Free the reserved super bytes from this block group before
9639 	 * remove it.
9640 	 */
9641 	free_excluded_extents(root, block_group);
9642 
9643 	memcpy(&key, &block_group->key, sizeof(key));
9644 	index = get_block_group_index(block_group);
9645 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9646 				  BTRFS_BLOCK_GROUP_RAID1 |
9647 				  BTRFS_BLOCK_GROUP_RAID10))
9648 		factor = 2;
9649 	else
9650 		factor = 1;
9651 
9652 	/* make sure this block group isn't part of an allocation cluster */
9653 	cluster = &root->fs_info->data_alloc_cluster;
9654 	spin_lock(&cluster->refill_lock);
9655 	btrfs_return_cluster_to_free_space(block_group, cluster);
9656 	spin_unlock(&cluster->refill_lock);
9657 
9658 	/*
9659 	 * make sure this block group isn't part of a metadata
9660 	 * allocation cluster
9661 	 */
9662 	cluster = &root->fs_info->meta_alloc_cluster;
9663 	spin_lock(&cluster->refill_lock);
9664 	btrfs_return_cluster_to_free_space(block_group, cluster);
9665 	spin_unlock(&cluster->refill_lock);
9666 
9667 	path = btrfs_alloc_path();
9668 	if (!path) {
9669 		ret = -ENOMEM;
9670 		goto out;
9671 	}
9672 
9673 	/*
9674 	 * get the inode first so any iput calls done for the io_list
9675 	 * aren't the final iput (no unlinks allowed now)
9676 	 */
9677 	inode = lookup_free_space_inode(tree_root, block_group, path);
9678 
9679 	mutex_lock(&trans->transaction->cache_write_mutex);
9680 	/*
9681 	 * make sure our free spache cache IO is done before remove the
9682 	 * free space inode
9683 	 */
9684 	spin_lock(&trans->transaction->dirty_bgs_lock);
9685 	if (!list_empty(&block_group->io_list)) {
9686 		list_del_init(&block_group->io_list);
9687 
9688 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9689 
9690 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9691 		btrfs_wait_cache_io(root, trans, block_group,
9692 				    &block_group->io_ctl, path,
9693 				    block_group->key.objectid);
9694 		btrfs_put_block_group(block_group);
9695 		spin_lock(&trans->transaction->dirty_bgs_lock);
9696 	}
9697 
9698 	if (!list_empty(&block_group->dirty_list)) {
9699 		list_del_init(&block_group->dirty_list);
9700 		btrfs_put_block_group(block_group);
9701 	}
9702 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9703 	mutex_unlock(&trans->transaction->cache_write_mutex);
9704 
9705 	if (!IS_ERR(inode)) {
9706 		ret = btrfs_orphan_add(trans, inode);
9707 		if (ret) {
9708 			btrfs_add_delayed_iput(inode);
9709 			goto out;
9710 		}
9711 		clear_nlink(inode);
9712 		/* One for the block groups ref */
9713 		spin_lock(&block_group->lock);
9714 		if (block_group->iref) {
9715 			block_group->iref = 0;
9716 			block_group->inode = NULL;
9717 			spin_unlock(&block_group->lock);
9718 			iput(inode);
9719 		} else {
9720 			spin_unlock(&block_group->lock);
9721 		}
9722 		/* One for our lookup ref */
9723 		btrfs_add_delayed_iput(inode);
9724 	}
9725 
9726 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9727 	key.offset = block_group->key.objectid;
9728 	key.type = 0;
9729 
9730 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9731 	if (ret < 0)
9732 		goto out;
9733 	if (ret > 0)
9734 		btrfs_release_path(path);
9735 	if (ret == 0) {
9736 		ret = btrfs_del_item(trans, tree_root, path);
9737 		if (ret)
9738 			goto out;
9739 		btrfs_release_path(path);
9740 	}
9741 
9742 	spin_lock(&root->fs_info->block_group_cache_lock);
9743 	rb_erase(&block_group->cache_node,
9744 		 &root->fs_info->block_group_cache_tree);
9745 	RB_CLEAR_NODE(&block_group->cache_node);
9746 
9747 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9748 		root->fs_info->first_logical_byte = (u64)-1;
9749 	spin_unlock(&root->fs_info->block_group_cache_lock);
9750 
9751 	down_write(&block_group->space_info->groups_sem);
9752 	/*
9753 	 * we must use list_del_init so people can check to see if they
9754 	 * are still on the list after taking the semaphore
9755 	 */
9756 	list_del_init(&block_group->list);
9757 	if (list_empty(&block_group->space_info->block_groups[index])) {
9758 		kobj = block_group->space_info->block_group_kobjs[index];
9759 		block_group->space_info->block_group_kobjs[index] = NULL;
9760 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9761 	}
9762 	up_write(&block_group->space_info->groups_sem);
9763 	if (kobj) {
9764 		kobject_del(kobj);
9765 		kobject_put(kobj);
9766 	}
9767 
9768 	if (block_group->has_caching_ctl)
9769 		caching_ctl = get_caching_control(block_group);
9770 	if (block_group->cached == BTRFS_CACHE_STARTED)
9771 		wait_block_group_cache_done(block_group);
9772 	if (block_group->has_caching_ctl) {
9773 		down_write(&root->fs_info->commit_root_sem);
9774 		if (!caching_ctl) {
9775 			struct btrfs_caching_control *ctl;
9776 
9777 			list_for_each_entry(ctl,
9778 				    &root->fs_info->caching_block_groups, list)
9779 				if (ctl->block_group == block_group) {
9780 					caching_ctl = ctl;
9781 					atomic_inc(&caching_ctl->count);
9782 					break;
9783 				}
9784 		}
9785 		if (caching_ctl)
9786 			list_del_init(&caching_ctl->list);
9787 		up_write(&root->fs_info->commit_root_sem);
9788 		if (caching_ctl) {
9789 			/* Once for the caching bgs list and once for us. */
9790 			put_caching_control(caching_ctl);
9791 			put_caching_control(caching_ctl);
9792 		}
9793 	}
9794 
9795 	spin_lock(&trans->transaction->dirty_bgs_lock);
9796 	if (!list_empty(&block_group->dirty_list)) {
9797 		WARN_ON(1);
9798 	}
9799 	if (!list_empty(&block_group->io_list)) {
9800 		WARN_ON(1);
9801 	}
9802 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9803 	btrfs_remove_free_space_cache(block_group);
9804 
9805 	spin_lock(&block_group->space_info->lock);
9806 	list_del_init(&block_group->ro_list);
9807 
9808 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9809 		WARN_ON(block_group->space_info->total_bytes
9810 			< block_group->key.offset);
9811 		WARN_ON(block_group->space_info->bytes_readonly
9812 			< block_group->key.offset);
9813 		WARN_ON(block_group->space_info->disk_total
9814 			< block_group->key.offset * factor);
9815 	}
9816 	block_group->space_info->total_bytes -= block_group->key.offset;
9817 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9818 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9819 
9820 	spin_unlock(&block_group->space_info->lock);
9821 
9822 	memcpy(&key, &block_group->key, sizeof(key));
9823 
9824 	lock_chunks(root);
9825 	if (!list_empty(&em->list)) {
9826 		/* We're in the transaction->pending_chunks list. */
9827 		free_extent_map(em);
9828 	}
9829 	spin_lock(&block_group->lock);
9830 	block_group->removed = 1;
9831 	/*
9832 	 * At this point trimming can't start on this block group, because we
9833 	 * removed the block group from the tree fs_info->block_group_cache_tree
9834 	 * so no one can't find it anymore and even if someone already got this
9835 	 * block group before we removed it from the rbtree, they have already
9836 	 * incremented block_group->trimming - if they didn't, they won't find
9837 	 * any free space entries because we already removed them all when we
9838 	 * called btrfs_remove_free_space_cache().
9839 	 *
9840 	 * And we must not remove the extent map from the fs_info->mapping_tree
9841 	 * to prevent the same logical address range and physical device space
9842 	 * ranges from being reused for a new block group. This is because our
9843 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9844 	 * completely transactionless, so while it is trimming a range the
9845 	 * currently running transaction might finish and a new one start,
9846 	 * allowing for new block groups to be created that can reuse the same
9847 	 * physical device locations unless we take this special care.
9848 	 */
9849 	remove_em = (atomic_read(&block_group->trimming) == 0);
9850 	/*
9851 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9852 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9853 	 * before checking block_group->removed).
9854 	 */
9855 	if (!remove_em) {
9856 		/*
9857 		 * Our em might be in trans->transaction->pending_chunks which
9858 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9859 		 * and so is the fs_info->pinned_chunks list.
9860 		 *
9861 		 * So at this point we must be holding the chunk_mutex to avoid
9862 		 * any races with chunk allocation (more specifically at
9863 		 * volumes.c:contains_pending_extent()), to ensure it always
9864 		 * sees the em, either in the pending_chunks list or in the
9865 		 * pinned_chunks list.
9866 		 */
9867 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9868 	}
9869 	spin_unlock(&block_group->lock);
9870 
9871 	if (remove_em) {
9872 		struct extent_map_tree *em_tree;
9873 
9874 		em_tree = &root->fs_info->mapping_tree.map_tree;
9875 		write_lock(&em_tree->lock);
9876 		/*
9877 		 * The em might be in the pending_chunks list, so make sure the
9878 		 * chunk mutex is locked, since remove_extent_mapping() will
9879 		 * delete us from that list.
9880 		 */
9881 		remove_extent_mapping(em_tree, em);
9882 		write_unlock(&em_tree->lock);
9883 		/* once for the tree */
9884 		free_extent_map(em);
9885 	}
9886 
9887 	unlock_chunks(root);
9888 
9889 	btrfs_put_block_group(block_group);
9890 	btrfs_put_block_group(block_group);
9891 
9892 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9893 	if (ret > 0)
9894 		ret = -EIO;
9895 	if (ret < 0)
9896 		goto out;
9897 
9898 	ret = btrfs_del_item(trans, root, path);
9899 out:
9900 	btrfs_free_path(path);
9901 	return ret;
9902 }
9903 
9904 /*
9905  * Process the unused_bgs list and remove any that don't have any allocated
9906  * space inside of them.
9907  */
9908 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9909 {
9910 	struct btrfs_block_group_cache *block_group;
9911 	struct btrfs_space_info *space_info;
9912 	struct btrfs_root *root = fs_info->extent_root;
9913 	struct btrfs_trans_handle *trans;
9914 	int ret = 0;
9915 
9916 	if (!fs_info->open)
9917 		return;
9918 
9919 	spin_lock(&fs_info->unused_bgs_lock);
9920 	while (!list_empty(&fs_info->unused_bgs)) {
9921 		u64 start, end;
9922 
9923 		block_group = list_first_entry(&fs_info->unused_bgs,
9924 					       struct btrfs_block_group_cache,
9925 					       bg_list);
9926 		space_info = block_group->space_info;
9927 		list_del_init(&block_group->bg_list);
9928 		if (ret || btrfs_mixed_space_info(space_info)) {
9929 			btrfs_put_block_group(block_group);
9930 			continue;
9931 		}
9932 		spin_unlock(&fs_info->unused_bgs_lock);
9933 
9934 		/* Don't want to race with allocators so take the groups_sem */
9935 		down_write(&space_info->groups_sem);
9936 		spin_lock(&block_group->lock);
9937 		if (block_group->reserved ||
9938 		    btrfs_block_group_used(&block_group->item) ||
9939 		    block_group->ro) {
9940 			/*
9941 			 * We want to bail if we made new allocations or have
9942 			 * outstanding allocations in this block group.  We do
9943 			 * the ro check in case balance is currently acting on
9944 			 * this block group.
9945 			 */
9946 			spin_unlock(&block_group->lock);
9947 			up_write(&space_info->groups_sem);
9948 			goto next;
9949 		}
9950 		spin_unlock(&block_group->lock);
9951 
9952 		/* We don't want to force the issue, only flip if it's ok. */
9953 		ret = set_block_group_ro(block_group, 0);
9954 		up_write(&space_info->groups_sem);
9955 		if (ret < 0) {
9956 			ret = 0;
9957 			goto next;
9958 		}
9959 
9960 		/*
9961 		 * Want to do this before we do anything else so we can recover
9962 		 * properly if we fail to join the transaction.
9963 		 */
9964 		/* 1 for btrfs_orphan_reserve_metadata() */
9965 		trans = btrfs_start_transaction(root, 1);
9966 		if (IS_ERR(trans)) {
9967 			btrfs_set_block_group_rw(root, block_group);
9968 			ret = PTR_ERR(trans);
9969 			goto next;
9970 		}
9971 
9972 		/*
9973 		 * We could have pending pinned extents for this block group,
9974 		 * just delete them, we don't care about them anymore.
9975 		 */
9976 		start = block_group->key.objectid;
9977 		end = start + block_group->key.offset - 1;
9978 		/*
9979 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9980 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9981 		 * another task might be running finish_extent_commit() for the
9982 		 * previous transaction N - 1, and have seen a range belonging
9983 		 * to the block group in freed_extents[] before we were able to
9984 		 * clear the whole block group range from freed_extents[]. This
9985 		 * means that task can lookup for the block group after we
9986 		 * unpinned it from freed_extents[] and removed it, leading to
9987 		 * a BUG_ON() at btrfs_unpin_extent_range().
9988 		 */
9989 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9990 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9991 				  EXTENT_DIRTY, GFP_NOFS);
9992 		if (ret) {
9993 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9994 			btrfs_set_block_group_rw(root, block_group);
9995 			goto end_trans;
9996 		}
9997 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9998 				  EXTENT_DIRTY, GFP_NOFS);
9999 		if (ret) {
10000 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10001 			btrfs_set_block_group_rw(root, block_group);
10002 			goto end_trans;
10003 		}
10004 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10005 
10006 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10007 		spin_lock(&space_info->lock);
10008 		spin_lock(&block_group->lock);
10009 
10010 		space_info->bytes_pinned -= block_group->pinned;
10011 		space_info->bytes_readonly += block_group->pinned;
10012 		percpu_counter_add(&space_info->total_bytes_pinned,
10013 				   -block_group->pinned);
10014 		block_group->pinned = 0;
10015 
10016 		spin_unlock(&block_group->lock);
10017 		spin_unlock(&space_info->lock);
10018 
10019 		/*
10020 		 * Btrfs_remove_chunk will abort the transaction if things go
10021 		 * horribly wrong.
10022 		 */
10023 		ret = btrfs_remove_chunk(trans, root,
10024 					 block_group->key.objectid);
10025 end_trans:
10026 		btrfs_end_transaction(trans, root);
10027 next:
10028 		btrfs_put_block_group(block_group);
10029 		spin_lock(&fs_info->unused_bgs_lock);
10030 	}
10031 	spin_unlock(&fs_info->unused_bgs_lock);
10032 }
10033 
10034 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10035 {
10036 	struct btrfs_space_info *space_info;
10037 	struct btrfs_super_block *disk_super;
10038 	u64 features;
10039 	u64 flags;
10040 	int mixed = 0;
10041 	int ret;
10042 
10043 	disk_super = fs_info->super_copy;
10044 	if (!btrfs_super_root(disk_super))
10045 		return 1;
10046 
10047 	features = btrfs_super_incompat_flags(disk_super);
10048 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10049 		mixed = 1;
10050 
10051 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10052 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10053 	if (ret)
10054 		goto out;
10055 
10056 	if (mixed) {
10057 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10058 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10059 	} else {
10060 		flags = BTRFS_BLOCK_GROUP_METADATA;
10061 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10062 		if (ret)
10063 			goto out;
10064 
10065 		flags = BTRFS_BLOCK_GROUP_DATA;
10066 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10067 	}
10068 out:
10069 	return ret;
10070 }
10071 
10072 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10073 {
10074 	return unpin_extent_range(root, start, end, false);
10075 }
10076 
10077 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10078 {
10079 	struct btrfs_fs_info *fs_info = root->fs_info;
10080 	struct btrfs_block_group_cache *cache = NULL;
10081 	u64 group_trimmed;
10082 	u64 start;
10083 	u64 end;
10084 	u64 trimmed = 0;
10085 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10086 	int ret = 0;
10087 
10088 	/*
10089 	 * try to trim all FS space, our block group may start from non-zero.
10090 	 */
10091 	if (range->len == total_bytes)
10092 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10093 	else
10094 		cache = btrfs_lookup_block_group(fs_info, range->start);
10095 
10096 	while (cache) {
10097 		if (cache->key.objectid >= (range->start + range->len)) {
10098 			btrfs_put_block_group(cache);
10099 			break;
10100 		}
10101 
10102 		start = max(range->start, cache->key.objectid);
10103 		end = min(range->start + range->len,
10104 				cache->key.objectid + cache->key.offset);
10105 
10106 		if (end - start >= range->minlen) {
10107 			if (!block_group_cache_done(cache)) {
10108 				ret = cache_block_group(cache, 0);
10109 				if (ret) {
10110 					btrfs_put_block_group(cache);
10111 					break;
10112 				}
10113 				ret = wait_block_group_cache_done(cache);
10114 				if (ret) {
10115 					btrfs_put_block_group(cache);
10116 					break;
10117 				}
10118 			}
10119 			ret = btrfs_trim_block_group(cache,
10120 						     &group_trimmed,
10121 						     start,
10122 						     end,
10123 						     range->minlen);
10124 
10125 			trimmed += group_trimmed;
10126 			if (ret) {
10127 				btrfs_put_block_group(cache);
10128 				break;
10129 			}
10130 		}
10131 
10132 		cache = next_block_group(fs_info->tree_root, cache);
10133 	}
10134 
10135 	range->len = trimmed;
10136 	return ret;
10137 }
10138 
10139 /*
10140  * btrfs_{start,end}_write_no_snapshoting() are similar to
10141  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10142  * data into the page cache through nocow before the subvolume is snapshoted,
10143  * but flush the data into disk after the snapshot creation, or to prevent
10144  * operations while snapshoting is ongoing and that cause the snapshot to be
10145  * inconsistent (writes followed by expanding truncates for example).
10146  */
10147 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10148 {
10149 	percpu_counter_dec(&root->subv_writers->counter);
10150 	/*
10151 	 * Make sure counter is updated before we wake up
10152 	 * waiters.
10153 	 */
10154 	smp_mb();
10155 	if (waitqueue_active(&root->subv_writers->wait))
10156 		wake_up(&root->subv_writers->wait);
10157 }
10158 
10159 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10160 {
10161 	if (atomic_read(&root->will_be_snapshoted))
10162 		return 0;
10163 
10164 	percpu_counter_inc(&root->subv_writers->counter);
10165 	/*
10166 	 * Make sure counter is updated before we check for snapshot creation.
10167 	 */
10168 	smp_mb();
10169 	if (atomic_read(&root->will_be_snapshoted)) {
10170 		btrfs_end_write_no_snapshoting(root);
10171 		return 0;
10172 	}
10173 	return 1;
10174 }
10175